ML20147G786

From kanterella
Jump to navigation Jump to search
Task Rept on Development of Seismic Acceleration Response Spectra for Diesel Generator Bldg of Sequoyah Nuclear Plant, Part 1:Design Basis SSE Input
ML20147G786
Person / Time
Site: Sequoyah  Tennessee Valley Authority icon.png
Issue date: 02/25/1988
From:
BECHTEL POWER CORP.
To:
Shared Package
ML20147D794 List:
References
NUDOCS 8803080315
Download: ML20147G786 (98)


Text

$

. . .. . .. - = - 2:: : ;: .~:::- . . . .-... .. , . . . .. - - .. -. . . - . - .. . _ ., . . .. -. ... . _ . _ . .

TASK REPORT ON DEVELOPMENT OF SEISMIC ACCELERATION RESPONSE SPECTRA FOR DIESEL GENERATOR BUILDING OF SEQUOYAH NUCLEAR PLANT PART 1: DESIGN BASIS SSE INPUT Prepared for i

TENNESSEE VALLEY AUTHORITY Sequoyah Nuclear Plant - - -

Knoxville, Tennessee by Bechtel North American Power Corporation San Francisco, California 9

February 25, 1988 8803080315 880302  ;

PDR ADOCK 05000327 0 PDR 3

9

- - , , , - -- - - , - , e v

TABLE OF CONTENTS Part 1 SECTION PAGE 1 INTRODUCTION ........................................... 1-1 2 OESCRIPTION OF ANALYSIS METHOD ......................... 2-1

. 3 SEISMIC GROUND MOTION INPUT ............./...............'3-1 4 ANALYSIS H0DELS ........................................ 4-1 5 ANALYSIS SCOPE ......................................... 5-1.

6 ANALYSIS RESULTS ....................................... 6-1 7 COMPARISON OF RESULTS .................................. 7-1 8

SUMMARY

AND CONCLUSIONS ................................ 8-1 9 REFERENCES ............................................. 9-1 Figures l l

.i Tables a i

l Appendix A Envelopes of Average ARS Plots for Individual Soil Cases  !

Appendix 8 Final Envelopes of Average ARS Plots for Enveloping the Results of Three Soil Cases 1

l Appendix C Comparisons of ARS Envelopes of the Current Analysis with the original Design Basis ARS i

StaffGrp 38 -i- l 1

I

TASK RE)0RT ON DEVELOPMENT OF SEISMIC ACCELERATION RESPONSE SPECTRA ~

F]R DIESEL GENERATOR BUILDING' 0F SEQU0YAH-NUCLEAR PLANT Part 1: Design Basis SSE Input

l. INTRODUCTION This report presents the seismic analysis methodology, analysis'models, analysis scope, and analysis results obtained for the Diesel Generator (DG) building of the Sequoyah Nuclear Plant. .Part 1 of this report describes the analyses perfonaed for the design basis seismic. ground -

motion input of the Safe Shutdown Earthquake (SSE) for the plant. The objective of the analysis is to develop the seismic floor acceleration response spectra (ARS) for comparison with the design basis.ARS for.the building.

Since the DG building is supported by a layer of~ soil deposit above the underlying rock at the plant site and the structure is partially embedded in the soil deposit, the seismic response analysis for the building requires the consideration of the free-field response of.the soil deposit above rock as well as the soil-structure interaction (SSI) effect including the effect of emoedment.. Thus, in performing the seismic response analysis for the building, the free-field response of the soil deposit is analyzed using the one-dimensional (1-D) soil column wave propagation analysis cocputer program SHAXE (Reference 1), and the SSI ,

response of the structure is analyzed using the recently developed tnree-dimensional (3-D) finite element SSI analysis computer program-SASSI (Ref. 2).

Section 2 of Part 1 of this report presents the analysis assumptions and methods for determining the seismic response of the soil deposit and the-building.

StaffGrp 38 1-1

, ,-,.a .

i a

. Section 3 describes tne seismic input motions for the seismic response analysis. Section 4 describes the seismic-analysis iaodels used for _tne response analysis. Section 5 pres 1nts the analysis' cases considered in the seismic analysis.- Section 6 presents the analysis results ootained.

Section 7 presents the comparison of the response results obtained to~the current analysis with the corresponding original design ~ basis responses.

Section 8 summarizes the conclusions.

t l

l 1

l l

StaffGrp 38 1 r  !

l r r . , n

2. DESCRIPTION OF ANALYSIS METHOD Since the DG building is' supported by a layer of approximately 70 ft.

thick of soil deposit above the rock fou,1dation for the plant -the determination of the seismic response for the building requires, in

. addition to the determination of SSI response of the structure, the determination of free-field soil response above rock subjected to the design seismic input motion which is defined at the surface of rock of the plant. The analysis for the free-field seismic response of the soil deposit assumes that the soil profile is horizontally layered and the seismic input motion is vertically propagating plane shear and compression incidence waves, such that the analysis can be performed using the 1-0 wave propagation analysis methodology for a soil column utilizing the computer program SHAKE (Ref. 1).

For the SHAKE analysis of the soil deposit, the design seismic input' motion defined at the rock surface of the site is prescribed in the form of rock outcrop motion. Using this form of input, the soil-rock interaction effect is considered in determining the soil response. This interaction takes place in the sense that the energy of seismic waves reflected form the free surface of the soil deposit is permitted to dissipate into the underlying rock medium. This form of input motion is also more consistent with the definition of design response spectra since such a definition is usually based on the study of surface-recorded ground motions rather than the motions recorded at depth.

In the SHAKE analysis of free-field soil response, the low-strain soil shear moduli of the soil ~ layers are based on the results of site geopnysical survey (Ref. 3). In order to account for the variability in soil shear modulus, analyses are performed by varying the soil shear moduli as determine'd from the geophysical survey data by +,50%.

Furthermore, since soil materials usually exhibit nonlinear hysteresis behavior as a function of shear strain in soil under clyclic loading StaffGrp 38 2-1

+ t

conditions, the SHAXE analysis of seismic soil response also considers the strain-dependency of soil properties based on the variation curves for normalized shear modulus and damping factor as functions of shear strain developed for sand by Seed and Idriss (Ref. 4).

The SSI response of the DG building is determined using the newly-developed 3-D finite element SSI analysis computer program SASSI (Ref. 2). In the SASSI analysis, the Tree-field soil surface response motion as determined from the SHAKE analysis is used as the input prescribed at the ground surface. Consistent with the assumption for the SHAKE analysis, the input motion to the SASSI analysis is also assumed to be caused by vertically propagating plane seismic shear and compression waves. Since SASSI is a linear SSI analysis computer program, the equivalent linear soil properties used for the SASSI analysis are based on the strain-compatible soil shear moduli and damping values as resulted from the SHAKE iterative, equivalent linear analysis of free-field soil response. In this manner, the primary effect of strain dependency of soil properties caused by the free-field soil response is included in the SASSI SSI response analysis.

The computer program SHAKE applied to the analysis of free-field soil response reported herein is a Bechtel version (CE915-SHAXE3) which was obtained from the University of California, Berkeley, and implemented on-the Bechtel UNIVAC computer system. This version of SHAXE.has been tested ,

and verified on the UNIVAC computer system and the results of verification are documented in the validation report for the program (Ref. 5).

Additional validation has also been performed for the analysis reported in Ref. 6 and the results of validation are documented in the calculation files which form the basis for the report in Ref. 6.

The version of SASSI computer program applied to the SSI analysis of the DG ' building reported herein was obtained by Bechtel from the University of StaffGrp 38 2-2

California, Berkeley, and implemented in the CDC CRAY-XMP computer system.- This version:has undergone extensive testing and validation by-benchmarking-the SASSI solutions with a comprehensive set of, avail 5ble published solutions. The results of the. program validation are-documented in the program validation calculation _ files (Ref.-7). The program l validation results h:ve been reviewed in detail by the NRC consultants.and' the validity'of the program verification is confirmed in the HRC consultant's report (Ref. 8).

b

'l P

P StaffGrp 38 2-3 P

.-,e --

, , .,e, , w,

3. SEISMIC GROUND MOTION INPUT The horizontal acceleration time histories for the design basis SSE used as the control motion input for the seismic response analysis of the DG building are the four design basis OBE artificial earthquake acceleration time histories A, B, C, and D for the Sequoyan Nuclear Plant-scaled up by a factor of 2. The vertical acceleration time histories used are.2/3 of the corresponding horizontal time histories for the SSE. The control motion for the DG building seismic response analysis is' prescribed as rock outcrop motion at El. 650' which is the elevation of the soil-rock interface. The motion is considered to be caused by vertically propagating plane seismic incidence shear waves for the horizontal corr.,.;nents and compression waves for the vertical component of the input motion.

The maximum (cut-off) frequency of the input eartnquake acceleration time histories considered for the SHAXE free-field soil response analysis is 33 Hz in accordance with the requirement of the NRC Standard Review Plan.

The maximum frequency for the SASSI SSI response analysis for the DG building is prescribed consistent with the maximum significant frequency of the free-field soil response motion at the soil surface which is used as the input motion for the SASSI analysis.

StaffGrp 38 3-1

'\

4. ANALYSIS MODELS For the SHAKE analysis of free-field soil response, the 1-0 soil column model used is shown in Figure 1. As shown, the model consists of four.

soil layers above a rock halfspace. The properties of the' top soil layer

-between El. 722' (grade) and El. 712' are designated as Soil #1; the properties of the second soil layer between E1. 712' and El. 692' are designated as Soil #2; the properties of the third soil layer between El.

692' and El. 678' are designated as Soil #3; and the properties of the fourth soil layer between El. 678' and El. 650' (soil-rock interface) are designated as Soil #4. The mean, lower-bound (-50% of mean), and upper-bound (+50% of mean) low-strain soil properties for all four soil layers and the the properties of rock.halfspace are also shown in Figure

1. These properties are derived from the TVA calculation file for the DG building as contained in Ref. 9. The ground water table is taken to be at El. 692' in accordance with Ref. 9. Since the SHAXE analysis does not have limitations on layer thickness as a function of cutoff frequency, averaging of the soil properties as used in Ref. 9 has been applied to obtain the properties for a reduced number of soil layers for the SHAKE analysis reported herein.

The strain-dependent variation curves for normalized soil shear modulus vs. shear strain and soil damping ratio vs. shear strain for Soil #1, #2, and #3 used for the SHAXE analysis are the standard' sand curves as '

obtained from Ref. 4. These curves are shown in Figures 2 and 3. The strain-dependent curves used for Soil #4, which is a layer of weathered shale, are based on the curves derived il Ref. 9. These curves are shown in Figures 4 and 5.

For the SASSI analysis of the SSI response for the DG building, the 3-D lumped-mass stick model for the building as developed for the STARDYNE analysis of Ref. 9, is directly used. This model is shown in Figure 6.

The fixed-base structure modal properties for the 3-0 lumped mass model as reconstructed from Ref. 9 for the SASSI analysis are shown in Table 1.

StaffGrp 38 4-1

These modal properties compare closely with the corresponding properties as obtained from the STARDYNE analysis of Ref. 9. The fixed-oase structure damping ratio used for the SSE analysis is uniformly 7% for all modes of the fixed-base structure.

The foundation model for the DG building for the SASSI SSI analysis consists of a 3-D brick finite element model for the embedded 3G building basemat between El. 722' (grade and top of basemat) and El. 712' (bottom of basemat). The finite element Mesh of the four.Jotion'model is shown in Figure 7. This finite elment mesh applies also for the brir,k finite element foundation soil model for the excavated soil volume dispiaced by the emoedded DG building basemat. This foundation modelling. technique is unique to the SASSI SSI analysis methodology which adopts the :;o-called "flexible volume substructuring" method (Ref. 2).

The connection between the brick finite element model for the basemat and the 3-D lumped-mass stick model for the DG building above the basemat is accomplished by connecting the base of the stick model to a set of rigid beams attached to the top of the finite element model for the tasemat, simulating the connections of structural walls to the casemat. The finite element mesh for the SASSI foundation model is sized to pass tte highest significant frequency of the free-field soil response motion as determined from the SHAXE free-field soil response analysis.

The structural damping for the brick finite element model of the basemat is prescribed as 7%, and the soil hysteresis damping for the brick finite element foundation soil model is prescribed as the strain-compatible values resulting from the SHAKE free-field soil response analysis.

{

StaffGrp 38 4-2 l l

5. ANALYSIS SCOPE The seismic response analyses for the DG building for the SSE condition have been performed for three soil cases, namely, the mean, lower-bound, and upper-bound soil cases with the mean, lower = bound (-50% of mean), and upper-bound (+50% of mean) low-strain soil shear moduli, respectively.

For each soil case, analyses have been perfonned separately for each of tne three directions of input, namely, the horizontal NS and EW, and the vertical directions of input. For the analysis in eacn direction, all four design acceleration time histories A, 8, C, and 0 for tne SSE nave oeen used as the input. Thus, the total analysis scope consists of 24 separate SHAKE free-field soil resoonse analyses (i.e., 3 soil cases x 2 directions x 4 tiiae histories) and 36 separate SASSI seismic SSI response analyses (i.e., 3 soil cases x 3 directions x 4 i;ime histories).

In the SHAKE analysis, the strain-compatible soil properties for eacn soil case subjected to the four (A, B, C, and D) SSE horizontal time nistory inputs are first obtained; then the averaged strain-compatible soil properties applicable for each soil case are obtained as the average of the four sets of strain-compatible soil properties resulting.from the four horizontal' time history inputs. These properties are shown in Table 2.

The averaged strain-compatible soil properties as obtained for each soil case are finally used as the equivalent linear soil properties for the SASSI SSI model for each corresponding soil case. The averaged properties as obtained are also used for the second-step SHAKE analyses without further soil property strain-compatibility iterations for determining the free-field soil surface response motions (horizontal and vertical) for each of tne four time history inputs and for each soil case. Thic results in 12 horizontal and 12 vertical free-field soil surface response time  ;

histories which are compatible with the averaged strain-compatible soil properties for each soil case. These motions are subsequently used as the ,

input'for 36 (12 horizontal US, 12 horizontal EW, and 12 vertical)-SASSI  !

SSI response analyses.

l l

l StaffGrp 38 5-1 '

6. ANALYSIS RESULTS The results of SHAKE free-field soil response analyses consist ~of three sets of strain-ccmpatible soil properties corresponding to the mean, lower-bound, and upper-bound soil cases, and 24 strain-compatible free-field soil surface response acceleration time histories (12 for horizontal inputs and 12 for vertical inputs). For each of these time histories, the 1, 2, and 5% damping acceleration response spectra (ARS) have been calculated and the resulting spectra are averaged for the four input time histories A, B, C, and D. This results in 6 averaged ARS (one horizontal and one vertical for each of the 3 soil cases) for the ,

free-field soil response motions at the ground surface for each spectral

~

damping value. These ARS are plotted and compared with the correspondin'g averaged ARS for the free-field soil response motions at the soil-rock interface (El. 650') and the averaged ARS for the input motions at the rock outcrop in Figures A-1 through A-18 in Appendix A. The same comparisons for the e'nvelopes of averaged ARS for 3 soil cases are shown in Figures B-1 through B-6 in Appendix B.

The results of SASSI seismic SSI response analyses consists of 15 acceleration response time histories at selected locations and directions for the DG building for each of the 36 separate SASSI analyses, resulting in a total of 540 response time history outputs. The 15 response time histories selected for each SASSI analysis case consist of 5 selected response time histories for each of the three floor elevations at El.

753.5' (roof), El. 739.75' (second floor), and El. 722' (top of basemat).

The 5 selected response time histories for each floor elevation consist of 4 horizontal response time histories (NS and EW response time historios at 2 extreme edge locations of the floor) and one vertical response time history at the center of mass location for the floor. A comparative-study performed at the early stage of the analysis shows that the floor response ARS for these 5 selected time histories envelope the floor response ARS l for the response motions at 5 selected locations (4 extreme edge locations and the center of mass location) for each floor.

StaffGrp 38 6-1 l l

. 1

For each of the 540 response time histories obtained from SASSI analyses, the 1, 2, and 5% damping floor response ARS have been calculated, resulting in a total of 1620 ARS curves. These ARS curves are.

subsequently post-processed as described in the following:

(1) The 540 ARS curves for each spectral damping are first combined, using the. square-root-of-the-sum-of-squares (SRSS) procedure, for the-co-directional. response resulting from three directions of input for the same soil. case and the same time history' input. This reduces the 540 ARS curves to 180 curves for each spectral damping.

(2) The 180 ARS curves for each spectral damping as ootained from Step-l ,

are then averaged for the four time history inputs (i.e., time histories A, B, C, and D). This reduces the 180 curves to 45 averaged ARS curves for each spectral damping.

(3) The 45 averaged'ARS curves for each spectral damping as obtained from Step 2 are compared and enveloped for each floor elevation to obtain 27 envelopes of average ARS curves (3 directions'per floor x 3 floor elevations x 3 soil cases) for each. spectral damping.

(4) The 27 envelopes of average ARS curves for each spectral damping as obtained from Step 3 above are finally combined.by enveloping the curves for 3 soil cases, resulting in 9 final envelopes of average ARS curves (3 directions per floor x 3 floor elevations) for each spectral damping.

The 27 envelopes of average ARS curves for 1, 2, and 5% spectral damping values for individual soil cases as obtained from Step 3 above are plotted as shown in Figure A-19 through A-45 of Appendix A. The 9 final envelopes of ARS curves for 1, 2, and 5% damping values as obtained from enveloping results for 3 soil cases in Step 4 above are plotted and shown in Figures B-7 through B-15 of Appendix B.

l StaffGrp 38 6-2 I

7. COMPARISON OF RESULTS The final results of SASSI analyses in terms of the 1% damping final ARS envelopes for three soil cases -(i.e., the 1% daiaping. ARS envelopes shown in Figures 8-7 througn 8-15 of Appendix d) are compared with the' corresponding original (old) design bdsis ARS curves'in Figures C-1 through C-9 of Appendix C, for each of the three directionsfof' response and for each'of the three floor elevations in the DG building. In Figures C-3, C-6 and C-9 which compare the vertical response ARS envelopes at.

three elevations of the DG building, the comparisons are also made with:

the new vertical design basis ARS which were developed suosequent to the' establishment of the original design basis ARS.

As snown by the comparison in these figures, the final floor response ARS.

envelopes as obtained in the current analysis are enveloped by the original design basis ARS as well as Dy the new vertical design basis ARS with a significant margin in the spectral peak frequency region.

1

l

+

i l

l l

l l

StaffGrp 38 7-1

)

i

8.

SUMMARY

AND CONCLUSIONS The seismic response of the Diesel Generator (DG) building subjected.t'o the design SSE ground motion input for the.Sequoyah Nuclear Plant has been analyzed using the 3-D finite element SSI analysis computer program SASSI to develop the floor acceleration response spectral envelopes, taking into account the amplified soil response above rock based'on the 1-D soil column wave ~ propagation analysis computer program SHAKE. The analyses have been performed for'three soil cases with the mean, lower-bound, and upper-bound soil properties to account for the variation of the low-strain soil shear moduli as derived from the seesmic geophysical survey data.

For each soil case, the strain-dependency of soil shear moduli and' damping values have also been incorporated in the analysis. All four SSE design time histories have been used as the seismic input for the analysis. The seismic input motions are considered to be rock outcrop motions defined at the surface of rock at the plant site. '

The envelopes of average acceleration response spectra (ARS) for 3 spectral damping ratios (1, 2, and 5%) for 3 directions of response (NS, EW, and Vertical), at three elevations of the DG building (roof, second floor, and top of basemat) have been developed for each soil case. These ARS envelopes are plotted in Figures A-19 through A-45 of Appendix A. The final envelope of average ARS curves obtained by enveloping results for all three soil cases are plotted in Figures B-7 through B-15 of Appendix B.

The comparisons of the final envelopes of average ARS curves as obtained in the current analysis with the original (old) and new design basis ARS '

for 1% spectral damping ratio are shown in Figures C-1 through C-9 of Appendix C.

As shown in these comparisons, the final envelope of average ARS curves obtained in the current analysis are enveloped by the original design basis ARS with significant margins. Thus, the design basis ARS for the DG building for the SSE are conservative with a significant margin of conservatism relative to the ARS envelopes developed in the analysis reported herein which has utilized the current state-of-the-art analysis  ;

methodology and computer programs.

StaffGrp 38 8-1 1

9. REFERENCES (1) Schnabel, P.B., Lysmer, J., and Seed, H.B., "SHAKE - A Computer.

Program for Earthquake Response Analysis of Horizontally Layered Sites," Report No. EERC 72-12, University of California, Berkeley, December 1972.

(2) Lysmer, J. , Tabatabaie-Raissi, M. , Tajirian,- F. , Valdani, S. , and

  • Ostadan, F., "SASSI - A System for Analysis of Soil-Structure Interaction," Report No. UCB/GT/81-02, Geotechnical Engineering, University of California, Berkeley, April 1981.

(3) Sequoyah Nuclear Plant, Final Safety Analysis Report, Sections 2.5 and 3.7.

(4) Seed, H. B. and Idriss, I. M., "Soil Moduli and Damping Factors for.

Dynamic Respons6 Analysis," Report No. EERC 70-10, University of California, Berkeley, December 1970.

(5) Davie, J. R., "Verification Report for Computer Program SHAKE 3, Version No. Al-1," Revision 1, Bechtel Power Corporation, February 1985.

(6) Bechtel North American Power Corporation," Task Report on Development of Horizontal Seismic Acceleration Response Spectra for Auxiliary Building ERCW Pipe Tunnel,", Report prepared for TVA Sequoyah Nuclear Plant, January 25, 1988.

(7) Bechtel Western Power Corporation, "SASSI Computer Program Validation", Bechtel Calculation No. DCPP-LTSP-SSI 2-01 through 2-20, January 1986.

StaffGrp 38 9-1 J

- c - -,- _ ,

-eq

(8) NRC letter from Charles :1. Tramell, URC' Project Manager, to Licensee, Pacific Gas and Electric Company.(PG&E), dated August 27,1987, on

'"Trip Report - Audit of Calculational Programs to Evaluate Potential Soil-Structure Interaction Effects - June.9.through 11, 1987," Diablo- ,

Canyon Power Plant, Long Term Seismic Program..

(9) TVA Calculations, "Sequoyah Nuclear Plant - Diesel Generator ' Building ,

3-D Earthquake Study",.RP'S No. B41 '87 0521 020, May'12, 1987; and' "Geophysical Properties for_ Seismic Analysis of Diesel Generator Building," rills No. 841 '87 0715 001, June 9, -1986.

i

. t 1

i il f

StaffGrp 38 9-2  :

1 I

i Elev. Soil Layer Soil Properties (Strain Dependent) 722.0' -

d Y = .105 kcf OII #1 G = 2350 ksf 1

0.5 x G max = 1175 ksf (-50%)

712.0

/>

/ 1.5 x G max max = 3525 ksf (+50%)

Y = .115 kef G

max

= 3200 ksf 0.5 x G mx = 1600 ksf (-50%)

Soil #2 2 Sand / Clay 1.5 x G mn = 4800 ksf (+50%)

692.0' -

j. - - - - - - - - - - - - - - - - -

j/ ~

y = .125 kcf

- G = 6560 ksf Soil 33 3 0.5 x G max = 3280 ksf (-50%)

1.5 x G max = 9340 ksf (+50%)

678.0' g Y = .135 kcf G = 15700 ksf N 0.5 x G

  • ax = 7850 ksf (-50%)

1.5 x G = 23550 ksf (+50%)

max Weathered

\

Shale Soil #4 4 s

\

N Ns\

Input Motion Specified as Rock Outcrop Motion

\ -

650.0' - - - - - - - - - - - - - - - -

/ Y = .170 kcf -

V = 6000 fps - 'A 5 5 5 Rock .

G = 190000 ksf /

,/

. /

v Figure 1. SHAKE Analysis flodel and Properties

- i

~ -

s -

i -

s y

l a

~

a n ~

~

~ r ~ - - >.

~ o -

~

f -

d -

e s

- S u D

- - N e - -

v

- - A r - S u 8

' C -

/ -

0 H I'4 - . 1 0

- F

~

~

^

- J t

l

- A

- /' -

t l

l i

S

- - n

~. e

~ -

- cr H

e A

~ - p El

~

~ - i

- y S

- - l

- 2 , l u

- - n l i

J*

l I l -

- - 0 a l 1

i r WSH 4

- S S H n

- r Up a L h h

e UA .

S Dh

- - Ot i

- MS

- N

- Hl f

- A t

- EA (

l m i

- S 3 F

- 0 O 1

N O

l l

A l

l

- l A

V 2

e r

4 u

- g 8 6 0 i f

0 A. 2 O 1

1 0 0 0 O g lK ,*o:A 0a33oO2 O5 i

F EEG .a*5 i 2oeO2 O.s

,,  ; i'

i.

i r

~

'\" .

... _ _ ... ... L . ._. _......._.. , .. j 1

1 N j w

t s r

~

\ s s

s b '

\  %

s o '<

g  %

i s e .i ON -

"  % C s e e

\

3 --

% e s s e x

'w  % O b 9 g s 3 C s e s u m s -

._3._.. . . . ...... ... . s. ._ _ _ _ ,

O._  :

- s s e. s /

' O s4 N

's / ~

s 4 s /

N 4 m e \s " >e 8 (sp @

N

<l h4 <D hv c

\

s 4 S\ d U c.

C u

0 A Q

'g <

i mt s s

- - n a

~~

e .% >> >

s

'O m E ~~ $

gg i e C.,

- . +\ ,

d. CI i a

O s D \E -

2-

- >- O m

=

k

==t ss os

>s N  %. = -

1:

"$ Ia OO- N K

Eh l

~~c

=C ~

o p. > >+> a CE< i

_=.r_ e p, ,

.e . e_ >o

= .= - , , u g 6a

.$ t O C $ pP n

_ =C3M ee .mEC3M o 3

\ l

' m cO- C OYC a \ ai 2 o u

e ._m.O

.= c-s i s

cn

- . v o oC > C tC ~

G

+=v2v .: 3 = , C = 3 ss 1 g

c- - ._o t 1 5:=.2WOOxe ._3 3OO g t

i I

C3OO94>> I!l l l I l 8

1 g l T I i  :

A w

C 7 O C N C 7 O-g N N - -

us
:sd .opos Surdweg l

I

{j..

x g.

.,t (. ~

D- ,

. ___ _..._..4.. _ _ _ , _ .,

3 a, - - .

.em

_ _ .t . . . .

. , ... x cn

. _. m . .. . ._-

4- . a . . .__ _. 1._. _ . . ._-___ 3

_ . _ _ _ .< o a:

1

_____ . _ - -, . =.,.. _..

._-n_.-.- 4 w

y

._ i, .

. . _. g .._ .

_ . . _ _ _ _4..... . ,

e-

- e. . _ . .. - . _ _ . . _

i__..,--. .-

. -s - .  ; l o c

l,

~

h,

_ . _ _ . . . - . . . . - . 1

n< 45

' m 4_ Q j o. 2

., u o

==

i i

, 1-e s .e-i

,' C q

. - - + u

. ,7 ._. - . --. - - - -

.u.

y .

4

r. ___,. ... , . _ _ . _

m u .

--___-n._..

n e

j.

f,. -

-- I

.( 9_ . 44 g

< f M m

, ..__u..

.q._..

, 4- .

g r -._-_..

_ . . . . ._. ___g . . . _ . _ . .

e / ...___e 3

., s

. ,. . .- e j n r_ 4.

. _ . . . . _ . I _. _ __ . . 4 , .

N o,

i-_-

s _

,1 ._ _ _- ___, . . . . _

o

, ~. -.. -

r 1 1 a ,,,. . . . .. . . . . . - . .

o ,

_____f ..

_____...._4_. ._ .._ ..

__ a.

- _ ,u

.._. ._.4._..._ .

e I . _ . . _, . _ . ..

C.

1... ._. . _ ..

.l

... ____ i  ;

1 t

, u

(

s . , _

i s,

o i

e .e 4 i .. . . -. ,m r

.o n

.I. ,. ,

~

e a s . .

. i , .m 4

(

  • g e .

.f _. ll3

, . 1 i ._ ,I_.. _ _ . . . au

, , 3

. _ _ _ c,

. . _ . - - T

. 4 -_,_.- . , . . . ,

1

, . u'=

CQ

o. . c. at. N. o

- e o e o ,

,,_0I = A ge sntnpow aeays a

4 upea2s aeays jo sntnpow aeays

-. .,_ - ~ -. ., . . . . . _ . ~ - -- . . - . - _ . , _ . _ - . ~ .

. ; - , . .. .r ;, ,.,

^

n

.; e 4 -,

e t

3 7. . . . . -

t , i

.. e t,

.I-1 ,

. j1 ,,

J f

f l . L 6 ,'

. , . e, l

' s.

i .. ..

. i, 5

.. . l. 4,

)

i; i

I  ! ' .
!, 8 '
il . :

I t- ' %' ,l .

. . ' . . s-. ' . .

g

. . .e .

.._ _- = _ - .. ..... ... .. m -. .... . . . ,

- .i . t.

.. + 5

.o e

4 t

..i.'  :

,', y l1p: g .* . 4 .I ,

4 l , . .! ,

.., ri . ,. 6, 1  ;.

1

l. . .

) r,. -

4 e 12 -.m -

. . . . . . - H L . .__ .._ t '

'i:  : > 1.l1.: .

Lm '

oc l 4

. 'j!'I.. ,8 '1, .* ,

Uli!' ;.

o,  :

.i

. .-l..,. .

,J Ii

. 4 C '!,I'8 , . i .

l' e

  • i *

/ *j 4  ?

j8-l

T

  • 1 d- L 8 -

? -

.i '} i l e i 1p ,,

/#. .. -

e l ,i ., l ' . . i. t ,.. l, .

-l 14 !-i' n

.3 4

. i 1- . .

3; I f3 t'  ! * * * *

  • l '1 i ,l l ., ., .

, =. l. .

4 ..

{

I . .. . n.

.. ' X ..'1 l!.'.

i.

i.

mI -

al:

] i.. . '

(i ![.:!.:'

t -

' l! l t:- .

l  !  ! !j .- g i ! ; :: . j e.ll:

  • i

-l ,

i' ,

I, I

2 *

.;,!-a

.L.

., . t ..,.

. i. 1,

.lit

i;f i

.I,

,11 ! . h. ,l 'l,

,1 i [

i ..

h-

i,

-1 _.. , i_

0 10-

_ ~4 . ___ _... 3 110-.-7 10- 0 I 10 '10 - .10 Shear Strain, y  % _;

Figure 5. Variation of Damping Ratio with Shear Strain for-Weathered Shale (Ref. 9)

~

-_ _ - - - - . . , _ . _ , , , . . _ - . _ . . _ _ _ . _ . . = , . _ . . , - . . , _ . - - . = . . , .. . - . , _ _ - . .

Plant :'m th Elev.

753.5' C , O g Mass Point 743.S' >

O Nodal. Point 743.5' 739.75' O- '

O ,

734.0' i Z _

i 728.0' q .L 4

X z .l 1

7d.0' I l ,,,,,,,;;,,f,f, 4

Figure 6. 3-D Lumped-Mass stick Model of DG Building l

1 I

i 1

-P1antNorth-Y

.a -

-l l -- l l ~

i Base f l l I  !' l ~b /7 StickfModhal b  ;

, l I l l l / 100 l

'l .{ _ q

-l -l l l l u

% l l ' 'l l k" l -l l-l

, I i 1 Fodnda; ion Ceriter m 1 1 I i 1 l l l l I II l l l l

, Il l- 1 II L ,x  ;

. 135 ft l

=

] -

(a) Foundation Plan View 1

Structure Stick Model O

e. ._ El. 722 ft ,.

c, l l l I l l l l l l l  ! ---

)

b Soil Layered System t

3 Halfspace i

(b) Foundation Elevation View Figure 7, SASSI Foundation Model h

k

. .v.,... , ,. . . - .. . ._.

i f

2 '

Table l' Hodal Properties of Fixed-Base Structure i i

11 ode Frequency Modal Mass (Kips-Sec2/Ft) . ,

j No. (cos) X (N-Si Y (E-W)- Z (Vertical) i 1 :11.18 .027. .605 .000 2 22.66 264.884 .021 .000 1 3 23.71 .017 292.792 .000 4 42.63 .037 ' .022 .000 4 5 51.93 40.085 .000 .000  ;

6 52.63 .000 .000 287.303

.r I .

Summations 305.050 293.440 287.303 Total Mass 324.717 324.717 324.717 l

i l

l t

4 1

a b

1 i i

i s ,

r 1

t s

StaffGrp 38 t f

1 Table 2 Strain-Compatible Soil Properties From .

SHAKE Analysi: for Design Basis SSE t

Layer Layer Lower Bound. Soil Mean Soil Upper Bound Soil' No. Thickness (0.5xGmax) (1.0xGmax) (1.5xGmax)

~ ~

- (ft) G (ksf) f> (%) G(k s f) $(%) ~ G}k'sf) S-(%)-

1 10 777 7.2 1850 4.8 3040 3.5 2 20, . 585 13.9 1820 , 9.0 3295 6.8 3 14 1527 11.3 4265 7.5 7287 5.8  :

i 4 28 . 6127 3.7 13530 2.8 21135 2.4 t

l .

{

I  !

i a

4 i

i

l l.

I StaffGrp 37  :

i

Appendix A Envelopes of Average ARS Plots for Individual Soil Cases e

Figure Numbers for the Sele:ted SQN-DG Building Response Locations for the Envelope of Average ARS for SSE for Individaal Soil Case i i i  ! l l l 1% Damping l 2% Damping l 5% Damping I l l I l I . _

Locations j j i j i l i i l l l l l Mean l Lower-l Upper-l Mean l Lower-l Upper-l Mean l Lower-l Upper-l l Soil l Bound 1 Sound l Soil Bound l Bound 1 Soil l Bound l Bound l l l Soil l Soil l Soil l Soil I l Soil i Soil l I i i i I t i 1 l 1 i l I i l i i I l Free-Field Soil l l l l l l l l l l Surface H l A-1 l A-7 l A-13 l A-3 A-9 l A-15 l A-5 l A-ll l A-17 l l (El. 722.0') V l A-2 i A-8 l A-14 l A-4 l A-10 l A-16 l A-6 l A-12 l A-18 l l l l i l I l I l l l Soil-Rock H l A-1 l A-7 l A-13 l A-3 l A-9 1 A-15 i A-5 l A-ll A-17 l l Interface V l A-2.-l A-8 l A-14 l A-4 l A-10 1 A-16 i A-6 l A-12 A-18 l l (El. 650.0') l l l l l l l l l l l l l l l l l l l l l Rock Outcrop H l A-1 l A-7 l A-13 l A-3 l A-9 l A-15 l A-5 i A-ll i A-17 l l (El 650.0') V A-2 l A-8 l A-14 l A-4 l A-10 l A-16 l A-6 l A-12 l A-18 l l l I I l 1 I I l l DG Buildi~!Lq l l l l l l l l l Roof NS A-19 l A-28 l A-37 l A-19 l A-28 l A-37 l A-19 l A-28 l A-37'l (El. 753.5') EW l A-20 l A-29 l A-38 l A-20 l A-29 l A-38 I A-20 l A-29 l A-38 l l V A-21 l A-30 1 A-39 i A-21 l A-30 l A-39 l A-21 l A-30 l A-39 l I I l l l 1 l l Second Floor NS l A-22 l A-31 A-40 l A-22 A-31 l A-40 l A-22 l A-31 l A-40 l (El. 739.75') EW l A-23 l A-32 A-41 A-23 A-32 l A-41 l A-23 1 A-32 l A-41 l l V l A-24 l A-33 A-42 A-24 l A-33 l A-42 l A-24 i A-33 l A-42 l I I l l l l l l l Top of NS l A-25 l A-34 l A-43 l A-25 l A-34 A-43 l A-25 l A-34 l A-43 l Base Slab EW l A-26 l A-35 l A-44 l A-26 l A-35 A-44 l A-26 l A-35 A-44 l l (El. 722.0') V A-27 l A-36 l A-45 l A-27 l A-36 i A-45 l A-27 l A-36 A-45 l l l l I l l l l l I

i 1

l StaffGrp 38 l

1 l

t 6.0 i i a

iisii i i i i s .i s j i i i , i isi EL. 722.0 FT. TVA SEQUDYAH


E L . 650.0 FT.

1

--- EL . 650.0 FT.(INPUT) DG BUILDING SSE HORIZONTAL ,

a 4,8 -1% DAMPING in m

2 o

H H

< 3.6 m

h1 J

w U

u

  • C 2.4 - -

J f' m

H u -

kJ D.

m i,2 m 9 .

/sf\f 3fA v'M7%% R

.f

' '~

" ' i iin i

%-e.2.m. _ - .

.0 i e iiisi i i i . .- e iin 10-1 10 e 10 1 102 ,

FREQUENCY-CPS ~

AVERAGED ARS MEAN SOIL STR AI N--DEP . DUTCROP INPUT 4

Figure A - .- - . - . . - . .. . . , . . . . . . . . . ., - -

e i W

6.0 , , , , , ,,,j , , , , , ,,,j , , , , , , , , ,

EL. 722.0 FT. TVA'SEQUOYAH ,

EL. 650.0 FT.

---EL. 650. 0 F T . ( I tJPUT) DG BUILDItJG '

SSE VERTICAL  !

, 4,g i 1% DAMPING.

I  !

m  ! J tn s z l o  ;

>-4 I- 3.6  !

E 1 '

w I 1 ,

M i U

U i

< 2.4 .

f E

l-U -

W i n.

(n 1.2 .

, i w Y -t

' " #' ' ' ' ' ' ' ' ' 7 ~~ ' ' ' ' '

.0 -

10-1 10 e 10 1 10 2 FREQUENCY-CPS AVERAGED ARS MEAN SOIL STRAIN-DEP. OUTCROP INPUT Figure A-2

- , = _ _ .- - .- -. . - . .-

6.0 i i i i i i sii 8 e i 8 a iin i i sii i i i EL. 722.0 FT. TVA SEQUOYAH EL. 650.0 FT. DG BUILDItJG

--- E L . 650.0 FT.(INPUT)

SSE HORIZOt4TAL m 4.8 2% DAMPING i

se m

Z O

H 4

F

< 3.6 E

Lt.1 J

tij U

U 2.4 J

E '

F U

tij

[L m 1.2 -

j pY *

%:Q,'f***%._

. . ~

n

, I I I I I I I I fYU 4

10-1 10 e 10 1 10 2

+

FREQUENCY-CPS AVERAGED ARS MEAN SOIL STRAIN-DEP. OUTCROP INPUT Figure A-3

.s f

l l

, 4 6.0 , , , , ,,,,j , , , , , ,,,j , , , , , , , ,

EL. 722.0 FT. TVA SEQUDYAH EL. 6S0.0 FT.

--- E L . 5S0.0 FT.(INPUT) DG BUILDING SSE VERTICAL a 4.8 -. 2% DAMPING I

e -

m z

o s

F

< 3.6 m

W W

U U

< 2.4 J

' E l--

U W

Q.

m 1.2 .

'~-' ^ N

.0 10-1 10 e 10 1 10 2 FREQUENCY-CPS AVERAGED ARS MEAN SOIL STRAIN-DEP. OUTCROP INPUT

, Figure A-4

6.0 i i , , , ,iij i , ,,,,iij i , , , , , , ,

EL. 722.0 FT. TVA SEQUOYAH EL. 650.0 FT.

--- E L . 650.0 FT.(INPUT) DG BUILDING SSE HORIZONTAL cn4.8  % DAMPING I

a -

u) z o

H F

< 3.6 m

w

_.i w

U U

2.4

.J m

H U

w u) 1.2 'O

\

w--~ w..:.- -F===-=.m _. =- :- ,

.~ __

0 ' ' '- ' ' ' ' ' ' ' ' ' ' ' ' ' ' '

10-1 10 e 10 1- 10 2 FREQUENCY-CPS AVERAGED ARS MEAN SOIL STRAIN-DEP. OUTCROP INPUT Fiqure A-5

~

l 6.0 , , , , , , ,,j , , , , ,,,,j , , , , , , ,,

EL. 722.0 FT. TVA SEQUDYAH EL. 650.0 FT. DG BUILDING

--- EL. 650.0 FT.(INPUT)

  • SSE VERTICAL 4,g 5% DAMPING 1

a

  • in z ,

o H

H

< 3.6 E

w

! _J w

U U

2.4

_1 K

l-U w

(1.

m 1.2

-~

1 f ' ' '

~ ~ ~ ~ ~ . ., _ _ _ _ _

~~

l .0

' ' ' ' ' ' ' ' ' ' 'T 10-1 10 e 10 1 10 2 FREQUENCY-CPS t

AVERAGED ARS MEAN SOIL STRAIN-DEP. OUTCROP INPUT-figure A-6 1

6.0 , , , , , , , [j ,

,,,,,,,j , , , , , , , ,

EL. 722.0 FT. TVA SEQUOYAll

--- E L . 650.0 FT.

--- E L . 650.0 FT.(INPUT) DG BUILDItJG SSE 110RIZONTAL 4,g 1% DAMPING 1

m -

tn z

o H

8- 3.6 E

w

_1 m

u O

2.4 f

' l J

E t-U w

Q.

in 1,2

,A.v.:5PdQ:,

~%.wa

~

,, , . f, , , , , , 3 10-1 10 e -10 1 10 2

. FREQUENCY-CPS AVERAGED ARS LOWER BOUND SOIL STRAIN-DEP. OUTCROP INPUT Figure A-7

. - - . . . . ._ . . - . . - - :- . - . . - - - - . - - - - _ , . - . . . - . . . . _ . . ... . - ~. ._

6.0 i i i i i isii i i i i i i i iii, i i sii i ,

EL. 722.0 FT. fVA SEQUOYAH EL. 650.0 FT.

--- E L . E50.0 FT. (ItJPUT) DG BUILDING SSE VERTICAL m 4.8 1% DAMPItJG l

m .

m .

Z O

e-4 F

< 3.6 K

w J

w U

U

< 2.4 J

K ,

F-U w

0.

m 1.2

./ J v % ^r^Ma h.>.,,

.0

- " I' ' ' ' 'iisi '^i~~r i i i iin 10-1 10 e 10 1 10 2 FREQUENCY-CPS AVERAGED'ARS LOWER BOUND SOIL STRAIN-DEP. OUTCROP INPUT-Figure A-8

6.0 iiisii i i i ' ' '

i i i i isai ' ' ' ' '

EL. 722.0 FT. TVA SEQUOYAH


E L . 6S0.0 FT. DG BUILDING

--- E L . 6S0.0 FT.(INPUT)

SSE HORIZCP AL m 4.8 2% DAMPING m .

m 2

o tw F- 3.6 m

w J

w U

U 2.4 J

m F-U w

a m 1.2 m A J

w /,

, n . p . % :-~ =

  • C :.2 ; &

.0-

- , iT e3 a t i t iI I I I I I I I I ' I 10-1 10 e 10 1 10 2 FREQUENCY-CPS AVERAGED ARS LOWER BOUND SOIL STRAIN-DEP.0UTCROP INPUT Figure A-9

6.0 i , , , , ,,,j , , , , ,,,, , , , , , , , ,

TVA SEQUOYAH EL. 722.0 FT. '

EL. 6S0.0 FT.

--- E L . 6S0.0 FT.(INPUT) DG BUILDING

, SSE, VERTICAL a 4.8 2% DAMPING S . ,

2 ,

O .

e-4 , ,

I- 3.6 m

w '

.J w

u ,

u  ;

< 2.4 '

.J m

F-u w

Q.

m 1.2 A

,% --w-~ -%.:.=. ,,

. 1 . . .,, , , , , , ,,, ~,_ ,__ , , , ,,,

10~1 10 e 10 1 10 2 FREQUENCY-CPS AVERAGED ARS LOWER BOUND SOIL STRAIN-DEP. OUTCROP INPUT Figure A-10

6.0 , , , ,,,,,j , , ,,,,,,; , , , , , , , ,

EL. 722.0 FT. TVA SEQUOYAH


E L . 650.0 FT.

--- E L . 650.0 FT.(INPUT) DG BUILDING SSE HORIZOtJTAL

, 4, g Sr DAMPItJG 1 I a

tn

~

z o

H F

< 3.6 x

w J

w 1 C3 U

< 2.4 J

m F-U w

1.2 A

~_ ,. ~ = :. ,. -

-:.=.=.. .

k

~

. .0 ' 2 " i ' ' 'r ' ' ' ' ' ' ' ' ' T '~~i~ T'T'i'~i'Ti

10-1 10 e 10 1 10 2 FREQUENCY-CPS

, AVERAGED ARS LOWER BOUND SOIL STRAIN-DEP.0UTCROP INPUT Figure A-11 i

.. . - . . . . . . _ =

6.0 , , , , , ,,,j , , , , , ,,,j , , , , , ,,,

EL. 722.0 FT. TVA SEQUDYAH EL. 650.0 FT. D U LDING

--- E L . 650.0 FT.(INPUT)

SSE VERTICAL

, 4, g 5% DAMPING I

.s -

m z

O H

F

< 3.6 m

W J

w U

U 2.4 J

E i- '

U w

Q.

m 1.2 N

. . . ... f , -- - ~- ~.

, , , , ,,,..m.Q- , , , , , , , -

10-1 10 e 10 1 10 2 FREQUENCY-CPS AVERAGED ARS LOWER BOUND SOIL STRAIN-DEP. OUTCROP-INPUT Fiqure A-12

~. -_ _ _ _ -. . __ ._ , - ._ _

6.0 , , , , , , ,,j , , , , ,,,,j , , , , , , , ,

EL. 722.0 FT. TVA SEQUDYAH

- EL . 650.0 FT.

--- EL. 650.0 FT.(It4PUT) DG BUILDING SSE HORIZ0tiTAL 4,g 1% DAMPING i

m .

m z ~

o e-a H

< 3.6 m

U J I J

w y U

u 2.4 J

i

< u m

H u

w D.

m i,2

/, ~/J%^cy.$' 'Y7-b.\

.y%W J '~~- l.

f' ' ' ' ' '

- n=.-- .~._._.

.0 - ' ' ' ' ' ' ' ' ' ' ' ' ' 'i'i 10-1 10 e 10 1 10 2 FREQUENCY-CPS AVERAGED ARS UPPER BOUND SOIL STRAIN-DEP. OUTCROP INPUT Figure A-13

9 6.0 , , , , , ,,,j , , , , , ,,,j , , , , , , , ,

EL. 722.0 FT. TVA SEQUDYAH EL. 650.0 FT.

--- EL . 650.0 FT. (ItJPUT) DG BUILDItJG SSE VERTICAL 4,g II D AMP I tJG I

e -

in z ^

O e-e I

F- 3.6 E

w

_1 m

u u

2.4 -

_3 E

t-U w

O_

(D 1.2 l

% m^<c% ,

0 ' ' ' #' ' ' ' ' ' '

~

10-1 10 e 10 1 10 2 FREQUENCY-CPS AVERAGED ARS UPPER BOUND SOIL STRAIN-DEP. OUTCROP INPUT Figure A-14

6.0 i i i i iisij i i i i iisij i i i iisi EL. 722.0 FT. TVA SEQUDYAH EL. 650.0 FT.

--- EL . 650.0 FT. (ItJPUT) DG BUILDIllG SSE HORIZOtJTAL 8 2% DAMPItJG ,

I e -

tn z

o e-4 F

< 3.6 E

w J

w U

U '

2.4 J

E H

U w

D _

in 1,2

\

,, ~ rf'V*-C.:. *.T%.,.

^T^~^r^T^T^i ' ' '

~

.0 10-1 10 e 10 1 10 2 FREQUENCY-CPS AVERAGED ARS UPPER BOUND SOIL STRAIN-DEP. OUTCROP INPUT Figure A-15

_ . _ _ . - . , _ . . ~ _ _ _. _ __ ___ _ _ -_ _ . __ . . . . _ _ .- . _ _-

- . . . .- - -. ._ .. . _ ~ ~ ~.

l l

l 6.0j , , , , ,,,,'j , , , , ,,,,j , , , , , , , ,

EL. 722.0 FT. TVA SEQUOYAll EL. 650.0 FT.

--- E L . 650.0 FT.(It4PUT) DG BUILDING l

SSE VERTICAL l 4,g 2I DAMPItJG l l p, . .

m z

o H

1- 3.6 E

w

_1 w

U U

2.4 3

E l-U w

Q.

m 1.2

.0 '

- ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' r _ _i i ir in 10-1 10 e 10 1 10 2 FREQUENCY-CPS AVERAGED ARS UPPER BOUND SOIL STRAIN-DEP. DUTCROP INPUT Figure A-16

6.0 , , , , ,,,,j , , ,,,,,,j , ,

EL. 722.0 FT. TVA SEQUOYAH EL. 650.0 FT.

--- E L . 650.0 FT.(INPUT) DG BUILDING SSE HORIZONTAL 4.8 Sr DAMPING I

e -

m z '

o H

H

< 3.6 E

w J

w u

O 2.4 J

E

}--

U w

m 1.2 b J

~~ ~, ~ s=: -.- -~.. ;.~: ,

.0 * - ' ' ' ' ' ' ' ' ' ' '

~~

' ' I '~

10-1 10 e 10 1 10 2 FREQUENCY-CPS AVERAGED ARS UPPER BOUND SOIL STRAIN-DEP. DUTCROP INPUT Figure A-17

6.0 i , . . . . i i j i . . , , , i ,j i . , , , , , ,

EL. 722.0 FT. TVA SEQUDYAH EL. 650.0 FT. DG BUILDING

--- E L . 650.0 FT.(INPUT)

SSE VERTI' CAL 4.8 5% DAMPING I

a

  • W

~

Z O

H 6- 3.6 Z

lij

]

ttJ U

U 2.4

_.2 Z

I-U ttJ Q.

W 1,2 a a

, , a i 3 g 3 g

  • ----41[L g g g 3 3 g g 3-'] g iiy 10-1 10 e 10 1 10 2 FREQUENCY-CPS AVERAGED ARS UPPER BOUND SOIL STRAIN-DEP. OUTCROP INP!!T Figure A-18

i 6.0 i , , , ,,,,j , , , , ,,,,j , , , , , ,,,

1 1.0% DAMPING TVA SEQUOYAH


2.0% DAMPING

-- 5.0% DAMPING DG BUILDING SSE N-S DIRECTION m 4.8 EL. 753.50 FT I

m m

Z O

H I

F 3.6 --

x id J .

na '.-

u g . '.

l

< 2.4 .

a  : n-x . , , , .

H  : \ '.

o .

to / \ '.

D-

// \ '.

m 1.2 ,.: , y'. ,

,
, \*'.

,['.y # $': kL

,, , , ~

,u- 5

.0 ' " ' ' ' ' ' ' ' ' ' ' ' ' ' ' '

10-1 10 0 10 1 10 2 FREQUENCY-CPS AVERAGED ARS MEAN SOIL STRAIN-DEP. CJTCROP INPUT Figure A-19

6.0 , , , , ,,,,j , , , ,,,,,j , , , . , , , , , ,

1.0% DAMPING TVA SEQUOYAll


2.0% DAMPING

-- 5.0% DAMPING DG BUILDING

!SSE E-W DIRECTION a 4.8 EL. 753.50 FT i i ' j e '

g . i O .

l F

< 3.6 ' ,

I E  :

w ,

1 '

11J '

U ,*.s  !

LJ .* .

  • 2.4 l V,  ;  ;

a . .

<C *

  • Q[ . .

H =

o l /

\.

w n_

m 1,2 ll

  • /

\.. .

, \',

.' / s -

  • . * / u '.
  • ~

. ,- /

.0 '- ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '

10-1 10 e - 10 1 10 2 FREQUENCY-CPS AVERAGED ARS MEAN SOIL STRAIN-DEP. OUTCROP INPUT Figure A-20 -

i 6.0 , , , , ,,,,j , , , , , , ,,j , , , , , ,,,

1.0% DAMPING TVA SEQUDYAH


2.0% DAMPIt1G 5.0% DAMPIf1G DG GUILDIr1G SSE VERT DIRECTIOt1 4,g EL. 753.50 FT I

e a tn z

o s-a F

< 3.6 E

w J

w U

U

< 2.4 J

E F

U W

IL m 1.2 f l '.

~

... n '. -

. . - f ='=.'" , - N'.' :.' \.

.0 ' ' ' ' ' ' ' ' ' '

10-1 ' ' ' ' A.

10 e 10 1 l 10 2 l FREQUENCY-CPS

) AVERAGED ARS MEAN SOIL. STRAIN-DEP. OUTCROP INPUT Figure A-21

1!lil 2

i 0

s N '

1 i

O i

I '

T T

C

' U i

H E '

P A G R N iY N I ' I D I D U D ~

i Q L S ' P E I - O S U N B

R i

A E ~ '

C V G S T T D S U O

1 .

j i

0 P i C '

1 E

.~~ '

D

,\

i gN S-P N i .'

- .i

\

\ '

C I i

.l'  % A2

*',* lI l j YR 2-i

-l

- ,, / CTA

, ' NS e r

' ' E u l'

5 U L ;g -

i

' Q I F R O E

~

F S e N j

. A i

s 0 E 1 M i GGG NNN 9_, '

,III .

,PPP MMM S AAA R

,DDD A

%%r

,00O D

. . . " E 12S G A

i

- ' R

- - E V

A

- 1 0 8 6 4 0 2 0 1 6 4 3 2 1 mt - - -

mn zoHF<mwI_wuu# ]4WFuwam i .

6.0 i , , , ,,,,j , , , , , , , , , , , , , , , ,

1.Or DAMPING TVA SEQUOYAH


2.0% DAMPItJG

- - 5. 0 % DAMPItJG DG BUILDING SSE E-W DIRECTION m 4.8 EL. 739.75 FT I

se m

z o

e-e F-

< 3.6 il v1 E I tu J

10 u

o  ;,;

2.4 .' !

J l  :

4 m .

'. A 1

F- l  ;

o -;fT, to .

a.  ;/ \. ,

m 1.2 '

  • / \ ', i
/ \,  ;
. , \ -

. . p*' , m ,5' =Q

.0

_ - ,f -- W i > >i . , , , , , , , , , , , , , , ,

10-1 10 e 10 1 10 2 I

FREQUENCY-CPS AVERAGED ARS MEAN SOIL STRAIN-DEP. OUTCROP INPUT Figure A-23

6.0 , , , , ,,,,j , , , , , ,,,j , , , , , , ,,

1.0Z DAMPING TVA SEQUOYAli


2.0% DAMPIt4G

--S.0Z DAMPIt1G 00 OOIbOIIIO SSE VERT DIRECTIOt1 m 4.0 EL- 733 7S I I E

se tn z

O H

H 3.6 tr w

J w

U U

< 2.4 J

tr F- ~

U IAJ Q. A M 1.2 11

,- - /... n , -

x

.0

' ^

' ' ' ' ' i i i e i ein 10-1 10 e 10 1 10 2 FREQUENCY-CPS AVERAGED ARS MEAN SOIL STRAIN-DEP. OUTCROP INPUT l'igure A-24

6.0 i

, i i iig i i

. . . .iiij i i i iiii 1.0% DAMPING TVA SEQUOYAH


2.0% DAMPItJG

- S.0% DAMPIrlG DG OUILDItJG SSE ti-S DIRECTIOt1 4 8 EL. 722.0 FT I

N LO Z

O F

4 3.6 b r

E kJ

-_1 kJ U

O r 2.4

  • J '
  • g l

. e t; !n.t h2 .

I \ '.

$ 1 .2 ,

-l \ \.

. k .

'/ V. .

n .-s

- -g

  • L*'

_ .. :.p '

N-Q O-10-1 10 e 10 1 10 2 FREQUENCY-CPS AVERAGED ARS MEAN SOIL STRAIN-DEP. DUTCROP INPUT Figure A-25

G.0 , i e i sij i i i i e i ,, sit i i is.

1.0% DAMPIt1G TVA SEQUOYAH


2.0% DAMPING

-- 5.0% DAMPIrJG DG BUILDItJG SSE E-W DIRECTIOtt 4_g EL. 722.0 l~ T a

tn Z

o e-<

F-

< 3.6 m

w $

.J w

a u .

< 2.4  ;. -

l 3

< l l

=  :

F-M:

U .

w -

/r\ ,.

0-

  • m 1. 2 ~# \,

..-j \.

,.j N,

..'. / -

\ N- %

... %-: = '

. . , ~ ~

x

.0 ' ' ' ' ' ' ' ' ' ' ' ' '

10~1 10 e 10 1 10 2 FREQUENCY-CPS AVERAGED ARS MEAN SOIL STRAIN-DEP. OUTCROP INPUT Figure A-26

6.0 , , , , , ,,,j , , , , , ,,, , , , , , , ,,

1.0% DAHPItJG TVA SEQUOYAll


2.0% DAMPItJG S.0% DAMPItJG DG BUILDIrJG SSE VERT DIRECTION

, 4, g EL. 722.0 FT e

in Z

o H

F

< 3.6 m

W

.J w

u o

< 2.4

.J m

F-U w

Q_

m 1.2 -

.. /n~..

~

' ^

.0 n i i iii i  : e i e ii 10-1 10 e 10 1 10 2 FREQUENCY-CPS AVERAGED ARS MEAN SOIL STRAIN-DEP. DUTCROP INPUT Figure A-27

6.0 i i i iii j i e i a i sij i i i i iisi 1.0% DAMPING TVA SEQUOYAH


2.0r DAMPItJG

- - 5.0% DAMPING DG BUILDING SSE f4-S DIRECTION o, 4 . 8 EL. 753.50 FT i

e u) z o

s F- 3.6 s

m w

_1 w

U U

3 2.4 .'.

m  : '

F- .

U ' lr - .

$ Y-m 1.2 'J;./ ll f.

/ \'.

lJ Q " '. ..

../

,/ ^ <x G -/

JJ ' ' ' ' '

.0 " ' ' ' ' ' ' ' ' ' ' ' ' ' '

10-1 10 e 10 1 10 2 FREQUENCY-CPS AVERAGED ARS LOWER-BOUND SOIL STRAIN DEP. DUTCROP INPUT Figure A-28

- - - , - .e- , . . - . . , _ ,.m. _ _ , , , .m -- _ . _-- - - _

. _ _ - _ = _ -- - - _ _ _ . - . . ._= -. _ .- - _ _ _ . - _ =

0 6.0 , ,,,,j

, ,,,,j , , , , , , , ,

i 1.0% DAMPING TVA SEQUDYAH


2.0% DAHPING 5.0% DAHPING DG BUILDING l

SSE E-H DIRECTION 4,g EL. 753.50 FT se m

Z

O l H H

< 3.6 tr ui

_J U1 u

o

< 2.4 ;f.

_a .

< l O'

F-uj n.

mi

);

m 1,2 .1:. ./ . . A

'. 1 \ .y

. **/ \'... . ..

, d'.

'- ^ ~ 4'

--:- g -.,/

.0 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '

10-1 10 e 10 1 10 2 FREQUENCY-CPS AVERAGED ARS LOWER-BOUND SOIL STRAIN-DEP. DUTCROP INPUT Figure A-29 L .

. _ _ _ . _ _ _ _ _ _ _ . . . _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ . _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ . _ _ _ _ _ _ . _ - - ___m_ _ _ _ - - _ _ _ _ _ _ _ _ e_ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _- . . _ _ _ _ - _ . . ._

_. .. _ _ __ . . . - - _ _ - .- ~ . . . . . . _ .

6.0 , , ,

,,,,,j , , , , , , ,, , , , , , , , ,

1.0% DAMPING TVA SEQUOYAH


2.0% DAMPING 5.0% DAMPItJG DG BUILDIrJG SSE VERT DIRECTIOt4

, 4, g EL. 753.50 FT l 8

m in z

O H

H

< 3.6 E

w

_1 w

U U

< 2.4

_1 E

F-U w

Q.

u3 1.2

,..'.._,.~.,

. ,.... .' ,. - - < s' .

~

g ;: - N' q

.0 - i e i e i ein i i i e i iin 10-1 10 e 10 1 10 2 FREQUENCY-CPS AVERAGED ARS LOWER-BOUND SOIL STRAIN-DEP. OUTCROP INPUT Figure A-30

_ _ _ _ _ _ _ _ _ . _ _ . _ _ . _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ m - - -__ m - .er - - - - - e - - - - - - - m- _w - .v.

6.0 i , ,,i j i i i i i i i inj i e i i iiin 1.0% DAMPING TVA SEQUOYAH


2.0% DAHPING

- - 5. 0% DAMPING DG BUILDING SSE N-S DIRECTION 48 EL. 739.75 FT l

se W

Z O

H H

< 3.6 E

11J

_J 11J U

U

< 2.4 .2 m .

h .

U .

lc, .

m 1.2

j. !/ \ik N/ t. '

j'/ \ '._

,f

.J u.....,.

,./ *

--/

0 "-" ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '

10-1 10 e 10 1 10 2 FREQUENCY-CPS AVERAGED ARS LOWER-BOUND SOIL STRAIN-DEP. DUTCROP INPUT Figure A-31

. . _ . . - = - . .. . . _ _ - . _ _ _ . ._ __ . . . . . . - . . . _ . ..

6.0 , , 3 ,,,,,j , ,,,,,,,j , , , , , , , , ,

1.0r DAHPING TVA SEQUOYAH


2.0% D AMPI tJG 1

-- S.0% DAMPIt4G DG BUILDING SSE E-W DIRECTION

  • 4,g EL. 739.75 FT l

m m

2 o

e-o -

F4 3.6 0'

W J

w U

U 2.4 -

a f '

tt  : -

H  :

u .

w l~T.

n_ .

/ h m 1*2 .

, . ' . , ' V'.y

.j ( ' '. , ,

%~~

,/

,-/

.0 - " ' ' ' ' ' ' ' ' ' ' ' ' ' ' '

10-1 10 e 10 1 10 2 FREQUENCY-CPS AVERAGED ARS LOWER-BOUND SOIL STRAIN-DEP. DUTCROP INPUT Figure A-3?

6.0 , , , ,,,,,j , , , , , ,,,j , , , , , ,,,

1.0% DAHPING TVA SEQUOYAH


2.0% DAMPI!JG DG BUILDING

-- 5.0% DANPING SSE VERT DIRECTIOtt 4,g EL. 739.75 FT i

e -

m z

O e-v I- 3.6 E

w

.J w

U U

< 2.4

_J E

H U

w G.

m 1.2

, - .. . ~

...~. , - ~ < ~.

N'

~'

^ ,-;C

'5

(

.0 10-1 10 e 10 1 10 2 FREQUENCY-CPS AVERAGED ARS LOWER-BOUND SOIL STRAIN-DEP. OUTCROP INPUT Figure A-33

. , . . . . . _ _ _ _ . _ _ .m.=- - - - - - -

6.0 i i i iiiiij iii.j , ,

i i i . . . .

1.0% DAHPItJG TVA SEQUDYAll


2.0% DAMPING

- - S.0% DAMPItJG DG BUILDING SSE ti-S DIRECTIDtt 4.8 EL. 722.0 FT I

N

(.O

~

Z O

6-4 l- 3.6 E

Id 3

td U

U

< 2.4 ,, , ;.

J ..

g '.

I-u ..

Ad

  • a.

..:I. N.Q m 1.2 z

-4,- i

., \.~.

\,'

,/

J Z........

~ ~ ' _

./

N O ' - - ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '

10-1 10 e 10 1 10 2 FREQUENCY-CPS AVERAGED ARS LOWER-69UND SOIL STRAIN-DEP. OUTCROP INPUT Figure A-34

.-. .. _=. . - .. = _ _ _ _ _ - - - _ . - -- . .- - - - . . ._ . -__ .- . - - - -- . -

l 6.0 , , , , ,,,,j , , ,,,,,,j , , , , , , , ,

1.0% DAMPING TVA SEQUDYAll


2.0% DAMPItJG S.Or DAMPItJG DG BUILDIrJG SSE E-H DIRECTIOrJ

, 4, g EL. 722.0 FT I

n W

l Z

O V-4 F

< 3.6 m

1d J

(d l

U

\

l U

< 2.4

  • 3 ,,.*

, x l -

l H -

i u -

E .'/' \ ,(

m 1.2 1 *-

I 's ..

.'/ \~.

// \Q......,

./ ,,

1

...g, . . --.:,, /

.0 i- ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' i i i e i iii 10-1 10 8 10 1 10 2 FREQUENCY-CPS AVERAGED ARS LOWER-BOUND SOIL STRAIN-DEP. OUTCROP INPUT figure A-35

~

6.0 i i , ,iiiij i iiij i i i i..

l 1.0r DAMPING TVA SEQUDYAH


2.02 DAMPING

- - 5.0% DAMPING DG BUILDING SSE VERT DIRECTION g EL. 722.0 FT 8

a m

z O

e-e F

< 3.6 m

w J

w U

u 2.4 J

m H

U w

Q.

m 1,2 3

-&'s.....]-~'*<~.,

Q

.0-10-1 10 e 10 1 10 2 FREQUENCY-CPS AVERAGED ARS LOWER-BOUND SOIL STRAIN-DEP. OUTCROP INPUT figure A-36

. - _ _ - __ - -~_ . - - - _ _ _ = . = - - -

- . - . _- . . . . . _ _ - . ~ _- . . . - - -,_

6.0 , , ,

, ,,,ij i i i i , iiij i , , , ,,,i 1.0% DAMPING TVA SEQUOYAH


2.0% DAMPItJG

- - 5.0% DAHPItJG DG BUILDING SSE N-S DIRECTION 4.8 EL. 753.50 FT I

e

  • m 4 Z

O H

F i

< 3.6 .'

x

  • g a J

w ...' * .

o * .

u *

< 2.4 l'

~

r.! .

< I!

x H

llT';

e s.

\. '

u W

  • ll \ '.

n_ .j

  • I..

m 1.2 ,' '

/ iy.\ .

. .' / \ .

. .. ... .,. r- /

'q

.j%

. L* M 0 " '

10-1 10 ' 10 1 10 2 FREQUENCY-CPS AVERAGED ARS- UPPER-BOUND SOIL STRAIN DEP. OUTCROP INPUT Figure A-37

. . _ . _ _...._.___.__._m_ _ ...__ __ _ . . _ . . _m . . . _ . . . _ . m_ .. _-.._-._._...__m _ __m .__ _ m ._ __. ._

I

~

6.0 iiiij

, i i i i iiiij i i i i i ii 1.02 DAMPItJG TVA SEQUDYAH


2. 0r DAMPING

- - 5.0 DAMPItJG DG BUILDING SSE E-H DIRECTIOt1 8 EL. 753.50 FT I

m .

W 2

O e-e F

< 3.6 m (

w "

J

  • W o * \.

o *.

2.4 a

1:[ 1:

m . .

F  : n:

e u / \ **.

w D.

  • f/ \.

W 1,2 '

! \ ' ,,. -

. ;/ \

.' / \

{' .

. . ,.,r

.-/ u.

2 -.-

0 '-

10-1 10 8 10 1 10 2 FREQUENCY-CPS AVERAGED ARS UPPER-BOUND SOIL STRAIN-DEP. OUTCROP INPUT Figure A-38

~

6.0 . i iiiij i i i i e i eiij i i i iiii 1.0% DAMPING TVA SEQUOYAH


2.0% DAMPING

- - 5.0% DAMPING DG BUILDING SSE VERT DIRECTION a 4.8 EL. 753.50 FT I

e m

z o

e-o F

< 3.6 m

w

_3 w

U U

2.4

_2 m

F U

w (L

m 1.2

'"^ 3 g- 'z' .' $

N Q

.e '

10-1 10 8 10 1 10 2 FREQUENCY-CPS AVERAGED ARS UPPER-BOUND SOIL STRAIN-DEP. OUTCROP INPUT Figure A-39

_ = . _ . . . _ . . _ _ _ _ - - . _ . . _ - -.. _._-_.m_ . _ . _ _ _ . - - - _ _ _ _ _ . _ _ _ - . . -

5 5 5 5 5 5 5 5 l 5 5 5 5 5 5 5 5 l 5 5 5 5 5 5 5 5 1.0Z DAMPING TVA SEDUOYAH


2.0% DAMPIt1G

--S.0Z DAHPIfJG DG BUILDING SSE ti-S DIRECTIOtl 4.8 EL. 739.7S FT l

n

  • W Z

O H

I- 3.6 E (

w  :.*

1 w  :. -

u -

O l ;

2.4 .'

.J

  • E
  • l- ./T; o

W  :.I \. .

n.  :

.I Q-m 1.2 *'

[/ V.h'

\'

..: / \.

. s. , .&,/

.- ~- ,_.

- M 0 -- " ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '

10-1 10 e le 1 10 2 FREQUENCY-CPS AVERAGED ARS UPPER-BOUND SOIL STRAIN-DEP. OUTCROP INPUT Fiqure A-40

6.0 i i i i iisij . . . isij i

i . . i.

1.Or DAMPING TVA SEQUOYAH


2.0Z DAMPItJG 5.0% DAMPING DG BUILDItJG SSE E-W DIRECTIOrt 4g EL. 739.75 FT t

G M

z o

s F

< 3.6 fr W

  • _]

w ..

u ..

u  : .

< 2.4 ,

2 -

G *

~. <

H o :l "\'. .

W  :; \. .

n. -

m 1.2

.j y'/ g\.'. y

.~..// N 'c- .

. . ,* ~ - /

. . . .y s. w.

.p

~.* Y 10-1 10 e 10 1 10 2 FREQUENCY-CPS AVERAGED ARS UPPER-BOUND SOIL STRAIN-DEP.' OUTCROP INPUT Figure A-41

._. __....m _ _ _ . - . . _ _ . __ _ _ _ _ _ _ _ _ . . . _ . _ _ . _ _ _ . . _ _ _ _ . ____ _ . _ _ _ _ _ _ _ . .

6.0 , , , ,,,,,j i , , , , , ,,j i , , , , , , ,

1.0% DAHPING TVA SEQUDYAH


2.0% DAMPItJG

- -- 5.0% DAMPING DG BUILDING I

SSE VERT DIRECTION 4_g EL. 739.75 FT I

n m

Z o

e-e t- 3.6 E

w ib U

U

< 2.4

_J m '

l-U w

O.

m 1.2 .

,. ,, - .. -- - -- - R q,

,g a n . M ~ n a a aen i a n a ini 10-1 10 e 10 1 10 2 FREQUENCY-CPS AVERAGED ARS UPPER-BOUND SOIL STRAIN-DEP. OUTCROP INPUT Figure A-42

.- ---.-.-_.-.-. -. . ~ ~ = _ - - . - . . _ _ . . - . . - . - . . _ - . - . ~ . . . - . _ - . . - . - _ - . - . . _ _ ~ . _ _ - - .

6.0 i i i i,iij i i i i i .4 ij i i i i iiii 1.0K DAMPING TVA SEQUOYAH


2.0Z DAMPING

-- - 5 . 0 K DAMPI!4G DG BUILDItJG SSE N-S DIRECTI0t1 8 EL. 722.0 FT 4

I n

U)

Z O

6-4 F

< 3.6 x e -

W 7 j ..

w .  !!

U e

  • u  ;

g e

  • 2.4 .

-3

< I:  ;

x t.

F  : ;N . -

o / g ;-

w .

n_ .I \ '-

m 1. 2 I/ O

~/

Q.

..' / q L. M

'~ -'

Q 0

10-1 10

  • 10 1 18 2 FREQUENCY-CPS AVERAGED ARS UPPER-BOUND SOIL STRAIN-DEP. OUTCROP INPUT figure A-43

6.0 . , i i iij i . . ,

,,sij i i . . .,s.

1.0x DAMPING TVA SEQUDYAH


2. 0r DAMPING

-- S.Or DAMPIt4G DG BUILDIrJG SSE E-M DIRECTIDt3 4,g EL. 722.0 FT I

a tn z

o F I

< 3.6 E

w ,

J w ,

u  :

u

  • 4 24 * .. )

a [,* .

E

  • a a
r\-
i m 1,2 j j f;- ,
y. / \

. . .' / \ ~

, - ~ Q'$

.... h: =' '

0 10-1 10

  • 10 1 10 2 FREQUENCY-CPS AVERAGED ARS UPPER-BOUND SOIL STRAIN-DEP. OUTCROP INPUT Figure A-44

. . - . _ - . - . - - = - . . . . . .-__ -

I 6.0 , , ,

, ,,,,j , , ,

,,,,j 1.0% DAMPING TVA SEQUOYAH 2.0% DAMPIllG

-- S.0% DAMPIfJG DG BUILDIr4G SSE VERT DIRECTION 4_g EL. 722.0 FT I

a tn z

o s

6- 3.6 m

w

_1 w

U U

< 2.4

_3 m

I-U w

Q.

to 1. 2 s

-:. w =. :~

. - ...... ~~' '

-:..~ ~ < . .

.8 ' ' ' ' ' ' ' ' ' ' ' ' '

10-1 10 e 10 1 10 2 FREQUENCY-CPS AVERAGED ARS UPPER-BOUND SOIL STRAIN-DEP. DUTCROP INPUT Figure A-45

.i l

Appendix B Final Envelopes of Average hts for Enveloping the Results of TF il Cases

-l I

i 1

i 1

1 l

l l

l l

l l

1 l

1

Figure Numbers for the Selected SQN-DG Building Response Locations for the Final Envelope of Aver age ARS for SSE Enveloping Results of All Soil Cases 1 I l Locations 1% Damping 2% Damping 5% Damping l-l i

Free-Field Soil '

-l Surface H B-1 B-3 'B-5 l (El. 722.0') V B-2 B-4 l B-6 l l

Soil-Rock H B-1 8-3 B-5 Interface V B-2 B-4 B-6 ,

(El. 650.0') l l

Rock Outcrop H B-1 B-3 B-5 l

' (El. 650.0') V B-2 B-4 ,

B-6 l 1 l DG Building Roof NS B-7 B B-7 (El. 753.5') EW B-8 B-8 B-8 Y B-9 l B-9 B-9 I I Second Floor NS B-10 l B-10 B-10 1 (El. 739.75') EW B-11 B-11 B-11 Y B-12 B-12 B-12 l

Top of NS B-13 B-13 B-13 l l Base Slab EW B-14 B-14 l B-14 l l (El. 722.0') V B-15 B-15 I B-15 l l _

I I l

l 1

i Sta.ffGrp 38

)

\

6.0 i i i i i iiij i i i i iiiij i i i ii,ii EL. 722.0 FT. TVA SEQUOYAH EL. SSO.0 FT.

, --- E L . 650.0 FT.(INPUT) DG BUILDING SSE HORIZONTAL 4,g 1% DAMPING I

m m

2 o

s-e H

< 3.6 m

w J

w o

O 4

2.4 f

' l I a ) I 1 F u

w Q.

m 1.2 9

~',J s/\f sv%V  %'% \. -

K

' %--.~. _,,m , _ , _ _

.0 ' '

' ' ' ' ' ' i i iiiii 10~1 10 e 10 1 10 2 FREQUENCY-CPS ENVELOPE OF AVERAGED ARS STRAIN-DEP. DUTCROP INPUT Figure B-1

6.0 ,,,ij

, i i i , , , ,,,,,j , , , , , , , ,

EL. 722.0 FT. TVA SEQUDYAH EL. 650.0 FT.

--- E L . 650.0 FT.(INPUT) DG BUILDING SSE VERTICAL 4,g 1% DAMPING i

m in z

O e-e H

< 3.6 m

w J

w U

U 2.4 J

m F

U w

Q.

to 1.2 pfm^hr% ,

.0 ' '

x Ax_

' ' ' ' ' ' ' 'i~7 i iin 10-1 10 e 10 1 10 2 FREQUENCY-CPS ENVELOPE OF AVERAGED ARS STRAIN-DEP. DUTCROP INPUT Figure B-2

8 t

6.0 , , , , , , ,,j , , , , , ,,,; , , , , , , , ,

i EL. 722.0 FT. TVA SEQUOYAH

--------- E L . 650.0 FT.

l --- E L . 650.0 FT.(INPUT) DG BUILDING SSE HORIZONTAL m 4.8 2% DAMPING I

m I m 4

z O

H F

< 3.6 m

W J

w U

U

< 2.4 J

m F

U w 1 o_

m 1.2 A

',,fApvedb=g,, %

.0 5 -

i ie i ii ... _ _i _ ' ' I ' T ' T ^ I i T i-10-1 10 e 10 1 10 2 FREQUENCY-CPS ENVELOPE OF AVERAGED ARS STRAIN-DEP. OUTCROP INPUT Figure B-3 1

6.0 ' i i a i i

iii i i i i i iii ' ' ' ' '

EL. 722.0 FT. TVA SENUDYAH


E L . 6S0.0 FT.

--- E L . 6S0.0 FT.(INPUT) DG BUILDING SSE VERTICAL m 4.8 2r DAMPING I

m m

Z O

H F< 3.6 m

W J

w U

U 2.4 J

E l-U w

Q.

m 1.2 A

,~ ~,~~ -u,-

.0

- ' ' ' ' ' i e iiine 10-1 10 e 10 1 10 2 FREQUENCY-CPS ENVELOPE OF AVERAGED ARS STRAIN-DEP. OUTCROP INPUT Figure B-4

6.0 i i , , , , i ij i iiiiisij i i i iiii, EL. 722.0 FT. TVA SEQUOYAH EL. 650.0 FT.

--- E L . 650.0 FT.(INPUT) DG BUILDING SSE HORIZONTAL

+ O24.8 Sr DAMPING I

tn Z

o e-a b

< 3.6 E

w

_J w

U U

< 2.4

_J E

F-U w

1.2

,A V

f vm - ~ c ==,-%,,,,

V

,Q f - u I I f f I g g g , , ,

10-1 10 e 61 10 2 FREQUENCY-CPS ENVELOPE OF AVERAGED ARS STRAIN-DEP. OUTCROP INPUT Figure B-5

_ _ _ - . _ _ _ - _ _ . . - _ _ . - _ _ . _ _ _ _ _ _ _ _ _ - . - . _ - m__ _

6.0 i i i i ii,ij i i i ,iiiij i i i i,ii EL. 722.0 FT. TVA SEQUOYAH EL. 650.0 FT. DG BUILDING

--- E L . 650.0 FT.(INPUT >

r SSE VERTICAL

^" "

a 4.8 l

, e i

1 z o

H F

< 3.6 m

m J

w U

U l 2.4 J

) <

i m

F u

w O_

m 1.2

  • I p -- -~ %

.0

. 10-1 10 e 10 1 10 2 FREQUENCY-CPS ENVELOPE OF AVERAGED ARS STRAIN-DEP.'0UTEROP INPUT Figure B-6

6.3 s i i iiii i i i

i i i i i iiii i i i i iii 1.0% DAMPING TVA SEQUDYAH


2.0% DAMPING

- - S.0% DAMPING DG BUILDING SSE N-S DIRECTION 4,g EL. 753.50 FT I

m m s i

Z o

s  ;

F

< 3.6 1

m

[1] 1:  :

1 -

a , .-

tri u l'.- l o .: .

2.4 . ' ' ' , ,' k,,

a . . .

< l  :  : /N .

x -

u ir - ]. IIt \\

r\ I \.

$ ^j.-ll \;:, .

\\',

m 1.2 ./ i, .3

\ ,-

-)

.) \ '2,

,y s p +y A

.0 " * ' ' ' ' ' ' ' ' ' ' ' ' ' ' '

10-1 10 8 10 1 10 2 FREQUENCY-CPS ENVELOPE OF AVERAGED ARS STRAIN-DEP. OUTCROP INPUT Figure B-7

6.0 i i ,isij i i i i i i iiiij i , i iiisi 1.0% DAMPING TVA SEQUOYAH


2.0% DAMPING

- - 5. 0% DAMPING DG BUILDING SSE E-H DIRECTION 4 8 EL. 753.50 FT l

m W

Z O /

F

< 3.6 A

Y m i y *.

a  :

w  :

u .

u l N

  • 2.4  ;, .

] * *

< '. ' ~.

x l .

P '

H '

g w

')
( l
a.  :~.:i \ '.

m 1.2 ..:/ \' ' j

' ,/ \ , ... -

1I

,, \ .

~

lJ '

' .x-_

'/

.t M

.0 ' "

W'~

10-1 10 e 10 1 10 2 FREQUENCY-CPS ENVELOPE OF AVERAGED ARS STRAIN-DEP. OUTCROP INPUT Figure B-8

6.0 , , , , ,,,,j , , , , , , , , , , , , , ,,,

1.0% DAMPING TVA SEQUOYAH


2.0% DAMPING

- - 5. 0 % DAMPING D BUI. DING SSE VERT DIRECTION 4,g EL. 7S3.50 FT I

m m

z o

e-e F

< 3.6 m

W

.J w

U U

< 2.4

_J m

F--

U w

Q.

m1 2 '

. .....}.

/ Ml. . .

. ,- 3 '5 "

"'Q .

.0 10-1 10 e 10 1 10 2 FREQUENCY-CPS ENVELOPE OF AVERAGED ARS STRAIN-DEP. OUTEROP' INPUT Figure B-9

6.0 , , i i i isij i . . , ,,,,j i i , , , , , ,

1.0% DAMPING TVA SEQUOYAH


2.0% DAMPING 5.0% DAMPING DG BUILDING SSE N-S DIRECTION i

m 4.8 EL. 739.75 FT i

m m

z o

e-e F j

< 3.6 ,

K w .'.

J

  • w  :;~

U ,

u  :

< 2.4 . . ' . ..:;

J l

x - '.

n  : '

o ;f.,; .

l /m1/ (\\.';

E j, !/ \ljl I

\ '^'.

D 1.2 ^

l ,i \1

\'.

> \-

'/ '

'(-

2-/

.0 5 * ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '

10-1 10 e 10 1 10 2 FREQUENCY-CPS ENVELOPE OF AVERAGED ARS STRAIN-DEP. OUTCROP INPUT Figure B-10

6.0 , , , , , ,,,j , , , , , , , , , , , , , , , ,

1.0% DAMPING TVA SEQUOYAH


2.0% DAMPING

- - 5.0% DAMPING DG BUILDING SSE E-H DIRECTION 4,g EL. 739.75 FT l

m (n

Z o

H /

F

< 3.6 AA e V W  ;

_3 ..

til O ..

u

( e l ',' l. . ' ..

  • b $

,,e. se .

1

<(  : '.  : * '

x , .

l '

)'I/\/J \ *.~,

o l w l~ .

n- '

  • 12 j,,;/ <g',.;f .

y/

.j if '{.,3 j N. '.

~

,/ n

./

- O

.0 ' " ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '

10-1 10 e 10 1 10 2 FREQUENCY-CPS ENVELOPE OF AVERAGED ARS STRAIN-DEP. DUTCROP INPUT Figure B-11

6.0 iiiij i i i i i , , , ,iiij i , , ,ii,i 1.0% DAMPItJG -

TVA SEQUOYAH


2.0% DAMPING

- - 5.0% DAMPItJG DG BUILDING SSE VERT DIRECTION 4g EL. 739.75 FT I

m

  • m Z

o e-4 3-

< 3.6 m

U1 J

w U

U 2.4 J

m I--

U w

m 1,p b

~' .'

,.-~..;

..... , ~ /

w:.N Q

~

.0 10-1 10 e 10 1 10 2 FREQUENCY-CPS ENVELOPE OF AVERAGED ARS STRAIN-DEP. DUTCROP INPUT Figure B-12

4 6.0 i , , , , , ,,j , , , , , , , , , , , , , ,,,

1.0% DAMPING TVA SEQUDYAH


2.0% DAMPING

--S.0% DAMPING DG BUILDING SSE N-S DIRECTION g,4,9 EL. 722.0 FT l

(D

  • 1 m Z

o I k F

< 3.6 tr .

W

_] .'.

W /

U I '.

u ..

.~. : '

4 .

2.4 '*l-  :,

_3  ; '. .

< 1.* * '.. ' .

tr  : .

F . - .l ,

o '

{f '

~ a'/i::l l\l g\..

W '

a. ./ ..

g.

tn 1,y ~. Vl .

/ \/ Y'

\.

. 'J A' s' .:n.~.y

..) Q -

' ' ' ' ' ' ' ' ' ' i

.0 i i i n i iii 10-1 10 e 10 1 10 2 FREQUENCY-CPS ENVELOPE OF AVERAGED ARS STRAIN-DEP. OUTCROP INPUT Figure B-13

6.0 i i i i iisij i i i i iisij i i i i i isi 1.0% DAMPItJG TVA SEQUOYAH


2.0% DAMPItJG

--S.0% DAMPING DG BUILDING SSE E-W DIRECTION 4.8 L. 722.0 FT I

m

  • w Z

o H

F- 3 . 6 m

W a A w

u u -

4  :., ...

2.4 .

a 7:.j,; ,

x .

n .

o  : -

.m m

.'* /sh// if tt  : e\. .

i ,.

m 1.2 j Y, y '.,

~'  %

y'

-l,. / S' .

ps

.0 ' ' ' ' ' ' ' ' '

10-1 10 e 10 1 10 2 FREQUENCY-CPS ENVELOPE OF AVERAGED ARS STRAIN-DEP. OUTCROP INPUT Figure B-14

I 6.0 ' i i i 8 8 iiii i i ia i eij i i i iiii 1.0% DAMPIt1G TVA SEQUDYAll


2.0% DAMPING

- - S.0% DAMPING DG BUILDING SSE VERT DIRECTIDN on4.8 EL, 722.0 FT I

l m

  • m z

o H ~

F< 3.6 m

w J

w u

o

< 2.4

, J m

I-u w

Q.

m 1.2 ~

.... ,...~. , ~ ' n w ~ . z.

~ . ,

x _.,-M"_.-  %,

.0

- ' ' ' Fi i i i iiii i i , , iiii 10-1 le e 10 1 10 2 FREQUENCY-CPS ENVELOPE OF AVERAGED ARS STRAIN-DEP. OUTCROP INPUT Figure B-15

l l

Appendix C Comparisons of ARS Envelopes of the Current Analysis with the Original Design Basis ARS

1

15. i i i i i iij i i

i .i i i iij i i i i i i i OLD DESIGN BASIS TVA SEQUOYAH


CURRENT ANALYS [S DG BUILDING SSE N-S DIRECTION 1.0% DAMPING C EL. 7S3.5 FT i

m .

in Z

O H

H 9.

tu J

to u

o 6.

J

< =

x V-  :'.

u -

ta n- l. : ;

to . 'o '.

3. '^

'. l '.

. ~~

~.

O. ' - - ' - - - " ~ ' ~ ~ ' ' ' ' ' ' ' _' '_ ' .....- ' ' ' ' '

10-1 10 e 10 l' 10 2 FREQUENCY-CPS COMPARISON OF ENVELOPE OF AVERAGED ARS Figure C-1

15. i i i i iiij i i iiiij -

i i i i i i i iii OLD DESIGN BASIS TVA SEQUOYAH


CURRENT ANALYS IS DG BUILDING SSE E-W DIRECTION 1.0% DAMPING C EL. 7S3.S FT I

m

  • m z

o H

F 9.

E w '

J w

u o

I 6.

J m

F-

  • u .

w n.

a. .',.,,

m l '. ' .

3. f. .' i '.

'. .l '.

..- '.. l '

.- ~..

O. '---'-"""'~~T.. ' ' ' ' ' ' ' ' ' ' ' ' ' '

10-1 10 e 10 1 10 2 FREQUENCY-CPS COMPARISON OF ENVELOPE OF AVERAGED ARS Figure C-2

15. , , .,,ij i i i i i i i i iij i i i i i i i OLD DESIGN BASIS TVA SEQUOYAH

-- NEW DESIGN BASTS


CURREtJT ANALYS :S DG BUILDING SSE VERT DIRECTION 1.0% DAMPING EL. 753.5 FT I

m

  • m z

O s

H S.

W J

W U

U

< 6.

J m

t--

U -

m 3. /~ L I x 1 \

/ )

,,(...-..'.' *

\

" # ,' , --- v - -

i _ _ _1_ _ _ L . t - t - t I I I f f I t I  %' ' ' t - - - - - t - - t 1 - t -1 10-1 10 e 10 1 10 2 FREQUENCY-CPS COMPARISDN OF ENVELOPE OF AVERAGED ARS-Figure C-3

15. i i iiij i i i i i i i iiiij i i i i i iii DLD DESIGN BASIS TVA SEQUOYAH.

CURRENT ANALYS f S DG BUILDING SSE N-S DIRECTION 1.0% DAMPING EL. 739.7S FT '

m 12. '

I ]

m .

m Z

g s

F 9.

m w

1 w

U O

< 6.

_3 Z

H

  • u ..

w n_ -

.\ .* ~'.

m 3. ^1 i' !

' - - - ' ~ ~ ' - - - ' ' - ' ' ' ' ' ' , '. _. - ' '

O. ' ' ' ' ' ' ' ' ' ' '

10-1 10 e 10 1 10 2-FREQUENCY-CPS COMPARISON.0F ENVELOPE OF AVERAGED ARS Figure C-4

15. , , , , ,,,ij i i , ,,,ij , ,

i i , , ,,i OLD DESIGN BASIS TVA SEQUOYAH


CURRENT ANALYS [S 1 DG BUILDING SSE E-W DIRECTION 1.0% DAMPING EL. 739.7S FT m 12. '

i )

l s -

1 in l

  • I Z o

e--e F 9.

m m

J w

U U s

< S. l J

m F .

O  ;'.

La .. .-

Q.

l * '. l =

tn 3. .,

'. l '.',

~..,

O. '-- ' - ' - ' ' ~ ~ ' ' ' ' ' ' ' ' ' .' . ' ' ' ' ' ' ' ' ' ' ' ' ' '

10-1 10 e 10'I 10'2 FREQUENCY-CPS COMPARISON OF ENVELOPE OF AVERAGED-ARS Figure C-5.

_, . _ = - -

15. . i .j i i i . , , ,,iij i , , , i i.

OLD DESIGN BASIS TVA SEQUOYAH


CURRENT ANALYSTS DG BUILDING SSE N-S DIRECTION 1.0% DAMPING EL. 722.0 FT I

se m

z o

H H S.

m w

J w

u o

6.

J m

1--

o A g .._.--.. .

n_

m 3.

. .. .J' ' . ' . . .

l

'. l '

~ ., '.,

'.5 O. '--"--"~'d ' ' ' ' ' ' ' ' '"

10-1 ' ' ~ i ' ' ' ' i ' i I ~

10 e 10 1 10 2 FREQUENCY-CPS COMPARISON OF ENVELOPE OF AVERAGED ARS Figure C-7

__ _____.__m___ _ _

15. . , , , iiiij ,

i . , ,,iij i i i i iisi OLD DESIGN BASIS TVA SEQUOYAH


CURRENT ANALYS [S DG BUILDING SSE E-H DIRECTION 1.0% DAMPING EL. 722.0 FT l

m tn z

o H

H 9.

E w

J w

U U

< 6.

J E

F u

W - . . . -..

0- .  :.

tn 3, l'. . l \

'. s

'. l '.

\. ,

^

~'

O. '--- '-~~"--''I V ' ' ' ' ' ' ' '

' I'I 10-1 10 e 10 1 10 2 FREQUENCY-CPS COMPARISON OF_ ENVELOPE OF AVERAGED ARS Figure C-8

15. i i i i ..ij i i i i iiiij i i i i ..i OLD DESIGN BASIS TVA SEQUOYAH

-- NEW DESIGN BAS [S


CURRENT ANALYSTS DG BUILDING SSE VERT DIRECTION 1.02 DAMPING EL. 722.0 FT I

m tn Z

o e-e I- 9.

E w

J

' w W

U

< 6.

J T

H U

w o-

)'

tn 3. / -

I x J \

/ \

/ f... . ..-

. ~ . \

0. ' - '--'"'-*-'-""" ' ' ' ' ' ' '

10-1 10 e 10 1 10 2 FREQUENCY-CPS '

COMPARISON OF ENVELOPE OF AVERAGED ARS Figure C-9

.- .. . . . - _ . _ _ _ . . _ . .