ML19120A104

From kanterella
Jump to navigation Jump to search
Core Operating Limits Report Cycle 27 Pattern Prd Revision 1
ML19120A104
Person / Time
Site: North Anna Dominion icon.png
Issue date: 04/23/2019
From: Stanley B
Virginia Electric & Power Co (VEPCO)
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
19-148
Download: ML19120A104 (25)


Text

VIRGINIA ELECTRIC AND POWER COMPANY RICHMOND, VIRGINIA 23261 April 23, 2019 United States Nuclear Regulatory Commission Serial No.: 19-148 Attention: Document Control Desk NRA/DEA: RO Washington, D.C. 20555 Docket No.: 50-339 License No.: NPF-7 VIRGINIA ELECTRIC AND POWER COMPANY {DOMINION ENERGY VIRGINIA)

NORTH ANNA POWER STATION UNIT 2 CORE OPERATING LIMITS REPORT CYCLE 27 PATTERN PRD REVISION 1 Pursuant to North Anna Technical Specification 5.6.5.d, attached is a copy of the Dominion Core Operating Limits Report (COLR) for North Anna Unit 2 Cycle 27, Pattern PRO, Revision 1, Addendum 0. The COLR was revised to incorporate shutdown data.

If you have any questions or require additional information, please contact Ms. Diane Aitken at (804) 273-2694.

Sincerely, B.L~~~

Nuclear Regulatory Affairs Dominion Energy Services, Inc. for Virginia Electric and Power Company

Attachment:

COLR-N2C27, Revision 1, Core Operating Limits Report, North Anna Unit 2 Cycle 27, Pattern PRO Commitment Summary: There are no new commitments contained in this letter.

Serial No.: 19-148 Docket No.: 50-339 COLR N2C27 Pattern PRO, Rev. 1, Add. 0 Page 2 of 2 cc: U.S. Nuclear Regulatory Commission Region II Marquis One Tower 245 Peachtree Center Avenue, NE Suite 1200 Atlanta, Georgia 30303-1257 Mr. James R. Hall NRC Senior Project Manager U. S. Nuclear Regulatory Commission One White Flint North Mail Stop 08 B 1-A 11555 Rockville Pike Rockville, Maryland 20852-2738 NRC Senior Resident Inspector North Anna Power Station

______ _J

Serial No.: 19-148 Docket No.: 50-339 Page 1 of 23 ATTACHMENT COLR-N2C27, Revision 1 CORE OPERATING LIMITS REPORT North Anna Unit 2 Cycle 27 Pattern PRD North Anna Power Station Unit 2 Virginia Electric and Power Company

N2C27 CORE OPERATING LIMITS REPORT INTRODUCTION The Core Operating Limits Report (COLR) for North Anna Unit 2 Cycle 27 has been prepared in accordance with North Anna Technical Specification 5.6.5. The technical specifications affected by this report are listed below:

TS 2.1.1 Reactor Core Safety Limits TS 3.1.1 Shutdown Margin (SDM)

TS 3.1.3 Moderator Temperature Coefficient (MTC)

TS 3.1.4 Rod Group Alignment Limits TS 3.1.5 Shutdown Bank Insertion Limit TS 3.1.6 Control Bank Insertion Limits TS 3.1.9 PHYSICS TESTS Exceptions - Mode 2 TS 3.2.1 Heat Flux Hot Channel Factor TS 3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (FN i:\H)

TS 3.2.3 Axial Flux Difference (AFD)

TS 3.3.1 Reactor Trip System (RTS) Instrumentation TS 3.4.1 RCS Pressure, Temperature, and Flow DNB Limits TS 3.5.6 Boron Injection Tank (BIT)

TS 3.9.1 Boron Concentration In addition, a technical requirement (TR) in the NAPS Technical Requirements Manual (TRM) refers to the COLR:

TR 3.1.1 Boration Flow Paths - Operating The analytical methods used to determine the core operating limits are those previously approved by the NRC and discussed in the documents listed in the References Section.

Cycle-specific values are presented in bold. Text in italics is provided for information only.

COLR-N2C27, Revision 1 EVAL-ENG-RSE-N2C27, Revision 0, Addendum A, Attachment A Page 2 of23

REFERENCES

1. VEP-FRD-42-A, Revision 2, Minor Revision 2, "Reload Nuclear Design Methodology,"

October 2017.

Methodology for:

TS 3.1.1 - Shutdown Margin TS 3.1.3 -Moderator Temperature Coefficient TS 3 .1.4 - Rod Group Alignment Limits TS 3.1.5 - Shutdown Bank Insertion Limit TS 3.1.6 - Control Bank Insertion Limits TS 3 .1. 9 - Physics Tests Exceptions - Mode 2 TS 3.2.1 - Heat Flux Hot Channel Factor TS 3.2.2 - Nuclear Enthalpy Rise Hot Channel Factor TS 3.5.6-Boron Injection Tank (BIT) and TS 3.9.1 -Boron Concentration

2. Plant-specific adaptation of WCAP-16009-P-A, "Realistic Large Break LOCA Evaluation Methodology Using the Automated Statistical Treatment of Uncertainty Method (ASTRUM),"

as approved by NRC Safety Evaluation Report dated February 29, 2012.

Methodology for: TS 3.2.l -Heat Flux Hot Channel Factor

3. WCAP-10054-P-A, "Westinghouse Small Break ECCS Evaluation Model Using the NOTRUMP Code," August 1985.

Methodology for: TS 3 .2.1 - Heat Flux Hot Channel Factor

4. WCAP-10079-P-A, "NOTRUMP, A Nodal Transient Small Break and General Network Code," August 1985.

Methodology for: TS 3.2.1 -Heat Flux Hot Channel Factor

5. WCAP-12610-P-A, "VANTAGE+ FUEL ASSEMBLY -REFERENCE CORE REPORT,"

April 1995.

Methodology for:

TS 2.1.1 - Reactor Core Safety Limits TS 3.2.1 - Heat Flux Hot Channel Factor

6. VEP-NE-2-A, Revision 0, "Statistical DNBR Evaluation Methodology," June 1987.

Methodology for:

TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor and TS 3.4.1-RCS Pressure, Temperature and Flow DNB Limits COLR-N2C27, Revision 1 EVAL-ENG-RSE-N2C27, Revision 0, Addendum A, Attachment A Page 3 of 23

7. VEP-NE-1-A, Revision 0, Minor Revision 3, "Relaxed Power Distribution. Control Methodology and Associated FQ Surveillance Technical Specifications," November 2017.

Methodology for:

TS 3 .2.1 - Heat Flux Hot Channel Factor and TS 3 .2.3 - Axial Flux Difference

8. WCAP-8745-P-A, "Design Bases for the Thermal Overpower LiT and Thermal Overtemperature LiT Trip Functions," September 1986.

Methodology for:

TS 2.1.1 - Reactor Core Safety Limits and TS 3 .3 .1 - Reactor Trip System Instrumentation

9. WCAP-14483-A, "Generic Methodology for Expanded Core Operating Limits Report," January 1999.

Methodology for:

TS 2.1.1 - Reactor Core Safety Limits TS 3.1.1 - Shutdown Margin TS 3 .1.4 - Rod Group Alignment Limits TS 3 .1. 9 - Physics Tests Exceptions - Mode 2 TS 3.3.1 -Reactor Trip System Instrumentation TS 3 .4.1 - RCS Pressure, Temperature, and Flow DNB Limits TS 3.5.6-Boron Injection Tank (BIT) and TS 3.9.1-Boron Concentration

10. DOM-NAF-2-P-A, Revision 0, Minor Revision 3, "Reactor Core Thermal-Hydraulics Using the VIPRE-D Computer Code," including Appendix C, "Qualification of the Westinghouse WRB-2M CHF Correlation in the Dominion VIPRE-D Computer Code," August 2010 and Appendix D, "Qualification of the ABB-NV and WLOP CHF Correlations in the Dominion VIPRE-D Computer Code," September 2014.

Methodology for:

TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor and TS 3.4.1 - RCS Pressure, Temperature and Flow DNB Limits

11. WCAP-12610-P-A and CENPD-404-P-A, Addendum 1-A, "Optimized ZIRLO'," July 2006.

Methodology for:

TS 2.1.1 - Reactor Core Safety Limits and TS 3 .2.1 - Heat Flux Hot Channel Factor COLR-N2C27, Revision 1 EVAL-ENG-RSE-N2C27, Revision 0, Addendum A, Attachment A Page 4 of23

2.0 SAFETY LIMITS (SLs) 2.1 SLs 2.1.1 Reactor Core SLs In MODES 1 and 2, the combination of THERMAL POWER, Reactor Coolant System (RCS) highest loop average temperature, and pressurizer pressure shall not exceed the limits specified in COLR Figure 2.1-1; and the following SLs shall not be exceeded.

2.1.1.1 The departure from nucleate boiling ratio (DNBR) shall be maintained greater than or equal to the 95/95 DNBR criterion for the DNB correlations and methodologies specified in the References Section.

2.1.1.2 The peak fuel centerline temperature shall be maintained < 5080°F, decreasing by 58°F per 10,000 MWD/MTU of bumup, for Westinghouse fuel and< 5173°F, decreasing by 65°F per 10,000 MWDIMTU ofburnup,for AREVAfuel.

COLR-N2C27, Revision 1 EVAL-ENG-RSE-N2C27, Revision 0, Addendum A, Attachment A Page 5 of 23

COLR Figure 2.1-1 NORTH ANNA REACTOR CORE SAFETY LIMITS 665 660

~~

655 650

~

-- ~-- -..........

-.......... ......... ~

psia 645 --..

-.............. r,,......._

~

f...,

640 635 I!! 630

~

' -.......... ~ o psia

~~

~~

'\ --*-*-*

\

~

....ra ... ......

... 625 .......... --..........

QJ C.

E 620

-........... I',...,_

.... ............... 2000 psia \\

~

QJ

!lO 615

... ~~

\ '\

...ra QJ

> 610

............ 1860 1osia ~ \ \

ct Qi VI 605

~ -...

~ .........

.... \'

VI

\

~ 600 595 590

~

~ .....

......... "' \

\.

585

\\

580 \'

575 - -*--* --

570 0 10 20 30 40 50 60 70 80 90 100 110 120 Percent of RATED THERMAL POWER COLR-N2C27, Revision 1 EVAL-ENG-RSE-N2C27, Revision 0, Addendum A, Attachment A Page 6 of23

3.1* REACTIVITY CONTROL SYSTEMS 3.1.1 SHUTDOWN MARGIN (SDM)

LCO 3.1.1 SDM shall be~ 1.77 % Ak/k.

3.1.3 Moderator Temperature Coefficient (MTC)

LCO 3.1.3 The MTC shall be maintained within the limits specified below. The upper limit ofMTC is +0.6 x 10-4 Ak/k/°F, when< 70% RTP, and 0.0 Ak/k/°F when~ 70%

RTP.

The BOC/ARO-MTC shall be :S: +0.6 x 10-4 Ak/k/°F (upper limit), when< 70%

RTP, and :s; 0.0 Ak/k/°F when~ 70% RTP.

The EOC/ARO/RTP-MTC shall be less negative than -5.0 x 10-4 Ak/k/°F (lower limit).

The MTC surveillance limits are:

The 300 ppm/ARO/RTP-MTC should be less negative than or equal to

-4.0 x 10-4 Ak/k/°F [Note l].

The 60 ppm/ARO/RTP-MTC should be less negative than or equal to

-4.7 x 10-4 Ak/k/°F [Note 2].

SR 3.1.3.2 Verify MTC is within-5.0 x 10-4 Ak/k/°F (lower limit).

Note 1: If the MTC is more negative than -4.0 x 10-4 Ak/k/°F, SR 3.1.3.2 shall be repeated once per 14 EFPD during the remainder of the fuel cycle.

Note 2: SR 3.1.3.2 need not be repeated if the MTC measured at the equivalent of equilibrium RTP-ARO boron concentration of:=:; 60 ppm is less negative than -4.7 x 10-4 Ak/k/°F.

COLR-N2C27, Revision 1 EVAL-ENG-RSE-N2C27, Revision 0, Addendum A, Attachment A Page 7 of 23 J

3.1.4 Rod Group Alignment Limits Required Action A.1.1 Verify SDM to be~ 1. 77 % Ak/k.

Required Action B.1.1 Verify SDM to be~ 1. 77 % Ak/k.

Required Action D.1.1 Verify SDM to be~ 1.77 % Ak/k.

3.1.5 Shutdown Bank Insertion Limits LCO 3 .1.5 Each shutdown bank shall be withdrawn to at least 226 steps.

Required Action A.1.1 Verify SDM to be~ 1. 77 % Ak/k.

Required Action B.l Verify SDM to be~ 1.77 % Ak/k.

SR 3.1.5.1 Verify each shutdown bank is withdrawn to at least 226 steps.

3 .1.6 Control Bank Insertion Limits LCO 3.1.6 Control banks shall be limited in physical insertion as shown in COLR Figure 3.1-1. Sequence of withdrawal shall be A, B, C and D, in that order; and the overlap limit during withdrawal shall be 98 steps.

Required Action A.1.1 Verify SDM to be~ 1. 77 % Ak/k.

Required Action B.1.1 Verify SDM to be~ 1.77 % Ak/k.

Required Action C.l Verify SDM to be~ 1.77 % Ak/k. I SR 3.1.6.1 Verify estimated critical control bank position is within the insertion limits specified in COLR Figure 3.1-1.

SR 3.1.6.2 Verify each control bank is within the insertion limits specified in COLR Figure 3.1-1.

SR 3.1.6.3 Verify each control bank not fully withdrawn from the core is within the sequence and overlap limits specified in LCO 3.1.6 above.

3 .1.9 PHYSICS TESTS Exceptions - MODE 2 LCO 3.1.9.b SDM is~ 1.77 % Ak/k.

SR 3.1.9.4 Verify SDM to be~ 1.77 % Ak/k.

COLR-N2C27, Revision 1 EVAL-ENG-RSE-N2C27, Revision 0, Addendum A, Attachment A Page 8 of23

COLR Figure 3.1-1 North Anna 2 Cycle 27 Control Rod Bank Insertion Limits Fully w/d position= 226 steps 230 0.529, 226 220 I/

210 /

200 /

190 / 1.0, 194

~

180 / /

/ C-BANK

,)

V 170 160 I/ /

~150 / ~/

3:

g-140 / /

~

  1. , 130 / Av C

0

~

U'l 120 -~{18 /

0

~110 "v

~

I e 100 /

"C Vo-BAI JK 0

a: 90 "

80 /

70

/

60

/

so V

40 /

30

/

20 /

10 /

/o.048,o 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Fraction of Rated Thermal Power COLR-N2C27, Revision 1 EVAL-ENG-RSE-N2C27, Revision 0, Addendum A, Attachment A Page 9 of23

3 .2 POWER DISTRIBUTION LIMITS 3.2.1 Heat Flux Hot Channel Factor (FQ(Z))

LCO 3 .2.1 F Q(Z), as approximated by F Q\Z) and FQT (Z), shall be within the limits specified below.

CFQ=2.32 The Heat Flux Hot Channel Factor, FQ(Z), shall be limited by the following relationships:

for P > 0.5 CFQ

  • K(Z)

FQ(Z) ::;; for P::;; 0.5 0.5 THERMAL POWER d where: p *m

= RATED THERMAL POWER '

K(Z) is provided in COLR Figure 3.2-1 FQE(Z) ism excellent approximation for FQ(Z) when the reactor is at the steady-state power.

FQ(Z) from the incore flux map results is increased by 1.03 for fuel manufacturing tolermces I

md 1.05 for measurement uncertainty to obtain FQE(Z).

F5 (Z) = FQ (Z) * (1.03) * (1.05)

The expression for FQT(Z) is:

F;f (Z) = F5(Z)

  • N(Z)

Where N (Z) is a cycle-specific non-equilibrium multiplier on FQ\Z) to account for power distribution transients during normal operation, provided in COLR Table 3.2-1.

The discussion in the Bases Section B 3. 2.1 for this LCO requires the application of a cycle dependent non-equilibrium multiplier, N (Z), to the steady state Fl (Z). N (Z) accounts for power distribution transients encountered during normal operation. As function N(Z) is dependent on the predicted equilibrium F g{Z) and is sensitive to the axial power distribution, it is typically generated from the actual EOC burnup distribution that can only be obtained after the shutdown of the previous cycle.

COLR-N2C27, Revision 1 EV AL-ENG-RSE-N2C27, Revision 0, Addendum A, Attachment A Page 10 of23

The cycle-specific penalty factors are presented in COLR Table 3.2-2.

Also discussed is the application of the appropriate factor to account for potential increases in FQ(Z) between surveillances. This factor is determined on a cycle specific basis and is dependent on the predicted increases in steady-state and transient F Q(Z)/K(Z) versus burnup. A minimum value of 2% is used should any increase in steady-state or transient measured or predicted peaking factor be determined unless frequent flux mappil:zg is invoked (7 EFPD). These values are typically generated from the actual EOC burnup distribution that can only be obtained after the shutdown ofthe previous cycle.

The required operating space reductions are included in COLR Table 3.2-3.

Should F/ (Z) exceed its limits the normal operating space should be reduced to gain peaking factor margins. The determination and verification of the margin improvements along with the corresponding required reductions in the Thermal Power Limit and AFD Bands are performed on a cycle-specific basis. These values are typically generated from the actual EOC burnup distribution that can only be obtained after the shutdown ofthe previous cycle.

COLR-N2C27, Revision 1 EVAL-ENG-RSE-N2C27, Revision 0, Addendum A, Attachment A Page 11 of 23

COLR Tobie 3.2-1 N2C27 Normal Operation N(Z}

t.ZODE HEIGHT 0 to 1000 1000 to 2000 2000 to3000 3000 to4000 4000 to 5000 5000 to 7000 7000 to9000 (FEET) MWD!MTU MWDJMTU MWDJMTU MWD/MTU MWOJMTU MWO/MTU MWD.IMTU 5, 11.2 1.137 1.137 1.144 1.153 1.161 1.167 1.167 6 11.0 1.141 1.138 1.143 1.152 1.164 1.168 1.166 7 10.8 1.144 1.140 1.141 1.150 1.167 1.168 1.165 8 10.6 1.144 1.138 1.139 1.148 1.167 1.166 1.163 9 10.4 1.140 1.135 1.137 1.146 1.164 1.163 1.160 10 10.2 1.136 1.132 1.135 1.144 1.159 1.160 1.159 11 10.0 1.132 1.129 1.134 1.143 1.154 1.158 1.158 12 9.8 1.130 1.127 1.134 1.142 1.150 1.157 1.157 13 9.6 1.131 1.127 1.135 1.143 1.149 1.157 1.157 14 9.4 1.134 1.130 1.137 1.145 1.151 1.159 1.159 15 9.2 1.138 1.133 1.140 1.148 1.155 1.162 1.162 16 9.0 1.142 1.138 1.144 1.152 1.160 1.168 1.169 17 8.8 1.145 1.141 1.147 1.155 1.163 1.173 1.174 18 8.6 1.146 1.141 1.147 1.155 1.163 1.173 1.177 19 8.4 1.144 1.139 1.145 1.152 1.160 1.170 1.176 20 '8.2 1.140 1.136 1.142 1.149 1.157 1.167 1.175 21 8.0 1.136 1.133 1.139 1.146 1.154 1.. 167 1.174 22 7.8 1.131 1.128 1.134 1.141 1,149 1.164 1.172 23 7.6 1.124 1.120 1.124 1.131 1.140 1.156 1.165 24 7.4 1.117 1.110 1.113 1.120 1.128 1.145 1.156 25 7.2 1.114 1.103 1.107 1.113 1.122 1.'138 1.149 26 7.0 1.112 1.102 1.107 1.113 1.121 1.136 1.145 27 6.8 1.,108 1.098 1.104 1.110 1.117 1.130 1.136 28 6.6 1.094 1.087 1.092 1.098 1.103 1.113 1.119 29 6.4 1.074 1.070 1.072 1.078 1.081 1.090 1.096 30 6.2 1.056 1.054 1.054 1.059 1.062 1.069 1.076 31 6.0 1.046 1.044 1.044 1.047 1.050 1.057 1.066 32 5.8 1.043 1.042 1.041 1.043 1.045 1.052 1.061 33 5.6 1.049 1.047 1,047 1.047 1.048 1.052 1.058 34 5.4 1.059 1.059 1.058 1.056 1.055 1.056 1.058 35 5.2 1.071 1.072 1.070 1.068 1.064 1.063 1.062 36 5.0 1.083 1.083 1.081 1.079 1.074 1.073 1.071 37 4.8 1.091 1.091 1.089 1.087 1.083 1.08-1 1.081 38 4.6 1.096 1.096 1.094 1.092 1.089 1.087 1.087 39 4.4 1.100 1.100 1.098 1.097 1.095 1.092 1.092 40 4.2 1.111 1.111 1.109 1.107 1.104 1.101 1.097 41 4.0 1.128 1.128 1.126 1.123 1.118 1.114 1.107 42 3.8 1.145 1.145 1.142 1.138 1,131 1.126 1.117 43 3.6 1.153 1.153 1.150 1.144 1.138 1.1l3 1.126 44 3.4 1.154 1.154 1.151 1.146 1.140 1.136 1.134 45 3.2 1.157 1.157 1.154 1.149 1,144 1.139 1.142 46 3.0 1.166 1.166 1.164 1.159 1.151 1.146 1.152 47 2.8 1.179 1.179 1.177 1.171 1.162 1.154 1.159 48 2.6 1.191 1.191 1.189 1.181 1.172 1.163 1.163 49 2.4 1.201 1.201 1.199 1.191 1.181 1.171 . 1.163 50 2.2 1.211 1.211 1.209 1.200 1.190 1.179 1.166 51 2.0 1.221 1.221 1,218 1.210 1.199 1.18-8 1.174 52 1.8 1.230 1.230 1.228 1.219 1.207 1.196 1.183 53 1.6 1.238 1.238 1.236 1.227 1.214 1.204 1.190 54 1.4 1.246 1.246 1.243 1.233 1.221. 1.2:10 1.197 COLR-N2C27, Revision 1 EV AL-ENG-RSE-N2C27, Revision 0, Addendum A, Attachment A Page 12 of 23

COLR Table 3.2-1 lcontinuedl N2C27 Normal Operation N(Z)

NODE HEIGHT Oto 1000 1000 to 2000 2000 to 3000 3000 to 4000 4000 to 5000 5000 to 7000 7000 to 9000 (FEET) MWDIMTU MWD/MTU MWD/MTU MWDIMTU MWDIMTU MWD/MTU MWD/MTU 55 1.2 1.253 1.253 1,250 1.239 1.227 1.215 1.202 56 1.0 1.262 1.262 1.255 1.245 1.232 1.220 1.207 57 0.8 1.269 1.269 1.261 1.251 1.238 1.225 1,211 These decks are generated for normal operation flux maps that are typically taken at full power ARO. Additional N(Z) decks may be generated, if necessary, consistent with the methodology described in the RPDC topical (Reference 7). EOR is defined as Hot Full Power End of Reactivity.

COLR-N2C27, Revision 1 EV AL-ENG-RSE-N2C27, Revision 0, Addendum A, Attachment A Page 13 of23

COLR Table 3.2-1 (continued)

N2C27 Normal Operation N(Z}

NODE HEIGHT 9000 to 11000 11000 to 13000 13000 to 15000 15000 to 17000 17000 to 19000 19000 to EOR (FEET) MWD/MTU MWD/MTU MWO/MTU MWDlMTU MWDlMTU MWDIMTU 5 11.2 1.163 1.155 1.147 1.141 1.136 1.136 6 11.0 1.162 1.154 1.147 1.141 1.136 1.137 7 10.8 1.161 1.153 1.145 1.140 1.137 1.136 8 10.6 1.159 1.151 1.142 1.138 1.136 1.134 9 10.4 1.157 1.149 1.140 1.138 1.135 1.133 10 10.2 1.155 1.149 1.143 1.142 1.140 1.138 11 10.0 1.155 1.154 1.151 1.151 1.149 1.148 12 9.6 1.155 1.160 1.159 1.160 1.158 1.157 13 9.6 1.155 1.163 1.164 1.163 1.161 1.160 14 9.4 1.156 1.165 1.165 1.163 1.161 1.160 15 9.2 1.161 1.166 1.168 1.166 1.164 1.163 16 9.0 1.169 1.175 1.175 1.173 1.172

  • 1.172 17 8.6 1.177 1.161 1.181 1.180 1.162 1.182 16 8.6 1.181 1.184 1.164 1.184 1.186 1.186 19 8.4 1.180 1.163 1.183 1.184 1.186 1.186 20 8.2 1.180 1.163 1.183 1.184 1.186 1.186 21 8.0 1.181 1.182 1.183 1.185 1.187 1.187 22 7.6 1.180 1.* 160 1.181 1.184 1.166 1.187 23 7.6 1.173 1.174 1.176 1.179 1.161 1.161 24 7.4 1.163 1.166 1.169 1.171 1.173 1.173 25 7.2 1.156 1,160 1.163 1.166 1.166 1.168 26 7.0 1.152 1.156 1.159 1.162 1.165 1.166 27 6.8 1.145 1.146 1.151 1.155 1.15'8 1.159 2,6 6.6 1.127 1.130 1.133 1.137 1.140 1.141 2:9 6.4 1.103 1.106 1.110 1.114 1.117 1.116 30 6.2 1.083 1.088 1.092 1.096 1.09:9 1.100 31 6.0 1.073 1.-078 1.063 1.087 1.091 1.092 32 5.B- 1.068 1.073 1.076 1.082 1.066 1.087 33 5.6 1.062 1.066 1.069 1.073 1.075 1.076 34 5.4 1.058 1.059 1.061 1.062 1.063 1.063 35 5.2 1.059 1.059 1.059 1.059 1.059 1.058 36 5.0 1.066 1.-067 1.067 1.066 1.066 1.065 37 4.8 1.077 1.078 1.078 1.078 1.-078 1.077 J:6 4.6 1.085 1..066 1.087 1.087 1.087 1.086 39 4.4 1.090 1.092 1.093 1.093 1.092 1.092 40 4.2 1.097 1.096 1.099 '1.099 1.099 1.098 41 4.0 1.105 1.107 1.108 1.108 1.108 1.107 42 3.6 1.115 1.117 1.119 1.119 1.119 1.118 43 3.6 1.125 1.* 127 1.1.29 1.129 1.129 1.128 44 3.4 1.134 1;137 1.138 1.139 1.139 1.138 45 3.2 1.144 1.146 1.146 1.148 1.148 1.148 46 3.0 1.154 1.156 1.157 1.158 1.159 1.158 47 2.6 1.161 1.165 1.167 1.168 1.169 1.169 46 2.6 1.'165 1.173 1.177 1.178 1.176 1.178 49 2.4 1.'165 1.179 1.185 1.186 1.187 1.187 50 2.2 1.168 1.164 1.191 1.194 1.196 1.196 51 2.0 1.175 1.188 1.194 1.201 1.206 1.205 52 1.8 1.164 t.191 1.197 1.206 1.213 1.213 53 1.6 1.190 1.195 1.200 1.209 1.216 1.216 54 1.4 '1.195 1.200 1.205 1.212 1.217 1.217 CbLR-N2C27, Revision I EV AL-ENG-RSE-N2C27, Revision 0, Addendum A, Attachment A Page 14 of 23

COLR Table 3.2-1 {continued)

N2C27 Normal Operation N(Z}

NODE HEIGHT 9000 to 11000 11000 to 13000 13000 to 15000 15000 to 17000 17000 to 19000 19000 to EOR (fEET) MWDJMTU MWD/MTU MWDJMTU MWDfMTU MWD/MTU MWDfMTU 55 1.2 1.199 1.205 1.211 1.215 1.2.19 1.219 56 1.0 1.204 1.211 1.217 1.220 1.223 1.224 57 0.8 1.210 1.217 1.222 1.226 1.229 1.229 These decks are generated for normal operation flux maps that are typically taken at full power ARO. Additional N(Z) decks may be generated, if necessary, consistent with the methodology described in the RPDC topical (Reference 7). EOR is defined as Hot Full Power End of Reactivity.

COLR-N2C27, Revision 1 EVAL-ENG-RSE-N2C27, Revision 0, Addendum A, Attachment A Page 15 of 23

COLR Table 3.2-2 N2C27 Penalty Factors for Flux Map Analysis Burnup Penalty (MWD/MTU) Factor%

0-999 2.0 1000-1999 2.5 2000-2999 2.0 3000-3999 2.0 4000-4999 2.0 5000-6999 2.0 7000-8999 2.0 9000-10999 2.5 11000-12999 2.0 13000-14999 2.0 15000-16999 2.0 17000-18999 2.0 19000-EOC 2.0 Notes:

1. Penalty Factors are not required for initial power ascension flux maps.
2. All full power maps shall apply a Penalty Factor unless frequent flux mapping is invoked(::; 7 EFPD).

COLR Table 3.2-3 N2C27 Required Operating Space Reductions for Far(Z) Exceeding its Limits Required FQT(Z) Required Negative AFD Band Positive AFD Band Margin THERMAL POWER Reduction from AFD Reduction from AFD Improvement Limit (% RTP) Limits* (% AFD) Limits*(% AFD)

s 1% :S 98.0%  ::: 0.5%  ::: 1.0%

> 1% and :S 2% :S 96.0%  ::: 1.0%  ::: 2.0%

> 2% and :S3% :S 95.0%  ::: 1.5%  ::: 3.5%

>3% :S 50% NIA NIA

  • Axial Flux Difference Limits are provided in COLR Figure 3.2-2 COLR-N2C27, Revision I EVAL-ENG-RSE-N2C27, Revision 0, Addendum A, Attachment A Page 16 of 23

COLR Figure 3.2-1 K(Z) - Normalized FQ as a Function of Core Height 1.2 1.1 6, 1.0 1.0

~.

i---

r---

r---

0.9 (12 .925) 0.8 g

~ 0.7 C

w N

J

< 0.6 2

0::

0 z

~ 0.5 ti

~

0.4 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 CORE HEIGHT (FT)

COLR-N2C27, Revision 1 EVAL-ENG-RSE-N2C27, Revision 0, Addendum A, Attachment A Page 17 of 23

3 .2.2 Nuclear Enthalpy Rise Hot Channel Factor (FN 1m)

LCO 3.2.2 FNt.H shall be within the limits specified below.

FNMI ~ 1.587 {1 + 0.3(1 - P)}

THERMAL POWER where:

p = RATED THERMAL POWER SR 3 .2.2.1 Verify FNt.H is within limits specified above.

3.2.3 AXIAL FLUX DIFFERENCE (AFD)

LCO 3.2.3 The AFD in% flux difference units shall be maintained within the limits specified in COLR Figure 3.2-2.

COLR-N2C27, Revision 1 EVAL-ENG-RSE-N2C27, Revision 0, Addendum A, Attachment A Page 18 of 23

COLR Figure 3.2-2 North Anna 2 Cycle 27 Axial Flux Difference Limits 120 110 100 r-12. 10; \6, 100) 90 Unacceptable / \ Unacceptable Operation 80 \ Operation

. V Cl) 0== 70 I Acceptable Operation

\ '

C.

~

E Cl) 60 I

I \

.c:

I-

"C Cl) *so I \

(+20, 50) 0:: (-27, 50) 0 C:

40 C.

Cl)

(J Cl) 30 20 10 0

-30 -20 -10 0 10 20 30 Percent Flux Difference (Delta-I)

COLR-N2C27, Revision 1 EVAL-ENG-RSE-N2C27, Revision 0, Addendum A, Attachment A Page 19 of 23

3 .3 INSTRUMENTATION 3.3.1 Reactor Trip System (RTS) Instrumentation TS Table 3.3.1-1 Note 1: Overtemperature LlT The Overtemperature LlT Function Allowable Value shall not exceed the following nominal trip setpoint by more than 2% of LlT span, with the numerical values of the parameters as specified below.

where: LlT is measured RCS LlT, °F LlTo is the indicated LlT at RTP, °F s is the Laplace transform operator, sec- 1 T is the measured RCS average temperature, °F T' is the nominal T avg at R TP, ~ 586.8 °F p is the measured pressurizer pressure, psig P' is the nominal RCS operating pressure, ~ 2235 psig K1 s 1.2715 K2:::: 0.02174 /°F K3:::: 0.001145 /psig 1' 1, 1'2 = time constants utilized in the lead-lag controller for Tavg 1' 1 ~ 23. 75 sec 1'2 ~ 4.4 sec (1 +11s)/(1 +1'2S) = function generated by the lead-lag controller for Tavg dynamic compensation f1(i'.il) ~ 0.0291{-13.0-(qt- qb)} when (qt -qb) < -13.0% RTP 0 when-13.0% RTP s (q1 - qb) s +7.0% RTP.

0.0251 {(qt - qb)- 7.0} when (q1-qb) > +7.0% RTP Where q1and qb are percent RTP in the upper and lower halves of the core, respectively, and q1+ qb is the total THERMAL POWER in percent RTP.

COLR-N2C27, Revision 1 EVAL-ENG-RSE-N2C27, Revision 0, Addendum A, Attachment A Page 20 of23

TS Table 3.3.1-1 Note 2: Overpower AT The Overpower AT Function Allowable Value shall not exceed the following nominal trip setpoint by more than 2% of AT span, with the numerical values of the parameters as specified below.

where: AT is measured RCS AT, °F.

ATo is the indicated AT at R TP, °F.

1 s is the Laplace transform operator, sec-

  • T is the measured RCS average temperature, °F.

T' is the nominal Tavg at RTP, ~ 586.8 °F.

Ki ~ 1.0865 Ks ~ 0.0198 /°F for increasing Tavg K6 ~ 0.00162 /°F when T > T' O/°F for decreasing T avg O/°F when T ~ T'

,3 = time constant utilized in the rate lag controller for T avg

,3 9.5 sec

~

r3s I (I+ r3s) = function generated by the rate lag controller for Tavg dynamic compensation f2(AI) = O, for all Al COLR-N2C27, Revision 1 EVAL-ENG-RSE-N2C27, Revision 0, Addendum A, Attachment A Page 21 of 23

3.4 REACTOR COOLANT SYSTEM (RCS) 3.4.1 RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits LCO 3.4.1 RCS DNB parameters for pressurizer pressure, RCS average temperature, and RCS total flow rate shall be within the limits specified below:

a. Pressurizer pressure is greater than or equal to 2205 psig;
b. RCS average temperature is less than or equal to 591 °F; and
c. RCS total flow rate is greater than or equal to 295,000 gpm.

SR3.4.l.l Verify pressurizer pressure is greater than or equal to 2205 psig.

SR 3.4.1.2 Verify RCS average temperature is less than or equal to 591 °F.

SR 3.4.1.3 Verify RCS total flow rate is greater than or equal to 295,000 gpm.

SR3.4.1.4 ------------------------------NOTE-----------------------------------------.--

Not required to be performed until 30 days after~ 90% RTP.

Verify by precision heat balance that RCS total flow rate is ~ 295,000 gpm.

3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) 3.5.6 Boron Injection Tank (BIT)

Required Action B.2 Borate to a SDM ~ 1.77 % Ak/k at 209 °F.

3.9 REFUELING OPERATIONS 3.9.1 Boron Concentration LCO 3.9.1 Boron concentrations of the Reactor Coolant System (RCS), the refueling canal, and the refueling cavity shall be maintained ~ 2600 ppm.

SR 3.9.1.1 Verify boron concentration is within the limit specified above.

COLR-N2C27, Revision I EVAL-ENG-RSE-N2C27, Revision 0, Addendum A, Attachment A Page 22 of23

NAPS TECHNICAL REQUIREMENTS MANUAL TRM 3.1 REACTIVITY CONTROL SYSTEMS TR 3.1.1 Boration Flow Paths - Operating Required Action D.2 Borate to a SHUTDOWN MARGIN ~ 1. 77 % Ak/k at 200 °F, after xenon decay.

COLR-N2C27, Revision 1 EVAL-ENG-RSE-N2C27, Revision 0, Addendum A, Attachment A Page 23 of23