ML053050238

From kanterella
Jump to navigation Jump to search
Core Operating Limits Report
ML053050238
Person / Time
Site: North Anna Dominion icon.png
Issue date: 10/31/2005
From: Funderburk C
Dominion Resources Services, Virginia Electric & Power Co (VEPCO)
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
05-732
Download: ML053050238 (22)


Text

k Dominion October 31, 2005 United States Nuclear Regulatory Commission Serial No.05-732 Attention: Document Control Desk NL&OS/vI h Washington, D. C. 20555-0001 Docket No. 50-339 License No. NPF-7 VIRGINIA ELECTRIC AND POWER COMPANY (DOMINION)

NORTH ANNA POWER STATION UNIT 2 CORE OPERATING LIMITS REPORT Pursuant to North Anna Technical Specification 5.6.5.d, attached is a copy of the Dominion's Core Operating Limits Report, Revision 1 for North Anna Unit 2 Cycle 18 Pattern MOE.

No new commitments are intended by this letter. If you have have any questions or require additional information, please contact Mr. Thomas Shaub at (804) 273-2763.

Very truly yours,

'.C.

L. Fungerburk Director - Nuclear Licensing & Operations Support Dominion Resources Services, Inc. for Virginia Electric and Power Company Attach men t cc:

U. S. Nuclear Regulatory Commission Region II Sam Nunn Atlanta Federal Center 61 Forsyth Street, SW, Suite 237185 Atlanta, Georgia 30303-8931 Mr. S. R. Monarque U. S. Nuclear Regulatory Commission One White Flint North 1 1555 Rockville Pike Rockville, MD 20852-2738 Mr. J. T. Reece NRC Senior Resident Inspector North Anna Power Station

CORE OPERATING LIMITS REPORT North Anna Unit 2 Cycle 18 Pattern MOE Revision 1 October 2005 N2C18/MOE COLR, Revision 1 Page 1 of 21

N2C18 CORE OPERATING LIMITS REPORT INTRODUCTION The Core Operating Limits Report (COLR) for North Anna Unit 2 Cycle 18 has been prepared in accordance with North Anna Technical Specification 5.6.5. The technical specifications affected by thts report are listed below:

TS 2.1.1 TS 3.1.1 TS 3.1.3 TS 3.1.5 TS 3.1.6 TS 3.2.1 TS 3.2.2 TS 3.2.3 TS 3.3.1 TS 3.4.1 TS 3.9.1 Reactor Core Safety Limits Shutdown Margin (SDM)

Moderator Temperature Coefficient (h4TC)

Shutdown Bank Insertion Limit Control Bank Insertion Limits Heat Flux Hot Channel Factor Nuclear Enthalpy fise Hot Channel Factor (FNm)

Axial Flux Difference (AFD)

Reactor Trip System (RTS) Instrumentation RCS Pressure, Temperature, and How DNI3 Limits Boron Concentration In addition, a technical requirement (TR) in the NAPS Technical Requirements Manual (TRM) refers to the COLR:

TR 3.1.1 Boration Flow Paths - Operating The analytical methods used to determine the core operating limits are those previously approved by the NRC and discussed in the documents listed in the References Section.

Cycle-specific values are presented in bold. Text in italics is provided for information only.

N2C18/MOE COLR, Revision 1 Page 2 of 21

REFERENCES

1.
2.
3.
4.
5.
6.
7.
8.
9.

VEP-FRD-42 Rev 2.1-A, Reload Nuclear Design Methodology, August 2003.

(Methodology for TS 3.1.1 - Shutdown Margin, TS 3.1.3 - Moderator Temperature Coefficient, TS 3.1.5 - Shutdown Bank Insertion Limit, TS 3.1.6 - Control Bank Insertion Limits, TS 3.2.1 -

Heat Flux Hot Channel Factor, TS 3.2.2 - Nuclear Enthalpy Rise Hot Channel Factor and TS 3.9.1-Boron Concentration)

WCAP-9220-P-A Rev 1, Westinghouse ECCS Evaluation Model - 1981 Version, February 1982.

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor)

WCAP-956 1-P-A Rev 1 Add. 3, BART A-1 : A Computer Code for the Best Estimate Analysis of Reflood Transients - Special Report: Thimble Modehg in W ECCS Evaluation Model, July 1986.

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor)

WCAP-10266-P-A Rev 2, The 1981 Version of the Westinghouse ECCS Evaluation Model Using the BASH Code, March 1987.

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor)

WCAP-10054-P-A, Westinghouse Small Break ECCS Evaluation Model Using the NOTRUMP Code, August 1985.

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor)

WCAP-10079-P-A, NOTRUMP, A Nodal Transient Small Break and General Network Code, August 1985.

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor)

WCAP-l2610-P-A, VANTAGE+ Fuel Assembly - Reference Core Report, April 1995.

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor)

VEP-NE-2-A, Statistical DNBR Evaluation Methodology, June 1987.

(Methodology for TS 3.2.2 - Nuclear Enthalpy Rise Hot Channel Factor and TS 3.4.1 - RCS Pressure, Temperature and Flow DNB Limits)

VEP-NE-3-A, Qualification of the WRB-1 CHF Correlation in the Virginia Power COBRA Code, July 1990.

(Methodology for TS 3.2.2 - Nuclear Enthalpy Rse Hot Channel Factor and TS 3.4.1 - RCS Pressure, Temperature and Flow DNB Limits)

N2C 18/MOE COLR, Revision I Page 3 of 21

10. VEP-NE Rev. 0.1 -A, Relaxed Power Distribution Control Methodology and Associated FQ Surveillance Technical Specifications, August 2003.

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor and TS 3.2.3 - Axial Flux Difference) 1 1. WCAP-8745-P-A, Design Bases for the Thermal Overpower AT and Thermal Overtemperature AT Trip Functions, September 1986.

(Methodology for TS 2.1.1 - Reactor Core Safety Limits and TS 3.3.1 - Reactor Trip System Instrumentation)

12. WCAP-14483-A, Generic Methodology for Expanded Core Operating Limits Report, January 1999.

(Methodology for TS 2.1.1 - Reactor Core Safety Limits, TS 3.1.1 - Shutdown Margin, TS 3.3.1

- Reactor Trip System Instrumentation, TS 3.4.1 - RCS Pressure, Temperature, and Flow DNB Limits and TS 3.9.1 - Boron Concentration)

13. BAW-10227P-A, Evaluation of Advanced Cladding and Structural Material (M5) in PWR Reactor Fuel.

(Methodology for TS 2.1.1 - Reactor Core Safety Limits, TS 3.2.1 - Heat Flux Hot Channel Factor)

14. BAW-10199P-A, The BWU Critical Heat Flux Correlations.

(Methodology for TS 3.2.2 - Nuclear Enthalpy Rise Hot Channel Factor and TS 3.4.1 - RCS Pressure, Temperature and Flow DNB Limits)

15. BAW-10170P-A, Statistical Core Design For Mixing Vane Cores.

(Methodology for TS 3.2.2 - Nuclear Enthalpy &se Hot Channel Factor and TS 3.4.1 - RCS Pressure, Temperature and Flow DNB Limits)

16. EMF-2103 (P) (A), Realistic Large Break LOCA Methodology for Pressurized Water Reactors.

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor)

17. EMF-96-029 (P) (A), Reactor Analysis System for PwRs.

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor)

18. BAW-10168P-A, RSG LOCA - BWNT Loss-of-Coolant Accident Evaluation Model for Recirculating Steam Generator Plants. Volume I1 only (SBLOCA models).

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor)

N2C 1 WMOE COLR, Revision 1 Page 4 of 21

2.0 SAFETY LIMITS (SLs) 2.1 SLS

2. I. 1 Reactor Core SLs In MODES 1 and 2, the combination of THERMAL POWER, Reactor Coolant System (RCS) highest loop average temperature, and pressurizer pressure shall not exceed the limits specified in COLR Figure 2.1-1; and the following SLs shall not be exceeded.

2.1.1.1 The departure from nucleate boiling ratio (DNBR) shall be maintained greater than or equal to the 95/95 DNBR criterion for the DNB correlations and methodologies specified in the References Section.

2.1.1.2 The peak fuel centerline temperature shall be maintained < 5O8O0F, decreasing by 58°F per 10,000 MWD/MTU of burnup, for Westinghouse fuel and < 5173"F, decreasing by 65°F per 10,000 MWD/MTU of burnup, for AREVA fuel.

N2C18/MOE COLR, Revision I Page 5 of 21

COLR Figure 2.1-1 NORTH ANNA REACTOR CORE SAFETY LIMITS 660 655 650 645 640 635 630 625 620 615 610 605 w

a w

600 595 590 585 580 575 570

\\

2400 psia

~

1860 psia \\

I I

I I

I I

I I

I I

I I

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 POWER (fraction of nominal)

N2C 1 WMOE COLR, Revision 1 Page 6 of 21

3.1 REACTIVITY CONTROL SYSTEMS

3. I. 1 SHUTDOWN MARGIN (SDM)

LCO 3.1.1 SDM shall be 2 1.77 % Akk.

3.1.3 Moderator Temperature Coefficient (MTC)

LCO 3.1.3 The MTC shall be maintained within the limits specified below. The upper limit of MTC is +0.6 x lo4 Ak/k/"F, when c 70% RTP, and 0.0 Ak/k/"F when 2 70%

RTP.

The BOC/ARO-MTC shall be I +0.6 x lo4 Ak/k/"F (upper limit), when c 70% RTP, and I 0.0 Ak/k/"F when 2 70% RTP.

The EOC/ARO/RTP-MTC shall be less negative than -5.0 x lo4 Ak/k/"F (lower limit).

The MTC surveillance limits are:

The 300 ppm/ARO/RTP-MTC should be less negative than or equal to

-4.0 x lo4 Ak/k/"F [Note 21.

The 60 ppm/ARO/RTP-MTC should be less negative than or equal to

-4.7 x lo4 Ak/k/"F [Note 31.

SR 3.1.3.2 Verify MTC is within -5.0 x Ak/k/"F (lower limit).

Note 2: If the MTC is more negative than -4.0 x lo4 Ak/k/"F, SR 3.1.3.2 shall be repeated once per 14 EFPD during the remainder of the fuel cycle.

Note 3: SR 3.1.3.2 need not be repeated if the MTC measured at the equivalent of equilibrium RTP-ARO boron concentration of 5 60 ppm is less negative than -4.7 x lo4 Ak/k/"F.

3.1.4 Rod Group Alignment Limits Required Action A. 1.1 Verify SDM to be 2 1.77 % A m.

Required Action B. 1.1 Verify SDM to be 2 1.77 % A m.

Required Action D. 1.1 Verify SDM to be 2 1.77 % A m.

N2C 18/MOE COLR, Revision 1 Page 7 of 21

3.1.5 Shutdown Bank Insertion Limits LCO 3.1.5 Each shutdown bank shall be withdrawn to at least 230 steps.

Required Action A. 1.1 Verify SDM to be 2 1.77 % Ak/k.

Required Action B. 1 Verify SDM to be 2 1.77 % Am.

SR 3.1.5.1 Verify each shutdown bank is withdrawn to at least 230 steps.

3.1.6 Control Bank Insertion Limits LCO 3.1.6 Control banks shall be limited in physical insertion as shown in COLR Figure 3.1-1. Sequence of withdrawal shall be A, B, C and D, in that order; and the overlap limit during withdrawal shall be 102 steps.

Required Action A. 1.1 Verify SDM to be 2 1.77 % Akk.

Required Action B. I. 1 Verify SDM to be 2 1.77 % Ak/k.

Required Action C. 1 Verify SDM to be 2 1.77 % Am.

SR 3.1.6.1 Verify estimated critical control bank position is within the insertion limits specified in COLR Figure 3.1-1.

SR 3.1.6.2 Verify each control bank is within the insertion limits specified in COLR Figure 3.1-1.

SR 3.1.6.3 Verify each control bank not fully withdrawn from the core is within the sequence and overlap limits specified in LCO 3.1.6 above.

3.1.9 PHYSICS TESTS Exceptions - MODE 2 LCO 3.1.9.b SDM is 2 1.77 % Ak/k.

SR 3.1.9.4 Verify SDM to be 2 1.77 % A k k.

N2C 18MOE COLR, Revision I Page 8 of 21

230 220 21 0 200 190 180 170 160

? 150 3

110 Q

70 60 50 40 30 20 10 0

COLR Figure 3.1-1 North Anna 2 Cycle 18 Control Rod Bank Insertion Limits 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Fraction of Rated Thermal Power N2C 1 WMOE COLR, Revision 1 Page 9 of 21

3.2 POWER DISTRIBUTION LIMITS 3.2.1 Heat Flux Hot Channel Factor (FQ(Z))

LCO 3.2.1 FQ(Z), as approximated by FQ~(Z),

shall be within the limits specified below.

The change in the FQ(Z) limit for coastdown operation is accommodated by defining a variable quantity, CFQ as indicated below. Then, the following expressions apply to both normal operation and Tavg coastdown regimes.

CFQ = 2.19, for normal operation at full power; CFQ = 2.15, for flux map immediately preceding EOC temperature coastdown and during subsequent power coastdown operation.

The Measured Heat Flux Hot Channel Factor, FQM(Z), shall be limited by the following relationships:

THERMAL POWER RATED THERMAL POWER ; and where:

p =

K(Z) is provided in COLR Figure 3.2-1 (exception noted below), and N(Z) is a cycle-specific non-equilibrium multiplier on FQ~(Z) to account for power distribution transients during normal operation, provided in COLR Table 3.2-1.

The discussion in the Bases Section B 3.2.1 for this LCO requires the application of a cycle dependent non-equilibrium multiplier, N(Z), to the measured peaking factor, FQM(Z), before comparing it to the limit. N(Z) accounts for power distribution transients encountered during normal operation. AS

,function N(Z) is dependent on the predicted equilibrium FdZ) and is sensitive to the axial power distribution, it is typically generated from the actual EOC bumup distribution that can only be obtained afier the shutdown of the previous cycle. The cycle-spec@ N(Z) finetion is presented in COLR Table 3.2-1.

N2ClWMOE COLR, Revision 1 Page 10 of 21

COLR Table 3.2-1 N2C18 Normal Operation N(Z)

NODE 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 HEIGHT (FEET) 10.2 10.0 9.8 9.6 9.4 9.2 9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 0 to 1000 MWDlMTU 1.094 1.096 1.102 1.110 1.1 12 1.114 1.121 1.128 1.132 1.I33 1.136 1.138 1.139 1.140 1.139 1.138 1.135 1.133 1.132 1.131 1.128 1.128 1.125 1.114 1.105 1.104 1.107 1.113 1.118 1.122 1.127 1.132 1.137 1.143 1.148 1.155 1.163 1.174 1.185 1.201 1.220 1.233 1.236 1000 to 3000 MWDlMTU 1.097 1.105 1.112 1.118 1.121 1.124 1.131 1.139 1.144 1.149 1.154 1.157 1.158 1.158 1.157 1.155 1.152 1.151 1.149 1.142 1.133 1.129 1.124 1.113 1.105 1.104 1.107 1.I 13 1.118 1.122 1.127 1.132 1.136 1.141 1.146 1.153 1.I62 1.174 1.185 1.201 1.220 1.233 1.236 3000 to 5000 M W DlMTU 1.122 1.I21 1.120 1.120 1.120 1.124 1.135 1.148 1.153 1.155 1.159 1.160 1.I60 1.160 1.159 1.160 1.160 1.160 1.160 1.157 1.152 1.151 1.146 1.130 1.116 1.109 1.108 1.lo8 1.111 1.115 1.I21 1.129 1.132 1.135 1.139 1.146 1.155 1.166 1.I75 1.188 1.207 1.21 9 1.222 5000 to 7000 M WDlMTU 1.135 1.I34 1.133 1.131 1.129 1.131 1.138 1.I48 1.152 1.155 1.159 1.161 1.162 1.161 1.160 1.I59 1.160 1.160 1.I60 1.158 1.154 1.154 1.150 1.136 1.123 1.118 1.115 1.111 1.111 1.115 1.121 1.129 1.133 1.135 1.136 1.140 1.148 1.159 1.164 1.174 1.192 1.205 1.207 7000 to 9000 MWDlMTU 1.135 1.134 1.132 1.131 1.I29 1.134 1.149 1.166 1.171 1.174 1.182 1.187 1.189 1.190 1.192 1.192 1.I90 1.189 1.187 1.181 1.171 1.167 1.158 1.139 1.I23 1.119 1.117 1.111 1.108 1.110 1.114 1.I 20 1.124 1.129 1.134 1.141 1.151 1.161 1.I65 1.174 1.192 1.205 1.207 N2C 1 WMOE COLR, Revision I Page 11 of 21

COLR Table 3.2-1 (cont.)

N2C18 Normal Operation N(Z)

NODE 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 HEIGHT (FEET) 10.2 10.0 9.8 9.6 9.4 9.2 9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 9000 to 11 000 MWDlMTU 1.135 1.134 1.132 1.131 1.130 1.134 1.149 1.166 1.171 1.174 1.182 1.187 1.189 1.190 1.192 1.192 1.190 1.189 1.1 86 1.180 1.171 1.170 1.166 1.153 1.141 1.136 1.128

.115

,108

.110

,115

.120

.123

. 1 26 1.132 1.141 1.151 1.161 1.165 1.173 1.192 1.205 1.206 1 1000 to 13000 MWDlMTU 1.139 1.137 1.134 1.133 1.128 1.130 1.144 1.162 1.167 1.172 1.181 1.187 1.190 1.194 1.202 1.207 1.207 1.209 1.208 1.207 1.201 1.201 1.194 1.176 1.157 1.1 50 1.141

,125

. 1 20

. 1 27

,136

,144

,150

,152 1.153 1.153 1.151 1.150 1.147 1.149 1.155 1.160 1.160 13000 to 15000 15000 to 17000 M W DlMTU 1.139 1.137 1.134 1.133 1.128 1.130 1.144 1.162 1.167 1.172 1.181 1.187 1.190 1.194 1.202 1.207 1.207 1.209 1.208 1.207 1.201 1.201 1.194 1.176 1.160 1.155 1.149

,136

,129

.129

,135

.143

,149

.152 1.153 1.153 1.151 1.149 1.147 1.149 1.159 1.168 1.169 MWDlMTU 1.113 1.112 1.110 1.109 1.108 1.117 1.140 1.165 1.172 1.175 1.188 1.196 1.197 1.198 1.202 1.204 1.205 1.207 1.207 1.206 1.201 1.201 1.194 1.176 1.160 1.155 1.150 1.143 1.136 1.132 1.126 1.122 1.1 25 1.133 1.140 1.147 1.155 1.160 1.161 1.164 1.172 17000 to 18194 MWDlMTU 1.119 1.119 1.1 17 1.117 1.1 12 1.117 1.140 1.1 65 1.172 1.175 1.188 1.196 1.197 1.198 1.202 1.204 1.205 1.207 1.207 1.205 1.201 1.200 1.194 1.181 1.169 1.165 1.162 1.154 1.144 1.135 1.128 1.127 1.134 1.146 1.156 1.163 1.170 1.174 1.175 1.177 1.185 1.178 1.192 1.179 1.196 These decks were generated for normal operation flux maps which are typically taken at full power ARO. Additional N(z) decks may be generated if necessary, consistent with the methodology described in the RPDC topical.

N2C18/MOE COLR, Revision 1 Page 12 of 21

COLR Figure 3.2-1 K(Z) - Normalized FQ as a Function of Core Height 1.2 1.1 1.o 0.9 0.8 h

c?

f 0.7

!Y I

U A 0.5 c?

Y B

4 0.6 0.4 0.3 0.2 0.1 0.0 0

1 2

3 4

5 6

7 8

9 1 0 1 1 1 2 1 3 CORE HEIGHT (FT)

N2C18/MOE COLR, Revision 1 Page 13 of 21

3.2.2 LCO 3.2.2 F N ~

shall be within the limits specified below.

Nuclear Enthalpy Rise Hot Channel Factor (FNAH)

FNm I 1.49{ 1 + 0.3(1-P)}

THERMAL POWER RATED THERMAL POWER where:

p =

SR 3.2.2.1 Verify FNAH is within limits specified above.

3.2.3 AXIAL FLUX DIFFERENCE (AFD)

LCO 3.2.3 The AFD in % flux difference units shall be maintained within the limits specified in COLR Figure 3.2-2.

N2C18MOE COLR, Revision 1 Page 14 of 21

COLR Figure 3.2-2 North Anna 2 Cycle 18 Axial Flux Difference Limits 120 110 100 90 t 80 n

E t u 60 z -

70 E

l-Q RI K

6 50 2 d 40 c

c C

Q 30 20 10 0

-30

-20

-1 0 0

10 20 30 Percent Flux Difference (Delta-I)

N2C 18/MOE COLR, Revision I Page 15 of 21

3.3 INSTRUMENTATION 3.3.1 Reactor Trip System (RTS) Instrumentation TS Table 3.3.1 - 1 Note 1 : Overtemperature AT The Overtemperature AT Function Allowable Value shall not exceed the following nominal trip setpoint by more than 2% of AT span, with the numerical values of the parameters as specified below.

where: AT is measured RCS AT, O F.

AT0 is the indicated AT at RTP, O F.

s is the Laplace transform operator, sec".

T is the measured RCS average temperature, O F.

T' is the nominal Tavg at RTP, 5 586.8 O F.

P is the measured pressurizer pressure, psig.

P' is the nominal RCS operating pressure, 2 2235 psig.

K1I 1.2715 Kz 2 0.02172 / O F K3 2 0.001144 /psig q,

~2 = time constants utilized in the lead-lag controller for T,,,

T~ 2 23.75 sec 72 54.4 sec (1 + qs)/(l+ ZZS) = function generated by the lead-lag controller for TUvg dynamic compensation Where qt and q b are percent RTP in the upper and lower halves of the core, respectively, and qt + q b is the total THERMAL POWER in percent RTP.

N2C 1 WMOE COLR, Revision 1 Page 16 of 21

TS Table 3.3.1-1 Note 2: Overpower AT The Overpower AT Function Allowable Value shall not exceed the following nominal trip setpoint by more than 2% of AT span, with the numerical values of the parameters as specified below.

where: AT is measured RCS AT, OF.

AT0 is the indicated AT at RTP, OF.

s is the Laplace transform operator, sec-'.

T is the measured RCS average temperature, O F.

T' is the nominal Tavg at RTP, 5586.8 O F.

I(4 I 1.0865 Ks 2 0.0197 / O F for increasing Tavg 0 / O F for decreasing Tavg

& 2 0.00162 / O F when T > T' 0 / O F when T I T'

~3 = time constant utilized in the rate lag controller for TaYK 7 3 2 9.5 sec

?d(l+

7 3 ) = function generated by the rate lag controller for dynamic compensation f?(AI) = 0, for all AI.

N2C 18/MOE COLR, Revision 1 Page 17 of 21

3.4 REACTOR COOLANT SYSTEM (RCS) 3.4.1 RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits LCO 3.4.1 and RCS total flow rate shall be within the limits specified below:

RCS DNB parameters for pressurizer pressure, RCS average temperature,

a. Pressurizer pressure is greater than or equal to 2205 psig;
b. RCS average temperature is less than or equal to 591 O F ; and
c. RCS total flow rate is greater than or equal to 295,000 gpm.

SR 3.4.1.1 Verify pressurizer pressure is greater than or equal to 2205 psig.

SR 3.4.1.2 Verify RCS average temperature is less than or equal to 591 O F.

SR 3.4.1.3 Verify RCS total flow rate is greater than or equal to 295,000 gpm.

Verify by precision heat balance that RCS total flow rate is 2 295,000 gpm-N2C 1 WMOE COLR, Revision 1 Page 18 of 21

3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) 3.5.6 Boron Injection Tank (BIT)

Required Action B.2 Borate to a SDM 2 1.77 % Ak/k at 200 O F.

N2C18/MOE COLR, Revision 1 Page 19 of 21

3.9 REFUELING OPERATIONS 3.9.1 Boron Concentration LCO 3.9.1 Boron concentrations of the Reactor Coolant System (RCS), the refueling canal, and the refueling cavity shall be maintained 2 2600 ppm.

Note: The refueling boron concentration satisfies the more restrictive of the following conditions: (a) k,f 10.95, or (b) boron concentration 22600 ppm.

SR 3.9.1.1 Verify boron concentration is within the limit specified above.

N2C 18/MOE COLR, Revision 1 Page 20 of 21

NAPS TECHNICAL REQUIREMENTS MANUAL TRM 3.1 REACTIVITY CONTROL SYSTEMS TR 3.1.1 Boration Flow Paths - Operating Required Action E.2 Borate to a SHUTDOWN MARGIN 2 1.77 % A k k at 200 O F,

after xenon decay.

N2C 18/MOE COLR, Revision 1 Page 21 of 21