ML072770758

From kanterella
Jump to navigation Jump to search

Cycle 20 Core Operating Limits Report
ML072770758
Person / Time
Site: North Anna Dominion icon.png
Issue date: 10/04/2007
From: Funderburk C
Dominion, Dominion Resources Services, Virginia Electric & Power Co (VEPCO)
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
07-0659
Download: ML072770758 (23)


Text

Dominion Resources Services, Inc.

~()()() Dominioo Boulevard, Glen Allen, VA.':,11(,1)

Web Address: www.dom.com October 4, 2007 U. S. Nuclear Regulatory Commission Attention: Document Control Desk One White Flint North 11555 Rockville Pike Rockville, MD 20852-2738 VIRGINIA ELECTRIC AND POWER COMPANY NORTH ANNA POWER STATION UNIT 1 CYCLE 20 CORE OPERATING LIMITS REPORT Serial No.

07-0659 NLOS lETS Docket No.

50-338 License No.

NPF-4 Pursuant to North Anna Technical Specification 5.6.5.d, attached is a copy of the Virginia Electric and Power Company Core Operating Limits Report for North Anna 1 Cycle 20 Pattern AAR.

If you have any questions regarding this submittal, please contact Mr. Thomas Shaub at (804) 273-2763.

Sincerely, C. L. Funderburk, Director Nuclear Licensing and Operations Support Dominion Resources Services, Inc.

for Virginia Electric and Power Company Attachment CORE OPERATING LIMITS REPORT, North Anna 1 Cycle 20 Pattern AAR Commitments made in this letter: None

cc:

U.S. Nuclear Regulatory Commission Region II Sam Nunn Atlanta Federal Center 61 Forsyth Street, SW Suite 23T85 Atlanta, Georgia 30303 Mr. J. E. Reasor, Jr. (without attachment)

Old Dominion Electric Cooperative Innsbrook Corporate Center 4201 Dominion Blvd.

Suite 300 Glen Allen, Virginia 23060 Mr. R. A. Jervey NRC Project Manager - North Anna U. S. Nuclear Regulatory Commission One White Flint North 11555 Rockville Pike MaiI Stop 8G9A Rockville, Maryland 20852 Mr. J. T. Reece NRC Senior Resident Inspector North Anna Power Station Serial No. 07-0659 Docket No. 50-338 COLR, North Anna 1 Cycle 20 Page 2 of 2

ATTACHMENT (Serial No. 07-0659)

CORE OPERATING LIMITS REPORT FOR NORTH ANNA 1 CYCLE 20 PATTERN AAR NORTH ANNA POWER STATION UNIT 1 VIRGINIA ELECTRIC AND POWER COMPANY (DOMINION)

Page 1 of 21

N1C20 CORE OPERATING LIMITS REPORT INTRODUCTION The Core Operating Limits Report (COLR) for North Anna Unit 1 Cycle 20 has been prepared in accordance with North Anna Technical Specification 5.6.5. The technical specifications affected by this report are listed below:

TS 2.1.1 Reactor Core Safety Limits TS 3.1.1 Shutdown Margin (SDM)

TS 3.1.3 Moderator Temperature Coefficient (MTC)

TS 3.1.5 Shutdown Bank Insertion Limit TS 3.1.6 Control Bank Insertion Limits TS 3.2.1 Heat Flux Hot Channel Factor TS 3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (FN~H)

TS 3.2.3 Axial Flux Difference (AFD)

TS 3.3.1 Reactor Trip System (RTS) Instrumentation TS 3.4.1 RCS Pressure, Temperature, and Flow DNB Limits TS 3.9.1 Boron Concentration In addition, a technical requirement (TR) in the NAPS Technical Requirements Manual (TRM) refers to the COLR:

TR 3.1.1 Boration Flow Paths - Operating The analytical methods used to determine the core operating limits are those previously approved by the NRC and discussed in the documents listed in the References Section.

Cycle-specific values are presented in bold. Text in italics is provided for information only.

NA-SPEC-000-COLR-N1C20, Rev. 1 Page 2 of21

REFERENCES 1.

VEP-FRD-42 Rev 2.1-A, Reload Nuclear Design Methodology, August 2003.

(Methodology for TS 3.1.1 - Shutdown Margin, TS 3.1.3 - Moderator Temperature Coefficient, TS 3.1.5 - Shutdown Bank Insertion Limit, TS 3.1.6 - Control Bank Insertion Limits, TS 3.2.1 -

Heat Flux Hot Channel Factor, TS 3.2.2 - Nuclear Enthalpy Rise Hot Channel Factor and TS 3.9.1-Boron Concentration) 2.

VEP-NE-2-A, Statistical DNBR Evaluation Methodology, June 1987.

(Methodology for TS 3.2.2 - Nuclear Enthalpy Rise Hot Channel Factor and TS 3.4.1 - RCS Pressure, Temperature and Flow DNB Limits) 3.

VEP-NE-l-Rev. OJ-A, Relaxed Power Distribution Control Methodology and Associated FQ Surveillance Technical Specifications, August 2003.

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor and TS 3.2.3 - Axial Flux Difference) 4.

WCAP-8745-P-A, Design Bases for the Thennal Overpower ~T and Thermal Overtemperature

~T Trip Functions, September 1986.

(Methodology forTS 2.1.1-ReactorCore Safety Limits and TS 3.3.1-ReactorTrip System Instrumentation) 5.

WCAP-14483-A, Generic Methodology for Expanded Core Operating Limits Report, January 1999.

(Methodology for TS 2.1.1 - Reactor Core Safety Limits, TS 3.1.1 - Shutdown Margin, TS 3.3.1 - Reactor Trip System Instrumentation, TS 3.4.1 - RCS Pressure, Temperature, and Flow DNB Limits and TS 3.9.1 - Boron Concentration) 6.

BAW-10227P-A, "Evaluation of Advanced Cladding and Structural Material (M5) in PWR Reactor Fue1."

(Methodology for TS 2.1.1 - Reactor Core Safety Limits, TS 3.2.1 - Heat Flux Hot Channel Factor) 7.

EMF-2103 (P) (A), "Realistic Large Break LOCA Methodology for Pressurized Water Reactors."

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor)

NA-SPEC-000-COLR-NIC20, Rev. 1 Page 3 of21

8.

EMF-96-029 (P) (A), "Reactor Analysis System for PWRs."

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor) 9.

BAW-10168P-A, "RSG LOCA - BWNT Loss-of-Coolant Accident Evaluation Model for Recirculating Steam Generator Plants." Volume II only (SBLOCA models).

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor)

10. DOM-NAF-2-Rev. O.O-A, "Reactor Core Thermal-Hydraulics Using the VIPRE-D Computer Code," including Appendix A, "Qualification ofthe F-ANP BWU CHF Correlations in the VIPRE-D Computer Code."

(Methodology for TS 3.2.2 - Nuclear Enthalpy Rise Hot Channel Factor and TS 3.4.1 - RCS Pressure, Temperature and Flow DNB Limits)

NA-SPEC-000-COLR-N1C20, Rev. I Page 4 of21

2.0 SAFETY LIMITS (SLs) 2.1 SLs 2.1.1 Reactor Core SLs In MODES 1 and 2, the combination ofTHERMAL POWER, Reactor Coolant System (RCS) highest loop average temperature, and pressurizer pressure shall not exceed the limits specified in COLR Figure 2.1-1; and the following SLs shall not be exceeded.

2.1.1.1 The departure from nucleate boiling ratio (DNBR) shall be maintained greater than or equal to the 95/95 DNBR criterion for the DNB correlations and methodologies specified in the References Section.

2.1.1.2 The peak fuel centerline temperature shall be maintained < 5173°F, decreasing by 65°F per 10,000 MWD/MTU ofburnup.

NA-SPEC-OOO-COLR-N1C20, Rev. 1 Page50f21

COLR Figure 2.1-1 NORTH ANNA REACTOR CORE SAFETY LIMITS 6601 655 1 650 645 640 635 630 625 LL:" 620 Cl CI)

~ 615 Cl>

lQ

~ 610 605 600 590 585 580 575 570

+--~'--~'--~'--~'--~'--~-'-~,--~,--~,---,----,-------,----------I 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 POWER (fraction of nominal)

NA-SPEC-OOO-COLR-NI C20, Rev. 1 Page 6 of21

3.1 REACTNITY CONTROL SYSTEMS 3.1.1 SHUTDOWN MARGIN (SDM)

LCO 3.1.1 SDM shall be ~ 1.77 % MUk.

3.1.3 Moderator Temperature Coefficient (MTC)

LCO 3.1.3 The MTC shall be maintained within the limits specified below. The upper limit ofMTC is +0.6 x 10-4 MUk/oF, when < 70% RTP, and 0.0 MUk/oF when ~ 70%

RTP.

The BOC/ARO-MTC shall be ~ +0.6 x 10-4 MUk/oF (upper limit), when < 70%

RTP, and ~ 0.0 MUk/oF when ~ 70% RTP.

The EOC/ARO/RTP-MTC shall be less negative than -5.0 x 10-4 MUk/oF (lower limit).

The MTC surveillance limits are:

The 300 ppm/ARO/RTP-MTC should be less negative than or equal to

-4.0 x 10-4 MUk/oF [Note 2].

The 60 ppm/ARO/RTP-MTC should be less negative than or equal to

-4.7 x 10-4 MUk/oF [Note 3].

SR 3.1.3.2 Verify MTC is within -5.0 x 10-4 MUk/oF (lower limit).

Note 2: If the MTC is more negative than -4.0 x 10-4 MUk/oF, SR 3.1.3.2 shall be repeated once per 14 EFPD during the remainder of the fuel cycle.

Note 3: SR 3.1.3.2 need not be repeated if the MTC measured at the equivalent ofequilibrium RTP-ARO boron concentration of~ 60 ppm is less negative than -4.7 x 10-4 MUk/oF.

3.1.4 Rod Group Alignment Limits Required Action A.1.1 Verify SDM to be ~ 1.77 % MUk.

Required Action B.1.1 Verify SDM to be ~ 1.77 % MUk.

Required Action D.1.l Verify SDM to be ~ 1.77 % MUk.

NA-SPEC-000-COLR-N1C20, Rev. 1 Page 7 of21

3.1.5 Shutdown Bank Insertion Limits LCO 3.1.5 Each shutdown bank shall be withdrawn to at least 229 steps.

Required Action A.1.l Verify SDM to be ~ 1.77 % L\\k/k.

Required Action B.1 Verify SDM to be ~ 1.77 % L\\k/k.

SR 3.1.5.1 Verify each shutdown bank is withdrawn to at least 229 steps.

3.1.6 Control Bank Insertion Limits LCO 3.1.6 Control banks shall be limited in physical insertion as shown in COLR Figure 3.1-1. Sequence ofwithdrawal shall be A, B, C and D, in that order; and the overlap limit during withdrawal shall be 101 steps.

Required Action A.1.1 Verify SDM to be ~ 1.77 % L\\k/k.

Required Action B.1.1 Verify SDM to be ~ 1.77 % L\\k/k.

Required Action C.l Verify SDM to be ~ 1.77 % L\\k/k.

SR 3.1.6.1 SR 3.1.6.2 SR 3.1.6.3 Verify estimated critical control bank position is within the insertion limits specified in COLR Figure 3.1-1.

Verify each control bank is within the insertion limits specified in COLR Figure 3.1-1.

Verify each control bank not fully withdrawn from the core is within the sequence and overlap limits specified in LCO 3.1.6 above.

3.1.9 PHYSICS TESTS Exceptions - MODE 2 LCO 3.1.9.b SDM is ~ 1.77 % Ak/k.

SR 3.1.9.4 Verify SDM to be ~ 1.77 % Ak/k.

NA-SPEC-OOO-COLR-NI C20, Rev. 1 Page 8 of21

COLR Figure 3.1-1 North Anna 1 Cycle 20 Control Rod Bank Insertion Limits 1.0 0.8 0.9 0.3 0.4 0.5 0.6 0.7 Fraction of Rated Thermal Power 0.2 0.1 230 r----,--------,---------,-------,-----,-~___,--___r--___r--_,--~

220 210 200 190 180 170 160

~

1/1 150

g. 140 1/1

=l:I:~ 130 t:

~ 120

{a, 118

.~ 110 a..

Co 100

le 90 C)

't' 80 o

0:::

70 60 50 40 30 20 10 o 1---L....-+---'---~t-------t----------'f--------1------1----t----t------+-----!

0.0 NA-SPEC-OOO-COLR-N1C20, Rev. 1 Page 9 of21

3.2 POWER DISTRIBUTION LIMITS 3.2.1 Heat Flux Hot Channel Factor (FQ(Z))

LCO 3.2.1 FQ(Z), as approximated by FQM(Z), shall be within the limits specified below.

CFQ = 2.32 The Measured Heat Flux Hot Channel Factor, FQM(Z), shall be limited by the following relationships:

CFQ K(Z)

FM(Z)~__--

Q P

N(Z)

CFQ K(Z)

FM(Z)~__--

Q 0.5 N(Z) for P>0.5 for P~0.5 where:

THERMAL POWER P = RATED THERMAL POWER ; and K(Z) is provided in COLR Figure 3.2-1, N(Z) is a cycle-specific non-equilibrium multiplier on FQM(Z) to account for power distribution transients during normal operation, provided in COLR Table 3.2-1.

The discussion in the Bases Section B 3.2.1 for this LCO requires the application ofa cycle dependent non-equilibrium multiplier, N(Z), to the measured peakingfactor, FQM(Z), before comparing it to the limit. N(Z) accounts for power distribution transients encountered during normal operation. As function N(Z) is dependent on the predicted equilibrium FQ(Z) and is sensitive to the axial power distribution, it is typically generated from the actual EOC burnup distribution that can only be obtained after the shutdown of the previous cycle. The cycle-specific N(Z) function is presented in COLR Table 3.2-1.

NA-SPEC-000-COLR-N1C20, Rev. 1 Page 100f21

COLR Table 3.2-1 NIC20 Normal Operation N(Z)

NODE HEIGHT oto 1000 1000 to 3000 3000 to 5000 5000 to 7000 7000 to 9000 9000 to 11000 (FEET)

MWD/MTU MWD/MTU MWD/MTU MWD/MTU MWD/MTU MWD/MTU 10 10.2 1.090 1.091 1.109 1.110 1.141 1.141 11 10.0 1.097 1.096 1.114 1.114 1.140 1.140 12 9.8 1.108 1.106 1.121 1.121 1.138 1.138 13 9.6 1.120 1.120 1.128 1.131 1.139 1.139 14 9.4 1.126 1.125 1.130 1.133 1.138 1.137 15 9.2 1.128 1.128 1.133 1.137 1.143 1.143 16 9.0 1.136 1.142 1.144 1.154 1.159 1.159 17 8.8 1.144 1.156 1.156 1.171 1.176 1.176 18 8.6 1.149 1.161 1.161 1.179 1.182 1.182 19 8.4 1.152 1.163 1.163 1.181 1.183 1.183 20 8.2 1.156 1.168 1.168 1.184 1.186 1.186 21 8.0 1.159 1.171 1.171 1.185 1.187 1.188 22 7.8 1.160 1.171 1.171 1.185 1.188 1.190 23 7.6 1.159 1.169 1.170 1.181 1.184 1.190 24 7.4 1.157 1.165 1.169 1.174 1.177 1.189 25 7.2 1.155 1.161 1.168 1.170 1.172 1.188 26 7.0 1.152 1.157 1.167 1.169 1.169 1.186 27 6.8 1.150 1.155 1.165 1.168 1.167 1.184 28 6.6 1.148 1.151 1.161 1.164 1.163 1.180 29 6.4 1.141 1.145 1.156 1.157 1.158 1.174 30 6.2 1.131 1.137 1.148 1.148 1.153 1.165 31 6.0 1.124 1.133 1.140 1.143 1.153 1.162 32 5.8 1.117 1.127 1.131 1.135 1.150 1.156 33 5.6 1.107 1.111 1.117 1.119 1.138 1.140 34 5.4 1.100 1.099 1.107 1.108 1.127 1.126 35 5.2 1.097 1.096 1.105 1.105 1.122 1.121 36 5.0 1.098 1.098 1.106 1.106 1.115 1.117 37 4.8 1.099 1.099 1.105 1.105 1.105 1.110 38 4.6 1.103 1.103 1.106 1.106 1.100 1.106 39 4.4 1.108 1.108 1.108 1.108 1.104 1.106 40 4.2 1.116 1.117 1.110 1.110 1.109 1.109 41 4.0 1.126 1.127 1.114 1.114 1.115 1.115 42 3.8 1.136 1.135 1.120 1.118 1.120 1.119 43 3.6 1.145 1.142 1.128 1.124 1.124 1.122 44 3.4 1.153 1.147 1.137 1.128 1.128 1.124 45 3.2 1.162 1.153 1.146 1.135 1.133 1.127 46 3.0 1.172 1.161 1.154 1.143 1.140 1.134 47 2.8 1.184 1.170 1.163 1.153 1.150 1.141 48 2.6 1.195 1.179 1.171 1.160 1.154 1.142 49 2.4 1.209 1.190 1.182 1.170 1.163 1.147 50 2.2 1.227 1.206 1.198 1.186 1.178 1.159 51 2.0 1.239 1.216 1.208 1.197 1.189 1.167 52 1.8 1.243 1.218 1.211 1.198 1.191 1.168 NA-SPEC-OOO-COLR-NIC20, Rev. 1 Page 11 of21

COLR Table 3.2-1 (continued)

N1C20 Normal Operation N(Z)

NODE HEIGHT 11000 to 13000 13000 to 15000 15000 to 17000 17000 to 19000 19000 to EOR (FEET)

MWD/MTU MWD/MTU MWD/MTU MWD/MTU MWD/MTU 10 10.2 1.133 1.132 1.108 1.114 1.115 11 10.0 1.133 1.130 1.106 1.114 1.115 12 9.8 1.133 1.129 1.105 1.112 1.113 13 9.6 1.135 1.131 1.105 1.111 1.112 14 9.4 1.134 1.130 1.100 1.105 1.106 15 9.2 1.137 1.133 1.102 1.107 1.109 16 9.0 1.150 1.143 1.120 1.126 1.126 17 8.8 1.164 1.154 1.143 1.149 1.149 18 8.6 1.171 1.156 1.149 1.155 1.155 19 8.4 1.176 1.158 1.156 1.163 1.163 20 8.2 1.184 1.165 1.171 1.180 1.180 21 8.0 1.189 1.171 1.181 1.192 1.192 22 7.8 1.190 1.173 1.184 1.196 1.196 23 7.6 1.190 1.175 1.189 1.201 1.201 24 7.4 1.189 1.178 1.196 1.211 1.211 25 7.2 1.188 1.179 1.200 1.216 1.216 26 7.0 1.186 1.178 1.200 1.217 1.217 27 6.8 1.184 1.177 1.201 1.219 1.219 28 6.6 1.180 1.175 1.201 1.219 1.219 29 6.4 1.173 1.173 1.199 1.219 1.219 30 6.2 1.165 1.170 1.194 1.214 1.214 31 6.0 1.161 1.171 1.193 1.215 1.215 32 5.8 1.156 1.169 1.186 1.207 1.207 33 5.6 1.146 1.160 1.167 1.190 1.190 34 5.4 1.136 1.150 1.150 1.172 1.172 35 5.2 1.132 1.146 1.144 1.166 1.166 36 5.0 1.127 1.140 1.141 1.158 1.158 37 4.8 1.118 1.129 1.134 1.143 1.144 38 4.6 1.110 1.119 1.127 1.134 1.136 39 4.4 1.106 1.115 1.122 1.133 1.134 40 4.2 1.107 1.116 1.119 1.128 1.128 41 4.0 1.112 1.121 1.122 1.123 1.120 42 3.8 1.119 1.124 1.129 1.128 1.119 43 3.6 1.126 1.127 1.142 1.142 1.125 44 3.4 1.131 1.131 1.152 1.152 1.131 45 3.2 1.135 1.135 1.160 1.160 1.138 46 3.0 1.138 1.138 1.169 1.169 1.144 47 2.8 1.141 1.141 1.174 1.174 1.149 48 2.6 1.142 1.141 1.175 1.175 1.149 49 2.4 1.147 1.145 1.178 1.178 1.154 50 2.2 1.159 1.155 1.185 1.185 1.169 51 2.0 1.167 1.163 1.190 1.189 1.181 52 1.8 1.168 1.163 1.190 1.190 1.186 These decks were generated for normal operation flux maps that are typically taken at full power ARO. Additional N(z) decks may be generated, if necessary, consistent with the methodology described in the RPDC topica1. EOR is defined as Hot Full Power End of Reactivity.

NA-SPEC-OOO-COLR-NIC20, Rev. I Page 12 of21

COLR Figure 3.2-1 K(Z) - Normalized FQ as a Function of Core Height 1.2 -,-----,---,--------r-1.1

~-~-+-~--~

~.

- ----+ ~--

~

I --

~ --

6,1.0 1.0 +----+---+--t--+---+----.---Ir--..... -----

-~~~.-

I"---r--I"---r---.

0.9

~---

(12.925) 0.8

+---~~--+------

~

N Ci

u. 0.7 Cw

..J<< 0.6 0::oz

..:... 0.5 Ni'

~ --

-~~-

~--I- --

~

~~

~


I---~-~---,~

-t---- ~--l-

~..~

~-~-~ --l

-~-

~

~~-

+- ----+--- --- f---~ --

- -- ----L--

~-~-

-~~

I 0.4 L~

--~ -

L~

~_~

~

0.3 f--~

~~

~---~

-~-

0.2

~-

~

-~- -

I I

0.1

-- - +- - -

~

13 12 11 10 9

5 6

7 8

CORE HEIGHT (FT) 4 3

2 0.0 +----+---+--+---

o NA-SPEC-OOO-COLR-N1C20, Rev. 1 Page 13 of21

3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (FN~H)

LCO 3.2.2 FN~H shall be within the limits specified below.

~MI ~ 1.587{1+O.3(1-P)}

where:

THERMAL POWER P = RATED THERMAL POWER SR 3.2.2.1 Verify pN~H is within limits specified above.

3.2.3 AXIAL FLUX DIFFERENCE (AFD)

LCO 3.2.3 The AFD in % flux difference units shall be maintained within the limits specified in COLR Figure 3.2-2.

NA-SPEC-OOO-COLR-N1C20, Rev. 1 Page 14 of21

COLR Figure 3.2-2 North Anna 1 Cycle 20 Axial Flux Difference Limits 120 110 100 90 80 Q)

~0 Q.

co 70 E...

Q)

..r:::I-

"0 60 Q)-

III D::....0 50 t:

Q)

(,)...

Q) 40 Q.

30 20 10 0

-30

(-27, 0)

-20

-10 o

10 Un ccep able era ion 0) 20 30 Percent Flux Difference (Delta-I)

NA-SPEC-OOO-COLR-NIC20, Rev. 1 Page 15 of21

3.3 INSTRUMENTATION 3.3.1 Reactor Trip System (RTS) Instrumentation TS Table 3.3.1-1 Note1: Overtemperature ~T The Overtemperature ~T Function Allowable Value shall not exceed the following nominal trip setpoint by more than 2% of ~T span, with the numerical values of the parameters as specified below.

where: ~T is measured RCS ~T, OF.

~To is the indicated ~T at RTP, OF.

s is the Laplace transform operator, sec-I.

T is the measured RCS average temperature, OF.

T' is the nominal Tavg at RTP, S 586.8 OF.

P is the measured pressurizer pressure, psig.

P' is the nominal RCS operating pressure, ~ 2235 psig.

K2 ~ 0.02172 /oF K3 ~ 0.001144 /psig

'f1, T2 = time constants utilized in the lead-lag controllerfor Tavg

'[I ~ 23.75 sec

'[2 S 4.4 sec (1 + 'f1S)/(1+T2s) = function generated by the lead-lag controllerfor Tavg dynamic compensation fl(~I) ~ 0.0165{ (qt - qb)}

when (qt - qb) < -35% RTP o

when -35% RTP S (qt - qb) S +3% RTP 0.0198{(qt - qb) - 3}

when (qt - qb) > +3% RTP Where qt and qb are percent RTP in the upper and lower halves of the core, respectively, and qt + qb is the total THERMAL POWER in percent RTP.

NA-SPEC-OOO-COLR-N1C20, Rev. 1 Page 16 of21

TS Table 3.3.1-1 Note 2: Overpower dT The Overpower dT Function Allowable Value shall not exceed the following nominal trip setpoint by more than 2% ofdT span, with the numerical values ofthe parameters as specified below.

where: dT is measured RCS dT, OF.

dTois the indicated ~T at RTP, OF.

s is the Laplace transform operator, sec-I.

T is the measured RCS average temperature, OF.

T' is the nominal Tavg at RTP, ~ 586.8 OF.

~ ~ 1.0865 Ks ~ 0.0197 jOF for increasing Tavg ojOF for decreasing Tavg

~ ~ 0.00162 jOF when T > T' ojOF when T ::; T' t'3 = time constant utilized in the rate lag controllerfor Tavg 1:3 ~ 9.5 sec t'3S/(J+ t'3S) = function generated by the rate lag controllerfor Tavg dynamic compensation f2(M) = 0, for all M.

NA-SPEC-OOO-COLR-NIC20, Rev. 1 Page 17 of21

3A REACTOR COOLANT SYSTEM (RCS) 3A.1 RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits LCO 3A.l RCS DNB parameters for pressurizer pressure, RCS average temperature, and RCS total flow rate shall be within the limits specified below:

a.

Pressurizer pressure is greater than or equal to 2205 psig; b.

RCS average temperature is less than or equal to 591°F; and c.

RCS total flow rate is greater than or equal to 295,000 gpm.

SR 3A.1.1 SR 3A.1.2 SR 3A.1.3 SR 3A.1.4 Verify pressurizer pressure is greater than or equal to 2205 psig.

Verify RCS average temperature is less than or equal to 591°F.

Verify RCS total flow rate is greater than or equal to 295,000 gpm.


N01rE--------------------------------------------

Not required to be performed until 30 days after ~ 90% R1rP.

Verify by precision heat balance that RCS total flow rate is ~ 295,000 gpm.

NA-SPEC-000-COLR-N1C20, Rev. 1 Page 18 of21

3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) 3.5.6 Boron Injection Tank (BIT)

Required Action B.2 Borate to an SDM ~ 1.77 % dk/k at 200 of.

NA-SPEC-OOO-COLR-N1C20, Rev. 1 Page 19 of21

3.9 REFUELING OPERATIONS 3.9.1 Boron Concentration LCO 3.9.1 Boron concentrations of the Reactor Coolant System (RCS), the refueling canal, and the refueling cavity shall be maintained;::: 2600 ppm.

SR 3.9.1.1 Verify boron concentration is within the limit specified above.

NA-SPEC-000-COLR-N1C20, Rev. 1 Page 20 of21

NAPS TECHNICAL REQUIREMENTS MANUAL TRM 3.1 TR 3.1.1 REACTIVITY CONTROL SYSTEMS Boration Flow Paths - Operating Required Action D.2 Borate to a SHUTDOWN MARGIN ~ 1.77 % Ak/k at 200 of, after xenon decay.

NA-SPEC-OOO-COLR-N1C20, Rev. 1 Page 21 of21