ML18038A379
ML18038A379 | |
Person / Time | |
---|---|
Site: | Nine Mile Point |
Issue date: | 01/31/1991 |
From: | MANAHAN M P Battelle Memorial Institute |
To: | |
Shared Package | |
ML17058A960 | List: |
References | |
NMEL-90001, NUDOCS 9109120248 | |
Download: ML18038A379 (639) | |
Text
NMEL-90001 FINALREPORTNineMilePointUnit1qxgxvQ@.'cd(>~xi>~XPN%
gx",'gQ%~%'c?gg%:,iQ 3j<)i;,.:.pi;"jx@gi~Q'y:~%@g4<~;Kgj"j44jg0 524Ã<<.NSurveillance CapsuleProgramToNiagaraMohawkPowerCorporation January,1991'".:Bzmelllle Putting7echnology ToWorkyq10gygP0>P8 910830pDRADOC)%0pDRp
ReportNumberNMEL-90001 FinalReportentitledNineMilePointUnit1Surveillance CapsuleProgramtoNiagaraMohawkPowerCorporation January4,1991byDr.M.P.ManahanBattelle505KingAvenueColumbus, Ohio43201PennStateUniversity NuclearEngineering Dept.231SackettBuildingUniversity Park,PA16802 Battelledoesnotengageinresearchforadvertising, salespromotion, orendorsement
'ofourclients'nterests including raisinginvestment capitalorrecommending investment decisions, orotherpublicity
- purposes, orforanyuseinlitigation.
Battelleendeavors atalltimestoproduceworkofthehighestquality,consistent withourcontractcommit-ments.However,becauseoftheresearchand/orexperi-mentalnatureofthisworktheclientundertakes thesoleresponsibility fortheconsequences ofanyuse,misuse,orinability touse,anyinformation, appara-tus,processorresultobtainedfromBattelle, andBattelle, itsemployees,
- officers, orTrusteeshavenolegalliability fortheaccuracy,
- adequacy, orefficacythereo'f.
TABLEOFCONTENTSPacae
1.0INTRODUCTION
..........~...........11.1Historical Perspective
..............2F1.11.1.2RevisedSurveillance ProgramDescription
.6Materials Mix-UpConcern.~..~..~..101.2Detailed=Work Scope....~...~.~..~..151.2.1Re-evaluate DataandWriteNewSurveillance ProgramDescription
............15..1.2.2Determine InitialRT~~ofBeltlineMaterials 16"-1:2:3Encapsulate ArchiveDosimetry andTemperature MonitorMaterials
.....~~171.3Applicable Documents MATERIALMIX-UPANALYSIS2.1Chemistry Analysis2.2TensileDataAnalysis2.3CharpyDataAnalysis2.4HardnessDataAnalysis2.5Conclusions Concerning Materials Mix-up2.6Surveillance CapsulesA'ndC'aterials 2.7LimitingPlateAdjustment Methodology 1722223540484849563.0BELTLINEMATERIALINITIALRT~~DETERMINATION
4.0 ARCHIVEDOSIMETRY
ANDTHERMALMONITORENCAPSULATION
5.0 SUMMARYANDCONCLUSIONS
5.1BenefitstoNiagaraMohawk596166675.1.15.1.25.1.35.1.45.1.5PLEXSurveillance MaterialMix-UpResolution LimitingBeltlineMaterialRT~~ofBeltlineMaterials Significant EconomicBenefitsin~~~~~Hydro-test 67686969705.2FutureDirection REFERENCES 7173
.vl APPENDICES PacaeAPPENDIXADESCRIPTION OFCAPSULESA'NDC'....A-2A.lDosimetry A.2Temperature MonitorsA-3A-5A.2.1A.2.2MeltWireTemperature MonitorsSolidStateTrackRecorder-Temperature MonitorsA-5A-6A.2.2.1A.2.2.2A.2.2'A.2.2.4Preparation ofQuartzGlassSSTR-TMsPreparation ofMicaSSTR-TMsSSTR-TMFissionFragmentIrradiation FissionFragmentIrradiation ofQuartzGlassSSTR-TMsA-7A-8A-9A.3CharpyV-NotchSpecimens A.4Miniature andConventional TensileSpecimens A.5CapsuleDesignandLayoutA.6ArchiveMaterials A-9A-13A-13A-13APPENDIXBAPPENDIXCAPPENDIXDAS-BUILTPHOTOGRAPHS OFADVANCEDDOSIMETRY FORCAPSULESA'NDC'-1AS-BUILTPHOTOGRAPHS FORCAPSULESA'NDC-1DOSIMETRY DESCRIPTION FORCAPSULESA'NDC'.C-1APPENDIXEAPPENDIXFCHEMICALANALYSISDATAFORNINEMILEPOINTUNlT1o~~~~~~~~~~~~~~~F-1PHOTOGRAPHS OFMELTWIRETEMPERATURE MONITORS'-1 F.lF.2F.3PlateDataWeldDataSupplementary BaseMetalChemicalAnalysisF-2F-11F-143.v
APPENDICES continued PacaeAPPENDIXGTENSILEDATAG-1G.1G.2G.3G.4BaselineTensileDataIrradiated Surveillance SpecimenDataArchivePlateG-8-3DataMiniature BaseMetalSpecimenDataG-3G-6G-9G-18APPENDIXHCHARPYDATAH-1H.lUnirradiated Data~~.~.......H-3H.l.lH.1.2H.l.31964Unirradiated Baseline'CharpyDataUnirradiated ArchivePlateG-8-3Data1990(currentstudy)Unirradiated ArchivePlateG-8-3Data(T-LOrientation)
H-4H-17H-21H.2Irradiated Surveillance SpecimenData.H-33H.2.1H.2.2H.2.31984Irradiated 300DegreeCharpyData.1985Irradiated 30DegreeCharpyData.1990(currentstudy)Irradiated BasefromHAZforthe300DegreeCapsule0H-34H-39H-42APPENDIXIAPPENDIXJAPPENDIXKHARDNESSDATADROPWEIGHTDATAFLUXANDFLUENCEDATAK-1APPENDIXLK.130DegreeCapsuleDataK.2300DegreeCapsuleDataNINEMILEPOINTUNIT1RTq~~DETERMINATION K-2K-5 UI LISTOFFIGURESPacaeFIGURE1-1NINEMILEPOINTCOREMIDPLANESHOWINGTHELOCATIONOFTHE30DEGREEi120DEGREEiAND300-DEGREE SURVEILLANCE CAPSULES.......4FIGURE1-2DRAWINGSHOWINGTHEPLACEMENT OFTHESIXBELTLINEPLATESFORNMP-1..........14FIGURE2-1FIGURE2-2FIGURE2-3FIGURE2-4FIGURE2-5COMPARISON OFCHEMICALANALYSISOFCOPPER..27COMPARISON OFCHEMICALANALYSISOFNICKEL..28COMPARISON OFCHEMICALANALYSISOFPHOSPHORUS
.29COMPARISON OFCHEMICALANALYSISOFMANGANESE
.30COMPARISON OFCHEMICALANALYSZSOFMOLYBDENUM
.31FIGURE2-6IGURE2-7NMP-1NOZZLEDROPOUTLOCATIONS 34COMPARISON OFCHEMICALANALYSISOFCHROME..32FIGURE2-8FIGURE2-9FIGURE2-10EFFECTOFIRRADIATION ONPLATEG-8-1AFTERAFASTFLUENCEOF3.6x10"n/cmEFFECTOFIRRADIATION ONPLATEG-8-1AFTERAFASTFLUENCEOF4.78x10n/cm'FFECT OFIRRADIATION ONPLATEG-8-3AFTERAFASTFLUENCEOF4.78x10"n/cm'547
'$
LISTOFTABLESTABLE1-1SURVEILLANCE CAPSULEMECHANICAL BEHAVIORSPECIMENZNVENTORY FORNINEMILEPOINTPacaeUNIT1o~~~~~~~~~~~~~~~~~~3TABLE1-2CURRENTSURVEILLANCE CAPSULESAFTERREINSERTION FORNINEMILEPOINT-UNIT1...5TABLE1-3NINEMILEPOINTUNXT1LEADFACTORSANDREVISEDWITHDRAWAL SCHEDULE..~.....9TABLE1-4NMP-1BELTLINESURVEILLANCE PROGRAMTRACEABILITY 19TABLE2-1TABLE2-2TABLE2-3LUKEN'SMEASUREDCHEMISTRY OFBELTLINEPLATESFORNMP-126SUMMARYOFCHEMICALANALYSISTESTMATRIX...24CHEMICALANALYSISSPECIMENIDENTIFICATIONS
..25TABLE2-4ABLE2-5TABLE2-6TABLE2-7TABLE2-8TABLE2-9TABLE2-10TABLE2-11TABLE2-12TABLE3-1BASEMETALROOMTEMPERATURE TENSILEPROPERTIES 38CHANGEINYIELDSTRENGTHANALYSIS......39'SUMMARYOFCHARPYIMPACTPROPERTIES FORIRRADIATED MATERIALS FROMTHENiNEMILEPOINTUNIT1REACTOR............~...44SURVEILLANCE CAPSULEBMATERIALCOMPOSITIONS
.50SURVEILLANCE CAPSULEA'ATERIAL COMPOSITIONS
.51SURVEILLANCE CAPSULEC'ATERIAL COMPOSITIONS
.53SURVEILLANCE DATAADJUSTMENT FACTORS57BELTLINEMATERIALRT~~DATAFORNINEMILEPOINTUNIT1.................58SUMMARYOF1964BASELINECHARPYIMPACTINDICES(L-TORIENTATION)
..........42SUMMARYOFCHARPYIMPACTPROPERTIES FORUNIRRADIATED BASEMETALPLATEG-8-3/G-8-4
..43TABLE4-1ARCHIVERMANDHAFMNEUTRONDOSIMETRY MATERIALS e~~~~~~~~~~~~~~62 0
LISTOFTABLEScontinued TABLE4-2TABLE4-3TABLE4-4ARCHIVESSTRNEUTRONDOSIMETRY MATERIALS
...63ARCHIVEMW-TMMATERIALS
...........64ARCHIVESSTR-TMMATERIALS
..........65
0INTRODUCTION Theprimarypurposeoftheanalysesreportedhereinistoresolvequestions raisedconcerning amix-upofthebasemetalmaterials usedintheNineMilePointUnit1(NMP-1)surveillance program.Asdescribed inSection2.0,it,hasbeenconclusively demonstrated thatamaterialmix-updidoccurduringfabrication ofthesurveillance capsulespecimens.
Conclusions concerning theactualmaterials usedinthesurveillance programarepresented inSection2.5.Sincesomeofthesematerials wereincludedinthere-encapsulation capsulesA'ndC',are-evaluation ofthespecimeninventories forthere-encapsulation capsulesandtheremaining Bcapsulewasconducted.
Theseesultsarepxesented inSection2.6.Sincethesurveillance programisbasedonmaterials whicharenotlimitingfromanembrittlement perspective, itwasnecessary todevelopanadjustment methodology sothatthesurveillance datacanbeusedinP-Tanalysis.
Thismethodology isdescribed inSection2.7.Inadditiontothematerialmix-upanalysis, additional Charpytestswereconducted todetermine theRT>>TofplateG-8-3.TheseresultsareprovidedinSection3.0.InSection4.0,thecapsuleA'ndC'rchivedosimetry andthermalmonitorstorageplanispresented.
Finally,summaryandconclusions arepresented inSection5.0.Inresponsetothematerialmix-up,thisreportisintendedtoserveasanewbaselinepressurevesselmaterials report.
PWI~'hgp anyoftheearlierdocuments areinerrorandshouldonlybeusedinthefuturewithcaution.Thisreportcontainsallofthedataandinformation neededtoevaluatefuturesurveillance capsulesandpreparePressure-Temperature (P-T)operating curves.1.1Historical PersectiveThreesurveillance capsuleswereinstalled intheNMP-1reactorin1969priortoinitialoperation.
Twoofthecapsuleshavebeenremovedtodate.References
[ST84]and[MA85a]containtheresultsoftestsperformed onthecontentsofthesecapsules.
Thenumberandtypeofmechanical behaviorspecimens, aswellasthecapsuleidentification andlocationwithinthereactorvessel,aresummarized inTable1-1.Figure1-1showsthelocationofthesurveillance capsules.
Priortothematerialmix-upanalysis, thebasemetalCharpy30ft-lbindexshift(BT3Q)of114'FforplateG-8-3wasthoughttobelargerthantheshiftpredicted byRegulatory Guide1.99(Revision 2)[RG1.99(2)]
byastatistically significant amount.Sinceplantlifeextension isbeingconsidered, NiagaraMohawkdecidedtoreinserttwocapsules(A'ndC').Theprimeisusedtodesignate thenewcapsuleinthesameazimuthal locationastheoriginalcapsules.
Theradiallocationofthenewcapsulesisslightlyclosertothecorethantheoriginalcapsulestoincreasetheneutronflux.Themechanical behaviorspecimens whichwereincludedinthenewcapsulesaresummarized inTable1-2.
A TABLE1-1SURVEILLANCE CAPSULEMECHANICAL BEHAVIORSPECIMENINVENTORY FORNiNEMILEPOINT-UNIT1Azimuthal CapsuleMechanical BehaviorLocationDateRemovedExposureSecimensCapsule(Degrees)
FromVessel(efpy)CharpyTensile301201979NotRemoved(InVessel)5.812Base12Weld12HAZ10Base8Weld9HAZ9APED3Base2Weld3HAZ3Base3Weld2HAZ2APED~~)30019827.988Base8Weld8HAZ2Base2Weld2HAZ(1)Inventory confirmed byobservation atBattelleduringdisassembly.
(2)SixCharpybasemetalspecimens andonetensilebasemetalspecimentestedpriortoreencapsulation.
SixCharpyspecimens reconstituted in1985shortlyaftertesting.(3)Inventory basedoncapsuleloadingdrawingsuppliedtoBattellebyNiagaraMohawk.(4)Fullcontentsplusfourreconstituted Charpybasemetalspecimens andfourreconstituted Charpyweldmetalspecimens testedpriortoreencapsulation.
(5)Thesespecimens areeithercorrelation monitorsorspecimens fromanotherplant.
CorePerlpheryStainless SteelShroudReactorPressureVessel0030DegreeCapsuleStainless SteelLiner300DegreeCapsule270IIII90t20DegreeCapsulet80NOTASCALEDRAWINGFIGURE1-1NINEMILEPOINTCOREMIDPLANESHOWINGTHELOCATIONOFTHE30DEGREEr120DEGREErAND300DEGREESURVEILLANCE CAPSULES
TABLE1-2CURRENTSURVEILLANCE CAPSULESAFTERREINSERTION FORNINEMILEPOINT-UNIT1CapsuleCasuleContents"'harpy TensileA'Base-02Base-06Base-R2Base-M12Weld-02Weld-012HAZ-03HAZ-010Base8Weld9HAZ9APED3Base2Weld3HAZ2APEDC'2Base-R4Base-M12Weld-R4Weld-M12Base-U3Base-U(1)0=Originalirradiated (untested) specimen.
M=Miniature tensilespecimens machinedfrombrokenendsoftestedspecimen.
R=Reconstituted Charpyspecimen.
U=Unirradiated specimen.
Ipl&
1.1.1REVISEDSURVEILLANCE PROGRAMDESCRIPTION
~~Adetaileddescription oftheoriginalsurveillance programwasgiveninreference
[ST84].Threesurveillance
- capsules, eachcontaining Charpyandtensilespecimens, aswellasdosimetry wires[iron(Fe),copper(Cu),andnickel(Ni)],wereinstalled intheNMP-1pressurevesselpriortoinitialstartup.Asofthedateofthisreport,twocapsuleshavebeenremovedasdescribed earlier[ST84,MA85a].ThefullcontentsfromtheCcapsule,24Charpyspecimens and6tensilespecimens, weretestedatBattellein1983todetermine tensileproperties andreactorvesselbasemetal,weldmetal,andheataffectedzone(HAZ)Charpyimpactnil-ductility transition temperatures (NDTT)[ST84].SixCharpybasemetal~~specimens fromtheAcapsulewerealsotestedatBattelletoconfirmthe30-ft-lbshiftofthebasemetalobservedintheCcapsulespecimens
[MA85a].Inaddition, onebasemetaltensilespecimenfromtheAcapsulewastestedinordertofurtherbenchmark thecorrelation betweenchangeinyieldstrengthandshiftsinthe30ft-lbtemperature.
MPRAssociates, Inc.reviewedtheNMP-1data,andrecommended toNiagaraMohawkthattwocapsulesbereinserted duringthe1986refueling outage[NE85].Battelleprovidedneutrontransport datatoMPRforcalculation ofthedesiredradialpositionofthereinserted capsules[MA85b].Adescription oftherevisedsurveillance programisprovidedin
~<<4>>,V~<<p'isQJl~+Il4,.gI,0 reference
[MA85c]andissummarized below.Charpyandtensilebasemetal,weldmetalandHAZspecimens fromtheAcapsulewerereturnedtothereactorvesselinanewcapsulewhichwasinstalled attheAlocation(30degreesazimuth),
duringthe1986refueling outage.ThesixCharpybasemetalspecimens fromtheAcapsulewhichweretested,werereconstituted priortoreinsertion.
OnetensilebasemetalspecimenfromtheoriginalAcapsulewastestedandmachinedintotwominiature specimens andinsertedinthenewcapsule.Inaddition, fivetemperature monitorswereinstalled inthereinsertion capsuletodetermine themaximumspecimentemperatures experienced duringreactoroperation.
Theradialpositionofthereinsertion capsulerelativetothereactorvesselwallwasmodifiedtoincreasetheneutronfluxatthecapsulelocationbyafactorof1.97overthemaximumfluxatthereactorvesselshellatthe1/4Tlocation.
Thisleadfactorwillmakeupforthetimethespecimens wereoutofthereactorandallowthespecimens toreachtheanticipated endoflifefluenceatthetimethe1/4Tpositionreaches24EFPY.Itisrecognized thattheremaybeaneutronfluxeffectwhichcouldresultindifferent mechanical behaviorforthereinserted samplesascomparedwithregionsofthevesselirradiated atalowerflux.However,thepractical constraint ofachieving timelydatarequiresahigherfluxatthereinsertion capsulesthanatthevessel.Itisanticipated thatfutureresearchwilleitherconfirmornegatethedamagerate
~%v5t'p hypothesis.
Ifnecessary, amechanistic damagemodelshouldprovideadequatecorrelation betweenthesurveillance dataandthevessel.Twelvereconstituted full-sized Charpybasemetalandweldmetalspecimens andminiature tensilespecimens machinedfromthebrokentensilebasemetalandweldmetalspecimens fromtheCcapsulewerereinserted intheNMP-1reactorvesselinasecondnewcapsuleattheClocation(300degreesazimuth).
Inaddition, twelveunirradiated Charpybasemetalspecimens andthreeunirradiated tensilebasemetalspecimens wereinstalled in'thereinserti'on capsule.Theunirradiated specimens weremachinedfromtheNMP-1reactorvesselarchiveplatematerial(G-8-3)whichwasusedintheoriginalweldandHAZsurveillance specimenfabrication.
NoHAZspecimens wereincludedinthiscapsulesincetheobservedshiftfortheHAZspecimens testedtodateisnegligible, andtheHAZshiftisexpectedtobebracketed bythebasemetalandweldmetalshifts.TheC'einsertion capsulealsocontainsfivetemperature monitors.
ThesameleadfactorwasusedfortheC'apsuleaswasusedfortheA'apsule.
Therevisedwithdrawal scheduleandtheexposureforeachmechanical behaviorspecimensetissummarized inTable1-3.Atone-halfoforiginaldesignvessellife(16efpy),theoriginalBcapsulewillbewithdrawn andthespecimens tested.Thesedatawillprovideinformation onthecurrenttensileproperties andCharpyshiftofthereactorvesselbasemetal,weldmetal,and
TABLE1-3NINEMILEPOINTUNIT1LEADFACTORSAND'"REVISED WITHDRAWAL SCHEDULE~CasuleC'eadFactorto14TPosition1.970.991.97CapsuleExposureatWithdrawal EFPY241632,
mz.Atthree-quarters oforiginalvesseldesignlife(24efpy),thereinsertion A'apsulewillbewithdrawn.
Duetothe1.97leadfactoronthiscapsule,theexposureoftheA'apsulespecimens willbeapproximately equaltothevessel1/4Tatendoflife.Resultsofmechanical behaviortestsfortheA'apsulecontentswillprovideinformation onend-of-life tensileproperties andCharpyshiftofreactorvesselbasemetal,weldmetal,andHAZ.Atendofvessellife(32efpy),thereinsertion C'apsulewillbewithdrawn.
Duetothe1.97leadfactoronthiscapsule,theexposureofthepreviously irradiated andunirradiated C'apsulespecimens willbeequalto155%and133%oforiginalesignexposure.
Resultsofmechanical behaviortestsontheunirradiated C'apsulecontentswillprovideinformation onthetensileproperties andtheCharpyshiftofthereactorvesselbasemetalforaplantlifeextension of133percent.Resultsoftestsonthepreviously irradiated C'apsulecontentswillprovideinformation ontensileproperties andCharpyshiftofreactorvesselbasemetalandweldmetalforalifeextension of155percent.Adetaileddescription ofthereinserted capsulesisprovidedinAppendices AthroughE.1.1.2Materials Mix-UConcernTheNiagaraMohawkPowerCorporation surveillance program10 I
orNMP-1isdescribed inreportsissuedbytheGeneralElectricCompany[HI69,APED].Furtherdetailsandmechanical properties arecontained inreferences
[H065a,CE64,CE65,LE64,ST64,H065b,LU85,BU85,ST84,MA87,MA85a,MA85b,].Reference
[H065a]specified that"allbasemetalshallbetakenfromtwoplates(G-8-3andG-8-4);andallweldandheataffectedmetalshallbetakenfromtheweldmetalbetweentheplates(CodeG-8-3andCodeG-8-4).'"
Thesurveillance testresultsreportedinreferences
[ST84]and[MA85a]werereportedbasedonthisunderstanding.
AsshowninSection2.0,thebasemetalCharpyspecimens were'ctually'fabricated fromplateG-8-1.This,ofcourse,hasasignificant effectonthemeasuredCharpyshiftandnecessitates recalculation ofmanyoftheresultsreportedin[ST84]andMA85a].Inaddition, itwasnecessary toanalyzethesurveillance capsule(capsules A',B,andC')inventories andclearlyidentifythematerials presentinthesecapsules.
Reference
[H065a]alsoliststheorientation oftheCharpyandtensilespecimens withintheplate.Itisassumedthattheorientation ofthespecimens cutfromplateG-8-1isidentical tothatspecified inreference
[H065a].Thespecification statesthatbasemetalspecimens weretakenfromflatslabscutparalleltoboththeplatesurfacesatadepthofone-quarter andthree-quarterplatethickness.
TheCharpyandtensilebasemetalspecimens weremachinedwiththeirlongaxesparalleltotheplaterollingdirection andtheCharpyspecimennotcheswerecutperpendicular totheplatesurface.BothCharpyandtensilebase
~I'ACyh~~
etalspecimens weredesignated longitudinal specimens.
TheweldmetalfortheNMP-1pressurevesselwasweldedinaccordance withtheCombustion Engineering WeldingSpecification SAA-33-A(3) andNA-33-A(7) usingthesubmerged arcprocess[LE64].TheCharpyweldmetalspecimens weremachinedinadirection transverse tothewelddirection; thus,onlythecentralnotchedsectionofthespecimenwouldnecessarily becomposedofweld-deposited metal.Charpyspecimens weretakenthroughout theweldsectiontoadepthof1-1/16inchfromtheweldroot.TheCharpyweldmetalspecimens'ong axesweretherefore'arallel totheplatesurface,andthenotcheswerecutperpendicular totheplatesurface.Thetensileweldmetalspecimens werecomposedentirelyofweldmetalandwereobtainedymachining thespecimens paralleltotheweldlengthandparalleltotheplatesurface.TheCharpyHAZmetalspecimens weremachinedinadirection transverse totheweldlengthandparalleltotheplatesurface.Theaxesofthenotcheswerethencutperpendicular totheplatesurface,withthenotchlocatedattheintersection ofthebasemetalandwelddeposit.ThetensileHAZmetalspecimens weremachinedtransverse totheweldlengthandparalleltotheplatesurface.Thejointbetweenthebasemetalandwelddepositwaslocatedatthecenterofthetensilespecimengagelength.Analysisofthechemistry datareportedin[NA87]indicates thatthebasemetalCharpyspecimens werefabricated fromplateG-8-1andtheweldandHAZbasemetalcamefromweldedG-8-312
lates.Inaddition, Y.SoongofNiagaraMohawkanalyzedthereference
[CE65]drawingandproducedthedrawingsshowninFigures1-2and2-7.Atotaloffivenozzlecutsweremadeinthebeltlineregion:twofromplateG-8-1,twofromplateG-8-3(oneofthesewasattheG-8-3/G-8-4 interface),
andonefromplateG-8-4.Therefore, thesurveillance materialhadtocomefromthesedropouts.
Inordertoconfirmthehypothesis thatthebasemetalCharpysarefromG-8-1,chemistry andmechanical behaviortestsandanalyseswereperformed.
Thedetailedscopeofworkisdescribed inSection1.2.13
4JCeo
.2DetailedWorkScoeAdetaileddescription oftheworkundertaken inthepresentstudyisgivenbelow.1.2.1Re-evaluate DataandWriteNewSurveillance ProramAsaresultofthefindingsdescribed above,muchoftheReference
[ST84,NA85a,andMA87]dataareinerrorandthecurrentP-Tcurvesareoverlyconservative.
Also,manyofthesurveillance programreference documents areinerrororaremisleading.
Toattempttorectifythissituation, anewsurveillance programdescription hasbeenwrittenandincludedherein.Thisreportsupercedes allpreviousdocuments andontainsalloftheinformation necessary toconducttheprograminthefuture.Znaddition, severalanalyseswereconducted tocorrectandupdateexistingdata.Theseinclude:(1)Fitallunirradiated beltlineCharpydatausingtheWeibullmodel.(2)Clearlyindicatewhichmaterials areG-8-1andG-8-3.Forspecimens whicharecurrently beingirradiated, thoseforwhichthereissomeuncertainty regarding thematerialcomposition havebeenidentified.
(3)Correlate tensile,Charpy,hardness, andchemistry datatodemonstrate thatbasemetalspecimens werecutfromPlateG-8-1andweldandHAZspecimens werecutfromG-8-3.(4)Developacorrelation factorwhichrelatesdataonPlatesG-8-3andG-8-1withPlateG-307-4.15
(5)Noteseveralcautionsforthefuture:(a)Notallofthein-service capsulematerialcompositions areknown.(b)TheGEmachinedCharpynotchesforthere-encapulation programmaybeoutofspecification.
Severaloftheunirradiated Charpyspecimens whichweremachinedatGEandtestedatBattellewereremachined priortotesting.Thetensilespecimens mayexhibitbendingduringtesting.Thereisexperimental evidencethattheGEmachinedspecimens werenotwithinASTMspecifications.
Duringthetest,evidenceofbendingwhichresultsinsignificant uncertainty intheyieldstrengthdetermination wasobserved.
(6)Testreconstituted Charpyspecimens from300'apsule HAZspecimens toestablish thePlateG-8-3bTpp.Reconstitution andtestingof6HAZbasemetalhalves(PlateG-8-3)wasperformed.
Inaddition, chemicalanalyseswereperformed onthebasemetaltakenfromaHAZspecimentoverifythatthematerialisG-8-3.TheseCharpytestsprovidesurveillance dataonPlateG-8-3.Performtensileandhardnessmeasurements onplatesG-8-3andG-8-1.Unirradiated tensiletestswerererunwithmoreaccurately machinedspecimens cutfromplateG-8-3.Inaddition, miniature tensilespecimens machinedfromthebaseportionofweldCharpyspecimens weretested.Thesedatawereneededtodevelopthetensilecorrelation.
Hardnessmeasurements weremadeonbothplatematerials forthesamepurposeasthetensiledata.1.2.2Determine InitialRT~ofBeltlineMaterials TheinitialRT>>~forthebeltlineplatesandweldswerenotdetermined inaccordance withcurrentASMErequirements.
Thecurrentrationale forusing+10Fisweak.Therefore, itwasnecessary toobtaindataandperformanalysestofirmlyestablish 16
heinitialRTNqq.InthecaseofplateG-8-3,unirradiated
~~Charpyanddropweighttestswereperformed toestablish theRT~~instrictconformance withtheASMEcode.Atotalof18unirradiated Charpyspecimens orientednormaltotherollingdirection weretestedinthecurrentstudy.Fortheremainder ofthebeltlinematerials, ananalytical technique wasusedtoconservatively calculate theRT>>~.TheresultsareprovidedinSection3.0andAppendixL.1.2.3EncasulateArchiveDosimetrandTemeratureMonitorMaterials Asdiscussed inReference
[MA87],thearchivedosimetry andtemperature monitormaterials shouldbecarefully storeduntilapsulesA'ndC'repulled,tested,andanalyzed.
Nerecommend storageinevacuated quartztubes.Thisworkwasdonetoensureadequateprotection fromhumidityandtheencapsulated materials shouldbestoredinatemperature controlled environment.
1.3AlicableDocuments Asmentioned earlier,thisreportservesasthenewbaselinebeltlinepressurevesselmaterials documentandsupersedes allpreviousreports'll oftherelevantdataneededtoconductthesurveillance programhavebeenextracted fromearlierreportsandincludedinthisreport.Incaseswherethematerialcomposition Iisdifferent thanpreviously thought,thecorrectcomposition isindicated andthechangenoted.Thedatatablesintheappendices 17 ir Jhavebeencorrectly changedandfootnoted toindicatethese~))changes.Examination ofanyof"theearlierreferences mustbedonewithcaution.Inordertoprovidetraceability, acomprehensive listingof'thereferences whichpertaintothebeltlinesurveillance programaregiveninTable1-4.Commentspertaining tothematerialmix-uphavebeenprovidedasappropriate.
18
TABLE1-4NMP-1BELTLINEVEILLANCE PROGRAMTRACEABILITY Reference TitleAffectedByMaterialComments[BU85]FastNeutronAxialPressureVesselCalculations forNineMilePointUnitNo.1NoVesselFluxAnalysis[CE65][HO65a]Combustion Engineering Drawing,Inspection RevisionNo.1,MaterialIdentification forNiagaraMohawkRV,DrawingE231-582-1,9/20/65Surveillance TestProgramforNiagaraMohawkReactorVesselNoYesBelievedtobethelatestas-builtdrawing.Showsthebeltlineplateandweldpositions andthenozzlecutouts.Specified baseCharpystobecutfromplatesG-8-3andG-8-4.Specimens actuallytakenfromG-8-1.[HO65b]Fabrication TestProgramforNiagaraMohawk-213"BWRGeneralElectricCo.Unirradiated CharpyandtensiledataonplateG-38.[LE64][LU64]WeldingMaterialQualification toRequirements ofNAVships250-1500-1 LukensTestCertificates, FromLukensSteelCompanytoCombustion Engineering NoNoWeldWireQualification DataLukensTestCertificates 19
TABLE1-4NMP-1BELTLINESURVENCEPROGRAMTRACEABILITY continued Reference TitleAffectedByMaterialMixuComments[LU85][MA85a][MA85b]CopperContentofReactorVesselPlatesExamination andEvaluation oftheNineMilePoint-Unit 130DegreeAzimuthal Surveillance CapsuleRadialFluxProfilesforNineMilePointUnit1NoYesNoDataonCucontentofbeltlinepl'atesnotreportedin[LU64]30DegreeCapsuleAnalysisRadialfluxprofiledata[MA87]Surveillance CapsulesA'ndC'orNineMilePointUnit1YesRe-Encapsulation Report[NMFS][NMTS][ST64]NMPU-1FinalSafetyAnalysisReportMinimumReactorVesselTemperature forPressurization Mechanical TestReportfromW.A.StoneMetallurgical R&DDepartment YesYesNoFSARmustbeupdatedP-TcurvesmustbeupdatedUnirradiated Charpyandtensiledataonbeltlineplates20
TABLE1-4NMP-1BELTLINESURVENCEPROGRAMTRACEABILITY continued Reference TitleAffectedByMaterialComments[ST84]300DegreeCapsuleExamination, Testing,andEvaluation ofIrradiated PressureVesselSurveillance Specimens FromtheNineMilePointNuclearPowerStationYes300DegreeCapsuleAnalysis21 1lQ4S4IWp 0MATERIALMIX-UPANALYSISThissectioncontainsthedatasupporting theconclusion thatamaterialmix-upintheNMP-1surveillance programdidoccur.Aconclusive demonstration wasmadeusingthereference
[MA87]chemistry data.ThesedataarereviewedinSectionF1.Inaddition, themechanical behaviortrendswereexaminedtoconfirmthechemistry data,andthesefindingsarediscussed inSections2.2-2.4.Conclusions concerning themix-up,theimpactonthematerialinventories, andadiscussion ofthelimitingplateadjustment methodology aregiveninSections2.5-2.7.2.1ChemistrAnalsisAsdescribed inreference
[MA87],themethodofInductively CoupledArgonPlasma(ICAP)Spectrometry wastheprimarychemicalanalysismethodused.InadditiontotheICAPmeasurements, theatomicabsorption (AA)methodwasperformed todetermine theCuandNicontentofthesamplesasanindependent check.Thetestmatrixissummarized inTable2-1.Asstatedin[MA87],theprimarygoalsofthechemicalanalysistaskwere:todetermine whetherthedifferences inthereference
[ST84]and[MA85a]measurements areduetotheXRFtechnique; todetermine whethertheunirradiated platechemistry matchestheLukensdata;andtodetermine whetherthereareanyobservable chemistry differences betweentheCharpybasemetal22
pecimensfabricated fromthenozzledropout(30-degree and300-degreebasemetalspecimens) andthespecimens fabricated fromotherregionsintheG-8-3andG-8-4plates(HAZspecimens andunirradiated plate).23
TABLE2-1.SUMMARYOFMICALANALYSISTESTMATRIXNumberofMeasurements MethodUnirradiated MaterialBCLWMAL30'apsule BaseMaterialWMAL300'apsule 300'apsule HAZSpecimenBaseMaterialBaseMaterialWMALWMALICPS(')AA(Cu,Ni)StandardReference Material(NBS)331dup~~1dup11111dup.1dup.1dup.Colormetric (P)LecoCombustion (C)Combustion Titrimetric (S)Gravimetric (Si)(1)BCLmeasuredCu,Ni,P,Mo,Cr,MnWMALmeasuredCu,Ni,P,Mo,Cr,Mn,Co,V,Ti(2)dup=duplicate analysis24 sI<<If)jap"l$Iw"4~ii AtleastthreeICAPmeasurements persampleweremadesothattheuncertainty couldbequantified.
TheWNALmeasu'rements examinedalloftheelementsontheLukensrecord.Inaddition, oneAAbackupmeasurement perspecimentypeandonebackupcolormetric measurement forPcontentweremade.Fourspecimencategories wereanalyzedandthespecimenidentifications aresummarized inTable2-2.Chemistry datafromtheLukenstestcertificates
[LU64]andtheLukensmeasuredCucontentfromreference
[LU85)isshowninTable2-3.TheresultsofthechemicalanalysesareprovidedinAppendixFandin"Figures-'2-1
'through2-6.TABLE2-2.CHEMICALANALYSISSPECIMENIDENTIFICATIONS BaseFromBaseBaseFromBaseBaseFromPlateG-8-330Degree,.Capsule 300DegreeCapsuleHAZUnirradiated ElAElcEBKE2UE31E42E7EElME1UE3TJlLJAMJAEJlTJ1PD25D21D0125
TABLE2-3.LUKEN'SMEASUREDCHEMISTRY OFBELTLINEPLATESFORNMP-1PlateHeatNo.Identification CuNiCHEMICALCOMPOSITION wt%PMnMoP2074P2076G-307-3G-307-4"'/
G-307-50.200.270.480.530.0180.0191.451.230.450.52P2091P2112P2130G-307-10G-8-1G-8-3/G-8-40.220.230.180.510.510.560.0180.0210.0121.431.341.160'00'50.47(1)Limitingplatefromaradiation damageperspective.
26
COPPERICAPAAICAPAA0.200OKI-G0.150lCAPAAlCAPAAICAPAA0.100(WMAL~(WMAL~(BasefrombaseBasefrombaseBasefromHAZVnirradiated Unirradiated testtest30degree300degree300degreearchiveplatearchiveplatecertificate certificate G-8-3/G-8-4 6-8-1WMAL-Westinghouse WaltzMillAnalytical Laboratories BCD-BattelleColumbusDivisionFIGURE2-1.COMPARISON OFCHEMICALANALYSISOFCOPPER27
NICKL0.700ICAPAA-ICAPAAICAPAA0.600I-zVKG0.500ICAPAAICAPAA00.400LukensLukens(WMAL){WMAL)(WMAL){WMAL)(BCD)testtestBasefrombaseBasefrombaseBasefromHAZUnirradiated Unirradiated certificate certificate 30degree300degree300degreearchiveplatearchiveplate6-8-3/6-8-4 6-8-0WMAL-Westinghouse WaltzMillAnalytical Laboratories BCD-BattelleColumbusDivisionFIGURE2-2.COMPARISON OFCHEMICALANALYSISOFNICKEL28
PHOSPHORUS 0.040I-z0.030O(90.0200.010(WMAL)(WMAl)(WMAL)(WMAL)BasefrombaseBasefrombaseBasefromHAZUnirradiated 30degree300degree300degreearchiveplate0LukensLukenstesttestcertificate certificate G-8-3/G-8-4 G-8-1WMAL-Westinghouse WaltzMillAnalytical Laboratories BCD-BattelleColumbusDivisionFIGURE2-3.COMPARISON OFCHEMICALANALYSISOFPHOSPHORUS 29
ooMANGANESE 1.400OK(91.20001.000(WMAL)(WMAL)(WMAL)(WMAL)(BCD)Basefrombase Basefrombase BasefromHAZUnirradiated Unirradiated testtest30degree300degree300degreearchiveplatearchiveplatecertificate certificate G-8-3/G-8-4 G-8-1WMAL-Westinghouse WaltzMillAnalytical Laboratories BCD-BattelleColumbusDivisionFIGURE2-4.COMPARISON OFCHEMICALANALYSISOFMANGANESE 30
'I MOLYBDENUM 0.500l-zo0.450KI-z(900.400(WMAL)(WMAL)(WMAL)(WMAL)(BCD)LukensBasefrombase BasefrombaseBasefromHAZ Unirradiated Unirradiated test30degree300degree300degreearchiveplatearchiveplatecertificate 6-8-3/G-8-4 WMAL-Westinghouse WaltzMillAnalytical Laboratories BCD-BattelleColumbusDivisionLukenstestcertificate G-8-1FIGURE2-5.COMPARISON OFCHEMICALANALYSISOFMOLYBDENUM 31
0.1300.120I-Z0.3100.100U0.0900.0800.070(WMAL)(WMAL)(WMAL)(WMAL)(BCD)BasefrombaseBasefrombaseBasefromHAZUnirradiated Unirradiated 30degree300degree300degreearchiveplatearchiveplateWMAL-Westinghouse WaltzMillAnalytical Laboratories BCD-BattelleColumbusDivisionFIGURE2-6.COMPARISON OFCHEMICALANALYSISOFCHROME32 t
Asdiscussed inSection.1.1,nozzledropoutmaterialwasavailable fromplatesG-8-1,G-8-3,andG-8-4.Plates-G-8-3andG-8-4arefromthesameheat,haveidentical composition, andtherefore behavethesamefromaradiation damageviewpoint.
,Examination ofFigures2-1through2-6indicates thatthechemistry ofthebasemetalCharpyspecimens closelymatchesthatoftheplateG-8-1Luken'sladelanalysis, whereasthechemistry ofthebasematerialfromtheCharpyHAZspecimens
'closelymatchesthe.unirradiated archiveG-8-3platesandtheLukensG-8-3ladelanalysis.
However,thisobservation isnotconsistent withreference
"[H065a]whichspecified thatallofthebasemetalmaterialshouldbepreparedfromplatesG-8-3andG-8-4.Aplausible explanation isthatbetweenthetimethe[H065a]pecification waswrittenandthetimethespecimens werefabricated, adecisionwasmadetofabricate thebasemetalCharpyspecimens usingtheG-8-1materialbecausetheCucontentishigherintheG-8-1materialandclosertothehighestCuplateinthebeltlineregion(G-307-4).
Also,asshowninFigure2-7,oneoftheG-8-3nozzledropoutsfellontheaxialweldline.ltispossiblethatconcernoverincluding weldandHAZmaterialinthebasemetalCharpyspecimens mayhaveinfluenced thedecisiontomachinethebasemetalspecimens fromplateG-8-1.33 I)k
~~~4t~lt~~~%~C4~~
<<P4
2TensileDataAnalsisTheirradiated andunirradiated baselinetensiledataareprovidedinAppendixG.Alsominiature tensilespecimens weremachinedfromthebasemetalportionoftheweldspecimens.
ThesedataareprovidedinAppendixGaswell.Priortothepreparation ofthe[MA87]report,GEmachinedandsenttensilespecimens toBattelletomeasurethearchiveplateG-8-3unirradiated properties (T03,T22,T23)andforuseintheC'apsule(T01,T02,T21).Thereisexperimental evidencethattheGEmachinedspecimens werenotwithinASTMspecifications.
-Duringthetest,evidenceofbendingwasobservedwhichwouldresultinsignificant uncertainty intheyieldstrengthdetermination.
Asaresult,thesetestswereiscarded(T01,T22,T23)werererunusingspecimens machinedatBattelle(TN1,TN2,TN3).Thesedataarepresented inAppendixG~3.Careshouldbeexercised whenspecimens T01,T02,andT21fromcapsuleC'retestedsincethesespecimens weremachinedinthesamebatchatG.E.asthespecimens whichexhibited bendingduringtesting.Ananalysiswasperformed todetermine thematerialfrom1whichthesurveillance programtensilespecimens weremachined.
Unfortunately, thereisnoirradiated basemetaltensilespecimenmaterialavailable atpresentforchemicalanalysis.
Therefore, thecomposition oftheoriginalbasemetaltensilespecimens isunknownandmustbedetermined inthefuturewhenthesurveillance capsulesarewithdrawn.
Theonlytensilespecimens 35
vailablefortestingatpresentaretheHAZtensilespecimens JUDandJTU.ThebasemetalportionofJUDwasanalyzedandtheresultsaregiveninAppendixF.Assuspected, thechemistry ofthismaterialmatchesthatofplateG-8-3.Therefore, itislikelythatalloftheHAZtensilespecimens werepreparedusingplateG-8-3material.
Theweldspecimens arecomposedentirelyofweldmetal.Asummaryoftheroomtemperature tensilebehaviordataisgiveninTable2-4.Severalvaluableinsightscanbegainedbyexamining thesedata:~'he"TN-1data(plateG-8-3testedin1990)isconsistent withthe1964CEdataforthesameplate.~TheplateG-8-1andG-8-3unirradiated tensileproperties areessentially identical.
Asdiscussed inreference
[OD85],theuncertainty intheaverageyieldstrengthchange(boy)fortheLWRdatabaseisabout3-3.5ksi,withindividual uncertainties ashighas10ksi.Therefore, forthesameheatofmaterial, wewouldexpectthatvalueswith+3-5ksiwouldindicatesimilarmaterialbehavior.
~Basedonchemicalanalysis, itisbelievedthatallHAZandweldCVNswerefabricated usingplateG-8-3.Therefore, specimenEJDismostlikelyirradiated G-8-3material.
'I
~AssumingEJDrepresents irradiated G-8-3material, andJJAwaspreparedfromG-8-1material, wewouldexpectthechangeinyieldstrengthtobelargerfortheJJAspecimen.
Theseassumptions areconsistent withthe)datagiveninTable2-4.Acomparison ofthebT30usingthereference
[OD85]yieldstrengthcorrelation andtheRG1.99(2) modelisshowninTable2-5.~Basedontheseobservations, aplausible interpretation ofthetensiledataisthattheHAZandweld(entirely
-weldmetal)tensilespecimens werefabricated usingplateG-8-3andthebasespecimens werefabricated usingplateG-8-1material.
Thisinterpretation isconsistent withthewayinwhichtheCharpyspecimens werefabricated.
Thishypothesis mustbeverifiedinthefuturebychemicalanalysiswhenthecapsulesarewithdrawn.
37
TABLE2-4.BASEMETALROOMPERATURETENSILEPROPERTIES Unirradiated RTProertiesIrradiated RTProertiesPlateIdentification YieldStrength~ksiUltimateTensileReduction StrengthInAreaUltimateYieldTensileReduction StrengthStrengthInArea~ksi~ksiG-8-1(CE1964)G-8-3(CE1964)66.665.087.586.266'65.4TN-1(Battelle 1990)(plateG-8-3)JJAt"(300'apsule 7.98EFPY)67.4(upper)87.265.4(lower)62.579.299.765.7JDE(30'apsule 5.8EFPY)EJD<'>(Basefrom300'apsule weldCVN)76.171.196.893.366.165.1(1)Thecomposition ofJJAandJDEareunknownandmustbedetermined inthefuturewhenthesurveillance capsuleiswithdrawn.
Itiscurrently thoughtthatthesespecimens weremachinedfromG-8-1material.
(2)Thecomposition ofEJDwasnotmeasuredbutitisbelievedthatallHAZandweldCVNswerefabricated usingplateG-8-3.38
TABLE2-5.CHANGEINYIELDSTRENGTHANALYSISIrradiated SpecimenIdentification MaterialIdentification NiCuComosition"',Cry ksiYieldRGl.99(2)StrengthModelModelJJA0.230'112.69244EJDG-8-3"'.18 0.566.14137(1)Lukensladelanalysis.
(2)Thesearethepostulated materials usedtofabricate thespecimens.
Theactualcomposition mustbeconfirmed bychemicalanalysis.
(3)Bothspecimens arefromthe300'apsule withafluenceof4.78x10"n/cm'.39 if,HIftpjpp
.3ChaDataAnalsisAppendixHcontainsalloftheCharpydatagenerated todate.Theunirradiated 1964dataforthebeltlineplates(L-Torientation) wasfitusingtheSAMMcFRACcode[MC89].TheplotsaregiveninAppendixH.1andtheindicesaresummarized inTable2-6.Additional testswereconducted onplateG-8-3usingspecimens withboththeL-TandT-Lorientation.
TheL-TtoT-Lorientation changeresultsinanaverageupwardshiftof24'FoftheCharpycurveatthe30ft-lblevel.Thesedataaresummarized inTable2-7.Oneconcernraisedbythedatapresented inTable2-7istherelatively lowUSEexhibited byplateG-8-3testedintheT-Lrientation.
Analysesshouldbeconducted inthefutureto~~determine theradiation damageeffectsontheUSEdecrement.
Theirradiated basemetaldatafromthe300and30degreecapsulesandtheweldandHAZdatafromthe300degreecapsulewerefitusingtheMcFRACcode,andtheresultsarepresented inAppendixH.2.Asdescribed earlier,itisbelievedthatthebasemetalspecimens weremachinedfromplateG-8-1.Inordertofurtherconfirmthishypothesis, sixspecimens werereconstituted usingbasemetalfromthe300degreecapsuleHAZCharpyspecimens.
Thesedataarealsopresented inAppendixH.2.Itisbelievedthatthesespecimens werepreparedusingplateG-8-3material.
Theirradiated materialCharpyindicesand30ft-lbshifts40
resummarized inTable2-8.Plotsshowingtheeffectofirradiation ontheCharpyshiftareshowninFigures2-8through2-10.FluxandfluencedataareprovidedinAppendixK.Thesedataconfirmthehypothesis concerning thematerialmix-up.AsshowninTable2-8,themeasuredshiftfortheG-8-1materialishigheratthehigherfluence.Also,theG-8-3shiftisconsistent withthelowerCucontent.ThemeasuredBT~~sfortheG-8-3andG-8-1materials arewithintheRG1.99(2) twosigmaconfidence band.Overall,theCharpydataconfirmthechemistry datatrends"'whichshowthatthesurveillance capsulebasemetalspecimens camefromplateG-8-1andtheHAZandweldspecimens werefabricated usingG-8-3basemetal.41 It, TABLE2-6.SUMMARYOF1964BASELINECHARPYIMPACTINDICES(L-TOrientation)
PlateIdentification 30ft-lb50ft-lbTransition Temperature Transition Temperature UpperShelfEnergy~F~F~ft-1bG-307-10G-307-4G-307-3G-8-3/G-8-4 G-8-1-3.9-0.5-14.0-26.57.933.954.933'14.449.999.0<"81.5103.299.586.7~'>>(1)Insufficient datatodetermine thetemperature dependence oftheuppershelf.TheUSEwastakentobetheaverageofthehighesttemperature test.Thesedatawerejudgedtobeuppershelfbasedontheperformance ofothermaterials.
42
TABLE2-7.SUMMARYOFCHARPYIMPACTPROPERTIES FORUNIRRADIATED BASEMETALPLATEG-8-3/G-8-4 Orientation Remarks30ft-lb50ft-lbUpperTransition Transition ShelfTemperature Temperature Energy(F)'F)(ft-lb)'-T'(1987)'Archive(1987)-21108L-T(1964)C.E.Data(1964)-26.5T-L(1990)Archive(1990)-0.214.446.599.568.343 4
ABLE2-8.SUMMARYOFCHARPYIMPACTPROPSFORIRRADIATED MATERIALS FROMTHENIMILEPOINT1REACTORMaterialFluence(E>1.0mev)(n/cm2)30ft-lbTransition Temperature (F)RG1.99(2)SHIFT50ft-lbUpperTransition ShelfTemperature Energy(F)(ft-lb)G-8-1G-8-1(>>(300'ase)
Change4.78z10~74.78x10"7.987.279.344.049.9132.882.986.7(2)946'(2)G-8-1(')(30'ase)Change3.60x10"3.60x10>>55.137.610050.1G-8-3G-8-3(')(300'apsule)
Change4.78z10"4.78x10"-26.5-15.311.237.214.422.07.699.5-100.0(')
(1)Basematerialfromthe300and30degreecapsulesbelievedtobeG-8-1materialbasedonchemistry andmechanical propertytrends.BasefromweldorHAZbelievedtobeG-8-3material.
(2)Theuncertainty inthepre-andpost-irradiation USEdataishigh.Therefore, noconclusion canbedrawnatthistimeconcerning theUSEdecrement.
(3)Insufficient datatodetermine theUSE.44
NINEMILEPOINTUNIT1PLATEQ-8-1SHIFTAT5,6X10+a1?(H/Clio+2) 120100II-LL80Q6040Q20A~(+wUNIRRADIATEDEXP.DATAIRRADIATED EXP.DATAWEIBULLFITTRANSITION HYPERBOLIC TANGENTFITWEIBULLFITTRANSITION HYPERBOLIC TANGENTFIT-100-50050'I00'I50200250TESTTEMPERATURE (F)Figure2-8EffectofIrradiation onPlateG-8-1AfteraFastFluenceof3.6x10'/cm45
NINEMILEPOINTUNITIPLATEC-8-1SHIFTAT4.8X10+a17(N/CMae2)
EXP.DATA120100ClII-LL80CI60IRRADIATED EXP.DATAWEIBULLFITTRANSITION WEIBULLFITUPPERSHELF40V20HYPERBOLIC TANGENTFITQfEIBULLFITTRANSITION 0HYPERBOLIC
-50050100150200250300350TANGENTFITTESTTEMPERATURE (F)Figure2-9EffectofIrradiation onPlateG-8-1AfteraFastFluenceof4.78x10"n/cm'6
NINEMILEPQINTUNIT1e'NIRRADIATED PLATEQ-S-SSHIFTAT4.8X100017(N/Cllao2)
EXP.DATA120IRRADIATED EXP.DATA100II-LL8060gjeWEIBULLFITTRANSITION WEIBULLFITUPPERSHELF40V200g.'g<HYPERBOLIC TANGENTFIToaooooooooooooooo Q(EIBUUFITTRANSITION 0-100-50050100'I50200250TESTTEMPERATURE (F)-.----HYPERBOLIC TANGENTFITFigure2-10Effectofirradiation onPlateG-8-3AfteraFastFluenceof4.78x10"n/cm'7 "iill4 2.4HARDNESSDATAANALYSISNRockwellBandChardnesstestswereperformed ontheunirradiated plateG-8-3materialandCharpyspecimens fromthe300degreecapsule.ThesedataareprovidedinAppendixI.TheRockwellCtestswereperformed in,additiontotheRockwellBtestsbecausethedatafellhighontheRockwellBscale.Futurertestsonmorehighlyirradiated materialmayrequiretheuseoftheRockwellCscale.ThebrokenCharpyspecimens wereindentedafterfracturetesting.Specimens whichexhibited littleplasticdeformation duringCharpytestingwerechosensothatthespecimenwasproperlysupported inthehardnesstestmachine.Thespecimens weretestedonthesurfacecontaining thenotchandonthesurfacesnormaltothenotch.Aslightorientation effectwasobserved.
Overall,theorientation effectsnotsignificant.
TheG-8-3unirradiated materialexhibited anaverageRockwellChardnessof10'andRockwellBhardnessof89.9.TheG-8-3specimens irradiated to4.78x10'/cmhadanaverageRockwellChardnessof13.5comparedtoanaverageof,.15.0fortheG-8-1material, andanaverageRockwellBhardness, of91.8fortheG-8-3materialcomparedto92.5fortheG-8-1material.
Therefore, thehardnessdataconfirmsthematerialmix-uphypothesis.
2.5CONCLUSION
S CONCERNING MATERIALMIX-UPBasedonacarefulexamination ofalloftheNMP-1surveillance data,thefollowing conclusions havebeenmade:~Amaterialmix-updidoccurintheNMP-1surveillance program.Thisconclusion isbasedondefinitive 48
chemicalanalysisdataandfurthersubstantiated byexamining themechanical behaviortrends.ThebasemetalCharpyspecimens werepreparedfromplateG-8-1materialandtheHAZandweldspecimens werepreparedusingG-8-3material.
TheHAZtensilespecimens werepreparedusingG-8-3platematerial.
Itislikelythattheweld(entirely weld)tensilespecimens wereproducedusingtheG-8-3material.
Basedonthemechanical behaviortrend,itislikelythatthebasemetaltensilespecimens werepreparedfromG-8-1material.
Additional analyseswillbeneededinthefuturetoconfirmthetensilematerials.
~Whenthecapsulesarepulledinthefuture,chemicalanalysesshouldbedoneonthefollowing materials toconfirmthebasemetalcomposition:
-basemetalfromCharpyweldforthe30'nd300'apsules,
-base,basefromweld,andbasefromHAZforCharpysinthe120'apsule, alltensilebasemetalspecimens.
2.6SURVEILLANCE CAPSULESA'ndC'ATERIALS Basedontheconclusions drawninSection2.5,thecurrentsurveillance capsuleinventories werereassessed andthematerialcompositions indicated.
ThesedataaregiveninTables2-9through2-11~Asstatedearlier,somespecimencompositions mustbeconfirmed inthefuture.49 0
TABLE2-9.SURVEILLANCE CAPSULEBMATERIALCOMPOSITIONS~i Specimen"Identification AllBaseMetalSpecimens AllWeldSpecimens AllHAZSpecimens Specimen~TeCharpyTensileCharpyTensileCharpyTensileBaseMetalPlateMaterialG-8-1G-8-1G-8-3n/aG-8-3G-8-3I'1)Thesematerials shouldbeconfirmed bychemicalanalysiswhenthecapsuleispulled.50
TABLE2-10.SURVEILLANCE CAPSULEA'ATERIAL COMPOSITIONS SecimenIdentification SecimenTeBaseMetalPlateMaterialE71AE12E31AE2EE2TE2UAE17E1AAE2YE1CAE1DEBKAED1ED2ED3ED4ED5ED6ED7EDAEDBEDCReconstituted CharpyBaseCharpyBaseReconstituted CharpyBaseCharpyBaseCharpyBaseReconstituted CharpyBaseCharpyBaseReconstituted CharpyBaseCharpyBaseReconstituted CharpyBaseCharpyBaseReconstituted CharpyBaseCharpyWeldCharpyWeldCharpyWeldCharpyWeldCharpyWeldCharpyWeldCharpyWeldCharpyWeldChazpyWeldCharpyWeld51G-8-1G-8-1G-8-1G-8-1G-8-1G-8-1G-8-1G-8-1G-8-1G-8-1G-8-1G-8-1G-8-3G-8-3G-8-3G-8-3G-8-3G-8-3G-8-3G-8-3G-8-3G-8-3 E
TABLE2-10.SURVEILLANCE CAPSULEA'ATERIAL COMPOSITIONS (Continued)
SecimenIdentification SecimenTeBaseMetalPlateMaterialEDDEDEJ12J13J14J15J17J1AJ1BJ1CJ1DJ1EJD1JD2JLKJL2JTAJULCharpyWeldCharpyWeldCharpyHAZCharpyHAZCharpyHAZCharpyHAZCharpyHAZCharpyHAZCharpyHAZCharpyHAZCharpyHAZCharpyHAZCharpyHAZCharpyHAZTensileBaseTensileBaseTensileBaseTensileBaseTensileWeldTensileWeldTensileHAZTensileHAZTensileHAZG-8-3G-8-3G-8-3G-8-3G-8-3G-8-3G-8-3G-8-3G-8-3G-8-3G-8-3G-8-3G-8-3G-8-3G-8-1G-8-1G-8-1G-8-1n/an/aG-8-3G-8-3G-8-3(1)ThebasemetaltensileandbasefromCharpyweldshouldbeconfirmed bychemicalanalysiswhenthecapsuleispulled.52
TABLE2-11.SURVEILLANCE CAPSULEC'ATERIAL COMPOSITIONS SecimenIdentification SecimenTeBaseMetalPlateMaterialNC01NC21NC02NC22NC03NC23NC04NC24NC05NC25NC06NC26ElJAElJBE1KAE1KBEA5AEA5BE42AE1MACharpyBaseCharpyBaseCharpyBaseCharpyBaseCharpyBaseCharpyBaseCharpyBaseCharpyBaseCharpyBaseCharpyBaseCharpyBaseCharpyBaseReconstituted CharpyBaseReconstituted CharpyBaseReconstituted CharpyBaseReconstituted CharpyBaseReconstituted CharpyBaseReconstituted CharpyBaseReconstituted CharpyBaseReconstituted CharpyBaseG-8-3G-8-3G-8-3G-8-3G-8-3G-8-3G-8-3G-8-3G-8-3G-8-3G-8-3G-8-3G-8-1G-8-1G-8-1G-8-1G-8-1G-8-1G-8-1G-8-153 "J
TABLE2-11.'SURVEILLANCE CAPSULEC'ATERIAL COMPOSITIONS (Continued)
SecimenIdentification E1UAE3TAE7EAJ2CBEDKASecimenTeReconstituted CharpyBaseReconstituted CharpyBaseReconstituted CharpyBaseReconstituted CharpyBaseReconstituted WeldBaseMetalPlateMaterialG-8-1G-8-1G-8-1G-8-3n/a,,EDLAEDMAEJTAJAEAJ1MAJ1PAJ1TAJlJAT01Reconstituted WeldReconstituted WeldReconstituted WeldReconstituted WeldReconstituted WeldReconstituted WeldReconstituted WeldReconstituted WeldReconstituted WeldReconstituted WeldReconstituted WeldTensileBase54n/an/an/an/an/an/an/an/an/an/an/aG-8-3 Pl TABLE2-11.SURVEILLANCE CAPSULEC'ATERIAL COMPOSITIONS (Continued)
SecimenIdentification SecimenTeBaseMetalPlateMaterialT02T2110TensileBaseTensileBaseTensileBaseTensileBaseTensileBaseTensileBaseTensileWeldTensileWeldTensileWeldTensileWeldG-8-3G-8-3G-8-1G-8-1G-8-1G-8-1n/an/an/an/a(1)ThebasemetaltensileandbasefromCharpyweldshouldbeconfirmed bychemicalanalyseswhenthecapsuleispulled.55
7LZMZTZNGPLATEADJUSTMENT METHODOLOGY Asdescribed earlier,theNMP-1basemetalsurveillance programconsistsofirradiation andtestingofCharpyspecimens fabricated frombothG-8.-1andG-8-3platematerials.
Thelimitingplate,fromaradiation damageperspective, isthatplatewiththehighestcopperandnickelcontent.AsshowninTable2-3,theplateG-307-4hasthechemistry whichresultsinthelargestRG1~99(2)chemistry factor.Aswithmanyplantsinoperation today,thesurveillance materialisnotthelimitingmaterial.
Therefore, inordertobeabletousethesurveillance datainP-Tcurvecalculations, wearerecommending theuseofa"correction factor"whichadjustsforthechemistry differences.
Znessence,twofactorsaredeveloped, (oneforG-8-1materialandoneforG-8-3material) andusedtomapthesurveillance dataintoplateG-307-4equivalent data.TheRG1.99(2)chemistry factordatabasewasusedtoprovidethecorrection terms.TheresultsaregiveninTable2-12.Theadjustment factorderivedisasfollows:QZg(0.28-o.3.ogE)[gpG-307-4 gag]+30[]30where,f=fastfluenceinunitsof10"(n/cm)CF=RG1.99(2) chemistry factorbT~30measured30ft-lbshiftj=G-8-1orG-8-3material
TABLE2-12.SURVEILLANCE DATAADJUSTMENT FACTORSAdjustment Factor"'o ObtainPlateG-307-4MaterialEuivalentDataFluence~ncm'easured ShiftFEquivalent PlateG-307-4ShiftFG-8-1G-8-1G-8-3FF(19.9)+hT3FF(19.9)+b,TFF(43.7)+bT34.78x10>>3.6Qx10~74.78x10"79~355.111.285.060'23.7(1)FF=f~',f=fastfluence-.10'n/cm')
57
TABLE3-1BeltlineMaterialRT>>~DataforNineMilePointUnit1PlateG-8-3/G-8-4 G-8-1G-307-3G-307-4G-307-10RTggg(TL)OF3ll)36284020a,OFPlateN5214/5G13F 86054B/4E5F 1248/4K13F 1248/4M2F RTgpgoF-50-50-50-50GzoF17171717(1)Measuredinaccordance withASMEcode.58
~II'hl'
3.0 BELTLINEMATERIALINITIALRTTDETERMINATION
Ananalysiswasperformed toestablish bestestimatevaluesfortheRT>>Tand6,termsusedinRegulatory Guide1.99(Rev.2)calculations fortheNineMilePointUnit1(NMP1)beltlineplateandweldmaterials.
Withtheexception ofplateG-8-3,sufficient dataarenotavailable todetermine theRT>>Tinstrictconformance withthecurrentASMEcoderules.Inthecaseoftheweldmetals,onlythreeunirradiated Charpytestswereconducted at10'F~Charpytransition behaviordataareavailable fortheplatematerials, however,therearenodropweightdata(forallofthebeltlinematerials exceptforplateG-8-3/G-8-4).
Themethodology usedisdescribed indetailinAppendixL.Theresultsofthesecalculations arepresented inTable3-1.notbedetermined inaccordance withthecurrentASMEcodeAsdescribed inreference
[MA87],theplateG-8-3RT>>,couldrequirements becausetheCharpyspecimens testedatthattimehadanL-Torientation.
Therefore, Charpy(Appendix H)anddropweight(Appendix J)testswereperformed tofirmlyestablish theinitialRT>>TforplateG-8-3.Specimens machinedfromplateG-8-3withtheT-Lorientation weretestedaspartofthecurrentwork.Thesedataarepresented inAppendices H.1.2andH.1.3andtheresultsaresummarized inTable2-7.TheL-TtoT-Lorientation changeresults'n anupwardshiftoftheCharpycurveof21F.Thisisconsistent withdataintheliterature
[EP82].TheCharpyanddropweightdataaresummarized inAppendices HandJ,respectively.
TheNDTdetermined bydropweighttestsfor59
plateG-8-3is-25F.ThreeCharpyspecimens withtheT-L~~~orientation exhibited 50ft.-lbs.ofabsorbedenergyat57F.Therefore, theRT>>~forplateG-8-3is-3F.60
.0ARCHIVE'OSIMETRY ANDTHERMALMONITORENCAPSULATION Insurveillance capsuleirradiations, itisprudenttostoredosimetry andtemperature monitormaterials incaseitisnecessary toresolveconflicts inthedataobtained.
Withthesematerials, calibration experiments canberepeated; and,ifnecessary, neutronbenchmark irradiations canbeconducted.
Shoulddefinitive follow-on experiments ofthistypebeneeded,theavailability ofthesearchivematerials canbeacrucialfactorinthesuccessofthedosimetry analysis.
Tothisend,archivematerials, identical tothoseusedinCapsulesA'ndC',havebeenprovidedtoNiagaraMohawk.Tables4-1through4-4summarize thesuppliedarchivematerials forRMneutrondosimeters, SSTRneutrondosimeters, MW-TMsandSSTR-TMs, espectively.
Thesematerials weresealedinsideanevacuated quartztubeandsenttoNiagaraMohawk[MA89].61
TABLE4-1.ARCHIVERMANDHAFMNEUTRONDOSIMETRY MATERIALS Dosimeter MaterialTypePONo.BatchVendorFormQuantityFeNi0744826/17944MRC0.020DWireSERoll2SemiElement0'20DWire2inches2inchesCuRM,HAFM19047CPI3054ComincoAm.0'20DWire-2inchesCo/AlAl19046Cat614ReactorExp.0.020DWire19045SERoll1SemiElement0.020DWire44451SCBar26SigmundCohn0.020DWire2inches2inches2inchesNOTES(2)Archivesamplesofthevanadiumencapsulated fissionable RMdosimeters arenotprovided; thoseincludedinCapsuleSetsA'ndC'retobeusedforthispurpose.SamplesoftheBe,Fe,andNiHAFMdosimeters arenotprovided.
62
TABLE4-2.ARCHIVESSTRNEUTRONDOSIMETRY MATERIALS TYpeSSTRIDDiameterIsotopeIDSSTRDeositTotal(pg)MassDensity(pg/cm')MicaMicaMica2192311990.1680.1680.168235-U238-U237-Np2192311990.8267.6510.398.8181.6110.8(1)Threeadditional micaSSTRsof0'68inchdiameterhavebeensuppliedascontrolsamplestobestoredalongwiththearchiveSSTRdosimeters 219,231,and199.ThesecontrolSSTRsareunnumbered andarenotincontactwithanydeposit.(2)TheouteraluminumfoilofthearchiveSSTRpackagesaremarked.asfollows:U-235islabeled5;NP-237islabeled7;U-238islabeled8.63
TABLE4-3.ARCHIVE-MW-TM MATERIALS Composition, Wt%MeltingTemperature LengthDiameter(F)(in.)(in.)Source80Au,20Sn90Pb,5Ag,5Sn97.5Pb,2.5Ag97.5Pb,1.5Ag,1.0Sn98.8Cd,1.2CU5365585805884980.250.250.250.250.250.0300.0900.0840.0840'83IndiumCorp.ofAmericaBabcock&WilcoxBabcock&WilcoxBabcock&WilcoxBabcock&Wilcox.64
TABLE4-4.ARCHIVESSTR-TMMATERIALS KMaterialQuantityDescription andPurposesIndiaRubyMuscovite MicaIndiaRubyMuscovite MicaupraIIQuartzGlassPre-annealed andpre-etcheddisks15/16in.indiameterandabout0.004in.thick.Representative materialforSSTR-TMandSSTRdosimetry.
C1andC2asdescribed inTable4-2.Neededasstandards whenmicaSSTR-TMsareremovedfromthereactor.3/8in.thicksquaresabout40milsthick.Representative materials usedinSSTR-TMs~SupraIIQuartzGlassCand3Care3/8in.squaresabout40milsthick.Theyaredescribed inTable4-2.Neededasstandards whentheSupraIIquartzglassisremovedfromthereactor.65 J<<.~
.0SUMMARYANDCONCLUSIONS Basedoncarefulexamination ofalldataavailable, ithasbeenconcluded thatamaterials mix-uphasoccurredintheNMP-1surveillance program.Forthecapsuleswhichhavebeenpulledtodate,ithasbeenconclusively demonstrated thatthebasemetalCharpyspecimens werefabricated fromplateG-8-1,andnotplateG-8-3asoriginally specified.
ThebasemetalportionofCharpyweldandHAZspecimens iscomposedofplateG-8-3material.
FuturechemicalanalysisofcapsuleBmaterials andallbasemetaltensilespecimens areneededtodetermine thecomposition "ofthesematerials.
Itislikelythatthebasemetaltensilespecimens werefabricated fromplateG-8-1,andthesameapproachtospecimenfabrication forcapsuleBwasusedasthatusedforapsulesAandC.Asaresultofthesefindings, thisreportwaspreparedandisintendedtoserveasthenewbaselinesurveillance documentforNMP-1.Allofthedataneededtoconduct.thesurveillance programiscontained herein.Shouldfutureanalysisrequireexamination ofearlierreports,thesestudiesshouldbeconducted withcautionsincetheearlierreportsareknowntocontainerrorsrelatedtothematerialmixup.Inresponsetothesefindings, itisrecommended thatnewP-Tcurvesbeprepared.
ThecurrentP-Tcurvesareoverlyconservative sincethemeasuredshiftwasdetermined usingG-8-1irradiated materialandG-8-3unirradiated material.
Theactualmeasuredshifts,whichhavebeencorrected toaccountforthe66 SgpCIll.-s+hl~"
aterialmix-up,areconsistent withthe[RG1.99(2)]model.Therefore, itisrecommended thatNiagaraMohawkpreparenewP-Tcurvestoreplacethecurrentoverlyconservative curves.5.1BenefitstoNiaaraMohawkAsubstantial amountofworkhasbeenperformed undertheNMP-1surveillance programsinceremovaloftheAandCcapsules.
CapsuleAwasremovedin1979afteravesselexposureof5.8effective fullpoweryears(efpy)andcapsuleCwasremovedin1982afteravesselexposureof8efpy.Theculmination ofthis"workisreported"herein andhasresultedinthefirmre-establishment oftheNMP-1surveillance program.Abriefsummaryofthepastproblems, resolution oftheproblems, andtheenefitsofthisworktoNiagaraMohawkarepresented below.5.1.1PLEXSurveillance ThecapsuleC(at300azimuth)analysisshowedabasemetalBT3Qof114Fatafastfluenceof4.78x10"n/cm.Inordertoconfirmthisfinding,the30degreecapsulewasanalyzedandabasebetalbT>>of90F=wasmeasuredatafastfluenceof3.6x10'/cm.ThesedataexceededtheRG1.99(2)prediction byover3standarddeviations.
Inresponsetotheconcernraisedbythesefindings, asurveillance capsulere-insertion programwasundertaken.
Twonewcapsulescontaining bothirradiated andunirradiated (fromarchive)specimens werere-inserted.
Thesearethefirst J,tl apsuleseverdesignedspecifically togenerateplantlifeextension data.ThesecapsulesareadvancedBWRcapsulesandcontainadvanceddosimetry, temperature
- monitors, andinnovative mechanical testspecimens.
ThebenefittoNiagaraMohawkwillbeend-of-license andlifeextension data'hese datacanbeusedinplantspecificdamagemodelstoyieldaccurateestimates oftheK,~curveshiftforP-Tcalculations.
5.1.2MaterialMix-UResolution Measurement andcarefulstudyofthematerialchemistry data"andas-'builtdrawings ledtothediscovery thatamaterialmix-uphadoccurredintheNMP-1surveillance program.Themechanical behaviortrendswereexaminedandfoundtoconfirmthechemistry ata.Asaresult,theplateG-8-3(Cu=.18,Ni=.56)measuredshift(hT>>),originally thoughttobe114F,wascorrectly established tobeto11Fatafluenceof4.78x10n/cm.Sincethesurveillance programisirradiating twoplatematerials (G-8-3andG-8-1),theCharpybT,~canbedetermined forplateG-8-1(Cu=.23,Ni=.51)aswell.ForplateG-8-1,bT~,=79Fatafluenceof4.78x10'/cmandET3Q55Fatafluenceof3.6x10"n/cm.Therefore, theresolution ofthematerialmix-uphasresultedinthreemeasuredCharpybT~,sinsteadoftwo,andthemeasuredshiftsaremuchlowerthanbelievedearlier.68
.1.3LimitinBeltlineMaterial~~Aswithmanyplantsinoperation today,theNMP-1surveillance materialisnotthelimitingbeltlinematerial~Basedonthechemistry dataandanalysisofinitialRT>>~forthebeltlinematerials, plateG-307-4isthelimitingmaterial.
Therefore, inordertoenableuseofthesurveillance datainP-Tcurvecalculations, acorrection factorwhichadjustsforthechemistry differences betweenG-307-4andthesurveillance materials (G-8-3andG-8-1)hasbeendeveloped.
ThisapproachallowsNiagaraMohawktouseplant-specific datatodetermine the"ART>>~'t'rendcurveinaccordance withtheguidanceprovidedinRG1.99(2).~1'RTofBeltlineMaterials TheRT>>~ofthebeltlinematerials, withtheexception ofplateG-8-3,cannotbemeasuredinconformance withtheASMEcoderequirements.
Avalueof+10Fhasbeenassumed.ShouldtheNRCdecidetoquestiontheassumption, NiagaraMohawkwouldbevulnerable.
However,arigorousstatistical methodwhichisconsistent withtheintentoftheASMEcodewasusedtodetermine theRT>>~ofallofthebeltlinematerials.
Xnthecaseofthewelds,ithasbeendemonstrated thatthe+10Fassumption isoverlyconservative, andfortheplates,the+10Fassumption isnon-conservative.
AlthoughtheRT>>~forthelimitingplate(G-307-4)wasfoundtobe40F,theanalaysis enablesidentification oftheactuallimitingmaterial~Following theRG1.99(2)69 V'j.'~Jl,
- approach, theweldmaterials wouldhavebeenlimitingsincetheregulatory guiderequirestheuseof.35%Cuand1.0%Niincaseswheremeasuredchemistry dataarenotavailable.
Thischemistry assumption leadstoachemistry factorof272fortheweldmaterialasapposedto174forthelimitingplate.Therefore, weldmaterialwouldhavebeenlimitingandtheARTgTfortheweldwouldhavebeenlargerthanthatfortheplateiftheRTND~analysishadnotbeendone.5.1.5SinificantEconomicBenefitsinHdro-test'"Thehydro-test temperature hasbeenreducedsignificantly
(-20F)asevidenced bythenewP-Tcurvewhichwasdeveloped usingCharpyshiftdataappropriately corrected forthematerialmixup,[MA91].Thetechnical specitication definesthecoldshutdowncondition asthereactorcoolanttemperature beinglessthan(orequalto)212'Fandthehotshutdowncondition isdefinedbyatemperature greaterthan212'F.Hydro-test inthehotshutdowncondition requierslongertimetowarmupthewaterand,inaddition, hotshutdownmustbescheduled asacriticalpathactivity.
Hydrotesting inthehotshutdowncondition requiresthattheECCSsystemmustbeoperational, thesafetysystemsurveillance mustbecompleteandtheprimarycontainment mustbeisolated.
Inthehotshutdowncondition, leakdetection ismoredifficult andtheinspection conditions aremoresevereforpersonnnel.
Ontheotherhand,coldshutdownrequireslesstimebecausethehydro-test canbedoneinparallelwithother70 I'htf~
utageactivities.
Savingonedayorevenonehalfdayofoutagetimeresultsinasignificant economicbenefittoNMP-1.5.2FutureDirection NiagaraMohawkshouldconsiderseveralactionsforthefuture.Thegeneraldirection shouldbetoestablish astrongplantspecificsurveill'ance programandavoidtheuseofoverlyconservative "generic" trendcurves.IftheNMP-1andOysterCreekdatawereshared,therewouldbesufficient dataavailable todevelopaplantspecifictrendcurve.Thisapproachcanbe'implemented withintheguidelines ofRG1.99(2)sincetheregulatory guideallowstheadjustment ofthehRT>>~analytical modelincaseswheretwoormorecrediblesurveillance dataarevailable.
Therefore, itisrecommended thatNMPCestablish acooperative programwithGPUNuclearassoonaspossible.
Withregardtothesurveillance
- capsules, theBcapsuleshouldbepulledassoonaspossibleandtested.Seriousconsideration shouldbegiventore-inserting acapsulewhichcontainsadvanceddosimetry, temperature
- monitors, irradiated andunirradiated mechanical propertyspecimens, andunirradiated fracturetoughness specimenblanks.Fracturetoughness specimenblankswererecentlyplacedintheOysterCreekre-insertion capsule.ItwouldbebestifthenewcapsuleBtargetfluenceswerecompatible withtheOysterCreekfluences.
Inordertobecertainoffutureregulatory acceptance, itisrecommended thatthelimitingplate,adjustment factorbeused71 1
'nthenextP-Tcurveupdate.Itisessential thatthisapproachbeacceptedbytheNRCsinceitisimportant toestablishing aplant-specific surveillance program.Itisalsosuggested thatworkbeundertaken tocombinetheNMP-1andOysterCreeksurveillance programsandtheexistingdatabeusedtoestablish aplantspecifictrendcurve.Itislikelythatthecurrentoverlyconservative modelassumptions canberelaxedandfuturehydrotest andP-Toperating windowsopened.TheNRCsubmittals shouldbecoordinated andsimilarities ofthetwoprogramsnoted.Asubmittal whichrequestsNRCapprovalforcombining thedata'asesshou'ld'bepreparedinthenearfuture.Anoverallplanforthecombinedprogramwhichoptimizes thewithdrawal scheduleshouldbeprepared.
72 I
6~0REFERENCES
[APED][ASTM261]
[ASTM263]
[ASTM482]
[ASTM522]
[ASTM523]
[BU85]"Modified Surveillance ProgramforGeneralElectricBWRPressureVesselSteels",GeneralElectricReportAPED-5490,April,1967."Standard MethodforMeasuring NeutronFlux,Fluence,andSpectrabyRadioactiviation Techniques",
ASTMDesignation E261-77,AnnualBookofASTMStandards, Part45(1982),pp930-941."Standard MethodforDetermining Fast-Neutron FluxDensitybyRadioactivation ofIron",ASTMDesignation E263-82,AnnualBookofASTMStandards, Part45(1982),pp951-956'Standard GuideforApplication ofNeutronTransport MethodsforReactorVesselSurveillance",
ASTMDesignation E482-82,AnnualBookofASTMStandards, Part45(1982),pp1088-1092.
"Standard MethodforCalibration ofGermanium Detectors forMeasurement ofGamma-Ray EmissionofRadionuclides",
ASTMDesignation E522-78,AnnualBookofASTMStandards, Part45(1982),pp1139-1144.
"Standard MethodforDetermining Fast-Neutron FluxDensitybyRadioactivation ofCopper",ASTMDesignation E523-82,AnnualBookofASTMStnadrads, Part45(1982),pp1145-1152.
Burns,L.S.,Rogers,D.R.,"FastNeutronAxialPressureVesselCalculations forNineMilePointUnitNo.1",October28,1985'BUG75]BUGLE80Couled47Neutron20Gamma-RaP3CrossSectionLibrarforLWRShieldinCalculations, RSICLibraryDLC-75.[CE65][CE90]Combustion Engineering Drawing,Inspection RevisionNo.1,MaterialIdentification forNiagaraMohawkRV,DrawingE231-582-1, 9/20/65."NiagaraMohawkPowerCorporation NineMilePointUnit1ReactorVesselWeldMaterials",
ReportNo.86390-MCC-001,ABBCombustion Engineering NuclearPowerCombustion Engineering, Znc.,Windsor,Connecticut, June,1990.73
[DOT75]RSICComputerCodeCollection, DOT4.3One-andTwo-Dimensional TransortCodeSstem,Radiation Shielding Information Center,OakRidgeNationalLaboratory, OakRidge,Tennessee, November17,1975.[EP82]"NuclearReactorVesselSurveillance DataBase",EPRINP-2428,June1982[GO79][HI69]Gold,R.,"ProcessforMeasuring Temperature withSolidStateTrackRecorders",
U.S.LettersPatent4,167,109, September ll,1979.Higgins,J.P.andBrandt,F.A.,"Mechanical PropertySurveillance ofGeneralElectricBWRVessels",
GeneralElectricReportNEDO-10115 (July,1969).[HO65a]Howard,A.,"Surveillance TestProgramforNiagaraMohawkReactorVessel",Combustion Engineering, Contract164,Rev.2,1965.[HO65b]'Howard,"D.A.,Fabrication TestProgramforNiagaraMohawk-213"BWRGeneralElectricCompany,DEA.HowardCombustion Engineering,
- December, 1965.[LE64][LO84]Lewis,S.R.,WeldingMaterialQualification toRequirements ofNAVShips250-1500-1, Metallurgical R&D,Combustion Engineering, Sept~1964-Feb.1965.Lowry,L.M.,etal,"Examination, Testing,andEvaluation ofIrradiated PressureVesselSurveillance Specimens fromtheMonticello NuclearGenerating Plant",FinalReportfromBattelle-Columbus toNorthernStatesPowerCompany(March15,1984).[LO84]PrivateCommunications, JohnConwayofNiagaraMohawkPower-Corporation toL.M.LowryofBattelle's ColumbusLaboratories, March24,1984andMay2,1984.[LU64][LU85]LukensTestCertificates, fromLukensSteelCompanytoCombustion Engineering, May-July, 1964.LettertoMr.TomCainefromJ.FredricLongenecker, "CopperContentofReactorVesselPlates",October9,1985.[MA85a]Manahan,M.P.,Failey,M.P.,andLandow,M.P.,"Examination andEvaluation oftheNineMilePoint-Unit 130DegreeAzimuthal Surveillance Capsule,finalreportfromBattelletoNiagaraMohawkPowerCorporation, April23,1985.74 V
[MA85b][MA85c]LettertoMr.RayPasternak fromDr.MichaelP.Manahan,"RadialFluxProfilesforNineMilePointUnit1",June24,1985.LettertoJ.A.Zwolinski fromMr.C.V.Mangan,NiagaraMohawkPowerCorporation, 300ErieBoulevard West,Syracuse, NY13202,
Subject:
DocketNo.50-220,DPR-63,December10,1985.[MA86]Manahan,M.P.etal,UnitedStatesPatent4,567,774, "Determining Mechanical BehaviorofSolidMaterials UsingMiniature Specimens",
[MA87]Manahan,M.P.,"Surveillance CapsulesA'ndC'orNineMilePoint-Unit1",September 30,1987,DraftFinalReporttoNiagaraMohawk.[MA89]LettertoMr.YangSoong,NiagaraMohawkPowerCorporation, fromDr.MichaelP.Manahan,
Subject:
Proposal/Agreement No.723-R-2326
'MA91]Manahan,M.P~,"Pressure Temperature Operating CurvesforNineMilePointUnit1,"FinalReportdatedJanuary,1991.[MC89]"SAMMcFRAC:Statistical AnalysisMethodology forMechanics ofFracture",
PCVersionDeveloped October,1989.[NE85]LettertoDr.MichaelP.,Manahan fromJ.E.Nestell,MPRAssociates, Inc.,1050Connecticut Avenue,Washington, D.C.20036,
Subject:
NineMilePointUnit1(NMP-1)ReactorVesselSurveillance
- Capsules, datedSeptember 17,1985.(Revised11/27/85).
[NMFS][NMTS]NineMilePointUnit1,FinalSafetyAnalysisReportNineMilePointUnit1,Technical Specifications, Section3.2.2,MinimumReactorVesselTemperature forPressurization, updated1987.[OD85]Odette,G.R.,Lombrozo, P.M.,andWullaert, R.A.,"Relationship BetweenIrradiation Hardening andEmbrittlement ofPressureVesselSteels,"EffectsofRadiation onMaterials:
TwelfthInternational Syposium,ASTMSTP870,F.A.GarnerandJ.S.Perrin,Eds.,AmericanSocietyforTestingandMaterials, Philadelphia, 1985,pp.840-860.75
[RO80]Roberts,J.H.,Gold,R.,andRuddy,F.H.,"ThermalAnnealing StudiesinMuscovite andinQuartz",Proceedings oftheTenthInternational Conference onSolidStateNuclearTrackDetectors, Lyons,France,July2-7,1979,PergamonPress,Oxford,(1980)177.[ST64]Stone,W.A.,Mechanical TestReport(contract 164NiagaraMohawk),fromW.A.StoneMetallurgical R&DDepartment, Combustion Engineering, July-October, 1964.[ST84]Stahl,D.,etal,"Examination, Testing,andEvaluation ofIrradiated PressureVesselSurveillance Specimens fromtheNineMilePointNuclearPowerStation",
FinalReportfromBattelle-Columbus toNiagaraMohawkPowerCorporation (July18,1984).[ST84]Stahl,D.,Manahan,M.P.,Failey,M.P.,Landow,M.P.,Jung,R.G.,andLowry,L.M.,"300DegreeCapsuleExamination, TestingandEvaluation ofIrradiated PressureVesselSurveillance Specimens FromtheNineMilePointNuclearPowerStation",
NiagaraMohawkPowerCorporation, July18,1984.76
APPENDICES
APPENDIXADESCRIPTION OFCAPSULESA'NDC'-2
APPENDIXA.1DESCRIPTION OFCAPSULESA'NDC'hisappendixofthereportdescribes thecontentsandlayout-of Cap-sulesA'ndC'.Thesecapsulesareconsidered tobeadvancedboilingwaterreactor(BWR)surveillance capsulessincetheycontainmechanical
- behavior, temperature
- monitors, anddosimetry, whicharenotfoundinthecurrently usedBWRcapsules.
Thecapsuleinventory andassemblydrawingsareprovidedinAppendixAandtheas-builtphotographs areprovidedinAppendixB.Detailsconcerning thecapsuledesignandfabrication ofthecontentsareprovidedbelow.Battelleestablished asubcontract withMetrology ControlCorpora-,.tion(MCC)toprovidetheradiometric monitors(RMs),heliumaccumulation fluencemonitors(HAFMs),solidstatetrackrecorders (SSTRs),meltwires,andsolidstatetrackrecorder-temperature monitors(SSTR-TMs).
MCCenteredintoacontractwithWestinghouse HanfordCompany(WHC)forU.S.Department ofEnergy(DOE)dosimetry servicesoftheNationalReactorDosimetry CenterRDC)attheHanfordEngineering Development Laboratory (HEDL)andtheheliummassspectrometry laboratory atRockwellInternational Rocketdyne Division(RI-RD)(Mc87a).Allotherworkdescribed inthisreportwasperformed byBattelle.
DosimetrInordertodetermine neutronexposurelevelsthroughout thereactorvessel-geometry withaminimumuncertainty, itisnecessary toemployacom-binationofrigorousanalytical techniques andspectraldosimetry.
Inparti-cular,neutrontransport calculations coupledwithadvancedneutronmonitorsetslocatedinsurveillance capsulesprovideanimprovedapproachtothedetermination ofbothaxialandazimuthal exposuregradients withinthepres-surevessel.Itisfeltthatthisapproachissuperiortothecurrentdosi-metrypracticeinwhichonlywiresofFe,Cu,andNiareincluded.
Thedesignphilosophy usedforthedosimetry wastorelyheavilyonproven,time-tested technology whichiswhyspectralRMswereusedwidely.owever,asabackup,recognizing thatthetechnology willadvanceoverthextdecade,wehaveincludedHAFMsandSSTRs.TheSSTRsareintegrating A-3 I~
dosimeters whichaccumulate fissiontracksthroughout theirradiation.
Automated trackcountingisunderdevelopment andcountingmethodswillundoubtedly improveoverthenextfewyears.TheHAFMsarewirescomposedofmaterialwithanappropriate (n,a)crosssection.Theheliumaccumulates inthematerialwithincreasing fluenceandcanbemeasuredusinganyoneofavarietyofdestructive chemicalanalysistechniques.
Thissectionofthereportgivesacompletedescription oftheadvanceddosimetry fabricated forMCCbytheNRDCatHEDLtoprovidetwosetsofdosimetry atthreeaxiallocations persetforCapsulesA'ndC'.Onesetistobeexposedfor-14efpyyearsandthesecondsetfor-24efpyyears.Thisadvanceddosimetry hasbeenpreparedbytheNRDCatHEDLwiththeassis-tanceofRI-RD.Theadvanceddosimetry servicesprovidedaredelineated inTable1ofAppendixC.Assistance was.alsoprovidedbytheNRDCtoMCCinthepreparation ofpurchaseorderspecifications fortheacquisition andfabrica-tionoftheouterstainless steel(SS)andinnerGadolinium (Gd)shieldcapsulesaswellasthesubsequent gAofthefabricated parts.~~Capsuleidentification (etchedontheouterSSsurface)isasspecified byBattelle.
Anticipated fluencelevelexposures of-14efpyand-24efpyaredenotedbyAandC,respectively.*
-BareandGadolinium-covered dosimeters aredesignated byBandG,respectively; andthetop,midplane, andbottomaxiallocations areindicated by1,2,and3,respectively.
Afourthidentifying letter(AorB)wasusedwhenallthedosimetry forasinglelocationcouldnotbeloadedinto'asinglecapsule;e.g.,capsulesAG1AandAG1B.Asadditional examplesofthenumbering system:.AG1Bindicates an"A"fluenceexposure-Gadolinium Covered-Topposition-andsecondCapsuleBwithHAFMdosimetry; andCB3woulddenotea"C"fluenceexposure-Bare-Bottomaxiallocation.
Inallinstances, thefirstletteroftheidentifying numberislocatedatthebottomendofthedosimetry capsule.Thematerials usedandthe18individual capsulesaredescribed inAppendixC.Thedosi-metryholdersandcontentsareshowninAppendixD.Eachofthe18capsulescontainsoneormoreofthefollowing typesofdosimeters:
(1)RMs,(2)HAFMs,(3)SSTRs,and(4)SSTR-TMs.
Note:TheBattelledesignation forAandCareA'ndC',respectively.
A-4
~'
A.2TemeratureMonitorsTwodifferent typesofpassivetemperature monitors(TMs)weresuppliedtoobserveirradiation temperature.
Asetofconventional meltwire(NW)TMswereusedtocoverthetemperature rangefrom536upto598..F;Thesemonitorsareprovenandtime-tested andtherefore aretheprimarysourceoftemperature monitoring.
Adetaileddescription oftheseMW-TNsisprovidedbelow.AsecondsetofTMsweresuppliedwhicharebasedontheannealing properties ofSSTRs.SSTR-TNsareanewandnovelmean'sofpassively observ-ingirradiation temperature (Go79).Adetaileddescription oftheseSSTR-TMsisprovidedinSectionA.2.2below.Theadvantage ofthesemonitorsisthat'they"are"'potentially"capable ofproviding anestimateoftheaveragetempera-tureinthecapsule.Theyhavenotyetbeenprovenforreactorirradiations andthesamefissiontrackcountingproblemsareexperienced aswithSSTRs.However,thesemonitorswereincludedasabackuptothemeltwiressincewe~~ticipatethatthistechnology willcontinuetodevelopoverthenextdecade.A.2.1MeltWireTemeratureMonitorsEutecticmaterials withuniquemeltingtemperatures wereincludedinCapsulesA'ndC'.Composition andimpurities greatlyinfluence themelting'temperature;'therefore, thematerials usedconsistofpuritiesof99.9percentorgreater,sothatthemeasuredmeltingtemperature iswithinatleast+6Foftherecognized meltingtemperatures.
TheMWswereencapsulated inquartztubing,evacuated andbackfilled toapproximately oneatmosphere ofheliumpressureforoptimumtransferofheatbetweentheencapsulated NWandtheoutsideenvironment.
TheMW-TMsincludedinCapsulesA'ndC'relistedinTableA-1andphotographs areprovidedinAppendixE.TheNWcapsuleswereformedf'rom0.24inchouterdiameterquartztubingwith0.062inchthickwalls.Tofacilitate identification ofthesedifferent NWtemperature
- monitors, eachMWwasencapsulated inquartztubingofaspecificlengthasshowninTableA-l.Afterfabrication, theMWcap-suleswereleakchecked,pressure-tested andcertified bycon'ducting melteriments.
Thecertification testresultsindicated thatalltheMWompositions meltedwithin+2Fofthenominalvalue.A-5
'UPI TABLEA-1.MWMATERIALS ANDMELTINGTEMPERATURES Composition, WtXMeltingTemperature, FquartzCapsuleLength,in.80Au,20Sn90Pb,5Ag,5Sn97.5Pb,2.5Ag97.5Pb,1.5Ag,1.0Sn98.8Cd,1.2CU53655858058859811-1/41-1/21-3/42A.2.2SolidStateTrackRecorder-
.TemeratureMonitorsAnumberoflimitations ofMW-TMscanbeovercomebyusinganewpassiveTM.ThisnewpassiveTMprovidesforcontinuous monitoring oftem-raturewithassigneduncertainties.
Itrepresents anovel,patentedappli-ionofSSTRtechniques
[Go79].SincetracksareannealedinSSTRsatelevatedtemperatures, thedegreeofannealing canbeusedtomeasurethein-situtemperature.
Ofequalimportance isthenatureofthisSSTR-TMresponse, sinceitisbasedontrackannealing andtherefore, respondstotheaveragetime-temperature historythatisexperienced bytheSSTR.Conse--quently,normal,.temperature excursions duetoreactoroperations areexpectedtomakeonlysmallcontributions totrackannealing andtheSSTR-TMwilltherefore furnishanaccuratemeasurement ofthein-situtemperature.
Fissionfragments produceanarrowpathofradiation damageinquartzglass,mica,andotherSSTRmaterials.
Whenchemically etched,aholeisproducedalongthedamagepathwhichcanbeseenunderamicroscope; thisholeiscalledthefissiontrack.AllorpartofthedamagecanbeannealedoutbyheatingtheSSTR.Thisannealing, whencarriedoutbeforetheetchingprocess,drastically modifiesthelengthand/ordiameterofthetrackwhenetchingoccurs.Theamountofannealing isafunctionoftimeandtemperature
[Go79,Ro80].'nthecaseofquartzglassSSTRs,theannealing effectwillreducediameteroftracksproducedbynormallyincidentfragments, andwill.A-6
eliminate someofthetracksproducedbyisotropic incidence (exposures madewiththesourceincontactwiththeSSTRmaterial).
InthecaseofmicaSSTRs,thetracklengthisreducedifdamagehasbeenpartially removedbyannealing.
Theoutstanding problemintheapplication ofSSTR-TMsinpowerreactorsisthelackofcalibration data.MCCwillbeinitiating anextensive calibration programwithinthenextfewmonths.Calibration curvesforSSTR-TMsareobtainedbyobserving theannealing characteristics ofSSTRs.SetsofquartzglassandmicaSSTRsarepreparedinthesamewaytheSSTR-TMswerepreparedforinclusion intheNMP-1replacement surveillance capsule.Bothisotopicandnormallyincidentfissionfragmentirradiations areused.SubsetsoftheseSSTRsarethenheatedinanovenatconstanttemperature foragivenperiodoftime.Theovenmustbewellregulated sothatstabletemperatures areattainedwithanaccuracyofatleast+4F.Uponwithdrawal fromtheoven,theSSTRsareetchedandsubsequently scanned.Calibration dataaregenerated byrepeating thisprocessatdifferent ovenmperatures fordifferent timedurations.
Preliminary calibration dataforuartzglassandformicahavealreadybeenreported[Go79,RoBOJ.BothquartzglassandmicaareusedforSSTR-TMsinCapsulesA'ndC'.Thepre-irradiation preparation ofquartzglassandmicaSSTR-TMsisdiscussed separately inSectionsA.2.2.1andA.2.2.2.A.2.2.1PrearationofuartzGlassSSTR-TMs.
ThetypeofquartzglasschosenforSSTR-TMapplications inreactorsurveillance shouldpossessaverylowconcentration offissionable impurities.
Consequently, ahighpurityquartzglass,namelySupersil, hasbeenused.SupersilquartzglasswassuppliedbyAmersilCompany,Inc.,Hillside, NewJersey.TheSupersilquartzglasswascutintoadiskshape,0.178inchesindiameterby0.06inchesthick.Bothsurfacesofthediskwerethenmechani-callypolishedtoremovescratches andimperfections.
Afinalsurfacepolishwasobtainedbyetchingin49percentHFat70Ffor120minutes.ThepolishedSupersilquartzglasswasthencleanedbyrinsinginthefollowing solutions intheordergiven:(1)PalmOliveSoapSolution, 2)distilled water,(3)doubledistilled water,(4)UltrexBNnitricacid,,finally,(5)doubledistilled water.ThiscleaningprocesswasusedbothA-7
,'ljl4Qd+(~n
~~~~~priortoirradiation withfissionfragments andjustpriortoencapsulation forreactorsurveillance.
A.2.2.2PrearationofMicaSSTR-TMs.
ThetypeofmicachosenforSSTR-TMapplications inreactorsurveillance shouldalsopossessave~lowconcentration offissionable impurities.
Tothisend,micafromIndia,sup-pliedbyThePerfection MicaCompany,hasbeenused.Themicawasfirstpre-annealedinanovenforabout24hoursat1076F.Itwasthenpre-etched in49percentHF70Fforabout18hours.Whenplacedunderamicroscope, resi-dualfissionfragmenttracksareseen.Themicawithalowdensityoftrackswasselected.
Itwasthencleavedtothicknesses ofabout0.003inches.Disks,0.178inchesindiameter, werepunchedfromthefreshlycleavedmica.Mica'STR-TMs werecleanedbythesameprocedure usedforthequartzglass.Thiscleaningprocessisimportant justpriortoencapsulation, inordertoridthemicaoftransuranium orotheractinides thatmayproduceundesirable fissionfragmenttrackswhilebeingexposedtoneutronsinthector.A.2.2.3SSTR-TMFissionFramentIrradiation.
Priortouse,theSSTR-TMsmustbeexposedtofissionfragments.
Auniformsourceof252Cfwas.usedfortheirradiation.
Twotypesof,fissionfragmentexposure, isotropic andnormallyincident, wereused.Theisotropic exposureisperformed byplacingthe'SSTR-'TM infirmcontactwiththespontaneous fissionfragmentsource.Normallyincidentexposures wereobtainedinavacuumchamber.Therewasapproximately 2.2inchesbetweentheSSTR-TMandthespontaneous fissionfragmentsource.Fortheisotropic exposures, a252Cfspontaneous fissionfragmentsourcehavingadiameterof0.25inches',onastainless steeldisk0.75inchesindiameter, wasused.Thesourcehadaverythingoldcoating.On1-29-86,thissourcehadanactivitythatproduced9230tracksperminutepersquarecentimeter inmicaplacedindirectcontactwithit.A252Cfsourceabout1/8inchindiameterwasusedforexposures inthevacuumchamber.On1-31-86,anexposuregaveatrackdensityfornormalincidence of60.1tracksperminutepersquarecentimeter.
Thestatistical accuracyofothmeasurements is2.7percent.A-8
+1IF A.2.2.4FissionFramentIrradiation ofuartzGlassSSTR-TMs.
-OnesideofthequartzglassSSTR-TMwasirradiated isotropically withfissionfragments andtheothersidewasirradiated withnormallyincidentfissionfragments.
Estimated trackdensities fortheisotropic andnormalirradia-tions,respectively, aregiveninTableA-2.Twosuchquartzglass$STR-TMswerepreparedforeachcapsule.Isotropic exposuredatafromthemicaSSTR-TMaregiveninTableA-3.AthirdquartzglassSSTR-TMwaspreparedforeachcapsuleasdescribed earlier,butwasnotirradi'ated withfissionfragments.
OnesurfaceofthisthirdquartzglassSSTR-TMisusedtoassessfissionfragmenttrackbackground inducedduringthereactorsurveillance irradiation.
Theothersurfacewasplacedinfirmcontactwitha23BUdeposittoformanSSTRneutrondosimeter forthe'reactor surveillance irradiation.
ThisSSTRneutrondosi-meterwillprovidefissionfragmenttracksthatareformedthroughout theentirecourseofthesurveillance irradiation.
Consequently, thistypeofSSTR-TMprovidesinformation onthetime-temperature historyofthesurveil-~~~~~nceirradiation.
Afterbeingcleaned,theSSTR-TMswereloadedintocapsulesAB2andCB2asshowninFiguresA-1andA-2.A.3CharV-NotchSecimensThetypes-and numberofCharpyspecimens inthereinserted capsulesweresummarized inTableA-2.NiagaraMohawkdecidedtoweldreconstitute theCharpyspecimens priortoreencapsulation.
Thespecimens canbetestedinthisconfiguration orminiature Charpyspecimens couldbemachinedinthefuturewhenthecapsulesarewithdrawn.
Battellehasdeveloped aminiature Charpytestinwhich16miniature specimens canbemachinedfromoneconven-tionalspecimen.
Atotalof24CharpyV-notch(CVN)specimens (12base,12weld)werereconstituted forinclusion inCapsuleC'.AtotalofsixCVNswererecon-stitutedforinclusion inCapsuleA'.Thespecimens werestampedontheendswiththeappropriate F.A.B.codedesignation.
TheoriginalF.A.B.code'dentification wasusedwithanadditional letter"A"or"B"todesignate aonstituted specimen.
Thespecimenidentifications andlocations withinthepacketsaregivenintheAppendixAspecimeninventory drawings.
A-9
TABLEA-2.EXPOSUREDATAFORSUPERSILIIQUARTZGLASS+SSTRLabelIsotroicTime(min)Tracks/cm2 NormalIncidenae Time(min)Tracks/cm2 C*1112133C*21222320.63030021303001.2E52.4E52.4E501.2E52.4E52.4E5010146806800101468068004.45E44.1E44.1E404.45E44.1E44.1E40+'llexposures madeon1-27-86,exceptforCand3C,whichwereexposedon4-1-87.*Controlsamples,notputintothereactor.Thesewillbestoredatorbelowroomtemperature, andetchedalongwiththeSSTR-TMwhentheyareremovedfromthereactor.TABLEA-3;ISOTROPIC EXPOSUREDATAFROMMICASSTR-TM+SSTRLabelExposureTimeinMin.Predicted Trackspercm2Cl*111213C2*21'22313.751110013.75101009.2E41.0E59.2E409.2E49.2E49.2E40+Allexposedon1-27-86exceptforC1andC2,whichwereexposedon4-1-87.*Controlsamples,notplacedinthereactor.Thesewillbestored,atorbelowroomtemperature, andetchedalongwiththeSSTR-TMwhentheyareremovedfromthereactor.
,II~4%18~-~
DISTREDVICEfISSIONFRAGHCt4T XRRRDIRT'IOH.t!OtiE$50TROPXCNICR12bISOTROPZCt40NEMICR13bU-239'lt233NONEHONK:QLlRRTZQURRTZI2bNORMRLIBOTROP3CISOTROPICOORHFiIU-2384238QURRTZ13tMICRSPRCERFIGUREA-1.ARRANGEMENT OFSOLIDSTATETRACKRECORDERTEMPERATURE MONITORSINCAPSULEAB2(AtdenotesthattheIDisonthetopsurfaceofthemicaorquartzglass,whereasabdenotesthattheIDisonthebottomsurface.)
SSTRTDNlCR21tFISSIONFRRGHEHTIRRRDIRTIOt4NOAEIBOTROP1C ISOTROPICNONENICR29bU-238+226NONEHOMEQURRTZ2ItQURRTZ22bNORgQISOTROPICISOTROPIC HO~PLQVRRTZ23tLl-238422$NONENlCRSPRCERFIGUREA-2.ARRANGEMEHT OFSOLIDSTATETRACKRECORDERTEMPERATURE MOHITORSINCAPSULECB2(AtdenotesthattheIDisonthetopsurfaceofthemicaorquartzglass,whereasabdenotesthattheIDisonthebottomsurface.)
A.4Miniature andConventional TensileSecimensThetypesandnumberoftensilespecimens inCapsulesA'nd-C'ere summarized inTableA-2.Incaseswhereconventional tensilespecimens werealreadytested,miniature specimens weremachinedfromthebrokenhalves.TheBattelleproprietory specimendesignisshowninAppendixA[Ma86].Atotaloftwominiature tensilespecimens (base)wereincludedinCapsuleA'ndeightminiature tensilespecimens (fourbase,fourweld)wereincludedinCapsuleC.Theminiature tensilespecimens werenumberedconsecutively fromoneto10.Theconventional tensilespecimens retainedtheirF.A.B.codedesignations.
Thespecimenidentifications andlocations areshownintheAppendixAinventory drawings.
A.5CasuleDesinandLaoutSurveillance capsulepacketinventory drawingswerepreparedfortheoreinsertion CapsulesA'ndC'ndaregiveninAppendixA.Theinven-oriesincludeallspecimens shown,inTableA-2andtherecommended dosimeters andtemperature monitors.
Packetfabrication drawingswerealsopreparedthatshowspecimen, dosimeter, temperature monitor,andspacerlocations anddimen-sionsineachcapsule.GEfabricated thespacers,packets,baskets,andleadtubes.ThedrawingsindicatethespecimenF.A.B.codedesignations andtheas-builtphotographs showspecimenbyspecimenagreement withthefabrication drawings.
Thedosimetry wascarefully orientedandspacedtoavoidneutronfieldperturbations whichwouldaffectthedata.Thedosimetry wasalsolocatedsothattheaxialfluxprofilecanbemeasured.
Goodheattransferisinsuredbytightspecimenpackingandaheliumbackfillineachpacket.A.6ArchiveMaterials Thelengthoftheseplannedirradiations, namelyCapsule"A"for14efpyandCapsule"C"for24efpy,makeitmandatory thatarchivedosimetry ndTMmaterials beretainedbyNiagaraMohawk.Experimental resultsfromwerreactorirradiations cansometimes byinconsistent orhardtoresolve.
Cf
~~Itisessential, therefore, thatthesearchivematerials beavailable asacontingency shouldproblemsarisewiththeexperimental dosimetry results.Withthesematerials, calibration experiments canberepeatedand,ifn'eces-sary,neutronbenchmark irradiations canbe.conducted.
Shoulddefinitive follow-on experiments ofthistypebeneeded,theavailability ofthesearchivematerials canbeacrucialfactorinthesuccessofthedosimetry analysis.
Tothisend,archivematerials, identical tothoseusedinCap-sulesA'ndC'avebeenprovidedtoNiagaraMohawk.TablesA-4throughA-7summarize thesuppliedarchivematerials forRMneutrondosimeters, SSTRneutrondosimeters, MW-TMsandSSTR-TMs, respectively.
TABLEA-4.ARCHIVERMANDHAFMNEUTRONDOSIMETRY MATERIALS Dosimeter aterialTypePONo.BatchVendorFormguantityFeRM0744826/17944MRC0.020DWire2inchesNiRM"1"SERoll2SemiElement0.020DWire2inchesCuRM,HAFM19047CPI3054ComincoAm.0.020DWire2inchesCo/AlRM44451SCBar26SigmundCohn0.020DWire2inchesTiRM19046Cat614ReactorExp.0.020DWire2inchesAlHAFm19045SERoll1SemiElement0.020DWire2inchesNOTES:(1)Archivesamplesofthevanadiumencapsulated fissionable RMdosimeters arenotprovided; thoseincludedinCapsuleSetsAandCaretobeusedforthispurpose.(2)SamplesoftheBe,Fe,andNiHAFMdosimeters arenotprovided; butareavailable forpurchasefromRI-RD.A-14 VPI TABLEA-5.ARCHIVESSTRNEUTRONDOSIMETRY MATERIALS SSTR(1)TypeIDDiameterIsotopeSSTRDeosit(2)MassIDTotal(pg)Density-(pg/cm2)
Mica219Mica231Mica1990.1680.1680.168235-U238-U237-Hp2192311990.8267.6510.398.8181.6110.8(1)Threeadditional micaSSTRsof0.168inchdiameterhavebeensuppliedascontrolsamplestobestoredalongwiththearchive'SSTR dosimeters 219,231,and199.ThesecontrolSSTRsareunnumbered andarenotincontact,withanydeposit.(2)TheouteraluminumfoilofthearchiveSSTRpackagesaremarkedasfollows:U-235islabeled5;NP-237islabeled7;U-238islabeled8.TABLEA-6.ARCHIVEMW-TMMATERIALS Composition, WtXMeltingTemperature LengthDiameter(F)(in.)(in.)Source80Au,20Sn53697.5Pb,2.5Ag58097.5Pb,1.5Ag,1.0Sn58890Pb,5Ag,5Sn5580.250.030IndiumCorp.ofAmerica0.250.090Babcock&Wilcox0.250.084Babcock&Wilcox0.250.084Babcock&Wilcox98.8Cd,1.2CU4980.250.083Babcock&WilcosA-15
TABLEA-7.ARCHIVESSTR-TMMATERIALS MaterialguantityDescription andPurposesIndiaRubyMuscovite MicaIndiaRubyMuscovite MicaPre-annealed andpre-etched disks15/16in.indiameterandabout0.004in.thick.Representative materialforSSTR-TMandSSTRdosimetry.
ClandC2asdescribed inTable4-2.Neededasstandards whenmicaSSTR-TMsareremovedfromthereactor.SupraIIquartzGlassSupraIIquartzGlass3/8in.thicksquaresabout40milsthick.Representative materials usedinSSTR-TMs.
Cand3Care3/8in.squaresabout40milsthick.Theyaredescribed inTable4-2.Neededasstandards whentheSupraIIquartzglassisremovedfromthereactor.A-16
004646.942---Spocerr3rrv/4'i'o>>III<x2cctiktIwrO444IO0.250OO32c~0I/1605000Hole2.125~-I/l6I.3DDQ0f250109Cleoronce 2.000Spocec0.380$0500$0.125x45oChom0.025'tcoronce g~AvChab><0"~+<t~fCCB+0.025Cteoronce cpuico11tooCteoconce gsaoos162i.7720936gol5M<n0.836Cleoroncc 2.165LOKI00ipiioamip00242000ip~tcpI1I1I11I1I~IcIII1II1II1IIIIII1I1I1IIIIIIIIIII1IIIIIIIIIItOaO4OO0CLO0IIIIIIIIl1IIIIIIIII2165.at002.082$oco2.067cn0I200543OIO1.990008300.I635Ooco1.620~0084i44520CXoo-l.4300.0901402foco-1.387~2570*O005oo4oQ000.08r/0002500.0322.314-225012.8651SE=DRAWING0040.028ox2.314SEEDRAWING003I0002ALLDIMENSIONS AREININCHES~04OZZolCot20~IOICOA44O~22ta~i~2/i~errTASKCOOROf3AMANAGERNOTFiFnn33rDfASRBvoacvccv3NOTES:l.Theoutsidedimensions DfthebasketcontentshaveaminImuct0.016clearance fordisassembly.
2.CharpyVnotchshoItdfleethepressurevesselwall.3.Charpypackets.mattwirepacketsandlcnsilc'lccbcsarcsc)kdcsfollows:3-\.Exhaustairto(educeintecnalpressuretoIlorr.BacklillwithweldinggradeIleticmalatmosphenc pressureandscat.3-2.Verilyleaktigttnesc usingmassspectrometer.
fhecllowable leakageistosatmcc.min.4.Theoriginaldosime!ry consisted ofFe,Cu,Niwires.Thesewires~rercinstalled ateachlocationInthepacketsalshownloneFe.oneCu,andoneNialechlccation).
DATEoRAwccpv/
RAFTIROArvo,/35r//cSC.rc//Qc.~4Attn,FROJCCTAti'O.r'/.SFSCIALAttnSIGNATURE DIV.-"".".":Battelle Cotombuctabor2cocicc505KingAvenueColumbus.
Ohio43201.2693 Telephone f614)4246424CAPSULEA'SSEMBLY DRAWINGFORNINEMILEIPOINTUNIT1(RE-ENCAPSULATION)
RKV.StggCOOStOSNTNCXOCVNO.DWCANO.I79986442BCD-NMP-OOI1scamI:I"accr.N0938-2900 sNggyIo(I l:~k~A1ta,,\'rv01~l)I 3DIrradiated HAZUnbrokenandReconstituted Base00Irradiated Weld0TensileTubesSPACERMeltWiresglkCfxB){)v~@>~e0Cggbg@ggg,fcJ12J13E71AE12E31AEO1ED2tEO3lJD1(Beee)JLKJTA(Vreld)(KAZ)JUL(KAZ)598FAdvancedDosimetry OriginalDosimetry
{Fe,Cu,NiWires)AdvancedDosimetry SeeNote1J14IB)fJ15J16J17)IID)yBIDtrJ1AJ1BJ1CJ1DJTEE2EE2TE2UAE17trio)rBZO)rE1AAE2YE1CAE1DEBKAED41lEOSE06ilED7Ityco)rBcQ)rEOAiEDBEOCEOO'EOESPACERJD2(Bere)1JL2(Bete)plveld)2(Bere)JUJ(KAZ)588F580F558F536FNOTASCALEDRAWING0ZoO1.REVIEWBOARDDATE.,gC~/S2.TASKCOOROJfASKLEADERQAMANA(IFRQxNOTE:t.Theoriginaldosimetry consisted olFf,Cu,Niwires.Thesewires'are reinslailed ateachlocationInthepacketsssshownloneFe,one,Cu,andoncNiateachlocation).
I2.Theadvanceddosimetry tubesmusllieInstalled sothattheliestcharacter
{A)InthetubeIdentification Isstthelowestelevalion asshowninthedrawing.3.Thecapsulemustbeassembled exactlyssspecliied duetoneutronic sndotherdesignSIGNATURE DRAWNSV~DRATTINDAreoAeep.N~li3IEg~l4DIVDATE/3d/Z'6"..,.:Battelle-ColumbulteboreloINI AZZjztr!JCRiOa-0505KmtAvenueColumbusOtvo4320)2693Telephone (6I4)424.6424CAPSULEAMECHANICAL BEHAVIORSPECIMENINVENTORY DRAWINGFORNINEMILEPOINTUNIT1(RE-ENCAPSULATION)
RKV.NOTE:sn"rssBvoACIATCATII~I~IIOIIND~Ie~Ie4considerations I'RoeccvATTD.seCIALTep.A(ALL4a/f4SIZKCOOKlOKNT.NCkOIV.NO.OWO.NO.C79986442BCD-NMP-0021SCALEAocr.N093B-2900sKKKTIofI~vj 1J+IFRIhf~JCICV+
3.I/4-28UNF-2A Bothends0.078RD-D-D00.250<petite0Qa>>"'~ca~~
~~~g(QfC30'y)3Po.oosReducedSectionl70.03IO.I870.0730.3500.0730.3I7I0>0.010SCALEIO:I.ALLDIMENSIONS AREININCHES+020-0.0)s0Zcs~OSCALE5:IALLDIMENSIONS AREININCHESB1.DStokBOARDDATESIGNATURE oRAwsrov~
DIV/35DATE"'.".".Battelle Columbustsborrtories505KingAvenueColumbus.
Oho432012693Telephone (614)424.6424~g~ac.2.TASKCOORDASKLEADER~aditS.OAf4AMABER4'OTE:sortngtgAs'ctsv0Aorrcvofreducedsection.003)alendsofreduced2rms,s0.001.kOTESt1.0~0.150g0.001Diameteratcente2.0'~Actua'I
-D"Diameter+
I0.002-0section,taperingto"D"atcenter.3.100%dimensional inspection require4.Polishreducedsectionandradiustoremainder asturned.5.Allolherdimensions aretobewithinAFJ'o//-g/.A""enopc'TAeaoclALrroPCCOtrgIDENT.ko.tSIV.NO.tSWG.NO.IREV79986'42BCD-NMP-0031N0958-2900 sttggTIofIMINIATURE TENSILESPECIMENFORNINEMILEPOINTUNITi(CAPSULEAANDCRE-ENCAPSULATION)
CAT.Is~sotroauo~Irrs4
'V'\)ll'~Gwa0 4DI/32X450CHAMTYPA~<<~~I/16CUT0.255I.D.g+I/32IE0.005toO.OIOClearance withactual10oftensilelubeII0.44410.Ref.)ALLDIMENSIONS AREININCHESSource.GeneralElectric0rowingNo.I07C3?97DRAY/INGAPPROVEDBY:1.DSIGNREVIEWBOARDDATE<tu!X2.TAsKCDDRDABKLEADERMl:~43.OAMANAGER>@8NOTE:ronRracAseevoAc>>4.vCAT,A04F07ROAR0'ltd0$43Aeep,~uP/X/TC.As/&~'e/2SliII/WeeolecvAeep.RACCIAAeep,SIGNATURE DIVDATE/354/iA/sbPRAFTIRCAA00,R<bI0KOIITetephene (6t4)4246424SIZCCDDCIDENT.ND.C79986DIV.ND.DWO.ND..442BCD-NMP-004scAcc5":IACCT.,N0938-2900 sNccTIofICONVENTIONAL TENSILESPECIMENFILLERSLEEVERcv.~A 30aea6942=-=Spocer/lc/usup~c(rccarcc~crcrA~o.sooD.aaaID0.250c0032Df/t6f00.025Oeprance0.25005000Note2.I25~PI-'r"III"'.500 0125Spacer0380q0.500tu00O.I09Clearance 20000125xasCham/0.025Cleoronce r2.1650IppggoQvQlh~eA~gfeQQf8lttOOCteara nce*aoos029000.936(0.015Min.0836(Clearance
~c0ru0co0rdu00ccracrrIora00IIIIIIIII340c00022.082'8oto 1.990(.893rpplp 0I.878I701.80Ii.eee-40.0830a.0840016721.770.250IIc2'65'-oko IIIIIIIIIIII1IIIIIIIIO'.a.3278ooI.3120.090<21a.o.olo)
OD.I199~0.2570fco.oos0030000.0322250--2.314--+0.028SEE2314NOTE4SEEDRAWiNG00312.865Max,SEEORawiNGooaDRAWINGAPPROVEDBY:1.OE6lGMREVtEWBOARDDATEKXTE~,M~'YCK2.TASKCOORD.ASKLEADER3.QAMANAGER~J~hebasket.015clearance thepressureacketsandsfollows:einternalIktillwithatatmosphecic singmasswableleakageare1.0'byNOTES:l.Theoutsidedimensions oicontentshaveacninimumfordisassembly.
2.CharpyV.notchshouldfac~vesselwall.3.Charpypackets,meltwiretensiletubesaresealeda3-1.Exhaustairtoreducpressureto1tort.8weldinggradeNeliupressureandseal.3-2.Verifyleaktightness spectrometer.
Theapislp-satmcc/min.4.Fourplugsfoctensilelube0.434S0.002diameter.
SIGNATURE D(VonAWNavACCOI'gnaa'zDATE",,-Battelte Columbustcbornorles505Kurt(AvenueColumbus.
One432012693Tetentene (614)4246424CAPSULEC-ASSEMBLY DRAWINGFORNINEMILEPOINTUNIT1(RE-ENCAPSULATION)
SCZECODECDENT.NO.Dtv.NO.DWP.NO.ALLDIMENSIONS AREININCHES-c((0ap08-ccc,r~1~Acrevu0~~cccNOTE:FORRctpasEavPAPcrcv>noccczAcco.sl'ccIALccu/i<("cREV.C79986-<<ZBCD-NMP-OO5}sspnmI":I"Aopr.N0938-2900 sNEETIp(II11 c~Qt.~eCfg(~f":iI DDReconstituted WeldUnirradiated BaseReconstituted 8aseTensileTubesSPACERMeltWiresAdvancedDosimetry IBOEDKAEDLAEDMAEJTAJAEAJAMAZBONCOINC21NC02NC22NC03NC23CBOE1JAE1JBE1KAI)E1KBEASAEASBSPACERT01(ease)PLUG3(esse)4(ease)PLU'PLUG7(Weld)8(Weld)598F588FCAdvancedDosimetry SeeNote1J2CATf1SO8(SOJ1LAJ1MANC04)fZOOBCOONC24NCOSE42AT(COOBCSO,:E1MA'fE1UAIT02(esse)T2159(8222)(8222)(Weld)610(ease)(Weld)580F558FJ1PAJ1TAJ1JANC25NC06NC26E3TAE7EASeeNote1J2CPLUGPLUG536FNOTASCALEDRAWING0zts0BY:1.Qg@gfAEVIEWBOARDDATE2L(~gc2,~COOAOASKLEADEA~i~cs.~ANAG('n~SPAZ/xseb..
~y4NOTE:sent~..scovOAoN(vNOTEtl.Allreconstituted specimenwerepreparedfrombrokenweldorbasemetalppecimens excepltorJ2CAandJ2CB..These specimens werepreparedfromtheweldandbasemetalportionofabrokenHA2specimen, J2C.~I2.Theadvanceddosimetry tebesmustbeinstalled sothatthefirstcharacter (C)inthetubeIdentification isatthe(owe'stelevation asshowninthedrawing.3.Thecapsulemustbeassersbled exactlyasspecitied duetoneutronic ndotherdesignconsiderations.
SIGNATURE DIVDRAWNav~//Z5~*y2/)AttnI/DATE>/I>//'b</cdM/gryGft-QCu4IA/gsirf(tC"".".'"-Battelle 6(5KingAvenueCorumbuLOhio4320)2693Telephone (6)4)4246424trro/ccvAttp,srzccoostogrrr.No.Olv.No.owo.rKx799862BCDNMP0061 ColumbuslsborrroIN2 CAPSULEC'-'MECHANICAL BEHAVIORSPECIMENINVENTORY DRAWINGFORNINEMILEPOINTUNIT1(RE-ENCAPSULATION)
REV.cA'I,I~II22rouu0'~2'223CCIALAttn,2/2/~N0938-2900 srtggTIofIII1 P0Aa~,~r/V44.I,>>'Rg-l1vI APPENDIXBAS-BUILTPHOTOGRAPHS FORCAPSULESA'NDC' eh,~11g1jfIIiy
.~pa"~j.~~ZR~-,.tP~,pt+:aat~'$cat'aifta~I"~ggMwmAIa~Per~iIt'Ij>pCAPSULE~.aaItytaliYf..A'Itc.)..CI'PSV!L st'IGURE1.CAPSULEA'HARPYSPECIMENS El)
FIGURE2.CAPSULEA'HARPYSPECIMENS B-3 1I,I~g'k FIGURE3.CAPSULEA'ENSILESPECIMENS B-4 0r FIGURE4.CAPSULEA'EMPERATURE MONITORSB-5 I!
FIGURE5.CAPSULEC'HARPYSPECIMENS
%~iN1~p>
FIGURE6.CAPSULEC'HARPYSPECIMENS B-7 Wag~11 FIGURE7.CAPSULEC'ENSILESPECIMENS B-8
,pr<bA FIGURE8.CAPSULEC'EMPERATURE MONITORSB-9
APPENDIXCDOSIMETRY DESCRIPTION FORCAPSULESA'NDC'
TABLE1ADVANCEDDOSIMETRY PROVIDEDBYMETROLOGY CONTROLCORPORATION (MC~)Radiometric (RM)FluxMonitorsa.6setsofnon-fissionable GdcoveredRMs;eachsetconsistsofoneeachof:Fe,Ni,Cu,TiandCo/Almetalwires.b.6setsofnon-fissionable "bare"RMs;eachsetconsistsofoneeachof:FeandCo/Almetalwires.c.2setsoffissionable, vanadiumencapsulated, GdcoveredRMs;eachsetconsistsofoneeachof:U-235,U-238andNp-237oxidewires.d.2sets,offissionable, vanadiumencapsulated, "bare"RMs;eachsetconsistsofoneeachof:U-235oxidewire.SolidStateTrackRecorder(SSTR)FluenceMonitorse.2setsofGdcoveredSSTRs;eachsetconsistsofoneeachof:U-235,U-238andNp-237,(fissiondepositsonsolidstatetrackrecorderbackingmaterialwithmicaSSTRs).2setsof"bare"SSTRs;eachsetconsistsofoneeachof:U-235,(fissiondepositwithmicaSSTR).HeliumAccumulation FluenceMonitors(HAFM/g.6setsofnon-fissionable, GdcoveredHAFMs;eachsetconsistsofoneeachofBe(pieceswrappedinAl)*,Cu,Co/Al(orAl),NiandFemetal"wires.
h.6setsofnon-fissionable, "bare"HAFMs;eachsetconsistsofoneeachofBe(pieceswrappedinAl),Cu,Co/Al(orAl),NiandFemetalwires.ThermalMonitorsTMs)i.2setsofmeltwire(MW)TMs;eachMW-TMsetconsistsoffivemeltwires,eachofwhichiscontained inaquartzcapsule.*MaterialwillbeintheformofoneormoresmallpiecesofBemetal,wrappedinaluminumwithanomialeffective packagediameterof-20to40milsandlengthoflessthan0.25".C-2 kt4 TABLE1(Cont'd)SolidStateTrackRecorder(SSTR)-THs j.2setsofTMs;eachsetconsistsof3quartzand2micapre-irradiated SSTRswrappedinAl.EachsetplacedinaGdcover(withotherdosimeters) inaSSdosimetry capsule.OosimetrCasuleFabrication k.6bareand12Gadolimium linedstainless steelholderswereloadedandassembled.
1.TheSScapsuleswereback-filled withhighpurity(dry)Argon**priortoweldingandweresubsequently leakcheckedbyimmersion innearboilingwater(thathasbeenboiledtoremoveairbubbles).
X-Raysoftheloadedholderswerealsotaken.QAandOocumentation m.AQAdatapackageincluding the"as-built" description anddocumentation ofalldosimeters andencapsulation containers isprovidedintheAppendices.
- Heliumwasnotusedbecauseitcouldadversely (byabsorption ordiffusion) biastheinterpretation oftheHAFHmonitorresults.C-3
TABLE2NINEMILEPOINTUNIT-1OOSIMETRY MATERIALS (TotalWeightIncudingDosimetry, Backing,andEncapsuationMaterials)
Material'238-U237-Np235-UAlBeCoFeGdNiStainless SteelQuartz"A"CapsuleSeriesWt(Grams)0.0070.0060.002&.610.0200.00020.381.03<<771.590.160.06-8.7<<4.7"C"CapsuleSeriesWt(Grams)0.0070.0060.003M.590.0130.00020.371.00<<7.71.560.150.06-8.7<<4.7C-4
TABLCAPSULELOADINGSEQUENCE"A"SERIES(-14EFPYEXPOSURE)
(FROMBOTTOMOFSSORGdCAPSULE)LoadedSSCasuleAlWraedDosimeters LocationTopMidAG1AAG1BAB1AG2AAG2Bia.In.0.2530.2540.2560.2570.253entn.0.8290.8340.8300.8320.8302.90252.9723'.77892.95523.0509RIH1H2(R2)R3H3785RMHAFMFeGrad.HAFMRMRMHAFMSSTR0.1650.1800.0.1750.1900.1750.3680.3800.3940.3750.358FeGrad.Tyy>e0>a.emntht.m251.82231.65256.42287.55255.85AB2BottomAG3AAG3BAB30.2530.2540.2530.2560.8290.8340.8340.8341.91252.89473.00171.7750AH45R4R5H5H6ST-THAFMSSTRRMRMHAFMFeGrad.HAFM0.1800.1950.1800.1750.3760.0120.3720.3550.1770.368250.83225.8248.5258.251Nodosimeter materials arecloserthan0.10"fromouterSScapsuletop.Therefore thetopcanbepartedoffupto0.10fromtop.Caremustbe'takenthatnoburrsexistnortheopenendswagedastheinnercapsulesmaynotshakeout.2)Itisrecommended theGdcapsulesactuallybecrackedopen(i.e.,use"nutcracker"onlowerendofcapsule)thereasonforthisisthatseveralofthedosimeter packetsarequiteatightfitandpossiblywouldbedamagedintheattempttopullthemoutofthecapsuleortocutopenthebottomandpushthemout.3)NoAlmaterialshouldbediscarded withoutcloseobservation astowhetheritissimplyspacermaterialofwrappeddosimeter material.
Fegradients arewrappedindividually andthoughmarkedFecouldbemistakenforspacermaterial.
BothbarespectralCo/AlandFe/235-UarewrappedinAlandareunmarkedandcouldtherefore bemistakenforspacermaterial.
TABLE4TASK/ID:85-WHSC-9010 Task1/NineNilePointUnit1SSCapsuleNumber:AG1ARHSetID:R1HAFHSetID:SSTRID:SSTR-THID:Cover:Gd81Location:
SetIDHaterialAG1AGdII1R1PurchaseOrderNumberBatchNumberHaterialDeserttIon~Wt.msStainessteeOuterCasuleGdInnerCasuleTiSacerSampleIDElemental
~tom.CommentsBottomBottomFeNiCuCo/Al0744819047.190464445126/17944SERo2CPI3054Cat614Scar26~eufoldedwire2~Ufoldedwire~Ufoldedwire~Utl-foldedwireut-foldedwireTiSacerAlShimSacerGdInnerCasuleAlShimSacerargeeeatSinkSacer53.43647.96761.99438.2669.259251.820.165"OD99.999X99.999K99.999K99.917K0.506KX0'68"OLAlWraedSpectralSetAlWraedToSSOuterCasule2902.480.253"ODX0.830"OLTo
TABLE5TASK/ID:85-WHSC-9010 Task1/NineMilePointUnit1SSCapsuleNumber:AG18RHSetIO:HRFHSetIO:HISSTRIO:SSTR-THID:Cover:GdFIOLocetIon:
~ToSetIDAG1BGd810H1MaterialBePurchaseOrderNumberRIBatchMaterialGooberDescr1tIon~Ht.,msStainessteelOuterCasuleGdInnerCasuleTiSacerRI-7*3MetalPcsAlWraed4.25SampleIDNM-BE-1Elemental
~Com.ComnentsBottomBottomFeRlRI-RI-4*RI-11A*.8'ngleFoldWire~~sm~ngeFoldWire62.695125.384rappeHAFMSetCu19047EDL-CPI3054FoldWirenge33.18799.999KAl190450-ngeSERoll2FoldWireTiSacer9.301231.250.180"OD99.999KX0.380"OLFeoRxLot11.03'taDiskAlShimSacerGdInnerCasuleAlShimSacer82.2692.772KAlWrappedGradientTo*BatchNo.givenbyRIforBoronanalysis.
LargeTeleatSinkSacerSSOuterCasule2972.300.254"00X0.834"OLTo et TABLE6TASK/ID:85-WHSC-9010 Task1/NineMilePointUnit1SSCapsuleNumber:AB1RHSet10:R2HAFHSetID:H2SSTR10:SSTR-THID:Cover:BareLocatton:
~ToSetIDMaterialAB1H-2PurchaseOrderNumberBatchMaterialNumberDeserttton~Nt.maStainessteeOuterCasuleTiSacerSampleIDElemental
~Com.CommentsBottomBeRIRI-7*3MetalPcsAlWraed2.75NM-BE-3FeCuRIRl19047RI-4*Rl-11A*EL-CPI-3054.8ingleFoldWireSngeFoldWire"SngeFoldWire64.514124.70430.00899.999KAlrappedHAFMSetR2AlFe19045RxLot11etaDiskodE-90.X."SngeSeRoll2FoldWireTiSacer9.068256.420.178"OD82.6699.999KX0.394"OL99.772KAlWraedCo/Al69-89-0885 SRM9539.095AlSacerShimargeTeeatSinkSacerSSOuterCasule1778.900.256OD0.116KAlWraedX0.830OLTo*BatchNo.givenbyRIforBoronanalysis.
TASK/ID:85-WHSC-9010 Task1/NineMilePointSSCapsuleNumber:AG2ARMSetID:R3HAFMSetID:TABLE7SSTRID:SSTR-TMIO:Cover:GdI2Location:
HidSetinAG2AGd82R-3MaterialFeNiCuCo/Al235-U238-U237-NPurchaseOrderNumber07448190471904644451887057701488705BatchNumber26/17944SERollCPI3054Cat614SCBar2264CES-Z24HP-UOescritionStainessteeOuterCasuleGdInnerCasuleTiSacerut-FoldedWireX.90"VCasule1Casule5.'CasuleMaterial~Mt.ma49.14946.01160.33039.6029.9981.9037.5616.612SampleIDElemental
~Com.99.999%99.999%99.999%99.917%0.506%87.97%87.25%88.3%CommentsBottomBottomArappedRMSectralSetSeries4Series8Series6TiSacerAlShimSacerGdInnerCasuleAl'ShimSacer287.550.19"ODX0.375"OLTo
TASK/ID:854HSC-9010 Task1/NineHilePointSSCapsuleNumber:AG2ATABLE7(CONTtD)RHSetID:R-3HAFHSetID:SSTRID:SSTR-THID:Cover:Gd82Location:
HidSetIDHaterialPurchaseOrderNumberBatchNumberDescritionLargeeeatSinkSacerSSOuterCasuleHaterial~Wt.me2955.22SampleID0.257"ODElemental
~Cem.X0.832"OLToComments
TASK/ID:85-WHSC-9010 Task1/NineMilePointSSCapsuleNumber:AG2BTABLE8RHSetID:HAFHSetIO:H3SSTRID:~785SSTR-THIO:Cover:Gdd3Locatltoo:
MidSetIDAG28Gd83H-3MaterialPurchaseOrderNumberBatchNumberDescritionStainessteeOuterCasuleGdInnerCasuleTiSacerMaterial~Wt.maSampleIDElemental
~Com.CommentsBottomBottomBeFeRIRIRI-7*Rl-4*3MetalPcsAlWraed.0.'ngeFoldWire3.32NM-BE-862.351AlrappedHAFMSetNiCuMica237-NMica238-UMica235-URI19047190454909649096RI-11A*CPI-3054.8ingeFoldWirengeFoldWireED-95.'ngeSeRoll2FoldWireTiSacerHuscovite SSTRLabelDown24HPOeositLabelDownMuscovite SSTRLabelDownES-ZDeositLabelUHuscovite SSTRLabelDown314AOeositLabelDown123.88931.8688.945~255.850.175"0Table12203Table12229Table1221799.999K99.999KX0.358"OLAlWraedTRAlWraedSSTRAlWraed*BatchNo.givenbyRIforBoronanalysis.
TASK/ID:85-WHSC-9010 Task1/NineMilePointTABLE8(CONT'D)SSCapsuleNumber:AG28RHSetID:HAFHSetID:H3SSTRID:7,8,5SSTR-THID:Cover:Gdf3Location:
MidSetIDMaterialFePurchaseOrderNumberBatchNumberDescrition0.16xLot11DiskAlShimSacerGdInnerCasuleAlShimSacerLargeTeldeatSinkSacerHaterial~ltt.me81.38SampleIDElemental
~Cem.99.772KCommentsAltfvrappeGradientSSOuterCasule3050.880.253"ODX0.830"OLTo 0
TABLE9TASK/10:85-WHSC-9010 Task1/NineMilePointUnit1SSCapsuleNumber:AB2RNSetIO:R4HAFNSetID:H4SSTRID:5SSTR-TNID:AB2Cover:BareLooattoo.
rSetIDMaterialAB2PurchaseOrderNumberBatchNumberMaterialOescritioo~Wt.msStainessteeOuterCasuleSampleIDElemental
~Com.CommentsBottomAB2Micauartz238-UuartzuartzMica238-UMicaMicauscoviteSupersilES-ZSupersilSuersil1uscovite ES-Z'luscovite tuscovite SacerLabelULabelULabelDownLabelULabelDownLabelULabelDownLabelUTiSacer13Table122301213Table1223312AlWraed-TMonitorsBeRIRI-7*3PcsMetalAlWraed3.09NH-BE-2FeNiCuRIRIRI-11A*RI-4*HEDL19047CPI30540.30'X.87'ingle FoldWireangleFoldWire>ngeFoldWire62.333120.15730.84499.999ÃAWrappedHAFHSet*BatchNo.givenbyRlforBoronanalysis.
0 TABLE9(Cont'd)TASK/ID:85-WHSC-9010 Task1/NineHilePointUnit1SSCapsuleNumber:AB2RHSetID:R4HAFHSetID:H4SSTRID:5SSTR-THID:AB2Cover:BareLocation:
HidSetIDHaterialAlSERoll119045PurchaseOrder(BatchNumber)Number(NH)ii904 Descrition)*0..Sin-leFoldWireTiSacerHaterial~Wt.me8.783SampleID250.830.180"ODElemental
~Com.99.999KX0.376"OLCommentsAlWrappereHAFHSetHica1uscovite SSTRLabelDownTable12AlWraedR4235-UFe235-UCo/Al490968820569-89-0885 314AxLot11264CSRR953DeositLabelU.164"X0.031'ta Disk.035.90VCasuleFoWireAlShimSacerargeeeatSinkSacer81.91.2079.12321499.772KAlWraedSeries20.116KAlWraedSSOuterCasule1912.450.253"ODX0.829"OLTo
TABLE10TASK/ID:85-WHSC-9010 Task1/NineHilePointUnit1SSCapsuleNumber:AG3ARHSetID:R5-HAFHSetID:SSTRID:SSTR-THID:Cover:Gd84Location:
BottomSetIDHaterialAG3AGd83R5PurchaseOrderNumberBatchNumberOesorttionStateessteeOuterCasuleGdInnerCasuleTiSacerAtuHaterial~Nt.,msSampleIDElemental
~Com.CommentsBottomBottomFeCuCo/Al0744819047190464445126/17944SeRollCPI3054Cat614ScBar26FoldedWireut-FoldedWire~UFoldedWire~\t~uFoldedWireuFoldedWireTiSacerAlShimSacerGdInnerCasuleAlShimSacer54.73546.35162.06041.2329.933225.80.180"OD99.999K99.999K99.999K99.917K0.506KX0.372"OLrappeSectralSet.AlWraedToargeeeatSinkSacerSSOuterCasule2894.730.254"ODX0.834"OLTo
TABLE11TASK/ID:85-WHSC-9010 Task1/NineMilePointUnit1SSCapsuleNumber:AG3BRMSetID:HAFHSetID:H5SSTRID:SSTR-THID:Cover:Gd$14Location:
BottomSetIDAG3BGd814H5MaterialBePurchaseOrderNumberRIRlBatchNumberRI-7*RI-4*.0.SingleFoldWire63.053HaterialDecentt1on~Mt.meStainessteeOuterCasuleGdInnerCasuleTiSacer3PcsMetalAlWraed3.55SampleIDNH-BE12Elemental
~Com.CommentsBottomBottomArappeHAFHSetCuAlFeRI1904719045RI-11A*L-CPI3054-9SeRollRxLot11ngeFoldWirengeFoldWirengeFoldWireTiSaceretaDiskAlShimSacerGdInnerContainer AlShimSacerargeeeatSinkSacer129.57437.8339.166248.581.490.175"099.999K99.999KX0.355"OL99.772KArappedFeGradientTo*BatchNo.givenbyRIforBoronanalysis.
SSOuterCasule3001.650.253"00X0.834"00 I1 TABLE12TASK/ID:85-WHSC-9010 TASK1/NineHilePointUnit1SSCapsuleNumber:AB3RHSetID:R6HAFHSetID:H6SSTRID:SSTR-THID:Cover:BareLocation:
BottomSetIDHaterialAB3H6BeFeCuPurchaseOrderNumberR2R2R219047BatchNumberRI-7*RI-11A"RI-4*EL-CPI-3054DescritionStainessteeOuterCasuleTiSacer3HetalPcsAlWraedingleFoldWiresngeFoldWirengeFoldWireHaterial~Mt.ms2.9462.815126.89631.886SampleIDNH-BE-9Elemental
~Com.99.999KCommentsBottomArappeHAFHSetAlFeCo/Al1904569-89-0885 SERollxLot11SRH953>ngeFoldWireTiSaceretaDiskWireAlShimSacerLargeedeatSinkSacerSSOuterCasule9.016258.2581.328.8631775.0599.999K0.177"00X0.368"OL99.772K0.116K0.256"00X0.834"OLAlWraedAlWraedTo*BatchNo.givenbyRIforBoronanalysis.
TABLE13SOLIDSTATETRACKRECORDERS (SSTR)(")
SSCAPSULEIDAB2235-UANO.(pg)ID2140.7021238-U237-NDEITMADEPOIATNO.(pg)IDNO.(pg)IDAB2BCG2BCB221720322210.44752161-21822923291.19343.7162032.0442023.917SOLIDSTATETRACKRECORDERTEMPERATURE MONITORS(SSTR-TM)(")
CB222523.3922612.09238-USSCAPSULEDOSITDEPOSITMASlOK.AB223033.4523368.53TMATERIAL/I 0quartz/13 Mica/13quartz/23 Mica/231)Alldepositsaremadeon0.168"Nibackingandhaveadepositdiameterof0.136".Theestimated uncertainties associated withtheSSTRmassvaluesarewithin+5%(1a).C-18
HAFMDOSIMETTSSSCapsuleIDAG1BAB1AG2BAB2AG3BAB3CG1BCB1CG2BCB2CG3BAlCapsuleIDH-1H-2H-3H-5H-7H-8H-9H-10H-11Be(12)LotRI-7~m4.252.753.323.093.552.942.252.022.161.902.32125.384124.704123.889120.157129.574126.896121.639120.04162.69564.51462.35162.33363.05362.81561.93860.452114.98258.747119.61559.479121.07761.289Ni(2,3)Fe(2,3)LotRI-4LotRI-11A~mmCu(23)LotHEDL-3054 m33.18930.00831.86830.84437.83331.88630.74330.59728.79533.12330.358Al(2,3)LotHEDL-19045 m9.3019.0688.9458.783.9.1669.0168.7088.4548.4308.4958.594CB3H-122.13120.43961.10930.8488.535WireDiameterBContent(ppm)8.9.0.04"0.0040.03"0.00460.02"<0.00020.02"0.0751)EachBesampleconsistsof3smallpiecesofmetalweighedandwrappedinasingleAlfoilpackagebyRI.2)gAanalysisforBoroncontentofthevariousHAFMmaterials maybefoundinNUREG3746Vol.1-HEDL-TME84-20,Semi-Annual ProressReort,October83-March84,(November 1984)pp.RI1throughRI9,3)Allwiresaresinglefoldedwithtotallengthof&.87".
TABLE15QUARTZENCAPSULATED MELTWIRE(MW)TEMPERATURE MONITORS(TM)~CasuleMeltTemp.oFWireDia.(in.).WireLength(in.WireWt.~(m)QuartzDia.QuartzLength(in.)(in.536558580588.5985365585805885980.0300.0900.0840.0840.0830.0300.0900.0840.0840.0830.50.50.50.50.50.50.50.50.50.5172.5563.0505.2497.0524.0174.0541.6509.6525.2502;00.235,0.2350.2350.2350.2350.2350.2350.2350.2350.2351.3871.4301.6201.9902.0671.1991.3121.6861.8782.135
TABLE16CAPSULELOADINGSEQUENCE"C"SERIES(-24EFPYEXPOSURE)
(FromBottomofSSorGdCapsule)AlCapsule-"IalTopHidCG1ACG18CB1CG2ACG2B0.254'.2520.2550.2550.2540.8320.8320.8310.8360.8302.87532.98471.76882.95983.9016R7H7H8R8R9H9785RMHAFMFeGrad.MAFHRHRHSSTR-THHAFHSSTR0.1800.1800.1800.1800.1800.3870.3620.3680.3800.357233.35255.28247.25280.9234.1BottomCB2CG3ACG3BCB30.2540.8330.2550.8330.255-0.8361.06172.86871.7624CB2H105R10R11H11H12R12FeGrad.SSTR-THHAFHSSTRRHRHHAFHFeGrad.HAFHRH0.1780.1930.1800.1750.1800.3800.0140.3920.3410.372248.23222.0249.35245.55oosmetermaterasarecloserthan0.10"fromouterSScapsuletop.Therefore, thetopcanbepartedoffupto0.10"fromtop.Caremustbetakenthatnoburrsexistnortheopenendswagedortheinnercapsulesmaynotshakeout.2)Itisrecommended theGdcapsulesactuallybecrackedopen(i.e.,use"nutcracker"onlowerendofcapsule).
Thereasonforthisisthatseveralofthedosimeter pocketsarequiteatightfitandpossiblywouldbedamagedintheattempttopullthemoutofthecapsuleortocutopenthebottomandpushthemout.3)NoAlmaterialshouldbediscarded withoutcloseobservation astowhetheritissimplyspacermaterialorwrappeddosimetry material.
Fegradients arewrappedindividually andthoughmarked,Fecouldbemistakenforspacermaterial.
BothbarespectralCo/AlandFe235-Uarewrapped'n Alandareunmarkedandcouldtherefore bemistakenforspacermaterial.
TABLE17TASK/ID:85-WHSC-9010 Task1/NineMilePointUnit1SSCapsuleNumber:CG1ARNSetID:RTNAFMSetID:SSTRID:SSTR-TMID:Cover:Gd55LocatIon:
~ToSetIDCG1AGD85RjMaterialPurchaseOrderNumberBatchMaterialNumberDescrdtIon~Wt.msStainessteeOuterCasuleGdInnerCasuleTiSacerSampleIDElemental
~Com.CommentsBottomBottomFeNiCuCo/Al07448so1sl19047190464445126/17944SfRollCPI3054Cat614ScBar2ut-FoldedWire.02"X-1.5ult-FoldedWire~utFoldedWire2'X>>.Ultl-FoldedWire.2'-.ut-FoldedWire51.21645.72760.12734.0879.37499.999K99.999%99.999K99.917KArappeSectralSet0.506KAlWraedTiSacerAlSacerShimGdCasuleaAlSacerShimLargeTeldeatSinkSacer233.350.180"ODX0.387"OLToSSOuterCasule2875.250.254"ODX0.8330L To 00 TABLE18TASK/ID:85-WHSC-9010 Task1/NineHilePointUnit1SSCapsuleNumber:CG1BRHSetID:HAFHSet10:H-ISSTRIO:SSTR-THIO:Cover:GdF12Locatson:
~ToSetIDHaterialCG18Gd12H7PurchaseOrderNumberBatchHaterialNumberOescrstson~Nt.msStasnessteeOuterCasuleGdInnerCasule'iSacerSampleIOElemental
~Com.CommentsBottomBottomBeNiFeRIRIRlRI-7*RI-4RI-11A*etarappeinAlsngeFoldWire.3.ngeFoldWire2.25NH-BE-7121.63961.938rappeHAFHSetCuAl1904719045ngeFoldWireSERollCPI3054FoldWireDL-0.."snge30;74330.59799.999K99.999KTiSacer255.200.180"ODX 0.362"OLxLot11.16'X.1'taDiskAlShimSacerGdInnerCasuleAlShimSacerargeeeatSinkSacer80.5999.772KArappeGradientTo*BatchNo.givenbyRIforBoronanalysis.
SSOuterCasule2984.720.252"ODX0.833"OL To f9 TABLE19TASK/ID:85-WHSC-9010 Task1/NineMilePointUnit1SSCapsuleNumber:CB1RHSetID:~RBHAFHSetID:H-8SSTRID:SSTR-THID:Cover:BareLocatton:
~ToSetIOH-8MaterialPurchaseOrderNumberBatchNumber~baser)t3onSSOuterCasuleTiSacerHater1al~Wt.msSampleIDElemental
~tom.CommentsBeNiFeCuRIRIRI19047RI-7*RI-4*RI-11A*otCPI-3054.040.8SingleFoldWire.8SngeFoldWire120;04160.452ngeFoldWire30.5973PcsMetalAlWraed2.02NM-BE-11AWrappedHAFHSetRBAlFeCo/Al1904569-89-0885 LotHEOL-190SERoll1xLot11SRH9534.2.in-leFoldWireTiSacer.6.1etaDisklngeFoldWireAlShimSacerargeT>eeatSinkSacer8.454247.2581.008.5620.180"ODX0.368"OL 99.772K0.116KInividuayAlWraedRHnmaredOuterapsueTa1768.790.255"ODX 0.831"OL"BatchNo.givenbyRIforBoronanalysis.
TABLE20TASK/ID:85-WHSC-9010 Task1/NineMilePointUnit1SSCapsuleNumber:CG2ARMSetID:R9HAFMSetID:SSTRID:SSTR-TMID:Cover:GdIGLocatton:
WidSetIDMaterialCG2AGd86R-9PurchaseOrderNumberBatchMaterialWomberOescrttton~Wt.msStainessteelOuterCasuleGdInnerCasuleTiSacerSampleIDElemental
~Com.CommentsBottomBottomFeNiCu07448190471904626/17944SERollCPI3054Cat614~U't1-FoldedWire~UFoldedWireseu'tFoldedWirev~uFoldedWire47.15544.98460.01333.71799.999K99.999K99.999K99.917KArappeSectralSetCo/Al44451SCBar2uti-FoldedWire8.5830.506KAlWraed235-U238-U237-N887057701488705264CES-Z24HP-UCasule0..5VCasuleCasuleTiSacerAlShimSacerGdInnerCasule1.7757.5526.555280.90.180"ODX 87.97K87.75K88.3X0.380"OLSeries3SeriesBSeries6To 4'h.li TABLE20(Cont'd)TASK/ID:85-WHSC-9010 Task1/NineMilePointUnit1SSCapsuleNumber:CG2A'RHSetID:RDHAFHSetIDSSTRID:SSTR-THID:Cover:Gd96Location:
HidSetIOMaterialPurchaseOrderNumberBatchNumber~DeecritionAlShimSacerargeeeatSinkSacerSSOuterCasuleMaterial~Mt.,me2959.85SampleID0.255"ODX Elemental
~Com.0.836"OLToComments
TASK/ID:85-WHSC-9010 Task1/NineMilePointSSCapsuleNumber:CG28RHSetID:HAFHSetID:H-9TABLE21SSTRID:~7G.SSSTR-TMID:Cover:Gdd7LocatIoo:
MIdSetIDMaterialCG2BGd87H9PurchaseOrderNumberBatchNumberDescritionStainessteeOuterCasuleGdInnerCasuleTiSacerHater)al~Wt.maSampleIDElemental
~Com.CommentsBottomBottomBeNiFeCu-AlRIRIRI1904719045RI-7*RI-4*RI-11A*0-CPI3054EO-SERoll13PcsMetalAlWraedngeFoldWire-.8ngeFoldWirengeFoldWirengeFoldWire2.16NH-BE-6114.98258.74728.7958.43099.999K99.999KArappedHAFHSetTiSacer234.10.180"ODX 0.357"OLMica237-NMica238-UMica235-U4909649096Muscovite SSTRLabelDown24HPDeositLabelUHuscovite SSTRLabel.Down2718DeositLabelUMuscovite SSTRLabelDown314ADeositLabelUeeTabe20Table12202eeae20Table12232eeae20Table12221ArappedSSTRrappeSSTRArappedSSTR*BatchNo.givenbyRIforBoronanalysis.
I' TABLE21(Conttd)TASK/ID:85-WHSC-9010 Task1/NineHilePointUnit1SSCapsuleNumber:CG2BRHSetID:HAFHSetID:H-9SSTRID:~785SSTR-THID:vCover:GDd7Locattoo:
MtdR9FeSetIDHaterialPurchaseOrderNumberBatchNumberDescrition0.16.etalxLot11DiskAlShimSacerIGdInnerCasuleHaterial~Mt.ma81.21SampleIDElemental
~Com.99.772KCommentsAlWrappedGradientToOI00AlShimSacerLarge1eeatSinkSacerSSOuterCasule3061.690.254"ODX 0.829"OLTo
~a TABLE22TASK/ID:85-WHSC-9010 Task1/NineMilePointUnit1SSCapsuleNumber:CB2RHSetID:'R1DWRFHSetID:111DSSTRID:5SSTR-THID:CB2Cover:BareLocation:
HidSetIDMaterialCB2PurchaseOrderNumberBatchMaterialDumberDescrition~Wt.msStainessteeOuterCasuleSampleIDElemental
~Com.CommentsBottomCB2H10Hicauartz3238-UuartzuartzMica238-UMicaMicaBeRIuscoviteSupersilESZSupersilSupersiluscoviteESZuscoviteuscoviteRl7*SacerLabelDownLabelULabelDownLabelULabelDownLabelULabelDownLabelUTiSacercsetarappedInAlTable122251213Table12226121.90NM-BE-10AlrappedSSTR-THontorsFeNiCuRIRl19047RI-11A*RI-4*>ngeFoldWire.0.>ngeFoldWireHEOL05*;20in-CPI3054leFoldWire59.479119.61533.12399.999AlWraedHAFSet
TABLE22(Cont'd)TASK/ID:85-WHSC-9010 Task1/NineHilePointUnit1SSCapsuleNumber:CB2RNSetID:R10HAFNSetID:HIOSSTRID:5SSTR-TNID:CB2Cover:BareLocation:
NidSetIDHaterialAlPurchaseOrderBatchNumberNumbercallwSERoll119045Descrition*0.0.ingleFoldWireHaterial~Wt.,ma8.495SampleIDElemental
~Com.99.999KComments5HicaSSTR235-U49096314ATiSacerSSTRLabelDownDeositLabelU248.23Table120.118"ODX0.380"OL216AlWraedTRSetR10Fe235-U88705RxLot11264C0.16X.031etaDiskoCasule81.731.18787.97KAlWraedPacageSeries5Co/Al69-89-0885 SRH953odWireAlShimSacer8.1580.116KAlWraedargeeeatSinkSacerSSOuterCasule1901.650.254"ODX 0.833"OLTo*BatchNo.givenbyRlforBoronanalysis.
TABLE23TASK/ID:85-WHSC-9010 Task1/Nine-Mile PointUnit1SSCapsuleNumber:CG3ARNSetID:R11HAFNSetIO:SSTRID:SSTR-TNIO:Cover:GdIOLocation:
BottomSetIDCG3AGd89R11MaterialFeCuCo/AlPurchaseOrderNumber07448190471904644451BatchNumber26/17944SeRollCPI3054Cat614SCBar2DescritionStainessteeOuterCasuleGdInnerCasuleTiSacerutFoldWire~UFoldWire~02'~5utl-FoldWireut-FoldWire.utl"FoldWireMaterial~NI.,me52.11352.64360.40239.4139.695SampleIDElcmental~Com.99.999K99.999K99.999K99.917K0.506KCommentsBottomBottomArappeSectralSetAlWraedTiSacerAlSacerShimGdInnerCasuleAlSacerShimLargeTieldeatSinkSacerSSOuterCasule222.02868.720.180"ODX0.3920L 0.255"ODX0.8330L ToTo
TABLE24TASK/ID:85-WHSC-9010 Task1/NineMilePointUnit1SSCapsuleNumber:CG3BRMSetID:HAFMSetID:H11SSTRID:SSTR-TMID:Cover:GD813Location:
BottomSetIDMaterialCG3BGd13H-11BePurchaseOrderNumberRlBatchNumberRI-7*MaterialOescrtt1oo~Wt.msStainessteeOuterCasuleGdInnerCasuleTiSacer3PcsMetalAlWraed2.32SampleIDNM-BE-5Elemental
~Com.CommentsBottomBottomFeNiCuAlFeRIRI1904719045Rl-11A*RI-4CPI-3054D-SeRollxLot110'ingleFoldWireX.ngeFoldWire.8'ingeFoldWiresngeFoldWireTiSacer"X.031etaDiskAlShimSacerGdInnerCasuleAlShimSacerLargeTeldeatSinkSacerSSCasule61.289121.07730.3588.594249.3581.822989.8099.999K99.999K0.175"ODX0.341"OL 99.772K0.253"ODX0.830"OL ArappeHAFMSetrappeGradientToTo 00 TABLE25TASK/ID:85-WHSC-9010 Task1/NineHilePointUnit1SSCapsuleNumber:CB3RHSetID:R12-HAFHSetID:H12SSTRID:SSTR-THID:Cover:BareLocation:
BottomSetIDCB3H-12HaterialBePurchaseOrderNumberRlBatchHaterialnumberDescrition~Wt.msStainessteeOuterCasuleTiSacerRI-7*3PCSMetalAlWraed2.13SampleIDNH-BE-4Elemental
~Com.CommentsBottomFeNiCuRIRlRI-11A*RI-419047CPI3054E&.8'ingleFoldWiresngeFoldWire.00X.87'sngeFoldMirenge61.109120.43930.84899.999KrappeHAFHSetAl19045SERollFoldWire8.53599.999KFeCo/AlRxLot1169-89-0885 SRH953TiSaceretaDisk.020Ž.wo-FoldMireAlSacerShimarge>eeatSinkSacer245.5581.88.7660.180"ODX0.372"OL 99.772K0.116KAlWraedAlWraedSSOuterCasule1762.440.255"ODX0.836"OL To*BatchNo.givenbyRIforBoronanalysis.
TABLE26NINEMILEPOINTUNIT1DOSIMETRY gAINFORMATION Activation RH/HAFHDosimeter Materials Batch/Dosimeter FormLotNo.PONo.TargetIsotopic~lentoeAbundance (at~omractson)VendorElementw/oVendorHEOLBoronDiameter~WtmorThickness AlMWireSERoll11904527BeMetalRI7Rockwell9Co/AlHWire'RM9538909559HWireSCBar2644451591.0001.0001.0001.000Semi.Ele.NBSSigmundCohn99.9990.11650.1170.5061.488.91.230.020"D0.020"D0.020"DCUHWireCPI305419047630.6917(1)
Comico-Am.
99.999~30ppbCo0.0002'.020" DFeHWireHWireHDiscRI11A26/17944Rx110Rockwell560744854540.9172(30) 0.058(1)0.058(1)Materials Res.ReactorExp.99.99999.7720.00460.0150.030"00.020"T0031stTNiHWireHWireRI4SERoll2Rockwell58II1II58HWireRx139W19046460.6827(1) 0.6827(1) 0.080(1)Semi.Ele.99.999ReactorExp.99.9170.0040.0150.040"D0.020"D0.020"DA)Valuesfornaturalisotopicabundances arefrom"Isotopic Composition oftheElements1983",Pure&Appl.Chem.",Vol.56.pp676-694(1984).Errorassignments inthelastdigitsofthevaluesaregiveninparenthesis
[1.e.,0.9172(30)is0.9172k0.0030].B)ThesereportedBoroncontentvaluesalongwithadiscussion oftheanalytical techniques maybeformedinNUREG/CR-3746, Vol.1,HEDL-THE84-20,"LWRPressureVesselSurveillance Dosimetry Improvement ProgramSemi-Annual ProgressReport,October1983-March 1984,(November 1984),ppRI-2/9,(1984).
TABLE26(Con't)FISSIOHABLE RHtSSTROOSIHETER HATERIALBatchHirettesfeeter tie.tete~Dte.Ie.Anal.ElementPOHo.Labpw/oAna)tlcalLabResultsIsotolcw/oCapsuleMalI235-U264COx)deHire0.018688705ORHL8.6887.97~0.0005HEDL-87.37IOHS~0.0037IIEOL88.00Titr.0.03499.890.029499.9010.0250.0220.0530.0430.007235-U314AOxide49096ORMLORHL9.6287.25LLNL-87.61HEOL-87.87238-U2718Oxide49096ORHL238-UES-ZOxide Mire0.017577014(0.0010.03699.9400.0110.013(0.0001(0.00010.0012%0.000199.999<0;0028~0.0035~0.00394).003299.987~=0~0001(0.00010.0006(0.000199.999SSTRSSTR0.007237-Hp24HP-UOxideHire0.17324HPOxlde88705ORHL8.1488.3ORHL235<0.0005236237238239~99.999(OnlyIsotopeDetected)
(0.0005<<99.99S0.003S0.003VSSTR0.007 00 APPENDIX0AS-BUILTPHOTOGRAPHS OFADVANCEDDOSIMETRY FORCAPSULESA'ndC'
rrpe~yr~'pal+Pi.r~gr~l)"l""'"'""N~l'r gj'rll-:-'.j~"-"lpl~r"'l"m~rior'BP~r Sr~~~r~r*~rp,rr,r4jg~kFIGURE1.Stainless Steel.-(SS),'-'.Encapsul ated.Dosimetry Sets.D-2 0
0.0600.1000.0300.030~FILLETWELD(TYP)SSENDCAPTiDISC(0.001THICK)WELDHEATSINKSPACERCRUMPLEDAIFOILFILLERPLUGGdCAP~~~%aC~~I'~SLIPFIT0.8300.510'r'.fP~~~~h~~t1~\DOSIMETER SPACE0.040I0.060o.ooo~~4o'~GdLINERBODY0.220ODx0.020WALLSSCONTAINER BODY0.250ODx0.010WALLSSENDCAPNOTE:ALLDIMENSIONS AREINCHESHEDL8704.034.2 FIGURE2.Stainless SteelContainer andGadolinium LinerDesign.D-3
- 4)
CAPSULE'C'SET'..CAPSULEASETCG1A,AG1AAGIBCB1.-CG2A'CG2BCB2P~[jjAB2CG3AAG3ACG38"AG3BCB3BEAMINTENSITY OPTIMIZED BEAMINTENSITY OPTIMIZED
'TOSHOWINDIVIDUAL
~TOSHOWSSWELDSANDDOSIMETERS INTHE.SIXINDIVIDUAL DOSIMETERS INGdCAPSULESTHETHREEBARE.CAPSULESHEDL8603-208 FIGURE3.Radiographs ofEncapsulated Dosimeters.
D-4
~'1q,4.~C~I+(A~i wc:.-"~~<+ta4+~'~+4~~g~"
>>;'>>~4'~",...'-;
'.,;,Cp4gh~'94:4'YeymFIGURE4.Dosimetry CapsulesAGlA,AG2A,AG3A,CG1A,CG2AandCG3A.>leg8602722-10 D-5 4I11,C414~l'SpI rr>'~y~~@PE.r~.r,PrrIV~,g,y'q4<)gf4rr'r~&C'$~,
OUTERSSCAPSULE~rPPi'ger:
ltfrrrrSLer>~.'+A~.,""Qg r"'.Irr~bMm5Ipr')AP,~,
Pkg"ra,.4<I,~49+@"P.gal%.'>;,LI,:.'Wk<j%+e"'rP$'Ar~.y<~(<<re~~E~A4~rd.~~44~W~
~~P'~k4'~'m~~~.r 4k4*X2;'Vrr.r-~>>~~kf"-~rrITp
<<yA+'~P,*%%%fgQrrrNQ+gg~~g~~)~Q~Qt j/fr,4)fggg'Pg rr..,,A....'.'IE,dj,.MMr@~~';';
~%'--.'--~4[5)',y>~Q),,..Gd I,'NNERCAPSULE,/~>@g~1Yfgr.'"I
',:FAA+@yp:1t.4~~<WR-..444AhLeVp~">p
,.L.A-.y~r'
.'-'M+",<I<'$r.
~q~'"+@'~~I~'~re!~>:<i,,':rrI TOP:;)TIWELOHEATSINKp:L'kp1NR4PPEDH4lIVlSET"..,:..'ORE5.Dosimetry CapsulesAGlB,AG38,CGlBandCG3B.Neg8602722-7 D-6
WRAPPEDFeGRADIENT:f kga+<<p$>P'..~.*,,","~'.~I,
~.4~<4~:.)~g>~Q.<P~
':,",;4"~jj."i'jjlI~gj@hlgi:.:,j::::j'i WRAPPED:237-Np SSTRFi'IQt',aA'Chi~4>>
X.A~wi','>>!,','::WRAPPED HAFMSET>';;ij'j-,'t->',"Q'-~:,!~~~
Dosimetry CapsulesAG28andCG2B.Neg8602722-8 D-7 4~Llg'I*a6l,6!i~~a~~t$1 a.<~>~>>h%i9ap4.<<$)'4Wv:$w~<<%~p@yijg,
+p$p$+y'r,++/i,g'PQg)%%a~~g'lv,.<<+ILW<<<<ew<>>"<<44~~PPPA+,Gg~<<@!~ggyp+~;;~'.:.,,q p),.~.p:~.SSOUTERCAPSULE"e:.P.,".f'~O.,
<<4Ž<p'.=--()+~~>p~<~rhf g<'~'"+Q-"~!"--(~<<4"'<<"'g'~p>~~l,
'.'8'<44~p<~-k~~~~
$"e'~"~4%"'4'~<<~'~:
+'~"4'~~~"~g~%@A<<<<~A~>~
~/~~4!p+'4~"gP>~v~'$>>j':jhowwQg'~~g>>wf'YH*4<<>>wr">>>PYp)<'~~5'-gY,+ggg>>sw$<dq<<:w+4K+$
~+A/g<p~i<<~$
~<<<cg,~<~Q~w,;~~<>>ivg~w
<pj-~K~,yYz-~y~~'~Yc.
d~,&)M<<p4<<~tr~g)
Kgfg~q~p~8<<<<.!~--"':-~-'~-'-.'-:
"<-'cWRAPPEDCo/AlRMi,',",,fhFIGURE7.Dosimetry CapsulesABl,AB3,CBlandCB3.Neg8602722-9 D-8 I~C.C~4t.,I!~0ctot
<<!<<<<<<.;:"'g~g"-'yF~
"."-4y3";:
"<~!".","'.'j"'.~'.".'-'-'>~~'j~"
,-.'-'>-.-';"::.'>
WRAPPEDSSTR-'TIVI SETfM"."g."'-",p+;".'-4~v<<.'&4~<
IGURE8.Dosimetry CapsulesAB2andCB2.Neg8602722-12 D-9 J-'I-C
~,>hah$.~~>a<~+w~~&OW@8~
FIGURE9.BareRMSpectra1Set.andGradientRM.Neg8602722-2
~,C'p1p))~t,
.'~a(i,A+g
'"~~'y"pk~~."
",;",'p,~x.~,".~g,-"j'm~+*4~~&'.s,j~zq-".Vjp'pgFIGURE10.BareRHSpectralSetwith235-U.Neg8602722-6
'A'IIlE sssss,aS,a~~~s%~a%'sssFIGURE11;Gd-Covered RMSpectralSet.Neg8602722-4 0tI~,f)g)a'p(g!)tgg~"~II>(~<"rlyII1"1 FIGURE12.Gd-Covered RMSpectralSetwithFissionable Oosimeters.
Neg8602722-3 II'I~~~galy rk,)kj,'r.,~.<<j'r;;,TOPh,:T;BPAOBBB+'<gBOTTOM.4",~,;-:~QPr,i5:,cbrit..<j
'h>>'hrrhrr~~~~pFIGURE13.KAFMDosimetry Set.Neg8602722-5 P1>llI4 WRAPPED235-u'-k~Ppg~':i:"A~e@~w'~,"bA~w'.~-y'kwg4ggjg<<~
~~~<$p~pQ>>FIGURE14.SSTRDosimeters.
Neg8602722-1
>.S4,g.,ltp4~hfylIk8
~.8'.Hi+"'*'.OUTER'Al.
WRAPPlNGW/IC.h(MICASPACER'-,
~~'j+~,;4/'.'"'QUARTZSSTR-TM,r4y~@ggg,
~gyP~gg,p,p$~'IGURE-'15.'STR TMTemperature Monitor-Sets.Neg8602722-13
.
APPENDIXEPHOTOGRAPHS OFMELTWIRETEMPERATURE MONITORS wll1ill~
QUARTZCAPSULE~QUARTZCAPSUI.EBACK-FILLED WITHAPPROXIMATELY ONEATOMOSPHERE OFHEUUMO.Z3"4I237" SPECIFIED LENGTHSTYPICALMELTWIRE668F+cQg+FzI'CAPSULEAMEITWIRESETCAPSULECMELTWIRESET1NOlNNINIFIGURE1.quartzEncapsulated MeltWireTemperature Monitors(TM).
ILlgAj
.K~+-;e~pf,:@"'j;~.,--;g'~-:~
k~"-~+$
>~'~<,m,y,~g~c~'~
"v:y',-~~.~<<,P'.'q~jP,*,~'~%"
~~,'fiP,MQ.4q,,P'@'g.A~+0,/'*FIGUREzquartzEncapsulated MeltWires.TypicalofbothCapsulesAandC.Ne98602722-11 E-3
APPENDIXFCHEMICALANALYSISDATAFORNINEMILEPOINTUNIT1 0
F.1PLATEDATATheplatechemistry dataweretakenfromReferences
[LU64],[ST84],[MA85a],and[MA87].F-2
'I CHEMICALAHALYSISRESULTS(WMAL)FORNINEMILEPOINTUNIT1.MODIFIEDA382BMATERIAL[MA87]BASEFROMBASE38DEGREECAPSULE(1)E1A(A)Elh(B)E1CEBKE2UE31STANDARDRELATIVEMEANDEVIATION DEVIATION, XFeCuNiCu(2)Hi(2)PMnCoMoVCrTiC(3)S(4)Si(6)MATRIX8.2448.5128.2418.4688.8411.377e.sle8.433<8.8858.1868.8818.2868.8228.2268.8391.361e.sle8.435<e.ees8.1868.8818.8421.3698.8188.421<8.8858.186<8.8818.8411.3628.8118.466<8.8858.186<8.8818.8391.3448.8188.432<8.8858.186<e.eel8.8391.3688.8188.436<8.8858.189<8.8818.2268.226MATRIXMATRIXMATRIXMATRIXMATRIX8.2438.2438.2588.2488.2468.5148.5ee8.55es.sle8.5198.8838.8178.885~8.8258.8818.8148.8151.3668.2443.3868.5182.8758.2415.2888.4683.3898.8481.8551.3694.8168.8183.4548.436<8.8858.9128.186<8.8818.2868.8228.226NOTES:(1)ALLMEASUREMEHTS BYICAPUNLESSOTHERWISE HOTED(2)BYATOMICABSORPTION (3)BYLECOCOMBUSTIOH (4)BYTITRIMETRIC COMBUSTIOH (5)BYGRAVIMETRY
CHEMICALAHALYSISRESI.TS(WMAL)FORHIHEMILEPOINTUNIT1.MODIFIEDA382BMATERIAL[14AB7]BASEFROMBASE388DEGREECAPSI.E(1)E42(A)E42(B)ETEEILlE1UE3TE3T(R)STANDARDRELATIVEMEANDEVIATIOH DEVIATION, XFeCuHiCu(2)Ki(2)PMnCoMoVCrTiC(3)S(4)Si(5)MATRIXMATRIXMATRIX6.2338.23S8.2588.4798.6178.6398.238e.4738.8338.8488.8451.3241.3341.3788.8188.8188.8188.48S8.4288.462<S.SSS<e.eeS<S.SSS8.1858.18S8.1898.6818.681<8.8618.2188.8238.22S8.22S8.2268.8391.3378.818e.4es<e.ess8.166<8.8818.8348.8438.8451.3621.3941.3778.8188.8118.8188.41S8.4528.445<e.sss<B.ees<B.ess8.1838.1138.1168.881<8.881<8.881MATRIXMATRIXMATRIXMATRIX8.2438.2418.24S8.2478.4326.4SS8.5438.522.B.ess8.8278.8658.8178.8848.825s.ese8.8222.8718.2435.3398.5182.1618.2383.6948.4739.9478.8411.8691.3683.7268.8186.17S8.431<e.ees3.4958.169<8.6818.2188.8238.22SHOTES:(1)ALLL!EASURHlENTS BYICAPUNLESSOTHERlISE KOTED(2)BYATOMICABSORPTIOH (3)BYLECOCOMBUSTIOH (4)BYTITRIMETRIC COMBUSTIOH (5)BYGRAVIMETRY k
CHEMICALANALYSISRESIA.TS(WMAL)FORHIHEMILEPOIHTUHIT1.MODIFIEDA3828MATERIAL[MA87]UHIRRADIATED ARCHIVEPLATE(1)025(A)025(B)D21DblSTANDARDRELATIVEMEANDEVIATIOHDEVIATION,X FeCuNiCu(2)Ni(2)PCoVCrTiC(3)S(4)Si(5)MATRIX5.173b.5628.1788.573b.b231.14d8.518d.4dd<S.SSSd.563<$.8818.249S.bid$.153MATRIX8.1888.5698.177S.SSS$.8231.168$.$1$$.477<$.885$.886<$.8818.5231.143$.51$$.491<S.bsS$.864<$.881$.8181.151$.811$.469<S.SSSS.d64<$.$81$.163$.153MATRIXMATRIXb.17d$.175$.52S$.5$48.8831.6738.17S8.8LT2.8198.5998.8831.6988.1788.8223.6638.5788.88211.4948.8225.5171.4711.155S.SSS4.876b.slbd.dll2.2318.47dS.SSSS.SSS<S.SSS8.8811.4948.864<d.ssl8.249S.eld5.163XOTES:(1)ALLMEASUREMEIITS BYICAPtRLESSOTHERSISE NOTED(2)BYATOMICABSORPTIOX (3)BYLEOCOMSSTION (4)BYTITRIMETRIC COSSTIOH(5)BYCRAVIMETRY 0
CHEMICALANALYSISRESULTS(WMAL)FORNINEMILEPOINTUHIT1.MODIFIEDA382BMATERIALfMA87]BASEFROMHAZ368DECREECAPSULE(1)JIL(A)JIL(B)JAMJAEJITJIPSTANDARDRELATIVEMEANDEVIATION DEVIATION,X FeMATRIXMATRIXCu8.1728.173Hi8.6818.626Cu(2).8.165Ni(2)8.564P6.8238.626Mn1.1421.163Co8.8188.811Mo8.4568.463V<8.665<8.665Cr8.8848.665Ti<8.881<8.861C(3)8.227S(4)8.818Si(S)8.1688.1688.8221.135S.8116.561<8.8658.892<8.8618.8231.1528.8118.495<6.6658.864<8.8818.8211.1498.8118.466<S.SBS8.863<8.8618.8221.8548.8188.461<8.6856.677<8.6818.168MATRIXMATRIXMATRIXMATRIX8.1738.1748.1738.1648.6548.6448.6398.5988.6848.8258.8648.8198.862S.B488.8818.8168.6852.1744.8422.4243.3697.5433.4974.6413.2135.6948.1718.6268.1658.5648.8231.1338.8118.464<8.6658.864<8.8818.2278.8188.168NOTES:(1)ALLMEASUREMENTS BYICAPUNLESSOTHERWISE NOTED(2)BYATOMICABSORPTION (3)BYLEOCOMBUSTION (4)BYTITRIMEfRIC COMBUSTION (5)BYGRAVIMETRY
ICAPCHEMICALAHALYSISREPORT(KL)FORHIHEMILEPOINTUHIT1.IMA87)UHIRRADIATED ARCHIVEPLATE(1)D25(A)D25(B)D21DelSTANDARDRELATIVEMEAHDEVIATION DEVIATION, XLNTRIXLNTRIXLNTRIX8.1ae8.Ds8.1eed.ee3e.sssd.s7s8.1848.1828.184e.se4d.s7se.s781.1981.1181.148FeCuHiCu(2)Ni(2)MnCoMo$.4978.496$.493VCr8.1228.117$.118TiC(3)S(4)Si(6)LNTRIX8.1828.8858.6858.8288.1828.883$.6788.8221.1288.838$.4928.882$.121$.8822.9678.1813.3848.5881.8398.1833.8818.5793.1221.1488.4498.4941.992e.128HOTES:(1)ALLMEASUREMEHTS BYICAPMESSOTHERNISE NOTED(2)BYATOMICABSORPTION (3)BYLECOCOMSSTION (4)BYTITRIMETRIC COLRXSTION (6)BYCRAVIMETRY
EDAXCHEMICALANALYSISRESUTS(BCL)FORNINEMILEPOIHTUNIT1.MODIFIED382BMATERIAL[MABSa)BASEFROMBASE38DECREECAPSll.EEIA(A)E71EIC(182)EBK(lk2)E2UE31STANDARDRELATIVEMEANDEVIATION DEVIATION, 8FeCuHiPMnCoMoYCrTiCSSiMATRIXMATRIXMATRIXMATRIXMATRIXMATRIX8.3388.2688.3288.2688.2888.6688.5888.5258.5288.618.8.8588.8688.8768.8388.8788.8258.3568.2988.8396.9258.5638.81831.3838.857
EDAXCHEMICALAHALYSISRESUTS(BCL)FORHIHEMILEPOIHTUHIT1.MODIFIED3828MATERIALLST84jBASEFROMBASE388DECREECAPSUL=E42(A)E42(B)ETEEIMElU(112)E3TEOT(R)=TANOARORELETIYEUCAHOEYIATIOH DEVIATIOH,XFeCuHiPMnCoMoYCrTiCSSiMATRIXMATRIXMATRIXMATRIXMATRIXMATRIXMATRIX8.2288.2388.2288.2158.2588.2388.488e.4588.4588.4vse.4588.4588.8228.8218.8218.8198.8248.8278.8138.8138.8835.5188.2282.T138.46312.5598.822
1964LUKENSDATAFROMTESTCERTIFICATE()
ELEMENTFeCuNiPMnMoCS.SiG-8-3G-8-4MATRIX0.180.560.0121.160.470.200.0270.17G-8-1MATRIX0.230.510.0211.340.450.190.0280.21G-307-3MATRIX0.200.480.0181.450.450.180.0340.26G-307-4MATRIX0.270.530.0191.250.520.200.0300.21G-307-10MATRIX0.220.510.0181.430.510.200.0260.26(1)Basedondiscussions withLukens,datafromladelanalysisbyatomicabsorption.
F.2WELDDATATheweldchemistry dataweretakenfromreferences
[LE64],[CE90],and[ST84].
REACTORVESSELBELTLINEWELDINFORMATION NumberWeldSeamLocationWeldWireTypeWeldFluxTypeandHeatNo.andLotNo.DetailedWeldProcedure 2-564A/C2-564D/F3-564Surveillance CapsuleWeldLower-Intermediate ShellLongitudinal LowerShellLongitudinal SeamsLowerIntermediate toLowerShellGirthAllThreeCapsulesRACO3/86054RACO3/1248E8018/HACD E8018/JBGD RACO3/86054E8018/HACD E8018/JBGD RACO3/1248E8018/DBDE E8018/IOGE RACO3/W5214ArcosArcosN/AN/AArcosN/AN/AArcosN/AN/AArcosB-5/4E5FB-5/4K13F B-5/4E5FB-5/4M2FB-5/5G13F SAA-33-A(3)SAA-33-A(3)MA-33-A(7)MA-33-A(7)SAA-33-A(3)MA-33-A(7)MA-33-A(7)SAA-33-A(3)MA-33-A(7)MA,-33-A(7)SAA-33-A(3)Reference
[CE90]
WeldSeamWeldWireHeatFluxLotBELTLINEWELDCHEMISTRY DATASiMoNiCu2-564A/C2-564D/F3-56486054/4E5F 1248/4K13F 86054/4E5F 1248/4M2F
.12.11.12.101.641.711.641.26.015.005.015.015.020.017.020.020.34.51.38.56.34.51.22.57Surveillance CapsuleWeld5214/5G13F
.141.58.018.013(~023).25.51(2)(2)(.18)(.09)(1)Datainparenthesis weremeasuredusingirradiated materialandreportedin[ST84].(2)Reference
[CE90]recommends theuseofsignificantly highervaluesbasedonexamination ofgeneric.dataReference
[CE90]
'TIt F.3SUPPLEMENTARY BASEMETALCHEMICALANALYSISThebaseportionoftheHAZtensilespecimen, JUD,fromthe'300degreecapsulewasanalyzed.
Also,thebaseportionoftheHAZCharpyspecimen, JlM,fromthe300degreecapsulewasalsoanalyzed.
Theobjective wastoshowthatthechemistries ofthebasefromHAZaresimilarandmatchtheG-8-3Lukensdata.Theattacheddatasupportthistheory.F-14
BASEMETALCHEMISTRY ANALYSISFORIRRADIATED SPECIMENS Concentration inWeihtPercentElementJlM(BasefromJUD(BasefromFeCoCrCQMnMoNiBALANCE0.0110.0750.1831.0440.4720.642<0.010<0.010BALANCE0.0130.0920.1681.1290.4740.5790.026<0.010
APPENDIXGTENSILEDATA
Theunirradiated weldproperties aregiveninreferences
[LE64]and[CE90].Theunirradiated plateproperties aregivenin[ST64].Irradiated properties arereportedinBattellereports[ST84],[MA85a],and[NA87].TheG-8-3archiveplatedataandirradiated HAZbasemetalminiature tensiledataweremeasuredaspartofthecurrentwork.G-2
G.lBASELINETENSILEDATAG-3
TABLEG-1UNIRRADIATED WELDTENSILEDATA~TeHeatNo.FluxLotNo.YieldStrengthUltimateTensileElongation Reduction PsiStrenthPsiIn2"%OfArea%RAC03860544E5F75,50090,00027.569.9RAC031248RAC031248Surveillance CapsuleWeldW52144K13F4M2F5G13F66,80063,00065,00084,10080,00084,00026.027.527.564.964.367.0(1)Datatakenfrom[LE64]and[CE90].Thetestrecordsdonotindicatethetesttemperature.
Therefore, RTisassumed.
TABLEG-2UNIRRADIATED BASEMETALDATAPlateCodeHeatNo.YieldStrengthPsiUltimateTensileStrenthPsiElongation Reduction In2"%OfArea%G-307-3G-307-10AG-307-4IG-8-1G-8-3G-8-4P2074-2P2091-2P2076-1P2112-1P2130-1P2130-262,00069,40069,40066,60065,00059,30082,00092,90089,90087,50086,20085,50028.025.027.027.026.029.069.067.066.266.065.468.0(1)Datatakenfrom[ST64]Thetestrecordsdonotindicatethetesttemperature.
Therefore, RTisassumed.
G.2IRRADIATED SURVEILLANCE SPECIMENDATA
TABLEG-3TENSILEPROPERTIES FORTHEIRRADIATED MATERIALS FROMTHENINEMILEPOINT300-DEGREE SURVEILLANCE CAPSULE~~
TestSpecimenMaterial"'emp.'>
No.Type(F)YieldStrenthsiUltimateFractureFractureReduction StressinAreaElonation(psi)(percent)
Uniformercent'~'otal JJAJDBJLBJL7JUDJTUBaseBaseWeldWeldRT79,17055069,410RT73,68055067,760RT63,72055059,96099,70092,89090,24084,69085,06081,50066,06068,09059,45059,18054,88056,910192,300161,800186,300157,600181,200145,10065.758.068.162'69.760.812.58.913.010.57.57.127.719.723.220.919~818.4(2)(3)(4)Datatakenfrom[ST84].TheweldandHAZspecimens weremostlikelyfabricated usingplateG-8-3material.
Thecomposition ofthebasetensilespecimens isnotknownatpresent.Roomtemperature (RT)isapproximately 75'.Theelongation isfora1-inchgaugelength.Thecomposition ofthesurveillance tensilespecimens isnotknown.Chemicalanalysesarerecommended inthefuture.
TABLEG-4TENSILEPROPERTIES FORTHEIRRADIATED BASEMETALFROMTHENINEMILEPOINT30-DEGREE SURVEILLANCE CAPSULETestSpecimenMaterial'"
Temp.+'o.Type(F)YieldFractureReduction StrenthsiStressinAreaElonationUltimateFracture(psi)(percent)
Uniformercent'~'otalJDEBaseRT76,07896,81765,708193,93966.112.024.1(1)(2)(3)(4)Datatakenfrom[MA87].Thecomposition ofthebasetensilespecimens isnotknownatpresent.Roomtemperature (RT)isapproximately 75'.Theelongation isfora1-inchgaugelength.Thecomposition ofthesurveillance tensilespecimens isnotknown.Chemicalanalysesarerecommended inthefuture.
G.3ARCHIVEPLATEG-8-3DATATheaxialextensometer slippedoffspecimenTN-2duringtesting.As-aresult,thestress/strain curvecouldnotbeaccurately plottedandtheuniformstraincouldnotbedetermined.
G-9
TABLEG-5.TENSILEPROPERTIES FORTHEARCHIVEPLATEG-8-3HatlTestFractureSpec.TypeTemp.Load(F)(lbs)Engineer>ng Strength(kss)YieldUltimateFracture.2XorupperloMerTrueFractureBridgmanStressCorrection (ksi)(ksi)Red.InElongatton AreaUniformTotal(X)(X)(X)tn-1Basetn-3Basetn-2(1)Base7813281.67.465.487.266.8178.3152.525011719.64.761.980.458.5156.5133.855012842.57.9-.--86.364.1148.3129.762.513.845.262.610.133.356.8385Theelongation isfora(n)1.0inchgagelength(1)Theuniformelongation couldnotbedetermined becauseextensometer slippedduringtest
UNIRRADIATED ARCHIVEPLATEQ-8-3SPECIMEN:
TN-'tTESTEDAT78F't0050IMQIRIIHIEKI%9MQ S7RKSS+IMANIIIMtLIM 87IRK88FINA,CVUIRK 87MSS0.000.100.200.300.400.50STRAIN(IN/IN)
UNIRRAOIATED ARCHIVEPLATEG-8-3SPECIMEN:
TN-1TESTEDAT78F200100r<rrrrrrrrrr/IKMQIR0HIKIKIR0HQ 87IRIK887IRUIK87IRIK88SIRIISCIMAH COIRIRIKC7ION 65lAXOMUIM 87IRIK88iFIRA,C7INIRIK 87IRIK880.000.200.400.600.80'I.OO1.20STRAIN(IN/IN)G-12 1'Y"Ck~hh47."<~
ggcj)p428~v]iQit~iAFIGUREG-1POST-TEST PHOTOGRAPHS OFTHEUNIRRADIATED BASEMETALARCHIVEPLATEG-8-3TENSILESPECIMENTN-1SHOWINGBOTHTHEREDUCEDAREAANDFRACTURESURFACEG-13 I}'g441 FIGUREG-2POST-TEST PHOTOGRAPHS OFTHEUNZRRADZATED BASEMETALARCHIVEPLATEG-8-3TENSILESPECIMENTN-2SHOWINGBOTHTHEREDUCEDAREAANDFRACTURESURFACE
UNIRRADIATED ARCHIVEPLATEQ-8-3SPECIMEN:
TN-3TESTEDAT250FIBQHIIIHIEIRIRIIM 87IRKSS+MAMIMUM87IRKSStF(MCVURIK87(RIESS0.000.100.200.300.400.50STRAIN(IN/IN}G-15
UNIRRADIATEO ARCHIVEPLATEG-8-3SPECIMEN:
TN-3TESTEDAT250F200'f00rrrrrrrI/Qg3IIDDQIgg(g CIRIMCYIIM IMANOMIUIM SYIMSSISA,C'rUIRIB SYM880.000.200.400.60O.S0t.001.20STRAIN(IN/IN) k~,k'dbl.1~vtl>i~
FIGUREG-3POST-TEST PHOTOGRAPHS OFTHEUNIRRADIATED BASEMETALARCHIVEPLATEG-8-3TENSILESPECIMENTN-3SHOWINGBOTHTHEREDUCEDAREAANDFRACTURESURFACE
6.4MINIATURE BASEMETALSPECIMENDATA(BASEMETALTAKENFROM300DEGREECAPSULEWELDCHARPYSPECIMENS)
BasedonanalysisofbasemetaltakenfromHAZspecimens, itislikelythatthesespecimens werepreparedfromplateG-8-3G-18
TABLEG-6.TENSILEPROPERTIES FORIRRADIATED BASEMETALTAKENFROMWELDHAZSPECIHENS (BasedonHAZBaseMetalAnalysis, theHateTialisHostLikelyG-8-3)Spec.TypeTemp.Load(F)(lbs).2XorupperloverEngineering Strength(ksi)HatlTestFractureYieldUltimateFractureRed.TrueinElongation AreaUniformTotalFractureBridgmanStressCorrection (ksi)(ksi)(X)(X)(X)ejdBase781079.ejtBase2501001.edtBase5501138.71166.866.362893.386.690.061.958.266.1177.4150.4157.3134.3150.8132.265.163.056.210.531.58.729.426.631.5Theelongation isfora(n).102inchgagelength
BASEMETALFROMWELDCVNSPECIMEN:
EJDTESTEDAT78F'f0050IRMQRIIIMIKIRRIMQ SYIRIKSS+MANIISlUM SY(RlKMPIMC'rUM8YlMSS0.000.100.200.300.400.50STRAIN(IN/IN)G-20
BASEMETALFROMWELDCVNSPECIMEN:
EJDTESTEDAT7SF200100rrrrrrrrrrrrrp'KIMCIROHKKIROHQ SVIRKS8VIRUKSVIRKSSSIRODOLIAH CIRIRKCVIOII OIANOMUMSVIRKSSIFIMCVUIRKSVIRKSS0.000.200.400.800.80'I.001.20STRAIN(IN/IN) 0 J':,2428ppvp2428FIGUREG-4POST-TEST PHOTOGRAPHS OFIRRADIATED BASEMETALTENSILESPECIMENEJDSHOWINGBOTHTHEREDUCEDAREAANDFRACTURESURFACEG-22
BASEMETALFROMWELDCVNSPECIMEN:
EJTTESTEDAT260F100IEIMIIIIHIMRIM 87MSS+MAMMUH87MSSlFIRACVUIM87IRKSS0.000.100.200.300.400.50STRAIN(IN/IN)G-23
BASENIETALFROMWELDCVN-SPECIMEN:
EJTTESTEDAT250F200100rrrrrrrrpKHQIRIIHKKIR0HQ 87IRK887IRVK87IRK88QIRIIpDQIUQ,Ig CIRIRKCVIOIM MANIIIMUIM 87IRK88IFIRACVUIRIF.
87IRK880.000.200.400.600.80'!.00'I.20STRAIN(IN/IN)G-24 p'lpl' y<~frry!'!r~r'r.,.;*!i+rr',*~481r.--2428Q$DlA'0JAWAC)~rr~i'-.*~g~;gpss;.~lpl,jigjjZBFIGUREG-6POST-TEST PHOTOGRAPHS OFIRRADIATED BASEMETALTENSILESPECIMENEJTSHOWINGBOTHTHEREDUCEDAREAANDFRACTURESURFACEG-25
BASEMETALEROMWELDCVNSPECIMENEDTTESTEDAT550FsacIKMQIRIIMEIMIIIMQ 87MSS+lMAMSIUM8YÃtK88lFiMC'rUIRlKSYIMSS0.000.200.400.800.801.00STRAIN(IN/IN)G-26
BASEMETALFROMWELDCVNSPECIMEN:
EDTTESTEDAT550F200100rr/IKMRRIIHIKKIR!IMQ 87IRIK887IRUIK87IM88SIRISCHAH COIRMC7IIOM MANRilUM87IRKSSIFIMCVUilK87IR8880.000.200.400.800.80'f.001.20STRAIN(IN/IN)G-27 Iqa~,
-yS242832F~4>43>~0g856FIGUREG-5POST-TEST PHOTOGRAPHS OFIRRADIATED BASEMETALTENSILESPECIMENEDTSHOWINGBOTHTHEREDUCEDAREAANDFRACTURESURFACE
APPENDIXHCHARPYDATA
~-
Theunirradiated weldproperties aregiveninreference
[LE64].TheG-8-3archiveplatedatafortheT-Lorientation weremeasuredaspartofthecurrentworkandtheL-Torientation datawasoriginally reportedinReference
[MA87].Theunirradiated plateproperties aregivenin[ST64].Irradiated properties arereportedinBattellereports[ST84],[MA85a],and[MA87].H-2
H.1UNIRRADIATED DATAH-3
H.1.11964UNIRRADIATED BASELINECHARPYDATA
TABLEH-1.UNIRRADIATED WELDCHARPYDATA~TeHeatNo.FluxLotNo.+10'FZmactValues~AuexaeRAC03RAC03RAC0386054b124812484E5F4K13F4M2F66.0,64',65.055.0,51.0,57'53',57.0,65.065.254.458'Surveillance CapsuleW52145G13F61,52,5857.0Datatakenfrom[LE64]and[CE90]
TABLEH-2.UNIRRADIATED PLATEG-8-3CHARPYDATA~~TestTemeratureF-80-40+1060110160212ImactEnerft-lb9.0,6.032.0,17.050.0,37.0,47.577.0,63'90',99.0100.0,96.087',78.5Averaeft-1b7.524.544.870.094.598.082.7Datatakenfromreference
[ST64]
~"4l TABLEH-3.UNIRRADIATED PLATEG-8-4CHARPYDATATestTemerature'F-40+104060110160212ImactEnerft-lb23.5,26.046.0,61.0,42'58.0,64.072.5,74'98',98.0100.5,100'106.0,106.0Aveiaeft-1b24.749.661.073.598.0100.2106.0Datatakenfromreference
[ST64]H-7
NINEMILEPOINTUNITI~UNIRRADIATED BASEMETAL083/Q84(12)EXPERIMENTAL DATA120100IIL80g+Jfj0WEIBVLLFITTRANSITION WEIBVLLFITUPPERSHELFHYPERBOLIC TANGENTFIT6040VX-20JJ00(~/4-100-50050'I00150200250TESTTEMPERATURE (F)CONFIDENCE LIMIT(95%)CONFIDENCE LIMIT(95%)CONFIDENCE LIMIT(95%)CONFIDENCE LIMIT(95%)H-8 lCV'+Jul TABLEH-4.UNIRRADIATED PLATEG-8-1CHARPYDATA*"*'TestTemerature'F-40+10406011021243.5,47.0,45.058.0,55.080.0,70.0,70.082.0,95.0,83.0ImactEnerft-1b13.033.0,33.5,25.0Averaeft-1b13.030.544'53.373~3.86.7'-"Data.takenfromreference[ST64]H-9
NINEMILEPOINTUNITUNIRRADIATED BASEMETALQ-8-1(1,2)DATA120WElBULLFITTRANSITION 100IltL80HYPERBOLIC TANGENTFIT6040V20kkA-100-50050100150200250TESTTEMPERAlVRE{F)CONFIDENCE LIMIT(9SX)CONFIDENCE LIMIT(95%)CONFIDENCE LIMIT(95%)CONFIDENCE LIMIT(95m)H-10
TABLEH-5.UNIRRADIATED PLATEG-307-3CHARPY'DATA~>>
TestTemerature'F-40+104060+7590110140160212ImactEnerft-lb8.027.5,37.5,41.041.5,52',57.063.558.071.582.090.0101.5100.0,106.5Averaeft-lb8.035.350.263.558.071.582.0'90.0101.5103.3Datatakenfrom[ST64]
- ~4$'I>
NINEMILEPOINTUNITI~UNIRRADIATED BASEMETALQ-307-3(1I)~EXPERIMENTAL DATA120100QltII-LI8060LLI40V20i/a/~k//e//4ta0-100-50050100150200250TESTTEMPERATURE (F)WEIBULLFiTTRANSITION HYPERBOLIC TANGENTFITCONFIDENCE LIMIT(95%)CONFIDENCE LIMIT(95%)CONFIDENCE LIMIT(95%)CONFIDENCE LIMIT(95%)H-12
TABLEH-6.UNIRRADIATED PLATEG-307-4CHARPYDATA~~TestTemerature'F-40+1060110212ImactEnerft-1b13.0,20.0,12'37.0,35.0,38.050.0,41.0,61.082.0,75.0,84.580.0,83.5,80'Averaeft-lb15.036.650.680.581.0Datatakenfrom[ST64)
NINEMILEPOINTUNIT1~VNIRRADIATEP BASEMETALG3074(11)EXPERIMENTAL DATA120100IXIlI-LL80kkkkkPkkkkkkkkWEIBULLFITTRANSlTION WEIBULLFITUPPERSHELFHYPERBOLlC TANGENTFIT60LLI40V20CLkkkk/k/k/kkk-'I00-50050'j001502'00250TESTTEMPERATURE (F)CONFlDENCELIMIT(95%)CONFIDENCE LlMIT(95%)CONFlDENCEuMIT(95%)CONFIDENCE uMIT(95%)H-14
,'II%
TABLEH-7.UNIRRADIATED PLATEG-307-10CHARPYDATA~i'.TestTemerature'F-40+1060110212ImactEnerft-lb16.5,12.5,13.040.0,33',45.045.0,56.5,62.068.0,80.0,63.0,97.0,100',100.0Averaeft-1b13.339.354.370.399.0Datatakenfrom[ST64]H-15 rV4 NINEMILEPOINTUNIT1~UNIRRADIATED BASEMETALQ30710(12)eEXPERIMENTAL DATA120WEIBULLFiYTRANSITION 100II-LL8060ILI40V20g4/Jko>rer0-100-50050'I00150200250TESTTEMPERATURE (FjHYPERBOLIC TANGENTFITCONFIDENCE LIMIT(e5%)CONFIDENCE LIMIT(95%)CONFIDENCE uMIT(e5v)CONFIDENCE uMIT(e5v)H-16
H.1.2.UNIRRADIATED ARCHIVEPLATEG-8-3DATAH-17 C,r LEH-8.CHARPYV-NOTCHIMPACTRESULTSORUNIRRADIATED BASEMETALSPECIMENS PREPAREDFROMPLATEG-8-3(L-Torientation)
"'pecimen Identification LocationWithinPlateTestImpactTemperature Energy.(F)(ft-lb)LateralExpansion (mils)FractureAppearance
(%Shear)C28C06C27C04C24C03C22C23C02C21C01C29C07C31C09C30C081/4T3/4T1/4T1/4T3/4T1/4T1/4T3/4T1/4T3/4T1/4T3/4T1/4T3/4T1/4T3/4T-80-80-40-40101035353560601101101601602122128.49.214.524.085'55.051'107.067'104.597.5108.0105.5108.0113.0109.5110'12.410.218.229.650.844.443.877.453.468'82.073'79.078.083.882.481.4551010502540100506570100100100100100100Datatakenfromreference
[MA87]
NINEMILEPOINTDATAANDCURVES8DataYatweWottwllfitTAlatt'ttOSConttdonco t.tmtt~0OO-l00-50050l00l50200TESTTEMPERATURE (F)250CVNIMPACTENERGYVERSUSTESTTEMPERATURE FORPLATEG-8-3(L-TORIENTATION)
H-19.
OCOMPARlSONPLOTDATAANDCURVES0plate~-5,$67teet0plod~-b,$64teetbpled~-4>$54teet00LXIIoEO4cr9LJJ00hh00100-50050100150TESTTEMPERATURE (F)200250COMPARISON OF1987ARCHIVEPLATEG-8-3DATAAND1964CVNIMPACTDATAONPLATESG-8-3andG-8-4H-20
H.1.3.1990CurrentStudUNIRRADIATED ARCHIVEPLATEG-8-3DATAT-Lorientation H-21
LEH-9.CHARPYV-NOTCHIMPACTRESULTSOR'UNIRRADIATED BASEMETALSPECIMENS PREPAREDFROMPLATEG-8-3(T-Lorientation)
SpecimenIdentification LocationWithinPlateTestTemperature (F)ImpactEnergy(ft-lb)LateralExpansion (mils)FractureAppearance
(%Shear)3N21N23N11N13N41N43N51N53N9'N81N83N71N71N93N61N63N31N33/4T1/4T3/4T1/4T3/4T1/4T3/4T1/4T3/4T3/4T1/4T3/4T1/4T1/4T3/4T1/4T3/4T1/4T-80-80-40-40101035355757577979791101102122127.39.011.012.233.941.041.045.560.153.157.253.051.268.369.073'68.064.0546.49.411.228.634.437.439.452.048.251.448.646.662.059'61'61.258.88.16.520.515.334.437.656.061.183.581.074.995.673.381.0100.0100'100.0100.0
NINEMILEPOINTUNITI~UNIRRADIATED g4$EMETALQQ3(ff)(I2)~EXPERIMENTAL DATA100CQIfU8060WEIBULLFITTRANSITION HYPERBOLIC TANGENTFITCONFIDENCE LIMIT(95%)400200-100-50050100150200250TESTTEMPERATVRE(F)CONFIDENCE LIMIT(95%)CONFIDENCE LIMIT(95%)CONFIDENCE LIMIT(95%)H-23
~g<<4.'at 202428TESTEDAT-800Fl;)2428TESTEDAT-80FH-24
~lgV,a TESTEDAT-40"FIIl1io~~2428TESTEDAT-40FH-25
!tggll 2428TESTEDAT10FggIII~2428TESTEDAT10FH-26
\P)t'2'I~'lK I2428TESTEDAT35F8uzO242STESTEDAT35FH-27 Cic TESTEDAT57'FjfaTESTEDAT57F
$s 12TESTEDAT57FIa812z428TESTEDAT79"FH-29
($ll~qfv>
I82428TESTEDAT79Fii(>>.g'))I;ggj~jpq4V TESTEDAT79FH-30 p
TESTEDAT110F48>.32428TESTEDAT110F II~.>'4i TESTEDAT2120'ESTED AT212FH-32
H.2.IRRADIATED SURVEILLANCE SPECIMENDATAH-33
H.2.1.1984IRRADIATED 300DEGREECHARPYDATA 0
TABLEH-10.CHARPYV-NOTCHIMPACTRESULTSFORIRRADIATED BASEMETALSPECIMENS FROMTHENINEMILEPOINT300-DEGREE SURVEILLANCE CAPSULESpecimenIdentification TestTemperature, FImpactEnergy,ft-lbLateralExpansion milsFractureAppearance
%ShearE1U-RCE42ElJE1ME3TEA5E1VE1M-RCE7E-RCE7EE3T-RCElK-40040751201351602002002402803206.3'1017.528305352.55978991042.89.217.428.23045.252.847.83861.472.278.41910213035504065100100100RC=Reconstituted (1)DatatakenfromReference
[ST84](2)Basedonchemistry data,thismaterialisbelievedtobeplateG-8-1material.
NINEMILEPOINTUNIT1IBB4pI4TEp B4QEMETAL3pppEGg4pIqqtEXPERIMENT4L DATA120WEIBULLFITTRANSITION 100II-L80Q6040OX20/4WEIBULLFITUPPERSHELFHYPERBOLIC TANGENTFITCONFIDENCE LIMIT(95%)CONFIDENCE LIMIT(95%)CONFIDENCE LIMIT(95%)050100150200250300350LIMIT(95%)TESTTEMPERATURE (P)H-36
TABLEH-11.CHARPYV-NOTCHIMPACTRESULTSFORIRRADIATED WELDMETALSPECIMENS FROMTHENINEMILEPOINT300-DEGREE SURVEILLANCE CAPSULESpecimenIdentification TestTemperature, FImpactEnergy,ft-lbLateralExpansion milsFractureAppearance
%ShearEJD-RCEDLEDT-RCEJDEDJEJCEDKEDTEDJ-RCEDMEJC-RCEJT-120-100-80-40-2004075125160240280332833596176.5110.51001161127.23.430.425.230.45254.863.284.666788537172227426468100100100100RC=Reconstituted (1)DatatakenfromReference
[ST84]
>al1PhIlf>>,
NINEMILEPOINTUNIT1RRADIATED
~ELp3ppDEGREECAPSULE(q 2)EXPERIMENTAL DATA150125IILL.100kkkkkkk*kjkkkQkkkkkkkkkWEIBULLFITTRANSITION WEIBULLFITUPPERSHELFHYPERBOLIC TANGENTFIT7550V*425-150/*kj*kkkkkkOkOkkkkkkkkkkk'I50CONFIDENCE LIMIT(95%)CONFIDENCE LIMIT(95%)CONFIDENCE LIMIT(95%)~CONFIDENCE LIMIT(95%)TESTTEMPERATURE (F)H-38 II TABLEH-12.CHARPYV-NOTCHIMPACTRESULTSFORIRRADIATED HAZMETALSPECIMENS FROMTHENINEMILEPOINT300-DEGREE SURVEILLANCE CAPSULESpecimenIdentification TestTemperature, FImpactEnergy,ft-lbLateralExpansion milsFractureAppearance
%,ShearJ2CJ1LJ1TJ1MJlPJlJ-40040507716020028017.5443357.5829696.512.632.433.44864~259.67679.2203542709'0100100100(1)DatatakenfromReference
[ST84]
100907050403020LO-COOWO050LOO150200250300350TestTeaperstvre FCHARPYV-NOTCHIMPACTENERGYVERSUSTESTTEMPERATURE FORTHEIRRADIATED HAZMETALSPECIMENS FROMTHENINEMILEPOINT300-DEGREE SURVEILLANCE CAPSULEH-40
H.2.2.1985IRRADIATED 30DEGREECHARPYDATA
TABLEH-13.SUMMARYOFCHARPYIMPACTDATAFORIRRADIATED BASEMATERIALS FROMTHE30-DEGREE CAPSULE~i'~i SpecimenIdentification TypeSpecimenTestTemp,FEnergy,ft-lbLateralExpansion TotalMilFractureAppearance
%ShearE1AE2UIcElcE31EBKE71BaseBaseBaseBaseBaseBase8512545100607247.068.027.750.524.025.043'55'25.442.425.425'405030402530(1)Datetakenfromreference
[MA85a](2)Basedonchemistry data,thismaterialisbelievedtobeplateG-8-1material.
NINEMILEPOINTUNIT1IRRADIATED BASE30DEGCAP(I,1)120CG100II-L,80Q6040OX20JAO20EXPERIMENTAL DATAWEIBULLFITTRANSITION HYPERBOLIC TANGENTFITCONFIDENCE LIMIT(95%)CONFIDENCE LIMIT(95%).-100-60060100150200250TESTTEMPERATURE (F)H-43
H.2.3.1990currentstudIRRADIATED BASEFROMHAZFORTHE300DEGREECAPSULEH-44
TABLEH-14.CHARPYV-NOTCHIMPACTRESULTSFORIRRADIATED BASEMETALSPECIMENS PREPAREDFROMHAZSPECIMENS TAKENFROMTHE300DEGREECAPSULESpecimenIdentification ImpactTestEnergyTemeratureF~ft-lbLateralExpansion
~mileFractureAppearance JlPJ1JJ1TJ1M-50-503515023.08.242.025.757'114.317.03.032.620.644.485.811.511.029.127.039.4100.0(1)Basedonchemistry data,thismaterialisbelievedtobePlateG-8-3material.
0 NINEMILEPOINTUNITRRAPIATEP BASE(HAZ) 300DEGCAP(12)EXPERIMENTAL DATA120100ClII-080Q60aoOX20J/fA-100-50050100150200250TESTTEMPERATURE (P}WEIBULLFITTRANSITION HYPERBOLIC TANGENTFITCONFIDENCE LIMIT(95%)CONFIDENCE LIMIT(95%)CONFIDENCE LIMIT(95%)CONFIDENCE LIMIT(95%)
V'c11 48ti.-voZO242832TESTEDAT-50"F,>Qypgjjgf,lf t48iz1620242832TESTEDAT-50FH-47 iLpj pi32.644l12'lo-202428TESTEDAT-5F'~f8;483212.~--~vz428TESTEDAT-5FH-48 A+:Aw",'a'l'S Q12162~TESTEDAT35Fyprof34'~viE483212TESTEDAT150FH-49
APPENDIXIHARDNESSDATA 0
TABLEI-1.ROCKWELLCHARDNESSDATASpecimenIdentification Indentation"'urface Material"'verageFluence(n/cm~)Rockwell' HardnessBRockwell"'ardness C3N33N31N81N8JAEJAEJITJITEIME42RElURElUsidenotchsidenotchsidenotchsidenotchnotch(4)sidenotchG-8-3G-8-3G-8-3G-8-3G-8-3G-8-3G-8-3G-8-3G-8-1G-8-1G-8-1G-8-100004.78x10'~
4.78x10'~
4.78x10"4.78x10~'.78x10'~
4.78x10'~
4.78x10'~
4.78x10~'0.0 89.892.590F192.592.390.793.894.291.210.510.414.112.514.013.215.214.315.415.2(2)"side"indicates theindentation wasperformed onthesurfacesnormaltothenotch."notch"indicates theindentation wasperformed onthenotchedsurfaceinthedirection ofcrackpropagation.
lbasespecimens fromthe300'apsules arebelievedtobefromplateG-8-1andbasespecimens fromHAZorWeldarebelievedtobeG-8-3material.
(3)theestimated uncertainty is+1.0forthecalibration.
(4)sincethefracturesurfacewasremovedpriortohardnesstesting,thenotchorientation couldnotbedetermined.
APPENDIXJDROPWEIGHTDATADropweighttestswerecon'ducted onarchiveplateG-8-3usingASTMtypeP-2specimens.
TheNDTforplateG-8-3is-25'F.
TABLEJ-1.DROPWEIGHSTDATAFORPLATEG-8-3SpecimenIdentification LocationWithinPlateTestTemperature (F)BreakD21D22D02D04D24D01D25D26D03D23D05D06D27D28D07D081/4T1/4T3/4T3/4T1/4T3/4T1/4T1/4T3/4T1/4T3/4T3/4T1/4T1/4T3/4T3/4T-70-50-40-35-35-30-30-30-30-30-25-25-20-20-20-20YesYesYesYesYesNoNoTestNoYesYesYesNoNoNoNoNo*Specimenrunat320ft-lbinsteadof300ft-lb.
APPENDIXKFLUXANDFLUENCEDATA
K.130DEGREECAPSULEDATAK-2
<ap K.1.1Dosimetry TableK-1containstheresultsoftheanalysisofthedosimetry wiresfromthe30-degree positionsurveillance capsule.Thewireidentifications, measuredradionuclide activities (indps-mg'),andwirecompositions aretabulated.
Themeasuredactivities havebeendecaycorrected toNovember30,1984.Thecomposition oftheCuandNiwireswastakenfromReference
[HI69].ThepercentFefortheironwirewastakenfromReference
[LO84].Asindicated inTableK-l,thetwoNiwires,Pl-Ni.landP2-Ni.2,arelistedforpacketP1.ThisisbecausepacketPlcontained twoNiwiresbutnoCuwire.BothNiwireswereanlayzedwiththeresultslisted.FortheCo-58measurement onheNiwires,noCo-58activitywasmeasuredduetothelongdecaytimefollowing removalofthecapsulefromthereactorandtherelatively shorthalf-life oftheisotope(70.8days).ThevalueswhicharelistedinthetableforCo-58areupperlimitsforthe-specific activitybasedondetection limits.K.1.2FluenceCalculation Toaccurately determine theneutronfluxatthecapsuleandinthepressurevesselwall,theneutronspectrummustbecalculated.
Thespectrumwascalculated forthe300-degree capsulebyanalyzing theoctantadjacenttothecapsule,andtheresultswerereportedinReference
[ST84].Ananalysiswasperformed todetermine iftheassumption ofoctalsymmetryforhe30-degree capsuleisreasonable.
Thisassumption precludes theneedtocalculate thespectrumforthe30-degree capsule.K-3 Wt~~
NiagaraMohawksuppliedbundle-cycle-exposure dataforthecoreoctantadjacenttothe30-degree capsuleposition.
Wecomparedtheratioofthebundle-cycle exposuretothecore-average-cycle exposurefortheappropriate geometrically symmetric bundlesintheoutercoreregion.Mostoftheseratioswerewithinafewpercent.Therefore, theassumption ofoctalsymmetryisreasonable andresultsinasmallerrorintheeffective crosssections.
Calculations ofthefluxandfluenceweremadeusingtheDECAYcode.Thereactorpowerhistorywassuppliedinaprivatecommunication'C084].
Theeffective crosssectionsandnuclearconstants werereportedinReference
[ST84].TheE>0.1MeVandE>1'MeVfullpowerfluxandfluencecalculated frominitialstartuptoMarch,1979,aregiveninTablesK-2andK-3respectively.
Foreachofthedosimeter wires,theaverageofthefluxandfluencewasdetermined byaveraging overalltheFeandCuwires.ItwasnotpossibletoestimatethefluxfortheNidosimeters, sincetheCo-58activitywasnotdetectable becauseofthelongdecaytimefollowing removalofthecapsule.Theaccuracyofthefluencevaluescalculated isapproximately
+5percentaccuracy, uncertainties inneutronspectrumandspectrum-averaged crosssectionsresultinthelargervariances inthecomputedfluxandfluencevalues.K-4
TABLEK-1.MEASUREDACTIVITYOFTHE30-DGREESURVEILLANCE CAPSULEDOSIMETRY WIRESSampleIDNuclideMeasuredActivity*
(dps-mg')WireComposition PercentPl-Ni.lPl-Ni.2P2-NiP3-NiPl-FeP2-FeP3-FeP2-CUP3-CUCo-58Co-60Co-58Co-60Co-58Co-60Co-58Co-60Mn-54Mn-54Mn-54Co-60Co-60<0.043192+8<0'48198+8<0.040176+7<0.0411621.78+0.071.68+0.071~64+0078.48+0.327.87+0.3199.9271Ni,0'729CoCommercially PureFe(99.865)99.999CU*Decaycorrected toNovember30,1984.
TABLEK-2.FLUXANDFLUENCEVALUESWITHENERGYGREATERTHAN0.1MeVATTHENINEMILEPOINT-UNIT 1SURVEILLANCE CAPSULE(30-DEGREE AZIMUTHAL POSITION)
EnergyDosimeter MaterialFullPowerFlux(n/cm/sec)x10Fluence'n/cm
)x10'.1MeVFe(P1-Fe)(P2-Fe)(P3-Fe)AverageofFeCu(P2-Cu)(P3-CU)AverageofCuAverageofCuandFe3.83.63.53.63.33.13.23.46.96.66~46.66.15.75.96.3*Fluencebasedon2117.8equivalent fullpowerdaysofoperation.
Reference
[Ma85a]
TABLEK-3.FLUXANDFLUENCEVALUESWITHENERGYGREATERTHAN1.0MeVATTHENINEMILE-POINT-UNIT 1SURVEILLANCE CAPSULE(30-DEGREE AZIMUTHAL POSITION)
EnergyDosimeter MaterialFullPowerFlux(n/cm'/sec) x10'luence (n/cm~)x10'~1.0MeVFe(P1-Fe)(P2-Fe)(P3-Fe)AverageofFe-Cu(P2-Cu)(P3-Cu)AverageofCuAverageofCuandFe2.22'2.02.11.91.81.92.04.03.83.73.83.53.33.43.6*Fluencebasedon2117.8.equivalent fullpowerdaysofoperation.
Reference
[Ma85a]
K.2300DEGREECAPSULEDATA
'%ll
.2.1AnalticalMethodThedetermination oftheneutronfluxatthecapsule,andsubsequently inthepressurevesselwall,requiresthecompletion ofthre'eprocedures.
First,thedisintegration rateoftheproductisotopeperunitmassofthefluxmonitormustbedetermined.
Second,inordertofindaspectrum-averaged reactioncrosssectionatthecapsulelocation, theneutronenergyspectrummustbecalculated.
Third,theneutronfluxatthecapsulemustbefoundbycalculations involving thecountingratedata,thespectrum-averaged crosssections, andtheoperating historyofthereactor.Theenergyandspatialdistribution ofneutronfluxinthereactorwerecalculated usingtheDOT4.3computerprogram'~~.OTsolvestheBoltzmann transport equationintwo-dimensional geometryusingthemethodofdiscreteordinates.
Balanceequations aresolvedforthedensityofparticles movingalongdiscretedirections ineachcellofatwo-dimensional spatialmesh.'nisotropic scattering istreatedusingaLegendreexpansion ofarbitrary order.Thetwo-dimensional geometrythatwasusedtomodeltheNineMilePoint-Unit 1ReactorisshowninFigureK-1.Asseen,thereare16circumferential meshesand66radialmeshes.Thecapsuleincludescircumferential meshes6and7andradialmeshes54and55.Thirdorderscattering wasused(P~)and48angulardirections ofneutrontravel(24positiveand24negative) wereused(S8quadrature).
Neutronenergiesweredividedinto47roupswithenergiesfrom17.3MeVto10~eV.The47groupK-9 k
structure isthatoftheRSICDataLibraryDLC75/BUGLE 80andneutronabsorption, scattering, andfissioncrosssectionsusedarethosesuppliedbythislibrar'y.
ThecoreshroudisType304stainless steel.ThecapsuleisalsomodeledasasolidpieceofType304stainless steel.ThereactorpressurevesselwallisSA302Bsteel.Thereactorcorewasmockedupashomogenized fuelandwaterhavingthedensities foundintheoperating reactor.Thewaterinthecoreregionhasadensityconsistent withsaturation conditions attheoperating pressureof1050psiaandacore-averaged steamvolumefractionof0.30~Thewaterin'thedowncomer hasadensityconsistent withaninletsubcooling of23Btu/pound.
Finally,thefuelwasasourceofneutronshavingaU-235fissionenergyspectrum.
Therelativeowerintheassemblies nearestthecapsule,duringheintervalthecapsulewasinthereactor,isshowninFigureK-17'~~"'.
AplaneviewoftheNineMilePointReactorphysicalgeometryatthecoremidplaneisshowninFigureK-1andbecauseofsymmetryincludesonlya1/8thsegment.Theneutronspectrumatthecapsulecenter,ascalculated byDOT,isshowninFigureK-2.Alsoshownforcomparison isthefissionspectrum.
Thefissionspectrumwasnormalized tocontainoneneutron/cm~/sec above1.0MeV.Theneutronspectrumatthecapsulecenterwasnormalized tocontainthesamefluxasthefissionspectrumat1.0MeVenergy.Ascanbeseen,thecapsulespectrumisconsiderably harderthanthefissionspectrum.
Thisiscausedbyneutrontravelthroughwater.K-10 di0 2801513300Capsule2402005)CV160E0u.56$6.95.991.021,081,091,19$3.49"'.93.931.061.051.121.15.39.79$0.93.851.041.04~50.99~53.88~52V4pCgO~~a4yNg4y120801.01,074~4~400080120DistanceFromCore.Center(cm)240280FIGUREK-l.NINEMILEPOINTCORE,INTERNALVESSELSTRUCTURES, ANDVESSELWALLGEOMETRYUSEDINTHEDOTCALCULATION f'I 1.0FissionSpectrumNeutronSpectrumatCapsule10.1>102gulCEk10'3LeILILIIIIIIL~)IIIILeansIIIIILew~~IIIIIIIIlcmmme10I10'1216NeutronEnergy(MeV)24FZGUREK-2COMPARZSON OFDOTSPECTRUMAT300DEGREENZNEMILEPOZNTSURVEILLANCE CAPSULEWZTHFZSSZONSPECTRUMK-12
Baseduponthefluxescalculated byDOTatradialmeshes54and55andcircumfenential meshes6and7(themeshesusedtorepresent thecapsuleandtheregioninwhichthefluxmonitorswereplaced),effective crosssectionsa~(E>0.1MeV)andG~(E>1.0MeV)definedas:cr(E>E,)0(E)dEE,werecalculated foriron,nickel,andcopper.TheresultsareshowninTableK-4.Othernuclearconstants neededinthethirdstepoftheflux-finding procedure aregiveninTableK-5.Inthethirdstep,thefullpowerfluxatthecapsulelocationisdetermined fromtheradioactivity inducedinthemonitorfoils,theeffective crosssectionscalculated forthemonitorelements, andthepowerhistoryofthereactorduringcapsuleexposure.
Thefluenceatthecapsuleisthencalculated fromtheintegrated poweroutputofthereactorduringtheexposureintervalusingthefollowing equation:
)(E>E)=A/[Na(E>E)C]Thisequationwasusedtofindfluxesbasedonthemeasuredsurveillance capsuleactivations.
Thetimeintervals weretakenasonemontheachandatimeintegrated relativepowervalueforeachmonthwasusedforthefractional powerlevelvalues.Calculations ofthefluxandfluenceweremadewiththeDECAYcode.Thereactorpowerhistorywassuppliedinaprivatecommunication'
~'
TABLEK-4.CROSS-SECTIONS FORTHEIRRADIATED FLUXMONITORSCALCULATED FROMFLUXESATCAPSULECENTEROFTHENINEMILEPOINT300-DEGREE SURVEILLANCE CAPSULEDosimeter MaterialE>0.1MeVCross-Sections BarnsE>1.0MeVFeCuNi1.01x101.77x10~1.28x10i1.76x10i3.09x10~2.23x10iTABLEK-5.CONSTANTS USED'IINDOSIMETRY CALCULATIONS FORTHENINEMILEPOINT300-DEGREE SURVEILLANCE CAPSULEReactionTargetPercentIsotopicAbundance PercentThreshold Energy,MeVProductHalf-Life
~'Fe(n,p)~'Mn"Cu(n,a)"CoseNi(n,p)ssC99.865Fe99.999Cu99.927Ni5.8269.1767.772.56.12.1312.6days5.27years71.2daysK-14 0
K.2.2.DosimetrResults~~~Thesurveillance capsulewaslocatedatthe300-degree azimuthal positionatapproximately thecoremidplanepositionandat7/16-inchfromtheinnerpressurevesselwall.Thiscapsulewasinthereactorfor"2913equivalent fullpowerdaysorabout7.98equivalent fullpoweryears.TheNineMilePointNuclearGenerating Plantdesignthermaloutputis1850MW.TheneutronmonitorwiresfromCharpypacketsP7andP8weecountedtodetermine theirspecificactivity.
Therecommended ASTMprocedures
~~~"~~"'~'"As~"'~'werefollowedindetermining thespecificactivityofthewires.Eachdosimeter monitorconsisted ofanapproximately 4-inchlengthofwirewhichwasrolledintoasmallcoilforcounting.
Thecountratewasdetermined foreachwire~Thefastfluxandfluencecalculated usingthecountratetherefore represented anaverageoverthe4-inchlengthofthatwire.TheE>O.lMeVandE>1.0MeVfullpowerfluxandfluencecalculated frominitialstartuptoMarch1982aregiveninTableK-6andTableK-7.,respectively, foreachfthedosimeter wiresalongwiththeaverageofthefluxandfluencederivedfromeachwireandtheaveragevaluesforFe,Cu,andNi.Inaddition, theaveragevaluesoftheresultsforFeandCuaregiven.TheNiresultswerenotusedbecausetheveryshorthalflifemakesitsresultsdependent ononlythelatestoperating history.Usingtheaveragefluxesof3.32x10n/cm/secforE>0.1MeVand1.90x10'/cm'/sec forE>1.0MeV,thefluxesatfullpowerattheinsideofthepressurevesselwall,at1/4Tandat ktfA4 3/4Tdirectlybehindthecapsule(300-degree orientation) andatthemaximumposition(285.66-degree orientation) werecalculated.
Thefluxresultsaretabulated inTableK-8.Theendoflife(EOL)fluenceswerealsocalculated andtabulated inTableK-8assumingareactorpressurevessellifetimeof40yearsandthereactoroperatedat80percentoffullpower.Thefinemeshandtimeintegrated relativepowervaluesshowninFigureK-8foreachfuelassemblywasusedintheDOT4.3codetogeneratethevaluesinTableK-8.Aplotofneutronflux(E>1.0MeV)asafunctionofazimuthal angle(indegrees)isshowninFigureK-3.Thefluencevaluesatthemaximumpositionforinnervesselwall,1/4Tand3/4Tareplottedasafunctionoftimeinequivalent fullpoweryears(EFPY)fortheNineMilePointpressurevessel~~inFigureK-4.Theleadfactor,ice.,theratiooftheflux(E>1.0MeV)atthesurveillance capsuletothelargestflux(E>1.0MeV)receivedbythevesselwallatanyazimuthal
- location, isapproximately 0.68(1.90x10'/2.80x10')atthevesselsurface.Thisresultindicates thatthefluxatthecapsuleactuallylagsthefluxatcertainvesselwallpositions.
Theleadfactorsatthepressurevessel1/4Tand3/4Tpositions werecalculated tobe0.99(1.90x10/1.91x10)and3.70(1.90x10/5.14x10),respectively.
Theaccuracyofthefluencevaluesgenerated isestimated tobe+20percent.Althoughspecificactivities offluencemonitorwirescanbedetermined to+5percentaccuracies, uncertainties inneutronspectrumandspectrumaveragedcrossK-16 0
1010~Positionof300DegreeCapsuleANh10>CXuC0z~huinnergq~~'<<r3/gy108270290300310Azimuthal Angle(degree)320330FIGUREK-3.CALCULATED FLUXATPRESSUREVESSELINNERWALL,1/4TTHICKNESS AND3/4TTHICKNESS ASAFUNCTIONOFAZIMUTHAL ANGLEK-17
1018g(4'1101710160101520Time(fullpoweryean)2530FIGUREK-4.FLUENCEATINNERWALL1/4TAND3/4TPOSITIONASAFUNCTIONOFTIMEFORTHENINEMILEPOINTUNIT1REACTORVESSEL p's sectionsresultinthelargervariances inthecomputedfluxandfluencevalues.Therateofdisplacements peratomwasalsocalculated usingthecrosssectionsfordisplacement available withtheDETANcode.TableK-9showscalculated valuesofdisplacements peratompersecondatfullpowerinthepressurevesselwallbehindthecapsuleandinthepressurevesselwallattheangleofpeakfluenceinthewall.TableK-9alsoshowscalculated valuesofdisplacements peratomatthesesamepositions inthewallfor7.98effective fullpoweryearsofoperation (totimeof'capsuleremoval)andfor32effective fullpoweryearsofoperation.
K-l9 0
TABLEK-6.FLUXANDFLUENCEVALUESWITHENERGYGREATERTHAN0.1MeVATTHENINEMILEPOINT-UNIT 1SURVEILLANCE CAPSULE(300-DEGREE AZIMUTHAL POSITION)
EnergyDosimeter MaterialFullPowerFlux(n/cm/sec)x10'luence*
(n/cm')x10"O.lMeVFe(P7)(P8)AverageofFeCu(P7)(P8)AverageofCuNi(P7)(P8)AverageofNiAverageofFeandCu3.5493'103.3803.2533.2533.2533.2303.1173.1743.328.9338.0788.5068.1888.1888.1888'307.8447.9878.35*Fluencebasedon2913.1equivalent fullpowerdaysofoperation.
a)P7referstobottompacketb)P9referstotoppacketReference
-[ST84]
0 TABLEK-7.FLUXANDFLUENCEVALUESWITHENERGYGREATERTHAN1.0MeVATTHENINEMILEPOINT-UNIT 1SURVEILLANCE CAPSULE(300-DEGREE AZIMUTHAL POSITION)
EnergyDosimeter MaterialFullPowerFlux(n/cm/sec)x10'luence (n/cm)x10"1.0MeVFe(P7)'P8)~AverageofFeCU(P7)(P8)AverageofCuNi(P7)(P8)AverageofNiAverageofFeandCu2.0331.8391.9361.8641.8641.8641.8511.7861.8191.905.1184.6294.8744.6914.6914.6914.6594.4944.5774.78*Fluencebasedon2913.1equivalent fullpowerdaysofoperation.
a)P7referstobottompacketb)P9referstotoppacketReference
[ST84]
TABLEK-8.FLUXANDFLUENCEINTHEPRESSUREVESSELWALLOFTHENINEMILEPOINT-UNIT 1REACTOR-BEHINDTHESURVEILLANCE CAPSULE(300-DEGREE)
ANDATTHEAZIMUTHAL ANGLEOFMAXIMUMFLUXINTHEVESSELWALL(285.66-DEGREE)
FullPowerFluxinVesselWallMaximum(285.66')
BehindCapsule(300')FluenceinVesselWallEnergyLocationBehindCapsule(300')Maximum(285.66')
March82(1)(MeV)(n/cm'/sec x10')(n/cm'/sec x10')(n/cmx10'EOL(2)March82(1)EOL(2)(n/cmx10")(n/cm~x10'(n/cmx10")>0.1>O.lI>1.0>1.0>1.01/4T3/4TSurface1/4T3/4T>0.1Surface3.192.851.311~511.020.2815.565.012.262.801.910.5148.037.173.303.802.570.7073.222.881.321.521.030.2841.401~260.5690.7050'810.1295.615.082.282.831.930.51(1)Fluencebasedon7.98effective fullpoweryearsofoperation.
- (2)Fluencebasedon32effective fullpoweryearsofoperation.
Reference
[ST84]
gk TABLEK-9.ATOMDISPLACEMENTS INTHEPRESSUREVESSELWALLOFTHENINEMILEPOINT-UNIT 1REACTORDislacements erAtomDislacements erAtomerSecondBehindCapsuleMaximum(285.66')LocationBehindCapsuleMaximum(285~66')March82(1)EOL(2)March82(1)EOL(2)Surface1/4T3/4T2.56x10~1.79x1096.19x10"4.82xlO~3.28xlO91.10xlO90.6440.4520.1562.5821.8130.6261.2140.8250.2774.8683'081.111(1)Fluencebasedon7.98effective fullpoweryearsofoperation.
(2)Fluencebasedon32effective fullpoweryearsofoperation.
Reference
[ST84]
APPENDIXLNINEMILEPOINTVNIT1RT~DETERMINATION i,
FINALREPORTentitledNINEMILEPOINTUNIT1RTrDETERMINATION to,NiagaraMohawkPowerCorporation 301Plainfield RoadSyracuse, NY13212byDr.MichaelP.Manahan,Sr.September 28,1990NPNConsultin~
213TeaherryCircleStateCO11egegPA16803(814)234-8860 0
IMPORTANT NOTICEREGARDING CONTENTSOFTHISREPORTThisdocumentwaspreparedbyDr.MichaelP.Manahan.Theinformation contained inthisreportisbelievedbyDr.Manahantobeanaccurateandtruerepresentation ofthefactsknown,obtainedorprovidedtoDr.Manahanatthetimethisreportwasprepared.
Dr.Manahandoesnotmakeanyrepresentation orwarranty(expressorimplied)astothecompleteness, accuracyorusefulness oftheinformation contained inthisdocumentorthatsuchuseofsuchinformation maynotinfringeprivately ownedrights;nordoesheassumeanyresponsibility forliability ordamageofanykindwhichmayresultfromsuchuseofsuchinformation.
L-3 tia>i COPYRIGHT NOTICETheRopymethodologyisthepropertyofDr.Manahan.Permission isherebygrantedtoNiagaraMohawktousetheresultsobtainedusing,.thismethodology, fortheNineMilePointUnit1P-Tcurveanalysis.
Useofthemethodology, otherthanforNineMilePointUnit1,isforbidden withoutpriorwrittenapproval.
M.P.Manahan,1990~~L-4 W4 TABLEOFCONTENTS
1.0INTRODUCTION
1.1Purpose2.0WELDMATERIALANALYSIS~~0~~7~~~82.1WeldW5214/5G13F Analysis2.1.1cr,Analysis2~1~2RopyAnalysis2.1.3SummaryofFindings8911162.2BeltlineWeldAnalysis16-.'.3.0PLATEMATERIALANALYSIS3.1BaseMetalcr,3.2RTp~Analysis.
4.0CONCLUSION
S 0~~~~~~~~~~19~~~19~~~19
28.0REFERENCES
.
...................'...30
LISTOFFIGURES2-12-2CharpyImpactEnergyVersusTestTemperature forIrradiated WeldSpecimens fromtheNineMilePointUnit1300DegreeCapsule.............10RT~~AnalysisforSurveillance CapsuleWeldMaterialW5214/5G13F
..................152-3RT~~AnalysisforBeltlineWeld86054B/4E5F
......183-1CharpyDataFitforBaseMetalPlateG-8-3/G-8-4 223-23-3-3-6CharpyDataFitforBase.PlateG-8-3/G-8-4 (T-L)CharpyDataFitforBasePlateG-8-1-5.CharpyDataFitforBasePlateG-307-3CharpyDataFitforBasePlateG-307-4CharpyDataFitforBasePlateG-307-10MetalMetalMetalMetalMetal~~23.24.25.26~27L-6
LISTOFTABLES2-1SummaryofRTQQ70,,andCharpyIndicesforWeldW5214/5G13F
..................162-2RT~~DataforBeltlineWelds...............173-1RT+~,0'andCharpyIndicesforUnzrradiated BeltlinePlates..............21L-7
1.0INTRODUCTION
1.1PuroseAnanalysiswasperf1ormed toestablish bestestimatevaluesfortheRT~~anda,termusedinRegulatory Guide1.99(Rev.2)calculations fortheNineMilePointUnit1(NMP1)beltlineplateandweldmaterials.
Sufficient dataarenotavailable todetermine theRTgp~instrictconformance withthecurrentASMEcoderules.Inthecaseoftheweldmetals,onlythreeunirradiated Charpytestswereconducted at10'F.Charpytransition behaviordataareavailable fortheplatematerials, however,therearenodropweightdataforallofthebeltlinematerials exceptforplateG-8-3/G-8-4.
Themethodology usedwasfirstdescribed in{MA85]andwasspecifically designedtoaddress,theproblemofRTz~determination incaseswheretherearenotsufficient dataavailable tosatisfytheASMEcoderequirements.
Theresultsoftheseanalysesarepresented inSections2.0and3.0ofthisreport.Conclusions andrecommendations concerning theuseofthesedataareprovidedinSection4.0.L-8
2.0 WELDMATERIALANALYSISTheobjective
oftheweldmaterialanalysisistocalculate astatistically meaningful o,forthebeltlineweldswhichcanbeusedintheMargintermoftheRegulatory Guide1.99-Rev.
2(RG1.99(2))
model.Also,theinitialRTpTofeachofthebeltlineweldsandthesurveillance capsulematerialwascalculated usingManahan's statistically basedcalculative procedure
[MA85b].Theonlyunirradiated fracturebehaviordataavailable fortheweldmaterials isCharpydataat10'F[MA90,BY90].Irradiated dataforthesurveillance capsulematerial, designated weldW5214/5G13F (wireheatno./fluxlotno.),isalsopresented inReference
[MA90].Boththeirradiated surveillance dataandtheunirradiated dataforeachweldwereusedtocalculate o,andtheRTpTofeachbeltlineweld.Asdescribed inReference
[MA90],thebasemetalCharpyspecimens weremachinedwiththeirlongaxesralleltotheplaterollingdirection.
Therefore, thecrackplaneisorientedtransverse tothematerialgrain(L-Torientation).
Theweldspecimenlongaxiswasmachinedtransverse tothewelddirection.
Sincetherearenomicrostructural dataavailable forthewelds,it'hasbeenassumedthatthematerialisisotropic andnocorrection forgrainorientation wasmadeintheRTgpTanalysis.Unlikebasemetalplates,theweldmaterialgenerally doesnotexhibitgrainorientation effectsand,therefore, theCharpyspecimenorientation isnotcriticalforweld.materials.
2.1WeldW52145G13FAnalsisWeldW5214/5G13F isthesurveillance capsuleweld.Unfortunately, thisweldwasnotmadeusingthesamewireorfluxasthebeltlinewelds.However,theweldmaterials weremanufactured bythesamesuppliers forthebeltlinematerials (RACOg3wire,ArcosB5flux)andtheCuandNicontentisrepresentative ofthebeltlineweld1248/4M2F.
[BY90,MA90](DataontheCuandNicontentoftheothertwobeltlineweldsL-9
isnotavailable.)
Therefore, ithasbeenassumedthatthecapsuleweldmaterialissimilartothebeltlineweldsintermsofitsmechanical behaviortrend.Theirradiated CharpydataforthecapsuleweldmaterialwasanalyzedusingtheSAMMcFRACcode[McFRAC).
TheSAMMcFRACcodehasbeenQAverifiedinaccordance withThePennsylvania StateUniversity, NuclearQualityAssurance Program.Thiscodeisbasedonanon-linear, leastsquares,regression analysisusingtheWeibullstatistic.
TheWeibullstatistic hasbeenshowntobethecorrectstatistic foranalysisoffracturedatabyconsidering themicrostructural mechanisms involvedinthefractureofferritic, pressurevesselsteels[MA85a].Theconfidence bandsaremeasuresof"thegoodnessoffit"anddonotindicatetheclassical 954statistical errorspread.Thisuncertainty mustbeanalyzedusingconventional statistical methods.However,theMcFRACconfidence intervals areusedtomeasureconfidence inthefitofaparticular datasetaswellastheinherentscatterduetothefractureprocess.Theseerrorbandsmustbecalculated, particularly, forsparsedatasets,becauseinmanycasestheabilitytofitsparsedatadrivestheuncertainty.
TheMcFRACanalysisfortheirradiated capsuleweldisshowninFigure2-1.Theo,termistheuncertainty intheinitialRTgpydetermination.
SectionIIIoftheASMEcoderequiresthat,bothdropweighttests,todetermine theNDTT,andCharpytestsbeperformed.
TheNDTTtemperature deter-minedbyfollowing ASTME-208istheRT>>providedthat,at60'FabovetheNDTT,atleast50ft-lbs.ofenergyand35milslateralexpansion areobtainedinCharpyspeci-menswithcrackplanesorientedintheweakdirection.
Theweakdirection istransverse tothedirection ofmaximumworking(T-Lorientation) forbasemetal.
e 10NINEINILEPOINTUNIT5~IRRADIATED WELD300DEGREECAPSULE{'I,2)
EXPERIMENTAL DATA150125ClII-IL100C97550V264Aj4JJ4ja4/ggJkkWEIBULLFITTRANSITION WEIBULLFITUPPERSHELF--HYPERBOLIC TANGENTFITCONFIDENCE LIMIT(95%)CONFIDENCE LIMIT(95%)CONFIDENCE LIMIT(95%)-'I50150TESTTEMPERATURE (F)CONFIDENCE LIMIT(95%)FIGURE2-1:CHARPYIMPACTENERGYVERSUSTESTTEMPERATURE FORIRRADIATED WELDSPECIMENS FROMTHENINEMILEPOINTUNIT1300DEGREECAPSULE
11Therefore, cr,shouldreflecttheuncertainty ineitherthedropweighttestortheCharpytestdepending onwhichtestultimately determined theRTDz.Asdescribed below,Charpydataareusedtodetermine theRopyandtherefore,a,isdetermined byestimating theuncertainty intemperature atthe50ft-lb.energylevel.Basedonexamination oftheconfidence intheMcFRACfitat50ft-lb.,cr,(fit)=14.0'F.Analysisofthestatistical 954confidence intervalforthedatayieldscr,(experimental)
=12.5'F.Basedonexamination oftheLWRdatabase,Odette[OD86]hasshownforweldsthat,cr,(database)=18.0'F.Theuncertainty forweldW5214/5G13F ishigherthanthatoftheLWRdatabasebecauseofthesparsityofdatainthetransition region.Additional testingwouldreduceo,(fit)ande,(experimental).
Therefore, thefinalo,wasdetermined usingaweightedaverageofplantspecificandgenericdataconservatively assumingtherewereonlytendatapointsinthedatabaseanalyzedbyOdette,toyieldcr,=17'F.Thisvalueforcr,isrecommended forusein[RG1.99]Margintermcalculations forallofthebeltlineweldmaterials.
Manyoperating powerplantswerebuiltwhencurrentregulations concerning establishment oftheinitialRT~~werenotinforce.Znmanycases,insufficient dropweightandCharpydataareavailable todetermine theRT~~inaccordance withthecurrentSectionXIIoftheASMEcode.Priorto1972,theASMEcoderecpxired thattheaverageofthreeCharpyspecimens beatleast30ft-lb.atadesignated temperature, withnosingleimpactenergylessthan25ft-lb.Thesearetheruleswhichwereusedforthevessel.TheNRCBranchTechnical
- Position, MTEB5-2,containsaprocedure forestimating theRT~~basedongenericdata.However,thisapproach
12isoverlyconservative forsomematerials anddoesnottakeadvantage oftheuseoflimitedunirradiated norirradiated dataintheanalysis.
GEalsohasagenericmodelwhichisbasedonatransition regionslopeof.5ft-lb./'F.
However,thismodel,liketheNRCmodel,isgenericandlacksstatistical rigor.Neutronirradiation ofpressurevesselmaterials causes:anincreaseinthe30ft-lb.transition temperature 2)aloweringoftheuppershelf3).adecreaseintheslopeofthetransition region[OD86]Inaddition, Odettehasshownthatthetransition regionoccursoveranapproximately constantintervaloftemperature.
Odettepointedoutthatthisfact,inconcertwithacontinuous decreaseofuppershelfenergy(USE),requiresthatthe'transition regionslopemustdecreasewithirradiation.
Theaveragevalueofthetransition temperature range,6T~,isabout200F+45Fforwelds.Thesedata,alongwithOdette'syieldstrengthmodel,canbeusedtoprovideanaccurateestimateoftheRTQ7ofthebeltlineweldmaterials assumingthattheNDTToccursatalowertemperature thanthetemperature atwhichthreeCharpyspecimens wouldexhibit50ft-lbs.ofenergyminus60.Thisassumption isaccurateformostpressurevesselmaterials becausetheNDTTisexpectedtooccuratornearthebrittleness transition regionneartheonsetofthelowershelf.AnalysisoftheLWRASTMA533Bdatabasesubstantiates thisassumption.
Inthe23casesanalyzed, theNDTTwaslessthanorequaltotheRT~~.In15outof23cases,theRT~~wasdetermined fromtheCharpydata.Theaveragedifference betweentheactualRTgp~andtheRTgp7estimated usingtheReference[MA85]approach II 13was8'Fforweldsand10'Fforbasemetal.Theaveragenetdeviation isabout4.3'Fforplateandweld.Asimilaranalysiswasconducted forASTMA302Bdata.Inallofthe17casesanalyzedtheNDTTwaslessthanorequaltotheRT~T.TheRTgpTwasdetermined fromCharpydatain13ofthe17cases.TheaveragebetweentheASMEcodedetermined RT~Tandthatdetermined usingReference
[MA85]was8',andtheaveragenetdeviation was4.4'Fforthebasemetal.Giventhesefactsandobservations, theapproachtoRTgp7determination istodetermine atemperature, T50T(forT-Lorientation),
atwhichthreeCharpyspecimens wouldbeexpectedtoyieldgreaterthan50ft-lbsofabsorbedenergy.TheT50Tisdetermined byanalyzing theuncertainty intheCharpydatainthetransition region.TheTzo~temperature isdefinedasthe,temperature atwhichthemeanCharpycurveminus50ft-lbsequals20E.OncetheT50~temperature isdetermined, theRTgp7istakentobeT50~'minus 60'F.Thisbasicapproachwasusedforbothplatesandwelds.Intheweldanalysis, additional stepswerefollowedsincefullCharpycurveswerenotavailable fortheunirradiated welds.Theprocedure usedtocalculate theRTN07fortheOysterCreekweldsisasfollows:~Ste1~Ste2~Ste3UsingOdette'syieldstrengthmodel[OD86],calculate theunirradiated uppershelfenergy(USE).Drawahorizontal lineattheUSE'evelandpassalinethroughtheunirradiated datawhichintersects theUSE'inesuchthatthetransition regionspans2004F.Verifythereasonableness oftheslopebycomparison withtheirradiated transition regionslope.Estimatethe954confidence bandforenergyatthe50ft-lb.level.L-14 v
14~Ste4UsingtheresultsofSteps2)and3),determine thetemperature atwhich50ft-lb.isachievedandsubtract60'FtoobtaintheRior~SteS(Optional)
Zfsufficient dataexists,usetheOdetteyieldstrengthmodeltocalculate thetransition temperature shiftatthe30ft-lb.level(6T>Q)andcomparewiththeST3QobtainedaboveandwiththeRG1.99(2) modelprediction.
Forweld85214/5G13F, theunirradiated USEwascalculated tobe:USE'128ft-lb.TheresultsoftheStep2)graphical analysesarepresented inFigure2-2.Asdiscussed inReference
[OD86],theentireirradiated Charpycurvecanbepredicted knowingonlythechangeinyieldstrengthduetoirradiation andtheunirradiated Charpycurve.Thisprocedure waswoxkedinreverseusingtheirradiated Charpycurveandthechangeinyieldstrength.
Themeasuredslopeoftheirradiated Charpycurveis0.539ft-lb/'Fwhichisingoodagreement withtheirradiated dataasshown'nFigure2-2.Thecalculated slopeoftheunirradiated transition regionis0.645ft-lb/'F, whichisslightlylargerthantheirradiated curve,asexpected.
ThethirdstepoftheRTQTanalysiscallsforanassessment ofthestatistical 954confidence band(2u)Eforenergymeasurement atthe50ft-lb.level.Twoseparatecalculations wereperformed.
Thefirstapproachusesthe2'ariation inenergyatthe50ft-lb.level.Thisresultsin:2aE(fit)=13.5ft-lb.Thesecondapproachconsistsofanassessment ofthe954confidence intheexperimental data.Thisapproachyields:2v~(experimental)
=12.0ft-lb.Theprocedure defines2@~asthelargerof20E(fit)and2'~(experimental),
withthelowerboundbeing10ft-lb.Therefore, forweldW5214/5G13F:
2aE=10ft-lb.
~e'IVIA.
15126II-100C976K4L4OaAAgiikgigal@r/rare4300--TESTTEMPERATURE (F)NINEINILEPOINTUNIT1~VfELD5214/6613F(SURVEILLANCE
%ELD)150IRRADIATED DATANEIBULLFITTRANSITION NEIBULLFITUPPERSHELFHYPERBOLIC TANGENTFITCONFIDENCE LIMIT(85%)"CONFIDENCE LIMIT(95%)CONFIDENCE LIMIT(85%)CONFIDENCE LIMIT(95%)UNIRRAOIATED DATAUNIRRADIATED CHABPYCURVEFIGURE22RTg)7ANALYSISFORSURVEILLANCECAPSULEWELDMATERIALW5214/5G13F
'
16SincethethreedatapointsforweldW5214/5G13F wereover50ft-lb.,theRT~zistakentobe:RT~~(weldW5214/5G13F)
=10'F-60F=-50'F.Inordertodemonstrate thevalidityoftheRT~~approach, theReference
[MA85)procedure wasfollowed.
Inaccordance withStep4,threeCharpyspecimens withenergiesinexcessof50ft-lb.wouldbeexpectedatatesttemperature of20'F.Therefore, theRTz~usingthisapproachwouldbe-40'F,whichisincloseagreement andslightlyconservative whencomparedwiththemeasuredCharpydata.2.1.3SummarofFindinsBasedonthestatistical analysispresented above,avalueofo>of17'Fisjustified forthebeltlinewelds.AninitialRTgQ7of-50hasbeenestablished forweldW5214/5G13F.
Also,unirradiated Charpyindiceshavebeenestablished forthecapsuleweldmaterial.
Thesedataaresummarized inTable2-1..TABLE21SUMMARYOFRT()7~0)ANDCHARPYINDICESFORWELDW52145G13FDescritioncr,RTvov2G~T3Qunirradiated UpperShelfEnergy(unirradiated)
Best,EstimateValue17F-50F13.5ft-lb.-32F128ft-lb.2.2BeltlineWeldAnalsisTheRT~~determination forthebeltlineweld86054B/4E5F wasmadeasdescribed inSection2.1forweldW5214/5G13F L-17 0
17becausethedataat+10arewellabove50ft-lb.However,thecalculated RTgQ7usingthe[MA85]procedure is-53'F.Sincethereisasmalldifference (3'F)betweenthecalculated andexperimental value,theRT~~wastakentobe-50'F.ThedataforweldS1248/4M2F AND1248/4K13F wereabove50ft-lb.at10FandtherefoletheRopywasdetermined experimenta l1yforthesematerials aswell.Theresultsarepresented inTable2-2andFigure2-3.TABLE22RT()~DATAFORBELTLINEWELDSWeldIdentification RTor~F86054B/4E5F 1248/4M2F
'248/4K13F 50-50 E'I 18NINEMILEPOINTUNITINELD860548/4ESF 150125II100CV5K50+UNIRRRDIATED DATAUNIRRADIATED CHARPYCURVE300TESTTEMPERATURE (F)FFIGURE23RT~)~ANALYSISFORBELTLINEWELD86054B/4E4FL-19 t'
193.0PLATEMATERIALANALYSIS1Inthecaseofthebasemetalplates,fullunirradiated Charpycurvesareavailable foreachbeltlineplate.Thesurveillance capsulebasemetal'pecimens werefabricated fromplateG-8-1[MA90).Itispossibletocalculate ao>foreachplateaswasdonefortheirradiated weld.However,avalueofa,=0isrecommended foralltheplatesexceptG-8-3/G-8-4.
Theo<forG-8-3/G-8-4 istakenas2'Fsinceexperimental datawasusedandconventional ASMEtestpractices followed.
Justification ofu,=0fortheremaining platescomesfromthefactthatManahan's RTz~determination isgenerally conservative, theT)pgistakentobeapointwheretheASMECharpycriterion isexpectedtobesatisfied withhighconfidence, andtheL-TtoT-Lorientation correction wastakentobe24Fwhichis4Fhigherthanthatrecommended inBranchTechnical PositionMTEB5-2.Thevalueofcr,=2wasobtainedbytakingtheRopyfoundusingManahan's method,subtracting theASMEdetermined Ropyanddividingby2(roundingup).Theresultsoftheo',analysisaregiveninTable3-1.TheRTgpzwasdetermined inasimilarmannerasdescribed inSection2.1.2,exceptthatthetemperature atwhich50ft-lb.ofenergywouldbeobtainedinthreeCharpyspecimens couldbedetermined directlyfromtheCharpycurves.First,theunirradiated datawas-fitusingtheSAMMcFRACcode.Then,the954confidence intervalinenergy(2cr<)wasdetermined usingthemoreconservative valueofeitherthefituncertainty atthe50ft-lblevel(2cr~(fit))
orthedeviation ofthedatafromthemeaninthetransition region(2v~(experimental)).
Ifbothofthesemeasuresarelessthan10ft-lbs,then10ft-lb.wastakenasthe2cr<value.Otherwise, thelargerof2az(fit)or2vz(experimental) wasused.The10
20ft-lb.uncertainty wasjudgedtobeareasonable andconservative valuebasedonobservation ofmanydatasetsintheLWRdatabase.After2a'~wasdetermined, thetemperature, T><<(L-Torientation),
atwhichthreeCharpyspecimens wouldexhibit50ft-lbsofabsorbedenergywasdetermined.
Thistemperature wastakentobethetemperature atwhichthemeanCharpycurveminus50ft-lbs.equals2cr~.Once,theT><<temperature isdetermined, theRTzz(L-T)istakentobeT><<minus60'F.TheCharpyspecimens testedfortheplatematerials hadanL-Torientation.
TheASMEcoderequirestestingusingtheT-Lorientation becauseitisthelimitingorientation.
GeneralElectricrecommends adding30'FtotheRT~~obtainedCusingL-Tspecimens.
Similarly, BranchTechnical PositionMTEB5-2recommends adding20F.AnalysisoftheEPRIdatabasepresented in'MA89]indicates that30'Fisappropriate.
Therefore, intheabsenceofmaterialspecificdata,MPMConsulting recommends using30'F.However,reference
[MA90]reportedanL-TtoT-LCharpycurvetransition of24'Fatthe30ft-lb.level.Therefore, basedonthematerialspecificdata,theL-TtoT-Lcorrection usedhereinwas24'F.Theresultsoftheanalysisaresummarized inTable3-1andtheMcFRACfitsaregiveninFigures3-1through3-6.
I,kr TABLE3-1:RToT~<TrANDCHARPYINDICESFORUNIRRADIATED BELTLINEPLATESDescritionPlateG-8-3G-8-4PlateG-8-1BestEstimateDataPlateG-307-3PlateG-307-4PlateG-307-10<7)RT07(1)RTNoT(2)2<TET302F-24F(L-7)-3'F<7-L) 11ft-lb.-26OF<L-7)
O'(7-L)0F12F(L-7)36F(7-L)10ft-lb.8FOF40F<<-7)F(7L)11ft-lb.-14F0F16F(L-7)0F-4F(L-T)0F-3F40F(T-L)20F(7-L)10ft-lb.10ft-lb.UpperShelfEnergy('unirradiated) 96ft-lb.<L-T) 88ft-lb.68ft-lb.(7-L)112ft-lb.81ft-lb.115ft-lb.L-Torientation.
P-Tcalculations requireRT+7tobedetermined fortheT-Lorientation.
'T-Lorientation.
Obtainedbyadding24'FtotheL-Torientation dataforallplatesexceptG-8-3/G-8-4.
Thevaluewasdetermined experimentally.
(3)Fractureappearance dataarenotavailable foranybeltlineplates.Uppershelfdatawasidentified bytheshapeofthecurvefit.
he'r 22NINEMILEPOINTUNITI~UNIRRADIATED BASE-METALG&3/G&4(02)~EXPERIMENTAL DATA100CQII-U80AeALA+JlSAAWEIBULLFITTRANSITION WEIBULLFITUPPERSHELFHYPER8OLIC TANGENTFITAAAAA-'I00-50050'I00'I60200260TESTTEMPERATURE (FjCONFIDENCE LIMIT(95%)CONFIDENCE LIMIT(95%)CONFIDENCE LIMIT(95%)CONFIDENCE LIMIT(95%)FIGURE3-1:CHARPYDATAFITFORBASEMETALPLATEG-8-3/G-8-4 L-23
23NINEMILEPOINTUNITI~UNIRRADIA rPDBASPMETALQg3(QL)(I2)EXPERIMENTAL DATA120100IXtII-80Qeo40V20A-'IOO-60,050100160200260TESTTEMPERATURE (F)WEIBULLFIYTRANSITION HYPERBOLIC TANGENTFITCONFIDENCE LIMIT(95%)CONFIDENCE LIMIT(95%)CONFIDENCE LIMIT(95%)CONFIDENCE L'IMIT{95%)FIGURE3-2:CHARPYDATAFITFORBASEMETALPLATEG-8-3/G-8-4 (T-L)L-24
24NINEMILEPOINTUNITI~UNIRRADIATED BASE'ETAL G-8-'I(l,2)EXPERIMENTAL DATACZ0400QlIIL80CeOILI40Vzo-.'IOQ-50050'I00160200260TESTTEMPERATURE (F)WEIBULLFIYTRANSITION HYPERBOLIC TANGENTFITCONFIDENCE uMn(95%)CONFIDENCE uMn(95%)CONFIDENCE LIMIT(95%)CONFIDENCE uMn'95%)Fj:GURE3-3:CHARPYDATAFITFORBASEMETALPLATEG-8-1L-25
'C NINEMILEPOINTUNITI~UNIRRADIATED BASElNETALG-30V-3(1a)~EXPERIMENTAL DATA'I00II80C6040V20LLSLl~IPA0-100-50050'I00'I50200260TESTTEMPERATVRE (FjWEIBULLFl'YTRANSITION HYPERBOLIC TANGENTFITCONFIDENCE LIMIT(95%)CONFIDENCE LIMIT(95%)CONFIDENCE LIMIT(95%)CONFlDENCELIMIT(95%)FIGURE3-4:CHARPYDATAFITFORBASEMETALPLATEG-307-3
26NINEINILEPOINTUNIT1~UNIRRADIATEP BASEMETALg3074(11)~EXPERIMENTAL DATA120CQ100IILL8040V20LACJLLAIL<WEIBULLFITTRANSITION WEIBULLFITUPPERSHELFHYPERBOLIC TANGENTFITCONFIDENCE uMn.(95%)CONFIDENCE LIMn(e5%)CONFIDENCE uMn(95%)0CONFIDENCE
-100-5005010015Q200250LIMIT(95%)TESTTEMPERATURE
{F)FXGURE3-5:CHARPYDATAFITFORBASEMETALPLATEG-307-4L-27 ll0 27NINEMILEPOINTUNIT1~UNIRRADIATED BASEMETALQ-307-10(1,2)EXPERIMENTAL DATA120WEIBULLFIYTRANSITION 100II-80C60gk0~0J'-100-50050'I00150200250TESTTEMPERATURE (F)HYPERBOLIC TANGENTFITCONFIDENCE uMn(95%)CONFIDENCE LIMIT(95%)CONFIDENCE LIMIT(95%)CONFIDENCE uMn(95%)FIGURE3-6:CHARPYDATAFITFORBASEMETALPLATEG-307-10L-28
2
84.0CONCLUSION
S Thefollowing RT~zresultswereobtained:
PlateG-8-3/G-8-4 G-8-1'-307-3G-307-4.G-307-.10RT~pz(TL)oF36284020C)oFWeldW5214/5G13F 86054B/4E5F 1248/4K13F 1248/4M2F RTunzoF-50-50-50-500)oF17171717Thedatareportedherewascomparedwiththecalculations re-*portedin,reference
[MA90a].Thesurveillance weldsforOysterCreekandNMPlareidentical.
Also,thebeltlinewelds1248/4M2F and86054B/4E5F arethesamefoxthetwoplants.TheRT+zresultsforthesurveillance weldandweld1248/4M2F wereexactlythesameforthetwoplants,andtheRT+zsforweld86054B/4E5F differedbyonly8'Fusingthe[MA85]procedure.
Thus,theagreement forthetwoindependent calculations wasquitegood.TheweldRT~zsarealsoconsistent withthegenericRT~zvalueof-56'Freportedin[BY90].Inadditiontofirmlyestablishing theRT~zforallofthebeltlinematerials, afurtherbenefitofthisanalysishasbeenthedetermination ofthesurveillance weldT>QandUSE.Uptotheresent,theweldsurveillance datahasbeenoflittlevaluesince 0
29the4T>0and4USEcannotbecalculated.
However,thecalculations reportedhereinhavedetermined theunirradiated Tzotobe-32'FandtheUSEtobe128ft-lb.Inthefuture,consideration shouldbegiventoobtaining acooperative agreement withGPUNucleartosharesurveillances dataforNMP1andOysterCreek.Thesetwounitsareofthesamedesignandvintageandhaveseveralidentical materials.
Thetwodatabasescanbecombinedtoyieldaccurateplant-specific trendcurves.Also,itwouldbedesirable inthefuturetoannealthesurveillance weldmaterialanddirectlymeasuretheCharpyproperties ofthematerial.
Thesedatacouldbeusedtoverifythecalculations andpossiblyreducetheuncertainty inthemodels.L-30
3
05.0REFERENCES
[BY90]Byrne,S.T.,"NiagaraMohawkPowerCorporation NineMilePointUnit1ReactorVesselWeldMaterials",
ReportNo.86390MCC001g6/13/90~[MA87]Manahan,M.P.,BCD-763-87-1, "Surveillance CapsulesA'ndC'orNineMilePointUnit1",FinalReportfromBattelletoNiagaraMohawk,September 30,1987.[MA85]Manahan,M.P.,"Procedure fortheDetermination ofInitialRT~~inCaseswhereLimitedBaselineDataareAvailable",
11/85[MA85a]Manahan,M.P.,Quayle,S.F.,Rosenfield, A.R.,andShetty,D.K.,<<Statistical AnalysisofCleavage-Fracture Data",Invitedpaper,Conference Proceedin softheInternational Conference andExhibition onFatiue,Corrosion
- Cracking, FractureMechanics, andFailureAnalysis, SaltLakeCity(December 2-6,1985).[MA89]Manahan,M.P.,"AStatistically BasedProcedure forDetermination ofRT~~WhenLimitedMaterials DataareAvailable",
inpreparation forTheJournalofNuclearTechnology.
[MA90]Manahan,M.P.,NMEL-90001, "NineMilePoint.Unit1Surveillance CapsuleProgram",
FinalReportfromPennState/Battelle toNiagaraMohawk,December, 1990.[MA90a]Manahan,M.P.,"RT~~andcr,AnalysisfortheOysterCreekNuclearGenerating StationPressureVesselBeltlineMaterials",
FinalReporttoGPUNuclearCorporation, April11,1990.
-[McFRAC)Manahan,M.P.,et.al.,"Statistical AnalysisMethodology forMechanics ofFracture",
FinalReporttoBattelle's Corporate Technology Development Office,1984[OD86]Odette,G.R.,Lombrazo, P.M.,"TheRelationBetweenIrradiation
-Hardening andEmbrittlement ofPressureVesselSteels",Proceedings ofthe12thASTMSymposium ontheEffectsofIrradiation onMaterials, 1986[RG1.99]Regulatory Guide1.99,Revision2,"Radiation Embrittlement ofReactorVesselMaterials",
May,1988L-32