ML090960548

From kanterella
Jump to navigation Jump to search
Cycle 21, Core Operating Limits Reports
ML090960548
Person / Time
Site: North Anna Dominion icon.png
Issue date: 04/03/2009
From: Funderburk C
Dominion, Dominion Resources, Virginia Electric & Power Co (VEPCO)
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
09-209
Download: ML090960548 (24)


Text

Dominion Resources Services, Inc.

<ouo Dominion Boulevard, Glen Allen, VA ~c.'I!(,' i

\Xch Address: www.dom.com April 3, 2009 U. S. Nuclear Regulatory Commission Serial No.09-209 Attention: Document Control Desk NLOS/ETS One White Flint North Docket No. 50-338 11555 Rockville Pike License No. NPF-4 Rockville, MD 20852-2738 VIRGINIA ELECTRIC AND POWER COMPANY (DOMINION)

NORTH ANNA POWER STATION UNIT 1 CYCLE 21 CORE OPERATING LIMITS REPORT Pursuant to North Anna Technical Specification 5.6.5.d, attached is a copy of the Dominion Core Operating Limits Report for North Anna Unit 1 Cycle 21, Pattern WIT.

If you have any questions regarding this submittal, please contact Mr. Thomas Shaub at (804) 273-2763.

Sincerely,

~- C. L. Funderburk, Director Nuclear Licensing and Operations Support Dominion Resources Services, Inc.

for Virginia Electric and Power Company

Attachment:

CORE OPERATING LIMITS REPORT, North Anna 1 Cycle 21 Pattern WIT Commitments made in this letter: None

Serial No.09-209 Docket No. 50-338 COLR, North Anna 1 Cycle 21 Page 2 of 2 cc: U.S. Nuclear Regulatory Commission Region II Sam Nunn Atlanta Federal Center 61 Forsyth Street, SW Suite 23T85 Atlanta, Georgia 30303 Mr. J. E. Reasor, Jr.

Old Dominion Electric Cooperative Innsbrook Corporate Center 4201 Dominion Blvd.

Suite 300 Glen Allen, Virginia 23060 NRC Senior Resident Inspector North Anna Power Station Ms. D. N. Wright NRC Project Manager U. S. Nuclear Regulatory Commission One White Flint North Mai I Stop 0-8 H4A 11555 Rockville Pike Rockville, Maryland 20852 Mr. J. F. Stang, Jr.

NRC Project Manager U. S. Nuclear Regulatory Commission One White Flint North Mai I Stop 0-8 G9A 11555 Rockville Pike Rockville, Maryland 20852

ATTACHMENT (Serial No.09-209)

CORE OPERATING LIMITS REPORT FOR NORTH ANNA UNIT 1 CYCLE 21 PATTERN WIT NORTH ANNA POWER STATION VIRGINIA ELECTRIC AND POWER COMPANY (DOMINION)

Page 1 of 22

COLR-NIC21, Revision 2 CORE OPERATING LIMITS REPORT North Anna 1 Cycle 21 Pattern WIT COLR-NIC21, Rev. 2 Page 2 of22

N1C21 CORE OPERATING LIMITS REPORT INTRODUCTION The Core Operating Limits Report (COLR) for North Anna Unit 1 Cycle 21 has been prepared in accordance with North Anna Technical Specification 5.6.5. The technical specifications affected by this report are listed below:

TS 2.1.1 Reactor Core Safety Limits TS 3.1.1 Shutdown Margin (SDM)

TS 3.1.3 Moderator Temperature Coefficient (MTC)

TS 3.1.4 Rod Group Alignment Limits TS 3.1.5 Shutdown Bank Insertion Limit TS 3.1.6 Control Bank Insertion Limits TS 3.1.9 Physics Test Exceptions-Mode 2 TS 3.2.1 Heat Flux Hot Channel Factor TS 3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (FNllli)

TS 3.2.3 Axial Flux Difference (AFD)

TS 3.3.1 Reactor Trip System (RTS) Instrumentation TS3.4.1 RCS Pressure, Temperature, and Flow DNB Limits TS 3.5.6 Boron Injection Tank (BIT)

TS 3.9.1 Boron Concentration In addition, a technical requirement (TR) in the NAPS Technical Requirements Manual (TRM) refers to the COLR:

TR 3.1.1 Boration Flow Paths - Operating The analytical methods used to determine the core operating limits are those previously approved by the NRC and discussed in the documents listed in the References Section.

Cycle-specific values are presented in bold. Text in italics is provided for information only.

COLR-NIC21, Rev. 2 Page 3 of22

REFERENCES

1. VEP-FRD-42 Rev 2.1-A, Reload Nuclear Design Methodology, August 2003.

(Methodology for TS 3.1.1 - Shutdown Margin, TS 3.1.3 - Moderator Temperature Coefficient, TS 3.1.5 - Shutdown Bank Insertion Limit, TS 3.1.4 - Rod Group Alignment Limits, TS 3.1.6 -

Control Bank Insertion Limits, TS 3.1.9 - Physics Test Exceptions-Mode 2, TS 3.2.1 - Heat Flux Hot Channel Factor, TS 3.2.2 - Nuclear Enthalpy Rise Hot Channel Factor, TS 3.5.6 - Boron Injection Tank (BIT) and TS 3.9.1- Boron-Concentration)

2. VEP-NE-2-A, Statistical DNBR Evaluation Methodology, June 1987.

(Methodology for TS 3.2.2 - Nuclear Enthalpy Rise Hot Channel Factor and TS 3.4.1 - RCS Pressure, Temperature and Flow DNB Limits)

3. VEP-NE-l- Rev. OJ-A, Relaxed Power Distribution Control Methodology and Associated FQ Surveillance Technical Specifications, August 2003.

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor and TS 3.2.3 - Axial Flux Difference)

4. WCAP-8745-P-A, Design Bases for the Thermal Overpower AT and Thermal Overtemperature AT Trip Functions, September 1986.

(Methodology for TS 2.1.1 - Reactor Core Safety Limits and TS 3.3.1 - Reactor Trip System Instrumentation)

5. WCAP-14483-A, Generic Methodology for Expanded Core Operating Limits Report, January 1999.

(Methodology for TS 2.1.1 - Reactor Core Safety Limits. TS 3.1.1 - Shutdown Margin, TS 3.1.4 - Rod Group Alignment Limits, TS 3.1.9 - Physics Test Exceptions-Mode 2, TS 3.3.1-Reactor Trip System Instrumentation, TS 3.4.1 - RCS Pressure. Temperature. and Flow DNB Limits, TS 3.5.6 - Boron Injection Tank (BIT) and TS 3.9.1 - Boron Concentration)

6. BAW-I0227P-A, "Evaluation of Advanced Cladding and Structural Material (M5) in PWR Reactor Fuel."

(Methodology for TS 2.1.1 - Reactor Core Safety Limits, TS 3.2.1 - Heat Flux Hot Channel Factor)

7. EMF-2103 (P) (A), "Realistic Large Break LOCA Methodology for Pressurized Water Reactors."

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor)

COLR-NIC21, Rev. 2 Page 4 of22

8. EMF-96-029 (P) (A), "Reactor Analysis System for PWRs."

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor)

9. BAW-10I68P-A, "RSG LOCA - BWNT Loss-of-CoolantAccident Evaluation Model for Recirculating Steam Generator Plants." Volume II only (SBLOCAmodels).

(Methodology for TS 3.2.1 - Heat Flux Hot ChannelFactor)

10. DOM-NAF-2-A, "Reactor Core Thermal-Hydraulics Using the VIPRE-D ComputerCode,"

including AppendixA, "Qualificationofthe F-ANP BWU CHF Correlations in the VIPRE-D Computer Code."

(Methodology for TS 3.2.2 - Nuclear EnthalpyRise Hot Channel Factor and TS 3.4.1 - RCS Pressure,Temperature and Flow DNB Limits)

COLR-N1C21, Rev. 2 Page 5 of22

2.0 SAFETY LIMITS (SLs) 2.1 SLs 2.1.1 Reactor Core SLs In MODES 1 and 2, the combination ofTHERMAL POWER, Reactor Coolant System (RCS) highest loop average temperature, and pressurizer pressure shall not exceed the limits specified in COLR Figure 2.1-1; and the following SLs shall not be exceeded.

2.1.1.1 The departure from nucleate boiling ratio (DNBR) shall be maintained greater than or equal to the 95/95 DNBR criterion for the DNB correlations and methodologies specified in the References Section.

2,1.1.2 The peak fuel centerline temperature shall be maintained < 5173of, decreasing by 65°F per 10,000 MWDIMTU of bumup.

COLR-NIC21, Rev. 2 Page 6 of22

COLR Figure 2.1-1 NORTH ANNA REACTOR CORE SAFETY LIMITS 660 655 650 645 640 635 630 625 G:' 620 Cl CD

~ 615 Cl III l-I 610 605 600 595 590 585 580 575 570 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 POWER (fraction of nominal)

COLR-NIC21, Rev. 2 Page 7 of22

3.1 REACTNITY CONlROL SYSTEMS 3.1.1 SHUTDOWN MARGIN (SDM)

LCO 3.1.1 SDM shall be ~ 1.77 % Ak/k.

3.1.3 Moderator Temperature Coefficient (MTC)

LCO 3.1.3 The MTC shall be maintained within the limits specified below. The upper limit ofMTC is +0.6 x 10-4 M<lk/oF, when < 70% RTP, and 0.0 L\kIkIOF when ~ 70%

RTP.

The BOC/ARO-MTC shall be:S;; +0.6 x 10-4 M</k/oF (upper limit), when < 70%

RTP, and S 0.0 Aklk/OF when ~ 70% RTP.

The EOC/ARO/RTP-MTC shall be less negative than -S.O x 10-4 Aklk/oF (lower limit).

The MTC surveillance limits are:

The 300 ppm/ARO/RTP-MTC should be less negative than or equal to

-4.0 x 10-4 M</k/oF [Note 2].

The 60 ppm/ARO/RTP-MTC should be less negative than or equal to

-4.7 x 10-4 MUk/oF [Note 3].

SR 3.1.3.2 VerifyMTC is within-S.O x 10-4 AklkloF (lower limit).

Note 2: lfthe MTC is more negative than -4.0 x 10-4 Aklk/oF, SR 3.1.3.2 shall be repeated once per 14 EFPD during the remainder ofthe fuel cycle.

Note 3: SR 3.1.3.2 need not be repeated if the MTC measured at the equivalent of equilibrium RTP-ARO boron concentration of ~ 60 ppm is less negative than -4.7 x 10-4 M<lk/0F.

3.1.4 Rod Group Aligmnent Limits Required Action A.l.1 Verify SDM to be ~ 1.77 % AkIk.

Required Action Rl.1 Verify SDM to be ~ 1.77 01;0 Aklk.

Required Action D.l.I Verify SDM to be ~ 1.77 % M<lk.

COLR-N1C21, Rev. 2 Page 80f22

3.1.5 Shutdown Bank: Insertion Limits LCO 3.1.5 Each shutdown bank shall be withdrawn to at least 226 steps.

Required Action A.1.l Verify SDM to be ~ 1.77 % Aklk.

Required Action B.1 Verify SDM to be ~ 1.77 % Aklk.

SR 3.1.5.1 Verify each shutdown bank is withdrawn to at least 226 steps.

3.1.6 Control Bank Insertion Limits LCO 3.1.6 Control banks shall be limited in physical insertion as shown in COLR Figure 3.1-1. Sequence of withdrawal shall be A, B, C and D, in that order; and the overlap limit during withdrawal shall be 98 steps.

Required Action A.1.1 Verify SDM to be ~ 1.77 % Aklk.

Required Action B.1.1 Verify SDM to be ~ 1.77 % Aklk.

Required Action C.1 Verify SDM to be ~ 1.77 % Aklk.

SR 3.1.6.1 Verify estimated critical control bank position is within the insertion limits specified in COLR Figure 3.1-1.

SR 3.1.6.2 Verify each control bank is within the insertion limits specified in COLR Figure 3.1-1.

SR 3.1.6.3 Verify each control bank not fully withdrawn from the core is within the sequence and overlap limits specified in LeO 3.1.6 above.

3.1.9 PHYSICS TESTS Exceptions - MODE 2 Leo 3.1.9.b SDM is ~ 1.77 % Aklk.

SR 3.1.9.4 Verify SDM to be ~ 1.77 % Aklk.

COLR-NIC21, Rev. 2 Page 9 of22

COLR Figure 3.1-1 North Anna 1 Cycle 21 Control Rod Bank Insertion Limits 230 220 1/(0.52~ 226) 210 C-BA ~K /

200 /

190 / (1 n 1Q.4' ./

180 ~

1/ /

/ Fulh wid posi ion = 22f steps ./

/

170 "C 160 / /

/' V 1 150 i

II) 140 /

V~

/

Ui /

~ 130 D-BAN~

c

.9

.... 120

/(0,118 .~

/

.~ 110 /

Q.

Co 100 /

J e 90

/ --

C)

/

"C o

0::

80 70 _ . ~

-V 60 /

50 V 40 /

30 /

20 /

10 V o / (.048,0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Fraction of Rated Thermal Power COLR-N1C21, Rev. 2 Page 10 of22

3.2 POWER DISTRIBUTION LIMITS 3.2.1 Heat Flux Hot Channel Factor (FQ(Z>>

LCO 3.2.1 FQ(Z), as approximated by FQM(Z), shall be within the limits specified below.

CFQ=2.32 The Measured Heat Flux Hot Channel Factor, FQM(Z), shall be limited by the following relationships:

CFQ K(Z)

FM(Z)::=:;---- forP>O.5 Q P N(Z)

CFQ K(Z)

FM(Z)~---- for P~O.5 Q 0.5 JV(Z)

THERMAL POWER where:

P = RATED THERMAL POWER ; and K(Z) is provided in COLR Figure 3.2-1, N(Z) is a cycle-specific non-equilibrium multiplier on FQM(Z) to account for power distribution transients during normal operation, provided in COLR Table 3.2-1.

The discussion in the Bases Section B 3.2.1 for this LCO requires the application ofa cycle dependent non-equilibrium multiplier, N(Z), to the measured peaking factor, FQM(Z), before comparing it to the limit. N(Z) accounts for power distribution transients encountered during normal operation. As function N(Z) is dependent on the predicted equilibrium F (/Z) and is sensitive to the axial power distribution, it is typically generated from the actual EOC bumup distribution that can only be obtained after the shutdown of the previous cycle. The cycle-specific N(Z) function is presented in COLR Table 3.2-1.

COLR-NIC21, Rev. 2 Page 11 of22

COLR Table 3.2-1 NIC21 Normal Operation N(Z)

NODE HEIGHT o to 1000 1000 to 3000 3000 to 5000 5000 to 7000 7000 to 9000 9000 to 11000 (FEET) MWD/MTU MWDfMTU MWDfMTU MWD/MTU MWD/MTU MWDfMTU 10 10.2 1.094 1.107 1.111 1.135 1.13~7 1.137 11 10.0 1.103 1.106 1.118 1.134 1.1315 1.136 12 9.8 1.113 1.111 1.125 1.132 1.13:3 1.133 13 9.6 1.121 1.118 1.131 1.131 1.13:2 1.133 14 9.4 1.126 1.120 1.134 1.132 1.13:2 1.129 15 9.2 1.130 1.122 1.137 1.138 1.138 1.133 16 9.0 1.140 1.131 1.143 1.153 1.15:3 1.149 17 8.8 1.147 1.140 1.151 1.167 1.168 1.168 18 8.6 1.151 1.144 1.155 1.172 1.174 1.174 19 8.4 1.150 1.145 1.160 1.173 1.175 1.175 20 8.2 1.150 1.146 1.167 1.176 1.179 1.179 21 8.0 1.149 1.145 1.171 1.176 1.180 1.180 22 7.8 1.148 1.145 1.173 1.176 1.181 1.180 23 7.6 1.144 1,142 1.172 1.174 1.177 1.177 24 7.4 1.138 1.138 1.172 1.172 1.170 1.171 25 7.2 1.134 1.134 1.170 1.170 1.165 1.167 26 7.0 1.132 1.132 1.167 1.167 1.162 1.166 27 6.8 1.131 1.131 1.166 1.165 1.159 1.164 28 6.6 1.130 1.132 1.163 1.163 1.157 1.162 29 6.4 1.124 1.130 1.156 1.157 1.154 1.157 30 6.2 1.117 1.127 1.145 1.151 1.150 1.152 31 6.0 1.113 1.127 1.140 1.150 1.150 1.153 32 5.8 1.110 1,124 1.132 1.146 1.146 1.151 33 5.6 1.104 1.114 1.117 1.132 1.133 1.141 34 5.4 1.099 1.104 1.105 1.119 1.122 1.131 35 5.2 1.096 1.099 1.100 1.112 1.116 1.126 36 5.0 1.097 1.100 1.101 1.110 1.114 1.120 37 4.8 1.100 1.102 1.103 1.109 1.110 1.109 38 4.6 1.104 1.107 1.106 1.111 1.111 1.103 39 4.4 1.109 1.111 1.111 1.116 1.116 1.104 40 4.2 1.116 1,118 1.118 1.124 1.124 1.107 41 4.0 1.125 1.126 1.126 1.133 . 1.1~13 1.111 42 3.8 1.134 1.133 1.132 1.139 1.1~19 1.116 43 3.6 1.142 1.139 1.136 1.142 1.142 1.121 44 3.4 1.149 1.146 1.138 1.142 1.142 1.125 45 3.2 1.156 1.154 1.141 1.143 1.143 1.129 46 3.0 1.165 1.162 1.146 1.148 1.148 1.135 47 2.8 1.176 1.173 1.154 1.156 1.1Ei6 1.142 48 2.6 1.186 1.183 1.162 1.161 1.161 1.145 49 2.4 1.198 1.195 1.174 1.170 1.nO 1.151 50 2.2 1.214 1.211 1.190 1.188 1.188 1.165 51 2.0 1.224 1.222 1.202 1.200 1.200 1.174 52 1.8 1.227 1.224 1.204 1.202 1.202 1.175

OLR-NIC21, Rev. 2 Page 12 of22

COLR Table 3.2-1 (continued)

NIC21 Normal Operation N(Z)

NODE HEIGHT 11000 to 13000 13000 to 15000 15000 to 17000 17000 to 19000 19000 toEOR (FEET) MWD/MTU MWD/MTU MWD/MTU MWD/MTU MWD/MTU 10 10.2 1.130 1.130 1.111 1.114 1.117 11 10.0 1.127 1.128 1.110 1.114 1.117 12 9.8 1.126 1.125 1.108 1.112 1.115 13 9.6 1.127 1.123 1.108 1.111 1.114 14 9.4 1.126 1.119 1.105 1.106 1.109 15 9.2 1.129 1.121 1.109 1.109 1.112 16 9.0 1.138 1.129 1.127 1.127 1.130 17 8.8 1.149 1.142 1.149 1.149 1.152 18 8.6 1.150 1.147 1.155 1.155 1.158 19 8.4 1.154 1.154 1.160 1.162 1.165 20 8.2 1.164 1.165 1.173 1.179 1.179 21 8.0 1.172 1.172 1.181 1.190 1.190 22 7.8 1.174 1.174 1.183 1.193 1.193 23 7.6 1.176 1.176 1.185 1.198 1.198 24 7.4 1.178 1.178 1.189 1.207 1.207 25 7.2 1.180 1.179 1.191 1.211 1.211 26 7.0 1.179 1.179 1.191 1.212 1.212 27 6.8 1.178 1.177 1.189 1.213 1.213 28 6.6 1.175 1.175 1.188 1.213 1.213 29 6.4 1.169 1.172 1.189 1.212 1.212 30 6.2 1.160 1.169 1.189 1.207 1.207 31 6.0 1.156 1.170 1.191 1.206 1.206 32 5.8 1.151 1.168 1.187 1.199 1.199 33 5.6 1.142 1.159 1.176 1.181 1.181 34 5.4 1.135 1.149 1.165 1.164 1.165 35 5.2 1.131 1.146 1.161 1.159 1.161 36 5.0 1.126 1.139 1.154 1.155 1.158 37 4.8 1.119 1.128 1.142 1.146 1.151 38 4.6 1.117 1.121 1.128 1.137 1.141 39 4.4 1.120 1.120 1.117 1.132 1.133 40 4.2 1.123 1.122 1.114 1.125 1.127 41 4.0 1.126 1.126 1.119 1.121 1.128 42 3.8 1.129 1.129 1.121 1.127 1.132 43 3.6 1.132 1.132 1.124 1.140 1.141 44 3.4 1.137 1.137 1.130 1.150 1.149 45 3.2 1.142 1.142 1.138 1.158 1.158 46 3.0 1.147 1.147 1.145 1.166 1.166 47 2.8 1.149 1.149 1.151 1.171 1.171 48 2.6 1.150 1.149 1.153 1.173 1.172 49 2.4 1.150 1.151 1.157 1.175 1.175 50 2.2 1.152 1.156 1.167 1.181 1.182 51 2.0 1.154 1.160 1.175 1.185 1.189 52 1.8 1.153 1.161 1.177 1.186 1.194 COLR-NIC21, Rev. 2 Page 13 of22

COLR Figure 3.2-1 K(Z) - Normalized FQ as a Function of Core Height 1.2 1.1 6,1.0 1.0

"---- r--

r--r--

r---.

0.9 (12 .925) 0.8 fi 5! 0.7 Q

w N

J

~ 0.6 0:::

o Z

g 0.5 llI:::

0.4 -

0.3 -_._._.

0.2 0.1 -

0.0 -

o 1 2 3 4 5 6 7 8 9 10 11 12 13 CORE HEIGHT (FT)

COLR-N1C21, Rev. 2 Page 14 of22

3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (FNm)

LCO 3.2.2 FNLlli shall be within the limits specified below.

~Llli s 1.587{1 + O.3(1-P)}

THERMAL POWER where:

P = RATEDTHERMAL POWER SR 3.2.2.1 Verify FNAH is within limits specified above.

3.2.3 AXIAL FLUX DIFFERENCE (AFD)

LCO 3.2.3 The AFD in % flux difference units shall be maintained within the limits specified in COLR Figure 3.2-2.

COLR-N1C21, Rev. 2 Page 15 of22

COLR Figure 3.2-2 North Anna 1 Cycle 21 Axial Flux Difference Limits 120 110 .~---

(-12), 100) (+6, 100) 100 I U acee t.ablell 90 Opere tion

\ \

Unacce~ table boera ion l.o

80 / 1\

1/

Q, iU 0

E 70 I A ceptableO !Jerati< n

\

J:

Q) og

....tU 60 17

/ 1\

a:::

'0

.... 50 / \

su l.o

(-27 50) (+20,50)

Q)

Q, 40 30 20 10 o I

-30 -20 -10 o 10 20 30 Percent Flux Difference (Delta-I)

COLR-NIC21, Rev. 2 Page 16 of22

3.3 INSTRUMENTATION 3.3.1 Reactor Trip System (RTS) Instrumentation TS Table 3.3.1-1 Note 1: Overtemperature AT The Overtemperature ilT Function Allowable Value shall not exceed the following nominal trip setpoint by more than 2% of LlT span, with the numerical values ofthe parameters as specified below.

where: AT is measured RCS ilT, "F.

LlTo is the indicated ilT at RTP, op.

s is the Laplace transform operator, sec".

T is the measured RCS average temperature, "F.

T' is the nominal T avg at RTP, S 586.8 OF.

P is the measured pressurizer pressure, psig.

P' is the nominal Res operating pressure, ~ 2235 psig.

KI  :::; 1.2715 K3 ~~ 0.001144 /psig

'£f. 'T:2 = time constants utilized in the lead-lag controllerfor Tallg

'ti ~ 23.75 sec 't2 S 4.4 sec (1+'£]s)/(1+'[]s) = function generated by the lead-lag controller for Tavg dynamic compensation fICAl);::: 0.0165{ (qt -qb)} when (qt - qb) < -35% RTP o when-35% RTp*:::; (qt-qb):::; +3% RTP 0.0198 {(qt - qb) - 3} when (qt - qb) > +3% RTP Where qt and qb are percent RTP in the upper and lower halves of the core, respectively, and qt + qb is the total THERMAL POWER in percent RTP.

COLR-NIC21, Rev. 2 Page 17 of22

TS Table 3.3.1-1 Note 2: Overpower .6.T The Overpower AT Function Allowable Value shall not exceed the following nominal trip setpoint by more than 2% of.6.T span, with the numerical values ofthe parameters as specified below.

where: .6.T is measured Res .6.T, OF.

.6.To is the indicated AI' at RTP, "F.

s is the Laplace transform operator, sec",

T is the measured ReS average temperature, OF.

T' is the nominal Tavg at RTP,:::; 586.8 OF.

~:::; 1.0865 K, ~ 0.0197/o F for increasing Tavg x, ~ 0.00162 /OF when T > T' o jOF for decreasing T avg o jOF when T ~ T' t'3 = time constant utilized in the rate lag controller for TQli'g t3 ~ 9.5 sec t'3s/(1 + t'js) = function generated by the rate lag controllerfor Tavg dynamic compensation eOLR-NIC21, Rev. 2 Page 18 of22

304 REACTOR COOLANT SYSTEM (RCS) 304.1 RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits LCO 304.1 RCS DNB parameters for pressurizer pressure, RCS average temperature, and RCS total flow rate shall be within the limits specified below:

a. Pressurizer pressure is greater than or equal to 2205 psig;
b. RCS average temperature is less than or equal to 591°F; and
c. RCS total flow rate is greater than or equal to 295,000 gpm.

SR 304.1.1 Verify pressurizer pressure is greater than or equal to 2205 psig.

SR 3 .4.1.2 Verify RCS average temperature is less than or equal to 591°F.

SR 304.1.3 Verify RCS total flow rate is greater than or equal to 295,000 gpm.

SR 3.4.1.4 ------------------------------NOTE--------------------------------------------

Not required to be performed until 30 days after ~ 90% RTP.

Verify by precision heat balance that RCS total flow rate is ~ 295,000 gpm.

COLR-NlC21, Rev. 2 Page 19 of22

3.5 EMERGENCY CORE COOLING SYSTEMS (ECeS) 3.5.6 Boron Injection Tank (BIT)

Required Action B.2 Borate to an SDM ~ 1.77 % Ak/k at 200 OF.

COLR-NIC21, Rev. 2 Page 20 of22

3.9 REFUELING OPERATIONS 3.9.1 Boron Concentration LCO 3.9.1 Boron concentrations of the Reactor Coolant System (RCS), the refueling canal, and the refueling cavity shall be maintained ~ 2600 ppm.

SR 3.9.1.1 Verify boron concentration is within the limit specified above.

COLR-NIC21, Rev. 2 Page 21 of22

NAPS TECHNICAL REQUIREMENTS MANUAL TRM 3.1 REACTIVITY CONTROL SYSTEMS TR 3.1.1 Boration Flow Paths - Operating Required Action D.2 Borate to a SHUTDOWN MARGIN ~ 1.77 % Aklk at 200 of, after xenon decay.

COLR-NIC21, Rev. 2 Page 22 of22