ML20236A254

From kanterella
Jump to navigation Jump to search
Rev 1 to Lab Tests of Air Entrapment in Slightly Sloped Sensing Lines & Consequent Pressure Transmission Error
ML20236A254
Person / Time
Site: Sequoyah  Tennessee Valley Authority icon.png
Issue date: 06/10/1987
From: Brackett A, Duncan M, Schohl G
TENNESSEE VALLEY AUTHORITY
To:
Shared Package
ML20236A238 List:
References
WR28-1-85-124, WR28-1-85-124-R01, WR28-1-85-124-R1, NUDOCS 8707280050
Download: ML20236A254 (39)


Text

_ _ _ _ _ _-_ -

C, s . . . _ . _ _ _ _ - _ _

[.s, .r .

.ji'A

.I t Tennessee Valley Authority Of fice of Natural Resources and Economic Development Division of Air and Water Resources

., Engineering Laboratory 4

. .:s

. p:

w.

h!f,'._ . *

~~

Mi,'i'e

. nc nj

. t , .v .

'5 **,

.ix:_ -

LABORATORY TESTS OF AIR ENTRAPMENT IN SLIGHTLY SLOPE 0 SENSING LINES AND THE CONSEQUENT PRESSURE TRANSMISSION ERROR se t

Report No. WR28-1-85-124.R1 Prepared by Gerald A. Schohl and C. Ann Brackett Engineering Laboratory and .

Michael L. Duncan

( Division of Nuclear Engineering

' PDR ADOCK 05000327 P PDR

} ,

9 1-

t. REVISIONS i l

, Revision 1. June 10.1987 Page 4, Para.1: Added sentence giving distances between ultrasonic transducers used for velocity measurements.

Page 4. Para. 3: Modified sentence explaining entrapped air volume j determination.

Page 8, Para. 2: Rewrote paragraph to better explain variations in .

measured entrapped air volumes. I Page 8 Para. 3: Added description of the relationship between elevation difference and the reservoir hook gage readings. .

Page 10, Para. 2: Added further explanation for conclusion that the elevation differences in data sheets 3 through 7 were in error.

APPENDIX, Data Sheets 1 through 17: Signed and dated data sheets.

u

  • 4 me M

=

4 g 4

e

a . _ -

(

O i l

~

s ABSTRACT Tests conducted at the Engineering Laboratory on 1/2-inch 1 stainless steel sensing lines sloped at 1/4 or 1/8 in/ft indicate that air can become entrapped at socket-weld fittings (couplings) and 18-inch j long horizontal sectiois~ typical of those used at Watts Bar Nuclear l j

Plant. The results suggest that 2 to 7 cc of air can become entrapped at socket-weld fittings and 10 to 25 cc of air in horizontal sections.

3 The results are in agreement with previous studies indicating that bubbles as small as 1 cc migrate about 1 in/s in 1/2-inch sensing lines sloped at 1/4 or 1/8 in/ft. However, at these small slopes '

migration of bubbles less than about 5 cc in volume is sensitive to effects that may be insignificant at larger slopes. In sensing lines sloped at 1 in/ft, results indicate that air bubbles greater than about 0.5 cc (smaller bubbles were not tested) migrate readily through straight

s. sections and couplings.

Both the test results and theoretichi considerations suggest

., that quantities of air small enough to become entrapped in 1/2-inch sensing lines sloped at 1/4 or 1/8 in/ft are not likely to cause error in static pressure transmission. However, even a small quantity of air affects dynamic pressure transmission because it lowers the natural frequencies for pressure wave propagation in a sensing line. If the first-mode natural f requency is reduced into the sensitive range of the pressure transmitter connected to th6 line, the transmitter signal can t become significantly degraded by oscillations about the mean, static I j

value of pressure.

m m &Sd 9

i I

4

?

, . _ . . _ .[__ __ )

.. i l

}. . . .

o .ii e

CONTENTS

)^

Pace 4 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Introduction . . . . . . . . . . . . . . . . . . ... . . . . . . . .

1 Experimental Apparatus . . . . . . . . . . . . . ... . . . . . . . . 2 Test Procedures . . . . . . . . . . . . . . . . . . . . . . . . . .- 4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 5 Migration Velocities of 1 cc Bubbles.in Straight Pipes . . . . .  !

5  !

Air Entrapment at Couplings and Horizontal Sections .. .... ,7 Error in Pressure Measurement Due to Entrapped Air . . . . . .' . 8 Drainage of Slightly Sloped Sensing Lines

.. ....... .. 13 Conclusions ............................ 13 References ............................ .15

  • s Appendix

............................. 16 t

LIST OF FIGURES

1. Details of Test Setup. . ...... ..... ...... ... 3
2. Air Entrapment as Observed in a 1/2-inch Clear Plastic Sensing Line . . . . . . . . . . . . . . . . . . . . . . . . . 9 LIST OF TABLES
1. Migration Velocities of 1 cc Bubbles in Straight Sensing Lines
2. ........................ 6 Entrapment of Air at Sensing Line Obstructions . . . . . . . . . 10 f.

4 s

l5 .-. . ...

o e

INTRODUCTION Tests were conducted at the Engineering Laboratory to investigate the movement of air bubbles through socket-weld fittings (c.ouplings) and 18-inch long horizontal sections in samples of liquid-filled, slight 1p~ sloped (less than 1 in/ft) sensing lines like those used at Watts Bar Nuclear Plant. The test results provide indications of the amount of air that can be entrapped at couplings and short horizontal sections, and also the error in pressure measurement caused by entrapped air.

Industry standards recommend that sensing lines be installed with a minimum slope of 1 in/ft (ASME, 1971 and 150, 1973). However, previous studies have demonstrated that, under laboratory conditions, bubbles migrate slowly through straight sections of sensing line sloped less than 1 in/f t (Wojnovich, et al.,1985; Missimer and Brackett,1986a

,, and 1986b). The velocity at which a bubble migrates decreases with decreasing sensing line slope, decreasing sensing line internal diameter,

,, and decreasing bubble size. In samples of 1/2-inch stainless steel sensing lines sloped at 1/8 in/ft, for exaraple, test results indicate (Missimer and Brackett, 1986b) that bubbles 1 cc in volume migrate at about 0.7 in/s in schedule 160 pipe (I.D. = 0.464 in) and about 1.1 in/s in schedule 80 pipe (I.D. =

0.546 in). However, these results also i indicate that in both schedule 80 pipe and in schedule 160 pipe, bubbles can become entrapped at couplings and in horizontal sections, depending on the size of the bubble and on the line slope.

In the present tests, bubble migration was studied in 20-foot long sections of 1/2-inch schedule 80 and schedule 160 stainless steel l l pipes with either a coupling or an 18-inch long horizontal section l

(formed- by bending) at --their midpoints. The pipes with couplings were '

tested at slopes of 1, 1/4, and 1/8 in/ft. The pipes with horizontal sections were tested at a slope of 1/4 in/ft. In addiH on, bubble migration was observed in 1/2-inch clear plastic tubes ( I . ., . = 0.594 "

J inch), one with a simulated socket-weld fitting and one with an 18-inch e

long horizontal section. These tests, recorded on videotape, provided '

l visual information on bubble migration, but data were not collected.

4

)

l o 2 EXPERIMENTAL APPARATUS

. l The test apparatus is schematically illustrated in Figure 1.

Sensing line samples were mounted along two aluminum beams which were ]

1 clamped together to form a rigid support. An adjustable tripod, which supported ,one end of th_e clamped beams, permitted the slopes of the sensing line samples to be adjusted. An inclinometer (Starrett gauge)

)

was used' to measure and set the desired slope. Plastic tubing connected

)

the ends of a sensing line sample to elevated reservoirs.

A liquid-filled sensing line is transmitting pressure accurately if the piezometric head (pressure head plus elevation) at both of its ends is. the same. The piezometric heads on the ends of the laboratory sensing line samples were indicated by the elevations of the wate'r surf aces in the elevated reservoirs. (These reservoirs were designated as " head tank" and " vertical tube" in the data sheets included in the Appendix). In order to obtain a measurement of the possible pressure s4 transmission error due to entrapped air in the sensing line samples, the relative water surface elevations in these reservoirs were measured

  • v during the tests using hook gages with 0.001-feet resolution.  !

Air bubbles of known volume were introduced into the_ low end of a sensing line sample. Using a graduated syringe, air was injected through the plastic t .ing connecting the sensing line to an elevated reservoir. bijected ur passed through the syringe needle into a small plastic tube (1/8-inch diameter), which covered the needle and extended into the opening of the sensing line. On the high ~ end of the line, escaping air was collected in; an inverted, graduated beaker which I

permitted the escaping volume to be measured and compared with the injected'_' volume.

Migration of air bubbles through the sensing line was monitored by meails" of two "ref1'ectoscopes" which received the signals from I ultrasonic transducers mounted at five locations along the top of the line (positions e, a, b, c, and d as denoted in Figure if. A bubble passing under a transducer ' attenuated the transducer signal. The first

, transducer, at position e, was used to' check that iniected bubbles moved

r . .. -)

i  ;

NOT TO SCALE HOOK GAGE --

o

~7 e i RESERVOIR RESERVOIR T' )

(HEAD TANK) . (VERTIC AL' TUB E) _

~~~

AIR COLLECTION fk U PLASTIC TUBING TRANSDUCER "e" J,

10, 10' c ,

T

.. a ] n,* n?A* :Y --

INJECTION AIR ,

b b SUPPORT BEAM

, ?M.DD' l ADJUSTABLE FIXED ^

SUPPORT l SOCK ET- W ELD TRIPOD SENSING LINE COUPLING

/\

4 4,9..j. ,'.; 7/S.

(a) Support and Sensing Line with Coupling HORIZONTAL

1/4 in/ft 2: 1/4 in/ft

.h

< 119 1/2" '

, ge

, .g a ' elb >c -18" T'l'go101 1/4', hd ' '

.. .  : =-p-M WOOD L FORM HORIZONTAL SUPPORT BEAM SENSING LINE (b) Sensing Line with Horizontal Center Section

  • Figure 1: Details of Test Setup L- - - _ _ _ _ _ . _ _ _ _ _ .

4 j i

away from the injection location. The average velocities of bubbles that  !

migrated steadily were obtained by measuring migration times over the distances separating transducers "a" and "b" and transducers "c" and "d." These distances were, respectively, 55.75 and 60 inches for the R1 sensing lines with couplings, and 60 and 72.25 inches for the sensing lines with horizontal 4ections. (Ultrasonic transducers send sonic pulses into a line and receive the reflected signals.)

TEST PROCEDURES Before each test the slope of the sensing line was set and checked approximately every foot, using the inclinometer. The line was thoroughly flushed with water to remove any air that may have been initially present. The water temperature was measured using a mercury thermometer. The reservoir water surface elevations were measured and recorded.

A test was started by injecting a 1 cc bubble into the lower end

,, of a sensing line. The bubble's velocity in the lower section of straight pipe was measured using the transducers and reflectoscope. When the bubble lodged in a coupling or horizontal section, another bubble of the same size (sometimes larger during testing of the pipes with horizontal sections) was injected. This procedure was continued until air was detected in the upper section of straight pipe, indicating that some air had escaped the obstruction. The volume of the air that escaped was measured when it collected in the inverted beaker immersed in the upper reservoir.

The dif ference between the volume of air injected and the volume that escaped was assumed to represent the volume of air I

~

R1 entrapped at the obstruction. After the escaping air was accounted for, additional bubbles were-injected until air again escaped the center obstruction. In this manner, a range of values for the amount of air that can be entrapped at a coupling or horizontal section was collected.

The reservoir water surf ace elevations, represented by the hook

  • gage readings, were recorded often during each test. Because it was necessary to watch the reflectoscope when bubbles were moving, the hook l gages were read during times when air was entrapped but no bubbles were I migrating.

i

[ . . .

a S ..

4 5 As an attempt to determine whether water temperature e

significantly affects bubble migration characteristics, one test was conducted using hot tap water in the schedule 160 stainless steel pipe and coupling sloped at 1/8 in/f t. However, the temperature of the hot tap water was only 94*F, compared with the cold tap water temperature of about 68*F. Heat loss calculations indicated that this water would cool to 85'F in about 10 minutes and to 75'F in about 30 minutes.

Consequently, the water temperature during the test, which took about 45 minutes, varied significantly.

RESULTS ANO DISCUSSION The tests provided measurements of the migration velocities of 1 cc bubbles in straight sloped sections of sensing line, estimates of the f

amounts of air that can collect at couplings and horizontal sections in l sa sensing lines, and indications of the error in pressure measurement that can result from the presence of entrapped air in a sensing line. The  !

, data collected during the 19 tests are included in the Appendix.

Migration Velocities of 1 cc Bubbles in Straight Pipes

{

Table 1 compares measurements of 1 cc bubble migration velocities taken during the present tests to measurements taken during previous tests, in which bubbles as small as 1 cc typically migrated slowly up 1/2-inch stainless steel sensing lines sloped at 1/8 and 1/4 in/ft (Missimer and Brackett,1986b). The velocities measured during the present tests, in both the schedule 80 and schedule 160 pipes, were in reasonable agreement with previous results. However, in many cases, bubbles injected into the schedule 80 pipe with coupling (Data Sheets 8

. through-12 in the Appendix) and bubbles injected into the schedule 160 pipe with horizontal section (Data Sheets 14 and 15) seemed to stop moving in straight sloped sections of pipe, before reaching- the center obstructions (coupling or horizontal section). Sometimes injected -

bubbles were never detected by even the first transducer, at position e; a

other times they reached the second transducer, at position a, and then a

s 6

TABLE 1 f

Migration Velocities of 1 cc Bubbles in Straight, Sensing Lines 1/2-inch Average Migration velocities, in/s Sensing Lines Present Tests Previous Tests Sch. 80,1/8 in/f t 0.6 - 0.8 1.0

, 1/4 "

0.9 - 1.7 1.5

, 1 3.7 -

Sch.160,1/8 in/f t 0.9 0.7

" , 1/4 "

1.1 1.2

, 1 4.0 -

were never detected at position b. However, bubbles detected by the transducer at position a and then not by the transducer at position b may nevertheless have passed position b. For most of the tests, only one

,, reflectoscope was operating. Consequently, the output from only_ one transducer at a time could be monitored. It is likely that bubbles

., sometimes passed the transducers at positions a and b while the transducer at position e was being monitored. As evident in the data sheets in the Appendix, the transducers at positions c and d were only monitored occasionally.

When bubbles did not reach even the first transducer, they were probably stuck at the bubble injection location; this was observed in the clear plastic pipe.

Bubbles tended to stick between the small tube through which air was injected into the pipe and the top of the' pipe.

Consequently, several 1 cc bubbles could be injected before any air would break loose and migrate up the line. In fact, a similar problem .was experienced during the previous tests (Missimer and Bracket t,1986b). In those tests, bubbles tended to adhere to the entrance of the sensing line af ter being injected into pipes sloped less than 1 in/f t. Bubbles were of ten injected forcefully to get them away from the entrance or jarred loose by striking the pipe. Once the bubbles were clear of the pipe '

entrance they migrated up the slope. ~

s 4

I

_ _ _ _ _ . _ . _ _ _ _---u-- - - - - - - - - - - - " - - - - - - - ~ - ' ' ~ - - - - - -

i O 7 In the clear plastic pipe, bubbles would stop within straight sections sloped at 1/4 or 1/8 in/ft. These bubbles would not continue l migrating until they were either joined by other bubbles, resulting in \

i one larger bubble, or until the pipe was physically shaken or struck.

However, the inner diameter of plastic pipe is typically not as uniform as. would be expected in a stainless steel pipe. Also, because the {

plastic pipe was not as rigid as steel pipe, a precisely uniform slope l could not be established along its l er.gth . At slopes of 1/8 and ,

1/4 in/ft, slight discrepancies in slope or internal geometry of a )

sensing line can significantly affect bubble migration. i Considering the present results, the previous results (Missimer and Brackett,1986b), and the problems with the bubble injection systems in both the present and previous tests, it can probably be concluded that

(

bubbles as small as 1 cc will migrate in 1/2-inch stainless steel sensing i lines sloped at 1/4 and 1/8 in/ft. However, bubble motion at these small slopes is sensitive to effects that may be insignificant at larger 6o slopes. These effects may include, for example, slight deviations in slope along a sensing line, imperfections or rough areas inside the line, or impurities in the water which fills the line. Because of the pervasive vibration present in an operating nuclear plant, these effects are probably more significant in the laboratory than they would be in plant sensing lines. In a vibrating sensing line, bubbles are less likely to stop migrating than in a still line, and small bubbles are more likely to coalesce into larger bubbles, which migrate more readily than l

small bubbles.

Air Entrapment at Couplings and Horizontal Sections The tests in the stainless steel pipes and the observations in the clear plasticy pipe indicate that 1 cc bubbles mig rating through  !

1/2-inch sensing lines sloped at 1/4 or 1/8 in/ft tend to stop at  !

couplings and 18-inch horizontal sections. Bubbles collect at these obstructions and coalesce until the buoyancy force associated with the ,

I accumulated air volume becomes suf ficiently large to overcome the forces

, tending to hold the air in the obstruction. Forces due to surface O

. ~ . - . - -~--__.u- - __a

s 8

tension cause an air bubble to adhere to the discontinuous. pipe wall within a coupling. In a horizontal section, the buoyancy force on an air bubble pushes it up against the top of the pipe but cannot push it forward through the pipe. Observations in the plastic pipe indicated that air accumulates along the top of a horizontal section until the length of the trapped bubble nearly equals the length of the horizontal section. In both couplings and horizontal sections, when air finally escapes, most or all of the accumulated volume escapes at once, sometimes leaving a small volume behind. Figure 2 illustrates entrapped air as it was observed in the plastic pipe.

Table 2 presents estimates of the amounts of air entrapped at couplings and horizontal sections during the tests. The measurement varied considerably, attesting to the sensitivity of bubble motion in slightly sloped pipes. The estimates provided for the schedule 80 lines with couplings (except at 1 in/ft) and the schedule 160 line with horizontal section are likely to be conservatively high because of the dif ficulties with bubble injection encountered during these tests. As explained earlier, the entrapped air volume was assumed to equal the total injected volume minus the total escaped volume. Consequently, bubbles trapped at the air injection tube are included within, and increase, the estimates for entrapped air volume.

Error in Pressure Measurement Due to Entrapped Air 1 The elevation dif ference recorded in the data sheets is defined I as the water surface elevation in the head tank minus the water surface elevation in the vertical tube. Because at the beginning of each test the water surface elevations in the head tank and vertical tube were identical, the initial difference between the hook gage readings corresponded to zero eleyation difference. The elevation differences during each test were then determined by subtracting the current difference between the head tank and vertical tube readings from the initial difference in these readings. The actual hook gage readings .

j varied f rom ' test to test because the elevation to which the reservoirs were initially filled was not the same for each test. During tests, the readings decreased with time because of minor water leakage. Because any error due to entrapped air would cause the water surface elevation in the

_- _ _ _ _ - _ _ l

\

)

  • ~- .m. .

a 9

)

v '

1 AIR ,ne l

&) -

    • "% ATER4

'~

-u- W j

(a) At Couplings 1 l

)

3,e AIR >

,,, a 94

,one (b) At Horizontal Sections l

1 l

. Figure 2: Air Entrapment as Observed in a 1/2 inch CIear Plastic Sensing Line.

.s e i b

e i

..m___m. __-

l . - - -

4 10 y reservoir connected to the upper end of the sensing line (the " vertical tube") to be higher than the water surface elevation in the reservoir connected to the lower end (the " head tank"), only negative elevation dif ferences can represent error due to entrapped air.

No errors in pressure transmission through sensing lines sloped at 1/8,1/4, or 1 in/ft-were detected during the tests. As shown in the data sheets in the Appendix (except sheets 3 through 7 and sheet 13a),

the measured difference in water surface elevation between the reservoirs '

was never greater than 0.002 feet, well within the precision to which the hook gages could be positioned and read.

TABLE 2 Entrapment of Air at Sensing Line Obstructions

'S 1/2-inch Volume of Sensing Lines . Slope, in/ft Entrapped Air, cc Lines with Couplings:

Sch. 80 1/8 < 15 1/4 2-7 1 0 Sch. 160 1/8 2-5 1/4 0-2 1 0 Lines with 18-inch Horizontal Sections:

Sch. 80 1/4 10 - 20 Sch.160 1/4 < 25 The elevation dif ferences recorded in sheets 3 through 7 are clearly _ in error.

The.. hook-gage differences measured before air was inser;tedarenotconsistentduringthesetests(theyshouldhaveallbeen nearly the same unless the elevation of the reservoirs or hook gages was changed between tests). Also, while only negative differences can be -

indicative of error due to entrapped air, the indicated elevation e  !

differences are positive in many cases. During these tests, the hook gages were each read by a different person, and one gage was consistently read incorrectly. Af ter this was realized, the gages were read by only R1 one person for the remaining tests.

l h

+ 11

,, Test 13a was conducted with the sensing line sloped at 0 in/ft (horizontal). The maximum elevation dif ference in this test was 0.004 4 feet. It is likely that even this difference was due to imprecision in reading the hook gages. If it represents real error, its magnitude is insignificant: 0.004 feet equals 0.048 inches, which represents only about 10 percent of the diameter of the sensing line.

From the principles of hydrostatics, it can be shown that still l air trapped in a sensing line containing still water cannot cause an error in static pressure measurement unless the trapped air fills the j entire cross section of the pipe. (The errors associated with bubbles l that fill a pipe's cross section are discussed by Missimer (1984)). l During the present tests, air apparently never entirely' filled the cross section of any sensing line tested. This is indicated from both the measured errors in pressure transmission due to air in the stainless steel sensing lines, which were all zero, and from the observations in illustrated in Figure 2, air always the clear plastic pipe. As accumulated along the top of the plastic pipe. Regardless of the quantity of air injected, the air showed no tendency to completely fill the cross section, either along the straight sections of pipe or at the obstructions.

In fact, theory and previous experiments suggest that air bubbles are unlikely to fill the cross section of a 1/2-inch water-filled sensing line that is sloped continuously upward because the water in a sensing line is.not flowing. In round vertical tubes filled with still liquid, it has been shown (Bretherton,1961) that " slugs" of air (volumes of air greater than about 0.5 cc in a 1/2-inch sensing-line) can entirely fill a c_ross section only when conditions are such that forces due to surface tension dominate over forces due to buoyancy and viscosity. For i air slugs in water ranging in_ temperature from 0 to 212"F and in pressure from 0 to 2,000 psia, Bretherton's (1961) results predict ' surface tension dominance only for tubes with inner diameters less than about 0.18 to 0.22 inches. Consequently, air bubbles are not likely to completely fill the cross section of a sensing line with inner diameter of 0.464 or 0.546

, inches. Applied to slightly sloped sensing lines Bretherton's results are conservative, because air is more likely to fill the cross section of

, a vertical pipe than a slightly sloped pipe.

e 4

12 Volumes of air that are very large relative to the size of a sensing line could possibly fill its cross section, but results from the previous experiments (Missimer and Brackett, 1986a and 1986b) indicate q that bubbles larger than about 5 cc migrate readily in 1/2-inch sensing lines sloped at 1/4 and 1/8 in/ft. (Bubbles as small as 1 cc can generally - be expected to migrate.) In the present tests, air volumes greater than 20 cc exhibited no tendency to fill the cross section of the '

plastic pipe. Also, over 500 cc of air was injected into the schedule 80 stainless steel line sloped at 0 in/ft (Data Sheet 13a), and there was no evidence of pressure transmission error due to the air, or that the air filled the cross section. '

In summary, the quantities of air that may collect at 18-inch horizontal sections, at socket-weld fittings, or along straight sections of 1/2-inch sensing line sloped at 1/4 or 1/8 in/f t are unlikely to cause any error in static pressure transmission. These arguments do not apply to sensing lines that contain any down-slopes following up-slopes or horizontal sections, however. Sufficient air to cause pressure transmission errors can easily accumulate at these locations.

The errors in pressure transmission caused by migrating bubbles are uncertain. Although bubbles moving at a rate of only 0 to 2 in/s through still water seem unhkely to influence pressure transmission, this possibility cannot be ruled out from the results of the present tests. Any error due to (noving bubbles in sensing lines would be temporary, however. A bubble moving at 1 in/s would move 100 feet in about 20 minutes. Thus, a bubble would migrate out of even the longest plant sensing lines within a few hours. '

Although there is reason to suspect that bubb1es in sensing lines sIoped 1/8 or 1/4 in/f t may not cause errors in static pressure i measurements, these bubb,les definitely affect the frequency response of the system consisting of the sensing line connected to a pressure j transmitter. As discussed by Schohl (1986), any quantity,of air in a  !

sensing line will lower the natural, standing pressure wave frequencies .

of the line. Thus, the presence of air can reduce the natural

,, f requencies of a sensing line into the sensitive range of the pressure transmitter ' conner.ted to the line, resulting in a degraded pressure signal showing significant oscillations about the mean, static value of pressure.

4 4

- _ _ _ _ _ - - - _ . _ _ _ _ _ - - _ ]

l

, 13 Orainage of Slichtly Sloped Sensina Lines An additional observation during these tests was that water readily drained from the lower ends of 1/2-inch sensing lines sloped at 1/4 or 1/8 in/ft when the upper ends were open to atmosphere, which permitted air to freely enter and displace the water.

CONCLUSIONS Bubbles as small as 1 cc can in general be expected to migrate about 1 in/s in 1/2-inch sensing lines sloped at 1/4 or 1/8 in/ft. l However, bubble motion at these small slopes is sensitive to effects that may be insignificant at larger slopes. For example, slight deviations in slope along a line, imperfections or rough areas inside a line, or j impurities in the water which fills a line may inhibit bubble migration l in power plant sensing lines. On the other hand, the background l vibration present in a power plant increases the likelihood that bubbles will migrate in slightly sloped sensing lines. In sensing lines sloped

, at 1 in/f t or greater, air bubbles greater than about 0.5 cc (smaller bubbles were not tested) can be expected to migrate readily. j In sensing lines sloped at 1/4 or 1/8 in/ft, the socket-weld fittings and 18-inch horizontal sections used in the sensing lines at Watts Bar Nuclear Plant can entrap air migrating through them. Estimates from the test results are that 2 to 7 cc of air may become entrapped at a socket-weld fitting and as much as 25 cc of air may become entrapped at a horiz; 'al section.

The tests indicated that in sensing lines, sloped at !

in/f t, air is not likely to become entrapped at socket-weld fittings.

~The quantities of air that may collect at socket-weld fittings and horizontal sections in 1/2-inch sensing lines sloped at 1/4 or 1/8 in/ft are unlikely to cause any error in static pressure transmission.

No errors in pressure transmission due to entrapped air were detected during the tests. Theoretical considerations indicate that eMrapped air

) (stationary air) can lead to errors in static pressure measurement only if the air fills the cross section of the sensing line. Observations in

. a clear plastic pipe indicate that the quantities of air that tend to become entrapped at couplings and in horizontal sections are unlikely to n

__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ^ - - ^ ' ' - - - ' - ~

6 s

14

., fill the cross section of a slightly sloped sensing line. .It is uncertain whether significant error can result from bubbles that are moving through a sensing line, but any error due to moving bubbles would be temporary.

Although entrapped air may be unlikely to cause errors in static pressure transmission, 'it' is certain that air affects dynamic pressure -

transmission in a sensing line. Entrapped air causes the natural frequencies for pressure. wave propagation in a sensing line to be reduced. If the frequencies are reduced enough to lower. them into.the frequency range of the attached pressure transmitter, the pressure signal may show significant oscillations about the mean, static value of pressure. '

e

'd l

m-e4A apud>

W 9 Q s

~

_--,__ I I

  • 15 REFERENCES

'< 1

\

ASME,1971, Fluid Meters Their Theory and ADDlication, Sixth Edition.

{

Bretherton, F. P,1961, "The Motion of Long Bubbles in Tubes," J. Fluid Mech. , Vol .10, pp 166-188.

International Standard Organization (ISO), 1973, " Fluid Flow in Closed Conduits - Connections f5r Pressure Signal Transmissions Between Primary and Secondary Elements," ISO Standard 2186.

Missimer, J. R., 1984, " Air Voids in Liquid-Filled Sensing Lines," TVA Report No. WR28-1-85-110, May.

Missimer, J. R., and C. A. Brackett, 1986a, " Sensing Line Air Bubble-Migration Tests for Watts Bar Nuclear Plant," TVA Report No.

WR28-1-85-121,. June.

Missimer, J. R. , and .C. A. Brackett, 1986b, " Bubble Migration in Sensing I Lines Sloped at Small Angles," TVA Report No. WR28-1-85-122, July.

Schohl, G. A. , 1986, "An Active Technique for Void Detection in Sensing Lines," TVA Report No. WR28-1-85-120, January.

Wojnovich, M. S., J. R. Missimer, and C. A. Brackett, 1985, " Bubble Migration August.

in Inclined Sensing Lines," TVA Report No. WR28-2-88-107, e

4899 1

.% j

. 1

.r.

h___ _ _ . _ - _ _ _ _ . _ _ _ _ _ _ _ . . . _ _ . _ _ _ _ _ _ _ _ . - _ - _ - _ - _ _ _ __.a_ _ _ _ _ _ . _ _ ___ - . . _ __ . , .

  • 16

's APPENDIX: EXPERIMENTAL DATA

  • s y

40 9 4&O O

= !

d.

g g.* + a+

++ n on g a d.

7 n n/6

/ 0 - ,

g 90 0 9 O idm au

&/

4 / g r 67 7 (, 7 e a

G 6gh99' . .

9 c) 9 RP e e e ,

t t t a a a p 000 O O :e DdD -

%Ec i

) i :  :::

j  :  !  :  !+-l  : :  : !  : : ! :

~

a de l k

o in d g _

t mi a o a R 742 798 3 9 AA M hir cH e t e b e9 V9 8 6 6

f C tI e u g V T a , . .I 8 2

/

7p o.r G u Ooo .

O 0 l  !  :  ! : : : ! : :  : : : : :

)de ka aen et  ! l  :  !  : : : l  : ! ! : i : :

R a '

t e s p s r n g g gi to s 8 8

rT 5 I

T eO s E s t t n e e wda k a o e d

41 9y+8 s 8 3

N e D T Wi oe oR

l. H H

(

9 9. /

1 )

t 1

de  : : ! : : !  :  ! ! : : !  : ! : : : : ! : : : l  : ! : : : : :

e e e

h it bl z) 5 S

x b E u S i' OooO B

4  !  : : l  : :

4

!  !  : : : :  !  : : : 1  : ! : i : : :

Y T

I T C E O E L H

S W -

A S d T V A

D 2 A G  !  :  :::

E S d Y

T o

I t

e C e -

O L

E V

5 V

A i

T m

c

'e 6-o : : ! ! : n e

l  !  : : : : : :  : : : : : : : :

o e Ac t r h

  • e m - dSp- o i.0 S a6  : : : :

Ti Ad tdr :

l

!  : l_  :

I1 S k:

Y T I I

e ) . OC )c.

iz el a s lui e d r e e cLE /s*

eV e 3, l 66 ns'93hf9 (S E .

ph t i c a P S M 1

1 m

V n 1 oe.n0 _

oe E

G S

ie bA (i t

s t n s f Y o o q

/ 1 T it I t C c e 5 sh"0 G O l

ln Acn**f O

L ji E n T e m 0 7 to3 +c a 1

1 1 l V i n n wi4 .

i::: !

o 6 =

V

: : :: : : : : : : : : 1 :

a A o -

o /e 6 Nnu t o a C'

R t

n r 0 i 0 iA//o N

o. i T

e m

l toS9D7O a

A n g  :  ::r::: t l _:: !  : !  : : !  !

: : i : : : : :

o n e e i i t t p iz l a t e r e e lSb .e ec c u S T e g

i e pre e c. c_ c. c de t b i b nf I ec c o a l I l u I.

t C S N B

: : :: !  ! :  : ! : I
: :  : : : i : :

D t_r rl c e -

u

+ on

+l o e 7 7 $ s n ,,

r8 e b c

n e. o c

,1 d/D e 9 09 q i m' b n e, ce +a 69 (o

> /

/ / g 7 (o wd ia d s CG e e e t t t g44, 4 D s9999 e . .

6 9 BH u u' AsF a a a a D D D p O_ O O 0 ) -

l_ _ 0 e mtt  ! :  : ! ! 1  : : 1 l  : :  : : : l_:  : : : :  : : :

hc k g

n l_

l c di _

a e Ra 64 0 3 02 a

Sn 1 i

cH e t e 3f W f6 r b e

?;_ A e u g V T a u

1 0. D. 0 a + +O9 .

p e r G l

1 l_

l_ : : : : : : : : : :

! i l l e t

- R a k e r

e n g g _

1 t s p s eO s T a agi n d M110l08 4 T e

+c E s t N

t n e

d k a o r e o F a

0 0098- +_ 3 -

9 e

D T lii H H 3 . 2%1 .

1 h e l

S t l i b z e

c E u Si OOoonOc3 x b B

:: l  ! l l Y

1 T

  • I y C T

E O E L H E S V A 5 T V A A D

2 A 5  : : 1  : l l E  : ! : : : : : : : : :  !

S d Y o T t I

C O

L e

m ~--

V E Ti

l  !

5  ! !  : : :  : :  !  : :  !  : : : : :

V  : : :

h A e

c t o

i e

s

- - ~ - - n(

i

- O S T aro  :  : :  : : l kf S_  !

)CI e Y9 T

e 1 S dleli ir a c.. L/O 15 1 lo7 e e e p h t u

r i S

eEV 6 8

( E 0 . w0- - -

ic P S M a g

! eA m

V 00l .

S i  ::: _  :::::  : :

E t S b n

Y o o -

O e( ' i nr5-T i t -

m A I t C c e 7._

[ O e s L j i I t 0- 2

/ E n T I /

14n@8 .5 V i .

ui (o N o V

= :  ! 1

: : : : : : ) : : : :

a _

o A o t o n t n C h_ _

R u

e oi 73 s

. s i /m5' r- - ~

M Ti 4 s g h: :  ! i c n e +

ti t i p a t r e e m ir S

h _

uS T e

he cec _ c c_

g

. i e pr e lb c c c c c c f

n e t b cl fa E S B u n I 1 t l 1 I

lII : - _ _ _
i::::: l
l

te . od asV o r

n's r l e

T t n

o ok re o A h_ pcte ao c . c.

e

, e o p J_ c e pb t n qv a mnh h

s uC f _e s

s' on

? 7 c 2 1s (OeD'qv ci u n n da e n ' a e v

/r B i

/ f br e -

e- cd e e .e T b0 ieh R e

/1 4 rk h o s

- f, / fa er s5 i s o' s e_ eGe t t t a a a Qie feo0 DR c. 0 l 1 n t T. sfo+h h o Bd ue N

o h F

D D Jg- hef n g

!_ l

(

! troi 00A' += l l  :: ! l  ! : : :

n k

D- @a

. n l

a e a a di icH Re88

d. E  :

t e rb e u e 8 9 + +-

g 1 -

%Ap o r

V T a u . .

G1 1 1

~ e t R a k e

! :. . l

: .. : ! : .. : :  !  :  ! : ! l  : : : i:::

r t

s p s e

T n g g a agi n LA 3 .

T eO s E s t N ei t

e n d k a a o e e o R d

2o++

1 l'

. a.

+ D T W H H S9 t

e  : l 1 e e e

:  !  : : :: ! l  : :  :  ::: !

i lb ez

' t h ~c S

1 E u S x b i O O_

B Y

T C

l S.

3

: .. !  : ... . _: :  !  : !  : ! l  : :

T E ^ O E L H E S V A

A T r.

A 2 N D

~ 5 E

' l
l S d  : ! ::::::

Y o T t I

C e O m -

' E V

L i T

5 V c

  • l
: .. : : : ! : :: l__ l  : !
8 A

( t o

c i

- i e

's O-(

i OS T kGS Y

..: : : .. : : : ! : ::::: l

)f T e

I C 03%

- z el i l S ui a )ceEV LO 84 5 61 . 6.

d r e e e t (s 6 V

OOo PipSch !!a 1 eA m _

5 i:

- E t

: ..: : : .. : : :  !  : :  ::: l  ::

-. S b l

. - n o,*

E Y o T i t ed I t n/ 3 C c e O e s 20T l iw- _

~ L j E nTi 74 on i c4 V i 6 =

l  ! lE1 l1  :

'l u

o P, (o 8 'No V A o a  : : ! ::: l  : l CV t o n t u

R e m

05O Ib i m 8 4 fo T, e o n q  ! : it !  !

o n  !

iz u e l l  : : :

it t i p a t s i

_(0(n' _

r e e uS T S l c ec ig e r f p e l

b e

b ;

b c c. I il a n ot

~C S W B uLcI l J4<  !

~  : ! i  :: l  ! t l  :::

l p k S e f uC 4.

o co e

pb e.

e f d s ee e Le p e. a 7 7 #

(s.

oee min u#

/

/o/ 8_

  • 2. td 4 o nl i e n

l o

mok al i 4' o AhG 0*G Ne4 7 2 n

di m e ob ab o b. kbo_kh i

e e e 0 3

0 Z

O e r muade c t t t a a 1

n gi u 4 ui s i I

mn DvdbA l

D T

_ _ l m H- T. H s JDe 2 1

i g

! : : i::: ! -

! : : : l l

i 1 i

.t 2

_l l

1_

l n

c k i bR a l

i a o a c

o d H Re1 9 A

7 4& 6 t e r ub ge1 e

7 1

1 V T a . .

NA 1

u l r S f_ __

p e  :

e t  : ::  : : : : : :  :::: l  : ::  ?  ; : : : ..

R a k e r n g g 6 4 t s p s e

a agi n -

1 1

0 eO s T 0 T e d k da 1 t n a o e 2 2~ .

E s t e oR . 1' .

t N ei D T W H H A  ?. 2 e  :  :::

t le*e e r c r. e h r c c ix b b i O O O c o S. 5 S E uS E 9 4 (o Y _

1 T

, I .

T C 1 E O L 2 E

H S

E V r.

3 6 A 5 .

a T V 1 A

C 1

5 A

0_

E l

S d Y o I

C T t e - - 5 1

8:

O m .

L E

V i

T 9  % ,

5 l  : : : !

V c A

h o )

c t ) 7 5

no S e

m - '2 (3 M 'f,

( 4 e i (i

-(, T f S  :  : ::::: _

b_ s_

Y T

QOCd97 I 3 7 e e 9 5

- 3 - 3 G '4 r el a L 94 4I s Si lui e e e d r I e E nh 8 9, sV 6

. '7.7. T, 7, iphc ta (E g

I eA V O_ o O no0 P S M S i : ::

m _

O_ 0 l

E t  : ::::: !  : : : : : : :  :::

S b 1  :::..::

n t Y o o SS S59 T

I i t t 7 "5

nh 4 C c e O e m L j i S ~5 GS I I 411 1 1 1 lpncF i

E in :T::::

V _

I 1

i:::

o

. E =  :

: : : : : ! :: F:  :::::

q, i 4N V A o a !_

oA9n t o CP R u t e n5 n5O505s

. m e9 M

s TM !0 i

7 r_ c_8 B 7 _ _

7 5 ::::::::::::::.. s' .

n g !_ : : :

ed!_

i_: Ir 4

o n i i t t p m iz h ccece ccrc a t r e e S .

uS T g

ie r e Me ol a p

t l

b b

ehccmcI I l iI l ec e e I 1 r B

uL C S W _

Li:_  :: I

! I

o eS .' e s

eok s

e c_  : s e_

hi o e s aw

u. o'A ~t i

77 r9 7

f o' s_4M Lm d/o

/. h +

2

,a o

n ml bl a e f c%- 4 - d d b u

G e e 2 o' e e e ge qR0 o e D' e4 um t t t a a a J

1 B u wm D D D p f I

S ) c (1 ki Al t

! : : ::::::::i:  ! .. :  ! ! l  : :  ! !

r g -

A n 4a

-c l o d k i a o a cH e2 5

3 h i t e R

8 S

/

f

?

d r t e e n g/ -

Vi a J'Ar 1

/ u .

l G

o
l r t  : ! : : : : : : : .. : : !  !  : :::: !  !

R a t

s p s r

e de a a g

n g"

S -

t T gi f

eO s a d k a d O 9

' 1 E- E = a o e e oR a,

N e A

H H 2

+ D T l'c t

e-  ! : : : : : : .. : :  !  :::

h e t ieAe  : : ! :e- ic : !

t c. _

5 i b x b E uS B

z iOt i_

bW

_ 34 l  : ! ! : :

Y _

T T

E I

C O

de5 5 __

E H EL / 3 9 9 S V n

3 3 A 6

's T A 1 V61 A

1 D 5 E

S d

Y o T t 3 O

I C

L m

e 6 1

- -43 E Ti 1 V

5  :::: :: ! _

V c A

h o c

t e

m 0

4

- oo

~

n0 Ti / /

. 65 I !

t1 5  : : ! : : : : : : : : : : : : : .. :  ! : : :::::: !

I e f

i l

C ec 7 h .

t el i l a O

L 9 8 52 S ui e e e d r '

E V /s n 2 .

1 3

.o 6 il .

Piph c a t S M I eA m

V ( 1 1 E i :

E t  : ::::. :  : : : : : : : : : .. :  !  : ::::  : ! : :

S b t

Y o o T i t n

/ _

c 'C I t C c e 5 93

! w/N s" O

L j i E n T e m 9_ e 42_b:::  : : : : : : .. : : -

l e _

V i o nB 6 =

1.:: l ui N
o. V a g

. 1, :: l o 4 (c n A o t o l _1 C_V_ R u t e 2ToO.

N o

. m Ti e n5GS4 -

4 Mn n g e

+

n W

s e

.. : :  !  : : r! _! :

~

i i t p r i i

u a t e S t r e e uS T g

i e pre f

l b

b eke c_c_c_cl i c ee F n ot u nI I.l I ol a C S v

r B

l  :

: l :::: 1- ! ::'1

^

2l Ijll i Il l: l

. i{i' g y Ka e,r!

. _l '

< .)3 _

w_ u t e n ee n l

a' h e u o v od o ,o l e S a 7oo e ,

_ k 2 h e a u (S e 'k-7 ?'p L #

7/

/ h

/o /

t y. rmr: 94 et I..

2 f

f e b' 6 G &e ;; 0 v m

0 o e u e e e t t t a a a b 4. P .

8_/

/

S A D D D , _

dt __ _

! : l !_  : : : ! :  : : : ! : : ! : :  ! : : : : : :  : i i ."

2 g h k i n

9- c rd l

a o a1 4 o i cH e R 9 5 8 1 h t e rb e e u g .

1 1 ~ 3 -

1 d . f

- VT a1 7/ 4 1 .

u l r G po  :: l

?t  : : : ! : : : : : : ! _i  : : : : ! : : : : : ! : : : i .^

R a r

k e n g g A 5 !_ ,

t e s p s a a n T gi 4 2 eO s e d 7 8 S T t n da k o e a 1 1 E st . .

4 h ei D T W NHoR 1o 2 2 e  ! : 1 l

! : : : ! : I  : : : : ! : : : : : ! : : : : .^

e l e

e e_ c h b z c S b i uS O 2

c. -

B (

! : : l l l  ::::  : ! :  : :  : : : : : ! :  : : : ! : :- : : ,

Y T

1  : 3

- C c 4 T

E O e 9 E L s 7 - 2 H E/ 5 S V n 2 6 i .

- A Vl 1

^ T 2 A .

A D G  : l f_ .

E .a S d _

Y o .

T I

t

- 2 4

C D

e m

5 -

1 5

L i 1 E T V

E  : ! : : : :::::: ! : :s : : : : :  : ! :

_  : : : : : : : : .a V c A

o k t 4 -

c e - 1

- S

~

m 1 0 m i T

1 2

. 0 S  : : ! :  :  !

8 6 S Y

: ! l  : ; : : : : : : : : : : A 1

T ,

I e

r S lel i a QCQ eE O

L S 4 67 5 72 1 -

ui d r <rV

/

a 1

o 9 1 c e e e i

( 6 t . . .

ph t i c a P S M g

1 eA(

m V 1 o 1 1 6i:  !

1 : : : ! ! : : : : ! : :  :,l  :  :

E t  : : : : : : : : 8 S b n

t Y o o 2

_ T i t I t 0 1- o '1 s[C -F c ~ C c e O e m 1

1 i n B 9 a*

L j i t E nT V i u

n - B

o. G =  : i: ! : : ::::::  :::: ! : : ! ! l o

G N V

A o a  ;.o_

t o C W - R n

u t e

50 0 9 m5

. m e

3 N

o i T 1 4

5_ 3 ,

n g 4- l

::: 1 : : : : : : ! : ' .

. o n _

! l

: : : : : : : .o.

ii t t p at e i S t eh z _

r e e uST g

i e pr e f

l e

b 4 n i

e. c.

c e e e e

n n et b I l l l Col S i fa  !>

uL i! :

i:::: ! _

: : : ! : : ! : : l ! : : : : : : :  : .e

!lll!ll'i tI

.* reoc' a' h c

le no k S eoo e e

nb

/ 2 (s

f J c e

/S/ e. n Nd ek8 M/ e e e G

.kcEP+e oc, cae t t t a a a i D D D D f Ee  : : :

g

%h c k i n

bra l o d a a cNe6 i

t e P D MO

/A r b e u V T a e

gM 7p e r u S

et  : :

R a r dg e g t e s p s T a a gi :

n 4 eO s d T

t e

n d k a a s e .

q E s t 7 N ei H P e t P a

D T W t.e e

t l i t :

e - :ce  !

e

:c: : : : . . : : : : : : : : : : : : : : : : : : :

h s t i E u S ct c.

S =

B i s. 2 _

!  : :n : :  : :..:

1 ITd Y

C e T

E E

H L/sc o3h C

E

~

r S V'n . 3. J, JU A

T . V A

D 2

E A

f. 3_. 3_

E S d Y o .

T I

C t

e 7 0 p_

O m L

(,_ 7 4 i

E T V

5 e

h A" o

t c,

'e s

72r i p 5*s.4'_

i T

p G_5  :  !  ?

h_ / 5 Y ~

_ T)

I e

iz elal 1 QL e83 C O

c..

S u i e e er d l c E h 9 5. o (S 5V n V

t PipSc !h!st 1 eAO32 L_.

itt : ::_ ::

E E

E b n

Y o e T

g/ft F# I I ti t C c e 0 e n 6 47 3 43 _

  • ipes k t j i E nT l

V i 5 =

m . (ok.n .

V a i A o t e Cl u t R e m m ;A 29 t

o iI 4

N

l T
h

& _21 -

n g o n i i . ze J y t t p a t r i h s__

S

. r e e c_'.f.

1a c.

g' S T e i e r f p e l

b t 0 s c_

II.L_M_7 n ot u -

ol a P C S W _

l e  : : .,: :

^

,l

_ . . l

.. l

, .- a

. 1 1

24  !

- *g *+*

s u uL. .

o 1

-g I 33; o g. o o o

~

o m d o' i

.e. e ov g-4.go g 4Id *i

+ 't, U .

e 4

(\ -

y o $ d ,El' t- d '-

X-9.Ii*t!

t 4 I ., - b N <9t es M'.ci 3- l

' h u, N b t- p P r4 -

41 (' .A4 4 N P l i-$

-e -e. = $.'. c o' o.s e. c' e $

to O d. :3 y* i

.O - @o=

9

  • t g '
a. s <,

C d d r  ; ri v .. .. .. .. .. .. .. .. .. .. . .. .. .. .. .. .. .. .. .. .. .. .. - .. .. .. .. .. c.. . 4 ..l... e a.

C

-tw b e ap=E O h - 4 g M

.- a. p 'h r - co p t * .. #

= :2 .  % ) l . l ~ l l ~

O. .

9 m

>- . . . s _. .

o -

e f.:

se .u .,

'E'.7.......l........'.'l...._......

c l

- t = =r s a d e  !

e s .*. ~.n.u~am e,.,.e I E

o. j o%at e q) l G wc. - o o -

1 g

l -

l O.

g 4

> E .* E u*

  • m 2

d N

..I .. .. .g J

....1.....S.w.............................

y 32.m o w %u a yros .m. O l o J J W s a d P

+

u........'..'.....................f..........4.-l..................l......l......

W w .

W Iu, c

., a > ..

b

. 8 L N =

o e

m ....................{........b........................................

u t' 1

1

>. o

~

k a = a i t i e i , e a il d d

> i.'

  • =

u a

.c  :

.t 0

i l r i f I I I ( l ( l ( li 3 l oM ~
  • g ..x....................... .. .. .. .

4..i....,...J.,..........................--..

i 4n

> ~ f.g s, * $

- E *;'.

~~

wc.! n.N 8 01 y m n r4

., .g . r,

- 64 a

mm- N , ua > _f e a c 0: 2

~.m 3 o. ,

.- . m a,.e. ~ ., .. .. .. .. .. . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ., .. .. .. .. .. .. ..

1 a.- - . 5. .o.

r 8 a: :

I I I I I ' i i l i I 11 i i i i

- co d,~~-* m ,,

q ig n W ,, -.. .. .. .. .. .. .. .. .. ..1 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

z-  !

e .oa O ,

y . " E ~

/~ , c e , r ry ^

4

.E( de CC te

- bo 's '.po cJ k bg 't- i e ~

.. .. .. s ..l..

..l.. .. .. . 1.. .. .. ..l. 1..; .. .. .. .. ..

.o ... .. .. .. .. .. .. .. .. .. ..

+. *a sp ** n.

e ... ,

sp. . . ,

3 b, J: .* ., d ga )dd d uA dd 00 t

i d 1 C" g 1

I"

g 3' 2t J. .V .'0;, J~d d, #'I d ~i ", j.0,d#
  • d .j g g . .. ~ . - -.

e: m - q

.. .. . '.l . ..l .. .. ..~l..~l. ..1..l ... l. .rJi . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. ..,.. ..

~

, _ _ _ ___.n.- . - . _ -- - - - - - - -

-=.

eM ..&.Mw

  • I J

l

. 25 l

- .. . . ml

_f* t

'4* *

.t

  • a

' c T

  • o M I
  • ., J]O 4y
  • w o

O-O O 8

.[

)

\

l,."U 'v s ., O

\

l s o Y o a t c .+ i 0 C  !

N 5

o ('4O. ,

.Q o + I e a ss 2, o

c dl

-i

-d ut  :. -

  • S P k r

~

~~.esus G"L"[.e,8 , e g

,E 4

e ,$

e g

%], .f-(< r

= Q O O O 3,

.. ... .. .. .. .. .. .. .. .. ..i .. 9 .. .O.f.. .. .. .. .. .. .. .. .. .. S.. .. @ l a,

l .M .C

.*f. O D fu O est p

un .. aQ4 LA 3 G8 K

r O

n o

~

e @ .

a ::s .

J Q o-k.

.s -

WJ

u. %. .

< 4 l 4 gy .. . .. ..

..............................................l..

g a .- . J L. C & tm

.has Q# FP g 48% 4 M en en g;;

>=. E'M .

g

. c2 ia  :

  • =* w m

W Sf' W

=

G8 v.. O en, O.

C

  • o.

l R8 O &

a-="D *

  • g h1 %

O ,

+G

.3

..................i... . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

.. .. o a O

-1~n .e a. Q t.

.c y gw a,: ua ~

s n ~n O

~

n m U.............................,.......p0..............I....l................ ..

.** k.

W $J W C.)

tra me y

.. A L.

% Us O

g v4 a a

g

  • u, m W

e.e

.O>.0 kI Of C3 a .S

. 4 -

kJ Dn .

1

.. *.... .. .. .. .. .. .. .. .. .. .. .. .. .. .. 4 .. .. .. .. .. .. .. .. .. .. .. .. =. .. .. **

E* La ci ie.g.

.[

o n.  !

g . .

'I QA

  • g g .. .. .. .. .. .. .. .. .. .. .. . .. .. .. .. .. .. .. . .. .. .. .. .. .. .. . .. .. .. .. .. .. .. .. ..

i *c.: .

L. ) O O

  • a' as - CJ %) h 4.f

. = ~ **

wN 4 m = .=

88

e, ya, '** e,

>g g #.

Q m- m- O'

.m.=e sa *TS e Es cg,

>v Q UJ I- er

_ g-;

u.

...o .. .. .. .. .. .. .. .. . .. .. ..,.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

C

>= Cs l .0e +s n v

g4 .D.=. e g, L.3 i* DJ LJ Se y e

[ s e

0 s m ..ks ,

..C 3; (B e-o O,

, ,, .=. .. .. .. .. .. .. .. ..,.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..I..

La.s A O

z

<c .o.a O i

4 U,~ '

"esn El e m O C'ic nn p , & r ,

9 cs

>ICdCC

.I. o O C 0 0C / NC C C d C C' w 1<

N O o .c

......- ..s . . .. ..

l ., .. .. .. .. .. .. .. .. .. .. .. . ..

i N (v o.e p

Tu* l', E hd 5

% :: : G *. d g d d O o J do ,

.e- . m ,

5 ~u ~ 3 '.I~ ~H~.m.,_ 0 $ e( 4., .0 4

    • =-

c O

n

.o .as sus g,3 o

.(

g LJ En 2 .

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .,. .. , .. .,).. .. .. .. .. .. .. .. .. .. .. .. ..

h_,_ _ _ _ _ _ . _ _ - - _ . . _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . - _ _ _ _ _ _ . _ . _ _ _ - . _ _ _ _ _ _ _ _ _ _

,- . l

  • M .y.W'.@*.

26 s  %+*

I C g)g s o I' )

~

=> v o oo y e*

w C ~*

j

.9 i 9

N-r il g -l )

M. V o. i ', i Mo u J fre

. 3 %e n ...

S  :

, n. , v O O ,

.e .e e. i.

. v. . ilg 6.' O .

Q q  ;

y .. .. .. .. .. .. .. .. .. .. .. ...................

o. .

C

.hr e g M OM

  • 8W O fe )

."E Hs

.L8 L Ja

a. a. C' 4, G8 3 80.

U *% A"'"

un ,

g. 3 . . . . . .

a - a . l f

.M '8 G

n c. o.

en eu g, a u u.

m* Cs m r o..

e,f , wc

>" Qa to .ng egg .

  • c so o ne .

, LA3 en & As Q g, _a 2 S .

,lr, r. N Em P.e 2 4 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

,o .,

l .I f 4.3 e

.SW M *e w => u, Y **

  • .. .. .. -. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. l l
  • '* >- . ,t w

> (I 8

W" Ca W Ls 4 6 y 4 . .

b- O=

4 4 A L1J .. .. .. ..

w .. .. .. .. .. .. .. .. .. .. .. .. . .. .. .. .. .. .. .. .. .. .. .. .. .. * .* ** **

Ua *G

>- O

>* 44

$) OS C3 S

$ a..

  • . LJ
4. i O

+#

O V y g .S.L od .. .. .. .. .. .. .. . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

=l h4 b- a i

M

$.J

> as . . *'

bM k' ws y ve a . . ~

.e

. (*

o u .

84 Ga 9 c .me

.Os Lfe .

.E.E.

. u m as a

>g a CL Sfe M

. 62.) .N . . . . . . . . . . . , . .. .. .. ,. ..

LaJ 4.s .. .. ., .. .. .. .. .. .. .. ,. .. .. .. .. .. .. . .. .. .. .. .. .

UR 21 5"

> C b= .U. . 4.#6 emm. 4e 0

LD L8 G8 j, CJ Go bs

.=.".t

.,,,a *=n C

>.e Q ., sdg 0 La.a-3 o a

o.

g @ z a a o s 5 -r rO O f5 i 1 .

am

$m a; .g to gq d

=

.. ....J.. ..' .. .. . . ' .. .. .. .. .. .. .. .. .. .. .. . .,e.. .. .. . .. .. .. .., .. .. .. .. .. .. ..

.o S8 W fb

.-c ,.,.""8M. . i e

sul se We . gg 4* 6 Ga e .

es tre >. .'

.O. *as Os .g '**$,'

. L. 3 8 Ae.G8 D 4.s

.N=9 Y.a.i.

R" o- =

p {

S.3 Sf3 3' ma

  • 9

_.__m__ ___.__--w-

+ . .. 27 v

+ E N eV i

3.4,  ;

3] g ll'

- - L s _6.} 0 8 o c oo o 8 o 8 8 8 o I  % g' Lt)y .. o- 6 o 0 0 0 4

c g I

9 + .+ + i. + 4 W 3

i.

e **%

< d s: $. c r,. y Y

%'R t 4 r- 61P e r- ad d: T1 .y&g d.

t'

'O J +v a4 i' I' J -G qoa 4 9 4 4 e

d I : '

i!

--- PL 't T'3 e 9 . 9 9 & e *. th', .tb> q ,

555 O O -l' 4+

'4 es.

C S.. 4.

&. @.9..k..Q.9..$..dDOC.. . ..

$ d.4.........,..l..,

w <

%8%r 3

  • a' ~

n 4

t 4-o W4 t&

d'e G P @g

+

N ~m d s t *=> ,., N l w. o eO Oo o ggy y ' ~. 4 , '

- - ~ . .

a .

m m 4 e%v o c

-m u.

=

= nn@

m

o. ..r m o r3

- m a e l c  %%N.7 l7 .

9 0 0 O@

= "d .o s gr e ". .s s. .. 6,yN ..i.. ds. q N. N..

y o

g . .. .. .. .. .. .., .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..,'

.C e 1-n.,--2 ,.,

3 o e.,

gw u tra e -

D .() .......d............

.. .. .. .. .. .. .. .. .. ..I.. .. .. .. .. . .......

- t w 8

u. c,a 4 5 =

= W N

lI

=>

g u,

=

............................l................................l......;!-

D. O C,3 .ER w -

is "

e .c 0

C

.: j 9 m -

g g n .. .. .. ..

tm ga U as es v

,;: 'n n-9, . nn

.:: *2 -

N .

O g.3

~ * "g g ;- -

y .. a CMG

_. g;..........z..l..l.....................................................

Ua JJ i

b. d C3 y = = +m' O y

P

s. a, e l to Q e u.

..s->. .

p, m 4 Ag 3 +

u4 g ..

.; .. .. .. . 0.. .. .. .. ...5.. **"9.. .

.o v

e, 2

4 O I 3 .. .. .. .. .. .. ..

C I 44 O a r. - ~

tof,te e la e d

.g t ed t e ,tjd igg'pf o 9

t e ~ 9 mlo O

.......;......,....l...

l . . ..l .. . 1.. ! .s s

l'I l

+

.  % 0 m; o d4d a , 040 O H t, J: ,*

.r ., ,

.,  ! o ede Q d 4 4 u. d

, - -- - - ~~

d Q

~a C O M

. n 2..

~> C

.. .. ..i.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. _ .. .. .. .. .. .. ..

96.'-

4 saah W MM O

J -.

- - . . 28 1

4 0

'e- 9 E

t

.r. u. (

  • e, d o c I w

+ ig 'I .2 s.

. - . ,a V g 9, Q $ b I t t M

  • C C :P-r% -

AN .C 10 *.t I 41 N o 3g 'E g O g t +e .l. s q d L 1 <0 m ' 8 _-

s l

n. a.

. t Q- E

~ ~ ~

== 'Q O Q n n 3 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .d. .. g .. .. .. .. .. .. ..

a.

C.

.**. eM I') D 89 .3 ete W X Qa a f [

& OC u

A 2.9

.o L3

>=. ee

n. .

a.

g U = [

6

g. o .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

a .- .,

L C C'S f3t

.M G8 85 9 ,

44 Ch Ut >== e'39 L .C 0

v.8 C"J 18, a .r., .u m T2 Y L4J sft M C 84 O Qa as og ~. ~4 4

2 84 C= > - =

o Z g y

.r. .. *. .. .* .. ..

b 4y +

..'3

. 2 as O O u w o .e.a . g O W w :s#"u s g

.C 4 .. ..

Sm.

..I .. . . . . . . . . . . . . . .$..@.,............................................--

.** W a

N ua ,

he

. 2.

% Us O.h 2

4 %D N

=

g .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

u. ,

Su-9.*.

.O nia U OA CJ m Y.

5

.. =. .. ..a.

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. == .. .. .. .. .. .. .*

    • W

= l O

g s'.

O a.

g .G O" -

.. .. .. .. .. .. .. .. ..I.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

3>.

    • b D N
a. -

Ci, ,E O Of E/1.*J- . =.

u

  • J.

as a eh, D.

.D 4"'

u m

  • d

- e, .x m

>% * -)

L IfJ C l

. . Ut

%8 .e r M ..

m ,n

.....*..m .. .. .. .. ..b... .. .. .. .. .. .. .. .. .e .. ..I .. . . . . . . . . . . . . . . . . . . . . . . i UB AJ l 3

En**

[4J k trl '. h k

,g .E.i, ,U .L.' .

q;0 to 4 L

g  % .. .. .. .e .. .. ..I.......e ea ..............................y ..

I o. 6.D.

If m

r I f .. .. .. .. .. .. .

z <z o e T 44 0 e

d

.\.

  1. ""' #"" I i E '

f GN ^ d ^ tj i

.= , .o. itJ c c ol C N w d t i

ae

.$ h e 1 i

.. .. .. .. ..I .. .....,..s j .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . .. ..

l j

O .. .. ..

..C en 4"O pg

  • i l l l 68 b e.m. W j

. == = 1 o s "on ao un a e n un n

  • O OC ce e 88 4 .b ga 4.- = *.' ,, w e 5 ,
  • = 3.A 48 g.3 r=

C es ,

O .D. *ts

=

g

.J L3 E#3 =

..a..

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .., ..,, .. .. i 1

a g

(. u r

ile t fa n

e e.e n ss no

? 7 a oc phs

/r 8 nr o oe t

/e /o t nrf

// / r a dwi lG m I o

e e e t t t P e

d yh 'M i

D a a a D D .

) )

dt -

f g

!_! l  !

(

1

( :

2

: ! .. ; .. : l  : ! : : : :

eA l k

c i d n

bn<

fG a a a a icH t e rb e Pe e u g bA p e r

VT a E

u e t i :: :::::::  !  ! l  : !  : : : !  : : .. ! .. : l  :  : :

R a k e r n g g t e a agi n s p s T eO s d c T e d k a t n a c e t E s t M ei eeH eH F i

D T W v

. ti  !

t la t l e

: l
: : :1l : : .. : .. : l  : : : : :

e e ui b ze t t c

c cc e

h mEx buE i t u P 2 4 7 1 3 S C:  :: !  :: !  :::: : : l

!  ! l  ! .. : .. : l  : !  : :

I Y

T I

T C E O

. E L F E

(: S V A G T V A

D 2 A E

E

!  : !  ! ' : : : l  !  ! : :

! .. : .. : l  :  !

S o Y o T t I

C O

L i e

m E T V

5 i::: l  !  !  : ::: ! _ ! .. : .. l V e A

o h t 3) c n

e e -- 5 (Z -

i 0S i T

z8S  :  : :  ! : : : ::: ::: l  !  ::::

/

' Y T

I)

~

e C .

z el O c 4 a L s 1 il I E 7 -

S ui 7 0 e

ph t d r e e  !

Vd 5

0 1 i c p S fa P I e m

A (l V

E i  : :

1 E

S t :b  !

l

! : : : : : : : : : : : : .. ! .. l a _

Y c o t + T i t 5 )

g I t C c e O e s - 0 -

C 7 -

nG-il h f L j i E

V int 1

~

p c 5 = : ! l  :  !  : :  !  : ::  !

unB o. V a e

: l  :  !

N o i G A o t o n n

C4Y R u t e n 7302 5 32 L i

. m i i o1 3( 2 1 o

b! : _

N T t _ d-n g o n

l e

l l_ !_ i  : :  !  ::  :  :.,_:.::::

e i h  !

i i t t p a t e irln s -

c. r e e uS T S

e i

t e c c. c ccc lu

. g i e r f g e l

b h i

cect c S2 l 1 I I

ccF i et ol a C S W bTI B

u l

! : ; ~ 1  !  : 1 : :  ::  :;;., ~ ..::  :  ! : :

- '3 ,

+.

, . . . . ~ 1 r

s

. . _ . . _ . . 30 4

k 4

0 1

& I l

I N{ Ad L ..

e46 6

61 BA E8 Se gL on on .e.,a se se ens G Q Q y .. . . . . . . . . . . .. .. ..

Ut

.ac ..Ce O is 09 O #9 "I" G8

. .Le

.. i;L

=>-8 Ga L Ja SI As a r

., >= 0 u LlJ gy .. . - . . .. .. ..

= . . . I L G W 93e M G* *9 er9

  • f.h W 7

Of C3 m H $3e .

>"* 23 G8 t .lhs #6

  • d C "ve"8 o na W W .a
  • gg c, g,
al Gs 2 g 8'"

G' W 3

.. *g .. .. .. .e

.. . .. .. .. .. .. .. .. .. .. .. .. .. .. .. e. .. .. .. .. .. .. .. .. .. .. *. *.

s en U Y el el - e y .s a.s %

e w a, vs I a O tn I

G. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. .. .. .. .. .. ..

.'. >.=

ew

$)

e C3 6"J' L4 448 3

  • lI. us
  • n VJ >

G 4.D.

W  :

4 G G LZA . . . . . . .. .. ..

t.aJ U4

.......,........................==..................**..**

l

't3

>= 0 j ,

> +a e.=e

$.) 00 e>

J .aee N b

=

U

. . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. == .. .. .. .. .. .. .. .. .. .. .. ..

G D

4 '.

5B Of Y

  • E b

O+ .. .. -- . . ' . . . . . . . . . . . . . . - - . - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

co w >.

\

e.e se *- -

.e

~

U1 D

=~

..ee

@ _o y N u.s

. G Ms L W as as as V *

.CE

.e u4 med as an..

I CL LTh E y

.t.).

4.22 .

N M .. .. .. .. ..

SA C dh C

3>. ft W .O 4a S.G p .,,,, c.2 $. $. a, (*')

C es .as.

.' c.a, m Pn 1 ";> ..e os J D to. se en a .. .. .. . .. .. ... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

O ,$ 2". G O se o g =.' e O

b I 1 E As  %

. m3 *.

se he*

.. .. .. .. . . . . . . . . . . . . . . . * . . .....e

.. .. .. .. .. .. .. .. .. .. .e .. . .. .. .. .. .. .. .. ..

.O

.e ..C. g, g

    • *'d CL w e W ** H US 6 6., 60 6 un e-.0 .s N e, en U

-u C O +*

t.

. E,O W O e. en n p.

.a U1 3 gg 9

.E

, v a t

l e 0 00 c E ((. l

- -- 0 e

6 2

?7 e g 2e h/

h bt J

er e_

//

6s-n4989S7 s a 666 & 6 0

7 tl n

e e e t t t a a a D D D Qm.  ;

S-p 0 p a p o.

e 9. 2,9. 9 9 9

. I. Te

_ _ - C #r mt2  !

g re n

do wn. c l a c a k

a i icHe De 3939oe d t c

2 Iin t rb e AB99ol l

4 e u g/ 1 1 I s o b)d 1

V T au/ .f . 1 . . / 1 .c r G f p e _

e t R a

_: e::: _!

r de g g _ l t

s p s e

a agi n 2 . -7 2 S_6s 6s2

  • T eO s e

T d k d

a 5 5.61G 1 3

I E s t t n a c e e e P 1 1

/. /. 1

21221 b 2 N e i H H C T W

+  :  !

1

: : l_a e

e t e v i t x t l

h E uP Si S  :  !

  • , 1 T Y is : !  !  ! I ! : !  !  ! : !

T E

I C

O au pv

?

E 9

L E

V

_ a..

  • c

> A G T V e.

A D

2 A 2

E  : : !

/:

E  !  !

: : gL E d Y o T t I

C O

e m e L

E i

T 3 M, E

V

!  !  ::: I_. 4

:: !  : : :: !  !  : :  ! l e

A" o J_n e

h t 4_ e c e n n

05 i

T r'

eh e

2 8s  : : :  : ::: vc I Y :a! _  : : :::::  !  : : :  : : :  ! : : : : : :

T e. i n+s I

e C r O i Si bl ui d r a L 5

V Le e

ph t e e E i c a V P S M 1 e A -

m E  ::::

T E ti : i I.  :::: !  :::  !

E n b i' X  !

Y o e E' c, ' I T

I it t V b C : e

- O e s i

I L

E j i n T R lc'o V i _

c ' '

uOA o. G V

= :a ! i::: :_ :7:::: _

!  :::  !  ! :  : ! l l  !

N o G n A o t

t c F C_ R u

e A

i f m m II T i

, n g  ! :  !

k:_  : : : ::  ::  :  !  :::;

o n e i i t t s r iz 'a la***_*_l i ,

c r c r a t r e e S i c.

e e. ccA

, uS T e 4

. g i e r l 0eooQ f

i ct s e t h

u 0onai l oi a E S W

!n 0_

E T._ "21_ l_.

! l ri '

3

- r 32 i

4 e d

. ./

3 O I I ' 4 -1 31

)

cwc

. o Qy( e

  • J.4 V, o k o t *  % e  ;

J ' e h

d5 o O o o 9 o

' A d*S s fj a "t "a 7 = 6, W" + o ' ad M .il.n d ) j I d d v* 49

. 4 +[ ,M *mr@ 8 :

'E

<> 3 f 2 od 51

= 3 4

3 t J .2

= 3 c 8!

S -

t J *I 1: e -

q) e. O ti 4 8 l

g m m

o E

e @

L "y

A g-j .o! gt J 6' dd

,b .5" [' 5 n nl a

o s

. x. ,

v. "e. $. $. e.

D 0 O. t' c1 Cj " ,< h' y ...... .o..... 2...o.,...c. .... 9

. . . . . .. . . .. .. .. . . .. .%. . 1.. . 0. . .. .n4. .. .d. ..i ..l ..

y o e

~%$ b e

~

ce: d = c + e - N h @ nm:,e . "..

.n e* o i, q d. .d o o w w  :: - ~

y '.\

, . . . . ~. ,

C4d. J; :  : w ~ - '- - ~  ;

w

g. 3

.. .. .. .. .. .. v.. .. ..l.. .. .. .. .. .. .. ..,.. '. .. ..,.. .. ..i.. .. .. .. .. .. .. .. .. .. ..

I t

-b serh a M 4 0 I e am

-"* -% r'l e 9

,, m p

~ d,)

,, Iq e tog 4 wtS  : -

  • 4 - * *
  • 1 N

Wo E. ,* ;

.P:: = ... .e4l . . .I . . . . .x . . . . . . .N. t .. .o ..

d d dy

..'l l ,..T)l 3

-8.. .

.o Q-q o vi k .. .. .. .. .. .. .. .. .. .. !.. >

W e

.c {"';;' 2 ?: o 2

U.. J:

'(

l l a '

.dO e r 0 0 0 0 d f o 0 0 0 0 er 0 0 0 0 dd g' + + + + %p c

+f 9_

t o t_

7 7 n n9 P

/ A g s_ en AD qa

/ tr s A_

e a

// e o 9 o 0 l n+

4_ G e7 s 7 s 3 mi Pa h e e e t t t gPe9 - . 9 9 9 9 a a a D p p o a f_ % t dD t t  : _: ::::: t _% : : : : : :D: : (2: : 0 (

).

g _

n _

l ko di '

$aA f d(

c a

n i a o a cH eG t e rb e e u g/

P B

/

o s

I A

/ /

s 7

T 7

L.._

M V T a . . . .

/Ar p o S

u 1

/

L_

/

_:L_ :::::::::::::::::::::..!

e t  : :  : : :

R a k , e r n g g t e s p s a a n 4 4 0 B S_ !

T eO s e

T gi d

a ro 6 1

6 1

5 5 S E s t t n d k a c e e eP /. . _ . /. 1 I N e D T Wi eH v H 2 t

i t  : : : :2 _ 2_ :_2  :  ::

2_

tc : : : : : : : : : : : : : : : : : : :

e at e e e e

l..i lt  : c

. x t i c R h u E uB S I S C: 2_

Y 1 T I

T C

.u E C E L

., H E S V A G V

T A

D Z

G A

E S d Y o T t I

C O m e -

L i E T _

V _

E V ,e : : : : : : : :: : :: : : : : : : : : :::::::::: :

A o

t t s_ e c s -

E0 S i T

e6-  : : : :  :::::::  ?

Iz 1 S Y T'

I _

e C O *5 1

4 0

I z el a j E L / 5 4 Si l ui V 3 e

d r e e " .

o ph t ic a 6,

V 1 o P S M I e A I e _

E te t E S

ti t : : ::_ !

e( f Y o o n

n 2 . T i t I t 0 5 5 do4i_ F E C c e D e s L j i 1

3 3 - '

V int _

3_

M -

o' *4 o 5 =

V a e

r - (o N A o t o b

n u t

)S)T T 7

. o F

i T i e esrhS1

e. l 1

1

/I_

2 1

2_ n (n g)f_

N t _

I n g 1 ::  :  :

o n e s _

i i t t p _ _

iz h , .

d :_c :_ s c. :m s.__ : c_ m_ n_

a t s r e e S 2 s c. c. c uS T g e r. c s l

i e r t f p e L

7 :s a 3 :_ 3_ __:

3_! _3_4 3_3_

t n ot u n ol : P C S N

3  :  ! :_ -

~

l  ;)t  ; ; );

5 34 2

- 1

. 4 r-1 a

?@

5 ~ +

( )

g+ O O o o og [ l-v- C i G'*"' o., 4 e 4 a )

% C j' ,

k *

'yw f+

f q + 4 +q o

C 8'

0

< h D "F r- -

nl r. P' n

l n, n. a. @ @ p @ .% )

%%% O' 2

= == $<* @f -

C C

f, O.

  • q o .. .. .. .C a

..........................................9..'...............

C C.

O M o%  ?. e 2 9 in A

- = a. o &

e P .c ht ht*y  % '

. .-- a  %.

K v m~

~ a g g g u, .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

l w .a a.

M

" h &

.C e a.* *CG a + N w .=

("3 m-Q4  %.

.h.,, . .n ~,

,9 w 'D.'8 .C.,

. 86, o o a. . . g 6

- E .*' s g.

MI

  • d

.f.4.. . . . . . . . .d. . . . .d. .. .d..d

=

4 .g .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

a 2.3 =n- a d d g

M E4 O g sw a os Q

>. n -.e e OY=.a O K+

W N s

k J

,J uo e w w s%

  • A
d. W *$

4 a $ $

N

  • a g

u,

=

....................-......l.................................3...... I,

> O

.M.

4.A nw L) an C.J E5 O ea mi.

Le a e.-.

3 d b .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .T .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

I

%* La s 4 a O ..

+* y.

Se a n -.

~

C O A .. .. ..

& A

@ D >

Ael l, sd cdv l o w e J %g3 4

..a.

4

-- n. ~.

8#' 3 "-'

. es, w .e @ .q

.i (d @ T,-

== L* . # a' as ne w,

.m.

. etA. ~. dt

=>. d .

EL 8/s 3; as cL 0 n.g.e

.y ,S.P.. . . . . . . . . .... ' .. . . . . .. ..e.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

i SJn 2.2 t3 Ls as

.D. .f 3

.. o r'M o

,- t, g

a n.

m.e (0 h.io O 9 0

. *.d 6

=h "" l I

  • > ..C.

w I g I O . Les se p

3.. .. ..a.. .. .. .. .. .. .. .. .. .. .. .. .. .. . .. .. .. .. .. .. .. ..

O L

s G z C2 2 a .o, se

. Cl

% e

  • g e g M r s--  % n n o, n % O t.' .j 'ChC C rs

. 9S Q, ' W, c d o C, E

y

.. . "'........I......jl...g .. .. .... .. .. .. .. ,. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

3 O go

.C.

M - G ew G4 n

  • g. *.a h

,a* .a UI O a o a' hd 4 u, U d U d 0 u

=e o- ab f;a d ej (4 - --' F -d - F ~

W 4 D

LJ WM s** *19 gg) i d- j

.. ....I..l...8.. .. . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . 9.. .. .. ..

f 4

k n

v 0 0 ch up cA eg - - t h 7

l E.- ' ar e'c r ec a c

7

  1. 3 / ,

itma. ' hoi;n 0d .

% .' o"'

8, Z t -

(G t

.cn7 r6 a

5 7 6 5 u6 dr,m e e e e 9 7 7 sne Liu t t t a a a e9g,R g

- 9,

. 9, 9, )

J i

JD D g 0 00 o 0 O c

ut o : : : :  : :::  : : : : : : : : :(:

d g

n k i c

bA l o d t a o a c cH e i

t r b e 1 e R 6 8A 1

1 9

s M

/ &

e u g(

V T a ,

1 1

i 9A r G u J 1 I 1 p o e t I :  :::::  !  : : : :  ! : :  !  : :  ! : :

R a r

k e -

n g g .

34 t e a a gin 2 s p s eO s T

d 9 99 T e E s t t n d k a o e a 0 o. 0 0 e o R 4 ei 0 T W H H 2 21 2_

P.

t e

_ e e t l ix b b i c e .

z c ._!

_ c.

c c c_

h E uB Sl o4 S  : :  ::  ! : :: I

/2

1
: : : ! :  !  ! : l  ! :  :  !  : :

Y 1

T I

C c

, T O e E

L E

H E s i S V / 6 A S n

  • T V a

, A D

2 5  !

A E -

S d T

I Y

t o O C

O e

n S L i /

E T V

!  !  : I  : :::

E V c d!  :  !  : : :  !  : ! i  !  ! : ! : l A n k o i t

c n

e m

oL 3

i i /

- 0S  : ! : :

T

!  : : :  : : : : 'A !

_ E2 9S _ _

_ T Y

c h

e I

C e s e

r el i dlui a O

L s'

/

r5S S 6a 8l E

n( 7,G ,

i S

r V e e e E ^t . . , .

. C 2 2-1 2 PipSc hMa t f 1 eA m

V 2

S  ;!  !  ::::

de E S

ti :  !

t n b

S /_ f Y o o 0

_ T i t 3 8 en 2 I t C c e 2 35 7 0 ni O e m L j i

' 8 5 1 sto W *F E n T V i .

- l  :::::

- 8 . o S =  :: ! : : : : :  !

i ::  :: !  :

o0 6Nn V a -

  • v A o

_ t o

)

hP4 Ru 5 k S7 D) 12 2 '7 t

_ ) _

e -

o i

T m

2(oO 2 (2* (

N l

h .

eM!

n g  !  :  :: !  :  : : :

, o n  !  :  : :

it i p t r b

! :Lc

_ ,. i

_ a t m S r e e

- u S T a e_.ctc c r

ig e r ebt c t e c- e c_Lt

_ l buli 6MA4I f p e m n et ot a b I I C S W B . .

l  :

t 1

_  :: l

'