ML19270G037

From kanterella
Jump to navigation Jump to search
Addl Info on Justification of Mark II Lead Plant Safety Relief Valve Load Definition.
ML19270G037
Person / Time
Site: Shoreham File:Long Island Lighting Company icon.png
Issue date: 05/15/1979
From:
STONE & WEBSTER, INC.
To:
Shared Package
ML19270G036 List:
References
REF-GTECI-A-08, REF-GTECI-CO, TASK-A-08, TASK-A-8, TASK-OR NUDOCS 7906010203
Download: ML19270G037 (14)


Text

.

g* e-ADDITIC;AL I?!FCPS.ATIC?!

01 JUSTIFICATICI OF V.AEK II LEAD PLA!7f SRV LOAD DEFI?!ITIC thy 15,1979 Stone & k'ebster 1

2268 227 7006010zos

4 I TABI2 0F CC .TP.T3 Section Par.e

1. Introducticn 1
2. Low Frequency Piping Results 2 2.1 Response to IIFE Request !!o.1 2 2.2 Response to IIRC Request flo. 2 3 3 Cenclusion 6 1

2268 228

1. INTRCDUCTIC!:

The report entitled " Justification of thrk II Lead Plant CRV Lcad Definiticn" submitted to the NRC en thrch 30,1979 (EURC-374) demonstrates the ccnservatism present in the Ra=shead Lead Definition. The concerns expressed by the "RC regardinC SRV bubble phasing and frequency character-istics are addressed and furthermore, ccmparicens of the effects on the plant are made with those resulting frca a ccncervatively constructed load definitien tased en the KWU T-Quencher. This T-Quencher is the actual discharge device installcd in Shoreha: and other lead plants.

This report presents additienal informaticn specifically requested in a recent cctrunication (1) with the URC based upon a review of the thrch 30 report.

The two specific NRC requests of Shoreham were the following:

1. Shoreham to cctplete Table 2 of the SRV load repcrt by 3

including the same information for the lcw frequency piping systets presented in Table 3

2. Sucaittal by Shoreham concerning a discussicn of odal participaticn fer piping analysis. Detailed analysis results are rcquired for the low frequency systems presented in Table 3 concerning hcw much sedal participatien there is for the fundamental codes.

This data is required in order to resolve uncertaintics about 1cw frcquency piping systen responses.

(1) Telephcne ccenunicaticn cn April 27,19?? betueen NRC, CaaE, c&W asa L.

2268 229

_2

2. Low Frecuency Pining Results 2.1 Resoonse to fiRC Recuest '!o. 1:

Table 1 presents the support load and pipe stress comparisons at three (3) selected locaticns for the four (4) low frequency subsystems identified in table 3 of the original report. Since it is impractical to present detailed infernation for all piping locations, the follcuing selection criteria, in order of priority, were used:

1. Locaticns of high stress.
2. Locaticns representing all types of piping cc=ponents.

3 Locatiens evenly distributed along piping subsystem.

It is emphasized that the results at tnese selected locatiens are repre-sentative of the higher stress locations. Results at low stress locaticns 1

are relatively unimportant to plant safety and therefore net presented here (see section 6.3 of the original repert).

2268 230

_3_

2.2 Resnonse to "RC Recuent No. 2:

This section contains a discussien of todal participatien in the dynamic response of piping systems to SRV 1 cads. Particular censideratien is given to systemr which have fundamental frequencies low enoug+ to have one or more mcdes in the frequency range in which the T-Quencher (TQ)

ARS may be greater than the Ratshead (RH) ARS.

The modal response of a culti-degree of freedca systen subject to dynamic support motion (such as a piping system subject to SRV actuation building vibraticns) depends en two basic parameters. The first is the medal partici-paticn facter which is a function of physical characteristics, i.e.,

gecretry and mass distributicn. The second parameter is related to the emplitude (G's) cf the support acceleration at the cedal frequency, i.e.,

the ARS value. Fcr a typical piping systen with cceplex geometry (three g

dimensicnal pipe rcuting, cultiple bends, nuncrcus interier pipe supports unevenly spaced, branch lines, etc. ) and many concentrated tasses (valves, reducers, elbows, tees, equipment, etc.) ' the amplitudes of the redal participation factors are quite varied with significant facters associated with many nodes frem the very lev to the very high frequencies. Large modal responses will cecur at codes with both significant todal participatien factors and significant ARS amplitudes. The tctal response is contributed to by many =cdes of ecmnarable significance ever a wide rance of frequencies.

For the complex piping systens in the Shoreham Nuclear Power Staticn the centri-bution frca the fundamental (lcuest frcquency) =cde is of no special significance.

It may be among the test or least i portant dependirq cn t'.e po rtmeters discussed above. 77/0 77i LJi LL00

Tables 2 through 6 present the mede-by-acde contributions to resultant bending =ctents (acting en the pipe cross secticn) in typical piping systems when subject to SRV building vibratiens. These systems include one ' higher' frequency system (Table 2) for comparisen of behavier with the four ' low' frequency syste=s (Tables 3 through 6). The data presented on these tables is based upon the actual building amplified response spectra (ARS) for both the RH and TQ loads. These building ARS are applied simultaneously in the plant N-S, E-W and vertical directions and vary from elevaticn to elevaricn within the reactor building. Figure 6-1 presented in the original report frc= which the NRC has requested additicnal' information is identified as an " Idealized ARS" and was prescnted in crder to show the majcr features of response. It should not be uscd to make quantitative ec.rrarisons for specific piping systems even though it dces 1

reflect overall trends. Inspecticn cf the tabulatcd results ccafirms the follcuing important points:

1. Many modes contribute significantly to the total response regardless of the fundamental frequency, the locaticn cf piping, or the discharge device.
2. The centributien frca the fundamental mcde is of no special consequence.

3 For the system with all frequencies above 7 HZ (Table 2) all medal respcnses frca the TQ 1 cad are less than the medal respenses from the RH load.

4 For systems with lower frequencies all modal responses below 7 HZ frca the IQ lead are greater than thcce frc the Rh lead, while all modal respenses above ahcut 15 HZ are higher frca the RH lead. Frc=

7 to 15 HZ results are comparable.

2268 232

5 Systems with the lowest fundamental frequencies have cnly a small percent cf their significant =cdes belov 7 HZ.

6. Because many =cdes centribute to the total response, the RH lead provides conservative results even when a few modes occur in the frequency range where T-Q response'is the greater.

2268 233 1

CQ CLUSIrt!

The detailed analysis results presented in this report demenstrate that the

'H load provides conservative results even when the fundamental mode of a piping system is lcv encuch that a few modes occur in the frequency range where the TQ ARS is greater than the RH ARS. The primary reascn is that so many modes centribute to the total system response that the centributicn from those in the lov frequency range is only a small part of the total.

It is therefore concluded that piping systems designed to ramshead load can adcquately accc =cdate the T-Quencher lead. This document further reinforces the justification of using ranshead SRV load definiticn as the 1hrk II lead plant SRV lead definition for plant component design.

The additional information presented in this report is intended to resolve uncertainties regarding the respense of leu frequenc3 piping systems and complete the dccutentation involving the Lead Plant SRV Ramshead Lead Definition as delineated in the 1brch 30,1979 submittal.

2268 234

TATILE 1 TYPICAL REGUI.TL A~ . :.ECTED I C ATIC:0 PAitT 1 JUi PL..T LLAD C"'?An f.1:

CR'. a y PIPI:!G II' N RH+CBE IM 5RV77+CEE GUBSYGD! C Q '.P G ;E'iT (lb or ft-lb) (lb or ft-lb) SR'.TO Centrol Rcd Restraint 65 42 35 1.44 Drive 1265 Resultant Fcree Restraint 85 16 13 1.40 Resultant Force Restraint 110 34 33 1.09 Resultant Fcree Closed Lccp Restraint 95 1 ,81 5 1,801 1.C8 Cooling Water Resultant Fcree 031 Restraint 175 2,041 2,013 1.18 Resultant Fcree Anchor 5 3,1 31 3,052 1.17 Resultant Menent Reactor Eater Ancher 184 649 424 1.91 Cleanup Resultant Mcnent 013 Snubter 186 567 417 1.40 Axial Fcree Snubbcr 623 338 279 1.44

.v91 r rca ,

I'ain Stcan Anenor 340 147,CCO 135,0C0 1.11 25CO Rcsultant :'.cnent Rest:nint 365 33,CCO 3 30,CCO 1.12 Resultant Fcree Enubter 4CG 13,CCO 10,3CO 1 31 y;,1 pm ,n TABLE 1 PART ? FRIt'7Y E0 E.d.. !"T E" C Y C M AR i d:

PIPII'G I;+5RVgg+ CEE  : -dR'.t;t 0EE 5Rt. : g (psl)

(pslj3

,m,.,.,-, ,, dy ...'.m^

LU J LI Ui nci v , ss J L . . u. 1,., r . . n ,

i Centrcl Red Valve 1 8,076 7,631 1.C8 Drive 1265 Eltow 50 4,353 4,176 1.07 Run 185 6,65s 6,355 1.17 Closed Lcep Eltcw 10 4,720 4,639 1.07 Cooling Water Tee 205 3,078 2,932 1.16 031 Run 275 5,7C6 4,645 1.38 Reacter '.:ater Yalve 151 8,2C6 7,319 1.50 Cleanup Run 919 7,795 7,280 1.39

- 4r ,

C 1 s,

..t . ; c t r n/

.i c , w, - ,, y , :. < i..

hin attc- . u '. e ...> d,, > c. , .. :: s. .

I 25c0 Eltcw 415 8,393 E,783 1.27 Run 440 13,161 12,973 1.22 m/0 7'D"

(. O LJ

TALIE 2 FW 301 MODE-EY-: TIE C"-"RIntr K?

REstiLT A!;T ;" "r?;T.,

REDi CFR 65 TEE 67 FlN.'J 8 ' l Rii TQ hii TQ Rii T's FREQUE!CY (ft-kip) (ft-kip) (ft-kip) (ft-kip) (ft-kip) (ft-kip;l MODE (HZ) l l

1 7.1 1.5 0.9 0.6 0.4 0.9 C.5 l 2 90 8.2 8.1 16.6 16.4 12.2 12.0 1.2 1.2 4.4 43 2.9 2.9 3 94 (2) 6.3 45 {

4 11.9 10.3 74 4.5 3.2 ,

-- - 13 7 - - - 4.4--- ----34 -- --

4.0

--- - - -3.1-- - - - 3.2. , - - --

2.c- - -

5 7 19 6 6.9 47 37 25 5.1 34 8 22.7 10.7 7.3 7.5 5.2 2.0 1.4 9 24 4 36 3.2 1.9 1.7 2.3 2.C i 10 26.3 4.7 2.6 4.6 2.6 0.9 05 i 11 26.5 0.8 05 0.7 0.4 0.1 0.1  !

12 28.6 2.5 1.6 8.7 55 4.5 2.8 13 30 3 59 33 6.4 3.6 10.4 59 14 32 3 (3) 2.0 1.4 1.2 0.8 3.2 2.?

15 33.3 7.9 51 13.2 8.6 8.8 5.7 I 16 34 5 6.7 38 0.6 03 9.7 5.4 i 17 37.0 2.9 2.3 1.8 1.4 0.3 0.2 l 18 38 5 2.8 2.2 2.9 23 4.6 3.6 i 19 40.0 4.1 30 4.5 33 57 4.1 I 20 40.0 1.8 1.2 0.6 0.4 0.9 C.6 21 43 5 3.8 2.9 1.0 0.6 1.3 0.o 24 58.8 1.4 0.9 1.8 1.2 0.8 0.e I 25 58.8 0.6 0.4 03 i 0.2 0.2 0.2 (4) j SRSS 31.1 18.7 29.1 22.3 25.2 18.6 i Above 4

(5)

Cenbine l All 35.6 22.3 36.7 28.0 32.2 23.6 Modes I

!!cten:

(1 ) Lev frcquency ncdes telcw 7 He, TQ> RH.

(2) Intermediate frcquenc:< ncdes 'cetuecn 7 to 15 He, T;~ RH.

(3) High frcquency mcdes ateve 15 "c, EH) T;.

(4) For refercnce only, centritutions frcm cther =cdes are lecc significant.

(5) Basis for streno calculaticn, ccnents are ccabincd by Reg. Guide 1.92 Orouping Methcd.

2263 236

TABLE 3 CRD 1265 t'0DE-FY "'ZE Cf ':TR E.UTIC'l RESULTA:.7 :CE:.T5

'. . L'. E 1 E!!'* . . 'O EU" 1 M _

FREQUE::CY ici TL Rii TQ RH K MODE (H2) (ft-lb) (ft-lb) (ft-lb) (ft-lb) (ft-lb) (ft-lb) ,

1 2.9 0.0 1.1 0.0 0.0 0.0 4.5 l 2 51 (1 ) 1.0 9.0 0.0 2.4 0.0 4.5 i 3 _.6. 6_ _ _ . ., _ 2 . 2 _ _ .,__9.0_____ 1.0 2.2 2. 0_ _ _ _ _9 . 9. . !

8.0 2.2 0.0 0.0 3.6  :; .c 4--- 2.4 5 10.0 7.3 15.3 2.0 35 2.2 %9  !

6 11.8 (2) 7.1 19.0 2.0 4.4 1.4 4.1  !

7 12.5 - - . . -- 12.2 .- -

. 23.1----. -

32 4.5 2.0 2.2 I 5 g_

9 16.7 2.0 1.5 1.0 1.1 1.C 1.1 10 19.2 1.4 1.5 0.0 0.0 1.0 1.1 11 25.0 0.0 0.0 0.0 0.0 3.0 1.9 I 12 27.0 11.2 5.6 1.0 1.1 3.2 2.?

13 27.8 3.6 1.5 0.0 0.0 7.0 2.2 14 32.3 (3) 11.9 6.1 0.0 c.0 1.0 1.1 15 37.0 11.2 8.9 1.0 1.1 0.0 0.C i 16 38.5 12.5 9.4 1.0 1.1 1.4 0.C 17 47.6 1.0 0.0 0.0 0.0 7.0 5.5 18 50.0 1.0 1.1 0.0 1 0.0 30 2 . .'

19 50.0 2.2 1.1 1.0 1.1 2.0 2.2 20 58.8 3.3 2.4 1.0 1.1 1.0 0.0 .

21 62.5 20.3 16.8 9.1 7.8 1.0 1.1 22 66.7 4.2 2.2 1.0 1.1 0.0 0.0 .

(4) sRss  !

Above 51 .4 46.0 12.7 12.0 2C.9 13 5 .

(5)

Combine All 53.8 50.8 13.6 12.9 22.8 19.6 i Modes 77/0 tLJJ 777 LJJ Notes:

See Table 2 for Fcotnotes.

TABLE 4 CLCU 031 "0EE-EY "0TE CC""RIFJTIC" RESIJLTn!.T l'DE:TL ELEC'.i 10 TEE 205 RU:. 275 i FREQUE'.'OY RH T; RH TQ F3i T:.

MODES (HZ) (ft-lb) (ft-lb) (ft-lb) (ft-lb) (ft-lb) (f t-lb '; }

1 3.6 10. 61. 4. 19. 4. 19.

2 4.3 12. 85 5 32. 7. 45 3 4.9 (1) 11. 113 11. 122. 17. 183 4 55 21 . 288. 6. 83 5 76.

-. -1c5-- 71 0 . 9 55

- ---6.1 g

-- -- 7.--- ---45 - - - - - - - - --- ---

--g---

7 8.9 153 286. 64. 120. 21 . 39 8 98 36. 37 44 46. 46. l.7 .

9 10.0 65 70. 19 20. 28. 29 10 11.2 (2) 11 2. 101. 24. 28. 12. 13 11 11.8 283 350. 16. 20. 22. 23.

12 12.7 Sc. 63 51 . 58. 21. ?5.

13 14.1 301. 274 138. 125 24. 22.

14 14.8- 210.

141. 102. 69. 35 23.

--~~

g5 ~ 17

~ 75 ' ' ~~7.657~ ~ ~ ~256.-- ~ ~ ~ 9 .- - 6. 3 2.

16 18.2 245 180. 2. 2

2. 5 3 17 19.2 6. 4 1041. 711. 1220. 267.

292. l 18 24.0 (3) 2. 1. 740. 507. 425 -

22 30.3 4 3 6C8. 446. 2698. 1977.

24 32.7 1. 1. 17. 13 60.  !.S .

(4)

SRSS l' Above 736. 734 1433 1233 3018. 2190.

l (5) i Combine I All 1C04 935 1463. 1262. 3C55 2220.

Medes Notec:

See Table 2 for Footnotes.

')}{}}

 .                                               TABI.E 5 RKCU 013 :/00E-EY L'rJ.r, Cel."RIEUTIC::

RE.SULT A :T :" :'1:;T3 RU:: 919 'EE,CCih f:'-

                                          !AI/.E 151                                            1 RH                 TQ      i     RH                T;                RH           T-FREQUE"CY MODES          (HZ)        (ft-lb)            (ft-lb)       (ft-lb)         (ft-lb)             (ft-lb)      (ft-lb)       l 1            4.9              0.                 2.            6.              83                  6.         83
0. O. O. O. O.

2 6.5 O. 3 6.6 (1 ) C. 1. 10. 43 10. 44. 6.8 0. O. O. O. O. O. 4 5-~~ 7.7 1. 1. ~ - 63 58. 17. 17. ~R

6. 11. O. O. O. O. I 6 7.9 8.0 0. O. O. O. O. O.

7 8 9.0 4 4 44. 53 28. 34. 0 11.1 1. 2. O. O. O. O. l 10 11.4 (2) 3 3 O. O. O. C. l 11.8 76. 147. O. 1. O. O. l 11

17. C. O. O. O.

12 12.5 14 l 12.8 19. 23 . O. O. O. O. I 13

8. 22. 21. 13. 11.

_15 . _14.1 _ ._ _ 8.__ ~~--~ ~~~ ~~ g-- _ .

                                               , _ _ _ _ 507 -   ~ ~ jI5 ~~~           13                13       ~ ~ ~4 .~'  i 18           16.1           138.                61.           79                34.               24.           11.    ;

20 16.8 8. 3 66. , 26. 30. 12. 19.4 138. 7/. 15 8. 3 1. 23 25 21.6 381. 19C. 23 11. 2. 1. 27 22.9 71. 44. 1C8. 66. 4. 2. i 28 23.0 100. 111. 73 51. 20. 14. , 29 24.1 235 169 254 184 15 11. 30 25.0 37. 25 29 20. 1CS. 73 25.0 (3) 61 . 42. 24 15 63 43 31 32 26.6 110. 8/. . 188. 143 8. 7.  ! 35 28.6 291. 198. 18. 12. 2. 1. i' 37 31.3 6. 3 42. 28. 11. 7. 39 32.3 10. 4 22. 14. 12. 7. 42 37.0 78. 57. 45 33 21. 15 44 38.5 19 14. 6. 4 29 24 47 43.5 68. 60. 5 4. 2. 1. ; 48 43.5 174. 125 21 . 15 5 3 I 51 47.6 78. 65 3 2. 2. 1. l 57 55.6 2. 1. 7. 4 55 37. i l (4 SRSS Above 664 437. 378. 286. 155 143 (5) Combine 938. 61 5 466. 331.. 213 1 '/3 I All Modes n- eo O7O l E ' d '## I;ot en : See Table 2 for Footnctes.

      .                                          TABLE 6 MS 25CO l'CDE-EY-Mai>E CU.TRIELTIO:

RESULTA?:T " :i :T.:, VA L'. E J /. 5 E'? "f. 41 5 P.C: uC F?@ UE';CT Rh 4 RH T 's Rh T ';. i MODE (liZ) (ft-kip) (ft-kip) (ft-kip) (ft-kip) (ft-kip) (ft-cip; 1 _5._1 _( 1_) _ 0.2 0.8 1.1 4.1 2.8 1C.9 i 2 13.5 4.6 53 3.8 4.3 3.3 3.5  ! 3 14.5 (2) 3.5 6.0 0.6 1.0 0.3 C.5 4 15.2 12.4 20.0 0.9 1.5- - - -- 0. 6--- - - - 0.o - 3___ _176.7 4.5 3.3 18.4 13.4 14.9 10.9  ; 6 17.9 39.3 23.7 03 0.2 0.2 0.1 7 20.8 2.1 1.2 9.2 52 93 53  ! 8 23.8 8.2 5.2 90 5.7 10.2 6.5 i 9 26.6 36.5 17.7 2. 7 1.3 3.6 1.7 1 10 29.4 22.2 31.4 1.3 1.8 0.4 0.6 11 30 3 (3) 1.9 2.1 1.2 1.4 1.6 1.8 l 12 35.7 3.7 2.7 22.0 16.2 15.3 11.3 13 37.0 6.8 5.4 20.3 16.0 14.3 11.3 i 14 43 4 0.9 0.6 2.9 2.3 27.7 21.4 , 15 43.5 0.1 0.1 1.3 1.1 44.2 37.7  ! 16 43.5 0.8 0.6 3.1 i 2.5 27 3 22.3 17 45.5 0.8 0.6 6.4 5.5 2.6 2.2 18 52.6 2.5 2.2 15.0 12.8 2.1 1.E 19 55 5 23 2.1 15.1 12.3 3.8 3.1 i SRS Above 61.1 49.2 44.0 34.1 66.2 54.6 (5) , Combine l All 63.5 51 .8 48.4 38.0 105.7 86.7  ! Modes i Notes: oqrn 7An (.LU0 LtU See Table 2 for Fcotnotes.}}