ML19289A489
ML19289A489 | |
Person / Time | |
---|---|
Site: | North Anna |
Issue date: | 10/08/2019 |
From: | Standley B Dominion Energy Services, Virginia Electric & Power Co (VEPCO) |
To: | Document Control Desk, Office of Nuclear Reactor Regulation |
References | |
19-416 | |
Download: ML19289A489 (25) | |
Text
VIRGINIA ELECTRIC AND POWER COMPANY RICHMOND, VIRGINIA 23261 October 8, 2019 United States Nuclear Regulatory Commission Serial No.: 19-416 Attention: Document Control Desk NRA/DEA: RO
- Washington, D.C. 20555 Docket No.: 50-338 License No.: NPF-4 VIRGINIA ELECTRIC AND POWER COMPANY (DOMINION ENERGY VIRGINIA)
NORTH ANNA POWER STATION UNIT 1 CORE OPERATING LIMITS REPORT CYCLE 28 PATTERN GSW REVISION 1 Pursuant to North Anna Technical Specification 5.6.5.d, attached is a copy of the Core Operating Limits Report (COLR) for North Anna Unit 1 Cycle 28, Pattern GSW, Revision 1, Addendum 0. The COLR was revised to incorporate shutdown data.
If you have any questions or require additional information, please contact Ms. Diane Aitken at (804) 273-2694.
Sincerely, B. E. Standley, Director Nuclear Regulatory Affairs Dominion Energy Services, Inc. for Virginia Electric and Power Company
Attachment:
COLR-N1 C28, Revision 1, Core Operating Limits Report, North Anna Unit 1 Cycle 28, Pattern GSW Commitment Summary: There are no new commitments contained in this letter.
Serial No.: 19-416 Docket No.: 50-338 COLR N1 C28 Pattern GSW, Rev. 1, Add. 0 Page 2 of 2 cc: U.S. Nuclear Regulatory Commission Region II Marquis One Tower 245 Peachtree Center Avenue, NE Suite 1200 Atlanta, Georgia 30303-1257 Mr. G. Edward Miller NRC Senior Project Manager U. S. Nuclear Regulatory Commission One White Flint North Mail Stop 08 B 1-A 11555 Rockville Pike Rockville, Maryland 20852-2738 NRC Senior Resident Inspector North Anna Power Station
Serial No.: 19-416 Docket No.: 50-338 Page 1 of 23 ATTACHMENT COLR-N1 C28, Revision 1 CORE OPERATING LIMITS REPORT North Anna Unit 1 Cycle 28 Pattern GSW North Anna Power Station Unit 1 Virginia Electric and Power Company
Serial No.: 19-416 Docket No.: 50-338 NlC28 CORE OPERATING LIMITS REPORT INTRODUCTION The Core Operating Limits Report (COLR) for North Anna Unit 1 Cycle 28 has been prepared in accordance with North Anna Technical Specification 5.6.5. The technical specifications affected by this report are listed below:
TS 2.1.1 Reactor Core Safety Limits TS 3.1.1 Shutdown Margin (SDM)
TS 3.1.3 Moderator Temperature Coefficient (MTC)
TS 3.1.4 Rod Group Alignment Limits TS 3.1.5 Shutdown Bank Insertion Limit TS 3.1.6 Control Bank Insertion Limits TS 3.1.9 PHYSICS TESTS Exceptions - Mode 2 TS 3.2.1 Heat Flux Hot Channel Factor TS 3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (FN 1rn)
TS 3.2.3 Axial Flux Difference (AFD)
TS 3.3.1 Reactor Trip System (RTS) Instrumentation TS 3.4.1 RCS Pressure, Temperature, and Flow DNB Limits TS 3.5.6 Boron Injection Tank (BIT)
TS 3.9.1 Boron Concentration In addition, a technical requirement (TR) in the NAPS Technical Requirements Manual (TRM) refers to the COLR:
TR3.l.1 Boration Flow Paths - Operating The analytical methods used to determine the core operating limits are those previously approved by the NRC and discussed in the documents listed in the References Section.
Cycle-specific values are presented in bold. Text in italics is provided for information only.
COLR-Nl C28, Revision 1 EV AL-ENG-RSE-Nl C28, Revision 0, Addendum A, Attachment A Page 2 of23
Serial No.: 19-416 Docket No.: 50-338 REFERENCES
- 1. VEP-FRD-42-A, Revision 2, Minor Revision 2, "Reload Nuclear Design Methodology,"
October 2017.
Methodology for:
TS 3.1.1 - Shutdown Margin TS 3 .1.3 - Moderator Temperature Coefficient TS 3.1.4- Rod Group Alignment Limits TS 3 .1.5 - Shutdown Bank Insertion Limit TS 3.1.6 - Control Bank Insertion Limits TS 3.1.9- Physics Tests Exceptions- Mode 2 TS 3.2.1 - Heat Flux Hot Channel Factor TS 3.2.2 - Nuclear Enthalpy Rise Hot Channel Factor TS 3.5.6- Boron Injection Tank (BIT) and TS 3.9.1 - Boron Concentration
- 2. Plant-specific adaptation of WCAP-16009-P-A, "Realistic Large Break* LOCA Evaluation Methodology Using the Automated Statistical Treatment of Uncertainty Method (ASTRUM),"
as approved by NRC Safety Evaluation Report dated February 29, 2012.
Methodology for: TS 3.2.1 - Heat Flux Hot Channel Factor
- 3. WCAP-10054-P-A, "Westinghouse Small Break ECCS Evaluation Model Using the NOTRUMP Code," August 1985.
Methodology for: TS 3 .2.1 - Heat Flux Hot Channel Factor
- 4. WCAP-10079-P-A, NOTRUMP, A Nodal Transient Small Break and General Network Code," August 1985.
Methodology for: TS 3.2.1 - Heat Flux Hot Channel Factor
- 5. WCAP-12610-P-A, "VANTAGE+ FUEL ASSEMBLY -REFERENCE CORE REPORT,"
April 1995.
Methodology for:
TS 2 .1.1 - Reactor Core Safety Limits TS 3.2. l - Heat Flux Hot Channel Factor
- 6. VEP-NE-2-A, Revision 0, "Statistical DNBR Evaluation Methodology," June 1987.
Methodology for:
TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor and TS 3.4.1 - RCS Pressure, Temperature and Flow DNB Limits COLR-N1C28, Revision 1 EV AL-ENG-RSE-Nl C28, Revision 0, Addendum A, Attachment A Page 3 of23
Serial No.: 19-416 Docket No.: 50-338
- 7. VEP-NE-1-A, Revision 0, Minor Revision 3, "Relaxed Power Distribution Control Methodology and Associated FQ Surveillance Technical Specifications," November 2017.
Methodology for:
TS 3.2.1-Heat Flux Hot Channel Factor and TS 3.2.3 -Axial Flux Difference
- 8. WCAP-8745-P-A, "Design Bases for the Thermal Overpower LiT and Thermal Overtemperature LiT Trip Functions," September 1986.
Methodology for:
TS 2.1.1 - Reactor Core Safety Limits and TS 3.3.1 - Reactor Trip System Instrumentation
- 9. WCAP-14483-A, "Generic Methodology for Expanded Core Operating Limits Report," January 1999.
Methodology for:
TS 2.1.1 - Reactor Core Safety Limits TS 3.1.1 - Shutdown Margin TS 3 .1 .4 - Rod Group Alignment Limits TS 3.1.9- Physics Tests Exceptions - Mode 2 TS 3.3. l - Reactor Trip System Instrumentation TS 3.4. l - RCS Pressure, Temperature, and Flow DNB Limits TS 3.5.6- Boron Injection Tank (BIT) and TS 3.9.1 -Boron Concentration
- 10. DOM-NAF-2-P-A, Revision 0, Minor Revision 3, "Reactor Core Thermal-Hydraulics Using the VIPRE-D Computer Code," including Appendix C, "Qualification of the Westinghouse WRB-2M CHF Correlation in the Dominion VIPRE-D Computer Code," August 2010 and Appendix D, "Qualification of the ABB-NV and WLOP CHF Correlations in the Dominion VIPRE-D Computer Code," September 2014.
Methodology for:
TS 3.2.2 - Nuclear Enthalpy Rise Hot Channel Factor and TS 3.4.1 - RCS Pressure, Temperature and Flow DNB Limits
- 11. WCAP-12610-P-A and CENPD-404-P-A, Addendum 1-A, "Optimized ZIRLO'," July 2006.
Methodology for:
TS 2.1.1 - Reactor Core Safety Limits and TS 3.2.1 - Heat Flux Hot Channel Factor COLR-N1C28, Revision 1 EVAL-ENG-RSE-N1C28, Revision 0, Addendum A, Attachment A Page 4 of23
Serial No.: 19-416 Docket No.: 50-338 2.0 SAFETY LIMITS (SLs) 2.1 SLs 2.1.1 Reactor Core SLs In MODES 1 and 2, the combination of THERMAL POWER, Reactor Coolant System (RCS) highest loop average temperature, and pressurizer pressure shall not exceed the limits specified in COLR Figure 2.1-1; and the following SLs shall not be exceeded.
2.1.1.1 The departure from nucleate boiling ratio (DNBR) shall be maintained greater than or equal to the 95/95 DNBR criterion for the DNB correlations and methodologies specified in the References Section.
2.1.1.2 The peak fuel centerline temperature shall be maintained < 5080°F, decreasing by 58°F per 10,000 MWD/MTU of burnup, for Westinghouse fuel and< 5173°F, decreasing by 65°F per 10,000 MWD/MTU ofburnup,for AREVA fuel.
COLR-NIC28, Revision I EVAL-ENG-RSE-NIC28, Revision 0, Addendum A, Attachment A Page 5 of 23
Serial No.: 19-416 Docket No.: 50-338 COLR Figure 2.1-1 NORTH ANNA REACTOR CORE SAFETY LIMITS 665 660 T.......___
655 650
~
psi a
~ ..........
645 640 ~"~ -......... ~ o psi a
-............. ~
~~ ....
635 ....
~ ...........
-.............. r--.......
e.......
a, 630 '--
\
~
"~" "'
- I
+' ......
111 625 ~
a, c..
E 620
~
~
'-.. 2000 psi a -...........\ \
~ '\.'
~ -.............. ~
~
a, 615 - -
b.O 111 a,
......... ~
1860 osia
~
<C ai Ill 610 605 ""' .... .........
-.............. I""-.....
~
I\
__\
~ ~--
Ill
~ 600 --*-*" - - * - - - --*--*-*-...*-* __ ___ ___ ., ..,
~
595
~ ""'-
590 ------- ----*--"' __ _ ________ -*-- ---- ,---*-*--*-r-------..-- -*--*---
. . ~ f\--
585 ~****-*- -- e--*- !'-"-*-* i---'""""_"_"'"'"'-*
580 \'
575 570 0 10 20 30 40 50 60 70 80 90 100 110 120 I
Percent of RATED THERMAL POWER COLR-NIC28, Revision I EVAL-ENG-RSE-N1C28, Revision 0, Addendum A, Attachment A Page 6 of23
Serial No.: 19-416 Docket No.: 50-338 3.1 REACTIVITY CONTROL SYSTEMS 3.1.1 SHUTDOWN MARGIN (SDM)
LCO 3.1.1 SDM shall be~ 1.77 % Ak/k.
3 .1.3 Moderator Temperature Coefficient (MTC)
LCO 3.1.3 The MTC shall.be maintained within the limits specified below. The upper limit 4
of MTC is +0.6 x 10- Ak/k/°F, when< 70% RTP, and 0.0 Ak/k/°F when~ 70%
RTP.
The BOC/ARO-MTC shall be S +0.6 x 10-4 Ak/k/°F (upper limit), when< 70%
RTP, and S 0.0 Ak/k/°F when~ 70% RTP.
The EOC/ARO/RTP-MTC shall be less negative than -5.0 x 10-4 Ak/k/°F (lower limit).
The MTC surveillance limits are:
The 300 ppm/ARO/RTP-MTC shall be less negative than or equal to
-4.0 x 10-4 Ak/k/°F [Note 1].
The 60 ppm/ARO/RTP-MTC shall be less negative than or equal to
-4.7 x 10-4 Ak/k/°F [Note 2].
SR 3.1.3.2 Verify MTC is within -5.0 x 10-4 Ak/k/°F (lower limit).
Note 1: If the MTC is more negative than -4.0 x 10-4 Ak/k/°F, SR 3.1.3.2 shall be repeated once per 14 EFPD during the remainder of the fuel cycle.
Note 2: SR 3.1.3.2 need not be repeated if the MTC measured at the equivalent of equilibrium RTP-ARO boron concentration of s 60 ppm is less negative than -4.7 x 10-4 Ak/k/°F.
COLR-N1C28, Revision 1 EVAL-ENG-RSE-N1C28, Revision 0, Addendum A, Attachment A Page 7 of23
Serial No.: 19-416 Docket No.: 50-338 3.1.4 Rod Group Alignment Limits Required Action A. I. I Verify SDM to be ~ 1. 77 % Ak/k.
Required Action B.1.1 Verify SDM to be~ 1.77 % Ak/k.
Required Action D.1.1 Verify SDM to be:::: 1.77 % Ak/k.
3 .1.5 Shutdown Bank Insertion Limits LCO 3 .1.5 Each shutdown bank shall be withdrawn to at least 228 steps.
Required Action A. I. I Verify SDM to be~ 1.77 % Ak/k.
Required Action B.l Verify SDM to be~ 1.77 % Ak/k.
SR 3.1.5. l Verify each shutdown bank is withdrawn to at least 228 steps.
3.1.6 Control Bank Insertion Limits LCO 3 .1.6 Control banks shall be limited in physical insertion as shown in COLR Figure
'3.1-1. Sequence of withdrawal shall be A, B, C and D, in that order; and the overlap limit during withdrawal shall be 100 steps.
Required Action A.1.1 Verify SDM to be~ 1.77 % Ak/k.
Required Action B.1.1 Verify SDM to be~ 1.77 % Ak/k.
Required Action C. l Verify SDM to be ~ 1. 77 % Ak/k.
SR3.l.6.l Verify estimated critical control bank position is within the insertion limits specified in COLR Figure 3.1-1.
SR 3.1.6.2 Verify each control bank is within the inse1iion limits specified in COLR Figure 3.1-1.
SR 3.1.6.3 Verify each control bank not fully withdrawn from the core is within the sequence and overlap limits specified in LCO 3.1.6 above.
3.1.9 PHYSICS TESTS Exceptions-MODE 2 LCO 3.1.9.b SDM is~ 1.77 % Ak/k.
SR 3.1.9.4 Verify SDM to be~ 1.77 % Ak/k.
COLR-NIC28, Revision 1 EVAL-ENG-RSE-Nl C28, Revision 0, Addendum A, Attachment A Page 8 of23
Serial No.: 19-416 Docket No.: 50-338 COLR Figure 3.1-1 North Anna 1 Cycle 28 Control Rod Bank Insertion Limits Fully w/d position = 228 steps
~230 ---------------------------------~
V o.s39, 228 220 210 /
200 I/
190 / 1.0, 194
,p 180
/ /
170
/ C-BANK JV 160
/ /
~ 150 / ~/
I g. 140 / /
~
- i:i:.130 / ~v C:
0 /
- ~ 120 l;I 0, 118 /
0
~ 110
~/
~
- I 0
100
/
"O Vo-BANK 0
c:: 90 '
80 /
70 V
60 /
so
/
40
/
30 V
20
/
10 V
/o.048,o 0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Fraction of Rated Thermal Power COLR-N 1C28, Revision 1 EV AL-ENG-RSE-Nl C28, Revision 0, Addendum A, Attachment A Page 9 of23
Serial No.: 19-416 Docket No.: 50-338 3.2 POWER DISTRIBUTION LIMITS 3.2.1 Heat Flux Hot Channel Factor (FQ(Z))
LCO 3.2.1 FQ(Z), as approximated by FQE(Z) and FQ \Z), shall be within the limits specified below.
CFQ=2.32 The Heat Flux Hot Channel Factor, FQ(Z), shall be limited by the following relationships:
CFQ
- K(Z)
FQ(Z) ~ p for P > 0.5 CFQ
- K(Z)
FQ(Z) ~ for P ~ 0.5 0.5 THERMAL POWER d where: p *~
= RATED THERMAL POWER '
K(Z) is provided in COLR Figure 3.2-1 FQE(z) is an excellent approximation for FQ(Z) when the reactor is at the steady-state power.
FQ(Z) from the incore flux map results is increased by 1.03 for fuel manufacturing tolerances and 1.05 for measurement uncertainty to obtain FQE(Z).
F5 (Z) = FQ (Z) * (1.03) * (1.05)
The expression for FQ\Z) is:
FJ(Z) = F5(Z)
- N(Z)
Where N(Z) is a cycle-specific non-equilibrium multiplier on FQE(z) to account for power distribution transients during normal operation, provided in COLR Table 3.2-1.
The discussion in the Bases Section B 3.2.1 for this LCO requires the application of a cycle dependent non-equilibrium multiplier, N(Z), to the steady state F/(Z). N(Z) accounts for power distribution transients encountered during normal operation. As function N(Z) is dependent on the predicted equilibrium FQ(Z) and is sensitive to the axial power distribution, it is typically generated from the actual EOC burnup distribution that can only be obtained after the shutdown of the previous cycle.
COLR-NIC28, Revision I EVAL-ENG-RSE-NIC28, Revision 0, Addendum A, Attachment A Page 10 of23
Serial No.: 19-416 Docket No.: 50-338 The cycle-specific penalty factors are presented in COLR Table 3.2-2.
Also discussed is the application of the appropriate factor to account for potential increases in FQ(Z) between surveillances. This factor is determined on a cycle specific basis and is dependent on the predicted increases in steady-state and transient F Q(Z)/K(Z) versus burnup. A minimum value of 2% is used should any increase in steady-state or transient measured or predicted peaking factor be determined unless frequent flux mapping is invoked (7 EFPDJ. These values are typically generated from the actual EOC burnup distribution that can only be obtained after the shutdown of the previous cycle.
The required operating space reductions are included in COLR Table 3.2-3.
Should F / (Z) exceed its limits the normal operating space should be reduced to gain peaking factor margins. The determination and verification of the margin improvements along with the corresponding required reductions in the Thermal Power Limit and AFD Bands are performed on a cycle-specific basis. These values are typically generated from the actual EOC burnup distribution that can only be obtained after the shutdown of the previous cycle.
COLR-N I C28, Revision I EVAL-ENG-RSE-N1 C28, Revision 0, Addendum A, Attachment A Page 11 of 23
Serial No.: 19-416 Docket No.: 50-338 COLR Table 3.2-1 N1 C28 Normal Operation N(Z)
NODE HEIGHT Oto 1000 1000 to 2000 2000 to 3000 3000 to 4000 4000 to 5000 5000 to 7000 7000 to 9000 (FEET) MWD/MTU MWO/MTU MWDIMTU MWD/MTU MWD/MTU MVt/DlMTU MWDfMTU 5 11.2 1.126 1.127 1.134 1.142 1.151 1.161 1.161 6 11.0 1.125 1.130 1.137 1.141 1.150 1.160 1.160 7 10.8 1.124 1.132 1.140 1.140 1.148 1.158 1.158 8 10.6 1.122 1.132 1.140 1.139 1.146 1.156 1.156 9 10A 1.120 1.130 1.137 1.136 1.144 1.154 1.154 10 10.2 1.119 1.126 1.133 1.134 1.142 1.152 1.153 11 10.0 1.118 1.121 1.128 1.133 1.141 1.151 1.153 12 9.8 1.117 1.118 1.125 1.133 1.141 1.151 1.153 13 9.6 1.118 1.118 1.125 1.133 1.142 1.151 1.154 14 9.4 1.121 1.121 1.127 1.13,5 1.144 1.153 1.155 15 9.2 1.124 1.124 1.131 1.139 1.147 1.157 1.160 16 9.0 1.128 1.128 1.136 1.144 1.152 1.163 1.167 17 8.8 1.131 1.130 1.140 1.1413 1.156 1.168 1.174 1B 8.6 1.131 1.131 1.140 1.149 1.156 1.168 1.177 19 8.4 1.128 1.130 1.137 1.146 1.153 1.166 1.176 20 8.2 1.126 1.128 1.134 1.142 1.149 1.163 1.175 21 8.0 1.125 1.125 1.131 1.139 1.147 1.162 1.174 22 7.8 1.122 1.120 1.126 1.134 1.142 1.158 1.171 23 7.6 1.114 1.112 1.117 1.124 1.132 1.150 1.163 24 7.4 1.104 1.102 1.107 1.114 1.121 1.139 1.154 25 7.2 1.098 1.096 1.101 1.107 1.115 1.132 1.147 26 7.0 1.096 1.095 1.099 1.106 1,114 1.130 1.143 27 6.8 1.092 1.091 1.096 1.103 1.111 1.125 1.136 28 6.6 1.082 1.081 1.084 1.090 1.097 1.109 1.118 29 6.4 1.066 1.064 1.067 1.071 1.076 1.086 1.094 30 6.2 1.050 1.049 1.050 1.053 1.057 1.066 1.074 31 6.0 1.040 1.039 1.040 1.043 1.047 1.054 1.063 32 5.8 1.037 1.037 1.038 1.041 1.044 1.051 1.058 33 5.6 1.044 1,045 1.045 1.047 1.048 1.052 1.056 34 5.4 1.058 1.058 1.059 1.058 1.057 1.057 1.057 35 5.2 1.073 1.073 1.073 1.071 1.069 1.065 1.062 36 5.0 1.085 1.085 1.084 1.062 1.080 1.077 1.072 37 4.8 1.094 1.094 1.093 1.091 1.089 1.087 1.082 38 4.6 1.099 1.099 1.097 1.096 1.095 1.094 1.089 39 4.4 1.105 1.105 1.102 1.101 1.100 1.099 1.094 40 4.2 1.116 1.116 1.114 1.112 1.109 1.107 1.101 41 4.0 1,134 1.134 1.133 1.129 1.124 1.120 1.111 42 3.8 1.150 1.150 1.150 1.145 1.139 1.132 1.122 43 3.6 1.158 1.158 1.158 1.152 1.145 1.140 1.132 44 3.4 1.161 1.161 1.159 1.153 1.147 1.144 1.140 45 3.2 1.165 1.165 1.162 1.156 1.150 1.148 1.149 46 3.0 1.174 1.174 1.173 1.166 1.159 1.154 1.157 47 2.8 1.187 1.187 1.186 1.179 1.170 1.162 1.163 48 2.6 1.199 1.199 1.199 1.191 1.181 1.171 1.166 49 2.4 1.210 1.210 1.209 1.201 1.191 1.180 1.168 50 2.2 1.220 1.220 1.219 1.2.11 1.200 1.189 1.172 51 2.0 1.229 1.229 1.229 1.220 1.209 1.197 1.180 52 1.8 1,239 1.239 1.239 1.230 1.218 1.206 1.189 53 1.6 1.247 1.247 1.247 1.238 1.225 1.213 1.196 54 1A 1.255 1.255 1.255 1.245 1.232 1.219 1.201 COLR-NlC28, Revision 1 EVAL-ENG-RSE-Nl C28, Revision 0, Addendum A, Attachment A Page 12 of23
Serial No.: 19-416 Docket No.: 50-338 COLR Table 3.2-1 (continued}
N1C28 Normal Operation N(Z)
NODE HEIGHT 0 to 1000 1000to2000 2000 to 3000 3000to4000 4000 to 5000 5000 to 7000 7000to9000 (FEET) MWD/MTU MWDJMTU MWDl1MTU M1/I/D/MTU MWD/MTU MWDIMTU MWD/MTU 55 1.2 1.262 1.262 1.261 1.251 1.238 1.225 1.206 56 1.0 1.268 1.268 1.267 1.258 1.244 1.231 1.211 57 0.8 1.275 1.275 1.273 1.263 1.250 1.236 1.216 These decks are generated for normal operation flux maps that are typically taken at full power ARO. Additional N(Z) decks may be generated, if necessary, consistent with the methodology described in the RPDC topical (Reference 7). EOR is defined as Hot Full Power End of Reactivity.
COLR-N1C28, Revision 1 EVAL-ENG-RSE-N1C28, Revision 0, Addendum A, Attachment A Page 13 of 23
Serial No.: 19-416 Docket No.: 50-338 COLR Table 3.2-1 (continued}
N1C28 Normal Operation N(Z)
NODE HEIGHT 9000 to 11000 11000 to 13000 13000 to 15000 15000 to 17000 17000 to 19000 19000 to EOR (FEET) MVIIDrMTU MWOlMTU MWDIMTU MWDlMTU MWDllITTU MWDllITTU 5 11.2 1.161 1.156 1.150 1.145 1.141 1.140 6 11.0 1.160 1.155 1.149 1.144 1.141 1.140 7 10.B 1.158 1.154 1.148 1.143 1.140 1.139 8 10.6 1.157 1.152 1.146 1.141 1.138 1.138 9 10A 1.154 1.151 1.144 1.140 1.137 1.136 10 10.2 1.153 1.150 1.145 1.141 1.139 1.138 11 10.0 1,153 1.149 1.147 1.145 1.144 1.143 12 9.8 1.153 1.150 1.150 1.150 1.149 1.147 13 9.6 1.154 1.151 1.151 1.152 1.150 1.148 14 9A 1.155 1.153 1.153 1.153 1.151 1,149 15 9.2 1.160 1.158 1.158 1.158 1,156 1.155 16 9.0 1.167 1.167 1.167 1.167 1.167 1.167 17 8.8 1.174 1.174 1.176 1.177 1.178 1.179 18 8.6 1.177 1.177 1.180 1.181 1.183 1.185 19 BA 1.177 1.177 1.180 1.181 1.183 1.184 20 8.2 1.176 1.177 1.180 1.181 1.183 1.184 2.1 8.0 1.176 1.178 1.181 1.182 1.165 1.186 n 7.8 1.175 1.178 1.180 1.182 1.185 1.186 23 7.6 1.169 1.173 1.175 1.177 1.180 1.181 24 7A 1.161 1.165 1.168 1.170 1.172 1.173 25 7.2 1.155 1.159 1.162 1.164 1.167 1.168 26 7.0 1.150 1. 155 1.158 1.161 1.164 1.166 27 6.8 1.141 1.147 1.150 1.154 1.158 1.160 28 6.6 1.123 1.129 1.132 1.136 1.140 1.142 29 6A 1.100 1.105 1.109 1.113 1.116 1.118 30 6.2 1.081 1.086 1.090 1.094 1.098 1.099 31 6.0 1.070 1.076 1.081. 1.085 1.090 1.092 32 5.8 1.065 1.071 1.076 1.080 1.084 1.086 33 5.6 1.061 1.065 1.069 1.072 1.075 1.076 34 5A 1.059 1.061 1.062 1.063 1.064 1.064 35 5.2 1.062 1.061 1.061 1.061 1.061 1.060 36 5.0 1.070 1.069 1.069 1.068 1.068 1.067 37 4.8 1.080 1.079 1.080 1.079 1.079 1.078 38 4.6 1.087 1.087 1.088 1.066 1.088 1.087 39 4A 1.093 1.093 1.093 1.093 1.093 1.093 40 4.2 1.099 1.099 1.100 1.100 1.100 1.099 41 4.0 1.106 1.108 1.109 1.109 1.109 1.108 42 3.8 1.118 1.118 1.119 1.'119 1.119 1.118 43 3.6 1.128 1.127 1.128 1.128 1.128 1.128 44 3A 1,137 1.137 1.138 1.138 1.138 1.137 45 3.2 1:146 1.146 1.147 1.147 1.147 1,147 46 3.0 1.156 1.155 1.156 1.157 1.157 1.157 47 2.8 1.163 1.164 1.165 1.167 1.167 1.167 48 2.6 1.166 1.171 1.175 1.176 1.176 1.176 49 2.4 1.166 1.176 1.183 1.184 1.185 1.185 50 2.2 1.169 1.181 1.1a9 1:192 1.194 1.194 51 2.0 1.176 1.185 1.192 1.196 1.203 1.203 52 1.8 1.184 1.189 1.194 1.202 1.209 1.210 53 1.6 1.191 1.193 1.197 1.205 1.213 1.214 54 1.4 1.195 1.198 1.202 1.206 1.213 1.215 COLR-Nl C28, Revision 1 EV AL-ENG-RSE-Nl C28, Revision 0, Addendum A, Attachment A Page 14 of 23
Serial No.: 19-416 Docket No.: 50-338 COLR Table 3.2-1 (continued)
N1C28 Normal Operation N(Z)
HODE HEIGHT 9000 to 11000 11000 to 13000 13-000 to 15000 15000 to 17000 17000 to 19000 19000 to EOR (FEET) MWD/MTU MWD/MTU MWD,1MTU MWDIMTU MWD/MTU MWD/MTU 55 1.2 1.200 1.203 1.207 1.212 1.215 1.217 56 1.0 1.205 1.209 1.213 1.217 1.220 1.221 57 0.8 1.210 1.214 1.218 1.222 1.226 1.226 These decks are generated for normal operation flux maps that are typically taken at full power ARO. Additional N(Z) decks may be generated, if necessary, consistent with the methodology described in the RPDC topical (Reference 7). EOR is defined as Hot Full Power End of Reactivity.
COLR-NlC28, Revision 1 EV AL-ENG-RSE-N 1C28, Revision 0, Addendum A, Attachment A Page 15 of23
Serial No.: 19-416 Docket No.: 50-338 COLR Table 3.2-2 N1C28 Penalty Factors for Flux Map Analysis Burnup Penalty (MWD/MTU) Factor 0/o 0-999 2.0 1000-1999 4.0 2000-2999 2.0 3000-3999 2.0 4000- 4999 2.0 5000- 6999 2.0 7000- 8999 2.0 9000-10999 2.0 11000 -12999 2.0 13000 -14999 2.0 15000 - 16999 2.0 17000 - 18999 2.0 19000-EOC 2.0 Notes:
I. Penalty Factors are not required for initial power ascension flux maps.
- 2. All full power maps shall apply a Penalty Factor unless frequent flux mapping is invoked(~ 7 EFPD).
COLR Table 3.2-3 N1C28 Required Operating Space Reductions for FQr(Z) Exceeding its Limits Required F0T(Z) Required Negative AFD Band Positive AFD Band Margin THERMAL POWER Reduction from AFD Reduction from AFD Improvement Limit (% RTP) Limits* (% AFD) Limits* (% AFD)
- s 1% :S 98.0% ::: 0.5% ::: 1.0%
> 1% and :S 2% :S 96.0% ::: 1.0% :::2.0%
> 2% and :S 3% :S 95.0% ::: 1.5% ::: 4.0%
- Axial Flux Difference Limits are provided in COLR Figure 3.2-2 COLR-Nl C28, Revision 1 EVAL-ENG-RSE-N1C28, Revision 0, Addendum A, Attachment A Page 16 of23
Serial No.: 19-416 Docket No.: 50-338 COLR Figure 3.2-1 K(Z) - Normalized FQ as a Function of Core Height 1.2 1.1
~.
6, 1.0 1.0 0.9 (12, .925) 0.8 N
0
- u. 0.7 C
w N
- '.j
< 0.6 2
0::
0 z
~ 0.5
~
0.4 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 CORE HEIGHT (FT)
COLR-NIC28, Revision I EV AL-ENG-RSE-Nl C28, Revision 0, Addendum A, Attachment A Page 17 of 23
Serial No.: 19-416
. Docket No.: 50-338 3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (FN,18)
LCO 3.2.2 FN iiH shall be within the limits specified below.
FN,\H ~ 1.587 {l + 0.3(1 - P)}
THERMAL POWER where:
p = RATED THERMAL POWER SR 3 .2.2.1 Verify FN iiH is within limits specified above.
3.2.3 AXIAL FLUX DIFFERENCE (AFD)
LCO 3.2.3 The AFD in% flux difference units shall be maintained within the limits specified in COLR Figure 3.2-2.
COLR-NIC28, Revision I EVAL-ENG-RSE-NlC28, Revision 0, Addendum A, Attachment A Page 18 of23
Serial No.: 19-416 Docket No.: 50-338 COLR Figure 3.2-2 North Anna 1 Cycle 28 Axial Flux Difference Limits 120 110 100
,-12. 10v \ 6 , 100) 90 80 Unacceptable /
Operation '\ Unacceptable Operation Q) 3:: )
I \'
0 70 Acceptable Operation a.
iii E 60 I
I \
- \
Q)
.c:
I-
"C Q)
+"' 50 Ill
(-27, 50) (+20, 50)
....0::0
+"'
C:
40 Q)
~
Q)
- a. 30 20 10 0
-30 -20 -10 0 10 20 30 Percent Flux Difference (Delta-I)
COLR-NIC28, Revision 1 EVAL-ENG-RSE-N 1C28, Revision 0, Addendum A, Attachment A Page 19 of23
Serial No.: 19-416 Docket No.: 50-338 3.3 INSTRUMENTATION 3 .3 .1 Reactor Trip System (RTS) Instrumentation TS Table 3 .3 .1-1 Note 1: Overtemperature .1T The Overtemperature .1T Function Allowable Value shall not exceed the following nominal trip setpoint by more than 2% of .1T span, with the numerical values of the parameters as specified below.
where: .1T is measured RCS L'.1 T, °F
.1To is the indicated L1T at RTP, °F s is the Laplace transform operator, sec- 1 T is the measured RCS average temperature, °F T' is the nominal Tavg at RTP, S 586.8 °F p is the measured pressurizer pressure, psig P' is the nominal RCS operating pressure, ~ 2235 psig K2 ~ 0.02174 /°F K3 ~ 0.001145 /psig 1' 1, 1'2 = time constants utilized in the lead-lag controller for Tavg 1'1 ~ 23.75 sec 1' 2 S 4.4 sec (1 +1'1S)/(l +1'2S) = function generated by the lead-lag controller for Tavg dynamic compensation f1 (L1I) 2: 0.0291 {-13.0 - (qt - qb)} when (qi - qb) < -13.0% R TP 0 when-13.0% RTP ~ (qt-qb) ~ +7.0% RTP 0.0251{(qi-qb)-7.0} when (qi- qb) > +7.0% RTP Where qt and qb are percent RTP in the upper and lower halves of the core, respectively, and q1 + qb is the total THERMAL POWER in percent RTP.
COLR-N1C28, Revision 1 EV AL-ENG-RSE-N 1C28, Revision 0, Addendum A, Attachment A Page 20 of23
Serial No.: 19-416 Docket No.: 50-338 TS Table 3.3.1-1 Note 2: Overpower ~T The Overpower ~T Function Allowable Value shall not exceed the following nominal trip setpoint by more than 2% of ~T span, with the numerical values of the parameters as specified below.
where: ~T is measured RCS ~T, °F.
~To is the indicated ~Tat RTP, °F.
s is the Laplace transform operator, sec- 1*
T is the measured RCS average temperature, °F.
T' is the nominal Tavg at RTP, S 586.8 °F.
K,i S 1.0865 Ks ~ 0.0198 /°F for increasing Tavg K6 ~ 0.00162 /°F when T > T' O/°F for decreasing Tavg O!°F when T ~ T'
!'3 = time constant utilized in the rate lag controller for Tavg T3 ~ 9.5 sec I'3s I(]+ I'3s) = function generated by the rate lag controller for Tavg dynamic compensation f2(~I) = 0, for all Af.
COLR-NIC28, Revision I EV AL-ENG-RSE-Nl C28, Revision 0, Addendum A, Attachment A Page 21 of23
Serial No.: 19-416 Docket No.: 50-338 3.4 REACTOR COOLANT SYSTEM (RCS) 3.4.1 RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits LCO 3.4.1 RCS DNB parameters for pressurizer pressure, RCS average temperature, and RCS total flow rate shall be within the limits specified below:
- a. Pressurizer pressure is greater than or equal to 2205 psig;
- b. RCS average temperature is less than or equal to 591 °F; and
- c. RCS total flow rate is greater than or equal to 295,000 gpm.
SR 3.4.1.1 Verify pressurizer pressure is greater than or equal to 2205 psig.
SR 3.4.1.2 Verify RCS average temperature is less than or equal to 591 °F.
SR 3.4.1.3 Verify RCS total flow rate is greater than or equal to 295,000 gpm.
SR 3.4.1.4 ------------------------------NOTE--------------------------------------------
Not required to be performed until 30 days after~ 90% RTP.
Verify by precision heat balance that RCS total flow rate is ~ 295,000 gpm.
3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) 3.5.6 Boron Injection Tank (BIT)
Required Action B.2 Borate to a SOM~ 1.77 % Ak/k at 200 °F.
3.9 REFUELING OPERATIONS 3 .9 .1 Boron Concentration LCO 3 .9 .1 Boron concentrations of the Reactor Coolant System (RCS), the refueling canal, and the refueling cavity shall be maintained ~ 2600 ppm.
SR 3.9.1.1 Verify boron concentration is within the limit specified above.
COLR-N1C28, Revision 1 EVAL-ENG-RSE-N1C28, Revision 0, Addendum A, Attachment A Page 22 of23
Serial No.: 19-416 Docket No.: 50-338 NAPS TECHNICAL REQUIREMENTS MANUAL TRM 3.1 REACTIVITY CONTROL SYSTEMS TR 3.1.1 Boration Flow Paths - Operating Required Action D.2 Borate to a SHUTDOWN MARGIN~ 1.77 % Ak/k at 200 °F, after xenon decay.
COLR-N1C28, Revision I EV AL-ENG-RSE-Nl C28, Revision 0, Addendum A, Attachment A Page 23 of 23