ML20055A353

From kanterella
Jump to navigation Jump to search
to Offsite Dose Calculation Manual
ML20055A353
Person / Time
Site: Summer South Carolina Electric & Gas Company icon.png
Issue date: 06/30/1982
From:
APPLIED PHYSICAL TECHNOLOGY, INC.
To:
Shared Package
ML20055A350 List:
References
PROC-820630, NUDOCS 8207160192
Download: ML20055A353 (122)


Text

. . - - - . . . . .

l

(

OFFSITE DOSE CALCULATION MANUAL FOR SOUTH CAROLINA ELECTRIC AND GAS Q)MPANY VIRGIL C. SUMER NUCLEAR STATION i

Revision 4 June 1982 i

8207160192 820702 PDR ADOCK 05000395 A ppg APPLIED PHYSIC AL TECHNOLOGY, INC.

f m

2734 South Cobb Industrial Boulevard (404) 434 9889 Smyrna, Georgia 30080 NUCLE AR POWER SUBSIDI ARY OF NUCLEAR DATA,INC.

/

/

i ,

1 OFFSITE DOSE CALCULATION MNUAL FOR SOUTH CAROLINA ELECTRIC AND GAS COMPANY VIRGIL C. SUMMER NUCLEAR STATION:

t Revision 4

-June 1982 i

Nuclear Data - Nuclear Power Division 2734 South Cobb Industrial Boulevard Smyrna, Georgia 30080 (404) 434-9889 1

l 0015W/0015A l Rev. 5 i

LIST OF E FFECTIVE PAGES Page Revision Pace Revision

i 3 1.0-1 2 ii 3 1. 0-2 2 iii 3 1.0-3 3 iv 3 1. 0-4 2 v 2 1.0-5 3 vi 2 1. 0-6 2 vii 2 1.0-7 2
1. 0-6 2 1.0-9 2 1.0-10 2 1.0-11 3 1.0-12 3 1.0-13 3 1.0-14 3 1.0-15 4 1.0-16 3 1.0-17 2 1.0-18 3 1.0-19 2 1.0-20 3 1.0-21 2 1.0-22 3
1.0-23;

. 2 11.0-24 3 11.0-25 2

(

-1.0-261 2 1.0 3 1.0-28L 2 1.0-29 2 1.0-30 2 1.0-31 3

'1.0-32 3 1.0-33 2 1.0-34 2 1.0-35 2 t

l 1.0-36 2 1.0-37 2 1.0-38 2

! 1.0-39 2 l

1.0-40 3 l 1.0-41 2 1.0-42 2 1.0-43 4 l

l 0DCM, V.C. Summer /SCEandG: i Revision 4 (June 1982) j 0015Ws/0015A

~

i LIST OF EFFECTIVE PAGES (Continued)

Page Revision Page Revision

( 2. 0-1 2 3.0-1 4 2.0-2 3 3.0-2 4

2. 0-3 2 3. 0-3 4 2.0-4 2 3.0-4 4
2. 0-5 3 3. 0-5 -4 2.0-6 2 3.0-6 4
2. 0-7 3 3. 0-7 4 2.0-8 2 3.0-8 4
2. 0-9 2 3. 0-9 4 2.0-10 3 3.0-10 4 2.0-11 3, 3.0-11 4 2.0-12 3 3.0-12 4 2.0-13 3 3.0-13 4 2.0-14 3 3.0-14 4 2.0-15 3 3.0-15 2 2.0-16 2 2.0-17 2 2.0-18 2 2.0-19 2
2. 0-20 4 2.0-21 4 2.0-22 4 2.0-23 4 2.0-24 4 2.0-25 4

( 2.0-26 4 -

2.0-27 4 2.0-28 4 2.0-29 4 2.0-30 4 2.0-31 4 2.0-32 4 2.0-33 2 2.0-34 3 2.0-35 2 2.0-36 4 2.0-37 4

2. 0-3 7a 4 2.0-38 4 2.0-39 2 l 2.0-40 2

! 2.0-41 2 2.0-42 2 2.0-43 2 2.0-44 2 2.0-45 2-2.0-46 2 2.0-47 2 2.0-48 2 2.0-49 2 2.0-50 2 2.0-51 3 00CM, V.C. Sumer/SCEandG: Revision 4 (June 1982) ii 0015Ws/0015A

TABLE OF CONTENTS PAGE Li s t o f Ef f e c t i v e Pa g e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i ListofTables.......................................................... iv L i s t o f F i g u re s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v References .............................................................. vi In t ro d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ; . . . . . v i i 1.0 LIqul0 EFFLUENTS 1.1 Li q ui d Ef fl uent Moni tor Se tpoint s . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. 0-1 1.1.1 Liqui d Radwast e Ef fluent Li n e Moni tor s . . . . . . . . . . . . . . . 1. 0-1 1.1.2, Liquid Waste Discharge Via Industrial and Sanitary Wa s t e Sy s t e m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. 0-1 1 1.1.3 Steam Generator 81owdown, Turbine Building Sump and Condensate Demineralizer Backwash Ef fluent Lines ..... 1. 0-12 1.2 Do se Ca lcul ation f or Liquid Ef fluents . . . . . . . . . . . . . . . . . . . . . . . 1. 0-30 1.3 Defini tion s o f Liqui d Ef fluent Parameters . . .. . . . . . . . . . . . . . . . 1. 0-3 7 1.4 Li q ui d Ra dwaste Treatment System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. 0-4 3

2. 0 GASE0US EFFLUENTS 2.1 Ga seous Ef f l uent Monitor Se tpoints . . . . . . . . . . . . . . . . . . . . . . . . . . 2.0-1 2.1.1 S t at i o n Ve n t ib b l e Ga s Mo n i to r s . . . . . . . . . . . . . . . . . . . . . . 2. 0-1

( 2.1.2 Wa s t e Ga s De c ay Sys t em . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. 0-4 2.1.3 Alternative Methodology for Establishing?

Co nservati ve Se tpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. 0-6 2.2 Giseous Effluent Dose Calculations 2.2.1 Un re s tri cted Are a Bo undary Do se '. . . . . . . . . . . . . . . . . . . . . . 2. 0-9 2.2.2 Un res tri cte d Are a [b s e t o Ind i vidua l . . . . . . . . . . . . . . . . . 2. 0-10 2.3 Meteorological Model 2.3.1 Atmo sph e ri c Di sp er s i on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. 0-3 9 2.3.2 De p o s i t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. 0 -40 2.4 Defini tions of Ga seous Ef fluents Parameters . . . . . . . .. . . . . . . . . 2.0-45 2.5 Ga s eo u s Radwa s t e Tre atme n t Syst e m . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. 0-51 3.0 RA DIOLOG ICAL E NV IR 0fNE NTAL MONITORI NG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. 0-1 3.1 Samp l i n g Lo c a t i o a s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. 0-2 3.2 Map o f,Sampl i ng Locations ( Loc al) . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. 0-14 3.3 Ma p o f Sampl i n g Loc ati o n s ( Reno t e) . . . . . . . . . . . . . . . . . . . . . . . . . . 3. 0-15 ODCM, V.C. Summer /SCEandG: Revision 3 (May 1982) iii 0015Ws /0015A

7...

LIST OF TABL ES Table No. Page No.

( 1.2-1 Bioaccumulation Factors 1.0-33 1.2-2 Adult Ingestion Dose Factors 1.0-34 1.2-3 Site Related Ingestion [bse Commitment Factor (Air) - 1.0-36 2.1-1 Dose Factors for Exposure to a Semi-Infinite Cloud of Noble Gases 2. 0-8 2.2-1 Pathway Dose Factors for Section 2.2.1.b (Pj) 2.0-13 2.2-2 Pathway [bse Factors for Section 2.2.2.b (Rj) 2.0-17 2.2-3 Pathway Dose Factors for Technical Specifications 4.11.2.4.1 and 6.9.1.13 (Inf ant) 2. 0-20 2.2-4 Pathway Dose Factors for Technical Specifications 4.11.2.4.1 and 6.9.1.13 .(Child) 2.0-23 2.2-5 Pathway [bse Factors ~ for Technical Specifications -

~

4.13.2.4.1 and 6.9.1.13 (Teenager) 2.0-26 2.2-6 Pathway Cbse Factors-for Technical' Specifications 4.11.2.4.1 and 6.9.1.13 ( Adult) 2.0-29

( 2.2-7 Controlling Receptors, Locations, and Pathways! 2.0-33 2.2-8 Atmospheric Di spersion Parameters for- Controll.ing Receptor Locations 2.0--35 2.2-9 Parameters Used in Dose Factor Calculations ' 2.0-36 3.0-1 Radiological Environmental Sampling Locations 3.0-2 ODCM, V.C. Sumer/SCEandG: Revision 3 (May 1982) iv 0015Ws /0015A

LIST OF FIGURES Figure No. Page lio.

i 1.0-1 Example Calibration Curve for Liquid Effluent Monitor 1.0-29 1.4-1 Minimum OPERABLE Liquid Radwaste Treatment System -1.0-43 2.1-1 Sample ibble Ces Monitor Calibration Curve 2.0-3 2.3-1 Plume Depletion Ef fect f or Gound Level Releases (6) 2.0-41 2.3-2 Vertic,al Standard Deviation of Material in a Plume (az ) 2.0-42 2.3-3 Relative Deposition for Ground Level Releases (Dg ) 2.0-43 2.3-4 Open Terrain Recirculation Factor (T) 2.0-44 2.5-1 Minimum GPERABLE Gaseous Radwaste Treatment System 2.0-51 3.0-1 Radiological Environmental Sampling Locations <(Local)- 3.0-14 3.0-2 Radiological Environmental Sampling Locations (Remote) 3.0-15

(

i 0D04, V.C. Summer /SCEandG: Revision 2 ( April 1982) v

. 0015Ws /00154

REFERENCES

(

This Offsite Dose Calculation Manual was prepared f or the Virgil C. Sumer Nuclea r Station by Applied Physical Technology based on infonnation communicated directly to APT by South Carolina Electric and Gas Company personnel and the following reference documents:

1. Boegli, T. S., R. R. Bellamy, W. L. Britz, and R. L. Waterf ield,

" Preparation of Radiological Effluent Technical Specifications for Nuclear Power P1 ants"., NUREG-0133 (October 1978) .

2.

" Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Pu rp ose of Evaluating Compliance with 10CFR 50, Appendix 1", U. S. NRC Regulatory Guide 1.109 (March 1976).

3.

" Calculation of Annual Doses to Man from Routine Releases of Reactor Ef fluent s for the Pu rpose of Evaluati ng Compliance with 10CFR 50, Appendix I",

U. S. NRC Regulatory Guide 1.109, Rev.1 (October 1977).

4. " Final Safety Analysis Report", South Carolina Electric and Gas Cocoany, Virgil C. Sumner Nuclear Station.
5. " Operating License Environmental Report", South Carolina' Electric and Ga:

Company, Virgil C. Summer Nuclear Station. -

6. Wahlig, B.G., " Estimation of the Radioactivity Release Rate / Equilibrium Concentration Relationship for the Parr Pumped Storage System", Appliad Physical Technology, Inc., February 1981.
7. " Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light - Water - Cooled Reactors",

U.S. NRC Regulatory Guide 1.111 (March 1976).

8. " Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light - Water - Cooled Reactors", 0.5.

NRC Regulatory Guide 1.111, Rev.1 (July 1977).

9. Sl ade , D .H. , (editor), " Meteorology and Atomic Energy"; U.S. Atomic Elenjy Commission, AEC TID-24190,1968.
10. "Measuririg, Evaluating, and Reporting Radioactivity in Solia Wastes and Releases of Radioactive Materials in Liquid and Gaseous Ef fluents from Light-Water-Cooled Nuclear Power Plants", U.S. NRC Regulatory Guide 1.21, Rev.1 (Jane 1974).

ODCM, V.C. Summer /SCEandG: Revision 2 ( April 1982) 0015Ws /0015A vi

INTRODUCTION

(

The OFFSITE DOSE CALCULATION MANUAL is a supporting document of the RADIOLOGICAL EFFLUENT TECHNICAL SPECIFICATIONS. As such the 0D04 describes the methodology and parameters to be used in the calculation of of'fsite doses due to radioactive liquid and gaseous effluents and in the calculation of

. liquid and gaseous effluent monitoring instrumentation alarm / trip setpoints.

The ODCM contai6s a list and graphical description of the specific sample locations for the radiological environmental monitoring program. Minimum OPERABLE configurations of the liquid and gaseous radwaste treatment systems are also included.

Tne ODCM will be maintained at the Station for use as a reference guide and training document of accepted methodologies and calculations. 01anges in the calculational methods or parameters will be incorporated into the ODCM in o rder to assure that the ODCM represent s the present methodology in all applicable areas. Computer sof tware to perf orm the described calculations will be maintained current with this 0004.

i l

l l

l ODCM, V.C. Summer /5CEandG: Revision 2 ( April 1982) vii 0015Ws /0015A

l.0 LIQUID EFFLUENTS

(

The Vi rg il C.

Summer Nuclear Stction is located on the Monticello Reservoir which provides supply and discha rge for the plant cirtulating water. This reservoir also provides supply and discharge capacity for the Fai rfield Pumped Storage Facility. The Parr Reservoi r located below the pumped storage f acility is fonned by the Parr Dam.

There are two basic release pathways and sourtes of dilution for liquid effluents: the circulating water discharge canal and the liquid effluent line to the penstocks of the pumped storage f acility. All liquid effluent pathways discharge to either one or the other release point. Generally speaking, very low concentrations of radioactive waste are dischanged to the circulating water discharge while generally higher concentrations of radioactive waste are released to the penstocks of the pumped storage f acility during the generation cycle. The Minimum OPERABLE Liquid Radwaste system is shown schematically in Figure 1.4-1.

1.1 Liquid if fluent Monitor Setpoints The calculated setpcint values will be regarded as upper bounds for the actual setpoint adjustments. That is, setpoint adjustments are not l

required to be perf ormed if the existing setpoint level corresponds to a l

lower count rate than the calculated value. Setpoints may be established at values lower than the calculated values if desired.

l 1.1.1 Liquid Radwaste Effluent Line Monitors (RM-LS, RM-L7, Rl4-L9) l l 0D04, V.C. Summer, SCEandG: Revision 2 ( April 1982) 1.0-1 0015W/0015A

Liquid Radwaste Ef fluent Line Monitors provide alam and

{ automatic temination of release functions prior to exceeding the concentration limits specified in 10CFR 20, Appendix 8 Table II, Column 2 at the release point to the unrestricted area. To meet this specification, the alam/ trip setpoints for liquid effluent monitors and flow measurement devices are set to assure that the following equation is satisfied:

cf

-<C (1)

F +f where:

C = the effluent concentration limit (Specification 3.11.1.1) implementing 10CFR 20 for the site, corresponding to the specific mix of isotopes in the effluent stream being considered for discharge, in uCi/ml.

C =

the setpoint, in pCi/ml, of the radioactivity monitor measuring

(

the radioactivity concentration in .the effluent line prior to dilution and subsequent release; the .setpoint, which is inversely proportional to the volumetric flow of the effluent line and proport ional to the volumetric flow of the dilution stream plus the effluent stream, represents a value which, if exceeded, would result in concentrations exceeding the limits of 10CFR 20 in the unrestricted area.

f = the flow setpoint as determined at the radiation monitor location, in volume per unit time, but in the same units as F, below.

F =

the dilution water flow setpoint as determined prior to the release point, in volume per unit time.

At the Vi rg il C. Sumer Nuclear Station the Liquid Waste Processing System and the Nuclear Blowdown System both dischange to the penstocks of the Fairf ield Pumped Storage Facility through a common line. The available 0004, V.C. Summer, SCEandG: Revision 2 ( April 1982) 1.0-2 0015W/0015A -

dilution watcr flow (Fdp) is assumed to be 90 percent of the flow through the Fairfield Pumped Storage Station penstock (s) to which liquid effluent is I being dischased and is dependent upon operational status of the Fairfield Pumped Storage Station. The waste tank flow rates (fdm' #

db and fdc) and the monitor setpoints (cg , c B and cC) are set to meet the condition of equation (1) for a given effluent concentration, C. The three monitor setpoints are determined in accordance with the monitor system configuration for this discha.ge pathway. The LWPS discharges through RM-LS, which has setpoint c g for alarm / control functions over releases from either Waste Monitor Tanks 1 or 2. The Nuclear Blowdown discharges through RM-L7, which has setpoint c8 for alarm / control functions over releases from the Nuclear Blowdown Monitor Tank. These two release pathways merge into a common line monitored by RM-L9, which has setpoint cC for control functions over the common effluent line. Although the piping is arranged so that simultaneous batch releases from the two systems could be practiced, operational releases shall be from only one of the two batch systems at any given time. The method by which their setpoints are determined is as follows:

1) The isotopic concentration for a waste tank to be released is obtained from the sum of the measured concentrations as determined by l the analysis required in the Radiological Ef fluen t Technical Specifications Table 4.11-1:

ICj = I Cg+Ca+C3+Ct+Cf (2) 1 9 l where:

1 1

Cg =,

the concentration of nuclide i as determined by the analysis of the waste sample.

l C* f

=

the concentration of Fe-55 in liquid waste as determined by analysis of the quarterly composite sample.

0D01, V.C. Summer, SCEandG: Revision 3 (May 1982) 1.0-3 001SW/001SA

I' ICg =

the sum of the concentrations C g of each measured gama 9

, emitting nuclide observed by gama-ray spectroscopy of the

\

waste sample.

C,* =

the measured concentrations Ca of alpha emitting nuclides observed by gross alpha analysis of the monthly composite sample.

C*s , the measured concentrations of Sr-89 and Sr-90 in liquid waste as determined by analysis of the quarterly composite sample.

C*t

=

the measured concentration of H-3 in liquid waste as detennined by analysis of the monthly ' composite sample.

The C g tenn will be included in the analysisi of each batch; tenns for alpha, strontium, Fe-55, and tritium ~ shall be included as appropriate. Isotopic concentrations ' for both the Waste Monitor

(,

Tanks and the Nuclear Blowdown Monitor Tank may' be calculated using equation (2).

Prior to being samplea for analysis, the contents of a tank shall be recirtulated. The minimum recirculation time shall be:

tr - 2V/fr (3) where V -

the volume of liquid in the tank to be sampled.

f r

=

the recin ulation flow rate being used to mix the tank.

This will ensure that a representative sample will be obtained.

Values for these concentrations will be based on previous composite sample analyses as required by Table 4.11-1 of the Radiological Ef fluent Technical Specifications.

ODCM, V.C. Sumer, SCEandG: Revision 2 (April 1982) 1.0-4 0015W/0015A

p ,,, .

2) Once isotopic concentrations for eith:r Waste Monitor Tank or  !

the ibclear Blowdown Monitor Tank have been detennined, these values

{

are used to calculate a Dilution Factor, DF, which is the ratio of dilution flow rate to tank flow rate (s) required to assure that the limiting ' oncentration of 10CFR, Part 20, Appendix B, Table II, Column 2 are met at the point of discharge for whichever tank is having its contents discharged.

C DF = I gp + SF (4)

C C C C C DF = I + SF MP + MPC + MPC

  • MPCf + MP (5)

-g g a s t- X where:

C.

-i IQ 1 -X the sum of the ratios of the measured concentration of nuclide i to its limiting value MPC for the tank whose contents are being considered for release. For a Wl#, X=

M. Fo r the tG MT, X = B .

i MPC j = MPC , MPC , MPC , MPC , and MPC = limiting concen-g a 3 f t trations of the appropriate gamma emitting, alpha emitting, and s trontium radionuclide s, Fe-5 5, and tritium, re spe c-tively, given in 10CFR, Part 20, Appendix B, Table II, Column l

2. For gamma-emitting noble gas radionuclides WC $ is to be set equal to 2 x 10 pCiM1, acco rtli ng to the Radiological Ef fluent Technical Specifications.

SF = the safety factor; a conservative factor used to compensate for engineering and measurement uncertainties.

- 0.5, corresponding to a 100 pen:ent variation.

1 ODCM, V.C. Sumer, SCEandG: Revision 3 (May 1982) 1.0-5 0015W/0015A

p ... . .

3) The maximum pemissible dischag e flow rate, f, may be t

calculated for the release of either the WMT or NBMT. First the appropriate Dilution Factor is calculated by applying equation (4),

using the appropriate concentration ratio term (i.e. M or B.).

then Fdp + fdx fdp ft "

0F

=

DF For Fdp >> fdx (6) where:

F = dilution flow rate to be used in effluent monitor setpoint dp calculations, based on 90 percent Fairf ield Pumped Storage Station expected flow rate, as corrected for any recirculated radioactivity:

r (7)

Fdp = (0.9) Ft (1 - i PPCj )

where F t - the flow rate through the Fai rfield Pumped Storage Station penstock (s) to which radioactive liquids are being dischaqed. F t

should nomally fall between 2500 and 44800 cf s.

C ir - the concentration of radionuclide i in the intake of Fairf ield Pumped Storage Station (that i s, in the Monticello Reservoi r) . Inclusion of this term will correct for possible long-term buildup of radioactivity due to recirculation and for the presence of activity recently released to the Monticello Reservoir by plant activities. For expected discha ges of liquid wastes, the summation will be much less than 1.0 and can be

- ignored (Reference 6).

f dx - the flow rate of the tank di scharg e, either f dm or I

db' 00CM, V.C. Summer, SCEandG: Revision 2 ( April 1982) 1.0-6 0015W/0015A

f db

= fl w rate o~ Nuclear Blowdown Monitor Tank discharge. (This value nomally . 1 be either zero, if no release is to be conducted from this system, or the maximum rated capacity of the discharge pump (250 gpm) if a release is to be conducted.)

f dm

= flow rate of Waste Monitor Tank discha rge. (Thi s value nomally will either be zero, if no release is to be conducted from this system, or the maximum rated capacity of the dischage pump (100 gpm) if a release is to be conducted.)

DF = the Dilution Factor from Step 2.

If f t

>f dx, the release may be made as planned and the flow rate monitor setpoints should be established as in Step 4. Because F dp IS nomally very lage compared to the maximum dischage pump capacities for the Waste Monitor Tank and the Nuclear Blowdown Monitor Tank, it is extremely unlikely that f t

< I dx. lbwever, if a situation should arise such that f t < #dx, steps must be taken to assure that equation (1) is satisfied prior to making the release. These steps may include decreasing f dx by decreasing the flow rate of f or f d b, and /or dm increasing Fdp-When new candidate flow rates are chosen, the calculations of Step 3 should be repeated to verify that they combine to form an acceptable release. If they do, the establishment of flow rate monitor setpoints may proceed as in Step 4. If they do not, the choice of candidate flow rates must be repeated until an acceptable set is identified.

fbte that if 0F < 1, the waste tank concentration for which the calculation is being perf omed includes safety f actors in Step 2 and meets the limits of 10CFR 20 without further dilution. Even though no dilution 00CM, V.C. Summer, SCEandG: Revision 2 ( April 1982) 1.0-7 0015W/0015A

would be required, there will be no discharge if minimum dilution flow is i

not available, since the penstock minimum ficw interlock will prevent d ischarg e.

4) The dilution flow rate setpoint, F, is established at 90 percent of the expected available dilution flow rate:

F = (0.9) F t (8)

The flow rate monitor setpoint for the effluent stream shall be set at the selected discharge pump rate (nomally the maximum discharge pump rate or zerc) f dm or f db chosen in Step 3 above.

5) Tne radiation monitor setpoints may now be detemined based on the values of Cj , F, and f which were specified to provide compliance with the limits of 10CFR 20, Appendix B, Table II, Column 2. The monitor response is primarily to gamma radiation, therefore, the actual setpoint is based on I C .

99 The setpoint concentration, c, is detemined as follows:

c<IC xA (9)

., 9 g A = Adjustment f actor which will allow the setpoint to be established in a practical manner for convenience and to prevent spurious alams.

= 'f t/fdx (10)

If A > 1, Calculate c and detemine the maximum value for the actual monitor setpoint (cpm) from the monitor calibration graph.

l. 00CM, V.C. Suraner, SCEandG: Revision 2 ( April 1982) 1.0-8 0015W/UO15A

/

If A < 1, No release may be made. Re-evaluate the alternatives

( presented in Step 3.

NOTE: If calculated setpoint values are near actual concentrations planned for release, it may be impractical to set the monitor alann at this value. In this case a new setpoint may be calculated following the remedial methodology presented in Step 3 forthe case ft<Idx*

Within the limits of the conditions stated above, the specific monitor setpoints for the three liquid radiation monitors RM-L5, Rf4-L7,

~

and Ri4-L9 are determined as follows:

R M-LS, Waste Monitor Tank Discharge Line Monitor:

cg1 C g xA (11)

NOTE: If no discharge is planned for this pathway, the monitor setpoint should be established as close to background as practical to prevent spurious alarms and yet alann should an inadvertent release occur.

RM- L7, Nuclear Blowdown Monitor Tank Uischarge Line Monitor:

c 8i EC g xA (12) 9 .

B NOTE: In no case should discharges be made directly from the Nuclear Blowdown Holdup Tank. Its contents should always be processed via the Nuclear Blowdown Monitoring Tank.

0001, V.C. Summer, SCEandG: Revision 2 ( April 1982) 1.0-9 l 0015W/0015A

NOTE: If no discharge is planned for this pathway, the monitor setpoint should be established as close to background as practical to prevent spurious alarms and yet alarm should an inadvertent release occur.

Ribl9, Combined liquid Waste Processing System and Nuclear Blowdown Waste Effluent Discharge Line Monitor The monitor setpoint on the common line, cC, should be the same as the setpoint for the monitor on the active individual discharge line (i.e., c ,Mor c asB deterrr.'ned above):

cc 1 MAX (cs, cB)

(13)

NOTE: If no discharge is planned for this f pathway, the monitor setpoint should be established ' as close to background as practical to' prevent spurious alarms :and yet alarm should an inadvertent release occur.

NOTE: In all cases, c,gc,g and c C are the setpoint values in uCi/ml. The actual' monitor'setpoints (cpm) for Rfbl5, RM-L7, and Rt&L9 are determined from the calibration graph for the particular monitor. Initially, the calibration curves wi.ll be determined conservatively from families of response curves supplied by the monitor manufacturers. A sample is shown in Figure 1.0-1. As releases occur, a historical correlation will be prepared and placed in service when sufficient data are accumulated.

l l

ODCM, V.C. Summer, .SCEandG: Revision 2 (April 1982) 1.0-10 0015W/0015A

1.1.2 Liquid Wast, Dischame Via Industrial and Sanitary Waste System (RM-LS)

In the Virgil C. Summer Nuclear Station liquid waste effluent system design, there exists a mechanism for discharging liquid wastes via the Industrial and Sanitary Waste System. , The sample point prior to discharge is one of.the Waste Monitor Tanks. The analysis requirements are the requirements listed in the Radiological Effluent Technical Specifications, Table 4.11-1.

This effluent pathway shall only be used when the following condition is met for all radionuclides, i:

C- Cj

,1 M< . . LLD (14) where:

,gC g

the concentration of radionuclide i in the waste contained within the Waste Monitor Tank serving as the holding facility for sampling and analysis prior to discharge.

C

i. LLD = the Lower Limit of Detection, (LLD), for radionuclide i in liquid waste in the Waste Monitor Tank as determined by the analysis required in the Radiological Effluent Technical Specifications, Table 4.11-1.

When the conditions of equation (14) are met, the liquid waste may be released via the Industrial and Sanitary Waste System pathway. Tne RM-L5 setpoint should be established as close to background as practical to prevent spurious alarms and yet alarm shou'ld an inadvertent high concentration release occur.

ODCM, V.C. Summer, SCEandG: Revision 3 (May 1982) 1.0-11 0015W/0015A

1.1.3 Steam Generator Blowdown. Turbine Building Sump, and condensate Demineralizer Backwash Ef fluent Lines

( RM- L3, RM- L10, R M- LB , R M- Ll l* )

i Concentrations of radionuclides in the liquid effluent discharges made via the Turbine Building Sump, Steam Generator Blowdown, and Condensate Demineralizer Backwash are expected to be very low or nondetectable. The first two releases are expected to be continuous in nature and the last a batch release. All will be sampled in an appropriate manner as specified in Table 4.11-1 of the RE TS . The Steam Generator Blowdown Monitors, the Turbine Building Sump Monitor, and the Condensate Demineralizer Backwash Monitor provide alarm and automatic termination of release prior to exceeding the concentration limits specified in 10CFR 20,

/ppendix B, Tabl e II, Column 2 at the release point to the unrestri cted area. In reality, all of these effluent pathways utilize the circulating water as dilution to the effluent stream, with the circulating water discharge canal being the point of release into an unrestricted area. Ebwever, to compensate for uncertainties in the transit times of activity discharged to the Industrial and Sanitary Waste System, discharges to that system will not be credited with dilution for the purpose of monitor setpoint calculations.

  • RM- Ll l is a liquid process monitor to be installed on the Condensate l Demineralizer Backwash effluent line, prior to the startup after the first refueling outage.

t 00CM, V.C. Summer, SCEandG: Revision 3 (May 1982) 1.0-12 0015W/0015A

The Steam Generator Blowdown Ef fluent may be released to the Circulating Water either directly in the Condenser outflow or via the ponds and sumps of the Industrial and Sanitary Waste System; the latter path is preferred for chemical reasons in the first hours following start up. The Turbine Building Sump and Condensate kmineralizer Backwash Effluents enter the Circulating Water through the Industrial and Sanitary Waste System.

For the sake of clarity, two mutually exclusive setpoint calculation processes are outlined below. Section 1.1.3.1 is to be used whenever Steam Generator Blowdown is being released directly to the Circulating Water in the Condenser outflow, which is the nonnal mode. Section 1.1.3.2 is to be used whenever Steam Generator Blowdown is being released to the Industrial and Sanita ry Waste System, or dive rted to the fOclear Blowdown Processing System, both of which are alternate modes. Each section covers all four monitors (R M- L3, R M-L8, R M- L10, and R M-Lll) .

NOTE: When Circ ulating Water is unavailable for effluent dilution, no releases containing activity above LLD are to be made 'via pathways which lead to it. Steam Generator Blowdown should be diverted to the Nuclear Blowdown l Processing System. Condensate Demineralizer Backwash may be diverted to the Turbine Building Sump or not released.

Turbine Building Sump effluent should be diverted to the

! Excess Liquid Waste Processing System. (These steps are to keep the dose to individuals as low as reasonably 00m, V.C. Summer, SCEandG: Revision 3 (May 1982) 1.0-13 0015W/001SA

achievable.) Furthermore, sampling and analysis of the Industrial and Sanitary Waste System is to be initiated I

and the measured concentrations used in the dose calculations of Section 1.2.

1.1.3.1 Steam Generator Bl owdown Ef fluent Direct to Circulating Water (Normal Mode)

Equation (1) is again used to assure that effluents are in compliance with the aforementioned specification:

cf <C F+f~

where c, f, F, and C are the same generic terms discussed i n Section 1.1.1.

The available dilution water flow is (Fdc) dependent upon the mode of operation of the Ci rtulati ng Water System. Any change in this value will be accounted for in a recalculation of equation (1). The Steam Generator Bl owdown flow rate (fds) and the Steam Generator Blowdown monitor setpoints (cSa and cSb) a re set to meet the condition of equation (1). The Turbine Building Sump and Condensate Demineralizer effluents will be limited to concentrations less than WC without claiming dilution (see below) . Therefore, it is not

, necessary to consider their flow rates or concentrations in detennining the required dilution and monitor setpoints for Steam Generator Blowdown.

ODCM, V.C. Summer, SCEandG: Revision 3 (May 1982) 1.0-14 0015W/0015A

For conservatism, the Turbine Building Sump and Condensate Demineralizer Backwash monitor setpoints (c T

and c) 0 will claim no dilution from the Circulating Water, and will be set at the applicable concentration limit. That is:

c<C' (15) where c and C are the generic tems discussed in Section 1.1.1.

R N L8 , the Turbine Building Sump monitor alarms and teminates release upon exceeding the monitor setpoint (cT ). The discharge can then be manually diverted to the Excess Waste Processing System. RM-L3, the first monitor in the Steam Generator Blowdown discharge pathway, alarms and terminates release of the stream. The discharge is then automatically diverted to the Nuclear Blowdown Processing System. RM-L10, the last monitor in the Steam Generator Blowdown discharge pathway, alarms and terminates the release. Thus, RM-L10 is redundant to RM-L3 and the setpoint (cSb) will be determined in the same manner as R M-L3 (cSa). R M-Li l , the Condensate Demineralizer Backwash monitor, alarms and terminates release upon exceeding the monitor setpoint (cD ). The discharge may then be manually diverted to the Turbine Building Sump or simply delayed. The method by which the monitor setpoints are detemined is as follows:

00CM, V.C. Sumer, SCEandG: Revision 4 (June 1982) 1.0-15 0015W/0015A

1) The isotopic concentrations for any release source to b2 or being released are obtained from the sum of the measured concentrations as detemined in the Radiological Ef fluent Technical

(

Specifications Table 4.11-1. Equation (2) is again employed for this calculation:

IC j = I Cg+Ca+Cs+Ct+Cf i 9 where:

IC j = the sum of the measured concentrations as detemined by the analysis of the waste sample.

ICg = the sum of the concentrations Cg of each measured gamma 9

emitting nuclide observed by gamma-ray spectroscopy of the waste sample.

C, = the measured concentrations C of alpha emitting a

nuclides observed by gross alpha analysis of the monthly composite sample.

C s

=

the measured concentrations of Sr-89 and Sr-90 in liquid waste as determined by analysis of the quarterly composite sampl e.

C = the measured concentration of H-3 in liquid waste as t

determined by analysis of the monthly composite sample.

C f

= the measured concentration of Fe-55 in liquid waste as determined by analysis of the quarterly composite sample.

Isotopic concentrations for the Steam Generator Blowdown System effluent, the Turbine Building Sump effluent, and the Condensate kmineralizer Backwash effluent may be calculated using equation (2).

00CM, V.C. Summer, SCEandG: Revision 3 (May 1982) 1.0-16 0015W/0015A

f l

2) Once isotopic concentr-ations for the Steam Generator Blowdown

( have been determined, these values are used to calculate a Dilution Factor, DF, which is the ratio of the total dilution flow rate to effluent stream flow rate required to assure that the limiting concentrations of 10CFR, Part 20, Appendix B, Table II, Column 2 are met at the point of dischage.

DF = + SF g (16) iS r Cg C C C C DF = L a s f t

, 3p (17) g MPCg + MPC a + MPC s + MPCf + MPCt,S where:

Cj = C, g

C, a

C, C, and C; measured concentrations as 3 f t defined in Step 1. Terms C, 3

C, s C.

f and C t

will be included in the calculation as appropriate.

{Ci =

the sum of the ratios of the measured concentration of nuclide i i MPC

_ i .S to its limiting value MPC j for the Steam Generator Blowdown effluent.

MPC j = MPC , MPC,, MPC , MPC , and MPC are limiting concen-g 3 f t trations- of the appropriate radionuclide from 10CFR, Part 20, Appendix B, Table II, Column 2 limits. For gamma-emitting noble gas radionuclides, MPC j is to be set equal to 2 x 10A u Ci /ml, according to the Radiological Effluent Technical Specifications.

SF = the same ge' .ric tenn as used in Section 1.1.1, Step 2.

0D04, V.C. Summer, SCEandG: Revision 2 ( April 1982) 1.0-17 0015W/0015A

.- ~

1

3) The maximum pennissible effluent dischage flow rate, fd, may now be calculated for a release from the Steam Generator Blowdown.

(-

fd" Fde + fds , Fdc For Fde >> fds DF (18)

DF where:

F de

=

Dilution flow rate for use in effluent monitor setpoint calculations, based on 90 percent of the expected flow rate of the Cin:ulating Water System during the time of release and corrected for any recirculated activity:

Fde = (0.9) Fd (1 - ir (19)

MPC g )

i where F - the flowrate of the Circ ulating Water System d

during the time of the release. F should d

5 nonnally fall between 1.78 x 10 and 5.34 x 5

10 gpm.

C ir

= the concentration of radionuclide i in the

, Circulating Water System intake, used to correct for long-term activity buildup due to recirculation and for any activity recently released by plant activities. Under connal operati ng conditions, the summation will be much less than 1.0 and can be ignored (Reference 6).

f ds Flow rate of the Steam Generator Blowdown dischag e. (This value nonnally will either be zero, if no release is to be conducted, or the maximum rated capacity of the discharge pump, 250 gpm, if a release is to be conducted.)

DF = the Dilution Factor from Step 2.

Note 'that the equation is valid only for DF > 1; for DF < 1, the effluent concentration meets the limits of 10CFR 20 without dilution as

! well as being in compliance with the conservatism imposed by the Safety Factor in Step 2, ODCM, V.C. Summer, SCEandG: Revision 3 (May 1982) 1.0-18 0015W/0015A 1.

L

If fd1 Ids, releases may be made as planned. Because Fde IS

([ normally very large compared to the maximum discharge pump capacity of the Steam Generator Blowdown System, it is extremely unlikely that fd<

f However, if a situation should arise such that f d < f ds. ds' steps must be taken to assure that equation (1) is satisfied prior to making the release. These steps may include diverting Steam Generator Blowdown t,o the Nuclear Blowos en Processing System or decreasing the effluent flow rate.

When new candidate flow rates are chosen, the calculations of Step 3 should be repeated to verify that they combine to form an accer'able release. If they do, the establishment of flow rate monitor setpoints should proceed as in Step 4. If they do not provide an acceptable release, the choice of candidate flow rates must be repeated until an acceptable set is identified.

4) The dilution flow rate setpoint for minimum flow rate, F, is established at 90 perrent of the expected available dilution flow rate:

F = (0.9) (Fd ) (20)

Flow rate monitor setpoints for the Steam Generator Blowdown effluent stream shall be set at the selected discharg e pump rate (nonnally the maximum discharge pump rate) f chosen in Step 3 above.

ds

5) The Steam Generator Blowdown Monitor setpoints may now be specified based on the values of f Cj , F, and f which were specified to provide 1

compliance with the limits of 10CFR 20, Appendix B, Table II, Column 2.

f 000'1, V.C. Summer, SCEandG: Revision 2 ( April 1982) 1.0-19 0015W/0015A

The monitor respons@ is primarily to gamma radiation, therefore, the actual setpoint is based on g

C.

g The monitor setpoint in cpm which corresponds to the calculated value c is taken from the monitor

(

calibration graph. (See NOTE, page 1.0-10.) The setpoint concentration, c, is detennined as follows:

c<IC xB g (21)

,9 8 = ' Adjustment factor which will allow the setpoint to be established in a practical manner for convenience and to prevent spurious alanns.

=

f d/fds (22)

If B > 1 Calculate c and determine the maximum value for the actual monitor setpoint (cpm) from the monitor calibration graph.

If B < 1 No release may be made. Re-evaluate the alternatives presented in step 3.

NOT E: If the calculated setpoint value is near actual concentrations being released or planned for release, it may be impractical to set the monitor alann at this value. In this case a new setpoint may be calculated following the remedial methodology presented in steps 3 and 4 for the case fd<fds*

Within the limits of the conditions stated above, the specifi c l monitor setpoints f or the two Steam Generator Blowdown monitors RM-L3 and l

l RM-L10 are detennined as follows:

l ODCM, V.C. Summer, SCEandG: Revision 3 (May 1982) 1.0-20 I

0015W/0015A

For RM-L3, Steam Generator Blowdown Discharge initial monitor, and for

( RM-L10, Steam Generator 81owdown Discharge final monitor:

cSa or cSb i gICg xB (23)

. 5 -

EC g = the isotopic concentration of the Steam Generator g S Blowdown effluent as obtained from the sum of the measured concentrations determined by the analysis required in the Radiological Effluents Technical Specifications Table 4.11-1.

NOT E: If no discharge is planned for this pathway, the monitor setpoint should be established as close to background as practical to prevent spurious alanns and yet ala rm should an inadvertent release occur.

6) The Turbine Building Sump and Condensate Demineralizer Backwash monitor setpoints are to be established independently of each other and without crediting dilution. They are to be based on the measured radionuclide concentrations of the effluent stream and are to ensure compliance with the limits of 10CFR 20, Appendix B, Table I, Column 2 prior to discharge.

For each effluent stream, a concentration factor CF must be calculated, measuring the nearness of approach of the undiluted waste stream to the specified limiting condition of the Maximum Permissible Concentration. That i s, ODCM, V.C. Summer, SCEandG: Revision 2 (April 1982) 1.0-21 0015W/0015A

. _ - - .. .~ -

I Cj CF . SF WC; (24) i

~ '

(' C i .

CFT = I T SF (25) gpq i T C .

CFD = E gp 7 SF (26) i D where: .'

C I

i =

the sum of the ratios of the measured concentration of MPC.

i -T 1

nuclide i to its limiti ng value MPC 9

for the Turbine Building Sump effluent.

C.

1 r.

=

the sum of the measured concentration of nuclide 1 (in

' MPC.1 D only) liquid to its limiting value MPC g for the Condensate Demineralizer Backwash effluent.

CF T

=

the concentration f actor for the Turbine Building Sump

,. Ef fluent.

CF D

=

the concentration f actor for the Condensate Demineralizer Backwash Ef fluent.

SF = the generic engineering safety factor used in Section 1.1.1, Step 2.

If CF < 1 calculate c and determine the actual monitor setpoint (cpm) from the calibration curve.

If CF > 1 no release may be made via this path. The release must either be delayed or diverted for additional processi ng .

Because of spurious alarms, these remedial steps may be required if the monitor setpoints are only near the actual concentrations being released.

0D04, V.C. Summer, SCEandG: Revision 3 (May 1982) 1.0-22 0015W/0015A

Within the above limitation, setpoints may now be calculated for the two effluent monitors. Because they are primarily sensitive to gama radiation, their setpoints will be based on the concentrations of gamma emitting radionuclides as follows: .

For Rt4-tB, Turbine Building Sump Discharge Monitor:

E cT 1 Cg CFT (27) 9 . T

, where:

EC g = The gamma isotopic concentration of the Turbine Building g T Sump effluent as obtained from the sum of the measured concentrations detennined by the analysis required in the Radiological Effluents Technical Specifications Table 4.11-1.

CF T

= The Turbine Building Sump Effluent Concentration Factor from equation (25).

NOTE: If no dischange is planned for this pathway, the monitor setpoint should be established as close to background as practical to prevent spurious alanns and yet alarm should an inadvertent release occur.

For RM-11, Condensate Demineralizer Backwash Dischanje Monitor:

E c0 1 Cg

  • CFD (28)

, .9 . D ODCM, V.C. Sumer, SCEandG: Revision 2 (April 1982) 1.0-23 001SW/0015A

where, ,

IC - The gamma isotcpic concentration of the Condensate g .D Demineralizer Backwash effluent (including solids) as obtained from the sum of the measured concentrations detennined by the analysis required in the Radiological Effluents Technical Specifications Table 4.11-1.

CF D

= The Condensate Demineralizer Backwash Effluent Concentration Factor from equation (26).

diOT E: If no discharge is planned for this pathway, the monitor setpoint should be established as close to background as practical to prevent spu rious ala rms and yet ala nn should an inadvertent release occur.

1.1.3.2 Steam Generator Blowdown Effluent Not Di rec t to Circ ulating Water ( Alternate Mode)

Equation (15) is again used to assure that effluents are in compliance with the aforementioned specification before dilution in the receiving water:

c<C_

where c and C are the generic terms discussed in Section 1.1.1. Because dilution is not considered in the setpoint calculation, it is not necessary to calculate maximum pennissible discharge flowrates or anticipated available dilution flow rate.

The functions of the four monitors whose setpoints are to be established are described in Section 1.1.3.1 above. The method for the detennination is as follows:

ODCM, V.C. Summer, SCEandG: Revision 3 (May 1982) 1.0-24 0015W/0015A

.- - . -, ~.

1) If a release is found to be pemissible, flow rate monitors

( for the active effluent streams (Steam Generator Blowdown - f ds' Turbine Building Sump - f dt, and Condensate Demineralizer -

fdd) may have their setpoints established at any operationally convenient value. Since 10CFR 20 is to be complied with before dilution, the flow rate of the discharges is irrelevant.

2) The Concentration Factor of equations (24) - (26) is - again used to ensure the pemissibility of the release:

CF =  ? i SF L YP Ci i

C '- .

CFT = t' T SF LVPCj

.i -

T t . .

CFo =

{ C. T SF

.i -0

~ ~

C .

= 7 SF.

CF3 (29) 1

-S in which all tems are defined in subsection 1.- l . 3.1 'and

! subscripts T, 0, and S refer respectively to the Turbine Building l

l Sump Effluent, the Condensate Demineralizer Backwash Effluent, and the Steam Generator Blowdown Effluent.

If CF < l' calculate e and detemine the actual monitor setpoint (cpm) from the calibration cuve.

i ODCM, V.C. Summer, SCEandG: Revision 2 ( April 1982) 1.0-25 0015W/0015A

If CF > 1 no release may be made via this path. The release must r- either be delayed or diverted for additional processing.

Because of spurious alanns, these remedial steps may be required if the monitor setpoints are only near the actual concentrations being released. -

Within the above limitation, setpoints may now be calculated for the four effluent monitors. Because they are primarily sensitive to gamma radiation,'their setpoints will be based on the concentrations of gamma emitting radionuclides as f ollows:

For Rl4-L8, Turbine Building Sump Discharge Monitor:

cT < ECg CFT (27) 9 .T where:

(

EC =

The gamma isotopic concentration of the Turbine Building g9 T Sump effluent as obtained from the sum of the measurea concentrations determined by the analysis required in the Radiological Effluents Technical Specifications Table 4.11-1.

CF T

= The Turbine Building Sump Ef fluent Concentration Factor from equation (25).

NOTE: If no discharge is planned for this pathway, the monitor setpoint should be established as close to background as

, practical to prevent spurious alanns and yet alarm should an inadvertent release occur.

0001, V.C. Summer, SCEandG: Revision 2 ( April 1982) 1.0-26 0015W/0015A- -

For RM-11, Condensate Demineralizer Backe: ash Discharge. Monitor: .

cD 1 ICg CFD 9 .D . (28) s

(

where:

IC = The gamma isotopic concentratio'n sof the- Condensate

.. g D Demineralizer Backwash effluent (including solids) as obtained from the sum of the measured concentrations detemined by the analysis required in the , Radiological

, Effluents Technical Specifications Table '4.11-1.

CF = The D Condensate Demineralizer Backwash Ef fluent Concentration Factor from equation (26).

HOT E: If no discharge is planned for thi s pathway, the monitor setpoint should be established as close to background as practical to prevent spurious slanns and yet alam should an inadvertent release occur.

For RM-L3, Steam Generator Blowdown Discharge initial monitor, and RM-L10, Steam Generator Blowdown Discharge final monitor:

cSa or cSb i jCg x CF3 (30)

- S where:

IC - The isotopic concentration of the Steam Generator

9 "b BI o.4down effluent as obtained from the sum of the measured concentrations detennined by the analysis required in the Radiological Ef fluents Technical Specifications Table 4.11-1.

CF 3

=

The Steam Generator Blowdown Effluent Concentration

{ Factor from equation (29).

(

0D04, V.C. Summer, SCEandG: Revision 3 (May 1982) 1.0-27 001SW/0015A

~

For Rf+11, Condensate Demineralizer Backwash Discharge Monitor:

c0 i E Cg i CFD (28) 9 .

0 where: -

EC - The gamma isotopic concentration of the Condensate g9D -

Demineralizer Backwash effluent as obtained from the sum of the measured concentrations detennined by the analysis required in the Radiological Effluents Technical Specifications Table 4.11-1.

CF D

= The Condensate Demieralizer Backwash Effluent Concentration Factor from equation (26).

NOTE: If no dischage is planned for this pathway, the monitor setpoint should be established as close to background as practical to prevent spurious alarms and yet alarm should an inadvertent release occur.

For RM-L3, Steam Generator Blowdown Dischage initial monitor, and RM-L10.

Steam Generator Blowdown Discharge final monitor:

cSa or cSb i IC gg x CF3 (30)

. S where:

EC - The isotopic concentration of the Steam Generator 9 9S Blowdown effluent as obtained from the sum of the measured concentrations determined by the analysis required in the Radiological Ef fluents Technical Specifications Table 4.11-1.

CF 3

The Steam Generator Blowdown Effluent Concentration '

Factor from equation (29).

0D04, V.C. Summer, SCEandG: Revision 2 ( April 1982) 1.0-27 0015W/0015A

NOTE: If no dischanje is planned for this pathway, the monitor setpoint should be established as close to background as practical to prevent spurious alarms and yet alann should an inadvertent release occur. -

ODCM, V.C. Sumer, SCEandG: Revision 2 ( April 1982) 1.0-28 0015W/0015A

FIGURE 1.0-1 EWPLE Call 8 RATION CURVE FOR LIQUID EFFLUENT MONITOR 10 o .

m,

, m q3: ,

, 1

, r -

_m_v.ca. m_, , m o q

, .,s 4 , -< .

m_ _ . . . -

m-

=m -sp5@%

1; .

.i .

W1T ;-W, , 4 : n-- WM -y-A#M.

~

m 4 4xMs n .Lt 12-4 e+ -m 4 - ;

r iic Aw z'

-c-- ,

, my 1 u == + . =Wan a m-1=i x + +1;ma #_t i= iw=:+ -

n- n ;=y= _:= a=<31

. l- - m J - l-l I-li ?_c. *-E4= = '

M4 5 . "-i ~8-i '-M "IN -

5I-~~ di MM315 FMf3=E' 3 'U#~=i= -a= I-d=- E ~

c y . .. . . > > ,

w -

- r , - T v-- a r.= m = . , , _- u i"M.,3..,a,ML) 3 - TE7=5h, , - g14 + un + Y+ 1

  • = = m- P M

~* -

. . * <-t -10 = =+3P = .i -J w  :

p.3 ,=E > r:u , h =w e +=a=n=c w nBi -

- E + =;-E ;i== ==i =m:=M m= ust s =-mg_g

=-

1%emb= hMWei1*1u +hE12aHeks ==N= =- Wi=mm**i ? m=" %__. . m -' = ' = ==-;#

~

p:=-_ .---

m . p ---

--q=ps .-.


,p

-i ~ ~F Tri .5 M .  : % . 4 %= i--nm  : --, - M.

10 .p-m www a.  ;

m3yMt m w,mn nv "uk: W:d*"e-tn?M, m. , M'r'g.m.p

':  : g-'* 'it 7E mub-M, g i

-- m 7

.i--ma ., .

"tb.b=.,?*.1-p' m:i_.

4 ys A e. w&- o,R. y J. = r+r n  ? W M Gn. M,- +++: m?nt% =t

.n .%, u.. n, , .

%.7  % m o. m. ---.w+ +=h m, -

et: - 5, . -

__ t z =c-. m4o + m- - -

=  :- -- = .=.y 32 b }Ni j# j amy3i b ; @ sigj. $$is!'-':-i-j:( 4-} ?r=-i-%. <I-MEi-Sii: fMji W MM'if fM}Ws--i-dTS-lim M d= iT _~j_ j . 23-

_ pa =.=- =._.2m..=.r t q =ig.... =_ = 553.=__ =n.m. . I_ 3gs..p- ;; ._ .3 =;m _=m.._------r_.-nc.-.n---+---=.;_-_.-...:g

-- -- -. a

- n4 .. n p M. i-d!h === Cm  %. -,,N em *I'C I ;. l ' 'M 'I'=- m - ,e e}J4 $ +

L2 hm

[ M f.e=5NNO mm.2dM-d'iN bI!i!D Wameu' m'

  • bM L i~'

h.m-4mE+d.ght P!iHMi r =Ifrii45 Midi-q$- j M it=:itir_i=!=#F- =Si_2'23 i===!iM #f =hi-iWiMw@it MiigM ' E i'- *=' ==#=_=f==f = (-

t
if =?i=F==-11Q _ m- _=.r._

~

t

_~_=t=-~*2-H a 1==iiz=. z . . . =-

== ; h-' -q=r*=5t_==_==..~ -~-~w_..~_

-M,--

. _ii_l:5_= Li.s_a=+_a=_.i.=.3__:iA - L -

- - -...- - - . i- - - - - - --  ?

i 7--. = =x=.__,m,y==_=

i ~- _

5-,_ ..- w 10 .

Imtuwe m .

m e ~ g = w #m_ m x - _

i 9, ~_ #u p,.4. ---U2 ~a*-4,"hh tt A @a . .  ? :t t L- 24_6 1_ -i 1-- 9 -t a m % % j M d,#; 1i !

+1cc . s.- u

.. -.~-- .:... d= .

==  :. ++- 4v 4 _ _. . . .

r -i

.==-v.y_,g

. 4a m _ . _ u .rm m y-_ g g= x

-a.

gu=--. 2-m 2______

,n.

W}., ...1i=, b3 2 yo m_n _

~ - - -

-c .. . -::= --

=_;_ ,

-m;-;=.;- ---a
_

H =IIMa *r= d =n =i= Ms =a2=ia r+= mci li=#hi=a=c- _ _ = u=v= 4-n -

r.~- :gr:-_ _;: s = == :=m +;

p~pv, =,-=-

fi= r=s:- 1q q ' a : q 2 :=E=. 2E =5 s=4 E= =H 5 ==- 2 Ei,= 3= :-E rm. 7- 1_ 7. . o T: 3 m% i - +: = o - :_=j 1-a: m

, p=", m. ..p+=

- +

. r r+- _ m . =_ m#rimvro.;_

+WWe 4 ___ ==F'=-N2m P a

e= -

4 = * -

-H r# 9 =*

_ -- *w=2c; M O"" 4 41 0 * ='

u U- - '

'_ y a--Eqiic--.+i-T=t:p C ./e4 z_gg C e .++ J ;.,_==_i -gi.c-j== =- :_ig m .g 1 i-p - 4 (.d - _=E-5-..=__r_z=;f g-tyy 4i-y ._- .i , ,

>u w % m- nt ti u s Mas=E . a==T 14*iM9m=tt  : S-~ -

=1-3E5_.spn- _;;= JW

== w =:= -

+ifMr-- ur

-,c : :

--- - r-._ a n. .t.J j rr -

m .- y=__m r-- - _r--

2 . v. . = . :.:=.=n--  ;  ::- _ r . ._ - z._._

~~-

,. u-  : .-. m /

-3 ~

~'

!U f-+ $ 1 -+- -+ - + . .i TT U, m. m -- -

T-Y, '

10 1 .m s n ;. ,- , . . -.

. n ax -

,,m-

.n T - - , - = .[

T e , j. .-e. L <L'._i-ow=wme==m_nwA;W L Ei T a= .-f 'if r=Fi I-..- a g t- 1 6 1 f.f .-

u

, 1 n L >.  %' t&M} ] . w- -m .v-i w p-m n v n 3. -'

L.

M- = rJ Lt+jisj g (1;=:g =: --d.J f-Lj =W-- =J : i r . =i.

=E- - r i =J J - j-f i _:r E. -

~

--M =--='=E ;;-;z214/st=i=4 ;r.;r:=_1 rJ .

- ~

2~ '2 #- # - ~ -

t j {}' ._~_~ _ _ . ' __-~'.~-._._-__-'~~U,L'_=_.=.=_.=G_3__;;=.

C 4' - _- j . _3.__E.5.-i. =. 3_ :-i, ri. -d.ct _+ =_-

_- _ =_4.' =4_=3 . .I ~3 f_ =m ' _ -:' t *i. r - s .E =.._3=1f..i .l. 'l- ( .

'1_1-1 m

o m4 o r- r H- .= r -ra ?' il e c 1 c- Wam m@=:y-f - _:: r-m:=m mT w u t:

MwM. U.HnwH_  ::j_;=r r-em-- -_-h+

a=.n=

M T=M

[ u 7;- -

2- 1 1 -- =i= -4

.c;ftr=4=_g C  : =m _ i=5 4 :- *-'_pej=i - - x._ w^t-

~

= E: ===: = m=j.R o = ==u = v n2 2=jr .- e . = = -Jejz.5 b-EI= ==== -

m2=--f; ====~ == ==L==2--" ===

w ==+2: 1=:,u= = . _- = . =:: 2__  %; A ===1=4:: ==- .

u -=_,n=, . _=,_n_

=-

=w mr==. .+.___a=1=isy

_;.; __ _ a_ n _=. =. -T -

. _--,t. .::1_. su - we

,_r_ _ . _ _ .

._.;_=. _ _ . - . _ _ . . , . .. f, 1:12:.  ; w -n w r f Fih]---.i._.c= f i u.i.r::

10-u p;.,,4,3; y gw&.~4_M w.k=.

.ggggg wm . m.

y g .

u

g.g .

m

;g a..

s.wS_. -% ~...g @q g z4E..a_n+

. .&ngW.".h .Tb W._,n_, m-wW.. e--.-- - M_ . . y g_.y k.t i . . .a. i_K. .+1 _G 'j .

y

'~i *4_yp.123

.JE.;M-$ Si- jg;N-3 & 3fi55_1S4-i-5 5*Sfi[i$t-I $ i-'~~- 5. d*Fi-/ D I :WD@-N l=:E$55 ', -~~- ~ ~ ~

~ ' '

lF * =--i- -55E~EITi M

=: 2 t_r_es.s_ i.s. . =. r

~' - -

~ ~ -d pin!. =- . - z 5.-1=_s__z__a _d2 :Ei! _ - . _ . - - _ - _ .

E,. M'iJ -a_.. .a_l"..".. "E_-!, ~ ~b7. "_Ja"E_d.] x___2,'F95%_.n'"_D

-d n ,-Q-lb5.,*=M 4* 15N N ' ) _'I _ -' "

N .'

. '. .4.N ,- t- b_A h2d &$il AINiNA $_' =.-m

-4:4-'

wN.*-Ied's n--.-~

~1 =- - + =

m%,- -_ ._ _n. _F-t a

Ji i-i f- P12 g.

- --+ - - .J

. _ ;-~: _1: Xi i :,:.Z~1 -- _:-ig siH . . - ---1 .q+* m-t z1 az -m'u*a ' - an s x=_

- ,4:nu _,sv*-rf

-.g.ge==

-1.r"u4 3:rj-hu.-2_... t *8

., -.-,; w:9 ---- - -

m u ; _; _z. ;= x =.xq= nr _-

1==t .a =-==

- -----.,r

..A. _zf_ =.g.. m.-g___ _$_ ,C....

_,3F=_ ~ rt----

- : n--t =:--__ _. zm.__..m:1 .. - - . _ _ , _ -

. _ z:r ____. --

.p---+-- p -  :=;.m . - -. -

= m

=- ~ _.--==c -

- w. +._,

J w -

_3  ; -

- .g .,.. _ 3

. +

't

m. sdi~d

-3*=: T-U$.5N.

IN-uttin. f:- W=4- scr-G

d. . g um:w L .

MMNwnik ]mN 4 --

N a :+ r= ! AM'V :

..u

=

.e n: ; DMM,,d.:=N -

, n=n

' lit.i F ir

^in!E!M_W -;f

-i

U:. M+L...

m

=

^ wSp e=o I.z 44+ ritii5' i3E:=b N= = ..

O

=-=n

~

S-

%_ -. _. l' i- .;' K. .i*-j } 2 =. ..-

- 22

. . . 4 =.--l-f-E=i. =..r =. .t?a- i ! Hii,%. 7 ;)= M ;j_*% -j ( y .

c:=:_.2 m

.=;rrJ=-

._=:_i= 3i

= M----

gg,.

-T--

~-'-FE o.j y ;a gn mi r#9 ,32;WwM m ..

a Aa %_t v .v ..e _p w e3 ,' .r s- aww r

w ,

qe .1 %wa_a._ _d;.Aq--- .a. 4

- g% ..-

%g pEq. . w- v. s-m w me = =  ; w n-g .::cqinm is=imm ,

6- &FE=m mha# e= wis.eWa=:mu xi -  ;

=g u . sp y wsu.= qi 2M!ss,5 s tri=mgav h -MF-At. Ed IPEiEEl5sflDMifb_id ui 444, + i!M5lEdi 9.M f# ~2tkt%MiE0=9.- ik 10., - . h. g F..iW_ig._._ E. i@.3.g:j.$_ +H.jT[r[4j[i . . .

j l; Q.. Ej.g..i.qsfH,Jj:_ign- . . .v.. 3.:,rg_jg$,g m 2

10* 10 10' 10' 10' 10' Count Rate (cpm)

ODCM, V.C. Sumer, SCEandG: Revision 2 (foril 1982) 1.0-29 mmumuu

l.2 Dose Calculation For Liquid Ef fluents

('

The method of this section is to be used in all cases for calculating doses to individuals from routine liquid effluents. Four notes at the end of the section confirm the values which certain parameters are to be assigned in some special cases.

The dose contribution from all radionuclides identified in liquid effluents released to unrestricted areas is calculated using the following expression:

p .

DT =[

A.

1T L At C F

$ - ),1 1 il 1 (31) where:

D =

the cumulative dose commitment to the total body or any organ, T, m

from the liquid effluents for the total time period I l=1 At)

  • in mrem (Reference 1).

=

At) the length of the lth time period cver which Cj ) and F) are averaged for all liquid releases, in hours.

C) g

=

the average concentration of radionuclide, i, in undiluted liquid effluent during time period from any liquid At) release, in uCi/ml.

A.

IT

= the site related ingestion dose commitment factor to the total body or any organ T for each identified principal gamma and beta emitter listed in Table 1.2-3 in mrem-<nl per br-uCi.

A j7 =K g ((V,/0,) + U pBFj ) DFj7 (32) s ODCM, V.C. Summer, SCEandG: Revision 2 ( April 1982) 1.0-30

. 0015W/0015A

I Fj = the near field averagm dilution factor for C gg during any liquid effluent release. Defined as the ratio of the maximum j undiluted liquid waste flow during niease to the product of 7 the average flow from the dischanje structure to unrestricted '

receiving water times Z.

- (average undiluted liquid waste flow) .

(average flow from the dischartje structure) x (Z) where:

Z = ,1 - applicable f actor when no additional dilution is to be considemd. (Reference 1; Section 4.3)

K o

= units conversion factor 1.14 x 10 5 6

= ((10 pCi) x (10 ml) . (87@ h_y_))

p Ci 1 . yr U

F

= 21 kg/yr, fish consumption (adult). (Reference 3)

BF 4

- Bioaccumulation Factor for nuclide i, in fish, pCi/Kg per pCi/1, from Table 1.2-1, (taken from reference 3, Table A-1).

DF j7 =

[bse conversion factor for nuclide i, for adults in preselected o rg an, t , in mrem /pCi, from Table 1.2-2 (taken from reference 3, Tabl e E-11) .

Ug = 7301/yr, water consumption (adult). (Reference 3)

D =

Dilution Factor from the near field area within one-quarter mile of the release points to the potable water intake for adult water consumption; for V. C. Summe r, D, = 1.

(Reference 1)

NOTE 1: If radioactivity in the Monticello Reservoir (Cir) becomes

> the LLD specified in Radiological Effluent Technical Specification, Table 4.11-1, that concentration must be included ODCM, V.C. Summer, SCEandG: Revision 3 (May 1982) 1.0-31 0015Wl,015A

in the Dose detennination. For this part of thm dose calculation, Fj = 1 and atj = the entire time period for which the dose is being calculated.

NOTE 2: During periods when the Circulating Water Pumps are not in opera-tion, the possibility of leakage of activity from the Industrial Waste System will be accounted for as follows. Sampling of the liquid in the Sanita ry and Indus trial Waste System will be initiated, and the measured concentrations of radionuclides will be used in the dose calculations with F) = 1 and at j = the entire time period for which the dose is being calculated.

NOTE 3: During periods when the Circulating Water Pumps are in operation, any releases to the Sanitary and Industrial Waste System are to be credited with dilution in Circ ulating Water for dose

, calculation purposes, even though such dilution was not claimed in the setpoint calculation. When taken in union with the note above, this procedure results in some overestimation of dose to the population because discharg es made to the Sanitary and Indus trial Waste System just before loss of Circulati ng Water will be counted twice in the dose calculation process.

l NOTE 4: If radioactivity in the Service Water becomes > LLD as determined l

Ef fluent Technical by the analysis required by Radiological Specification, Table 4.11-1, that concentration must be included l in the Dose detennination. For this part of the dose calculation, F j = 1 and at j = the entire time since the last l

l Service Water sample was taken.

ODCM, V.C. Summer, SCEandG: Revision 3 (May 1982) 1.0-32 001SW/001SA 1

~

i L

TABL E 1. 2-1 BI0 ACCUMULATION FACTORS *

(pCi/kg per pCi/ liter)

ELEFENT FRESHWATER FISH H 9.0E-01 C 4.6E 03 NA 1.0E 02 P 1.0E 05 CR 2.0E 02 MN 4.0E 02 FE 1.0E 02 C0 5.0E 01 NI 1.0E 02 CU 5.0E 01 ZN 2.0E 03 BR 4.2E 02 RB 2.0E 03 SR 3.0E 01 i Y 2.5E 01 ZR 3.3E 00 NB 3.0E 04 MO 1.0E 01 TC 1.5E 01 RU 1.0E 01 RH 1.0E 01 TE 4.0E 02 1 1.5E 01

' CS 2.0E 03 BA 4.0E 00 LA 2.5E 01 CE 1.0E 00 PR 2.5E 01 ND 2.5E 01 W 1.2E 03 NP 1.0E 01

  • Values in Table 1.2-1 are taken from Reference 3, Table A-1 OgV.gSummer, SCEandG: Revision 2 ( April 1982) 1.0-33

TABLE 1.2-2

( Page 1 Of 2 ADULT INGESTION DOSE FACTORS *

(mrem /pCi ingested)

NUCLILE BONE LIVER T.80CY THvR0! D - KIONEY LUNG G1-LLI H 3 NO DATA 1.05E-07 t.C5E-07 1.05E-07 1.05E-07 1.05E-07 1.05E-07 C 14 2.84E-06 5.68E-07 5. 6 8 E-0 7 5.68E-07 5.68E-07 5.68E-07 5.68E-07 NA 24 1.70E-06 1.70E-06 1.70E-06 1. 70E-06 1.70E-06 1.70E-06 1.70E-06 P 32 1.9fE-04 1.20E-05 7.46E-06 NO DATA NC OATA NO DATA 2.17E-05 CR 51 NO DATA NO CATA 2.6oE-09 1.59E-09 5.86E-10 3.53E-09 6.69E-07 MN 54 NO DATA 4.57E-06 8. 72 E-0 7 NO DATA 1.36E-06 NO DATA 1.40E-05

== _- ---..

MN 56 NO DATA 1.15E-07 2.04 E-0 8 NO DATA 1.46E-07 NO DATA 3.67E-06 rE 55 2.75E-06 1.90E-06 4.4 3 E-0 7 NO DATA NO DATA 1.06E-06 1.09E-06 FE 59 4.34E-06 1.02E-05 3.91E-06 NO DATA NO DATA 2.85E-06 3.40E-05

--_-------_.-- .- ____=

CD 58 NO DATA 7.456-07 1.67E-06 NO DATA NO DATA NO DATA 1.51E-05 CO 60 NO DATA 2.14F-06 4.72C-06 NO DATA NO DATA NO DATA 4.02E-05 NI 63 1.30E-04 9.01E-Oo 4.36E-06 NO DATA NO DATA NO DATA 1.88E-06

= -

NI 65 5.28E-07 6.86E-08 3.13E-08 NO DATA NO DATA NO DATA 1.74E-06 CU 64 NO DATA 8.33E-08 3. 91 E-0 8 NO DATA 2.10E-07 Nn DATA 7.10E-06 ZN 65 4.84E-06 1.54E-05 e.96E-06 NO DATA 1.03E-05 NO DATA 9.70E-06


- .- ---------------------------------- -- ------- =_---

ZN 69 1.0 3 E-0 8 1.97E-08 1.37E-09 NO DATA 1.28E-08 NO DATA 2.96E-09 84 83 NO DATA NO DATA 4. 02 E-0 8 NO DATA NO DATA NO DATA 5.79E-08 BR 84 NO DATA NO DATA 5.21E-08 NO DATA NO DATA NO DATA 4.09E-13 BR 85 NO DATA NO DATA 2.14E-09 NO DATA NO DATA NO DATA LT E-24 RS 86 NO DATA 2.11E-05 9. 8 3 E-0 6 NO DATA NO DATA NO DATA 4.16E-06 RB 88 NO DATA 6.05E-08 3. 21 E-0 8 NO DATA NO DATA NO DATA 8.36E-19


-_=----.-.==--- ------_---_-----__.--------- __--==__ - .--

RB 89 NO DATA 4.01E-08 2.82E-08 NO DATA NO DATA NO DATA

  • 2.33E-21 SR 89 3.08E-04 NO DATA 8.84E-06 NO DATA NO DATA NO DATA 4.94E-05 SR 90 7.58E-03 NO DATA 1. 86 E-0 3 NO OATA NO DATA NO DATA 2.19E-04

SR 91 5.67E-06 NO DATA 2.29E-07 NO DATA NO DATA NO DATA 2.70E-05 SR 92 2.15E-06 NO DATA 9.30E-08 NO DATA NO DATA NO DATA 4.26E-05 Y 90 9.62E-09 NO OATA 2.5aE-10 NO DATA NO DATA NO DATA 1.02E-04 Y 91N 9.09E-11 NO DATA 3.52E-12 NO CATA NO DATA NO DATA 2.67E-10 Y 91 1.41E-07 N3 OATA 3.77E-09 NO DATA NO DATA NO DATA 7.76E-05 Y 92 8.45E-10 NO CATA 2.47E-11 NO DATA NO DATA NO DATA 1.48E-05

- = --_ ==_ . ---.--.....----

Y 93 2.68E-C9 NO DATA 7.40E-11 NO DATA NO DATA NO DATA 8.50E-05 ZR 95 3.04E-08 9.75E-09 6.60E-09 NO DATA 1.53E-08 NO DATA 3.09E-05 ZR 97 1.68E-09 3.39E-10 1.55E-10 NO DATA 5.12E-10 NO DATA 1.05E-04


-----..-===- =___=-

N8 95 6.22E-09 3.46E-09 1.86E-09 NO DATA 3.42E-09 NO DATA 2.10E-05 MO 99 NO DATA 4.31E-06 8. 2 0 E-0 7 NO DATA 9.,76E-06 NO DATA 9.99E-06 TC 99M 2.47E-10 6.98E-10 8.89E-09 NO DATA 1.06E-08 3.42E-10 4.13E-07 l

TC101 2.546-10 3.66E-10 3. 5 9 E -0 9 NO DATA 6.59E-09 1.87E-10 1.10E-21 4U103 1.85E-07 NO DATA 7. 9 7 E -0 8 NO DATA 7.06E-07 NO DATA 2.16E-05

' RU105 1.54E-08 NU DATA 6.08E-09 NO DATA 1.99E-07 NO DATA 9.42E-06

__=------ _

l t

l

  • Values in Table 1.2-2 are taken from Reference 3 Table E-11 ODCM, V.C. Summer, SCEandG: Revision 2 ( April 1982) 1.0-34 aauenmaues

TABLE 1.2-2 (Continued)

{ Page 2 of 2 hbCLICE *0NE Liv 24 T . 6 0 CY THY 901C K10NEY LUNO G1-LLI EUIC6 2.75E-06 NO DATA 3.48E-07 NO DAT A 5.31E-06 NO DATA 1.78E-04 AGilor 1.o0E-07 1.68E-07 8.79E-08 NO DATA 2.91E-07 NO DATA 6.04E-05 TE125* 2.69E-06 9.71E-07 3. 59 E-0 7 8.06E-07 1 09E-05 NO DATA 1.07E-05 TE127= 6.77E-06 2.42C-06 8. 2 5 E -0 7 1.73E-06 2.75E-05 NO DATA 2.27E-05 TE127 1.10E-07 3.95E-08 2. 3 8 E-0 8 8.15E-08 4.48E-07 NO DATA 8.68E-06 TE129"* 1.15E-05 4.29E-06 1.82E-06 3.95E-06 4.80E-05 NO DATA 5.79E-05 TE129 3.14E-08 1.18E-08 7.6)E-09 2.41E-08 1.32E-07 NO DATA 2.37E-08 TE131M 1.73E-06 8.46E-07 7. 0 5 E-0 7 1.34E-06 8.57E-06 NO DATA 8.40E-05 TE131 1.97E-08 8.23E-09 6. 2 2 E-0 9 1.62E-08 S.63E-08 NO DATA 2.79E-09

.-.....--.. - ..- .....----.---------- .. ...= = - =--=----._= =___

IE132 2.52E-06 1.6 3E-06 1. 5 J E-0 6 1.80E-06 1.57E-05 NO DATA 7.71E-05 t 130 7.56E-07 2.2 3E-06 8.80E-07 1.89E-04 3.48E-06 NO DATA 1.92E-06 I 131 4.16E-06 5.95E-06 3. 41E-0 6 1.95E-03 1.02E-05 NO DATA 1.57E-06 1 132 2.03E-07 5.43E-07 1.90E-07 1.90E-05 8.65E-07 NO DATA 1.02E-07 1 133 1.42E-06 2.47E-06 7. 5 3 E-0 7 3.63E-04 4.31E-06 NO DATA 2.22E-06 1 134 1.06E-07 2.88E-07 1.03 E-0 7 4.99E-06 4.58E-07 NO DATA 2.51E-10

== _ .--

1 135 4.43E-07 1.16E-06 4.28E-07 7.65E-05 1.86E-06 NO DATA 1.31E-06 CS134 6.22E-05 1.48E-04 1. 21 E-0 4 NO DATA 4.79E-05 1.59E-05 2.59E-06 C5136 6.51E-06 2.57E-05 1. 8 5 E -0 5 NO DATA 1 43E-05 1.96E-06 2.92E-06 05g37 7.97E-05 1.09E-04 7.14 E-0 5 NO DATA 3.70E-05 1.23E-05 2.11E-06 C513e 5.52E-08 1.09E-07 5.40E-08 NO DATA 8.01E-08 7.91E-09 4.65E-13 8A139 9.70E-08 6.91E-11 2. 8 4 E -0 9 NO DATA 6.46E-11 3.92E-11 1.72E-07 OA140 2.03E-05 2.55E-08 1. 3 3 E-0 6 40 DATA 8 67E-09 1 46E-08 4.18E-05 RA141 4.71E-08 1.56E-11 1.59E-09 NO DATA 3.31E-11 2.02E-11 2.22E-17 BA142 2.13E-08 2.19E-11 1.34E-09 NO DATA 1.85E-11 1.24E-11 3.00E-26

= _-------

...-....--.....--------------- -- --=.

LA140 2.S00-09 1.262-09 3.33C-10 NO DATA NO DATA NO DATA 9.25E-05 LA142 1.28E-10 5.825-11 1.45E-11 NO DATA NO DATA NO DATA 4.25E-07 CE141 9.36E-09 6.33E-09 7.18E-10 NO DATA 2 94E-09 NO DATA 2.42E-05 CE143 1.65E-09 1.22E-06 1.35E-10 NO OATA 5 37E-10 NO DATA 4.56E-05 CE144 4.A8E-07 2.04E-07 2.62E-08 NO DATA 1 21E-07 NO DATA 1 65E-04 PR143 9.20E-09 3.69E-09 4 56E-10 NO DATA 2.13E-09 NO DATA 4.03E-05

- - - - - - - - - - - - - - _ - - - - - - - - - - = = = =

. = - - - - - - -----.-------

PR144 3.01E-11 1.25E-11 1.5sE-12 NO DATA 7.05E-12 NO DA1A 4.33E-18 N0147 6.29E-09 7.27E-09 4.35E-10 NO DATA 4.25E-09 NO DATA 3 49E-05 h 197 1.03E-07 8.61E-08 3. 01 E-0 8 NO DATA NO DATA NO DATA 2.82E-05

- - . . = _ - - - = - ==

=========-__-----

NP239 1.19E-09 1.17E-10 6. 4 5 E-1 1 40 DATA 3.65E-10 NO DATA 2.40E-05 ODCM, V.C. Summer, SCEandG:

-nan ~----nn Revision 2 ( April 1982) 1.0-35

l T/SLE 1.2-3 1 SITE RELATED INGESTION DOSE COMMITMENT FACTOR, A. *

< IT

( (mrem /hr per uCi/ml)

NUCLIDC: 80NC LIVCR T.80DY '

THYR 0!D: K!DNCY LUNG . GI-(L!

N-3 :e.eeC+ee:5.96C+es:e.96C+es:e.96C+ee:e.96C+ee:8.96C+8e:e.96C+ee:

C-14 :3.15C+04:6.30C+03:6.38C+83:6.2eC+03:6.30C+e3:6.3eC+e3:6.32C*e3:

wa-24 :5.deC+02:5.40C+02:5.48C+02:5.40C+e2:5.40C+02:5.48C+02:5.46C-02:

P-32 :4.62C+07:2.87C+e6:1.79C+06:8.eeC+ee:8.eeC+00:8.seC+ee:5.2cC+06:

Cr-51 :8.eeC*ee:8.eeC+08:1.49C+08:8.94C-81:3.29C-01:1.98C+00:3.76C+02:

. en-54 :e.00C+08:4.76C+03:9.88C+02:9.seC+08:1.42C+03:6.GeC+00:1.46C+04:

mn-56 :e.eeC+ee:1.2eC+e2:2.12C+et:8.eeC+ee:1.52C+02:8.eeC*ee:3.82C-e3:

re-55 :8 S7C+02:6.13C+02:1.43C+02:0.BBC+00:0.eeC+ee:3.42C+02:3.52C+02:

. re-59 l1.40C+03:3.29C+03:1.26C+03:0.eeC+00:8.eeC+00:9.19C+02:1.18C+ed:

Co-58 :8.seC+00:1.51C+e2:3.39C*e2:0.eeC+08:0.00C+00:0.eeC*ee:3.06C+03:

Cp-6e :8.eeC+ee:4.34C+02:9.58C+e2:8.eeC+ee:8.seC+ee:e.eeC+ee:8.16C+03:

Ns-63 :4.19C+84:2.91C+03:1.41C+03:e.eeC+ee:8.eeC+ee:0.eeC+00:6.87C+e2:

. N6-65 :1.7eC+e2:2.21C+01:1.81C+01:e.80C+00:0.SeC+00:9.80C+8e:5.61C+e2:

. Cu-64 l0.eeC+es: 1.69C+01:7.93C+00:0.eeC+ee!4.26C+01:6.80C+00:1.44C+03:

2n-65 :2.36C+04:7.5eC+ed 3.39C+04:8.eeC+08:5.82C+04:8.eeC+es:4.73C+ca:

2n-69 l5.82C+et's.62C+01:6.67C*ee:0.00C+ee:6.24C+01:0.eeC+ee:1.44C+ci:

. er-83 :e.eeC+ee:8.seC+00:4.57t+01:8.eeC+ee:0.eeC+00:e.eeC+ee:6.3eC+01:

3r-84 :8.eeC+00:8.00C+ee:5.67C+01:8.eeC+08:9.eeC+ee:0.eeC+ee:4.45C-ed:

er-85 :8.80C+00:8.00C+ee:2.33C+00:8.80C+00:8.20C+ee:0.seC+ee:1.89C-15:

. Re-86 te.eeC+es:1.83C+85:4.79C+04:8.00C+00:0.eeC+08:0.00C+es:2.83C+84:

Re-88 fe.BOC+20 2.95L+02:1.56C+02:8.eeC+ee:e.eeC+00:8.00C+ee:4.e7C-09:

Re-89 :e.00C+ee:1.95C+02:1.37C+eZ:0.00C+eete.eeC+ee:0.00C+00:1.13C-11:

57-09 4.78C+04:8. 00 C + 08 : 1. 37 C+e 3 : 2. e e C+00 : 8. ee C+e s ; 8. e eC+ e e :7.66C+03:

. 57-90 :1.18C+e6:8.eeC+00:2.BBC+e5:0.eeC+ee:8.00C+00:9.82C+ee:3.42C+04:

5e-91 :8.79C+e2:9.eeC+00:3.55C+et;e.eeC+ee:0.eeC+ee:e.eeC+08:4.19C+03:
5r-92 :3.33C+02:8.00C+00:1.44C+01:0.00C+es:8.eeC+00:9.00C+88:6.60C+03:
Y-90 :1.30C+88:8.seC+00:3.69C-82:8.eeC+ee:8.BBC+ee:0.eeC+98:1.46C+04:
Y-91m 11.30C-02:e.00C+00:5.edC-ed:8.00C+e8:8.eeC+eele.eeC+ee:3.e2C-82:
Y-91 12.02C+et:8.00C+08:5.39C-81 8.80C+0s:8.eeC+09 8.eeC+ee:1.11C+84:
Y-92 *1.21Cael:8.eeC+88:3.53C-83:8.80C+00:8.eeC+e8:8.SeC+8e:2.12C+e3:
Y-93 l3.83C-et:8.00C+00:1.86C-02:0.00C+ee:8.80C+08:8.eeC+00:1.22C+84:
Zr-9 5 :2.77C+08:8.00C-et:6.81C-81:0.eeC+00:1.39C+08:e.eeC+ee:2.e2C+83:

2r-97 :1.53C-et:3.89C-82:1.41C-82:9.eeC+ee:4.67C-82:8.eeC+08:5.57C+83:

No-95 :4.47C+e2:2.49C+e2:1.34C+e2:e.8eC+00:2.46C+e2:0.seC+88:1.51C+86:
Mc=99 te.eeC+00:4.62C+22:8.79C+et:8.eeC+88:1.05C+03:9.eeC+es:1.87C+83:

7c-99e :2.94C-e2:9.32C-02:1.06C+00:8.00C+08:1.26C+08:4.87C-82:4.92C+81:

7t-101 3.83C-82:4.36C-82:4.28C-01:8.90C+ee:7.85C-81:2.23C-eZ:1.31C-13:
Ru-103 :1.99C+01:8.eeC+08:8.54C+es:8.eeC+0817.57C+01:8.eeC+88:2.31C+03:

ev-105 :1.65C+09:8.80C+ee:6.52C-et:8.seC+es:2.13C+01:8.eeC+ee:1.etC+43:

RW-186 :2.95C+02:8.8eC+0e:3.73C+01:8.88C+ee:5.69C+02:e.eeC+ee:1.91C+e4: >

ag-11em:8.82C+00:1.23C+et:7.32C+00:8.8eC+00:2.42C+01:8.eeC+ee:5.e3C+03:

Te-125m:2.79C+03:1.81C+03:3.74C+e2:8.39C+e2:1.13C+04:8.00C+00:1.11C+04:
Te-127m:7.05C+03:2.52C+03:8.59t+02:1.89E+03:2.86C+04:8.eeC+88:2.36t+84:

Te-127 :1.14C+e2:4.11C+81:2.deC+01:8.deC+01:4.66C+02:8.eeC+08:9.03C+03:

. Te-1294!1.20C+04:4.47C*e3:1.89C+03:4.11C+03:5.00C+es:8.00C+ee:6.J3C+ed:

Te-129 l3.27C+01:1.23C+01:7.96t+00:2.51C+01:1.37C+e2:8.eeC+e8:2.47t+et:
Te-131m:1.80C+03:8.81C+02:7.34C+02:1.39C+03:8.92C+03:e.eeC+08:8.74C+04:
.Te-131 2.85C+01:8.57C+08:6.47C+es:1.69C+et:8.98C+et:8.eeC+08:2.90C+88:
Te-132 2.62C+03:1.70C+03:1.59t+e3:1.87C+83:1.63C+04:0.00C+00:8.02C+04:
1-13e 89.01C+01:2.66C+02:1.85C+02:2.25C+ed:4.15C+e2:e.80C+ee:2.29C+02:
1-131 4.96t+02:7.89C+02:4.06C+82:2.J2C+05:1.22C+03:8.seC+88:1.87C+02:
1-132 :2.42C+61:6.47C+et:2.26C+et:2.26t+e3:1.83C+e2:e.eeC+es:1.22C+01:
1-133 :1.69C+eZ:2.94C+ez:8.97C+et:4.32C+04:5.13C+02:9.00C+88:2.64C+02:
1-134 :1.26C+81:3.43C+et:1.23C+01:5.94C+ez:5.46C+et:e.seC+ee:2.99C-82:

I  : 1-135 25.28C+01:1.3eC+02:5.leC+81:9.11C+03:2.22C+e2:8.seC+88:1.56C+02:

(  : Cs-134 3.83C+85:7.21C+05:5.89C+e5:8.eeC+88:2.33C+05:7.75C+ed:1.26C+ed:

Cs-136 :3.17t+04:1.25C+05:9.01C+04:8.SeC+00:6.97C+04:9.55C+03:1.42C+84:
Cs-137 :3.80C+05:5.31C+e5:3.48C+e5:8.80C+ee:1.80C+05:5.99C+94:1.03C+04:
Cs-138 12.69C+82:5.31C+02:2.63C+02:5.eeC+e9:3.9eC+02:3.85C+et:2.27C-83:
ea=139 9.eeC+ee:6.41C-83:2.64C-91:8.88C+08:5.99C-83:3.64C-83:1.60C+et:
es-ide 1.88C+03:2.37C+00:1.23C+02:8.seC+ee:8.85C-81:1.35C+ee:3.88C+e3:
ea-141 4.37C+88:3.3eC-03:1.4et-et:8.seC+ee:3.87C-03:1.07C-03:2.06C-es:

I  : ea-142 :1.99C+08:2.83C-03:1.24C-et:8.00C+00:1.72C-03:1.15C-83:2.78C-10:

l l La-148 13.50C-et:1.eeC-et:4.76C-82:e.eeC+00:8.seC+ee:0.eeC+98:1.32C+04:

La-142 :1.83C-82:e.33C-03:2.e7C-83:0.00C+08:8.eeC+ee:e.seC+ee:6.88C+et:
Ce-141 te.91C-et:5.42C-01:6.15C-02:e.80C+88:2.52C-et:8.80C+88:2.87C+83:
Ce-143 l1.41C-81:1.edC+02:1.16C-82:e.seC+ee:4.60C-82:9.80C+00:3.9eC+83:

I

Ce-144 :4.18C+01:1.75C+01:2.24C+08:E 18C+ee:1.edC+01:9.eeC+00:1.41C+84:

!  : Pr-143 :1.32C+ee:5.2SC-81:6.52C-82:e.seC+ee:3.e5C-et:e.eeC+00:5.77C+43:

Pe-144 :4.31C-03:1.79C-e3:2.19C-es:e.SeC+ee:1.81C-e3:e.eeC+ee:6.15C-te:
me-147 :9.seC-81:1.edC+ee:6.22C-82:9.eeC+ee:6.8eC-el:e.80C+es:4.99C+03:
W-187  : 3. 8 4 C+ 02 : 2. 55 C+ 0 2 : 8. 9 0C+01 : 8. seC + 0 0 : 8. 0 8 C+ 8 8 : 8. S e C+ 88 : e . 3 4 C
  • e d :

, . =.-239 :1.2eC-et:1.25C-e2:6.91C-e3:e.seC+ee:3.91C-e2:e.eeC+0s:2.57C+.3:

1

  • Qsiculated using equation (31) and Tables 1.2-1 and 1.2-2.

ODCM, V.C. Summer, SCEandG: Revision 2 (/pril 1982) 1.0-36 mveuwrowcum

1.3 Definitions of Liquid Effluent Parameters Tenn Definition Section of Initial Use A j7 = the site related ingestion dose commitment factor to the 1.2 total body or any onjan T for each. identified principal gamma and beta emitter listed in Table 1.2-3 in mrem-ml per br-uC1.

8 = adjustment f actor which will allow the setpoint to be 1.1.3.1 established in a convenient manner and to prevent spurious alann s.

BF j = Bioaccumulation Factor for nuclide i, in fish, 1.2 pCi/Kg per pCi/1, from Table 1.2-1.

C = the effluent concentration limit (Specification 3.11.1.1) 1.1.1 implementing 10CFR 20 for the site, in uCi/ml.

. C a

= the effluent concentration of alpha emitting nuclides 1.1.1 observed by gross alpha analysis of the monthly composite sample.

C f

= the measured concentration of Fe-55 in liquid waste as 1.1.1 determined by analysis of the quarterly composite sample.

C g

- the effluent concentration of a gamma emitting nuclide, g, 1.1.1 observed by garrrna-ray spectroscopy of the waste sample.

C 4

= the concentration of nuclide, i, as detennined by the 1.1.1 analysis of the waste sample.

C jj = the average concentration of radionuclide, i, in 1.2 undiluted liquid effluent during time period at) from any liquid release, in pCi/ml.

ODCM, V.C. Summer, SCEandG: Revision 2 (April 1982) 1.0-37 0015W/0015A -

Term Definition Section of Initial Use

(

C jp =

the concentration of radionuclide i in the Monticello 1.1.1 Reservoir at the intake to plant systems.  !

C s

= the concentration of Sr-89 or Sr-90 in liquid wastes 1.1.1 as detennined by analysis of the quarterly composite sample.

C t

=

the measured concentration of H-3 in liquid waste 1.1.1 as detennined by analysis of the monthly composite.

c = the setpoint, in pCi/ml, of the radioactivity monitor 1.1.1 1 measuring the radioactivity concentration in the effluent line prior to dilution and subsequent release.

c B

= the monitor setpoint for Rl4-L7, the Nuclear. Blowdown 1.1.1 Monitor Tank dischange line monitor.

cC

= the monitor setpoint for RM-L9, the combined Liquid Waste 1.1.1 Processing System and Nuclear Blowdown System effluent dischange line monitor.

C D

= the monitor setpoint f or Rl4-L11, the Condensate Demineral- 1.1.3.1 izer Backwash discharge line monitor.

C M

= the monitor setpoint for RM-LS, the Waste Monitor Tank 1.1.1 dischange line monitor.

I c

Sa

= the monitor setpoint for RM-L3, the initial Steam 1.1.3.1 Generator Blowdown Ef fluent line monitor.

\ .

l C Sb

= the monitor setpoint for RM-L10, the final Steam Generator 1.1.3.1 j B1owdown Ef fluent 1ine monitor.

cT

= the monitor setpoint for RM-L8, the Turbine Building Sump 1.1.3.1 l Ef fluent line monitor.

. ODCM, V.C. Summer, SCEandG: Revision 2 ( April 1982) 1.0-38 0015W/0015A

__ ~

Term Definition Section of Initial Use CF D

= the Condensate Demineralizer Backwash Effluent Concentration 1.1.3.1 Factor.

CF 3

= the Steam Generator Blowdown Effluent Concentration Factor. 1.1.3.2 CF T

= the Turbine Building Sump Ef fluent Concentration Factor. 1.1.3.1 0F = the dilution f actor, which is the ratio of the total 1.1.1 dilution flow rate to the effluent stream flow rate (s) required to assure that the limiting concentrations of 10CFR, Part 20, Appendix B, Table II, Column 2 are met at the point of discharge.

DF j7 = a dose conversion factor for nuclide, i, for adults ".n 1.2 preselected organ, T , in mrem /pCi found in Table 1.2-2.

07 = the cumulative dose commitment to the total body or any 1.2 onj an, T, from the liquid effluents for the total time period.

D, = Dilution Factor from the near field area within one-quarter 1.2 mile of the release points to the potable water intake for adult water consumption; for V. C. Summer, 0, = 1.

F = the dilution water flow setpoint as determined prior to 1.1.1 the release, in volume per unit time.

F d

- the flow rate of the Circulating Water System during the 1.1.3.1 time of release of the Turbine Building Sump and/or the Steam Generator Blowdown.

F de

=

the dilution flow rate of the Circulating Water System upon 1.1.3.1 which the setpoint is based, as corrected for any recircu-lated radioactivity.

I ODCM, V.C. Sumer, SCEandG: Revision 2 ( April 1982) 1.0-39 001SW/0015A

Tenn Definition Section of Initial Use Fg =

the flow rate of water through the Fairfield Pumped Storage 1.1.1

( Station penstock (s) to which radioactive liquids are being discharged during the period of effluent release. This flow rate is dependent upon operational status of Fairfield Pumped Storage Station. -

f = the flow setpoint as detennined for the radiation monitor 1.1.1 location.

f d

= the maximum permissible discharge flowrate for releases to 1.1.3.1 the Circulating Water.

f db

=

the flow rate of the Nuclear Blowdown Monitor Tank 1.1.1 d i sch arg e.

f dm

=

the flow rate of a waste monitor tank discharge- 1.1.1 f

ds

=

the flow rate of the Steam Generator Blowdown discharge. 1.1.3.1

(

f p

=

the recirculation flow rate used to mix the contents of 1.1.1 a tank.

f t

= the maximum pennissible discharge flow rate for batch 1.1.1 releases to the penstocks.

F dp

=

the dilution flow rate through the penstock (s) receiving 1.1.1 the radioactive liquid release upon which the effluent monitor setpoint is based, as corrected for any recirculated radioactivity.

F)

= the near field average dilution f actor for C jj duri ng 1.2 any liquid effluent release.

0D04, V.C. Summer, SCEandG: Revision 3 (May 1982) 1.0-40 001SW/001SA

Term Definition Section of Initial Use K = 1.14 x 105, units conversion f actor. 1.2 MPC j =

MPC 1.1.1 g , MPC,, MPC , MPC , and MPCt = the limiting -

3 f concentrations of the appropriate gamma emitting, alpha emitting, and strontium radionuclides, Fe-55, and tritium, respectively, from 10CFR, Part 20, Appendix B, Table II, Cglumn 2. For gamma emitting noble gas radionuclides, MPCj = 2 x 10-4 pCi/ml, according to the Radiological Effluent Technical Specifications.

SF = the safety f actor, a conservative f actor used to compen- 1.1.1 sate f or engineering and measurement uncertainties.

SF = 0.5, corresponding to a 100 percent variation.

EC =

the sum of the measured radionuclide concentrations 1.1.1 4

I B of the Nuclear Blowdown Monitor Tank.

'Cj = the Lower Limit of Detection, LLD, for radionuclide i in 1.1.2 LLD liquid waste in the Waste Monitor Tank, as detennined by the analysis required in the Radiological Effluent Technical Specifications, Table 4.11-1.

'EC.'

- 1

=

the sum of the measured radionuclide concentrations 1.1.1 I M

. . for a Waste Monitor Tank.

EC 9 3

=

the sum of the measured radionuclide concentrations 1.1.3.1

.i .

for the Steam Generator Blowdown.

EC i

=

the sum of the measured radionuclide concentrations for 1.1.3.1 1 D

. . the Condensate Demineralizer Backwash.

E C .' =

the sum of the measured radionuclide concentrations 1.1.3.1 i .

T for the Turbine Building Sump.

ODCM, V.C. Sumer, SCEandG: Revision 2 (April 1982) 1.0-41 0015W/0015A

~ ~

Term Definition Section of Initial Use i

C',

I =

the sum of the ratios of the measured concentration 1.1.1

.I .B of nuclide i to its limiting value MPCj for the Nuclear Blowdown Monitor Tank. -

C I $ -

the sum of the ratios of the measured concentration 1.1.1

.i MPCiM of nuclide i to its limiting value MPC$ for the Waste Monitor Tank being considered for release.

'I C$ =

the sum of the ratios of the measured concentration 1.1.3.1 i kPC

. i .S of nuclide i to its limiting value MPC$ for the Steam Generator Blowdown Effluent.

I C$ =

the sum of the ratios of the measured concentration of 1.1.3.1 i MPC

. iD nuclide i to its limiting value MPC forj the Condensate Demineralizer Backwash.

C I 5 =

the sum of the ratios of the measured concentration 1.1.3.1 i MPC

. i .T of nuclide i to its limiting value MPC jfor the Turbine Building Sump Effluent.

t r

= the minimum time for recirculating the contents of a tank 1.1.1 prior to sampling.

at j = the. length in hours of a time period over which concentra- 1.2 tions and flow rates are averaged for dose calculations.

Up = 21 kg/yr, fish consumption (adult). 1.2 U = 730 kg/yr, water consumption (adult). 1.2 l V = the volume of liquid in a tank to be sampled. 1.1.1 Z = applicable near-field dilution f actor when no additional 1.2 l dilution is to be considered; Z = 1.

. 0D04, V.C. Summer, SCEandG: Revision 2 ( April 1982) 1.0-4F 0015W/0015A

_ __ _ -- ~

1.4 LIQUID RADWASTE TREATMENT SYSTEM Figure 1.4-1 Minimum OPERABLE Liquid Radwaste Treatment System I

=

=E

fr
  • !r li es i

i

-__q ,

i

, c-- i i i .

a .

E,5 E,g i

L_

-s

.ns = ' .

553 -, ea 51- 5I- at- sa

==g , .

== .

l [n!!

r l

g .= a= .

i ea .

vi as .

< <, i av s= i

< i as ** !vs i ,_

i i

8!. i 2!. I

.__l c___. i ., s 1 --- l i ,

, L_. i -_ J ,,

I--l l --- l l---l p .- l i. _ . i

' i

.r---- -

r---- i i i ,

. . i

- - == e= _. e -

= i 3:5

- 5:5 E

g sj ti si 15 IxR a:f s:

-5 i is II; . .-

gig ,

E g

Es

=; si

- E5 c

t r .,

g-s3

=

-fr a

er g

. <. i. ,, .

' i L. _ _ _ - .I i i i 8 8

g -1 l-s.] i -

i ir li --- " !g s

l i

l a <, 1 e

g L____ i

, s ,

i L____  !!g  !'y !g ---d g.

gt-g

. .-i l---l l---l F-- l =r I ---_lai l ,

_s. -

-- 5 s -I

= -

..s ur gi!

e -[!

l_ r g

=l g

lg

-v 5 =

i & &

_ _ _ _ _ . m_

t . y -

=

=

!]

g Is5r. 5ity -

l,gi_,lui -! a s-v.. gug- et = s gesys gI -t r g_ s.;g -

.5 s

! vs5 El lgjz.-lit' l3gE ji 3,!

s b .vli s-

  • gg g. Em g en . .1 gr s.

( s.It! Inn 1 te iI E l

i 00CM, V.C. Sumer, SCEandG: Revision 4 (June 1982) 1.0-43 l

0015W/0015A l

l

_-. ~ _.- .. . -_ - -

2.0 GASE0US EFFLUENTS I

2.1 Gaseous Effluent Monitor Setpoints The calculated setpoint values will be regarded as upper bounds for the actual setpoint adjustments. That is, setpoint adjustments are not required to be performed if the existing setpoint level corresponds to a lower count rate than the calculated value.

2.1.1 Station Vent Noble Gas Monitors For the purpose of implementation:off section 3.3.3.9 of the Technical Specifications, the alarm setpoint level for the station vent . noble gas monitors'.$ willf be calculated as follows:

(

~

count rate- of the ' plant vent.fnoble gas monitor

~

S =

y

(= S yp for . RM-A3) or the containment purge noble gas monitor (=

.Svc-. f r. RM-A4) at the alarm setpoint level.

P 0.25 x Rt XDTB (1)

-< the lesser of ' or l 0.25 x R3 xDSS (2)

/ .

0.25 = the safety factor applied to each of the two vent noble gas monitors (plant vent and containment puge) to assure that the sum of the releases has a combined safety f actor of 0.5 which allows a 100 pertent magin for cumulative uncertainties of measu rement s.

D TB

= Dose rate limit to the total body of an individual

- 500 mrem /yr 00CM, V.C. Sumer, SCEandG: Revision 2 (April 1982) 2.0-1

, 0015W/0015A

R t

= count rate per mrem /yr to the total body

= Cy ((T[Q) x Fy x I KjX iv) (3)

( the measured concentration of noble gas X jy =

radionuclide i in the last grab sample analyzed for vent v, uCi/ml. '(For the plant vent, grab samples are taken at least monthly. For the 6" and 36" ,

containment purge lines, the sample is taken just prior to the release and also monthly, if the release is continuous.) -

Fy = the flow rate in vent v, cc/sec. (1 cc/sec =

0.002119 cfm)

C_y = count rate of the monitor? on station vent v corresponaing. . to_. '; grab -; sample noble gas d

as [dbtermined from the

~

concentrations [; X y

. monitod's" calisationf curye. (Initial calibration (c'urveslo'f :;thsityp5$hown fin Figure 2.1-1 will be dAtennined conservaively{from t families of response curves supplied by the linonitor manufacturers. As E

. releases s oc.

- cur.,na=. histoFical correlation will be prepaEed abd plac'Od Y service when sufficient data

~

are accumulated.)

X/Q = , the highest annual average relative concentration in any sector, at the site boundary.

3

= 5.3 x 10-6 sec/m in the SE sector

  • K j = total body dose f actor due to gamma emissions from isotope 1 (mrem /yr per uCi/m ) from Table 2.1-1.

Reference 4, Section 11.3.8 states that this is the annual average relative dispersion at the point on the exclusion boundary where highest concentrations may be expected.

ODCM, V.C. Sumer, SCEandG: Revision 3 (May 1982) 2.0-2 0015W/0015A

w.e 4.,.4 .+ w +,

WR h,4"- ', V. N N U,~+i Wo T F.W*C 0  %

,p +$ M'

,.a %g. .u ;,

, n,.

t 7n u I' y:a0+,,+,-~ ..-,,4g. 3 : -

gq,,IgMh.r.v,  %, Nu M-gMF#.. . iB o q1A. nHin I [ m mth %e +

1 +m OpM "$; iir 8 -

-m

, ~

r n t.

~~

[

~I (Mm; i w !i MN 9 ~

a v a tg 7 Wn ig nit  ?

'EF %i i j .w-p Wilih i % Wi i a Ww o iru m Lomm y m mgiik p w i  :

n ;i.p{ g mm r m "li ,3 IUT i

WE1 T 3

,,1 ,.

t f'r,jih .: INN  ; J '

.O

  • R $p: I b 4 GID
i qh-O y

] G%

1 I '

i

~1 W.%

7_ ,mi r ihr

%i i m Up '

7',""h mm ~

O, mr ;t '@

~

Wili 7tT1.. b O J h. '! ji a qT.i!l mn rd,b~h i '

mw n_m.'i ,

3 p pw dy.d c.

a u .7 l s p

  1. +dn. i m

. mq n -

Mh-h aem am i

t r

vd >4 ar"3 "y-+ flu m M

', dhi O ! h.k U n!!

h!

M! ~

.= wu

. hI  !

x M NN M N N.I k  !

d..e .il] d,.i

@ g.m,!!M' h, .i, ~i.a p,, , i 2iEE,: ij. ~j  : . ,0!c:- m q mtpll w ,Ly n, ( 7d, ,yQ y , ,  : _. -

.Wl

.=nF .m

~dq

i. ,

W,i Lc,l7.: @. . ..

.A~-:. c. t"p, h..,am.. ...,

3 j.ji-c . N' L ...

Lva. t,ul o i,i .

,~~

- ,m, mp1 ,.o,be-+. n- . -

, ,r,. ,- + - *

  • p 4. ,i o
: , ,; do. 't mt -

o , .

.=

l"t w t

mtMit -6mem p S .rM ,i-*t *"* tb n s ..

wlW4tpftgp,, , ,

4.I Igr".it"p; gA= tor, tt ;a s t t tt Mtt r 5 ( r n..no 1Pt* t. f. .dj-1  % .te m+.

tti ny 4 t1 ,W Tf' [Jrm n5a 4i..

N

\,c T

  • t*

,,m

,, ,i WI "' "

M.'I i o-p i l gI.IlW 4'D180t rC 1

.I ,ft m gg m ' '

1 n &. .

i. s; hI

~ 2 I."- .

, ' " ,, '. ,I .

s [% m

! . N'it I,a"

.' 3 lYgpfN

. C , ,IT T T.

b ..U U f 'a=8.41 a

I

. i  % It ,

-?  !- p h. i"n !

N -MIb .in r'i ti$i -! t WII!ii'i b_ .'

j. S.M. . 4.M.,,..i L,,N.h a

b,,. , , '.', . Y. n,ilbii i.)ti {-M. 'iN

}

nH y

7 .,

I n (b"[,i.n dii M b,yd..id, . ,

D,,i,g,i y . diplt Wi$. ,

MMih '

  • %.in p. Mi ke,!'

M tp : tSjMd.

g 9" c 'i

~

T y; r

h Hi iL $% - ~

%Qt [JO (m m,P yW M il Mo ci i

~

M GGip .

I tt c

, &Hi htm n!!!lil!

%nlE@$qq,,e Ei R

M!B1  :

@M!

MM!iWHUi-1 iJyh h Mlin1iN dfj ii @' _ WL EjSi L. H5E!!. .' : viEI nEM !!f ((E p?in 3

%(h &

S

%cw qdp -

,,tr iii angii? eF b H Qi l; 1 EH :c m-4-t.

im- d a i L.,.TJ.-. .NyI3 nfrii llh

_ W,U,;d..t blH{1}  ; q*J L$.,.w .pp di d.l ijW::q!"lid Wyh,rlitik4, .. d s 3 m,

c ! w . .te, .

v

.et, 1 6

x . . , .r

~

wv, j .n , ~

t n E b_(' "~ ,, ,.,d 4-ah,., ,

.- m 1

'a n i

n. i7 %s i

y$i ghtfi mgg i.t ,' d1 3 on j ((i w ]g y  :-[ .-

r p "t'tth

~-

k, M. _

d-r:pg i

% ir~

9 a F t ,  :

'm'"?

.t [

i ei :~

t Wm 9,, i -

C u t* -

-'vd "'

, m,*. , .. ,_ m y- .

t 7- n, ?.

- , c.gtj l -

m.. o  :-

- o 4

m g ve.n c. .

c w-: %, n, e m, - d.

r q . - . '.

m

.. m m

y a ti

- g, 4 il. .

t i .

m.=t y s_.z_;.: :n -

{. e +{,:.,l.iII

[

~

d l f pl, ,i

_ap d p , !,iW W- n

.; s, q}i s,; $ m e#,4 ,-

H y I

l K rCypj h..,v .J. C

.- 5 x 1' .

> I -

'r b5

%H d l . .

9r@ WQ jifN st

'T o Z 3 0;ii MM i M:DJ M "

l- I j

i kh,pk MN yL i I.

37 %g. '

Wid

$ i d ' d

'l NElb M k - -

."  : . n 1 r ,

t d am Q: 3 n .. ;i .5 a uto gl )i J% .- du t E MJ- u c. .r = t. w L gis] WVk OF ET

  • 5. I D a g 1 % @g!NW I 7MWM TM8il g WrliM o x 7m 4 yg NiW5F j 1[WssMX E

~

~

h m

3 y,

e, b,o n.ra,,a1h,.g1, _, .

  1. - - ,J 1 A.pm,1+ ..dn n.q!Ind'!:-Ngd.,

n

l. - .

m..

. t

.iH b ,,,M,,

pa..}

pg ..

pM@gi ,._,.s c l 4

.4 ,nl A _

Qh r I;

..a trW }:

y hqf ,

d d. 1 m b..m Vt. s mt- - m co q nm:&;%e o ~

.1A.,_,,,,,,-

14.,, .e ,,T. ,, %..,,..,,,.,,,,,4,, o, , Qc

~

. , , ~o u T N ba,.a.;.4,.3--1p , 7

-- H r

~ - e 2

WN --

9-i f",l r-r M"I -r 6. :

i

,,,,  ; 4, . -,

MI@'"i Wpil il . Wm 1:[~t~

- ' ~

~

9%Jt W

hNrs ~e%-- u -

WTOTitH,t( ~r+ W+ ++ t *+- c g$

R @ Miii$

TT:g % 9n ; gr VMiMt T in m ir } t; MGM'Wt@:%+--

%#itt -

W 3 g >

gi,n.@d,g t > t d i k -gno m*W'tp

+ 4k w 3., w4mmet i gu m ,i d dj.'.is!F m= u y e -

,1 m.n M,e ec,i iig

, b mt jwphl 7-+itt,' gi d  :.7 -

~ .

-Warrrh..tp Aq 4 m Ltwn m rn:q, ip

- t p"( i U[g 1 t p Wtitt %sp..ii ta r g"n,pM rr t nem yA w a Mi%

fed),1gJ ll ygp  ; -",  !

g p @ ggt Ig[

m 5

MIIIfd"g*,jMi a.

I YW i@EUi!!M g!N.mm!III!

pii d

!! iy Kill -N@hs9,

~ qp4 (h! la ii[ M ,i q!&iM$Ns#!

g.m.. a EM@N@6,i w im

!MidIIIjiii]

u w, L 5 b.,y

.- ..q ~ -- + ..

r

,a w

H,,UN,M a; Ed!!!EM,ilii j ,difiMMEM .

gds,.h, i ,M 0 f E. efd.hiEiFE!iilii i. . . d. hti EfiEliid,$$$q:il

. - - - wt :

Ni wo r

m

, a,

%,m tr,v y- 4 .wg8;E N F :--tm - w,.-m,r W~,.m r-- - 1mm,,+ - ,

rri rte me-, . r --

m'r W .y.h m p + g6 r,%,m:mmp .

% L N tm g t..,'Ut pH +Q rd y t 7

.w n t,. rr vgta} '.7 $ r.g'rtin'r

}  %..a.-# -

N m r.

p

  • g ,wMM a tmt: m 4- p' ) e

.. u o .c j

~ ~

1h., ,fjy M,.y;nd d,niiin --.a t .m7 i j~ 3  :

@i M,. g gg- -

yg i gTh.f nr gc if -k4 g

iip 7m.i1,:r .p % n Lg!,.

si, .y$

r m..,i,g fMIM,.,ily.,

m,,, .-%,w 4e v, -v, :g n p m

3. , -

- r. y.-

%,g.m3i9 y.g.y j t 4r e.p r-7,4 .I--o.g .,;,

, y y m WW

.3

m i ,- q ygtti l-

%:WLr rt-1q q .gp,.,

i J .p h ;.t N W 7 f W Whgj m mik a 77 gMM4 Ad I ttd6GliFWi[ fp y-n %yg ,

gti ili Mi

$J gd 4 i n p pa &_h=f& &

m ey'W a

vedWmahd, .i sgEit!!! 7 Weq .~it h@,qt mgi!g Jmgih g

4[{

y '. j y l $i #f T.  !< e di Q

]" [ [ [  ;.g i g'  : -

  • o

~

o o i o

, e e

~ ~ o -

o o o

~

(33/ t art) ;n e.nuaauo-)

D 33

= Dose rate limit to the skin of the body of an individual in an unrestricted area

= 3000 mrem / year. '

f

(

R 3

= count rate per mrem /yr to the skin

= Cy [Tlil x F y xI (Lj + 1.1Mj) Xjy] (4) i .

L.1 = skin dose factor due to beta emissions from isotope i (mrem /yr per uCi/m3 ) from Table 2.1-1.

1.1 = mrem skin dose per mrad. air dose Mj = c to gamma; emissions from isotope air- dose i' (mrad f actor

/yr'per uCi/m due;3). from' Table' 2 1-1

~

NOTE: At ' _ pl a'n t startups? shentc-noi gra6[ sample analysis is

~

_available lfor the7 continuous freleases, the Alternate Methodology ~ ~of Section?2.15'3 must be used.

2.1.2' Waste Gas Decay System The permissible conditions for discharge through the waste gas decay system monitor (RM-A10) will be calculated in a manner similar to th at for the plant vent noble gas monitor. In the case of the waste gas system, however, the discharge flow rate is continuously controllable by valve HCV-014 and permissible release conditions are therefore defined in terms of both flow rate and concentration.

For operational convenience, the setpoint level will be established at 1.5 times the measured waste concentration.

00CM, V.C. Summer. SCEandG: Revision 2 (April 1982) 2. 0-4 0015W/00lSA

Th2 maximum pennissible flow rate will be set on the same basis but including the engineering safety factor of 0.5.

. The RM-A10 setpoint level dS is defined as:

Sdi 1.5 c (5) where -

c = count rate of the waste gas decay system monitor corresponding to the measured X id*

,X id

- the concentration of noble gas radionuclide i in the waste gas decay tank whose contents are to be discharged, as corrected to the pressure of the discharg e stream at the point of the flowrate measu rement . The maximum discharge pressure as governed by the diaphragm valveN896, is 30 psia.

Tne maximum pennissible ; waste jgas flowrate f, (cc /sec) is calculated from ' thex maximumVpennissible dose

( rates at the site boundary according to:

fw 1 the lesser of ft or fs. (6) f t

= the maximum 'pennissiblei ' discharge rate based on total body dose rate.

= 0.25 x DTB * [XM x 1.5 I Xid Kj] (7) i f

s

= the maximum pennissible discharge rate based on l skin dose rate.

= 0.25 x 033 * [X/Q x 1.5 I Xjd (Lj + 1.1Mj)] (8) i The factor of 1.5 in the denominators of equations (7) i and (8) places f, on the same basis as Sd*

l l-0DCM, V.C. Summer, SCEandG: Revision 3 (May 1982) 2.0-5 0015W/0015A l

__ _ _ - . . -~-

When a dischanje is to be conducted, valve HCV-014 is

( to be opened until (a) the waste gas discharge flowrate reaches 0.9 x f, or (b) the count rate of the plant verit noble gas monitor RM-A3 approaches its setpoint, whrichever of the above conditions is reached first.

When no dischanjes are being made from the Waste Gas Decay System, the RM-A10 setpoint should be established as near background as practical to prevent spurious alanns and yet alarm in the event of an inadvertent release.

2.1.3 Al ternative Methodology for Establishing Conservative Setpoint s A more conservative s etpo.i n't may :ibe calculated to minimize requirements for adjustment of~ the monitor as follows:

For a plant vent:

R' =

conservative count rate per mrem /yr to the total body (Xe-133 dctection, Kr-89 dose) .

- Cy* [X/Q x KKr-89 x Xy' x Fy], where (9)

X' y

=

a concentration of Xe-133 chosen to be in the operating range of the monitor on vent v. uCi/cc.

C' y

- the count rate of the monitor on vent v corresponding to Xy ' pCi/cc of Xe-133.

K Kr-89= total body dose factor f.o r K r-8 9, the most restrictive isotope from Table 2.1-1.

0001, V.C. Summer, SCEandG: Revision 2 ( April 1982) 2.0-6 0015W/001fA

__ . - - - . . .a -- - _ _ ~

l R's

= conservative count rate per mrem /yr to the skin.  !

= C' y [X/Q x (LKr49 + l 1 MKr-89) x X y ' x Fy ] (10) where:

L Kr-89= skin dose factor for Kr-89, the most restrictive isotope, from Table 2.1-1.

M K r-8 9= air dose factor for Kr-89, the most res trictive isotope, from Table 2.1-1.

For the waste gas decay system:

f' =

the conservative maximum permissible dischage rate t

based on Kr--89 total body. dose rate.-

0.25 x DTB i [X/Q x 1. 5 x Xd ' X EKr-893 (11) f' s

=

the conservative' maximum. permissible dischage rate based on Kr-89 skin dose ~ rate.

=

0.25 x .033. ;[X/Q x 1.5 x Xd ' x .'(LKr-89 + l lMKr-89)] (12)

X'

~

d

=

the total concentration of noble gas radionuclides in the waste gas decay. tank whose contents are to

.be dischaged,-as cormcted to the pressure of the dischage stream at the point of the flow measu rement.

c' =

the count rate of the waste gas decay system monitor cormsponding to X d

' pCi/cc of Kr-85.

0001, V.C. Summer, SCEandG: Revision 3 (May 1982) 2.0-7 0015W/0015A

~ . - - - - . -

TABLE 2.1-1 DOSE FACTORS FOR EXPOSURE TO A SEMI-INFINITE CLOUD OF N0BLE GASES,*

Nelide y-Body *** (K ) s-Ski n*** ( L) y- Ai r**(M ) s- Ai r** (N )

Kr-85m 1.17E +03 * *** 1. 4 6E +03 1.23E+03 1.97E+03 Kr-85 1,.61E +01 1.3 4E +03 1.7 2E +01 1.9 5E +03 Kr-87 5.92E +03 9. 73E +03 6.17E +03 1.03E+04 Kr-68 1.4 7E +04 2.3 7E +03 1.5 2E+04 2.9 3E+03 Kr-89 1. 66E +04 1.01E+04 1. 73E +04 1.06E+04 Kr-90 1.5 6E +04 7.29E+03 1.6 3E +04 7.8 3E +03 Xe-131m 9.15E +01 4. 76E 402 1. 56E +02 1.11E+03 Xe-133m 2.51E +02 9.9 4E +02 3.2 7E +02:- 1.4 8E +03 Xe-133 2.94E +02 3.06E+02 3.53E+02 1.05E+03 Xe-135m 3.12E+03 7.11E +02 3.3 6E +03 > 7.39E+02 Xe-135 1.81E+03 1. 86E +03 1. 92E +03 2.46E+03 Xe-137 1.4 2E +03 1.2 2E+04 1.51E +03 1.2 7E +04 Xe-138 8.83E403 4.13E +03 9.21E+03 4.75E+03 Ar-41 8.84E +03 2.6 9E+03 9. 30E +03 3.2 8E +03

  • Values taken from Reference 3, Table B-1
  • mrad-m3 pci-yr
  • mrem-m3 ,

p u -yr o**

  • 1.17E +03 - 1.17 x 103 ODCM, V.C. Sumer, SCEandG: Revision 2 ( April 1982) 2.0-8 0015W/0015A

~

2.2 Gaseous Effluent Dose Calculations 2.2.1 Unrestricted Area Boundary Dose 2.2.1.a for the purpose of implementation of section 3.11.2.1.a of the Technical Specifications, the dose at the unrestricted area boundary due to noble gases shall be calculated as follows:

D t

= current total body dose rate (mrem /yr)

T

= TTQ I Kj Qi (13) i

~

D = current ~ skin dose rate-(mrem /yr)

T

=

X/Q I . (Lj + 1.1Mj ) Qj (14) 7 where Q g = the release rate of noble gas' radionuclide i as determined from the concentrations measured in the analysis of the ap propri ate ' sample required by Radiological Ef fluent Technical : Specification Table 4.11-2 (yCi /sec) . .

X/Q = the highest annual average relative concentration in an) sector, at the site bounda ry (for value, see Section 2.1.1) .

2.2.1.b Org an doses due to radiciodines and all radioactive materials in particulate form and radionuclides (other than noble gases) with half-lives greater than eight days, will be calculated for the pu rpose of implementation of Technical Specification section 3.11.2.1.b as follows:

00m, V.C. Summer, SCEandG: Revision 2 ( April 1982) 2.0-9 00iEW/0015A

m . . . . _

l D

o

= current organ dosa rats (mrrm/yr)

/ = I T/lj Pi Qi', where (15) i T/l{ =

the ' highest annual average relative concentration in any sector, at the site boundary (for value, see Section 2.1.1)

P g

= dose parameter for radionuclide 1, (mrem /yr per uCi/m3 ) for inhalation, from Table 2.2-1.

T Q' g

= the release rate of non-noble gas radionuclide i as determined from ,. the concentrations A: measured in the analysis of the ~'ap propriat e ' sample required by Radiological Effluent -Technical Specification Table 4.11-2 ( pCi /sec) .;

2.2.2 Unrestricted Area Dose to Individual?

t.

2.2.2.a For the purpose of sections 3.11.2.2 'and 3.11.2.4 of the Technical Specifications, the air .. dose riin unres tricted areas shall be determined as follows: '

D = air dose due to gamma emissions from noble gas radionuclide 1 (mrad)

= 3.17 x 10-8 I Mj X/Q Qj (16) i where, 317x10 = the fraction of one year per one second l

Qg - cumulative release of noble gas radionuclide i over the period of interest (pCi) .

0D04, V.C. Summer, SCEandG: Revision 3 (May 1982) 2.0-10 0015W/0015A

~ . . . . _ . -

..m . ._ _ _ _. __ __

D, =

air d:se due to beta c issicns from ' noble gas s radionuclide 1 (crad).

= 3.17 x 10-8 I Nj X/Q Qi, whtre 1 (17)

I i s

N g

air dose f actor due to bei.a emissions from noble gas s radionuclide 1 (mrad /yr per pCi/m3 ) from Table 2.1-1.

% f 2.2.2.b Dose to an individua? from radioiodines and-radioactive materials l'n particulate form and radionuclides ,

(other than noble gases), wi;h half-lives greater than eight (8) days will be calci 11ated for the purpose of /

t implementation of section 2.11.2.3 of the Technicar Specifications as follows: '

D p

= . dose to an iindividual from 3 ;rAdiciodines and radionuclides .in part f culat'e formii with half-lives greater than eight day's '(mrem). 3' g , 4 .-

=

3.17 x 10-8 [ Ri jlf ij' Qf+ where T

(18) ij W

9j

=

relative concentration or relative deposition for

~.the . maximum ~exposei 'Nidividual, as apprcpriate for exposure pathway' j and radionuclide 1.

4 r ,

, X / Q' for inhalation and all tritium pathways . #

- 3.5 x 10-6 sec/m3 1

=<, '

I D/ Q' for other pathways and non-tritium ragichu'elW$s

= 1.0 x 104 m -2 ' ,  ; ),' ; o ,

s

'{ { l\

(See the notes 'to Tables 2.2-7 and 2.2-8 f6r the origin of these factors.)

3

r o s a ,'

ODCM, V.C. Summer, SCEandG: Revision 3 (May 19E2) '2.0-11 '

0015W/0015A ,

_- . - ,. .- - . ~

R jj

= dase factor for radionuclide i and path:ay j, 3

(mre2/yr per uCi/m) or (m2 - mrem /yr per pCi/sec) from Table 2.2-2.

(

Qj' =

Cumulative release of non-noble gas radionuclide 1 (required by Technical Specification 3.11.2.3) over the period of interest (vCi).

2.2.2.c For the purpose of initial assessments of the impact of uglanned gaseous releases required by Section 6.9.1.13 of the RETS, dose calculations for the critical receptor in each affected sector may be performed using the above equations as follows. For each location, X/Q' and D/Q' will be calculated according to the methods of Section-2.3'of'this 0D01, using the measured ' meteorological parameters for the p period of the unplanned release. The location:iof)!theQritical receptors and the pathways j ' which should be. analyied for.'ieach are shown in Table 2.2-7. .(For very rough ' calculations,Jthe annual average 8

X/Q' and D/Q' for each Jreceptor are shown11n Table 2.2-8.) The R jj for the appropriate exposure pathwaysf and age groups will

> be' selected from Tables 2.2-3 through 2.2-6.

t I

l >

l l

1 i

1 e

> ODC4, 0.f.. SnTrer, SCEandG: Revision 3 (May 1982) 2.0-12 l 00ltW/0015A, s q, i ?y l-l 7 .

, _ . . ---~

\

Table 2.2-1 PATHnAY DOSE FACTORS FOR SECTION 2.2.1.bj (P )*

( Page 1 of 3 AGE GROUP ( CHILD ) ~

l ISOTOPEl INHALATION I lH-3 1 1.125E+03 I IC ii-~~~I-~5Iii9E;ii'~I INA 1 1.610E+04 i

____-24 ______________ _____

IP-32 I 2.605E+06 I ibR 51 ~~~i~~iS59EE+5k~~i IMN 1 1.576E+06 i

____-54 ____________________

IMN 56 I f.232E+05. I IFE 55

_ _ _ _ _ _ _ _1.iiOE+05 Ji

_ _ _ _ _ _ _l _ _ _ _ _ _ _ _ '

IFE 59 I i.269E+06

________________________i ICO I i.106E+06 1

____-58 _______________.___l_.

ICO-60 1 7.067E+06 I INI 63 1 8.214E+05 I

( .___ ____________________

INI-65 1 8.399E+04 ~l 1C0 1 3.670E+04 I

____-64 ____________________

IZN-65 l 9.953E+05 I 12N-69 I .i.018E+04u :t i IBR 83 I 4.736E+02 1 IBR-84 1 5.476E+02 1 IBR-85 1 2.531E+0i l IRE-b5~~~I~~iI955E 55~~i iRb bb~~~I~~5'65kk 55~~5 Tis:ii-- i- i iiEE;ii- i ISR 89 1 2.157E+06 1 ISR 90 I i.010E+0B I ISR 91 1 1.739E+05 1 See note, page 2.0-16 Units - mrem /yr per pCi/m 00CM, V.C. Sumer, SCEandG: Revision 3 (May 1982) 0015W/0015A 2.0-13 i

Table 2.2-1 (Continued)

PATHWAY 00SE FACTORS FOR SECTION 2.2.1.b (Pj )

( Page 2 of 3 AGE GROUP

( CHILD )

l ISOTOPEI INHALATION I YUR2 95~~~I~~5IkEkk+05~~i lY-90 1 2.679E+05 I lY 91M i 2.812E+03 I lY 91 1 2.627E+06 i lY-92 1 2.390E+05 I IY 295'~~~i~~5I555kIO5~~5 12R. '

l 2.231E+06 't!

iia 2ii-- i- i isik si- T INB-95 1 6.142E+05 I IMO-99 l i.~354E+05i i ITC-99M l 4.810E+03 1

(

ITC 101 1 5.846E+02 I IRU 103 l :6.623E+05- 1; IRU 105 I 9.953E+04 l IRU 106 l 1.432E+07 1:

1AG-iiOH-:1 5.476E+061 l ITEEI25M I'~477735~05~~I ITE-127M i 1.480E+06 1 ITE 127 I 5.624E+04 I ITE 129M i 1.761E+06 I ITE 129 l 2.549E+04 i ITE 131M i 3.078E+05 1 ITE 131 1 2.054E+03 1 ITE 132 1 3.774E+05 1 11 130 I i.846E+06 I Units - mrem /yr per pCi/m ODCM, V.C. Summer, SCEandG: Revision 3 (May 1982) 2.0-14.

0015W/0015A -

~

_- .. -- - .. ~ . . . . , - . . ..

Table 2.2-1 (Continued)

PATHEY DOSE FACTORS FOR SECTION 2.2.1.b (P j )

Page 3 of 3 AGE GROUP ( CHILD )

I~555TbPk 5h5kL T5bh

________________________I 1I-131 I i.624E+07 1 55 552~~~I~~5I9555+0

_________________5~~I ____

II 133 1 3.848E+06

________________________i II 134 1 5.069E+04

_____________________1 II 135 l 7.918E+0 ;l

____________________5____

ICS 134 l 1.014E+0

_________'___________6 1 ____

ICS-136 I i.709E+05 11]

ib52557Ili~ 95555k+~55~~

________________________i!

ICS 138~ l 8.399E+0

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _2 f : 1 IBA-139J l 5.772E+04 I

________________________1- ,

IBA-1401 i .1.743E+0

_____________________6) l ___

IBA 141 l 2.919 i

_________'_________E+03 ______

IBA 142 I i.643 i

______-__________E+03 _______a ILA-140 .;1 21257

_ _ _ _ _ _ _.'. _ _ _' _ _ _ ______ _ _ _ _E + 0 5 ^ it:

ILA 142 1 7.585E+04

________________________i ICE-141 1 5.439E+0

! _____________________5 ___ 1

. ICE 143 1 1.273E+05

____________________I ICE 144 I i.195E+07

________________________i IPR-143 1 4.329E+05 I IPR ikk i [I555k+55 ~5 IND-147 1 3.282E+05 I IW-187 l 9.iO2E+04 I INP-239 I 5.40iE+04 l l

l s

Units - mrem /yr per uCi/m 3 00CM, V.C. Summer, SCEandG: Revision 3 (May 1982) 0015W/0015A 2.0-15

NOTE: The P 4

values of Table 2.2-1 were calculated according to the methods of Reference 1, Section 5.2.1, for children. The values used for the various parameters and the origins of those va'ues are given below in Table 2.2-9 and its notes.

. 9

-l h Q

I, e,

0001, V.C. Summer, SCEandG: Revision 2 ( April 1982) 2.0-16 0015W/0015A

Table 2.2-2

(

PATHWAY 00SE FACTORS FOR SECTION 2.2.2.b (R j )*

(For Dose Calculations Required by TS 3.11.2.3)

Page 1 of 3 AGE GROUP ( CHILD ) ( N.A. ) ( CHILD )

I~ibbibPk 5UU Eki5bb I URbbbD PE kEl ~~UkbEikkibk~l lH-3 1 1.125E+03 1 0.000E+00 l 3.627E+03 1 IC 14 1 3.589E+04 I 0.000E+00 1 8.894E+08 I INA-24 I i.610E+04 I i.385E+07 I 3.729E+05 I IP-32 1 2.605E+06 1 0.000E+00 1 3.366E+09 I ICR-Si i 1.698E+04 1 5.506E+06 I 6.213E+06 I IMN-54 I i.576E+06 I i.625E+09 l'.6.648E+08 1 IMN-56 1 1.232E+05 t 1.068E+06 -l' 2.723E+03 I IFE-55 I i.iiOE+05 l 0.000E+00 .I 8.~012E+08 l IFE-59 1 1.269E+06. l .3.204E+081 ~l 6.693E+08 I ICO-58 I i.106E+06' I 4.464E+08 1 3.771E+08 I ICO-60 1 7.067E+06 1. 2.532E+10 1 2.095E+09 I

( ----------------------------------------------------

INI-63 1 8.214E+05 .I 0.000E+00- 1 13.949E+10 i SU556 5~~~i~~8I5hhk+0k~~5~~5IkEiE+~0E'~i'~[I511k+~05~~i ICU-64 1 3.670E+04 I 6.876E+05 I L5.iS9E+05 I

[EU~65~~~I~~fI955E+05[ i~~EI585E+~0b"~5[IEIi6kk+~09~~I .

12N-69 I i.018E+04 1 0.000E+00 1 9.893E-04 I IBR-83 1 4.736E+02 l 7.079E+03 1 5.369E+00 l lBR-84 1 5.476E+02 1 2.363E+05 1 3.822E-ii 1 IBR-85 1 2.531E+0i 1 0.000E+00 1 0.000E+00 1 IRB-86 I i.983E+05 I i.035E+07 1 4.584E+08 I IRB-88 1 5.624E+02 1 3.779E+04 1 4.374E-22 1

l 1RB-89 I 3.452E+02 I i.452E+05 I i.64?E-26 I

t ISR-89 I 2.157E+06 1 2.509E+04 1 3.593E+i0 1 ISR-90 1 1.010E+08 1 0.000E+00 I i.243E+12 1


r------------------------_---------------------

ISR-91 I i.739E+05 1 2.511E+06 1 1.157E+06 1 i

  • See note, page 2.0-31 IJnits:

l Inhalation - mrem /yr per uCi/m 3 Others -m 2

  • mrem /yr per uCi/sec ODCM, V.C. Sumer SCEandG: Revision 2 (April 1982) 2.0-17 muwream

Table 2.2-2 (Continued)

( PATHWAY DOSE FACTORS FOR SECTION 2.2.2.b (R$ )

Page 2 of 3 AGE GROUP ( CHILD ) N.A. )

_______-___________________( ( CHI )

l ISOTOPEI INHALATION I GRO___________________LD PLANEl VEGETATION I

__-_______-__________________UND _______________________

ISR-92 1 2.424E+05 8.63

_______________________________1E+,05 1 I i.378E+04 i lY 90 -____________________

l 2.679E+05

____,___-_____________________8E+03 1 5.30 I 6.569E+07 i lY 91M ______________________

i 2.812E+03 I i. I i.737E 05 i

_____________________-____161E+05 __-____________________

lY 91 1 2.627E+06 1 1.

____-__________-__________207E+06 1 2.484E+09 i lY 92 _________________-_____

1 2.390E+05 1 l 4.576E+04

__--___--__________________2.142E+05_______________--__-_____i lY 93 1 3.885E+05 1 1 4.482E+06

__________________-__-___-_2.534E+05_________________________i 12R 95 1 2.231E+06 l'

_____________-__________-__2.837E+08. l~t8.843E+08

__________________-______i 12R-97 1 3.511E+05 1 3

________________________-___.445E+06__________-_'____________

1 i.248E+07 1 INB-95 1 6.142E+05 I i

___-____________________- __.605E+08: :1 2.949E+08 i IMO 99 1 1.354E+05 1 4 i;647E+07

_______ -_______-_________'__.626E+06 ________ _'_l) _________-____

i ITC-99M l 4.810E+03- l .2

________________-___________.iO9E+05 1 5.255E+03 I 7, ITC 101 1 5.846E+02 1 2 ___________________-____ 1 4.i23E 29 l

____________________________.277E+04______________'__________

IRU-103 6.623E+05

_ _ _ -_ _ _ ____- __ __ _____ _ _'_; i.265E+08 1 t l (3.971E+08

____________'_'_____'__________i IRU-105 l 9.953E+04 7.212E+05 i !5.981E+0

___-___________________'.I__________________________4

- i IRU-1061 I i.432E+07 I ___

_-_________________________5.049E+08 si: Ji.iS9E+10 1 IAG-iiOM l. 5.476E+06 l 4 ____________________.__--i ITE 125M l 4.773E+05 1 2 _ _ - _ _' ________________ _ _. 0 1 9 E + 0 9 ' _: 12 2.581E+09 3.506E+08 1

____________________________.128E+06 1 ITE-127M i 1.480E+06 I i.083

________________________________E+05 I 3.769E+09 i ITE-127 1 5.624E+04 1 3.29 ___________________-

______________________________3E+03 1 3.903E+05 1 ITE-129M i 1.761E+06 1 2 ______________________

-___________________________.305E+07 1 2.460E+09 I ITE 129 1 2.549E+04 1 3 ________________________

_____-_____-____________.076E+04 1 7.204E 02 1 ITE-131M i 3.078E+05 l 9.45 ________________-_ _ __-_-

____________________________-__9E+06 1 2.163E+07 I ITE-131 1 2.054E+03 1 3 _____________________

_--______-__________________.450E+07 I i.349E-14 I ITE 132 1 3.774E+05 1 4 ________-_____-_----_-_-

_________-__________________.968E+06 1 3.iiiE+07 I II 130 ____-____-__-__---___-_-

1 1.846E+06 I I i.370E+08 I

______a__ _________________6.692E+06___________________-_-___

IJni t s: Inhalation - mrem /yr per pCi/m Others -m 2

  • mrem /yr per uCi/sec ODCM, V.C. Sumer, SCEandG:

Revision 2 ( April 1982) 2.0-18 casu% m e A

Table 2.2-2 (Continued)

/

PATHWAY DOSE FACTORS FOR SECTION 2.2.2.b (Rg )

Page 3 of 3 AGE GROUP ( CHILD ) ( ) ( CHILD )

_____________________________N.A. _____________________

i ISOTOPEI INHALATION I GROUN PLANEl

_______________________________D _____________________ VEGETATION l II-131 I i.624E+07 1 2 I 4.754E+10 l

- ____ ___ ____ ___________ 089E+07 ._____ ______________ ____

II 132 I i.935E+05 l

_ _ __________ ______ __1.452E+06____ ____ ________ _

1 7.314E+03 II-133 1 3.848E+06 1 2.981E+06 I 8.ii3E+08 ___II 5521 5k 5 EIO59E Uk i UI30

_______________________________EE05~l~~555E2E_03 II-135 1 7.918E+05 1 2.

i

____ ____ __________ _ __947E+06 I 9.973E+06 i ICS 134 1 1.014E+06 I 8.

--____ __ __- __ __ _____007E+09_ _ _ _ _ _ _ _

1 2.631E+10 l lCS-136 I i.709E+05 I i. _

_ ____. ________ _ ______ _ _702E+08'. l'_22247E+08 i ICS-137 l 9.065E+05 l 1.20__________ 1 ___________ 2.392E+10 1

___ __ _________ __iE+10 __._____ ____ __ __ _

ICS 138 i 8.399E+02 1 4.

___ _____ __ _ _____ ______.iO2E+05.El 9.~i33E ii I IBA-139 I 5.772E+04 I -i . _ _ _ _ _ _ _ _ _2.950E+00 _ _ _ _ _ _ . . _ _

I

___ _____ _____.____________ii9.4E+05'_:l: ____ ___ ____

lBA-140 l i.743E+061 1: 2 ~

i 22767E+08 i

_ __ ____ ___ ____ ___.346E+07r _____._____.______.__

IBA 141 1 2.919E+03 1 4. 1 1;605E 1

____________________________734E+04__________________-21 lBA 142 ______

I i.643E+03 .I _;__

5 064E+04: I :~4iiO5E-39 I ILA-140 1 2.257E+05 1 2.18

_ ________ __ _ _____.___ _0E+07 _ _ _ _ _I _J3.166E+07 ____'. I ILA-142 l 7.585E+04 I 8.886 l

___'______.__ __ ______E+05 - __ __' _ i.582E+0i I

ICE-141- l

__ _ _ ____.5.439E+05;r11;ai.540E4070.'lo!4.082E+08____ _ ___ __ ______ __ _

ICE-143 I i.273E+05 1 2.627E+0 ___________1

_ _________._ _______________ 6 _ ____

1 1.364E+07 I ICE 144 I i.195E+07 I 8.032E+0

__ _____ ___.____________ 7 ____

I i.039E+10 I

IPR 143 1 4.329E+05 1 0.000 l i.575E+08 i

_ _ _______. ____ _ __E+00 ______

IPR 144 I i.565E4d3 1 2.ii2E+0 1 3.829E-23 I

________.______3 IND-147 1 3.282E+05 1 1.009E+07___________ 9.197E+07 1

___ _________ ___ __ _______._ __8 _. ___

IW 187 I 9.iO2E+04 1 2.740E+0 I 5.380E+06 1

_ _____ ______________ __ . _ ___6 __ _ __ ___ __

INP I 6.40iE+04 i.976E+06

____-239 ___________

I

______.______________I ______________ i.357E+07 I Units : Inhalation - mrem /yr per uCi/m Others _m 2

  • mrem /yr per uCi/sec l

00CM, V.C. Sumer, SCEandG: Revision 2 ( April 1982) 2.0-19 w_

l i

Table 2+ 2-3 PATHWAY DOSE FACTORS FOR SECTION 2+2+2+c (R j )*

(For Dose Qticulations Required by TS 6+9+1+13)

Page 1 of 3 ACE EeDue t INFANT ) t N.A. ) i INFANT l 4 INFANT l ( INFANT l i INFANT ) i INFANT 3 i'ishichki"IMMAUTION I CEDUND PLANEl CSS / COW /MILEI Cal / COW / MEAT 5 GES/ COW /k!LE S GAS / COT /ME5TI VEGET Is:5-~"i'TiiiE*02 i i.050E+00 i 2.157E+03 i 8.000E+44 i 2 i57E*t3 i 4.steE+0e i s.st0E+90 i TC:i""~i"2. 6 4 sE

  • i 4 9.etiE+et i 2.34eE+89 i 9.SteE+00 i s.ne9E+8e t 9.e90E+00 s 0.00SE+00 e iN.-24 i 1.tS6E*te i 1.3e5E*07 i 1.542E+87 i 6.000E+0e 2.300E-37 i t.tt0E+tt i

i e.e00E+00 e ie-32 i 2.830E+e6 i 8.000E*00 i 1.662E+1s i 0.SteE+98 i 7. Gest +ts i 9.040E+09 i 6.sttE+se i ice-Si i 1.204E*04 e 5.596E*t6 i 4.70iE+86 i 9.840E+03 _i 1.72,E*05 i 0.00st+0e i 9.fiee+tt i IMM-54 s 9.996t+05 0 1.625E*tt 8 3.900E*07 I t.SSOE+38 . t 1.iteE+07 8. 6.stst+tt I s.sett+st i IMM-56 I 7.168t+64 0 1.068E+t6 8 2.962E+tt 8- 8.88tE+6t I t.It0E*00 l- 4.StBE+00 I t.990E+88 I IFE-55 I S.694E*04 1 0.000E*06 I 1.258t+0S I t.600E+tt 1 4.439E+07 t 4.003E+tt I c.000E+00 I

.I F E..59....I. 1. e l 5C + 8 6 8 3.244E*00 a0 3.919E+48 8 4.00st+st t 3.384E+87 I 4.000E+99 8 4.000E+00 I BCO-58. 8 7.77st+ss 4 4.464E*tt I 6.655E+t? I t 00SE+00 1 'O.524E+86 1 9.etBE+00 8 9.000E+98 8 ICO-60 0 4.SteE+te i 2.532E*19 3 2.098E*tt i 4.tt0E+tt t 7.197E*87 $" 8.908E+05 I S.480E+06 8 list-53' l' 3 38tE+t5 5 0.0 0 tt+90 ' t 3.493E+18 'I t.ItaE+03 t- 1.22tt+10 to 0.000E+99 E 4.008E*00 t INI-65 '5 5.012E+44 4 3.451E+05' I 3.42tE+01 l

~

ICU44 E

~

~6. tite +00 "t T eltt+08 Y t.et0E+tt t 0.040E+40 t 1 1.49BE*t4 0 6.076E+05 8 3.887E+06 1 8.00SE+08 8 7.934E-46 4 0.000E+00 8 6.690E+t3 4 I 6.460E+05 _t 8.583E*08 t- 1.904E+10 1 9.IttE+00 1 5.168E+09 IIN-65__ I t.Ittt+00 1 0.StBE+89 I 12N-69 8 1.322E*84 1 0.000E+0t 8 3.e55E-09 1 0.sg0E+te . t.0 0 0E* 0 4 I s.tllE+0S I 0.steE+88 I tes-83 1 3.tB8E+42 8 7.079E+t3 8 9.339E-ti I 4.808E*03 i S.sttE+08 I 8.08tE+88 8 9.008E*tt i Ita-84 1 4.094E*82 a 2.363E*85 8 1.256E-22 1 0.000E+99 1 0.000E+t0 .I S.800E+00 l 0.0 ale +90 I 198-05 8 2.044E*t1 0 0.000E+00 8 8.999E+40 1 4.880E+44 1 6.StBE+48 8 8.000E+00 1 8.800E+04 I est-06 4 1.984E+35 8 1.835E+97 I 2.234E+10 0 0.estE+te 1 2.827E+ts 1 0.000E+89 I 0.SteE+00 I Itt 572E+02 te'_"__i"__$. . -- 1..3.779E+64 I .t 87_4E .44 I.t. .0 460E+tt.t.e.0 t.l.8E.*st ~ I t.099E+00 I OItttt+50 8

_889-49 _8 3.206E+t2 I t.452E*85 1 4.193E-53 8 e 0.000E+98 : I 4.tttt+00 i t.StBE*06 i S.000E+86 4 8

18.a..-- 8_ _____

9 -

2.430E*06 1 2.589E+t4 1 1.258E+10 8 9.tett+09 I 1.288E*09 8 3.030E+6t 8 0.800E+00 I Ile-99 8 4.438E+47 0 0.000E*08 8 1.216E*11 1 0.880E+80 1 4.230E+10~~ t 8.sttE+tB I 9 tBGE500___-t ile-,i i 7.336E.94 i 2.StiE+t6 i 3.2iSE.95 . .. 0iE+04 i 8.StBE.G. i 8.000E*.0 i 8.09tt+00 i (PASTURE) (PASTURE) (FEED) (PASTURE)

  • See note, page 2.0-32 Units: Inhalation and all tritium - mrem /yr per uCi/m 3 Other pathways for all other radionuclides - m 2* mrem /yr per p Ci/sec 0001, V. C+ Summer, SEandG: Revision 4 (June 1982) 2*0- 20 0015W/0015A
v. -

Table 2.2-3 (Continued)

PATHWAY DOSE FACTORS FOR SECTION 2.2.2.c (Rj )*

( Page 2 of 3 Actciou,Iiw-ii .... i i sw.=1 i i svar i i swear i i swa=1 i i swar i i iSOTOPci iNMALAfiON i C000ND PLMci CAS/ COW /n! lei Gil/ COW /McAfi CE5/CCW/n: lei GES/ COT /acAfi vcCcfATiON i

.... : i .....c..s i ... sic.is i s. isc.it i .....c... i .... c... i .....c... i .....c... i i n...ec.es ,....c.

.i ...

v ., . i .s. 3 .c e.s .i.

s..i .....c... i n.asse. s i .....c... .....c... .

i i.i... .ic. s i s.or.c-is i iv.,..in i a.7 ____.c.es .....c.. . . ... .c... i .. eic... ..i .... c. . i

~

.T.i:~i..~i~.i...Ii.ii.;ii~a. s .nen...~i s.asic s.

i e.eesc.ie..i '..sa.c.is i e.eest.o ~ i. .esec.si.~ i i s.. .c..it i e.esec... i .... c. . i .... c . ... .. s.seet. .i iv.,.e . i s.a . -.c.es i n.s.ac.is i

..3 i s....c..s i 3.s2.c. s i i.77.c. . i .....c... i i.isac.. i e.eest.es i .. sic. . i is.. s e i.7sec. . i n. enc.es e e.asn.is i . ....c... - i - i . e vet.as i . . .e st.e. i ...sec. . i

.i .,7.- .....c.es

. _ _ = i s...sc. . i .....c... i ... ic... . .., sic.ss -i ...sec.ie i .

i s.iiic...

.is n...ec...

.e..s. , . .

i . i i. : c. 7. i.e sc... .

.....c.e.e. .... c. .

.in.c. ,.... ...

. , . 7. c.es .___=.....i.. .. sc.s.

. c... i 3.seec. . i .....c.... i i.s 3c.. . .... c... i .....c... .

.i ..t..e n, i.,....i ..i . 3. . c . s.= -

. . . . c. . . : i .... c... .

i . . _. _. .c. . . i . _.._. .c...

ive.i ..- i . ...ac.e.. sec. 3 ....: a_ie,c. . nc.. s.

. i..i....c. ..i s . .nc.s. .....c... _.

i

...sec...- i .. seer...

i .e.eiec.e.'_i m..i .i

.i e.u. i n s . i s.si e.is .i i.e.sc..e- i -i.essc.is. i 3i ... sit. . i .. sec..

.i n.u .i e s. i .....c.. 7. : c. s i 3. ..c.is

i. . .. ec.is eic.is .i i.- 7.s7sc.

.....c.... c... .

.inu. i ..... i i.is.c.or...i i s...,c. .

i. s...sc.e. . .... c.. z i ..:..c..s: ii..... sic.....sisc.....-....

. - - ....c... .

.i ac.iiin i .s . . c.... i .......,

..- .. tec.... i i .ic.i. . i ..es c. . ..c.e 2.,......,. i ... sic. ....i. i .... c. e i

.i.tc.-sesn i .....c.es i .. i s.s. c. . ... .c. . ..i.

i .....c... .

irc.iarn i i. sinc. . i__ .n.inec.. i.eest.es ... i i.es7c. ,. ii .... c.ee i -.n 7.,.,c .m.... . 7 i...... c.ie. i.

i ..es c...

.c... i .....c... i l irc.ier i ..>.c... i 3.anc.es_ i i.as,c. s i ....ec... i .....c. . . .... c. . i .....c. .

.i.rc..ta,n

. ___ i i. .

n.s sc.e7 i .

i.2,2c.e, i . .. c.se i 7.ss,c.i7 i . ...c... .....c... .

i.a...iic...-- . ........ c. .. ii

.i .rc...i z.,..

- i irc. inn i s.,sec.is -

n. . c..esac.....i...i..s. -

...s,c... i 3.ne.c.i7 i

.... . 7. 7.c.

c. 7.:..e.... .

...c... -

.....c...

. ........ ...c. ..-i.-i..ssc.is i ...est.. i ..esec. .i i

.i.rc isi i ...sisc..: _-

s..s c.e7 i 3.2..c.a. . .... c... . .....c. . . .... c.is i .....c. e i

.,.ec... i

.i.ve is.n...i. 3...ac. s...i ..sisc.e7

.i s...ic. t .i. .....c.co i e eiec..e i

......c........c...

.. ,.. 2c.s. --. inst..s i .. est..e i e.eest.s. i ii.ise. .. i i.s,5c. .- . i . 75.c... i _ i 7 (PASTURE) (PASTURE) (FEED) (PASTURE)

Units: Inhalation and all tritium - mrem /yr per u Ci/m 3 Other pathways for all other radionuclides - m2

  • mrem /yr per u Ci/sec

(

, 00(N, V. C. Sumer, SCEandG: Revision 4 (June 1982) 2.0-21 i

0015W/0015A

Table 2.2-3 (Continued)

PATHWAY DOSE FACTORS FOR SECTION 2.2.2.c (R g )*

Page 3 of 3 ace C.0ur i INFANT 3 i M.A. 3 i INFANT 3 i INFANT 3 i INFANT ) i INFANT 3 i INFANT l

. Is0TOPci' INMALafiON i c.0UND PLANei C. /CCW/ mil i C../CCW/Mc AT C. / COW /MILc5~C. / COT /McAfi VcCcTATION[

.i.isi- i i....c. 7 i n...,c.

. ._ 7 ii s..sse in..i .....c... i .....c... . ....c... .

ii.is: i_....c.

2.ss c...

_s i ... .

sac... s.i .c..: i .....c... i c......

.i.s.7c....

..i .....c... i ..-....c...

i

.. c.in

.. i ii.i23 i n.,.ic... i ... ic.., i .....c... i i.77 ....c... . .....c... i n.n. i,, g sac... i n.ns i ..,s.c..s i s.u sc..s i . . ..ac.n n.,oc...

.....c.n i . . . nc.n i . . . n c.n i . . . . .c.n i i

i n.nn.n i . .. .nc.n i .. .nc.n i - . . .n c.n i .....c... .

3ce.n. i 7..r u ..s i ...nc.., i . . . n c.n - i

..n c.n ~ i . a.suc.n o - ...nc.n i .. n c.n i ics.n. i i.3.sc..s i n.7.ac... i s.7,se.., i .... c... i i.72,c. 7 i .....c... . .....c... i its.n, i . . n u..s

___ i i.anc.n i . . . .c. n i . .n c.n i . inc.n i . . .. .c.n i . . . . .c. n i ies. n._ i .i.ac..s ,i n . i n c.

_n..n, .___.._.n i ,s.. nc...

.c..:

i i.u.c..s i i . . . n c. n .....nc.n.

m. n.c..s . . ...nc.n -it..n.c.n -i . . u .c.n

...nc... . ..n c.n i i . . . n c.n i i.5,.c...__i n.s.ac. 7 i _m..i.c... i. .....c... -i ....,c. s . .....c... . .....c... .

.i ..i.i.i .n...i ....i.. 7%c.n i . 72.c...

....i.: i i.ss.c. 3 i s....c...

i s . i .i c.u i .. .nc.n t

. .....c...

. . .nc.n . . i . . . n c. n i . . . n c.n i

. .... c.... . .....c... . .....c... .

i m i..= i .....c... .

s i..n c.is i .n c.u i . ..nc. s i . . .n c.n i ..s sc.ia i .....c... . ..u.c... i

.it. . .: i ...

s.,sec... . .....c..s i ...i,c... . .... c... i: .....c... . .....c... . .... c... .

_ i i .s..c. 7 -

s.i..c. s

..c. 7 .....c... -i i 7....c..s. i .....c...

i

.ii cc.c. e . i .i..i.. i ...i _ = _.___ .. .i.i.ac..s .....c...

i arc..._ i.i i.ss.c...

i. . .....c... i i.is,c.i.

. .....c... . .....c... i

.i c.t. i . i ....ac. . . .. 3 c. 7 i s.33.c... . .....c... i 2.7.,c. 7 i .....c... . .....c... .

.... .....== 3 . 2 .c..s i .....c... i 7.. sc. s i .....c... i n.77tc..s i ....ic... i .....c... i in.i.. .. . n...,c_ . n i n.n c..s i s.nic- .= i ...nc.u -ize n c...

. i . . n .c.n i ..n.c... i io.io i 3.22.c. s i s.n,c.n z i s.n 2c..s . - . . . .n c.u s i - . .n c..:

i . . .nc.n i ..n c.n i iu.in i 3.un.n i .nu.n i 2.suc.n i . . . n c... i s. 7sc.2: i . . .nc.n i . . . n c.n i pr.as, i s.,s c... ; i . n.c.. . i .....c... i .....c... i .....c...

i .....c... . .....c... .

(PASTURE) (PASTURE) (FEED) (PASTURE)

Units: Inhalation and all tritium - mrem /yr per uCi/m 3 Other pathways for all other radionuclides - m

  • mrem /yr per uCi/sec 000'i, V. C. Summer, S&andG: Revision 4 (June 1982) 2.0-22 0015W/0015A

~ --

Table 2.2-4 PATHMY DOSE FACTORS FOR SECTION 2+2.2+c (Rg )*

( (For Dose Calculations Required by TS 6*9+1.13)

Page 1 of 3

.A.C.E.C.a. .. ..___0u.r i N MILD 3 t II . A . D 't CMILB l ( CHILD 9 4 CMILS 9 i CHILS 9 4 CMILD 9

.t. .. _15010PEI ..IM.HALATION.I Ct0UND PLA.NE.l.GE S/ COW / MILE I Ca t./.CO.W/ME AT.I.C.S S/VECETATION..t - .-- COW /M.ILt..l .Ca.S./C.O.T/.R

.e n..3.. ..I ..t . l tSE + 0 3 1 0.eteE+00 I t .4 2tt+03 8 2.steE+st I t .4 2tE*0 3 8 E.54tE+0L 1 3.627C+43__ I IC-te 3.589E*04 0.tlOE*t4 1

.8. I t .195E.+.t t I

. 3.834E.*.t.0 l 4.tett+0S I 4.681g.a7 . __ e g

g,g94g+tg..1 tNA-te

_ ..e ...t 6..t .t.t.+.0 4...I 1 395E + t ? I 0 053E+56- . .8. 1 . --

725E-03 1 1.321E-37. 8 E.979E c.4.-- 1 3.729E*05 0

.I P. ...32....1. .2 ..6 .0 5.E.+.t .6.. I t.080E*00 .

1

7. 775E*18. 1. 7 4.ttE.09 6 3.440E+0B .I-8.893E+t.e .

1 3.366t+09

.I l 1.905E+t5 .I - 5.593E+44 5 6.tt3E+t6 I

.C.... R .51... _I__.t . 6-_99E*8 _ _ - 4..6. 5 5.-86t.+.06 I. 5. 390E+ 96 .I. 4.66tt+05 - --.

0 l

7...I..S 0.t.l .E.+ 0 6 .8 6. 012C + 0 6 8 9.683E+05 8 6.640E*00...t 3

.M.N.=5. . 4....i...S 5 ... 76E.*.t.6 1. 62 5E.+.0 9...l. 2. 9 97E.*.4 smw.56 1 S.232E+05 8 t.06tE+46 1 .t. tele +tt i ..2.437E.51_t 8.et0E+6e L .2.924t*52 1 2.713E*t3 IFE-55 1 1.tttE*t5 8 0.000E+49 8 1.tt9E+t3 I 4.57tE+t3_ 1 3.673E*87 8 '5.406E+47 1 0.012E+0S I

__ .-- == .

=_

59. .I...t 269E+46 1 3.204E+98 1._2.025E*00 __._.6.330E*t0---__.0

_0F.E . . -

0 1.749E*87 1 7.695E+47 I 6.693E+0S __I IC0-58 I l.196E*06 8 4.464E*t0_*I 7.estE+07 8 9.596E+t? I 1.032E*t7 8- 1.152E*t7 1 3.771E+49 I ICO-69 1 7.467t+I6 8 2.532E+10 I 2.39tt+0B 6 3.830C+00 1 0.103E+07 -8 4.695E+47 I t.095E+69 I 8 9.eteE+09 I t.964C+tt i 2.912C*te I 1.936E+18 t - 3.495E+ 09 1 3.949E+14 I

.I N..I .6 3... 3. 0. 214

.. =- _ E

  • I S_ ==

.INI .. .. 65...1. 0.399E+84__ .- .

4 3.45tt+45 _..1 8

7.8..9 E.+.61. ' t 4.46tt 51 I t.900E+88e 1 4.973E-52 I 1.28tE*03 8 3.678E*04 1 6.076E+85 8 3.512E+06 == I 1.393E.85_ - =l- 7.299E.46 l- 1.672C-96 9 5.159E+95 l

.I C.U.-6 4.= _1_-.9.953E*t5 t!N*65 l L 9.503E+98 $ t.101C+18 9 1.800E*Of .I 2.985E+39 ..I 1.200E+90 1 2.164E+49 I

( 11N-69 I t.Ol8E*t4 4

- _=

9.tleC+00 8 1.123E-89 1 0.0 00C+4 9 - B 8.000E*tt 4 6.509E+49 8 9.093E 04 I 4.736t+0E

_1 4. 0 8 9 E+tl - 8 1.142E.57 1 1369E*00 I 8

.I D.s...4 _3._ _1 ___. 7.079E+03. ... 4 4. 399E-S.t...I ..' 9.519 E-_57

.lle...s.e....i. 5. 4 7..-6E + 0 2 I t.363E+05. 1 6.588E-23 1 0.

tete +88 8 0.89tE*Et- I 9.et0E+44 I 3.022E-11 I

.Ita.-05...1.

.. .. 2 53tE*01 =- 4 0.000E+tt 4 8.et0E+98 9 9.ettE*tt I S.0SIE+00 1 0.000E+OS I 0.000E+II I les.ts I .t.9e3E+05 8 1.e35E+e? e e.e64E+t,

~ 8 5.staE+se I t.114E+4e I 6.979E.47 1 4.5est+0e I

.l e.t.-

. t e.-_ i 5 N2 4E+42...I 3.779E + 9 4 6

7.tSOE...45 ._

6 9.etIE440 0. 0..t .e.t E.+.0 S I 4.tteE*06- 8 4.374E.22--- ---I 1 1.452E+45 I 1.7tSE*53-. . I 't.t.tlE+00 1

189.-09..

. .. . 3 452E.+.42. 0. 9 SteE+tt I I

... . . - t.SSOE+0.S

.. 1.642E __.0 152.-0 9...1. 2 157.E+ ... 0 6....I-.t.509E+04

9. 6.6t9E*t9 8 I 3.593E+18
4.S t%E+9 8 . I " 6.730E+ t t .1. 5.770E.+ 07 .I

..t.et0E*se I t.ettE+00_ 1 1.117E+11 l- 1.044C+16 I 3.te7t+18_ I Isa-te I t.240E+09 8 1.243E*12 1 TU.,i -i I .n9E *t 5 4 2.5 iE+46 8 t ..70E+05 i 5.2,2E.it I S.S.0E*te i 6.35it.it i i.i57E+ 6 i (PASTURE) (PASTURE) (FEED) (PASTURE) i l

  • See note, page 2*0-32 Units: Inhalation and all tritium - mrem /yr per p Ci/m 3 Other pathways for all other radionuclides - m2 + mrem /yr per uCi/sec 0009, V* C+ Summer, SGandG: Revision 4 (June 1982) 2+0-23 0015W/0015A

Table 2+ 2-4 (Continu:d)

PATHWAY 00SE FACTORS FOR SECTION 2.2+2+c (Rj )*

( Page 2 of 3

.a.C.E.CE .. . 0.ut.. . t'*

CHILD l i

.N.A. 5 - ( CHILD 3 i- CHILD I ( .=-

CHILD 4__-

4---CHILD 1 ( CHILD 3 lesa.ISOTOPEI INMALAT10M I CEOUND PLANEl CSS / COW /MILEI Cat / COW /MEAft Cat / COW I /n1Lui C

2. 4 2 4E..+.0 5...18.631C+.45 1

__-92 1 4.134E+01 1 3.4tM 4e a s. tete +49 4.tt1E-49 1.370E+04

_I_ 8 I I

.tv.99 2_ ..

67?.E..+ 0 5 0. 5. 3.00E.+03 -. -

1 9.171E*t.5 8 4 07PC+05 1 2.277E-05 1 5.055E+44 1 6.569E*07 p

.I .T..T.in....I.

. 2. 012E + 0 3.. 8 1 14 L E

  • t 5 l 5.190E-16 1 0.stStete 1 0.000E+40 l_ 0.000E+60 8 1.737E-05  ;

87-96 1 2.627t+96 8 1.207Ee86 8 5.199E+06 1 2.400E de 1 6.26tt+95 1 2.000E+t? I 2.484E+tt I

.I .T.-92....1. = 2. 39 0 E + 8 5 1

8.000E*00 a.350E-36 2.842E.+.45. 6- 7.310E*88

1. 6.95tE-35 ~ l ..I. .I. 4 ..

576E.~+04 I 11..93. .6 3.095E*05 -_ 1 2.534E+05 1 . .w.

1.573E*04 .. 8._ 9.134E-61 I t.547E-07 -I 1.057E-08 8 4.482E+86 i

I 0 706E*05 1 4.186E+09 828..-95

. : 1 --_--2. . - 23.t E

  • 0 2.837E*00__.1 6 I 1.160E+05 I ~7.320E+07 0 0.043C+0e t 628-97 I _ . _3.511E+05 1 3.445E+96 8 4.tttE*04 6 7.015E-01 I 4.783E-35 S.419E.02 i 1 1.248E+t? I I t.605E+00 1 2.287E*00 2.220C+09

.I .n . . t..9 5.. _._-- I 6.142E*05 0 8 8.346E+47 4 2.673E+00 8 2.949[+88 1 IMO-ft i 1.354E+05 4.626E+86 1 1 1.730E+09 1 2.456E*ts I - B.512E-03 8 2.947E+64 8 1.647t+07 8 5fC*t9M I

_ _ _ _.. .4 t. .i. .t t .+ .t 3..1 2.80?t+05 0 1.474E+44 I 6.915E-18 . t : 4.800E+4s 3.290E-t? I ITC-ttt I 5.046E*02 1 2.277E+04 I 5.573E-58 t 4.It9E+66 5.255E+03..8

8. 0.tllE+00 1 't.tt0E+00 1 4.123E-29 I 100-103 8 6.623E+05 1 1.265E+49 1 l 4. 8 0 9E+ tt leu-les-_ 1_ _T.953E+64 _ 1 7.212E+55 1.14 tE.+.0 5-1- 2.493C+00
8. 7.952E+

. 83

.1. 4.81 t E+ 88

.1. 3.971E+

- - _ 0g_1 I 5.985E-25 _ 8 0.00tE+04-_ I 7.96tt-26 8 5.981E+44 8 Itu-106 I l.432E*l7 I 5.04tE+08 I 1.437E+t6 I 6.ft2E+18 l 4.243E+t5 I S.282E+tt i 1.15fE+18 1

(' i5C-Sten I 5.476t*06 8 4.01TC+49 9 1.674E+10 l 6.742E+ts.:1 '4.576E+49 cl 8.090E+07 1 2.581E+0? I 81E-825M I 4.773E*05 1 2.120C+46 ITE-12?n I t.400E+46 I 8 7.377E*07 ' l . 5.690E+6E a t : 8.eO2E+06 ' I 6.02SE+07 8 3.506E*te i 1.983E+45 1 5.932E*00 1 5.06tE*09 8 1.171E+88 I 6.072E+00 8 3.76?E+tt I

{E-127_ _t 5.624E+04 1 3.293E+63 1 1.191E+45 I 1.687E-te 1 0.000E+04 8 1.92fE-Of ITE-12?R I l.761E*06 I 3.tt3E+45 I 8 2.30$E+87 1 7.961E+49 1 5.245E+tt i 4.324E+s7 1 6.294C+40 1 2.469E+tt i ITE-129 8 2.549E*04 1 3.976E+44 8 6.166E-08 I t 90 0E+te .. I 4.999E*48 I 4.098E+09 8 7.204E-02 I

.if.. E. .13.1M...i. 3) h78t+.t.ts459E+ -._ A 06

..t. 2. .24 4E+.t?. .. .._ I..t 015E_+ 3 3 .121.621C-15 8.1.179E+ 0 3 8 IfE-131 t -- tj54E+t3 1__ _3.450E+07_ I- 8.489E-32 0.000E*04 2.163E+87. I 0 1 0. tete *st t 0.steE+50 1 1.34tE-14 8

.I .T E. .13 2..1__ 3.774E+t5 8 4.96tE+06 4.551E*47 i T.325E+46 8

8 7.272E-02 1 1.119E+t6 4 3.11tE*87 I

.i .i i.s.= - .i_ 6 6,2E+t6 t ..I...i 0

. 4 6_ E

  • 0 6 = --

i 3. 45E.8. I 6.75.E.44 i 3.125E.45 i ..it,E.65 i 1.370E+t. l

{

(PASTURE) (PASTURE) (FEED) (PASTURE) l l

l l

Units: Inhalation and all tritium - mrem /yr per uCi/m Other pathways for all other radionuclides - m2

  • mrem /yr per uCi/sec 0001, V+ C+ Sumer, SEandG: Revision 4 (June 1982) 2.0-24 0015W/0015A

Tchle 2+ 2-4 (Continued)

PATHWAY DOSE FACTORS FOR SECTION 2.2.2+c (R j )*

Page 3 of 3

(.

o

.a.C.C..C.e .. Du.e....t . CHILD D t N.A. 3 ( CHILD 3 ( CHILD ) ( CHILD ) ( CHILS ) t CHILD 3 i 15010PEI INHALATION I GROUND PlaNEl CAS/ COW /MILEI cts / COW /MCAfl CaS/ COW / MILE I GES/CCT/MEATB VECETAT10N a 81-838 I 1.624E+87 9 2.089E+07 1 4.333E+11 1 5.593E*t9 I 6.440E+47 4 6.664E+00 1 4.754C+10 t 55'.132 8 1.935E+05 t 1.452E+66 8 5.129E+t1 8 2.429E-57 8 9.eltt+00 1 2.915E-50 1 7.314E+03 4 31

. .133...3. 3 . -04eE*t6 8 2.901E+t6 8 3.945E*19 I 1.304E+02 8 7.299E.23 1 1.564E+61 1 0.113E*t8 I

.e .t .13

. 4....e . 5. 4 6 9 E + 0 4 I .5.305E+05 8 3.624E-10 1 0.000E+00 t 0.et9E+0g I 0.400E*00 0 6.622E-93 I 6 -7.910E*t5 1.839E-14..t

.II.135

=_==_ 4 .2 947E+06 8. 8.. 697E+46 1 0.0 gee +48

.4..1 247E-15 6 9.973E+66 I

_____1.014C+06 8

- .-- S . 0 0 7E*l9 1. 3.715E+14 l' 1 583E+99 1 1.197t+18-.___.I" 1 et6t+00 1 -2.63tt+101 1

__I C S-_13 4. _

__1.749E*t5 .0. 1.782C+t8 8 2.773E+t? 8 4.426E*l7 i_ 8'5.311E+06

_ .S.276C+06 1. 2.247E*t0 t

.I C.S..13 6. _ 8__9.965E+t5. B I

t.286!+16. 8 3.224E+10 l .1.334E+09 I. 1.122E+18 .t 1.60tE+49 1. 2 392E+10 I

.I C.. =S..13 7 .

8 4.102C*t5 I 5.520E.23 I t.ttOE+00 8.CS.-138 8.399E+02 _____- .3 1 9.133E-11 I IDa-139_ I 5.772E+te i 1.194E+05 'I t.23tt-95 I 4.eleE+00 t_.et.estt+It l._ .I.~.8.000E+00 e.st0E+It 0 : 4.steE+OS I 2.95tE+tt i Ita-let I 1.743E+t6 9 2.346E+47- I 1.171E+49 8 4.384C+t? - t - 3.114E*t5 -c l 5.261E+06 1 2.767E+88 I 2.919E+t3 .__= 1 4.734E*t4 I 1.21tE.45 t 0.tttE+00 sc S.IteE+96.; I: 0.680E*06 l 1.685E-21 0

.I .D.a n .e t . = _i__._l.643E+03_

ga.142 .. _I l 5.064E+t* 4- 8.ettE+08 I _e.st0E+00 "4 4.eteE+99 eI c.etst+0s i 4.105E-39 8

, .I L.a...t ..e t ...i . 2. 257E + 0 5 l 2. t S O E+ t ?...I..: 1. 9 9 4 E

  • s 5 1 5.492E+02:

._.t. 4.59_6.E.

.. 12.:.I

.. 6.59tE*01 .8 3.166E+87 I t

.i t.a.

. . .i ..4 2...i . 7. 5 05E + 4 4 i s.ne6E+t5 i 2.984E.e6 i f.etOE+50 t .is E+0 z i ..IteE+90 i 1.5 2E+i1__ .

ICE-ies i 5.43,E+05 i 1.540E+07 i 1.36tt+t? i 1.n2E+ s7 :_ t 6.9e:E+ts, i 1.65eE+es i 4.4 2E+0e i ICE-843 I l.273E+95 8 2.627E*06 0 1.40SE+t6 9 2.516E+02 I t.466E.14 I 3.sttE+01 4 1.364E+87 I ICbl44 8 1.195E+07 i S.932E+07 1 1.326E+0E I 1.893E*tt 1 3.T27E+s7 B 2.27tE+07 ~ l 1.039E+10 t IPEU43 t~ 4I52ht+05 I t.48tE*tt i 7.754E+45 t~ 3.689E+t? 8 2.73tE+03'~l 4.331C+86 8 't.575E*00 0 IPR-144 8 1.565E+03 l 2.812E+03 5 2.840E.50 1 4.06BE+49 I.8.000E+00 t f.estt+te t 3.829E-23 6 IND-847 4 3.202E*05- t 1.009E+t7. I '5.712C+05 I- 1.585E+t? Eo 6.864E+02 1.005E+t6 4 8 9.197t+07 I i.s..i.i.r....== 9. i t 2E+ .4i 2.74tE+46 i~ 2.420E+06 l 2.n E+0. i 5.i43E.22 i 3.34.C.It i 5.n0E+.6 i

. P.23, i 6.4.iE. 4 i s.976E+.6 i ,.i3.E+.4 i 2.232E+03 i i 2.67,E+02

. 9.336E.8. i 1.357E+07 i (PASTURE) (PASTURE) (FEED) (PASTURE)

I

  • I l

l l

l l

i Units: Inhalation and all tritium - mrem /yr per u Ci/m 3 l Other pathways for all other radionuclides - m2

  • mrem /yr per uCi/sec 0004, V. C. Sumer, SEandG: Revision 4 (June 1982) 2.0-25 0015W/0015A

Table 2+2-5 PATHmY DOSE FACTORS FOR SECTION 2.2+2.c (Rj )*

F (For Dose Calculations Required by TS 6.9+1+13)

Page 1 of 3

{ N.A. 3 (TEENAGERS (TEENACEtt (TEENAGER)

. A.C.E.C.R

. . 0.u.t....( T EEN .- ACEt ) (TEENACER)

I (TEENACEtt-=

.I . .R $.0.T OP E.S. I.EAL

. ... -_ AT I ON CEOUND PL ANE.S CA S/ COW /ntLE I VECETATION I g.272E+03_ 1 0.080E*00_. 9.9 9X

  • 0 2 l CaS/ COW /nEAft Cas/ COW /ntLul Cas/ COT /ntA.TI e n - 3. ... e 1 1.754E+42 i e.99X+02 5
  • i

. 2.104E+01. 1 2.342E+83 $

i

.....I. 2. 600E.*g4 S.040E+04 I 4.*19E*00 I s

'.049E*05 I 1.700E*00 8 2.44SE+87 8 3.690E*00 8

..sma Je i 1.376E+44 0 1.385E+07 6 1.te4C.83 1.301E.94 I. 6. 347E.39 8 1 2.30?E+05 4 0.000E+tt i, 4.255E+0e. 3.153E+10 .8 IP.32 I 1.000E+06 0 3.931E+tf i 1.395E+0e 5 4.717t+80 1 1.600E+09 I 8Ca.53 8 2.896E+e4 I 5.506E+06 I t.387C+06 I 9.471E+ts i 3.tB5E+05 8 1.137E*05 I 1.037E+t? I

.U.N.54....I.=t.te4E+e6 I 1.625E+89 e 2.875E+87 8 1.436E+07 I O.248t+06 8 8.723E+46 I 9.32tE+0e t enN-56 8 5.744E+04 I 1.06eE+06 I 4.056E*01 l- 8.302C.52 I t . 9 0 0E* t 0 -: t : ^ T.962E.53 I 9.451E+82 I IFE.55 I 3.24tE+05 I I.809E+99 t 4.454E+07 i '2.382E+88 8 1.463E+t?1 6 2.gstt+87 1 3.25fE*00 t lFE-59 I ~~t.528t+t6 6 3.284E+00 +1 2.061E+0s I 1.171E+t? I 2.478E+07 8 1.40SE*00 I 9.e95E+0e i ICO-58 I 1.344E*te 4.464E+88 I 1.gTSEtte I 1

1.942E+69 0 1 596E*l7 .t. 2.330E+t? I 6.834E*BE I ICO-69 8.720E+t6 6 2.532E+10 8

1 3.621E+It t 7.688E+tt I.'ti227E+0e _ _ . I.4 9. 120E+07 I _ 3.230E*49 .I

.I .N.I.*.6 3... 8. 5 .--8 8 t E + g s 1 0.00tt+0e. I 1.182E+tt i .1.51?E+18--- t 4.13 8E..+.3 9 : 4...1 . . 0 23.E+ 4 9 8 1 686E.+.13..0 INI-65 I 3.672E+04 8._ _3.451E*t1 6 4.692E+48 8 1.3tSt.51 t 0.908t+OS:sto 1.566E.52 1 3.166E+02 I ICU-64 1 6.144E+t* I 6.876E+t5 8 3.293E+t6 t

===- 1 1.713E.e5 ==.6.963E.46- 1: 2.056E.16 I 6.465E+05 I 02N-65 _ ---, .240E+06 l

$__ 9 9.583E+89 $ 7.315E* t9 ' $ 9.698E+83 8 1.983E+89 e 8 1.643E+0S .

1.471E+$9 l l_

12M-69 8 1.504E+03 I t.getE+00 I

_ 1 76tE.11 _ 1 0 sttE+89 I 9.gett+08

( 49e -

===.33

- . _ _ _ . ' t . t t 0E* t s ml 8 2.067E.05...I

.. 1___3.44eE+gt_

- -_ __ - _ =t-7.tytt+83_ _ .l-- -1.79 tE.g t. _ t 5,866E.57- . -.

6 6.0 0. _8E*tt  ; I .6.87tE.50 8 2 911E*00 I Isa.se__ 4.32SE+02 - t 2.363E+85. 8.'2.877E.23 -4 8.tett+et 3o0.080E+tt:'t__ 0.030E+00 1

I 2.251E.11 8 108-85 0 1.032E+t1 1 0.000E+08 I S.888E+00 I t.sgeE+te t 0.08tE+It I c.estt+0e I t.898E+00 I 189-86 I 'a . 9 8 4E *t 5 8 1.435E+07 I 4.766E+0? I 4.tt1E+ge 1 6.986E*07 6 4.921E+t? I 2.772E*18 8 IRB-08 3 5.456E+02 8 3.77?E*84 8 3.086E.45 I t.380E+00 8 8. OSSE *DS I 4.888E*08 4 3.160E.22 I 1A9-09 6 3.520EAg2 1 1.452E+85 4 9.774E.54 0 0.StBE+tt . t. 8. tete +09 0 0.90tE+t8 I 1.247E.26 I 45a 09 I

2. 416.t.+.0. 6..8. ..

s.t..E+0. i 6.sttE..

2 5.8 9E+ .. 0 4 8. 2.674E+49.

tt . i

. 4 2 545.E..+4B -I c2.719E+ts I 3.tS4C+07 I .1.513E+10 I 3..-,8 i

6.6 2E+tt i . 94,E+., i 2. nit.10 i ,.65,E*t. i 7.547t+1s i

..i i 2.5,2E+95 i 2.SiiC+06 i 2.49,E+45 i 5.7,4E.it i 8.800E+09 i 6.,5 E.1 i s.2,1E+06 i (PASTURE) (PASTURE) (FEED) (PASTURE) 1 l

1 l

i 1

  • See note, page 2*0-32 Units: Inhalation and all tritium - mrem /yr per u Ci/m 3 Other pathways for all other radionuclides - m2
  • mrem /yr per pCi/sec I

0001, V. C. Sumer, SEandG: Revision 4 (June 1982) 2.0-26

. 0015W/0015A

Table 2+ 2-5 (Continued)

PATHWAY DOSE FACTORS FOR SECTION 2.2.2.c (R9 )*

g Page 2 of 3

. A.C.E. .C.e.C.u.p

( N.A. 3 (TEENAGEtt

.....In.fMACEtt -

. i (TE.ENACER)

ITEENAGER)

---*.--(TEENAGER.).

.(TEENACEtt.. --

.I ..I..S ...

O.T-_ CP==--- E.I..I NN AL A T I ON I CEOUND.P.

_ .... LANE.l.CAS/ COWCOW


Cas/ / MILT

/MCAfl f Ste/ COW / MILE I.Cas/ COT

-- ----- / MEA.T.I VECETAfl0M.I 15a.

. . 92.....e .t 192.E.*.05.

.. I. e.631E*05 1 ----2.277E*01 1 2.516E-48 1 0.000E*90 1 3.019E*49= 8 1.812E+44-- 4 19.=

. . 9 0. . - 1 --1.592E+05. __. _

I 5.380E+03 3 1.874E+06 8 1 2 666E.05 I 8.965E+04 8 1.025E+0e I 7.478E+05 -1 59 . . 9.tM...I 3.200.E.+.93 1 1 16tt+05 I 5 -- 0.00$E+00 0.000C+08 1 2.205E*07 I

- - . 8 29E..t.e. 8 0 000E+99 . ----

0 99..91....1. 2

.. 936t*06-

__ 8 1.207E+06 1 6.475E+66 1 3.910E+0e t- 7.797t+t5- 1 4.698E+07 1- 3.212E+09 8 e

19..9 2.. - 2E.+ 0 5B. 2.eZeE+49 8 19

---1. 6.. 4 0E.*.t.5..1.--

5.792E*05 2.14 l 2.534C+45 1 1.312E+44 I 3.522C-35..0..0

-- - - 000E+00 1 --.26E. 4.2 . .36 0 2 364E.+44 I

..93....8. -- ___ t.600E.07 6 7.620E-61 1 2.926E-Os_ l 4.983E+86 I

.c18.....95..

2.600E*06 e 2.837E+Be I S.281E+86 1 1.192E+tt I l.585E+85 I-- 1.310E* 0s I 1.253E+49 I 1_. -- --

62a.97...6.

.... 6. 344E*t5

.== __

8 3.445E*06 4 4.225E+04 I l'

_9.

t.10sE-01 .0--1.673E+87..8 4ND-95 e 7.512C+05 8 8.6tSE*00 1__3.33eE*te 1_

231C-01 1.963E+07 *I .4.732C-35__8 -- I-5.tett+6s 4.25tt+t9 8

4.551E+0e i IMO.99 0 2.68eE*85 1- 4.626E+B6 9 1.823E+88 1 1.392E+t5 0 5.013E-83 1 2.279E*84 8 1.293C+07 I 6.12eE*03 1 2.199E+85 l 1.055E+44 6.47tE.10 1 0.098E+00

. 5 l 7.766E.19 I 5.08tE+43 8

.I .T.C..9 pt-tti 1 _.9.M. . _i_ 8 6.672E*02 2.277E+64_

1-3.287E.58 8 4.stBE+ts I *8.088t+00 I ^B.000E+08 1 3.229E.29 4 leu 193 I 7.832E*t5 l 1.265E+ts 1 1.513C+05 6 seu-st$ e 9.448E+04 7.162E+49 ' l ' t.086E+44 : I 0.595E+0e I 5.706E+0e I 6 7.212E+05 8 1.263E+40 8 3.900E.25 4.008E+08 1' 4.600E-26 l'

8 4.939E+44 I

. . . - 5.049E+0e 1 6

5.799E+86 8 1.13tE+11 1 5.312E+05 :t- 8.356E+1s I 1.404E+10 t

.t

.l Aa G..u. .l .t 10 6.. 8..4 6 tee +87_ _ .2.559E*19 _1

= .

6.752E+44

.t M...i 4.619E*69 4 I 1.3 45E* 8 9 1._6. 902E* t 9__ --1.614E+0e I

't ITE-125M i ..-.360E+45 _ -.-

4.83tt.+.49. i 5 - _ 1 2.12eE+te i__ s.063E+87 . 1 e.941E+8e_1. -1.sseE+87 t 1.073E+0s i I

4.375E+se I

.I T E...12 7 M..i---1.656E*06 t.te3E*05 1 3.420E*88 8 3.et&E+99 4 6.753E+47. 1 4.5sBE*88

. ... -_= 8 2.236E+09 I

.IT.E...127...I. ..- __

1

.S 0 0 0 E

  • t.4 _3.293E*83. 8____9.572E+04 .0. 1.689E-te

- - __ I. 0.000E*t0- I 2.827E.t? I 4.1stE+05 I

.ITC.

. . .129.M...i. t.976E+44 -0 2.385E+07 9 4.692E+0e._ 1 3.966E+st i 2.580E+47 6 4.759E*88 8 1.540E*09 I ITE-129 1 3.296E*03__ 1 3.076E*04 8 2.196E-99 i S.000E+0s 1 8.08tE+4e 1 0.0 TOE *80 0 3.41st.43 I ITE.13tn I 6.28BE+05 -I 9.459E*B6 1 2.529E+t? I- 1.447E+04.l~ 1.027E.15 I

e 1.736Ees3 0 3.24eE+07 I

.I -T ._E.131 __. 2.336E*t3 .1-__. 3 45tE*t7..4..2.879E.32 1't.990E+00 4.094E+tt..I___ 0.000E+30..1..6 999E.15. I gt.i32 3 4.632E+45 i 4.,6st.96 i s.5eiE07 i 2.38tE+.7 i__ i.371E. 1__- i 2.76tE+06 i 7.stst+t7 i 6..,2E 96 i

.i...t. i .s.t....I ..i . 4 00E. 6 _.i

1. 7 4 2 E.+.9 8 I -

4.485E.04 ..i i.4i6E.45 i. 4.st&E. 5 ..I e 276E.+.07..0

, (PASTURE) (PASTURE) (FEED) (PASTURE) l l

1 l

l Units: Inhalation and all tritium - mrem /yr per uCi/m 3 Other pathways for all other radionuclides - m2* mrem /yr per uCi/sec 1

1 l 0004, V. C. Sumer, SEandG: Revision 4 (June 1982) 2+0-27 001SW/001SA

Table 2+2-5 (Continued)

PATHWAY 00SE FACTORS FOR SECTION 2+ 2+ 2+ c (R $

)*

( Page 3 of 3 ACE CBDUP (

...T.E.E.N..... A C E t .t .-t- M.A.

1 - -(TEENACEtt (TEENAGEtt

. ...(T.EENAGEtt (TEENAGER)

- (-

. TEENAGER) -

.I13..I131 ..

S O.T.O.P.E.s.= ==_

I NM AL .

A T ! DN. .8 CR OUN D P L AN.C.l..CR $ / COW

.. /.M.I.LK l CR.S./ . COW / MEA.T.I I GR S/CCW/ MILE 0

~

1.464E+07 9 2.009E*l?. I 2.195E+11 1 3.645E+0?_ 8 3.266E+07 I 4.375E+0s t 3.140E+tt I

.i.i.~i.32.....i.= t . 512t *0..1

.. __ . _ 0 5452E+06 1 2.242E+01 I t.389E.57 1..8 000E.+.60 8

1.667E.58- . .~ .8 4.262E+03 .I 13 433 0 2.929E+86 I 2.981E+96 I 1.674E+09_ 8 7.234E+01.. 8 3.096E.23 I S.600E+00 1 4.587E+49 I

.I.I 134....I.=3.952E+te

.. __-_ - .1 5.305E+95 .. -

1 1.583E.10 1 0.800E+40 0 8.00SE*00 8 0.lett+00 l 3.054E.93 8 13 135 0 6.288E+05_ __ -8 2.947E*t6 8 3.777E+06 1 5.963E.15 1= , =0.000E+08 l 7.156E.16 1 5.832E+96 8 8 C.5..13.4...I. 1.120E*06 ==-- =____

I S.0071*t, t 2.310E+15 1 : 1. 23 tE+ 9 7 -- I 7.4 43E* t 9 - I- 1.477E+0S I t.671E+10 I IC5 136 4 8.936E*05 6 8.792E*00 i t.759E*09 I 3.671E+07 8 5.249E+06 8

__ _._____ 4 445E+86___ .8. 1 780E+90 0

.I C.S 13 7..1. .0 .. 6.197E+89 8 4 8. 0 E.*.0 5...I . 1. 2 91 E

  • 18...I7...t

.01 E..+.10...B 9. 6 3 4 E + 8 0. 0

--_ 1. 156E+tt I ..t 340E.+.10. I 35 m i _e.560E+02. i 4.192E+ 5 a 3.it,E.23 i t.tt E+0e : 0.sttE*t0 i 0.tiiE+te i-_ 6.,. . .35E.11 i

.s .e -A..i 3, i_ 6. 64E+ 3 e i.i,.E.05 i 7.74 St i

- - E.8 7 i ..8 .0 ....

0 0 E+ . 9...i ..0 ... .E.+.t.t...i . l.-.8 9 9 E+ 0 s ..i. 2.472E.81 i

.i .l A . i .e t_ 2.432E+t6._._.i. 2 346t+07. i 7.4.iE+i7 -

_. i 3 6 63.E. . 7 .i ..1 ,,0 E+ 0 5...i ..4. 3,6E. 8 6 .i . 2 13,0 E+ 0..

6, . . i

.io .. ____.... .

i ..i,..C.+.0 .41...i 3...i

. 3 2. 4. -

6. 7._3.E
  • ti 4.4. ,22_. E....6 . 0.000E.+ .8.i. 8.000E+0. 4.8.000E*0. . . E.22 i

.i .e.A-i .. . .4 2...i.

..i2E+i2

- - =.i. 5. 64E+04 i. 8..Itt+.. __

i 0.ti E+0e. i t. 00E+08 i 8.et E*09 2.26,E.3, i 2.lteE+47 8 2.29tE+05 8 8.60?E+82 I' 5.560E.12 nI 1.843E+02--- i

.IL.. A..14 0..1..4 .8. 7- -2E + t 5 1

-= 8 5.194E+47 i

.I L. A. 14 2.. 8. 1. 2.0 0 E..*.8 4..

... -_ I_

3.056E+05 I .2.574E.07 8 8.eteE*te I't.008E+00- 4: 0.000E*00 0 1.068E+00 t

.I C.E. .... 141.. 5. . 6 .... 13 6E.+.8 5.. 8. 1. 5 4 8 E+ 4 01.696E+07-.I--2.252E+07 7 1. . e .78 t E+ ts - 1. 2.783E+86 4 5.484E+0S I ICE.143 1 2.552E*85. 1 2.627E+t6 l 8.671E*06I 3.6,5E+02 1 1.130C.14 8 4.434E*01 1 2.648E*t7 I ICE.144 I t.336t+07 8 e e32E+t7 1 1.655E+08 8 3.Sett+88 8 4.650E+97: 8 3.7t&E+87 8 1.326E+10 t g 4.000E+3G g ,.553E+ts 1 5.817E+87 8 3.374E+03 1 6.,00E+t6 8 2.310C+tS I

.IPG 143..5..4.832E+$5__4 _2.112E+33 les.144 I t.752C+33 _0_-_1.230C.53 1 0.sttE+38 t.4.tsBE+tt 8 9.400E+99 1 3.0T7E.26 t

$ND.147 $ 3,72$C+3$ $ {,$$9E+37 g. 7,((&E+$$. l g,4$gt.g7 1- $,$52E+$2 $ g,$42E+$6

~

l g,424E+$$ $

16..10.7... 4. -- 1. _7__6 0 E + 1_ 9 52.748E+06 -t 2.646E+06 .3._3.909E+08.._8=_=_5.57?E.22 3 4 707E.41

1. 7.039E*t6 I y-2n i ,i .utE*05 i ..,nE+.6 i 1. 6tE+05_ i 3. nn + 0 3 i i.0 3C.07 i 4.064E+ 2 i 2. 0,n
  • 0. 7==i (PASTURE) (PASTURE) (FEED) (PASTURE) l l

l I

i Units: Inhalation and all tritium - mrem /yr per u Ci/m 3 Other pathways for all other radionuclides - m2

  • mrem /yr per uCi/sec 0D04, V. C. Summer, SCEandG: Revision 4 (June 1982) 2.0-28 l.

0015W/0015A

1 Table 202-6 PATHWAY DOSE FACTORS FOR SECTION 2.2.2+c (R $

)* j

( (For Dose 051culations Required by TS 6.9.1.13)

Page 1 of 3 o

a 4 . ADULT l 4 N.A.

..C.E..C.a .. 0U.P l i ADULT l i ADULT l I ADULT l i ADULT l

_ . - - t ADULT l 1.150..T OP E.I...I NMaL. A.T.IO.N.. I Ca DUND P== L AN(I CAS/ COW / MILES CIS/ COW /MEATI CAS/ COW /MILEl CAS/ COT /

.S. M.*.).... . .I . 1.264E+43 1 0.000E+00 1 6.984E+02 2.940E+02 8

6. 9 0 4E.*.t2.. 1 3.52eE+01 1

1 2.045E+83 I 1.886t+44 4.68tE+00 -=

.B C..14... _ _5 1 1 2.634E+08 8 2.414C+08 I 9.219E+07 1 2.097t+47 8 2.276E*00 t

.INA

.. . 24 5

-1. 82.4.E.* 9 4 1 1.385E+87 1 2.42eE+t6 8 1.356E.03 8--3.636E.30 4 1 620E.04

1. 2 690.E*t5. I 6.328E*06 IP.32 .-

1 9 9.899E+09 9 1.799E+18 4 _4.451E+89 7.559E+t?-- I 5.582E+00 8

1 . ..1.403E*89 9 I

.IU- _-d_t _ _ _- .1 4. -4 0.E + 0 4 1 5.546E*t6= .8. 7.197E*06

_l ~ 1.772E+96_ = .t_ - _2. 4E + 4 5.'..t l.v 2.127E+

6 4 .-- .. 0 5

.S n.N. 5 4.-___:

I t.488E*06 I__ 1.625E*09 8.

2.57aE+t7 l 2.012E+67 .4 7.349E+86 -4 3.375E+t6 8 9.505E+08 1.16tt+87...I 8

.In.N-56...1.

. .. 2 024E*04-5

=1.068E+96 I 1.320E.01 1 - 4.958E.52..1. 5.002E+02 IFC-55 I . ..

-.__ 0.000E+48 8 1

.? 2 6 8.E.*.0 40..0. 9 8 0 E

  • t t 1 2.511E*67 1 2.933E+0g_.i 4o3.519E+t? I- 2.096E*00 t I_ _S.250E*06- - - I .5.949E.53

_ _y_ ?- - _ I t.M6E+86 1 3.204E+00 l 2.326E+88 IF .

_ 1 2.000E+0? 2.849E*47 8: 2.495E+tt. t 9.075E+05 I ICD-58 1 9.280E*05 1 4.464E+00 +1_ 9.565E+87 1 3.783E+88 4 -1,394E+07 8. 4.443E+07 I 6.E52E+0S t

.IC.O.-68...1.

5.960E+96..1. 2.532E+18.

=_ I. 3.ts2E+0e 8 1.413E+tf l' t.944E*00 I 31 63 1 4.320E*ts _ ___ I 9.808E*00 1 6.729E*09 8 .

1.000C+10

_ _ . 31

. L.695E+38 I 3 139E.+09 6' 2.35LE*09 -Br t.266E+t? I 1.044E+10 1

IN1-65 I t.232E*04 1 3.451E+05 8 1.219E+00 I

==_ . ___- . -_= 7.485E.52 8 8.00SE*08 1 0.806E.53 I 2.926E+82 0

.I C.U.- 6 4.. ...8. 5 6.876E*05 8 4.896E+44_ - ___. 6.498E*t4 < l 6.025E

.- e.sttE.s8 .1 2.319E.+.0 4. I 07...1..1.252E.47.

4 _ _ ... -

12 N. 65... 6. 8.. 6.. 4. 0 E.*.t 5...i..B . 5 8 3 E

  • 8 8 I .4.365E+09...I...1

.__ 132E+09

- 5 -1.183E+09.

6. 1.353E+ge I .t.499E*89 L I $.297E ..

12 . .M..* 6 9... 0..9 2 0 0 E

  • 8 2 ..0 1 080E*$8 g .gggE+gg

===__ -_ 12 .. t. 3. 9 9 0 E + $ $ ~_ l a 9 . t e t t+ 0 $.'l. l i 1.202E.$$

19e.03 2.400E*02 1: 7.079E+03_ 1 9.716E.02 6.884E.57. 1 0.80 0E*0 0 ^ 8 7.20SE.58 8 3.107E+00 ..$

1 __

8 8

16 .. 0..0 4...1.= 3.12 =_ . 0E + 8 2__.8. 2.363E+05 8 1.699E.23 8 8.00BE.00 0 S.000E+48 I S.sl0E+06

.= -

I 2AT5E.tt I

.I D.t..95....I...t 200E

  • 01 0 9.980E+64 4 0.400E+00 -4 0 . 0 0 0.E.+.8 9..1..00 8 0 E+ 0 8 I e.sett+00 0 8.000E+44 1

189-06 I 1.352E*45 l_ 1.035E+07 6 2.604E+49 0 4.914E+88 .l. 3.296t+07__ __ 1 5.897E+07 I 2.217E+6e i 5.9500...1. 3.872E*02 8 3.779E*64 4x2.139E.45 4 0.4 4 0E+t8 ' l e 4.tS8E+tt 1

=

0.000E+00 1 3.420C.22 0 189-99.._

.- .1._2.56tE+82 c I 1 452E+05 1 5.523E.54

=.--_

I t.800E+60 1 0.000E+89 0.800E+00 1 1.305E.26 I 15s 1.400E*t6 __ -

2.589E+04._ I t.45tE+89 1 3.814E+88 9 5.475E+48

=3.617E+07 1

.. . 09....4.

1

=___ .-- ._

1 8 9.96tE+89 1

.I S..R ..t.e...1. .. 9 92 8.E.*.0 7 i S.880E*80 1 4.600E+18 1_-_ 1.244E+10 0

1. 62 0 E=-_+ 18. 1 1.493C+49 3 6 446E+11

..I I i.,i2E+05 i is.-ti 2.5 1E+06 i _i.377E+05 i 7.233E.it i 4.000E+08 i . 6.GE.ii i i.45 C+96 i (PASTURE) (PASTURE) (FEED) (PASTURE) l .

l i

l f

\

1 1

  • See note, page 2+ 0-32 Units: Inhalation and all tritium - mrem /yr per u Ci/m 3 Other pathways for all other radionuclides - m2
  • mrem /yr per uCi/sec l

t ODCM, V.C+ Sumer, SCEandG: Revision 4 (June 1982) 2.0-29 0015W/0015A i

l

Table 2.2-6 (Continued)

PATHWAY DOSE FACTORS FOR SECTION 2+ 2+ 2+ c (R 9

)*

( Page 2 of 3 It . A . ( ADULT I

. A.C. E....C.e 0U.P... .l . . A..DU.L..T ..l -

__---_.3

.__-( ( ADULT 3 . 4 ADULT-----

-- - l ( ADULT 3 l ADULT 3 l CROUND PLANET V 1..I.SO.T . . . OF E..t ...IN. MAL A T ION E.C.E.T.A.T I O.N.. .I 4__CAS/ 9.675E+tt COW /MILtl CRS/ COW /MCATI Cali / COW / MILK..l.COS/ CO t 4.900E+86- 8 2.sttE.49 15 e. 9 2... 0..4 3 0. 4E..+.4 4..8. 8. 6 3 s t+ t1 t 2.334E.40 B.452E+03 I 89 8.865E.95

.. 9.0... 8. 5.056E*ls e 5.300E+s3 1 7.5tst+s5 l 1.14tt+46 8 8 1.369t+45 0 1.410E*te i

.l t.. 9..t n.....I ...t 9= 2_ 0 E + t 3 I 1.168E+85 8 1.743E.19 I t.09tE+96 I 4.050E*t0 0 0.000E*84 I l.527E-te t 19 91.....I ...t ?..t.4 E..*.0 6..4.1.-2-0 =7E

= =:-

+t6 8 4.726E+86 1 6.23tt+40 I 5.69tt+35 1 7.477E+07 8 2.914E+09 I 89 2.t42E*t5 I 9.772E.st 8 3.100E.36 I t.683E*04 92....0== _7.352E+04. 2.657E.35= 0 0.080E+00 1

.. .__== _ _. -

1 I

.I T.. 9 3....1. 4. .2.t.&E.+.t . . s...I ..2 5.3 4.E . + 4 5- 6. 7. 30 0 E.+.0 3...t 2 475E

-- . . .. 67...8. 4.298E.41 .8.'.2 .490E*te -- -.1. 5 5t?E*06 .I 8 9 587E+t5 1 -- 1.943E+49 - 1 1.265E+45 - t 2.204Eete 12.... a .9 5....I ...t 76.tE.*.0 6.. 8. 2. 437E.+98 I I

2.707E+04

=.= - -

.1.194E+t?...I 628. 97....I. 5.232C*t5_.___ 3 4.45E*06 1 4 l 2 tttt+07 I I

1.292E.*.80..0. 3.032E.35

_ _ __ __ ..1 ~559E.t.t..i

.I N.D.9

... 5.... 6. 5. t.e t t

  • 4 5 __=_------

. ..-_ t.605E+- .tL--- -

I 2.706t+0e i 7.74tE+09 8 1.639E*07 8 9.297t+0e 1 4.790E+te t 440E*t5. 1 4.626E+66 8 5.741E*t7...I. 2.318E*t5

.a .mo.9

._ 9__..e..2 ..

ITC.99M i 4.16tE*03 3_ _2.lt9E*05 5.553E*O3 6 7.439E.ts <11. 2.

913E.83 1 2.701E+44 I--5.426E*t7 ..I 8.898E+99 I S.927E.19 3 5.lB7E*83 I

.I .TC.

. 8 01.. 0. 3. .992E.*.0 .. . 2..1..2 277E

  • 0 4 - I...t .013E

.. 5.8. 4 . t . g e st.+.0 5.. 3 - 6. 0 8 0E+ t t tu,0 000E*00 8 3 582E.29

. . - __ ..I

.S e.u.. 8 0 3...I. 5.  :- 0 = 4 ._ 8t + 0 5 1 -1.265E+88. _I _=--1.st9E*ts...l. 1.229E*10 212E*g5 t

- . . _ .I..S.537E + 0 3 3 -1.475E+09 .I 5.577E+68...I

.I t.u..n... l5...1. .4 -- 3.16t + 0 4 .-_=.7 4 . ==_ : _ --

5.2 4tE 01

6. 3.533E.25 .

._ = ..l...4 6 8 0 E+ 0 9 4- 4.239E.26 3. 3.294E+04 I

=- - -

.l .e u...l .e.t...I . 9 3 6. 0. E.*.t 6...I._. 5 . 8 4 9 E

  • 0 0...t. - . 2 t E+ 0 6..1. 1. 811E+ 11 0 - 3. 9 98 E + 0 5 1.3 4 1.247E*lt

-___=.I

..I.: 3..'.2.173E 8 2SE+ t g__ *= ---3.979E*9918__I ..I

.I A.C. . . l .t t M I

..4.632E*06___.0. 4.019E*49..4. 2 190E+18

2. 523E* t9 . _

l ~__

5. .8 996E+ -_ t 9.:.4.: _ .

.I T.E. .125.M. . . = _.-..__ = _ =...I. 3 336E+05__6. 2.12SE+96 0 6.626E*07 9 1.46tE+69. . _ 1 7.986E*86- la 1.75tE*t8 8 3.927t+48_ 8 ITE.127M I .9.600E+05 1 1.tB3E+05 I t.860C+38 I 4.53tt+09 1 3.67tt+07c I- 5.437E+OS I 1.410Eett i ITE*t27 4 5.736E+04 4 3.293E+03 1 5.278E+44 2.034E.08 8 I t.88tE+88 - t 2.441E.09 4 4.532E+85 I t 3.820E*68

.ITE.l29M

.-. . ___ .8 16tE*06 . = 1 2.3NE*07 8 I 5.690E+09 8 1.645E*t7 I 6.830E+00 l 1.26tt+09 I ITE.l 29 t 1.936E+83 1 3.076E*t4 8: 9.167E-tOS:t ' t.tttE*06 c i : 6.SteE+t8

__ 1 0.sett+09 1 2.St6E.83 ITE.83tn I 5.560E*05 9. 9.459Eet6 t 1.753E+47 t 2.19 8E+ t e I . 1. 2 6 6E.15 - 1 2.620E+03 1 4.420E*t7 I I t.392E*03 3.45tE*07 1.578E.32 I S . 0 8 8E+ 0 8 '_ l 8.800E+04 1

.I .T. .E.*.131 . __

I 8 0.890E*08

__--- _ .8 6.575E.15

=-

I I

4960E*t6 1.170E.St_ 1

.I.T. E. 132...I . 5. 9 .. 9 . 6.E.*.t 5...1.. - .- 7.324E+t? .I 4.287E+s7.-8 9

1. 312E + 0 0...I II.130.

t 1.136E*t6 6.692E*t6- a.535E.46____=5.144E+t6 i 1 8 1.058t*te 1 .5.272E.84 I I 6.326E-05 I 9.009E+47 8 l

l (PASTURE) (PASTURE) (FEED) (PASTURE) t Units: Inhalation and all tritium - mrem /yr per p Ci/m Other pathways for all other radionuclides - m mrem /yr per uCi /sec OD01, V. C. Sumer, S EandG: Revision 4 (June 1982) 2*0-30 l, 0015W/001 SA

Table 2.2-6 (Continued)

PATHWAY DOSE FACTORS FOR SECTION 2.2+ 2+c (R j )*

Page 3 of 3 l

l o

ACE Ca0ur a ADULT I ( es . A . 1 ( ADULT l i ADut.T l 4 ADULT l 4 ADULT I t ADULT 3 l

.I ..I ..

SO.T C.P E.I ..I NM4L AT I ON

.. - - - - - - - - =.G.R OU.N..D.P.l.a.kti .. ..-- Ct1/ COW - -- -/ MILE S --- .C =A.S/-- COW

- .- /nC Af.t.Ca t/ COW /n!LE t. Cas/ COT /REAft' t UECETATIO

.I .I....131....I . 1..19..2.E.+ t ?....I . 2...0 .0 9E.*.0 7...8 1. 30 0 E* 11 .8 . 5. 9.3 4..E.+ 0 9....e ---. -2. - 0 65E + 0 7 I 6 040E+ts 1

--- 3 705.E.+18. .e 1.452E+96 I _

..t 342E+41-- I t 0.16.E.-57.. 1 0.000E*00 8-- .-2.179E-58 I. 5.016E+03 l

0 8..4 32.....I...l .l .4 - 4t

  • 0 5- --_ __

I 81

.. .133....e. 2.. 152.E.+.46..1. 2.9stt+06 9 9.99tt+00. t. 9.336E+91. 8. t.830E-23 - -

4. 1.128E.+.91-.8. 5.33tE+64 .I II.134 1 2.904E*t4.. 0 5.3tSE*05_ 6 9.49tE-11 I 0.640E+00 8 4.088E+49-- I 9.800E*00 4 4.544E-93 I c1 635 e 4.4 TOE *05 1 2.947t+06 t 2.217E+46 8 7.644E.tS~ 1- 4. 0 0 0 E+ t t mit. 9.172E-16 8 6.731E*S6 8

.I C.5. . .13. 4...i..S.48tE*t5- ==

l 8.9 07E*t9 - 1 6.345E+18 -I .t.565E+BU Y 4.333E*09. 8- 1.878E+t3 1 1.lt9E+10 I t 1.792E+tt i 3.093E+06 Ic5.669E+46- I

.a..t s..13 6...e ...n .. 4 6. 4 E.*.t 5.. -- . 1.036t+69 ---0.4.724E+07 8

_ _ __ - - - 1.675E+08 .8 1 1.010E+18 l --1.193E+09 I _.3. 513E+t? .t -1.43tE4.BS I..S.696E+09 ..I l

.I C.5...137...1.

. 6.2. 0. 0E _. + 0 5- 1.20tt+14.

ICS-13e 8 6.200E*02 1 4.192E+45 i 1.706E-23 I t.09ttest 4:-8.steE*st 5tJ.4.gett+00 1 7.73tE-11 1 13a-139 1 3.760E+03 t 1.194E+35 I S.32PE-C0 1 8.tt0E+50 spa. set I t.272E*t6 2.346E+t? I 5.535E+07 I

0. 0 8 0 E + 0 0.- . I 8 . s t t E + t t.n..I
l. 5.225E-62. 1

~

1 5.917t+ 47 - l e- 1.472E+ s5 . 8 7. i t BE+ 8 6 8 2.446E+te s

.U.A..~.t e t...t..t . 9 3 6E +4.734E+84...l. 0 3. 8 I t.ettt+tt. 4 ,t,000E+tte t: 0.008E+49

.. = .. 2.677E.46 -

I 9.3tSE-22

..I

.s.ta.l.e2...e

... . .1 ..192E+03..4. =___

. 5 ?64E+tt:

-- I.0.990E+04 3 0.040E+00 :t at.080E+st. 4 4.048E+08 8 2.463C-39._ 0

.I L.a

.. .l .+.0 1 . 4.504E*85 t 2.steE+t? 8 -1.672E*t5 0 1.385E+03 1In 4.tS9E.12 '-I 1.662E+02 8 7.327E+07 I

.I L. A..14 2. 0__ 6.320E*03 I e ge6t+05 'I 9.008E+60 ~ l 4.99?E-81 I 3.5 83C-88 1 - 0.0 0 BE+ 0 0 - -8 _. :10.

.- 0 0 0 E..* t.0.c l I . ..

.C.E.. .t.. e t...i..3. : 6 --t &E -_

  • t 5 I t .54 tE* 07 -' S.1.253E+ t? I m 3.632E+ 87 '.l u 6.424E+35. -

8

". 4.35eE+86 .I 5.897E+0e I

.I C.E...8 4 3..1_.2.264E*05.--_ === 1 -2.627E+t6. 8 1.149E.+96 __ .--

8 l 6.656E+91 1 2.75tE+07 8 7.776t+56 I S.832E*t7 8 1.289E+98 I . 4.920E+tB 5.547E+02..8. 7.768E.15 - .- -

ICE-144.

0 l 3.398E*87 I 5.914E*07 I t.112E+18 I

.t e.n.. 14 3. = =e==2.800E+ts I S.estt+08 8 6.923E+05 0 9.294E*87 4 2.445E+s3 1 1.194E+87 0 2.740E*t8 I tPt.144 I t.816E*03 8 2.lt2E+t3 5 6.716E.54 I .l.000E+88.sl 8.568E+t0 4 0.StBE*60 1 3.393E-26 I IMD-847 1 2.200E+05 I 1.tttt+97 ~t . 5.23tE+ts s i r3.935t*07'.t.'6.286E+92 0 4.722E+86 8 1.tS3C+0s I IW-107

=.8. 3.552E+05. ____ -- l' 2.74tE+96. ... 8- 1.796E+86 8. 5. 9,12E+08

=_

8 3.787C-22 8 7.694E-ti i 1.846E+07 8 t.976E*06 8 7,395E+04 1 5.152E+03 3 7.545E-te 4 6.102E*82 4 2.872E+t? I

.t....

wP .-2 3 9...e . =t= .19 2E

  • t s I (PASTURE) (PASTURE) (FEED) (PASTURE) l I

1 l

Units: Inhalation and all tritium - mrem /yr per u Ci/m 3 Other pathways for all other radionuclides - m2

  • mrem /yr per uCi/sec 0004, V. C. Sumer, SCEandG: Revision 4 (June 1982) 2+0-31 001SW/0015A 1

NOTE: The R$ values of Tables 2.2-2 through 2.2-6 were calculated in accordance with the methods of Section 5.3.1 of Reference 1.

Q)1umns in those tables marked "Pa stu re" are for freely-grazing animals (f p=fs=1). Columns marked "Fe ed" are for animals fed solely locally-grown stored feed (fp=f3 -0). The values used for each parameter and the origins of the values are given below in Table 2.2-9 and its notes.

f f
  • /

I l

ODCM, V.C. Sumer, SGandG: Revision 4 (June 1982) 2.0 0015W/0015A

' ~ ' ' '

_ __ _. _-- __ . ~

Table 2.2-7

, CDNTROLLING RECEPT 0RS, LOCATIONS , AND PATHWAYS

  • DISTANCE .

SECTOR (METERS) PATWAY AGE GROUP ORIGIN (FOR INFORMATION ONLY)

N** 6,800 Vegetation Child -Vegetable Garden NNE 5, 10 0 , Vegetation mild -Vegetable Garden Grass / Cow / Meat -Grazing Beef Cattle NE 4,30 0 Vegetation Child -Vegetable Garden ENE 2,400 Vegetation Child -Vegetable GaNen E 2, 70 0 Vegetation mild -Vegetable Garden ESE 1,600 Vegetation ; Ch i ld .- .--Vegetable Garden SE 2, 30 0 Vegetation mild -Veget'a ble Garden SSE 4,000 Vegetation Child -Vegetable Garden S** 6,40 0 Vegetatio'n mildL J egetable V Garden SSW** 5,100 Vegetation: 'Childi -Vegelable GaNen

(' SW 4, 70 0 Vegetation mildi -Vegstable Garden WSW 4,700 Vegetation' Child' '

-Vegetable GaN en W 3, 90 0 Vegetation mild -Vsgetable Garden Grass / Cow / Meat -Grazing Beef Cattle WW*

  • 6,60 0 Vegetation; mild: c-Vegetable Garden NW 5,300 Vegetation Child -Vegetable Garden Cras s/ Cow / Meat -Grazing Beef Cattle NW 4,500 Vegetation Child -Vegetable Garden Gras s/ Goat / Meat -Grazing Goat Grass / Cow / Meat -Grazing Beef Cattle See note on the following page for the method of choice of these controlling receptors.
    • If a cow were located at 5.0 miles (8,000 meters) in this sector, an infant consuming only its milk would receive a greater total radiation dose than would the real receptor 1isted. Such an inf ant would not be the Maximum Exposed Individual for the site.

00CM, V.C. Summer, SCEandG: Revision 2 ( April 1982) 2.0-33 0015W/0015A

__ _ - __ _ ~

NOT E: The controlling receptor in each sector was identified in the following way. Receptor locations and associated pa thways were obtained from the Marth 1982 field survey. A child was assumed at each location, except that where a milk cow was listed, an infant was assumed. W for each candidate receptor was, obtained by interpolation of values in Table 6.1-14 of Reference 5; D/Q' for each candidate receptor was obtained by interpolation of values in Table 6.1-13 of Reference 5. Expected annual releases of each nuckide were taken from Table 5.2-2 of Reference 5. The pathway dose factors given above in Tables 2.2-3 and 2.2-4 were then used with the referenced values in the n:ethodology of Section 5.3 of Reference 1 to compute total annual doses at each candidate receptor site for the pathways existing at that site. ..Th e controlling

~

~

receptor for each's'ector was then chosenTasEthe candidate receptor with the highest total annual dose of any candidate receptor in the given sector. All listed pathways are in! addition to inhalation and i

ground plane exposure.-

~

(

00CM, V.C. Summer, SCEandG: Revision 3 (May 1982) 2.0-34 0015W/0015A

Table 2.2-8 ATMOSPHERIC DISPERSION PARAETERS FOR (DNTROLLING RECEPT 0R LOCATIONS

  • SECTOR X/Q' D/ O' DISTANCE (MILES / METERS)

N 2.0 E-7 5.5 E-10 4.2 / 6,800 NNE 3.8 E-7 1. 2 E-9 3. 2 / 5, 10 0 NE 5.9 E-7 1. 9 E-9 2.7 / 4,300 ENE 1. 6 E-6 8. 0 E-9 1. 5 / 2, 40 0 E 1.2 E-6 5. 7 E-9 1.7 / 2,700 ESE 3. 5 E-6 1. 0 E-8 1. 0 / 1, 60 0 SE 2.5 E-6 6. 7 E-9 1.4 / 2,300 SSE 5. 0 E -7 1. 2 E )2.5'/ 4,000 S 2.4 E-7 3.4 E-10 4.0 / 6,400 SSW 3.2 E-7 7.2 E-10 :3.2 / 5,10 0 SW 5.0 E-7 ' 1. 4 ' E-9; 2 2.9 / 4,700 WSW 3. 7 E - 1.2' E-9 :2. 9 / 4, 70 0 4

W 3.9 E-7_ 1.3 E-9? 12.4 / 3,900 WNW 1. 2 E -7 3.1 E-10 J 4. 1 / 6,60 0 NW 2.2 E-7 6.7 E-10 3.3 / 5,300 NNW 3. 0 E-7 1. 2 E-9.. 2. 8 / 4,50 0 O

Annual average relative dispersion and deposition values for the receptor locations in Table 2.2-7. Values were obtained by interpolation in Tables 6.1-13 and 6.1-14 of Reference 5. Those tables are based on one year (1975) of meteorological readings (which is the only completely tabulated year available at this writing) and the FSAR dispersion model (ground-level release, sector-averaged model, with open terrain recirculation' factors, dry depletion by Figure 2.3-1, and using decay with a half-life of 8.0 day s) . As a result of the analysis described in the note to Table 2.2-7, the location of the maximum exposed individual for the site was identified as being the vegetable garden at 1.0 miles in the ESE sector. Therefore, the site TlQ' andTfQ' (Section 2.2.2.b and following) are those from this table for that location.

ODCM, V.C. Sumer, SCEandG: Revision 2 ( April 1982) 2.0-35 0015W/0015A

Table 2.2-9 Page 1 of 4 PARAETERS USED IN DOSE FACTDR CALOJLATIONS

(

Parameter Value Origin of Value Table in Section of Site-R .G. 1.109 NUREG-0133 Specific

      • For P$ ***

DFA Each radionuclide E-9 Note 2 BR $700 m3 /yr E-5

  • Fo r Rg (Vegetation)***- ^=

r Each element type E-1 .',' '

Y y 2.0 kg/m 2- E-151 7;g g 5.73 E-7 sec-1 S 5.3.1.3 DFL, Each age group and;radion'uclide E-11 thru(EM14 Note 2 l

V a

Each-age group E-5t f

L 1.0 5.3.1.5 t 8.6.. E+4 seconds l . E-15 Uf Each age group- ' E-5~

f g 0.76 5.3.1.5 t

h 5.18 E+6 seconds E-15 3

H 8.84 gm/m Note 1

      • Fo r Rg (Inhalation)***

BR Each age group E-5 DFA j Each age group and nuclide E-7 thru E-10 Note 2 0001, V.C. Sumer, SCEandG: Revision 4 (June 1982) 2.0-36 0015W/0015A

Table 2.2-9 Page 2 of 4 PARAETERS USED IN DOSE FACTOR CAL QJLATIONS I

Parameter Value Origin of Value

' fable in Section of Site-R . G. 1.109 NUREG-0133 Specific

      • For R$ (Ground Plane)***

SF 0.7 E-15 0FG g Iach radionuclide E -6 t 4.73 E+8 sec 5.3.1.2

      • For Rg (Grass / Animal / Meat)***

QF (Cow) 50 kg/ day E-3 Qp (Goat) 6 kg/ day - E-35 U,p Each age grou .: E-5.: ,

A, 5.73 E-7 sect 5.3.1.3 Ff (Both) Each element:

E-1[

r Each element type. E-15 ?

DFL, Each age group and nuclide E-11 thru': E-14 Note 2 f

p 1.0 Note 3 f 1. 0 - '

Note 3 s ,

2

~

Y p

0.7 kg/m E-15 t

h 7.78 E+6 sec E-15 Y, 2.0 kg/m 2 E-15 t

f

1. 73 E +6 s ec . E-15 3

H 8.84 gm/m Note 1 1

0001, V. C. Summer, SEandG: Revision 4 (J;ne 1982) 2.0-37 0015W/0015A l _

Table 2.2-9 Page 3 of 4 PARAlETERS USED IN DOSE FACTOR CALQJLATIONS

(

Parameter Value Origin of Value Table in Section of Site-R . G. 1.109 NUREG-0133 Specific

      • For R4 (Grass /Q)w/ Milk)*** Note 4 QF 50 kg/d E-3 U,p Each age group E-5 A, 5. 73 E-7 s ec- 5.3.1.3 F, Each element E-1 r Each element type. , - E-15 DFL 4

Each age group and nuclide E-11 thru E- 14 ' tbte 2 2

Y p

0.7 kg/m E-15 r t 7.78 E+6,sec E-15 '

Y 2.0 kg /m E-l'5 -

. t f

1.73 E+5 sec E-15 f

p 1.0 ,

Note 5 f

s 1.0 Note 5 f

p 0.0 Note 5 f 0.0 Note 5 3

H 8.84 gm/m Note 1 l

l .

i 0001, V. C. Sumer, SCEandG: Revision 4 (J;ne 1982) 2. 0-3 7a 0015W/0015A i .

Tablo 2.2-9 (Continued)

Page 4 of 4

(

NOTES

1. Site-specific annual average absolute humidity. For each month, an average absolute humidity was calculated from the 7 years of monthly average temperatures in Table 2.3-49 of Reference 4 and the 5 years of monthly average dewpoints in Table 2.3-64 of Pefer'ence 4. The 12 monthly values were averaged to obtain the annual average. of 8.84 gm/m3 . (Section 3

5.2.1.3 of Reference 1 gives a default value of 8 gm/m .)

1

2. Inhalation and ingestion dose factors were taken ;from the indicated sou rce. For each age group, for each nuclide, the organ dose factor used was the highest dose factor for that nucli.de :and : age group in the referenced table.
3. According to the March 1982 land use census, all beef cattle are raised all year en pasture. The .surveyjindicates thatn the smal_1 number of goats raised within 5 miles are used for grass control and! not food or milk.

Nevertheless the goats were treated as full:' meat sources where present, i despite the f act that their numbers cannot sustatn sthe meat consumption rates of Table E-5 of Reference 3.

4. According to'the March 1982 land use census, no cows or goats are kept for milk within 5 mile of the Station. Thes e values are included for reference onl*/,

l 5. Two columns of R g s were calculated - one for cows kept exclusively on l local pasture (f p=f3 -1) , and one for cows kept exclusively on locally grown stored feed (fp=fs=0). See the note e: N ga 2.0-32.

i ODm, V.C. Summer, SEandG: Revision 4 (June 1982) 2.0-38 0015W/0015A

2.3 Meteorological Model 2.3.1 Atmospheric dispersion for all releases is calculated using a

, y ground-level, wake-corrected form of the straight line flow model.

\,* X/Q =

the sector-averaged annual average relative concentra-tion at any distance in the given sector (sec/m3) i = 2.0326 T id

/ (20)

, ij Nruj Ez j 2.032 = (2/s)1/2 divided by the width in radians of a 22.5*

sector (0.3927 radians).

6 -

plume depletion f actor at distance .r .for..the appropriate stability class from Figure 2.3-1.

i = windspeed class. The windspeed. classes are given in Table 4A of ~ . Reference 10 -' as 11 -3, 7, 8-12, 13-18, 19-24, and >'.24 miles per hour..

n g,j = ' number of ~ hours meteorologidal con'ditions are observed to be in a given wind direction, windspeed class i, and atmospheri.c. stability class j. -

N =

total hours of valid meteorological data.

l r =

distance from the containment building to location of interest (m) ug =

wind speed (midpoint of windspeed class 1) at ground level (m/sec).

P 2 2 E

, (a z + b /2x)1/2 (21) z = the lesser of <

or

(/3 oz ) where (22) o 7

=

vertical standard deviation of the plume (in m) at distance r for ground level releases under the stability category indicated by AT/aZ, from Figure 2.3-2.

ODCM, V.C. Summer, SCEandG: Revision 2 ( April 1982) 2.0-39 0015W/0015A

. - - ~ _.

T = terrain recirculation f actor, from Figure 2.3-4

(

- 3.1416 b = height of the containment building (50.9m) -

AT/aZ = temperature differential with vertical separation

( *K/100n) .

2.3.2 Relative deposition per unit area for all releases is calculated for a ground-level release.

D/Q = the sector-averaged annual average relative deposition at any. distance in_ a_ given sector.:(m- ) . =.

= 2.55 Da" where 1 (23) rN .pg:i D = - deposition rate for ' ground-level # releases relative to 9 .

distance _-(r)l from' the containment building (from Figure I

2.3-3) . ,

2.55

~

=

' the inverse of'the number of radia.nshin a 22.5* sector 1 =

(. '

.1

' (22.5 *)(0. 0175. Radi an's / * ~

n = number of hours wind is in given direction (sector).

N = total hours of valid meteorological data.

1 ODCM, V.C. Summer, SCEandG: Revision 2 (April 1982) 2.0-40 l 0015W/0015A

. .~ - .

Figurc 2.3 1 Plume Depletion Effect for Ground Level Releases (6) 7 (All Atmospheric Stability Classes)

Graph taken from Reference 8. Figure 2 o 8

m A C

/ -

- /

/

/

/

/

/ a C

H

/ o 2 l s3 i

a

/

U

/ Z f 4 i

b

/ 5 J

W c

W E

D

.o J A

f i

/

/

I

/

/

f O

O O o O o C o o 3WG74 NI DNINIVW3W NOll3YWd Sumer, SCEandG: Revision 2 ( April 1982) 2.0-41

(

1 1

l l

l Figure 2.3-2 I

(

Vertical Standard Deviation of Material in a Plume ( z)

(Letters denote Pasquill Stability Class)

Graph taken from Reference 8, Figure 1

'ox  ;  ; ,'

l l

/

/

/ /

l / / '

l l l f

/ / / /

/ / / ,/ , /

100

^/

1' ,.

/

1

/ ,

/

~

u , , , / '/

j , j j ,

/

, /

g / / 7 / / , - -

8 / l / o f/ / "/ '

l

$ /// / /ll / / /

/ / ,

/ g/ y

.,a

/,! '

/ c/

,' ,- , , /

,' /

2l-

/ /

l l l

/ / /

< j y

/, /

/

0.1 - 1.0 10 100 PLUME TRAVEL DISTANCE (KILOMETERS) l l

Temperature Qiange Fasquill Stability with Height aT/aZ (*K/100n) Categories Cl assification l

I

<-1.9 A Extremely Unstable l -1.9 to -1.7 B Moderately Unstable i

-1. 7 t o -1. 5 C Slightly Unstable j -1. 5 to -0.5 D Neutral

-0. 5 t o 1.5 E Slightly Stable 1.5 to 4.0 F Moderately Stable

> 4.0 G Extremely Stable l

l i 00CM, V.C. Summer, SCEandG: Revision 2 (@ril 1982) 2.0-42 l

0015W/0015A

Figure 2.3-3 Relative Deposition for Ground-Level Releases (Dg )

( All Atmospheric Stability Classes)

Graph taken from Reference 8, Figure 6 10-3 10-4 \

N E 'N %

H  %

e N

$ N t a

w\

< N m N N

$ 10-5 \

m l

c N A 5

P 3

\

\

E 10-6 x

1 1

l 10-7 0.1 1.0 10.0 100.0 200.0 PLUME TRAVEL DISTANCE (KILOMETERS) l l

[~

I 0D04, V.C. Summer, SCEandG: Revision 2 ( April 1982) 2. 0 weuwwewm -4 3_ _ -

Figure 2.3-4

/ Open Terrain Recirculation Factor Graph taken from Reference 7, Figure 2 8

a

/ @

/

/-

/ E

/- I"

/  %

/ 0 I

r 26

/ E 5

/ e

/ o, Q

l 1

ci o e o .

-  : o WO13W NO!1338803 0001, V.C. Sumer, SCEandG: Revision 2 ( April 1982) 2.0-44 (6mumMduA

2.4 Definitions of Gaseous Ef fluents Parameters

{

Term Definition Section of Initial Use b = height of the containment building. -

(2.3.1)

C y

=

count rate of a station vent monitor corresponding to (2.1.1) grab sample radionuclide concentrations.

l C'y = the count rate of the monitor on vent v corresponding (2.1.3) to X ' pCi/cc of Xe-133.

y c = count rate of the gas decay system moriitor for mea- (2.1.2)

~

sured radionuclide concentrations correstedTtbidis-charge pressure.

't c' = the count rate of;th'e waste' gas decay system.mbnitor (2.1.3) corresponding.to the total noble gastconcentfasion.

(

D = deposition rate for' ground-level rele'ases reibtive to (2.3.2) 9 the distance from the containment building](from Figure 2.3-3) .

D g

- average organ dose rate in the current year (mrem /yr). (2.2.1.b)

O p

=

dose to an individual from radioiodines and radio- (2.2.2.b) nuclides in particulate fonn and radionuclides (other than noble gases), with half-lives greater than eight days (mrem).

i D

s

= average skin dose rate in current year (mrem /yr). (2.2.1.a)

D 33

= limiting dose rate to the skin (3000 mrem / year). (2.1.1)

D t

= average total body dose rate in the current year (2.2.1.a) l (mrem /yr).

i i

l '

ODCM, V.C. Sumer, SCEandG: Revision 2 (April 1982) 2.0-45 0015W/0015A

l l

2.4 Definitions of Gaseous Effluents Parameters (Continued)

(

Te m Definition Section of Initial Use D

TB

=

limiting dose rate to the total body (500 mrem / year). (2.1.1)

D, = air dose due to beta emissions from noble gas (2.2.2.a) radionuclides (mrad).

D = air dose due to gamma emissions from noble gas (2.2.2.a) radionuclides (mrad).

D/Q = the sector averaged annual average relative depo- (2.3.2) sition for any distance'in a given sectori(m-2).;

IT/II' = annual average relative depostion at the location (2.2.2.b) occupied by the maximum e'xpose'd individual.

- 8.8 x 10-9 m -2 i

6 = plume depletion f actor at distance-rf for theV (2.3.1) appropriate stability class from Figure 2.3-1.

F y

= the. flow rate in' vent Lvf(cc/secjf.; (2.1.1) f s

= the maximum pemissible waste gas discharge rate, (2.1.2) based on the actual radionuclide mix and skin dose rate. -

f t

= the maximum permissible waste gas discharge rate, (2.1.2) based on the actual radionuclide mix and total body dose rate.

f, = the maximum pemissible waste gas discharge rate, (2.1.2) the lesser of f sand f *t f's the conservative maximum pemissible waste gas dis- (2.1.3) charge rate based on Kr-89 skin dose rate.

0001, V.C. Summer, SCEandG: Revision 2 ( April 19821 2.0-46 0015W/0015A .

2.4 Definitions of Gaseous Effluents Parameters (Continued)

(- Term Definition Section of Initial Use f't

=

the conservative maximum permissible waste gas dis - (2.1.3) chanje rate based on Kr-89 total . body dose rate.

K g

= total body dose factor due to gama emissions from (2.1.1) 3

, isotope i (mrem / year per pCi/m ) from Table 2.1-1.

K Kr-89 = total body dose f actor for Kr-89, the most restric- (2.1.2) tive isotope from Table 2.1-1.

Lj =

Skin dose factor due to beta emissions'.from.:isofope (2.1.1) i (mrem /yr per pCi/m ) from Table 2.1-1" L Kr-89 = Skin dose f actor for:Kr-89,- the:most restFictive (2.1.2) isotope, from Table2.1 -1.

I M.

1

= air dose factor due to; gamma'emissionsifromf. isotope (2.1.1) i (mrad /yr per pCi/m3)ifrom Table 2.1-1. .

~

MKr-89 - air dose f actorjfor~ Kr-89,Rthe mostiresifidtive (2.1.2) isotope, from Table 2.1-1.

N. =

air dose factor due to beta emissions from noble 1 (2.2.2.a) 3 gas radionuclide i (mrad per pCi/m ) from Table 2.1-1.

N jj number of hours meteorological conditions are (2.3.1) observed to be in a given wind direction, windspeed class 1, and atmospheric stability class j.

N = total hours of valid meteorological data. (2.3.1)

Pg = dose parameter for radionuclide i, (mrem /yr per (2.2.1.b) pCi/m ) for inhalation, from Table 2.2-1.

0001, V.C. Sumer, SCEandG: Revision 2 ( April 1982) 2.0-47 0015W/0015A

i 1

2.4 Definitions of Gaseous Effluents Parameters (Continued)

! Tenn Definition Section of Initial Use j = the release rate of noble gas radionuclide i as '(2.2.1.a) detennined from the concentrations measured in the analysis of the appropriate sample required by Radiological Effluent Technical Specification Table 4.11-2 (uCi /sec) .

g' = the release rate of non-noble gas radionuclide i as (2.2.1.b) detennined from the concentrations measured in the analysis of the appropriate sample required by Radiological' Effluent Technical-Specification Table 4.11-2 (uCi /sec) .

7)g = cumulative release of noble gas radionuclidefi!over (2.2.2.a) the period of... interest (uCi).

6'4

=

cumulative release of radionuclideli.'of iodine or (2.2.2.b) material in particulate fonn over the period'of interest (uCi).

R. dose f actor'f or radionuclide i arid"pathsay j, 4

=

(2.2.2.b) 3 2 (mrem /yr per uCi/m ) or (m -mrem /yr per pCi/sec) from Tables 2.2-2 through 2.2-6.

R s

= count rate per mrem /yr to the skin. (2.1.1)

R t

= count rate per mrem /yr to the total body. (2.1.1) r = distance from the containment building to the loca- (2.3.1) tion of interest for dispersion calculations (m).

R s

= conservative count rate per mrem to the skin (Xe-133 (2.1.3) detection, Kr-89 dose) .

ODCM, V.C. Summer, SCEandG: Revision 2 ( April 1982) 2.0-48 0015W/0015A

2.4 Definitions of Gaseous Effluents Parameters (Continued) i Tenn Definition Section of Initial Use R

t

=

conservative count rate per mrem to the total body .(2.1.3)

(Xe-133 detection, Kr-89 dose) .

S d

= count rate of the waste gas decay system noble gas (2.1.2) m,onitor at the alann setpoint.

S y

- count rate of a station vent noble gas monitor at (2.1.1) the alann setpoint.

S vc

=

count rate of the containment _ purge; noble}ga's moni- (2.1.1) tor at the alann setpoint.

S yp

= count rate of the plant vent noble gas monitor at (2.1.1) the alann setpoint.-

E, = vertical standard deviation of the ~ plume, w'ith (2.3.1) building wake correction applied.

o z

= vertical; standard' deviation of th.e plumeT(in m), at (2.3.1) distance r for ground level releases under the stabil-ity category indicated by AT/aZ, from Figure 2.3-2.

AT/aZ = temperature differential with vertical separation (2.3.1)

( *K/100m) .

T = terrain recirculation f actor, Figure 2.3-4. (2.3.1) uj = wind speed (midpoint of windspeed class 1) at

, (2.3.1) ground level (m/sec). -

Wj = controlling sector annual atmospheric dispersion (2.2.1.b) at the site boundary, as appropriate for radionu-c;ide 1.

ODCM, V.C. Suniner, SCEandG: Revision 2 ( April 1982) 2.0-49 0015W/0015A .

2.4 Definitions of Gaseous Ef fluents Parameters (Continued)

Term Definition Section of Initial Use W -

relative dispersion for the maximum exposed indivi - (2.2.2.b) 93 dual, as appropriate for his exposure pathway j and radionuclide i.

X id

=

t,he concentration of noble gas radionuclide i in a (2.1.2) waste gas decay tank, as corrected to the pressure of the dischame stream at the point of its flow measurement.

~

X jy -

the measured concentration of noble gas"radionu (2.1.1) clide i in the last grab sample analyzed for vent v

( uCi /cc) .

X' = the total nobl.e gas concentration in a waste gis (2.1.3) d decay tank,-'as corrected to.the~ pressure of. the dischage stream at th'e point'of its flow measurement.

I l X' -

a concentration of Xe-133 chosen .to be .inithe oper-y

~

(2.1.3) ating range ofc the monitor ~on venti v (sci /cc).

X/Q = the sector-averaged annual average relative concen- (2.3.1)

, tration at any distance in a given sector (sec/m3),

TfG = the highest an'nual average relative concentration in (2.1.1) any sector, at the site boundary.

- 5.3 x 10 4 sec/m3 in the SE sector.

X/Q' - relative concentration for the location occupied (2.2.2.b) l by the maximum exposed individual.

- 2.8 x 10 sec/m 3 ODCM, V.C. Sumer, SCEandG: Revision 2 ( April 1982) 2.0-50 0015W/0015A

2.5 Gaseous Radwaste Treatment System Figure 2.5-1 Minimum OPERABLE Gaseous Radwaste Treatment System

(

rit ICT

{\

C ".,

7a > n.

<> x f q l!  !!  !!

IE II E l! f!

r rE rE rE rE rg ag  : yg

.- s. .. ..

l!

l! ,,

5
E 4,

7 es:

ra ggr -+

.  ! l

I I

! I* !!!

  • 8 2  !

! .E r- !!! -d j i l

i i

1 ..

r* ii! -=t r- . - l ! l l n! ,i .. .

! .i' sf ira ti~l v _ th .L' dl

! Ir[ IE J!!! -- N I i

, F

. . = =, . -

, i' I

^

I

  • .i ,!

n l  ! l=I a l 5' I ! I

  1. .  ! g lgf r

~

'2 I r-

! I .!.g g

g

.I :.I ~ I l !E j i:l i:l l!;:!!

i.l 3

r II ri 5:

l s--- e @: ll!s!  !*

gj E

.I 5

);

g!.!::: . ..ase ., 1 i. I-t

ir

. It 1 : !!!!!]:!

gs1:l2  ::::.

s fr l

t ODCM, V.C. Sumer, SCEandG: Revision 3 (May 1982) 2.0-51 0015W/0015A

_ _ - . . . ~ . --

3.0 RADIOLOGICAL ENVIR0fMENTAL MONITORING Sampling locations as required in section 3/4.12.1 of the

(

Radiological Effluent Technical Specifications are described in Table 3.0-1 and shown on the maps in Figures 3.0-1 and 3.0-2.

As indicated by the ditto (") marks in the table, entries in the sampling frequency and analysis frequency columns apply to all samples below the entry until a new entry appears.

(

i 0D04, V. C. Sumer, S&andG: Revision 4 (June 1982) 3.0-1 0015W/0015A

~

. T i

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM '

VIRGIL C. SUMMER NUCLEAR STATION TABLE 3.0-1 Sample Exposure Pathway Criteria for Selection of Sampling and Locations SLocations Type & Frequency and/or Sample Sample Number & Location Collection Frequency (1) Mi/Dir of Analysis AIRBORNE: <

I. Particulates A) 3 Indicator samples to Continuous sampler -2 1.1 SW Gross beta be taken at locations operation with weekly 5, 1.1 SE following filter (in different sectors) collection 10. - 2.6 NNE change; Quar-beyond but as close to terly Composite the exclusion boundary (by location)  ;

as practicable where for gamma the highest offsite isotopic sectoral ground level concentrations are anticipated. (2)

B) 1 Indicator sample to 6 1.0 ESE "

be taken in the sector beyond but as close to the exclusion boundary as practicable corres-ponding to the residence having the highest anti-cipated offsite ground level concentration or dose. (2)

C) 1 Indicator sample to be 14 (4) 5.2 W "

taken at the location of one of the dairies most likely to be affected. (2)(4)

?

ro Page 1 of 12

I RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

VIRGIL C. SUMMER NUCLEAR STATION
TABLE 3.0-1 l

Sample g Exposure Pathway Criteria for Selection of Sampling and Locations Locations and/or Sample Sample Number & Location Collection Frequency Type & Frequency)

(1) Mi/Dir of Analysis AIRBORNE (Cont'd)

D) 2 Control samples to be 17 24.7 SE "

taken at locations at least 10 air miles from 16 28.0 W the site and not in the most prevalent wind '

directions. (2)

II. Radioiodine A) 3 Indicator samples to Continuous sampler 2 1.1 SW Gamma Isotopic be taken at two loca- operation with 5 1.1 SE for Iodine 131 tions as given in I.A weekly cannister 10 2.6 NNE above, collection B) 1 Indicator sample.to 6 1.0 ESE "

be taken at the loca-tion as given in I(B) above.

C) 1 Indicator sample to be 14 S.2 W "

taken at the location as given in I(C) above.

D) 2 Control samples to be 17 24.7 SE "

taken at locations similar in nature to 16 28.0 W I(D) above.

Y o

a, Page 2 of 12

i l

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM VIRGIL C. SUMMER NUCLEAR STATION TABLE 3.0-1 .

- I Sa mple  ;

Exposure Pathway Criteria for Selection of Sampling and Locations Locations and/or Sample Sample Number & Location Type & Frequency, Collection Frequency (1) Mi/Dir of Analysis ,

AIRBORNE (Cont'd)

III. Direct A) 13 Indicator stations Monthly or quarterly 1 1.2 S Gamma dose to form an inner ring exchange; (5,7) two or ~2 1.1 SW monthly of stations in the 13 more dosimeters at ~'3 1.0 W or quarterly accessible sectors each location. 4 1.1 WNW within 1 to 2 miles of 5 1.1 SE the plant. 6 1.0 ESE 7 1.2 E 8 1.3 ENE 29 1.0 WSW 30 1.0 SSW 47 1.2 NW 9 2.2 NE 10 2.6 NNE B) 16 Indicator stations a 12 4.3 N n to form an outer ring 32 4.6 NNE of stations in the 16 53 3.1 NE sectors within 3 to 5 33 4.3 ENE miles of the plant. 55 3.0 E '

34 5.0 ESE 35 4.9 SE 36 3.4 SSE 41 3.7 S 42 4.0 SSW w

' 43 5.0 SW o 45 5.7 WSW u 14 5.2 W 46 3.7 WNW 37 5.0 NW 49 4.0 NNW Page 3 of 12

1 a

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM VIRGIL C. SUMMER NUCLEAR STATION TABLE 3.0-1 Sa mple

  • Exposure Pathway Criteria for Selection of Sampling and Locations Locations Type & Frequency and/or Sample Sample Number & Location Collection Frequency (1) Mi/Dir of Analysis AIRBORNE (Cont'd)

C) 8 Stations,to be placed 11 3.6 NNE "

in special interest '13 2.7 NNW areas such as population 115 2.3 SSW centers; nearby resi- 31 6.6 NNE l dences, schools and in .54 1.8 E 2 or 3 areas to serve 16 28.0 W as controls. 17 24.7 SE 18 16.5 S WATERBORNE:

IV. Surface A) 1 Indicator sample down- Time composite 21(3)(6) 2.8 SSE Gamma isotopic Water stream to be taken at a samples with monthly with location which allows collection every quarterly com-for mixing and dilution month. (5) posite (by in the ultimate receiv- location) to be ing river. analyzed for tritium.

B) 1 Control sample to be "

22(3) 12-15 NNW "

taken at a location on the receiving river, sufficiently far up-stream such that no effects of pumped storage F operation are anticipated.

?*

Page 4 of 12

, .~ .

I a

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM VIRGIL C. SUMMER NUCLEAR STATION .

TABLE 3.0-1 Sample t Exposure Pathway ' Criteria for Selection of Sampling and Locations and/or Sample Locations Type & Frequenc Sample Number & Location Collection Frequency (1) Mi/Dir of Analysis WATERBORNE (Cont'd)

C) 1 Indicator sample from a Il7 24.7 S "

location immediately upstream of the nearest downstream municipal water supply. l D) 1 Indicator sample to be '"' "

23(3) taken in the upper reser-voir of the pumped storage facility E) 1 Indicator sample to be Grab sampling 24(3) 5.5 N As in IV(A) taken in the upper monthly,(5) above reservoir's non-fluctuating recreational area.

F) 1 Control sample to be 18(3) 16.5 S taken at a location on a separated unaffected watershed reservoir.

F

?

m Page 5 of 12

i f

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM VIRGIL C. SUMMER NUCLEAR STATION TABLE 3.0-1 Sample

  • Exposure Pathway Criteria for Selection of Sampling and and/or Sample Sample Number & Location Locations Locations Type & Frequency Collection Frequency (1) Mi/Dir of Analysis '

WATERBORNE (Cont'd)

V. Ground Water A) 2 Indicator' samples to Quarterly grab -26 Onsite Gamma isotopic be taken within the sampling (7) 27 Onsite and tritium exclusion boundary and analyses quar- l in the direction of terly.

potentially affected ground water supplies.

B) 1 Control sample from 16 28.0 W "

unaffected location.

VI. Drinking A) 1 Indicator sample Monthly grab 28 1.3 ESE Monthly Water from a nearby public sampling (5)

~ gamma isotopic ground water supply and gross Beta source. analyses and quarterly com-posite for tritium analyses B) 1 Indicator (finished Monthly composite 17 24.7 s "

water) sample from the sampling nearest downstream water supply.

F

?

u Page 6 of 12

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM VIRGIL C. SUMMER NUCLEAR STATION TABLE 3.0-1 Sample

  • Exposure Pathway Criteria for Selection of Sampling and Locations Locations Type & Frequenc) and/or Sample Sample Number & Location Collection Frequency (1) Mi/Dir of Analysis INGESTION:

VII. Milk (4) A) Samples from milking Semi-monthly --To be supplied -- Gamma isotopic animals in 3 loca- when animals when milk animals and I-131 tion within 5 km are on pas- are found in

~

analysis semi-distant having the ture, (8) .accordance with monthly when highest dose poten- monthly other . criteria VII.A. animals are on tial. If there are times. (5) pasture; none, then 1 sample monthly at from milking animals other times in each of 3 areas between 5 to 8 km distant where doses are calculated to be greater than 1 mrem per year.(10)

B) 1 Control sample to 16 28.0 W "

be taken at the loca-tion of a dairy 10-20 miles distant and not in the most prevalent wind direction. (2) t'

?

m Page 7 of 12

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM VIRGIL C. SUMMER NUCLEAR STATION TABLE 3.0-1 Sample $

Exposure Pathway Criteria for Selection of Sampling and Locations Locations Type & Frequency nnd/or Sample Sample Number & Location Collection Frequency (1) Mi/Dir of Analysis INGESTION (Cont'd)

VII. Milk (4) C) 1 Indicator, grass Monthly when available .6 1.0 ESE Gamma Isotopic (forage) sample to be (5) taken at one of the locations beyond but J

as close to the exclusion boundary as practicable where the highest offsite sectoral ground level concentrations are anticipated. (2)

D) 1 Indicator grass -To be supplied ~~ "

(forage) sample to be when milk animals taken at the location are found in of VII(A) above when accordance with animals are on criteria VII.A.

pasture.

E) 1 Control grass (for- 16 28.0 W age) sample to be taken at the location of VII(B) above.

F

?

Page 8 of 12

i a

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM VIRGIL C. SUMMER NUCLEAR STATION TABLE 3.0-1 i

Sample Exposure Pathway Criteria for Selection of Sampling and Locations JLocations Type & Frequenc) and/or Sample Sample Number & Location Collection Frequency (1) Mi/Dir of Analysis INGESTION (Cont'd)

VIII. Food A) Three samples of Monthly when available 6 1.0 ESE Gamma Isotopic Products broadleaf vegetation ( 5 ,- 8 1.3 ENE on edible por-grown in 3 nearest 4 1.3 WNW tion.

offsite locations of a highest calculated annual average ground level D/Q if milk sampling is not performed within 3 km or if milk sampling is not performed at a location within 5-8 km where the doses are cal-culated to be greater than 1 mrem (lu)

B) 1 Control sample for the 18(3) 16.5 S "

same foods taken at a location at least 10 miles distant and not in the most prevalent wind direction.

IX. Fish A) 1 Indicator sample to be Semi-annual (9) 23(3) 0.3-5 Gamma isotopic taken at a location in collection of the on edible por-w the upper reservoir following specie tions semi-o types if available: annually L bass, bream, crappie, catfish, carp; forage fish (shad)

Page 9 of 12

~

1 I

e RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM '

VIRGIL C. SUMMER NUCLEAR STATION TABLE 3.0-1

' I Sample Exposure Pathway Criteria for Selection of Sampling and Locations Locations Type & Frequency and/or Sample Sample Number & Location Collection Frequency (1) Mi/Dir of Analysis INGESTION (Cont'd)

B) 1 Indicator sample L2:l( 3) 1-3 to be taken at a loca-tion in the lower reservoir. <

C) 1 Indicator sample 24(3) 5.5-6.5 "

to be taken at a loca-tion in the upper reservoir's non-fluctuating recreational area.

D) 1 Control sample to 22(3) 12-15 NNW be taken at a loca-tion on the receiving river, sufficiently far upstream such that no effects of pumped storage. opera-

tion are anticipated.

I

AQUATIC

l X. Sediment A) 1 Indicator sample to Semi-annual grab 23(3) 0.3-4 Gamma isotopic be taken at a location sample (9)

P' in the upper reservoir.

?

C Page 10 of 12

i RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM VIRGIL C. SUMMER NUCLEAR STATION TABLE 3.0-1

' s Sample Exposure Pathway Criteria for Selection of Sampling and Locations Locations and/or Sample Sample Number & Location Type & Frequency Collection Frequency (1) Mi/Dir of Analysis AQUATIC (Cont'd)

B) 1 Indicator sample 24(3) 5.5-6.5 "

to be taken in the upper reservoir's non-fluctuating '

recreational area.

C) 1 Indicator sample to 21(3) 1-3 "

be taken on the shore-line of the lower reservoir.

D) 1 Control sample to "

22(3) 12-15 "

be taken in the re-ceiving river, sufficiently far upstream such that no effects of pumped storage operation are anticipated.

F

?

O Page 11 of 12

~

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM VIRGIL C. SUMMER NUCLEAR STATION TABLE 3.0-1

. 6 NOTES (1) Location numbers refer to Figures 3.0-1 and 3.0-2.

(2) Sample site locations are based on the meteorological analysis for the period of record as presented in Chapters 5 and 6, V.C. Summer Operating License Environmental Report.

(3) Though generalized areas are noted for simplicity of sample site enumeration, airborne, water and sediment sampling is done at the same location whereas biological; sampling sites are generalized areas in order reasonably assure availability of samples.

(4) Milking animal and garden survey results will be analyzed annuall'y. Should the survey indicate new activity the owners shall be contacted with regard to a contract-for supplying sufficient samples.

If contractual arrangements can be made, site (s) will be added for additional milk sampling up to a total of 3 Indicator Locations.

(5) Not to exceed 35 days.

(6) Time composite samples are samples which are collected with equipment capable of collecting an aliquot at time intervals which are short (e.g. hourly) relative to the compositing period.

(7) At least once per 100 days.

(8) At least once per 18 days.

(9) At least once per 200 days.

(10) The dose shall be calculated for the maximum organ and age group, using the guidance / methodology contained in Regulatory Guide 1.109, Rev. 1 and the parameters particular to the Site.

l'

?

t; Page 12 of 12

LEGEND * -f f

$ PRIMARY SAMPLE LOCATIONS [**' , ( -

7 A = AIR PARTICULATE SAMPLE SITE .. T D = DIRECT (TLD) SAMPLE SITE (MONTHLY) -

$ *1,*

. 49 cn.

I = AIRBORNE RADIOlODINE SAMPLE SITE 3 4, miss W = WATER SAMPLING LOC ATION :l

'G -

0:OTHER *

  • .+::...
  • 9: QUARTERLY TLD(D) SAMPLING LOCATONS
  • '3<

S' $8'" .

g .,

F ~ c,. ( F

- p 3sl J

, h.i

\

4 *

\

e ., .s O3m o

,l

  • . ^

3:;  : .\ l

& f si' b.

l I New Hope , .

, Y.W. ;".f. 4 %IA '

. dx

  • i $ 434 4 FRE

-o . ga . . CREEK ~

m . .~ , ** -

<ss 1 &

.) N N , AIRFIELD F N 475,000 60 f POWERHOU:

\' TJ i (

2 A

. -g. . *G 9? . -

Ur, .: (N 9- I .i . -'

cy ; .: :: J f(A,D,I,0)%y.}f.-._ y4 7 * '

' 270 -00

.*A S' James , PARR

'7

. . ' .=. *

., cn 9 ,'

l p RESyLV R

..**....'.. s 4

Bethiehem I

l l Victo'v .,4 6, Ch 4: .. .... ,-

cn 4

. ,. . ,ss, ,

g'

., cw m a ,,, '3 :21 .

~

"* *8'"-' * '

Can" n

-m g .

/ 33 g

. . . 3.a

+'

x

- p-POM ARI A g ( ,, #* ,

3

>- .oe m i g

,r _. ' 3 et n .,

. c .....> .-

%?.y

~ '

RM. ,.. ..'.@*'s M .c ,

  • 6 . **

. A w ,,,, 'd. c pt Jonns

. 'o. ' f . a -

Cn

. ' e G q . O .p Cre

  • M*  % Pawls . p,7 Ch. . .7,, s --

4$$

on *g. **P.7 ,, $ ., , ..

/ of 213 y ,

p sn e

r *

,o n

, e 43., * .

(. .

p .7

? .a H *.

1 Ol@ ,9 s , ,5 ' ' * '* * '* ~

. V.'.goy

s. %ea .,, ,, r-

. y ,

f

% f ..

%. V%s*.. ' .

m' "*

- /

Lv t 4 .

" Q ::. :~4 St Prfets

. u : , . !. g. Hwy. . M8 m. ,

.. . n . '-, _

,  :: 23 .Y./ 213 k .

,. y. , . c -

3 qv[Up ,e';  % @ 225

. ,,vos tic t uo 32 ,

  • y 4lI' , -

( ug,;,;l"

  • /.' x x:: . 6 s 3

\

(

~

.3' . *. / "0 ,

3(A, ..

  • . r > J

[y

[.

6: ' ,' ,.

. S'$"", .. ' M

!! . . . N.h Ni

~

  • p 4 -

.S-1 RESERVOIR ... .:Z::: 03 tiro 1 ***

> .:M - - cnane s t

l

' i.,j i. ' i. i./ i ,.

.. : a:. i. -

i

/ s- ni,, r,.

1. s .

\;;!.ji ":

".,.j  : p::y: R ii . ,/' *

'i

.. mf.cs. -

p ,. : . r.  : t.n'e . ,....

ni.ii:  :

. . . . : r:: . i .y;. - . n- -

,o.

c"y .'s *** i

. . a::: :

N2-

+:!!!.ii!;::r.

- - 3.,.M, , .y .

t

  • T's , . .>o &S \* * *q e .

.il:::c.. c.:!r!.f.

47

.;;a::1!  :  :. r- - m 4 5' - ,4 r, ,, E . . ***

7e

  • T

. !jili:\i! !((

~r: . *M N, ,f N475,OM i*[N45:{

~

't

%:-NUCLEAR . l g pngns if ,

, 4, ~' STATION:y

..$ Sch. 711 \

%gTp fy ,

.g.

,q

, 54 5t A :n.

H.v ..itia s rc f p

,+; p. -

. s Creek

    • 7.-

29, ' ' '

Ch.

' d l \\ 28 90 - 0

.o }'

j

  • b .N ' nQ (W) . ,

f ** /

' ~

(A I .

p *

/ jo ( A D.I)

. N j\ l l lOlo [ *

(1,o o fs k, 3 y ,.

  • l

... N,..  :. -

JE KI VILL -

'30 ,

't u- . .

..s. -

/ - <

6 FAS

/ "

C h. .

s ./ . .,  %, ,,.  : x

, s.

"j m s.s sp.s '

. .s

,g . .

y e.

,1 g

  • I Ch.'0 " G'"""' S ' M t " '" * ' **

l 0-S 7/ Brake p

, , , , Ch. >

+( . r . .

\ ,

ALSTON g gM5

  • b s THggy \
  • N45 006 South Carolino Electric 8 Gas Co.

{ g) 3*

  • Virgil C. Summer Nuclear Station he & 's -

Do I  ? 0 R ADIOLOGICAL MONITORING PROGRAM s es55 w l >

,,,,,,, s -

LOCAL INDICATOR S AM PLE SITES g/ Q.

FIGURE 3.0-1 _, _

3.0-14

_s _m g

pm n, . m e . . e . . .- -

tr y ,. . ',. cQ ;, a . L ,

ev.- ,1 j-m' y';h s, .. w' j .V - .

l

=.\,n.

(

a he r.

s

, .] f -

&',,s.. .h..

f..._ . '

Yx

? ';\ i,' ,.

{.' h { $. . f &;\y- 'h;-\l~ _.- 2

m. ,

a..

. - A,.

.- 4 <.

o.f r. u . 3s . ,

-s

" q y 7 s, ,,= t, [ . N -

,..\

t Q, p __

x- A g. V

{%(

" ~ -  :

. ..,1

> . y

. + .s - . ~

. .#N ,[g

{.:,,.,

t.

(' p r p 7 } -

f~,

cs Q ., n, p a$ N.%.-

s. .-

'  % ~,

- , . '" 1. .. ,> .

t -

, .s ag g ;p, ,.;2

-4 y

,o M .y3 g.. 9

., 4 s . t .3 . t

,_ ' .4 -

fl

p

n .

y .-

[ /

4 .s- , p

.. .. .?, ".

7

g. y

,f

    • ! . g ...' . j v

,. y s

{. j R 1 ',/.

,.Y*f ~,

.i t..q. ..u j -), x 9~ .

y'

~a f

.Qv

.(

J a .g. s

<g_ .

t g ,

4..

' g t

w 3.

o-

~ n. 'f ". r:

4-

-/ '4. , , , , ,t vp w ~ J g 1

. g q' , . / {.9

' 5' hk<

,.; sf ' .. h.N

., g , 3,g. -. .

.+

7

.g

.. n ,,

n..g

y 7 A,. ,

>y :

<, /, .

. ;. .ju. y2

.: i

... p +

h

'5  ; ,;

A} .J,i...*%..f

~ - .

m h. i , s. ..

w s ...M

l

, , o .

o m.Su n3

\,,,.'  !*-37. %imD , f -,e' 79p mh.

i .

l \

\

./ 6 '

/

N m p N \ ,' .

I, l l ,, ,

, g 7 ~M d,y k \, e a' f~ a ,E,, , k' -

t a ,. '%

=9 I. h. * **=*

.) ,(

?(

~~

%h ,-

."  ; {N ,

sh)., -

8 f, ( * ' , # ,- ,, .

} ,

b h1 / .

[ Q

, gs* . Q-  % ef \ 's' *  %  % * '

h ** *SL=r

.' , . ),

$g p

  • l ':

fff' \ ,, g ..' Io ~

.Y . .

~

.2 .h8

  • g'G.,

?

,/ .*r h ' ' ~' p G.;-,, , ,-

' j--Q'  ?

if.73}'" ), #,

j_**

j

( \';,

W 3 ~f f s. ,

h - [*gl y-

. .;'7, '^ I

.,f.( ', x'.-ll,..,r g . - ml ,

  • g , . ) ._t3< ', , -

f,y;/.

n, ,

4. . e

^

. , - [ 4 . )~

, $' h 'f .

N 1 /

9 4

i

,. .,/ ,. ,. .

7 .,' '** r' y'

, k{ l h .~

' .J s s i

  • ft ,

9 . *-

f. .

< S?I '

~ . . .

,'- l,

> \ {_* {-

.o.,

f$

~

L  ?-

', - h '*-

Q" A,\

p' ., , . [+ ,Iv.'$,A' '

2 O'j g ,4~,,, ' e f " . . . , , . .

% [- M(vl%

t .

.9 f

  • L EG END
p.Dj. '- ,,
c ;. .

~

A PRIMARY SAMPLE TYPES S,h #  % ,.

", L iVe-

' '~

.2.

Me INDIC ATOR LOCATION g 3*1 .

,, j

  • ' . . . s$ g ,f is ,;g.\ ..% h, _ - - A
  • AIRBORNE PARTICUL ATE S AMPLE SITE

. .f' 8

1

' .' \

  • - Oe DIRECT (TLD) S AMPLE SITE NPIS N'

N_ $, {Ch . ty*s . M(*

, di ~e' '

, .'N*

W #

  1. =

.4 Ia A I R 00,9 N E R A01010 DIN E SAMPLE SITE W* WATER SAMPLE SITE f

3..

l

? % '.

\ i.' '

~

y 0
  • OTHER.SEC R ADIOLOGICAL ENVIRONMLNTAL MONITORING PROGR AM TABLE.

. ,,( M,( A,0,I,W)1 E' - -

.,,, , South Carolino Electric & Gas Co.

Virgil C. Summer Nuclece Station

. *". ,[ . E-

~

' "c , . -

fki%

4 i'?-Q ~

i, - 5, ,,.'i. h' , , ~,' .

RADIOLOGICAL MONITORING PROGRAM

- 4

, ') $ . . v,y REMOTE SAMPLE SITES h' [ , y.-v i.s.S& _ (?'~ ' ' '"

}. .

e:

/,  ! O Figure 3.0-2 F j ,. q l S. /*T%N'["f ,;.>'sg<

  • T' I' .,h .{ i % g' ) .

(Reference 5) 1.3 . ~ . b[./ J 'h.'

b / ' N i1._; A j J .V.4 .S".". :

3.0-15 ~

u