ML17272A116
ML17272A116 | |
Person / Time | |
---|---|
Site: | North Anna |
Issue date: | 09/22/2017 |
From: | Stanley B Dominion Energy Services, Virginia Electric & Power Co (VEPCO) |
To: | Document Control Desk, Office of Nuclear Reactor Regulation |
References | |
Download: ML17272A116 (25) | |
Text
VIRGINIA ELECTRIC AND POWER COMPANY RICHMOND, VIRGINIA 23261 September 22, 2017 United States Nuclear Regulatory Commission Serial No.: 17-342 Attention: Document Control Desk NRA/DEA: RO Washington, D.C. 20555 Docket No.: 50-339 License No.: NPF-7 VIRGINIA ELECTRIC AND POWER COMPANY (DOMINION ENERGY VIRGINIA)
NORTH ANNA POWER STATION UNIT 2 CORE OPERATING LIMITS REPORT .
CYCLE 25 PATTERN KTY REVISION 3 Pursuant to North Anna Technical Specification 5.6.5.d, attached is a copy of the Dominion Core Operating Limits Report for North Anna Unit 2 Cycle 25, Pattern KTY, Revision 3, Addendum 0. The COLR was revised to incorporate the implementation of VEP-NE-1-A Revision 0, Minor Revision 2, which addresses concerns identified in NSAL 09-5 and NSAL 15-1 related to FQ surveillance. Specifically, COLR Tables 3.2-2 and 3.2-3 were added.
If you have any questions or require additional information, please contact Ms. Diane Aitken at (804) 273-2694.
Sincerely, B. L. Stanley, Director Nuclear Regulatory Affairs Dominion Energy Services, Inc. for Virginia Electric and Power Company
Attachment:
COLR-N2C25, Revision 3, Addendum 0, Core Operating Limits Report, North Anna Unit 2 Cycle 25 Pattern KTY Commitment Summary: There are no new commitments contained in this letter.
Serial No.17-342 Docket No. 50-339 COLR N2C25 Pattern KTY, Rev. 3, Add. 0 Page 2 of 2 cc: U.S. Nuclear Regulatory Commission Region II Marquis One Tower 245 Peachtree Center Avenue, NE Suite 1200 Atlanta, Georgia 30303-1257 Mr. James R. Hall NRC Senior Project Manager U.S. Nuclear Regulatory Commission One White Flint North Mail Stop 08 B-1A 11555 Rockville Pike Rockville, Maryland 20852-2738 NRC Senior Resident Inspector North Anna Power Station
Serial No.17-342 Docket No. 50-339 Page 1 of 23 ATTACHMENT COLR-N2C25, Revision 3, Addendum 0 CORE OPERATING LIMITS REPORT North Anna Unit 2 Cycle 25 Pattern KTY North Anna Power Station Units 1 and 2 Virginia Electric and Power Company
Serial No.17-342 Docket No. 50-339 N2C25 CORE OPERATING LIMITS REPORT INTRODUCTION The Core Operating Limits Report (COLR) for North Anna Unit 2 Cycle 25 has been prepared in accordance with North Anna Technical Specification 5.6.5. The technical specifications affected by this report are listed below:
TS 2.1.1 Reactor Core Safety Limits TS 3.1.1 Shutdown Margin (SDM)
TS 3.1.3 Moderator Temperature Coefficient (MTC).
TS 3.1.4 Rod Group Alignment Limits TS 3.1.5 Shutdown Bank Insertion Limit TS 3.1.6 Control Bank Insertion Limits TS 3.1.9 PHYSICS TESTS Exceptions - Mode 2 TS 3.2.l Heat Flux Hot Channel Factor TS 3.2.2 Nuclear Enthalpy Rise Hot .Channel Factor (FNL'>H)
TS 3.2.3 Axial Flux Difference (AFD)
TS 3.3.l Reactor Trip System (RTS) Instrumentation TS 3.4.1 RCS Pressure, Temperature, and Flow DNB Limits TS 3.5.6 Boron Injection Tank (BIT)
TS 3.9.1 Boron Concentration In addition, a technical requirement (TR) in the NAPS Technical Requirements Manual (TRM) refers to the COLR:
TR 3.1.1 Boration Flow Paths - Operating The analytical methods used to determine the core operating limits are those previously approved by the NRC and discussed in the documents listed in the References Section.
Cycle-specific values are presented in bold. Text in italics is provided for information only.
COLR-N2C25, Revision 3 EV AL-ENG-RSE-N2C25, Revision 0, Add. C, Attachment A Page 2 of23
Serial No.17-342 Docket No. 50-339 REFERENCES
- 1. VEP-FRD-42-A, Revision 2 Minor Revision 1, "Reload Nuclear Design Methodology," August 2003.
Methodology for:
TS 3 .1.1 - Shutdown Margin TS 3 .1.3 - Moderator Temperature Coefficient TS 3 .1.4 - Rod Group Alignment Limits TS 3.1.5 - Shutdown Bank Insertion Limit TS 3.1.6 - Control Bank Insertion Limits TS 3.1.9 - Physics Tests Exceptions - Mode 2 TS 3.2.1 - Heat Flux Hot Channel Factor TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor TS 3.5.6 - Boron Injection Tank (BIT) and TS 3.9.l - Boron Concentration
- 2. Plant-specific adaptation of WCAP-16009-P-A, "Realistic Large Break LOCA Evaluation Methodology Using the Automated Statistical Treatment of Uncertainty Method (ASTRUM),"
as approved by NRC Safety Evaluation Report dated February 29, 2012.
Methodology for: TS 3.2.l -Heat Flux Hot Channel Factor
- 3. WCAP-10054-P-A, "Westinghouse Small Break ECCS Evaluation Model Using the NOTRUMP Code," August 1985.
Methodology for: TS 3.2.1 - Heat Flux Hot Channel Factor
- 4. WCAP-10079-P-A, "NOTRUMP, A Nodal Transient Small Break and General Network Code," August 1985.
Methodology for: TS 3.2.l -Heat Flux Hot Channel Factor
- 5. WCAP-12610-P-A, "VANTAGE+ FUEL ASSEMBLY-REFERENCE CORE REPORT,"
April 1995.
Methodology for:
TS 2.1.1 - Reactor Core Safety Limits TS 3.2.1 - Heat Flux Hot Channel Factor
- 6. VEP-NE-2-A, Revision 0, "Statistical DNBR Evaluation Methodology," June 1987.
Methodology for:
TS 3.2.2 - Nuclear Enthalpy Rise Hot Channel Factor and TS 3 .4.1 - RCS Pressure, Temperature and Flow DNB Limits COLR-N2C25, Revision 3 EVAL-ENG-RSE-N2C25, Revision 0, Add. C, Attachment A Page 3 of23
Serial No.17-342 Docket No. 50-339
- 7. VEP-NE-1-A, Revision 0, Minor Revision 2, "Relaxed Power Distribution Control I Methodology and Associated FQ Surveillance Technical Specifications," April 2017.
Methodology for:
TS 3.2.1 - Heat Flux Hot Channel Factor and TS 3.2.3 -Axial Flux Difference
- 8. WCAP-8745-P-A, "Design Bases for the Thermal Overpower 1'1T and Thermal Overtemperature L1T Trip Functions," September 1986.
Methodology for:
TS 2.1. l - Reactor Core Safety Limits and TS 3.3.1 -Reactor Trip System Instrumentation
- 9. WCAP-14483-A, "Generic Methodology for Expanded Core Operating Limits Report," January 1999.
Methodology for:
TS 2.1.1 - Reactor Core Safety Limits TS 3.1.1-Shutdown Margin TS 3.1.4-Rod Group Alignment Limits TS 3.1.9 - Physics Tests Exceptions - Mode 2 TS 3.3. l - Reactor Trip System Instrumentation TS 3.4.1 -RCS Pressure, Temperature, and Flow DNB Limits TS 3.5.6-Boron Injection Tank (BIT) and TS 3.9.l -Boron Concentration
- 10. DOM-NAF-2-P-A, Revision 0, Minor Revision 3, "Reactor Core Thermal-Hydraulics Using the VIPRE-D Computer Code," including Appendix C, "Qualification of the Westinghouse WRB-2M CHF Correlation in the Dominion VIPRE-D Computer Code," August 20 I 0 and Appendix D, "Qualification of the ABB-NV and WLOP CHF Correlations in the Dominion VIPRE-D Computer Code," September 2014.
Methodology for:
TS 3.2.2- Nuclear Enthalpy Rise Hot Channel Factor and TS 3.4.l -RCS Pressure, Temperature and Flow DNB Limits
- 11. WCAP-12610-P-A and CENPD-404-P-A, Addendum 1-A, "Optimized ZIRLO'," July 2006.
Methodology for:
TS 2.1.1 - Reactor Core Safety Limits and TS 3.2. l - Heat Flux Hot Channel Factor Note: In some instances, the North Anna COLR lists multiple methodologies that are used to verify a single Technical Specification parameter. This is due to the reload verification scope split between Dominion and the fuel vendor.
COLR-N2C25, Revision 3 EV AL-ENG-RSE-N2C25, Revision 0, Add. C, Attachment A Page 4 of23
Serial No.17-342 Docket No. 50-339 2.0 SAFETY LIMITS (SLs) 2.1 SLs 2.1.1 Reactor Core SLs In MODES 1 and 2, the combination of THERMAL POWER, Reactor Coolant System (RCS) highest loop average temperature, and pressurizer pressure shall not exceed the limits specified in COLR Figure 2.1-1; and the following SLs shall not be exceeded.
2.1.1.1 The departure from nucleate boiling ratio (DNBR) shall be maintained greater than or equal to the 95195 DNBR criterion for the DNB correlations and methodologies specified in the References Section.
2.1.1.2 The peak fuel centerline temperature shall be maintained < 5080°F, decreasing by 58°F per 10,000 MWD/MTU of bumup, for Westinghouse fuel and < 5173°F, decreasing by 65°F per 10,000 MWD/MI'U ofburnup,for AREVAfuel.
COLR-N2C25, Revision 3 EVAL-ENG-RSE-N2C25, Revision 0, Add. C, Attachment A Page 5 of23
Serial No.17-342 Docket No. 50-339 COLR Figure 2.1-1
- --* -*--****-----***-****--*-*****-**-----*-****-*******-----*----i NORTH ANNA REACTOR CORE SAFETY .UMITS !
i 655 +-~-+-~--1!--""" .......::+-~-+~--11--~-t--~-t-~--1~~+-~-+-~--11------J 650 +----'="'~
645 *-f----*-+-*-----*---*
~ 630 +---+--:::~b-~-t---~-+---lf--~+---+-'"""""...::-!-~+-~-~~............,1------J
- I
~ 625 ~i;;;;;;;;;:::t~--t~~~......;;+/---1--t---t~--t~~~i;;;;;;;;;:::t-\~
c.
E
{!!.
~ 615 +-~-+-~--1c---f""o~-+---l~--i---:"""""'~~--1--+-~-+--------'~l-T----l
...ra
~ 610 +----1----1---+-~*+--.::!!ll-..J::--=~~'--+-~~o;;::----!-~+-~-~
<(
5i 605
~"'
595 +---+-~--l--+---+----1--~+-~-+----l~--P""'""""-+-----1~----l 590 +--~-1----1---+---+-----l---+---+----1-~-1---+---"""'--"-l 580 0 10 20 30 40 50 60 70 80 90 100 110 120 Percent of RATED THERMAL POWER COLR-N2C25, Revision 3 EVAL-ENG-RSE-N2C25, Revision 0, Add. C, Attachment A Page 6 of23
Serial No.17-342 Docket No. 50-339 3.1 REACTIVITY CONTROL SYSTEMS 3.1.l SHUTDOWN MARGIN (SDM)
LCO 3.1.1 SDM shall be~ 1.77 % Ak/k.
3.1.3 Moderator Temperature Coefficient (MTC)
LCO 3.1.3 The MTC shall be maintained within the limits specified below. The upper limit ofMTC is +0.6x10- 4 Ak/k/°F, when< 70% RTP, and 0.0 Ak/k/°F when~ 70%
RTP.
The BOC/ARO-MTC shall be :S: +0.6x10-4 Ak/k/°F (upper limit), when< 70%
RTP, and :S: 0.0 Ak/k/°F when~ 70% RTP.
The EOC/ARO/RTP-MTC shall be less negative than -5.0 x 10-4 Ak/k/°F (lower limit).
The MTC surveillance limits are:
The 300 ppm/ARO/RTP-MTC should be less negative than or equal to
-4.0 x 10-4 Ak/k/°F [Note l].
The 60 ppm/ARO/RTP-MTC should be less negative than or equal to
-4.7 x 10-4 Ak/k/°F [Note 2].
SR 3.1.3.2 Verify MTC is within-5.0x10-4 Ak/k/°F (lower limit).
Note 1: If the MTC is more negative than -4.0 x 10-4 Ak/k/°F, SR 3.1.3.2 shall be repeated once per 14 EFPD during the remainder of the fuel cycle.
Note 2: SR 3.1.3.2 need not be repeated if the MTC measured at the equivalent of equilibrium RTP-ARO boron concentration of~ 60 ppm is less negative than -4. 7 X 10-4 Ak/k/°F.
COLR-N2C25, Revision 3 EVAL-ENG-RSE-N2C25, Revision 0, Add. C, Attachment A Page 7 of23
Serial No.17-342 Docket No. 50-339 3 .1.4 Rod Group Alignment Limits Required Action A.1.1 Verify SDM to be~ 1.77 % Ak/k.
Required Action B.1.1 Verify SDM to be~ 1.77 % Ak/k.
Required Action D.1.1 Verify SDM to be~ 1.77 % Ak/k.
3.1.5 Shutdown Bank Insertion Limits LCO 3 .1.5 Each shutdown bank shall be withdrawn to at least 227 steps.
Required Action A.1.1 Verify SDM to be ~ 1.77 % Ak/k.
Required Action B.l Verify SDM to be~ 1.77 % Ak/k.
SR 3.1.5.1 Verify each shutdown bank is withdrawn to at least 227 steps.
3.1.6 Control Bank Insertion Limits LCO 3.1.6 Control banks shall be limited in physical insertion as shown in COLR Figure 3.1-1. Sequence of withdrawal shall be A, B, C and D, in that order; and the overlap limit during withdrawal shall be 99 steps.
Required Action A.1.1 Verify SDM to be ~ 1. 77 % Ak/k.
Required Action B.1.1 Verify SDM to be~ 1.77 % Ak/k.
Required Action C.1 Verify SDM to be~ 1.77 % Ak/k.
SR 3.1.6.1 Verify estimated critical control bank position is within the insertion limits specified in COLR Figure 3.1-1.
SR 3.1.6.2 Verify each control bank is within the insertion limits specified in COLR Figure 3.1-1.
SR 3.1.6.3 Verify each control bank not fully withdrawn from the core is within the sequence and overlap limits specified in LCO 3.1.6 above.
3.1.9 PHYSICS TESTS Exceptions - MODE 2 LCO 3.1.9.b SDM is~ 1.77 % Ak/k.
SR 3.1.9.4 Verify SDM to be~ 1.77 % Aklk.
COLR-N2C25, Revision 3 EV AL-ENG-RSE-N2C25, Revision 0, Add. C, Attachment A Page 8of23
Serial No.17-342 Docket No. 50-339 COLR Figure 3.1-1 North Anna 2 Cycle 25 Control Rod Bank Insertion Limits Fully w/d position = 227 steps 230 0.534, 227 220 /
210 /
200 /
190 / 1.0, 194
/
180 / /
~
170 / C-BANK 160 / /
~ 150
/ ,;v 3
g-140 / /
t;
/ ./
'*c:. 130 "
-~{,18 /
0
~ 120 0 /
~110 A
- J 0
<!i 100
/
"'C /D-BAI K 0 J a: 90
/
80 70 v
/
60 50 v
/
40 30 v
20 /
10 /
/o.048,o 0
0 0.1 0.2 0.3. 0.4 0.5 0.6 0.7 0.8 0.9 1 Fraction of Rated Thermal Power COLR-N2C25, Revision 3 EV AL-ENG-RSE-N2C25, Revision 0, Add. C, Attachment A Page 9 of23
Serial No.17-342 Docket No. 50-339 3.2 POWER DISTRIBUTION LIMITS 3.2.1 Heat Flux Hot Channel Factor (FQ(Z))
LCO 3.2.l FQ(Z), as approximated by FQE(z) and FQT(Z), shall be within the limits specified below.
CFQ=2.32 The Heat Flux Hot Channel Factor, FQ(Z), shall be limited by the following relationships:
for P > 0.5 CFQ
- K(Z)
FQ(Z) :::; for P:::; 0.5 0.5 THERMAL POWER where: P= RATED THERMAL POWER; and K(Z) is provided in COLR Figure 3.2-1 FQE(Z) is an excellent approximation for FQ(Z) when the reactor is at the steady-state power.
FQ(Z) from the incore flux map results is increased by 1.03 for fuel manufacturing tolerances and 1.05 for measurement uncertainty to obtain FQE(Z).
Fg (Z) = FQ(Z) * (1.03) * (1.05)
The expression for FQT(Z) is:
Where N(Z) is a cycle-specific non-equilibrium multiplier on F QE(z) to account for power distribution transients during normal operation, provided in COLR Table 3.2-1.
The discussion in the Bases Section B 3.2.1 for this LCO requires the application of a cycle dependent non-equilibrium multiplier, N(Z), to the steady state Fl(ZJ. N(Z) accounts for power distribution transients encountered during normal operation. As function N(Z) is dependent on the predicted equilibrium F Q(Z) and is sensitive to the axial power distribution, it is typically generated from the actual EOC burnup distribution that can only be obtained after the shutdown of the previous cycle.
COLR-N2C25, Revision 3 EV AL-ENG-RSE-N2C25, Revision 0, Add. C, Attachment A Page 10 of23
Serial No.17-342 Docket No. 50-339 The cycle-specific penalty factors for flux map analysis are included in COLR Table 3.2-2.
Also discussed is the application of the appropriate factor to account for potential increases in FQ(Z) between surveillances. This factor is determined on a cycle specific basis and is dependent on the predicted increases in steady-state and transient FQ(Z)IK(Z) versus burnup. A minimum value of 2% is used should any increase in steady-state or transient measured or predicted peaking factor be determined unless .frequent flux mapping is invoked (7 EFPD). These values are typically generated from the actual EOC burnup distribution that can only be obtained qfter the shutdown ofthe previous cycle.
The required operating space reductions are provided in COLR Table 3.2-3.
Should FQr(Z) exceed its limits the normal operating space should be reduced to gain peaking factor margins. The determination and verification of the margin improvements along with the corresponding required reductions in the Thermal Power Limit and AFD Bands are performed on a cycle-specific basis. These values are typically generated from the actual EOC burnup distribution that can only be obtained after the shutdown of the previous cycle.
COLR-N2C25, Revision 3 EVAL-ENG-RSE-N2C25, Revision 0, Add. C, Attachment A Page 11 of23
Serial No.17-342 Docket No. 50-339 COLR Table 3.2-1*
N2C25 Normal Operation N(Z)
NODE HEIGHT o to 1000 1000 to 2000 2000 to 3000 3000 to 4000 4000 to 5000 (FEET) MWD/MTU MWD/MTU MWD/MTU MWD/MTU MWD/MTU 5 11.2 1.140 1.157 1.192 1.192 1.183 6 11.0 1.147 1.157 1.188 1.188 1.179 7 10.8 1.149 1.157 1.184 1.184 1.175 8 10.6 1.149 1.156 1.178 1.178 1.170 9 10.4 1.151 1.156 1.171 1.171 1.165 10 10.2 1.153 1.155 1.165 1.165 1.159 11 10.0 1.152 1.153 1.159 1.160 1.155 12 9.8 1.151 1.152 1.154 1.152 1.149 13 9.6 1.150 1.151 1.151 1.147 1.145 14 9.4 1.149 1.150 1.149 1.143 1.142 15 9.2 1.149 1.149 1.149 1.145 1.145 16 9.0 1.147 1.146 1.150 1.153 1.153 17 8.8 1.147 1.146 1.152 1.162 1.162 18 8.6 1.151 1.150 1.155 1.166 1.166 19 8.4 1.155 1.155 1.157 1.167 1.167 20 8.2 1.159 1.159 1.159 1.168 1.168 21 8.0 1.161 1.162 1.159 1.167 1.167 22 7.8 1.162 1.162 1.159 1.165 1.165 23 7.6 1.160 1.161 1.157 1.161 1.161 24 7.4 1.157 1.157 1.154 1.155 1.155 25 7.2 1.153 1.153 1.148 1.148 1.148 26 7.0 1.150 1.147 1.142 1.141 1.141 27 6.8 1.149 1.145 1.140 1.139 1.139 28 6.6 1.148 1.143 1.137 1.136 1.137 29 6.4 1.139 1.131 1.125 1.125 1.124 30 6.2 1.127 1.116 1.111 1.111 1.109 31 6.0 1.125 1.111 1.107 1.108 1.105 32 5.8 1.123 1.110 1.106 1.106 1.105 33 5.6 1.111 1.102 1.098 1.092 1.095 34 5.4 1.105 1.098 1.094 1.085 1.091 35 5.2 1.109 1.097 1.094 1.089 1.096 36 5.0 1.117 1.102 1.099 1.098 1.105 37 4.8 1.121 1.111 1.108 1.104 1.113 38 4.6 1.125 1.121 1.117 1.109 1.120 39 4.4 1.129 1.128 1.123 1.112 1.124 40 4.2 1.133 1.133 1.129 1.114 1.126 41 4.0 1.138 1.139 1.135 1.118 1.127 42 3.8 1.145 1.146 1.141 1.123 1.131 43 3.6 1.152 1.152 1.148 1.130 1.136 44 3.4 1.156 1.156 1.152 1.135 1.136 45 3.2 1.158 1.158 1.156 1.140 1.138 46 3.0 1.162 1.163 1.162 1.148 1.146 47 2.8 1.169 1.171 1.171 1.158 1.158 48 2.6 1.180 1.181 1.178 1.168 1.168 49 2.4 1.193 1.192 1.187 1.178 1.178 50 2.2 1.203 1.203 1.198 1.188 1.188 51 2.0 1.213 1.213 1.208 1.197 1.197 52 1.8 1.223 1.222 1.217 1.205 1.205 53 1.6 1.231 1.231 1.226 1.213 1.213 54 1.4 1.238 1.238 1.233 1.220 1.220 55 1.2 1.245 1.245 1.240 1.226 1.226 56 1.0 1.251 1.251 1.245 1.231 1.231 57 0.8 1.255 1.255 1.250 1.236 1.236 COLR-N2C25, Revision 3 EVAL-ENG-RSE-N2C25, Revision 0, Add. C, Attachment A Page 12 of23
Serial No.17-342 Docket No. 50-339 COLR Table 3.2-1 * (continued}
N2C25 Normal Operation N(Z)
NODE HEIGHT 5000 to 7000 7000 to 9000 9000 to 11000 11000 to 13000 13000 to 15000 (FEET) MWD/MTU MWD/MTU MWD/MTU MWD/MTU MWD/MTU 5 11.2 1.177 1.149 1.098 1.095 1.093 6 11.0 1.174 1.152 1.102 1.094 1.091 7 10.8 1.170 1.154 1.109 1.093 1.089 8 10.6 1.166 1.155 1.115 1.098 1.092 9 10.4 1.161 1.155 1.119 1.107 1.100 10 10.2 1.156 1.154 1.123 1.116 1.109 11 10.0 1.152 1.152 1.126 1.123 1.116 12 9.8 1.148 1.148 1.129 1.128 1.122 13 9.6 1.145 1.145 1.133 1.131 1.125 14 9.4 1.142 1.142 1.134 1.131 1.125 15 9.2 1.142 1.141 1.137 1.134 1.128 16 9.0 1.143 1.144 1.143 1.142 1.138 17 8.8 1.148 1.150 1.151 1.151 1.150 18 8.6 1.149 1.152 1.155 1.155 1.153 19 8.4 1.152 1.160 1.162 1.161 1.162 20 8.2 1.157 1.175 1.176 1.174 1.183 21 8.0 1.162 1.186 1.186 1.184 1.198 22 7.8 1.164 1.189 1.189 1.187 1.201 23 7.6 1.167 1.193 1.193 1.195 1.206 24 7.4 1.170 1.201 1.201 1.210 1.215 25 7.2 1.171 1.206 1.206 1.219 1.221 26 7.0 1.168 1.206 1.206 1.222 1.223 27 6.8 1.168 1.207 1.207 1.224 1.225 28 6.6 1.166 1.206 1.206 1.223 1.226 29 6.4 1.156 1.202 1.202 1.220 1.228 30 6.2 1.143 1.194 1.194 1.214 1.229 31 6.0 1.136 1.194 1.192 1.213 1.231 32 5.8 1.131 1.187 1.188 1.207 1.226 33 5.6 1.123 1.167 1.176 1.189 1.214 34 5.4 1.119 1.151 1.166 1.174 1.200 35 5.2 1.117 1.148 1.163 1.173 1.194 36 5.0 1.117 1.149 1.161 1.173 1.189 37 4.8 1.116 1.149 1.156 1.168 1.184 38 4.6 1.118 1.148 1.150 1.163 1.182 39 4.4 1.122 1.146 1.145 1.158 1.183 40 4.2 1.125 1.143 1.143 1.151 1.185 41 4.0 1.127 1.141 1.144 1.146 1.185 42 3.8 1.134 1.141 1.148 1.148 1.176 43 3.6 1.144 1.144 1.156 1.155 1.165 44 3.4 1.147 1.145 1.160 1.160 1.161 45 3.2 1.147 1.147 1.162 1.164 1.163 46 3.0 1.150 1.149 1.163 1.165 1.164 47 2.8 1.155 1.155 1.163 1.166 1.166 48 2.6 1.160 1.159 1.161 1.165 1.164 49 2.4 1.171 1.171 1.164 1.169 1.169 50 2.2 1.188 1.189 1.172 1.180 1.183 51 2.0 1.201 1.201 1.178 1.190 1.197 52 1.8 1.202 1.201 1.179 1.193 1.203 53 1.6 1.206 1.204 1.182 1.197 1.207 54 1.4 1.214 1.212 1.190 1.205 1.211 55 1.2 1.221 1.219 1.197 1.213 1.218 56 1.0 1.227 1.225 1.203 1.220 1.226 57 0.8 1.232 1.230 1.208 1.226 1.233 COLR-N2C25, Revision 3 EV AL-ENG-RSE-N2C25, Revision 0, Add. C, Attachment A Page 13 of23
Serial No.17-342 Docket No. 50-339 COLR Table 3.2-1* (continued)
N2C25 Normal Operation N(Z)
NODE HEIGHT 15000 to 17000 17000 to 19000 19000 to EOR (FEET) MWD/MTU MWD/MTU MWD/MTU 5 11.2 1.086 1.082 1.104 6 11.0 1.085 1.087 1.106 7 10.8 1.086 1.093 1.108 8 10.6 1.090 1.100 1.109 9 10.4 1.098 1.104 1.110 10 10.2 1.106 1.106 1.109 11 10.0 1.111 1.107 1.110 12 9.8 1.115 1.111 1.112 13 9.6 1.118 1.117 1.118 14 9.4 1.120 1.120 1.119 15 9.2 1.126 1.126 1.124 16 9.0 1.136 1.137 1.138 17 8.8 1.149 1.149 1.155 18 8.6 1.153 1.152 1.161 19 8.4 1.162 1.161 1.170 20 8.2 1.183 1.183 1.189 21 8.0 1.197 1.200 1.203 22 7.8 1.200 1.203 1.206 23 7.6 1.207 1.209 1.211 24 7.4 1.221 1.222 1.219 25 7.2 1.230 1.230 1.225 26 7.0 1.233 1.232 1.225 27 6.8 1.234 1.235 1.226 28 6.6 1.234 1.234 1.224 29 6.4 1.233 1.231 1.218 30 6.2 1.229 1.224 1.208 31 6.0 1.230 1.223 1.204 32 5.8 1.226 1.218 1.201 33 5.6 1.214 1.203 1.195 34 5.4 1.200 1.189 1.190 35 5.2 1.193 1.184 1.186 36 5.0 1.189 1.179 1.179 37 4.8 1.184 1.171 1.168 38 4.6 1.182 1.164 1.161 39 4.4 1.183 1.160 1.159 40 4.2 1.184 1.159 1.160 41 4.0 1.184 1.162 1.163 42 3.8 1.178 1.166 1.166 43 3.6 1.171 1.170 1.167 44 3.4 1.172 1.174 1.163 45 3.2 1.177 1.177 1.161 46 3.0 1.176 1.177 1.162 47 2.8 1.178 1.178 1.170 48 2.6 1.177 1.177 1.175 49 2.4 1.185 1.185 1.186 50 2.2 1.201 1.201 1.202 51 2.0 1.217 1.218 1.218 52 1.8 1.226 1.229 1.229 53 1.6 1.231 1.234 1.234 54 1.4 1.233 1.236 1.236 55 1.2 1.238 1.240 1.240 56 1.0 1.247 1.248 1.248 57 0.8 1.255 1.257 1.257 COLR-N2C25, Revision 3 EVAL-ENG-RSE-N2C25, Revision 0, Add. C, Attachment A Page 14 of23
Serial No.17-342 Docket No. 50-339
- These decks are generated for normal operation flux maps that are typically taken at full power I ARO. Additional N(Z) decks may be generated, if necessary, consistent with the methodology described in the RPDC topical (Reference 7). EOR is defined as Hot Full Power End of Reactivity.
COLR-N2C25, Revision 3 EVAL-ENG-RSE-N2C25, Revision 0, Add. C, Attachment A Page 15 of23
Serial No.17-342 Docket No. 50-339 COLR Table 3.2-2 N2C25 Penalty Factors for Flux Map Analysis Burn up Penalty (MWD/MTU) Factor 0/o 0-999 2.50 1000-1999 2.00 2000-2999 2.00 3000-3999 2.00 4000-4999 2.00 5000-6999 2.00 7000-8999 2.00 9000-10999 2.00 11000-12999 2.00 13000-14999 2.00 15000-16999 2.00 17000-18999 2.00 19000-EOC 2.00 Notes:
I. Penalty Factors are not required for initial power ascension flux maps.
- 2. All full power maps shall apply a Penalty Factor unless frequent flux mapping is invoked (:S 7 EFPD).
COLR Table 3.2-3 N2C25 Required Operating Space Reductions for FQT(Z) Exceeding its Limits Required FQT(Z) Required Negative AFD Band Positive AFD Band Margin THERMAL POWER Reduction from AFD Reduction from AFD Improvement Limit (% RTP) Limits* (% AFD) Limits* (% AFD)
$1% $97.0 2'.2.0 2'.2.0
>1%and$2% $95.0 2'.3.0 2'.3.0
>2% and $3% $93.0 2'.4.5 2'.4.5
- Axial Flux Difference Limits are provided in COLR Figure 3 .2-2 COLR-N2C25, Revision 3 EV AL-ENG-RSE-N2C25, Revision 0, Add. C, Attachment A Page 16 of23
Serial No.17-342 Docket No. 50-339 COLR Figure 3.2-1 K(Z) - Normalized FQ as a Function of Core Height 1.2 1.1 6, 1.0 1.0
- t--- r---
r--- r---
~t 0.9 (12 '.925) 0.8 N"
0
- u. 0.7 c
w N
- J
< 0.6 --
- iE c::::
0 z
~ 0.5
~
0.4
_L _________
0.3 1---****
0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 CORE HEIGHT (FT)
COLR-N2C25, Revision 3 EV AL-ENG-RSE-N2C25, Revision 0, Add. C, Attachment A Page 17of23
Serial No.17-342 Docket No. 50-339 3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (FN AH)
LCO 3 .2.2 FNL.\H shall be within the limits specified below.
FNaH :S: 1.587 {l + 0.3(1 - P)}
THERMAL POWER where:
p = RATED THERMAL POWER SR 3.2.2.l Verify FNAH is within limits specified above.
3.2.3 AXIAL FLUX DIFFERENCE (AFD)
LCO 3 .2.3 The AFD in % flux difference units shall be maintained within the limits specified in COLR Figure 3.2-2.
COLR-N2C25, Revision 3 EV AL-ENG-RSE-N2C25, Revision 0, Add. C, Attachment A Page 18 of23
Serial No.17-342 Docket No. 50-339 COLR Figure 3.2-2 North Anna 2 Cycle 25 Axial Flux Difference Limits 120 110 100 r-12.1ov \, 100) 90 Unacceptable / \ I\ Unacceptable Operation Operation 80
. I Cl>
0
==
70 I \'
D..
m E 60 I
I Acceptable Operation I\
\
Cl>
.c:
I-
"C
....IllCl> 50 I
(-27. 50) (+20, 50) 0::
....0c: 40 Cl>
...u Cl>
D.. 30 20 10 0
-30 -20 -10 0 10 20 30 Percent Flux Difference (Delta-I)
COLR-N2C25, Revision 3 EVAL-ENG-RSE-N2C25, Revision 0, Add. C, Attachment A Page 19of23
Serial No.17-342 Docket No. 50-339 3.3 INSTRUMENTATION 3.3. l Reactor Trip System (RTS) Instrumentation TS Table 3.3.1-1 Note 1: Overtemperature L1T The Overtemperature ~T Function Allowable Value shall not exceed the following nominal trip setpoint by more than 2% of L1T span, with the numerical values of the parameters as specified below.
where: ~T is measured RCS ~T, °F L1To is the indicated ~Tat RTP, °F s is the Laplace transform operator, sec- 1 T is the measured RCS average temperature, °F T' is the nominal T avg at R TP, ~ 586.8 °F p is the measured pressurizer pressure, psig P' is the nominal RCS operating pressure, ~ 2235 psig K1::;; 1.2715 K1 ~ 0.02174 /°F K3 ~ 0.001145 /psig
't 1, 't2 = time constants utilized in the lead-lag controller for Tavg
't1 ~ 23.75 sec 't2 ~ 4.4 sec (1 +'t 1S)/(l +'t2 S) =function generated by the lead-lag controller for Tavg dynamic compensation f1 (M) 2: 0.0291 {-13.0 - (qt - qb)} when (qt - qb) < -13.0% R TP 0 when-13.0% RTP ~(qt - qb)::;; +7.0% RTP 0.0251 {(qt - qb)- 7.0} when (qt -qb) > +7.0% RTP Where qt and qb are percent RTP in the upper and lower halves of the core, respectively, and qt+ qb is the total THERMAL POWER in percent RTP.
COLR-N2C25, Revision 3 EVAL-ENG-RSE-N2C25, Revision 0, Add. C, Attachment A Page 20 of23
Serial No.17-342 Docket No. 50-339 TS Table 3.3.1-1 Note 2: Overpower !ff The Overpower ~T Function Allowable Value shall not exceed the following nominal trip setpoint by more than 2% of ~T span, with the numerical values of the parameters as specified below.
where: ~T is measured RCS ~T, °F.
~To is the indicated ~Tat RTP, 0 P.
s is the Laplace transform operator, sec- 1*
T is the measured RCS average temperature, 0 P.
T' is the nominal Tavg at RTP, ~ 586.8 °F.
!<ii ~ 1.0865 Ks ~ 0.0198 /°F for increasing Tavg K6 ~ 0.00162 /°F when T > T' 0 /°F for decreasing T avg 0 /°F when T :=;; T' l'3 = time constant utilized in the rate lag controller for Tavg l'3 ~ 9.5 sec l'3s I (1 + l'3s) = function generated by the rate lag controller for T avg dynamic compensation fi(~I) = 0, for all AI.
COLR-N2C25, Revision 3 EV AL-ENG-RSE-N2C25, Revision 0, Add. C, Attachment A Page 21 of23
Serial No.17-342 Docket No. 50-339 3.4 REACTOR COOLANT SYSTEM (RCS) 3.4.1 RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits LCO 3.4.l RCS DNB parameters for pressurizer pressure, RCS average temperature, and RCS total flow rate shall be within the limits specified below:
- a. Pressurizer pressure is greater than or equal to 2205 psig;
- b. RCS average temperature is less than or equal to 591 °F; and
- c. RCS total flow rate is greater than or equal to 295,000 gpm.
SR 3.4.1.1 Verify pressurizer pressure is greater than or equal to 2205 psig.
SR 3.4.1.2 Verify RCS average temperature is less than or equal to 591 °F.
SR 3.4.1.3 Verify RCS total flow rate is greater than or equal to 295,000 gpm.
SR 3.4.1.4 ------------------------------NOTE--------------------------------------------
Not required to be performed until 30 days after~ 90% RTP.
Verify by precision heat balance that RCS total flow rate is
~ 295,000 gpm.
3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) 3.5.6 Boron Injection Tank (BIT)
Required Action B.2 Borate to a SDM ~ 1.77 % Ak/k at 200 °F.
3.9 REFUELING OPERATIONS 3.9.1 Boron Concentration LCO 3.9.l Boron concentrations of the Reactor Coolant System (RCS), the refueling canal, and the refueling cavity shall be maintained ~ 2600 ppm.
SR 3.9.1.1 Verify boron concentration is within the limit specified above.
COLR-N2C25, Revision 3 EVAL-ENG-RSE-N2C25, Revision 0, Add. C, Attachment A Page 22 of23
Serial No.17-342 Docket No. 50-339 NAPS TECHNICAL REQUIREMENTS MANUAL TRM 3.1 REACTIVITY CONTROL SYSTEMS TR 3.1.1 Boration Flow Paths - Operating Required Action D.2 Borate to a SHUTDOWN MARGIN~ 1.77 % Ak/k at 200 °F, after xenon decay.
COLR-N2C25, Revision 3 EVAL-ENG-RSE-N2C25, Revision 0, Add. C, Attachment A Page 23 of23