ML17272A115

From kanterella
Jump to navigation Jump to search
Core Operating Limits Report Cycle 26 Pattern Cya, Revision 2
ML17272A115
Person / Time
Site: North Anna Dominion icon.png
Issue date: 09/22/2017
From: Stanley B
Dominion Energy Services, Virginia Electric & Power Co (VEPCO)
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
Download: ML17272A115 (25)


Text

VIRGINIA ELECTRIC AND POWER COMPANY RICHMOND, VIRGINIA 23261 September 22, 2017 United States Nuclear Regulatory Commission Serial No.: 17-341 Attention: Document Control Desk NRA/DEA: RO Washington, D.C. 20555 Docket No.: 50-338 License No.: NPF-4 VIRGINIA ELECTRIC AND POWER COMPANY (DOMINION ENERGY VIRGINIA)

NORTH ANNA POWER STATION UNIT 1 CORE OPERATING LIMITS REPORT CYCLE 26 PATTERN CYA REVISION 2 Pursuant to North Anna Technical Specification 5.6.5.d, attached is a copy of the Dominion Core Operating Limits Report (COLR) for North Anna Unit 1 Cycle 26, Pattern CYA, Revision 2, Addendum 0. The COLR was revised to incorporate the implementation of VEP-NE-1-A Revision 0, Minor Revision 2, which addresses concerns identified in NSAL 09-5 and NSAL 15-1 related to FQ surveillance.

Specifically, COLR Tables 3.2-2 and 3.2-3 were added.

If you have any questions or require additional information, please contact Ms. Diane Aitken at (804) 273-2694.

Sincerely, t!J1z5~

B. L. Stanley, Director Nuclear Regulatory Affairs Dominion Energy Services, Inc. for Virginia Electric and Power Company

Attachment:

COLR-N1C26, Revision 2, Addendum 0, Core Operating Limits Report, North Anna Unit 1 Cycle 26 Pattern CYA Commitment Summary: There are no new commitments contained in this letter.

Serial No.17-341 Docket No. 50-338 COLR N1C26 Pattern CYA, Rev. 2, Add. 0 Page 2 of 2 cc: U.S. Nuclear Regulatory Commission Region II Marquis One Tower 245 Peachtree Center Avenue, NE Suite 1200 Atlanta, Georgia 30303-1257 Mr. James R. Hall NRC Senior Project Manager U. S. Nuclear Regulatory Commission One White Flint North Mail Stop 08 B-1A 11555 Rockville Pike Rockville, Maryland 20852-2738 NRC Senior Resident Inspector North Anna Power Station

Serial No.17-341 Docket No. 50-338 Page 1 of 23 ATTACHMENT COLR-N1 C26, Revision 2, Addendum 0 CORE OPERATING LIMITS REPORT North Anna Unit 1Cycle26 Pattern CYA North Anna Power Station Units 1 and 2 Virginia Electric and Power Company

Serial No.17-341 Docket No. 50-338 N1C26 CORE OPERATING LIMITS REPORT INTRODUCTION The Core Operating Limits Report (COLR) for North Anna Unit 1 Cycle 26 has been prepared in accordance with North Anna Technical Specification 5.6.5. The technical specifications affected by this report are listed below:

TS 2.1.1 Reactor Core Safety Limits TS 3.1.1 Shutdown Margin (SDM)

TS 3.1.3 Moderator Temperature Coefficient (MTC)

TS 3.1.4 Rod Group Alignment Limits TS 3.1.5 Shutdown Bank Insertion Limit TS 3.1.6 Control Bank Insertion Limits TS 3.1.9 PHYSICS TESTS Exceptions - Mode 2 TS 3.2.1 Heat Flux Hot Channel Factor TS 3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (FNm)

TS 3.2.3 Axial Flux Difference (AFD)

TS 3.3.1 Reactor Trip System (RTS) Instrumentation TS 3.4.1 RCS Pressure, Temperature, and Flow DNB Limits TS 3.5.6 Boron Injection Tank (BIT)

TS 3.9.1 Boron Concentration In addition, a technical requirement (TR) in the NAPS Technical Requirements Manual (TRM) refers to the COLR:

TR 3.1.1 Boration Flow Paths - Operating The analytical methods used to determine the core operating limits are those previously approved by the NRC and discussed in the documents listed in the References Section.

Cycle-specific values are presented in bold. Text in italics is provided for information only.

COLR-N1C26, Revision 2 EVAL-ENG-RSE-NlC26, Revision 0, Add. B, Attachment A Page 2 of23

Serial No.17-341 Docket No. 50-338 REFERENCES

1. VEP-FRD-42-A, Revision 2, Minor Revision 1, "Reload Nuclear Design Methodology,"

August 2003.

Methodology for:

TS 3 .1.1 - Shutdown Margin TS 3 .1.3 - Moderator Temperature Coefficient TS 3 .1.4 - Rod Group Alignment Limits TS 3.1.5 - Shutdown Bank Insertion Limit TS 3.1.6 - Control Bank Insertion Limits TS 3.1.9-Physics Tests Exceptions-Mode 2 TS 3.2.1-Heat Flux Hot Channel Factor TS 3.2.2 - Nuclear Enthalpy Rise Hot Channel Factor TS 3.5.6-Boron Injection Tank (BIT) and TS 3.9.1 - Boron Concentration

2. Plant-specific adaptation of WCAP-16009-P-A, "Realistic Large Break LOCA Evaluation Methodology Using the Automated Statistical Treatment of Uncertainty Method (ASTRUM),"

as approved by NRC Safety Evaluation Report dated February 29, 2012.

Methodology for: TS 3.2.1 -Heat Flux Hot Channel Factor

3. WCAP-10054-P-A, "Westinghouse Small Break ECCS Evaluation Model Using the NOTRUMP Code," August 1985.

Methodology for: TS 3.2.1 - Heat Flux Hot Channel Factor

4. WCAP-10079-P-A, "NOTRUMP, A Nodal Transient Small Break and General Network Code," August 1985.

Methodology for: TS 3.2.1 - Heat Flux Hot Channel Factor

5. WCAP-12610-P-A, "VANTAGE+ FUELASSEMBLY-REFERENCECOREREPORT,"

April 1995.

Methodology for:

TS 2.1.1 - Reactor Core Safety Limits TS 3.2.1-Heat Flux Hot Channel Factor

6. VEP-NE-2-A, Revision 0, "Statistical DNBR Evaluation Methodology," June 1987.

Methodology for:

TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor and TS 3.4. l - RCS Pressure, Temperature and Flow DNB Limits COLR-NlC26, Revision 2 EV AL-ENG-RSE-N 1C26, Revision 0, Add. B, Attachment A Page 3 of23

Serial No.17-341 Docket No. 50-338

7. VEP-NE-1-A, Revision 0, Minor Revision 2, "Relaxed Power Distribution Control Methodology and Associated FQ Surveillance Technical Specifications," April 2017.

Methodology for:

TS 3.2.1 -Heat Flux Hot Channel Factor and TS 3.2.3 -Axial Flux Difference

8. WCAP-8745-P-A, "Design Bases for the Thermal Overpower L'lT and Thermal Overtemperature L'lT Trip Functions," September 1986.

Methodology for:

TS 2.1.1 - Reactor Core Safety Limits and TS 3.3.1 - Reactor Trip System Instrumentation

9. WCAP-14483-A, "Generic Methodology for Expanded Core Operating Limits Report," January 1999.

Methodology for:

TS 2.1.1 - Reactor Core Safety Limits TS 3.1.1 - Shutdown Margin TS 3.1.4-Rod Group Alignment Limits TS 3.1.9 - Physics Tests Exceptions - Mode 2 TS 3.3.1-Reactor Trip System Instrumentation TS 3.4.1 - RCS Pressure, Temperature, and Flow DNB Limits TS 3.5.6- Boron Injection Tank (BIT) and TS 3.9.l -Boron Concentration

10. DOM-NAF-2-P-A, Revision 0, Minor Revision 3, "Reactor Core Thermal-Hydraulics Using the VIPRE-D Computer Code," including Appendix C, "Qualification of the Westinghouse WRB-2M CHF Correlation in the Dominion VIPRE-D Computer Code," August 2010 and Appendix D, "Qualification of the ABB-NV and WLOP CHF Correlations in the Dominion VIPRE-D Computer Code," September 2014.

Methodology for:

TS 3.2.2- Nuclear Enthalpy Rise Hot Channel Factor and TS 3.4.1 - RCS Pressure, Temperature and Flow DNB Limits

11. WCAP-12610-P-A and CENPD-404-P-A, Addendum 1-A, "Optimized ZIRLO'," July 2006.

Methodology for:

TS 2.1.1 - Reactor Core Safety Limits and TS 3.2.1 - Heat Flux Hot Channel Factor COLR-Nl C26, Revision 2 EVAL-ENG-RSE-N1C26, Revision 0, Add. B, Attachment A Page 4 of23

Serial No.17-341 Docket No. 50-338 2.0 SAFETY LIMITS (SLs) 2.1 SLs 2.1.1 Reactor Core SLs In MODES 1 and 2, the combination of THERMAL POWER, Reactor Coolant System (RCS) highest loop average temperature, and pressurizer pressure shall not exceed the limits specified in COLR Figure 2.1-1; and the following SLs shall not be exceeded.

2.1.1.1 The departure from nucleate boiling ratio (DNBR) shall be maintained greater than or equal to the 95/95 DNBR criterion for the DNB correlations and methodologies specified in the References Section.

2.1.1.2 The peak fuel centerline temperature shall be maintained< 5080°F, decreasing by 58°F per 10,000 MWD/MTU of burnup, for Westinghouse fuel and< 5173°F, decreasing by 65°F per 10,000 MWD/MTU of burnup, for AREVA fuel.

COLR-N1C26, Revision 2 EVAL-ENG-RSE-Nl C26, Revision 0, Add. B, Attachment A Page 5 of23

Serial No.17-341 Docket No. 50-338 COLR Figure 2.1-1

--*-****-**-*-----*-***--*--*---***--------**-**---**-***-*-----------------*-**-**------------*-----i NORTH ANNA REACTOR CORE SAFETY LIMITS 665 660 *-*~ ---*-* .. *--**** --**--*-*****-- - - --*!-*-*****-*--*- I -------- --------**-**** ***--**-** --

~

655 650

~-

~

psi a 645 -----*** ~ ------*---

-*~

'Li:'

640 635 ....

~o psi a

~~

"~

I!.....

!!! 630

....::Ira QI 625 ....

r---........ .....

Ii -- ~

I\

c..

E 620 ------rn* ~ -* ~ 20oolpsia

  • -*****-..--*****- - - - - t---*-- --*-****---

~

QI tl.O 615

...ra QI

> 610

~ .......

1860 osia

~ \ \'

T ~

~

<(

Qi 605 - - * - .......

~"' 600

~ ~

595 590 I'.... ""--

"- \

' \.

i

\\

=

I LJ 585 580 - * - -

_ . , ____ Ii -**--- ---*----- \ . **-

575 570 0 10 20 30 40 50 60 70 80 90 100 110 120 Percent of RATED THERMAL POWER COLR-NIC26, Revision 2 EVAL-ENG-RSE-N 1C26, Revision 0, Add. B, Attachment A Page 6 of23

Serial No.17-341 Docket No. 50-338 3.1 REACTIVITY CONTROL SYSTEMS 3.1.1 SHUTDOWN MARGIN (SDM)

LCO 3.1.1 SDM shall be~ 1.77 % Ak/k.

3 .1.3 Moderator Temperature Coefficient (MTC)

LCO 3.1.3 The MTC shall be maintained within the limits specified below. The upper limit of MTC is +0.6 x 10-4 Ak/k/°F, when< 70% RTP, and 0.0 Ak/k/°F when~ 70%

RTP.

The BOC/ARO-MTC shall be :S: +0.6x10-4 Ak/k/°F (upper limit), when< 70%

RTP, and :S: 0.0 Ak/k/°F when~ 70% RTP.

The EOC/ARO/RTP-MTC shall be less negative than -5.0 x 10-4 Ak/k/°F (lower limit).

The MTC surveillance limits are:

The 300 ppm/ARO/RTP-MTC should be less negative than or equal to

-4.0 x 10-4 Ak/k/°F [Note l].

The 60 ppm/ARO/RTP-MTC should be less negative than or equal to

-4.7 x 10-4 Ak/k/°F [Note 2].

SR 3 .1.3 .2 Verify MTC is within -5.0 x 10-4 Ak/k/°F (lower limit).

Note 1: If the MTC is more negative than -4.0 x 10-4 Ak/k/°F, SR 3.1.3.2 shall be repeated once per 14 EFPD during the remainder of the fuel cycle.

Note 2: SR 3.1.3.2 need not be repeated if the MTC measured at the equivalent of equilibrium RTP-ARO boron concentration of:::; 60 ppm is less negative than -4.7 x 10-4 Ak/k/°F.

COLR-Nl C26, Revision 2 EVAL-ENG-RSE-Nl C26, Revision 0, Add. B, Attachment A Page 7 of23

Serial No.17-341 Docket No. 50-338

3. I .4 Rod Group Alignment Limits Required Action A.1.1 Verify SDM to be~ 1.77 % Ak/k.

Required Action B.1.1 Verify SDM to be~ 1.77 % Ak/k.

Required Action D.l.I Verify SDM to be~ 1.77 % Ak/k.

3.I.5 Shutdown Bank Insertion Limits LCO 3.1.5 Each shutdown bank shall be withdrawn to at least 229 steps.

Required Action A.1.1 Verify SDM to be~ 1.77 % Ak/k.

Required Action B. l Verify SDM to be~ 1.77 % Ak/k.

SR 3.1.5.1 Verify each shutdown bank is withdrawn to at least 229 steps.

3 .1.6 Control Bank Insertion Limits LCO 3. I .6 Control banks shall be limited in physical insertion as shown in COLR Figure 3.1-1. Sequence of withdrawal shall be A, B, C and D, in that order; and the overlap limit during withdrawal shall be 101 steps.

Required Action A. I. I Verify SDM to be ~ 1. 77 % Ak/k.

Required Action B.1. I Verify SOM to be~ 1.77 % Ak/k.

Required Action C. I Verify SDM to be ~ 1. 77 % Ak/k.

SR 3.1.6,.I Verify estimated critical control bank position is within the insertion limits specified in COLR Figure 3.1-1.

SR 3.1.6.2 Verify each control bank is within the insertion limits specified in COLR Figure 3.1-1.

SR 3.1.6.3 Verify each control bank not fully withdrawn from the core is within the sequence and overlap limits specified in LCO 3.1.6 above.

3.1. 9 PHYSICS TESTS Exceptions - MODE 2 LCO 3.1.9.b SDM is ~ 1. 77 % Ak/k.

SR 3.1.9.4 Verify SDM to be~ 1.77 % Ak/k.

COLR-N1C26, Revision 2 EVAL-ENG-RSE-Nl C26, Revision 0, Add. B, Attachment A Page 8 of23

Serial No.17-341 Docket No. 50-338 COLR Figure 3.1-1 North Anna 1 Cycle 26 Control Rod Bank Insertion Limits Fully w/d position= 229 steps 230 220 v 0.544,229 210 /

200 /

190 / 1.0, 194

/

180 / /

170 / C-BANK "v

160 / /

"C 150 / . .v

~

....§l-140

/ /

ii:, 130 / ,./

c 0

~ 120 #(,18

/

0

~110 J/

s 0

l6 100 /

"C /D-BAI K 0

0::: 90 '

/

80 70 v

/

60 50 v

40 /

30

/

/

20 10 v

/0.048,o 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Fraction of Rated Thermal Power COLR-Nl C26, Revision 2 EVAL-ENG-RSE-NlC26, Revision 0, Add. B, Attachment A Page 9 of23

Serial No.17-341 Docket No. 50-338 3.2 POWER DISTRIBUTION LIMITS 3.2.l Heat Flux Hot Channel Factor (FQ(Z))

LCO 3.2.l Fo(Z), as approximated by FoE(z) and FoT(Z), shall be within the limits specified below.

CFQ=2.32 The Heat Flux Hot Channel Factor, Fo(Z), shall be limited by the following relationships:

CFQ

  • K(Z)

FQ(Z) ::::; p for P > 0.5 for P::::; 0.5 THERMAL POWER d where: p

  • an

= RATED THERMAL POWER '

K(Z) is provided in COLR Figure 3.2-1 FoE(Z) is an excellent approximation for FQ(Z) when the reactor is at the steady-state power.

Fo(Z) from the incore flux map results is increased by 1.03 for fuel manufacturing tolerances and 1.05 for measurement uncertainty to obtain FQE(Z).

Fg (Z) = FQ (Z) * (1.03) * (1.05)

The expression for FoT(Z) is:

FJ(Z) = Fg(z)

  • N(Z)

Where N(Z) is a cycle-specific non-equilibrium multiplier on F QE(Z) to account for power distribution transients during normal operation, provided in COLR Table 3.2-1.

The discussion in the Bases Section B 3.2.1 for this LCO requires the application of a cycle dependent non-equilibrium multiplier, N(Z), to the steady state Fl(ZJ. N(Z) accounts for power distribution transients encountered during normal operation. As function N(Z) is dependent on the predicted equilibrium FQ(Z) and is sensitive to the axial power distribution, it is typically generated.from the actual EOC burnup distribution that can only be obtained after the shutdown of the previous cycle.

COLR-Nl C26, Revision 2 EVAL-ENG-RSE-N1C26, Revision 0, Add. B, Attachment A Page 10 of23

Serial No.17-341 Docket No. 50-338 The cycle-specific penalty factors for flux map analysis are included in COLR Table 3.2-2.

Also discussed is the application of the appropriate factor to account for potential increases in FQ(Z) between surveillances. This factor is determined on a cycle specific basis and is dependent on the predicted increases in steady-state and transient F Q(Z)/K(Z) versus burnup. A minimum value of 2% is used should any increase in steady-state or transient measured or predicted peaking factor be determined unless frequent flux mapping is invoked (7 EFPD). These values are typically generated from the actual EOC burnup distribution that can only be obtained after the shutdown of the previous cycle.

The required operating space reductions are provided in COLR Table 3.2-3.

Should FQT(Z) exceed its limits the normal operating space should be reduced to gain peaking factor margins. The determination and verification of the margin improvements along with the corresponding required reductions in the Thermal Power Limit and AFD Bands are performed on a cycle-specific basis. These values are typically generated from the actual EOC burnup distribution that can only be obtained after the shutdown of the previous cycle.

COLR-N1C26, Revision 2 EVAL-ENG-RSE-NlC26, Revision 0, Add. B, Attachment A Page 11 of23

Serial No.17-341 Docket No. 50-338 COLR Table 3.2-1

  • N1 C26 Normal Operation N(Z)

NODE HEIGHT Oto 1000 1000 to 2000 2000 to 3000 3000 to 4000 4000 to 5000 (FEET) MWD/MTU MWD/MTU MWD/MTU MWD/MTU MWD/MTU 5 11.2 1.093 1.092 1.128 1.160 1.160 6 11.0 1.098 1.098 1.126 1.161 1.161 7 10.8 1.105 1.106 1.127 1.161 1.161 8 10.6 1.112 1.112 1.128 1.160 1.160 9 10.4 1.116 1.116 1.129 1.158 1.158 10 10.2 1.120 1.120 1.129 1.155 1.155 11 10.0 1.123 1.123 1.130 1.151 1.151 12 9.8 1.126 1.126 1.130 1.146 1.146 13 9.6 1.127 1.127 1.130 1.141 1.141 14 9.4 1.127 1.128 1.128 1.137 1.138 15 9.2 1.129 1.130 1.130 1.138 1.138 16 9.0 1.135 1.135 1.138 1.141 1.137 17 8.8 1.141 1.141 1.148 1.148 1.141 18 8.6 1.144 1.144 1.154 1.153 1.149 19 8.4 1.147 1.147 1.159 1.159 1.158 20 8.2 1.153 1.153 1.164 1.163 1.163 21 8.0 1.156 1.157 1.166 1.166 1.166 22 7.8 1.158 1.159 1.167 1.167 1.167 23 7.6 1.158 1.160 1.166 1.166 1.165 24 7.4 1.157 1.159 1.163 1.163 1.161 25 7.2 1.155 1.157 1.160 1.160 1.155 26 7.0 1.151 1.153 1.156 1.156 1.149 27 6.8 1.149 1.152 1.156 1.156 1.145 28 6.6 1.148 1.149 1.154 1.154 1.142 29 6.4 1.142 1.138 1.145 1.145 1.135 30 6.2 1.134 1.125 1.133 1.133 1.127 31 6.0 1.132 1.119 1.128 1.129 1.125 32 5.8 1.129 1.116 1.124 1.124 1.122 33 5.6 1.115 1.106 1.109 1.108 1.109 34 5.4 1.108 1.104 1.102 1.097 1.100 35 5.2 1.111 1.110 1.108 1.097 1.102 36 5.0 1.119 1.120 1.118 1.100 1.108 37 4.8 1.127 1.128 1.124 1.101 1.111 38 4.6 1.135 1.135 1.129 1.105 1.114 39 4.4 1.139 1.139 1.132 1.112 1.115 40 4.2 1.144 1.144 1.135 1.117 1.114 41 4.0 1.148 1.148 1.139 1.123 1.115 42 3.8 1.153 1.152 1.146 1.134 1.122 43 3.6 1.159 1.156 1.154 1.148 1.132 44 3.4 1.162 1.159 1.160 1.155 1.135 45 3.2 1.166 1.165 1.165 1.159 1.138 46 3.0 1.169 1.168 1.169 1.164 1.146 47 2.8 1.176 1.176 1.175 1.171 1.157 48 2.6 1.187 1.188 1.185 1.180 1.167 49 2.4 1.202 1.202 1.197 1.191 1.178 50 2.2 1.213 1.213 1.208 1.201 1.189 51 2.0 1.224 1.224 1.220 1.211 1.198 52 1.8 1.234 1.234 1.230 1.221 1.206 53 1.6 1.243 1.243 1.239 1.230 1.214 54 1.4 1.252 1.252 1.247 1.238 1.221 55 1.2 1.259 1.259 1.255 1.245 1.227 56 1.0 1.265 1.265 1.261 1.250 1.232 57 0.8 1.270 1.270 1.266 1.255 1.237 COLR-NIC26, Revision 2 EVAL-ENG-RSE-Nl C26, Revision 0, Add. B, Attachment A Page 12of23

Serial No.17-341 Docket No. 50-338 COLR Table 3.2-1 *(continued)

N1C26 Normal Operation N(Z)

NODE HEIGHT 5000 to 7000 7000 to 9000 9000 to 11000 11000 to 13000 13000 to 15000 (FEET) MWD/MTU MWD/MTU MWD/MTU MWD/MTU MWD/MTU 5 11.2 1.154 1.136 1.098 1.099 1.095 6 11.0 1.155 1.137 1.098 1.097 1.093 7 10.8 1.156 1.140 1.101 1.095 1.091 8 10.6 1.155 1.140 1.107 1.094 1.092 9 10.4 1.153 1.140 1.114 1.096 1.095 10 10.2 1.151 1.139 1.120 1.101 1.101 11 10.0 1.147 1.138 1.124 1.109 1.109 12 9.8 1.142 1.138 1.131 1.116 1.115 13 9.6 1.138 1.139 1.139 1.122 1.121 14 9.4 1.135 1.140 1.142 1.124 1.124 15 9.2 1.136 1.144 1.144 1.127 1.130 16 9.0 1.143 1.148 1.149 1.136 1.142 17 8.8 1.153 1.154 1.154 1.146 1.156 18 8.6 1.155 1.153 1.152 1.150 1.161 19 8.4 1.157 1.158 1.157 1.157 1.170 20 8.2 1.162 1.173 1.173 1.171 1.190 21 8.0 1.167 1.186 1.186 1.183 1.205 22 7.8 1.169 1.189 1.189 1.187 1.208 23 7.6 1.171 1.195 1.195 1.197 1.213 24 7.4 1.174 1.203 1.203 1.211 1.223 25 7.2 1.174 1.208 1.208 1.220 1.229 26 7.0 1.173 1.208 1.208 1.222 1.229 27 6.8 1.174 1.210 1.209 1.224 1.230 28 6.6 1.172 1.208 1.208 1.223 1.229 29 6.4 1.165 1.203 1.203 1.220 1.228 30 6.2 1.154 1.194 1.194 1.213 1.226 31 6.0 1.148 1.192 1.190 1.212 1.227 32 5.8 1.143 1.185 1.186 1.206 1.223 33 5.6 1.134 1.165 1.178 1.190 1.212 34 5.4 1.128 1.150 1.172 1.178 1.199 35 5.2 1.124 1.149 1.170 1.176 1.192 36 5.0 1.120 1.151 1.166 1.175 1.188 37 4.8 1.114 1.149 1.160 1.170 1.185 38 4.6 1.115 1.145 1.150 1.164 1.186 39 4.4 1.123 1.139 1.140 1.158 1.187 40 4.2 1.127 1.134 1.136 1.151 1.189 41 4.0 1.127 1.132 1.139 1.147 1.189 42 3.8 1.133 1.134 1.144 1.147 1.183 43 3.6 1.141 1.141 1.150 1.151 1.172 44 3.4 1.143 1.142 1.153 1.154 1.163 45 3.2 1.144 1.144 1.152 1.158 1.158 46 3.0 1.147 1.147 1.151 1.158 1.155 47 2.8 1.154 1.154 1.149 1.159 1.159 48 2.6 1.164 1.158 1.146 1.157 1.161 49 2.4 1.177 1.169 1.150 1.160 1.171 50 2.2 1.191 1.187 1.164 1.170 1.188 51 2.0 1.201 1.200 1.174 1.179 1.202 52 1.8 1.206 1.201 1.175 1.181 1.209 53 1.6 1.211 1.203 1.178 1.185 1.213 54 1.4 1.218 1.211 1.186 1.193 1.217 55 1.2 1.225 1.219 1.193 1.200 1.223 56 1.0 1.230 1.224 1.199 1.207 1.231 57 0.8 1.235 1.229 1.204 1.212 1.238 COLR-Nl C26, Revision 2 EVAL-ENG-RSE-N1 C26, Revision 0, Add. B, Attachment A Page 13 of23

Serial No.17-341 Docket No. 50-338 COLR Table 3.2-1* (continued)

N1 C26 Normal Operation N{Z)

NODE HEIGHT 15000 to 17000 17000 to 19000 19000 to EOR (FEET) MWD/MTU MWD/MTU MWD/MTU 5 11.2 1.088 1.080 1.079 6 11.0 1.087 1.081 1.081 7 10.8 1.087 1.085 1.085 8 10.6 1.092 1.092 1.090 9 10.4 1.100 1.101 1.095 10 10.2 1.106 1.106 1.097 11 10.0 1.108 1.109 1.099 12 9.8 1.114 1.113 1.104 13 9.6 1.121 1.119 1.112 14 9.4 1.124 1.120 1.113 15 9.2 1.130 1.125 1.119 16 9.0 1.142 1.140 1.141 17 8.8 1.156 1.159 1.164 18 8.6 1.161 1.164 1.170 19 8.4 1.170 1.173 1.176 20 8.2 1.190 1.193 1.195 21 8.0 1.205 1.208 1.208 22 7.8 1.208 1.212 1.211 23 7.6 1.213 1.217 1.217 24 7.4 1.224 1.226 1.226 25 7.2 1.231 1.232 1.231 26 7.0 1.233 1.234 1.231 27 6.8 1.236 1.236 1.232 28 6.6 1.235 1.235 1.230 29 6.4 1.232 1.232 1.224 30 6.2 1.226 1.225 1.213 31 6.0 1.226 1.224 1.210 32 5.8 1.223 1.218 1.206 33 5.6 1.212 . 1.202 1.196 34 5.4 1.199 1.187 1.187 35 5.2 1.192 1.181 1.183 36 5.0 1.188 1.177 1.176 37 4.8 1.185 1.170 1.166 38 4.6 1.186 1.164 1.159 39 4.4 1.187 1.159 1.158 40 4.2 1.189 1.158 1.159 41 4.0 1.189 1.161 1.162 42 3.8 1.181 1.164 1.165 43 3.6 1.172 1.166 1.167 44 3.4 1.170 1.170 1.164 45 3.2 1.174 1.174 1.162 46 3.0 1.175 1.174 1.164 47 2.8 1.176 1.177 1.172 48 2.6 1.174 1.179 1.177 49 2.4 1.178 1.189 1.190 50 2.2 1.189 1.206 1.207 51 2.0 1.203 1.224 1.224 52 1.8 1.211 1.235 1.235 53 1.6 1.216 1.240 1.240 54 1.4 1.218 1.242 1.242 55 1.2 1.223 1.246 1.246 56 1.0 1.231 1.255 1.255 57 0.8 1.238 1.262 1.262 COLR-Nl C26, Revision 2 EVAL-ENG-RSE-N1C26, Revision 0, Add. B, Attachment A Page 14 of23

Serial No.17-341 Docket No. 50-338

  • These decks are generated for normal operation flux maps that are typically taken at full power I ARO. Additional N(Z) decks may be generated, if necessary, consistent with the methodology described in the RPDC topical (Reference 7). EOR is defined as Hot Full Power End of Reactivity.

COLR-Nl C26, Revision 2 EVAL-ENG-RSE-N1C26, Revision 0, Add. B, Attachment A Page 15of23

Serial No.17-341 Docket No. 50-338 COLR Table 3.2-2 N1C26 Penalty Factors for Flux Map Analysis Burnup Penalty (MWD/MTU) Factor%

0-999 2.00 1000-1999 2.00 2000-2999 2.00 3000-3999 2.00 4000-4999 2.00 5000-6999 2.00 7000-8999 2.00 9000-10999 2.00 11000-12999 2.00 13000-14999 2.00 15000-16999 2.00 17000-18999 2.00 19000-EOC 2.00 Notes:

I. Penalty Factors are not required for initial power ascension flux maps.

2. All full power maps shall apply a Penalty Factor unless frequent flux mapping is invoked (:::S 7 EFPD).

COLR Table 3.2-3 N1C26 Required Operating Space Reductions for FaT(Z) Exceeding its Limits Required FQT(Z) Required Negative AFD Band Positive AFD Band Margin THERMAL POWER Reduction from AFD Reduction from AFD Improvement Limit (% RTP) Limits* (% AFD) Limits* (% AFD)

~1% ~97.0 ~2.0 ~2.0

> 1% and:::;2% ~95.0 ~3.0 ~3.0

>2% and~3% ~93.0 ~4.0 ~4.0

>3% ~50.0 NIA NIA

  • Axial Flux Difference Limits are provided in COLR Figure 3.2-2 COLR-N1C26, Revision 2 EVAL-ENG-RSE-N1C26, Revision 0, Add. B, Attachment A Page 16 of23

Serial No.17-341 Docket No. 50-338 COLR Figure 3.2-1 K(Z) - Normalized FQ as a Function of Core Height 1.2 1.1 6, 1.0 1.0

- r--- 1---

t--- r - -

r---..

0.9 (12 .925)

I 0.8 g:

2 0.7 c

w N

J

<( 0.6

l!ii 0:::

0 z

~ 0.5

~

0.4 0.3 --

0.2 >---**

0.1 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 CORE HEIGHT (FT)

COLR-N1C26, Revision 2 EVAL-ENG-RSE-N1C26, Revision 0, Add. B, Attachment A Page 17 of23

Serial No.17-341 Docket No. 50-338 3 .2 .2 Nuclear Enthalpy Rise Hot Channel Factor (FN,rn)

LCO 3.2.2 pN t.H shall be within the limits specified below.

FNAH ~ 1.587{1+0.3(1-P)}

THERMAL POWER where:

p = RATED THERMAL POWER SR 3.2.2.l Verify FNt.H is within limits specified above.

3.2.3 AXIAL FLUX DIFFERENCE (AFD)

LCO 3 .2.3 The AFD in % flux difference units shall be maintained within the limits specified in COLR Figure 3.2-2.

COLR-Nl C26, Revision 2 EVAL-ENG-RSE-NlC26, Revision 0, Add. B, Attachment A Page 18 of23.

Serial No.17-341 Docket No. 50-338 COLR Figure 3.2-2 North Anna 1 Cycle 26 Axial Flux Difference Limits 120 110 100 r2.10v \6, 100) 90 Unacceptable Operation I \\ Unacceptable Operation

,v 80 GJ 3:

0 70 Acceptable Operation

\

a..

iii E

.... 60 I

I \

\

GJ

..c t-I "C

GJ ra 0:::

50

(-27. 50) (+20, 50)

-0 c:

GJ I:

GJ 40 a.. 30 20 10 0

-30 -20 -10 0 10 20 30 Percent Flux Difference (Delta-I)

COLR-Nl C26, Revision 2 EVAL-ENG-RSE-N1C26, Revision 0, Add. B, Attachment A Page 19 of23

Serial No.17-341 Docket No. 50-338 3.3 INSTRUMENTATION 3.3.1 Reactor Trip System (RTS) Instrumentation TS Table 3.3.1-1 Note 1: Overtemperature L'.1T The Overtemperature L1T Function Allowable Value shall not exceed the following nominal trip setpoint by more than 2% of L1T span, with the numerical values of the parameters as specified below.

where: L1T is measured RCS L1T, °F L1To is the indicated L1T at RTP, °F s is the Laplace transform operator, sec- 1 T is the measured RCS average temperature, °F T' is the nominal T avg at R TP, :s; 586.8 °F p is the measured pressurizer pressure, psig P' is the nominal RCS operating pressure, ~ 2235 psig K2 ~ 0.02174 /°F K3 ~ 0.001145 /psig

't 1, 't2 ~ time constants utilized in the lead-lag controller for Tavg

't 1 ~ 23.75 sec 't2 ~ 4.4 sec (1 +'t1S)/(l +'t2S) =function generated by the lead-lag controller for Tavg dynamic compensation f1 (111) 2: 0.0291 {-13.0 - (qt - qb)} when (qt - qb) < -13.0% RTP 0 when-13.0% RTP ~(qt - qb) ~ +7.0% RTP 0.0251{(qt-qb)-7.0} when (qt-qb) > +7.0% RTP Where q1 and qb are percent RTP in the upper and lower halves of the core, respectively, and qt+ qb is the total THERMAL POWER in percent RTP.

COLR-Nl C26, Revision 2 EVAL-ENG-RSE-N1C26, Revision 0, Add. B, Attachment A Page 20 of23

Serial No.17-341 Docket No. 50-338 TS Table 3.3.1-1 Note 2: Ovemower ~T The Overpower ~T Function Allowable Value shall not exceed the following nominal trip setpoint by more than 2% of ~T span, with the numerical values of the parameters as specified below.

where: ~T is measured RCS ~T, °F.

~To is the indicated ~Tat RTP, °F.

s is the Laplace transform operator, sec- 1*

T is the measured RCS average temperature, °F.

T' is the nominal Tavg at RTP, S 586.8 °F.

IGi s 1.0865 K5 ~ 0.0198 /°F for increasing Tavg K6 ~ 0.00162 /°F when T > T' 0 !°F for decreasing T avg 0 /°F when T s T' r3 = time constant utilized in the rate lag controller for Tavg T3 ~ 9.5 sec T3S I (1 + T3s) = function generated by the rate lag controller for Tavg dynamic compensation f2 (~I) = O, for all Al COLR-Nl C26, Revision 2 EVAL-ENG-RSE-NIC26, Revision 0, Add. B, Attachment A Page 21 of23

Serial No.17-341 Docket No. 50-338 3.4 REACTOR COOLANT SYSTEM (RCS) 3.4. l RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits LCO 3 .4.1 RCS DNB parameters for pressurizer pressure, RCS average temperature, and RCS total flow rate shall be within the limits specified below:

a. Pressurizer pressure is greater than or equal to 2205 psig;
b. RCS average temperature is less than or equal to 591 °F; and
c. RCS total flow rate is greater than or equal to 295,000 gpm.

SR 3.4.1.1 Verify pressurizer pressure is greater than or equal to 2205 psig.

SR 3.4.1.2 Verify RCS average temperature is less than or equal to 591 °F.

SR 3.4.1.3 Verify RCS total flow rate is greater than or equal to 295,000 gpm.

SR 3.4.1.4 ------------------------------NOTE:--------------------------------------------

Not required to be performed until 30 days after 2 90% RTP.

Verify by precision heat balance that RCS total flow rate is

2:: 295,000 gpm.

3.5 E:ME:RGENCY CORE COOLING SYSTEMS (E:CCS) 3.5.6 Boron Injection Tank (BIT)

Required Action B.2 Borate to a SDM ~ 1.77 % Ak/k at 200 °F.

3.9 REFUELING OPERATIONS 3.9.l Boron Concentration LCO 3.9.1 Boron concentrations of the Reactor Coolant System (RCS), the refueling canal, and the refueling cavity shall be maintained 2 2600 ppm.

SR 3.9.1. l Verify boron concentration is within the limit specified above.

COLR-Nl C26, Revision 2 EVAL-ENG-RSE-Nl C26, Revision 0, Add. B, Attachment A Page 22 of23

Serial No.17-341 Docket No. 50-338 NAPS TECHNICAL REQUIREMENTS MANUAL TRM 3.1 REACTIVITY CONTROL SYSTEMS TR 3.1.1 Boration Flow Paths - Operating Required Action D.2 Borate to a SHUTDOWN MARGIN~ 1.77 % Ak/k at 200 °F, after xenon decay.

COLR-N1C26, Revision 2 EVAL-ENG-RSE-NlC26, Revision 0, Add. B, Attachment A Page 23 of23