ML18117A226

From kanterella
Jump to navigation Jump to search
Core Operating Limits Report Cycle 27 Pattern Lnk Revision 1
ML18117A226
Person / Time
Site: North Anna Dominion icon.png
Issue date: 04/19/2018
From: Stanley B
Virginia Electric & Power Co (VEPCO)
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
18-158
Download: ML18117A226 (25)


Text

Dominion Energy Services, Inc.

5000 Dominion Boulevard, Glen Allen, VA 23060 Dominion Energy.com April 19, 2018 United States Nuclear Regulatory Commission*

Attention: Document Control Desk Washington, D.C. 20555 Serial No.:

NRA/DEA:

Docket No.:

License No.:

18-158 RO 50-338 NPF-4 VIRGINIA ELECTRIC AND POWER COMPANY (DOMINION ENERGY VIRGINIA)

NORTH ANNA POWER STATION UNIT 1.

CORE OPERATING LIMITS REPORT CYCLE 27 PATTERN LNK REVISION 1 Pursuant to North.Anna Technical Specification 5.6.5.d, attached is a copy of the Dominion Core Operating Limits Report (COLR) for North Anna Unit 1 Cycle 27, Pattern LNK, Revision 1, Addendum 0. The COLR was revised to incorporate shutdown data.

If you have any questions or require additional information, please contact Ms. Diane Aitken at (8G-4J2i3-2694.

Sincerely,

~076--

B. L. Stanley, Director Nuclear Regulatory Affairs Dominion Energy Services, Inc. for Virginia Electric and Power Company Attachment COLR-N1C27, Revision 1, Core Operating Limits Report, North Anna Unit 1 Cycle 27 Pattern LNK Commitment Summary: There are no new commitments contained in this letter.

cc:

U.S. Nuclear Regulatory Commission Region II Marquis One Tower 245 Peachtree Center Avenue, NE Suite 1200 Atlanta, Georgia 30303-1257 Mr. James R. Hall NRC Senior Project Manager U. S. Nuclear Regulatory Commission One White Flint North Mail Stop 08 B-1A 11555 Rockville Pike Rockville, Maryland 20852-2738 NRC Senior Resident Inspector North Anna Power Station Serial No.18-158 Docket No. 50-338 COLR N1C27 Pattern LNK, Rev. 1, Add. 0 Page 2 of 2

ATTACHMENT COLR-N1C27, Revision 1 CORE OPERATING LIMITS REPORT North Anna Unit 1 Cycle 27 Pattern LNK North Anna Power Station Units 1 and 2 Virginia Electric and Power Company Serial No.18-158 Docket No. 50-338 Page 1 of 23

N1C27 CORE OPERATING LIMITS REPORT INTRODUCTION Serial No.: 18-158 Docket No.: 50-338 The Core Operating Limits Report (COLR} for North Anna Unit 1 Cycle 27 has been prepared in accordance with North Anna Technical Specification 5.6.5. The technical specifications affected by this report are listed below:

TS 2.1.1 TS 3.1.1 TS 3.1.3 TS 3.1.4 TS 3.1.5 TS 3.1.6 TS 3.1.9 TS 3.2.1 TS 3.2.2 TS 3.2.3 TS 3.3.1 TS 3.4.1 TS 3.5.6 TS 3.9.1 Reactor Core Safety Limits Shutdown Margin (SOM)

Moderator Temperature Coefficient (MTC)

Rod Group Alignment Limits Shutdown Bank Insertion Limit Control Bank Insertion Limits PHYSICS TESTS Exceptions - Mode 2 Heat Flux Hot Channel Factor Nuclear Enthalpy Rise Hot Channel Factor (FN t>H)

Axial Flux Difference (AFD)

Reactor Trip System (R TS) Instrumentation RCS Pressure, Temperature, and Flow DNB Limits Boron Injection Tank (BIT)

Boron Concentration In addition, a technical requirement (TR) in the NAPS Technical Requirements Manual (TRM) refers to the COLR:

TR 3.1.1 Boration Flow Paths - Operating The analytical methods used to determine the core operating limits are those previously approved by the NRC and discussed in the documents listed in the References Section.

Cycle-specific values are presented in bold. Text in italics is provided for information only.

Page 2 of 23

REFERENCES Serial No.: 18-158 Docket No.: 50-338

1. VEP-FRD-42-A, Revision 2, Minor Revision 2, "Reload Nuclear Design Methodology,"

October 2017.

Methodology for:

TS 3.1.1 - Shutdown Margin TS 3.1.3 - Moderator Temperature Coefficient TS 3.1.4-Rod Group Alignment Limits TS 3.1.5 - Shutdown Bank Insertion Limit TS 3.1.6 - Control Bank Insertion Limits TS 3.1.9 - Physics Tests Exceptions - Mode 2 TS 3.2.1 - Heat Flux Hot Channel Factor TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor TS 3.5.6-Boron Injection Tank (BIT) and TS 3.9.1 - Boron Concentration

2. Plant-specific adaptation of WCAP-16009-P-A, "Realistic Large Break LOCA Evaluation Methodology Using the Automated Statistical Treatment of Uncertainty Method (ASTRUM),"

as approved by NRC Safety Evaluation Report dated February 29, 2012.

Methodology for: TS 3.2.1 - Heat Flux Hot Channel Factor

3. WCAP-10054-P-A, "Westinghouse Small Break ECCS Evaluation Model Using the NOTRUMP Code," August 1985.

Methodology for: TS 3.2.1 - Heat Flux Hot Channel Factor

4. WCAP-10079-P-A, NOTRUMP, A Nodal Transient Small Break and General Network Code," August 1985.

Methodology for: TS 3.2.1 - Heat Flux Hot Channel Factor

5. WCAP-12610-P-A, "VANTAGE+ FUEL ASSEMBLY -REFERENCE CORE REPORT,"

April 1995.

Methodology for:

TS 2.1.1 - Reactor Core Safety Limits TS 3.2.1 - Heat Flux Hot Channel Factor

6. VEP-NE-2-A, Revision 0, "Statistical DNBR Evaluation Methodology," June 1987.

Methodology for:

TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor and TS 3.4.1 - RCS Pressure, Temperature and Flow DNB Limits Page 3 of 23

Serial No.: 18-158 Docket No.: 50-338

7. VEP-NE-1-A, Revision 0, Minor Revision 3, "Relaxed Power Distribution Control Methodology and Associated FQ Surveillance Technical Specifications," October 2017.

Methodology for:

TS 3.2.1 - Heat Flux Hot Channel Factor and TS 3.2.3 -Axial Flux Difference

8. WCAP-8745-P-A, "Design Bases for the Thermal Overpower ~T and Thermal Overtemperature ~ T Trip Functions," September 1986.

Methodology for:

TS 2.1.1 - Reactor Core Safety Limits and TS 3.3.1 - Reactor Trip System Instrumentation

9. WCAP-14483-A, "Generic Methodology for Expanded Core Operating Limits Report," January 1999.

Methodology for:

TS 2.1.1 - Reactor Core Safety Limits TS 3.1.1 - Shutdown Margin TS 3.1.4 - Rod Group Alignment Limits TS 3.1.9 - Physics Tests Exceptions - Mode 2 TS 3.3.1 -Reactor Trip System Instrumentation TS 3.4.1 -RCS Pressure, Temperature, and Flow DNB Limits TS 3.5.6 - Boron Injection Tank (BIT) and TS 3.9.1 - Boron Concentration

10. DOM-NAF-2-P-A, Revision 0, Minor Revision 3, "Reactor Core Thermal-Hydraulics Using the VIPRE-D Computer Code," including Appendix C, "Qualification of the Westinghouse WRB-2M CHF Correlation in the Dominion VIPRE-D Computer Code," August 2010 and Appendix D, "Qualification of the ABB-NV and WLOP CHF Correlations in the Dominion VIPRE-D Computer Code," September 2014.

Methodology for:

TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor and TS 3.4.1 - RCS Pressure, Temperature and Flow DNB Limits

11. WCAP-12610-P-A and CENPD-404-P-A, Addendum 1-A, "Optimized ZIRLO'," July 2006.

Methodology for:

TS 2.1.1 - Reactor Core Safety Limits and TS 3.2.1 -Heat Flux Hot Channel Factor Page 4 of 23

Serial No.: 18-158 Docket No.: 50-338 2.0 SAFETY LIMITS (SLs) 2.1 SLs 2.1.1 Reactor Core SLs In MODES 1 and 2, the combination of THERMAL POWER, Reactor Coolant System (RCS) highest loop average temperature, and pressurizer pressure shall not exceed the limits specified in COLR Figure 2.1-1; and the following SLs shall not be exceeded.

2.1.1.1 The departure from nucleate boiling ratio (DNBR) shall be maintained greater than or equal to the 95/95 DNBR criterion for the DNB correlations and methodologies specified in the References Section.

2.1.1.2 The peak fuel centerline temperature shall be maintained < 5080°F, decreasing by 58°F per 10,000 MWD/MTU of burnup, for Westinghouse fuel and< 5173°F, decreasing by 65°F per 10,000 MWDIMFU ofburnup,for AREVAfuel.

Page 5 of 23

665 660 655 650 645 640

'i:L:' 635 f....

l!!

630

J....

!ti 625 (II C.

E 620

~

(II 615 tlQ

!ti...

(II 610

<t

°Qi 605 Ill Ill (II > 600 595 590 585 580 575 570 COLR Figure 2.1-1 Serial No.: 18-158 Docket No.: 50-338 NORTH ANNA REACTOR CORE SAFETY LIMITS r-,,......_

~~

l"o,,,,... -~

r-,,....__

r-..........

........... ~

psi a

~

i'-.......

-.............. ~

............ ~o psia

~

-.......... r-,....,._

~

~ \\

"""""" ~

2000 psi a

-............ ~ \\.

~

-..... I'-......

\\'

\\

\\ \\

1860 osia

-............. r,,.....__

'\\'

\\

~

\\

..................... \\

~*

I 0

10 20 30 40 50 60 70 80 90 100 110 120 Percent of RATED THERMAL POWER Page 6 of 23

3.1 REACTIVITY CONTROL SYSTEMS 3.1.1 SHUTDOWN MARGIN (SDM)

LCO 3.1.1 SDM shall be~ 1.77 % Ak/k.

3.1.3 Moderator Temperature Coefficient (MTC)

Serial No.: 18-158 Docket No.: 50-338 LCO 3.1.3 The MTC shall be maintained within the limits specified below. The upper limit ofMTC is +0.6 x 10-4 Ak/k/°F, when< 70% RTP, and 0.0 Ak/k/°F when~ 70%

RTP.

The BOC/ARO-MTC shall be~ +0.6 x 10-4 Ak/k/°F (upper limit), when< 70%

RTP, and~ 0.0 Ak/k/°F when~ 70% RTP.

The EOC/ARO/RTP-MTC shall be less negative than -5.0 x 10*4 Ak/k/°F (lower limit).

The MTC surveillance limits are:

The 300 ppm/ARO/RTP-MTC should be less negative than or equal to

-4.0 x 10*4 Ak/k/°F [Note 1].

The 60 ppm/ARO/RTP-MTC should be less negative than or equal to

-4.7 x 10*4 Ak/k/°F [Note 2].

SR 3.1.3.2 Verify MTC is within -5.0 x 10-4 ~k/k/°F (lower limit).

Note 1: If the MTC is more negative than -4.0 x 10*4 Ak/k/°F, SR 3.1.3.2 shall be repeated once per 14 EFPD during the remainder of the fuel cycle.

Note 2:

SR 3.1.3.2 need not be repeated if the MTC measured at the equivalent of equilibrium RTP-ARO boron concentration of :s; 60 ppm is less negative than -4.7 x 10*4 Ak/k/°F.

Page 7 of 23

3.1.4 Rod Group Alignment Limits Required Action A.1.1 Verify SDM to be~ 1.77 % Ak/k.

Required Action B.1.1 Verify SDM to be~ 1.77 % Ak/k.

Required Action D.1.1 Verify SDM to be~ 1.77 % Ak/k.

3.1.5 Shutdown Bank Insertion Limits LCO 3.1.5 Each shutdown bank shall be withdrawn to at least 226 steps.

Required Action A.1.1 Verify SDM to be~ 1.77 % Ak/k.

Required Action B.1 Verify SDM to be~ 1.77 % Ak/k.

Serial No.: 18-158 Docket No.: 50-338 SR 3.1.5.1 Verify each shutdown bank is withdrawn to at least 226 steps.

3.1.6 Control Bank Insertion Limits LCO 3.1.6 Control banks shall be limited in physical insertion as shown in COLR Figure 3.1-1. Sequence of withdrawal shall be A, B, C and D, in that order; and the overlap limit during withdrawal shall be 98 steps.

Required Action A.1.1 Verify SDM to be~ 1.77 % Ak/k.

Required Action B.1.1 Verify SDM to be~ 1.77 % Ak/k.

Required Action C.1 Verify SDM to be ~ 1. 77 % Ak/k.

SR3.l.6.l SR 3.1.6.2 SR 3.1.6.3 Verify estimated critical control bank position is within the insertion limits specified in COLR Figure 3.1-1.

Verify each control bank is within the insertion limits specified in COLR Figure 3.1-1.

Verify each control bank not fully withdrawn from the core is within the sequence and overlap limits specified in LCO 3.1.6 above.

3.1.9 PHYSICS TESTS Exceptions -MODE 2 LCO 3.1.9.b SDM is~ 1.77 % Ak/k.

SR 3.1.9.4 Verify SDM to be~ 1.77 % Ak/k.

Page 8 of 23

230 220 210 200 190 180 170 160

~ 150 3:

g-140 Ill

ii::, 130 C:

0

~ 120 0

~ 110 0

(!i 100 "C

0 90 c:::

80 70 60 50 40 30 20 10 0

/

/

/

/

~ 0, 118

/

V

/o.048,o I

COLR Figure 3.1-1 North Anna 1 Cycle 27 Control Rod Bank Insertion Limits Fully w/d position= 226 steps V 0.529, 226

/

I/

/

I/

/

C-BANK

/

,;/

/

,;v

/

Vo-BAr IK

/

V

/

V

/

V 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 Fraction of Rated Thermal Power Page 9 of 23 Serial No.: 18-158 Docket No.: 50-338 1.0, 194

~

/

~v

/

~/

/

0.8 0.9 1

3.2 POWER DISTRIBUTION LIMITS 3.2.1 Heat Flux Hot Channel Factor (FQ(Z))

Serial No.: 18-158 Docket No.: 50-338 LCO 3.2.1 FQ(Z), as approximated by FQE(Z) and FQ\\Z), shall be within the limits specified below.

CFQ=2.32 The Heat Flux Hot Channel Factor, FQ(Z), shall be limited by the following relationships:

CFQ

  • K(Z)

FQ(Z) ~

p for P > 0.5 CFQ

  • K(Z)

FQ(Z) ~

0.5 for P ~ 0.5 where:

THERMAL POWER d

p

  • an

= RATED THERMAL POWER '

K(Z) is provided in COLR Figure 3.2-1 FQE(Z) is an excellent approximation for FQ(Z} when the reactor is at the steady-state power.

FQ(Z) from the incore flux map results is increased by 1.03 for fuel manufacturing tolerances and 1.05 for measurement uncertainty to obtain FQE(Z).

F! (Z) = FQ (Z) * (1.03) * (1.05)

The expression for FQ \\Z) is:

Where N(Z) is a cycle-specific non-equilibrium multiplier on F Q E(Z) to account for power distribution transients during normal operation, provided in COLR Table 3.2-1.

The discussion in the Bases Section B 3.2.1 for this LCO requires the application of a cycle dependent non-equilibrium multiplier, N (Z), to the steady state Fl (Z). N (Z) accounts for power distribution transients encountered during normal operation. As function N(Z) is dependent on the predicted equilibrium F Q(Z) and is sensitive to the axial power distribution, it is typically generated.from the actual EOC burnup distribution that can only be obtained after the shutdown of the previous cycle.

Page 10 of 23

The cycle-specific penalty factors are presented in COLR Table 3.2-2.

Serial No.: 18-158 Docket No.: 50-338 Also discussed is the application of the appropriate factor to account for potential increases in FQ(Z) between surveillances. This factor is determined on a cycle specific basis and is dependent on the predicted increases in steady-state and transient F Q(Z)/K(Z) versus burnup. A minimum value of 2% is used should any increase in steady-state or transient measured or predicted peaking factor be determined unless frequent flux mapping is invoked (7 EFP DJ. These values are typically generated from the actual EOC burnup distribution that can only be obtained after the shutdown of the previous cycle.

The required operating space reductions are included in COLR Table 3.2-3.

Should F/ (Z) exceed its limits the normal operating space should be reduced to gain peaking factor margins. The determination and verification of the margin improvements along with the corresponding required reductions in the Thermal Power Limit and AFD Bands are performed on a cycle-specific basis. These values are typically generated from the actual EOC burnup distribution that can only be obtained after the shutdown of the previous cycle.

Page 11 of 23

NODE HEIGHT 0 to 1000 (FEET)

MWD/MTU 5

11.2 1.109 6

11.0 1.113 7

10.8 1.115 8

10.* 6 1.111 9

10.4 1.105 10 10.2 1.102 11 10.0 1.104 12 9.8 1.108 13 9.6 1.111 14 9.4 1.113 15 9.2 1.115 16 9.0 1.119 17 8.8 1.122 18 8.6 1.122 19 8.4 1.120 20 8.2 1.117 21 8.0 1.115 22 7.8 1.111 23 7.6 1.104 24 7.4 1.095 25 7.2 1.090 26 7.0 1.089 27 6.8 1.087 28 6.6 1.078 29 6.4 1.063 30 6.2 1.049 31 6.0 1.039 32 5.8 1.037 33 5.6 1.045 34 5.4 1.060 35 5.2 1.076 36 5.0 1.089 37 4.8 1.098 38 4.6 1.104 39 4.4 1.111 40 4.2 1.123 41 4.0 1.144 42 3.8 1.162 43 3.6 1.171 44 3.4 1.172 45 3.2 1.176 46 3.0 1.188 47 2.8 1.202 48 2.6 1.216 49 2.4 1.227 50 2.2 1.238 51 2.0 1.249 52 1.8 1.260 53 1.6 1.269 54 1.4 1.277 COLR Table 3.2-1 N1C27 Normal Operation N(Z) 1000 to2000 2000 to 3000 3000to4000 MWD/MTU MWDfMTU MWD/MTU 1.114 1.123 1.135 1.115 1.122 1.134 1.115 1.121 1.133 1.112 1.119 1.131 1.108 1.118 1.129 1.106 1.116 1.128 1.109 1.116 1.1.27 1.112 1.117 1.127 1.115 1.120 1.128 1.117 1.124 1.130 1.120 1.128 1.134 1.122 1.132 1.139 1.124 1.133 1.144 1.124 1.132 1.144 1.122 1.130 1.141 1.119 1.127 1.137 1.117 1.125 1.134 1.112 1.120 1.129 1.104 1.111 1.120 1.096 1.102 1.110 1.090 1.096 1.104 1.089 1.095 1.103 1.086 1.092 1.100 1.077 1.081 1.088 1.062 1.065 1.069 1.048 1.049 1.052 1.03B 1.039 1.042 1.036 1.037 1.039 1.044 1.045 1.046 1.060 1.059 1.058 1.076 1.074 1.072 1.089 1.087 1.084 1.098 1.096 1.093 1.103 1.101 1.099 1.110 1.108 1.105 1.123 1.120 1.116 1.144 1.140 1.135 1.162 1.159 1.152 1.171 1.167 1.159 1.172 1,169 1.161 1.176 1.173 1.165 1.188 1.185 1.175 1.203 1.199 1.188 1.215 1.211 1.201 1.226 1.221 1.212 1.239 1.235 1.222 1.254 1.254 1.232 1.268 1.269 1.241 1.276 1,272 1.250 1.279 1.268 1.257 Page 12 of 23 4000 to5000 MWD/MTU 1.147 1.150 1.153 1.153 1.150 1.146 1.141 1.138 1.138 1.140 1.144 1.149 1.153 1.153 1.161 1.148 1.145 1.139 1.130 1.119 1.112 1.112 1.108 1.095 1.075 1.056 1.045 1.043 1.048 1.058 1.070 1.082 1.091 1.097 1.102 1.112 1.128 1.143 1.150 1.152 1.155 1.165 1.177 1.188 1.198 1.207 1.:216 1.225 1.:233 1.:240 Serial No.: 18-158 Docket No.: 50-338 5000 to 7000 7000to 9000 MWDIMTU MWD/MTU 1.161 1.163 1.160 1.162 1.159 1.161 1.157 1.159 1.154 1.157 1.153 1.155 1.152 1.156 1.152 1.157 1.154 1.158 1.156 1.161 1.160 1.165 1.165 1.170 1.168 1.174 1.167 1.176 1.164 1.176 1.161 1.175 1.160 1.174 1.157 1.171 1.149 1.163 1.138 1.153 1.132 1.146 1.129 1.142 1.124 1.134 1.108 1.117 1.085 1.093 1.064 1.073 1.053 1.062 1.050 1.057 1.051 1.055 1.057 1.056 1.066 1.062 1.078 1.071 1.088 1.081 1.095 1.068 1.100 1.094 1.109 1.101 1.122 1.111 1.135 1.122 1.143 1.132 1.146 1.140 1.150 1.148 1.157 1.155 1.165 1.161 1.175 1.164 1.184 1.167 1.193 1.172 1.202 1.180 1.210 1.168 1.217 1.195 1.224 1.201

NODE HEIGHT (FEET) 55 1.2 56 1.0 57 0.8 Oto 1000 MWD/MTU 1.284 1.291 1.297 COLR Table 3.2-1 (continued}

N1 C27 Normal Operation N(Z) 1000 to 2000 MWD/P.ITU 1.284 1.293 1.3-03 2000to 3000 MWDIMTU 1.271 1.285 1.302 3000to4000 MWD/l'iITU 1.264 1.270 1.276 4000 to 5000 MWD.IMTU 1.247 1.252 1.258 Serial No.: 18-158 Docket No.: 50-338 5000 to 7000 MWDIMTU 1.229 1.235 1.240 7000to 9000 MWDlMTU 1.205 1.210 1.215 These decks are generated for normal operation flux maps that are typically taken at full power ARO. Additional N(Z) decks may be generated, if necessary, consistent with the methodology described in the RPDC topical (Reference 7). EOR is defined as Hot Full Power End of Reactivity.

Page 13 of 23

Serial No.: 18-158 Docket No.: 50-338 COLR Table 3.2-1 (continued)

N1C27 Normal Operation N(Z)

NODE HEIGHT 9000 to 11000 11000 to 13000 13000 to 15000 15000 to 17000 17000 to 19000 19000 to EOR (FEET)

MWDtMTU MWD.IMTU MWDFMTU MWDtMTU MWD/MTU MWD/MTU 5

11.2 1.163 1.159 1.153 1.147 1.144 1.141 6

11.0 1.162 1.158 1.152 1.147 1.143 1.141 7

10.8 1.161 1.157 1.151 1.146 1.143 1.140 8

10.6 1.159 1.155 1.149 1.144 1.141 1.139 9

10.4 1.157 1.153 1.147 1.143 1.140 1.139 10 10.2 1.155 1.152 1.147 1.143 1.140 1.139 11 10.0 1.156 1.153 1.149 1.145 1.141 1.140 12 9.8 1.157 1.155 1.151 1.147 1.143 1.141 13 9.6 1.158 1.156 1.152 1.147 1.142 1.140 14 9.4 1.161 1.158 1.153 1.148 1.142 1.140 15 9.2 1.165 1.162 1.157 1.152 1.148 1.147 16 9.0 1.171 1.169 1.165 1.162 1.160 1.160 17 8.8 1.176 1.175 1.173 1.172 1.173 1.173 18 8.6 1.178 1.178 1.177 1.176 1.178 1.180 19 8.4 1.178 1.178 1.177 1.177 1.179 1.180 20 8.2 1.177 1.177 1.177 1.177 1.179 1.179 21 8.0 1.177 1.177 1.178 1.178 1.181 1.182 22 7.8 1.174 1.176 1.177 1.178 1.181 1.182 23 7.6 1.169 1.171 1.173 1.175 1.177 1.178 24 7.4 1.161 1.165 1.167 1.168 1.170 1.171 25 7.2 1.154 1.159 1.161 1.163 1.165 1.166 26 7.0 1.149 1.154 1.157 1.159 1.162 1.164 27 6.8 1.141 1.144 1.148 1.151 1.155 1.157 28 6.6 1.122 1.126 1.130 1.133 1.136 1.138 29 6.4 1.099 1.103 1.107 1.109 1.111 1.113 30 6.2 1.079 1.084 1.068 1.090 1.092 1.093 31 6.0 1.068 1.074 1.078 1.080 1.083 1.085 32 5.8 1.063 1.068 1.073 1.075 1.079 1.081 33 5.6 1.060 1.064 1.068 1.069 1.072 1.074 34 5.4 1.058 1.062 1.064 1.064 1.065 1.066 35 5.2 1.061 1.065 1.065 1.065 1.065 1.064 36 5.0 1.069 1.073 1.073 1.073 1.072 1.072 37 4.8 1.079 1.082 1.083 1.003 1.083 1.082 36 4.6

. 1.086 1.090 1.091 1.091 1.091 1.091 39 4.4 1.092 1.095 1.096 1.096 1.096 1.096 40 4.2 1.098 1.102 1.103 1.103 1.103 1.102 41 4.0 1.107 1.110 1.111 1.112 1.112 1.111 42 3.8 1.117 1.120 1.121 1.122 1.122 1.121 43 3.6 1.126 1.129 1.130 1.131 1.131 1.131 44 3.4 1.135 1.138 1.139 1.140 1.140 1.140 45 3.2 1.144 1.147 1.148 1.150 1.150 1.149 46 3.0 1.153 1.155 1.157 1.159 1.159 1.159 47 2.8 1.161 1.164 1.166 1.168 1.169 1.169 48 2.6 1.164 1.171 1.175 1.177 1.178 1.178 49 2.4 1.165 1.177 1.183 1.185 1.186 1.186 50 2.2 1.168 1.182 1.188 1.192 1.194 1.195 51 2.0 1.174 1.185 1.191 1.199 1.203 1.204 52 1.8 1.181 1.168 1.194 1.203 1.210 1.211 53 1.6 1.187 1.192 1.197 1.206 1.213 1.215 54 1.4 1.192 1.196 1.201 1.209 1.214 1.216 Page 14 of 23

COLR Table 3.2-1 (continued)

N1C27 Normal Operation N(Z)

Serial No.: 18-158 Docket No.: 50-338 NOOE HEIGHT 9000 to 11000 11000 to 13000 13000 to 15000 15000 to 17000 17000 to 19000 19000 to EOR (FEET)

MWD{MTU MWO/MTU MWDIMTU MWD/'MTU M'\\ND/MTU MWDlMTU 55 1.2 1.196 1.202 1.207 1.212 1.215 1.218 56 1.0 1.201 1.207 1.212 1.217 1.220 1.222 57 0.8 1.206 1.212 1.217 1.222 1.225 1.227 These decks are generated for normal operation flux maps that are typically taken at full power ARO. Additional N(Z) decks may be generated, if necessary, consistent with the methodology described in the RPDC topical (Reference 7). EOR is defined as Hot Full Power End of Reactivity.

Page 15 of 23

COLR Table 3.2-2 N1C27 Penalty Factors for Flux Map Analysis Burnup Penalty (MWD/MTU)

Factor%

0-999 3.00 1000-1999 3.50 2000-2999 2.00 3000-3999 2.00 4000-4999 2.00 5000-6999 2.00 7000-8999 2.00 9000-10999 2.00 11000-12999 2.00 13000-14999 2.00 15000-16999 2.00 17000-18999 2.00 19000-EOC 2.00 Notes:

Serial No.: 18-158 Docket No.: 50-338

1. Penalty Factors are not required for initial power ascension flux maps.
2. All full power maps shall apply a Penalty Factor unless frequent flux mapping is invoked(~ 7 EFPD).

COLR Table 3.2-3 N1C27 Required Operating Space Reductions for F0T(Z) Exceeding its Limits Required F QT (Z)

Required Negative AFD Band Positive AFD Band Margin THERMAL POWER Reduction from AFD Reduction from AFD Improvement Limit(% RTP)

Limits* (% AFD)

Limits* (% AFD)

$ 1%

5 98.0 2: 0.5

~ 1.0

> 1% and $2%

$ 96.0

~ 1.0

~2.0

>2% and$3%

$ 95.0

~ 1.5

~ 4.0

>3%

$ 50 NIA NIA

  • Axial Flux Difference Limits are provided in COLR Figure 3.2-2 Page 16 of 23

1.2 1.1 1.0 0.9 0.8 N

ci u.. 0.7 Cl UJ N

J < 0.6
Ji

0::

0 z

6, 0.5 S2" 0.4 0.3 0.2 0.1 0.0 0

1 COLR Figure 3.2-1 K(Z) - Normalized FQ as a Function of Core Height 6, 1.0)

Serial No.: 18-158 Docket No.: 50-338 r--------..~

(12,.925) 2 3

4 5

6 7

8 CORE HEIGHT (FT) 9 10 11 12 13 Page 17 of 23

3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (FN 1rn)

LCO 3.2.2 FN c,H shall be within the limits specified below.

FN AH ~ 1.587 {l + 0.3(1 - P)}

THERMAL POWER where:

p = RATED THERMAL POWER SR 3.2.2.1 Verify FN c,H is within limits specified above.

3.2.3 AXIAL FLUX DIFFERENCE (AFD)

Serial No.: 18-158 Docket No.: 50-338 LCO 3.2.3 The AFD in% flux difference units shall be maintained within the limits specified in COLR Figure 3.2-2.

Page 18 of 23

Cl)

~

0 a..

iu E

Cl)

.c:

I-

'C Cl)....

Cll a:::....

0....

C:

Cl)

~

Cl) a..

120 110 100 90 80 70 60 50 40 30 20 10 0

-30 COLR Figure 3.2-2 North Anna 1 Cycle 27 Axial Flux Difference Limits Serial No.: 18-158 Docket No.: 50-338 r2* 10;

\\6, 100)

Unacceptable /

\\

Unacceptable Operation I\\

Operation V

\\

I Acceptable Operation I

' I\\

Iv

\\

(-27. 50)

(+20, 50)

-20

-10 0

10 20 30 Percent Flux Difference (Delta-I)

Page 19 of 23

3.3 INSTRUMENTATION 3.3.1 Reactor Trip System (RTS) Instrumentation TS Table 3.3.1-1 Note 1: Overtemperature LlT Serial No.: 18-158 Docket No.: 50-338 The Overtemperature LlT Function Allowable Value shall not exceed the following nominal trip setpoint by more than 2% of LlT span, with the numerical values of the parameters as specified below.

where: LlT LlTo s

T T'

p P'

is measured RCS LlT, °F is the indicated LlT at RTP, °F is the Laplace transform operator, sec*1 is the measured RCS average temperature, °F is the nominal Tavg at RTP, =:;; 586.8 °F is the measured pressurizer pressure, psig is the nominal RCS operating pressure, ~ 2235 psig K2 ~ 0.02174 /°F K3 ~ 0.001145 /psig 1'1, 1'2 = time constants utilized in the lead-lag controller for Tavg 1'1 ~ 23.75 sec 1'2 =:;; 4.4 sec (1 +1'1S)/(1 +1'2S) = function generated by the lead-lag controller for Tavg dynamic compensation f1 (Lll) 2': 0.0291 {-13.0 - ( qt - qb)}

0 0.0251{(qt -qb)-7.0}

when (qt -qb) <-13.0% RTP when-13.0% RTP::;; (qt-qb)::;; +7.0% RTP when (qt -qb) > +7.0% RTP Where qt and qb are percent R TP in the upper and lower halves of the core, respectively, and qt+ qb is the total THERMAL POWER in percent RTP.

Page 20 of 23

TS Table 3.3.1-1 Note 2: Overpower L'lT Serial No.: 18-158 Docket No.: 50-338 The Overpower L'lT Function Allowable Value shall not exceed the following nominal trip setpoint by more than 2% of L'lT span, with the numerical values of the parameters as specified below.

where: L'lT fl To s

T T'

is measured RCS L'lT, °F.

is the indicated fl T at R TP, °F.

is the Laplace transform operator, sec-1*

is the measured RCS average temperature, °F.

is the nominal Tavg at RTP, ~ 586.8 °F.

l<.,i ~ 1.0865 K5 ~ 0.0198 /°F for increasing Tavg K6 ~ 0.00162 /°F when T > T' 0 /°F for decreasing T avg 0 /°F when T ~ T'

1) = time constant utilized in the rate lag controller for Tavg T3 ~ 9.5 sec T3s I (1 + r3s) = function generated by the rate lag controller for Tavg dynamic compensation f2(1lI) = 0, for all Af.

Page 21 of 23

3.4 REACTOR COOLANT SYSTEM (RCS)

Serial No.: 18-158 Docket No.: 50-338 3.4.1 RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits LCO 3.4.1 RCS DNB parameters for pressurizer pressure, RCS average temperature, and RCS total flow rate shall be within the limits specified below:

a. Pressurizer pressure is greater than or equal to 2205 psig;
b. RCS average temperature is less than or equal to 591 °F; and
c. RCS total flow rate is greater than or equal to 295,000 gpm.

SR 3.4.1.1 SR 3.4.1.2 SR 3.4.1.3 SR3.4.1.4 Verify pressurizer pressure is greater than or equal to 2205 psig.

Verify RCS average temperature is less than or equal to 591 °F.

Verify RCS total flow rate is greater than or equal to 295,000 gpm.


NOTE--------------------------------------------

Not required to be performed until 30 days after~ 90% RTP.

Verify by precision heat balance that RCS total flow rate is ~ 295,000 gpm.

3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) 3.5.6 Boron Injection Tank (BIT)

Required Action B.2 Borate to a SDM ~ 1.77 % ~k/k at 200 °F.

3.9 REFUELING OPERATIONS 3.9.1 Boron Concentration LCO 3.9.1 Boron concentrations of the Reactor Coolant System (RCS), the refueling canal, and the refueling cavity shall be maintained~ 2600 ppm.

SR 3.9.1.1 Verify boron concentration is within the limit specified above.

Page 22 of 23

Serial No.: 18-158 Docket No.: 50-338 NAPS TECHNICAL REQUIREMENTS MANUAL TRM 3.1 TR 3.1.1 REACTIVITY CONTROL SYSTEMS Boration Flow Paths - Operating Required Action D.2 Borate to a SHUTDOWN MARGIN~ 1.77 % Ak/k at 200 °F, after xenon decay.

Page 23 of 23

Dominion Energy Services, Inc.

5000 Dominion Boulevard, Glen Allen, VA 23060 Dominion Energy.com April 19, 2018 United States Nuclear Regulatory Commission*

Attention: Document Control Desk Washington, D.C. 20555 Serial No.:

NRA/DEA:

Docket No.:

License No.:

18-158 RO 50-338 NPF-4 VIRGINIA ELECTRIC AND POWER COMPANY (DOMINION ENERGY VIRGINIA)

NORTH ANNA POWER STATION UNIT 1.

CORE OPERATING LIMITS REPORT CYCLE 27 PATTERN LNK REVISION 1 Pursuant to North.Anna Technical Specification 5.6.5.d, attached is a copy of the Dominion Core Operating Limits Report (COLR) for North Anna Unit 1 Cycle 27, Pattern LNK, Revision 1, Addendum 0. The COLR was revised to incorporate shutdown data.

If you have any questions or require additional information, please contact Ms. Diane Aitken at (8G-4J2i3-2694.

Sincerely,

~076--

B. L. Stanley, Director Nuclear Regulatory Affairs Dominion Energy Services, Inc. for Virginia Electric and Power Company Attachment COLR-N1C27, Revision 1, Core Operating Limits Report, North Anna Unit 1 Cycle 27 Pattern LNK Commitment Summary: There are no new commitments contained in this letter.

cc:

U.S. Nuclear Regulatory Commission Region II Marquis One Tower 245 Peachtree Center Avenue, NE Suite 1200 Atlanta, Georgia 30303-1257 Mr. James R. Hall NRC Senior Project Manager U. S. Nuclear Regulatory Commission One White Flint North Mail Stop 08 B-1A 11555 Rockville Pike Rockville, Maryland 20852-2738 NRC Senior Resident Inspector North Anna Power Station Serial No.18-158 Docket No. 50-338 COLR N1C27 Pattern LNK, Rev. 1, Add. 0 Page 2 of 2

ATTACHMENT COLR-N1C27, Revision 1 CORE OPERATING LIMITS REPORT North Anna Unit 1 Cycle 27 Pattern LNK North Anna Power Station Units 1 and 2 Virginia Electric and Power Company Serial No.18-158 Docket No. 50-338 Page 1 of 23

N1C27 CORE OPERATING LIMITS REPORT INTRODUCTION Serial No.: 18-158 Docket No.: 50-338 The Core Operating Limits Report (COLR} for North Anna Unit 1 Cycle 27 has been prepared in accordance with North Anna Technical Specification 5.6.5. The technical specifications affected by this report are listed below:

TS 2.1.1 TS 3.1.1 TS 3.1.3 TS 3.1.4 TS 3.1.5 TS 3.1.6 TS 3.1.9 TS 3.2.1 TS 3.2.2 TS 3.2.3 TS 3.3.1 TS 3.4.1 TS 3.5.6 TS 3.9.1 Reactor Core Safety Limits Shutdown Margin (SOM)

Moderator Temperature Coefficient (MTC)

Rod Group Alignment Limits Shutdown Bank Insertion Limit Control Bank Insertion Limits PHYSICS TESTS Exceptions - Mode 2 Heat Flux Hot Channel Factor Nuclear Enthalpy Rise Hot Channel Factor (FN t>H)

Axial Flux Difference (AFD)

Reactor Trip System (R TS) Instrumentation RCS Pressure, Temperature, and Flow DNB Limits Boron Injection Tank (BIT)

Boron Concentration In addition, a technical requirement (TR) in the NAPS Technical Requirements Manual (TRM) refers to the COLR:

TR 3.1.1 Boration Flow Paths - Operating The analytical methods used to determine the core operating limits are those previously approved by the NRC and discussed in the documents listed in the References Section.

Cycle-specific values are presented in bold. Text in italics is provided for information only.

Page 2 of 23

REFERENCES Serial No.: 18-158 Docket No.: 50-338

1. VEP-FRD-42-A, Revision 2, Minor Revision 2, "Reload Nuclear Design Methodology,"

October 2017.

Methodology for:

TS 3.1.1 - Shutdown Margin TS 3.1.3 - Moderator Temperature Coefficient TS 3.1.4-Rod Group Alignment Limits TS 3.1.5 - Shutdown Bank Insertion Limit TS 3.1.6 - Control Bank Insertion Limits TS 3.1.9 - Physics Tests Exceptions - Mode 2 TS 3.2.1 - Heat Flux Hot Channel Factor TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor TS 3.5.6-Boron Injection Tank (BIT) and TS 3.9.1 - Boron Concentration

2. Plant-specific adaptation of WCAP-16009-P-A, "Realistic Large Break LOCA Evaluation Methodology Using the Automated Statistical Treatment of Uncertainty Method (ASTRUM),"

as approved by NRC Safety Evaluation Report dated February 29, 2012.

Methodology for: TS 3.2.1 - Heat Flux Hot Channel Factor

3. WCAP-10054-P-A, "Westinghouse Small Break ECCS Evaluation Model Using the NOTRUMP Code," August 1985.

Methodology for: TS 3.2.1 - Heat Flux Hot Channel Factor

4. WCAP-10079-P-A, NOTRUMP, A Nodal Transient Small Break and General Network Code," August 1985.

Methodology for: TS 3.2.1 - Heat Flux Hot Channel Factor

5. WCAP-12610-P-A, "VANTAGE+ FUEL ASSEMBLY -REFERENCE CORE REPORT,"

April 1995.

Methodology for:

TS 2.1.1 - Reactor Core Safety Limits TS 3.2.1 - Heat Flux Hot Channel Factor

6. VEP-NE-2-A, Revision 0, "Statistical DNBR Evaluation Methodology," June 1987.

Methodology for:

TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor and TS 3.4.1 - RCS Pressure, Temperature and Flow DNB Limits Page 3 of 23

Serial No.: 18-158 Docket No.: 50-338

7. VEP-NE-1-A, Revision 0, Minor Revision 3, "Relaxed Power Distribution Control Methodology and Associated FQ Surveillance Technical Specifications," October 2017.

Methodology for:

TS 3.2.1 - Heat Flux Hot Channel Factor and TS 3.2.3 -Axial Flux Difference

8. WCAP-8745-P-A, "Design Bases for the Thermal Overpower ~T and Thermal Overtemperature ~ T Trip Functions," September 1986.

Methodology for:

TS 2.1.1 - Reactor Core Safety Limits and TS 3.3.1 - Reactor Trip System Instrumentation

9. WCAP-14483-A, "Generic Methodology for Expanded Core Operating Limits Report," January 1999.

Methodology for:

TS 2.1.1 - Reactor Core Safety Limits TS 3.1.1 - Shutdown Margin TS 3.1.4 - Rod Group Alignment Limits TS 3.1.9 - Physics Tests Exceptions - Mode 2 TS 3.3.1 -Reactor Trip System Instrumentation TS 3.4.1 -RCS Pressure, Temperature, and Flow DNB Limits TS 3.5.6 - Boron Injection Tank (BIT) and TS 3.9.1 - Boron Concentration

10. DOM-NAF-2-P-A, Revision 0, Minor Revision 3, "Reactor Core Thermal-Hydraulics Using the VIPRE-D Computer Code," including Appendix C, "Qualification of the Westinghouse WRB-2M CHF Correlation in the Dominion VIPRE-D Computer Code," August 2010 and Appendix D, "Qualification of the ABB-NV and WLOP CHF Correlations in the Dominion VIPRE-D Computer Code," September 2014.

Methodology for:

TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor and TS 3.4.1 - RCS Pressure, Temperature and Flow DNB Limits

11. WCAP-12610-P-A and CENPD-404-P-A, Addendum 1-A, "Optimized ZIRLO'," July 2006.

Methodology for:

TS 2.1.1 - Reactor Core Safety Limits and TS 3.2.1 -Heat Flux Hot Channel Factor Page 4 of 23

Serial No.: 18-158 Docket No.: 50-338 2.0 SAFETY LIMITS (SLs) 2.1 SLs 2.1.1 Reactor Core SLs In MODES 1 and 2, the combination of THERMAL POWER, Reactor Coolant System (RCS) highest loop average temperature, and pressurizer pressure shall not exceed the limits specified in COLR Figure 2.1-1; and the following SLs shall not be exceeded.

2.1.1.1 The departure from nucleate boiling ratio (DNBR) shall be maintained greater than or equal to the 95/95 DNBR criterion for the DNB correlations and methodologies specified in the References Section.

2.1.1.2 The peak fuel centerline temperature shall be maintained < 5080°F, decreasing by 58°F per 10,000 MWD/MTU of burnup, for Westinghouse fuel and< 5173°F, decreasing by 65°F per 10,000 MWDIMFU ofburnup,for AREVAfuel.

Page 5 of 23

665 660 655 650 645 640

'i:L:' 635 f....

l!!

630

J....

!ti 625 (II C.

E 620

~

(II 615 tlQ

!ti...

(II 610

<t

°Qi 605 Ill Ill (II > 600 595 590 585 580 575 570 COLR Figure 2.1-1 Serial No.: 18-158 Docket No.: 50-338 NORTH ANNA REACTOR CORE SAFETY LIMITS r-,,......_

~~

l"o,,,,... -~

r-,,....__

r-..........

........... ~

psi a

~

i'-.......

-.............. ~

............ ~o psia

~

-.......... r-,....,._

~

~ \\

"""""" ~

2000 psi a

-............ ~ \\.

~

-..... I'-......

\\'

\\

\\ \\

1860 osia

-............. r,,.....__

'\\'

\\

~

\\

..................... \\

~*

I 0

10 20 30 40 50 60 70 80 90 100 110 120 Percent of RATED THERMAL POWER Page 6 of 23

3.1 REACTIVITY CONTROL SYSTEMS 3.1.1 SHUTDOWN MARGIN (SDM)

LCO 3.1.1 SDM shall be~ 1.77 % Ak/k.

3.1.3 Moderator Temperature Coefficient (MTC)

Serial No.: 18-158 Docket No.: 50-338 LCO 3.1.3 The MTC shall be maintained within the limits specified below. The upper limit ofMTC is +0.6 x 10-4 Ak/k/°F, when< 70% RTP, and 0.0 Ak/k/°F when~ 70%

RTP.

The BOC/ARO-MTC shall be~ +0.6 x 10-4 Ak/k/°F (upper limit), when< 70%

RTP, and~ 0.0 Ak/k/°F when~ 70% RTP.

The EOC/ARO/RTP-MTC shall be less negative than -5.0 x 10*4 Ak/k/°F (lower limit).

The MTC surveillance limits are:

The 300 ppm/ARO/RTP-MTC should be less negative than or equal to

-4.0 x 10*4 Ak/k/°F [Note 1].

The 60 ppm/ARO/RTP-MTC should be less negative than or equal to

-4.7 x 10*4 Ak/k/°F [Note 2].

SR 3.1.3.2 Verify MTC is within -5.0 x 10-4 ~k/k/°F (lower limit).

Note 1: If the MTC is more negative than -4.0 x 10*4 Ak/k/°F, SR 3.1.3.2 shall be repeated once per 14 EFPD during the remainder of the fuel cycle.

Note 2:

SR 3.1.3.2 need not be repeated if the MTC measured at the equivalent of equilibrium RTP-ARO boron concentration of :s; 60 ppm is less negative than -4.7 x 10*4 Ak/k/°F.

Page 7 of 23

3.1.4 Rod Group Alignment Limits Required Action A.1.1 Verify SDM to be~ 1.77 % Ak/k.

Required Action B.1.1 Verify SDM to be~ 1.77 % Ak/k.

Required Action D.1.1 Verify SDM to be~ 1.77 % Ak/k.

3.1.5 Shutdown Bank Insertion Limits LCO 3.1.5 Each shutdown bank shall be withdrawn to at least 226 steps.

Required Action A.1.1 Verify SDM to be~ 1.77 % Ak/k.

Required Action B.1 Verify SDM to be~ 1.77 % Ak/k.

Serial No.: 18-158 Docket No.: 50-338 SR 3.1.5.1 Verify each shutdown bank is withdrawn to at least 226 steps.

3.1.6 Control Bank Insertion Limits LCO 3.1.6 Control banks shall be limited in physical insertion as shown in COLR Figure 3.1-1. Sequence of withdrawal shall be A, B, C and D, in that order; and the overlap limit during withdrawal shall be 98 steps.

Required Action A.1.1 Verify SDM to be~ 1.77 % Ak/k.

Required Action B.1.1 Verify SDM to be~ 1.77 % Ak/k.

Required Action C.1 Verify SDM to be ~ 1. 77 % Ak/k.

SR3.l.6.l SR 3.1.6.2 SR 3.1.6.3 Verify estimated critical control bank position is within the insertion limits specified in COLR Figure 3.1-1.

Verify each control bank is within the insertion limits specified in COLR Figure 3.1-1.

Verify each control bank not fully withdrawn from the core is within the sequence and overlap limits specified in LCO 3.1.6 above.

3.1.9 PHYSICS TESTS Exceptions -MODE 2 LCO 3.1.9.b SDM is~ 1.77 % Ak/k.

SR 3.1.9.4 Verify SDM to be~ 1.77 % Ak/k.

Page 8 of 23

230 220 210 200 190 180 170 160

~ 150 3:

g-140 Ill

ii::, 130 C:

0

~ 120 0

~ 110 0

(!i 100 "C

0 90 c:::

80 70 60 50 40 30 20 10 0

/

/

/

/

~ 0, 118

/

V

/o.048,o I

COLR Figure 3.1-1 North Anna 1 Cycle 27 Control Rod Bank Insertion Limits Fully w/d position= 226 steps V 0.529, 226

/

I/

/

I/

/

C-BANK

/

,;/

/

,;v

/

Vo-BAr IK

/

V

/

V

/

V 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 Fraction of Rated Thermal Power Page 9 of 23 Serial No.: 18-158 Docket No.: 50-338 1.0, 194

~

/

~v

/

~/

/

0.8 0.9 1

3.2 POWER DISTRIBUTION LIMITS 3.2.1 Heat Flux Hot Channel Factor (FQ(Z))

Serial No.: 18-158 Docket No.: 50-338 LCO 3.2.1 FQ(Z), as approximated by FQE(Z) and FQ\\Z), shall be within the limits specified below.

CFQ=2.32 The Heat Flux Hot Channel Factor, FQ(Z), shall be limited by the following relationships:

CFQ

  • K(Z)

FQ(Z) ~

p for P > 0.5 CFQ

  • K(Z)

FQ(Z) ~

0.5 for P ~ 0.5 where:

THERMAL POWER d

p

  • an

= RATED THERMAL POWER '

K(Z) is provided in COLR Figure 3.2-1 FQE(Z) is an excellent approximation for FQ(Z} when the reactor is at the steady-state power.

FQ(Z) from the incore flux map results is increased by 1.03 for fuel manufacturing tolerances and 1.05 for measurement uncertainty to obtain FQE(Z).

F! (Z) = FQ (Z) * (1.03) * (1.05)

The expression for FQ \\Z) is:

Where N(Z) is a cycle-specific non-equilibrium multiplier on F Q E(Z) to account for power distribution transients during normal operation, provided in COLR Table 3.2-1.

The discussion in the Bases Section B 3.2.1 for this LCO requires the application of a cycle dependent non-equilibrium multiplier, N (Z), to the steady state Fl (Z). N (Z) accounts for power distribution transients encountered during normal operation. As function N(Z) is dependent on the predicted equilibrium F Q(Z) and is sensitive to the axial power distribution, it is typically generated.from the actual EOC burnup distribution that can only be obtained after the shutdown of the previous cycle.

Page 10 of 23

The cycle-specific penalty factors are presented in COLR Table 3.2-2.

Serial No.: 18-158 Docket No.: 50-338 Also discussed is the application of the appropriate factor to account for potential increases in FQ(Z) between surveillances. This factor is determined on a cycle specific basis and is dependent on the predicted increases in steady-state and transient F Q(Z)/K(Z) versus burnup. A minimum value of 2% is used should any increase in steady-state or transient measured or predicted peaking factor be determined unless frequent flux mapping is invoked (7 EFP DJ. These values are typically generated from the actual EOC burnup distribution that can only be obtained after the shutdown of the previous cycle.

The required operating space reductions are included in COLR Table 3.2-3.

Should F/ (Z) exceed its limits the normal operating space should be reduced to gain peaking factor margins. The determination and verification of the margin improvements along with the corresponding required reductions in the Thermal Power Limit and AFD Bands are performed on a cycle-specific basis. These values are typically generated from the actual EOC burnup distribution that can only be obtained after the shutdown of the previous cycle.

Page 11 of 23

NODE HEIGHT 0 to 1000 (FEET)

MWD/MTU 5

11.2 1.109 6

11.0 1.113 7

10.8 1.115 8

10.* 6 1.111 9

10.4 1.105 10 10.2 1.102 11 10.0 1.104 12 9.8 1.108 13 9.6 1.111 14 9.4 1.113 15 9.2 1.115 16 9.0 1.119 17 8.8 1.122 18 8.6 1.122 19 8.4 1.120 20 8.2 1.117 21 8.0 1.115 22 7.8 1.111 23 7.6 1.104 24 7.4 1.095 25 7.2 1.090 26 7.0 1.089 27 6.8 1.087 28 6.6 1.078 29 6.4 1.063 30 6.2 1.049 31 6.0 1.039 32 5.8 1.037 33 5.6 1.045 34 5.4 1.060 35 5.2 1.076 36 5.0 1.089 37 4.8 1.098 38 4.6 1.104 39 4.4 1.111 40 4.2 1.123 41 4.0 1.144 42 3.8 1.162 43 3.6 1.171 44 3.4 1.172 45 3.2 1.176 46 3.0 1.188 47 2.8 1.202 48 2.6 1.216 49 2.4 1.227 50 2.2 1.238 51 2.0 1.249 52 1.8 1.260 53 1.6 1.269 54 1.4 1.277 COLR Table 3.2-1 N1C27 Normal Operation N(Z) 1000 to2000 2000 to 3000 3000to4000 MWD/MTU MWDfMTU MWD/MTU 1.114 1.123 1.135 1.115 1.122 1.134 1.115 1.121 1.133 1.112 1.119 1.131 1.108 1.118 1.129 1.106 1.116 1.128 1.109 1.116 1.1.27 1.112 1.117 1.127 1.115 1.120 1.128 1.117 1.124 1.130 1.120 1.128 1.134 1.122 1.132 1.139 1.124 1.133 1.144 1.124 1.132 1.144 1.122 1.130 1.141 1.119 1.127 1.137 1.117 1.125 1.134 1.112 1.120 1.129 1.104 1.111 1.120 1.096 1.102 1.110 1.090 1.096 1.104 1.089 1.095 1.103 1.086 1.092 1.100 1.077 1.081 1.088 1.062 1.065 1.069 1.048 1.049 1.052 1.03B 1.039 1.042 1.036 1.037 1.039 1.044 1.045 1.046 1.060 1.059 1.058 1.076 1.074 1.072 1.089 1.087 1.084 1.098 1.096 1.093 1.103 1.101 1.099 1.110 1.108 1.105 1.123 1.120 1.116 1.144 1.140 1.135 1.162 1.159 1.152 1.171 1.167 1.159 1.172 1,169 1.161 1.176 1.173 1.165 1.188 1.185 1.175 1.203 1.199 1.188 1.215 1.211 1.201 1.226 1.221 1.212 1.239 1.235 1.222 1.254 1.254 1.232 1.268 1.269 1.241 1.276 1,272 1.250 1.279 1.268 1.257 Page 12 of 23 4000 to5000 MWD/MTU 1.147 1.150 1.153 1.153 1.150 1.146 1.141 1.138 1.138 1.140 1.144 1.149 1.153 1.153 1.161 1.148 1.145 1.139 1.130 1.119 1.112 1.112 1.108 1.095 1.075 1.056 1.045 1.043 1.048 1.058 1.070 1.082 1.091 1.097 1.102 1.112 1.128 1.143 1.150 1.152 1.155 1.165 1.177 1.188 1.198 1.207 1.:216 1.225 1.:233 1.:240 Serial No.: 18-158 Docket No.: 50-338 5000 to 7000 7000to 9000 MWDIMTU MWD/MTU 1.161 1.163 1.160 1.162 1.159 1.161 1.157 1.159 1.154 1.157 1.153 1.155 1.152 1.156 1.152 1.157 1.154 1.158 1.156 1.161 1.160 1.165 1.165 1.170 1.168 1.174 1.167 1.176 1.164 1.176 1.161 1.175 1.160 1.174 1.157 1.171 1.149 1.163 1.138 1.153 1.132 1.146 1.129 1.142 1.124 1.134 1.108 1.117 1.085 1.093 1.064 1.073 1.053 1.062 1.050 1.057 1.051 1.055 1.057 1.056 1.066 1.062 1.078 1.071 1.088 1.081 1.095 1.068 1.100 1.094 1.109 1.101 1.122 1.111 1.135 1.122 1.143 1.132 1.146 1.140 1.150 1.148 1.157 1.155 1.165 1.161 1.175 1.164 1.184 1.167 1.193 1.172 1.202 1.180 1.210 1.168 1.217 1.195 1.224 1.201

NODE HEIGHT (FEET) 55 1.2 56 1.0 57 0.8 Oto 1000 MWD/MTU 1.284 1.291 1.297 COLR Table 3.2-1 (continued}

N1 C27 Normal Operation N(Z) 1000 to 2000 MWD/P.ITU 1.284 1.293 1.3-03 2000to 3000 MWDIMTU 1.271 1.285 1.302 3000to4000 MWD/l'iITU 1.264 1.270 1.276 4000 to 5000 MWD.IMTU 1.247 1.252 1.258 Serial No.: 18-158 Docket No.: 50-338 5000 to 7000 MWDIMTU 1.229 1.235 1.240 7000to 9000 MWDlMTU 1.205 1.210 1.215 These decks are generated for normal operation flux maps that are typically taken at full power ARO. Additional N(Z) decks may be generated, if necessary, consistent with the methodology described in the RPDC topical (Reference 7). EOR is defined as Hot Full Power End of Reactivity.

Page 13 of 23

Serial No.: 18-158 Docket No.: 50-338 COLR Table 3.2-1 (continued)

N1C27 Normal Operation N(Z)

NODE HEIGHT 9000 to 11000 11000 to 13000 13000 to 15000 15000 to 17000 17000 to 19000 19000 to EOR (FEET)

MWDtMTU MWD.IMTU MWDFMTU MWDtMTU MWD/MTU MWD/MTU 5

11.2 1.163 1.159 1.153 1.147 1.144 1.141 6

11.0 1.162 1.158 1.152 1.147 1.143 1.141 7

10.8 1.161 1.157 1.151 1.146 1.143 1.140 8

10.6 1.159 1.155 1.149 1.144 1.141 1.139 9

10.4 1.157 1.153 1.147 1.143 1.140 1.139 10 10.2 1.155 1.152 1.147 1.143 1.140 1.139 11 10.0 1.156 1.153 1.149 1.145 1.141 1.140 12 9.8 1.157 1.155 1.151 1.147 1.143 1.141 13 9.6 1.158 1.156 1.152 1.147 1.142 1.140 14 9.4 1.161 1.158 1.153 1.148 1.142 1.140 15 9.2 1.165 1.162 1.157 1.152 1.148 1.147 16 9.0 1.171 1.169 1.165 1.162 1.160 1.160 17 8.8 1.176 1.175 1.173 1.172 1.173 1.173 18 8.6 1.178 1.178 1.177 1.176 1.178 1.180 19 8.4 1.178 1.178 1.177 1.177 1.179 1.180 20 8.2 1.177 1.177 1.177 1.177 1.179 1.179 21 8.0 1.177 1.177 1.178 1.178 1.181 1.182 22 7.8 1.174 1.176 1.177 1.178 1.181 1.182 23 7.6 1.169 1.171 1.173 1.175 1.177 1.178 24 7.4 1.161 1.165 1.167 1.168 1.170 1.171 25 7.2 1.154 1.159 1.161 1.163 1.165 1.166 26 7.0 1.149 1.154 1.157 1.159 1.162 1.164 27 6.8 1.141 1.144 1.148 1.151 1.155 1.157 28 6.6 1.122 1.126 1.130 1.133 1.136 1.138 29 6.4 1.099 1.103 1.107 1.109 1.111 1.113 30 6.2 1.079 1.084 1.068 1.090 1.092 1.093 31 6.0 1.068 1.074 1.078 1.080 1.083 1.085 32 5.8 1.063 1.068 1.073 1.075 1.079 1.081 33 5.6 1.060 1.064 1.068 1.069 1.072 1.074 34 5.4 1.058 1.062 1.064 1.064 1.065 1.066 35 5.2 1.061 1.065 1.065 1.065 1.065 1.064 36 5.0 1.069 1.073 1.073 1.073 1.072 1.072 37 4.8 1.079 1.082 1.083 1.003 1.083 1.082 36 4.6

. 1.086 1.090 1.091 1.091 1.091 1.091 39 4.4 1.092 1.095 1.096 1.096 1.096 1.096 40 4.2 1.098 1.102 1.103 1.103 1.103 1.102 41 4.0 1.107 1.110 1.111 1.112 1.112 1.111 42 3.8 1.117 1.120 1.121 1.122 1.122 1.121 43 3.6 1.126 1.129 1.130 1.131 1.131 1.131 44 3.4 1.135 1.138 1.139 1.140 1.140 1.140 45 3.2 1.144 1.147 1.148 1.150 1.150 1.149 46 3.0 1.153 1.155 1.157 1.159 1.159 1.159 47 2.8 1.161 1.164 1.166 1.168 1.169 1.169 48 2.6 1.164 1.171 1.175 1.177 1.178 1.178 49 2.4 1.165 1.177 1.183 1.185 1.186 1.186 50 2.2 1.168 1.182 1.188 1.192 1.194 1.195 51 2.0 1.174 1.185 1.191 1.199 1.203 1.204 52 1.8 1.181 1.168 1.194 1.203 1.210 1.211 53 1.6 1.187 1.192 1.197 1.206 1.213 1.215 54 1.4 1.192 1.196 1.201 1.209 1.214 1.216 Page 14 of 23

COLR Table 3.2-1 (continued)

N1C27 Normal Operation N(Z)

Serial No.: 18-158 Docket No.: 50-338 NOOE HEIGHT 9000 to 11000 11000 to 13000 13000 to 15000 15000 to 17000 17000 to 19000 19000 to EOR (FEET)

MWD{MTU MWO/MTU MWDIMTU MWD/'MTU M'\\ND/MTU MWDlMTU 55 1.2 1.196 1.202 1.207 1.212 1.215 1.218 56 1.0 1.201 1.207 1.212 1.217 1.220 1.222 57 0.8 1.206 1.212 1.217 1.222 1.225 1.227 These decks are generated for normal operation flux maps that are typically taken at full power ARO. Additional N(Z) decks may be generated, if necessary, consistent with the methodology described in the RPDC topical (Reference 7). EOR is defined as Hot Full Power End of Reactivity.

Page 15 of 23

COLR Table 3.2-2 N1C27 Penalty Factors for Flux Map Analysis Burnup Penalty (MWD/MTU)

Factor%

0-999 3.00 1000-1999 3.50 2000-2999 2.00 3000-3999 2.00 4000-4999 2.00 5000-6999 2.00 7000-8999 2.00 9000-10999 2.00 11000-12999 2.00 13000-14999 2.00 15000-16999 2.00 17000-18999 2.00 19000-EOC 2.00 Notes:

Serial No.: 18-158 Docket No.: 50-338

1. Penalty Factors are not required for initial power ascension flux maps.
2. All full power maps shall apply a Penalty Factor unless frequent flux mapping is invoked(~ 7 EFPD).

COLR Table 3.2-3 N1C27 Required Operating Space Reductions for F0T(Z) Exceeding its Limits Required F QT (Z)

Required Negative AFD Band Positive AFD Band Margin THERMAL POWER Reduction from AFD Reduction from AFD Improvement Limit(% RTP)

Limits* (% AFD)

Limits* (% AFD)

$ 1%

5 98.0 2: 0.5

~ 1.0

> 1% and $2%

$ 96.0

~ 1.0

~2.0

>2% and$3%

$ 95.0

~ 1.5

~ 4.0

>3%

$ 50 NIA NIA

  • Axial Flux Difference Limits are provided in COLR Figure 3.2-2 Page 16 of 23

1.2 1.1 1.0 0.9 0.8 N

ci u.. 0.7 Cl UJ N

J < 0.6
Ji

0::

0 z

6, 0.5 S2" 0.4 0.3 0.2 0.1 0.0 0

1 COLR Figure 3.2-1 K(Z) - Normalized FQ as a Function of Core Height 6, 1.0)

Serial No.: 18-158 Docket No.: 50-338 r--------..~

(12,.925) 2 3

4 5

6 7

8 CORE HEIGHT (FT) 9 10 11 12 13 Page 17 of 23

3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (FN 1rn)

LCO 3.2.2 FN c,H shall be within the limits specified below.

FN AH ~ 1.587 {l + 0.3(1 - P)}

THERMAL POWER where:

p = RATED THERMAL POWER SR 3.2.2.1 Verify FN c,H is within limits specified above.

3.2.3 AXIAL FLUX DIFFERENCE (AFD)

Serial No.: 18-158 Docket No.: 50-338 LCO 3.2.3 The AFD in% flux difference units shall be maintained within the limits specified in COLR Figure 3.2-2.

Page 18 of 23

Cl)

~

0 a..

iu E

Cl)

.c:

I-

'C Cl)....

Cll a:::....

0....

C:

Cl)

~

Cl) a..

120 110 100 90 80 70 60 50 40 30 20 10 0

-30 COLR Figure 3.2-2 North Anna 1 Cycle 27 Axial Flux Difference Limits Serial No.: 18-158 Docket No.: 50-338 r2* 10;

\\6, 100)

Unacceptable /

\\

Unacceptable Operation I\\

Operation V

\\

I Acceptable Operation I

' I\\

Iv

\\

(-27. 50)

(+20, 50)

-20

-10 0

10 20 30 Percent Flux Difference (Delta-I)

Page 19 of 23

3.3 INSTRUMENTATION 3.3.1 Reactor Trip System (RTS) Instrumentation TS Table 3.3.1-1 Note 1: Overtemperature LlT Serial No.: 18-158 Docket No.: 50-338 The Overtemperature LlT Function Allowable Value shall not exceed the following nominal trip setpoint by more than 2% of LlT span, with the numerical values of the parameters as specified below.

where: LlT LlTo s

T T'

p P'

is measured RCS LlT, °F is the indicated LlT at RTP, °F is the Laplace transform operator, sec*1 is the measured RCS average temperature, °F is the nominal Tavg at RTP, =:;; 586.8 °F is the measured pressurizer pressure, psig is the nominal RCS operating pressure, ~ 2235 psig K2 ~ 0.02174 /°F K3 ~ 0.001145 /psig 1'1, 1'2 = time constants utilized in the lead-lag controller for Tavg 1'1 ~ 23.75 sec 1'2 =:;; 4.4 sec (1 +1'1S)/(1 +1'2S) = function generated by the lead-lag controller for Tavg dynamic compensation f1 (Lll) 2': 0.0291 {-13.0 - ( qt - qb)}

0 0.0251{(qt -qb)-7.0}

when (qt -qb) <-13.0% RTP when-13.0% RTP::;; (qt-qb)::;; +7.0% RTP when (qt -qb) > +7.0% RTP Where qt and qb are percent R TP in the upper and lower halves of the core, respectively, and qt+ qb is the total THERMAL POWER in percent RTP.

Page 20 of 23

TS Table 3.3.1-1 Note 2: Overpower L'lT Serial No.: 18-158 Docket No.: 50-338 The Overpower L'lT Function Allowable Value shall not exceed the following nominal trip setpoint by more than 2% of L'lT span, with the numerical values of the parameters as specified below.

where: L'lT fl To s

T T'

is measured RCS L'lT, °F.

is the indicated fl T at R TP, °F.

is the Laplace transform operator, sec-1*

is the measured RCS average temperature, °F.

is the nominal Tavg at RTP, ~ 586.8 °F.

l<.,i ~ 1.0865 K5 ~ 0.0198 /°F for increasing Tavg K6 ~ 0.00162 /°F when T > T' 0 /°F for decreasing T avg 0 /°F when T ~ T'

1) = time constant utilized in the rate lag controller for Tavg T3 ~ 9.5 sec T3s I (1 + r3s) = function generated by the rate lag controller for Tavg dynamic compensation f2(1lI) = 0, for all Af.

Page 21 of 23

3.4 REACTOR COOLANT SYSTEM (RCS)

Serial No.: 18-158 Docket No.: 50-338 3.4.1 RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits LCO 3.4.1 RCS DNB parameters for pressurizer pressure, RCS average temperature, and RCS total flow rate shall be within the limits specified below:

a. Pressurizer pressure is greater than or equal to 2205 psig;
b. RCS average temperature is less than or equal to 591 °F; and
c. RCS total flow rate is greater than or equal to 295,000 gpm.

SR 3.4.1.1 SR 3.4.1.2 SR 3.4.1.3 SR3.4.1.4 Verify pressurizer pressure is greater than or equal to 2205 psig.

Verify RCS average temperature is less than or equal to 591 °F.

Verify RCS total flow rate is greater than or equal to 295,000 gpm.


NOTE--------------------------------------------

Not required to be performed until 30 days after~ 90% RTP.

Verify by precision heat balance that RCS total flow rate is ~ 295,000 gpm.

3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) 3.5.6 Boron Injection Tank (BIT)

Required Action B.2 Borate to a SDM ~ 1.77 % ~k/k at 200 °F.

3.9 REFUELING OPERATIONS 3.9.1 Boron Concentration LCO 3.9.1 Boron concentrations of the Reactor Coolant System (RCS), the refueling canal, and the refueling cavity shall be maintained~ 2600 ppm.

SR 3.9.1.1 Verify boron concentration is within the limit specified above.

Page 22 of 23

Serial No.: 18-158 Docket No.: 50-338 NAPS TECHNICAL REQUIREMENTS MANUAL TRM 3.1 TR 3.1.1 REACTIVITY CONTROL SYSTEMS Boration Flow Paths - Operating Required Action D.2 Borate to a SHUTDOWN MARGIN~ 1.77 % Ak/k at 200 °F, after xenon decay.

Page 23 of 23