ML033640073
ML033640073 | |
Person / Time | |
---|---|
Site: | Beaver Valley |
Issue date: | 12/10/2003 |
From: | FirstEnergy Nuclear Operating Co |
To: | Office of Nuclear Reactor Regulation |
References | |
Download: ML033640073 (52) | |
Text
MAAP-DBA Code Meeting December 190, 2003
_g'7T-T 1
J=JEMCPC;
Agenda
- Introductions
- Objectives
- NRC comments after review of Pre-Application Report
- MAAP-DBA Code Features
- Single Node Containment Model
- Murtiple Node Containment
- Generalized Containment Modeling Features
- MAAP-DBA Code Benchmarking
- GOTHIC Comparisons
- Separate Effects Experiments
- Integral Effects Containment Experiments
- NOTRUMP Comparisons
- Results for Limiting Cases
- Staff Comments e Conclusions 2 I~JVNO A====
o bectives
- Provide Update on MAAP-DBA Model
- Discuss MAAP-DBA Code Benchmarking
- Review Results of Limiting Cases
- Obtain Staff Feedback on Pre-Application Report 3 =E~I WAIFSA_ t.waJ
'CO_*
MAAP-DBA Code Features Pre-Appliation and Final LAR Summary Containment Containment MAAP-DBA Results To Date and Parameter Mass/Energy Model Used Methods Precedents Benchmarks NRC Submittal Schedule LOCA: NRC Approved Single Node Stid Review Plan NRC Approved: GOTHIC 6.Oa Model Desciption Peak Pressure WCAP 10325-P-A MAAP-DBA Tagami Heat W-312 HDR - V44 This Pre-Application Report Gas Temperature Transfer C-E #1 HDR - T31.5 Cont Uner Temp No Entrinment W-212 BFMC D-16 iimiting Pressure Case:
10% Airborne Water In NRC Review: <45 psig Both Units C-E #2 This Pre-Application Report Remaining Cases:
_LAR 2004 MSLB Peak: NRC Approved Single Node Std Review Plan NRC Approved: GOTHIC 6.Oa Model Description Peak Pressure WCAP 8822-P-A MAAP-DBA Uchkda Heat Transfer W-312 CVrR #3 This Pre-Application Report Gas Temperature No Entrainment C-E #1 CVrR #4 Cant Uner Temp 8% Re vaporization W-412 CVrR #5 Umiting Pressure Case:
W-212 <45 psig Both Units In NRC Review: This Pre-Application Report C-E #2 Remaining Cases:
LAR 2004 LOCA: NRC Approved Multi Node Std Review Plan NRC Approved N/A Model Desciption NPSH WCAP 10325-P-A MAAP-DBA Natural Convection M&E This Pre-Application Report No Entrainment Current Plant Analysis:
10% Airborne Water Ucensing LAR 2004
.________ _ _Methods SBLQCA: MAAP Multi Node Std Review Plan NOTRUMP Bendimarking:
Cont Pressure Generated M/Es MAAP-DBA Natural Convection NUPEC M-7-1 This Pre-Application Report NPSH No Entrainment Plant Analysis:
Sump Water 10% Airborne Water Cook Station LAR 2004 Inventory __'
4 4I~~~~~I%1Q=.rVC >4C
Overview
- Plant Specific Application of MAAP-DBA to BVPS is supported by:
- Previous NRC Acceptance of Methodology for Design Bases Analysis at other plants as well as at BVPS
- Benchmarking against GOTHIC in BVPS Specific Analysis
- Benchmarking to Separate Effects Experiments
- Benchmarking to Integral Effects Containment Experiments
- Peak pressure remains less than current design basis
- No rerating required for atmospheric conversion 5 ~~~~~f=LAI 5 C> ;
Single Node Model o Tagami Heat Transfer Used for Calculating LOCA and Uchida for MSLB:
- Peak Pressure
- EQ Temperatures
- Liner Temperatures
- The same Tagami/Uchida correlations as in current licensing basis (Unit 2 UFSAR) are incorporated in MAAP-DBA.
- The Tagami maximum heat transfer coefficient is given as A 0.6 h m ax = 7 5 vtp l 6 iGE"i4C A m I_ f f
Single Node Model Where hmax Tagami heat transfer coefficient (Btu/hr-ft 2 - 0 F)
Ep Integrated energy released to the containment at the time of the first peak pressure (Btu),
V Containment free volume (ft3 ), and tp Time of the first peak pressure (sec).
- Before the first peak pressure is reached, the heat transfer coefficient is calculated as:
h = hmax (t/t) where t is the time in seconds after the accident.
7 =ffIV2C>O:O
Single Node Model e After the first peak pressure is reached, the following equation is used to calculate the heat transfer coefficient:
h=hg + (h -h ge-0Q5(t tp)
Where hog = The stagnation heat transfer coefficient = 2 + 50 X (Btu/hr-ft 2 -OF), and x = Steam/Air mass ratio.
8 -I=f
Single Node Model
- The Uchida heat transfer coefficient is given as h=HP= /(3.25Pt) if 0.01 <(Ps /Pt)o0.19 or h =He t if (Ps/Pt)>o.19 where h = Uchida heat transfer coefficient (Btu/hr-ft2 - 0 F),
H = Heat transfer coefficient for pure steam (200 Btu/hr-ft 2 -OF),
PS = Partial pressure of steam, and Pt = Total pressure of containment atmosphere.
9
Multiple Node Model
- Multi Node Model with Natural Convection Heat Transfer used for Calculating:
- LBLOCA NPSH and Sump Water Temperature
- SBLOCA Sump Water Level and Temperature
- Natural convection heat transfer is calculated based on correlation of the form of the average Nusselt number L
Nu =a(Ra)n =hconv kg 10 I=J="4X;
~E
-w ~ 0-~
CVo-eny
Multiple Node Model where Ra = Gr Pr Gr = compositional Grashof number
= p2 g/Apg/L 3 2
Pg Cpg Pr =
kg 11 JAIVC>QG 11 ~ ~
MAAP-DBA Code Featu res e During LOCA blowdown interval 10% of the non-flashed liquid is treated as airborne suspended water and the balance is directed to the sump water pool.
- For MSLB when gas is super heated, revaporization of condensate is allowed. The revaporization fraction is 8%.
- No Credit for Forced Convection Heat Transfer
- No Credit Taken for Entrainment of Water From Pools and Containment Surfaces 12 IE/I/C
MAAP-DBA Code Featu res
- Generalized Containment Model Addresses the following:
- Pressure and Temperatures in a Region (1)
- Heat Transfer to Passive Heats Sinks (1)
- Heat Removal by Active Systems (1)
- Flow rates between Containment Building Compartments (2)
(1) Applies to both single and multiple node application (2) Applies only to multiple node applications 13 F=EMCOC
~AI _on-m
MAAP-DBA Code Benchmarking
- GOTHIC Comparisons
- Comparisons of Limiting LOCA and MSLB Cases were run
- LOCA cases for DEHL
- MSLB cases:
- Unit 1 - 1.4ft 2 DER @300 power
- Unit 2 - 1.069ft2 DER © 0%0 power
- GOTHIC and MAAP-DBA used the same initial conditions (See Table 2-2)
- Single node containment model with Tagami/Uchida yielded good agreement for peak containment response (See Table 2-3) 14 FE OD3C
GOTHIC -MAAP-DBA Comparisons Table 2-2 Input Conditions for MAAP-DBA and GOTHIC Comparison GOTEHIC Version 6.Oa MAAP-DBA Nodes Single Single Entrainment (Pools and Films) Yes No Forced Convection No No LOCA Airborne Water Droplet Fraction 10% 10%
Spray Droplet Diameter 1000 microns 1000 microns LOCA Airborne Water Droplet Diameter 100 microns 100 microns Initial Containment Pressure 14.2 psia 14.2 psia LOCA: Heat Transfer (Short Term) Tagami Tagami MSLB: Heat Transfer Uchida with 8% Uchida with 8%
revaporization revaporization 15 -I=A=.I\fC>C
MAAP-DBA Code Comparisons Table 2-3 Summary of MAAP-DBA and GOTHIC Comparison Results Comparison LOCA MSLB Pressure Gas Temperature (OF) Pressure Gas Temperature (psia) @Peak Pressure (psia) (OF) @Peak Pressure MAAP- MAAP-Unit Sequence DBA GOTHIC DBA GOTHIC MAAP-DBA GOTHIC MAAP-DBA GOTHIC 1 Case 8L 57.57 57.41 267.4 266.3_ _ _
2 Case 3L 58.99 58.29 269.7 268.2 _ - -
1 Case 1SM - - - - 56.8 57.8 342.6 341.3 2 Case 16M -_- - - 51.5 1 52.9 327.1 329.8 16 j=EC>0
- - ~
GOTHIC -MAAP-DBA Comparisons Comparison of Pressure Results from MAAP-DBA and GOTHIC for Large LOCA (BVPS Case 8L) 60 s0 M
40
'.4I p...
30 94 a
20 1o 0
Time (Cac) 17 FAEAIC 17
GOTHIC -MAAP-DBA Comparisons Comparison of Gas Temperature Results from MAAP-DBA and GOTHIC for Large LOCA (BVPS Case 8L) 300 U-so 1-M-
2 DO
-4 25
-M L.)
100 1.
0 I15 T ifm e (tee) 18 =-a
GOTHIC -MAAP-DBA Comparisons Comparison of Pressure Results from MAAP-DBA and GOTHIC for MSLB (BVPS Casel5M) 60 s0 40 04-
&1-Cs 30 20 10 0 100 200 300 400 Time (soa) 19 .www- o- -* -~
GOTHIC -MAAP-DBA Comparisons Comparison of Temperature Results from MAAP-DBA and GOHTIC for MSLB (BVPS Casel5M) 350 Containment DDA ICodol -MULD.
300
-. I.~~~~~0T I 4* 250 U-
-h
-. I.I.-~~MA7 DM 94- 200 100 a 100 T (2010 300 400 Time (sac) 20 i nd n. w W 0 n .,
C1;
Separate Effects Experiments I- .. . .
Table 2-4 Separate Effects Tests Used for MAAP-DBA Containment Response Benchmark Benchmark Test Application
- 1. U. of Wisconsin Flat Plate Condensation heat transfer (HMTA with forced convection used for multiple node models)
- 2. PHEBUS FPTO Condensation with non-condensables present
- 3. Dehbi Condensation with non-condensables
._____________________________present
- 4. JAERI PHS-1 Spray heat removal
- 5. Spray Droplet Heat Transfer Spray droplet heat removal (Kulic)__
21 IEJVQC '-~ cow u f t
MAAP-DBA Code Benchmarking I
Table 2-5 Comparison of MAAP-DBA Average Condensation Heat Transfer Coefficients for the Wisconsin Square Channel Experiments Case Tmix,
- °C To, 0C maI msteam t V, m/s _ x hexp (mal, min)* MAAP-DBA*/**
1 70 30 3.58 1 111.1 (122.2, 99.99) 113.9 2 70 30 3.58 3 213.9 (235.3, 192.5) 235.4 3 80 30 1.808 1 163.9 (180.3, 147.5) 165.2 4 80 30 1.808 3 305.6 (336.2, 275.0) 310 5 90 30 0.706 1 255.5 (281.1, 229.95) 256.3 6 95 45 0.31 1 546. (600.6, 491.4) 402.9
- 1) *Heat transfer coefficient inw/m2/K.
- 2) **MAAP-DBA uses the maximum of the natural or forced convection values. At 1m/s, the code is using the natural convection value.
22 J=rEMC>c'
PHEBUS FTPO Pressure Profile PHEBUS FP70 - CONTAINMENT M~f1iP-DBMi DA7A 0
'Ct ea-0~
0 0
C, i-b")
-4 a
.5 1 1.5 2 2.5 TIME SECONDS M 4 23 ~~~~PJ~~~~~~~G~f
PHEBUS FPTO Condensation Rate Profile I
PHEBUS FPTO - CONTMINMENT MppP-DBp DATA o en 0~
d; 0
0 0
on 0
(-)
n-TIME SECONDS wi04 24 24I~~~~~~ A~~~~-C
Comparison of the MAAP-DBA Condensation Heat Transfer Model with the Experimentally Determined Steam-Air Condensing Heat Transfer Coefficients 1000 1900 DEHB1 B o1mkwanL. Do-to DEHIB) Bomaokmar.t Dota C-.. 2800 St.eam A;- C~.. 1600 OEL T20 DEL 720 2400 1400
-) 4.; aim. L=1.16 m 0 9.0 atm L=1.16 m C
On S.0 at L-=.5 C 1200 MhfP-DBA v 1200 _~ F hMARP-DBf1 C- 1000 1000 C->
a, m00 S00 C!W C- 600 a) 600 C- 400 400 I-
.0 200 200 a) i, ,-,~~~~~~. ..1.......
0 0
.2 9 4 .5 8 *7 gF .2 9 4 .5 .6 7 .R 9 I
- o. h .4mcjf
.of hr Malmo F..aat-nr. W 1I00 DCEND1 lionohroov-k Dobto ii 1600 Staem e,-
DELT=20 J400 J 0 1 5L= 66
^t.at-.
On 1 5 at-. L35 m I 1200 C-A! 1000 I--e L_
9 ROO C_ Ii 800 _ ___ . -D
.0 i L_ 400 o E C, 200
......... ......... I.....................~~~~~~~~~~~
0
. 2
. 3 4 -1f 6 7 .8 9 1 25 I=IEIv0C4 ne n..m .= t~
= *P ~
= ... _
MAAP-DBA Single Node Model Pressure Profile for JAERI Test PHS-1 mI co; en
(.D eN%
E 0,
OD L-CD) a)
L-of t 3.5 7imca. Crac) X10 26 FEAU=vcC;* 0 fl-r
MAAP-DBA Multiple Node Model Pressure Profile for JAERI Test PHS-1 UP C,
03
_x ka,.
CD E,
0) 0L 27 J=A=.AfC)OC!
MAAP-DBA Pressure Profiles for Kulic Spray Tests un L
-D0 LuJ c-n Ln Uw LJ CC C0 100 TIME Cs) 28 28F/EVCCG
Integral Effects Experiments Table 2-6 Integral Effects Tests Used for MAAP-DBA Containment Response Benchmark Benchmark Test Application
- 1. HDR-V44 Large loss of coolant accident (LOCA)
- 2. HDR-T3 1.5 Large LOCA
- 3. NUPEC M-7-1 Small LOCA
- 4. CVTR #3 Main steamline break without containment spray
- 5. CVTR #4, #5 Main steamline break with spray actuation
- 6. BFMC D-16 Large LOCA
- Benchmark numbers 1, 2, 3, and 6 are International Standard Problems.
29 ~~.- ~~~ gt n.
Integral Effects Experiments HDR-V44 Pressure Profile HDR V44 ef"
(-I 0-L (l-4 a'
k ,
L-(-4 a,
0% =~
IV (0
C.)
0 T1ME SECONDS 30 - 0Iv -V
~Mnw= c, c
Integral Effects Experiments HDR-V44 Gas Temperature Profile HDR V44 UN 0.
E M
I--
0 73ME SECONDS 31 I~~EA(2~c; mawr - -
Integral Effects Experiments HDR-T31.5 Pressure Profile HO 2R T 31.5.
'C 0o C-in a-L E
.0 IV 0
TIME SECONDS 32 I~~~.
32 Af-jv:)C!
Integral Effects Experiments HDR-T31.5 Gas Temperature Profile HDF? T31.5 e.
m E
aD C
0, M
E tu U-N TIME SECONDS 33 e'Vy N- - - -
Integral Effects Experiments Comparison of NUPEC M-7-1 Preheat Phase Gas Temperatures and Containment Pressure 350 340 330 320 C-310
~t5 300 290 2630 270 C- 260 ca.
D 250 100 I so T m d CmI r, 200
- NUPEC M-71~-H , a 190 <> ~OPCTC On..
MPIIIP-D0~
c2M3 PRBC253 180 170 0X r-16S0 0- 150 M
- 0) 140 G~ 130 120 110 100 ID 50 100 150 200 250 T mC .- I )
34 Pi=LEIVC>CN. o
Integral Effects Experiments Comparison of CVTR Test 3 Containment Pressure
.4* ,00 250 L.
d 200 11 0
p6 L L, ISO 4
Is 100 5 SO Trma. one Trma. can 45 300 L
L 6; 200 6%
It 25 0 L is El 150 a
r iS 100 Is s0 TrF.. s*e Trre. *ee 35
Integral Effects Experiments I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Comparison of CVTR Test 4 Containment Pressure 45 900 250 L.
d 200 iI 25 0;
i- 1so I5 100 Tirm.. *.e Tfim.. sae 45 14D So0 fIw Sft4C 250
____ Pw1.A.4.
a 200 Si
.0 150 I- a0 15 100
.... ,....,... , I I S .......................................
!50 0 500 1000 1500 2000 2500 3000 9500 4000 0 500o io0 1500 2000 25 Trme. qje Trma. own 36 runr isn - c
Integral Effects Experiments Comparison of BFMC D-16 Pressure History in the Break Compartment
- 3 .
a,%
C--
C.I1 a,
C--
0n a,
c-
- 1. 5 T Imr . xc 1 0 37 i=AFMCNc
Integral Effects Experiments Comparison of BFMC D-16 Pressure History for Outer Room 03 :3 . =
as' C-Co en Ca cn C- 2.
0)
C-cD-rf
.5 38 I~j.=v c, c
Integral Effects Experiments Comparison of BFMC D-16 Temperature History for Break Room
-450
-400 a, 3 50 C-C-
w a,1 FE a,
300 250 200 1 0
T Im -a . S 39 FMWRtflVs.V'0'w Opd.rn.Jn
Integral Effects Experiments Comparison of BFMC D-16 Temperature History for Outer Room 4 s O i- .i ......
.I...i.i.i.....................
I.i
~~~..
I~ IIII I o I D TII=I
=~~~~~~~ f:=1fzl B-D EB f=4
-4. O C-C-
co C5~
=1 °oO 5 °°o a,
_ :1 o=(: oCo 0.-
300
......... I......... I........ 1- --.- I I I I I -
2 5 0 -. . . . . . . . . . . .I . . . . . .
I II ..........
IIIIIIIIiIip ., I i ItI II I.....
.1 . 2 .3 .:5 . 6I .8 .9 1 x 103I T Im o . is 40 F rfw.rnnq~v .n
,jvc C0
Integral Effects Experiments e The single node containment models that applied the Tagami and Uchida heat transfer correlations over-predicted the peak containment pressures observed in this set of Integral Effects Experiments.
41 FlEr.Ic
MAAP-DBA Code Benchmarking Against NOTRUMP NOTRUMP used to benchmark Small Break LOCA Mass and Energy Release histories,
- A spectrum of break sizes and locations were generated and good agreement was obtained.
- MAAP was also benchmarked with NOTRUMP in support of AP600 for a spectrum of Hot Leg breaks sizes.
- MAAP was benchmarked at D.C. Cook for a spectrum of break sizes and accepted for SBLOCA (Sump inventory calcs) by the NRC.
42 o -
NOTRUMP Comparisons Comparison of 2 Inch Cold Leg Releases For BVPS 6
5 f-o E
-D2 3
LJL a,
Ml 2
a 3 4 5 6 . 7 trme Ceec) , ]°3 43 F=ENv(O C4
NOTRUMP Comparisons Comparison of 2 Inch Cold Leg Releases For BVPS
-4
-TWO 3NCW D]AMETER COLD LEG BREPIK
_____NOTRUMP CL 0
-0 m 2 LA
-I-L 2
0, 0
0 I 2 3 4 5 6 7 time CS00) 44 F~i ~v c~~~ G
Results for Limiting Cases
- Single node MAAP-DBA models used Tagami and Uchida heat transfer correlations to calculate heat transfer to passive heat sinks
- LOCA produced the limiting peak pressure e Peak pressures using MAAP-DBA are below 45 psig design pressure 45
Results for Limiting Cases KTynMAmos ydby MAP-DBforBMlPS ionse Nocks, Singe nTruameit (IPos and~in) I0b FdCrced ion wdil LXAfirbceWitcrIpletFhcitn 100/%
SltpEld Dinder 1000niavsm LOCAAftbocfne Wctk DqletDianm 100nicM Rie-v4przafiai 8%
Mal Chttiinnt Press= 14.2psia LOCA HtT s(ShSt Tenn) Tagni MSLB-.R Thmsfersida 46 .E-vOC>C-A_~s cw
Results for Limiting Cases Table 3-2 BVPS Containment Response Results Peak Gas Temperature Peak Pressure (OF) © Peak Unit Case Accident Type (psig) Pressure 1 Case 8L LOCA 43.1 267.3 1 Case 15M MSLB 42.4 342.6 2 Case 3L LOCA 44.6 269.7 2 Case 16M MSLB 36.9 327.1 47 J=JEMC>40~
BVPS Large LOCA Pressure Profile (Tagami) 6 0 SO . .............. ......... ....... ...... C A SE a L 8 _T A OA I _ PP _
Z!
40 -. ..... .... .... .... .. ............... ................ . ......... ....... .................. ..... :.......... _
.Z 3 0 _ ~~~~~. /......................... ,... .. ... .. ......... ............. ...............................
N C-.v 2 0 ;7.. ... .. ... . .... .. ... ; . ..... ....... ;... ;.... . ....... ;..; . .. ... ......;..... ...;... .. ... .; .... .. ;........
10 o 5 10 15 20 25 Time (sac) 6 0 *
, I .. .. , , , ,
. Un ~~~~~~~~~~~~~~~I t 2
- ', - C ~~~~A S e37L _T AOG A M I _ P P-50 _..... .... .... .. .... .... . ... .... ... .. .. ..... ... ........ ......... ................. .......................
40
-Z _... . ............... . ; ,................................. ....... ....... ...... ........ ....... ......... ... .. ... .. .. .... .... .... ;................ ...
,r= 3 0 M y ~~~~~~........................ ......... ............. t. ....... ............. ... .. ... .. :.. . .... .... ...... ....... ,.............
2 0 r-. , ~ ~ ~ ~ ~ - - - - - - - - - - - - - .. . . .. . . .. . . . . . . . . . . . . . . . . . .. . .. . . .. . .
10 0 5 10 *1 S 20 25 Time (sea) 48 F=EMC>0C rw===_-
BVPS MSLB Pressure Profile (Uchida)
-~~~~~~~~~=- ---- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
6 0
.Z 50 40 Z
'r. 10 CZ 20 10
'rime (see) 55 V.Yn it 2.. _
.Z 453 _... . .. .... . . ..,.,., ................ ... ,............... ..... ,.....:..................
35 i - -.... .. . . . . . . . . . . . . ... . . . . . .'.... . .. . .. . . . . . . . .. . . .... . . ... . . . . .
Z 253 . .. . . . . .. . . . . . . .. . . . . . . . .. . . . . . . . . . . . . . . . ;. .. . . . . .. . . .. . . . .. . . . . .
N m
15 C.j S ---------- --------------------------------------------------------------------
0 50 100 150 200 290 300 350 400 Tim- (sac) 49 f=JEArc.C~
pa-ff~~p -- -Mc -
BVPS Large LOCA Gas Temperature Profile 300 250 200 0-150 10 0 Time (mao) 300 71
.... U i
.. .. 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
250 200 C-150 100 --- - - - - - - - - - - - - - -
0 S 10 I 20 25 Time (aoc) 50 F=JEMC>C' rl-W-~~ ap w. . I -t
BVPS MSLB Gas Temperature Profile 3530 3 00 2530 a-2 00 IS0 10 0 4' D 0 I- 'rIxtim (a a) 3 50 3 00 2 50
-. I~~~~~~~~ P I ........ , --
2 00 is50
.I t00 - - - - - - - - - - - - - - - - - - - -
a 10 0 20 0 30 0 44,0 0 Trime (see) 51 F Ej- VfC> C
Conclusions
- Plant Specific Application of MAAP-DBA to BVPS is supported by:
- Previous NRC Acceptance of Methodology for Design Bases Analysis at other plants as well as at BVPS
- Benchmarking against GOTHIC in BVPS Specific Analysis
- Benchmarking to Separate Effects Experiments
- Benchmarking to Integral Effects Containment Experiments
- Peak pressure remains less than current design basis
- No rerating required for atmospheric conversion 52 C