ML033640073

From kanterella
Jump to navigation Jump to search
Slides of MAAP-DBA Code Meeting
ML033640073
Person / Time
Site: Beaver Valley
Issue date: 12/10/2003
From:
FirstEnergy Nuclear Operating Co
To:
Office of Nuclear Reactor Regulation
References
Download: ML033640073 (52)


Text

MAAP-DBA Code Meeting December 190, 2003

_g'7T-T 1

J=JEMCPC;

Agenda

  • Introductions
  • Objectives
  • MAAP-DBA Code Features

- Single Node Containment Model

- Murtiple Node Containment

- Generalized Containment Modeling Features

  • MAAP-DBA Code Benchmarking

- GOTHIC Comparisons

- Separate Effects Experiments

- Integral Effects Containment Experiments

- NOTRUMP Comparisons

  • Results for Limiting Cases
  • Staff Comments e Conclusions 2 I~JVNO A====

o bectives

  • Provide Update on MAAP-DBA Model
  • Discuss MAAP-DBA Code Benchmarking
  • Review Results of Limiting Cases

'CO_*

MAAP-DBA Code Features Pre-Appliation and Final LAR Summary Containment Containment MAAP-DBA Results To Date and Parameter Mass/Energy Model Used Methods Precedents Benchmarks NRC Submittal Schedule LOCA: NRC Approved Single Node Stid Review Plan NRC Approved: GOTHIC 6.Oa Model Desciption Peak Pressure WCAP 10325-P-A MAAP-DBA Tagami Heat W-312 HDR - V44 This Pre-Application Report Gas Temperature Transfer C-E #1 HDR - T31.5 Cont Uner Temp No Entrinment W-212 BFMC D-16 iimiting Pressure Case:

10% Airborne Water In NRC Review: <45 psig Both Units C-E #2 This Pre-Application Report Remaining Cases:

_LAR 2004 MSLB Peak: NRC Approved Single Node Std Review Plan NRC Approved: GOTHIC 6.Oa Model Description Peak Pressure WCAP 8822-P-A MAAP-DBA Uchkda Heat Transfer W-312 CVrR #3 This Pre-Application Report Gas Temperature No Entrainment C-E #1 CVrR #4 Cant Uner Temp 8% Re vaporization W-412 CVrR #5 Umiting Pressure Case:

W-212 <45 psig Both Units In NRC Review: This Pre-Application Report C-E #2 Remaining Cases:

LAR 2004 LOCA: NRC Approved Multi Node Std Review Plan NRC Approved N/A Model Desciption NPSH WCAP 10325-P-A MAAP-DBA Natural Convection M&E This Pre-Application Report No Entrainment Current Plant Analysis:

10% Airborne Water Ucensing LAR 2004

.________ _ _Methods SBLQCA: MAAP Multi Node Std Review Plan NOTRUMP Bendimarking:

Cont Pressure Generated M/Es MAAP-DBA Natural Convection NUPEC M-7-1 This Pre-Application Report NPSH No Entrainment Plant Analysis:

Sump Water 10% Airborne Water Cook Station LAR 2004 Inventory __'

4 4I~~~~~I%1Q=.rVC >4C

Overview

  • Plant Specific Application of MAAP-DBA to BVPS is supported by:

- Previous NRC Acceptance of Methodology for Design Bases Analysis at other plants as well as at BVPS

- Benchmarking against GOTHIC in BVPS Specific Analysis

- Benchmarking to Separate Effects Experiments

- Benchmarking to Integral Effects Containment Experiments

  • Peak pressure remains less than current design basis

- No rerating required for atmospheric conversion 5 ~~~~~f=LAI 5 C> ;

Single Node Model o Tagami Heat Transfer Used for Calculating LOCA and Uchida for MSLB:

- Peak Pressure

- EQ Temperatures

- Liner Temperatures

  • The same Tagami/Uchida correlations as in current licensing basis (Unit 2 UFSAR) are incorporated in MAAP-DBA.

- The Tagami maximum heat transfer coefficient is given as A 0.6 h m ax = 7 5 vtp l 6 iGE"i4C A m I_ f f

Single Node Model Where hmax Tagami heat transfer coefficient (Btu/hr-ft 2 - 0 F)

Ep Integrated energy released to the containment at the time of the first peak pressure (Btu),

V Containment free volume (ft3 ), and tp Time of the first peak pressure (sec).

  • Before the first peak pressure is reached, the heat transfer coefficient is calculated as:

h = hmax (t/t) where t is the time in seconds after the accident.

7 =ffIV2C>O:O

Single Node Model e After the first peak pressure is reached, the following equation is used to calculate the heat transfer coefficient:

h=hg + (h -h ge-0Q5(t tp)

Where hog = The stagnation heat transfer coefficient = 2 + 50 X (Btu/hr-ft 2 -OF), and x = Steam/Air mass ratio.

8 -I=f

Single Node Model

  • The Uchida heat transfer coefficient is given as h=HP= /(3.25Pt) if 0.01 <(Ps /Pt)o0.19 or h =He t if (Ps/Pt)>o.19 where h = Uchida heat transfer coefficient (Btu/hr-ft2 - 0 F),

H = Heat transfer coefficient for pure steam (200 Btu/hr-ft 2 -OF),

PS = Partial pressure of steam, and Pt = Total pressure of containment atmosphere.

9

Multiple Node Model

  • Multi Node Model with Natural Convection Heat Transfer used for Calculating:

- LBLOCA NPSH and Sump Water Temperature

- SBLOCA Sump Water Level and Temperature

  • Natural convection heat transfer is calculated based on correlation of the form of the average Nusselt number L

Nu =a(Ra)n =hconv kg 10 I=J="4X;

~E

-w ~ 0-~

CVo-eny

Multiple Node Model where Ra = Gr Pr Gr = compositional Grashof number

= p2 g/Apg/L 3 2

Pg Cpg Pr =

kg 11 JAIVC>QG 11 ~ ~

MAAP-DBA Code Featu res e During LOCA blowdown interval 10% of the non-flashed liquid is treated as airborne suspended water and the balance is directed to the sump water pool.

  • For MSLB when gas is super heated, revaporization of condensate is allowed. The revaporization fraction is 8%.
  • No Credit for Forced Convection Heat Transfer
  • No Credit Taken for Entrainment of Water From Pools and Containment Surfaces 12 IE/I/C

MAAP-DBA Code Featu res

  • Generalized Containment Model Addresses the following:

- Pressure and Temperatures in a Region (1)

- Heat Transfer to Passive Heats Sinks (1)

- Heat Removal by Active Systems (1)

- Flow rates between Containment Building Compartments (2)

(1) Applies to both single and multiple node application (2) Applies only to multiple node applications 13 F=EMCOC

~AI _on-m

MAAP-DBA Code Benchmarking

- Comparisons of Limiting LOCA and MSLB Cases were run

- LOCA cases for DEHL

- MSLB cases:

  • Unit 1 - 1.4ft 2 DER @300 power
  • Unit 2 - 1.069ft2 DER © 0%0 power

- GOTHIC and MAAP-DBA used the same initial conditions (See Table 2-2)

- Single node containment model with Tagami/Uchida yielded good agreement for peak containment response (See Table 2-3) 14 FE OD3C

GOTHIC -MAAP-DBA Comparisons Table 2-2 Input Conditions for MAAP-DBA and GOTHIC Comparison GOTEHIC Version 6.Oa MAAP-DBA Nodes Single Single Entrainment (Pools and Films) Yes No Forced Convection No No LOCA Airborne Water Droplet Fraction 10% 10%

Spray Droplet Diameter 1000 microns 1000 microns LOCA Airborne Water Droplet Diameter 100 microns 100 microns Initial Containment Pressure 14.2 psia 14.2 psia LOCA: Heat Transfer (Short Term) Tagami Tagami MSLB: Heat Transfer Uchida with 8% Uchida with 8%

revaporization revaporization 15 -I=A=.I\fC>C

MAAP-DBA Code Comparisons Table 2-3 Summary of MAAP-DBA and GOTHIC Comparison Results Comparison LOCA MSLB Pressure Gas Temperature (OF) Pressure Gas Temperature (psia) @Peak Pressure (psia) (OF) @Peak Pressure MAAP- MAAP-Unit Sequence DBA GOTHIC DBA GOTHIC MAAP-DBA GOTHIC MAAP-DBA GOTHIC 1 Case 8L 57.57 57.41 267.4 266.3_ _ _

2 Case 3L 58.99 58.29 269.7 268.2 _ - -

1 Case 1SM - - - - 56.8 57.8 342.6 341.3 2 Case 16M -_- - - 51.5 1 52.9 327.1 329.8 16 j=EC>0

- - ~

GOTHIC -MAAP-DBA Comparisons Comparison of Pressure Results from MAAP-DBA and GOTHIC for Large LOCA (BVPS Case 8L) 60 s0 M

40

'.4I p...

30 94 a

20 1o 0

Time (Cac) 17 FAEAIC 17

GOTHIC -MAAP-DBA Comparisons Comparison of Gas Temperature Results from MAAP-DBA and GOTHIC for Large LOCA (BVPS Case 8L) 300 U-so 1-M-

2 DO

-4 25

-M L.)

100 1.

0 I15 T ifm e (tee) 18 =-a

GOTHIC -MAAP-DBA Comparisons Comparison of Pressure Results from MAAP-DBA and GOTHIC for MSLB (BVPS Casel5M) 60 s0 40 04-

&1-Cs 30 20 10 0 100 200 300 400 Time (soa) 19 .www- o- -* -~

GOTHIC -MAAP-DBA Comparisons Comparison of Temperature Results from MAAP-DBA and GOHTIC for MSLB (BVPS Casel5M) 350 Containment DDA ICodol -MULD.

300

-. I.~~~~~0T I 4* 250 U-

-h

-. I.I.-~~MA7 DM 94- 200 100 a 100 T (2010 300 400 Time (sac) 20 i nd n. w W 0 n .,

C1;

Separate Effects Experiments I- .. . .

Table 2-4 Separate Effects Tests Used for MAAP-DBA Containment Response Benchmark Benchmark Test Application

1. U. of Wisconsin Flat Plate Condensation heat transfer (HMTA with forced convection used for multiple node models)
2. PHEBUS FPTO Condensation with non-condensables present
3. Dehbi Condensation with non-condensables

._____________________________present

4. JAERI PHS-1 Spray heat removal
5. Spray Droplet Heat Transfer Spray droplet heat removal (Kulic)__

21 IEJVQC '-~ cow u f t

MAAP-DBA Code Benchmarking I

Table 2-5 Comparison of MAAP-DBA Average Condensation Heat Transfer Coefficients for the Wisconsin Square Channel Experiments Case Tmix,

  1. °C To, 0C maI msteam t V, m/s _ x hexp (mal, min)* MAAP-DBA*/**

1 70 30 3.58 1 111.1 (122.2, 99.99) 113.9 2 70 30 3.58 3 213.9 (235.3, 192.5) 235.4 3 80 30 1.808 1 163.9 (180.3, 147.5) 165.2 4 80 30 1.808 3 305.6 (336.2, 275.0) 310 5 90 30 0.706 1 255.5 (281.1, 229.95) 256.3 6 95 45 0.31 1 546. (600.6, 491.4) 402.9

1) *Heat transfer coefficient inw/m2/K.
2) **MAAP-DBA uses the maximum of the natural or forced convection values. At 1m/s, the code is using the natural convection value.

22 J=rEMC>c'

PHEBUS FTPO Pressure Profile PHEBUS FP70 - CONTAINMENT M~f1iP-DBMi DA7A 0

'Ct ea-0~

0 0

C, i-b")

-4 a

.5 1 1.5 2 2.5 TIME SECONDS M 4 23 ~~~~PJ~~~~~~~G~f

PHEBUS FPTO Condensation Rate Profile I

PHEBUS FPTO - CONTMINMENT MppP-DBp DATA o en 0~

d; 0

0 0

on 0

(-)

n-TIME SECONDS wi04 24 24I~~~~~~ A~~~~-C

Comparison of the MAAP-DBA Condensation Heat Transfer Model with the Experimentally Determined Steam-Air Condensing Heat Transfer Coefficients 1000 1900 DEHB1 B o1mkwanL. Do-to DEHIB) Bomaokmar.t Dota C-.. 2800 St.eam A;- C~.. 1600 OEL T20 DEL 720 2400 1400

-) 4.; aim. L=1.16 m 0 9.0 atm L=1.16 m C

On S.0 at L-=.5 C 1200 MhfP-DBA v 1200 _~ F hMARP-DBf1 C- 1000 1000 C->

a, m00 S00 C!W C- 600 a) 600 C- 400 400 I-

.0 200 200 a) i, ,-,~~~~~~. ..1.......

0 0

.2 9 4 .5 8 *7 gF .2 9 4 .5 .6 7 .R 9 I

o. h .4mcjf

.of hr Malmo F..aat-nr. W 1I00 DCEND1 lionohroov-k Dobto ii 1600 Staem e,-

DELT=20 J400 J 0 1 5L= 66

^t.at-.

On 1 5 at-. L35 m I 1200 C-A! 1000 I--e L_

9 ROO C_ Ii 800 _ ___ . -D

.0 i L_ 400 o E C, 200

......... ......... I.....................~~~~~~~~~~~

0

. 2

. 3 4 -1f 6 7 .8 9 1 25 I=IEIv0C4 ne n..m .= t~

= *P ~

= ... _

MAAP-DBA Single Node Model Pressure Profile for JAERI Test PHS-1 mI co; en

(.D eN%

E 0,

OD L-CD) a)

L-of t 3.5 7imca. Crac) X10 26 FEAU=vcC;* 0 fl-r

MAAP-DBA Multiple Node Model Pressure Profile for JAERI Test PHS-1 UP C,

03

_x ka,.

CD E,

0) 0L 27 J=A=.AfC)OC!

MAAP-DBA Pressure Profiles for Kulic Spray Tests un L

-D0 LuJ c-n Ln Uw LJ CC C0 100 TIME Cs) 28 28F/EVCCG

Integral Effects Experiments Table 2-6 Integral Effects Tests Used for MAAP-DBA Containment Response Benchmark Benchmark Test Application

1. HDR-V44 Large loss of coolant accident (LOCA)
2. HDR-T3 1.5 Large LOCA
3. NUPEC M-7-1 Small LOCA
4. CVTR #3 Main steamline break without containment spray
5. CVTR #4, #5 Main steamline break with spray actuation
6. BFMC D-16 Large LOCA
  • Benchmark numbers 1, 2, 3, and 6 are International Standard Problems.

29 ~~.- ~~~ gt n.

Integral Effects Experiments HDR-V44 Pressure Profile HDR V44 ef"

(-I 0-L (l-4 a'

k ,

L-(-4 a,

0% =~

IV (0

C.)

0 T1ME SECONDS 30 - 0Iv -V

~Mnw= c, c

Integral Effects Experiments HDR-V44 Gas Temperature Profile HDR V44 UN 0.

E M

I--

0 73ME SECONDS 31 I~~EA(2~c; mawr - -

Integral Effects Experiments HDR-T31.5 Pressure Profile HO 2R T 31.5.

'C 0o C-in a-L E

.0 IV 0

TIME SECONDS 32 I~~~.

32 Af-jv:)C!

Integral Effects Experiments HDR-T31.5 Gas Temperature Profile HDF? T31.5 e.

m E

aD C

0, M

E tu U-N TIME SECONDS 33 e'Vy N- - - -

Integral Effects Experiments Comparison of NUPEC M-7-1 Preheat Phase Gas Temperatures and Containment Pressure 350 340 330 320 C-310

~t5 300 290 2630 270 C- 260 ca.

D 250 100 I so T m d CmI r, 200

- NUPEC M-71~-H , a 190 <> ~OPCTC On..

MPIIIP-D0~

c2M3 PRBC253 180 170 0X r-16S0 0- 150 M

0) 140 G~ 130 120 110 100 ID 50 100 150 200 250 T mC .- I )

34 Pi=LEIVC>CN. o

Integral Effects Experiments Comparison of CVTR Test 3 Containment Pressure

.4* ,00 250 L.

d 200 11 0

p6 L L, ISO 4

Is 100 5 SO Trma. one Trma. can 45 300 L

L 6; 200 6%

It 25 0 L is El 150 a

r iS 100 Is s0 TrF.. s*e Trre. *ee 35

Integral Effects Experiments I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Comparison of CVTR Test 4 Containment Pressure 45 900 250 L.

d 200 iI 25 0;

i- 1so I5 100 Tirm.. *.e Tfim.. sae 45 14D So0 fIw Sft4C 250

____ Pw1.A.4.

a 200 Si

.0 150 I- a0 15 100

.... ,....,... , I I S .......................................

!50 0 500 1000 1500 2000 2500 3000 9500 4000 0 500o io0 1500 2000 25 Trme. qje Trma. own 36 runr isn - c

Integral Effects Experiments Comparison of BFMC D-16 Pressure History in the Break Compartment

3 .

a,%

C--

C.I1 a,

C--

0n a,

c-

1. 5 T Imr . xc 1 0 37 i=AFMCNc

Integral Effects Experiments Comparison of BFMC D-16 Pressure History for Outer Room 03 :3 . =

as' C-Co en Ca cn C- 2.

0)

C-cD-rf

.5 38 I~j.=v c, c

Integral Effects Experiments Comparison of BFMC D-16 Temperature History for Break Room

-450

-400 a, 3 50 C-C-

w a,1 FE a,

300 250 200 1 0

T Im -a . S 39 FMWRtflVs.V'0'w Opd.rn.Jn

Integral Effects Experiments Comparison of BFMC D-16 Temperature History for Outer Room 4 s O i- .i ......

.I...i.i.i.....................

I.i

~~~..

I~ IIII I o I D TII=I

=~~~~~~~ f:=1fzl B-D EB f=4

-4. O C-C-

co C5~

=1 °oO 5 °°o a,

_ :1 o=(: oCo 0.-

300

......... I......... I........ 1- --.- I I I I I -

2 5 0 -. . . . . . . . . . . .I . . . . . .

I II ..........

IIIIIIIIiIip ., I i ItI II I.....

.1 . 2 .3 .:5 . 6I .8 .9 1 x 103I T Im o . is 40 F rfw.rnnq~v .n

,jvc C0

Integral Effects Experiments e The single node containment models that applied the Tagami and Uchida heat transfer correlations over-predicted the peak containment pressures observed in this set of Integral Effects Experiments.

41 FlEr.Ic

MAAP-DBA Code Benchmarking Against NOTRUMP NOTRUMP used to benchmark Small Break LOCA Mass and Energy Release histories,

- A spectrum of break sizes and locations were generated and good agreement was obtained.

- MAAP was also benchmarked with NOTRUMP in support of AP600 for a spectrum of Hot Leg breaks sizes.

- MAAP was benchmarked at D.C. Cook for a spectrum of break sizes and accepted for SBLOCA (Sump inventory calcs) by the NRC.

42 o -

NOTRUMP Comparisons Comparison of 2 Inch Cold Leg Releases For BVPS 6

5 f-o E

-D2 3

LJL a,

Ml 2

a 3 4 5 6 . 7 trme Ceec) , ]°3 43 F=ENv(O C4

NOTRUMP Comparisons Comparison of 2 Inch Cold Leg Releases For BVPS

-4

-TWO 3NCW D]AMETER COLD LEG BREPIK

_____NOTRUMP CL 0

-0 m 2 LA

-I-L 2

0, 0

0 I 2 3 4 5 6 7 time CS00) 44 F~i ~v c~~~ G

Results for Limiting Cases

  • Limiting Large Break LOCA and MSLB cases for both units have been quantified
  • Single node MAAP-DBA models used Tagami and Uchida heat transfer correlations to calculate heat transfer to passive heat sinks
  • LOCA produced the limiting peak pressure e Peak pressures using MAAP-DBA are below 45 psig design pressure 45

Results for Limiting Cases KTynMAmos ydby MAP-DBforBMlPS ionse Nocks, Singe nTruameit (IPos and~in) I0b FdCrced ion wdil LXAfirbceWitcrIpletFhcitn 100/%

SltpEld Dinder 1000niavsm LOCAAftbocfne Wctk DqletDianm 100nicM Rie-v4przafiai 8%

Mal Chttiinnt Press= 14.2psia LOCA HtT s(ShSt Tenn) Tagni MSLB-.R Thmsfersida 46 .E-vOC>C-A_~s cw

Results for Limiting Cases Table 3-2 BVPS Containment Response Results Peak Gas Temperature Peak Pressure (OF) © Peak Unit Case Accident Type (psig) Pressure 1 Case 8L LOCA 43.1 267.3 1 Case 15M MSLB 42.4 342.6 2 Case 3L LOCA 44.6 269.7 2 Case 16M MSLB 36.9 327.1 47 J=JEMC>40~

BVPS Large LOCA Pressure Profile (Tagami) 6 0 SO . .............. ......... ....... ...... C A SE a L 8 _T A OA I _ PP _

Z!

40 -. ..... .... .... .... .. ............... ................ . ......... ....... .................. .....  :.......... _

.Z 3 0 _ ~~~~~. /......................... ,... .. ... .. ......... ............. ...............................

N C-.v 2 0 ;7.. ... .. ... . .... .. ... ; . ..... ....... ;... ;.... . ....... ;..; . .. ... ......;..... ...;... .. ... .; .... .. ;........

10 o 5 10 15 20 25 Time (sac) 6 0 *

, I .. .. , , , ,

. Un ~~~~~~~~~~~~~~~I t 2

- ', - C ~~~~A S e37L _T AOG A M I _ P P-50 _..... .... .... .. .... .... . ... .... ... .. .. ..... ... ........ ......... ................. .......................

40

-Z _... . ............... .  ; ,................................. ....... ....... ...... ........ ....... ......... ... .. ... .. .. .... .... ....  ;................ ...

,r= 3 0 M y ~~~~~~........................ ......... ............. t. ....... ............. ... .. ... ..  :.. . .... .... ...... ....... ,.............

2 0 r-. , ~ ~ ~ ~ ~ - - - - - - - - - - - - - .. . . .. . . .. . . . . . . . . . . . . . . . . . .. . .. . . .. . .

10 0 5 10 *1 S 20 25 Time (sea) 48 F=EMC>0C rw===_-

BVPS MSLB Pressure Profile (Uchida)

-~~~~~~~~~=- ---- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

6 0

.Z 50 40 Z

'r. 10 CZ 20 10

'rime (see) 55 V.Yn it 2.. _

.Z 453 _... . .. .... . . ..,.,., ................ ... ,............... ..... ,.....:..................

35 i - -.... .. . . . . . . . . . . . . ... . . . . . .'.... . .. . .. . . . . . . . .. . . .... . . ... . . . . .

Z 253 . .. . . . . .. . . . . . . .. . . . . . . . .. . . . . . . . . . . . . . . . ;. .. . . . . .. . . .. . . . .. . . . . .

N m

15 C.j S ---------- --------------------------------------------------------------------

0 50 100 150 200 290 300 350 400 Tim- (sac) 49 f=JEArc.C~

pa-ff~~p -- -Mc -

BVPS Large LOCA Gas Temperature Profile 300 250 200 0-150 10 0 Time (mao) 300 71

.... U i

.. .. 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

250 200 C-150 100 --- - - - - - - - - - - - - - -

0 S 10 I 20 25 Time (aoc) 50 F=JEMC>C' rl-W-~~ ap w. . I -t

BVPS MSLB Gas Temperature Profile 3530 3 00 2530 a-2 00 IS0 10 0 4' D 0 I- 'rIxtim (a a) 3 50 3 00 2 50

-. I~~~~~~~~ P I ........ , --

2 00 is50

.I t00 - - - - - - - - - - - - - - - - - - - -

a 10 0 20 0 30 0 44,0 0 Trime (see) 51 F Ej- VfC> C

Conclusions

  • Plant Specific Application of MAAP-DBA to BVPS is supported by:

- Previous NRC Acceptance of Methodology for Design Bases Analysis at other plants as well as at BVPS

- Benchmarking against GOTHIC in BVPS Specific Analysis

- Benchmarking to Separate Effects Experiments

- Benchmarking to Integral Effects Containment Experiments

  • Peak pressure remains less than current design basis

- No rerating required for atmospheric conversion 52 C