ML041560086

From kanterella
Jump to navigation Jump to search
Core Operating Limits Report, Revision 1 for Cycle 17
ML041560086
Person / Time
Site: North Anna Dominion icon.png
Issue date: 06/02/2004
From: Funderburk C
Dominion Resources
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
04-328
Download: ML041560086 (23)


Text

1Dominion June 2, 2004 United States Nuclear Regulatory Commission Serial No.: 04-328 Attention: Document Control Desk NL&OS/MM Washington, D.C. 20555-0001 Docket No.: 50-339 License No.: NPF-7 VIRGINIA ELECTRIC AND POWER COMPANY (DOMINION)

NORTH ANNA POWER STATION UNIT 2 CORE OPERATING LIMITS REPORT Pursuant to North Anna Technical Specification 5.6.5.d, attached is a copy of the Virginia Electric and Power Companys (Dominion) Core Operating Limits Report, Revision 1 for North Anna Unit 2 Cycle 17 Pattern PU.

No new commitments are intended by this letter. If you have any questions or require additional information, please contact Mr. Tom Shaub at (804) 273-2763.

Very truly yours, C. L. Funderburk Director - Nuclear Licensing & Operations Support Dominion Resources Services for Virginia Electric and Power Company Attachment cc: U.S. Nuclear Regulatory Commission Region II Sam Nunn Atlanta Federal Center 61 Forsyth St. SW, Suite 23 T85 Atlanta, Georgia 30303-8931 Mr. M. T. Widmann NRC Senior Resident Inspector North Anna Power Station Mi-. S. R. Monarque, P r o j e c t Manager U. S. NRC One White Flint North 11555 Rockville Pike Rockville, MD 20852

SN 04-328 Docket No. 50-339 Attachment CORE OPERATING LIMITS REPORT Cycle 17 Pattern PU Revision 1 North Anna Unit 2 Virginia Electric and Power Company (Dominion)

N2C17 CORE OPERATING LIMITS REPORT INTRODUCTION The Core Operating Limits Report (COLR) for North Anna Unit 2 Cycle 17 has been prepared in accordance with North Anna Technical Specification 5.6.5. The technical specificationsaffected by this report are listed below:

TS 2.1.1 Reactor Core Safety Limits TS 3.1.1 Shutdown Margin (SDM)

TS 3.1.3 Moderator Temperature Coefficient (MTC)

TS 3.1.5 Shutdown Bank Insertion Limit TS 3.1.6 Control Bank Insertion Limits TS 3.2.1 Heat Flux Hot Channel Factor TS 3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (FNAH)

TS 3.2.3 Axial Flux Difference (AFD)

TS 3.3.1 Reactor Trip System (RTS) Instrumentation TS 3.4.1 RCS Pressure, Temperature, and Flow DNB Limits TS 3.9.1 Boron Concentration In addition, a technical requirement (TR) in the NAPS Technical Requirements Manual (TRM) refers to the COLR:

TR 3.1.1 Boration Flow Paths - Operating The analytical methods used for determining the core operating limits are those previously approved by the NRC and are discussed in the documents listed in the References Section. Cyclespecific values are presented in bold, while text in italics is provided for information only.

N2C17/PU COLR Rev. 1 Page 1 of 21

REFERENCES

1. VEP-FRD-42 Rev 2.1-A, Reload Nuclear Design Methodology, August 2003.

(Methodology for TS 3.1.1 -Shutdown Margin, TS 3.1.3 - Moderator Temperature Coefficient, TS 3.1.5 -

Shutdown Bank Insertion Limit, ITS 3.1.6 - Control Bank Insertion Limits, TS 3.2.1 - Heat Flux Hot Channel Factor, TS 3.2.2 - Nuclear Enthalpy Rise Hot Channel Factor and TS 3.9.1 - Boron Concentration)

2. WCAP-9220-P-A Rev1, Westinghouse ECCS Evaluation Model - 1981 Version, February 1982.

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor)

3. WCAP-9561-P-A Rev 1 Add. 3, BART A-1: A Computer Code for the Best Estimate Analysis of RefloodTransients

-Special Report: Thimble Modeling in & ECCS I Evaluation Model, July 1986.

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor)

4. WCAP-10266-P-A Rev 2, The 1981 Version of the Westinghouse ECCS Evaluation Model Using the BASH Code, March 1987.

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor)

5. WCAP-lOO54-P-A, Westinghouse Small Break ECCS Evaluation Model Using the NOTRUMP Code, August 1985.

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor)

6. WCAP-lOO79-P-A, NOTRUMP, A Nodal Transient Small Break and General Network Code, August 1985.

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor)

7. WCAP-l261O-P-A, VANTAGE+ Fuel Assembly - Reference Core Report, April 1995.

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor)

8. VEP-NE9-A, Statistical DNBR Evaluation Methodology, June 1987.

(Methodology for TS 3.2.2 - Nuclear Enthalpy Rise Hot Channel Factor and TS 3.4.1 - RCS Pressure, Temperature and Flow DNB Limits)

9. VEP-NE-3-A, Qualificationof the WRB-1 CHF Correlation in the Virginia Power COBRA Code, July 1990.

(Methodology for TS 3.2.2 - Nuclear Enthalpy Rise Hot Channel Factor and TS 3.4.1 - RCS Pressure, Temperature and Flow DNB Limits)

10. VEP-NE-1-Rev. 0.1-A, Relaxed Power Distribution Control Methodology and Associated FQ Surveillance Technical Specifications, August 2003.

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor and TS 3.2.3 -Axial Flux Difference)

11. WCAP-8745-P-A, Design Bases for the Thermal Overpower AT and Thermal Overtemperature AT Trip Functions, September 1986.

(Methodology for TS 2.1 .I - Reactor Core Safety Limits and TS 3.3.1 - Reactor Trip System Instrumentation)

N2C17/PU COLR Rev. 1 Page 2 of 21

12. WCAP-l4483-A, Generic Methodology for ExpandedCore Operating Limits Report, January 1999.

(Methodology for TS 2.1.1 - Reactor Core Safety Limits, TS 3.1.1 -Shutdown Margin, TS 3.3.1 - Reactor Trip System Instrumentation, TS 3.4.1 - RCS Pressure, Temperature, and Flow DNB Limits and TS 3.9.1 - Boron Concentration)

13. BAW-l0227P-A, Evaluation of Advanced Cladding and Structural Material (M5) in PWR Reactor Fuel.

(Methodology for TS 2.1.1 - Reactor Core Safety Limits, TS 3.2.1 - Heat Flux Hot Channel Factor)

14. BAW-10199-P-A, The BWU Critical Heat Flux Correlations.

(Methodology for TS 3.2.2 - Nuclear Enthalpy Rise Hot Channel Factor and TS 3.4.1 - RCS Pressure, Temperature and Flow DNB Limits)

15. BAW-lOl70-P-A, Statistical Core Design For Mixing Vane Cores.

(Methodology for TS 3.2.2 - Nuclear Enthalpy Rise Hot Channel Factor and TS 3.4.1 - RCS Pressure, Temperature and Flow DNB Limits)

16. EMF-2103-P-A, Realistic Large Break LOCA Methodology for Pressurized Water Reactors.

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor)

17. EMF-96-029-P-A, Reactor Analysis System for PW Rs.

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor)

18. BAW-lOl68-P-A, RSG LOCA - BWNT Loss-of-Coolant Accident Evaluation Model for Recirculating Steam Generator Plants. Volume II only (SBLOCA models).

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor)

N2C17/PU COLR Rev. 1 Page 3 of 21

2.0 SAFETY LIMITS (SLs) 2.1 SLS 2.1.1 Reactor Core SLs In MODES 1 and 2, the combination of THERMAL POWER, Reactor Coolant System (RCS) highest loop average temperature, and pressurizer pressure shall not exceed the limits specified in COLR Figure 2.1-1; and the following SLs shall not be exceeded.

2.1.1.1 The departure from nucleate boiling ratio (DNBR) shall be maintained greater than or equal to the 95/95 DNBR criterion for the DNB correlations and methodologies specified in the References Section.

2.1.1.2 The peak fuel centerline temperature shall be maintained c 5O8O0F, decreasing by 58°F per 10,000 MWD/MTU of burnup, for Westinghouse fuel and < 5173"F, decreasing by 65°F per 10,000 MWD/MTU of burnup, for Framatome fuel.

N2C17/PU COLR Rev. 1 Page 4 of 21

COLR Figure 2.1-1 NORTH ANNA REACTOR CORE SAFETY LIMITS 660 655

\ 2400 psia 650 645 \\ 2250 psia 640 635 630 \

\ 2000psia \

625 8

620

\

615 0

!, 610 605 600 595 590 585 580 575 570 I I I I I I I I I I I I 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 POWER (fraction of nominal)

N2C17/PU COLR Rev. 1 Page 5 of 21

3.1 REACTIVITY CONTROL SYSTEMS 3.1.1 SHUTDOWN MARGIN (SDM)

LCO 3.1.1 SDM shall be 2 1.77 % AWk.

3.1.3 Moderator Temperature Coefficient (MTC)

LCO 3.1.3 The MTC shall be maintained within the limits specified below. The upper limit of MTC is +0.6 x AWWF, when c 70% RTP, and 0.0 AWWF when 2 70% RTP.

The BOC/ARO-MTC shall be I+0.6 x lom4 AWWF (upper limit), when c 70% RTP, and I O . 0 AWWF when 2 70% RTP.

The EOC/ARO/RTP-MTC shall be less negative than -5.0 x lo4 AWWF (lower limit).

The MTC surveillance limits are:

The 300 ppm/ARO/RTP-MTC should be less negative than or equal to

-4.0 x 1O4 AMWF [Note 21.

The 60 ppm/ARO/RTP-MTC should be less negative than or equal to

-4.7 x lo4 AWWF [Note 31.

SR 3.1.3.2 Verify MTC is within -5.0 x AWk/"F (lower limit).

Note 2: If the MTC is more negative than -4.0 x lo4 AWWF, SR 3.1.3.2 shall be repeated once per 14 EFPD during the remainder of the fuel cycle.

Note 3: SR 3.1.3.2 need not be repeated if the MTC measured at the equivalent of equilibrium RTP-ARO boron concentration of I60 ppm is less negative than -4.7 x l o 4 AWWF.

3.1.4 Rod Group Alignment Limits Required Action A.l.l Verify SDM to be 2 1.77 O h Auk.

Required Action B.l.l Verify SDM to be 2 1.77 % Auk.

Required Action D.l.l Verify SDM to be 2 1.77 % Auk.

N2C17/PU COLR Rev. 1 Page 6 of 21

3.1.5 Shutdown Bank Insertion Limits LCO 3.1.5 Each shutdown bank shall be withdrawn to at least 225 steps.

Required Action A.l.l Verify SDM to be 2 1.77 'YOAuk.

Required Action B.l Verify SDM to be 2 1.77 'YOAklk.

SR 3.1 5 . 1 Verify each shutdown bank is withdrawn to at least 225 steps.

3.1.6 Control Bank Insertion Limits LCO 3.1.6 Control banks shall be limited in physical insertion as shown in COLR Figure 3.1-1.

Sequence of withdrawal shall be A, B, C and D, in that order; and the overlap limit during withdrawal shall be 97 steps.

Required Action A.l.l Verify SDM to be 1 1.77 YOAklk.

Required Action 9.1.1 Verify SDM to be 2 1.77 % Aklk.

Required Action C.l Verify SDM to be 2 1.77 'YOAuk.

SR 3.1.6.1 Verify estimated critical control bank position is within the insertion limits specified in COLR Figure 3.1-1.

SR 3.1.6.2 Verify each control bank is within the insertion limits specified in COLR Figure 3.1-1.

SR 3.1.6.3 Verify each control bank not fully withdrawn from the core is within the sequence and overlap limits specified in LCO 3.1.6 above.

3.1.9 PHYSICS TESTS Exceptions - MODE 2 LCO 3.1.9.b SDM is 2 1.77 YOAklk.

SR 3.1.9.4 Verify SDM to be 2 1.77 % Auk.

N2C17/PU COLR Rev. 1 Page 7 of 21

COLR Figure 3.1-1 North Anna 2 Cycle 17 Control Rod Bank Insertion Limits 230 220 210 200 190 180 170 160

$ 150 140 c,

X 130 Q

I 100 g

'23 90 0 80 K

70 60 50 40 30 20 10 0

0.0 0.1 0.2 0.3. 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Fraction of Rated Thermal Power N2C17/PU COLR Rev. 1 Page 8 of 21

3.2 POWER DISTRIBUTION LIMITS 3.2.1 Heat Flux Hot Channel Factor (FQ(Z))

LCO 3.2.1 FQ(Z),as approximated by Fa'(Z), shall be within the limits specified below.

The change in the FQ(Z)limit for coastdown operation is accommodated by defining a variable quantity, CFQ as indicated below. Then, the following expressions apply to both normal operation and Tavg coastdown regimes.

CFQ = 2.19, for normal operation at full power; CFQ = 2.15, for flux map immediately preceding EOC temperature coastdown and during subsequent power coastdown operation.

The Measured Heat Flux Hot Channel Factor, FaM(Z),shall be limited by the following relationships:

THERMAL POWER where: p=  ; and RATED THERMAL POWER K(Z) is provided in COLR Figure 3.2-1 ; and N(Z) is a cycle-specific non-equilibrium multiplier on FQ~(Z) to account for power distribution transients during normal operation, provided in COLR Table 3.2-1.

The discussion in the Bases Section B 3.2.1 for this LCO requires the application of a cycle dependent non-equilibrium mult@lier, N(Z), to the measured peaking factor, FQ~(Z),before comparing it to the limit. N(Z) accounts for power distribution transients encountered during normal operation. As function N(Z) is dependent on the predicted equilibrium FQ(Z)and is sensitive to the axial power distribution, it is tvpcally generated from the actual EOC bumup distribution that can only be obtained after the shutdown of the previous cycle. The cycle-specific N(Z) function is presented in COLR Table 3.2-1.

N2C17/PU COLR Rev. 1 Page 9 of 21

COLR Table 3.2-1 N2C17 N(2) Table NODE HEIGHT 0 to 1000 1000 to 3000 3000 to 5000 5000 to 7000 7000 to 9000 9000 to 11000 11000 to 13000 13000 to 15000 15000 to 17000 17000 to 19900 (FEET) MWD/MTU MWD/MTU MWD/MTU MWD/MTU MWD/MTU MWD/MTU MWD/MTU MWD/MTU MWD/MTU MWD/MTU 10 10.2 1.097 1.095 1.109 1.I21 1.123 1.134 1.I44 1.144 1.130 1.102 11 10.0 1.I04 1.108 1.116 1.119 1.120 1.I30 1.I42 1.142 1.128 1.I02 12 9.8 1.111 1.122 1.126 1.I25 1.I22 1 .I26 1.138 1.138 1.I26 1.104 13 9.6 1.116 1.133 1.138 1.137 1.I28 1.125 1.137 1.137 1.126 1.109 14 9.4 1.119 1.138 1.142 1.I42 1.129 1.124 1.133 1.132 1.121 1.110 15 9.2 1.122 .I40 1.145 1.145 1.133 1 .I30 1.134 1.134 .I24 1.119 16 9.0 1.135 .I51 1.158 1.157 1.I48 1.145 1.I46 1.148 .143 1.144 17 8.8 1.146 .I60 1.169 1.169 1.165 1 .I61 1.I60 1.166 .166 1.169 18 8.6 1.151 .I64 1.174 1 .I74 1.173 1 .I67 1.I66 1.170 .171 1.175 19 8.4 1 .I51 .I 64 1.175 1 .I77 1.177 1 .I71 1.I71 1.174 .I 74 1.178 20 8.2 1.153 .I64 1.177 1 .I84 1.185 1 .I78 1.I78 1.182 .183 1.189 21 8.0 1.152 .I63 1.177 1 .I90 1.190 .182 1.182 1.188 .187 1.196 22 7.8 1.152 .I 63 1.178 1.192 1.192 .183 1.183 1.189 .I88 1.196 23 7.6 1.148 .I59 1.174 1.193 1.194 .I83 1.183 1.187 .I87 1.199 24 7.4 1.141 .150 1.168 1.195 1.195 .182 1.182 1.186 .188 1.207 25 7.2 1.137 .I44 1.163 1.194 1.194 .I 81 1.181 1.185 .I90 1.212 26 7.0 1.134 ,141 .I58 .I91 1.I 91 .I78 1.178 1.184 .I94 .215 27 6.8 1.134 1.138 .I55 .I91 1.191 .I77 1.176 1.185 1.197 .218 28 6.6 1.133 1.133 .150 .189 1.189 ,173 1.173 1.186 1.198 .218 29 6.4 1.128 1.127 .I 40 .I83 1.183 ,165 1.164 1.185 1 .I98 .218 30 6.2 1.119 1.119 .I30 .I73 1 .I73 ,154 1.156 1.182 1.197 .215 31 6.0 1.116 1.116 .I28 .I70 1.170 .I47 1.155 1.184 1.199 .217 32 5.8 .I09 1.109 .I25 1.162 1.162 1.142 1.155 .179 1.195 .212 33 5.6 .092 1.093 .111 1.139 1.139 1.134 1.149 .I65 1.183 .197 34 5.4 .080 1.081 .lo2 1.119 1.119 1.128 1.142 .151 1.169 .181 35 5.2 .079 1.080 .I01 1.114 1.114 1 .I25 1.138 .145 1.165 .176 36 5.0 .082 1.082 .I06 1.114 1.114 1.121 1.132 .I41 1.157 .167 37 4.8 .084 1.082 .I 11 1.115 .115 1.113 1.I22 .I36 1.I44 .151 38 4.6 .087 1.083 .I 14 1.116 .116 1.107 1.119 1.134 1.136 1.I43 39 4.4 .092 1.084 .I 15 1.117 .I17 1.105 1.125 1.136 1.136 1.146 40 4.2 .099 1.091 .I 16 1.117 .117 1.108 1.132 1.138 1.136 1.152 41 4.0 .I08 1.103 .I18 1.118 .119 1.117 1.137 7.138 1.135 1.158 42 3.8 .118 1.116 .119 1.I21 .I22 1.124 1.141 1.140 1.131 1.162 43 3.6 1.129 1.128 1.122 1.128 129 1.129 1.142 1 .I41 1.130 1.163 44 3.4 1 .I36 1.137 1.130 1.136 137 1.133 1.141 1.140 1.131 1.162 45 3.2 1.143 1.143 1.142 1.145 145 1.136 1.139 1.139 1.139 1.160 N2C17/PU COLR Rev. 1 Page 10 of 21

46 3.0 1.151 1.150 1.152 1.154 1.152 1 .I43 1 .I36 1.144 1.149 1.163 47 2.8 1.161 1.159 1.162 1.162 1.158 1.150 1.135 1.151 1 .I61 1 .I68 48 2.6 1.171 1.168 1.167 1.166 1.161 1.152 1.133 1.152 1 .I63 1.169 49 2.4 1.183 1.180 1.176 1.176 1.166 1.158 1.139 1.155 1.170 1.178 50 2.2 1.199 1 .I95 1.193 1.193 1.176 1.172 1.151 1.166 1.187 1.195 51 2.0 1.209 1.204 1.205 1.205 1.183 1 .I82 1.160 1.174 1.199 1.209 52 1.8 1.212 1.207 1.208 1.208 1.184 1.182 1.162 1.175 1.203 1.213 These decks were generated for normal operation flux maps which are typically taken at full power ARO. Additional N(z) decks may be generated if necessary, consistent with the methodology described in the RPDC topical.

N2C17/PU COLR Rev. 1 Page 11 of 21

COLR Figure 3.2-1 K(2) Normalized FQ as a Function of Core Height 1.2 1.1 1.o 0.9 0.8 h

Y 0.7 0

W 0.6 E

U 0

z 0.5 s

0.4 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 CORE HEIGHT (FT)

N2C17/PU COLR Rev. 1 Page 12 of 21

3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (FNAH)

LCO 3.2.2 FNAHshall be within the limits specified below.

F N A ~I 1.49{1 + 0.3(1 - P)}

THERMAL POWER where: p=

RATED THERMAL POWER SR 3.2.2.1 Verify FNhHis within limits specified above.

N2C17/PU COLR Rev. 1 Page 13 of 21

3.2.3 AXIAL FLUX DIFFERENCE (AFD)

LCO 3.2.3 The AFD in % flux difference units shall be maintained within the limits specified in COLR Figure 3.2-2.

N2C17/PU COLR Rev. 1 Page 14 of 21

COLR Figure 3.2-2 N2C17 Axial Flux Difference Limits 0 MWD/MTU to EOC 120 110 100 90 80 ti 3

0 n

- 70 E

z E

60 3c m

a rc 0

E 50 P) 0 n

ti 40 30 20 10 0

-30 -20 -10 0 10 20 30 Percent Flux Difference (Delta-I)

N2C17/PU COLR Rev. 1 Page 15 of 21

3.3 INSTRUMENTATION 3.3.1 Reactor Trip System (RTS) Instrumentation TS Table 3.3.1 -1 Note 1: Overtemperature AT The Overtemperature AT Function Allowable Value shall not exceed the following nominal trip setpoint by more than 2% of AT span, with the numerical values of the parameters as specified below.

[T-T']+K, (P-P')-fl (AZ) where: AT is measured RCS AT, OF.

ATo is the indicated AT at RTP, OF.

s is the Laplace transform operator, sec-'.

T is the measured RCS average temperature, OF.

T' is the nominal, ,T at RTP, 5586.8 O F .

P is the measured pressurizer pressure, psig.

P' is the nominal RCS operating pressure, 2 2235 psig.

K1 5 1.2715 K2 2 0.02172 PF K32 0.001144 /psig zl, z2 = time constants utilized in the lead-lag controller for Tavg z1 2 23.75 sec z214.4 sec (l+z,s)/(lizfl) = function generated by the lead-lag controller for Tavgdynamic compensation f 1(AI) 2 0.0165{ (41- qb)} when (qt- qb) < -35% RTP 0 when -35% RTP 5 (qt - qb) I +3% RTP O.O198{(qt 3) when (qt - qb) > +3% RTP

[See footnote]

Where q, and q b are percent RTP in the upper and lower halves of the core, respectively, and q, + q b is the total THERMAL POWER in percent RTP.

Footnote: The units for fl(Al) = 0 in the North Anna TS and NUREG-1431 are incorrectly specified as "% of RTP." fl(Al) being dimensionless should have no units.

This discrepancy is being addressed by the North Anna Corrective Action System (PI N-2002-1161-R2).

N2C17/PU COLR Rev. 1 Page 16 of 21

TS Table 3.3.1 -1 Note 2: Overpower AT The Overpower AT Function Allowable Value shall not exceed the following nominal trip setpoint by more than 2% of AT span, with the numerical values of the parameters as specified below.

r- r 7

{

ATIAT, K , - K , - r - K , [ T - T ' ] - f , (AZ) i where: AT is measured RCS AT, OF.

ATo is the indicated AT at RTP, O F .

s is the Laplace transform operator, sec".

T is the measured RCS average temperature, OF.

T' is the nominal Tavg at RTP, 5586.8 O F .

K4 I1.0865 K5 10.0197 /"F for increasing,T , K6 2 0.00162 / O F when T > T' 0 / O F for decreasing Tavg 0 1°F when T I T' z3= time constant utilized in the rate lag controller for Tavg z32 9.5 sec z3s/(l +r3s)= function generated by the rate lag controller for Tavgdynamic compensation f,(Al) = 0, for all AI, N2C17/PU COLR Rev. 1 Page 17 of 21

3.4 REACTOR COOLANT SYSTEM (RCS) 3.4.1 RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits LCO 3.4.1 RCS DNB parameters for pressurizer pressure, RCS average temperature, and RCS total flow rate shall be within the limits specified below:

a. Pressurizer pressure is greater than or equal to 2205 psig;
b. RCS average temperature is less than or equal to 591 O F ; and
c. RCS total flow rate is greater than or equal to 295,000 gpm.

SR 3.4.1.1 Verify pressurizer pressure is greater than or equal to 2205 psig.

SR 3.4.1.2 Verify RCS average temperature is less than or equal to 591 OF.

SR 3.4.1.3 Verify RCS total flow rate is greater than or equal to 295,000 gpm.

N2C17/PU COLR Rev. 1 Page 18 of 21

3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) 3.5.6 Boron Injection Tank (BIT)

Required Action 8.2 Borate to an SDM 2 1.77 YOAk/k at 200 OF.

N2C17/PU COLR Rev. 1 Page 19 of 21

3.9 REFUELING OPERATIONS 3.9.1 Boron Concentration LCO 3.9.1 Boron concentrations of the Reactor Coolant System (RCS), the refueling canal, and the refueling cavity shall be maintained 2 2600 ppm.

Note: The refueling boron concentration satisfies the more restrictive of the following conditions: (a) kerr50.95, or (b) boron concentration 2 2600 ppm.

SR 3.9.1.1 Verify boron concentration is within the limit specified above.

N2C17/PU COLR Rev. 1 Page 20 of 21

NAPS TECHNICAL REQUIREMENTS MANUAL TRM 3.1 REACTIVITY CONTROL SYSTEMS TR 3.1.1 Boration Flow Paths - Operating Required Action E.2 Borate to a SHUTDOWN MARGIN 1 1.77 % Aklk at 200 O F ,

after xenon decay.

N2C17/PU COLR Rev. 1 Page 21 of 21