ML20045D710

From kanterella
Jump to navigation Jump to search
Fire Protection Per App R Requirements Ampacity Study.
ML20045D710
Person / Time
Site: Prairie Island  Xcel Energy icon.png
Issue date: 09/16/1983
From: Dolan P
STONE & WEBSTER ENGINEERING CORP.
To:
Shared Package
ML20045D661 List:
References
12911.23-E(E)-1, NUDOCS 9306290338
Download: ML20045D710 (74)


Text

- . . . .-- . . _ . . ._ .

- 1

.,c 3 s ig2 c .- L. r it e

~" ' '

NOTED P.a.00 W 5:*9 il J.O. No. 12911.23 9 ,n 3 E-82Y2t.0 Technical Information Center Stone & Webster bgineering Corp. l

  • P. O. Box 5406 Denver, CO 80217-5406 NORTHERN STATES POVER COMPANY ,

PRAIRIE ISLAND NUCI. EAR GENERATING PLANT FIRE PROTECTION PER APPENDIX R REQUIRLENTS AMPACITY STUDY-E J *

. i September 16, 1983 5.

9 em 5.

t 4

D. d e

~ '

? JBRARY i:0PY  ;

930629033B 930624 PDR f

ADOCK05000282[@A PDR ;3j

. , - - ,m- ~, - gi wy -

i i

12911.23-E(D)-1 STANDARD DISTRIBUTION FOR!i No. of Cocies RECIPIENT 1 Engineering Manager, DOC (R.J. Conlon) 1 Assistant Engineering Manager, DOC (J.D. Purvis) .

1 Division Manager, Electrical, (DOC) 1 Technical Infernation Center (Boston) ,

  1. 1 Technical Info: nation Center (DOC) 1 .

J.L. Denne11 (DOC) .

l 1 P.J. Dolan (DOC)

~

I 1 Job Book p ,

1 Project Engineer l' 1 D. 3ailey (DOC) 4 l

1 K. Petty (Boston) l l

i l ".

(*

L .

~ -

l. . . .

b G

S I

[ /

. . _ _ . . __ . _ _ - . . _ _ _ . _ - . . ~ . - . ... . _ . .

)

s 4 i 12911.23-E(D)-1  :

53267 l

-i i

FIRE PROTECTION PER APPENDIX R. REQUIREMENTS AMPACITT STUDY-

[^

for-  ;

~

Northern States Power Company

  • Prairie ' Island Nuclear Generating Plant -

Units 1 & 2 l- . . .

l!

Prepared by: P.J. . Dolan

  • -i

<l

l. .

j l

September 16, 1983

,. i

. Approved by: /y a. . M Projact Engineer. ~ Electrical-Division Manager 1

l- ,)

Approved -

sps .

) s Registeregrotessional Engineer No. L'4 77M

^

sistant -Engineering Mgr.

State of Minnesota-

. i c

l I. . .

Copyright-1983

+-

Stone & Webster Engineering. Corporation .1 Denver, Colorado 8021T

, .- ,..-,r.w, +,&- ,- , .-,

u , .. w,

.- .- - - - . - - - - . - - _ . - = . .- _ _-

TABE OF CONIINTS Page #

5.0 INTRODUCTION

AND PURPOSE 1-1 2.0

SUMMARY

, 2-1 3.0 CABLE,AMPACITT CONSIDERATIONS ,

3-1  ;

! -3.1 Cable Siring Criteria '3-1 l' 3.2 Method fo'r Derating Power Cables -in a Vrapped Tray. 3-2 l 3.3' Method for Derating Control Cables in a Vrapped Tray. 3-5  :

4.0 FIELD TEST RESULTS 4-1 4.1 General Description of Test Setup 4-1

  • 4.2 Charging Pump Feeder Tray Test Results 4-2 4.3 Diesel Generator Feeder Tray Test Results 4-4 4.4 Control Tray Test Results 4-6

.- 5.0 MATERIAL COMPARISON 3-1 5.1 General .

5-1 5.2 B&W Kaowool Ceramic Blanker Materials ~ 5-2 -

~

5.2.1 General 5-2 g; 5.2.2 Kaowool One-Hour Barrier 5-2 li 5.2.3 Kaowool One-Hour Barrier with Zeter 800 5-2 #

'? 5.3 TSI-Thermo-Lag 330-1 with Stress Skin 330-69 Materials 5-3 t

,, 5.3.1 General 5-3

') 5.3.2 .Thermo-Lag 330-1 One-Hour Barrier . 5-4 5'.3'3 . Thermo-Lag 330-1 Three-Hour Barrier 5-4 ,

, 5.4 3M-M20 Materials 5-4 *

/ 5.4.1 General 5-4  !

, 5.4.2 . M20A One-Nour Barrier

  • 5-4 5.4.3 M20R One Hour Barrier 5-5  ;

5.4.4 M20R Three-Hour Barrier 5-5 6.0 CONCLUSI'ONS AND RECOMMENDATIONS 6-1 l

l . .. References i

!_ List of Figures ,

Figures List of Tables Tables

  • l, G e l.*.

L m~ , n , ...e , , , - , , . - . , , , , - -

i l

l l

)

1.0 INTRODUCTICN AND PURPOSE l

At the request of Northern States Power Cc=pany (NSF), Stone & Webster ,

Engineering Corporation (SWEC) has perfor=ed a study of cable ampacity in 1 fire protected cable trays.

The purpose of this study is to examine the effect 'on cable ampacity when a 10CFR50 Appendix R fire barrier is installed on safety-related cable trays. Appendix R fire barriers are required by the Nuclear Regulatory Ccmmission (NRC) to be installed en Class II circuits which do n'ot meet a l

20 foot combustible separation criteria between redundant trains. This L

work is required to be completed by Febntary 1984.

There are presently no industry standards that can directly applied for _

sining cable under these specific conditions. This study uses a simple heat transfer model to determine the temperature rise across the fire barrier. At this point, industry guidelines are then applied in the conventional manner. The emphasis of the study is on the B&W Kaowool fire barrier presently in use at Prairie Island Nuclear Generating Plant

! (PINGP). However, several other materials are also evaluated. The results of a limited test program ch existing trays wrapped with the B&W Kaowool fire barrier are included.

. A brief economic and technical comparison of the various~ materials ~

l considered is also presented.

FINGP presently has approxi=ately 10". of the . cable trays identified to be

protected in accordance with Appendix, R vrapped with 2-1" layers of B&W Ka' wool (1-hour fire barrier) . A schematic of the proposed protection for l the remaining trays is shown in Figure 1. This figure differs from the existing tra7 wraps in that no marinite board was installed in the first
phas e . Instead, voids between cables were filled with Kaowool.

NSP provided SVEC with a listing of trays identified to be covered. SWEC '

did not verify the applicability of these trays to the requirements of Appendix R nor did we confirm tihat the syst'em and trays selected by NSP meet the requirements of Appendix R. Appendix R states that a three-hour fire barrier is required between circuits of redundant trains when

>. separation between the trains is less than 20 feet horizontally or there are intervening combustibles or fire harards. Appendix R allows a one hour barrier to be installed if the area has fire detectors and an automatic

, fire suppression system.

4 a=* g

$ l I

  • i 1

l l-1 l ls

2.0

SUMMARY

This study indirectly applies the industry standards for sining cable by determining a temperature risa across the fire barrier and adding this temperature rise to the original design ambient temperature of the cable to determine a new ambient temperature. Industry standards are then applied to the new ambient temperature to determine the permissable a=pacity.

The temperature rise across the fire barrier is a function of th.e heat generated inside the barrier and the ability of the barrier to dissipate the heat. The heat generated inside the barrier can be accurately determined, since the ' cable resistance and total amperage are known. The ability of the barrier to dissipate heat is approximated by using a heat

- transfer model. -

The ampacity derating f actors presented here are considered to be the minimum factors that =ust be applied if the cable is to operate under the specified temperature conditions. Additional derating may be required to account for the different modes of heat transfer between a cable La an open

- ventilated cable tray and a, cable in an,anclosed unventilated cable tray.

i. The following materials are investigated in this study:

o 3&W Kaowool one . hour fire barrier ,

o TSI Ther=o Lag 330-1 ene-hour fire barrier o TSI Thermo Lag 330-1 three-hour fire barrier L o 3M M20A one-hour fire barrier o 3M M20R one-hour fire barrier o 3M M20R three-hour fire barrier

, The theoretical results of the study indicate that for the one-hon: (2 in)

B&W Kaowool Fire Barrier (similar to that pra'sently installed at PINGP), ,

subs'tantial a=pacity derating is required for most power cables. Cables serving motor operated valves and cables that are oversized to begin with appear to have sufficient margin even when operated inside the fire barrier. In general, oversized cables are those cables which were selected based on a minimum cable' size for mechanical strength rather than on a m4n4 mum cable size for ampacity considerations. .

The derating multipliers for the other materials considered were substantially lower.

Derating f actors for a specific barrier varied greatly. Aside from the fire barrier material, the derating of a specific cable within a specific tray depends on the physical tray dimensions, othe.r cables La the tray, the amperage loading of each cable, the duty factor of each cable, and the size

~~

of each cable. The study concludes that no single derating' factor should be applied for cables installed in a specific type of fire barrier.

- The results of the study indicate that a combination of several differen't materials may result in the most cost-effective installation with minimum impact on the ampacity and loading criteria of the existing installation.

e l 2-1 i

3.0 CABLE AMpACITY CONSIDERATIONS 3.1 Cable Sining Criteria Proper sining of cables to service electrical loads is critical to assure safe, reliable, and continous operation of the cable and the load for the design life of the instal.lation. Proper sire and selection of a specific electric cable should include the following criteria:

o Voltage drop during normal operation o Voltage drop during startup operation o Ampacity'during continous operation o A=pacity during a short circuit The application of the voltage drop criteria assures adequate voltage at the terminals of the load so that it will start and operate continously at the rated load. The required voltage under these conditions is a function of the design of the lead. On the other hand, the ampacity criteria is applied to an electric cable in order to avoid operating the cable at a temperature higher than the , design limits, e i r-1 The limiting operating temperature of a cable is generally deter =ined by )

the design temperature of the cable insulation. The insulation on the cables installed at PINGP .is rated for the following temperatures: ,

o Normal continuous operating temperature - 90'C for 40 years o Emergency operating-temperature - 130'C for 100 hours0.00116 days <br />0.0278 hours <br />1.653439e-4 weeks <br />3.805e-5 months <br /> per year (maximum of five such periods) o Short circuit operating temperature - 250'C 3 ,These limits apply to any surface in contact with the cable insulation.

Since the copper (or aluminum) conductor gene' rates heat in the process of carrying curre'nt, the conductor temperature must be limited to the operating temperatures discussed above. Therefore, the normal continous ampacity of the cable must be limited to a point where the heat generated  ;

in the conductor can be transmitted through the cable insulation and jacket materials and dissipated 'to the environment without the conductor temperature exceeding 90'C.

The ability .of the cable to reject heat to the environment is a function of the ambient temperature of the environment and the method of heat transfer (conduction, radiation, or convection). .

The industry standard for deterenmg the maxi =um, permissable a=pacity for a cable is IPCEA Standard P-46-426 (1966). This standard lists ampacities for numerous combinations of cable insulation temperature ratings and application conditions (in air, in conduit, in duct banks, in cable tray,

. voltage rating, etc.). It does not address ampacity for cables in enclosed l ,

trays or trays wrapped with a fire barrier or any other material.

I .

~

3-1

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ J

The applicable section of this standard for the power cables installed at PINGp lists allowable ampacities for 3/c-copper cables at ikv and 8kv (600v, 5000v levels at PINGP) with 90'C conductor temperature, 40'C a=bient i air temperature, isolated in air. This allowable ampacity is then adjusted ,

for conditions other than those stated above. The resulting derated I l

srpacity must then exceed the expected design empacity of the load serviced.

For a typical motor load, the design ampacity should include a 15 percent

=argin for =otor service factor and a 10 percent nargin for low voltage operation (down to 90 percent of nameplate volts). For these reasons, the .

cable design ampacity for motor loads should be at least 125 percent of the motor na=eplate a=perage. For cables installed in a single layer in cable tray with 1/4 to 1 diameter spacing, a .82 derating factor is applied.

Table 1 su=marises the ampacities per the industry standards for cables and ,

conditions at PINGP.

3.2 Method For Derating Power Cables In a Wrapped Tray After the cable trays are wrapped, the design a=pacity of the cables must be reexamined, since the environment in which the cables are installed has changed from the design conditions. Specifically, the ambient temperature which the cables are exposed is expected to be higher and the predominant cable cooling process is no longer convection.

~

The Ladustry standards do'not specifically address the application of cables under these conditions. However, it see=s obvious that the minimum derating factor that should be applied is one which accounts for the cables new ambient , temperature (i.e., the ta=perature inside the wrapped tray).

This new a=bient temperature will be the sum of the old ambient temperature

~

plus the temperature rise across the fire barrier.

To estimate the temperature rise across the fire barrier, the fire wrap is modeled using the conventional heat transfer for=ula:

Q.= UxAxAT Q = Heat Flow U = Thermal Conductivity A = Surface area ,

AT = Temperature Rise l l

or solving for the temperature rise 1 AT = UxA/Q For the purpose of this study the geometry of fire barr,ier analyzed will be ,

, similar to that shown in Figure 1. For all materials considered, the model  !

assumes no temperature gradient across the interior of the covered tray.

4 - For the B&W Kaowool the effects of the Mari=ite board shows in Figure 1 are neglected.

l .

l ,

Also for this study, all quantities will be discussed on a running or l

linear foot basis since this will make the calculations independent of cray l length. No additional consideration will be given to short tray lengths or tray ends that may receive additional cooling by the convection process.

Special coverings such as foil or Zetex are neglected.

3-2 l

I l

i 4

The surface area (A) of the fire wrap per running foot of tray is deter =ined by su==ing twice the tray depth (4 inches assumed for all trays) i and twice the tray width. l The thermal conductivity of the fire wrap is de.armined by first su= ming the resistances of each layer of the barrier and then inverting the result. A ther=al resistance factor is included in the sum for the inner and outer surface-to-air boundries. This surface factor is derived by averaging the ASHRAE (1977) horizontal up and horinental down surface resistance for nonreflective (emittance E = .90) surfaces in still air.

The resistance used at each surface-to-air boundary is R = .765(HOURxFT*x'F/3tu) - ,

In addition to the surface-to-air boundary thermal resistance, the

. resistance of the fire barrier material itself cust be considered. This information is obtained from published data by the manufacturers. The resistances of the various fire barriers considered is as follows:

Thermal Resistivity i Material Thickness HRxFT*x'7/ Btu I

One-hour B&W Kaowool* 2" 4.0 One-hour TSI 330-1 1/2" 0.417 Three-hour TSI 330-1 1" 0.833 One-hour 3M M20A 1" 0.641 One-hoti: 3M M20R 3I4" 'O.333 Three-hour 3M M20R 1 1/2" -

0.666 i! - In each case, the thermal conductivity of the. system is then deter =ined by taking the reciprocal of the sum of the two surface resistivities and material thermal resistivities. The surface area per linear foot (A), the thermal conductivity (U), and the product (AxU) are listed in Table 2 for the various fire barriers considered. .

The only re=aining variable in the equation for temperature rise is Q. To i determine the total heat generated (Q) by the cables inside the wrapped trays, the following for=ula is applied to each cable in the enclosure:

V = I*xRxN V = Vatts

.I = Phase Amps R = Conductor Resistance l N = Nu=ber of Conductors

(N = 3 for 3 phase power cables

!. . N = 2 for DC power cables)

} The cable resistance used in the study is the resistance of a single I cenductor adjusted for operation at 90'C and adjusted for AC or DC. (Note that as temperature increases, conductor resistance increases) Table 3 Ii lists these quantities for the cable types installed at PINGP. ,

I L

3- 3 I

l

The current (I) for each lead is the full load amperes (nameplate a= peres) as determined from the PINGP motor list (1983), the plant one-lines , or by esti=ation. These values of amperage are listed in Table 4 for the various cables routed through the power cable trays which were identified to be wrapped. Along with the cable ID and a=perage, the service, the NSF cable type, equivalent cable resistance (2xN), and watts generated per linear foot (I2xRxN) are also listed.

The total heat generated (Q) in each tray is then determined by adding the individual contributions of each cable (I 2 R) routed in that tray. For the purpose of this study, all cables are assumed to be operating at full load a= peres. .No additional margin is included for low voltage operation or operation into the service factor range. Table 5 demenstrates the details -

of this procedure for the one-hour B&W Kaowool fire barrier for all power trays identified to be wrapped. Tables 6A, 3, C, D, E, and F su==arize the results of this procedure for power trays for the Kaowool as well as the other materials considered.

P l

l. Next an approximation to the air temperature in which the cable is t operating is determined by adding the design ambient temperature in which the tray is located to the temperature rise across the fire protection boundary. SWEC recommends that a design ambient temperature of 40'C be used for this purpose since 40'C is the design temperature in the auxiliary I building at PINGP. -

If the cables were originally designed to operate at a design ambient temperature of 40'C, then it is logical that the minimum temperature derating factor that must be applied is for the ta=perature' rise across the fire barrier.

ij . Table 7 lists the industry standard derating factors (Ref.1) that must be applied to cables operating above an ambient te=perature of 40*C. By adding the recommended 40'C design ambient temperature to the calculated temperature rises for specific trays in Tables 6A, 3, C, D, E, and F, a

!- total temperature is obtained. . The minimum.derating cultiplier for cables

in a specific tray can then be determined from Table 7 by reading the corresponding I'/I value for the corresponding value of total te=perature.

The calculated derating factors are given in Tables 6A, 3, C, D, E, and F for the trays and =aterials considered. Additional derating may also be l required since the mode of heat transfer for the open tray is different

than for the covered tray. For this study, these additional derating l

factors are not investigated.

Derating of a specific cable is then accomplished by listing all protected cable trays through which the cable is routed and then applying the derating factor of the tray with the largest predicted temperature rise to the specific cable. This derating factor is applied to the industry standard ampacity (Table 1). The resulting ampacity then may be ccmpared to the nameplate current of the load. If the derated ampacity is larger

- than the load current, than the cable is sufficiently sired. If not, additional evaluation of the cable is required as will be discussed latier.

3- 4 l

I 1

1 This final step is not taken in this study as it is dependent on the I materials ultimately selected for the fire protection. Note that these derating f actors apply only to cables operating at the estimated temperature. The cables will only reach the estimated temperature when operating at rated load amperes, if the cable's ampacity is derated to less i chan rated load amperes, the heat generated by the cable will be reduced i and the estimated operating temperature will also decrease. Thus additional iterations of this procedure could be performed to zero in on a l specific a=pacity limit for a specific cable under these conditions. This iterative procedure is not addressed in this study since for the cables considered, any a=paci.ty derating beyond the required a=pacity of the load is unacceptable.'

3.3 Method for Derating Control Cables in a Vrapped Tray Control cable tray 1AM-TA9 was examined to predict the temperature rise in this type tray when wrapped in 2 in of B&W Kaowool (one-hour barrier).

The ability of the tray to dissipate heat is determined in the same way as i discussed in Section 3.2 of .this ' study for power trays. Tray 1AM-TA9 can

!. dissipate .305 watts /'C per linear foot of tray. >

The heat generated inside the tray is then estimated by examining the function of*each of the cables. Tray 1AM-TA9 contains 66 culticonductor cables or 442 conductors. Most conductors are #12 AVG.

. The resistance of each conductor is calculated to be .00206 OHMS /ft at 90'C5 for AC or DC applications.

ge a The associated circuit for each cable was examined for current consuming

}

. devices and total current consu=ption was calgulated for each circuit. The following powet consu=ptions were allowed for each current consuming device:

ITEM POWER. CONSUMPTION ALLOWED AMPERAGE Solenoid Operated Valve 20W .2A Indicating Lights 10W .lA l Motor Starters 100W l.0A l Alarm Drops 2W .02A '

Misc. Auxiliary Relays 20W 4A Transmitters 20W .2A Duplex Outlets 50CW SA I i

1 i

The total current consumption in each circuit was then applied to each conductor in cables serving that circuit. This approximation resulted in a i i very conservative average conductor current of. 79 amps.

The .79 a=ps is then squared, multiplied by the number of conductors, and ,

'; =nitiplied by the conductor resistance to determine the total heat gain in l the tray (watts = I*xRxN). For tray 1AM-TA9 this resulted in .57 watts /ft. This translates into a 3.4'y temperature , rise.

3-5 l

i l

l l

1

. 1 I

l i

Since 1AM-TA9 is only 74 percent full with 142 conductors, SWIC assumed 100 I percent fill would result in about 600 conductors. For this case allowing l

.79 amps per conductor the heat generated increases to .71 watts and the 1 temperature rise increases to 4.2'F.

An extrapolation of this . data indicates that control cable derating does not become a problem until each of the 600 conductors is operating at more than 2.5 a=ps. .

l For control cables installed in a random lay open top cable tray, IPCF.A 54-440 (1979) allows s'ix amps per conductor at 90'C conductor temperature, 40'C ambient temperature, 600V insulation level, and three conductor cable

! construction. For this study, this value of six amps is assumed to be -

valid for all multicanductor cables.

In most cases, control and instrument cables are selected on the basis of mechanical strength rather than ampacity; this estimate seems to confirm this fact. The study also indicates that the current in each conductor must be increased more than,three times from the already conservative

,j estimate of .79 amps used in the study 15efore derating becomes a concern.

Derating requirements for other fire barrier matarials aze not addressed i for control trays since the B&W Kaowool (2 in 1-hour barrier), appears ,

acceptable.

l i

i I

\

l t

O e .

1 l .

. so t

36

9 4.0 FIELD TEST RESULTS

n order to add confidence to the results of the' predicted temperature rise calculations discussed in the previous section, a limited temperature survey of cable trays covered with a one-hour 3&W Kaowool fire barrier was '

made. This survey consisted of monitoring covered, uncovered, and ambient te=peratures in five power cable trays and three control cable trays. SWEC selected the power trays which contained feeders to safeguards equipment likely to be operating during nor=e.1 plant operation. NSP selected the control trays based on fill criteria. Vithin the limits of experimental accuracy,, the result;s ' compared f avorably with the calculations.

4.1 General Description Of The Test Setup -

For the survey, several power cables installed in wrapped cable trays that operate during normal plant operation were identified. Since the fire barrier is installed only on safety-related cable trays, most cables in

these trays are not normally or continuously in service. Of the remaining cables that are in service during normal operation, the charging pump cables and associated trays were selected since one charging pump is operational at all times and since the pumps are relatively large loads (approximately 140 amps). The surveyed trays associated.with the charging pumps are ~as follows! .

Predominant Tray Vidth Load 1

[,

1AG - LA30 12" #12 Charging Pump 2AG - LB5 30" #21 Charging Pu=p i

2AG - LB8 24" ,

  1. 21 Charging Pump Ih addition to' the three power trays identified above, two power trays containing the diesel generator D2 feeder cable were identified. These trays were' selected since the survey could be coordinated with the bi-weekly diesel generator load test. The load current of the generator nameplate voltage and poder factor is 479 amps. These trays are as follows:

Predominant Tray Width Load 1AM-LB23 9" Diesel Generator D2 1AM-L327 18" Diesel Generator D2 Three control trays were also identified to be monitored. These trays were selected by NSP since they were close to the main control room and were b- appproaching the fill limit. These trays are:

Tray Vidth %Filt # Cables j 1AMETA8 18" 94% 87 1AM-TA9 18" 74% 66 1AM-TA10 18" 58% 45 .

l I l

!. . l i

4-1 l l

b Based on the availability of strip chart recorders and the relative locations of the points to be monitored, three central moniv.oring points were selected. As listed in Tables 8, 9, and 10, 27 thermocouples and three recorders were installed. Thermocouples installed in the wrapped section of power cable trays were inserted ale.pgside the predominant cable in that tray (charging pu=p feeder or diesel generator feeder).

Thermocouples installed in the unwrapped sections of power cable trays were installed alongside and strapped to the predominant cable in that tray.

Ambient thermocouples were installed in air in the general vicinity of the trays being monitored. Ther=occuples installed in control trays were inserted approximately' into the center of the cable bundle. In several cases, a thermocouple was inserted into a covered section (metal tray cover) of control trays as well as the wrapped and unwrapped tray -

sections. The recorders on elevations 695' and 715' in the auxiliary building were started on August 10, 1983 "and continued to run at a chart speed of 1 inch per hour until August 24, 1983. The recorder in the relay

- room was started August 22, 1983 and ran at 1 inch per hour until August 24, 1983 (in conjunction with the diesel testing). During the test period, the operation of the charging pu=ps and diesel generator was monitored periodically.

Thermocouples r: fabricated by twisting together and crimping the two

. conductors of tat. thermoco.uple extension wire. The limits of error for the '

typs "T" thermocouples is i 1.8'F, and i 4'F for the type "K" thermocouples . Recorder operation and calibration was checked by the PINGP instrument shop prior to the survey.

j; .

s 4.2 Charging Pump Feeder Tray Test Results

, As stated before, three cable trays serving two charging pumps were I - instrumented for the temperature survey. All three trays are located on 2

elevation 695 'of the auxiliary building. Tray 1A3-LA30 services Unit 1 charging pu. p #12, and crays 2AG-LB5 and 2AG-L38 service Unit 2 charging

~'

pu=p #21. ' A list of thermocouples installed on these trays is contained in Table 8.

' e All thermocouples were connected to a type "K" multipoint recorder located at G-12 on elevation 695.

Figure 2 is a sample of the strip chart record from this test. The i ta=perature data recorded for this test are relatively constant for the duration of the test. Exceptions to the consistency appeared on August 11, 1983 when the #21 charging pump was started, and ,on August 23',1983 when

  1. 21 charging pu=p.was reduced to minimum speed.

During*the course of the test, both charging pumps normally' operated between 65 percent and 70 percent of full speed. For both pumps, 70

percent speed corresponded to 88 amps load current as measured by the PINGP electrical shop on August 10, 1983. The speed of the pu=ps was read several times during the survey at the charging pu=p speed manual / auto centrol station en the main control board. -

4-2

l Typical steady state temperatures recorded were as fo11cus:

!!easured T/Cl) Descrintion Te=cerature Average 3 & 4 #12 charging pu=p feeder in wrapped 120'F tray 1AG-LA30 9 #12 charging pump feeder in unwrapped 96'F tray 1AG-LA30 1 A=bient near 1AG-LA30 85'?

Average 5 & 6 #21 charging pu=p feeder in wrapped 111'T tray 2AG-L35 Average 7 & 8 #21 charging pump feeder in wrapped 108'F tray 2AG-LB8 10 #21 cha$ging pump feeder in unwrapped 91'F

. , tray

~

2 Ambient near 2AG-L35 & 8 85'T  !

'4 This information indicates a temperature rise across the B&W Kaowool of 35'T for the #12 charging pu=p feeder in tray 1AG-LA30, a 26'F rise for #21

charging pu=p feeder in tray 2AG-L35, and a 23*F rise for #21 charging pump feeder in tray 2AG-L38.

In order o compara measured values to the predicted values', the predicted values must be adjusted to the conditions existing in the tray at the time of the survey.' First, all other feeders in the trays being studied are -

assumed to be out of service. This assumption is valid since the other feeders sei9tice safeguards loads such as motor operated valves, RER pumps, safety injection pu=ps, and containment spray pumps. The second modification to the predicted temperature rise is to adjust the heat generated in the cable to account for operat1on of the charging pumps at less than nameplate current. Since the heat gain (and thus the temperature rise) is directly proportional to the square of the curtent, the temperature rise in tray 1AG-LA30 is reduced to 43 percent of the predicted value (the square of the censured current of 88 amps divided by the Unit 1

. charging pu=p nameplate current of 134 amps) . Similarly, for,the #21 charging pu=p feeders in trays 2AG-L38, and 2AG-L38 the temperature rise is reduced to 34 percent of the predicted value [(88 amps /152 amps)*].

These adjusted temperature rises compare to the ceasured rises as follows: .

l I

.s l 4 #

. l 4-2

t Condition Trav AT l Calculated temperature rise in tray LAG-LA30 91*F with all cablas at nameplate load: 1AG-L35 115'T 1AG-I28 77'F Calculated te=perature rise in tray with LAG-LA30 39'F only charging pu=p at 70 percent speed 1AG-L35 ,

38'F (88 aups) 1AG-I38 26'?

Measured temperature r'ise in tray with only LAG-LA30 35'F charging pump operating at 70 percent speed 1AG-L35 26'F (88 amps) 2AG-L38 23'T -

l The error limits on type "K" thermocouples is t 4'F. Thus, all ceasured

! temperatures seem to correspond reasonably close to the predicted values.

t.

4.3 Diesel Generator Feeder Tray Test Results Two cable trays containing the D2 Diesel Generator Feeder were instru=ented for the temperature survey. The first tray (LAM-L323) is located in the relay room on elevation 715, and the second tray (LMd-LB27) is located l

outside the~ relay room over access control in the auxiliary building on elevation 715. The instrumentation installed is given Tables 9 and 10.

The thermocouples monitoring tray 1AM-L323 were connected to a type "T" two point recorder located in the relay room. The thermocouples monitoring tray 1AM-L327 were connected to a type "T" multipoint recorder located at H-7 on elevation 715' in the auxiliary building.

t l} ' Since the diesel generator is not normally in service, the temperature i survey of thes'e trays was co'ordinated with the bi-weekly diesel generator load test.

The diesel generator is rated f'or continoui operation at 2750 kw @ 0.8PF.

At the nameplate voltage (4.16kv), this translates to 479 amps per phase at

! full load. During the test on August 23, 1983, the diesel was run for 15 hours1.736111e-4 days <br />0.00417 hours <br />2.480159e-5 weeks <br />5.7075e-6 months <br /> at 400 a=ps.

l Due to the taermal mass of the cable (conductor, insulation, jacket, and armor), the cable tray, and the fire barrier, SWEC predicted that at rated

l. load the temperature rise for these trays will be about 7'T per hour. This
implies that tray 1AM-L323 vill reach a steady state temperature in about 30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br /> and tray LAM-L327 will reach steady state temperature in about 18 hours2.083333e-4 days <br />0.005 hours <br />2.97619e-5 weeks <br />6.849e-6 months <br />.

At rated load (479A), the predicted temperature rise across the fire barrier is 207'F for tray 1AM-L323 (9" wide) and 122 7 for tray 1AM-L327 8

. (18" wide).

4 e

i-i 4-4 l'

l

l l '

b l

l However, since the diesel generator was operated at less than full load l current, the total ta=perature will drop as the square of the ratio of the currents or 70 percent of its predicted value ((400 amps /479 a=ps)2] . The revised temperature rise in the trays is then 144'T for tray 1AM-L323 and l 84'F for tray 1AM-L327. The rate of temperature rise is also reduced to 70  !

l percent er 3'F per hour. The time to equilibrium should remain about the  !

. same. )

1 A su==ary of the test results is as follows: j

. \

1AM-L323 1AM-L327  !

l Inside Ambient Temp. Inside Ambient Temp.

Time (Hours) 1AM-L323 1AM-L323 Rise 1AML327 11M-2327 Rise 0 808 F 80'? 0'F 89'T 89'F O'T 2 88'T 81'F 7'T 95'T 898 7 6'F 4 95'F 82'F 14'F 100'F 89'F 11'F 6 105'F S2'F 23'T 105'F 89'F 16'F 8 116'T 82'F 34'F 110'F 89'F 21'F 10 123'T 82'? 41'T 115'F 89'T 26*F 12 128'F 82*F 46'T 120'F 89'T 31'T 14 132'F 82'T 50'F 125'F 89'T 38'F 15 135'F 82*F 53'? 127'T 89'F 38'F ,

t For both trays, the temperature increases seem to react slower than the rate of rise prediction indicates. Note that the rate of rise is not a

! . critical f actor in the derating determination. only an esti= ate of the L, ther=al mass of the cable, tray, and fire wrap. For both trays, there was no indication of reaching a steady state ta=perature lower than predicted.

ii The diesel .was stopped at 15 hours1.736111e-4 days <br />0.00417 hours <br />2.480159e-5 weeks <br />5.7075e-6 months <br /> into the test since it was evident at l' that point that ampacity derating was required regardless of the final steady state temperature.

Working backwards 'from a 33'T temperature rise after 15 hours1.736111e-4 days <br />0.00417 hours <br />2.480159e-5 weeks <br />5.7075e-6 months <br /> at 83 percent load current i= plies a 75'T (42'C) rise at rated load (479A) after 15 I hours. Adding the 42'C rise to the 40'C ambient results in a total internal tray temperature of 82*C. According to the industry standard (su==arined ,in Table 7), this cable should be derated to 40 percent of its original a=pacity after 15 hours1.736111e-4 days <br />0.00417 hours <br />2.480159e-5 weeks <br />5.7075e-6 months <br /> and additional derating is required until the temperature stabilines. From Table 1, a 1000 MCM cable installed in tray with no allowance for undervoltage or service factors can carry 630

,j amps. , Forty percent of this is 252 amps; comparing this to.the required current of 479 amps indicates that this cable is undersized for this

! application.

l .

(..

a...

b .

5 4-5

h 4.4 Control Tray Test Results Three cable trays containing control cable were instrumented for the temperature survey. The trays were *AM-TAS, 9, and 10.

All three trays are heavily filled and are located near the relay room on elevation 715' in the auxiliary building.

Nine type "E" thermoccupies were* Installed to measure representative temperatures inside the cable bundles of the trays for three conditions.

1) cable tray unwrapped and without a cover, 2) cable tray unwrapped and

!- with a cover, 3) cable tray wrapped and with a cover. A thermocouple was ,

also installed to measure the ambient temperature in the general vicinity of the trays. All thermocouples were connected to a type "T" multipoint recorder installed on elevation 715' of the auxiliary buildf.ng. The instrumentation for these trays is lised in Table 9.

The resulting temperatures were then recorded from August 10, 1983 through

- Augus 24, 1983. Figure 3 is a sample of the strip chart record. During this period, all temperatures remained within 'a 5'T window. . Although I L specific points cannot be distinguished on rhic record, the window agrees favorably with the predicted temperature rise in trays 1AM-TA9 and 1AM-TA10 of 3.4'y.' .

l1

.t 4

e s

S l

e t

e 0

4 r

i

'l I

~

5.0 MAERIAL COMPARISON 5.1 General In addition to ampacity, the materials from three companies (B&V, TSI, and 3M) were ihvestigated froo a technical and economic standpoint. Most of the fire barrier systems have successfully passed the applicable ASTM-E119 fire testing and have received American Nuclear Insurer's (ANI) .and Underwriter Laboratory's (UL) approval. However, because the list of available qualified products is so limited, some additional materials from these manuf acturers have been included for comparison and future reference. Presently, these materials show every indication of passing ASTM-E119 and gaining the appropriate approvals. -

All of the systems investigated are of a passive nature, and all vary greatly in their method of fire protection. The B&W Kaowool system is a

. non-conductive barrier system which insulates the tray or conduit from the fire. The Kaowool is unaffected after the fire. The TSI system is a chemical compound that absorbs the heat of the fire as it sublimates, thus protecting the enclosed tray or conduit. The TSI product will be consumed j' during a fire. The 3M system is installed as a dense mat, and when exposed' to heat, expands and forms a char with a high thermal resistance (intumescadt). The 3M system must also be replaced after a fire. The ,

three-hour systems. presented are basically made by increasing the thickness s

~

of the specific companies' one-hour systems.  !

$I Each system presented has physical, technical, or economic advantages or

i. ! disadvantages. Therefore, factors such as cost, weight, ease of installation and repair, re-entry capability, and ampacity derating are ,

, presented in this section to more effectively evaluate each material's

~

overall capabi11ty. .

The system weights, material costs, and labor required to completely install each system are given in "per linear foot" quantities. Veight

- measurements are based on 30 in x 6 in tray sections, while labor costs are

  • all based on $20,00/ hour to facilitate economic comparison. Both of these measurements can be readily adjusted to reflect different tray sizes or labor rates. Manhour estimates are based on manufacturer and/or client i' data at other nuclear facilities and include, site prep and cleanup, and

, scaffold assembly / disassembly.

,. TSI, Inc manufactures the only three-hour fire barrier presently qualified for use on cable tray and conduit at nuclear facilitiest. Their system

- Thermo-Lag 330-1 with Stress Skin 330-69 has successfully passed the ASTM-E119. three-hour test and has also gained ANI approval.

3M is developing a new fire barrier material, 520R, which is presently in testing and has successfully passed the one-hour test. 3M feels very

. confident that this'same material will also pass the three-hour fire tests ,

and they ' are proceeding with this testing. Based on this information and the fact that 3M feels tha1; this new material should be qualified, approved, and in production by November 1933, the developmental information is included for comparison and future reference.

5-1 ilBRARY COPY

A su==ary of the economic, technical, .nd ampacity considerations for the three-hour barriers is presented in Table 11.

Three qualified =anuf acturers of one-hour rated fire barriers were investigated, B&W, TSI, and 3M. 3M is presently testing a new material, M20R, which will compete directly with its existing M20A system. B&W has also = edified their existing system by reco= mending the inclusion of an outer protective wrap Zetex-800. This alters their system cost and is included as a separate system for comparison. In general, the one-hour rated systems. and materials are the basis for other cultiple hour fire ratings offered by these respective companies. All barriers including the new 3M (M20R) system have passed ASTM-E119 fire testing and all except M20R have UL, ANI, and NRC approval for use on II class Electrical circuits as -

stipulated in 10CyR50 Appendix ~R section G.2.C.

A summary of the economic, technical, and a=pacity considerations for the one-hour barriers is presented in Table 12.

5.2 B&W Kaowool Ceramic Blanket Materials 5.2.1 General Kaowool is 'a ceramic blanket used as a passive reflective fire barrier.

This =aterial has successfully passed the ASTM-E119 fire test and is ANI',

UL, and NRC approved for use on II class electrical circuits.

Kaowool is subject to physical and liquid damage; therefore; 3&W now recc= mends the use of a protective wrapping.

5.2.2 Kaowool One-Hour Barrier .

Two 1 in wraps 'of Kaowool held in place by stainless steel bands are required for the one-hour rating. Based on manufacturer's installation data at other nuclear facilities., 5.25 hours2.893519e-4 days <br />0.00694 hours <br />4.133598e-5 weeks <br />9.5125e-6 months <br /> per linear foot is required for a co=plete installation or approximately $105.00 per linear foot.

Material costs for the basic Kaowool Blanket are approximately $21.00 per linear foot resulting in an estimated total cost of $126.00 per linear foot.

The installation of a one-hour Kaowool wrap results in a system weight of 9.5 lb per linear foot. Although this figure is relatively low, it should  !

still be considered in tray siesmic and leading analysis. SWEC cable derating calculations for this material installed on power trays indicates excessive derating in many trays (Table 6A). This. level of deration can be considered severe; and based on this data, special consideration should be given when selecting trays for protection with this material.

5.2.3 Kaowool One-Hour Barrier with Zetex 800

, The Kaowool ceramic blanket material is subject to physical abuse, abrading, and liquid (wicking) damage. Therefore, B&V now reco= mends

, wrapping basic Kaowool systems with a Zetex-800 E glass cloth blanket to protect against inadvertant liquid sprays and physical abuse. Zetex - 800 ,

has no fire protective capability but will withstand approximately 1000'F before disintegration. This material is supplied with or without alu=inum 5 -2

i i

5.3.2 Thermolag 330-1 One Hour-Barrier Prefab panels 1/2-in thick are used to meet the requirements of the one-hour fire rating system. Weight is approximately 21 lb per linear foot. The weight should be considered La sfesmic and tray loading l calculations. Pres ent data issued by the manufacturer states that cable l l derating for this one-hour system is approximately 12 percent. SWEC calculations for this material, based on manufacrarer's data, reflect a l

minimum derating of between 0 and 27 percent- (Table 63).

i Materials costs .are ap' proximately $186.00 per linear foot. Labor costs are ,

l estimated'to be 8.25 hours2.893519e-4 days <br />0.00694 hours <br />4.133598e-5 weeks <br />9.5125e-6 months <br /> per linear foot or $165.00 resulting La total l

, costs of $351.00 per foot. -

L 5.3.3 Ther=olag 330-1 Three-Hour Barrier Prefab panels one in thick are required to meet the requirements of a three-hour barrier.

- i

Installation figures based on manufacturer's data and installations at

... other nuclear facilities indicate approximately 8.25- hours per linear foot l 1s required 'to completely install this system, resulting,in labor charges of $165.00 per linear foot,. Material charges are approxi=ately $372.00 per

,. linear foot, resulting in an estimated total cost of $537.00 per linear' il foot.

l

[. Manufacturer's data gives the weight of an installed system to be il approxi=ately 42 lb per linear foot. Although the manufacturer's data also states that other facilities have not experienced difficulty La adding this ,

amount of additional loading to existing tray systems, consideration should

' be given to this area.

Present data issued by TSI Inc. states that cable derating 'for a three-hour system is in the 17 to 20 percent range. For the power cable trays .

identified to be protected at PINGP SWEC estimates, derating between 0 and 35 percent would be requi' red (Table 6C).

5.4 3M - M20 Materials 5.4.1 General M20 is an intumescent (heat expanding) passive man which can be wrapped around conduit and cable tray while being secured with stainless steel bands. When engulfed in flame, this material will expand in one direction 3 and cha..

5.4.2 M20A One-Hour Barrier

.. M20A is a ceramic intu=escent (heat expanding) neoprene rubber mat with an )

aluminum foil backing. Four 1/4-in wraps are needed to produce the l required one-hour fire rating. The entire wrap is secured to either -

conduit or cable tray with stainless steel bands. , l l

i I

i 5-4 l l

i i

i i

This syste= requires approximately 5.50 hours5.787037e-4 days <br />0.0139 hours <br />8.267196e-5 weeks <br />1.9025e-5 months <br /> per linear foot to completely install resulting in labor charges of approximately $110.00 per linear foot. Materials are approximately $162.00 per linear foot. This results in an estimated total cost of $272.00 per linear foot.

The resulting system weight is approxi=ately 16 lbs. per linear foot and should be considered in s'iesmic and tray loading calculations.

This material has successfully passed the ASTM-E119 one-hour fire test and has gained UL approval. ANI approval. is still pending and should be available by October 1983. Calculations by the manufacturer show derating of cables to be'in the 34 to 38 percent range. Alternate calculations by S*n,C based on manufacturer's data show cable minimum derating from 0 to 31 ~

percent (Table 6D).

5.4.3 M20R One-Hour Barrier M20R is an intumescent (heat expanding) passive material produced in 1/4-in rubber mats with aluminum foil backing. Three. wraps are anticipated to produce the one-hour racing: This material is presently still in testing and is presented here for comparison and future reference.

1 This new material is expected to be priced similar to the. M20A mat. . 1 However, because only thre'e wraps will be required, the following reduced l

, charges are projected: labor, 5.40 hours4.62963e-4 days <br />0.0111 hours <br />6.613757e-5 weeks <br />1.522e-5 months <br /> per linear foot or $108.00 per linear foot; material esti=ated at $122.00 per linear foot, bringing the  ;

esti=ated total cost to $230.00 per linear foot. This projects a moderate

~

economic savings over the M20A material.

This material has presently passed the ASTM-E119 ene-hour fire rating. l Certification, ANI and UL approval, and production are anticipated by November 1983..

The estihated system weight of 15 lb per linear foot should be considered I in siesmic and tray leading calculations. SWEC estimates cable derating' between 0 and 26 percent -(Table 6E) .

5.4.4 M20R Three-Hour Barrier M20R is an intuscant (heat expanding) passive material produced in 1/4 in rubber mars with aluninum foil backing. Six wraps are anticipated to produce the three-hour rating. ' Itis material is presently still in testing l and is referenced here for c:.mparison and future reference.., l This new material is expected to be priced similar to the (M20A) mat '

presently used in the 3M one-hour rated system. Due to six. wraps of material being required a projected installation time of 7.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> per i linear foot or $150.00 per linear foot is anticipated. Material costs are

! esti=ated at $243.00 per linear foot. This results in an estimated total cost of $393.00 per linear foot.

l l

5 -5 l

4  ?

Six 1/4-in wraps result in an estimated system weight of 30 lb per linear

. foot. Consideration should be given when adding this level of loading to existing tray. Present data calculated by 3F. indicates cable derating will  ;

~

be in the 35 to 40 percent range, which is consistent with their presently -

available ti20A' mat. The' study confirms these derating estimates. For the trays to be covered at PINGp, S'EC estimates. minimum deratings between 0 and 32 percent (Table 67), -

4 4

0 f

9 L .

l I. .

I

.g

$o .' .

s l

8'.

'l 4

, 1

'.} >

I l

~

I 5 -6 .

4

6.0 CONCLUSION

S & RECOMMENDATIONS i i

The study indicates that for =ost cable trays identified to be provided hith an Appendix R fire barrier, the ampacity of the enclosed cables will be substantially affected. The degree of arpacity derating required is dependent on the fire barrier material, the heat load generated within the l

fire barrier, and the external surf ace area of the fire barriers.

l ror the various materials examined, the insulating fire barrier materials such as 3&W Kaowool require the greatest ampacity derating f actors for nor=al operation. The state or phase change materials such as the 3M intumescent barrier or the TSI subliming barrier require less derating than the insulating type. However, in many cases, the predicted cable derating ,

for any of the materials considered exceeds the available design margin of the existing cables.

Cables that are not seriously affected by the addition of a fire barrier are those cables that were sized and selected on the basis of minimum requirements for mechanical integrity rather than on the basis minimum a=pacity requirements. The study and associated test program also indicated that the time constants involved in reaching a steady state temperature ara quite long (18 to 30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br />), resulting in little or no l

derating for cables serving low duty factor loads such as motor-operated  !

valves. In general, cables that may be seriously affected are cables serving large loads that are required to operate continously for extended periods of ti=e.

~

l The basis of the derating factors determined La this study is a relatively si=ple heat transfer model that predicts the temperature rise across the fire barrier. This temperature rise is then added to the design ambient  !

temperature of the environment to determine & new ambient temperature to i which the cable is exposed. The cable is then derated is accordance with industry standards for the new a=bient teinperature.

The industh standards for sizing (ampacity) of power and control cables do not specifically address use of cables in wrapped trays. The methods used in this study attempt to reduce.the use of cables under these conditions to a point where the industry standards can be applied. Prior to proceeding, SWEC recommends that 'the cable manufacturers used at PINGP be contacted and asked for their input to this particular application.

Specific derating factors for each cable affected are not determined in this study, but derating factors for various tray sections with the different fire barrier systems are addressed. Once the fire barrier system for each tray section has been determined, then individual cable derating will be accomplished by applying the derating factor associated with the worst case tray through which the cable is routed (highest temperature rise) to the ampacity for the specific cable.

The study indicates that the most cost-efficient means of conformance with Appendix R =ay be an installation combining several fire barrier ,

materials. yer example, a 3&W Kaowool fire barrier could be installed on most control trays and some power trays that contain oversired or low-duty 6-1

factor cables. A state change material such as TSI thermo-lag or 3M M20 Mac could then be installed on the remaining trays. This study-indicates that some of the cables installed in the remaining trays will still require derating beyond the available design margin of the cable.

Since most of the cables and trays under consideration service safety-related equipment, a service life for these cables of less than 40 years may be realistic. The cable manufacturers may also be consulted regarding a higher operating temperature for a shorter service life.

Other alternatives to' prevent the potential problem include rerouting selected cables or adding parallel feeders to selected loads to reduce the ampacity loading in the problem cables. Investigation of actual motor full -

load amperes versus nameplate full load amperes may also result in additional ampacity margin for problem cables.

, It should be noted.that besides_the initial heat generation and ampacity derating calculations performed before the fire barrier installation, every time a'new cable is added to the tray, the cal'cuations should be redone to determine the effect of the' cable additi'en.

In addition; SWEC recommends that the design loading and seismid analysis of'the affected cable tray, systems should be re-evaluated'regardless of the

e 0

e 4

  • h g

a 6

4 6-2

^

i l

l REFERENCES l

1. IPCEA* S-135-1966 (also TEEE S-135), Power Cable Ampacities for Copper and Aluminum Conductors
2. Ashrae Fundamentals - 1977
3. Prairie Island Nuclear Generating Station Electric Motor Lead List dated February 10, 1983. -

4 IPCEA* P-54-440-1979 (also NEMA WC-51), Ampacities for Cables in Open-Top Cable Trays -

  • I?CEA (Insulated Power Cable Engineers Association) has recently changed their name to ICEA( Insulated Cable Engineers Association) f'.

e e

4 e 4

+

9 s

e 4

1

- 4 l

l 6-2 l

i TADLE 2 WRAPPED CADLE TRAY llEAT TRAliSIER COEfflCIENTS UxA for UxA for UxA for OxA for UxA for UWA for 3H DLW TSI TSI' 3H 3M H20R Thermo. Lag Thermo Lag H20A H20R Knowool Threp-flour One-Ilou r One-Itour ihree-stour One-blour One-ilour (U=.2232) (U=.271) (U=.243) (U=.283) (U=.24)

(U=.05532) WATIS/C WATTS /C WATTS /C WATTS /C TRAY AREA (A) sort WATIS/C WAT I S/C PER LIN FT PER LIN FT PER LlH FT PER LlH FT PER LIN FT PER LIN FT SIZE (IH) PER LlH FT gLJRAY

.33 .41 36 .42 .36 6 1.5 08 2 .11 .45 .54 * .48 .57 .46 9 ,

.14 .56 .68 .60 .71 .6 12 2.5

.78 .95 .85 .99 .84 18 3.5 .19 1.00 1.22 1.09 1.27 1.08 24 4.5 .25 1.23 -

1.49 1.34 i.56 1.32 30 5.5 .30 e

9 5341f m

G I

_ _ _ _ _ ____.__._____..___ _ _ _ ___._____ __ _ . . _ ~.. .. - - , _ _ . . _ _ . . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . . _ . _ . _ _ _ _ _

L b

~

. r TABLE 11 TilREE-Il0Un FIRE DARRIER

SUMMARY

EST. TlHE PER Lill. FT. EST. TOTAL COHNENTS COMPANY PRODUCT TYPE APPROVAL HAT COST WEICiti LDS. COST

$/fi. LB/fT. lHSTALLATION LABOR COST EST.

ilRS/fT. 8 $20,00/IIR. S/FT.

.' I TSI inc. Ilia rmo-La g . ANI & $372.00 82 4

8.25 $165.00 $53.7.00 1) Fabrication sliop needed 330-1 & HRC (at *

2) Installers .

Strosh Skin some Huolear recommended I 330-69 . Stations) 3) Delivery &

(Subliming)

  • scliedule pro- ,

Prefab Panels

  • blems Ilhely.

8e) Very liaavy .,

51 Ampacity Dar-

' ating per study O to 35 pe rcen t H20R Still In $283.00 30 7.50 $150.00 $393.00 1) Not available 3H' usit l l Nov. 83 (Intumescent) Teatlog 2) Speculative Mat Wrap on passing 3ll11 Lo s t s .

3) lluavy
4) Data based on r

- Mfg. projec-

. tions

5) Ampacity Dor-ating per .,

3 steady 0 to 32 percent .;

.I l

e i

~

. i 1

i ,

-m_.__ _ _ _ _ _ _ _ _ _ __ _ _ . _ _ _ _ . _ _ . . _ , _ . . - _ _ . . _ . - - - . _ , . . _ . _ _ . . _ , _ . _ - . _ ._._ .- _. - -

- - " ~ -

TABLE 12 OHE-ilOUR flRE DARRIER

SUMMARY

EST. TlHE PER LlH. IT. EST. TOTAL COMMENTS COMPANY PRODUCT TYPE APPROVAL HAT COST WEIGitT

$/fT. LB/fT. lHSTALLATION LADon cosi EST. COST 16RS/ f T . 0 $20.00/lin. $/fr.

$186.00 21 8.25 S165.00 $351.00 1) Fabricatlun TSI inc. Thermo-Lag. AHI & shop needed 330-1 with HRC (at 2) installers Stress Skin some Huolear recommended 330-69 Stations) 3) Delivory &

(Subliming)

  • scheduto pro-Prerab Panels bloms a llte ly.

8) 4 Hed. Ileavy

5) liepai r material (liquid) 6 m0 life
6) Ampacity Der-ating per study 0 to 27 percent 16 5.50 8110.00 $2'12.00 t ) 4taqui res AH4 3H H20A ANI $162.00 - & 14ttC approva 1 (intumascent) Pending on -
2) alow prottuct Nat Wrap Wrap Design .

may be available in Nov. 83

3) Hud. Ileavy 1),Ampacity 4 Dar-sting per study 0 to 31 percent H20R Still in $122.00 15 5. 8:0

$108.00 $230.00 1) Not available 3H - sta t i i Nov. 83 (intumescent) testing ' 2) Should pass Nat Wrap I br. Last

3) Hod. Iloavy
1) Data based on 4

Hig.

projections

5) Ampacity par-eting per

. study 0 to 21 percent Contingtod next page a

d 4

T'ABLE 12 (cont.)

ONE-il0UR flRE BARRIER SUHHARY HAT COST HEIcili EST. T1HE PER LIN. FT. EST. TOTAt_ COHHENIS COMPAHV PitODUCT TYPE APPROVAL LB/fT. lHSTALLATION LABOR COST EST. COST

$/fT.

  • 8 $20,00/ttR. $/FT.

liRS/ F T . ,

B&W .Maowool ANI & S21.00 9.5 5.25 S105 00 $136.00 1) Baliriov reconuound s

( ce ramic NitC (at Zetex coat blanket) some Nuclear to protect Wrap _

Stations) a D u i tis t 10-V/o Zetex, -

advertent ."

damage.

2) Medium
  • 3 ) Ampa c i t y De r-
  • ating per study 0 to 4

100%

B&W Knowool Same $47.00 10.5 5.35 S107.00 $154.00 - 1) Requires ANI k HHC approval (ceranio 2) New product blanket) may be wrap witti Zetex coat "

available In Nov. 83

3) Mod.
4) Ampacity par-ating per study O*to 100%

i t.

531s t r ,

T g e

~

O 1

1 i -

_ _ . _ _ . _ _ _ . . _ . . _ _ . _ _ _ ___ _ _ _ ___ __.___. . . . . . ~ . _ _ - . . . . . . . _ . - _ _ - . _ . _ _ _ _ . . . _ _ . - .

LIST OF FIGURES Figure # Title e

1 Proposed B&W Kaowool Tray Cover 2 Sa. ple of Charging Pump Tray Test Strip Chart, Record .

3 Sample of Control Tray Test Strip Chart record 4

b- . .

'I .

.6

'i 4

1

! 8 .'

e I,

4 4

4 5360F l

. . . .. . .. . . -_ . -.. - . . . .. . ~ .

l 4

6

= r i

f l

t CARBON STEEL BANDS MARINITE BOARD  :

_+

~~ ~ ~

-~

~ ~

5 ~.~.~ -(

c I

( )h ( _~.1" ._ *Ng,[_ _' [e

__ _ _ . _ _ _ ~ -

- % . __ - s- m 3, ,1 ,

m-v-_

u <-

- - - .l 1 -

lI 1l l

T:-~ m.=3/. d -;_ f_ - :--:

-2_:. g_": _- . y.;-: r uf, . .: _s_ _::

15.. 7 .-r -:- _:. -?~.-2 ~5"" :': -'~I5:'. _ _-M--J }If {(  :

i

^

l I I II lf l} i l

4 .

- (i))I{; }lI (Il  ;

1)jltl- -~ s -

t

__- +u _ _ __._ ~ ._ ,_

~__. _- ___.. _ _ _

g t f)-

.m

( \ o_

l _ _. -  :

._. _-\__,J j .} i 3 - w ._- _. r _ _.

~

BLES .

LADDER RUNG l B & W KAOWOOL BLANKET. CA8LE TRAY WRAP 2 ONE INCH THICKNESSES .

1*

1 I

i.

l+

)

FIGURE 1 PROPOSED B &'W KAOWOOL TRAY COVER O

i

__.,m _

  • . a I  ; t i  ;

t > 1  ; i l.

i >

j i

i i

i i I'd i i':i.I 1

! i i

j l

i i

l 1 l o i i i. 1 i '

PAGE 10F 2

'l osa, p,I j [- FIGURE 2 l i l 5o

, 1 o TOOO l

'.t]. SAMPt.E OF CHARGING PUMP TRAY

l l,.i . W ,

TEST STRIP CHART RECORD l' ..

I i

i l'

l'i'!i i

). ! 'I it i  ! I'lil'l l'l _

l  ! i i

c. . ,

i -

i

'i

;' , e i ,
e i

i,  ; , .

l

!' ' l i

'j i'

i ii" i  !

i

.: l' l '

l

4 ' '

1 i i .' ' ' '

l 0 '

0000*i *

~

's  ;

.e

! t j ,

8

} }

l';  :

i i I j i lI  ;- .

[ i  :

I .

i n  ! +

, i -
i. i l I -
; ,; ! :ie, i  : i . . . . .

).

i if .! '

I l l  ! . j i l i '

l.

' I  ! I i E !J ~i N I I !I I  ! l  ! i i

>I,lr ia800 ' -

. W i, !,

i i j i i i i- t-  ;

i- i i o 4 i , ,

l

i i i 1 j
  • i i '

l

'  ! 3  ;  !- l, .

! , m. -  !.

i j r ,'  ! ij M l). .

l

4 i

l l

'.i..

I I I I 0700il ju l. i  ; l I i

i i i i

i n

il, '! .

j i

i i

Ii 4

i l ,

~

j ,

li

,j l 1, I  : i .

i.  ;

r  !

I 1 J,. i E ,

j

, i i l .!

  • i

! l I- i l

'

  • i l- .l

' '[  ! i 1 'e l. . _

0600 ,

2

i

- i C 1S RO, rd E. L' .

i -

!, D E G '. F. !. l j i  ;;, 'lj 5

  • j .  ! ',  : 2 13oo!

i t .

, . ..c ot , li t i.

i i 2co >

25 o I so ,ti tso

o. j .I-l' i -l t  ;  ; . . . > .

1 t

i . . . aj .

. + .  ; i ,; .

i  ;

6 .

se.

I ' i 1 ' '

'! i i'

i 0500

' l

! S{l;I'i '

Ab l  !  ! I i '

i i

, i i

l i .

it .i

' . .I i

< t  !  ! l l 4 ,'. i ' '  !

. I 2

i  !

i  ; a ,

ii . . '

I:*

l 4, 4t g- I

, a s{

'{

I d '

fU -

,I D S/ht/S3 i :612 W1;  !

i i

I

. i i

i O'400; '

! O!

3  :

!  ! ,b .4 I3 A- d I ,

I l jf) It'  ! I

/!

l;,.h6 78 7 h iM '  ! j i.

i

.  ;. l i -  !. il l ll

, i i. i. .i:Dn .h\

. i i . .

?

i i!  ; j i  !

l3:i i i  !, i 1

. . 4 i i j i l  ; i j i , ,

i i ,9 -

'I l i

(,

s

,03001  ! ' l I; L .

M I 8 i ji i ,

t j < . i .* ,

f t i i l j

' I l  :!

l

$I 5 ft t j

  • h l l l

I  !! :

L u

a ,

i

' ' t .. .

, l

' li i i

! l i i -

}

i i lj r.;i -

e .i

.f' 1 I i l l i

e 1

l t  : i i '

l- I  : i tz --

.) j I I i It j i 8

'O 1!

' i y',.02001  !

5 l i :

it . -

I -

l

' i l l l.

3 i .

i, . # j ., I I .

!. i . 1 . . .

I l h  !

! l l ,

it k 2,.

i 1

l l  ! j f .{'

) .5 :l

, r

1 I,' ,

i '.l I

,i CHROMEL

i 8 ;
! -

3 :  ; 1 i i

li * ' l 1

l

. . l>

3o0 e

. D E G [ F.: :9 20ol '  :

- ,. i e' I

4 10.d; 4

! 15 0 l

25o -

o 0100' I i l 50  :  :?

!i I. l 5h: 1,- .

1 s' ,'

.i . II. ., T i, , ;l:.

i l . ,

i. i i

l.

l.

i e

5.

l j i:j 'N 1 >.

l * {

q

f;* .
i. I I i .

(( ,

', i ,  !

.i,  ;-

  • i ;:

4  ; '

l.

j

'i E I -l m m i \ b7  ! !, ( , ,

~ _ . . _ _ _

- . i . .

t l i,

'i l  : . -1

,l> >

l l l i. .  : l l ' -

i

.i t.

l I l' } ,

1t . s1 i

. I

_L1 ! l

[ [

PAGE 2 0F :

i  :

'; f

. .- 'i FIGURE 2 2100 ll1' '

i SAMPt.E OF CHARGING PtJMP TRAY '

. li.: .[g TEST STRIP CHART RECORD  ;

[I  !

t l l -

2 i i;' i !j I l i

ll! ' N ilj,lilijj}!\!\ijilil'l '

l' i

!! 1 i 4 i' i i l

.iil

i  ! 4 'i I ;j!-  !  ! 'l ,

l I, i

' I I i

.I i s e i  ; i l il  !  ! l 1 i l .i

i. .

.g :g000! l 1: -

i i . i

  • l
i i . .

i 6 l. l g  : i l i

i i i k. y: 8 5 l i l  !. ,

e- '

1 , > j- '  ! l c ,

i  ; il l D. f, I i l  !

i1 I t  !

l CHROMEL<

'5 e i i.  :

I

, i i iii

=.l,ilDEG.

E . F. l i l J

l l 3001'I i i 15 0 200 250 .

011g00 1 5.0 -1Q 0 f

! l i "6 E.i l3 l.

i  ;

i l l -

l  !  !- I, i ,

= .

i .

s 1

I  ; i l, l .

l g i . .  ; i ,

l h! I t . .I j

i

( 5u i. ,

i i.

i i,

i e

I i

lj'g si 'n i 8 it l

i i

'l i

l l

1 l

i i'

l i

= , j I I

l 80D!  ! , l f h ,

i .

l i

' i i i l ,' 5 i

l

-  ! II- l ) -l l '- -

8  !  ! a '  !

i e i.  ! i j i i i

,/ l.  !  ! -I. ,

)i

i. t. , 1 i

,I a, , i j l, i l .

t0, i jl i 4' 8' / m ell

't l gra a 8/M.!'

k '  ;  : { l  ! i

".{i ! ii

! . I I '!. -

'!, '-  ! i i i< l I s

l 1700t I  ! - > S

  1. ,i
til Q,9.

i l Tof 76 j $ PEE:f)

I , j

! ,;'.! 9' i l l l  !  !  !

i l l  !

G i  ; i  ! }. l.,

l l. l l . t 4

i i i l 8 I.

i  ! ' ' I

. i  ! ;I

' l j  : l.

i 1 h

t.

'sc  :

I l

l* l I! !

l

  • I I ,

t

! { i I:! .

l I

' i ' *

'I  !

l D .'"u.' . ' 1600 i *  ; i i

; I , . .

l

'b ij  ! i '

U i t  ! ~

t I i L  ! j l 1 i i i l'

' j- l-

'l I,  !

l

'. j l l ,  !

i  !  ! i l l i  !  ;  ! l

, e '

'! k I

l' i , l li

' U; '

l .

i l

].

-l' I

t .!i I

i i

I 1

i-i i

i i i

I

'! i M O O'

'. i l  :

i 1.

( l I i i ei y" li .

! i i i

! .' CH RO Mi E!.

DEG.F.  :  ; I,  ! ') ,!

'.' i 1

.l .

i i 13001 i

i .

i i:

30 i- t 15 0 ' 200 250 t

O l' 50 I I

- '  ! k j i -

i  :  ; ,

i  ; ,

fI i  ?

i i i  !

3 j  ! '

I t .

l- *  ! i

. -i' '  ! ' '

i l 1400  ! I

'  ; i i ii (  ! q l j  !

i

!  ! i

!  ; i- l I i ,

e I  ! } l i I ,

, f. i  ! l ,

i  ; i i.

' i l l .! l f

' ~

j

, f l ij l

l  !

{

l

: i ,

I i -

i. I c  :

i

,,ggot . .

  • .i.

<4 . ,

u

' i

1 i . I 1 l ,
  • lj . I - . i

' s ,

l

. N  !-

l t .

l1  !  ! l ,

i (E;  !

1 . l l! ' >  ! , l  ;  ; ,

, I l

' I 3..!,j!. l ',  !. i.

'. !,li.i

" :!! . i, i. i  !, i i .

. i i t . ', -

l s.

[

l

- l ', iI l li

. l-e

, I

.ig mi .

I i -

i - i .

l l i '

=

! i i i .

i .

i ,. , -

j .  : , 4 i

iI l

. i .  ! . j  ! i j  ; , ,

  • 1,i t, .

i I i ,

I 1 i 1- t. f  !  ! [ ,

!.[.

i . . .

l .

~1., t i . . .

[ i i.

i ,h oo:

p ,

, i, i - I

d

  • FIGURE 3 l 1AAFLE OF CONTROL TRAY
E TEST STRIP CHART RECORD l l .

100* 150* 200* '250' 300* 250- l

{d

'g 60* F

=

8

' b IllUllllllllllll lllllllll llllllllllll ll lI!!!llll !!lllllI llllllI!l '

s F . ,,

Ii e

!l

~ 0 200 400 600 800 1000 1200 1400 5

0

=

. l g .t l  !

I i

i F .

9 '-  ! <

m '

i 3 0 -

200 400 600 800i 1000 1200 1400 1

.c m

$ ,h.

t  !,

d  !

i ' Ev i l

l 15 il l

'4  :

g __

.
!\

e '

. t

!l E F 5  ; '

~ 0 200 400 S00 800 1000 1200 1400 1 S I '

i . ,

!.g i.

I l ,

1 I l  !

! l l l

l 1 .1 l I li llll ll!! c .i%11 l  !. l i

li i

T>. . -l4 8 e i!iI c' L ;*[, l . l ,e i i l i l l l i l i l l l l l l.11 l i l l l l l 111 l i illll?II?'IP.R!lli lllllll11 illlll!!illi;!!!il

LIST OF TABLES . _ . . . .

Table # Title .

1 Cable A=pacity for Copper Cables Installed in Accordance with ICEA P.-46-426 .

~' '

2 Wrapped Cable Tray Heat Transfer Coefficients l 3 Conductor and Cable Resistance at PINGP r

s

! . 4 .Su=ma:dy of Affected Power Cables

~

S. Detailed tabulation for Power Trays Wrapped with Kaowool 6A Su= mary of Power Tray Temperature Rises for One-Hour B&W Kaowool i .,

P 63 Su= mary of Power Tray Temperature Rises for One-Hour TSI l

Thermo-lag a

l 6C Su= mary of Power Tray Temperature Ris es for' Three-Hour TSI Ther=o-lag

  • 6D Su==ary of Power" Tray Te=perature Rises for One-Hour 3M M20A *
. 6E Su= mary of Power Tray Temperature Rises for One-Hour 3M M20R

\1 i 67 Su= mary of Power Tray Temperature Rises for Three-Hour 3M M20R 7 5djacity Derating Schedule Per IPCEA P-46-426 (1975) 8 Thermoccuple List for Temperature Survey EL 695 if '9 Thermocouple List for. Temperature. Survey El 715 10 Thermoccuple List for Temperature Survey Relay Room

! i-

.r . 11 Three-Hour Fire Barrier Su= mary i

12 One-Hour Fire Barrier Summary l e

! 9 s

4

  • e l'

1

- e,

- l L - TABLE 1 cAsu! AasrAcrTv Fon corren cAstas

! . INSTALLED IN ACCORDANCE WITH ICEA N ..

(B) (C)

,. CABLE NSP (A) (A)+.82 ( B )

  • 1*. 25 4 SIZE VOLTS TYPE AMPS' AMPS AMPS )

3/C-#10 600 28 -

3/C-#8 600 27 59 48 39 3/C-56 5000 7 93 76 61 3/C-#4 600 31 104 85 63 3/C-#2 600 24 138 113 91 3/C-#2 ~5000 -

6 '159 130 104 .

l  ;

l 3/C-#1/0 600 23,221 186 153 122 3/C-#4/0 600 22 287 235 ' 188 ,

i* i.

I 3/C-#4/0 5000 5- 321 263 211 3/C-350

  • 600 21 394 323 258 ,

3/C-500 '

600 20, 487 399 319 r

3/C-750 5000 2 669 549 439 l

3/C-1000 5000 1 768 630 504 .

I (A) AMPS _AT 90C CONDUCTOR TEMP., 40C AMBIENT-TEMP., 3/C-COPPER CABLE ISOLATED IN AIR. .

~

(B) AMPS FOR THE-SAME CONDITIONS AS (A) ADJUSTED FOR INSTA L-

. LATION ON LADDER SUPPORTS, WITH 1/4 TO 1 DIAMETER SPACING, AND NOT MORE THAN 6 CABLES HORIZONTALLY.

t (C) AMPS FOR THE SAME CONDITIONS AS ( A) & (B) ADJUSTED FOR  :

LOAD SERVICE FACTOR AND UNDER VOLTAGE OPERATION (107.'

BELOW NAMEPLATE). THIS COLUMN CAN BE COMPARED WITH. THE LOADS NAMEPLATE FULL LOAD CURRENT AT RATED VOLTAGE. ,

l NOTE: SHOht vinLuIT CURRENT LIMITS AND VOLTAGE DROP DURING  ;

NORMAL OPERATION AND STARTING SHOULD ALSO BE CONSIDERED '

!..' IN SIZING A SPECIFIC CABLE. l l

l .. .. ,

l .

a ., w > a , , ..an....:. ..-e .=a - a . + ,

t TABLE 3 '

CONOUCTOft AND CAST.E RESISANCE AT P1NGP - ,

AC CABLES '

! i 3

(6) (S)  !

- (5) COND COND . (9)

(4) COND . OHMS /FT (7) AC OHMS CHMS /.

TYPE raELE CHMS/FT. 890C . AC/DC /FT890C. 3PH-FT l CABLE S'I ZE 825C (5) *1. 25 RATIO (6)+(7) 3*(7)

)

29 3/C-#10 .00104 .0013 1.00 .0013 .0039 27 - 3/C-#8 .000654 .0009175: 1.00 .0009175 .0024525 i 7 3/C-#6 .00041 .0005125 '1.00. 0005125 .0015375

. s

! 31 3/C-#4 .000259 3.23SE-4 1.00 3.23SE-4 9.713E-4 6.24 ~' f6-#2 .000162 .0002005 1.01 2.645E-4 6.136E-4 .

23,'221 3/C-#1/0 .000102 .0001275 1.02 1.301E-4 3.902E-4 i F 5,22 3/C-#4/0 .0000509 6'363E-5 1.04.6.617E-5 1.985E-4 -!

1 21 5C-350 .0000309 .0000385 1.09 4.158E-5 1.247E-4 20 ~,.dr :500 .0000216 .000027 1.13 3.051E-5 9.153E-5 2 O/C-750 .0000144 .000018 1.21 2.179E-5 6.534E-5 l

] . _. . _

l 1 3/C-1000 .0000109 .0000135 1.29 1.72SE-5 5.184E-5 DC CABLES ,

[ (5) . (6) (9) , -

(4) COND COND OHMS / l ll l TYPE. ^

CABLE . OHMS /FT. . OHMS /FT LIN-FT '

i j CABLE SIZE @25C 090C 2*(6) l t

^

j 44 2/C-10 .00104 .0013 . 0026 l

.00041 .0005125' .001025 49 2/C-6

.p ._

t

TABLE 4 PAGE 1 OF 3 e-a RY OF AFFECTED PCWER CABL.ES i

! CABLE ID SERVICE . TYPE AMP OHMS /FT W/FT 1DCB-2 DSL GEN 49 30 .001025 .9225000 1DCB-3 SWGR 120 49 30 .001025 .9225000 1DCB-31 CONT. DC 44 15 .0026 .5850000 l IHVB-1 CLG.FA'NS 29 3 .0039 .0351000.  !

1HVB-9 CLG. FANS 29 3 .0039 .0351000 -

l 1HVB-13 CLG. FANS 29 8 .0039 .2496000 1HVB-17 CLG. FANS 29 2.5 .0039 .0243750

- 1HVB-74 CLG. FANS 29 2.5 .0039 .0243750 1HVB-36 CLG. FANS 28 2.5 .0039 .0243750 1HVB-90 CLG. FANS 29 2.5 .003? .0243750 1Ki-3 MV-32061 29 0 .0039 0 l 1K1-4 MV-32120 '29 0 .0039 0 1K1-11 MV-32115 29 0 .0039 0

! 1K1-14 MV-32060 29 0 .0039 0 1K1-21 CHARG PP ~

23 134 3.902E-4 7.005533 h 1K1-26 MV-32322 29 0 .0039 0 1K1-33 MV-32266 29 0 .0039 0 1K2-1 MCC 1KA2 24 20 6.136E-4 .2454300 1K2-2 RHR SMP P 23 .3. 8 .0039 .056 160 1K2-4 MV-32085 28 0 .0039 0 1K2-5 MV-32084 29 0 .0039 v 1K2-6 CHARG PP 23 134 3.902E-4 7.005533 1K2-7 .CHARG PP 23 134 3.'902E-4 7.005533 1K2-8 MV-32146 29 0 .0039 0 1K2-9 MV.-32159 23 0 .0039 0 1K2-18 PNL 135 24- 15 6.136E-4 .1380544 1K2-20 MV-32267 29 0 .0039 0 1K2-22 MV-32115 23 0 .0039 0 1KA2-1 MV-32097 29 0 .0039 0 1KA2-2 MV-32099 29 0 .0039 0 1KA2-3 MV-32105 29 0 .0039 0 1KA2-4 MV-32102 23 0 .0039 0 1KA2-5 MV-32076 29 0 .0039. 0 1KAC-6 MV-32078 23 0 .0039 . 0 1KA2-7 MV-32121 29 'O .0039 0 1KA2-S MV-32201

  • MV-32203 29 0 .0039 0  !
- 1KAO-10 MV-320SO 29 0 .0039 0 1KA2-11 MV-32092 23 0 .0039 0 1KA2-12 MV-32207 29 0 .0039 0 1KA2-13 MV-32163 23 0 .0039 0 1KA2-15 MV-32040 23 0 .0039 0 ILA2-1 MV-32065 2S 0 .0039 0 ,

i 1LA2-2 MV-32234 23 0 .003? O I ILA2-3 MV-32072 29 0 .0039 0 I ILA2-4 MV-32250 29 0 .0039 0 l

l i

l l

l

TABLE 4 PAGE 2 0F 3

SUMMARY

OF AFFECTED POWER CABLE 3 1

CABLE ID SERVICE TYPE " AMP OHMS /FT W/F7  :

ILA2-9 MV-3206S 29 0 .0039 0 1 1LA2-10 MV-32069 29 0 .0039 0  ;

1LA2-11 MV-32231 28 0 .0039 0 1LA2-12 MV-321'96 28 0 .0039 0 1LA2-13 MV-32135 28 0 .0039 0 ,

ILA2-14 MV-32141 23 0 .0039 0 1LA2-21 MV-32243 28 0 .0039 0 1LA2-27 MV-32047 29 0 .0039 0 1L2-4 BA XFR PP 29 13 .0039 1.263600

, IL2-5 BA XFR PP 29 0 .0039 0 1L2-14 MV-32074 ~

28 0 .0039 0 1L2-16 WST GAS C 27 30 .0024525 2.207250 1L2-20 MV-32199 28 0 .0039 0 1M2-7 MV-32273 23 0 .0039 ,

0 1M2-9 MV-32276 - 28 0 .0039 0 ,

1X2-1 FAN COIL 23 35 3.902E-4 2.818934 1X2-2 FAN COIL 23 S5 3.902E-4 2.818834 122-1 MCC 1A2 2 .390 6.534E-5 9.933214 12~-1 MCC' 1K2 20 277 9.153E-5 7.023005 123-2 MCC iT2 20 65 9.153E-5 .3367142 126-1 MCC 1L2 21 250 1.247E-4 7.796250 126-2 MCC'1M2 21 85.1.247E-4 .9012465 t . 126-3 MCC iMA 22 200 1.985E-4 7.940400 127-1 MCC 1X2 21 130 1.247E-4 4.041576 123-1 C RM CHLR 21 192 1.247E-4 4.598415 164001-1 CS PUMP .

7' 32.3 *.0015375 1.654104 16402-1 US 120 5 140 1.985E-4 3.590796 16403-1 CC PUMP- 7 32.2 .0015375 1.594141 16404-1 RHR, PUMP 7 25 .0015375 .9609375 16405-1 SI PUMP 6 100 6.136E-4 6.13575 2DCB-7 PNL 261 44 15 .0026 .5850000 j 2DCB-12 CONT DC 44 15 .0026 .5850000 2DCB-16 US 220 DC 49 30 .001025 .9225000 2DCB-34 2-SOV'S 44 4 .0.026 .04160'00 2HVB-2 CLG. FANS 29 2.5 .0039 .0243750

l. 2HVB-10, CLG. FANS 29 3 .0039 .035.1000 l 2HVB-18 CLG. FANS 29 3 .0039 .0351000 l 2HVB-23 CLG. FANS 29 2.5 .0039 .0243750 j' 2HVB-33 CLG. FANS . OS 2.5 .0039 .024 750 j CHVB-39 CLG. FANS 29 8 .0039 .2496000 2KA2-3 MV ~2212 23 0 .0039 0 .

2KA2-8 MV-32116 23 0 .0039 0

'i.

2KA2-9 MV-32109 29 0 .0039 0 -

CKA2-10 MV-32111 28 0 .0039 0

, 2KA2-13 MV-32185 23 0 .0039 0 l 3 2KA2-14 MV-32183 23 0 .0039 0 2KA2-15 MV-32191 23 0 .0039 0 I 2KA2-l's MV ~2204 29 0 .0039 0 1

f l J 0 9300 0 92 68023-VM 6-OLI 0034542 4-E631 6 02 42 2AL1 CCM 1-2L1 401456 1 5evs100 5 23 7 PMUP SC 1-90452 l.

  • 22499 11 5-E491 5 974 1 DEEF LSD 1-60452 57531 6 4-E631 6 001 6 PMUP IS 1-50452 5739069 5735100 52 7 PMUP RHR 1-40452 I 141495 1 5/am100 2 23 7 PMUP CC 1-30452  ! '

I 697098 3 4-E589 1 041 5 022 SU 1-20452 .'

4930'10 1 4-E742 1 09 12 2L2 CCM - 2-622 920935 5 5-E351 9 642 02 2K2 CCM 1-322 002166 3 5-E351 9 002 02 2A2 CCM 1-222 0

4-E209 3 0 122 LIOC NAF 9-2X2 0 4-E209 3 0 122 LIOC NAF 7-2X2  !

439819 2 4-E209 3 58 32 LIOC NAF 4-2X2 438918 2 4-E209 3 53 32 LIOC NAF 1-2X2 0 9300 0 32 59223-VM 21-2M2 1

1 0 9300 0 92 TNOC DYH 01-2M2 l 0 9300 0 82 77123-VM 92-2L2 0 9300 0 92 78323-VM 41-2L2 93 9300 01 32 RTH KT AB 8-2L2

  • 0 9300 0 82 PP RFX AB 7-2L2 006362 1 9300 81 32 PP RFX AB 6-2L2 0 9300 '

0 82 98123-VM 5-2L2 0 9300 0 82 72123-VM 3-2LO 0 9300 0 92 62123-VM 2-2L2 0 9300 0 82 47323-VM 1-2L2 -

0 -

9300 0 32 86123-VM 13-2AL2

  • 0 9300 0 82 94223-VM 61-2AL2 0 9300 0 82 36223-VM 11-2K2 '
  • 0 9300 0 S' '

oS123-VM 01-2K2 O

  • 9300 0 82 P PMS RHR 9-2K2 0034542 4-E631 6 02 42 2AK2 CCM S-2K2 0 9300 0 32 16123-VM 7-2K2  !

0 9300 0 92* 43323-VM 6-2K2 620410 9 4-E209 3 251 122 PP GRAHC 4-2K2 0 9300 0 82 71123-VM 2-2K2 0 9300 0 92 71123-VM 1-2K2 0 9300 0 82 95023-VM 62-2AK2 l 0 9300 0 82 15023-VH 52-2AK2 l

- 0 9300 0 A2 92023-VM 32-2AK2 l 0 9300 0 82 50223-VM 02-2AK2 0 9300 0 92 ,

90223-VM 31-2AK2 0 9300 0 82 18123-VM 71-2AK2 [

-- --- ---- -------- l

.TF/W TF/SMHO PMA EPYT ECIVRES DI ELBAC l l l l l

  • 3E.tSAC REWOP DETCEFFA FO YM =*

4 ELBAT 3 F0 3 EGAP l

l TABLE 5 PAGES OF09 l

[ DETAILED TA8ULAT10N FOR POWER TRAYS WRMPED We iet KACWOOL i

l 1

TRAY ID= 1AG-LA30 TRAY WID= 12 TRAY LEN= 36.5 TRY LOSS = .1334 5 l

'I CABLE ID SERVICE TYPE AMP OHMS /FT W/FT 1K1-3 MV-32061 29 0 .0039 0 i'

t iM1-4 MVM2120 29 0 .0039 0 3 1K1--11 MV-32115 2S O .0039 0 1K1-14 MV-32060 29 0 .0039 0  ;

I K i--21 CHARG PP 23 134 3.902E-4 7.0055~3

! IKi-26 MV-32322 28 0 .003e 0 -

1K1-33 MV-32266 29 0 0039. 0 l:-

l l .

l-

. t

=====u=======_-======================-----=================

TOT AMPS = 134 TOT W/FT= 7.005s04 DELTA T= 50.61902 ,

% .e t

TRAY ID= 1AG-LBL TRAY WID=.30 TRAY LEN= 7.5 .TRY LOSS = .30448

^

CABLE ID SERVICE TYPE AMP OHMS /FT W/FT

- _ _ ___ _ l i

1HVB-1 CLG. FANS- 29 3 .0039 .0351000 j

1HVB-9 CLG. FANS 2S 3 .0039 .0351000 -l 1HVB-13 CLG. FANS 29 8 .0039 .2496000 1 i

, 1HVB-74 CLG. FANS 28 2.5 .0039 .0243750 1HVB-86 CLG. FANS 29 2.5 .0039 .0243750

. 1HVB-90 CLG. FANS 28 2.5 .0039 .0243750 1KA2-7 MV-32121 29 0 .0039 0 1K2-1 . MCC 1KA2 24 20 6.136E-4 .2454300 1K2-2 RHR SMP P 28 3.S .0039 .0560160 1K2-4 MV-32005 29 0' .0039 0:

1K2-9 MV-32159 - 28 0 .0039 0 1K2-20 MV-32267 29 0 .0039 0 123-1 MCC 1K2 20 277 9.153E-5 7.023005 .

123-2 -

MCC iT2 20' 65 9.153E-5 .3867142 16404-1 RHR PUMP 7 25 .0015375 .9609375

==========================================================

TOT AMPS = 412.3 TOT W/FT= 9.06532S DELTA T= 29.77015

i l 1

l

, TABLE 5 PAca 2 op:s  !

j DETAll ED TA8ULATION FOR POWER TRAY 3 WRAPPED WITH KAOWoot j

TRA ID= 1AG-LB2 TRAY WID= 30 TRAY LEN= 11 TRY LOSS = .30448 i CABLE ID SERVICE TYPE AMP OHMS /FT W/FT 1HVB-1 CLG. FANS 29 3 .0039 .0351000 f

1HVB-9 CLG.FANC *S 3 .0039 .0351000' 1HVB-13 CLG. FANS 28 8. .0039 .2496000 '

1HVB-74 CLS. FANS 28 2.5 .0039 .0243750 1HVB-86 CLG. FANS 28 2.5 .0039 .0243750 29 1HVB-90 CLG. FANS 2.5 .0039 .0243750 1KA2-7 MV-32121 23 0 .0039 0*

1K2-1 MCC 1KA2 24 20 6.136E-4 .2454300 1K2-4 MV-32085 29 0 .0039 0 1K2-2 RHR SMP P 28 3.8 .0039 .0563160 1K2-9 MV-32159 29 0 .0039 0

!' 1K2-20 MV-32267 29 0 .0039 0 123-1 MCC 1K2 20 277 9.153E-5 7.023005 '

123-2 MCC 1T2 20 65 9.153E-5 .3867142

___=====================- ==_======================================

, TOT AMPS = 387.3 TOT W/FT= 8.104391 DELTA T= 26.61715 t' -

t*  :

TRAY ID= 1AG-LB3 TRAY WID= 30 TRAY LEN= 8 TRY LOSS = .30448 l

. CABLE ID SERVICE TYPE AMP OHMS /FT W/FT.

1HVB-17 CLG. FANS OS 2.5 .0039 .0243750 l

1KA2-7 MV-32121 29 0 .0039 0 ,

1K2-1 MCC 1KA2 24 20 6.136E-4-.2454300 l 1K2-2 RHR SMP P 28 3.8 .0039 .0563160 1K2-4 MV-32085 29 0 .0039 . 0 ,

l* 1K2-5 MV-32084 28- 0 .0039 0 , l l

1K2-9 MV-32159 29 0 .0039 0 l~ 1K2-18 PNL 135 24 15 6.136E-4 .1380544 l

l. 1K2-20 MV-32267 29 0 .0039 0 123-1 MCC 1K2 20 277 9.153E-5 7.02:005 I 123-2 MCC iT2 '

20 65 9.153E-5 .3867142 l l

i

)

i i

I

==========================================================

l' TOT AMPS = 333.3 TOT W/FT= 7.873895 DELTA T= 25.86014 l-

TABLE 5 PAGE 6 OF ::D DETAILED TA8ULATION FOR POWER TRAYS WRAPPED WITH KAOWOOL TRAY ID= 1AG-LB12 TRAY WID= 30 TRAY LEN= 9.5 TRY LOSS = .30448 1

CABLE ID SERVICE TYPE AMP OHMS /FT W/FT  ;

1KA2-4 MV-32102 29 0 .0039 0  !

1KA2-7 MV132121 29 0 .0039 0 i i

1KA2-8 MV-32201 29 0 .0039 0 ,

1K2-1 MCC 1MA2 24 20 6.136E-4 .2454300 l

--==------ ========================================u============

TOT AMPS = 20 TOT W/FT= .2454300 DELTA T= .8060629 TRAY ID= 1AG-LB14 TRAY WID= 18 TRAY LEN= 31 TRY LOSS = .19376 CABLE ID SERVICE ~ TYPE AMP OHMS /FT W/FT

~

1HVB-1 CLG. FANS 29 3 .0039 .0351000 1MA2-4 MV-32102 29 0 .0039 0 1KA2-8 MV-32201 29 0 .0039 0 1K2-9 MV-32159 29 0 .0039 0 1K2-20 MV-32267 29 0 .0039 0 1L2-4 BA XFR PP 28 19 .0039 I.263600 1L2-5 BA XFR PP 29 0 .0039 0 - I 1L2-16 . WST GAS C 27 30 .0024525 2.207250 16403-1 CC PUMP 7 32.2 .001Ls/5 1.594141 i

1

=====================================----============================= l TOT AMPS = S3.2 TOT W/FT= 5.100091 DELTA T= 26.32169

TABLE 5 PAGE 7 CF r DETAILED TA8ULAT10N FOR POWER TRAYS WRAPPED WITH KACWOCI.

l TRAY ID= 1AG-LS15 TRAY-WID= 1S TRAY LEN= 54.5 TRY LOSS = .19376 CABLE ID SERVICE TYPE AMP OHMS /FT W/FT 1HVB-1 CLG. FANS 29 3 .0039 .0351000 1KA2-4 MV-32102 29 0 .0039 0 1KA2-9 MV-32201 29 0 .0039 0 1K2-9 MV-221,59 29 0 .0039 0 1L2-4 BA XFR PP 29 19 .0039 1.263600 1L2-5 BA XFR PP 28 0 .0039 0 ILO-16 WST GAS C 27 ~0 .0024525 2.20T250 16403-1 CC PUMP 7 32.2 .0015375 1.594141 l

1 I

h

====--=============_-m===------ - - - - - - - - - - - - - - - - - - - - - - - = = = = = = = =

TOT AMPS = S3.2 TOT W/FT= 5.100091 DELTA T= 26.32169 .

TRAY ID= 1AG-L319 TRAY WID= 12 TRAY LEN= 31 TRY LOSS = .1394 CABLE ID SERVICE ' TYPE AMP OHMS /FT W/FT 1HVB-1 CLG.F ANS 28 3 .0039 .0351000 1L2-16 WST GAS C 27 30 .0024525 2.207250

=================================_========================

TOT AMPS = 33 TOT W/FT= 2.242350 DELTA T= 16.20195

TACLE 5 PAGE' 8 OF ~3 DETAILED TABULATION FOR POWER TRAY 3 WRAITED WITH KAOWOOL l

l I

1 I

TR Y ID= 1AG-L323 TRAY WID= 30 TP..SY LEN= 10.5 TRY LOSS = .30448 j

-CABLE ID SERVICE . TYPE AMP OHMS /FT W/FT 1KA2-1 MV-32097 28 0 .0039 0 l 1KA2-2 MV-02099 29 0 .0039 0  !

1KA2-3 MV-32105 29 0 .0039 0 1KA2-5 MV-32076 29 0 .0039 0 1KA2-6 MV-32079 23 0 .0039 0 1KA2-9 MV-32203 29 0 .0039 0 -

1KA2-10 MV-32080 28 0 .0039 0 1KA2-11 MV-32082 29 0 .0039 0 1KA2-12 MV-32207 23 0 .0039 0 1KA2-13 MV-32163 28 0 .0039 0 1KA2-15 MV-32040 23 , O .0039 0

================================-------===================

TOT AMPS = 0 TOT W/FT= 0 DELTA T= 0 4

9 TRAY ID= 1MG-LB24 TRAY WID=.30 TRAY LEN= 18.5 TRY LOSS = .30448 CABLE ID SERVICE TYPE AMP OHMS /FT W/FT 1HVB-9 CLG. FANS 29 3 .0039 .0351000 1HVB-10 CLG. FANS 28 8 .0039 .2496000 1KA2-1 MV-32097 28 0 .0039 0 1KA2-2 MV-32099 28 0 .0039 0 1KA2-3 MV-32105 29 0 .0039 '

0 1KA2-5 MV-32076 28 0 .0039 O 1KA2-6 MV-22078 28 0 .0039 O P 1KA2-9 - MV-32203 28 0 .0039 0 1KA2-10 MV-320SO 29 0 .0039 0 1KA2-11 MV-32082 28 0 .0039 0 1KA2-12 MV-32207 29 0 .0039 0 1KA2-13 MV-32163 29 0 .0039 O l 1K2-2 RHR SMP P 29 3.S .0039 .0560160 1K2-4 MV-32095 29 0 .0039 0 164001-1 CS PUMP 7 32.8 .OOlsses 1.654104 16405-1 SI PUMP 6 100 6.136E-4 6.13575

==================================------==================

TOT AMPS = 147.6 TOT W/FT= 8.130870 DELTA T= 26.70412 l

TABLE 5 PAGE 9 OF :'S DETAIL.E.D TABULATION FOR PCWER TRAYS WRAJPED WITH KACWOOL.

TRAY ID= 1AG-L325 TRAY WID= 18 TRAY LEN= 17.5 TRY LOSS = .19376 CABLE ID SERVICE TYPE AMP OHMS /FT W/FT 1HVB-13 CLG. FANS 29 8 .0039 .2496000 1KA2-5 MV-32076 29 0 .0039 0 1KA2-6 MV-32078 29 0 .0039 0 1 MAO-9 MV-32203 -

29 0 .0039 0 1KA2-10 MV-32080 29 0 .0039 0 1KA2-11 MV-32082 28 0 .0039 0 -

1KA2-12 MV-32207 28 0 .0039 0 1KA2-13 MV-32163 29 0 .0039 0 16405-1 SI PUMP 6 100 6.136E-4 6.13575

=======================-- =-- --===========================

TOT AMPS = 108 TOT W/FT= 6.385350 DELTA.T= 32.95494 TRAY ID= 1AG-L326 TRAY WID= 12 TRAY LEN= 52 .1354

~

- ___ _ TR"_LCSS=

CABLE ID SERVICE -

TYPE AMP OHMS /FT W/FT

- _- = -- - ----

1HVB-13 CLG. FANS 29 8 .0039 .2496000 1MA2-9 MV-32203 29 0 .0039 0 1KA2-10 MV-32080 29 0 .0039 0 1KA2-11 MV-32082 29 0 .0039 0 1KA2-12 MV-32207 28 0 .0039 0 1KA2-13 MV-32163 29 0 .0039 O

l 16405-1 SI PUMP 6 100 6.136E-4 6.13575 i .

t

==========================================================

l TOT AMPS = 108 TOT W/FT= 6.385050 DELTA T= 46.13692 l

l

TABLE 5 PAGE 10 CF 3 DETAILED TABULATICN FCR POWER TRAY 3 WRAPPED WITH KACWCCL TRAY ID= 1AM-LS1 TRAY WID= 24 TRAY LEN= 71.5 TRY LOSS = .24912 CABLE ID SERVICE TYPE AMP OHMS /FT W/PT 1DCS-3 SWGR 120 49 30 .001025 .9225000 1DC3-31 CONT. DC 44 15 .0026 .5850000 122-1 MCC 1A2 2 390 6.534E-5 9.933214 164001-1 CS PUMP 7 32.8 .0010e/5 1.654104 16402-1 OS 120 5 140 1.985E-4 3.890796 16403-1 CC PUMP 7 32.2 .0015375 1.594141 -

16404-1 RHR PUMP 7 25 .0015375 .9609375 16405-1 SI PUMP 6 100 6.136E-4 6.13575

==========================================================

TOT AMPS = 765 TOT W/FT= 25.68144 DELTA T= 103.0886 4

TRAY ID= 1AM-LB2 TRAY WID= 30 TRAY LEN= 17.5 TRY LOSS = .30448 CABLE ID SERVICE ' TYPE AMP OHMS /FT W/FT 1DCS-3 SWGR 120 49 30 .001025 .9225000 1DCS-31 CONT. DC 44 15 .0026 .5850000 122-1 MCC 1A2 2 390 6.534E-5 9.938214 164001-1 CS PUMP 7 32.8 .0015375 1.654104 16402-1 US 120 5 140 1.985E-4 3.890796 16403-1 CC PUMP 7 32.2 .0015375 1.594141 16404-1 RHR PUMP 7 25 .0015375 .9609375 16405-1. SI PUMP 6 100 6.136E-4 6.13575

====================================______===================e__--

TOT AMPS = 765 TOT W/FT= 25.68144 DELTA T= 84.34525

l . TABLlE5 PAGE 110F :3 DETAILED TABULAT10N FOR POWER TRAY 3 WRAPPED WITH KAOWOCL TRMY ID= 1AM-L33 TRAY WID= 30 TRAY LEN= 10 TRY LOSS = .30448 CABLE ID SERVICE TYPE AMP OHMS /FT W/FT -

, 1DCB-3 SWGR 120 49 30 .001025 .9225000 l

i 1DC3-31 CONT. DC 44 15 .0026 .5850006 l 122-1 MCC 1A2 2 390 6.534E-5 9.938214 123-1 MCC 1K2 '

20 277 9.153E-5 7.023005 164001-1 CS PUMP 7 32.8 .0015375 1.654104 l 16402-1 US 120 5 140 1.985E-4 3.890796 l 16403-1 CC PUMP 7 32 2 .0015375 1.594141 l 16404-1 RHR PUMP 7 25 .0015375 .9609375

16405-1 SI PUMP 6 100 6.134E-4 6.13575 1

{

I l

====================r---- ======----------- =========---- ---- ======

TOT AMPS = 1042 TOT W/FT= 32.70445 DELTA T= 107.4108 1

I l

l 1

TRAY ID= idM-LB4 _

TRAY WID=.30 T, RAY LEN= 19.5 TRY LOSS = .30448 CABLE ID SERVICE TYPE AMP OHMS /FT W/FT 1DCB-3 SWGR 120 49 30 .001025 .9225000 123-1 MCC 1K2 20 277 9.153E-5 7.023005 126-2 MCC iM2 21 85 1.247E-4 .9012465 126-3 MCC iMA 22 200 1.985E-4 7.940400 122-1 MCC 1A2 2 390 6.534E-5 9.938214 i 16402-1 US 120 5 140 1.985E-4 3.890796

==========================================================

TOT AMPS = 1122 TOT W/FT= 30.61616 DELTA T= 100.5523

TABLE 5 PAGE 92 OF :s DETAILED TA5ULAT10N FOR POWER TRAYS WMAPPED WITH KAOWOOL l

~R Y ID= 1AM-L35 TRAY WID= 30 TRAY LEN= 10 TRY LOSS = .30448 CABLE ID SERVICE TYPE AMP OHMS /FT W/FT 1DC3-31 CONT. DC 44 15 .0026 .5850000 123-1 MCC 1K2 20 277 9.153E-5 7.023005

.123-2 MCC IT2 '

20 65 9.153E-5 .3867142 126-2 MCC iM2 21 85 1.247E-4 .9012465 126-3 MCC iMA 22 200 1.985E-4 7.940400 164001-1 CS PUMP 7 32.S .0015375 1.654104 16403-1 CC PUMP 7 32.2 .0015375 1.594141 16404-1 RHR PUMP 7 25 .0015375 .9609375 16405-1 SI PUMP 6 100 6.136E-4 6.13575 L

=========______m========================---- ==================---

TOT AMPS = S32 TOT W/FT= 27.18100 DELTA T= 99.27121 l TRAY ID= idM-LB6 TRAY WID=.00 TRAY LEN= 16 TRY LOSS = .30448  ;

, l CABLE ID SERVICE TYPE AMP OHMS /Fi W/FT 1DC3-31 CONT. DC 44 15 .0026 .5850000 1HVB-74 CLS. FANS 28 2.5 .0039 .0243750 1M2-7 MV-32273 28 0 .0039 0 1M2-9 MV-32276 28 0 .0039 0 123-1 MCC 1K2 20 277 9.153E-5 7.023005 123-2 MCC 1T2 20 65 9.153E-5 .'3867142 164001-1 CS PUMP 7 32.8 .0015375 1.654104 16403-1 CC PUMP 7 32.2 .0015375 1.594141 '

16404-1 RHR PUMP 7 25 .0015375 .9609375 16405-1 SI PUMP 6 100 6.136E-4 6.13575 l

i

==========================================================

TOT AMPS = 549.5 TOT W/FT= 18.36403 DELTA T= 60.31275 r

UBRARY i:0PY

TABLE 5 PAGE130F 23 DETAlt.ED TABULATION FOR POWER THAY3 WRAPPED WITH KAOWCCt.

1 I

l 1

1 TRAY ID= 1AM-LB14 TRAY WID= 24 TRAY LEN= 17 TRY LOSS = .24c1' l l

CABLE ID SERVICE TYPE AMP OHMS /FT W/FT i 126-1 MCC IL2 21 250 1.247E-4 7.796250 l 127-1 MCC 1X2 21 180 1.247E-4 4.041576'  !

128-1 C RM CHLR ,

21 192 1.247E-4 4.599415 1

1 i

l I

====================---==========_==------==============

TOT AMPS = 622 TOT W/FT= 16.42624 DELTA T= 65.97721 r TRAY ID= 1AM-LB15 TRAY WID=.24 / TR.AY LEN= 6.5 TRY LOSS = .24912 CABLE ID SERVICE TYPE AMP OHMS /FT W/FT

' l 126-1 MCC IL2 21 250 1.247E-4 7.796250 127-1 MCC 1X2 21 190 1.247E-4 4.041576 129-1 C RM CHLR 21 192 1.247E-4 4.598415  :

==========================================================

TOT AMPS = 622 TOT W/FT= 16.42624 DELTA T= 65.97721

I TABLE 5 PAGE 140F 23

, DETAILED TABULATION FOR POWER TRAYSCRAPPED WITH KACWOOL TF.AY ID= 1AM-LB16 TRAY WID= 24 TRAY LEN= 6.5 TRY LOSS = .24912 i l

CABLE ID SERVICE TYPE AMP OHMS /FT W/FT 1LA2-27 MV-32047 29 0 .0039 0 1L2-1 MCC ILA2 24 20 6.136E-4 .2454300 1L2-6 MV-320S6 29 0 .0039 0 126-1 MCC IL2 -

21 250 1.247E-4 7.796250 127-1 MCC 1X2 21 130 1.247E-4 4.041576 P

==========================- ===========================

TOT AMPS = 450 TOT W/FT= 12.09326 DELTA T=.48.50376 l .

TRAY ID= 1AM-LB19 TRAY WID= 19 TRAY LEN= 6.5 TRY LOSS = .19376 CASLE ID SERVICE TYPE AMP OHMS /FT W/FT ILA2-1 MV-32065 29 0 .0039 0 1LA2-2 MV-322 4 29 0 .0039 0 1LA2-3 MV-32072 28 0 .0039 0 1LA2-4 MV-32230 29 0 .0039 0 ILA2-9 MV-32069 29 0 .0039 .0 1LA2-10 MV-32069 28 0 .0039 -

0 l' 1LA2-11 MV-32231 29 0 .0039 0 Il 1LA2-12, MV-32196 28 0 .0039 ,

O 1LA2-13 MV-32135 29 0 .0039 0 1LA2-14 MV-32141 29 0 .0039 0 l

1 1LA2-21 MV-32243 29 - 0 .0039 0 l

==========================================================

TOT AMPS = 0 TOT W/FT= 0 DELTA T= 0

TABLE 5 PAGE 15 OF ::L

- DETAILED TABULAT10N FOR POWER TRAYS WRAPPED WITH KACWOct.

TRAY ID= 1AM-LB21 TRAY WID= 24 TRAY LEN= 14 TRY LOSS = .24912 CABLE ID SERVICE TYPE AMP OHMS /FT W/FT 1LA2-1 MV-32065 29 0 . 0039 0

[ ILA2-2 MV-32234 29 0 . 0039 0 1LA2-3 MV-32072 28 0 . 0039 0 1LA2-4 MV-32230 29 0 . 0039 0 ILA2-9 MV-3206S 28 0 . 0039 0 1LA2-10 MV-32069 29 0 . 0039 0 -

l ILA2-11 MV-32231 29 0 . 0039 0 f

l 1LA2-12 MV-32196 29 0 . 0039 0 1LA2-13 MV-32135 29 0 . 0039 0 ILA2-14 MV-32141 28 0 . 0039 0 IL2-14 MV-32074 29 0 . 0039 0 1L2-20 MV-32199 . 28 O . 0039 0 1X2-1 FAN COIL 23 ,85 3.902E-4 2.818834 1X2-2 FAN COIL 23 85 3.902E-4 2.818834 l .

==-- ====================================-- - ==========

l TOT AMPS = 170 TOT W/FT= 5.637667 DELTA T= 22.63033 ~

i F

TRAY ID= 1AM-LB22 TRAY WID= 24 TRAY LEN= 34.5 TRY LOSS = .24912 CABLE ID SERVICE TYPE AMP OHMS /FT W/FT 1LA2-1 MV-32065 28 0 . 0039 0 1LA2-2 MV-32234 29 0 . 0039 0 1LA2-3 MV-32072 29 0 . 0039 0 1LA2-4 MV-32230 28 0 . 0039 0 ILA2-9 MV-32068 28 0 . 0039 0 1LA2-10 MV-32069 28 0 . 0039* O

1LA2-11 MV-32231 28 0 . 0039 0 i 1LA2-12. MV-32196 28 0 . 0039 0 ILA2-13 MV-32135 28 0 . 00 9 0 ILA2-14 MV-32141 29 0 . 0039 0 1L2-14 MV-32074 28 0 . 0039 0 1L2-20 MV-32199 28 0 . 0039 -

0 1X2-1 FAN COIL 23 SS 3.902E-4 2.S18834 ,

0 1X2-2 FAN COIL 23 85 3.902E-4 2.918834

=======-==================================================

TOT AMPS = 170 TOT W/FT= 5.637667 DELTA T= 22.63033 9 .

i I

TABLE 5 PAGE 16 OF 20 l DETAJLED TASULATION POM POWER TRAY 3 WRAPP1ED WITH KACwoOL i

l TRAY ID= 1AM-L32 TRAY WID= 9 TRAY LEN= 54.5 TRY LOSS = .11072 l

CABLE ID SERVICE TYPE AMP OHMS /FT W/FT l -- ----- ---- --- -- -

1 1DC3-2 DSL GEN 49 20 .001025 .9225000 l 25406-1 DSL FEED 1 479 5.194E-5 11.S942i I

i

===================-- ===========g========================

TOT AMPS = 509 TOT W/FT= 12.81672 DELTA T= 115.7590 l

1

i TRAY ID= 1 AM-LB27 TRAY WID=- 19 TRAY LEN= 62 TRY LOSS = .192T6 CABLE ID SERVICE TYPE AMP OHMS /FT W/FT 1DC3-2 DSL GEN. 49 20 .001025 .9225000 12 -2 MCC iT2 20 65 9.15CE-5 .2867142 25406-1 DSL FEED 1 479 5.194E-5 11.89422 l

l l

l l 2- =======================================---=========================

TOT AMPS = 574 TOT W/FT= 12.20~44 DELTA T= 68.14:25

TABLE 5 PAGE 170F 29 i

DETAILED TABULATION FOR POWER TRAY 3WRMPED WITH KACWOCL TRAY ID= 2AG-LB2 TRAY WID= 24 TRAY LEN= 12 TRY LOSS = .24912 CABLE ID SERVICE TYPE AMP OHMS /FT W/FT l

i 2DCB-34 2-SOV' S 44 4 .0026 .0416000 2KA2-3 MV-32212 29 0 .0039 0 2K2-7 MV-32161 29 0 .0039 0 25403-1 CC PUMP 7 32.2 .0013s/5 1.594141 L

~

?

l l

I l

, I s-

===========================--_============================

TOT AMPS = 36.2 TOT W/FT= 1.635741 DELTA T= 6.566079 1

TRAY ID= 2AG-LB5 TRAY WID= 30 TRAY LEN= 39 TRY LOSS = .30449 CABLE ID SERVICE TYPE AMP . OHMS /FT W/FT 2DCB-34 2-SOV'S 44 4 .0026 .0416000 2HVB-19 CLG. FANS 29 3 .0039 .0351000 2HVB-30 CLG. FANS 29 2.5 .0039 .0243750 2KA2-3 MV-32212 29 0 .0039 0 2K2-1 MV-32117 29 . 0 .0039 0 2K2-2 MV-32117 29 0 .0039 0 2K2-4 CHARG PP 221 152 3.900E-4 9.014026

. 2K2-6 . MV-32334 29 0 .0039 0 2K2-7 MV-32161 29 0 .0039 0 25403-1 CC PUMP 7 32.2 .0015375 1.594141 25404-1 RHR PUMP 7 25 .0015375 .9609075 25405-1 SI PUMP 6 100 6.136E-4 6.13575 25409-1 CS PUMP 7 32.8 .0015375 1.654104

===========================================_-- =--====================== I TOT AMPS = 351.5 TOT W/FT= 19.46003 DELTA T= 63.91235

TABLE 5 PAGE 18 CF :'3 DETAILED TABULAT10N FOR PCWER TRAYS WRAPPED WITH KACWOct.

TRAY ID= 2AG-LS8 TRAY WID= 24 TRAY LEN= 9 TRY LOSS = .2a91; CABLE ID SERVICE TYPE AMP OHMS /FT W/FT 2DCB-34 2-SOV'S 44 4 .0026 .0416000 2HVB-18 CLG. FANS 29 3 .0039 .0351000 2HVB-33 CLG. FANS 2S 2. 5 .0039 .0243750 2KA2-3 MV-32212 2S 0 .0039 0 2K2-2 MV-32117 2S 0 .0039 0 2K2-4 CHARG PP 221 152 3.902E-4 9.014026 2K2-7 MV-32161 29 0 .0039 0 25403-1 CC PUMP 7 32.2 .0015375 1.594141

a===========================================================

TOT AMPS = 193.7 TOT W/FT= 10.70924 DELTA T= 42.98829

.I TRAY ID= 2AG-LB9 TRAY WID= 30 TRAY LEN= 5 TRY LOSS = .30448 CABLE ID SERVICE TYPE AMP OHMS /FT W/FT 2DCB-34 2-SOV'S . 44 4~ .0026 .0416000 2HVB-19 CLG. FANS 28 3 .0039 .0351000 2HVB-30 CLG. FANS 29 2.5 .0039 .0243750 2KA2-3 MV-32212 28 0 .0039 0 2K2-1 MV-32117 28 0 .0039 0 2K2-2 MV-32117 28 0 .0039 0 2K2-4 CHARG PP 221 152 3.902E-4 9.014026 2K2-6 MV-32334 2S 0 .0039 '

0 2K2-7 MV-32161 28 0 .0039 '

O

~

2K2-9 RHR SMP P 29 0 .0039 O 2K2-11 -

MV-32268 29 0 .0039 - 0 25403-1 CC PUMP 7 32.2 .0015375 1.594141 25405-1 SI PUMP 6 100 6.136E-4 6.13575 25409-1 CS PUMP 7 32.8 .0015375 1.654104 l =======================================================---===========

l TOT AMPS = 326.5 TOT W/FT= 18.49910 DELTA T= 60.75636 .

f l

TABLE 5 PAGE 19 OF 22 DETAlt.ED TASULATION FOR POWER TRAYS WRAPPED WITH KAOWOOL l

i TRAY ID= 2AG-LS10 TRAY WID= 30 TRAY LEN= 5 TRY LOSS = .0044e CABLE ID SERVICE TYPE AMP OHMS /FT W/FT 2DCB-34 2-SOV'S 44 4 .0026 .0416000 I 2HVB-19 CLG. FANS 28 3 .0039 .0351000 2HVB-33 CLG. FANS 29 2.5 .0039 .0243750 2KA2-3 MV-32212 29 0 .0039 0 2K2-2 MV-32117 29 0 .0039 0 2K2-7 MV-32161 -

29 0 .0039 0 2K2-9 MCC 2KA2 24 20 6.136E-4 .2454300 l

2K2-9 RHR SMP'P- 29 0 .0039 0 -

2K2-10 MV-321SS 28 0 .0039 0 2K2-11 MV-32269 29 0 .0039 0 I

25403-1 CC PUMP 7 32.2 .0015375 1.594141 25405-1 SI PUMP 6 100 6.136E-4 6.13575 CS PUMP 7 32.S .0015375 1.654104 '

25409-1

=================---=====================--

~

===____2===.e.==

TOT AMPS = 194.5 TOT W/FT= 9.730500 DELTA T= 31.95777- ,

c TRAY ID= 2AG-t.B11 TRAY WID= 30 TRAY LEN= 10- .

TRY LOSS = .30448 CABLE ID SERVICE TYPE. AMP OHMS /FT W/FT 2DCB-34 2-SOV'S 44 4 .0026 .0416000 2HVB-19 CLG. FANS 29 3 .0039 .0351000 CHVB-33 CLG. FANS OS 2.5 .0039 .0243750 2KA2-3 MV-32212 28 0 .0039 0 2K2-8 MCC 2KA2 24 20 6.136E-4 .2454300 2K2-9 RHR SMP P 29 0 .0039 0 2K2-10 MV-321SS 29 0 .0039 0 2K2-11 MV-32269 28 0 .0039 O I 25403-1 CC PUMP 7 32.2 .0015375 1.5941-41 '

i 25405-1 SI PUMP 6 100 6.136E-4 6.1.3575 25409-1 CS PUMP 7 32.S .0015375 1.654104 ,

c

====================================================================== ,

TOT AMPS = 194.5 TOT W/FT= 9.730500 DELTA T= 31.95777 l.1 - - -

t

~ , . . , , , - , - . -

+x.... - ~ - , .. a - _ _ . - -. . . . , = . - -- - - ..

i TABLE 5 PAGE' 20 OF 3 I DETAILED TA8U1.ATICN FOR POWER TRAYS WRAPPED WITH KAOWOOt.

TRAY ID= 2AG-L312 TRAY WID= 30 TRAY LEN= 14 TRY LOSS = . ! W5 CABLE ID SERVICE TYPE AMP OHMS /FT W/FT 2HVB-19 CLG. FANS 29 3 .003? .0351000 2HVB-33 CLG. FANS 29 2.5 .003? .0243750 l 2HVB-39 CLG. FANS 29 8 .0039 .2496000 l 2KA2-3 MV-32212 29 0 .0009 0 j 2K2-8 MCC OKA2 24 20 6.136E-4 .2454300 2KO-9 RHR SMP P 28 0 .0039_ 0 l 2KC-10 MV-32188 28 0 .0039 0 2K2-11 MV-32268 -

28 0 .0039 0 2L2-6 BA XFR PP 29 18 .0039-1.263600 2L2-7 BA XFR PP 29 0 .0039 0 2L2-8 BA TK HTR 29 10 .0039 .39 25405-1 SI PUMP 6 100 6.136E-4 6.13575 25409-1 CS PUMP 7 32.8 .0015s/a 1.654104 l

-1 l

. =========================================- - --======================  ;

TOT AMPS = 194.3 TOT W/FT= 9.997959 DELTA T= 32.83618 .

l t l

r TRAY ID= 2AG-LB13 TRAY WID= 30 TRAY LEN= 11 TRY LOSS = .30448 l CABLE ID SERVICE TYPE AMP OHMS /FT W'/FT 2KA2-3 MV-32212 29 0 .0039 0 '

l 2KA2-8 MV-32116 29' O- .0039 0 [

MV-32109 28

~

2KA2-9 0 .0039 0 2KA2-10 MV-32111 28 0 .0039 0 ,

2KA2-13 MV-32185 29 0 .0039 0  !

2KA2-14 MV-32183 29 0 .0039 0

2KA2-15 MV-32191 28 0 .0039 0 i 2KA2-16 MV-32204 28 0 .0039 0 -

2KA2-17 MV-32191 28 0 .0039 0

! 2KA2-18 MV-32209 28 0 .0039 -

0 I 2KA2-20 MV-32205 28 0 .0039 0 ,

1 2K2-8 , MCC 2KA2' 24- 20 6.136E-4 .2453300 1 2K2-11 MV-32268 29 0 .0039 0 1 2L2-6 BA XFR PP 28 18 .0039 1.263600  !

IL2-7 BA XFR PP. 28 0 .0039 .0 l 2L2-8 BA TK HTR 28 10 .0039 .39- l

=_============================================================--

TOT AMPS = 48 TOT W/FT= 1.999030' DELTA T= 6.236961 l.

l

u > - _ . - s_-. u -- . u a a. . u--, <

1 1 t

, TABLE 5- PAGE29 OF 29 j* '

DETAILED TABULATION FOR POWER TRAYS WRAPPED WITN KACWOOL TRAY ID= 2AG-LB17 TRAY WID= ~0 TRAY LEN= 30 TRY LOSS = . 30448 CABLE ID SERVICE TYPE AMP OHMS /FT W/FT p CHVB-10 CLG. FANS 29 7 . 0039 0351000.

2HVB-39 CLG. FANS 28 8 . 0039 .2496000 2KA2-0 MV-32116 28 0 . 0039 0 2KA2-9 MV-32109 29' O . 0039 0

, 2KA2-10 MV-32111 28 0 . 0039 0 a 2KA2-13 MV-32185 -

29 0 . 0039 0 2KA2-14 MV-32183 28 0 . 0039 0

f. 2KA2-15 MV-32191 29 0 . 0039 0 _

2KA2-16 MV-32204 28 0 . 0039 0 2KA2-17 MV-32181 28 0 . 0039 0

- 2KA2-18 MV-32209 23 0 . 0039 0 i

2KA2-20 MV-32205 28 0 . 0039 0 2K3-9 RHR SMP P 29 0 . 0039 0 ,

2K2.-10 MV-32188 ,28 0 . 0039 .0 25405-1 SI PUMP 6 100 6.136E-4 6.13575 25409-1 CS,, PUMP 7 32.8 .0015375 1.654104

========--------============= ======,====================== .

TOT AMPS = 143.8 TOT R/FT= 8.074554 DELTA T= 26.51916- ,

i 1: ,

. i TRAY ID= 2AG-LB18 TRAY WID= 30 TRAY LEN= 11 TRY LOSS = .30448'

, CABLE ID SERVICE TYPE AMP OHMS /FT W/FT -

l 2HVB-10 CLG. FANS '29 3 . 0039 . 0351000 2HVB-39 CLG. FANS 28 8 . 0039 . 2496000

. 2KA2-0 MV-32116 29 0 . 0039 0 2KA2-9 MV-32109 28 0 . 0039 -0 2KA2-10 MV-32111 29 0 . 0039 0 2KA2-13 MV-32185 29 0 . 0039. 0 2KA2-14 MV-32183 29 0 . 0039 0 2KA2-15 MV-32191 28- 0 . QO39

.0 2KA2-16 MV-32204 28 0 . 0039 0

. 2KA2-17 MV-32181 29 0 . 0039 ,

0 2KA2-18 MV-32209 28 0 . 0039 0 2KA2-20 MV-32205 28 0 . 0039 0 25405-1 SI PUMP . 6 100 6.136E-4 6.13575

==========================================================

TOT AMPS = 111 TOT W/FT= 6.420450 DELTA T= 21.08661

. TABLE 5 PAGE 220F 3 DETAILED TABULATION FOR POWER TRAYS WRAPPED WITH KAOWOOL f

TR Y ID= 2AG-LS19 TRAY WID= 12 TRAY LEN= 44 TRY LOSS = .1334 J CABLE ID SERVICE TYPE AMP OHMS /FT W/FT 2HVB-10 CLG. FANS 29 .0039 .0351000

? 2HVB-39 CLG. FANS 29 8 .0039 .2496000

2KA2-13 MV-32185
  • 29 0 .0039 0 2KA2-14 MV-32183 29 -0 .0039 0 2KA2-15 MV-32191 28 0 . 0039 0 i 2KA2-18 MV-32209 29 0 .0039 0 -

25405-1 SI PUMP 6 100 6.136E-4 6.12575 i

e -4

========-------================================================-----

,'. TOT AMPS =.111 TOT W/FT= 6.420450 DELTA T= 46.39053 *

\

l

! TRAY ID= 2 G-LB29 TRAY WID=.12 TRAY LEN= 48 TRY LOSS = . 1394 CABLE ID SERVICE TYPE AMP OHMS /FT W/FT 2HVB-2 CLG. FANS 29 2.5 .0039 .0242750 L 2K2-1 MV-32117 28 0 .0039 0 1 25404-1 RHR PUMP 7 25 .0015375 .9609375 i

l.

i.

l8 . .

i l

' r==,,sn .

,. ======================================================================

, , TOT AMPS = 27.5 TOT W/FT= .9853125 DELTA T= 7.119310-i - _ . . -. -

l TABLE 5 PAGE 23 0F 23 DETAILED TABULATION FOR POWER TRAYS WRAPPED WITH KACWOOL TRAY ID= 2AM-LB1 TRAY WID= 24 TRAY LEN= 55 TRY LOSS = .2491-CABLE ID SERV 7CE , TYPE AMP OHMS /FT W/FT 2DCB-7 PNL 261 44 15 .0026 .5550000 2DCE-12 CONT DC 44 15 .0026 .5950000 2DCB-16 US 220 DC 49 30 .001025 .9225000 222-1 MCC 2A2 20 200 9.153E-5 3.661200 25402-1 US 220 5 140 1.985E-4 3.890796 l 25403-1 CC PUMP 7 32.2 .0015375 1.594141 l

25404-1 RHR PUMP . 7 25 .0015375 .9609375 25405-1 SI PUNP 6 100 6.136E-4 6.13575

25409-1 CS PUMP 7 32.9 .0015375 1.654104 ,

l:

,- _______________=- =========_========================-___======_===

TOT AMPS = 590 TOT W/FT= 19.98943 DELTA T= S0.24016 1 . .

1 TRAY ID= 2AM-LB2 TRAY WID= 30 TRAY LEN= 16 TRY LOSS = .3044E CABLE ID SERVICE TYPE AMP OHMS /FT W/FT 2DCB-7 PNL 261 44' 15 .0026 .5850000 2DCB-12 CONT DC 44 15 .0026 .5850000 2DCB-16 US 220 DC 49 30 .001025 .9225000 ,

222-1 MCC 2A2 20 200 9.15 E-5 3.661200 25402-1 US 220 5 140 1.985E-4 3.890796 25403-1 CC PUMP 7 32.2 .0015375 1.594141 l"

h:

I

._..u

==========_.======---============-----==---=======_========e=========== -

TOT AMPS = 432.2 TOT W/FT= 11.23964 DELTA T= 36.91092 .

l l

i

.o

t ',

4 TABLE 5 PAGE'N OF:3- -f t

DETAILED TASULATION FOM POWER TRAYS WRAPPED WITN KAOWOCL TRAY ID= 2AM-L33 TRAY WID= 30 TRAY LEN= 11 'TRY LOSS = .30448 .

CABLE ID SERVICE TYPE AMP -OHMS /FT W/FT ,

2DCS-7 PNL 261 44 15 .0026 .5850000 j 2DCB-12 CONT DC 44 15 . 0026 .5850000 l 2DCB-16 US 220 DC 49 30 .001025 .9225000 l 222-1 MCC 2A2 20 200 9.-153E-5 3.-661200 ,

i. 25402-1 05 220 5 140+1.985E-4 3.S90796 i 25403-1 CC PUMP 7 32.2 .0015375 1.594141 -

s t t i

1- .

p..  !

t

! j- i l'

l

!, =====------=====================___.============----==================

!' TOT AMPS = 432.2 TOT W/FT= 11.23864 DELTA T= 36.91092 l i i

i TRAY ID= 2AM-L34 TRAY WID= 30 TRAY LEN= 20 TRY LOSS = .3044E CABLE ID SERVICE TYPE AMP -OHMS /FT W/FT-

,. 2DCB-16 US 220 DC 49 30 .001025 .9225000 222-1 MCC 2A2 20 200 9.153E-5 3.661200-r 223-1 MCC 2K2 20 246 9.153E-5 5.539029 226-1 MCC-2M2 21 50'1.247E-4 .3118500 25402-1 US 220 5 140 1.985E-4 3.890796 4

I- 4 .

, .===.,:.

==========================================================

, TOT AMPS = 666 TOT W/FT= 14'.32538- DELTA T= 47.04866

., - ., 9 , ~ 9-[v y . , , ., --p I r m L. ,. c,, _ . , . , . . , , , , , , . ,ci ,E n.-

l )

I 1 l l TAOLE 5 PAGE250F 9 DETAILED TABULATION FOR POWEH TRAYS WRAPPED WITH KAOWOOL j i TRAY ID= 2AM-LB5 TRAY WID= 50 TRAY LEN= 11 TRY LOSS = .30448 l - - - - - - - - - - -

CABLE ID SERVICE TYPE AMP OHMS /FT W/FT 2DCB-7 PNL 261 44 15 .0026 .5850000' 2DCB-12 CONT DC 44 15 .0026 .5250000 223-1 MCC 2K2 20 246 9.153E-5 5.539029 226-1 MCC-2M2 21 50 1.247E-4 .3118500 25403-1 CC PUMP 7 32.2 .0015375 1.594141 l

l

! ================================---=====-----=========================

TOT AMPS = 358.2 TOT W/FT= 8.615021 DELTA T= 28.29421 i

I i

TRAY ID= 2AM-LB6 TRAY WID= 30 TRAY 1.EN= 16.5 TRY LOSS = .30448 ;

- - - - - -- ------------- - - - - - - - - --- \

1 CABLE ID SERVICE TYPE AMP Oh 'FT W/FT l

-- --- -- - - . . . _ - \

2DCB-7 PNL 261 44 15 4 s26 .5850000 l 20CB-12 CONT DC 44 15 .0026 .5850000 l l 2HVB-23 CLG.EANS 28 2.5 .0039 .0243750 i

! 2L2-5 MV-32189 29 0 .0039

  • 0

. 2M2-10 HYD CONT 28 -0 .0039 O t

t-SM2-12 MV-32295' 29 0 .0039 0 p 223-1 MCC 2K2 20 246 9.153E-5 5.539029 l 25403-1 CC PUMP 7 32.2 .0015375 1.594141 2LA2-16 MV-32249 29 0 ,.0039 0 l 1 I

===================================___;===================

TOT AMPS = 310.7 TOT W/FT= S.327546 DELTA T= 27.05006 l

TABLE 5 PAGE 2S OF 29 t

l DETAILED TABULATION FOR POWER TRAYS WRAPPED CITH KACWOOL 4

TRAY ID= 2AM-LB7 TRAY WID= 30 TRAY LEN= 16 TRY LOSS = .30448 1 - - _ - -

CABLE ID SERVICE TYPE AMP OHMS /FT W/FT

--__ - --= --- - ---

2DCB-34 2-SOV'S 44 4 .0026 .0416000 2HVB-23 CLG. FANS 28 2.5 .0039 .0243750 2KA2-23 MV-32009 29 0 .0039 0 2KA2-25 MV-32051 28 0 .0039 0 2KA2-26 MV-32059 28 0 .0039 0 2L2-6 BA XFR PP 29 IS .0039 1.263600 2L2-7 BA XFR PP 29 0 .0039 0 2L2-9 BA TK HTR 29 10 .0039 .39 223-1 MCC 2K2 20 246 9.153E-5 5.539029 25403-1 CC PUMP 7 32.2 .0015375 1.594141 25404-1 RHR PUMP 7 25 .0015375 .9609375

==========================================================

TOT AMPS = 337.7 TOT W/FT= 9.813683 DELTA T= 32.23096 l

l l t -

I TRAY ID= 2AM-LBS TRAY WID= 30 TRAY LEN= 21 TRY LOSS = .30448 l

CABLE ID. SERVICE TYPE AMP OHMS /FT W/FT 2DCB-7 PNL 261 44 15 .0026 .5850000 i 2DCB-12 CONT DC 44 15 - .0026 .5850000 l 2DCB-34 2-SOV'S 44 4 .0026 .0416000 i 2KA2-23 MV-32029 29 0 .0039 0 j 2KA2-25 MV-32051 28 0 .0039 0 l 2KA2-26 MV-32059 29 0 . 0039 0 i 2LA2-16 MV-32249 29 0 .0039 0

. 2L2-5' MV-32189 29 0 .0039 0 2L2-6 BA XFR PP 28 18 .0039 1.263600 2L2-7 BA XFR PP 28 0 .0039 - 0 2L2-8 BA TK HTR 28 10 .0'039 .~9 2M2-10 HYD CONT 28 0 .0039 ~

0 2M2-12 MV-32295 28 0 .0039 0 l

1

==========================================================

TOT AMPS = 62 TOT W/FT= 2.865200 DELTA T= 9.410142

i TABLE 5 PAGE 27 OF 29 DETAILED TABULATION FOR POWER TRAYS WRAPPED WITH KAOWOOL TRAY ID= 2AM-LB9 TRAY WID= 24 TRAY LEN= 6 TRY LOSS = .24912 CABLE ID SERVICE TYPE AMP OHMS /FT W/FT 2DCS-7 PNL 261 44 15 .0026 .5850000 2DCB-12 CONT DC 44 15 .0026 .5850000 2DCB-34 2-SOV"S 44- 4 .0026 .0416000

+

2L2-1 MV-32374 28 0 .0039 0' 2L2-14 MV-32387 28 0 .0039 0 2L2-29 MV-32177 29 0 .0039 0  ;

2M2-10 HYD CONT 28 0 .0039 0 i 2M2-12 MV-32295 28 0 .0039 0 i 2X2-1 FAN COIL 23 85 3.902E-4 2.818834 2X2-4 FAN COIL 23 85 3.902E-4 2.818834 ,

2X2-7 FAN COIL 221 0 3.902E-4 0  ;

2X2-8 FAN COIL 221 'O.3.902E-4 O

=====================___===========-----==================

TOT AMPS = 204 TOT W/FT= 6.849267 DELTA T= 27.49385 .

i

~

TRAY ID= 2AM-LS10 TRAY WID= 24 ThtAY LEN= 25 TRY LOSS = .24912 ,

CABLE ID SERVICE TYPE AMP OHMS /FT W/FT

)

i 2DCB-7 PNL 261 44 15 .0026 5850000 ,

i 2DCB-12 CONT DC 44 15 .0026 .5850000 2DCB-34 2-SOV'S 44 4 .0026 .0416000 2L2-1 MV-32374 28 0 .0039 0 2L2-14 MV-32387 28 0 .0039 0 2LA2-31 MV-32168 29 0 .0039 0 2M2-10 HYD CONT 28 0 .0039 *

.0

- 2M2-12 MV-32295 28 0 .0039 O .

l 2X2-1 FAN COIL 23 85 3.902E-4 2.918834 2X2-4 FAN COIL 23 85 3.902E-4 2.818834- 3 2X2-7 FAN COIL 221 0 3.902E-4 0

l. 2X2-8 FAN COIL 221 0 3.902E-4 'O l l

i.

================================================-__________===========-

TOT AMPS = 204 TOT W/FT= 6.849267 DELTA T= 27.49385 i

I i

I - . . . , . , . , , - , , - , - - ., , , . , - . - , , , - ~ . - ..,

TA9LE 5 PAGE 28 OF 29 DETAILED TABULATION FOR POWER TRAYS WRAPPED WITH KAOWOOL TRAY ID= CAM-LB20 TRAY WID= 30 TRAY LEN= 5 TRY LOSS = .30448 CABLE ID SERVICE TYPE AMP OHMS /FT W/FT

__ - - _ _ _ ==- ___ _--

CDCB-7 PNL 261 44 15 .0025 .5850000 2DCB-12 CONT DC 44 15 .0026 .5850000 2DCB-34 2-SOV'S 44 4 .0026 .0416000 2KA2-23 MV-32029 28 0 .0039 0 2KA2-25 MV-32051 . 28 0 .0039 0 2KA2-26 MV-32059 28 0 .0039 O' 2LA2-16 MV-32249 28 0 .0039 0 2L2-5 MV-32189 28 0 .0039 0 2L2-6 BA XFR PP 28 18 .0039 1.263600 2L2-7 BA XFR PP 28 0 .0039 0 2L2-8 BA TK HTR 28 10 .0039 .39 2M2-10 HYD CONT 29 0 .0039 0 2M2-12 MV-32295 28 0 .0039 0 2X2-1 FAN COIL 23 85 3.902E-4 2.818834 2X2-7 FAN COIL 221 0 3.902E-4 0

==================================-- _m_==================

TOT AMPS = 147 TOT W/FT= 5.684034 DELTA T= 18.66800 I

TRAY ID= 2AM-LB21 TRAY WID= 30 TRAY LEN= 4 TRY LOSS = .30448 CABLE ID SERVICE TYPE AMP OHMS /FT W'/FT 2DCB-7 PNL 261 44 15 *

.0026 .5850000  !

2DCB-12 CONT DC 44 15 .0026 .5850000 l 2DCB-34 2-SOV'S 44 4 .0026 .0416000 2L2-1 MV-32374 29 0 .0039 0 2L2-2 MV-32126 28 0 .0039 0 2L2-3 MV-32127 28 0 .0039 0 2L2-29 MV-32177 28 0 .0039 0 l 2M2-10 HYD CONT 28 0 .0039 0 .

2M2-12 MV-32295 28 0 .0039 0 2X2-1 FAN COIL 23 85 3.902E-4 2'.818834 l 2X2-4 FAN COIL 23 85 3.902E-4 2.818834 2X2-7 FAN COIL 221 0 3.902E-4 -

0 OX2-8 FAN COIL 221 0 3.902E-4 0 1

! =======================================_- -==========================

TOT AMPS = 204 TOT W/FT= 6.849267 DELTA T= 22.49497 i

r * .

. . . . . ~ . - -. . _ .-. - -. _._ ~ _ . . . . .

l i

- TABLE 5 PAGE290F 2S l DETAILED TAaULATION FOR POWER TRAYS WRAPPED WITH KAOWOOL t

I l

l \

\ \

1 TRAY ID= 2AM-30 TRAY WID=.24 TRAY-LEN= 24 TRY LOSS = .24912 ,

l CABLE ID SERVICE TYPE AMP OHMS /FT .W/FT-  ;

r t '

i 2DCB-7 PNL 261 44 15 .0026 .5850000 t~

2DCB-12 CONT DC 44 15 .0026 .5850000*

2DCS-16 US 220 DC 49 30 .001025 .9225000 222 MCC 2A2 20 2OO 9.153E-5 3.661200 25402-1 US 220- 5 140 1.985E-4 3.890796

  • 25403-1 CC PUMP 7 32.2 .0015375 1.594141 I

l l

.i l i

=___================================================================== {

TOT AMPS = 432.2 TOT W/FT= 11.23864 DELTA T= 45.11335 t . .

'l f

f i

i 8

. l l

L - l

- \

. \

j i

j i

i

TABLE 6 A PAGE 10F 2

SUMMARY

OF POWER TRAY TEMPERATURE RISES FOR ONE HOUR S & W KAOWOct.

i HEAT GENERATED . TRAY WIDTH LENGTH PER LIN FOOT DELTA T DERATING TRAY ID# (IN) (FT) (WATT) (BTU /H) (DEG C) MULTIPLIER


------ ----- = .- ----------

I -------- -----

1AG-LA~0 12 36.5 7 24 51 ERROR 1AG-LB1 30 7.5 9 31 30 0.64 1AG-LB2 30 11 8 28 27 0.68 l 1AG-LB3 30 8 8 27 26 0.69 1AG-LB4 30 7 22 75 72 ERROR b- 1AG-LB6 24 12 7 24^ 28 0.66 1AG-LB7 9 42 7 -

24 63 ERROR 9 9.5 3 4 0.91 1AG-LB8 1 1AG-LB10 9 17 0 0 O 1.00 l 1AG-LB11 30 14.5 5 18 18 0.81 l 1AG-LB12 30 9.5 0 1 1 '0.99 l/ 1AG-LB14 18 31 5 17 26 0'.69 l 1AG-LS15 18 54.5 5 17 26 0.69 1AG-LB19 12 31 2 8 16 0.82

( 0 0 1.00

>! 1AG-LB23 30 13.5 0 -

l{ 1AG-LB24 30 18.5 8 28 27 0.68 l 1AG-LB25 18 17.5 6 22 33 0.58 1AG-LB26 12 52 6 '

22 46 0.28 1AM LB1 24 71.5 26 88 103 ERROR 1AM-LB2 30 17.5 26 88 84 ERROR 1AM-LB3 30 10 33 112 107 ERROR 1AM-LB4 30 19.5 31 . 104 101 ERROR l 1AM-LB5 30 10 27 93 89 ERROR )

1AM-LB6 '30 16 18 63 60 ERROR 1AM-LB14 24 17 16 56 66 ERROR 1AM-LB15 24 6.5 16 56 66 ERROR 1AM-LB16 24 6.5 -12 41 49 0.17 1AM-LB19 18 6.5 0 0 0 1.00 1AM-LB21 24 14 6 19 23 0.74 1AM-LB22 24 34.5 6 19 . '23 0.74 l- 1AM-LB23 9 54.5 13

  • 44
  • 116 ERROR l' 1AM-LB27 18 62 13 45 68 ERROR l

TRAY DERATING MULTIPLIERS NOTED WITH " ERROR" INDICATE TRAYS WHERE PREDICTED TEMPERATURES -

ARE HIGHER THAN 90 C.

l

TABLE 6 A PAGE 2 0F 2

SUMMARY

OF POWER TRAY TEMPERATURE RISES FOR ONE HOUR B & W KACWOct.

HEAT GENERATED TRAY WIDTH LENGTH PER LIN FOOT DELTA T DERATING TRAY ID# (IN) (FT) (WATT) (BTU /H) (DEG'C) MULTIPLIER 2AG-LB2 24 12 2 6 7 0.93 2AG-LB5 30 38 19 66 64 ERROR TAG-LBS 24 9 11 37 43 0.37 l 2AG-LB9 30 5 18 63 61 ERROR 2AG-LB10 30 5 10 33 32 0.60 2AG-LB11 30 10 10 33 32 0.60 2AG-LB12 30 14 10 34 33 0.59 2AG-LB13 30 11 2 6 6 0.94 2AG-LB17 30 30 ,8 28 27 0.69 2AG-LB18 30 11 6 22 21 0.76 l 2AG-LB19 12 44 6 22 46 0.27 2AG-LB29 12 48 1 3 -

7 0.93 2AM-LB1 24 55 20 68 80 ERROR 2AM-LB2 30 16 11 38 37 0.51 2AM-LB3 30 11 11 38 37 0.51 l 2AM-LB4 30 20 '

14 49 .

47 'O.24 2AM-LB5 30 -

11 9 29 29 ,0.66 2AM-LB6 30 16.5 8 29 27 0.67 2AM-LB7 30 16 10 33 32 0.60 2AM-LBS 30 21 3 -

10 9 0.90 2AM-LB9 24 6 7 23 27 0.67 2AM-LB10 24 25 7 23 27 0.67 2AM-LE20 30 5 6 19 19 0.79 2AM-LB21 30 4 7 ' 23 22 0.74 2AM-LB30 24 24 11 38 45 0.31 TRAY DERATING MULTIPLIERS NOTED WITH " ERROR" INDICATE TRAYS WHERE PREDICTED TEMPERATURES ARE HIGHER THAN 90 C.

I 4

i f

I i

l l

l l

TABLE 6B PACE 1 oF 2 l l

SUMMARY

OF POWER TRAY TEMPERATURE RtSES FOR ONE HOUR TSI THERMO-LAG l

l l i

I  !

, l

~

HEAT GENERATED TRAY l WIDTH LENGTH PER LIN FOOT DELTA T DERATING l TRAY ID# ( I;N) (FT) (WATT) (BTU /H) (DEG C) MULTIPLIER 1AG-LA30 12 36.5 7 24 10 0.89 1AG-LB1 30 7.5 9 31 6 0.94 1AG-LB2 30 11 9 29 5 0.94 i 1AG-LB3 30 S S 27 5 0.95 L 1AG-LB4 30 7 22 75 15 0.94 1AG-LB6 24 12 7 24 6 0.94 1AG-LB7 9 42 7 24 13 0.96 1AG-LBS 9 9.5 1 3 2 0.98 1AG-LB10 9 17 0 0 0 1.00 1AG-LB11 30 14.5 5 19 4 0.96 1AG-LB12 30 9.5 0 1 0 1.00 l 1AG-LB14 18 31 5 17 5 'O.94 l 1AG-LB15 19 54.5 5 17 5 0.*94 1AG-LB19 12 31 2 8 3 0.97 1AG-LB2~ 30 13.5 0 0 0 1.00 1AG-LB24 30 19.5 . 8 28 -

5 0.94 1AG-LB25 18 17.5 6 22 7 0.93 1AG-LB26 12 52 6 22 9 0.90 1AM-LB1 24 71.5 26 ~

SS 21 0.76 L 1AM-LB2 30 17.5 26 SS 17 0.81 l

1AM-LB3 !O 10 33 112 22 0.75 30 1AM-LB4 19.5 31 104 21 0.77 1AM-LB5 30 10 27 . 93 18 0.80 1AM-LB6 30 16 19 63 12 0.97 1AM-LB14 24 17 16 56 13 0.85 l 1AM-LB15 24 6.5 16 56 13 0.95 1AM-LB16 24 6.5 12 41 10 0.90 1AM-LB19 19 6.5 0 0 0 1.00

~

1AM-LB21 24 14 6 19 5 0.95

. 1AM-LB22 24 34.5 6 19 5 0.95 1AM-LB23 9 54.5 13 44 . 24 0.75 1AM-LB27 19 62 13 *45 14 0.85 l

~

t l .

l I

i

TABLE 68 PAGE 2 0F 2 l-

SUMMARY

OF POWER TRAY TEMPERATURE RISES FOR ONE HOUR TS1 THERMO-LAG 1

o HEAT l- GENERATED TRAY l WIDTH LENGTH PER LIN FOOT DELTA T DERATING TRAY ID# (IN) (FT) (WATT) (BTU /H) (DEG C) MULTIPLIER l l

2AG-LB2 24 12 2 6 1 0.99

, 2AG-LB5 30 38 19 66 13 0.86 2AG-LB9 24 9 11 37 9 0.91 l 2AG-LB9 30 5 18 63 12 0.87 2AG-LB10 30 5 10 33 7 0.93 2AG-LB11 30 10 10 30 7 0.93 2AG-LB12 30 14 10 34 7 0.93 2AG-LB13 30 11 2 6 1 0.99 2AG-LB17 30 30 .8 28 5 0.94 2AG-LB18 30 11 6 22 4 0.96 2AG-LB19 12 44 6 22 9 0.90 2AG-LB29 12 48 1 3 -

1 0.99 CAM-LB1 24 55 20 68 16 0482 2AM-LB2 30 16 11 38 8 0.92 2AM-LB3 30 11 11 38 8 0.92 2AM-LB4 30 20 , 14 49 . 10 0.90 2AM-LB5 30 11 9 29 6 0.94 2AM-LB6 30 16.5 8 28 6 0.94 2AM-LB7 30 16 10 33. 7 0.93 2AM-LB8 30 21 3 -

10 2 0.98 2AM-LB9 24 6 7 23 6 0.94 2AM-LS10 24 25 7 23 6 0.94 l 2AM-LB20 30 5 6 ,

19 4 0.96 l 2AM-LB21 30 4 7 23 5 0.95 l 2AM-LB30 24 24 11 38 9 0.90 l

I .

. \

l 4

i l

1 i

. _ . . . - . . - .. . .-. ._ -=_ .. .- .

k TABLE 6C PAGE 1 or 2

SUMMARY

OF POWER TRAY TEMPERATURE RtSES' FOR THREE HOUR TSI THERMO LAG ,

?

~

HEAT GENERATED ,

TRAY WIDTH LENGTH PER LIN FOOT DELTA T DERATING TRAY ID# (IN) -(FT) - (WATT) (BTU /H) (DEG C) MULTIPLIER .

____ __ == _____ ____ ___ _ __________

1AG-LA30 12 36.5 7 24 13 0.87  !

1AG-LB1 30 7.5 9 31 7 C.92 .

, 1AG-LB2 30 11 8 28 7 0.93 1AG-LB3 30 8 8 27 6 0.93 '

1AG-LB4 30 7 22 75 18 0.80

~

1AG-LB6 24 12 7 24- 7 0.93- ,

1AG-LB7 9 42 7 . 24 16 0.83 1AG-LB8 9 9.5 .1 - 3 2 0.98 1AG-LB10 9 17 0 0 0 1.00 1AG-LB11 30 14.5 5 18. 4 0.96 1AG-LB12 30 9.5 0 1 O *1.00 ,

1AG-LB14 18 31 5 17 7 0:93 -

1AG-LB15 18 54.5 5 17 7- 0.93 1AG-LB19 12 31 2 8 4 0.96 1AG-LB23 30 13.5 ,

0 0 . O 1.00 1AG-LB24 30 18.5 '8 28 7 0.93 1AG-LB25 18 17.5 6 22 8 0.91 1AG-LB26 12 52 6 22 11 0.88 1 1AM-LB1 24 71.5 26 88 .26 0.70 l

1AM-LB2 -30 17.5 26 88 ,

21 0.76 l l 1AM-LB3 30 10 33 112 27 0.68 l 1AM-LB4 30 19.5 31 ,

104 25 0.71 1AM-LB5 30 10 27 93 22 0.75 1AM-LB6 30 16 18 63 15 0.84 1AM-LB14 24 17 16 56 16 0.82 1AM-LB15 24 6.5 16 56 16 0.82 1AM-LB16 24 6.5 12 41 12 0.87 1AM-LB19 18 6. 5 0 0 0 1.00 1AM-LB21 24 14 6 19 6 0.94 l 1AM-LB22 24 34.5 6 19 .

6 0.94 1AM-LB23 9 54.5 13 44 29 0.65 i 1AM-LB27 18 62 13 45 17 0.81 l

I 4

- - - ,-v-,, w,, ,,-e n , w w ,

TABLE 6C PAGE 2 0F 2

SUMMARY

OF POWER TRAY TEMPERATURE RISES FOR THREE HOUR TSI THERMO-LAG 4

HEAT ~

GENERATED TRAY WIDTH LENGTH PER LIN FOOT DELTA T DERATING TRAY ID# (IN) (FT) (WATT) (BTU /H) (DEG C) MULTIPLIER 2AG-LB2 24 12 2 6 2 0.98 2AG-LB5 30 33 19 66 16 0.93 2AG-LBS 24 9 11 37 11 0.89 2AG-LB9 30 5 18 63 15 0.94 I! 2AG-LB10 30 5 10 33 8 0.92 2AG-LB11 30 10 10 33 8 0.92 2AG-LB12 30 14 10 34 8 0.91 2 2 0.98 2AG-LB13 30 11 6

]~F 28 7 0.93 2AG-LB17 30 30 8 2AG-LB19 30 11 6 22 . 5 0.95 2AG-LB19 12 44 6 22 12 0.88 2AG-LB29 12 48 1 3 2 0.98 2AM-LB1 24 55 20 68 20 0.79 2AM-LB2 30 16 11 38 9 0.90 2AM-LB3 30 11 '11 33 9 0.90 2AM-LB4 30 20 14 49 12 0.88 2AM-LB5 30 11 9 29 7 0.93 2AM-LB6 30 16.5 8 -

29 7 0.93 2AM-LB7 30 16 10 33 8 0.92  !

2AM-LBS 30 21 3 1G 2 0.98  ;

2AM-LB9 24 6 7 23 7 0.93 2AM-LB10 24 25 7 23 7 0.93 2AM-LB20 30 5 6 19 5 0.95 2AM-LB21 30 4 7 23 -

6 0.94 2AM-LD30 24 24 11 38 11 0.88 1

1 J

e h

e 9

TABLE 6D PAGE 10F 2

SUMMARY

OF POWER TRAY TEMPERATURE RISES i FOR ONE HOUR 3M M20A 4

' l l

l l

1 1

HEAT GENERATED , TRAY WIDTH LENGTH FER LIN FOOT DELTA T DERATING TRAY ID# (IN) (FT) (WATT) (BTU /H) (DEG C) MULTIPLIER

_____ ___ ______ __ ___ __________ j 1AG-LA30 12 36.5 7 24 12 0.88  !

l 1AG-L31 30 7.5 9 31 7 0.93 1AG-LB2 30 11 8 28- 6 0.94 }

1AG-LS3 30 9 8 27 6 0.94L

]

1AG-LB4 30 7 22 75 16. 0.82' l

1AG-LB6 24 12 7 24' 6 0.93 1AG-LB7 9 42 '7 .

24 14 0.84 1AG-LES 9 9.5 1 3 2 0.98  :

1AG-L310 9 17 0 0 0. 1.00 [

1AG-L311 30 14.5 5 18 4 0.96 l 1AG-LB12 30 9.5 0 1. O '1.00

, 1AG-LB14 13 31 5 17 6 0 94 1AG-LS15 18 54.5 5 17 6 0.94 ,

1AG-LB19 12 31 2 8 4 0.96 1AG-LB23 30 13.S , 0 0 . 0 1.00 .

1AG-LB24 30 18.5 8 28 6 0.94  ;

1AG-LS25 18 17.5 6 22 8 0.92 1AG-L326 12 52 6 22 11 0.89 -

.23 0.73 1AM-L31 24. 71.5 26- SS .f 1AM-LS2 30 17.5 26 SS 19 0.7S '

1AM-LB3 30 10 33 112 24. .0.71 1AM-LB4 30 19.5 31 , 104 23 0.74 i 1AM-LB5 30 10 27 93 20 0.77 1AM-LB6 30 16 18 63 14 0.85 j

! 1AM-L314 24 17 16 56 15 0.84 LAM-LB15 24 6.5 16 56 15 0.94 -

1AM-LB16 24 6.5 12 41 11' O.SS i F. 1AM-LB19 18 6.5 0 0 0 1.00 i 1AM-LS21 24 14 6 19 5 0.95' l

l. . 1AM-LB22 24 34.5 6 19 .

5 0.95 l l, 1AM-LB23 9 54.5 13 44 26 0.69-1AM-LB27 18 62 13. 45 16 0.83 I i l

l i t

l 6 r

l

i

. . TABLE 6D PAGE2OF 3

SUMMARY

OF POWER TRAY TEMPERATURE RISES FOR ONE HOUR 3M M20A l

l HEAT -

GENERATED TRAY WIDTH LENGTH PER LIN FOOT DELTA T DERATING TRAY ID# (IN) (FT) (WATT) (BTU /H) (DEG'C) MULTIPLIER 2AG-LB2 24 12 2 6 i O.98 2AG-LB5 30 38 19 66 15 0.94 2AG-LBS 24 9 11 37 10 0.90

2AG-LB9 30 5 18 63 14 0.85 2AG-LB10 30 5 10 so / O.92 2AG-LB11 30 10 10 33 7 0.92 2AG-LB12 30 14 10 34 7 0.92 2AG-LB13 30 11 2 6 1 0.99

, 2AG-LB17 30 30 .S 29 6 0.94 2AG-LB18 30 11 6 22 5 0.95 2AG-LB19 12 44 6 22 11 0.99 2AG-LB29 12 48 1 3 . 2 .O.98 2AM-LB1 24 55 20 68 18 0.80 2AM-LB2 30 16 11 38 9 0.91 2AM-LB3 30 11 11 US S O.91 i 2AM-LB4 30 20 14 49 , 11 O.99 2AM-LB5 30 11 ~ 9 29 6 0.93 2AM-L36 30 16.5 9 29 6 0.94 2AM-LB7 30 16 10 30 7 O.92 2AM-LBS 30 21 3 -

10 2 0.98 2AM-LB9 24 6 7 23 6 0.94 2AM-LS10 24 25 7 23 6 0.94 2AM-LB20 30 5 6 19 4 0.96 2AM-LB21 30 4 7 23 5 0.95 2AM-LB30 24 24 11 38 10 0.89 l

l D

9 l

i E

I l\

l

TABLE SE PAGE 1 OF 2

SUMMARY

OF POWER TRAY TEMPERATURE RISES FOR THREE HOUR 3M M20R HEAT GENERATED ,

TRAY WIDTH LENGTH PER LIN FOOT DELTA T DERATING TRAY ID# (IN) (FT) (WATT) (BTU /H) (DEG C) MULTIPLIER 1AG-LA30 12 36.5 7 24 12 0.88 1AG-LB1 30 7.5 9 31 7 0.93 1AG-LB2 30 11 8 23 6 0.94 1AG-LB~ 30 S S 27 6 0.94 1AG-LB4 30 7 22 75 17 0.82 1AG-LB6 24 12 7 24 7 0.93 1AG-LB7 9 42 7 .

24 15 0.84 1AG-LBS 9 9.5 1 3 2 0.98 1AG-LB10 9 17 0 0 0 1.00 1AG-LB11 30 14.5 5 18 4 0.96 1AG-LB12 30 9.5 0 1 O '1.00 1AG-LB14 19 31 5 1.7 6 0.94 1AG-LB15 18 54.5 5 17 6 0.94 1AG-LB19) 12 31 2 S 4 0.96 1AG-LB23 30 13.5 0 0 - 0 1.00 1AG-LB24 30 18.5 8 29 6 0.94 1AG-LB25 18 17.5 6 22 9 0.92 1AG-LB26 12 52 6 22 11 0.89 1AM-LB1 24 71.5 26 SS 24 0.72 1AM-LB2 30 17.5 26 SS 19 0.78 1AM-LB3 30 10 33 112 25 0.71 1AM-LB4 30 19.5 31 , 104 23 0.7~ I 1AM-LB5 30 10 27 93 21 0.77 1AM-LB6 30 16 18 63 14 0.85 1AM-LB14 24 .,17 16 56 15 O.S3 1AM-LB15 24 6.5 16 56 15 0.83 1AM-LB16 24 6.5 12 41 11 0.88 1AM-LB19 18 6.5 0 0 0 1.00

, 1AM-LB21 24 14 6 19 5 0.95 1AM-LB22 24 34.5 6 19 5 0.95 1AM-L323 9 54.5 13 44 27 0.68 1AM-LB27 19 62 13 45

  • 16 0.83 a

TABLE SE PAGE I OF 'a

SUMMARY

OF POWER TRAY TEMPERATURE RISES FOR THREE HOUR 3M M20R h

HEAT' GENERATED- ,

TRAY ,

WIDTH LENGTH PER LIN FOOT DELTA T DERATING '

TRAY ID# (IN) (FT) (WATT) (BTU /H) (DEG C) MULTIPLIER  !

1AG-LA30 12 36.5 7 24 -12 0.88 '

l 1AG-LB1 30 7.5 9 31 7 _. 0_. 9 3 1AG-LB2 30 11 8 28 6 0.94 1AG-LBC 30 8 8 27 6. 0.94 1AG-LB4 30 7 22 75 17 0.82  :

'- 1AG-LB6 24 12 7 24- 7 0.93 l 1AG-LB7 9 42 7 -

24 15 0.94 ,

1AG-LB9 9 9.5 .1 3 2 .0.98  :

1AG-LB10 9 17 0 0 -

0 1.00  !

1AG-LB11 30 14.5 5 18 4 0.96 l 1AG-LB12 30 9.5 0 -1 O '1.00 q 1AG-LB14 18 31 5 1.7 6 0,94 1AG-LB15 18 54.5 5 17 6 0.94' '

i 1AG-LS193 12 -

31 2 8' 4' O.96  !

l. 1AG-LB23 30 13.5 , 0 O . O 1.00 .;
1AG-LB24 30 18.5 8 28 6 0.94  !

! 1AG-LB25 18 17.5 6 22 8 0.92 [

1AG-LB26 12 52 6 22 11 0.89  ;

1AM-LB1 24 71.5 26 88 24 0.72 l 1AM-LB2 30 17.5 26 89 19 0.78 .

I 1AM-LB3 30 10 -33 112 25 0.71 1AM-LB4 30 19.5 31 , 104 23 0.73  ;

1AM-LB5 30 10 27 93 21 0.77  ;

30

~

1AM-LB6 16 18 63 14 0.95 L 1AM-LB14 24 17 16 56 15 0.83

' 1AM-LB15 24 $.5 16 56 15 -0.83 i 1AM-LB16 24 6.5 12 41 11 0.99  ;

1AM-LB19 18 6.5 0 0 0 1.00  :

. 1AM-LB21 24 14 6 19 5 0.95 1 1AM-LB22 24 34.5 6 19 ,

5 0.95 1AM-LB23 9 54.5 13 44 27 0.68 '

1AM-LB27 18 62 13 45

  • 16 0.83 -

e f .

t

. l. .'* ,

(.

TABLE SE PAGE 2 OF 2

SUMMARY

OF POWER TRAY TEMPERATURE RISES FOR THREE HOUR 3M M20R HEAT GENERATED TRAY WIDTH LENGTH PER LIN FOOT DELTA T DERATING TRAY ID# (IN) (FT) (WATT) (BTU /H) (DE8'C)-MULTIPLIER 2AG-LB2 24 12 2 6 2 0.98 2AG-LB5 30 38 19 66 15 0.84 2AG-LBS 24 9 11 37 10 0.90 2AG-LB9 30 5 18 63 14 0.85 2AG-LS10 30 5 10 33 7 0.92 2AG-L311 30 10 10 33 7 0.92 2AG-LS12 ~0 a 14 10 34 8 0.92 2AG-LS13 30 11 2 . 6 1 0.99-2AG-LB1/ 00 30 8 28 '6 0.94 2AG-LB18 30 11 6 22 - 5 0.95-2AG-LB19 12 44 6 22 11- 0.89 2AG-LB29 12 48 1 3; - 2 0.98 2AM-L31 24 55 20 68 19 0.79 2AM-LS2 30 16 11 38 9 0.91 2AM-LB3 30 11 11 38 9 0.91 2AM-LB4 30 20 '

14 49 ,

11 0.88 2AM-L35 30 11 9 29 7 0.93 2AM-LS6 30 16.5 8 28 6 =0.93 2AM-L37 30 16 10 as / 0.92 2AM-LBB 30 21 3 -

-10 2 0.98 2AM-LB9 24 6 7 23 6 0.93 2AM-LB10 24 25 7 23 6 0.93 2AM-LB20 30 5 6 19 4 0.96 2AM-LB21 30 4 7 23 5 0.95 2AM-LS30 24 24 '11 38 10 0.89 e

4 4

e e

9

l TABLE 6F PAGE 10F 2 l l

SUMMARY

OF POWER TRAY TEMPERATURE RISES I FOR ONE HOUR 3M M2DR  !

l l

HEAT GENERATED . TRAY WIDTH LENGTH PER LIN FOOT DELTA T DERATING TRAY ID# (IN) (FT) (' WATT) (BTU /H) (DEG C) MULTIPLIER 1AG-LA30 12 36.5 7 24 10 0.90 l

1AG-LS1 30 7.5 9 31 6 0.94 1AG-LB2 30 11 S 23 5 0.95 1AG-LB3 30 8 8 27 5 0.95 1AG-L34 30 7 22 75 14 0.85 1AG-LB6 24 12 7 24 6 0.94

( 1AG-LB7 9 42 7 24 12 0.87 1AG-LB8 9 9.5 1 3 '

2 0.98 1AG-LB10 9 17 0 0 O 1.00 1AG-LB11 30 14.5 5 18 ~

3 0.97 1AG-LB12 30 9.5 0 1 0 '1.00 1AG-LS14 18 31 5 17 5 0'.95 1AG-LS15 18 54.5 5 17 5 0.95 1AG-LB19 12 31 2 8 3 0.97 l l 1AG-LB23 30 13.5 0 0 -

0 1.00 1AG-LB24 30 18.5 9 28 5 0.95

~ 1AG-LS25 18 17.5 6 22 6 0.93 i 1AG-LB26 12 52 6 ~

22 9 0.91 )

l 1AM-LB1 24 71.5 26 88 20 0.77 l 1AM-LB2 00 17.5 26 88 16 0.82 l

l 1AM-LS3 30 10 33 112 21 0.76 1AM-LS4 30 19.5 31 . 104 20 0.78 1AM-LB5 30 10 ~

27 93 17 0.91 1AM-LB6 30' 16 18 63 12 0.87 1AM-LS14 24 17 16 56 13 0.86 1AM-LB15 24 6.5 16 56 13 0.86 1AM-LB16 24 6.5 12 41 9 0.90 1AM-LS19 18 6.5 0 0 0 1.00 1AM-LB21 24 14 6 19 4 0.95 1AM-L322 24 34.5 6 19 . 4 0.95

! 1AM-LS23 9 54.5 13 44 23 0.74 1AM-LB27 18 62 13 45 13 0.36 l

t .

I i

9

TABLE 6F PAGE3OF 2 -

SUMMARY

OF POWER TRAY TEMPERATURE RISES FOR ONE HOUR 3M M20R l

l HEAT -

GENERATED TRAY WIDTH LENGTH PER LIN FOOT DELTA T DERATING TRAY ID# (IN) (FT) - (WATT) . (BTU /H) (DEG C) MULTIPLIET; 2AG-LB2 24 12 2 6 1 0.99 2AG-LB5 30 38 19 66 13 0.87 2AG-LS8 24 9 11 37 8 0.c* .

2AG-LS9 30 5 18 63 12 C . 6~

2AG-L310 30 5 10 33 6 C.94 2AG-LS11 30 10 10 3~ 6 0.c4 2AG-LB12 30 14 10 34 6 0.@~

2AG-LB13 30 11 2 6 1 0" 2AG-LS17 30 30 ,8 28 5 6. M 2AG-LS18 30 11 6 22 4 O. %

2AG-LB19 12 44 6 22 9 0 '? '

2AG-LB29 12 48 1 3 . 1 .% 9 e 2AM-L31 24 55 20 68 16 0.90 f 7 2AM-L32 30 16 11 38 0.92 2AM-LS3 30 11 1.1 38 7 C c/2 2AM-L34 S' 20 14 49 ,

9 0.90

! 2AM-LB5 30 11 9 29 6 0.94 2AM-L36 30 l'6. 5 8 2S 5 0.94

! 2AM-LB7 30 16 10 33 6 0.93 CAM-LSS 30 21 3 10 2 0.98 2AM-LB9 24 6 7 23 5 0.94 2AM-LS10 24 25 7 23 5 0.94 2AM-LB20 30 5 6 19 4 0.96 2AM-L321 30 4 7 23 4 0.95 l

l 2AM-LS30 24 24. 11 38 9 0.91 l

t

\

  • i I

O L

l I

I I

I OO*O 06 06 1 ti O 06 68 I OC*O O. 88 1 1

  1. C*O C- 49 '

SC*O o 98 CO*O f. a 28

~

GC*O s '- WB LC*O a 28 Ot*O W. CB Ct*O 06 IS G#*O 06 08 Lt*O 06 64 6t*O 06 84 IG*O 06 44

. EG*O 06 94 GG'O 06 GL LG*O 06 t4 SG*O 06 CL 09'O 06 CL C9*O 06 IL 29'O 06 04 99'O 06 69 99'O . 06 89 89'O 06 49 69*O 06 99 IL*O 06 99 ZL*O -

06 99 CL'O 06 C9 GL'O 06 E9 94*O 06 T9 LL'O 06 09 6L'O 06 69 08'O 06 BG 18'O 06 LG CS*O 06 9G

  1. 8*O 06 99 G8"O '

06 #G 98*O 06 CG 48'O 06 CG

. 88'O 06 TG

6S*O 06 OG l 16*O 06 6e C6*O 06 89 26*O 06 Lt
  1. 6*O 06 9t G6*O 06 GP 96*O 06 tt

. 46*O 06 C#

86*O 06 C#

66*C 06 It OO*T 06 Or

_-- - = ____ _ -

801303 BNI1V83G dW31 M010nGNOO dW31 IN3ISWV I/ I D1 el (ELSL) N V33d! Mad TIDG3H3S DN11YH30 A.u2VmW 4 DEY1 l

. ~ O0

  • O - .06 '06 t1*O 06. 68 I

OC*O 06 88

  1. C*O 06 -

48 ,

GC*O 06- 98 l

- CC'O 06 GS GC*O 06 #8 LC*O 06 CB Ot*O 06 CS Cr*O 06 18 i St *O ' 06. OB LP*O 06 64 6t'O 06 84 TG*O 06 44

, 'CG*O 06 94

'GE*O 06 G4 l 4G*O '06 94 BS*O 06 C4

09"O 06 C4 e C9"O 06 T4 ,

29'O 06 04 l G9'O 06 69  :

99'O . 06 89 .!

89'O 06 49 69'O 06 99

, 14*O 06 E9 l C4*O #9 1 - -

06 CL*C .06 C9 G4*0. 06 C9 '

I 94*O , 06 19 44*O 06 09 64*O: 06 6G 08'O' 06 GG 18'O 06 4G C8*O 06 9G kB'O 06 GG G8 'O . ,, 06 #G 98*0-- 06 CG

,' 48'O ' 06 CG

88'O 06 TG 68'O 06 OG b T6*O 06 69 C6'O 06 89 C6*O 06 4#
  1. 6*O 06 9P G6*O 06 Gt 96*O 06 tt l_ . 46*O 06 '7t 5

86 0 06 Ut

! '66'O 06 ie

00*I 06 Or

. 8013Vd ONI1V83G dW31 8013nGNO3 dW31 1N3IEWV I/,I D1 el i

! tusu em n:wi um rinames owanno u.overv 4 DEV1 i

' u._

, . . . , _ _ , - , - . . . . . . _ . . , - . _ _ , - _ . , _ _ . . . . . - _ _ . . . . _ , _ , . - . . ~ .. _

  • TABLE 9 L THERMOCOUPLE LIST FOR TEMPERATURE SURVEY EL 715 The following is a list of Type T thermocouples installed on Elev. 715' in the auxiliary building and connected to the 14 point Type T recorder.

[ TC1 - Ambient Temperature Near 1AM-TA10 TC2 - Open secion of 1AM-TA10 ,

TC3 - Covered Section of 1AM-TA10

, TC4 - Covered and Wrapped Section of 1AM-T 10 TC5 - Open Section of 1AM-TAS TC6 - Covered Section of 1AM-TA8 TC7 - Covered and Wrapped Section of 1AM-TA8 -

TC8 - Covered and Wrapped Section of 1 M-TA9 TC9 - Wrapped Section of 1AM-L327* .

l TC10- Unwrapped Section of 1AM-LB27*

TC11- Ambient Temperature Near 1AM-LB27 ,

1 AC12- Wrapped Section of 1AM-TA10 (Back up TC)

TC13- Wrapped Section of 1AM-TA8 (Back up TC)

TC14- Wrapped Section of 1AM-LB27 (Back up TC)*

  • Thermoccuple installed on the diesel generator feeder.

i.

~

5241F

\ ..

I

!l

l.
  • TAELE 10 ' ,

j; ' -

TMERMOCOUPtX usT FOR TERrERATURE SURVEY 1

RELAY ROOne l The following is a list of Type T thermocouples installed in the relay room

Elev. 713 ' .

. TC1 - Ambient Temperature Near 1AM-L323 '

TC2 - Wrapped Section of 1AM-LB23*

  • TC3 - Wrapped Section of 1AM-LB23 (Back up)* >

i I

  • Thermocouple installed on the diesel generator feeder. '

4 I

b 8

.. ?

E i

O l

l i

. l

. 1

'0 4 e

52417 O

I

.1 i

- . - .. . .. . .- . . .