ML18017A218

From kanterella
Revision as of 03:17, 18 May 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
Forwards Final Version of SSES TS Implementing Improved Tech Specs of Nureg 1433.Implementation of Proposed Amend Is Predicated on NRC Issuance of Amends & Is Proposed to Not Exceed 90 Days from Date of Amend Issuance
ML18017A218
Person / Time
Site: Susquehanna  Talen Energy icon.png
Issue date: 07/08/1998
From: JONES G T
PENNSYLVANIA POWER & LIGHT CO.
To:
NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
Shared Package
ML17164A672 List:
References
RTR-NUREG-1433 PLA-4924, NUDOCS 9807160267
Download: ML18017A218 (784)


Text

CATEGORY2)REGULATORYINFORMATIONDISTRIBUTIOWSYSTEM(RIDS)ACCESSIONNBR:9807160267DOC.DATE:98/07/08NOTARIZED:YESDOCKETFACIL:50-387SusquehannaSteamElectricStation,Unit1,Pennsylva0500038750-388SusquehannaSteamElectricStation,Unit2,Pennsylva05000388AUTH.NAMEAUTHORAFFILIATIONJONES,G.T.PennsylvaniaPower&LightCo.~~C~~RECIP.NAMERECIPIENTAFFILIATIONRecordsManagementBranch(DocumentControlDesk)

SUBJECT:

ForwardsfinalversionofSSESTSimplementingImprovedTechSpecsofNUREG1433.ImplementationofproposedamendispredicatedonNRCissuanceofamends6isproposedtonotexceed90daysfromdateofamendissuance.DISTRIBUTIONCODE:A001DCOPIESRECEIVED:LTRENCLSIZE:TITLE:ORSubmittal:GeneralDistributionNOTES:RECIPIENTIDCODE/NAMEPD1-2LANERSES,VCOPIESLTTRENCL1RECIPIENTIDCODE/NAMEPD1-2PDCOPIESLTTRENCL1'"050003870INTERNAL:ACRSNRR/DE/ECGB/ANRR/DRCH/HICBNRR/DSSA/SRXBOGC/HDS211111NRR/DE/EMCBNRR/DSSA/SPLBNUDOCS-ABSTRACT11EXTERNAL:NOACNOTES:1QNRCPDR11Et;-.4~5D.skW/wciA~gPM.o~~yNOTETOALL"RIDS"RECIPIENTS:PLEASEHELPUSTOREDUCEWASTE.TOHAVEYOURNAMEORORGANIZATIONREMOVEDFROMDISTRIBUTIONLISTSORREDUCETHENUMBEROFCOPIESRECEIVEDBYYOUORYOURORGANIZATION,CONTACTTHEDOCUMENTCONTROLDESK(DCD)ONEXTENSION415-2083C)5lTOTALNUMBEROFCOPIESREQUIRED:LTTRMENCL GeorgeT.JonesVicePresident-NuclearEngineering&SupportTel.610.774.7602Fax610.774.7797E-mail:gtjonesOpapl.cornPP&L,Inc.TwoNorthNinthStreetAllentown,PA18101-1179Tel.610.774.5151http:I/www.papl.corn/Iij((ifc(+s++4v+'fra~4<<4~~<JULOO1998U.S.NuclearRegulatoryCommissionAttn.:DocumentControlDeskMailStopP1-137Washington,D.C.20555SUSQUEHANNASTEAMELECTRICSTATIONPROPOSEDAMENDMENTNO.203TOLICENSENPF-14ANDNO.161TOLICENSENPF-22:FINALVERSIONOFTHECONVERTEDSSESTECHNICALSPECIFICATIONSTOTHEIMPROVEDSTANDARDTECHNICALSPECIFICATIONS,NUI&G1433PLA-4924FILESR41-1/A17-2DocketNos.50-387and50-388

References:

I)PLA-4488,"ProposedAmendmentNo.203toLicenseNPF-14andNo.161toLicenseNPF-22:ConversionoftheSSESTechnicalSpecificationstotheISTSNUREG1433,"datedAugustI,1996.2)PLA-4789,"RevisiontoProposedAmendmentNo.203toLicenseNPF-14:FinalResponseToGL94-02:LongTermStabilitySolution,"datedJanuary6,1998.3)PLA-4856,"RevisiontoProposedAmendmentNo.203toLicenseNPF-14andNo.161toLicenseNPF-22:ConversionoftheSSESTechnicalSpecificationstotheImprovedStandardTechnicalSpecifications,NUREG1433,"datedMarch2,1998.4)PLA-4887,"RevisiontoProposedAmendmentNo.203toLicenseNPF-14andNo.161toLicenseNPF-22:ConversionoftheSSESTechnicalSpecificationstotheImprovedStandardTechnicalSpecifications,NUREG1433,"datedApril24,1998.')PLA-4913,"RevisiontoProposedAmendmentNo.203toLicenseNPF-14andNo.161toLicenseNPF-22:ConversionoftheSSESTechnicalSpecificationstotheImprovedStandardTechnicalSpecifications,NUREG1433,"datedJune,181998.ThepurposeofthisletteristosubmitthefinalversionoftheSSESTechnicalSpecificationsimplementingtheImprovedTechnicalSpecificationsofNUREG1433.TheSSESUnit1and2TechnicalSpecificationsandtheassociatedbasesarecontainedintheenclosures.ImplementationoftheproposedamendmentispredicatedonNRCissuanceoftheamendmentsandisproposedtonotexceed90daysfromdateofamendmentissuance.mgw;Q~+Q9807ib02bT980708PDRADOCK05000387P.PDR FILESR41-I/A17-2PLA-4924DocumentControlDeskAnyquestionsshouldbedirectedtoMr.MichaelH.Crowthersat(610)774-7766.Sincerely,GeorgeT.JonesEnclosurecopy:NRCRegionIMr.K.Jenison,NRCSr.ResidentInspector-SSESMr.V.Nerses,NRCSr.ProjectManager-OWFNMr.K.Kerns,Pa.DEP Iy/

TABLEOFCONTENTS82.0SAFETYLIMITS(SLs)82.1.1ReactorCoreSLs............'.82.1.2ReactorCoolantSystem(RCS)PressureSL.82.0-182.0-182.0-783.083.0LIMITINGCONDITIONFOROPERATION(LCO)APPLICABILITYSURVEILLANCEREQUIREMENT(SR)APPLICABILITY83.0-183.0-1083.183.1.183.1.283.1.383.1.483.1.583.1.683.1.783.1.8REACTIVITYCONTROLSYSTEMS.ShutdownMargin(SDM)ReactivityAnomalies.........ControlRodOPERABILITYControlRodScramTimesControlRodScramAccumulators.RodPatternControlStandbyLiquidControl(SLC)SystemScramDischargeVolume(SDV)VentandDrainValves3.1-13.1-13.1-83.1-133.1-223.1-293.1-343.1-393.1-4783.283.2.183.2.283.2.383.2.4POWERDISTRIBUTIONLIMITS..:...........8AveragePlanarLinearHeatGenerationRate(APLHGR)8MinimumCriticalPowerRatio(MCPR).......8LinearHeatGenerationRate(LHGR)........8AveragePowerRangeMonitor(APRM)GainandSetpoints................,83.2-13.2-13.2-53.2-103.2-1483.383.3.1.183.3.1.283.3.2.183.3.2.283.3.3.183.3.3.283.3.4.183.3.4.283.3.5.183.3.5.283.3.6.183.3.6.283.3.7.1INSTRUMENTATIONReactorProtectionSystem(RPS)InstrumentationSourceRangeMonitor(SRM)Instrumentation....ControlRodBlockInstrumentationFeedwater-MainTurbineHighWaterLevelTripInstrumentation................PostAccidentMonitoring(PAM)Instrumentation.RemoteShutdownSystem..............Endoi',CycleRecirculationPumpTrip(EOC-RPT)Instrumentation................AnticipatedTransientWithoutScramRecirculationPumpTrip(ATWS-RPT)InstrumentationEmergencyCoreCoolingSystem(ECCS)Instrumentation................ReactorCoreIsolationCooling(RCIC)SystemInstrumentation................PrimaryContainmentIsolationInstrumentationSecondaryContainmentIsolationInstrumentationControlRoomEmergencyOutsideAirSupply(CREOAS)Syst'mInstrumentation83.3-183.3-183.3-3583.3-443.3-553.3-643.3-763.3-813.3-923.3-1013.3-1353.3-1473.3-1803.3-192(continued)SUSQUEHANNA-UNIT1Revision0 TABLEOFCONTENTS83.383.3.8.183.3.8.283.483.4.183.4.283.4.383.4.483.4.583.4.683.4.783.4.883.4.983.4.1083.4.1183.583.5.183.5.283.5.383.683.6.1.183.6.1.283.6.1.383.6.1.483.6.1.583.6.1.683.6.2.183.6.2.283.6.2.383.6.2.483.6.3.183.6.3.283.6.3.383.6.4.183.6.4.283.6.4.3INSTRUMENTATION(continued)LossofPower(LOP)InstrumentationReactorProtectionSystem(RPS)ElectricPowerMonitoringREACTORCOOLANTSYSTEM(RCS)RecirculationLoopsOperatingJetPumpsSafety/ReliefValves(S/RVs).........RCSOperationalLEAKAGERCSPressureIsolationValve(PIV)Leakage..RCSLeakageDetectionInstrumentationRCSSpecificActivityResidualHeatRemoval(RHR)ShutdownCoolingSystem-HotShutdownResidualHeatRemoval(RHR)ShutdownCoolingSystem-ColdShutdown...........RCSPressureandTemperature(P/T)LimitsReactorSteamDomePressureEMERGENCYCORECOOLINGSYSTEMS(ECCS)ANDREACTORCOREISOLATIONCOOLING(RCIC)SYSTEM.ECCS-OperatingECCS-Shutdown.RCICSystemCONTAINMENTSYSTEMSPrimaryContainmentPrimaryContainmentAirLock...........PrimaryContainmentIsolationValves(PCIVs)...ContainmentPressure...............DrywellAirTemperatureSuppressionChamber-to-DrywellVacuumBreakers..SuppressionPoolAverageTemperature.......SuppressionPoolWaterLevel...........ResidualHeatRemoval(RHR)SuppressionPoolCooling....................ResidualHeatRemoval(RHR)SuppressionPoolSprayPrimaryContainmentHydrogenRecombiners.DrywellAirFlowSystemPrimaryContainmentOxygenConcentration.....SecondaryContainmentSecondaryContainmentIsolationValves(SCIVs)..StandbyGasTreatment(SGT)System........83.3-20583.3-21383.4-183.4-183.4-1083.4-1583.4-1983.4-2483.4-3083.4-3583.4-3983.4-4483.4-4983.4-5983.5-183.5-183.5-1983.5-2583.6-183.6-183.6-783.6-1583.6-4183.6-4483.6-4783.6-5383.6-5983.6-6283.6-6683.6-7083.6-7683.6-8183.6-8483.6-9183.6-101(continued)SUSQUEHANNA-UNIT11vRevision0 TABLEOFCONTENTS83.783.7.183.7.283.7.383.7.483.7.583.7.683.7.783.883.8.183.8.283.8.383.8.483.8.583.8.683.8.783.8.883.983.9.183.9.283.9.383.9.483.9.583.9.683.9.783.9.883.1083.10.183.10.283.10.383.10.483.10.583.10.683.10.783.10.8PLANTSYSTEMSResidualHeatRemovalServiceWater(RHRSW)SystemandtheUltimateHeatSink(UHS)EmergencyServiceWater(ESW)SystemControlRoomEmergencyOutsideAirSupply(CREOAS)SystemControlRoomFloorCoolingSystemMainCondenserOffgasMainTurbineBypassSystem............SpentFuelStoragePoolWaterLevelELECTRICALPOWERSYSTEMS.ACSources-OperatingACSources-Shutdown............DieselFuelOil,LubeOil,andStartingAirDCSources-OperatingDCSources-Shutdown............BatteryCellParametersDistributionSystems-OperatingDistributionSystems-Shutdown.......REFUELINGOPERATIONS.RefuelingEquipmentInterlocks...~....RefuelPositionOne-Rod-OutInterlockControlRodPosition.............ControlRodPositionIndicationControlRodOPERABILITY-Refueling......ReactorPressureVessel(RPV)WaterLevelResidualHeatRemoval(RHR)-HighWaterLevelResidualHeatRemoval(RHR)-LowWaterLevelSPECIALOPERATIONS.InserviceLeakandHydrostaticTestingOperation.ReactorModeSwitchInterlockTestingSingleControlRodWithdrawal-HotShutdownSingleControlRodWithdrawal-ColdShutdown...SingleControlRodDrive(CRD)Removal-RefuelingMultipleControlRodWithdrawal-Refueling.ControlRodTesting-Operating..........SHUTDOWNMARGIN(SDM)Test-Refueling83.7-183.7-183.7-783.7-1283.7-1983.7-2483.7-2783.7-3183.8-183.8-183.8-3883.8-4583.8-5483.8-6683.8-7183.8-7883.8-86B.3.9-183.9-183.9-583.9-983.9-1283.9-1683.9-1983.9-2283.9-2683.10-183.10-183.10-683.10-1183.10-1683.10-2183.10-2683.10-2983.10-33SUSQUEHANNA-UNIT1Revision0 ReactorCoreSLs82.1.1B2.0SAFETYLIMITS(SLs)B2.1.1ReactorCoreSLsBASESBACKGROUNDGDC10(Ref.1)requires,andSLsensure,thatspecifiedacceptablefueldesignlimitsarenotexceededduringsteadystateoperation,normaloperationaltransients,andanticipatedoperationaloccurrences(AOOs).ThefuelcladdingintegritySLissetsuchthatnosignificantfuel.damageiscalculatedtooccurifthelimitisnotviolated.Becausefueldamageisnotdirectlyobservable,astepbackapproachisusedtoestablishanSL,suchthattheMCPRisnotlessthanthelimitspecifiedinSpecification2.1.1.2forSiemensPowerCorporationfuel.HCPRgreaterthanthespecifiedlimitrepresentsaconservativemarginrelativetotheconditionsrequiredtomaintainfuelcladdingintegrity.Thefuelcladdingisone"ofthephysicalbarriersthatseparatetheradioactivematerialsfromtheenvirons.Theintegrityofthis.claddingbarrierisrelatedtoitsrelativefreedomfromperforationsorcracking.Althoughsomecorrosionor'serelatedcrackingmayoccurduringthelifeofthecladding,fissionproductmigrationfromthissourceisincrementallycumulativeandcontinuouslymeasurable.Fuelcladdingperforations,however,canresultfromthermalstresses,whichoccurfromreactoroperationsignificantlyabovedesignconditions.Whilefissionproductmigrationfromcladdingperforationisjustasmeasurableasthatfromuserelatedcracking.thethermallycausedcladdingperforationssignalathresholdbeyondwhichstillgreaterthermalstressesmaycausegross,ratherthanincremental,claddingdeterioration.Therefore.thefuelcladdingSLisdefinedwithamargintotheconditionsthatwouldproduceonsetoftransitionboiling(i.e.,HCPR=1.00).Theseconditionsrepresentasignificantdeparturefromtheconditionintendedbydesignforplannedoperation.TheHCPRfuelcladdingintegritySLensuresthatduringnormaloperationandduringAOOs.atleast99.9Kofthefuelrodsinthecoredonotexperiencetransitionboiling.(continued)SUSQUEHANNA-UNIT1B2.0-1Revision0 ReactorCoreSLsB2.1.1BASESBACKGROUNO(continued)Operationabovetheboundaryofthenucleateboilingregimecouldresultinexcessivecladdingtemperaturebecauseoftheonsetoftransitionboilingandtheresultantsharpreductioninheattransfercoefficient.Insidethesteamfilm,highcladdingtemperaturesarereached,andacladdingwater(zirconiumwater)reactionmaytakeplace.Thischemicalreactionresultsinoxidationofthefuelcladdingtoastructurallyweakerform.Thisweakerformmayloseitsintegrity,resultinginanuncontrolledreleaseofactivitytothereactorcoolant.APPLICABLE.ThefuelcladdingmustnotsustaindamageasaresultofSAFETYANALYSESnormaloperationandAOOs.ThereactorcoreSLsareestablishedtoprecludeviolationofthefueldesigncriterionthatanMCPRlimitistobeestablished,suchthatatleast99.9Xofthefuelrodsinthecorewouldnotbeexpectedtoexperiencetheonsetoftransitionboiling.TheReactorProtectionSystemsetpoints(LCO3.3.1.1,"ReactorProtectionSystem(RPS)Instrumentation"),incombinationwiththeotherLCOs,aredesignedtopreventanyanticipatedcombinationoftransientconditionsforReactorCoolantSystemwaterlevel,pressure,andTHERMALPOWERlevelthatwouldresultinreachingtheMCPRlimit.2.1.1.1FuelCladdinInteritTheuseoftheANFBcorrelationisvalidforcriticalpowercalculationsatpressures)600psiaandbundlemassfluxes)0.1x10'b/hr-ft'Ref.2).Foroperationatlowpressuresorlowflows.thefuelcladdingintegritySLisestablishedbyalimitingconditiononcoreTHERMALPOWER,withthefollowingbasis:Providedthatthewaterlevelinthevesseldowncomerismaintainedabovethetopoftheactivefuel,naturalcirculationissufficienttoensureaminimumbundleflowforallfuelassembliesthathavearelativelyhighpowerandpotentiallycanapproachacriticalheatfluxcondition.FortheSPC9x9fueldesign,theminimumbundleflowisapproximately30x10'b/hr.FortheSPCATRIUM-10design,(continued)SUSQUEHANNA-UNIT1B2.0-2Revision0 ReactorCoreSLsB2.1.1BASESAPPLICABLESAFETYANALYSES2.1.1.1FuelCladdinInterit(continued)theminimumbundleflowis>28x10'b/hr.ForboththeSPC9x9-2andATRIUM-10fueldesigns,thecoolantminimumbundleflowandmaximumareaaresuchthatthemassfluxisalways>.25x10'b/hr-ft'.FullscalecriticalpowertestdatatakenfromvariousSPCandGEfueldesignsatpressuresfrom14.7psiato1400psiaindicatethefuelassemblycriticalpowerat0.25x10'b/hr-ft'sapproximately3.35HWt.At25KRTP,abundlepowerofapproximately3.35MWtcorrespondstoabundleradialpeakingfactorof>3.0,whichissignificantlyhigherthantheexpectedpeakingfactor.Thus,aTHERMALPOWERlimitof25KRTPforreactorpressures<785psigisconservative.2.1.1.2HCPRTheHCPRSLensuressufficientconservatismintheoperatingHCPRlimitthat.intheeventofanAOOfromthelimitingconditionofoperation,atleast99.9Xofthefuelrodsinthecorewouldbeexpectedtoavoidboilingtransition.Themarginbetweencalculatedboilingtransition(i.e.,HCPR=1.00)andtheHCPRSLisbasedonadetailedstatisticalprocedurethatconsiderstheuncertaintiesinmonitoringthecoreoperatingstate.OnespecificuncertaintyincludedintheSListheuncertaintyintheANFBcriticalpowercorrelation.References2,4and5describethemethodologyusedindeterminingtheHCPRSL.TheANFBcriticalpowercorrelationisbasedonasignificantbodyofpracticaltestdata.AslongasthecorepressureandflowarewithintherangeofvalidityoftheANFBcorrelation(refertoSectionB.2.1.1.1),theassumedreactorconditionsusedindefiningtheSLintroduceconservatismintothelimitbecauseboundinghighradialpowerfactorsandboundingflatlocalpeakingdistributionsareusedtoestimatethenumberofrodsinboilingtransition.TheseconservatismsandtheinherentaccuracyoftheANFBcorrelationprovideareasonabledegreeofassurancethatduringsustainedoperationattheHCPRSLtherewouldbenotransitionboilinginthecore.Ifboilingtransitionweretooccur,thereisreasontobelievethattheintegrityofthefuelwouldnotbecompromised.(continued)SUSQUEHANNA-UNIT1B2.0-3Revision0 ReactorCoreSLsB2.1.1BASESAPPLICABLESAFETYANALYSES2.1.1.2MCPR(continued)SignificanttestdataaccumulatedbytheNRCandprivateorganizationsindicatethattheuseofaboilingtransitionlimitationtoprotectagainstcladdingfailureisaveryconservativeapproach.MuchofthedataindicatethatBWRfuelcansurviveforanextendedperiodoftimeinanenvironmentofboilingtransition.SPCfuelismonitoredusingtheANFBCriticalPowerCorrelation.TheeffectsofchannelbowonMCPRareexplicitlyincludedinthecalculationoftheANFBMCPRSL.ExplicittreatmentofchannelbowintheANFBMCPRSLaddressingtheconcernsofNRCBulletinNo.90-02entitled"LossofThermalMarginCausedbyChannelBoxBow."TheUnit-1corecontainsfourABBleaduseassemblies(LUAs).TheLUAsareloadedinnonlimitingcoreregionsperSpecification4.2.1.TheMCPRSLgeneratedusingANFB(References2,4and5)isacceptablefortheABBLUAs.MonitoringrequiredforcompliancewiththeMCPRSLisspecifiedinLCO3.2.2,MinimumCriticalPowerRatio.Figure2.1.1.2-1and2.1.1.2-2providetheMCPRSLasafunctionofcoPeflow.AsnotedontheFigures,poweroperationfortheunitisonlyapprovedf'rthespecifiedoperatingcycle.OperationbeyondthecyclewillrequireNRCapproval.2.1.1.3ReactorVesselWaterLevelDuringNODES1and2thereactorvesselwaterlevelisrequiredtobeabovethetopoftheactivefueltoprovidecorecoolingcapability.Withfuelinthereactorvesselduringperiodswhenthereactorisshutdown,considerationmustbegiventowaterlevelrequirementsduetotheeffectofdecayheat.Ifthewaterlevelshoulddropbelowthetopoftheactiveirradiatedfuelduringthisperiod,theabilitytoremovedecayheatisreduced.Thisreductionincoolingcapabilitycouldleadtoelevatedcladdingtemperaturesandcladperforationintheeventthatthewaterlevelbecomes(2/3ofthecoreheight.ThereactorvesselwaterlevelSLhasbeenestablishedatthetopoftheactiveirradiatedfueltoprovideapointthatcanbe(continued)SUSQUEHANNA-UNIT1B2.0-4Revision0 ReactorCoreSLsB2.1.1BASESAPPLICABLESAFETYANALYSES2.1.1.3ReactorVesselWaterLevel(continued)monitoredandtoalsoprovideadequatemarginforeffectiveaction.SAFETYLIMITSThereactorcoreSLsareestablishedtoprotecttheintegrityofthefuelcladbarriertothereleaseofradioactivematerialstotheenvirons.SL2.1.1.1andSL2.1.1.2ensurethatthecoreoperateswithinthefueldesigncriteria.-SL2.1.1.3ensuresthatthereactorvesselwaterlevelisgreaterthanthetopoftheactiveirradiatedfuelinordertopreventelevatedcladtemperaturesandresultantcladperforations.APPLICABILITYSLs2.1.1.1,2.1.1.2,and2.1.1.3areapplicableinallMODES.SAFETYLIMITVIOLATIONSExceedinganSLmaycausefueldamageandcreateapotentialf'rradioactivereleasesinexcessof10CFR100,"ReactorSiteCriteria,"limits(Ref.3).Therefore,itisrequiredtoinsertallinsertablecontrolrodsandrestorecompliancewiththeSLswithin2hours.The2hourCompletionTimeensuresthattheoperatorstakepromptremedialactionandalsoensuresthattheprobabilityofanaccidentoccurringduringthisperiodisminimal.REFERENCES1.10CFR50,AppendixA,GDC10.2.ANF524(P)(A),Revision2,"CriticalPowerMethodologyforBoilingWaterReactors,"Supplement1Revision2andSupplement2,November1990.3.10CFR100.4.EMF-97-010(P).ApplicationofANFBtoATRIUM-10forSusquehannaReloads,Revision1,March1997.(continued)SUSQUEHANNA-UNIT1B2.0-5Revision0 ReactorCoreSLsB2.1.1BASESREFERENCES(continued)5.Letter,R.G.Byram(PP8L)toNRC,"SusquehannaSteamElectricStationResponsetoNRCRequestforAdditionalInformationonSiemensReportEMF-97-010,Rev.1,"PLA-4596,March27,1997.SUSQUEHANNA-UNIT1B2.0-6Revision0 RCSPressureSLB2.1.2B2.0SAFETYLIMITS(SLs)B2.1.2ReactorCoolantSystem(RCS)PressureSLBASESBACKGROUNDTheSLonreactorsteamdomepressureprotectstheRCSagainstoverpressurization.Intheeventoffuelcladdingfailure.fissionproductsarereleasedintothereactorcoolant.TheRCSthenservesastheprimarybarrierinpreventingthereleaseoffissionproductsintotheatmosphere.EstablishinganupperlimitonreactorsteamdomepressureensurescontinuedRCSintegrity.Accordingto10CFR50,AppendixA,GDC14,"ReactorCoolantPressureBoundary,"andGDC15."ReactorCoolantSystemDesign"(Ref.1),thereactorcoolantpressureboundary(RCPB)shallbedesignedwithsufficientmargintoensurethatthedesignconditionsarenotexceededduringnormaloperationandanticipatedoperationaloccurrences(AOOs).DuringnormaloperationandAOOs,RCSpressureislimitedfromexceedingthedesignpressurebymorethan10K,inaccordancewithSectionIIIoftheASMECode(Ref.2).Toensuresystemintegrity,all.RCScomponentsarehydrostaticallytestedat125Kofdesignpressure,inaccordancewiNASMECoderequirements,priortoinitialoperationwhenthereisnofuelinthecore.AnyfurtherhydrostatictestingwithfuelinthecoremaybedoneunderLCO3.10.1,"InserviceLeakandHydrostaticTestingOperation."Followinginceptionofunitoperation,RCScomponentsshallbepressuretestedinaccordancewiththerequirementsofASMECode,SectionXI(Ref.3).OverpressurizationoftheRCScouldresultinabreachoftheRCPB,reducingthenumberofprotectivebarriersdesignedtopreventradioactivereleasesfromexceedingthelimitsspecifiedin10CFR100."ReactorSiteCriteria"(Ref.4).Ifthisoccurredinconjunctionwithafuelcladdingfailure,fissionproductscouldenterthecontainmentatmosphere.APPLICABLESAFETYANALYSESTheRCSsafety/reliefvalvesandtheReactorProtectionSystemReactorHighFluxandVesselSteamDomePressure-HighFunctionhavesettingsestablishedtoensurethattheRCSpressureSLwillnotbeexceeded.(continued)SUSQUEHANNA-UNIT182.0-7Revision0 RCSPressureSL82.1.2BASESAPPLICABLESAFETYANALYSE(continued)TheRCSpressureSLhasbeenselectedsuchthatitisatapressurebelowwhichitcanbeshownthattheintegrityofthesystemisnotendangered.ThereactorpressurevesselisdesignedtoSectionIIIoftheASME,BoilerandPressureVesselCode,1968Edition,includingAddendathroughthesummerof1970(Ref.5),whichpermitsamaximumpressuretransientof110K,1375psig,ofdesignpressure1250psig.TheSLof1325psig,asmeasuredinthereactorsteamdome,isequivalentto1375psigatthelowestelevationoftheRCS.TheRCSinsidecontainmentisdesignedtotheASMEBoilerandPressureVesselCode.SectionIII,1971EditionwithAddendathroughsummerof1972(Ref.6),forthereactorrecirculationpiping,whichpermitsamaximumpressuretransientof110Kofdesignpressuresof1250psigforsuctionpipingand1500psigfordischargepiping.TheRCSpressureSLisselectedtobethelowesttransientoverpressureallowedbytheapplicablecodes.SAFETYLIMITSThemaximumtransientpr'essureallowableintheRCSpressurevesselundertheASMECode,SectionIII,is110Kofdesignpressure.ThemaximumtransientpressureallowableintheRCSpiping.valves,andfittingsis110Kofdesignpressuresof1250psigf6rsuctionpipingand1500psigfordischarge.piping.Themostlimitingoftheseallowancesisthe110Kofthesuctionpipingdesignpressures;therefore,theSLonmaximumallowableRCSpressureisestablishedat1325psigasmeasuredatthereactorsteamdome.APPLICABILITYSL2.1.2appliesinallMODES.SAFETYLIMITVIOLATIONSExceedingtheRCSpressureSLmaycauseimmediateRCSfailureandcreateapotentialforradioactivereleasesinexcessof10CFR100,"ReactorSiteCriteria."limits(Ref.4).Therefore,itisrequiredtoinsertallinsertablecontrolrodsandrestorecompliancewiththeSLwithin2hours.The2hourCompletionTimeensuresthattheoperatorstakepromptremedialactionandalsoassuresthattheprobabilityofanaccidentoccurringduringthisperiodisminimal.SUSQUEHANNA-UNIT1B2.0-8(continued)Revision0 RCSPressureSLB2.1.2BASES(continued)REFERENCES1.10CFR50.AppendixA,GDC14,GDC15,andGDC28.2.ASME,BoilerandPressureVesselCode,SectionIII,ArticleNB-7000.3.ASME,BoilerandPressureVesselCode,SectionXI,ArticleIW-5000.4.10CFR100.5.ASME,BoilerandPressureVesselCode,SectionIII,1968Edition,Addendasummerof1970.6.ASME,BoilerandPressureVesselCode,SectionIII,1971Edition,Addendasummerof1972.SUSQUEHANNA-UNIT1B2.0-9Revision0 LCOApplicabi1ityB3.0B3.0LIHITINGCONDITIONFOROPERATION(LCO)APPLICABILITYBASESLCOsLCO3.0.1throughLCO3.0.7establishthegeneralrequirementsapplicabletoallSpecificationsandapplyatalltimes,unlessotherwisestated.LCO3.0.1LCO3.0.1establishestheApplicabilitystatementwithineachindividualSpecificationastherequirementforwhentheLCOisrequiredtobemet(i.e.,whentheunitisintheHODESorotherspecifiedconditionsoftheApplicabilitystatementofeachSpecification).LCO3.0.2LCO3.0.2establishesthatupondiscoveryofafailuretomeetanLCO,theassociatedACTIONSshallbemet.TheCompletionTimeofeachRequiredActionforanACTIONSConditionisapplicablefromthepointintimethatanACTIONSConditionisentered.TheRequiredActionsestablishthoseremedialmeasuresthatmustbetakenwithinspecifiedCompletionTimeswhentherequirementsofanLCOarenotmet.7hi'sSpecificationestablishesthat:a.CompletionoftheRequiredActionswithinthespecifiedCompletionTimesconstitutescompliancewithaSpecification;andb.CompletionoftheRequiredActionsisnotrequiredwhenanLCOismetwithinthespecifiedCompletionTime,unlessotherwisespecified.TherearetwobasictypesofRequiredActions.ThefirsttypeofRequiredActionspecifiesatimelimitinwhichtheLCOmustbemet.ThistimelimitistheCompletionTimetorestoreaninoperablesystemorcomponenttoOPERABLEstatusortorestorevariablestowithinspecifiedlimits.IfthistypeofRequiredActionisnotcompletedwithinthespecifiedCompletionTime,ashutdownmayberequiredtoplacetheunitinaHODEorconditioninwhichtheSpecificationisnotapplicable.(WhetherstatedasaRequiredActionornot,correctionoftheenteredConditionisanactionthatmayalwaysbeconsidereduponentering(continued)SUSQUEHANNA-UNIT1B3.0-1Revision0 LCOApplicabilityB3.0BASESLCO3.0.2~(continued)ACTIONS.)ThesecondtypeofRequiredActionspecifiestheremedialmeasuresthatpermitcontinuedoperationoftheunitthatisnotfurtherrestrictedbytheCompletionTime.Inthiscase,compliancewiththeRequiredActionsprovidesanacceptablelevelofsafetyforcontinuedoperation.CompletingtheRequiredActionsisnotrequiredwhenanLCOismetorisnolongerapplicable,unlessotherwisestatedintheindividualSpecifications.ThenatureofsomeRequiredActionsofsomeConditionsnecessitatesthat,oncetheConditionisentered,theRequiredActionsmustbecompletedeventhoughtheassociatedConditionsnolongerexist.TheindividualLCO'sACTIONSspecifytheRequiredActionswherethisisthecase.AnexampleofthisisinLCO3.4.10,"RCSPressureandTemperature(P/T)Limits."TheCompletionTimesoftheRequiredActionsarealsoapplicablewhenasystemorcomponentisremovedfromserviceintentionally.ThereasonsforintentionallyrelyingontheACTIONSinclude,butarenotlimitedto.performanceofSurveillances,preventivemaintenance,correctivemaintenance,orinvestigationofoperationalproblems.EnterimgACTIONSforthesereasonsmustbedoneinamannerthatdoesnotcompromisesafety.IntentionalentryintoACTIONSshouldnotbemadeforoperationalconvenience.Additionally,ifintentionalentryintoactionswouldresultinredundantequipmentbeinginoperable,alternativesshouldbeusedinstead.Doingsolimitsthetimebothsubsystems/divisionsofasafetyfunctionareinoperableandlimitsthetimeconditionsexistwhichmayresultinLCO3.0.3beingentered.IndividualSpecificationsmayspecifyatimelimitforperforminganSRwhenequipmentisremovedfromserviceorbypassedfortesting.Inthiscase,theCompletionTimesoftheRequiredActionsareapplicablewhenthistimelimitexpires,iftheequipmentremainsremovedfromserviceorbypassed.WhenachangeinMODEorotherspecifiedconditionisrequiredtocomplywithRequiredActions,theunitmayenteraMODEorotherspecifiedconditioninwhichanotherSpecificationbecomesapplicable.Inthiscase,theCompletionTimesoftheassociatedRequiredActionswouldapplyfromthepointintimethatthenewSpecificationbecomesapplicableandtheACTIONSCondition(s)areentered.SUSQUEHANNA-UNIT183.0-2(continued)Revision0 LCOApplicabilityB3.0BASES(continued)LCO3.0.3LCO3.0.3establishestheactionsthatmustbeimplementedwhenanLCOisnotmetand:a.AnassociatedRequiredActionandCompletionTimeisnotmetandnootherConditionapplies;orb.TheconditionoftheunitisnotspecificallyaddressedbytheassociatedACTIONS.ThismeansthatnocombinationofConditionsstatedintheACTIONScanbemadethatexactlycorrespondstotheactualconditionoftheunit.Sometimes,possiblecombinationsofConditionsaresuchthatenteringLCO3.0.3iswarranted;insuchcases,theACTIONSspecificallystateaConditioncorrespondingtosuchcombinationsandalsothatLCO3.0.3beenteredimmediately.ThisSpecificationdelineatesthetimelimitsforplacingtheunitinasafeMODEorotherspecifiedconditionwhenoperationcannotbemaintainedwithinthelimitsforsafeoperationasdefinedbytheLCOanditsACTIONS.ItisnotintendedtobeusedasanoperationalconveniencethatpermitsroutinevoluntaryremovalofredundantsystemsorcomponentsfromserviceinlieuofotheralternativesthatwouldnotresuTtinredundantsystems='orcomponents;beinginoperable.UponenteringLCO3.0.3,1hour-isallowed:-to.-prepare.foranorderlyshutdownbeforeinitiatinga,change=inunitoperation.Thisincludestimetopermit"the'.-.operator'o'-coordinatethereductioninelectricalgeneration'iththeloaddispatchertoensurethestabilityandavailabilityoftheelectricalgrid.ThetimelimitsspecifiedtoreachlowerMODESofoperationpermittheshutdowntoproceedinacontrolledandorderlymannerthatiswellwithinthespecifiedmaximumcooldownrateandwithinthecapabilitiesoftheunit,assumingthatonlytheminimumrequiredequipmentisOPERABLE.ThisreducesthermalstressesoncomponentsoftheReactorCoolantSystemandthepotentialforaplantupsetthatcouldchallengesafetysystemsunderconditionstowhichthisSpecificationapplies.TheuseandinterpretationofspecifiedtimestocompletetheactionsofLCO3.0.3areconsistentwiththediscussionofSection1.3,CompletionTimes.(continued)SUSQUEHANNA-UNIT1B3.0-3Revision0 LCOApplicability83.0BASESLCO3.0.3(continued)AunitshutdownrequiredinaccordancewithLCO3.0.3maybeterminatedandLCO3.0.3exitedifanyofthefollowingoccurs:a.TheLCOisnowmet.b.AConditionexistsforwhichtheRequiredActionshavenowbeenperformed.c.ACTIONSexistthatdonothaveexpiredCompletionTimes.TheseCompletionTimesareapplicablefromthepointintimethattheConditionisinitiallyenteredandnotfromthetimeLCO3.0.3isexited.ThetimelimitsofSpecification3.0.3allow37hoursfortheunittobeinMODE4whenashutdownisrequiredduringMODE1operation.IftheunitisinalowerMODEofoperationwhenashutdownisrequired,thetimelimitforreachingthenextlowerMODEapplies.IfalowerMODEisreachedinlesstimethanallowed,however,thetotalallowabletimetoreachMODE4,orotherapplicableMODE,isnotreduced.Forexample,ifMODE2isreachedin2hours,thenthetimeallowedforreachingMODE3isthenext11hours,becausethetotaltimeforreachingMODE3isnotreducedfromtheallowablelimitof13hours.Therefore.ifremedialmeasuresarecompletedthatwouldpermitareturntoMODE1,apenaltyisnotincurredbyhavingtoreachalowerMODEofoperationinlessthanthetotaltimeallowed.InMODES1,2,and3,LCO3.0.3providesactionsforConditionsnotcoveredinotherSpecifications.TherequirementsofLCO3.0.3donotapplyinMODES4and5becausetheunitisalreadyinthemostrestrictiveConditionrequiredbyLCO3.0.3.TherequirementsofLCO3.0.3donotapplyinotherspecifiedconditionsoftheApplicability(unlessinMODE1,2,or3)becausetheACTIONSofindividualSpecificationssufficientlydefinetheremedialmeasurestobetaken.ExceptionstoLCO3.0.3areprovidedininstanceswhererequiringaunitshutdown,inaccordancewithLCO3.0.3,wouldnotprovideappropriateremedialmeasuresfortheassociatedconditionoftheunit.AnexampleofthisisinLCO3.7.7,"SpentFuelStoragePoolWaterLevel."LCO3.7.7hasanApplicabilityof"Duringmovementofirradiatedfuel(continued)SUSQUEHANNA-UNIT183.0-4Revision0 LCOApplicabilityB3.0BASESLCO3.0.3(continued)assembliesinthespentfuelstoragepool."Therefore,thisLCOcanbeapplicableinanyorallMODES.IftheLCOandtheRequiredActionsofLCO3.7.7arenotmetwhileinMODE1.2,or3,thereisnosafetybenefittobegainedbyplacingtheunitinashutdowncondition.TheRequiredActionofLCO3.7.7of"Suspendmovementofirradiatedfuelassembliesinthespentfuelstoragepool"istheappropriateRequiredActiontocompleteinlieuof'heactionsofLCO3.0.3.TheseexceptionsareaddressedintheindividualSpecifications.LCO3.0.4LCO3.0.4establisheslimitationsonchangesinMODESorotherspecifiedconditionsintheApplicabilitywhenanLCOisnotmet.ItprecludesplacingtheunitinaMODEorotherspecifiedconditionstatedinthatApplicability(e.g.,Applicabilitydesiredtobeentered)whenthefollowingexist:a.UnitconditionsaresuchthattherequirementsoftheLCOwouldnotbemetintheApplicabilitydesiredtobeentered;andb.ContinuednoncompliancewiththeLCOrequirements,iftheApplicabilitywereentered,wouldresultintheunitbeingrequiredtoexittheApplicabilitydesiredtobeenteredtocomplywiththeRequiredActions.CompliancewithRequiredActionsthatpermitcontinuedoperationoftheunitforanunlimitedperiodoftimeinaMODEorotherspecifiedconditionprovidesanacceptablelevelofsafetyforcontinuedoperation.ThisiswithoutregardtothestatusoftheunitbeforeoraftertheMODEchange.Therefore,insuchcases,entryintoaMODEorotherspecifiedconditionintheApplicabilitymaybemadeinaccordancewiththeprovisionsof'heRequiredActions.TheprovisionsofthisSpecificationshouldnotbeinterpretedasendorsingthefailuretoexercisethegoodpracticeofrestoringsystemsorcomponentstoOPERABLEstatusbeforeenteringanassociatedMODEorotherspecifiedconditionintheApplicability.TheprovisionsofLCO3.0.4shallnotpreventchangesinMODESorotherspecifiedconditionsintheApplicability(continued)SUSQUEHANNA-UNIT1B3.0-5Revision0

LCOApplicabilityB3.0BASESLCO3.0.4(continued)thatarerequiredtocomplywithACTIONS.Inaddition,theprovisionsof'CO3.0.4shallnotpreventchangesinMODESorotherspecifiedconditionsintheApplicabilitythatresultfromanyunitshutdown.ExceptionstoLCO3.0.4arestatedintheindividualSpecifications.ExceptionsmayapplytoalltheACTIONSortoaspecificRequiredActionofaSpecification.LCO3.0.4isonlyapplicablewhenenteringMODE3fromMODE4,MODE2fromMODE3or4,orHODE1fromMODE2.Furthermore,LC0.3.0.4isapplicablewhenenteringanyotherspecifiedconditionintheApplicabilityonlywhileoperatinginMODE1,2,or3.TherequirementsofLCO3.0.4donotapplyinMODES4and5,orinotherspecifiedconditionsoftheApplicability(unlessinMODE1,2,or3)becausetheACTIONSofindividualspecificationssufficientlydefinetheremedialmeasurestobetaken.Surveillancesdonothavetobeperformedontheassociatedinoperableequipment(or'nvariablesoutsidethespecifiedlimits),aspermittedbySR3.0.1.Therefore,changingMODESorotherspecifiedconditionswhileinanACTIONSCondition,eitherincompliancewithLCO3.0.4orwhereanexceptiontoLCG'3.0.4isstated,isnotaviolationofSR3.0.1orSR3.0.4forthoseSurveillancesthatdonothavetobeperformedduetotheassociatedinoperableequipment.However,SRsmustbemettoensureOPERABILITYpriortodeclaringtheassociatedequipmentOPERABLE(orvariablewithinlimits)andrestoringcompliancewiththeaffectedLCO.LCO3.0.5LCO3.0.5establishestheallowanceforrestoringequipmenttoserviceunderadministrativecontrolswhenithasbeenremovedfromserviceordeclaredinoperabletocomplywithACTIONS.ThesolepurposeofthisSpecificationistoprovideanexceptiontoLCO3.0.2(e.g.,tonotcomplywiththeapplicableRequiredAction(s))toallowtheperformanceofrequiredtestingtodemonstrate:a.TheOPERABILITYoftheequipmentbeingreturnedtoservice;orb.TheOPERABILITYofotherequipment.(continued)SUSQUEHANNA-UNIT183.0-6Revision0 LCOApplicabilityB3.0BASESLCO3.0.5(continued)TheadministrativecontrolsensurethetimetheequipmentisreturnedtoserviceinconflictwiththerequirementsoftheACTIONSislimitedtothetimeabsolutelynecessarytoerformtherequiredtestingtodemonstrateOPERABILITY.hisSpecificationdoesnotprovidetimetoperformanyotherpreventiveorcorrectivemaintenance.AnexampleofdemonstratingtheOPERABILITYoftheequipmentbeingreturnedtoserviceisreopeningacontainmentisolationvalvethathasbeenclosedtocomplywithRequiredActionsandmustbereopenedtoperformtherequiredtesting.AnexampleofdemonstratingtheOPERABILITYofotherequipmentistakinganinoperablechannelortripsystemoutofthetrippedconditiontopreventthetripfunctionfromoccurringduringtheperformanceofrequiredtestingonanotherchannelintheothertripsystem.AsimilarexampleofdemonstratingtheOPERABILITYofotherequipmentistakinganinoperablechannelortripsystemoutofthetrippedconditiontopermitthelogictofunctionandindicatetheappropriateresponseduringtheperformanceofrequiredtestingonanotherchannelinthesametripsystem.LCO3.0.6,LCO3.0.6establishesanexceptiontoLCO3.0.2forsupportsystemsthathaveanLCOspecifiedintheTechnicalSpecifications(TS).ThisexceptionisprovidedbecauseLCO3.0.2wouldrequirethattheConditionsandRequiredActionsoftheassociatedinoperablesupportedsystemLCObeenteredsolelyduetotheinoperabilityofthesupportsystem.ThisexceptionisjustifiedbecausetheactionsthatarerequiredtoensuretheplantismaintainedinasafeconditionarespecifiedinthesupportsystemLCO'sRequiredActions.TheseRequiredActionsmayincludeenteringthesupportedsystem'sConditionsandRequiredActionsormayspecifyotherRequiredActions.WhenasupportsystemisinoperableandthereisanLCOspecifiedforitintheTS,thesupportedsystem(s)arerequiredtobedeclaredinoperableifdeterminedtobeinoperableasaresultofthesupportsysteminoperability.However,itisnotnecessarytoenterintothesupportedsystems'onditionsandRequiredActionsunlessdirectedtodosobythesupportsystem'sRequiredActions.Thepotentialconfusionandinconsistencyofrequirementsrelatedtothe(continued)SUSQUEHANNA-UNIT1B3.0-7Revision0 LCOApplicabilityB3.0BASESLCO3.0.6(continued)entryintomultiplesupportandsupportedsystems'COs'onditionsandRequiredActionsareeliminatedbyproviding-alltheactionsthatarenecessarytoensuretheplantismaintainedinasafeconditioninthesupportsystem'sRequiredActions.However,thereareinstanceswhereasupportsystem'sRequiredActionmayeitherdirectasupportedsystemtobedeclaredinoperableordirectentryintoConditionsandRequiredActionsforthesupportedsystem.ThismayoccurimmediatelyoraftersomespecifieddelaytoperformsomeotherRequiredAction.Regardlessofwhetheritisimmediateoraftersomedelay,whenasupportsystem'sRequiredActiondirectsasupportedsystemtobedeclaredinoperableordirectsentryintoConditionsandRequiredActionsforasupportedsystem,theapplicableConditionsandRequiredActionsshallbeenteredinaccordancewithLCO3.0.2.Specification5.5.11,"SafetyFunctionDeterminationProgram(SFDP),"ensureslossofsafetyfunctionisdetectedandappropriateactionsaretaken.UponentryintoLCO3.0.6,anevaluationshall.bemadetodetermineiflossofsafetyfunctionexists.Additionally,otherlimitations,remedialactions.orcompensatoryactionsmaybeidentifiedasaresultofthesupportsysteminoperabilityandcorrespondingexceptiontoenteringsupportedsystemConditionsandRequiredActions.TheSFDPimplementstherequirementsofLCO3.0.6.Crossdivisioncheckstoidentifyalossofsafetyfunctionforthosesupportsystemsthatsupportsafetysystemsarerequired.ThecrossdivisioncheckverifiesthatthesupportedsystemsoftheredundantOPERABLEsupportsystemareOPERABLE.therebyensuringsafetyfunctionisretained.Ifthisevaluationdeterminesthatalossofsafetyfunctionexists,theappropriateConditionsandRequiredActionsoftheLCOinwhichthelossofsafetyfunctionexistsarerequiredtobeentered.LCO3.0.7Therearecertainspecialtestsandoperationsrequiredtobeperformedatvarioustimesoverthelifeofthe.unit.Thesespecialtestsandoperationsarenecessarytodemonstrateselectunitperformancecharacteristics,to(continued)SUSQUEHANNA-UNIT1B3.0-8Revision0 LCOApplicabilityB3.0BASESLCO3.0.7(continued)performspecialmaintenanceactivities,andtoperformspecialevolutions.SpecialOperationsLCOsinSection3.10allowspecifiedTSrequirementstobechangedtopermitperformancesof'hesespecialtestsandoperations,whichotherwisecouldnotbeperformedifrequiredtocomplywiththerequirementsoftheseTS.Unlessotherwisespecified,alltheotherTSrequirementsremainunchanged.ThiswillensureallappropriaterequirementsoftheNODEorotherspecifiedconditionnotdirectlyassociatedwithorrequiredtobechangedtoperformthespecialtestoroperationwillremainineffect.TheApplicabilityofaSpecialOperationsLCOrepresentsaconditionnotnecessarilyincompliancewiththenormalrequirementsoftheTS.CompliancewithSpecialOperationsLCOsisoptional.AspecialoperationmaybeperformedeitherundertheprovisionsoftheappropriateSpecialOperationsLCOorundertheotherapplicableTSrequirements.Ifitisdesiredtoperformthespecialoperationundertheprovisionsof'heSpecialOperationsLCO,therequirementsoftheSpecialOperationsLCOshallbefollowed.WhenaSpecialOperationsLCOrequiresanotherLCOtobemet,onlytherequirementsoftheLCOstatementarerequiredtobemet-regardlessofthatLCO'sApplicability(i.e:,should,therequirementsofthisotherLCOnotbemet.the-.ACTIONSoftheSpecialOperationsLCOapply,nottheACTIONS".,oi=the.otherLCO).However,thereareinstanceswhere.the-.SpecialOperationsLCOACTIONSmaydirecttheotherLCOs.'CTIONSbemet.TheSurveillancesoftheotherLCOarenotrequi.red.tobemet,unlessspecifiedintheSpecialOperations.LCO.IfconditionsexistsuchthattheApplicabilityofanyotherLCOismet.alltheotherLCO'srequirements(ACTIONSandSRs)arerequiredtobemetconcurrentwiththerequirementsoftheSpecialOperationsLCO.SUSQUEHANNA-UNIT183.0-9Revision0 0

SRApplicabi1ityB3.0B3.0SURVEILLANCEREQUIREMENT(SR)APPLICABILITYBASESSRsSR3.0.1throughSR3.0.4establishthegeneralrequirementsapplicabletoallSpecificationsandapplyatalltimes,unlessotherwisestated.SR3.0.1SR3.0.1establishestherequirementthatSRsmustbemetduringtheMODESorotherspecifiedconditionsintheApplicabilityforwhichtherequirementsoftheLCOapply,unlessotherwisespecifiedintheindividualSRs.ThisSpecificationistoensurethatSurveillancesareperformedtoverifytheOPERABILITYofsystemsandcomponents,andthatvariablesarewithinspecifiedlimits.FailuretomeetaSurveillancewithinthespecifiedFrequency,inaccordancewithSR3.0.2,constitutesafailuretomeetanLCO.SystemsandcomponentsareassumedtobeOPERABLEwhentheassociatedSRshavebeenmet.NothinginthisSpecification,however.istobeconstruedasimplyingthatsystemsorcomponentsareOPERABLEwhen:a.Thesystemsorcomponentsareknowntobeinoperable,althoughstillmeetingtheSRs;orb.TherequirementsoftheSurveillance(s)areknownto'enotmetbetweenrequiredSurveillanceperformancesSurveillancesdonothavetobeperformedwhentheunitisinaMODEorotherspecifiedconditionforwhichtherequirementsoftheassociatedLCOarenotapplicable.unlessotherwisespecified.TheSRsassociatedwithaSpecialOperationsLCOareonlyapplicablewhentheSpecialOperationsLCOisusedasanallowableexceptiontotherequirementsofaSpecification.Unplannedeventsmaysatisfytherequirements(includingapplicableacceptancecriteria)foragivenSR.Inthiscase,theunplannedeventmaybecreditedasfulfillingtheperformanceoftheSR.ThisallowanceincludesthoseSRswhoseperformanceisnormallyprecludedinagivenMODEorotherspecifiedcondition.(continued)SUSQUEHANNA-UNIT183.0-10Revision0 SRApplicabil.ityB3.0BASESSR3.0.1(continued)Surveillances,includingSurveillancesinvokedbyRequiredActions,donothavetobeperformedoninoperableequipmentbecausetheACTIONSdefinetheremedialmeasuresthatapply.SurveillanceshavetobemetandperformedinaccordancewithSR3.0.2,priortoreturningequipmenttoOPERABLEstatus.Uponcompletionofmaintenance,appropriatepostmaintenancetestingisrequiredtodeclareequipmentOPERABLE.ThisincludesensuringapplicableSurveillancesarenotfailedandtheirmostrecentperformance.isinaccordancewithSR3.0.2.PostmaintenancetestingmaynotbepossibleinthecurrentNODEorotherspecifiedconditionsintheApplicabilityduetothenecessaryunitparametersnothavingbeenestablished.Inthesesituations,theequipmentmaybeconsideredOPERABLEprovidedtestinghasbeensatisfactorilycompletedtotheextentpossibleandtheequipmentisnototherwisebelievedtobeincapableofperformingitsfunction.ThiswillallowoperationtoproceedtoaNODEorotherspecifiedconditionwhereothernecessarypostmaintenancetestscanbecompleted.Someexamplesofthisprocessare:ControlRodDrivemaintenanceduringrefuelingthatrequiresscramtestingat>800psi.However.ifotherappropriatetestingissatisfactorilycompletedandthescramtimetestingofSR3.1.4.3issatisfied,thecontrolrodcanbeconsideredOPERABLE.Thisallowsstartuptoproceedtoreach800psitoperformothernecessarytesting.b.Highpressurecoolantinjection(HPCI)maintenanceduringshutdownthatrequiressystemfunctionaltestsataspecifiedpressure.Providedotherappropriatetestingissatisfactorilycompleted,startupcanproceedwithHPCIconsideredOPERABLE.Thisallowsoperationtoreachthespecifiedpressuretocompletethenecessarypostmaintenancetesting.SR3.0.2SR3.0.2establishestherequirementsformeetingthespecifiedFrequencyforSurveillancesandanyRequiredActionwithaCompletionTimethatrequirestheperiodic(continued)SUSQUEHANNA-UNIT1B3.0-11Revision0 SRApplicabi1ityB3.0BASESSR3.0.2(continued)performanceoftheRequiredActionona"onceper..interval.SR3.0.2permitsa25KextensionoftheintervalspecifiedintheFrequency.ThisextensionfacilitatesSurveillanceschedulingandconsidersplantoperatingconditionsthatmaynotbesuitableforconductingtheSurveillance(e.g.,transientconditionsorotherongoingSurveillanceormaintenanceactivities).The25KextensiondoesnotsignificantlydegradethereliabilitythatresultsfromperformingtheSurveillanceatitsspecifiedFrequency.ThisisbasedontherecognitionthatthemostprobableresultofanyparticularSurveillancebeingperformedistheverificationofconformancewiththeSRs.TheexceptionstoSR3.0.2arethoseSuryeillancesforwhichthe25KextensionoftheintervalspecifiedintheFrequencydoesnotapply.TheseexceptionsarestatedintheindividualSpecifications.AsstatedinSR3.0.2,the25KextensionalsodoesnotapplytotheinitialportionofaperiodicCompletionTimethatrequiresperformanceona"onceper..."basis.The25Kextensionappliestoeachperformanceaftertheinitialperformance.7heinitialperformanceoftheRequiredAction,whetheritisaparticularSurveillanceorsomeotherremedialaction,isconsideredasingleactionwithasingleCompletionTime.Onereasonfornotallowingthe25KextensiontothisCompletionTimeisthatsuchanactionusuallyverifiesthatnolossoffunctionhasoccurredbycheckingthestatusofredundantordiversecomponentsoraccomplishesthefunctionoftheinoperableequipmentinanalternativemanner.TheprovisionsofSR3.0.2arenotintendedtobeusedrepeatedlymerelyasanoperationalconveniencetoextendSurveillanceintervals(otherthanthoseconsistentwithrefuelingintervals)orperiodicCompletionTimeintervalsbeyondthosespecified.SR3.0.3SR3.0.3establishestheflexibilitytodeferdeclaringaffectedequipmentinoperableoranaf'fectedvariableoutsidethespecifiedlimitswhenaSurveillancehasnotbeencompletedwithinthespecifiedFrequency.Adelay(continued)SUSQUEHANNA-UNIT1B3.0-12Revision0

SRApplicabilityB3.0BASESSR3.0.3(continued)periodofupto24hoursoruptothelimitofthespecifiedFrequency,whicheverisless,appliesfromthepointintimethatitisdiscoveredthattheSurveillancehasnotbeenperformedinaccordancewithSR3.0.2,andnotatthetimethatthespecifiedFrequencywasnotmet.ThisdelayperiodprovidesadequatetimetocompleteSurveillancesthathavebeenmissed.ThisdelayperiodpermitsthecompletionofaSurveillancebeforecomplyingwithRequiredActionsorotherremedialmeasuresthatmightprecludecompletionoftheSurveillance.Thebasisforthisdelayperiodincludesconsiderationofunitconditions,adequateplanning,availabilityofpersonnel.thetimerequiredtoperformtheSurveillance,thesafetysignificanceofthedelayincompletingtherequiredSurveillance,andtherecognitionthatthemostprobableresultofanyparticularSurveillancebeingperformedistheverificationofconformancewiththerequirements.WhenaSurveillancewithaFrequencybasednotontimeintervals.butuponspecifiedunitconditionsoroperationalsituations,is'iscoverednottohavebeenperformed.when--specified..SR-3:0.3allowsthefulldelayperiodof24-hours".toperform'theSurveillance.SR-'.0..3also:.provides.atimelimit'forcompletion'f-"Surveillances-.thatbecomeapplicableasaconsequenceofHODFchanges-imposedbyRequiredActions.FailuretocomplywithspecifiedFrequenciesforSRsisexpectedtobeaninfrequentoccurrence.UseofthedelayperiodestablishedbySR3.0.3isaflexibilitywhichisnotintendedtobeusedasanoperationalconveniencetoextendSurveillanceintervals.IfaSurveillanceisnotcompletedwithinthealloweddelayperiod,thentheequipmentisconsideredinoperableorthevariableisconsideredoutsidethespecifiedlimitsandtheCompletionTimesoftheRequiredActionsfortheapplicableLCOConditionsbeginimmediatelyuponexpirationofthedelayperiod.IfaSurveillanceisfailedwithinthedelayperiod.thentheequipmentisinoperable,orthevariableisoutsidethespecifiedlimitsandtheCompletionTimesofthe(continued)SUSQUEHANNA-UNIT1B3.0-13Revision0 SRApplicabilityB3.0BASESSR3.0.3(continued)RequiredActionsfortheapplicableLCOConditionsbeginimmediatelyuponthefailureoftheSurveillance.CompletionoftheSurveillancewithinthedelayperiodallowedbythisSpecification.orwithintheCompletionTimeoftheACTIONS,restorescompliancewithSR3.0.1.SR3.0.4SR3.0.4establishestherequirementthatallapplicableSRsmustbemetbeforeentryintoaMODEorotherspecifiedconditioninthe.Applicability.ThisSpecificationensuresthatsystemandcomponentOPERABILITYrequirementsandvariablelimitsaremetbeforeentryintoMODESorotherspecifiedconditionsintheApplicabilityforwhichthesesystemsandcomponentsensuresafeoperationof'heunit.TheprovisionsofthisSpecificationshouldnotbeinterpretedasendorsing'thefailuretoexercisethegoodpracticeof'estoringsystemsorcomponentstoOPERABLEstatusbeforeenteringanassociatedMODEorotherspecified,conditionintheApplicability.However,incertaincircumstances.failingtomeetanSRwillnotresultinSR3.0.4restrictingaMODEchangeorotherspecifiedconditionchange.Whenasystem,subsystem.division,component,device,orvariableisinoperableoroutsideitsspecifiedlimits,theassociatedSR(s)arenotrequiredtobeperformedperSR3.0.1,whichstatesthatsuryeillancesdonothavetobeperformedoninoperableequipment.Whenequipmentisinoperable,SR3.0.4doesnotapplytotheassociat'edSR(s)sincetherequirementfortheSR(s)tobeperformedisremoved.Therefore,failingtoperformtheSurveillance(s)withinthespecifiedFrequencydoesnotresultinanSR3.0.4restrictiontochangingMODESorotherspecifiedconditionsoftheApplicability.However,sincetheLCOisnotmetinthisinstance,LCO3.0.4willgovernanyrestrictionsthatmay(ormaynot)applytoMODEorotherspecifiedconditionchanges.TheprovisionsofSR3.0.4shallnotpreventchangesinMODESorotherspecifiedconditionsintheApplicabilitythatarerequiredtocomplywithACTIONS.Inaddition,theprovisionsofLCO3.0.4shallnotpreventchangesinMODES(continued)SUSQUEHANNA-UNIT1B3.0-14Revision0 SRApplicability83.0BASESSR3.0.4(continued)orotherspecifiedconditionsintheApplicabilitythatresultfromanyunitshutdown.ThepreciserequirementsforperformanceofSRsarespecifiedsuchthatexceptionstoSR3.0.4arenotnecessary.ThespecifictimeframesandconditionsnecessaryformeetingtheSRsarespecifiedintheFrequency,intheSurveillance,orboth.ThisallowsperformanceofSurveillanceswhentheprerequisitecondition(s)specifiedinaSurveillanceprocedure,requireentryintotheMODEorotherspecifiedconditioninthe,Applicabilityof-theassociatedLCOpriortotheperformanceorcompletionofaSurveillance.ASurveillancethatcouldnotbeperformeduntilafterenteringtheLCOApplicabilitywouldhaveitsFrequencyspecifiedsuchthatitisnot"due"untilthespecificconditionsneededaremet.Alternately,theSurveillancemaybestatedintheformofaNoteasnotrequired(tobemetorperformed)untilaparticularevent,condition,ortimehasbeenreached.Furtherdiscussionofthespecificformatsof'Rs'nnotationisfoundinSection1.4,Frequency.SR3.0.4isonlyapplicablewhenenteringMODE3fromMODE4,MODE2fromMODE3or4,orMODE1fromMODE2.Furthermore,SR.3.0.4isapplicablewhenenteringanyotherspecifiedconditionintheApplicabilityonlywhileoperatinginMODE1,2,or3.TherequirementsofSR3.0.4donotapplyinMODES4and5,orinotherspecifiedconditionsoftheApplicability(unlessinMODE1,2.or3)becausetheACTIONSofindividualSpecificationssufficientlydefinetheremedialmeasurestobetaken.SUSQUEHANNA-UNIT1B3.0-15Revision0 SDMB3.1.1B3.1REACTIVITYCONTROLSYSTEMSB3.1.1SHUTDOWNMARGIN(SDM)BASESBACKGROUNDSDMrequirementsarespecifiedtoensure:a.ThereactorcanbemadesubcriticalfromalloperatingconditionsandtransientsandDesignBasisEvents;b.Thereactivitytransientsassociatedwithpostulatedaccidentconditionsarecontrollablewithinacceptablelimits;andc.Thereactorwillbemaintainedsufficientlysubcriticaltoprecludeinadvertentcriticalityintheshutdowncondition.Theserequirementsaresatisfiedbythecontrolrods,asdescribedinGDC26(Ref.1),whichcancompensateforthereactivityeffectsofthefuel.andwatertemperaturechangesexperiencedduringalloperatingconditions.APPLICABLESAFETYANALYSESThecontrolroddropaccident(CRDA)analysis(Refs.2and3)assumesthecoreissubcriticalwiththehighestworthcontrolrodwithdrawn.Typically,thefirstcontrolrodwithdrawnhasaveryhighreactivityworthand,shouldthecorebecriticalduringthewithdrawalofthefirstcontrolrod,theconsequencesofaCRDAcouldexceedthefueldamagelimitsforaCRDA(seeBasesforLCO3.1.6,"RodPatternControl").Also,SDMisassumedasaninitialconditionforthecontrolrodremovalerrorduringrefuelingandfuelassemblyinsertionerrorduringrefuelingaccidents(Ref.4).TheanalysisofthesereactivityinsertioneventsassumestherefuelinginterlocksareOPERABLEwhenthereactorisintherefuelingmodeofoperation.Theseinterlockspreventthewithdrawalofmorethanonecontrolrodfromthecoreduringrefueling.(SpecialconsiderationandrequirementsformultiplecontrolrodwithdrawalduringrefuelingarecoveredinSpecialOperationsLCO3.10.6."MultipleControlRodWithdrawal-Refueling.")Theanalysisassumesthisconditionisacceptablesincethecorewillbe(continued)SUSQUEHANNA-UNIT1B3.1-1Revision0 SDHB3.1.1BASESAPPLICABLESAFETYANALYSES(continued)shutdownwiththehighestworthcontrolrodwithdrawn,ifadequateSDHhasbeendemonstrated.Preventionormitigationofreactivityinsertioneventsisnecessarytolimitenergydepositioninthefueltopreventsignificantfueldamage,whichcouldresultinunduereleaseofradioactivity.AdequateSDMensuresinadvertentcriticalitiesandpotentialCRDAsinvolvinghighworthcontrolrods(namelythefirstcontrolrodwithdrawn)willnotcausesignificantfueldamage.SDHsatisfiesCriterion2oftheNRCPolicyStatement(Ref.5).LCOThespecifiedSDHlimitaccountsfortheuncertaintyinthedemonstrationofSDMbytesting.SeparateSDMlimitsareprovidedfortestingwherethehighestworthcontrolrodisdeterminedanalyticallyorbymeasurement.ThisisduetothereduceduncertaintyintheSDHtestwhenthehighestworthcontrolrodisdeterminedbymeasurement.WhenSOMisdemonstratedbycalculations.notassociatedwithatest(e.g.,toconfirmSDHduringthefuelloadingsequence),additionalmarginisincludedtoaccountforuncertaintiesinthecalculation.ToensureadequateSDHduringthedesignprocess,adesignmarginisincludedtoaccountforuncertaintiesinthedesigncalculations(Ref.6).APPLICABILITYInMODES1and2,SDMmustbeprovidedbecausesubcriticalitywiththehighestworthcontrolrodwithdrawnisassumedintheCROAanalysis(Ref.2).InMODES3and4,SDHisrequiredtoensurethereactorwillbeheldsubcriticalwithmarginforasinglewithdrawncontrolrod.SOHisrequiredinMODE5topreventanopenvessel,inadvertentcriticalityduringthewithdrawalofasinglecontrolrodfromacorecellcontainingoneormorefuelassembliesorafuelassemblyinsertionerror(Ref.4).SUSQUEHANNA-UNIT1B3.1-2(continued)Revision0 SDMB3.1.1BASES(continued)ACTIONSA.1WithSDMnotwithinthelimitsoftheLCOinMODE1or2,SDMmustberestoredwithin6hours.FailuretomeetthespecifiedSDMmaybecausedbyacontrolrodthatcannotbeinserted.TheallowedCompletionTimeof6hoursisacceptable,consideringthatthereactorcanstillbeshutdown,assumingnofailuresofadditionalcontrolrodstoinsert,andthelowprobabilityofaneventoccurringduringthisinterval.8.1IftheSDMcannotberestored.theplantmustbebroughttoMODE3in12hours,topreventthepotentialforfurtherreductionsinavailableSDM(e.g.,additionalstuckcontrolrods).TheallowedCompletionTimeof12hoursisreasonable.basedonoperatingexperience,toreachMODE3fromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystem's.C.1WithSDMnotwithinlimitsinMODE3,theoperatormustimmediatelyinitiateactiontofullyinsertallinsertablecontrolrods.Actionmustcontinueuntilallinsertablecontrolrodsarefullyinserted.Thisactionresultsintheleastreactiveconditionforthecore.D.lD.2D.3andD.4WithSDMnotwithinlimitsinMODE4,theoperatormustimmediatelyinitiateactiontofullyinsertallinsertablecontrolrods.Actionmustcontinueuntilallinsertablecontrolrodsarefullyinserted.Thisactionresultsintheleastreactiveconditionforthecore.Actionmustalsobeinitiatedwithin1hourtoprovidemeansforcontrolofpotentialradioactivereleases.ThisincludesensuringsecondarycontainmentisOPERABLE;atleastoneStandbyGasTreatment(SGT)subsystemisOPERABLE;andsecondarycontainmentisolationcapability(i.e..atleastonesecondarycontainmentisolationvalveandassociatedinstrumentationareOPERABLE,orotheracceptable(continued)SUSQUEHANNA-UNIT'183.1-3Revision0 SDMB3.1.1BASESACTIONSD.1D.2D.3andD.4(continued)administrativecontrolstoassureisolationcapability)ineachsecondarycontainmentpenetrationflowpathnotisolatedandrequiredtobeisolatedtomitigateradioactivityreleases.Thismaybeperformedasanadministrativecheck,byexamininglogsorotherinformation,todetermineifthecomponentsareoutof.serviceformaintenanceorotherreasons.ItisnotnecessarytoperformthesurveillancesneededtodemonstratetheOPERABILITYofthecomponents.If,however,anyrequiredcomponentisinoperable,thenitmustberestoredtoOPERABLEstatus.Inthiscase,SRsmayneedtobeperformedtorestorethecomponenttoOPERABLEstatus.Actionsmustcontinueunti1allrequiredcomponentsareOPERABLE.E.lE.2E.3E.4andE.5WithSDMnotwithinlimitsinMODE5.theoperatormustimmediatelysuspendCOREALTERATIONSthatcouldreduceSDM(e.g..insertionoffuelinthecoreorthewithdrawalofcontrolrods).Suspensionoftheseactivitiesshallnotprecludeinsertingcontrolrodsorremovingfuelfromthecoretoreducethetotalreactivity.Actionmustalsobeimmediatelyinitiatedtofullyinsertallinsertablecontrolrodsincorecellscontainingoneormorefuelassemblies.Actionmustcontinueuntilallinsertablecontrolrodsincorecellscontainingoneormorefuelassemblieshavebeenfullyinserted.Controlrodsincorecellscontainingnofuelassembliesdonotaffectthereactivityofthecoreandthereforedonothavetobeinserted.Actionmustalsobeinitiatedwithin1hourtoprovidemeansforcontrolofpotentialradioactivereleases.ThisincludesensuringsecondarycontainmentisOPERABLE:atleastoneSGTsubsystemisOPERABLE;andsecondarycontainmentisolationcapability(i.e.,atleastonesecondarycontainmentisolationvalveandassociatedinstrumentationareOPERABLE,orotheracceptableadministrativecontrolstoassureisolationcapability)ineachassociatedpenetrationflowpathnotisolatedthatis(continued)SUSQUEHANNA-UNIT1B3.1-4Revision0

SDHB3.1.1BASESACTIONSE.1E.2E.3E.4andE.5(continued)assumedtobeisolatedtomitigateradioactivityreleases.Thismaybeperformedasanadministrativecheck,byexamininglogsorotherinformation,todetermineifthecomponentsareoutofserviceformaintenanceorotherreasons.ItisnotnecessarytoperformtheSurveillancesasneededtodemonstratetheOPERABILITYofthecomponents.If,however,anyrequiredcomponentisinoperable,thenitmustberestoredtoOPERABLEstatus.Inthiscase,SRsmayneedtobeperformedtorestorethecomponenttoOPERABLEstatus.ActionmustcontinueuntilallrequiredcomponentsareOPERABLE.SURVEILLANCEREQUIREMENTSSR3.1.1.1SDHmustbeverifiedtobewithinlimitstoensurethatthereactorcanbemadesubcriticalfromanyinitialoperatingcondition.AdequateSDNisdemonstratedbytestingbeforeorduringthefirststartupafterfuelmovement,controlrodreplacement,orshufflingwithinthereactorpressurevessel.Controlrodreplacementreferstothedecouplingandremovalofacontrolrodfromacorelocation,andsubsequentreplacementwithanewcontrolrodoracontrolrodfromanothercorelocation.Sincecorereactivitywillvaryduringthecycleasafunctionoffueldepletionandpoisonburnup.thebeginningofcycle(BOC)testmustalsoaccountforchangesincorereactivityduringthecycle.Therefore,toobtaintheSDH,theinitialmeasuredvaluemustbeincreasedbyanadder,"R",whichisthedifferencebetweenthecalculatedvalueofmaximumcorereactivityduringtheoperatingcycleandthecalculatedBOCcorereactivity.Ifthevalueof"R"iszero(thatis,BOCisthemostreactivepointinthecycle),nocorrectiontotheBOCmeasuredvalueisrequired(Ref.7).FortheSDHdemonstrationsthatrelysolelyoncalculationofthehighestworthcontrolrod,additionalmargin(0.10Khk/k)mustbeaddedtotheSDHlimitof0.28Khk/ktoaccountforuncertaintiesinthecalculation.TheSDHmaybedemonstratedduringaninsequencecontrolrodwithdrawal,inwhichthehighestworthcontrolrodisanalyticallydetermined,orduringlocalcriticals.where(continued)SUSQUEHANNA-UNIT1B3.1-5Revision0 SDMB3.1.1BASESSURVEILLANCEREQUIREMENTSSR3.1.1.1(continued)thehighestworthcontrolrodisdeterminedbyanalysisortesting.LocalcriticaltestsrequirethewithdrawalofcontrolrodsinasequencethatisnotinconformancewithBPWS..Thistestingwouldthereforerequirere-programmingorbypassingoftherodworthminimizertoallowthewithdrawalofcontrolrodsnotinconformancewithBPWS,andthereforeadditionalrequirementsmustbemet(seeLCO3.10.7,"ControlRodTesting-Operating").TheFrequencyof4hoursafterreachingcriticalityisallowedtoprovideareasonableamountoftimetoperformtherequiredcalculationsandhaveappropriateverificationDuringMODE5,adequateSDMisrequiredtoensurethatthereactordoesnotreachcriticalityduringcontrolrodwithdrawals.Anevaluationofeachplannedin-vesselfuelmovementduringfuelloading(includingshufflingfuelwithinthecore)isrequiredtoensureadequateSDMismaintainedduring-refueling..Thisevaluationensuresthattheintermediateloadingpatternsareboundedbythesafetyanalysesfortilefinalcoreloadingpattern=.Forexample,boundinganalysesthatdemonstrateadequateSDMforthemostreactiveconfigurationsduringtherefuelingmaybeperformedtodemonstrateacceptabilityoftheentirefuelmovementsequence.Theseboundinganalysesincludeadditionalmarginstotheassociateduncertainties.Spiraloffload/reloadsequencesinherentlysatisfytheSR,providedthefuelassembliesarereloadedinthesameconfigurationanalyzedforthenewcycle.RemovingfuelfromthecorewillalwaysresultinanincreaseinSDM.REFERENCES1.10CFR50,AppendixA,GDC26.2.FSAR.Section15.3.PL-NF-90-001-A,"ApplicationofReactorAnalysisMethodsforBWRDesignandAnalysis,"Sections2.2and2.8.July1992.4.FSAR~Section15.4.1.1.(continued)SUSQUEHANNA-UNIT1B3.1-6Revision0 SDMB3.1.1BASESREFERENCES(continued)5.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).6.FSAR,Section4.3.7.PL-NF-90-001-A,"ApplicationofReactorAnalysisMethodsforBWRDesignandAnalysis,"Section2.4,July1992,Supplement1-A,August1995,andSupplement2-A.July1996.SUSQUEHANNA-UNIT1B3.1-7Revision0 ReactivityAnomaliesB3.1.2B3.1REACTIVITYCONTROLSYSTEMSB3.1.2ReactivityAnomaliesBASESBACKGROUNDInaccordancewithGDC26,GDC28,andGDC29(Ref.1),reactivityshallbecontrollablesuchthatsubcriticalityismaintainedundercoldconditionsandacceptablefueldesignlimitsarenotexceededduringnormaloperationandanticipatedoperationaloccurrences.Therefore,reactivityanomalyisusedasameasureofthepredictedversusmeasuredcorereactivityduringpoweroperation.ThecontinualconfirmationofcorereactivityisnecessarytoensurethattheDesignBasisAccident(DBA)andtransientsafetyanalysesremainvalid.Alargereactivityanomalycouldbetheresultofunanticipatedchangesinfuelreactivityorcontrolrodworthoroperationatconditionsnotconsistentwiththoseassumedinthepredictionsofcorereactivity,andcouldpotentiallyresultinalossofSDMorviolationofacceptablefueldesignlimits.Comparingpredictedversusmeasure'dcorereactivityvalidatesthenuclearmethodsusedinthesafetyanalysisandsupportstheSDMdemonstrations-(LCO3.1.1."SHUTDOWNMARGIN(SDM)")inassuringthereactorcanbebroughtsafelytocold,subcriticalcondttions.Whenthereactorcoreiscriticalorinnormalpoweroperation,areactivitybalanceexistsandthe.netreactivityiszero..Acomparisonofpredictedandmeasuredreactivityisconvenientundersuchabalance,sinceparametersarebeingmaintainedrelativelystableundersteadystatepowerconditions.Thepositivereactivityinherent'inthecoredesignisbalancedbythenegativereactivityofthecontrolcomponents,thermalfeedback,neutronleakage,andmaterialsinthecorethatabsorbneutrons,suchasburnableabsorbers,producingzeronetreactivity.Inordertoachievetherequiredfuelcycleenergyoutput,theuraniumenrichmentinthenewfuelloadingandthefuelloadedinthepreviouscyclesprovideexcesspositivereactivitybeyondthatrequiredtosustainsteadystateoperationatthebeginningofcycle(BOC)~WhenthereactoriscriticalatRTPandoperatingmoderatortemperature,theexcesspositivereactivityiscompensatedbyburnableabsorbers(ifany),controlrods,andwhateverneutron(continued)SUSQUEHANNA-UNIT1B3.1-8Revision0 ReactivityAnomaliesB3.1.2BASESBACKGROUND(continued)oisons(mainlyxenonandsamarium)arepresentinthefuel.hepredictedcorereactivity,asrepresentedbyK-effective,iscalculatedasafunctionofcycleexposure.Thiscalculationisperformedforprojectedoperatingstatesandconditionsthroughoutthecycle.Thecorereactivityisdeterminedforactualplantconditionsbya3-Dcoresimulatorcodeandisthencomparedtothepredictedvalueforthecycleexposure.APPLICABLESAFETYANALYSESAccuratepredictionofcorereactivityiseitheranexplicitorimplicitassumptionintheaccidentanalysisevaluations(Ref.2).Inparticular,SDMandreactivitytransients,suchascontrolrodwithdrawalaccidentsorroddropaccidents,areverysensitivetoaccuratepredictionofcorereactivity.Theseaccidentanalysisevaluationsrelyoncomputercodesthathavebeenqualifiedagainstavailabletestdata,operatingplantdata.andanalyticalbenchmarks.Monitoringreactivityanomalyprovidesadditionalassurancethatthenuclearmethodsprovideanaccuraterepresentationofthecorereactivity.Thecomparisonbetweenmeasured;and-predi'cted.'nitialcorereactivityprovidesanorma'lizati'on:forthe=calculational'odelsusedtopredictcore-reactivity;If.'hemeasuredandpredictedcorereactivityfor.identi'cal;.coreconditionsatBOCdonotreasonablyagree-'.then'-the:-assumptionsusedinthereloadcycledesignanalysis-or-the:-calcu'lationmodelsusedtopredictcorereactivitymay=not=be:-accurate.Ifreasonableagreementbetweenmeasured=and-predictedcorereactivityexistsatBOC,then=theprediction:maybenormalizedtothemeasuredvalue.Thereaft'er-;anysignificantdeviationsinthemeasuredcore.reactivityfromthepredictedcorereactivitythatdevelopduringfueldepletionmaybeanindicationthattheassumptionsoftheDBAandtransientanalysesarenolongervalid,orthatanunexpectedchangeincoreconditionshasoccurred.ReactivityanomaliessatisfyCriterion2oftheNRCPolicyStatement(Ref.3).SUSQUEHANNA-UNIT183.1-9(continued)Revision0

ReactivityAnomaliesB3.1.2BASES(continued)LCOThereactivityanomalylimitisestablishedtoensureplantoperationismaintainedwithintheassumptionsofthesafetyanalyses.LargedifferencesbetweenmonitoredandpredictedcorereactivitymayindicatethattheassumptionsoftheDBAandtransientanalysesarenolongervalid,orthattheuncertaintiesinthe"NuclearDesignMethodology"arelargerthanexpected.Alimitonthedifferencebetweenthemonitoredandthepredictedcorereactivityof+1Xhk/khasbeenestablishedbasedonengineeringjudgment.A>1Xdeviationinreactivityfromthatpredictedislargerthanexpectedf'rnormaloperationandshouldthereforebeevaluated.APPLICABILITYInMODE1,mostofthecontrolrodsarewithdrawnandsteadystateoperationistypicallyachieved.Undertheseconditions.thecomparisonbetweenpredictedandmonitoredcorereactivityprovidesaneffectivemeasureofthereactivityanomaly.InMODE2,controlrodsaretypicallybeingwithdrawnduringa'tartup.InMODES3and4,allcontrolrodsarefullyinserted(exceptaspermittedbyLCO3.10.3andLCO3.10.4)andthereforethereactorisintheleastreactivestate,wheremonitoringcorereactivityisnotnecessary..InMODE5,fuelloadingresultsinacontinuallychangingcorereactivity.SDMrequirements(LCO3.1.1)ensurethatfuelmovementsareperformedwithintheboundsofthesafetyanalysis,andanSDMdemonstrationisrequiredduringthefirststartupfollowingoperationsthatcouldhavealteredcorereactivity(e.g.,fuelmovement,controlrodreplacement,shuffling).TheSDMtest,requiredbyLCO3.1.1,providesadirectcomparisonofthepredictedandmonitoredcorereactivityatcoldconditions;therefore,reactivityanomalyisnotrequiredduringtheseconditions.ACTIONSA.1Shouldananomalydevelopbetweenmeasuredandpredicted-corereactivity,thecorereactivitydifferencemustberestoredtowithinthelimittoensurecontinuedoperationiswithinthecoredesignassumptions.Restorationtowithinthelimitcouldbeperformedbyanevaluationofthe(continued)SUSQUEHANNA-UNIT1B3.1-10Revision0 ReactivityAnomaliesB3.1.2BASESACTIONSA.1(continued)coredesignandsafetyanalysistodeterminethereasonfortheanomaly.Thisevaluationnormallyreviewsthecoreconditionstodeterminetheirconsistencywithinputtodesigncalculations.Measuredcoreandprocessparametersarealsonormallyevaluatedtodeterminethattheyarewithintheboundsofthesafetyanalysis,andsafetyanalysiscalculationalmodelsmaybereviewedtoverifythattheyareadequateforrepresentationofthecoreconditions.TherequiredCompletionTimeof72hoursisbasedonthelowprobabilityofaDBAoccurringduringthisperiod,andallowssufficienttimetoassessthephysicalconditionofthereactorandcompletetheevaluationofthecoredesignandsafetyanalysis.B.lIfthecorereactivitycannotberestoredtowithinthe1Xhk/klimit,theplant'mustbebroughttoaMODEinwhichtheLCOdoesnotapply.Toachievethisstatus,theplantmustbebroughttoatleastMODE3within12hours.TheallowedCompletionTimeof12hoursisreasonable,basedonoperatingexper'ieNce,toreachMODE3fromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.SURVEILLANCEREQUIREMENTSSR3.1.2.1VerifyingthereactivitydifferencebetweenthemonitoredandpredictedcorereactivityiswithinthelimitsoftheLCOprovidesaddedassurancethatplantoperationismaintainedwithintheassumptionsoftheDBAandtransientanalyses.TheCoreMonitoringSystemcalculatesthecorereactivityforthereactorconditions.Acomparisonofthemonitoredcorereactivitytothepredictedcorereactivityatthesamecycleexposureisusedtocalculatethereactivitydifference.Thecomparisonisrequiredwhenthecorereactivityhaspotentiallychangedbyasignificantamount.Thismayoccurfollowingarefuelinginwhichnewfuelassembliesareloaded,fuelassembliesareshuffledwithinthecore,orcontrolrodsarereplacedorshuffled.(continued)SUSQUEHANNA-UNIT1B3.1-11Revision0 ReactivityAnomaliesB3.1.2BASESSURVEILLANCEREQUIREMENTSR3.1.2.1(continued)Controlrodreplacementreferstothedecouplingandremovalofacontrolrodfromacorelocation,andsubsequentreplacementwithaneworsparecontrolrodoracontrolrodfromanothercorelocation.Also,corereactivitychangesduringthecycle.The24hourintervalafterreachingequilibriumconditionsprovidesanappropriateamountoftimetoperformthetest.ThisCompletionTimeisbasedontheneedforequilibriumxenonconcentrationsinthecore,suchthatanaccuratecomparisonbetweenthemonitoredandpredictedcorereactivitycanbemade.ForthepurposesofthisSR,thereactorisassumedtobeatequilibriumconditionswhensteadystateoperations(nocontrolrodmovementorcoreflowchanges)at>75KRTP,withsteadystatexenon,havebeenobtained.The1000MWD/MTFrequencywasdeveloped,consideringtherelativelyslowchangeincorereactivitywithexposureandoperatingexperiencerelatedtovariationsincorereactivity.Thiscomparisonrequiresthecoretobeoperatingatpowerlevelswhichminimizetheuncertaintiesandmeasurementerrors,inordertoobtainmeaningfulresults.Therefore,thecomparisonisonlydonewhenin-MODEl.REFERENCES1.10CFR50,AppendixA.2.FSAR,Chapter15.3.FinalPolicyStatementonTechnicalSpecificationsImprovements.July22,1993(58FR39132).SUSQUEHANNA-UNIT1B3.1-12Revision0 ControlRodOPERABILITYB3.1.3B3.1REACTIVITYCONTROLSYSTEMSB3.1.3ControlRodOPERABILITYBASESBACKGROUNDControlrodsarecomponentsofthecontrolroddrive(CRD)System,whichistheprimaryreactivitycontrolsystemforthereactor.InconjunctionwiththeReactorProtectionSystem.theCRDSystemprovidesthemeansforthereliablecontrolofreactivitychangestoensureunderconditionsofnormaloperation,includinganticipatedoperationaloccurrences,thatspecifiedacceptablefueldesignlimitsarenotexceeded.Inaddition.thecontrolrodsprovidethecapabilitytoholdthereactorcoresubcriticalunderallconditionsandtolimitthepotentialamountandrateofreactivityincreasecausedbyamalfunctionintheCRDSystem.TheCRDSystemisdesignedtosatisfytherequirementsofGDC26,GDC27,GDC28,andGDC29(Ref.1).TheCRDSystemconsistsof185lockingpistoncontrolroddrivemechanisms(CRDMs)andahydrauliccontrolunitforeachdrivemechanism;Thelocking.pistontypeCROMisadoubleactinghydr.aul.ic.piston,whichuses.condensatewaterastheoperating.fluid.Accumulators..provide=additionalenergyforscram-;An=index=tube:and.piston:.coupled,tothecontrolrod,are=.locked't-..fixed".,increments-..by-a;collei-.mechanism.The-.collet-.fin~engage=notches=in-the-indextubetoprevent.unintenNona':.1"withdravva'1-of-the'-,controlrod.butwithoutrestrtctmginsertiolr-;'hisSpecification*..along.withLCO:"3.-.1..4-,"Control.RodScramTimes,"andLCO3.15:,."Corrtrol'.Rrrd:Scram;Accomul-ators.,"ensurethattheperformance-of-the-controlrodsintheeventofaDesignBasisAccident(DBA)ortransientmeetstheassumptionsusedinthesafetyanalysesofReferences2,3,and4.APPLICABLESAFETYANALYSESTheanalyticalmethodsandassumptionsusedintheevaluationsinvolvingcontrolrodsarepresentedinRef'erences2,3,and4.Thecontrolrodsprovidetheprimarymeansforrapidreactivitycontrol(reactorscram).formaintainingthereactorsubcriticalandforlimitingthepotentialeffectsofreactivityinsertioneventscausedbymalfunctionsintheCRDSystem.(continued)SUSQUEHANNA-UNIT1B3.1-13Revision0 ControlRodOPERABILITYB3.1.3BASESAPPLICABLESAFETYANALYSES(continued)ThecapabilitytoinsertthecontrolrodsprovidesassurancethattheassumptionsforscramreactivityintheDBAandtransientanalysesarenotviolated.SincetheSDMensuresthereactorwillbesubcriticalwiththehighestworthcontrolrodwithdrawn(assumedsinglefailure),theadditionalfailureofasecondcontrolrodtoinsert,ifrequired,couldinvalidatethedemonstratedSDMandpotentiallylimittheabilityoftheCRDSystemtoholdthereactorsubcritical.IfthecontrolrodisstuckataninsertedpositionandbecomesdecoupledfromtheCRD,acontrolroddropaccident(CRDA)canpossiblyoccur.Therefore,therequirementthatallcontrolrodsbeOPERABLEensurestheCRDSystemcanperformitsintendedfunction.Thecontrolrodsalsoprotectthefuelfromdamagewhichcouldresultinreleaseofradioactivity.ThelimitsprotectedaretheMCPRSafetyLimit(SL)(seeBasesforSL2.1.1,"ReactorCoreSLs,"andLCO3.2.2,"MINIMUMCRITICALPOWERRATIO(MCPR)"),the1Xcladdingplasticstrainfueldesignlimit(seeBasesfor'LCO3.2.1,"AVERAGEPLANARLINEARHEATGENERATIONRATE(APLHGR),"andLCO3.2.3,"LINEARHEATGENERATIONRATE(LHGR)"),andthefueldamagelimit(seeBasesforLCO3.1.6,"RodPatternControl")duringreactivityinsertionevents.Thenegativereactivityinsertion(scram)providedbytheCRDSystemprovidestheanalyticalbasisfordeterminationof'lantthermallimits.andprovidesprotectionagainstfueldamagelimitsduringa.CRDA..TheBasesforLCO3.1.4.LCO3.1.5.andLCO3.1..6discussinmoredetailhowtheSLsareprotectedbytheCRD"System.ControlrodOPERABILITYsatisfiesCriterion3of'heNRCPolicyStatement(Ref.5).LCOTheOPERABILITYofanindividualcontrolrodisbasedonacombinationoffactors,primarily.thescram.insertiontimes,thecontrolrodcouplingintegrity,andtheabilitytodeterminethecontrolrodposition.AccumulatorOPERABILITYisaddressedbyLCO3.1.5.Theassociatedscramaccumulatorstatusforacontrolrodonlyaffectsthescraminsertiontimes;therefore,aninoperableaccumulatordoesnotimmediatelyrequiredeclaringacontrolrodinoperable.AlthoughnotallcontrolrodsarerequiredtobeOPERABLEto(continued)SUSQUEHANNA-UNIT1B3.1-14Revision0 ControlRodOPERABILITYB3.1.3BASESLCO(continued)satisfytheintendedreactivitycontrolrequirements,strictcontroloverthenumberanddistributionof'noperablecontrolrodsisrequiredtosatisfytheassumptionsoftheDBAandtransientanalyses.APPLICABILITYInHODES1and2,thecontrolrodsareassumedtofunctionduringaDBAortransientandarethereforerequiredtobeOPERABLEintheseHODES.InHODES3and4,controlrodsarenotabletobewithdrawn(exceptaspermittedbyLCO3.10.3andLCO3.10.4)sincethereactormodeswitchisinshutdownandacontrolrodblockisapplied.ThisprovidesadequaterequirementsforcontrolrodOPERABILITYduringtheseconditions.ControlrodrequirementsinMODE5arelocatedinLCO3.9.5."ControlRodOPERABILITY-Refueling."ACTIONSTheACTIONSTableismodifiedbyaNoteindicatingthataseparateConditionentryisallowedforeachcontrolrod.Thisisacceptable,sincetheRequiredActionsforeachConditionprovide-appropriatecompensatoryactionsf'reachinoperablecontrolrod.ComplyingwiththeRequiredActionsmayallowforCorttinuedoperation,andsubsequentinoperablecontrolrodsaregovernedbysubsequentConditionentryandapplicationofassociatedRequiredActions.A.lA.2A.3andA.4AcontrolrodisconsideredstuckifitwillnotinsertbyeitherCRDdrivewaterorscrampressure.Withafullyinsertedcontrolrodstuck,noactionsarerequiredaslongasthecontrolrodremainsfullyinserted.TheRequiredActionsaremodifiedbyaNote,whichallowstherodworthminimizer(RWH)tobebypassedifrequiredtoallowcontinuedoperation.LCO3.3.2.1,"ControlRodBlockInstrumentation,"providesadditionalrequirementswhentheRWHisbypassedtoensurecompliancewiththeCRDAanalysis.Withonewithdrawncontrolrodstuck,thelocalscramreactivityrateassumptionsmaynotbemetifthestuckcontrolrodseparationcriteriaarenotmet.Thisseparationcriteriastipulatesthatastuckcontrolrodisequivalenttoa"slow"controlrodforpurposesofseparationrequirementsbetween"slow"controlrods.(continued)SUSQUEHANNA-UNIT1B3.1-15Revision0 ControlRodOPERABILITYB3.1.3BASESACTIONSA.1A.2A.3andA.4(continued)Therefore,averificationthattheseparationcriteriaaremetmustbeperformedimmediately.Theseparationcriteriaarenotmetif')thestuckcontrolrodoccupiesapositionadjacenttotwo"slow"controlrods,b)thestuckcontrolrodoccupiesapositionadjacenttoone"slow"controlrodandtheone"slow"controlrodisalsoadjacenttoanother"slow"controlrod,or,c)ifthestuckcontrolrodoccupiesalocationadjacenttoone"slow"controlrodwhenthereisanotherpairof"slow"controlrodsadjacenttooneanother.Adjacentcontrol.rodsincludecontrolrodsthatareeitherfaceordiagonallyadjacent.Thedescriptionof"slow"controlrodsisprovidedinLCO3.1.4,"ControlRodScramTimes."Inaddition,theassociatedcontrolroddrivemustbedisarmedin2hours.TheallowedCompletionTimeof2hoursisacceptable,consideringthereactorcanstillbeshutdown,assumingnoadditionalcontrolrodsfailtoinsert,andprovidesareasonabletimetoperformtheRequiredActioninanorderlymanner.IsolatingthecontrolrodfromscrampreventsdamagetotheCRDH.Thecontrol.rodcanbeisolatedfromscramandnormali'nsertandwithdrawpressure,yetstillmaintain.coolingwatertotheCRD.MonitoringoVtheinsertioncapabilityofeachwithdrawncontrolrodmustalsobeperformedwithin24hoursfromdiscoveryofConditionAconcurrentwithTHERMALPOWERgreaterthanthelowpowersetpoint(LPSP)oftheRWM.SR3.1.3.2andSR3.1.3.3performperiodictestsofthecontrolrodinsertioncapabilityofwithdrawncontrolrods.Testingeachwithdrawncontrolrodensuresthatagenericproblemdoesnotexist.ThisCompletionTimealsoallowsforanexceptiontothenormal"timezero"forbeginningtheallowedoutagetime"clock."TheRequiredActionA.'3CompletionTimeonlybeginsupondiscoveryofConditionAconcurrentwithTHERMALPOWERgreaterthantheactualLPSPoftheRWH,sincethenotchinsertionsmaynotbecompatiblewiththerequirementsofrodpatterncontrol(LCO3.1.6)andtheRWH(LCO3.3.2.1).TheallowedCompletionTimeprovidesareasonabletimetotestthecontrolrods,consideringthepotentialforaneedtoreducepowertoperformthetests..Toallowcontinuedoperationwithawithdrawncontrolrodstuck,anevaluationofadequateSDHisalsorequiredwithin72hours.ShouldaDBAortransientrequireashutdown,topreservethesinglefailurecriterion,anadditionalcontrolrodwouldhavetobeassumedtofailtoinsertwhen(continued)SUSQUEHANNA-UNIT1B3.1-16Revision0 ControlRodOPERABILITYB3.1.3ACTIONSA.1A.2A.3andA.4(continued)required.Therefore.theoriginalSDHdemonstrationmaynotbevalid.TheSDHmustthereforebeevaluated(bymeasurementoranalysis)withthestuckcontrolrodatitsstuckpositionandthehighestworthOPERABLEcontrolrodassumedtobefullywithdrawn.TheallowedCompletionTimeof72hourstoverifySDHisadequate,consideringthatwithasinglecontrolrodstuckinawithdrawnposition,theremainingOPERABLEcontrolrodsarecapableofprovidingtherequiredscramandshutdownreactivity.FailuretoreachMODE4isonlylikelyifanadditionalcontrolrodadjacenttothestuckcontrolrodalsofailstoinsertduringarequiredscram.Evenwiththepostulatedadditionalsinglefailureofanadjacentcontrolrodtoinsert,sufficientreactivitycontrolremainstoreachandmaintainMODE3conditions.B.1Withtwoormorewithdrawncontrolrodsstuck.theplantmustbebroughttoNODE3within12hours.Theoccurrenceofmorethanonecontrolrodstuckatawithdrawnpositionincreasestheprobabilitythatthereactorcannotbeshutdownifrequired.Insertionofallinsertablecontrolrodseliminatesthepossibilityofanadditionalfailureofacontrolrodtoinsert.TheallowedCompletionTimeof12hoursisreasonable,basedonoperatingexperience,toreachMODE3fromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.C.landC.2Withoneormorecontrolrodsinoperableforreasonsotherthanbeingstuckinthewithdrawnposition.operationmaycontinue,providedthecontrolrodsarefullyinserted(continued)SUSQUEHANNA-UNIT1B3.1-17Revision0 ControlRodOPERABILITYB3.1.3BASESACTIONSC.landC.2(continued)within3hoursanddisarmed(electricallyorhy'draulically)within4hours.Insertingacontrolrodensurestheshutdownandscramcapabilitiesarenotadverselyaffected.Thecontrolrodisdisarmedtopreventinadvertentwithdrawalduringsubsequentoperations.Thecontrolrodscanbehydraulicallydisarmedbyclosingthedrivewaterandexhaustwaterisolationvalves.Thecontrolrodscanbeelectricallydisarmedbydisconnectingpowerfromallfourdirectionalcontrolvalvesolenoids.RequiredActionC.1ismodifiedbyaNote,whichallowstheRMNtobebypassedifrequiredtoallowinsertionoftheinoperablecontrolrodsandcontinuedoperation.LCO3.3.2.1providesadditionalrequirementswhentheRMMisbypassedtoensurecompliancewiththeCRDAanalysis.TheallowedCompletionTimesarereasonable,consideringthesmallnumberofallowedinoperablecontrolrods,andprovidetimetoinsertanddisarmthecontrolrodsinanorderlymannerandwithoutchallengingplantsystems.D.1andD.2Outofsequence-.controlrodsmayincreasethepotential;reactivityworthofadroppedcontrolrodduringaCRD'A:;,.At",~10XRTP-,the-genericbankedpositionwithdrawalsequence=(BPWS)analysis:.requiresinsertedcontrolrodsnotincompliance-withBPWStobeseparatedbyatleasttwoOPERABLE,.controlrodsinalldirections,includingthediagonal.Therefore,iftwoormoreinoperablecontrol..rods."arenotincompliancewithBPWSandnotseparatedbyat.leasttwoOPERABLEcontrolrods,actionmustbetakento-restorecompliancewithBPMSorrestorethecontrolrodstoOPERABLEstatus.ConditionDismodifiedbyaNoteindicatingthattheConditionisnotapplicablewhen)10KRTP,sincetheBPWSisnotrequiredtobefollowedundertheseconditions,asdescribedintheBasesforLCO3.1.6.TheallowedCompletionTimeof4hoursisacceptable,consideringthelowprobabilityofaCRDAoccurring.(continued)SUSQUEHANNA-UNIT1B3.1-18Revision0 ControlRodOPERABILITYB3.1.3BASESACTIONS(continued)E.1Inadditiontotheseparationrequirementsforinoperablecontrolrods,aBPWSassumptionrequiresthatnomorethanthreeinoperablecontrolrodsareallowedinanyoneBPWSgroup.Therefore,withoneormoreBPWSgroupshavingfourormoreinoperablecontrolrods,controlrodsmustberestoredtoOPERABLEstatussothatnoBPWSgrouphasfourormoreinoperablecontrolrods.RequiredActionE.1ismodifiedbyaNoteindicatingthattheConditionisnotapplicablewhenTHERMALPOWERis)10KRTPsincetheBPWSisnotrequiredtobefollowedundertheseconditions,asdescribedintheBasesforLCO3.1.6.TheallowedCompletionTimeof4hoursisacceptable,consideringthelowprobabilityofaCRDAoccurring.F.lIfanyRequiredActionahdassociatedCompletionTimeofConditionA,C,D,orEarenotmet,ortherearenineormoreinoperablecontrolrods,theplantmustbebroughttoaMODEinwhichtheLCOdoesnotapply.Toachievethisstatus,theplantmustbebroughttoMODE3within12hours.Thisensuresallinsertablecontrolrodsareinsertedandplacesthereactorinaconditionthatdoesnotrequiretheactivefuncti'on(i.e.,scram)ofthecontrolrods.ThenumberofcontrolrodspermittedtobeinoperablewhenoperatingabovelOXRTP(e.g.,noCRDAconsiderations)couldbemorethanthevaluespecified,buttheoccurrenceofalargenumberofinoperablecontrolrodscouldbeindicativeofagenericproblem,andinvestigationandresolutionofthepotentialproblemshouldbeundertaken.TheallowedCompletionTimeof12hoursisreasonable,basedonoperatingexperience,toreachMODE3fromfullpowerinanorderlymannerandwithoutchallengingplantsystems.SURVEILLANCEREQUIREMENTSSR3.1.3.1ThepositionofeachcontrolrodmustbedeterminedtoensureadequateinformationoncontrolrodpositionisavailabletotheoperatorfordeterminingCRDOPERABILITYandcontrollingrodpatterns.Controlrodpositionmaybe(continued)SUSQUEHANNA-UNIT1B3.1-19Revision0 ControlRodOPERABILITYB3.1.3BASESSURVEILLANCEREQUIREMENTSSR3.1.3.1(continued)determinedbytheuseofOPERABLEpositionindicators,bymovingcontrolrodstoapositionwithanOPERABLEindicator,orbytheuseofotherappropriatemethods.The24hourFrequencyofthisSRisbasedonoperatingexperiencerelatedtoexpectedchangesincontrolrodpositionandtheavailabilityofcontrolrodpositionindicationsinthecontrolroom.SR3.1.3.2andSR3.1.3.3Controlrodinsertioncapabilityisdemonstratedbyinsertingeachpartiallyorfullywithdrawncontrolrodatleastonenotchandobservingthatthecontrolrodmoves.Thecontrolrodmaythenbereturnedtoitsoriginalposition.Thisensuresthecontrolrodisnotstuckandisfreetoinsertonascramsignal.TheseSurveillancesarenotrequiredwhenTHERMALPOWERislessthanorequaltotheactualLPSPoftheRWM,'incethenotchinsertionsmaynotbecompatiblewiththerequirementsoftheBankedPositionWithdrawalSequence(BPWS)(LCO3.1.6)andtheRWM(LCO3.3.2.1).The7dayFrequencyofSR3.1.3.2isbasedonoperatinge/periencerelatedtothechangesinCRDperformanceandtheeaseofperformingnotchtestingforfullywithdrawncontrolrods.Partiallywithdrawncontrolrodsaretestedata31dayFrequency,basedonthepotentialpowerreductionrequiredtoallowthecontrolrodmovementandconsideringthelargetestingsampleofSR3.1.3.2.Furthermore,the31dayFrequencytakesintoaccountoperatingexperiencerelatedtochangesinCRDperformance.Atanytime,ifacontrolrodisimmovable,adeterminationofthatcontrolrod'sabilitytotrip(OPERABILITY)mustbemadeandappropriateactiontaken.SR3.1.3.4Verifyingthatthescramtimeforeachcontrolrodtonotchposition05is~7secondsprovidesreasonableassurancethatthecontrolrodwillinsertwhenrequiredduringaDBAortransient,therebycompletingitsshutdownfunction.ThisSRisperformedinconjunctionwiththecontrolrodscramtimetestingofSR3.1.4.1.SR3.1.4.2,SR3.1.4.3,andSR3.1.4.4.TheLOGICSYSTEMFUNCTIONALTESTin(continued)SUSQUEHANNA-UNIT183.1-20Revision0 ControlRodOPERABILITYB3.1.3BASESSURVEILLANCEREQUIREMENTSSR3.1.3.4(continued)LCO3.3.1.1,"ReactorProtectionSystem(RPS)Instrumentation."andthefunctionaltestingofSDVventanddrainvalvesinLCO3.1.8,"ScramDischargeVolume(SDV)VentandDrainValves,"overlapthisSurveillancetoprovidecompletetestingoftheassumedsafetyfunction.TheassociatedFrequenciesareacceptable,consideringthemorefrequenttestingperformedtodemonstrateotheraspectsofcontrolrodOPERABILITYandoperatingexperience,whichshowsscramtimesdonotsignificantlychangeoveranoperatingcycle..SR3.1.3.5CouplingverificationisperformedtoensurethecontrolrodisconnectedtotheCRDNandwillperformitsintendedfunctionwhennecessary.'heSurveillancerequiresv'erifyingacontrolroddoesnotgotothewithdrawnovertravelposition.Theovertravelpositionfeatureprovidesapositivecheckonthecouplingintegritysinceonlyanuncoupled-CRDcanreachtheovertravelposition.Theverificationisrequiredtobeperformedanytimeacontrolrodiswi'thdrawntothe"fullout"position(notchposition48)orpriortodeclaringthecontrolrodOPERABLEafterworkonthecontrolrodorCRDSystemthatcouldaffectcoupling.Thisincludescontrolrodsinsertedonenotchandthenreturnedtothe"fullout"positionduringtheperformanceofSR3.1.3.2.ThisFrequencyisacceptable,consideringthelowprobabilitythatacontrolrodwillbecomeuncoupledwhenitisnotbeingmovedandoperatingexperiencerelatedtouncouplingevents.REFERENCES1.10CFR50,AppendixAGDC26,,GDC27,GDC28,andGDC29.2.FSAR,Section4.3.2.3.FSAR~Section4.6.4.FSAR,Section15.5.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA-UNIT183.1-21Revision0 ControlRodScramTimesB3.1.4B3.1REACTIVITYCONTROLSYSTEMSB3.1.4ControlRodScramTimesBASESBACKGROUND-ThescramfunctionoftheControlRodDrive(CRD)Systemcontrolsreactivitychangesduringabnormaloperationaltransientstoensurethatspecifiedacceptablefueldesi.gnlimitsarenotexceeded(Ref.1).ThecontrolrodsarescrammedbypositivemeansusinghydraulicpressureexertedontheCRDpiston.Whenascramsignalisinitiated,controlairisventedfromthescramvalves.allowingthemtoopenbyspringaction.Openingtheexhaustvalvereducesthepressureabovethemaindrivepistontoatmosphericpressure,andopeningtheinletvalveappliestheaccumulatororreactorpressuretothebottomofthepiston.Sincethenotchesintheindextubearetaperedontheloweredge,thecolletfingersareforcedopenbycamaction,allowingtheindextubetomoveupwardwithoutrestrictionbecauseofthehighdifferentialpressureacrossthepiston.Asthedrivemovesupwardandtheaccumulatorpressurereducesbelowthereactorpressure,aballcheckvalveopens,lettingthereactorpressurecompletethescramaction.Ifthereactorpressureislow,suchasduringstartup,theaccumulator'wi-ll'ullyinsertthecontrolrodintherequiredtimewithoutassistancefromreactorpressure.APPLICABLESAFETYANALYSESTheanalyticalmethodsandassumptionsusedinevaluatingthecontrolrodscramfunctionarepresentedinReferences2,3,and4.TheDesignBasisAccident(DBA)andtransientanalysesassumethatallofthecontrolrodsscramataspeoifiedinsertionrate.Theresultingnegativescramreactivityformsthebasisforthedeterminationofplantthermallimits(e.g.,theMCPR).Otherdistributionsofscramtimes(e.g.,severalcontrolrodsscrammingslowerthantheaveragetimewithseveralcontrolrodsscrammingfasterthantheaveragetime)canalsoprovidesufficientscramreactivity.Surveillanceofeachindividualcontrolrod'sscramtimeensuresthescramreactivityassumedintheDBAandtransientanalysescanbemet.(continued)SUSQUEHANNA-UNIT1B3.1-22Revision0 ControlRodScramTimesB3.1.4BASESAPPLICABLESAFETYANALYSE(continued)ThescramfunctionoftheCRDSystemprotectstheHCPRSafetyLimit(SL)(seeBasesforSL2.1.1,"ReactorCoreSLs,"andLCO3.2.2~"MINIMUMCRITICALPOWERRATIO(HCPR)")andthe1Xcladdingplasticstrainfueldesignlimit(seeBasesforLCO3.2.1,"AVERAGEPLANARLINEARHEATGENERATIONRATE(APLHGR)"),whichensurethatnofueldamagewilloccuriftheselimitsarenotexceeded.Above800psig,thescramfunctionisdesignedtoinsertnegativereactivityataratefastenoughtopreventtheactualMCPRfrombecominglessthantheHCPRSL,duringtheanalyzedlimitingpowertransient.Below800psig,thescramfunctionisassumedtoperformduringthecontrolroddropaccidentand,therefore,alsoprovidesprotectionagainstviolatingfueldamagelimitsduringreactivityinsertionaccidents(Ref.5)(seeBasesforLCO3.1.6."RodPatternControl").Forthereactorvesseloverpressureprotectionanalysis,thescramfunction,alongwiththesafety/reliefvalves,ensurethatthepeakvesselpressureismaintainedwithintheapplicableASHECodelimits.ControlrodscramtimessatisfyCriterion3oftheNRCPolicyStatement(Ref.6).LCOThescramtimesspecifiedinTable3.1.4-1(intheaccompanyingLCO)arerequiredtoensurethatthescramreactivityassumedintheDBAandtransientanalysisismet(Ref.7).Toaccountforsinglefailuresand"slow"scrammingcontrolrods,thescramtimesspecifiedinTable3.1.4-1arefasterthanthoseassumedinthedesignbasisanalysis.Thescramtimeshaveamarginthatallowsuptoapproximately7Cofthecontrolrods(e.g.,185x7C-13)tohavescramtimesexceedingthespecifiedlimits(i.e.,"slow"controlrods)includingasinglestuckcontrolrod(asallowedbyLCO3.1.3,"ControlRodOPERABILITY")andanadditionalcontrolrodfailingtoscramperthesinglefailurecriterion.Thescramtimesarespecifiedasafunctionofreactorsteamdomepressuretoaccountforthepressuredependenceofthescramtimes.Thescramtimesarespecifiedrelativetomeasurementsbasedonreedswitchpositions,whichprovidethecontrolrodpositionindication.Thereedswitchcloses("pickup")whentheindextubepassesaspeci.ficlocationandthenopens("dropout")astheindextubetravelsupward.VerificationofthespecifiedscramtimesinTable3.1.4-1is(continued)SUSQUEHANNA-UNIT1B3.1-23Revision0 ControlRodScramTimesB3.1.4LCO(continued)accomplishedthroughmeasurementofthe"dropout"times.Toensurethatlocalscramreactivityratesaremaintainedwithinacceptablelimits,nomorethanone"slow"controlrodmayoccupyafaceordiagonallyadjacentlocationtoanyother"slow"orstuckcontrolrod.Table3.1.4-1ismodifiedbytwoNoteswhichstatethatcontrolrodswithscramtimesnotwithinthelimitsofthetableareconsidered"slow"andthatcontrolrodswithscramtimes>7secondsareconsideredinoperableasrequiredbySR3.1.3.4.ThisLCOappliesonlytoOPERABLEcontrolrodssinceinoperablecontrolrodswillbeinsertedanddisarmed(LCO3.1.3).Slowscrammingcontrolrodsmaybeconservativelydeclaredinoperableandnotaccountedforas"slow"controlrods.APPLICABILITYInMODES1and2,ascramisassumedtofunctionduringtransientsandaccidentsanalyzedfortheseplantconditions.Theseeventsareassumedtooccurduringstartupandpoweroperation;therefore,thescramfunctionofthecontrolrodsisrequiredduringtheseMODES.InMODES3and4,thecontrolrodsarenotabletobewithdrawn(exceptaspermittedbyLCO3.10.3andLCO3.10.4)sincethereactormodeswitchisinshutdownandacontrolrodblockisapplied.Thisprovidesadequaterequirementsforcontrolrodscramcapabilityduringtheseconditions.ScramrequirementsinMODE5arecontainedinLCO3.9.5,"ControlRodOPERABILITY-Refueling."ACTIONSA.lWhentherequirementsofthisLCOarenotmet.therateofnegativereactivityinsertionduringascrammaynotbewithintheassumptionsofthesafetyanalyses.Therefore.theplantmustbebroughttoaMODEinwhichtheLCOdoesnotapply.Toachievethisstatus,theplantmustbebroughttoMODE3within12hours.TheallowedCompletionTimeof12hoursisreasonable,basedonoperatingexperience,toreachMODE3fromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.SUSQUEHANNA-UNIT183.1-24(continued)Revision0 0

ControlRodScramTimesB3.1.4BASES(continued)SURVEILLANCEREQUIREMENTSThefourSRsofthisLCOaremodifiedbyaNotestatingthatduringasinglecontrolrodscramtimesurveillance,theCRDpumpsshallbeisolatedfromtheassociatedscramaccumulator.WiththeCRDpumpisolated,(i.e..chargingvalveclosed)theinfluenceoftheCRDpumpheaddoesnotaffectthesinglecontrolrodscramtimes.DuringafullcorescramtheCRDpumpheadwouldbeseenbyallcontrolrodsandwouldhaveanegligibleeffectonthescraminsertiontimes.SR3.1.4.1ThescramreactivityusedinDBAandtransientanalysesisbasedonanassumedcontrolrodscramtime.Measurementof'hescramtimeswithreactorsteamdomepressure>800psigdemonstratesacceptablescramtimesforthetransientsanalyzedinReferences3and4.Maximumscraminsertiontimesoccuratareactorsteamdomepressureofapproximately800psigbecauseofthecompetingeffectsofreactorsteamdomepressureandstoredaccumulatorenergy:-Therefore,demonstrationofadequatescramtimesatreactorsteamdomepressure>800psigensuresthatthemeasuredscramtimeswillbewithinthespecifiedlimitsathigherpressures.Limitsarespecifiedasafunctionofreactorpressuretoaccountforthesensitivityofthescraminsertiontimeswithpressureandtoallowarangeofpressuresoverwhichscramtimetestingcanbeperformed.Toensurethatscramtimetestingisperformedwithinareasonabletimefollowingfuelmovementwithinthereactorpressurevesselafterashutdown>120daysorlonger,controlrodsarerequiredtobetestedbeforeexceeding40KRTPfollowingtheshutdown.Intheeventfuelmovementislimitedtoselectedcorecells,itistheintentofthisSRthatonlythoseCRDsassociatedwiththecorecellsaffectedbythefuelmovementarerequiredtobescramtimetested.However,ifthereactorremainsshutdown>120days,allcontrolrodsarerequiredtobescramtimetested.ThisFrequencyisacceptableconsideringtheadditionalsurveillancesperformedforcontrolrodOPERABILITY,thefrequentverificationofadequateaccumulatorpressure,andtherequiredtestingofcontrolrodsaffectedbyworkoncontrolrodsortheCRDSystem.(continued)SUSQUEHANNA-UNIT1B3.1-25Revision0

ControlRodScramTimesB3.1.4BASESSURVEILLANCEREQUIREMENTS(continued)SR3.1.4.2Additionaltestingofasampleofcontrolrodsisrequiredtoverifythecontinuedperformanceofthescramfunctionduringthecycle.Arepresentativesamplecontainsatleast10Kofthecontrolrods.ThesampleremainsrepresentativeifnomorethanZOXofthecontrolrodsinthesampletestedaredeterminedtobe"slow."WithmorethanZOXofthesampledeclaredtobe"slow"perthecriteriainTable3.1.4-1,additionalcontrolrodsaretesteduntilthis20Kcriterion(e.g.,20Koftheentiresamplesize)issatisfied,oruntilthetotalnumberof"slow"controlrods(throughoutthecore,fromallsurveillances)exceedstheLCOlimit.Forplannedtesting.thecontrolrodsselectedforthesampleshouldbedifferentforeachtest.Datafrominadvertentscramsshouldbeusedwheneverpossibletoavoidunnecessarytestingatpower,evenifthecontrolrodswithdatamayhavebeenpreviouslytestedinasample.The120dayFrequencyisbasedonoperatingexperiencethathasshowncontrolrodscramtimesdonotsignificantlychangeoveranoperatingcycle.ThisFrequencyisalsoreasonablebasedontheadditionalSurveillancesdoneontheCRDsatmorefrequentintervalsinaccordancewithLCO3.1.3andLCO3.1.5."ControlRodScramAccumulators."SR3.1.4.3WhenworkthatcouldaffectthescraminsertiontimeiserformedonacontrolrodortheCRDSystem,testingmustedonetodemonstratethateachaffectedcontrolrodretainsadequatescramperformanceovertherangeofapplicablereactorpressuresfromzerotothemaximumpermissiblepressure.ThescramtestingmustbeperformedoncebeforedeclaringthecontrolrodOPERABLE.Therequiredscramtimetestingmustdemonstratetheaffectedcontrolrodisstillwithinacceptablelimits.Thelimitsforreactorpressures<800psigareestablishedbasedonahighprobabilityofmeetingtheacceptancecriteriaatreactorpressures~800psig.Limitsfor~800psigarefoundinTable3.1.4-1.Iftestingdemonstratestheaffectedcontrolroddoesnotmeettheselimits,butiswithinthe7-secondlimitofTable3.1.4-1,Note2,thecontrolrodcanbedeclaredOPERABLEand"slow."(continued)SUSQUEHANNA-UNIT1B3.1-26Revision0 ControlRodScramTimesB3.1.4'ASESSURVEILLANCEREQUIREHENTSSR3.1.4.3(continued)Specificexamplesofworkthatcouldaffectthescramtimesare(butarenotlimitedto)thefollowing:removalofanyCRDformaintenanceormodification:replacementofacontrolrod;andmaintenanceormodificationofascramsolenoidpilotvalve,scramvalve,accumulator,isolationvalveorcheckvalveinthepipingrequiredforscram.TheFrequencyofoncepriortodeclaringtheaffectedcontrolrodOPERABLEisacceptablebecauseofthecapability.to'testthecontrolrodoverarangeofoperatingconditionsandthemorefrequentsurveillancesonotheraspectsofcontrolrodOPERABILITY.SR3.1.4.4WhenworkthatcouldaffectthescraminsertiontimeisperformedonacontrolrodorCRDSystem,testingmustbedonetodemonstrateeachaffectedcontrolrodisstillwithinthelimitsofTable3.1.4-1withthereactorsteamdomepressure~800psig.Whereworkhasbeenperformedathighreactorpressure,therequirementsofSR3.1.4.3andSR3.1.4.4canbesatisfiedwithonetest.Foracontrolrodaffectedbyworkperformedwhileshutdown,however,azeropressureandhighpressuretestmayberequired.Thistestingensuresthat,priortowithdrawingthecontrolrodforcontinuedoperation,thecontrolrodscramperformanceisacceptableforoperatingreactorpressureconditions.Alternatively,acontrolrodscramtestduringhydrostaticpressuretestingcouldalsosatisfybothcriteria.TheFrequencyofoncepriortoexceeding40KRTPisacceptablebecauseofthecapabilitytotestthecontrolrodoverarangeofoperatingconditionsandthemorefrequentsurveillancesonotheraspectsofcontrolrodOPERABILITY.REFERENCES1.10CFR50,AppendixA,GDC10.2.FSAR,Section4.3.2.3.FSAR.Section4.6.(continued)SUSQUEHANNA-UNIT1B3.1-27Revision0 ControlRodScramTimesB3.1.4BASESREFERENCES(continued)4.FSAR,Section15.0.5.PL-NF-90-001-A,ApplicabilityofReactorAnalysisMethodsforBWRDesignandAnalysis."Section4.1.2,July1992,andSupplementl-A,August1995.andSupplement2-A,July1996.6.FinalPolicyStatementonTechnicalSpecifications.Improvements,July22.1993(58FR39132).7.LetterfromR.F.Janecek(BWROG)toR.W.Starostecki(NRC),"BWR.OwnersGroupRevisedReactivityControlSystemTechnicalSpecifications,"BWROG-8754,September17,1987.SUSQUEHANNA-UNIT1B3.1-28Revision0 ControlRodScramAccumulatorsB3.1.583.1REACTIVITYCONTROLSYSTEMSB3.1.5ControlRodScramAccumulatorsBASESBACKGROUNDThecontrolrodscramaccumulatorsarepartoftheControlRodDrive(CRD)Systemandareprovidedtoensurethatthecontrolrodsscramundervaryingreactorconditions.Thecontrolrodscramaccumulatorsstoresufficientenergytofullyinsertacontrolrodatanyreactorvesselpressure.Theaccumulatorisahydrauliccylinderwithafreefloatingpiston.Thepistonseparatesthewaterusedtoscramthecontrolrodsfromthenitrogen,whichprovidestherequiredenergy.ThescramaccumulatorsarenecessarytoscramthecontrolrodswithintherequiredinsertiontimesofLCO3.1.4,"ControlRodScramTimes."APPLICABLESAFETYANALYSESTheanalyticalmethodsandassumptionsusedinevaluatingthecontrolrodscramfu'nctionarepresentedinReferences1,2.and3.TheDesignBasisAccident(DBA)andtransientanalyses.-assumethatallofthecontrolrodsscramataspecifiedinsertionrate.OPERABILITYofeachindividualcontrolrodscramaccumulator,alongwithLCO3.1.3,"ControlRodOPERABILITY,"andLCO3.1.4,ensuresthatthescramreactivityassumedintheDBAandtransientanalysescanbemet.Theexistenceofaninoperableaccumulatormayinvalidatepriorscramtimemeasurementsfortheassociatedcontrolrod.ThescramfunctionoftheCRDSystem,andthereforetheOPERABILITYoftheaccumulators,protectstheMCPRSafetyLimit(seeBasesforSL2.1.1,"ReactorCoreSLs,"andLCO3.2.2,"MINIMUMCRITICALPOWERRATIO(MCPR)")and1XcladdingplasticstrainfueldesignlimitLCO3.2.3"LINEARHEATGENERATIONRATE(LHGR)"),whichensurethatnofueldamagewilloccuriftheselimitsarenotexceeded(seeBasesforLCO3.1.4).Inaddition,thescramfunctionatlowreactorvesselpressure(i.e.,startupconditions)providesprotectionagainstviolatingfueldesignlimitsduringreactivityinsertionaccidents(seeBasesforLCO3.1.6."RodPatternControl").ControlrodscramaccumulatorssatisfyCriterion3oftheNRCPolicyStatement(Ref.4).SUSQUEHANNA-UNIT183.1-29(continued)Revision0 ControlRodScramAccumulatorsB3.1.5BASES(continued)LCOTheOPERABILITYofthecontrolrodscramaccumulatorsisrequiredtoensurethatadequatescr'aminsertioncapabilityexistswhenneededovertheentirerangeofreactorressures.TheOPERABILITYofthescramaccumulatorsisasedonmaintainingadequateaccumulatorpressure.APPLICABILITYInHODES1and2.thescramfunctionisrequiredformitigationofDBAsandtransients,andthereforethescramaccumulatorsmustbeOPERABLEtosupportthescramfunction.InHODES3and4;controlrodscannotbewithdrawn(exceptaspermittedbyLCO3.10.3andLCO3.10.4)sincethereactormodeswitchisinshutdownandacontrolrodblockisapplied.ThisprovidesadequaterequirementsforcontrolrodscramaccumulatorOPERABILITYduringtheseconditions.RequirementsforscramaccumulatorsinHODE5arecontainedinLCO3.9.5."ControlRodOPERABILITY-Refueling."ACTIONSTheACTIONStableismodifiedbyaNoteindicatingthataseparateCondition'entryisallowedforeachcontrolrodscramaccumulator.ThisisacceptablesincetheRequiredActionsforeachConditionprovideappropriatecompensatoryactionsforeachaffectedaccumulator.ComplyingwiththeRequiredActionsmayallowforcontinuedoperationandsubsequentaffectedaccumulatorsgovernedbysubsequentConditionentryandapplicationofassociatedRequiredActions.A.landA.2Withonecontrolrodscramaccumulatorinoperableandthereactorsteamdomepressure~900psig.thecontrolrodmaybedeclared"slow,"sincethecontrolrodwillstillscramatthereactoroperatingpressurebutmaynotsatisfytherequiredscramtimesinTable3.1.4-1.RequiredActionA.1ismodifiedbyaNoteindicatingthatdeclaringthecontrolrod"slow"onlyappliesiftheassociatedcontrolscramtimewaswithinthelimitsofTable3.1.4-1duringthelastscramtimetest.Otherwise.thecontrolrodwouldalreadybeconsidered"slow"andthefurtherdegradationofscramperformancewithaninoperable(continued)SUSQUEHANNA-UNIT183.1-30Revision0 ControlRodScramAccumulatorsB3.1.5BASESACTIONSA.1andA.2(continued)accumulatorcouldresultinexcessivescramtimes.Inthisevent,theassociatedcontrolrodisdeclaredinoperable(RequiredActionA.2)andLCO3.1.3isentered.Thiswouldresultinrequiringtheaffectedcontrolrodtobefullyinsertedanddisarmed,therebysatisfyingitsintendedfunction,inaccordancewithACTIONSofLCO3.1.3.TheallowedCompletionTimeof8hoursisreasonable,basedonthelargenumberofcontrolrodsavailabletoprovidethescramfunctionandtheabilityoftheaffectedcontrolrodtoscramonlywithreactorvesselathighreactorpressures.B.1B.2.1andB.2.2Withtwoormorecontrolrodscramaccumulatorsinoperableandreactorsteamdomepressure~900psig,adequatepressuremustbesuppliedtothechargingwaterheader.Mithinadequatechargingwaterpressure,alloftheaccumulatorscouldbecomeinoperable,resultingina~~otentiallyseveredegradationofthescramperformance.herefore,within20minutesfromdiscoveryofchargingwaterheaderpressure(940psigconcurrentwithConditionB,adequatechargingwaterheaderpressuremustberestored.TheallowedCompletionTimeof20minutesisreasonable,toplaceaCRDpumpintoservicetorestorethechargingheaderpressure,ifrequired.ThisCompletionTimeisbasedontheabilityofthereactorpressurealonetofullyinsertallcontrolrods.Thecontrolrodmaybedeclared"slow,"sincethecontrolrodwillstillscramusingonlyreactorpressure,butmaynotsatisfythetimesinTable3.1.4-1.RequiredAction8.2.1ismodifiedbyaNoteindicatingthatdeclaringthecontrolrod"slow"onlyappliesiftheassociatedcontrolscramtimeiswithinthelimitsofTable3.1.4-1duringthelastscramtimetest.Otherwise,thecontrolrodwouldalreadybeconsidered"slow"andthefurtherdegradationofscramperformancewithaninoperableaccumulatorcouldresultinexcessivescramtimes.Inthisevent,theassociatedcontrolrodisdeclaredinoperable(RequiredActionB.2.2)andLCO3.1.3entered.Thiswouldresultinrequiringtheaffectedcontrolrodtobefully(continued)SUSQUEHANNA-UNIT1B3.1-31Revision0 ControlRodScramAccumulatorsB3.1.5BASESACTIONSB.18.2.1andB.2.2(continued)insertedanddisarmed,therebysatisfyingitsintendedfunctioninaccordancewithACTIONSofLCO3.1.3.TheallowedCompletionTimeof1hourisreasonable,basedontheabilityofonlythereactorpressuretoscramthecontrolrodsandthelowprobabilityofaDBAortransientoccurringwhiletheaffectedaccumulatorsareinoperable.C.landC.2Withoneormorecontrolrodscramaccumulatorsinoperableandthereactorsteamdomepressure(900psig,thepressuresuppliedtothechargingwaterheadermustbeadequatetoensurethataccumulatorsremaincharged.Withthereactorsteamdomepressure(900psig,thefunctionoftheaccumulatorsinprovidingthescramforcebecomesmuchmoreimportantsincethescramfunctioncouldbecomeseverelydegradedduringadepressurizationeventoratlowreactorpressures.Therefore,immediatelyupondiscoveryofchargingwaterheaderpressure(940psig,concurrentwithConditionC,allcontrolrodsassociatedwithinoperableaccumulatorsmustbeverifiedtobefullyinserted.Withdrawncontrolrodswithinoperableaccumulatorsmayfailtoscramundertheselowpressureconditions.Theassociatedcontrolrodsmustalsobedeclaredinoperablewithin1hour.TheallowedCompletionTimeof1hourisreasonableforRequiredActionC.2,consideringthelowprobabilityofaDBAortransientoccurringduringthetimethattheaccumulatorisinoperable.D.1ThereactormodeswitchmustbeimmediatelyplacedintheshutdownpositionifeitherRequiredActionandassociatedCompletionTimeassociatedwithlossoftheCRDchargingpump(RequiredActionsB.1andC.1)cannotbemet.Thisensuresthatallinsertablecontrolrodsareinsertedandthatthereactorisinaconditionthatdoesnotrequiretheactivefunction(i.e.,scram)ofthecontrolrods.ThisRequiredActionismodifiedbyaNotestatingthattheactionisnotapplicableifallcontrolrodsassociatedwith(continued)SUSQUEHANNA-UNIT1B3.1-32Revision0 ControlRodScramAccumulatorsB3.1.5BASESACTIONS0.1(continued)theinoperablescramaccumulatorsarefullyinserted.sincethefunctionofthecontrolrodshasbeenperformed.SURVEILLANCEREQUIREMENTSSR3.1.5.1SR3.1.5.1requiresthattheaccumulatornitrogenpressurebecheckedevery7daystoensureadequateaccumulatorpressureexiststoprovidesufficientscramforce.TheprimaryindicatorofaccumulatorOPERABILITYistheaccumulatornitrogenpressure.Aminimumaccumulatornitrogenpressureisspecified,belowwhichthecapabilityoftheaccumulatortoperformitsintendedfunctionbecomesdegradedandtheaccumulatorisconsideredinoperable.Theminimumaccumulatornitrogenpressureof940psigiswellbelowtheexpectedpressureofapproximately1100psig(Ref.1).Declaringtheaccumulatorinoperablewhentheminimumpressureisnotmaintainedensuresthatsignificantdegradationinscramtimesdoesnotoccur.The7dayFrequencyhasbeen'showntobeacceptablethroughoperatingexperienceandtakesintoaccountindicationsavailableinthecontroltoom:REFERENCES1.FSAR.Section4.3.2.2.FSAR,Section4.6.3.FSAR,Section15.4.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA-UNIT1B3.1-33Revision0

RodPatternControlB3.1.6B3.1REACTIVITYCONTROLSYSTEMSB3.1.6RodPatternControlBASESBACKGROUNDControlrodpatternsduringstartupconditionsarecontrolledbytheoperatorandtherodworthminimizer(RWM)(LCO3.3.2.1,"ControlRodBlockInstrumentation"),sothatonlyspecifiedcontrolrodsequencesandrelativepositionsareallowedovertheoperatingrangeofallcontrolrodsinsertedto10KRTP.ThesequenceslimitthepotentialamountofreactivityadditionthatcouldoccurintheeventofaControlRodDropAccident(CRDA).ThisSpecificationassuresthatthecontrolrodpatternsareconsistentwiththeassumptionsoftheCRDAanalysesofReferences1and2.APPLICABLESAFETYANAIYSESTheanalyticalmethodsandassumptionsusedinevaluatingtheCRDAaresummarizedinReferences1and2.CRDAanalysesassumethatthereactoroperatorfollowsprescribedwithdrawalsequences.ThesesequencesdefinethepotentialinitialconditionsfortheCRDAanalysis.TheRWM(LCO3.3.2..1)providesbackuptooperatorcontrolofthewithdrawalsequencestoensurethattheinitialconditionsofthe'RDAanalysisarenotviolated.Preventionormitigationofpositivereactivityinsertionevents'snecessarytolimittheenergydepositioninthefuel,therebypreventingsignificantfueldamagewhichcouldresultintheunduereleaseofradioactivity.SincethefailureconsequencesforUO,havebeenshowntobeinsignificantbelowfuelenergydepositionsof300cal/gm(Ref.3),thefueldamagelimitof280cal/gmprovidesamarginofsafetyfromsignificantcoredamagewhichwouldresultinreleaseofradioactivity(Refs.4and5).Genericevaluations(Ref.156)ofadesignbasisCRDAhaveshownthatthemaximumreactorpressurewillbelessthantherequiredASMECodelimits(Ref.7).Theoffsitedosesarecalculatedeachcycleusingthemethodologyinreference1todemonstratethatthecalculatedoffsitedoseswillbewellwithintherequiredlimits(Ref.5).(continued)SUSQUEHANNA-UNIT1B3.1-34Revision0 RodPatternControlB3.1.6BASESAPPLICABLESAFETYANALYSE(continued)ControlrodpatternsanalyzedinReference1followthebankedpositionwithdrawalsequence(BPWS).TheBPWSisapplicablefromtheconditionofallcontrolrodsfullyinsertedto10KRTP(Ref.2).FortheBPWS,thecontrolrodsarerequiredtobemovedingroups.withallcontrolrodsassignedtoaspecificgrouprequiredtobewithinspecifiedbankedpositions(e.g..betweennotches08and12).Thebankedpositionsareestablishedtominimizethemaximumincrementalcontrolrodworthwithoutbeingoverlyrestrictiveduringnormalplantoperation.ForeachreloadcycletheCRDAisanalyzedtodemonstratethatthe280cal/gmfueldamagelimitwillnotbeviolatedduringaCRDAwhilefollowingtheBPWSmodeofoperationforcontrolrodpatterns.TheseanalysesconsidertheeffectsoffullyinsertedinoperableandOPERABLEcontrolrodsnotwithdrawninthenormalsequenceofBPWS,butarestillincompliancewiththeBPWSrequirementsregardingoutofsequencecontrolrods.Theserequirementsallowalimitednumber(i.e.,eight)anddistributionoffullyinsertedinoperablecontrolrods.RodpatterncontrolsatisfiesCriterion3oftheNRCPolicyStatement(Ref.8):.LCOCompliancewiththeprescribedcontrolrodsequencesminimizesthepotentialconsequencesofaCRDAbylimitingtheinitialconditionstothoseconsistentwiththeBPWS.ThisLCOonlyappliestoOPERABLEcontrolrods.Forinoperablecontrolrodsrequiredtobeinserted,separaterequirementsarespecifiedinLCO3.1.3,"ControlRodOPERABILITY,"consistentwiththeallowancesforinoperablecontrolrodsintheBPWS.APPLICABILITYInMODES1and2,whenTHERMALPOWERis~10KRTP,theCRDAisaDesignBasisAccidentand,therefore,compliancewiththeassumptionsofthesafetyanalysisisrequired.WhenTHERMALPOWERis>10KRTP,thereisnocrediblecontrolrodconfigurationthatresultsinacontrolrodworththatcouldexceedthe280cal/gmfueldamagelimitduringaCRDA(Ref.2).InMODES3,4,and5,sincethereactorisshutdownandonlyasinglecontrolrodcanbewithdrawnfromacorecellcontainingfuelassemblies,adequateSDMensures(continued)SUSQUEHANNA-UNIT1B3.1-35Revision0 RodPatternControlB3.1.6BASESAPPLICABILITY(continued)thattheconsequencesofaCRDAareacceptable.sincethereactorwillremainsubcriticalwithasinglecontrolrodwithdr'awn.ACTIONSA.landA.2WithoneormoreOPERABLEcontrolrodsnotincompliancewiththeprescribedcontrolrodsequence,actionsmaybetakentoeithercorrectthecontrolrodpatternordeclaretheassociatedcontrolrodsinoperablewithin8hours.Noncompliancewiththeprescribedsequencemaybetheresultof"doublenotching,"driftingfromacontrolroddrivecoolingwatertransient,leakingscramvalves,orapowerreductionto~10'TPbeforeestablishingthecorrectcontrolrodpattern.ThenumberofOPERABLEcontrolrodsnotincompliancewiththeprescribedsequenceislimitedtoeight,topreventtheoperatorfromattemptingtocorrectacontrolrodpatternthatsignificantlydeviatesfromtheprescribedsequence.Whenthecontrolrodpatternisnotincompliancewiththeprescribedsequence,allcontrolrodmovementshouldbe-stoppedexceptformovesneededtocorrecttherodpattern,orscramifwarranted.RequiredActionA.1ismodifiedbyaNotewhichallowstheRWHtobebypassedtoallowtheaffectedcontrolrodstobereturnedtotheircorrectposition.LCO3.3.2.1requiresverificationofcontrolrodmovementbyaqualifiedmemberofthetechnicalstaff.Thisensuresthatthecontrolrodswillbemovedtothecorrectposition.AcontrolrodnotincompliancewiththeprescribedsequenceisnotconsideredinoperableexceptasrequiredbyRequiredActionA.2.OPERABILITYofcontrolrodsisdeterminedbycompliancewithLCO3.1.3,"ControlRodOPERABILITY,"LCO3.1.4,"ControlRodScramTimes,"andLCO3.1.5."ControlRodScramAccumulators."TheallowedCompletionTimeof8hoursisreasonable,consideringtherestrictionsonthenumberofallowedoutofsequencecontrolrodsandthelowprobabilityofaCRDAoccurringduringthetimethecontrolrodsareoutofsequence.(continued)SUSQUEHANNA-UNIT1B3.1-36Revision0 RodPatternControlB3.1.6BASESACTIONS(continued)'B.land8.2IfnineormoreOPERABLEcontrolrodsareoutofsequence,thecontrolrodpatternsignificantlydeviatesfromtheprescribedsequence.Controlrodwithdrawalshouldbesuspendedimmediatelytopreventthepotentialforfurtherdeviationfromtheprescribedsequence.Controlrodinsertiontocorrectcontrolrodswithdrawnbeyondtheirallowedpositionisallowedsince,ingeneral,insertionofcontrolrodshaslessimpactoncontrolrodworththanwithdrawalshave.RequiredActionB.1ismodifiedbyaNotewhichallowsthe-RWMtobebypassedtoallowtheaffectedcontrolrodstobereturnedtotheircorrectposition.LCO3.3.2.1requiresverificationofcontrolrodmovementbyaqualifiedmemberofthetechnicalstaff.WhennineormoreOPERABLEcontrolrodsarenotincompliancewithBPWS,thereactormodeswitchmustbeplacedintheshutdownpositionwithin1hour.Withthemodeswitchinshutdown,thereactorisshutdown,andassuch,doesnotmeettheapplicabilityrequirementsofthisLCO.TheallowedCompletionTimeof1hourisreasonabletoallowinsertionofcontrolrodsto,restorecompliance,andisappropriaterelativetothelowprobabilityofaCRDAoccurringwiththecontrolrodsoutofsequence.SURVEILLANCEREQUIREMENTSSR3.1.6.1ThecontrolrodpatternisverifiedtobeincompliancewiththeBPWSata24hourFrequencytoensuretheassumptionsoftheCRDAanalysesaremet.The24hourFrequencywasdevelopedconsideringthattheprimarycheckoncompliancewiththeBPWSisperformedbytheRWM(LCO3.3.2.1).whichprovidescontrolrodblockstoenforcetherequiredsequenceandisrequiredtobeOPERABLEwhenoperatingats10KRTP.REFERENCES1.PL-NF-90-001-A,"ApplicationofReactorAnalysisMethodsforBWRDesignandAnalysis."Section2.8,July1992.Supplementl-A,August1995,andSupplement2-A,July1996.(continued)SUSQUEHANNA-UNIT183.1-37Revision0 RodPatternControlB3.1.6BASESREFERENCES(continued)2."ModificationstotheRequirementsforControlRodDropAccidentMitigatingSystem,"BWROwnersGroup,July1986.3.NUREG-0979,Section4.2.1.3.2,April1983.4.NUREG-0800,Section15.4.9,Revision2,July1981.5.10CFR100.11.6.NED0-21778-A,"TransientPressureRisesAffectedFractureToughnessRequirementsforBoilingWaterReactors,"December1978.7.ASHE,BoilerandPressureVesselCode.8.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA-UNIT183.1-38Revision0 SLCSystem83.1.7B3.1REACTIVITYCONTROLSYSTEHSB3.1.7StandbyLiquidControl(SLC)SystemBASESBACKGROUNDTheSLCSystemisdesignedtoprovidethecapabilityofbringingthereactor,atanytimeinafuelcycle,fromfullpowerandminimumcontrolrodinventorytoasubcriticalconditionwiththereactorinthemostreactive.xenonfreestatewithouttakingcreditforcontrolrodmovement.TheSLCsystemsatisfiestherequirementsof10CFR50.62(Ref.1)foranticipatedtransientwithoutscram.TheSLCSystemconsistsofasodiumpentaboratesolutionstoragetank,twopositivedisplacementpumps,twoexplosivevalvesthatareprovidedinparallelforredundancy,andassociatedpipingandvalvesusedtotransferboratedwaterfromthestoragetanktothereactorpressurevessel(RPV).Theboratedsolutionisdischargednearthebottomofthecoreshroud,whereitthenmixeswiththecoolingwaterrisingthroughthecore.'smallertankcontainingdemineralizedwaterisprovidedfortestingpurposes.APPLICABLESAFETYANALYSESTheSLCSystemismanuallyinitiatedfromthemaincontrolroom,asdirectedbytheemergencyoperatingprocedures,iftheoperatorbelievesthereactorcannotbeshutdown,orkeptshutdown,withthecontrolrods.TheSLCSystemisusedintheeventthatenoughcontrolrodscannotbeinsertedtoaccomplishshutdownandcooldowninthenormalmanner.TheSLCSysteminjectsboratedwaterintothereactorcoretoaddnegativereactivitytocompensateforallofthevariousreactivityeffectsthatcouldoccurduringplantoperations.Tomeetthisobjective,itisnecessarytoinjectaquantityofboron,whichproducesaconcentrationof660ppmofnaturalboron,inthereactorcoolantat68'F.Toallowforpotentialleakageandimperfectmixinginthereactorsystem,anamountofboronequalto25Kof'heamountcitedaboveisadded(Ref.2).ThevolumeversusconcentrationlimitsinFigure3.1.7-1andthetemperatureversusconcentrationlimitsinFigure3.1.7-2arecalculatedsuchthattherequiredconcentrationisachievedaccountingfordilutionintheRPVwithnormalwaterlevelandincludingthewatervolumein(continued)SUSQUEHANNA-UNIT1B3.1-39Revision0

SLCSystemB3.1.7BASESAPPLICABLESAFETYANALYSES(continued)theresidualheatremovalshutdowncoolingpipingandintherecirculationlooppiping.Thisquantityoforatedsolutionistheamountthatisabovethepumpsuctionshutofflevelintheboronsolutionstoragetank.Nocreditistakenfortheportionofthetankvolumethatcannotbeinjected.Theminimumconcentrationof13.6weightpercentensurescompliancewiththerequirementsof10CFR50.62(Ref.1).TheSLCSystemsatisfiestherequirementsoftheNRCPolicyStatement(Ref.3)becauseoperatingexperienceandgrobabilisticriskassessmentshaveshowntheSLCSystemtoeimportanttopublichealthandsafety.Thus,itisretainedintheTechnicalSpecifications.LCOTheOPERABILITYoftheSLCSystemprovidesbackupcapabilityforreactivitycontrolindependentofnormalreactivitycontrolprovisionsprovidedbythecontrolrods.TheOPERABILITYoftheSLCSystemisbasedontheconditionsoftheboratedsolutioninthestoragetankandtheavailabilityofaflowpathtotheRPV,includingtheOPERABILITYofthepumpsandvalves.TwoSLCsubsystemsarerequiredtobeOPERABLE;eachcontainsanOPERABLEpump,anexplosivevalve,andassociatedpiping,valves,andinstrumentsandcontrolstoensureanOPERABLEflowpath.APPLICABILITYInMODES1and2,shutdowncapabilityisrequired.InMODES3and4,controlrodsarenotabletobewithdrawn(exceptaspermittedbyLCO3.10.3andLCO3.10.4)sincethereactormodeswitchisinshutdownandacontrolrodblockisapplied.Thisprovidesadequatecontrolstoensurethatthereactorremainssubcritical.InMODE5,onlyasinglecontrolrodcanbewithdrawnfromacorecellcontainingfuelassemblies.DemonstrationofadequateSDM(LCO3.1.1,"SHUTDOWNMARGIN(SDM)")ensuresthatthereactorwillnotbecomecritical.Therefore,theSLCSystemisnotrequiredtobeOPERABLEwhenonlyasinglecontrolrodcanbewithdrawn.SUSQUEHANNA-UNIT1B3.1-40(continued)Revision0 SLCSystemB3.1.7BASES(continued)ACTIONSA.lIftheboronsolutionconcentrationislessthantherequiredlimitsforcompliancewith10CFR50.62(Ref.1)(~13.6weightpercent)butgreaterthantheconcentrationrequiredforcoldshutdown(originallicensingbasis),theconcentrationmustberestoredtowithinlimits>13.6weightpercentin72hours.ItisnotnecessaryundertheseconditionstoenterConditionCforbothSLCsubsystemsinoperablesincetheyarecapableofperformingtheiroriginaldesignbasisfunction.BecauseofthelowprobabilityofaneventandthefactthattheSLCSystemcapabilitystillexistsforvesselinjectionundertheseconditions,theallowedCompletionTimeof72hoursisacceptableandprovidesadequatetimetorestoreconcentrationtowithinlimits.ThesecondCompletionTimeforRequiredActionA.lestablishesalimitonthemaximumtimeallowedforanycombinationofconcentrationoutoflimitsorinoperableSLCsubsystemsduringanysi'nglecontinuousoccurrenceoffailingtomeettheLCO.IfConditionAisenteredwhile,forinstance,anSLCsubsystemisinoperableandthatsubsystemissubsequentlyreturnedtoOPERABLE,theLCOmayalreadyhavebeennotmetforupto7days.Thissituationcouldleadtoatotaldurationof10days(7daysinCondition8,followedby3daysinConditionA).sinceinitialfailureoftheLCO,torestoretheSLCSystem.ThenanSLCsubsystemcouldbefoundinoperableagain,andconcentrationcouldberestoredtowithinlimits.Thiscouldcontinueindefinitely.ThisCompletionTimeallowsforanexceptiontothenormal"timezero"forbeginningtheallowedoutagetime"clock,"resultinginestablishingthe"timezero"atthetimetheLCOwasinitiallynotmetinsteadofatthetimeConditionAwasentered.The10dayCompletionTimeisanacceptablelimitationonthispotentialtofailtomeettheLCOindefinitely.B.1IfoneSLCsubsystemisinoperableforreasonsotherthanConditionA,theinoperablesubsystemmustberestoredtoOPERABLEstatuswithin7days.Inthiscondition,theremainingOPERABLEsubsystemisadequatetoperformthe(continued)SUSQUEHANNA-UNIT1B3.1-41Revision0 SLCSystemB3.1.7BASESACTIONSB.1(continued)shutdownfunction.However,theoverallreliabilityisreducedbecauseasinglefailureintheremainingOPERABLEsubsystemcouldresultinreducedSLCSystemshutdowncapability.The7dayCompletionTimeisbasedontheavailabilityofanOPERABLEsubsystemcapableof'erformingtheintendedSLCSystemfunctionandthelowprobabilityofaneventoccurringconcurrentwiththefailureoftheControlRodDrive(CRD)Systemtoshutdowntheplant.ThesecondCompletionTimeforRequiredActionB.lestablishesalimitonthemaximumtimeallowedforanycombinationofconcentrationoutoflimitsorinoperableSLCsubsystemsduringanysinglecontinuousoccurrenceoffailingtomeettheLCO.IfConditionBisenteredwhile,forinstance,concentrationisoutoflimits,andissubsequentlyreturnedtowithinlimits.theLCOmayalreadyhavebeennotmetforupto3days.Thissituationcouldleadtoatotaldurationof10days(3daysinConditionA,followedby7daysinCo'nditionB),sinceinitialfailureoftheLCO,torestoretheSLCSystem.Thenconcentrationcouldbefoundout'oflimits,again,andtheSLCsubsystemcouldberestoredtoOPERABLE.Thiscouldcontinueindefinitely.ThisCompletionTimeallowsforanexceptiontothenormal"timezero"forbeginningtheallowedoutagetime"clock,"resultinginestablishingthe"timezero"atthetimetheLCOwasinitiallynotmetinsteadofatthetimeConditionBwasentered.The10dayCompletionTimeisanacceptablelimitationonthispotentialtofailtomeettheLCOindefinitely.C.1IfbothSLCsubsystemsareinoperableforreasonsotherthanConditionA,atleastonesubsystemmustberestoredtoOPERABLEstatuswithin8hours.TheallowedCompletionTimeof8hoursisconsideredacceptablegiventhelowprobabilityofaneventoccurringconcurrentwiththefailureofthecontrolrodstoshutdownthereactor.(continued)SUSQUEHANNA-UNIT1B3.1-42Revision0 SLCSystemB3.1.7BASESACTIONS(continued)D.1IfanyRequiredActionandassociatedCompletionTimeisnotmet~theplantmustbebroughttoaMODEinwhichtheLCOdoesnotapply.Toachievethisstatus,theplantmustbebroughttoMODE3within12hours.TheallowedCompletionTimeof12hoursisreasonable,basedonoperatingexperience,toreachMODE3fromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.SURVEILLANCEREQUIREMENTSSR3171SR3172andSR3173SR3.1.7.1throughSR3.1.7.3are24hourSurveillancesverifyingcertaincharacteristicsoftheSLCSystem(e.g.,thevolumeandtemperatureoftheboratedsolutioninthestoragetank).therebyensuringSLCSystemOPERABILITYwithoutdisturbingnormalplantoperation.TheseSurveillancesensurethattheproperboratedsolutionvolumeandtemperature,includingthetemperatureof.thepumpsuctionpiping,aremaintained.Maintainingaminimum.specifiedborated-solutiontemperature-isimportantinensuringthatthesodiumpentaborateremains.insolutionanddoesnotprecipitateoutinthe-storage=tank-.or-"in-.the.-pumpsuctionpiping.Thetemperature..versus-:concentration'.curve-ofFigure3.1.7-2ensuresthata10'Fmargin=.wi;-llbe---maintainedabovethesaturation-temperature.-;;=An=alternate-methodofperformingSR3.1.7.3isto-.verify,-the=-.OPERABILLTY,oftheSLCheattracesystem.Thisveri-fies-the'conNnuityoftheheattracelinesandensuresproperheat-.trace:-operation,whichensurethattheSLCsuctionpiping-temperatureismaintained.The24hourFrequencyis,basedonoperatingexperienceandhasshowntherearerelativelyslowvariationsinthemeasuredparametersofvolumeandtemperature.SR3.1.7.4andSR3.1.7.6SR3.1.7.4verifiesthecontinuityoftheexplosivechargesintheinjectionvalvestoensurethatproperoperationwilloccurifrequired.Otheradministrativecontrols,suchasthosethatlimittheshelflifeoftheexplosivecharges,mustbefollowed.The31dayFrequencyisbasedon(continued)SUSQUEHANNA-UNIT1B3.1-43Revision0

SLCSystemB3.1.7BASESSURVEILLANCEREQUIREMENTSSR3.1.7.4andSR3.1.7.6(continued)operatingexperienceandhasdemonstratedthereliabilityoftheexplosivechargecontinuity.SR3.1.7.6verifiesthateachvalveinthesystemisinitscorrectposition,butdoesnotapplytothesquib(i.e..explosive)valves.VerifyingthecorrectalignmentformanualandpoweroperatedvalvesintheSLCSystemflowpathprovidesassurancethattheproperflowpathswillexistforsystemoperation.Avalveisalsoallowedtobeinthenonaccidentpositionprovideditcanbealignedtotheaccidentpositionfromthecontrolroom,orlocallybyadedicatedoperatoratthevalvecontrol.ThisisacceptablesincetheSLCSystemisamanuallyinitiatedsystem.ThisSurveillancealsodoesnotapplytovalvesthatarelocked,sealed,orotherwisesecuredinpositionsincetheyareverifiedtobeinthecorrectpositionpriortolocking,sealing,orsecuring.Thisverificationofvalvealignmentdoesnotrequireanytestingorvalvemanipulation;rather,itinvolvesverification'hatthosevalvescapableofbeingmispositionedareinthecorrectposition.ThisSRdoesnotapplytovalvesthatcannotbeinadvertentlymisaligned,suchascheckvalves.The31dayFrequencyisbasedonengineeringjudgmentandisconsistentwiththeproceduralcontrolsgoverningvalveoperationthatensurescorrectvalvepositions.SR3.1.7.5ThisSurveillancerequiresanexaminationofthesodiumpentaboratesolutionbyusingchemicalanalysistoensurethattheproperconcentrationofsodiumpentaborateexistsinthestoragetank.SR3.1.7.5mustbeperformedanytimesodiumpentaborateorwaterisaddedtothestoragetanksolutiontodeterminethatthesodiumpentaboratesolutionconcentrationiswithinthespecifiedlimits.SR3.1.7.5mustalsobeperformedanytimethetemperatureisrestoredtowithinthelimitsofFigure3.1.7-2,toensurethatnosignificantsodiumpentaborateprecipitationoccurred.The31dayFrequencyofthisSurveillanceisappropriatebecauseoftherelativelyslowvariationofsodiumpentaborateconcentrationbetweensurveillances.SUSQUEHANNA-UNIT1B3.1-44(continued)Revision0 SLCSystemB3.1.7BASESSURVEILLANCEREQUIREMENTS(continued)SR3.1.7.7DemonstratingthateachSLCSystempumpdevelopsaflowrate~41.2gpmatadischargepressure>1224psigensuresthatpumpperformancehasnotdegradedduringthefuelcycle.Thisminimumpumpflowraterequirementensuresthat,whencombinedwiththesodiumpentaboratesolutionconcentrationrequirements,therateofnegativereactivityinsertionfromtheSLCSystemwilladequatelycompensateforthepositivereactivityeffectsencounteredduringpowerreduction.cooldownofthemoderator,andxenondecay.Thistestconfirmsonepointonthepumpdesigncurveandisindicativeofoverallperformance.SuchinserviceinspectionsconfirmcomponentOPERABILITY,trendperformance,anddetectincipientfailuresbyindicatingabnormalperformance.TheFrequencyofthisSurveillanceisinaccordancewiththeInserviceTestingProgram.SR3.1.7.8andSR3.1.7.9TheseSurveillancesensurethatthereisafunctioningflowpathfromtheboronsolution.storagetanktotheRPV,includingthefiringofanexplosivevalve.Thereplacementchargeforthee/plosivevalveshallbefromthesamemanufacturedbatchastheonefiredorfromanotherbatchthathasbeencertifiedbyhavingoneofthatbatchsuccessfullyfired.Thepumpandexplosivevalvetestedshouldbealternatedsuchthatbothcompleteflowpathsaretestedevery48monthsatalternating24monthintervals.TheSurveillancemaybeperformedinseparatestepstopreventinjectingsolutionintotheRPV.AnacceptablemethodforverifyingflowfromthepumptotheRPVistopumpdemineralizedwaterfromatesttankthroughoneSLCsubsystemandintotheRPV.The24monthFrequencyisbasedontheneedtoperformthisSurveillanceundertheconditionsthatapplyduringaplantoutageandthepotentialforanunplannedtransientiftheSurveillancewereperformedwiththereactoratpower.OperatingexperiencehasshownthesecomponentsusuallypasstheSurveillancewhenperformedatthe24monthFrequency;therefore,theFrequencywasconcludedtobeacceptablefromareliabilitystandpoint.DemonstratingthatallheattracedpipingbetweentheboronsolutionstoragetankandthesuctioninlettotheinjectionSUSQUEHANNA-UNIT1B3.1-45(continued)Revision0 SLCSystemB3.1.7BASESSURVEILLANCEREQUIREMENTSSR3.1.7.8andSR3.1.7.9(continued)pumpsisunblockedensuresthatthereisafunctioningflowpathforinjectingthesodiumpentaboratesolution.Anacceptablemethodf'rverifyingthatthesuctionpipingisunblockedistopumpfromthestoragetank.tothetesttank.Thistestcanbeperformedbyanyseriesofoverlappingortotalflowpathtestsothattheentire'flowpathisincluded.The24monthFrequencyisacceptablesincethereisalowprobabilitythatthesubjectpipingwillbeblockedduetoprecipitationoftheboronfromsolutionintheheattracedpiping.ThisisespeciallytrueinlightofthetemperatureverificationofthispipingrequiredbySR3.1.7.3.However,if,inperformingSR3.1.7.3,itisdeterminedthatthetemperatureofthispipinghasfallenbelowthespecifiedminimumortheheattracewasnotproperlyenergizedandbuildingtemperaturewasbelowthetemperatureatwhichtheSLCsolutionwouldprecipitateout,SR3.1.7.9mustbeperformedoncewithin24hoursafterthepipingtemperatureisrestoredtowithinthelimitsofFigure3.1.7-2.REFERENCES.1.10CFR'50.62.2.FSAR,Section9.3.5.3.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA-UNIT1B3.1-46Revision0 SDVVentandDrainValvesB3.1.8B3.1REACTIVITYCONTROLSYSTEMSB3.1.8ScramDischargeVolume(SDV)VentandDrainValvesBASESBACKGROUNDTheSDVventanddrainvalvesarenormallyopenanddischargeanyaccumulatedwaterintheSDVtoensurethatsufficientvolumeisavailableatalltimestoallowacompletescram.Duringascram,theSDVventanddrainvalvesclosetocontainreactorwater.TheSDVisavolumeofheaderpipingthatconnectstoeachhydrauliccontrolunit(HCU)anddrainsintoaninstrumentvolume.TherearetwoSDVs(headers)andtwoinstrumentvolumes,eachreceivingapproximatelyonehalfofthecontrolroddrive(CRD)discharges.Thetwoinstrumentvolumesareconnectedtoacommondrainlinewithtwovalvesinseries.Eachheaderisconnectedtoacommonventlinewithtwovalvesinseries.TheheaderpipingissizedtoreceiveandcontainallthewaterdischargedbytheCRDsduringascram.Thedesignandfunctionsofthe.SDVaredescribedinReference1.APPLICABLESAFETYANALYSESTheDesignBasis.Accideni=-and=trans'.ent.analysesassumeallofthecontrolrods-are-.-capable=.,of=scramming.Theacceptancecriteria-'fortheSDV==vent~anddrainvalvesarethattheyoperate-automa~ical'ly'-to::;a.Closeduring-scram-to:=.limit=the=amountofreactorcoolantdischarged=-so=that,adequatecorecoolingismaintained-andoffsite-doses~remainwithinthelimitsof10CFR100(Ref.-2).;and-.-b.OpenonscramresettomaintaintheSDVventanddrainpathopensothatthereissufficientvolumetoacceptthereactorcoolantdischargedduringascram.IsolationoftheSDVcanalsobeaccomplishedbymanualclosureoftheSDVvalves.Additionally,thedischargeofreactorcoolanttotheSDVcanbeterminatedbyscramresetorclosureoftheHCUmanualisolationvalves.Foraboundingleakagecase,theoffsitedosesarewellwithinthelimitsof10CFR100(Ref.2),andadequatecorecoolingismaintained(Ref.3).TheSDVventanddrainvalvesallowcontinuousdrainageoftheSDVduringnormalplantoperation(continued)SUSQUEHANNA-UNIT1B3.1-47Revision0 SDVVentandDrainValvesB3.1.8BASESAPPLICABLESAFETYANAIYSES(continued)toensurethattheSDVhassufficientcapacitytocontainthereactorcoolantdischargeduringafullcorescram.Toautomaticallyensurethiscapacity,areactorscram(LCO3.3.1.1,"ReactorProtectionSystem(RPS)Instrumentation")isinitiatediftheSDVwaterlevelintheinstrumentvolumeexceedsaspecifiedsetpoint.ThesetpointischosensothatallcontrolrodsareinsertedbeforetheSDVhasinsufficientvolumetoacceptafullscram.SDVventanddrainvalvessatisfyCriterion3oftheNRCPolicyStatement.(Ref.4).LCOTheOPERABILITYofallSDVventanddrainvalvesensuresthattheSDVventanddrainvalveswillcloseduringascramtocontainreactorwaterdischargedtotheSDVpiping.TheSDVventanddrainvalvesarerequiredtobeopentoensuretheSDVisdrained.Sincetheventanddrainlinesareprovidedwithtwovalves'nseries,thesinglefailureof'nevalveintheopenpositionwillnotimpairtheisolationfunctionofthesystem.Additionally,thevalvesarerequiredtoopenonscramresettoensurethatapathisavailablefortheSDVpipingtodrainfreelyatothertimes.APPLICABILITYInMODES1and2.scrammayberequired;therefore,theSDVventanddrainvalvesmustbeOPERABLE.InMODES3and4,controlrodsarenotabletobewithdrawn(exceptaspermittedbyLCO3.10.3andLCO3.10.4)sincethereactormodeswitchisinshutdownandacontrolrodblockisapplied.Thisprovidesadequatecontrolstoensurethatonlyasinglecontrolrodcanbewithdrawn.Also,duringMODE5,onlyasinglecontrolrodcanbewithdrawnfromacorecellcontainingfuelassemblies.Therefore,theSDVventanddrainvalvesarenotrequiredtobeOPERABLEintheseMODESsincethereactorissubcriticalandonlyonerodmaybewithdrawnandsubjecttoscram.ACTIONSTheACTIONStableismodifiedbyaNoteindicatingthataseparateConditionentryisallowedfortheSDVventlineandtheSDVdrainline.Thisisacceptable,sincethe(continued)SUSQUEHANNA-UNIT1B3.1-48Revision0 SDVVentandDrainValvesB3.1.8BASESACTIONS(continued)RequiredActionsforeachConditionprovideappropriatecompensatoryactionsforeachinoperableSDVline.ComplyingwiththeRequiredActionsmayallowforcontinuedoperation,andsubsequentinoperableSDVlinesaregovernedbysubsequentConditionentryandapplicationofassociatedRequiredActions.A.1WhenoneSDVventordrainvalveisinoperablebutopen.thevalvemustberestoredtoOPERABLEstatuswithin7days.TheCompletionTimeisreasonablebecauseventinganddrainingcapabilityismaintained;automaticisolationcapabilityismaintainedandthereisalowprobabilityofascramoccurringwhilethevalve(s)are.inoperable.TheSDVisstillisolablesincetheredundantvalveintheaffectedlineisOPERABLE.Duringtheseperiods,thesinglefailurecriterionisnotpreserved,andahigherriskexiststoallowreactorwateroutoftheprimarysystemduringascram.B.1Ifbothvalvesinalineareinoperable,automaticisolationcapabilityandtheabilitytocontainthereactorcoolantduringascramislost.Ifoneorbothvalvesinaventlineordrainlineisclosed,thepotentialforaninadvertentscramduetohighSDVlevelisincreased.Therefore,bothventinganddrainingcapabilityandisolationcapabilitymustberestored.The8hourCompletionTimetorestoreventinganddrainingcapabilityandautomaticisolationcapabilityisbasedonthelowprobabilityofascramoccurringwhilethelineisnotisolatedandunlikelihoodofsignificantCRDsealleakage.C.1IfanyRequiredActionandassociatedCompletionTimeisnotmet~theplantmustbebroughttoaMODEinwhichtheLCO(continued)SUSQUEHANNA-UNIT1B3.1-49Revision0 SDVVentandDrainValvesB3.1.8BASESACTIONSC.l(continued)doesnotapply.Toachievethisstatus,theplantmustbebroughttoatleastMODE3within12hours.TheallowedCompletionTimeof12hoursisreasonable,basedonoperatingexperience,toreachMODE3fromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.SURVEILLANCEREQUIREMENTSSR3.1.8.1Duringnormaloperation,theSDVventanddrainvalvesshouldbeintheopenposition(exceptwhenperformingSR3.1.8.2)toallowfordrainageoftheSDVpiping.VerifyingthateachvalveisintheopenpositionensuresthattheSDVventanddrainvalveswillperformtheirintendedfunctionsduringnormaloperation.ThisSRdoesnotrequireanytestingorvalvemanipulation;rather,itinvolvesverificationthatthevalvesareinthecorrectposition.The31dayFrequencyisbasedonengineeringjudgmentandisconsistentwith.theproceduralcontrolsgoverningvalveoperation,whichensurecorrectvalvepositions.SR3.1.8.2Duringascram,theSDVventanddrainvalvesshouldclosetocontainthereactorwaterdischargedtotheSDVpiping.Cyclingeachvalvethroughitscompleterangeofmotion(closedandopen)ensuresthatthevalvewillfunctionproperlyduringascram.The92dayFrequencyisbasedonoperatingexperienceandtakesintoaccountthelevelofredundancyinthesystemdesign.SR3.1.8.3SR3.1.8.3isanintegratedtestoftheSDVventanddrainvalvestoverifyt'otalsystemperformance.Afterreceiptofasimulatedoractualscramsignal,theclosureoftheSDVventanddrainvalvesisverified.Theclosuretimeof(continued)SUSQUEHANNA-UNIT1B3.1-50Revision0 SDVVentandDrainValvesB3.1.8BASESSURVEILLANCEREQUIREMENTSSR3.1.8.3(continued)30secondsafterreceiptofascramsignalisbasedontheboundingleakagecaseevaluatedintheaccidentanalysisbasedontherequirementsofReference2.Similarly,afterreceiptofasimulatedoractualscramresetsignal,theopeningoftheSDVventanddrainvalvesisverified.TheLOGICSYSTEMFUNCTIONALTESTinLCO3.3.1.1andthescramtimetestingofcontrolrodsinLCO3.1.3overlapthisSurveillancetoprovidecompletetestingoftheassumedsafetyfunction.The24monthFrequencyisbasedontheneedtoperformportionsofthisSurveillanceundertheconditionsthatapplyduringaplantoutageandthepotentialforanunplannedtransientiftheSurveillancewereperformedwiththereactoratpower.OperatingexperiencehasshownthesecomponentsusuallypasstheSurveillancewhenperformedatthe24monthFrequency;therefore.theFrequencywasconcludedtobeacceptablefromareliabilitystandpoint.REFERENCES1.FSAR,Section-4.6.2.10CFR'100.3.NUREG-0803,"GenericSafetyEvaluationReportRegardingIntegrityofBWRScramSystemPiping,"August1981:.4.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA-UNIT1B3.1-51Revision0 APLHGRB3.2.1B3.2POWERDISTRIBUTIONLIMITS83.2.1AVERAGEPLANARLINEARHEATGENERATIONRATE(APLHGR)BASESBACKGROUNDTheAPLHGRisameasureoftheaverageLHGRofallthefuelrodsinafuelassemblyatanyaxiallocation.LimitsontheAPLHGRarespecifiedtoensurethatlimitsspecifiedin10CFR50.46arenotexceededduringthepostulateddesignbasislossofcoolantaccident(LOCA).,APPLICABLESAFETYANALYSESTwoseparateanalysesformtheanalyticalbasisfortheAPLHGRlimits:GeneralElectric(GE)performedLOCAcalculationsfortheSiemensPowerCorporation(SPC)9x9-2fueldesign.SPCperformedLOCAcalculationsfortheSPCATRIUMŽ-10fueldesign.Theanalyticalmethodsandassumptionsusedinevaluatingthefueldesignlimitsfrom10CFR50.46arepresentedinReferences1and2fortheGEanalysisandReferences3,4,5,and6fortheSPCanalysis.TheanalyticalmethodsandassumptionsusedinevaluatingDesignBasisAccidents(DBAs)thatdeterminetheAPLHGRLimitsarepresentedinReferences1through9.LOCAanalysesar'eperformedtoensurethattheAPLHGRlimitsareadequatetomeetthePeakCladdingTemperature(PCT),maximumcladdingoxidation,andmaximumhydrogengenerationlimitsof10.CFR50.46.Theanalysesareperformedusingcalculationalmodelsthatareconsistentwiththerequirementsof10CFR50,AppendixK.AcompletediscussionoftheanalysiscodesareprovidedinReference1fortheGEanalysisandReferences3,4,5,and6fortheSPCanalysis.ThePCTfollowingapostulatedLOCAisafunctionoftheaverageheatgenerationrateofalltherodsofafuelassemblyatanyaxiallocationandisnotstronglyinfluencedbytherodtorodpowerdistributionwithintheassembly.APLHGRlimitsaredevelopedasafunctionoffueltypeandexposure.TheGEanalysisisvalidforfullcoresofSPC9x9-2fuelandmixedcoresofSPC9x9-2andATRIUMŽ-10fuel.TheSPCanalysisisvalidformixedcoresofSPC9x9-2andATRIUMŽ-10fuelandfullcoresofATRIUMŽ-10fuel.TheGEandSPCLOCAanalysesalsoconsiderseveralalternateoperatingmodesinthedevelopmentoftheAPLHGRlimits(e.g.,ExtendedLoadLineLimitAnalysis(ELLA),(continued)SUSQUEHANNA-UNIT1B3.2-1Revision0 APLHGRB3.2.1BASESAPPLICABLESAFETYANALYSES(continued)SuppressionPoolCoolingMode,andSingleLoopOperation(SLO)).LOCAanalyseswereperformedf'rtheregionsoftheower/flowmapboundedbythe100KrodlineandtheAPRMrodlockline(i.e.,theELLAregion).TheELLAregionisanalyzedtodeterminewhetheranAPLHGRmultiplierasafunctionofcoreflowisrequired.TheresultsoftheanalysisdemonstratethePCTsarewithinthe10CFR50.46limit,andthatAPLHGRmultipliersasafunctionofcore.flowarenotrequired.TheGEandSPCLOCAanalysesconsiderthedelayinLowPressureCoolantInjection(LPCI)availabilitywhentheunitisoperatingintheSuppressionPoolCoolingMode.ThedelayinLPCIavailabilityisduetothetimerequiredtorealignvalvesfromtheSuppressionPoolCoolingModetotheLPCImode.TheresultsoftheanalysesdemonstratethatthePCTsarewithinthe10CFR50.46limit.Finally,theGEandSPCLOCAanalyseswereperformedforSingle-LoopOperation.TheresultsoftheSPCanalysisforATRIUMŽ-10fuelshowsthatanAPLHGRlimitwhichis0.8timesthetwo-loopAPLHGRlimitmeetsthe10CFR50.46acceptancecriteria;andthatthePCTislessthanthelimitingtwo-loopPCT.TheresultsoftheGEanalysisshowsthatthetwoloopAPLHGRlimitfor9x9-2fuelisacceptableinSLO.TheUnit1corecontainsfourABBleaduseassemblies(LUAs).TheLUAsareloadedinnon-limitingcoreregionsperSpecification4.2.1.SeparateAPLHGRlimitsfortheABBLUAshavebeendevelopedusingthereference11methodology.TheAPLHGRsatisfiesCriterion2oftheNRCPolicyStatement(Ref.10).LCOTheAPLHGRlimitsspecifiedintheCOLRaretheresultoftheDBAanalyses.APPLICABILITYTheAPLHGRlimitsareprimarilyderivedfromLOCAanalysesthatareassumedtooccurathighpowerlevels.Designcalculationsandoperatingexperiencehaveshownthataspowerisreduced,themargintotherequiredAPLHGRlimits(continued)SUSQUEHANNA-UNIT1B3.2-2Revision0 APLHGRB3.2.1BASESAPPLICABILITY(continued)increases.AtTHERMALPOWERlevels<25KRTP,thereactorisoperatingwithsubstantialmargintotheAPLHGRlimits;thus,thisLCOisnotrequired.ACTIONSA.1IfanyAPLHGRexceedstherequiredlimits,anassumptionregardinganinitialconditionoftheDBAmaynotbemet.Therefore,promptactionshouldbetakentorestoretheAPLHGR(s)towithintherequiredlimitssuchthattheplantoperateswithinanalyzedconditions.The2hourCompletionTimeissufficienttorestoretheAPLHGR(s)towithinitslimitsandisacceptablebasedonthelowprobabilityofaDBAoccurringsimultaneouslywiththeAPLHGRoutofspecification.B.1IftheAPLHGRcannotberestoredtowithinitsrequiredlimitswithinthe-associated.CompletionTime,theplantmustbebroughttoaMODEorotherspecifiedconditioninwhichtheLCOdoes-notapply.Toachievethisstatus,THERMALPOWERmustbereducedto<25KRTPwithin4hours.TheallowedCompletionTime.isreasonable,basedonoperatingexperience,toreduceTHERMALPOWERto<25KRTPinanorderlymannerandwithoutchallengingplantsystems.SURVEILLANCEREQUIREMENTSSR3.2.1.1APLHGRsarerequiredtobeinitiallycalculatedwithin24hoursafterTHERMALPOWERis>25KRTPandthenevery24hoursthereafter.Additionally.APLHGRsmustbecalculatedpriortoexceeding50KRTPunlessperformedintheprevious24hours.APLHGRsarecomparedtothespecifiedlimitsintheCOLRtoensurethatthereactorisoperatingwithintheassumptionsofthesafetyanalysis.The24hourFrequencyisbasedonbothengineeringjudgmentandrecognitionoftheslownessofchangesinpowerdistributionduringnormaloperation.The24hourallowanceafterTHERMALPOWER~25KRTPisachievedisacceptable(continued)SUSQUEHANNA-UNIT1B3.2-3Revision0 APLHGRB3.2.1BASESSURVEILLANCEREQUIREMENTSSR3.2,1.1(continued)giventhelargeinherentmargintooperatinglimitsatlowpowerlevelsandbecausetheAPLHGRsmustbecalculatedpriortoexceeding50%RTP.REFERENCES7.8.10.NEDC-32071(P),"SusquehannaSteamElectricStationUnits1and2:SAFER/GESTRLossofCoolantAccidentAnalysis,"May1992.LetterfromC.O.Thomas(NRC)toJ.F.Quirk(GE),"AcceptanceforreferencingofLicensingTopicalReportNEDE-23785,Revision1,VolumeIII(P),"'TheGESTR-LOCAandSAFERModelsfortheEvaluationofLossofCoolantAccident,'une1984.ANF-91-048(P)(A),"AdvancedNuclearFuelsCorporationMethodologyforBoilingWaterReactorsEXEMBWREvaluationModel,"January1993.ANF-CC-33(P)(A)Supplement2,"HUXY:AGeneralizedMultirodHeatupCodewith10CFR50AppendixKHeatup-Option,"January1991.XN-CC-33(P)(A)Revision1,"HUXY:AGeneralizedMultirodHeatupCodewith10CFR50AppendixKHeatupOptionUsersManual,"November1975.XN-NF-80-19(P)(A),Volumes2,2A,2B,and2C"ExxonNuclearMethodologyforBoilingWaterReactors:EXEMBWRECCSEvaluationModel,"September1982.FSAR,Chapter4.FSAR,Chapter6.FSAR,Chapter15.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).CENPD-300-P,"ReferenceSafetyReportforBoilingWaterReactorReloadFuel,"ABBCombustionEngineeringNuclearOperations,November1994.SUSQUEHANNA-UNIT1B3.2-4Revision0 HCPRB3.2.2B3.2POWERDISTRIBUTIONLIMITSB3.2.2MINIMUMCRITICALPOWERRATIO(MCPR)BASESBACKGROUNDMCPRisaratioofthefuelassemblypowerthatwouldresultintheonsetofboilingtransitiontotheactualfuelassemblypower.TheHCPRSafetyLimit(SL)issetsuchthat99.9Xofthefuelrodsavoidboilingtransitionifthelimitisnotviolated(refertotheBasesforSL2.1.1.2).TheoperatinglimitHCPRisestablishedtoensurethatnofueldamageresultsduringanticipatedoperationaloccurrences(AOOs).Althoughfueldamagedoesnotnecessarilyoccurifafuelrodactuallyexperiencedboilingtransition(Ref.1),thecriticalpoweratwhichboilingtransitioniscalculatedtooccurhasbeenadoptedasafueldesigncriterion.Theonsetoftransitionboilingisaphenomenonthatisreadilydetectedduringthetestingofvariousfuelbundledesigns.Basedontheseexperimentaldata,correlationshavebeendevelopedtopredictcriticalbundlepower(i.e.,thebundlepowerlevelattheonsetoftransitionboiling)foragivensetofplantparameters(e.g'.,reactorvesselpressure,flow,andsubcooling).Becauseplantoperatingconditionsandbundlepowerlevelsaremonitoredanddeterminedrelativelyeasily,monitoringtheHCPRisaconvenientwayofensuringthatfuelfailuresduetoinadequatecoolingdonotoccur.APPLICABLESAFETYANALYSESTheanalyticalmethodsandassumptionsusedinevaluatingtheAOOstoestablishtheoperatinglimitHCPRarepresentedinReferences2through10.ToensurethattheHCPRSLisnotexceededduringanytransienteventthatoccurswithmoderatefrequency.'limitingtransientshavebeenanalyzedtodeterminethelargestreductionincriticalpowerratio(CPR).Thetypesoftransientsevaluatedarelossofflow,increaseinpressureandpower,positivereactivityinsertionsandcoolanttemperaturedecrease.ThelimitingtransientyieldsthelargestchangeinCPR(bCPR).WhenthelargesthCPRisaddedtotheHCPRSL,therequiredoperatinglimitMCPRisobtained.TheHCPRoperatinglimitsderivedfromthetransientanalysisaredependentontheoperatingcoreflowandpower(continued)SUSQUEHANNA-UNIT1B3.2-5Revision0 HCPRB3.2.2BASESAPPLICABLESAFETYANALYSES(continued)statetoensureadherencetofueldesignlimitsduringtheworsttransientthatoccurswithmoderatefrequency.Theseanalysesmayalsoconsiderothercombinationsofplantconditions(i.e.,controlrodscramspeed.bypassvalveperformance.EOC-RPT,cycleexposure,etc.).FlowdependentHCPRlimitsaredeterminedbyanalysisofslowflowrunouttransientsusingthemethodologyofReference2.TheUnit1corecontainsfourABBleaduseassemblies(LUAs).TheLUAsareloadedinnon-limitingcoreregionsperSpecification4.2.1.HCPROperatinglimitsfortheABBLUAshavebeendevelopedusingthemethodologyfromReferences2and12.TheHCPRsatisfiesCriterion2oftheNRCPolicyStatement(Ref.11).LCOTheHCPRoperatinglimitsspecifiedintheCOLRaretheresultoftheDesignBasisAccident(DBA)andtransientanalysis.TheoperatinglimitHCPRisdeterminedbythelargeroftheflow-dependent.MCPRandpowerdependentHCPRlimits.APPLICABILITYTheHCPRoperatinglimitsareprimarilyderivedfromtransientanalysesthatareassumedtooccurathighpowerlevels.Below25KRTP,thereactorisoperatingataminimumrecirculationpumpspeedandthemoderatorvoidratioissmall.Surveillanceofthermallimitsbelow25KRTPisunnecessaryduetothelargeinherentmarginthatensuresthattheHCPRSLisnotexceededevenifalimitingtransientoccurs.Studiesofthevariationoflimitingtransientbehaviorhavebeenperformedovertherangeofpowerandflowconditions.Thesestudiesencompasstherangeofkeyactualplantparametervaluesimportanttotypicallylimitingtransients.TheresultsofthesestudiesdemonstratethatamarginisexpectedbetweenperformanceandtheHCPRrequirements,andthatmarginsincreaseaspowerisreducedto25KRTP.Thistrendisexpectedto(continued)SUSQUEHANNA-UNIT1B3.2-6Revision0 MCPRB3.2.2BASESAPPLICABILITY(continued)continuetothe5Rto15KpowerrangewhenentryintoMODE2occurs.WheninMODE2,theintermediaterangemonitorprovidesrapidscraminitiationforanysignif'icantpowerincreasetransient,whicheffectivelyeliminatesanyHCPRcomplianceconcern.Therefore,atTHERMALPOWERlevels<25KRTP,thereactorisoperatingwithsubstantialmargintotheHCPRlimitsandthisLCOisnotrequired.ACTIONSA.1IfanyHCPRisoutsidetherequiredlimits,anassumptionregardinganinitialconditionofthedesignbasistransientanalysesmaynotbemet.Therefore,promptactionshouldbetakentorestoretheHCPR(s)towithintherequiredlimitssuchthattheplantremainsoperatingwithinanalyzedconditions.The2hourCompletionTimeisnormallysufficienttorestoretheHCPR(s)towithinitslimitsandisacceptablebasedonthelowprobabilityofatransientorDBAoccurringsimultaneo'uslywiththeHCPRoutofspecification.IftheHCPRcannotberestoredtowithinitsrequiredlimitswithintheassociatedCompletionTime.theplantmustbebroughttoaMODEorotherspecifiedconditioninwhichtheLCOdoesnotapply.Toachievethisstatus.THERMALPOWERmust-bereducedto'25KRTPwithin4hours.The.allowedCompletionTimeisreasonable,basedonoperatingexperience.toreduceTHERMALPOWERto<25KRTPinanorderlymannerandwithoutchallengingplantsystems.SURVEILLANCEREQUIREMENTSSR3.2.2.1TheHCPRisrequiredtobeinitiallycalculatedwithin24hoursafterTHERMALPOWERis~25KRTPandthenevery24hoursthereafter.Additionally,HCPRmustbecalculatedpriortoexceeding50KRTPunlessperformedintheprevious24hours.HCPRiscomparedtothespecifiedlimitsinthe(continued)SUSQUEHANNA-UNIT1B3.2-7Revision0 MCPRB3.2.2BASESSURVEILLANCEREQUIREMENTSSR3.2.2.1(continued)COLRtoensurethatthereactorisoperatingwithintheassumptionsofthesafetyanalysis.The24hourFrequencyisbasedonbothengineeringjudgmentandrecognitionoftheslownessofchangesinpowerdistributionduringnormaloperation.The24hourallowanceafterTHERMALPOWER~25KRTPisachievedisacceptablegiventhelargeinherentmargintooperatinglimitsatlowpowerlevelsandbecausetheMCPRmustbecalculatedpriortoexceeding50KRTP.SR3.2.2.2Becausethetransientanalysistakescreditforconservatisminthescramtimeperformance,itmustbedemonstratedthatthespecificscramtimeisconsistentwiththoseusedinthetransientanalysis.SR3.2.2.2determinesthescramtimefractionwhichisameasureoftheactualscramtimecomparedwiththeassumedscramtime.TheCOLRcontainsatableofscramtimefractionsbased.ontheLCO3.1.4"ControlRodScramTimes"andtherealisticscramtimesused.inthe:transientanalysis.TheMCPRoperatinglimit-isthen'determinedbasedonaninterpolationbetweentheapplicablelimits-.for"screamtimesofLCO3.1.4,"ControlRodScram"Times."and.realisticscramtimeanalysesusingthescram=timeMractton;Thescramtimefractionandcorresponding:-MCPR=operating.limitmustbedeterminedoncewithin.72.'.hours'-.after=-each-:setofscramtimetestsrequiredbySR-3;1'.4.1,SR-3'.14-.2,SR3.1.4.3andSR3.1.4.4becausetheeffective-..-scramtimes.maychangeduringthecycle.The72hourCompletionTimeisacceptableduetotherelativelyminor-changesinthescramtimefractionexpectedduringthefuelcycle.REFERENCES1.NUREG-0562,June1979.2.PL-NF-90-001-A,"ApplicationofReactorAnalysisMethodsforBWRDesignandAnalysis,"July1992,Supplement1-A,August1995,andSupplement2-A.July1996.(continued)SUSQUEHANNA-UNIT1B3.2-8Revision0 MCPR83.2.2BASESREFERENCES(continued)PL-NF-87-001-A,"QualificationofSteadyStatecorePhysicsMethodsforBWRDesignandAnalysis."April28,1988.PL-NF-89-005-A,"QualificationofTransientAnalysisMethodsforBWRDesignandAnalysis,"July1992,includingSupplements1and2.XN-NF-80-19(P)(A),Volume4,Revision1,"ExxonNuclearMethodologyforBoilingHaterReactors:ApplicationoftheENCMethodologytoBWRReloads,"ExxonNuclearCompany,June1986.NE-092-001,Revision1,"SusquehannaSteamElectricStationUnits152:LicensingTopicalReportforPowerUpratewithIncreasedCoreflow,"December1992,andNRCApprovalLetter:LetterfromT.E.Murley(NRC)toR.G.Byram(PP&L),"LicensingTopicalReportforPowerUprateWithIncreasedCoreFlow,Revision0,SusquehannaSteamElectricStation,Units1and2(PLA-3788)(TACNos.M83426andH83427),"November30,1993.EMF-97-010,Revision1,"ApplicationofANFBtoATRIUMŽ-IO'forSusquehannaReloads,"March1997.(OnlyApplicableforUlCll)PLA-4595,"ResponsetoNRCRequestforAdditionalInformationonSiemens'eportEMF-97-.010,Revision1,"March27,1997.(OnlyApplicableforU1Cll)XN-NF-79-71(P)(A)Revision2,Supplements1,2,and3,"ExxonNuclearPlantTransientMethodologyforBoilingWaterReactors,"Harch1986.10.XN-NF-84-105(P)(A),Volume1andVolume1Supplements1and2,"XCOBRA-T:AComputerCodeforBWRTransientThermal-HydraulicCoreAnalysis,"February1987.11.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).12.CENPD-300-P,"ReferenceSafetyReportforBoilingWaterReactorReloadFuel,"ABBCombustionEngineeringNuclearOperations,November1994.SUSQUEHANNA-UNIT1B,3.2-9Revision0 LHGRB3.2.3B3.2POWERDISTRIBUTIONLIMITSB3.2.3LINEARHEATGENERATIONRATE(LHGR)BASESBACKGROUNDTheLHGRisameasureoftheheatgenerationrateofafuelrodinafuelassemblyatanyaxiallocation.LimitsonLHGRarespecifiedtoensurethatfueldesignlimitsarenotexceededanywhereinthecoreduringnormaloperation.ExceedingtheLHGRlimitcouldpotentiallyresultinf'ueldamageandsubsequentreleaseofradioactivematerials.Fueldesignlimitsarespecifiedtoensurethatfuelsystemdamage,fuelrodfailure,orinabilitytocoolthefueldoesnotoccurduringthenormaloperationsidentifiedinReferencel.APPLICABLESAFETYANALYSESTheanalyticalmethodsandassumptionsusedinevaluatingthefuelsystemdesignarepresentedinReferences1,2.3,4,5,and6.Thefuelassemblyisdesignedtoensure(inconjunctionwiththecorenuclearandthermalhydraulicdesign,plantequipment.instrumentation,andprotectionsystem)thatfueldamagewillnotresultinthereleaseofradioactivematerialsinexcessoftheguidelinesof'0CFR,Parts20,50,and100.Themechanismsthatcouldcausefueldamageduringoperationaltransientsandthatareconsideredinfuelevaluationsare:a.RuptureofthefuelrodcladdingcausedbystrainfromtherelativeexpansionoftheUO,pellet;andb.Severeoverheatingofthefuelrodcladdingcausedbyinadequatecooling.Avalueof1Xplasticstrainofthefuelcladdinghasbeendefinedasthelimitbelowwhichfueldamagecausedbyoverstrainingofthefuelcladdingisnotexpectedtooccur(Ref.3).FueldesignevaluationshavebeenperformedanddemonstratethatthelXfuelcladdingplasticstraindesignlimitisnotexceededduringcontinuousoperationwithLHGRsuptotheoperatinglimitspecifiedintheCOLR.AseparateevaluationwasperformedtodeterminethelimitsofLHGRduringanticipatedoperationaloccurrences.Thislimit,(continued)SUSQUEHANNA-UNIT1B3.2-10Revision0

LHGRB3.2.3BASESAPPLICABLESAFETYANALYSES(continued)ProtectionAgainstPowerTransients(PAPT),definedinreferences5and6,providestheacceptancecriteriaforLHGRscalculatedinevaluationoftheAOOs.ForSPC9x9-2fuel,thereisaLHGRmultiplierdefinedintheCoreOperatingLimitsReport(COLR)forsinglerecirculationloopoperation.ThismultiplierensuresthattheDBALOCAwillbelesssevereinsingleloopoperationthanintwoloopoperation.TheUnit1corecontainsfourABBleaduseassemblies(LUAs).TheLUAsareloadedinnonlimitingcoreregionsperSpecification4.2.1.SeparateLHGRlimitsfortheABBLUAshavebeendevelopedusingthemethodologyfromReference8.SimilartoSPC9x9-2fuel,thereisaLHGRmultiplierforsinglerecirculationloopoperation.ThismultiplierensuresthattheDBALOCAwillbelesssevereinsingleloopoperationthanintwoloopoperation.TheLHGRsatisfiesCriterion2oftheNRCPolicyStatement(Ref.7).LCOTheLHGRisabasicassumptioninthefueldesignanalysis.ThefuelhasbeendesignedtooperateatratedcorepowerwithsufficientdesignmargintotheLHGRcalculatedtocausea1Xfuelcladdingplasticstrain.TheoperatinglimittoaccomplishthisobjectiveisspecifiedintheCOLR.APPLICABILITYTheLHGRlimitsarederivedfromfueldesignanalysisthatislimitingathighpowerlevelconditions.Atcorethermalpowerlevels<25KRTP,thereactorisoperatingwithasubstantialmargintotheLHGRlimitsand,therefore,theSpecificationisonlyrequiredwhenthereactorisoperatingat~25KRTP.ACTIONSA.lIfanyLHGRexceedsitsrequiredlimit.anassumptionregardinganinitialconditionofthefueldesignanalysisisnotmet.Therefore,promptactionshouldbetakento(continued)SUSQUEHANNA-UNIT1B3.2-11Revision0 LHGRB3.2.3BASESACTIONSA.1(continued)restoretheLHGR(s)towithinitsrequiredlimitssuchthattheplantisoperatingwithinanalyzedconditions.The2hourCompletionTimeisnormallysufficienttorestoretheLHGR(s)towithinitslimitsandisacceptablebasedonthelowprobabilityofatransientorDesignBasisAccidentoccurringsimultaneouslywiththeLHGRoutofspecification.B.lIftheLHGRcannotberestoredtowithinitsrequiredlimitswithintheassociatedCompletionTime.theplantmustbebroughttoaMODEorotherspecifiedconditioninwhichtheLCOdoesnotapply.Toachievethisstatus,THERMALPOWERisreducedto<25KRTPwithin4hours.TheallowedCompletionTimeisreasonable,basedonoperatingexperience,toreduceTHERMALPOWERto<25KRTPinanorderlymannerandwithoutchallengingplantsystems.SURVEILLANCEREQUIREMENTSSR3.2.3.1TheLHGRisrequiredtobeinitiallycalculated=-withi'n-.....,24hoursafterTHERMALPOWERis>25K'RTP"and.then;every.='24hoursthereafter.Additionally,LHGRs-'ust=be=cal'culzted=;.priortoexceeding50KRTPunlessperformed-inthe=previous.=24hours.TheLHGRiscomparedtothe.specified-limits-.in-'theCOLRtoensurethatthereactorisoperatingwithi.n=.the:-assumptionsofthesafetyanalysis.The24hour-Frequency-isbasedonbothengineeringjudgmentandrecognitionoftheslowchangesinpowerdistributionduringnormaloperation.The24hourallowanceafterTHERMALPOWER~25KRTPisachievedisacceptablegiventhelargeinherentmargintooperatinglimitsatlowerpowerlevelsandbecausetheLHGRsmustbecalculatedpriortoexceeding50KRTP.REFERENCES1.FSAR,Section4.2.FSAR,Section5.3.NUREG-0800,SectionII.A.2(g),Revision2,July1981.(continued)SUSQUEHANNA-UNIT1B3.2-12Revision0 LHGRB3.2.3BASESREFERENCES(continued)4.XN-NF85-67(P)(A),Revision1."GenericMechanicalDesignforExxonNuclearJetPumpBWRReloadFuel,"ExxonNuclearCompany,Inc.,September1986.5.PL-NF-94-005-P-A,"TechnicalBasisfor9X9-2ExtendedFuelExposureatSusquehannaSES,"January19956.ANF-89-98(P)(A)Revision1andRevision1Supplement1,"GenericMechanicalDesignCriteriaforBWRFuelDesigns,"AdvancedNuclearFuelsCorporation,May1995.7.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).8.CENPD-300-P,"ReferenceSafetyReportforBoilingWaterReactorReloadFuel,"ABBCombustionEngineeringNuclearOperations,November1994.SUSQUEHANNA-UNIT1B3.2-13Revision0 APRHGainandSetpointsB3.2.4B3.2POWERDISTRIBUTIONLIMITSB3.2.4AveragePowerRangeMonitor(APRH)GainandSetpointsBASESBACKGROUNDTheOPERABILITYoftheAPRMsandtheirsetpointsisaninitialconditionofallsafetyanalysesthatassumerodinsertionuponreactorscram.ApplicableGDCsareGDC10,"ReactorDesign."GDC13,"InstrumentationandControl,"GDC20,"ProtectionSystemFunctions,"andGDC23,"ProtectionagainstAnticipatedOperationOccurrences"(Ref.1).ThisLCOisprovidedtorequiretheAPRHgainorAPRHflowbiasedscramsetpointstobeadjustedwhenoperatingunderconditionsofexcessivepowerpeakingtomaintainacceptablemargintothetueltransientmechanicaldesignlimit(i.e.,ProtectionAgainstPowerTransient(PAPT)limit).TheconditionofexcessivepowerpeakingisdeterminedbytheratiooftheactualpowerpeakingtothelimitingpowerpeakingatRTP.ThisratioisequaltotheratioofthecorelimitingHFLPDtotheFractionofRTP(FRTP),whereFRTPisthemeasuredTHERMAL,POWERdividedbyth'eRTP.Excessivepowerpeakingexistswhen:)1,HFLPDFRTPindicatingthatHFLPDisnotdecreasingproportionatelytotheoverallpowerreduction,orconversely,thatpowerpeakingisincreasing.TomaintainmarginssimilartothoseatRTPconditions,theexcessivepowerpeakingiscompensatedbyagainadjustmentontheAPRHsoradjustmentoftheAPRMsetpoints.EitheroftheseadjustmentshaseffectivelythesameresultasmaintainingHFLPDlessthanorequaltoFRTPtoensurethePAPTlimitsarenotviolatedundersteadystateortransientconditions.ThenormallyselectedAPRHsetpointspositionthescramabovetheupperboundofthenormalpower/flowoperatingregionthathasbeenconsideredinthedesignofthefuelrods.Thesetpointsareflowbiasedwithaslopethatapproximatestheupperflowcontrolline,suchthatanapproximatelyconstantmarginismaintainedbetweentheflowbiasedtriplevelandtheupperoperatingboundaryforcoreflowsinexcessofabout45Kofratedcoreflow.Intherangeofinfrequentoperationsbelow45Kofratedcoreflow,(continued)SUSQUEHANNA-UNIT183.2-14Revision0 APRMGainandSetpointsB3.2.4BASESBACKGROUND(continued)themargintoscramisreducedbecauseofthenonlinearcoreflowversusdriveflowrelationship.ThenormallyselectedAPRMsetpointsaresupportedbytheanalysesthatconcentrateoneventsinitiatedfromratedconditions.Designexperiencehasshownthatminimumdeviationsoccurwithinexpectedmarginstooperatinglimits(APLHGR,LHGRandMCPR).atratedconditionsfornormalpowerdistributions.However,atotherthanratedconditions,controlrodpatternscanbeestablishedthatsignificantlyreducethemargintothermallimits.Therefore.theflowbiasedAPRMscramsetpointsmaybereducedduringoperationwhenthecombinationofTHERMALPOWERandMFLPDindicatesanexcessivepowerpeakingdistribution.TheAPRMneutronfluxsignalisalsoconditionedtomorecloselyfollowthefuelcladdingheatfluxduringpowertransients.TheAPRMneutronfluxsignalisameasureofthecorethermalpowerduringsteadystateoperation.Duringpowertransients,theAPRMsignalleadstheactualcorethermalpowerresponsebecauseofthefuelthermaltimeconstant.Therefore,on'owerincreasetransients,theAPRMsignalprovidesaconservativelyhighmeasureofcorethermalpower.BypassingtheAPRMsignalthroughanelectronicfilterwithatimeconstantapproximatelyequalto,thatofthefuelthermaltimeconstant,anAPRMtransientresponsethatmorecloselyfollowsactualfuelcladdingheatfluxisobtained.ThedelayedresponseofthefilteredAPRMsignalallowstheflowbiasedAPRMscramlevelstobepositionedclosertotheupperboundofthenormalpowerandflowrange,withoutunnecessarilycausingreactorscramsduringshortdurationneutronfluxspikes.Thesespikescanbecausedbyinsignificanttransientssuchasperformanceofmainsteamlinevalvesurveillancesormomentaryflowincreasesofonlyseveralpercent.APPLICABLESAFETYANALYSESTheacceptancecriteriafortheAPRMgainorsetpointadjustmentsarethatacceptablemarginsbemaintainedtothefueltransientmechanicaldesignlimit(PAPT).FSARsafetyanalyses(Refs.2and.3)concentrateontheratedpowerconditionforwhichtheminimumexpectedmargintotheoperatinglimits(APLHGR,LHGRandMCPR)occurs.LCO3.2.1,"AVERAGEPLANARLINEARHEATGENERATIONRATE(APLHGR),"LCO3.2.2,"MINIMUMCRITICALPOWERRATIO(continued)SUSQUEHANNA-UNIT1B3.2-15Revision0 APRMGainandSetpointsB3.2.4BASESAPPLICABLESAFETYANALYSES(continued)(MCPR),"andLCO3.2.3,"LINEARHEATGENERATIONRATE(LHGR),"limittheinitialmarginstotheseoperatinglimitsatratedconditionssothatspecifiedacceptablefueldesignlimitsaremetduringtransientsinitiatedfromratedconditions.Atinitialpowerlevelslessthanratedlevels,themargindegradationofeithertheLHGRortheMCPRduringatransientcanbegreaterthanattheratedconditionevent.Thisgreatermargindegradationduringthetransientisprimarilyoffsetbythelargerinitialmargintolimitsatthelowerthanratedpowerlevels.However,powerdistributionscanbehypothesizedthatwouldresultinreducedmarginstothepre-transientoperatinglimit.Whencombinedwiththeincreasedseverityofcertaintransientsatotherthanratedconditions,theSLscouldbeapproached.Atsubstantiallyreducedpowerlevels,highlypeakedpowerdistributionscouldbeobtainedthatcouldreducethermalmarginstotheminimumlevelsrequiredfortransientevents.Topreventormitigatesuchsituations,theMCPRmargindegradationatreducedpowerandflowisfactoredintothepowerandflowdependentMCPRlimits(LCO3.2.2).ForLHGR(Ref.4and5),eithertheAPRMgainisadjustedupwardbytheratioofthecorelimitingMFLPDtotheFRTP,ortheflowbiasedAPRMscramlevel.isreducedbytheratioofFRTPtothecorelimitingMFLPD.TheadjustmentintheAPRMgaincanbeperformed'providedit'sduringpowerascensionupto90KofRATEDTHERMALPOWER,'hattheadjustedAPRMreadingdoesnotexceed100KofRATEDTHERMALPOWER,therequiredgainadjustmentincrement.doesnotexceed10KofRATEDTHERMALPOWER,andanoticeoftheadjustmentispostedonthereactorcontrolpanel.EitheroftheseadjustmentseffectivelycounterstheincreasedseverityofsomeeventsatotherthanratedconditionsbyproportionallyincreasingtheAPRMgainorproportionallyloweringtheflowbiasedAPRMscramsetpoints,dependentontheincreasedpeakingthatmaybeencountered.TheUnit1corecontainsfourABBleaduseassemblies(LUAs).TheLUAsareloadedinnonlimitingcoreregionsperSpecification4.2.1.AseparatefuelmechanicaldesignlimitfortheABBLUAshasbeendevel'opedusingthemethodologyfromReference7.TheAPRMgainandsetpointssatisfyCriteria2and3oftheNRCPolicyStatement(Ref.6).SUSQUEHANNA-UNIT1B3.2-16(continued)Revision0 APRHGainandSetpoints83.2.4BASES(continued)LCOMeetinganyoneofthefollowingconditionsensuresacceptableoperatingmargintothetransientmechanicaldesignlimit(PAPT)foreventsdescribedabove:a.Limitingexcesspowerpeaking;b.ReducingtheAPRHflowbiasedneutronfluxupscalescramsetpointsbymultiplyingtheAPRHsetpointsbytheratioofFRTPandthecorelimitingvalueofMFLPD;orc.IncreasingAPRMgainstocausetheAPRMtoreadgreaterthan100timesMFLPD(inX).ThisconditionistoaccountforthereductioninmargintothefuelcladdingintegritySLandthefuelcladding1%plasticstrainlimit.HFLPDistheratioofthelimitingLHGRtotheLHGRlimitforAPRHsetpointsforthespecificbundletype.Aspowerisreduced,ifthedesignpowerdistributionismaintained,HFLPDisreducedinproportiontothereductioninpower.However,ifpowerpeakingincreasesabovethedesignvalue,theHFLPDisnotreducedinproportiontothereductioninpower.Undertheseconditions.theAPRHgainisadjustedupwardortheAPRMflowbiasedscramsetpointsarereducedaccordingly.Whenthereactorisoperatingwithpeakinglessthanthedesignvalue,itisnotnecessarytomodifytheAPRHflowbiasedscramsetpoints.AdjustingAPRHgainorsetpointsisequivalenttoHFLPDlessthanorequaltoFRTP~asstatedintheLCO.ForcompliancewithLCOItemb(APRHsetpointadjustment)orItemc(APRHgainadjustment),onlyAPRHsrequiredtobeOPERABLEperLCO3.3.1.1,"ReactorProtectionSystem(RPS)Instrumentation,"arerequiredtobeadjusted.Inaddition,eachAPRHmaybeallowedtohaveitsgainorsetpointsadjustedindependentlyofotherAPRHsthatarehavingtheirgainorsetpointsadjusted.APPLICABILITYTheHFLPDlimit,APRHgainadjustment,andAPRHflowbiasedscramandassociatedsetdownsareprovidedtoensurethatthefueltransientmechanicaldesignlimit(PAPT)isnotviolatedduringdesignbasistransients.AsdiscussedintheBasesforLCO3.2.1,LCO3.2.2,andLCO3.2.3,(continued)SUSQUEHANNA-UNIT1B3.2-17Revision0

APRHGainandSetpointsB3.2.4BASESAPPLICABILITY(continued)sufficientmargintotheselimitsexistsbelow25KRTPand,therefore,theserequirementsareonlynecessarywhenthereactorisoperatingat~25KRTP.ACTIONSA.lIftheAPRHgainorsetpointsarenotwithinlimitswhiletheHFLPDhasexceededFRTP,themargintothefueltransientmechanicaldesignlimit(PAPT)maybereduced.Therefore,promptactionshouldbetakentorestoretheMFLPDtowithinitsrequiredlimitormakeacceptableAPRMadjustmentssuchthattheplantisoperatingwithintheassumedmarginofthesafetyanalyses.The6hourCompletionTimeisnormallysufficienttorestoreeithertheMFLPDtowithinlimitsortheAPRMgainorsetpointstowithinlimitsandisacceptablebasedonthelowprobabilityofatransientorDesignBasisAccidentoccurringsimultaneously'iththeLCOnotmet.TheAPRHsetpoints-includetheAPRHRodBlockFlowBiasNeutronFluxUpscaleSetpointwhichiscontrolledinTechnicalRequirementManual(TRH)3.1.3"ControlRodBlockInstrumentation."8.1IfHFLPDcannotberestoredtowithinitsrequiredlimitswithintheassociatedCompletionTime,theplantmustbebroughttoaMODEorotherspecifiedconditioninwhichtheLCOdoesnotapply.Toachievethisstatus,THERMALPOWERisreducedto(25KRTPwithin4hours.TheallowedCompletionTimeisreasonable,basedonoperatingexperience,toreduceTHERMALPOWERto<25KRTPinanorderlymannerandwithoutchallengingplantsystems.SURVEILLANCEREQUIREMENTSSR3.2.4.1andSR3.2.4.2TheHFLPDisrequiredtobecalculatedandcomparedtoFRTPorAPRMgainorsetpointstoensurethatthereactor(continued)SUSQUEHANNA-UNIT1B3.2-18Revision0 APRHGainandSetpointsB3.2.4BASESSURVEILLANCEREQUIREMENTSSR3.2.4.1andSR3.2.4.2(continued)isoperatingwithintheassumptionsofthesafetyanalysis.TheseSRsareonlyrequiredtodeterminetheMFLPDand,assumingHFLPDisgreaterthanFRTP,theappropriategainorsetpoint,andisnotintendedtobeaCHANNELFUNCTIONALTESTfortheAPRHgainorflowbiasedneutronfluxscramcircuitry.The24hourFrequencyofSR3.2.4.1ischosentocoincidewiththedeterminationofotherthermallimits,specificallythosef'rtheAPLHGR(LCO3.2.1).The24hourFrequencyisbasedonbothengineeringjudgmentandrecognitionoftheslownessofchangesinpowerdistributionduringnormaloperation.The24hourallowanceafterTHERMALPOWER~25KRTPisachievedisacceptablegiventhelargeinherentmargintooperatinglimitsatlowpowerlevelsandbecausetheHFLPDmustbecalculatedpriortoexceeding50KRTPunlessperformedintheprevious24hours.WhenMFLPDisgreaterthanFRTP,SR3.2.4.2mustbeperformed.The12hourFrequencyofSR3.2.4.2requiresamorefrequentverificationwhenHFLPDisgreaterthanthefractionofratedthermalpower(FRTP)becausemorerapidchangesinpowerdistributionaretypicallyexpected.REFERENCES1.10CFR50,AppendixA,GDC10,GDC13,GDC20,andGDC23.2.FSAR,Section4.3.FSAR.Section15.4.PL-NF-94-005-P-A,"TechnicalBasisfor9X9-2ExtendedFuelExposureatSusquehannaSES,"January1995.5.ANF-89-98(P)(A)Revision1andRevision1Supplement1."GenericMechanicalDesignCriteriaforBWRFuelDesigns,"AdvancedNuclearFuelsCorporation,Hay1995.6.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).7.CENPD-300-P,"ReferenceSafetyReportforBoilingWaterReactorReloadFuel,"ABBCombustionEngineeringNuclearOperations,November1994.SUSQUEHANNA-UNIT1B3.2-19Revision0

0 RPSInstrumentationB3.3.1.1B3.3INSTRUMENTATION83.3.1.1ReactorProtectionSystem(RPS)InstrumentationBASESBACKGROUNDTheRPSinitiatesareactorscramwhenoneormoremonitoredparametersexceedtheirspecifiedlimits,topreservetheintegrityofthefuelcladdingandtheReactorCoolantSystem(RCS)andminimizetheenergythatmustbeabsorbedfollowingalossofcoolantaccident(LOCA).Thiscanbeaccomplishedeitherautomaticallyormanually.TheprotectionandmonitoringfunctionsoftheRPShavebeendesignedtoensuresafeoperationofthereactor.Thisisachievedbyspecifyinglimitingsafetysystemsettings(LSSS)intermsofparametersdirectlymonitoredbytheRPS,aswellasLCOsonotherreactorsystemparametersandequipmentperformance.TheLSSSaredefinedinthisSpecificationastheAllowableValues.which,inconjunctionwiththeLCOs,establishthethresholdforprotectivesystemactiontopreventexceeChngacceptablelimits,includingSafetyLimits(SLs)duringDesignBasisAccidents(DBAs).TheRPS,asshownin.tgeFSAR,Figure7.2-1(Ref.1).includessensors,'elays,bypasscircuits,andswitchesthatarenecessarytocauseinitiationofareactorscram.Functionaldiversityisprovidedbymonitoringawiderangeofdependentandindependentparameters.Theinputparameterstothescramlogicarefrominstrumentationthatmonitorsreactorvesselwaterlevel,reactorvesselpressure.neutronflux,mainsteamlineisolationvalveposition,turbinecontrolvalve(TCV)fastclosuretripoilpressure,turbinestopvalve(TSV)position,drywellpressure.andscramdischargevolume(SDV)waterlevel,aswellasreactormodeswitchinshutdownpositionandmanualscramsignals.Thereareatleastfourredundantsensorinputsignalsfromeachoftheseparameters(withtheexceptionofthereactormodeswitchinshutdownscramsignal).Whenthesetpointisreached,thechannelsensoractuates,whichthenoutputsanRPStripsignaltothetriplogic.Table83.3.1.1-1summarizesthediversityofsensorscapableofinitiatingscramsduringanticipatedoperatingtransientstypicallyanalyzed.TheRPSiscomprisedoftwoindependenttripsystems(AandB)withtwologicchannelsineachtripsystem(logic(continued)SUSQUEHANNA-UNIT1B3.3-1Revision0 RPSInstrumentationB3.3.1.1BASESBACKGROUND(continued)channelsA1andA2,BlandB2)asshowninReference1.Theoutputsofthelogicchannelsinatripsystemarecombinedinaone-out-of-twologicsothateitherchannelcantriptheassociatedtripsystem.Thetrippingofbothtripsystemswillproduceareactorscram.Thislogicarrangementisreferredtoasaone-out-of-twotakentwicelogic.Eachtripsystemcanberesetbyuseofaresetswitch.Ifafullscramoccurs(bothtripsystemstrip),arelaypreventsresetofthetripsystemsfor10secondsafterthefullscramsignalisreceived.This10seconddelayonresetensuresthatthescramfunctionwillbecompleted.TwoACpoweredscrampilotsolenoidsarelocatedinthehydrauliccontrolunitforeachcontrolroddrive(CRD).'achscrampilotvalveisoperatedwiththesolenoidsnormallyenergized.ThescrampilotvalvescontroltheairsupplytothescraminletandoutletvalvesfortheassociatedCRD.Wheneitherscrampilotvalvesolenoidisenergized,airpressureholdsthescramvalvesclosedand,therefore,bothscrampilotvalvesolenoidsmustbede-energizedtocause-acontrolrodtoscram.Thescramvalvescontrolthe"supplyanddischargepathsfortheCRDwaterduring:a.scram.,Oneofthescrampilotvalvesolenoids.fotdachCRD.iscontrolledbytripsystemA,and,theothersol.enoi:d.is;controlledbytripsystemB.Anytrip"oftripsystem=A-in-conjunctionwithanytripintripsystemB'results=,in-.,de=energizingbothsolenoids,airbleedingoff-.scram:-va'l.vesopening,andcontrolrodscram.-TheDCpowered-;backup-;scramvalves,whichenergizeonascramsignaltodepressurizethescramairheader,arealsocontrolledbytheRPS.Additionally,theRPSSystemcontrolstheSDVventanddrainvalvessuchthatwhenbothtripsystemstrip,theSDVventanddrainvalvesclosetoisolatetheSDV.APPLICABLESAFETYANALYSES,LCO,andAPPLICABILITYTheactionsoftheRPSareassumedinthesafetyanalysesofReferences3,4,5and6.TheRPSinitiatesareactorscrambeforethemonitoredparametervaluesreachtheAllowableValues,specifiedbythesetpointmethodologyandlistedinTable3.3.1.1-1topreservetheintegrityofthefuelcladding,thereactorcoolantpressureboundary(RCPB),and(continued)SUSQUEHANNA-UNIT1B3.3-2Revision0 RPSInstrumentationB3.3.1.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY(continued)thecontainmentbyminimizingtheenergythatmustbe.absorbedfollowingaLOCA.RPSinstrumentationsatisfiesCriterion3oftheNRCPolicyStatement.(Ref.2)FunctionsnotspecificallycreditedintheaccidentanalysisareretainedfortheoverallredundancyanddiversityoftheRPSasrequiredbytheNRCapproved,licensingbasis.TheOPERABILITYoftheRPSisdependentontheOPERABILITYoftheindividualinstrumentationchannelFunctionsspecifiedinTable3.3.1.1-1.EachFunctionmusthavearequirednumberofOPERABLEchannelsperRPStripsystem,withtheirsetpointswithinthespecifiedAllowableValue,whereappropriate.Theactualsetpointiscalibratedconsistentwithapplicablesetpointmethodologyassumptions.Eachchannelmustalsorespondwithinitsassumedresponsetime.AllowableValuesarespecifiedforeachRPSFunctionspecifiedintheTable.Nominaltripsetpointsarespecifiedinthesetpointcalculations.ThenominalsetpointsareselectedtoensurethattheactualsetpointsdonotexceedtheAllowableValuebetweensuccessiveCHANNELCALIBRATIONS.Operationwithatripsetpointlessconservativethanthenominaltripsetpoint.butwithinitsAllowableValue,isacceptable.AchannelisinoperableifitsactualtripsetpointisnotwithinitsrequiredAllowableValue.Tripsetpointsarethosepredeterminedvaluesofoutputatwhichanactionshouldtakeplace.Thesetpointsarecomparedtotheactualprocessparameter(e.g.,reactorvesselwaterlevel),andwhenthemeasuredoutputvalueoftheprocessparameterreachesthesetpoint,theassociateddevicechangesstate.Theanalyticlimitsarederivedfromthelimitingvaluesof'heprocessparametersobtainedfromthesafetyanalysis.TheAllowableValuesarederivedfromtheanalyticlimits,correctedforcalibration,process,andsomeoftheinstrumenterrors.Thetripsetpointsarethendeterminedaccountingfortheremaininginstrumenterrors(e.g.,drift).The.tripsetpointsderivedinthismannerprovideadequateprotectionbecauseinstrumentationuncertainties,processeffects,calibrationtolerances,(continued)SUSQUEHANNA-UNIT1B3.3-3Revision0 RPSInstrumentationB3.3.1.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY(continued)instrumentdrift,andsevereenvironmenterrors(forchannelsthatmustfunctioninharshenvironmentsasdefinedby10CFR50.49)areaccountedfor.TheOPERABILITYofscrampilotvalvesandassociatedsolenoids,backupscramvalves,andSDYvalves,describedintheBackgroundsection,arenotaddressedbythisLCO.TheindividualFunctionsarerequiredtobeOPERABLEintheMODESspecified,inthetable,whichmayrequireanRPStriptomitigatetheconsequencesofadesignbasisaccidentortransient.Toensureareliablescramfunction,acombinationofFunctionsarerequiredineachMODEtoprovideprimaryanddiverseinitiationsignals.TheRPSisrequiredtobeOPERABLEinMODE5withanycontrolrodwithdrawnfromacorecellcontainingoneormorefuelassemblies.Controlrodswithdrawnfromacorecellcontainingnofuelassembliesdonotaffectthereactivityofthecoreand,therefore,arenotrequiredtohavethecapabilitytoscram.Providedallothercontrolrodsremaininserted,theRPSfunctionisnotrequired.Inthiscondition,therequired..SDH(LCO3.1.1)andrefuelpositionone-rod-outinterlock(LCO3.9.2)ensurethatnoeventrequiring'RPSwilloccur.DuringnormaloperationinMODES3and4,allcontrolrodsarefullyinsertedandtheReactorModeSwitchShutdownPositioncontrolrodwithdrawalblock(LCO3.3.2.1)doesnotallowanycontrolrodtobewithdrawn.Undertheseconditions,theRPSfunctionisnotrequiredtobeOPERABLE.TheexceptiontothisisSpecialOperations(LCO3.10.3andLCO3.10.4)whichensurecompliancewithappropriaterequirements.ThespecificApplicableSafetyAnalyses,LCO,andApplicabilitydiscussionsarelistedbelowonaFunctionbyFunctionbasis.IntermediateRaneMonitorIRMl.a.IntermediateRaneMonitorNeutronFlux-HihTheIRHsmonitorneutronfluxlevelsfromtheupperrangeofthesourcerangemonitor(SRH)tothelowerrangeoftheaveragepowerrangemonitors(APRHs).TheIRHsarecapableofgeneratingtripsignalsthatcanbeusedtopreventfuel(continued)SUSQUEHANNA-UNIT1B3.3-4Revision0

RPSInstrumentationB3.3.1.1BASESAPPLICABLESAFETYANALYSELCO.andAPPLICABILITYS,l.a.IntermediateRaneMonitorNeutronFlux-Hih(continued)damageresultingfromabnormaloperatingtransientsintheintermediatepowerrange.Inthispowerrange,themostsignificantsourceof'eactivitychangeisduetocontrolrodwithdrawal.TheIRHprovidesdiverseprotectionfortherodworthminimizer(RWH),whichmonitorsandcontrolsthe~movementofcontrolrodsatlowpower.TheRWMpreventsthewithdrawalofanoutofsequencecontrolrodduringstartupthatcouldresultinanunacceptableneutronfluxexcursion(Ref.2).TheIRHprovidesmitigationoftheneutronfluxexcursion.TodemonstratethecapabilityoftheIRMSystemtomitigatecontrolrodwithdrawalevents,genericanalyseshavebeenperformed(Ref.3)toevaluatetheconsequencesofcontrolrodwithdrawaleventsduringstartupthataremitigatedonlybytheIRH.Thisanalysis,whichassumesthatoneIRHchannelineachtripsystemisbypassed,demonstratesthattheIRHsprovideprotectionagainstlocalcontrolrodwithdrawalerrorsandresultsinpeakfuelenergydepositionsbelowthe170cal/gmfuelfailurethresholdcriterion.TheIRHsarealsocapableoflimitingotherreactivityexcursionsduringstartup.suchascoldwaterinjectionevents,althoughnocreditisspecificallyassumed.TheIRMSystemisdividedintotwotripsystems,withfourIRH.channelsinputtingtoeachtripsystem.TheanalysisofReference3assumesthatonechannelineachtrip.systemisbypassed.Therefore,sixchannelswiththreechannelsineachtripsystemarerequiredforIRMOPERABILITYtoensurethatnosingleinstrumentfailurewillprecludeascramfromthisFunctiononavalidsignal.Thistripisactiveineachofthe10rangesoftheIRH,whichmustbeselectedbytheoperatortomaintaintheneutronfluxwithinthemonitoredlevelofanIRMrange.TheanalysisofReference3hasadequateconservatismtopermitanIRHAllowableValueof122divisionsof'125divisionscale.TheIntermediateRangeMonitorNeutronFlux-HighFunctionmustbeOPERABLEduringNODE2whencontrolrodsmaybewithdrawnandthepotentialforcriticalityexists.In(continued)SUSQUEHANNA-UNIT1B3.3-5Revision0 RPSInstrumentationB3.3.1.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY1.a.IntermediateRaneMonitorNeutronFlux-Hih(continued)MODE5,whenacellwithfuelhasitscontrolrodwithdrawn,theIRHsprovidemonitoringforandprotectionagainstunexpectedreactivityexcursions.InMODE1,theAPRMSystemandtheRWMprovideprotectionagainstcontrolrodwithdrawalerroreventsandtheIRHsarenotrequired.,Inaddition,theFunctionisautomaticallybypassedwhentheReactorModeSwitchisintheRunposition.1.b.IntermediateRaneMonitor-InoThistripsignalprovidesassurancethataminimumnumberofIRMsareOPERABLE.AnytimeanIRMmodeswitchismovedtoanypositionotherthan"Operate,"thedetectorvoltagedropsbelowapresetlevel,orwhenamoduleisnotpluggedin,aninoperativetripsignalwillbereceivedbytheRPSunlesstheIRMisbypassed.SinceonlyoneIRMineachtripsystemmaybebypassed,onlyoneIRHineachRPStripsystemmaybeinoperablewithoutresultinginanRPStripsi.gnal.This:Functionwasnotspecificallycredited-inthe-.accident........analysisbutit.isretainedfortheoverallredundancyand==.'..;diversityoftheRPSasrequiredbytheNRCapproved-,licensingbasis.SixchannelsofIntermediateRangeMonitor=Inop;-with-thi"ee=-.-'..-:channels:ineachtripsystemarerequiredto;be=OPERABLE-';to=-"ensurethatnosingleinstrumentfailurewillp'reclude..a'.scramfromthisFunctiononavalidsignal.SincethisFunctionisnotassumedinthesafetyanalysis.,thereisnoAllowableValueforthisFunction.ThisFunctionisrequiredtobeOPERABLEwhentheIntermediateRangeMonitorNeutronFlux-HighFunctionisrequired.(continued)SUSQUEHANNA-UNIT183.3-6Revision0 RPSInstrumentationB3.3.1.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY(continued)AveraePowerRaneMonitor2.a.AveraePowerRaneMonitorNeutronFlux-HihSetdownTheAPRMchannelsreceiveinputsignalsfromthelocalpowerrangemonitors(LPRMs)withinthereactorcoretoprovideanindicationofthepowerdistributionandlocalpowerchanges.TheAPRMchannelsaveragetheseLPRMsignalstoprovideacontinuousindicationofaveragereactorpowerfromafewpercenttogreaterthanRTP.Foroperationatlowpower(i.e.,MODE2),theAveragePowerRangeMonitorNeutronFlux-High,SetdownFunctioniscapableofgeneratingatripsignalthatpreventsfueldamageresultingfromabnormaloperatingtransientsinthispowerrange.Formostoperationatlowpowerlevels,theAveragePowerRangeMonitorNeutronFlux-High,SetdownFunctionwillprovideasecondaryscramtotheIntermediateRangeMonitorNeutronFlux-HighFunctionbecauseoftherelativesetpoints.WiththeIRMsatRange9or10,itispossiblethattheAveragePowerRangeMonitorNeutronFlux-High,SetdownFunctionwillprovidetheprimarytripsignalforacorewideincreaseinpower.NospecificsafetyanalysestakedirectcreditfortheAveragePowerRangeMonitorNeutronFlux-High,SetdownFunction.However,thisFunctionindirectlyensuresthatbeforethereactormodeswitchisplacedintherun,position,reactorpowerdoesnotexceed25KRTP(SL2.1.1.1)whenoperatingatlowreactorpressureandlowcoreflow.Therefore,itindirectlypreventsfueldamageduringsignificantreactivityincreaseswithTHERMALPOWER(25KRTP.TheAPRMSystemisdividedintotwotripsystemswiththreeAPRMchannelinputstoeachtripsystem.Thesystemisdesignedtoallowonechannelineachtripsystemtobebypassed.AnyoneAPRMchannelinatripsystemcancausetheassociatedtripsystemtotrip.FourchannelsofAveragePowerRangeMonitorNeutronFlux-High,SetdownwithtwochannelsineachtripsystemarerequiredtobeOPERABLEtoensurethatnosinglefailurewillprecludeascramfromthisFunctiononavalidsignal.Inaddition,toprovideadequatecoverageoftheentirecore,atleast14LPRMinputsarerequiredforeachAPRMchannel,withatleasttwo(continued)SUSQUEHANNA-UNIT1B3.3-7Revision0 RPSInstrumentationB3.3.1.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY2.a.AveraePowerRaneMonitorNeutronFlux-HihSetdown(continued)LPRMinputsfromeachofthefouraxiallevelsatwhichtheLPRMsarelocated.TheAllowableValueisbasedonpreventingsignificantincreasesinpowerwhenTHERMALPOWERis<25KRTP.TheAveragePowerRangeMonitorNeutronFlux-High,SetdownFunctionmustbeOPERABLEduringMODE2whencontrolrodsmaybewithdrawn.sincethepotentialforcriticalityexists.InMODE1,theAveragePowerRangeMonitorNeutronFlux-HighFunctionprovidesprotectionagainstreactivitytransientsandtheRWMprotectsagainstcontrolrodwithdrawalerrorevents.2.b.AveraePowerRaneMonitorFlowBiasedSimulatedThermalPower-HihTheAveragePowerRangeMonitorFlowBiasedSimulatedThermalPower-HighFunction.monitorsneutronfluxtoapproximatetheTHERMALPOWERbeingtransferredtothereactorcoolant:TheAPRMneutronfluxiselectronicallyfilteredwithatimeconstantrepresentativeofthefuelheattransferdynamicstogenerateasignalproportionaltotheTHERMALPOWERinthereactor.Thetriplevelisvariedasafunctionofrecirculationdriveflow(i.e..atlowercoreflows,thesetpointisreducedproportionaltothereductioninpowerexperiencedascoreflowisreducedwithafixedcontrolrodpattern)butisclampedatanupperlimitthatisalwayslowerthantheAveragePowerRangeMonitorFixedNeutronFlux-HighFunctionAllowableValue.TheAveragePowerRangeMonitorFlowBiasedSimulatedThermalPower-HighFunctionprovidesprotectionagainsttransientswhereTHERMALPOWERincreasesslowly(suchasthelossoffeedwaterheatingevent)andprotectsthefuelcladdingintegritybyensuringthattheMCPRSLisnotexceeded.Duringtheseevents,theTHERMALPOWERincreasedoesnotsignificantlylagtheneutronfluxresponseand,becauseofalowertripsetpoint,wi11initiateascrambeforethehighneutronfluxscram.Forrapidneutronfluxincreaseevents,theTHERMALPOWERlagstheneutronfluxandtheAveragePowerRangeMonitorFixedNeutronFlux-HighFunctionwillprovideascramsignalbeforetheAverage(continued)SUSQUEHANNA-UNIT1B3.3-8Revision0 RPSInstrumentationB3.3.1.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY2.b.AveraePowerRaneMonitorFlowBiasedSimulatedThermalPower-Hih(continued)PowerRangeMonitorFlowBiasedSimulatedThermalPower-HighFunctionsetpointisexceeded.TheAPRMSystemisdividedintotwotripsystemswiththreeAPRMinputstoeachtripsystem.Thesystemisdesignedtoallowonechannelineachtripsystemtobebypassed.AnyoneAPRMchannelinatripsystemcancausetheassociatedtripsystemtotrip.FourchannelsofAveragePowerRangeMonitorFlowBiasedSimulatedThermalPower-Highwithtwochannelsineachtripsystemarrangedinaone-out-of-twologicarerequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurewillprecludeascramfromthisFunctiononavalidsignal.Inaddition,toprovideadequatecoverageoftheentirecore.atleast14LPRMinputsarerequiredforeachAPRMchannel,withatleasttwoLPRMinputsfromeachofthefouraxiallevelsatwhichtheLPRMsarelocated.EachAPRMchannelreceivestwototaldriveflowsignalsrepresentativeoftotalcoreflow.Thetotaldriveflowsignalsaregeneratedbyfourflowunits,twoofwhichsupplysignalstothetripsystemAAPRMs.whiletheothertwosupplysignalstothetripsystemBAPRMs.Eachflowunitsign51'isprovidedbysumminguptheflowsignalsfromthetworecirculationloops.Toobtainthemostconservativereferencesignals,thetotalflowsignalsfromthetwoflowunits(associatedwithatripsystemas'escribedabove)areroutedtoalowauctioncircuitassociatedwitheachAPRM.EachAPRM'sauctioncircuitselectsthelowerofthetwoflowunitsignalsforuseasthescramtripreferenceforthatparticularAPRM.EachrequiredAveragePowerRangeMonitorFlowBiasedSimulatedThermalPower-HighchannelonlyrequiresaninputfromoneOPERABLEflowunit,sincetheindividualAPRMchannelwillperformtheintendedfunctionwithonlyoneOPERABLEflowunitinput.However,inordertomaintainsinglefailurecriteriafortheFunction,atleastonerequiredAveragePowerRangeMonitorFlowBiasedSimulatedThermalPower-HighchannelineachtripsystemmustbecapableofmaintaininganOPERABLEflowunitsignalintheeventofafailureofanauctioncircuit,oraflowunit,intheassociatedtripsystem(e.g.,ifaflowunitisinoperable.oneofthetworequiredAveragePowerRangeMonitorFlowBiasedSimulatedThermalPower-Highchannelsintheassociatedtripsystemmustbeconsideredinoperable).(continued)SUSQUEHANNA-UNIT1B3.3-9Revision0

RPSInstrumentationB3.3.1.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY2.b.AveraePowerRaneMonitorFlowBiasedSimulatedThermalPower-Hih(continued)TheAveragePowerRangeMonitorFlowBiasedThermalPower-HighFunctionLimitissetabovetheAPRMRodBlocktoprovidedefenseindepthtotheAPRMfixedNeutronFlux-High.TheTHERMALPOWERtimeconstantof(7secondsisbasedonthefuelheattransferdynamicsandprovidesasignalproportionaltotheTHERMALPOWER.Thesimulatedthermaltimeconstantispartofthefiltercircuitthatsimulatestherelationshipbetweenneutronfluxandcorethermalpower.TheAveragePowerRangeMonitorFlowBiasedSimulatedThermalPower-HighFunctionandassociatedflowunitsarerequiredtobeOPERABLEinMODE1whenthereisthepossibilityofgeneratingexcessiveTHERMALPOWERandpotentiallyexceedingtheSLapplicabletohighpressureandcoreflowconditions(MCPRSL).DuringMODES2and5,otherIRMandAPRMFunctionsprovideprotectionforfuelcladdingintegrity.2.c.AveraePowerRaneMonitorFixedNeutronFlux-HihTheAPRMchannelsprovidetheprimaryindicationofneutronfluxwithinthecoreandrespondalmostinstantaneouslytoneutronfluxincreases.-TheAveragePowerRangeMonitorFixedNeutronFlux-HighFunctioniscapableofgeneratingatripsignaltopreventfueldamageorexcessiveRCSpressure.FortheoverpressurizationprotectionanalysisofReference4.theAveragePowerRangeMonitorFixedNeutronFlux-HighFunctionisassumedtoterminatethemainsteamisolationvalve(MSIV)closureeventand,alongwiththesafety/reliefvalves(S/RVs),limitsthepeakreactorressurevessel(RPV)pressuretolessthantheASMECodeimits.Thecontrolroddropaccident(CRDA)analysis(Ref.5)takescreditfortheAveragePowerRangeMonitorFixedNeutronFlux-HighFunctiontoterminatetheCRDA.TheAPRMSystemisdividedintotwotripsystemswiththreeAPRMchannelsinputtingtoeachtripsystem.Thesystemisdesignedtoallowonechannelineachtripsystemtobebypassed.AnyoneAPRMchannelinatripsystemcancausetheassociatedtripsystemtotrip.Fourchannelsof1(continued)SUSQUEHANNA-UNIT1B3.3-10Revision0 RPSInstrumentation83.3.1.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY2.c.AveraePowerRaneMonitorFixedNeutronFlux-Hih(continued)AveragePowerRangeMonitorFixedNeutronFlux-Highwithtwochannelsineachtripsystemarrangedinaone-out-of-twologicarerequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurewillprecludeascramfromthisFunctiononavalidsignal.Inaddition,toprovide.adequatecoverageoftheentirecore,atleast14LPRMinputsarerequiredforeachAPRMchannel,withatleasttwoLPRMinputsfromeachofthefouraxiallevelsatwhichtheLPRMsarelocated.TheCRDAanalysisassumethatreactorscramoccursonAveragePowerRangeMonitorFixedNeutronFlux-HighFunction.TheAveragePowerRangeMonitorFixedNeutronFlux-HighFunctionisrequiredtobeOPERABLEinMODE1wherethepotentialconsequencesoftheanalyzedtransientscouldresultintheSLs(e.g.,MCPRandRCSpressure)beingexceeded.AlthoughtheAveragePowerRangeMonitorFixedNeutronFlux-High-FunctionisassumedintheCRDAanalysis.whichisapplicableinMODE2,theAveragePowerRangeMonitorNeutronsFlux-High,SetdownFunctionconservativelyboundstheassumedtripand,togetherwiththeassumedIRMtrips,providesadequateprotection.Therefore,theAveragePowerRangeMonitorFixedNeutronFlux-HighFunctionisnotrequiredinMODE2.2.d.AveraePowerRaneMonitor-InoThissignalprovidesassurancethataminimumnumberofAPRMsareOPERABLE.AnytimeanAPRMmodeswitchismovedtoanypositionotherthan"Operate,"anAPRMmoduleisunplugged,theelectronicoperatingvoltageislow,ortheAPRMhastoofewLPRMinputs(<14),aninoperativetrip'ignalwillbereceivedbytheRPS,unlesstheAPRMisbypassed.SinceonlyoneAPRMineachtripsystemmaybebypassed,onlyoneAPRMineachtripsystemmaybeinoperablewithoutresultinginanRPS,tripsignal.ThisFunctionwasnotspecificallycreditedintheaccidentanalysis,butitisretainedfortheoverallredundancyanddiversityoftheRPSasrequiredbytheNRCapprovedlicensingbasis.4(continued)SUSQUEHANNA-UNIT1B3.3-11Revision0 RPSInstrumentation83.3.1.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY2.d.AveraePowerRaneMonitor-Ino(continued)FourchannelsofAveragePowerRangeMonitor-InopwithtwochannelsineachtripsystemarerequiredtobeOPERABLEtoensurethatnosinglefailurewillprecludeascramfromthisFunctiononavalidsignal.ThereisnoAllowableValueforthisFunction.ThisFunctionisrequiredtobeOPERABLEintheMODESwheretheAPRMFunctionsarerequired.3.ReactorVesselSteamDomePressure-HihAnincreaseintheRPVpressureduringreactoroperationcompressesthesteamvoidsandresultsinapositivereactivityinsertion.ThiscausestheneutronfluxandTHERMALPOWERtransferredtothereactorcoolanttoincrease,whichcouldchallengetheintegrityofthefuelcladdingandtheRCPB.ThistripFunctionisassumedinthelowpowergeneratorloadrejectionwithoutbypassandtherecirculationflow-controllerfailure(increasing)event.However.theReactorVesselSteamDomePressure-HighFunctioninitiatesascramfortransientsthatresultinapressureincrease,counteractingthepressureincreasebyrapidlyreducingcorepower.FortheoverpressurizationprotectionanalysisofReference4,reactorscram(theanalysesconservativelyassumescramontheAveragePowerRangeMonitorFixedNeutronFlux-Highsignal,nottheReactorVesselSteamDomePressure-Highsignal),alongwiththeS/RVs.limitsthepeakRPVpressuretolessthantheASMESectionIIICodelimits.Highreactorpressuresignalsareinitiatedfromfourpressureinstrumentsthatsensereactorpressure.TheReactorVesselSteamDomePressure-HighAllowableValueischosentoprovideasufficientmargintotheASMESectionIIICodelimitsduringtheevent.FourchannelsofReactorVesselSteamDomePressure-HighFunction,withtwochannelsineachtripsystemarrangedinaone-out-of-twologic,arerequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurewillprecludeascramfromthisFunctiononavalidsignal.TheFunctionis(continued)SUSQUEHANNA-UNIT1B3.3-12Revision0 RPSInstrumentation83.3.1.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY3.ReactorVesselSteamDomePressure-Hih(continued)requiredtobeOPERABLEinMODES1and2whentheRCSispressurizedandthepotentialforpressureincreaseexists.4.ReactorVesselWaterLevel-LowLevel3LowRPVwaterlevelindicatesthecapabilitytocoolthefuelmaybethreatened.ShouldRPVwaterleveldecreasetoofar,fueldamagecouldresult.Therefore.areactorscramisinitiatedatLevel3tosubstantiallyreducetheheatgeneratedinthefuelfromfission.TheReactorVesselWaterLevel-Low,Level3Functionisassumedintheanalysisoftherecirculationlinebreak(Ref.6).Thereactorscramreducestheamountofenergyrequiredtobeabsorbedand,alongwiththeactionsoftheEmergencyCoreCoolingSystems(ECCS).ensuresthatthefuelpeakcladdingtemperatureremainsbelowthelimitsof10CFR50.46.ReactorVesselWaterLevel-Low,Level3signalsareinitiatedfromfourlevelinstrumentsthatsensethedi.fferencebetween-thepressureduetoaconstantcolumnofwater(referenceleg)andthepressureduetotheactualwaterlevel(vdriableleg)inthevessel.FourchannelsofReactorVesselWaterLevel-Low,Level3Function.withtwochannelsineachtripsystemarrangedinaone-out-of-twologic,arerequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurewillprecludeascramfromthisFunctiononavalidsignal.TheReactorVesselWaterLevel-Low,Level3AllowableValueisselectedtoensurethatduringnormaloperationtheseparatorskirtsarenotuncovered(thisprotectsavailablerecirculationpumpnetpositivesuctionhead(NPSH)fromsignificantcarryunder)and,fortransientsinvolvinglossofallnormalfeedwaterflow,initiationofthelowpressureECCSsubsystemsatReactorVesselWater-LowLowLow,Level1willnotberequired.TheFunctionisrequiredinMODES1and2whereconsiderableenergyexistsintheRCSresultinginthelimitingtransientsandaccidents.ECCSinitiationsatReactorVesselWaterLevel-LowLow,Level2andLowLowLow,(continued)SUSQUEHANNA-UNIT1B3.3-13Revision0 RPSInstrumentationB3.3.1.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY4.ReactorVesselWaterLevel-LowLevel3(continued)Level1providesufficientprotectionforleveltransientsinallotherMODES.5.MainSteamIsolationValve-ClosureHSIVclosureresultsinlossofthemainturbineandthecondenserasaheatsinkforthenuclearsteamsupplysystemandindicatesaneedtoshutdownthereactortoreduceheatgeneration.Therefore,areactorscramisinitiatedonaMainSteamIsolationValve-ClosuresignalbeforetheHSIVsarecompletelyclosedinanticipationofthecompletelossofthenormalheatsinkandsubsequentoverpressurizationtransient.However,fortheoverpressurizationprotectionanalysisofReference4,theAveragePowerRangeMonitorFixedNeutronFlux-HighFunction,alongwiththeS/RVs,limitsthepeakRPVpressuretolessthantheASMECodelimits.Thatis,thedirectscramonpositionswitchesforHSIVclosureeventsisriotassumedintheoverpressurizationanalysis.Additionally,HSIVclosureisassumedinthetransientsanalyzedinReference7(e.g.,lowsteamlinepressure,manualclosureofHSIVs,highsteamlineflow).Thereactorsc'rarhreducestheamountofenergyrequiredtobeabsorbedand,alongwiththeactionsoftheECCS.ensuresthatthefuelpeakcladdingtemperatureremainsbelowthelimitsof10CFR50.46.HSIVclosuresignalsareinitiatedfrompositionswitcheslocatedoneachoftheeightHSIVs.EachMSIVhastwopositionswitches;oneinputstoRPStripsystemAwhiletheotherinputstoRPStripsystemB.Thus,eachRPStripsystemreceivesaninputfromeightHainSteamIsolationValve-Closurechannels,eachconsistingofonepositionswitch.ThelogicfortheMainSteamIsolationValve-ClosureFunctionisarrangedsuchthateithertheinboardoroutboardvalveonthreeormoreofthemainsteamlinesmustcloseinorderforascramtooccur.TheHainSteamIsolationValve-ClosureAllowableValueisspecifiedtoensurethatascramoccurspriortoasignificantreductioninsteamflow,therebyreducingtheseverityofthesubsequentpressuretransient.(continued)SUSQUEHANNA-UNIT1B3.3-14Revision0 RPSInstrumentationB3.3.1.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY5.MainSteamIsolationValve-Closure(continued)Sixteenchannels(arrangedinpairs)oftheMainSteamIsolationValve-ClosureFunction,witheightchannelsineachtripsystem.arerequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurewillprecludethescramfromthisFunctiononavalidsignal.ThisFunctionisonlyrequiredinMODE1since,withtheMSIVsopenandtheheatgenerationratehigh,apressurizationtransientcanoccuriftheMSIVsclose.Inaddition,theFunctionisautomaticallybypassedwhentheReactorModeSwitchisnotintheRunposition.InMODE2,theheatgenerationrateislowenoughsothattheotherdiverseRPSfunctionsprovidesufficientprotection.6.DrellPressure~-HihHighpressureinthedrywellcouldindicateabreakintheRCPB.Areactorscramisinitiatedtominimizethepossibilityoffueldamageandtoreducetheamountofenergybeingaddedtothecoolantandthedrywell.TheDrywellPressure-.HighFunctionisassumedintheanalysisoftherecirculationlinebreak(Ref.6).Thereactorscramreducestheam6orttofenergyrequiredtobeabsorbedand,alongwiththeactionsofEmergencyCoreCoolingSystems(ECCS),ensuresthatthefuelpeakcladdingtemperatureremainsbelowthelimitsof10CFR50.46.Highdrywellpressuresignalsareinitiatedfromfourpressureinstrumentsthatsensedrywellpressure.TheAllowableValuewasselectedtobeaslowaspossibleandindicativeofaLOCAinsideprimarycontainment.FourchannelsofDrywellPressure-HighFunction,withtwochannelsineachtripsystemarrangedinaone-out-of-twologic,arerequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurewillprecludeascramfromthisFunctiononavalidsignal.TheFunctionisrequiredinMODES1and2whereconsiderableenergyexistsintheRCS,resultinginthelimitingtransientsandaccidents.(continued)SUSQUEHANNA-UNIT1B3.3-15Revision0 RPSInstrumentationB3.3.1.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY(continued)7.a7.b.ScramDischareVolumeWaterLevel-HihTheSDVreceivesthewaterdisplacedbythemotionoftheCRDpistonsduringareactorscram.Shouldthisvolumefilltoapointwherethereisinsufficientvolumetoacceptthedisplacedwater,controlrodinsertionwouldbehindered.Therefore,areactorscramisinitiatedwhiletheremainingfreevolumeisstillsufficienttoaccommodatethewaterfromafullcorescram.ThetwotypesofScramDischargeVolumeWaterLevel-HighFunctionsareaninputtotheRPSlogic.NocreditistakenforascraminitiatedfromtheseFunctionsforanyofthedesignbasisaccidentsortransientsanalyzedintheFSAR.However,theyareretainedtoensurethescramfunctionremainsOPERABLE.SDVwaterlevelismeasuredbytwodiversemethods.ThelevelineachofthetwoSDVsismeasuredbytwofloattypelevelswitchesandtwoleveltransmitterswithtripunitsforatotalofeightlevelsignals.TheoutputsofthesedevicesarearrangedsothatthereisasignalfromalevelswitchandaleveltransmitterwithtripunittoeachRPSlogicchannel.ThelevelmeasurementinstrumentationsatisfiestherecommendationsofReference8.TheAllowableValueischosenlowenoughtoensurethatthereissufficientvolumeintheSDVtoaccommodatethewaterf'romafullscram.FourchannelsofeachtypeofScramDischargeVolumeWaterLevel-HighFunction,withtwochannelsofeachtypeineachtripsystem,arerequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurewillprecludeascramfromtheseFunctionsonavalidsignal.TheseFunctionsarerequiredinMODES1and2,andinMODE5withanycontrolrodwithdrawnfromacorecellcontainingoneormorefuelassemblies,sincethesearetheMODESandotherspecifiedconditionswhencontrolrodsarewithdrawn.Atallothertimes,thisFunctionmaybebypassed.8.TurbineStoVa1ve-ClosureClosureoftheTSVsresultsinthelossofaheatsinkthatproducesreactorpressure,neutronflux,andheatfluxtransientsthatmustbelimited.Therefore,areactorscramisinitiatedatthestartofTSVclosureinanticipationof(continued)SUSQUEHANNA-UNIT1B3.3-16Revision0 RPSInstrumentationB3.3.1.1BASESAPPLICABLESAFETYANALYSLCO.andAPPLICABILITYES,8.TurbineStoVa1ve-Closure(continued)thetransientsthatwouldresultfromtheclosureofthesevalves.TheTurbineStopValve-ClosureFunctionistheprimaryscramsignalfortheturbinetripeventanalyzedinReference7.Forthisevent,thereactorscramreducestheamountofenergyrequiredtobeabsorbedand,alongwiththeactionsoftheEndofCycleRecirculationPumpTrip(EOC-RPT)System,ensuresthattheMCPRSLisnotexceeded.TurbineStopValve-ClosuresignalsareinitiatedfrompositionswitcheslocatedoneachofthefourTSVs.Twoindependentpositionswitchesareassociatedwitheachstopvalve.OneofthetwoswitchesprovidesinputtoRPStripsystemA;theother,toRPStripsystemB.Thus.eachRPStripsystemreceivesaninputfromfourTurbineStopValve-Closurechannels,eachconsistingofonepositionswitch.ThelogicfortheTurbineStopValve-ClosureFunctionissuchthatthreeormoreTSVsmustbeclosedtoproduceascram.ThisFunctionmustbeenabledatTHERMALPOWER~30KRTP.Thisisaccomplishedautomaticallybypressureinstrumentssensingturbinefirststagepressure.Becauseanincreaseinthemainturbinebypassflowcanaffectthisfunctionnon-conservatively,THERMALPOWERisderivedfromfirststagepressure.ThemainturbinebypassvalvesmustnotCausethetripFunctiontobebypassedwhenTHERMALPOWERis~30KRTP.TheTurbineStopValve-ClosureAllowableValueisselectedtobehighenoughtodetectimminentTSVclosure,therebyreducingtheseverityof'hesubsequentpressuretransient.Eightchannels(arrangedinpairs)ofTurbineStopValve-ClosureFunction,withfourchannelsineachtripsystem.arerequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurewillprecludeascramfromthisFunctionifanythreeTSVsshouldclose.ThisFunctionisrequired,consistentwithanalysisassumptions,wheneverTHERMALPOWERis>30KRTP.ThisFunctionisnotrequiredwhenTHERMALPOWERis<30KRTPsincetheReactorVesselSteamDomePressure-HighandtheAveragePowerRangeMonitorFixedNeutronFlux-HighFunctionsareadequatetomaintainthenecessarysafetymargins.(continued)SUSQUEHANNA-UNIT1B3.3-17Revision0 RPSInstrumentationB3.3.1.1BASESAPPLICABLESAFETYANALYSES,LCO,and'PPLICABILITY(continued)9.TurbineControlValveFastClosureTriOil.Pressure-LowFastclosureoftheTCVsresultsinthelossofaheatsinkthatproducesreactorpressure,neutronflux,andheatfluxtransientsthatmustbelimited.Therefore,areactorscramisinitiatedonTCVfastclosureinanticipationofthetransientsthatwouldresultfromtheclosureofthesevalves.TheTurbineControlValveFastClosure.TripOilPressure-LowFunctionistheprimaryscramsignalforthegeneratorloadrejectioneventanalyzedinReference7.Forthisevent,thereactorscramreducestheamountofenergyrequiredtobeabsorbedand,alongwiththeactionsoftheEOC-RPTSystem,ensuresthattheMCPRSLisnotexceeded.TurbineControlValveFastClosure.TripOilPressure-Lowsignalsareinitiatedbytheelectrohydrauliccontrol(EHC)fluidpressureateachcontrolvalve.Onepressureinstrumentisassociatedwitheachcontrolvalve,andthesignalfromeachtransmitterisassignedtoaseparateRPSlogicchannel.ThisFunctionmustbeenabledatTHERMALPOWER~30KRTP.Thisisaccomplishedautomaticallybypressureinstrumentssensing.turbinefirststagepressure.Becauseanincreaseinthemainturbinebypassflowcan.affectthis'fuActionnon-conservatively,THERMALPOWERisderivedfromfirststagepressure.ThemainturbinebypassvalvesmustnotcausethetripFunctiontobebypassedwhenTHERMALPOWERisa30KRTP.TheTurbineControlValveFastClosure,TripOilPressure-LowAllowableValueisselectedhighenoughtodetectimminentTCVfastclosure.FourchannelsofTurbineControlValveFastClosure,TripOilPressure-LowFunctionwithtwochannelsineachtripsystemarrangedinaone-out-of-twologicarerequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurewillprecludeascramfromthisFunctiononav'alidsignal.ThisFunctionisrequired,consistentwiththeanalysisassumptions,wheneverTHERMALPOWERis~30KRTP.ThisFunctionisnotrequiredwhenTHERMALPOWERis<30KRTP.sincetheReactorVesselSteamDomePressure-HighandtheAveragePowerRangeMonitorFixedNeutronFlux-HighFunctionsareadequatetomaintainthenecessarysafetymargins.(continued)SUSQUEHANNA-UNIT1B3.3-18Revision0 RPSInstrumentationB3.3.1.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY(continued)10.ReactorModeSwitch-ShutdownPositionTheReactorModeSwitch-ShutdownPositionFunctionprovidessignals,viathemanualscramlogicchannels.toeachofthefourRPSlogicchannels,whichareredundanttotheautomaticprotectiveinstrumentationchannelsandprovidemanualreactortripcapability.ThisFunctionwasnotspecificallycreditedintheaccidentanalysis.butitisretainedfortheoverallredundancyanddiversityoftheRPSasrequiredbytheNRCapprovedlicensingbasis.Thereactormode.switchisasingleswitchwithfourchannels,eachofwhichprovidesinputintooneoftheRPSlogicchannels.ThereisnoAllowableValueforthisFunction,sincethechannelsaremechanicallyactuatedbasedsolelyonreactormodeswitchposition.FourchannelsofReactorModeSwitch-ShutdownPosition.Function,withtwochannelsineachtripsystem,areavailableandrequiredtobeOPERABLE.TheReactorModeSwitch-ShutdownPositionFunctionisrequiredtobeOPERABLEinMODES1and2,andMODE5withanycontrolrodwithdrawnfromacorecellcontainingoneormorefuelassemblies,sincethesearetheMODESandotherspecifiedconditionswhencontrolrodsarewithdrawn.11.ManualScramTheManualScrampushbuttonchannelsprovidesignals,viathemanualscramlogicchannels,toeachofthefourRPSlogicchannels,whichareredundanttotheautomaticprotectiveinstrumentationchannelsandprovidemanualreactortripcapability.ThisFunctionwasnotspecificallycreditedintheaccidentanalysisbutitisretainedfortheoverallredundancyanddiversityoftheRPSas-requiredbytheNRCapprovedlicensingbasis.ThereisoneManualScrampushbuttonchannelforeachofthefourRPSlogicchannels.Inordertocauseascramitisnecessarythatatleastonechannelineachtripsystembeactuated.(continued)SUSQUEHANNA-UNIT183.3-19Revision0 RPSInstrumentationB3.3.1.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITYll.ManualScram(continued)ThereisnoAllowableValueforthisFunctionsincethechannelsaremechanicallyactuatedbasedsolelyonthepositionofthepushbuttons.FourchannelsofManualScramwithtwochannelsineachtripsystemarrangedinaone-out-of-twologicareavailableandrequiredtobeOPERABLEinMODES1and2,andinMODE5withanycontrolrodwithdrawnfromacorecellcontainingoneormorefuelassemblies,sincethesearetheMODESandotherspecifiedconditionswhencontrolrodsarewithdrawn.ACTIONSANotehasbeenprovidedtomodifytheACTIONSrelatedtoRPSinstrumentationchannels.Section1.3.CompletionTimes.specifiesthatonceaConditionhasbeenentered.subsequentdivisions,subsystems,components.orvariablesexpressedintheCondition,discoveredtobeinoperableornotwithinlimits,willnotresultinseparateentryintotheCondition.Section1.3alsospecifiesthatRequiredActionsoftheConditioncontinuetoapplyforeachadditionalfailure,withCompletionTimesbasedoninitialentryintotheCondition.However,theRequiredActionsforinoperableRPSinstrumentationchannelsprovideappropriatecompensatorymeasuresforseparateinoperablechannels.Assuch.aNotehasbeenprovidedthatallowsseparateConditionentryforeachinoperableRPSinstrumentationchannel.A.landA.2Becauseofthediversity=ofsensorsavailabletoprovidetripsignalsandtheredundancyoftheRPSdesign,anallowableoutofservicetimeof12hourshasbeenshowntobeacceptable(Ref.9)topermitrestorationofanyinoperablechanneltoOPERABLEstatus.However,thisoutofservicetimeisonlyacceptableprovidedtheassociatedFunction'sinoperablechannelisinonetripsystemandtheFunctionstillmaintainsRPStripcapability(refertoRequiredActionsB.1,B.2,andC.1Bases).IftheinoperablechannelcannotberestoredtoOPERABLEstatuswithintheallowableoutofservicetime,thechannelortheassociatedtripsystemmustbeplacedinthetripped(continued)SUSQUEHANNA-UNIT1B3.3-20Revision0 RPSInstrumentationB3.3.1.1BASESACTIONSA.1andA.2(continued)conditionperRequiredActionsA.landA.2.Placingtheinoperablechannelintrip(ortheassociatedtripsystemintrip)wouldconservativelycompensatefortheinoperability,restorecapabilitytoaccommodateasinglefailure.andallowoperationtocontinue.Alternatively,ifitisnotdesiredtoplacethechannel(ortripsystem)intrip(e.g.,asinthecasewhereplacingtheinoperablechannelintripwouldresultinafullscram),ConditionDmustbeenteredanditsRequiredActiontaken.B.land8.2ConditionBexistswhen,foranyoneormoreFunctions,atleastonerequiredchannelisinoperableineachtripsystem.Inthiscondition,providedatleastonechannelpertripsystemisOPERABLE,theRPSstillmaintainstripcapabilityforthatFunction,butcannotaccommodateasinglefailureineithertripsystem.RequiredActionsB:-1andB.2.limitthetimetheRPSscramlogic,foranyFunction,wouldnotaccommodatesinglefailureinbothtripsystems(e.g.,one-out-of-oneandone-out-of-onearrangementforatypicalfourchannelFunction).ThereducedreliabilityofthislogicarrangementwasnotevaluatedinReference9forthe12hourCompletionTime.Withinthe6hourallowance,theassociatedFunctionwillhaveallrequiredchannelsOPERABLEorintrip(oranycombination)inonetripsystem.CompletingoneoftheseRequiredActionsrestoresRPStoareliabilitylevelequivalenttothatevaluatedinReference9,whichjustifieda12hourallowableoutofservicetimeaspresentedinConditionA.Thetripsysteminthemoredegradedstateshouldbeplacedintripor,alternatively,alltheinoperablechannelsinthattripsystemshouldbeplacedintrip(e.g.,atripsystemwithtwoinoperablechannelscouldbeinamoredegradedstatethanatripsystemwithfourinoperablechannelsifthetwoinoperablechannelsareinthesameFunctionwhilethefourinoperablechannelsareallindifferentFunctions).Thedecisionofwhichtripsystemisinthemoredegradedstateshouldbebasedonprudentjudgmentandtakeintoaccountcurrentplantconditions(i.e.,whatNODEtheplantisin).(continued)SUSQUEHANNA-UNIT1B3.3-21Revision0 RPSInstrumentationB3.3.1.1BASES'CTIONSB.1andB.2(continued)Ifthisactionwouldresultinascram,itispermissibletoplacetheothertripsystemoritsinoperablechannelsintrip.The6hourCompletionTimeisjudgedacceptablebasedontheremainingcapabilitytotrip,thediversityofthesensorsavailabletoprovidethetripsignals'helowprobabilityofextensivenumbersofinoperabilitiesaffectingalldiverseFunctions,andthelowprobabilityofaneventrequiringtheinitiationofascram.Alternately,ifitisnotdesiredtoplacetheinoperablechannels(oronetripsystem)intrip(e.g.,asinthecasewhereplacingtheinoperablechannelorassociatedtripsystemintripwouldresultinascram),ConditionDmustbeenteredanditsRequiredActiontaken.C.1RequiredActionC.lisintendedtoensurethatappropriateactionsaretakenifmultiple,inoperable,untrippedchannelswithiAthesametripsystemforthesameFunctionresultintheFunctionnotmaintainingRPStripcapability.AFunctionisconsideredtobemaintainingRPStripcapabilitywhensufficientchannelsareOPERABLEorintrip(ortheassociatedtripsystemisintrip),suchthatbothtripsystemswillgenerateatripsignalfromthegivenFunctiononavalidsignal.ForthetypicalFunctionwithone-out-of-twotakentwicelogic,thiswouldrequirebothtripsystemstohaveonechannelOPERABLEorintrip(ortheassociatedtripsystemintrip).ForFunction5(HainSteamIsolationValve-Closure),thiswouldrequirebothtripsystemstohaveeachchannelassociatedwiththeHSIVsinthreemainsteamlines(notnecessarilythesamemainsteamlinesfor,bothtripsystems)OPERABLEorintrip(ortheassociatedtripsystemintrip).ForFunction8(TurbineStopValve-Closure),thiswouldrequirebothtripsystemstohavethreechannels,eachOPERABLEorintrip(ortheassociatedtripsystemintrip).TheCompletionTimeisintendedtoallowtheoperatortimetoevaluateandrepairanydiscoveredinoperabilities.The(continued)SUSQUEHANNA-UNIT1B3.3-22Revision0 RPSInstrumentationB3.3.1.1BASESACTIONS'.l(continued)1hourCompletionTimeisacceptablebecauseitminimizesriskwhileallowingtimeforrestorationortrippingofchannels.D.1RequiredActionD.1directsentryintotheappropriateConditionreferencedinTable3.3.1.1-1.TheapplicableConditionspecifiedintheTableisFunctionandMODEorotherspecifiedconditiondependentandmaychangeastheRequiredActionofapreviousConditioniscompleted.EachtimeaninoperablechannelhasnotmetanyRequiredActionofConditionA,B,orCandtheassociatedCompletionTimehasexpired,ConditionDwillbeenteredforthatchannelandprovidesf'rtransfertotheappropriatesubsequentCondition.E.1F.1andG.1Ifthechannel(s)isnotrestoredtoOPERABLEstatusorplacedintrip(ortheassociatedtripsystemplacedintrip)withintheallowedCompletionTime,theplantmustbeplacedinaMODEorotherspecifiedconditioninwhichtheLCOdoesnotapply.TheallowedCompletionTimesarereasonable,basedonoperatingexperience,toreachthespecifiedconditionfromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.Inaddition,theCompletionTimeofRequiredActionE.1isconsistentwiththeCompletionTimeprovidedinLCO3.2.2,"MINIMUMCRITICALPOWERRATIO(MCPR)."H.1Ifthechannel(s)isnotrestoredtoOPERABLEstatusorplacedintrip(ortheassociatedtripsystemplacedintrip)withintheallowedCompletionTime,theplantmustbeplacedinaMODEorotherspecifiedconditioninwhichtheLCOdoesnotapply.Thisisdonebyimmediatelyinitiatingactiontofullyinsertallinsertablecontrolrodsincorecellscontainingoneormorefuelassemblies.Controlrodsincorecellscontainingnofuelassembliesdonotaffect(continued)SUSQUEHANNA-UNIT1B3.3-23Revision0 RPSInstrumentationB3.3.1.1BASESACTIONSH.1(continued)thereactivityofthecoreandare,therefore,notrequiredtobeinserted.Actionmustcontinueuntilallinsertablecontrolrodsincorecellscontainingoneormorefuelassembliesarefullyinserted.SURVEILLANCEREQUIREMENTSAsnotedatthebeginningoftheSRs,theSRsforeachRPSinstrumentationFunctionarelocatedintheSRscolumnofTable3.3.1.1-1.TheSurveillancesaremodifiedbyaNotetoindicatethatwhenachannelisplacedinaninoperablestatussolelyforperformanceofrequiredSurveillances.entryintoassociatedConditionsandRequiredActionsmaybedelayedforupto6hours,providedtheassociatedFunctionmaintainsRPStripcapability.UponcompletionoftheSurveillance.orexpirationofthe6hourallowance,thechannelmustbereturnedtoOPERABLEsta'tusortheapplicableConditionenteredandRequiredActionstaken.ThisNoteisbasedonthereliability'analysis(Ref.9)assumptionoftheaveragetimerequiredtoperformchannelSurveillance.Thatanalysisdemonstratedthatthe6hourtestingallowancedoesnotsignificantlyreducetheprobabilitythattheRPSwilltripwhennecessary.SR3.3.1.1.1PerformanceoftheCHANNELCHECKonceevery12hoursensuresthatagrossfailureofinstrumentationhasnotoccurred.ACHANNELCHECKisnormallyacomparisonoftheparameterindicatedononechanneltoasimilarparameteronotherchannels.Itisbasedontheassumptionthatinstrumentchannelsmonitoringthesameparametershouldreadapproximatelythesamevalue.Significantdeviationsbetweeninstrumentchannelscouldbeanindicationofexcessiveinstrumentdriftinoneofthechannelsorsomethingevenmoreserious.ACHANNELCHECKwilldetect-grosschannelfailure;thus,itiskeytoverifyingtheinstrumentationcontinuestooperateproperlybetweeneachCHANNELCALIBRATION.(continued)SUSQUEHANNA-UNIT1B3.3-24Revision0

RPSInstrumentationB3.3.1.1BASESSURVEILLANCEREQUIREMENTSSR3.3.1.1.1(continued)Agreementcriteriawhicharedeterminedbytheplantstaffbasedonaninvestigat'ionofacombinationofthechannelinstrumentuncertainties,maybeusedtosupportthisparametercomparisonandincludeindicationandreadability.Ifachannelisoutsidethecriteria,itmaybeanindicationthattheinstrumenthasdriftedoutsideitslimit,anddoesnotnecessarilyindicatethechannelisInoperable.TheFrequencyisbaseduponoperatingexperiencethatdemonstrateschannelfailureisrare.TheCHANNELCHECKsupplementslessformalchecksofchannelsduringnormaloperationaluseofthedisplaysassociatedwiththechannelsrequiredbytheLCO.SR3.3.1.1.2ToensurethattheAPRMsareaccuratelyindicatingthetruecoreaveragepower.,theAPRMsarecalibratedtothereactorpowercalculatedfromaheatbalance.LCO3.2.4,"AveragePowerRangeMonitor(APRM)GainandSetpoints,"allowstheAPRMstobereadinggreaterthanactualTHERMALPOWERtocompensateforlocalizedpowerpeaking.Whenthisadjustmentismade,therequirementfortheAPRMstoindicatewithin2XRTPofcalculatedpowerismodifiedtorequiretheAPRMstoindicatewithin2XRTPofcalculatedMFLPDtimes100.TheFrequencyofonceper7daysisbasedonminorchangesinLPRMsensitivity,whichcouldaffecttheAPRMreadingbetweenperformancesofSR3.3.1.1.8.ArestrictiontosatisfyingthisSRwhen<25KRTPisprovidedthatrequirestheSRtobemetonlyat~25KRTPbecauseitisdifficulttoaccuratelymaintainAPRMindicationofcoreTHERMALPOWERconsistentwithaheatbalancewhen<25KRTP.Atlowpowerlevels,ahighdegreeofaccuracyisunnecessarybecauseofthelarge,inherentmargintothermallimits(MCPR,LHGRandAPLHGR).At~25KRTP,theSurveillanceisrequiredtohavebeensatisfactorilyperformedwithinthelast7days,inaccordancewithSR3.0.2.ANoteisprovidedwhichallowsanincreaseinTHERMALPOWERabove25Kifthe7dayFrequencyisnotmetperSR3.0.2.Inthisevent,theSRmustbeperformedwithin12hoursafterreachingorexceeding25KRTP.Twelvehoursisbasedonoperatingexperienceandin(continued)SUSQUEHANNA-UNIT1B3.3-25Revision0 RPSInstrumentationB3.3.1.1BASESSURVEILLANCEREQUIREMENTSSR3.3.1.1.2(continued)considerationofprovidingareasonabletimeinwhichtocompletetheSR.SR3.3.1.1.3TheAveragePowerRangeMonitorFlowBiasedSimulatedThermalPower-HighFunctionusestherecirculationloopdriveflowstovarythetripsetpoint.ThisSRverifiesproperoperationofthetotalloopdriveflowsignalsfromthedriveflowunitsusedtovarythesetpointoftheAPRM.Thecomponentsoperationisverifiedintwosteps.ThefirststepisaCHANNELCHECKperformedbyreadingtheoutputofthefourdriveflowunits.Thisgrosscheckensuresthatalldriveflowunitsarewithinatolerancedefinedbystationstaff.ThesecondstepisaverificationthattheflowsignalfromtheAPRMreadout(whichisthelowestflowsignalfromtwoassociateddriveflowunits)isconservativewithrespecttothetotalcoreflow/driv'eflowrelationship.Thistwostepprocessensuresthatthedriveflowsignalisconsistentwiththeactualtotalcoreflow..Iftheflowunitsignalisnotwithinthelimit,onerequiredAPRMthatreceivesaninputfromtheinoperableflowunitmustbedeclaredinoperable.Ifinstrumentsarefoundwithintolerance.adjustmentsarenotrequired.TheFrequencyof7daysisbasedonengineeringjudgment,operatingexperience,andthereliabilityofthisinstrumentation.SR3.3.1.1.4ACHANNELFUNCTIONALTESTisperformedoneachrequiredchanneltoensurethattheentirechannelwillperformtheintendedfunction.Asnoted.SR3.3.1.1.4isnotrequiredtobeperformedwhenenteringMODE2fromMODE1,sincetestingoftheMODE2requiredIRMandAPRMFunctionscannotbeperformedinMODE1withoututilizingjumpers,liftedleads,ormovablelinks.ThisallowsentryintoMODE2ifthe7dayFrequencyisnotmetperSR3.0.2.Inthisevent,theSRmustbe(continued).SUSQUEHANNA-UNIT1B3.3-26Revision0 RPSInstrumentationB3.3.1.1BASESSURVEILLANCEREQUIREMENTSSR3.3.1.1.4(continued)performedwithin12hoursafterenteringMODE2fromMODE1.TwelvehoursisbasedonoperatingexperienceandinconsiderationofprovidingareasonabletimeinwhichtocompletetheSR.AFrequencyof7daysprovidesanacceptablelevelofsystemaverageunavailabilityovertheFrequencyintervalandisbasedonreliabilityanalysis(Ref.9).SR3.3.1.1.5ACHANNELFUNCTIONALTESTisperformedoneachrequiredchanneltoensurethattheentirechannelwillperformtheintendedfunction.AFrequencyof7daysprovidesanacceptablelevelofsystemaverageavailabilityovertheFrequencyandisbasedonthereliabilityanalysisofReference9.(TheManualScramFunction'sCHANNELFUNCTIONALTESTFrequencywascreditedintheanalysistoextendmanyautomaticscramFunctions'requencies.)SR3.3.1.1.6SndSR3.3.1.1.7TheseSurveillancesareestablishedtoensure.that:nogapsinneutronfluxindicationexistfromsubcritica1topoweroperationformonitoringcorereactivitystatus;TheoverlapbetweenSRHsandIRMsisrequired.tobe;demonstratedtoensurethatreactorpowerwillnotbeincreasedintoaneutronfluxregionwithoutadequateindication.TheoverlapisdemonstratedpriortofullywithdrawingtheSRMsfromthecore.DemonstratingtheoverlappriortofullywithdrawingtheSRHsfromthecoreisrequiredtoensuretheSRMsareon-scalefortheoverlap.demonstration.TheoverlapbetweenIRMsandAPRMsisofconcernwhenreducingpowerintotheIRHrange..Onpowerincreases,thesystemdesignwillpreventfurtherincreases(byinitiatingarodblock)ifadequateoverlapisnotmaintained.OverlapbetweenIRMsandAPRMsexistswhensufficientIRHsandAPRHsconcurrentlyhaveonscalereadingssuchthatthetransitionbetweenMODE1andMODE2canbemadewithouteitherAPRMdownscalerodblock,orIRMupscalerodblock.Overlapf(continued)SUSQUEHANNA-UNIT183.3-27Revision0 RPSInstrumentationB3.3.1.1BASESSURVEILLANCEREQUIREMENTSSR3.3.1.1.6andSR3.3.1.1.7(continued)betweenSRMsandIRMssimilarlyexistswhen,priortofullywithdrawingtheSRMsfromthecore.IRMsareabovemid-scaleonrange1beforeSRHshavereachedtheupscalerodblock.Asnoted,SR3.3.1.1.7isonlyrequiredtobemetduringentryintoMODE2fromMODE1.Thatis,aftertheoverlaprequirementhasbeenmetandindicationhastransitionedtotheIRHs.maintainingoverlapisnotrequired(APRHsmaybereadingdownscaleonceinMODE2).Ifoverlapforagroupofchannelsisnotdemonstrated(e.g..IRM/APRHoverlap),thereasonforthefailureoftheSurveillanceshouldbedeterminedandtheappropriatechannel(s)declaredinoperable.OnlythoseappropriatechannelsthatarerequiredinthecurrentMODEorconditionshouldbedeclaredinoperable.AFrequencyof7daysisreasonablebasedonengineeringjudgmentandthereliabilityoftheIRHsandAPRHs.SR3.3.1.1.8LPRMgainsettingsaredeterminedfromthelocalfluxprofilesmeasuredbytheTraversingIncoreProbe(TIP)System.ThisestablishestherelativelocalfluxprofileforappropriaterepresentativeinputtotheAPRHSystem.The1000MWD/HTFrequencyisbasedonoperatingexperiencewithLPRMsensitivitychanges.SR3.3.1.1.9andSR3.3.1.1.12ACHANNELFUNCTIONALTESTisperformedoneachrequiredchanneltoensurethattheentirechannelwillperformtheintendedfunction.The92dayFrequencyofSR3.3.1.1.9isbasedonthereliabilityanalysisofReference9.SR3.3.1.1.15ismodifiedbyaNotethatprovidesageneralexceptiontothedefinitionofCHANNELFUNCTIONALTEST.Thisexceptionisnecessarybecausethedesignofinstrumentationdoesnotfacilitatefunctionaltestingofallrequiredcontactsoftherelaywhichinputintothe(continued)SUSQUEHANNA-UNIT1B3.3-28Revision0 RPSInstrumentationB3.3.1.1BASESSURVEILLANCEREQUIREMENTSSR3.3.1.1.9andSR3.3.1.1.12(continued)combinationallogic.(Reference10)Performanceofsuchatestcouldresultinaplanttransientorplacetheplantinanundorisksituation.Therefore,forthisSR,theCHANNELFUNCTIONALTESTverifiesacceptableresponsebyverifyingthechangeofstateoftherelaywhichinputsintothecombinationallogic.TherequiredcontactsnottestedduringtheCHANNELFUNCTIONALTESTaretestedundertheLOGICSYSTEMFUNCTIONALTEST,SR3.3.1.1.15.Thisisacceptablebecauseoperatingexperienceshowsthatthecontactsnottestedduringth'eCHANNELFUNCTIONALTESTnormallypasstheLOGICSYSTEMFUNCTIONALTEST,andthetestingmethodologyminimizestheriskofunplannedtransients.The24monthFrequencyofSR3.3.1.1.12isbasedontheneedtoperformthisSurveillanceundertheconditionsthatapplyduringaplantoutageandthepotentialforanunplannedtransientiftheSurveillancewereperformedwiththereactoratpower.OperatingexperiencehasshownthatthesecomponentsusuallypasstheSurveillancewhenperformedatthe24monthFrequency.SR3.3.1.1.10"SR3.3.1.1.11andSR3.3.1.1.13ACHANNELCALIBRATIONverifiesthatthechannelrespondstothemeasuredparameterwithinthenecessaryrangeandaccuracy.CHANNELCALIBRATIONleavesthechanneladjustedtoaccountforinstrumentdriftsbetween'uccessivecalibrationsconsistentwiththeplantspecificsetpointmethodology.Note1statesthatneutrondetectorsareexcludedfromCHANNELCALIBRATIONbecausetheyarepassivedevices,withminimaldrift,andbecauseofthedifficultyofsimulatingameaningfulsignal.Changesinneutrondetectorsensitivityarecompensatedforbyperformingthe7daycalorimetriccalibration(SR3.3.1.1.2)andthe1000MWD/MTLPRMcalibrationagainsttheTIPs(SR3.3.1.1.8).AsecondNoteisprovidedthatrequirestheAPRMandIRMSRstobeperformedwithin12hoursofenteringMODE2fromMODE1.TestingoftheMODE2APRMandIRMFunctionscannotbeperformedinMODE1withoututilizingjumpers,liftedleads,ormovablelinks.ThisNoteallowsentryintoMODE2fromMODE1iftheassociatedFrequencyisnotmetperSR3.0.2.(continued)SUSQUEHANNA-UNIT1B3.3-29Revision0 RPSInstrumentationB3.3.1.1BASESSURVEILLANCEREQUIREMENTSSR3.3.1.1.10SR3.3.1.1.11andSR3.3.1.1.13(continued)TwelvehoursisbasedonoperatingexperienceandinconsiderationofprovidingareasonabletimeinwhichtocompletetheSR.TheFrequencyofSR3.3.1.1.11isbasedupontheassumptionofa184daycalibrationintervalinthedeterminationofthemagnitudeofequipmentdriftinthesetpointanalysis.TheFrequencyof92daysforSR3.3.1.1.12and24monthsforSR3.3.1.1.13isbasedupontheassumptionsinthedeterminationofthemagnitudeofequipmentdriftinthesetpointanalysis.SR3.3.1.1.14TheAveragePowerRangeMonitorFlowBiasedSimulatedThermalPower-HighFunctionusesanelectronicfiltercircuittogenerateasignalproportionaltothecoreTHERMALPOWERfromtheAPRMneutronfluxsignal.ThisfiltercircuitisrepresentativeofthefuelheattransferdynamicsthatproducetherelationshipbetweentheneutronfluxandthecoreTHERMALPOWER.TheSurveillancefiltertimeconstantmustbeveri'fidd'tobe<7secondstoensurethatthechannelisaccuratelyreflectingthedesiredparameter.TheFrequencyof-24months-isbasedonengineeringjudgmentconsideringthereliabilityofthecomponents.SR3.3.1.1.15TheLOGICSYSTEMFUNCTIONALTESTdemonstratestheOPERABILITYoftherequiredtriplogicforaspecificchannel.Thefunctionaltestingofcontrolrods(LCO3.1.3),andSDVventanddrainvalves(LCO3.1.8),overlapsthisSurveillancetoprovidecompletetestingoftheassumedsafetyfunction.The24monthFrequencyisbasedontheneedtoperformportionsofthisSurveillanceundertheconditionsthatapplyduringaplantoutageandthepotentialforanunplannedtransientiftheSurveillancewereperformedwith(continued)SUSQUEHANNA-UNIT1B3.3-30Revision0 RPSInstrumentation83.3.1.1BASESSURVEILLANCEREQUIREMENTSSR3.3.1.1.15(continued)thereactoratpower.OperatingexperiencehasshownthatthesecomponentsusuallypasstheSurveillancewhenperformedatthe24monthFrequency.SR3.3.1.1.16ThisSRensuresthatscramsinitiatedfromtheTurbineStopValve-ClosureandTurbineControlValveFastClosure,TripOilPressure-LowFunctionswillnotbeinadvertentlybypassedwhenTHERMALPOWERis~30KRTP.ThisisperformedbyaFunctionalcheckthatensuresthescramfeatureisnotbypassedat~30KRTP.Becausemainturbinebypassflowcanaffectthisfunctionnonconservatively(THERMALPOWERisderivedfromturbinefirststagepressure),theopeningofthemainturbinebypassvalvesmustnotcausethetripFunctiontobebypassedwhenThermalPoweris>30KRTP.Ifanybypasschannel'stripfunctionisnonconservative(i.e.,theFunctionsarebypassed;at..~30KRTP.eitherduetoopenmainturbine-bypassvalve(s)or-otherreasons),thentheaffectedTurbineStopValve-Closure:andTurbineControlValveFastClosure,TripOilPressure-Low:Functionsareconsideredinoperable.Alternatively;the=bypasschannel.canbeplacedintheconservativecondition-(nonbypass).Ifplacedinthenonbypasscondition,this-SR-.is'et-"and'thechannelisconsideredOPERABLE.TheFrequencyof24monthsis'ased:onengineeringjudgmentandreliabilityofthecomponents.SR3.3.1.1.17ThisSRensuresthattheindividualchannelresponsetimesarelessthanorequaltothemaximumvaluesassumedintheaccidentanalysis.Thistestmaybeperformedinonemeasurementorinoverlappingsegments,withverificationthatallcomponentsaretested.TheRPSRESPONSETIMEacceptancecriteriaareincludedinReference11.(continued)SUSQUEHANNA-UNIT1B3.3-31Revision0 RPSInstrumentationB3.3.1.1BASESSURVEILLANCEREQUIREMENTSSR3.3.1.1.17(continued)Asnoted,neutrondetectorsareexcludedfromRPSRESPONSETIMEtestingbecausetheprinciplesofdetectoroperationvirtuallyensureaninstantaneousresponsetime.Inaddition,Note2statestheresponsetimeofthesensorsforFunction4areexcludedfromRPSResponseTimeTesting.Becausethevendordoesnotprovideadesigninstrumentresponsetime,apenaltyvaluetoaccountforinstrumentresponsetimeisincludedindeterminingtotalchannelresponsetime.Thispenaltyvalueisbasedonthehistoricalperformanceoftheinstrument(Ref.13).ThisallowanceissupportedbyReference12whichdeterminedthatsignificantdegradationofthesensorchannelresponsetimecanbedetectedduringperformanceofotherTechnicalSpecificationSR'sandthatthesensorresponsetimeisasmallpartoftheoverallRPSRESPONSETIMEtesting.RPSRESPONSETIMEtestsareconductedonan24monthSTAGGEREDTESTBASIS.Note3requiresSTAGGEREDTESTBASISFrequencytobedeterminedbasedon4channelspertripsystem,inlieuofthe8channelsspecifiedinTable3.3.1.1-I.fortheMSIVClosureFunctionbecausechannelsarearrangedinpairs.ThisFrequencyisbasedonthelogicinterrelationshipsofthevariouschannelsrequiredtoproduceanRPSscramsignal.The24monthFrequencyisconsistentwiththetypicalindustryrefuelingcycleandisbaseduponplantoperatingexperience,whichshowsthatrandomfailuresofinstrumentationcomponentscausingseriousresponsetimedegradation,butnotchannelfailure,areinfrequentoccurrences.REFERENCES1.FSAR,Figure7.2-1.2.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).3.NE00-23842,"ContinuousControlRodWithdrawalintheStartupRange,"April18,1978.4.FSAR,Section5.2.2.(continued)SUSQUEHANNA-UNIT1B3.3-32Revision0 RPSInstrumentationB3.3.1.1BASESREFERENCES(continued)5.FSAR,Section15.4.9.6.FSAR,Section6.3.3.7.FSAR,Chapter15.8.P.Check(NRC)lettertoG.Lainas(NRC),"BWRScramDischargeSystemSafetyEvaluation,"December1,1980.10.NED0-30851-P-A,"TechnicalSpecificationImprovementAnalysesf'rBWRReactorProtectionSystem,"March1988.NRCInspectionandEnforcementManual,Part9900:TechnicalGuidance,StandardTechnicalSpecification1.0Definitions,Issuedate12/08/86.11.FSAR,Table7.3-28.12.NEDO-32291P-A"SystemAnalysesforEliminationofSelectedResponseTimeTestingRequirements,"January1994.13.NRCSafetyEvaluationReportrelatedtoAmendmentNo.171f'rLicenseNo.NPF14andAmendmentNo.144forLicenseNo.NPF22:SUSQUEHANNA-UNIT1B3.3-33Revision0

RPSInstrumentationB3.3.1.1TableB3.3.1.1-1(page1of1)RPSInstrumentationSensorDiversityScramSensorsforInitiatingEventsRPVVariablesAnticiatoryFuelInitiationEventsMSIVClosureTurbineTrip(w/bypass)GeneratorTrip(w/bypass)PressureRegulatorFailure(primarypressuredecrease)(HSIVclosuretrip)PressureRegulatorFailure(primarypressuredecrease)(Level8trip)PressureRegulatorFailure(primarypressureincrease)FeedwaterControllerFailure(highreactorwaterlevel)FeedwaterControllerFailure(lowreactorwaterlevel)LossofCondenserVacuumLossofACPower(lossoftransformer)LossofACPower(lossofgridconnections)(a)(b)(c)(d)(e)(f)(g)(a)ReactorVesselSteamDomePressure-High(b)ReactorVesselWaterLevel-High,Level8(c)ReactorVesselWaterLevel-Low,Level3(d)TurbineControlValveFastClosure(e)TurbineStopValve-Closure(f)HainSteamIsolationValve-Closure(g)AveragePowerRangeHonitorNeutronFlux-HighSUSQUEHANNA-UNIT1B3.3-34Revision0 SRMInstrumentationB3.3.1.283.3INSTRUMENTATION83.3.1.2SourceRangeMonitor(SRM)InstrumentationBASESBACKGROUNDTheSRMsprovidetheoperatorwithinformationrelativetotheneutronfluxlevelatstartupandlowfluxlevelsinthecore.Assuch,theSRMindicationisusedbytheoperatortomonitortheapproachtocriticalityanddeterminewhencriticalityisachieved.TheSRMsaremaintainedfullyinserteduntiltheSRMtointermediaterangemonitor(IRM)ov'erlapisdemonstrated(asrequiredbySR3.3.1.1.6),whentheSRMsarenormallyfullywithdrawnfromthecore.TheSRMsubsystemoftheNeutronMonitoringSystem(NMS)consistsoffourchannels.EachoftheSRMchannelscanbebypassed.butonlyoneatanygiventime,bytheoperationofabypassswitch.Eachchannelincludesonedetectorthatcanbephysicallypositionedinthecore.Eachdetectorassemblyconsistsofaminiaturefissionchamberwithassociatedcabling'ign'alconditioningequipment,andelectronics.associatedwiththevariousSRMfunctions.ThesignalconditioningequipmentconvertsthecurrentpulsesfromthefissionchambertoanalogDCcurrentsthatcorrespondtothecountrate.Eachchannelalsoincludesindication.alarm;and-controlrodblocks.However,thisLCOspecifiesOPER'ABILITY..requirementsonlyforthemonitoringand:indicati.on.functionsof'heSRMs.Duringrefueling",shutdown,andlowpoweroperations,theprimaryindication'fneutronfluxlevelsisprovidedbytheSRMsorspeci'al-movabledetectorsconnectedtothenormalSRMcircuits.TheSRMsprovidemonitoringofreactivitychangesduringfuelorcontrolrodmovementandgivethecontrolroomoperatorearlyindicationofunexpectedsubcriticalmultiplicationthatcouldbeindicativeofanapproachtocriticality.APPLICABLESAFETYANALYSESPreventionandmitigationofpromptreactivityexcursionsduringrefuelingandlowpoweroperationisprovidedbyLCO3.9.1,"RefuelingEquipmentInterlocks";LCO3.1.1,"SHUTDOWNMARGIN(SDM)";LCO3.3.1.1,"ReactorProtectionSystem(RPS)Instrumentation";IRMNeutronFlux-HighandAveragePowerRangeMonitor(APRM)NeutronFlux-High,(continued)SUSQUEHANNA-UNIT1B3.3-35Revision0 SRHInstrumentationB3.3.1.2BASESAPPLICABLESetdownFunctions;andLCO3.3.2.1."ControlRodBlockSAFETYANALYSESInstrumentation."(continued)TheSRHshavenosafetyfunctionandarenotassumedtofunctionduringanyFSARdesignbasisaccidentortransientanalysis.However,theSRHsprovidetheonlyon-scalemonitoringofneutronfluxlevelsduringstartupandrefueling.Therefore.theyarebeingretainedinTechnicalSpecifications.LCODuringstartupinNODE2,threeofthefourSRHchannelsarerequiredtobeOPERABLEtomonitor.thereactorfluxlevelpriortoandduringcontrolrodwithdrawal,subcriticalmultiplicationandreactorcriticality.andneutronfluxlevelandreactorperioduntilthefluxlevelissufficienttomaintaintheIRHsonRange3orabove.Allbutoneofthechannelsarerequiredinordertoprovidearepresentationoftheoverallcoreresponseduringthoseperiodswhenreactivitychangesareoccurringthroughoutthecore.InHODES3and4,withthereactorshutdown,twoSRHchannelsprovideredundantmonitoringoffluxlevelsinthecore.InHODE5,during=aspi.raloffloadorreload,anSRHoutside.thefueledregionwillnolongerberequiredtobeOPERABLE.sinceitisnotcapable-ofmonitoringneutronfluxinthef'ueledregionofthecore.Fueledregionisacontinuousareawithfuel.Thus,COREALTERATIONSareallowedinaquadrantwithnoOPERABLESRHinanadjacentquadrantprovidedtheTable3.3.1.2-1,footnote(b)~requirementthatthebundlesbeingspiralreloadedorspiraloffloadedareallinasinglefueledregioncontainingatleastoneOPERABLESRHismet.Spiralreloadingandoffloadingencompassreloadingoroffloadingacellontheedgeofacontinuousfueledregion(thecellcanbereloadedoroffloadedinanysequence).Innonspiralroutineoperations,twoSRHsarerequiredtobeOPERABLEtoprovideredundantmonitoringofreactivitychangesoccurringinthereactorcore.Becauseofthelocalnatureofreactivitychangesduringrefueling,adequatecoverageisprovidedbyrequiringoneSRHtobeOPERABLEin(continued)SUSQUEHANNA-UNIT183.3-36Revision0 SRMInstrumentationB3.3.1.2BASESLCO(continued)thequadrantofthereactorcorewhereCOREALTERATIONSarebeingperformed,andtheotherSRMtobeOPERABLEinanadjacent'uadrantcontainingfuel.TheserequirementsensurethatthereactivityofthecorewillbecontinuouslymonitoredduringCOREALTERATIONS.Specialmovabledetectors,accordingtofootnote(c)ofTable3.3.1.2-1,maybeusedduringCOREALTERATIONSinplaceofthenormalSRHnucleardetectors.ThesespecialdetectorsmustbeconnectedtothenormalSRHcircuitsintheNMS.suchthattheapplicableneutronfluxindicationcanbegenerated.Thesespecialdetectorsprovidemoreflexibility'nmonitoringreactivitychangesduringfuelloading,sincetheycanbepositionedanywherewithinthecoreduringrefueling.TheymuststillmeetthelocationrequirementsofSR3.3.1.2.2andallotherrequiredSRsforSRMs.ForanSRHchanneltobeconsideredOPERABLE,itmustbeprovidingneutronfluxmonitoringindication.APPLICABILITYTheSRMsarerequiredtobeOPERABLEinMODES2,3,4,and5priortotheIRMsbeingonscaleonRange3toprovideforneutronmonitoring.InMODE1,theAPRHsprovideadequatemonitoringofreactivitychangesinthecore;therefore,theSRMsarenotrequired.InMODE2,withIRHsonRange3orabove,theIRHsprovideadequatemonitoringandtheSRMsarenotrequired.ACTIONSA.1andB.1InMODE2,withtheIRMsonRange2orbelow,SRMsprovidethemeansofmonitoringcorereactivityandcriticality.WithanynumberoftherequiredSRMsinoperable,theabilitytomonitorneutronfluxisdegraded.Therefore,alimitedtimeisallowedtorestoretheinoperablechannelstoOPERABLEstatus.ProvidedatleastoneSRHremainsOPERABLE,RequiredActionA.1allows4hourstorestoretherequiredSRMstoOPERABLEstatus.Thistimeisreasonablebecausethereisadequatecapabilityremainingto,monitorthecore,thereis(continued)SUSQUEHANNA-UNIT1B3.3-37Revision0 SRNInstrumentationB3.3.1.2BASESACTIONSA.land8.1(continued)limitedriskofaneventduringthistime,andthereissufficienttimetotakecorrectiveactionstorestoretherequiredSRNstoOPERABLEstatusortoestablishalternate-IRNmonitoringcapability.Duringthistime.controlrodwithdrawalandpowerincreaseisnotprecludedbythisRequiredAction.HavingtheabilitytomonitorthecorewithatleastoneSRH,proceedingtoIRHRange3orgreater(withoverlaprequiredbySR3.3.1.1.6).andtherebyexitingtheApplicabilityofthisLCO,isacceptableforensuringadequatecoremonitoringandallowingcontinuedoperation.WiththreerequiredSRHsinoperable,RequiredActionB.1allowsnopositivechangesinreactivity(controlrodwithdrawalmustbeimmediatelysuspended)duetoinabilitytomonitorthechanges.RequiredActionA.1stillappliesandallows4hourstorestoremonitoringcapabilitypriortorequiringcontrolrodinsertion.Thisallowanceisbasedonthelimitedriskofaneventduringthistime,providedthatnocontrolrodwithdrawalsareallowed,andthedesiretoconcentrate.effortsonrepair,ratherthantoimmediatelyshutdown,withno.SRNsOPERABLE.C.jInNODE2,iftherequirednumberofSRNsisnotrestoredtoOPERABLEstatuswithintheallowedCompletionTime.thereactorshallbeplacedinNODE3.Withallcontrolrodsfullyinserted,thecoreisinitsleastreactivestatewiththemostmargintocriticality.TheallowedCompletionTimeof12hoursisreasonable,basedonoperatingexperience,toreachNODE3fromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.D1and02WithoneormorerequiredSRHsinoperableinNODE3or4,theneutronfluxmonitoringcapabilityisdegradedornonexistent.Therequirementtofullyinsertallinsertablecontrolrodsensuresthatthereactorwillbeatitsminimumreactivitylevelwhilenoneutronmonitoringcapabilityisavailable.Placingthereactormodeswitchintheshutdownpositionpreventssubsequentcontrolrodwithdrawalby(continued)SUSQUEHANNA-UNIT1B3.3-38Revision0 SRHInstrumentationB3.3.1.2BASESACTIONSD.landD.2(continued)maintainingacontrolrodblock.TheallowedCompletionTimeof1hourissufficienttoaccomplishtheRequiredAction,andtakesintoaccountthelowprobabilityofaneventrequiringtheSRHoccurringduringthisinterval.E.1andE.2WithoneormorerequiredSRNinoperableinNODE5,theabilitytodetectlocalreactivitychangesinthecoreduringrefuelingisdegraded.-COREALTERATIONSmustbeimmediatelysuspendedandactionmustbeimmediatelyinitiatedtoinsertallinsertablecontrolrodsincorecellscontainingoneormorefuelassemblies.SuspendingCOREALTERATIONSpreventsthetwomostprobablecausesofreactivitychanges,fuelloadingandcontrolrodwithdrawal,fromoccurring.Insertingallinsertablecontrolrodsensuresthatthereactorwillbeatitsminimumreactivitygiventhatfuelispresentinthecore.Suspensionof'OREALTERATIONSshallnotprecludecompletionofthemovementofacomponenttoasafe.conservativeposition.Action(oncerequiredtobeinitiated)toinsertcontrolrods-mustcontinueuntilallinsertablerodsincorecellscontainingoneormorefuelassembliesareinserted.SURVEILLANCE.REQUIREMENTSThe-SRsforeachSRHApplicableNODEorotherspecifiedconditionsarefoundintheSRscolumnofTable3.3.1.2-1.SR3.3.1.2.1andSR3.3.1.2.3PerformanceoftheCHANNELCHECKensuresthatagrossfailureofinstrumentationhasnotoccurred.ACHANNELCHECKisnormallyacomparisonoftheparameterindicatedononechanneltoasimilarparameteronanotherchannel.Itisbasedontheassumptionthatinstrumentchannelsmonitoringthesameparametershouldreadapproximatelythesamevalue.Significantdeviationsbetweentheinstrumentchannelscouldbeanindicationofexcessiveinstrumentdriftinoneofthechannelsorsomethingevenmoreserious.ACHANNELCHECKwilldetectgrosschannelfailure;thus,it(continued)SUSQUEHANNA-UNIT1B3.3-39Revision0 SRMInstrumentationB3.3.1.2BASESSURVEILLANCEREQUIREMENTSSR3.3.1.2.1andSR3.3.1.2.3(continued)iskeytoverifyingtheinstrumentationcontinuestooperateproperlybetweeneachCHANNELCALIBRATION.Agreementcriteriawhicharedeterminedbytheplantstaffbasedonaninvestigationofacombinationofthechannelinstrumentuncertainties,maybeusedtosupportthisparametercomparisonandincludeindicationandreadability.Ifachannelisoutsidethecriteria,itmaybeanindicationthattheinstrumenthasdriftedoutsideitslimit,anddoesnotnecessarilyindicatethechannelisInoperable.TheFrequencyofonceevery12hoursforSR3.3.1.2.1isbasedonoperatingexperiencethatdemonstrateschannelfailureisrare.WhileinMODES3and4,reactivitychangesarenotexpected;therefore,the12hourFrequencyisrelaxedto24hoursforSR3.3.1.2.3.TheCHANNELCHECKsupplementslessformalchecksofchannelsduringnormaloperationaluseofthed'isplaysassociatedwiththechannelsrequiredbytheLCO.~SR3:3.LZ.Toprovideadequatecoverageofpotentialreactivitychanges:inthe-core-,amaximumoftwoSRMsarerequiredtobe;=OPERABLEOneSRMisrequiredtobeOPERABLEinthe,-quadrantwhereCOREALTERATIONSarebeingperformed.and-the=-other.OPERABLESRMmustbeinanadjacentquadrant-containingfuel.However,inaccordancewithTable3.3.1.2-1.onlyoneSRMisrequiredduringaspiralreloaduntilthefueledregionislargeenoughtoencompassasecondinstalledSRM.Note1statesthattheSRisrequiredtobemetonlyduringCOREALTERATIONS.ItisnotrequiredtobemetatothertimesinMODE5sincecorereactivitychangesarenotoccurring.ThisSurveillanceconsistsofareviewofplantlogstoensurethatSRMsrequiredtobeOPERABLEforgivenCOREALTERATIONSare,infact,OPERABLE.IntheeventthatonlyoneSRMisrequiredtobeOPERABLE,perTable3.3.1.2-1.footnote(b),onlythea.portionofthisSRisrequired.Note2clarifiesthatmorethanoneofthethreerequirementscanbemetbythesameOPERABLESRM.The12hourFrequencyisbaseduponoperatingexperienceandsupplementsoperationalcontrolsoverrefuelingactivities(continued)SUSQUEHANNA-UNIT183.3-40Revision0 SRMInstrumentationB3.3.1.2BASESSURVEILLANCEREQUIREMENTSSR3.3.1.2.2(continued)thatincludestepstoensurethattheSRMsrequiredbytheLCOareintheproperquadrant.SR3.3.1.2.4ThisSurveillanceconsistsofaverificationoftheSRMinstrumentreadouttoensurethattheSRHreadingisgreaterthanaspecifiedminimumcountrate.whichensuresthatthedetectorsare.indicatingcountratesindicativeofneutronfluxlevelswithinthecore.Thesignal-to-noiseratioshowninFigure3.3.1.2-1istheSRHcountrateatwhichthereisa95KprobabilitythattheSRHsignalindicatesthepresenceofneutronsandonlya5XprobabilitythattheSRHsignalisaresultofnoise(Ref.1).Withfewfuelassembliesloaded,theSRMswillnothaveahighenoughcountratetosatisfytheSR.Therefore.allowancesaremadeforloadingsufficient"source"material,intheformofirradiatedfuelassemblies,toestablishtheminimumcountrate.Toaccomplishthis,theSRismodifiedbyaNotethatstatesthatthecountrateisnotrequiredto.bemetonanSRHthathaslessthanorequaltofourfuelassembliesadjacenttotheSRMandnootherfuelassembliesareintheassociatedcorequadrant.WithfourorlessfuelassembliesloadedaroundeachSRHandnootherfuelassembliesintheassociatedcorequadrant.evenwithacontrolrodwithdrawn,theconfigurationwillnotbecritical.Thesignaltonoiseratioisonlyrequiredtobedeterminedevery7or31dayspertherequirementsofSR3.3.1.2.5or3.3.1.2.6.TheFrequencyisbaseduponchannelredundancyandotherinformationavailableinthecontrolroom,andensuresthattherequiredchannelsarefrequentlymonitoredwhilecorereactivitychangesareoccurring.Whennoreactivitychangesareinprogress,theFrequencyisrelaxedfrom12hoursto24hours.SR3.3.1.2.5andSR3.3.1.2.6PerformanceofaCHANNELFUNCTIONALTESTdemonstratestheassociatedchannelwillfunctionproperly.SR3.3.1.2.5is(continued)SUSQUEHANNA-UNIT1B3.3-41Revision0 SRMInstrumentationB3.3.1.2BASESSURVEILLANCEREQUIREMENTSSR3.3.1.2.5andSR3.3.1.2.6(continued)requiredinMODE5,andthe7dayFrequencyensuresthatthechannelsareOPERABLEwhilecorereactivitychangescouldbeinprogress.ThisFrequencyisreasonable.basedonoperatingexperienceandonotherSurveillances(suchasaCHANNELCHECK),thatensureproperfunctioningbetweenCHANNELFUNCTIONALTESTS.SR3.3.1.2.6isrequiredinMODE2withIRMsonRange2orbelow,andinMODES3and4.Sincecorereactivitychangesdonotnormallytakeplace,theFrequencyhasbeenextendedfrom7daysto31days.The31dayFrequencyisbasedonoperatingexperienceandonotherSurveillances(suchasCHANNELCHECK)thatensureproperfunctioningbetweenCHANNELFUNCTIONALTESTS.Verificationofthesignaltonoiseratioalsoensuresthatthedetectorsareinsertedtoanacceptableoperatinglevel.Inafullywithdrawncondition,thedetectorsaresufficientlyremovedfro'mthefueledregionofthecoretoessentiallyeliminateneutronsfromreachingthedetector.Anycountrateobtainedwhilethedetectorsarefullywithdrawnisassumedtobe"noise"only.TheNotetotheSurveillanceallowstheSurveillancetobedelayeduntilentryintothespecifiedconditionoftheApplicability(THERMALPOWERdecreasedtoIRMRange2orbelow).TheSRmustbeperformedwithin12hoursafterIRMs.areonRange2orbelow.TheallowancetoentertheApplicabilitywiththe31dayFrequencynotmetisreasonable,'basedonthelimitedtimeof12hoursallowedafterenteringtheApplicabilityandtheinabilitytoperformtheSurveillancewhileathigherpowerlevels.AlthoughtheSurveillancecouldbeperformedwhileonIRMRange3,theplantwouldnotbeexpectedtomaintainsteadystateoperationatthispowerlevel.Inthisevent,the12hourFrequencyisreasonable.basedontheSRMsbeingotherwiseverifiedtobeOPERABLE(i.e.,satisfactorilyperformingtheCHANNELCHECK)andthetimerequiredtoperformtheSurveillances.(continued)SUSQUEHANNA-UNIT1B3.3-42Revision0 SRMInstrumentationB3.3.1.2SURVEILLANCEREQUIREMENTS(continued)SR3.3.1.2.7PerformanceofaCHANNELCALIBRATIONataFrequencyof24monthsverifiestheperformanceoftheSRMdetectorsandassociatedcircuitry.TheFrequencyconsiderstheplantconditionsrequiredtoperformthetest,theeaseofperformingthetest,andthelikelihoodofachangeinthesystemorcomponentstatus.TheneutrondetectorsareexcludedfromtheCHANNELCALIBRATIONbecausetheycannotreadilybeadjusted.Thedetectorsarefissionchambersthataredesignedtohavearelativelyconstantsensitivityovertherangeandwithanaccuracyspecifiedforafixedusefullife.Note2totheSurveillanceallowstheSurveillancetobedelayedunti1entryintothespecifiedconditionoftheApplicability.TheSRmustbeperformedinMODE2within12hoursofenteringMODE2withIRMsonRange2orbelow.TheallowancetoentertheApplicabilitywiththe24monthFrequencynotmetisreasonable,basedonthelimitedtimeof12hoursallowedafterenteringtheApplicabilityandtheinabilitytoperformtheSurveillancewhileathigherpowerlevels.Although.theSurveillancecouldbeperformedwhileonIRMRange3,theplantwouldnotbeexpectedtomaintainsteadystateoperationatthispowerlevel.Inthisevent,the12hourFrequencyisreasonable,basedontheSRMsbeingotherwiseverifiedtobeOPERABLE(i.e.,satisfactorilyperformingtheCHANNELCHECK)andthetimerequiredtoperformtheSurveillances.REFERENCES1.GeneralElectricServiceInformationLetter(SIL)478"SRMMinimumCountRate"datedDecember16,1988.SUSQUEHANNA-UNIT1B3.3-43Revision0 ControlRodBlockInstrumentationB3.3.2.183.3INSTRUMENTATION83.3.2.1ControlRodBlockInstrumentationBASESBACKGROUNDControlrodsprovidetheprimarymeansforcontrolofreactivitychanges.Controlrodblockinstrumentationincludeschannelsensors,logiccircuitry,switches,andrelaysthataredesignedtoensure=thatspecifiedfueldesignlimitsarenotexceededforpostulatedtransientsandaccidents.Duringhighpoweroperation,therodblockmonitor(RBM)providesprotectionforcontrolrodwithdrawalerrorevents.Duringlowpoweroperations,controlrodblocksfromtherodworthminimizer(RWM)enforcespecificcontrolrodsequencesdesignedtomitigatetheconsequencesofthecontrolroddropaccident(CRDA).Duringshutdownconditions,controlrodblocksfromtheReactorModeSwitch-ShutdownPositionFunctionensurethatallcontrolrodsremaininsertedtopreventinadvertentcriticalities.ThepurposeoftheRBHistolimitcontrolrodwithdrawaliflocalizedneutronfluxexceedsapredeterminedsetpointduringcontrolrod-manipulations.The-RBM'suppliesatripsignaltotheReactorManualControlSystem*(RHCS)toappropriatelyinhibitcontrolrodwithdrawalduring:poweroperationabovethelowpowerrangesetpoint-.The-RBHhastwochannels,eitherofwhichcaninitiate=acontrol.rod,blockwhenthechanneloutputexceeds.the--controlrodblocksetpoint.OneRBHchannelinputsinto=one.-RMCS'od=blockcircuitandtheotherRBHchannelinputsinto-the-.-second-RHCSrodblockcircuit.TheRBHchannelsignal-isgeneratedbyaveragingasetoflocalpowerrangemonii:or=(LPRH)signalsatvariouscoreheightssurroundingthecontrolrodbeingwithdrawn.Asignalfromoneaveragepowerrangemonitor(APRH)channelassignedtoeachReactorProtectionSystem(RPS)tripsystemsuppliesareferencesignalfortheRBMchannelinthesametripsystem.ThisreferencesignalisusedtoenabletheRBH.IftheAPRHisindicatinglessthanthelowpowerrangesetpoint.theRBHisautomaticallybypassed.TheRBHisalsoautomaticallybypassedifaperipheralcontrolrodisselected(Ref.2).ThepurposeoftheRWHistocontrolrodpatternsduringstartup,suchthatonlyspecifiedcontrolrodsequencesandrelativepositionsareallowedovertheoperatingrangefromallcontrolrodsinsertedto10KRTP.Thesequences(continued)SUSQUEHANNA-UNIT1B3.3-44Revision0 ControlRodBlockInstrumentationB3.3.2.1BASESBACKGROUND(continued)effectivelylimitthepotentialamountandrateofreactivityincreaseduringaCRDA.PrescribedcontrolrodsequencesarestoredintheRWH,whichwillinitiatecontrolrodwithdrawalandinsertblockswhentheactualsequencedeviatesbeyondallowancesfromthestoredsequence.TheRWHdeterminestheactualsequencebasedpositionindicationforeachcontrolrod.TheRWHalsousessteamflowsignalstodeterminewhenthereactorpowerisabovethepresetpowerlevelatwhichtheRWHisautomaticallybypassed(Ref.1).TheRWHisasinglechannelsystemthatprovidesinputintoRHCSrodblockchannel2.Withthereactormodeswitchintheshutdownposition,acontrolrodwithdrawalblockisappliedtoallcontrolrodstoensurethattheshutdownconditionismaintained.ThisFunctionpreventsinadvertentcriticalityastheresultofacontrolrodwithdrawalduringMODE3or4,orduringMODE5whenthereactormodeswitchisrequiredtobeintheshutdownposition.Thereactormodeswitchhas'twochannels,eachinputtingintoaseparateRHCSrodblockcircuit.ArodblockineitherRMCScircuitwillprovideacontrolrodblocktoallcontrolrods.APPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY1.RodBlockMonitorTheRBMisdesignedtolimitcontrolrodwithdrawaliflocalizedneutronfluxexceedsapredeterminedsetpoint.TheRBMwasoriginallydesignedtopreventfueldamageduringaRodWithdrawalError(RWE)eventwhileoperatinginthepowerrangeinanormalmodeofoperation.FSAR15.4.2(Ref.10)(RodWithdrawalError-AtPower)originallytookcreditfortheRBHautomaticallyactuatingtostopcontrolrodmotionandpreventingfueldamageduringanRWEeventatpower.However,currentreloadanalysesdonottakecreditfortheRBMsystem.TheAllowableValuesarechosenasafunctionofpowerleveltonotexceedtheAPRMscramsetpoints.TheRBHfunctionsatisfiesCriterion4oftheNRCPolicyStatement(Ref.7).(continued)SUSQUEHANNA-UNIT183.3-45Revision0 ControlRodBlockInstrumentationB3.3.2.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY(continued)TwochannelsoftheRBMarerequiredtobeOPERABLE,withtheirsetpointswithintheappropriateAllowableValuefortheassociatedpowerrange,toensurethatnosingleinstrumentfailurecanprecludearodblockforthisFunction.Theactualsetpointsarecalibratedconsistentwithapplicablesetpointmethodology.Nominaltripsetpointsarespecifiedinthesetpointcalculations.ThenominalsetpointsareselectedtoensurethatthesetpointsdonotexceedtheAllowableValuesbetweensuccessiveCHANNELCALIBRATIONS.Operationwithatripsetpointlessconservativethanthenominaltripsetpoint,butwithinitsAllowableValue,isacceptable.Tripsetpointsarethosepredeterminedvaluesof'utputatwhichanactionshouldtakeplace.Thesetpointsarecomparedtotheactualprocessparameter(e.g.,reactorpower),andwhenthemeasuredoutputvalueoftheprocessparameterexceedsthesetpoint,theassociateddevice(e.g.,tripunit)changesstate.Theanalyticlimitsarederivedfromthelimitingvaluesoftheprocessparameters'heAllowableValuesarederivedfromtheanalyticlimits,correctedforcalibration,process,andsomeoftheinstrumenterrors:Thetrip..setpointsarethendeterminedaccountingfortheremaininginstrumenterrors(e.g..drift).Thetripsetpointsderivedinthismannerprovideadequateprotectionbecauseinstrumentationuncertainties,processeff'ects,calibrationtolerances,instrumentdrift,andsevereenvironmenterrors(forchannelsthatmustfunctioninharshenvironmentsasdefinedby10CFR50.49)areaccountedfor.TheRBMwillfunctionwhenoperatinggreaterthan30KRTP.Belowthispowerlevel,theRBMisnotrequiredtobeOPERABLE.2.RodWorthMinimizerTheRWMenforcesthebankedpositionwithdrawalsequence(BPWS)toensurethattheinitialconditionsoftheCRDAanalysisarenotviolated.TheanalyticalmethodsandassumptionsusedinevaluatingtheCRDAaresummarizedinReferences2,3,4,and5.TheBPWSrequiresthatcontrolrodsbemovedingroups,withallcontrolrodsassignedtoaspecificgrouprequiredtobewithinspecifiedbankedpositions.Requirementsthatthecontrolrodsequenceisin(continued)SUSQUEHANNA-UNIT1B3.3-46Revision0 ControlRodBlockInstrumentationB3.3.2.1BASESAPPLICABLESAFETYANALYSES.LCO,andAPPLICABILITY(continued)compliancewiththeBPWSarespecifiedinLCO3.1.6,"RodPatternControl."TheRWMFunctionsatisfiesCriterion3oftheNRCPolicyStatement.(Ref.7)SincetheRWHisdesignedtoactasabackuptooperatorcontroloftherodsequences,onlyonechanneloftheRWMisavailableandrequiredtobeOPERABLE(Ref.6).SpecialcircumstancesprovidedforintheRequiredActionofLCO3.1.3,"ControlRodOPERABILITY,"andLCO3.1.6may'ecessitatebypassingtheRWMtoallowcontinuedoperationwithinoperablecontrolrods,ortoallowcorrectionofacontrolrodpatternnotincompliancewiththeBPWS.TheRWMmaybebypassedasrequiredbytheseconditions,butthenitmustbeconsideredinoperableandtheRequiredActionsofthisLCOfollowed.CompliancewiththeBPWS,andthereforeOPERABILITYoftheRWM,isrequiredinMODES1and2whenTHERMALPOWERis<10KRTP.WhenTHERMALPOWERis>10KRTP,thereisnopossiblecontrolrodconfigurationthatresultsinacontrolrodworththatcouldexceedthe280cal/gmfueldamagelimitduringaCRDA(Refs.4and6).InMODES3and4,allcontrolrodsarerequiredtobeinsertedintothecore(exceptasprovidedin3.10"SpecialOperations");therefore,aCRDAcannotoccur.InMODE5,sinceonlyasinglecontrolrodcanbewithdrawnfromacorecellcontainingfuelassemblies.adequateSDMensuresthattheconsequencesofaCRDAareacceptable,sincethereactorwillbesubcritical.3.ReactorModeSwitch-ShutdownPositionDuringMODES3and4.andduringMODE5whenthereactormodeswitchisrequiredtobeintheshutdownposition,thecoreisassumedtobesubcritical;therefore,nopositivereactivityinsertioneventsareanalyzed.TheReactorModeSwitch-ShutdownPositioncontrolrodwithdrawalblockensuresthatthereactorremainssubcriticalbyblockingcontrolrodwithdrawal,therebypreservingtheassumptionsofthesafetyanalysis.TheReactorModeSwitch-ShutdownPositionFunctionsatisfiesCriterion3oftheNRCPolicyStatement.(Ref.7)(continued)SUSQUEHANNA-UNIT183.3-47Revision0 ControlRodBlockInstrumentationB3.3.2.1BASESAPPLICABLESAFETYANALYSES.LCO,andAPPLICABILITY(continued)TwochannelsarerequiredtobeOPERABLEtoensurethatnosinglechannelfailurewillprecludearodblockwhenrequired.ThereisnoAllowableValueforthisFunctionsincethechannelsaremechanicallyactuatedbasedsolelyonreactormodeswitchposition.Duringshutdownconditions(MODE3,4,or5),nopositivereactivityinsertioneventsareanalyzedbecauseassumptionsarethatcontrolrodwithdrawalblocksareprovidedtopreventcriticality.Therefore,whenthereactormodeswitchisintheshutdownposition,thecontrolrodwithdrawalblock.isrequiredtobeOPERABLE.DuringMODE5withthereactormodeswitchintherefuelingposition,therefuelpositionone-rod-outinterlock(LCO3.9.2)providestherequiredcontrolrodwithdrawalblocks.ACTIONSA.1WithoneRBMchannelinoperable,theremainingOPERABLEchannelisadequatetoperformthecontrolrodblockfunction;however;overallreliabilityisreducedbecauseasinglefailureintheremainingOPERABLEchannelcanresultinnocontrolPodblockcapabilityfortheRBH.Forthisreason,RequiredActionA.1requiresrestorationoftheinoperablechanneltoOPERABLEstatus.TheCompletionTimeof5daysisbasedonthelowprobabilityofaneventoccurringcoincidentwithafailureintheremainingOPERABLEchannel.B.1IfRequiredActionA.1isnotmetandtheassociatedCompletionTimehasexpired,theinoperablechannelmustbeplacedintripwithin48hours.IfbothRBMchannelsareinoperable,theRBMisnotcapableofperformingitsintendedfunction;thus,onechannelmustalsobeplacedintrip.Thisinitiatesacontrolrodwithdrawalblock,therebyensuringthattheRBMfunctionismet.The48hourCompletionTimeisintendedtoallowtheoperatortimetoevaluateandrepairanydiscoveredinoperabilitiesandisacceptablebecauseitminimizesrisk(continued)SUSQUEHANNA-UNIT1B3.3-48Revision0 ControlRodBlockInstrumentationB3.3.2.1BASESACTIONSB.l(continued)whileallowingtimeforrestorationortrippingofinoperablechannels.C.lC.2.1.1C.2.1.2andC.2.2WiththeRWMinoperableduringareactorstartup,theoperatorisstillcapableofenforcingtheprescribedcontrolrodsequence.However,theoverallreliabilityisreducedbecauseasingleoperatorerrorcanresultinviolatingthecontrolrodsequence.Therefore,controlrodmovementmustbeimmediatelysuspendedexceptbyscram.Alternatively,startupmaycontinueifatleast12controlrodshavealreadybeenwithdrawn,orareactorstartupwithaninoperableRWHwasnotperformedinthelast12months.RequiredActionsC.2.1.1andC.2.1.2requireverificationoftheseconditionsbyreviewofplantlogsandcontrolroomindications.AreactorstartupwithaninoperableRWHisdefinedasrodwithdrawalduringstartupwhentheRWHisrequiredtobeOPERABLE.OnceRequiredActionC.2.1.1orC.2.1.2issatisfactorily.,completed,controlrodwithdrawalmayproceedinaccordancewiththerestrictionsimposedbyRequir'edActionC.2.2.RequiredActionC.2.2allowsfortheRWHFunctiontobeperformedmanuallyandrequiresadoublecheckofcompliancewiththeprescribedrodsequencebyasecondlicensedoperator(ReactorOperatororSeniorReactorOperator)orotherqualifiedmemberofthetechnicalstaff.TheRWHmaybebypassedundertheseconditionstoallowcontinuedoperations.Inaddition,RequiredActionsofLCO3.1.3andLCO3.1.6mayrequirebypassingtheRWH,duringwhichtimetheRWHmustbeconsideredinoperablewithConditionCenteredanditsRequiredActionstaken.D.1WiththeRWHinoperableduringareactorshutdown,theoperatorisstillcapableofenforcingtheprescribedcontrolrodsequence.RequiredActionD.1allowsfortheRWHFunctiontobeperformedmanuallyandrequiresadoublecheckofcompliancewiththeprescribedrodsequencebyasecondlicensedoperator(ReactorOperatororSeniorReactorOperator)orotherqualifiedmemberofthetechnicalstaff.(continued)SUSQUEHANNA-UNIT1B3.3-49Revision0 ControlRodBlockInstrumentationB3.3.2.1BASESACTIONSD.l(continued)TheRWMmaybebypassedundertheseconditionstoallowthe"reactorshutdowntocontinue.E.landE.2WithoneReactorModeSwitch-ShutdownPositioncontrolrodwithdrawalblockchannelinoperable,theremainingOPERABLEchannelisadequatetoperformthecontrolrodwithdrawalblockfunction.However,sincetheRequiredActionsareconsistentwiththenormalactionofanOPERABLEReactorModeSwitch-ShutdownPositionFunction(i.e..maintainingallcontrolrodsinserted),thereisnodistinctionbetweenhavingoneortwochannelsinoperable.Inbothcases(oneorbothchannelsinoperable),suspendingallcontrolrodwithdrawalandinitiatingactiontofullyinsertallinsertablecontrolrodsincorecellscontainingoneormorefuelassemblieswillensurethatthecoreissubcriticalwithadequateSDMensuredbyLCO3.l.1.Controlrodsincorecells"containingnofuelassembliesdonotaffectthereactivityofthecoreandarethereforenotrequiredtobeirlserted.Actionmustcontinueuntilallinsertablecontrolrodsincorecellscontainingoneormorefuelassembliesarefullyinserted.SURVEILLANCEREQUIREMENTSAsnotedatthebeginningoftheSRs,theSRsforeachControlRodBlockinstrumentationFunctionarefoundintheSRscolumnofTable3.3.2.1-1.TheSurveillancesaremodifiedbyaNotetoindicatethatwhenanRBMchannelisplacedinaninoperablestatussolelyforperformanceofrequiredSurveillances,entryintoassociatedConditionsandRequiredActionsmaybedelayedforupto6hoursprovidedtheassociatedFunctionmaintainscontrolrodblockcapability.UponcompletionoftheSurveillance.orexpirationofthe6hourallowance,thechannelmustbereturnedtoOPERABLEstatusortheapplicableConditionenteredandRequiredActionstaken.ThisNoteisbasedonthereliabilityanalysis(Ref.9)(continued)SUSQUEHANNA-UNIT1B3.3-50Revision0 ControlRodBlockInstrumentationB3.3.2.1BASESSURVEILLANCEREQUIREHENTS(continued)assumptionoftheaveragetimerequiredtoperformchannelSurveillance.Thatanalysisdemonstratedthatthe6hourtestingallowancedoesnotsignificantlyreducetheprobabilitythatacontrolrodblockwillbeinitiatedwhennecessary.SR3.3.2.1.1ACHANNELFUNCTIONALTESTisperformedforeachRBHchanneltoensurethattheentirechannelwillperformtheintendedfunction.ItincludestheReactorHanualControlHultiplexingSysteminput.TheFrequencyof92daysisbasedonreliabilityanalyses(Ref.8).SR3.3.2.1.2andSR3.3.2.1.3ACHANNELFUNCTIONALTESTisperformedfortheRWHtoensurethattheentiresystemwillperformtheintendedfunction.TheCHANNELFUNCTIONALTESTfortheRWHisperformedbyattemptingtowithdrawacontrolrodnotincompliancewiththeprescribedsequenceandverifyingacontrolrodblockoccursandbyverifyingproperindicationoftheselectionerrorofatleisi:oneout-of-sequencecontrolrod.AsnotedintheSRs,SR3.3.2.1.2isnotrequiredtobeperformeduntil1hourafteranycontrolrodiswithdrawninHODE2.Asnoted,SR3.3.2.1.3isnotrequiredtobeperformeduntil1hourafterTHERHALPOWERiss10XRTPinHODE1.ThisallowsentryintoHODE2forSR3.3.2.1.2,andentryintoNODE1whenTHERMALPOWERiss10KRTPforSR3.3.2.1.3,toperformtherequiredSurveillanceifthe92dayFrequencyisnotmetperSR3.0.2.The1hourallowanceisbasedonoperatingexperienceandinconsiderationofprovidingareasonabletimeinwhichtocompletetheSRs.TheFrequenciesarebasedonreliabilityanalysis(Ref.8).SR3.3.2.1.4TheRBHtripsareautomaticallybypassedwhenpowerisbelowaspecifiedvalueandaperipheralcontrolrodisnotselected.ThepowerAllowableValuemustbeverifiedperiodicallytonotbebypassedwhen~30KRTP.ThisisperformedbyaFunctionalcheck.IfanyRBHbypasssetpointisnon-conservative,thentheaffectedRBHchannelis(continued)SUSQUEHANNA-UNIT1B3.3-51Revision0 ControlRodBlockInstrumentationB3.3.2.1BASESSURVEILLANCEREQUIREMENTSSR3.3.2.1.4(continued)consideredinoperable.Alternatively,theRBMchannelcanbeplacedintheconservativecondition(i.e.,enablingtheRBMtrip).Ifplacedinthiscondition,theSRismetandtheRBMchannelisnotconsideredinoperable.AsnotedneutrondetectorsareexcludedfromtheSurveillancebecausetheyarepassivedevices.withminimaldrift.andbecauseofthedifficultyofsimulatingameaningfulsignal.NeutrondetectorsareadequatelytestedinSR3.3.1.1.2andSR3.3.1.1.8.The24monthFrequencyisbasedontheneedtoperformthesurveillanceduringaplantstart-up.SR3.3.2.1.5TheRWMisautomaticallybypassedwhenpowerisaboveaspecifiedvalue.Thepowerlevelisdeterminedfromsteamflowsignals.Theautomaticbypasssetpointmustbeverifiedperiodicallytobenotbypassed<10KRTP.ThisisperformedbyaFunctionalcheck.IftheRWMlowpowersetpointisnonconservativethentheRWMisconsideredinoperable.Alternately,thelowpowersetpointchannelcanbeplacedintheconservativecondition(nonbypass).Ifplacedinthenonbypassedcondition,theSRismetandtheRWMisnotconsideredinoperable.TheFrequencyisbasedontheneedtoperformtheSurveillanceduringaplantstart-up.SR3.3.2.1.6ACHANNELFUNCTIONALTESTisperformedf'rtheReactorModeSwitch-ShutdownPositionFunctiontoensurethattheentirechannelwillperformtheintendedfunction.TheCHANNELFUNCTIONALTESTfortheReactorModeSwitch-ShutdownPositionFunctionisperformedbyattemptingtowithdrawanycontrolrodwiththereactormodeswitchintheshutdownpositionandverifyingacontrolrod'blockoccurs.AsnotedintheSR,theSurveillanceisnotrequiredtobeperformeduntil1hour'afterthereactormodeswitchisintheshutdownposition,sincetestingofthisinterlockwiththereactormodeswitchinanyotherpositioncannotbeperformedwithoutusingjumpers,liftedleads,ormovable(continued)SUSQUEHANNA-UNIT183.3-52Revision0 ControlRodBlockInstrumentationB3.3.2.1BASESSURVEILLANCEREQUIREMENTSSR3.3.2.1.6(continued)links.ThisallowsentryintoNODES3and4ifthe24monthFrequencyisnotmetperSR3.0.2.The1hourallowanceisbasedonoperatingexperienceandinconsiderationofprovidingareasonabletimeinwhichtocompletetheSRs.The24monthFrequencyisbasedontheneedtoperformportionsofthisSurveillanceundertheconditionsthatapplyduringaplantoutageandthepotentialf'ranunplannedtransientiftheSurveillancewereperformedwiththereactoratpower.OperatingexperiencehasshownthesecomponentsusuallypasstheSurveillancewhenperformedatthe24monthFrequency.SR3.3.2.1.7CHANNELCALIBRATIONisatestthatverifiesthechannelrespondstothemeasuredparameterwiththenecessaryrangeandaccuracy.CHANNELCALIBRATIONleavesthechanneladjustedtoaccountforinstrumentdriftsbetweensuccessivecalibrationconsistentwiththeplantspecificsetpointmethodology.Asnoted,neutrondetectorsareexcludedfromtheCHANNELCALIBRATIONbecausetheyarepassivedevices,withminimaldrift.andbecauseofthedifficultyofsimulatingameaningfulsignal.NeutrondetectorsareadequatelytestedinSR3.3.1.1.2andSR3.3.1.1.8.TheFrequencyisbasedupontheassumptionofa24monthcalibrationintervalinthedeterminationofthemagnitudeofequipmentdriftinthesetpointanalysis.SR3.3.2.1.8TheRWNwillonlyenforcethepropercontrolrodsequenceiftherodsequenceisproperlyinputintotheRWNcomputer.ThisSRensuresthatthepropersequenceisloadedintotheRWNsothatitcanperformitsintendedfunction.TheSurveillanceisperformedoncepriortodeclaringRWHOPERABLEfollowingloadingofsequenceintoRWN,sincethisiswhenrodsequenceinputerrorsarepossible.SUSQUEHANNA-UNIT1B3.3-53(continued)Revision0 ControlRodBlockInstrumentationB3.3.2.1BASES(continued)REFERENCES1.FSAR,Section7.7.1.2.8.2.FSAR,Section7.6.l.a.5.73.NEDE-24011-P-A-9-US,"GeneralElectricalStandardApplicationforReloadFuel,"SupplementforUnitedStates,SectionS2.2.3.1,September1988.4."ModificationstotheRequirementsforControlRodDropAccidentMitigatingSystems,"BWROwners'roup,July1986.5.NED0-21231,"BankedPositionWithdrawalSequence,"January1977.6.NRCSER,"AcceptanceofReferencingofLicensingTopicalReportNEDE-24011-P-A,""GeneralElectricStandardApplicationforReactorFuel,Revision8,Amendment17,"December27.1987.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR32193)NEDC-30851-P-A,"TechnicalSpecificationImprovementAnalysisfor'WRControlRodBlockInstrumentation'~"-October1988.9.GENE-770-06-1,"AddendumtoBasesforchangestoSurveillanceTestIntervalsandAllowedOut-of-ServiceTimesforSelectedInstrumentation,TechnicalSpecifications,"February1991.10.FSAR.Section15.4.2.SUSQUEHANNA-UNIT1B3.3-54Revision0 Feedwater-MainTurbineHighWaterLevelTripInstrumentationB3.3.2.2B3.3INSTRUMENTATIONB3.3.2.2Feedwater-MainTurbineHighWaterLevelTripInstrumentationBASESBACKGROUNDThefeedwater-mainturbinehighwaterleveltripinstrumentationisdesignedtodetectapotentialfailureoftheFeedwaterLevelControlSystemthatcausesexcessivefeedwaterflow.Withexcessivefeedwaterflow,thewaterlevelinthereactorvesselrisestowardthehighwaterlevel,Level8referencepoint.causingthetripofthethreefeedwaterpumpturbinesandthemainturbine.ReactorVesselWaterLevel-High,Level8signalsareprovidedbylevelsensorsthatsensethedifferencebetweenthepressureduetoaconstantcolumnofwater(referenceleg)andthepressureduetotheactualwaterlevelinthereactorvessel(variableleg).ThreechannelsofReactorVesselWaterLevel-High;Level8instrumentationareprovidedasinputtoatwo-out-of-threeinitiationlogicthattripsthethreefeedwaterpumpturbinesandthemainturbine;Whenthesetpointisexceeded,thechannelsensoractuates-;;-whtctl-thenoutputsamainfeedwaterandturbine.trip.'i;gnalto.thetriplogic.Atrip.of.the-feedwaterpumpturbineslimitsfurtherincrease=in"reactorvesselwaterlevelbylimitingfurther=additi'onof-.feedwatertothereactorvessel.Atripofthemain-turbine-"andclosureofthestopvalvesprotectsthe='urbinefromdamageduetowaterenteringtheturbine.APPLICABLESAFETYANALYSESThefeedwater-mainturbinehighwaterleveltripinstrumentationisassumedtobecapableof'rovidingaturbinetripinthedesignbasistransientanalysisforafeedwatercontrollerfailure,maximumdemandevent(Ref.1).TheLevel8tripindirectlyinitiatesareactorscramfromthemainturbinetrip(above30KRTP)andtripsthefeedwaterpumps,therebyterminatingtheevent.ThereactorscrammitigatesthereductioninMCPR.(continued)SUSQUEHANNA-UNIT1B3.3-55Revision0 Feedwater-HainTurbineHighWaterLevelTripInstrumentationB3.3.2.2BASESAPPLICABLESAFETYANALYSES(continued)Feedwater-mainturbinehighwaterleveltripinstrumentationsatisfiesCriterion3oftheNRCPolicyStatement.(Ref.3)LCOTheLCOrequiresthreechannelsoftheReactorVesselWaterLevel-High,Level8tripinstrumentationtobeOPERABLEtoensurethatnosingleinstrumentfailurewillpreventthefeedwaterpumpturbinesandmainturbinetriponavalidLevel8signal.Twoofthethreechannelsareneededtoprovidetripsignalsinorderforthefeedwater-mainturbinetripstooccur.EachchannelmusthaveitssetpointsetwithinthespecifiedAllowableValueofSR3.3.2.2.3.TheAllowableValueissettoensurethatthethermallimitsarenotexceededduringtheevent.Theactualsetpointiscalibratedtobeconsistentwiththeapplicablesetpointmethodologyassumptions.Nominaltripsetpointsarespecifiedinthesetpointcalculations.ThenominalsetpointsareselectedtoensurethatthesetpointsdonotexceedtheAllowableValuebetweensuccessiveCHANNELCALIBRATIONS.Operationwithatripsetpointlessconservativethanthenominaltripsetpoint,butwithinitsAllowableValue,isacceptable.Tripsetpointsarethosepredeterminedvaluesofoutputatwhichanactionshouldtakeplace.Thesetpointsarecomparedtotheactualprocessparameter(e.g.,reactor,vesselwaterlevel),andwhenthemeasuredoutputvalueoftheprocessparameterreachesthesetpoint,theassoci.ateddevicechangesstate.Theanalyticlimitsarederivedfromthelimitingvaluesoftheprocessparametersobtainedfromthesafetyanalysis.TheAllowableValuesarederivedfromtheanalyticlimits,correctedforcalibration,process,andsomeoftheinstrumenterrors.AchannelisinoperableifitsactualtripsetpointisnotwithinitsrequiredAllowableValue.Thetripsetpointsarethendeterminedaccountingfortheremaininginstrumenterrors(e.g..drift).Thetripsetpointsderivedinthismannerprovideadequateprotectionbecauseinstrumentationuncertainties,processeffects,calibrationtolerances,instrumentdrift,andsevereenvironmenterrors(forchannelsthatmustfunctioninharshenvironmentsasdefinedby10CFR50.49)areaccountedfor.SUSQUEHANNA-UNIT1B3.3-56(continued)Revision0 Feedwater-HainTurbineHighWaterLevelTripInstrumentationB3.3.2.2BASES(continued)APPLICABILITYThefeedwater-mainturbinehighwaterleveltripinstrumentationisrequiredtobeOPERABLEat>25KRTPtoensurethatthefuelcladdingintegritySafetyLimitisnotviolatedduringthefeedwatercontrollerfailure,maximumdemandevent.AsdiscussedintheBasesofLCO3.2.2,"HINIHUMCRITICALPOWERRATIO(MCPR),"sufficientmargintotheselimitsexistsbelow25KRTP;therefore,therequirementsareonlynecessarywhenoperatingatorabovethispowerlevel.ACTIONSANotehasbeenprovidedtomodifytheACTIONSrelatedtofeedwater-mainturbinehighwaterleveltripinstrumentationchannels.Section1.3,CompletionTimes,specifiesthatonceaConditionhasbeenentered,subsequentdivisionssubsystems,components,orvariablesexpressedintheCondition,discoveredtobeinoperableornotwithinlimits,willnotresultinseparateentryintotheCondition.Section1.3alsospecifiesthatRequiredActionsoftheConditioncontinuetoapplyforeachadditionalfailure,withCompletionTimesbasedoninitialentryintotheCondition.However,the,RequiredActionsforinoperablefeedwater-mainturbinehighwaterlevel.tripinstrumentation'hannelsprovideappropriatecompensatorymeasuresforseparateinoperablechannels.Assuch,aNotehasbeenprovidedthatallowsseparateConditionentryforeachinoperablefeedwater-mainturbinehighwaterleveltripinstrumentationchannel.A.1Withonechannelinoperable,theremainingtwoOPERABLEchannelscanprovidetherequiredtripsignal.However,overallinstrumentationreliabilityisreducedbecauseasinglefailureinoneoftheremainingchannelsconcurrentwithfeedwatercontrollerfailure,maximumdemandevent.mayresultintheinstrumentationnotbeingabletoperformitsintendedfunction.Therefore,continuedoperationisonlyallowedforalimitedtimewithonechannelinoperable.IftheinoperablechannelcannotberestoredtoOPERABLEstatuswithintheCompletionTime,thechannelmustbeplacedinthetrippedconditionperRequiredActionA.l.Placingthe(continued)SUSQUEHANNA-UNIT1B3.3-57Revision0 Feedwater-HainTurbineHighWaterLevelTripInstrumentationB3.3.2.2BASESACTIONSA.l(continued)inoperablechannelintripwouldconservativelycompensatefortheinoperability,restorecapabilitytoaccommodateasinglefailure,andallowoperationtocontinuewithnofurtherrestrictions.Alternately,ifitisnotdesiredtoplacethechannelintrip(e.g.,asinthecasewhereplacingtheinoperablechannelintripwouldresultinafeedwaterormainturbinetrip),ConditionCmustbeenteredanditsRequiredActiontaken.Ifthefailureonlyeffectsthetripfunctionofasinglecomponent,suchasamainfeedpump,anoptionisalwaysavailabletoremovetheaffectedcomponentfromserviceandrestoreOPERABILITY.Thisisacceptablebecauseremovingthecomponentfromserviceperformsthesafetyfunction.TheCompletionTimeof7daysisbasedonthelowprobabilityoftheeventoccurringcoincidentwithasinglefailureinaremainingOPERABLEchannel.B.1Withtwoormorechannelsinoperable,thefeedwater-mainturbinehighwaterleveltripinstrumentationcannotperformitsdesignfunction(feedwater-mainturbinehighwaterleveltripcapabilityisnotmaintained).Therefore,continuedoperationisonlypermittedfora2hourperiod,duringwhichfeedwater-mainturbinehighwaterleveltripcapabilitymustberestored.ThetripcapabilityisconsideredmaintainedwhensufficientchannelsareOPERABLEorintripsuchthatthefeedwater--mainturbinehighwaterleveltriplogicwillgenerateatripsignalonavalidsignal.ThisrequirestwochannelstoeachbeOPERABLEorintrip.IftherequiredchannelscannotberestoredtoOPERABLEstatusorplacedintrip,ConditionCmustbeenteredanditsRequiredActiontaken.Ifthefailureonlyaffectsthetripfunctionofasinglemainfeedpump,anoptionisalwaysavailabletoremovetheaff'ectedcomponentfromserviceandrestoreOPERABILITY.Thisisacceptablebecauseremovingthecomponentfromserviceperformsthesafetyfunction.(continued)SUSQUEHANNA-UNIT183.3-58Revision0 Feedwater-MainTurbineHighWaterLevelTripInstrumentationB3.3.2.2BASESACTIONSB.1(continued)The2hourCompletionTimeissufficientfortheoperatortotakecorrectiveaction,andtakesintoaccountthelikelihoodofaneventrequiringactuationoffeedwater-mainturbinehighwaterleveltripinstrumentationoccurringduringthisperiod.Itisalsoconsistentwiththe2hourCompletionTimeprovidedinLCO3.2.2forRequiredActionA.1,sincethisinstrumentation'spurposeistoprecludeaMCPRviolation.C.1WiththerequiredchannelsnotrestoredtoOPERABLEstatusorplacedintrip,THERMALPOWERmustbereducedto<25KRTPwithin4hours.AsdiscussedintheApplicabilitysectionoftheBases,operationbelow25KRTPresultsinsufficientmargintotherequiredlimits,and.thefeedwater-mainturbinehighwaterleveltripinstrumentationisnotrequiredtoprotectfuelintegrityduringthefeedwatercontrollerfailure,maximumdemandevent.TheallowedCompletionTimeof'4hoursisbasedonoperatingexperiencetoreduceTHERMALPOWERto<25KRTPfromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.Ifthefailureonlyaffectsthetripfunctionofasinglemainfeedpump,anoptionisalwaysavailabletoremovetheaffectedcomponentfromserviceandrestoreOPERABILITY.Thisisacceptablebecauseremovingthecomponentfromserviceperformsthesafetyfunction.'URVEILLANCEREQUIREMENTSTheSurveillancesaremodifiedbyaNotetoindicatethatwhenachannelisplacedinaninoperablestatussolelyforperformanceofrequiredSurveillances,entryintoassociatedConditionsandRequiredActionsmaybedelayedforupto6hoursprovidedtheassociatedFunctionmaintainsfeedwater-mainturbinehighwaterleveltripcapability.UponcompletionoftheSurveillance.orexpirationofthe6hourallowance.thechannelmustbereturnedtoOPERABLEstatus(continued)SUSQUEHANNA-UNIT1B3.3-59Revision0 Feedwater-MainTurbineHighWaterLevelTripInstrumentationB3.3.2.2BASESSURVEILLANCEREQUIREMENTS(continued)ortheapplicableConditionenteredandRequiredActionstaken.ThisNoteisbasedonthereliabilityanalysis(Ref.2)assumptionthat6hoursistheaveragetimerequiredtoperformchannelSurveillance.Thatanalysisdemonstratedthatthe6hourtestingallowancedoesnotsignificantlyreducetheprobabilitythatthefeedwaterpumpturbinesandmainturbinewilltripwhennecessary.SR3.3.2.2.1Pe'rformanceoftheCHANNELCHECKonceevery24hoursensuresthatagrossfailureofinstrumentationhasnotoccurred.ACHANNELCHECKisnormallyacomparisonoftheparameterindicatedononechanneltoasimilarparameteronotherchannels.Itisbasedontheassumptionthatinstrumentchannelsmonitoringthesameparametershouldreadapproximatelythesamevalue.Significantdeviationsbetweeninstrumentchannels.couldbeanindicationofexcessiveinstrumentdriftinoneofthechannels,orsomethingevenmoreserious.ACHANNELCHECKwilldetectgrosschannelfailure;thus,itiskeytoverifyingtheinstrumentationcontinuesto.operateproperlybetweeneachCHANNELCALIBRATION.Agreementcriteriawhicharedeterminedbytheplantstaffbasedonaninvestigationofacombinationofthechannelinstrumentuncertainties,maybeusedtosupportthisparametercomparisonandincludeindicationandreadability.Ifachannelisoutsidethecriteria,itmaybeanindicationthattheinstrumenthasdriftedoutsideitslimit,anddoesnotnecessarilyindicatethechannelisInoperable.TheFrequencyisbasedonoperating.experiencethatdemonstrateschannelfailureisrare.TheCHANNELCHECKsupplementslessformalchecksofchannelstatusduringnormaloperationaluseofthedisplaysassociatedwiththechannelsrequiredbytheLCO.SR3.3.2.2.2ACHANNELFUNCTIONALTESTisperformedoneachrequiredchanneltoensurethattheentirechannelwi11performtheintendedfunction.(continued)SUSQUEHANNA-UNIT1B3.3-60Revision0 Feedwater-MainTurbineHighWaterLevelTripInstrumentationB3.3.2.2BASESSURVEILLANCEREQUIREMENTSSR3.3.2.2.2(continued)TheFrequencyof92daysisbasedonreliabilityanalysis(Ref.2).ThisSRismodifiedbytwoNotes.Note1providesageneralexceptiontothedefinitionofCHANNELFUNCTIONALTEST.Thisexceptionisnecessarybecausethedesignofinstrumentationdoesnotfacilitatefunctionaltestingofallrequiredcontactsoftherelayswhichinputintothecombinationallogic.(Reference4)Performanceofsuchatestcouldresultinaplanttransientorplacetheplantinanundorisksituation.Therefore,forthisSR.theCHANNELFUNCTIONAL.TESTverifiesacceptableresponsebyverifyingthechangeofstateoftherelaywhichinputsintothecombinationallogic.TherequiredcontactsnottestedduringtheCHANNELFUNCTIONALTESTaretestedundertheLOGICSYSTEMFUNCTIONALTEST,SR3.3.2.2.4.ThisisacceptablebecauseoperatingexperienceshowsthatthecontactsnottestedduringtheCHANNELFUNCTIONALTESTnormallypasstheLOGICSYSTEMFUNCTIONALTEST,andthetestingmethodologyminimizestheriskofunplannedtransients.Note2providedasecondspecificexceptiontothedefinitionofCHANNELFUNCTIONALTEST.FortheFeedwater-MainTurbineHighWaterLevelTripFunction,certainrequiredchannelrelaysarenotincludedintheperformanceoftheCHANNELFUNCTIONALTEST.Theseexceptionsarenecessarybecausethecircuitdesigndoesnotfacilitatefunctionaltestingoftheentirechannelthroughtothecoiloftherelaywhichentersthecombinationallogic.(Reference4)Specifically,testingofallrequiredrelayswouldrequireliftingofleadsandinsertingtestequipmentwhichcouldleadtounplannedtransients.Therefore,forthiscircuit,theCHANNELFUNCTIONALTESTverifiesacceptableresponsebyverifyingtheactuationofcircuitdevicesuptothepointwherefurthertestingcouldresultinanunplannedtransient.(References5and6)TherequiredrelaysnottestedduringtheCHANNELFUNCTIONALTESTaretestedundertheLOGICSySTEMFUNCTIONALTEST,SR.3.3.2.2.4.ThisexceptionisacceptablebecauseoperatingexperienceshowsthatthedevicesnottestedduringtheCHANNELFUNCTIONALTESTnormallypasstheLOGICSYSTEMFUNCTIONALTEST,andthetestingmethodologyminimizestheriskofunplannedtransients.(continued)SUSQUEHANNA-UNIT1B3.3-61Revision0 Feedwater-MainTurbineHighWaterLevelTripInstrumentationB3.3.2.2BASESSURVEILLANCEREQUIREMENTS(continued)SR3.3.2.2.3CHANNELCALIBRATIONverifiesthatthechannelrespondstothemeasuredparameterwithinthenecessaryrangeandaccuracy.CHANNELCALIBRATIONleavesthechanneladjustedtoaccountforinstrumentdriftsbetweensuccessivecalibrationsconsistentwiththeplantspecificsetpointmethodology.TheFrequencyisbasedupontheassumptionofan24monthcalibrationintervalinthedeterminationofthemagnitudeofequipmentdriftinthesetpointanalysis.SR3.3.2.2.4TheLOGICSYSTEMFUNCTIONALTESTdemonstratestheOPERABILITYoftherequiredtriplogicforaspecificchannel.Thesystemfunctionaltestofthefeedwater-mainturbinevalvesisincludedaspartofthisSurveillanceandoverlapstheLOGICSYSTEMFUNCTIONALTESTtoprovidecompletetestingoftheassumedsafetyfunction.Therefore,ifavalveisincapableofoperating,theassociatedinstrumentationwouldalsobeinoperable.The24monthFrequencyisb5sedontheneedtoperformthisSurveillanceundertheconditionsthatapplyduringaplantoutageandthepotentialforanunplannedtransientiftheSurveillancewereperformedwiththereactoratpower.OperatingexperiencehasshownthatthesecomponentsusuallypasstheSurveillancewhenperformedatthe24monthFrequency.REFERENCES1.FSAR,Section15.1.2.2.GENE-770-06-1,"BasesforChangestoSurveillanceTestIntervalsandAllowedOut-Of-ServiceTimesforSelectedInstrumentationTechnicalSpecifications,"February1991.3.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132)(continued)SUSQUEHANNA-UNIT1B3.3-62Revision0 Feedwater-MainTurbineHighWaterLevelTripInstrumentationB3.3.2.2BASESREFERENCES(continued)4.NRCInspectionandEnforcementManual,Part9900:TechnicalGuidance,StandardTechnicalSpecificationSection1.0Definitions,Issuedate12/08/86.5.PLA-2618:NRCInspectionReports50-387/85-28and50-388/85-23.6.NRCRegionICombinedInspection50-387/90-20;50-388/90-20.SUSQUEHANNA-UNIT1B3.3-63Revision0 PAMInstrumentation83.3.3.1B3.3-INSTRUMENTATIONB3.3.3.1PostAccidentMonitoring(PAM)InstrumentationBASESBACKGROUNDTheprimarypurposeofthePAMinstrumentationistodisplayplantvariablesthatprovideinformationrequiredbythecontrolroomoperatorsduringaccidentsituations.Thisinformationprovidesthenecessarysupportfortheoperatortotakethemanualactionsf'rwhichnoautomaticcontrolisprovidedandthatarerequiredforsafetysystemstoaccomplishtheirsafetyfunctionsforDesignBasisEvents.TheinstrumentsthatmonitorthesevariablesaredesignatedasTypeA,CategoryI'ndnon-TypeA,CategoryI,inaccordancewithRegulatoryGuide1.97(Ref.1).TheOPERABILITYoftheaccidentmonitoringinstrumentationensuresthatthereissufficientinformationavailableonselectedplantparameterstomonitorandassessplantstatusandbehaviorfollowinganaccident.ThiscapabilityisconsistentwiththerecommendationsofReference1.APPLICABLEThePAMinstrumentationLCOensurestheOPERABILITYofSAFETYANALYSESRegulatoryGuide1.97,TypeAvariablessothatthecontrolroomoperatingstaffcan:~PerformthediagnosisspecifiedintheEmergencyOperatingProcedures(EOPs).ThesevariablesarerestrictedtopreplannedactionsfortheprimarysuccesspathofDesignBasisAccidents(DBAs).(e.g.,lossofcoolantaccident(LOCA)),and~Takethespecified,preplanned,manuallycontrolledactionsforwhichnoautomaticcontrolisprovided,whicharerequiredforsafetysystemstoaccomplishtheirsafetyfunction.ThePAMinstrumentationLCOalsoensuresOPERABILITYofCategoryI,non-TypeA,variablessothatthecontrolroomoperatingstaffcan:~Determinewhethersystemsimportanttosafetyareperformingtheirintendedfunctions;(continued)SUSQUEHANNA-UNIT183.3-64Revision0 PANInstrumentationB3.3.3.1BASESAPPLICABLESAFETYANALYSES(continued)~Determinethepotentialforcausingagrossbreachofthebarrierstoradioactivityrelease;~Determinewhetheragrossbreachofa.barrierhasoccurred;and~Initiateactionnecessarytoprotectthepublicandforanestimateofthemagnitudeofanyimpendingthreat.TheplantspecificRegulatoryGuide1.97Analysis(Ref.2and3)documents.theprocessthatidentifiedTypeAandCategoryI,non-TypeA,variables.AccidentmonitoringinstrumentationthatsatisfiesthedefinitionofTypeAinRegulatoryGuide1.97meetsCriterion3oftheNRCPolicyStatement.(Ref.4)CategoryI,non-TypeA,instrumentationisretainedinTechnicalSpecifications(TS)becausetheyareintendedtoassistoperatorsinminimizingtheconsequencesofaccidents.Therefore,theseCategoryIvariablesareimportantforreducingpublicrisk.LCOLCO3.3.3.1requirestwoOPERABLEchannelsforallbutoneFunctiontoensurethatnosinglefailurepreventstheoperatorsfrombeingpresentedwiththeinformationnecessarytodeterminethestatusoftheplantandtobringtheplantto,andmaintainitin,asafeconditionfollowingthataccident.Furthermore,provisionoftwochannelsallowsaCHANNELCHECKduringthepostaccident'hasetoconfirmthevalidityofdisplayedinformation.Theexceptiontothetwochannelrequirementisprimarycontainmentisolationvalve(PCIV)position.Inthiscase,theimportantinformationisthestatusoftheprimarycontainmentpenetrations.TheLCOrequiresonepositionindicatorforeachactivePCIV.Thisissufficienttoredundantlyverifytheisolationstatusofeachisolablepenetrationeitherviaindicatedstatusoftheactivevalveandpriorknowledgeofpassivevalveorviasystemboundary(continued)SUSQUEHANNA-UNIT1B3.3-65Revision0 PANInstrumentationB3.3.3.1BASESLCO(continued)status.IfanormallyactivePCIVisknowntobeclosedanddeactivated.positionindicationisnotneededtodeterminestatus.Therefore,thepositionindicationforvalvesinthisstateisnotrequiredtobeOPERABLE.Thefollowinglistisadiscussion,ofthespecifiedinstrumentFunctionslistedinTable3.3.3.1-1intheaccompanyingLCO.1.ReactorSteamDomePressureReactorsteamdomepressureisaCategoryIvariableprovidedtosupportmonitoringofReactorCoolantSystem(RCS)integrityandtoverifyoperationoftheEmergencyCoreCoolingSystems(ECCS).Twoindependentpressurechannels,consistingofthreewiderangecontrolroomindicatorsandonewiderangecontrolroomrecorderperchannelwitharangeof0psigto1500psig,monitorpressure.Thewiderangerecordersaretheprimarymethodofindicationusedbytheoperatorsduringanaccident.therefore.thePANSpecificationdealsspecificallywiththisportionoftheinstrumentchannel.2.ReactorVesselWaterLevelReactorvesselwaterlevelisaCategoryIvariableprovidedtosupportmonitoringofcorecoolingandtoverifyoperationoftheECCS.Acombinationofthreedifferentlevelinstrumentranges,withtwoindependentchannelseach,monitorReactorVesselWaterLevel.Theextendedrangeinstrumentationmeasuresfrom-150inchesto180inchesandoutputstothreecontrolroomlevelindicatorsperchannel.Thewiderangeinstrumentationmeasuresfrom-150inchesto60inchesandoutputstoonecontrolroomrecorderandthreecontrolroomindicatorsperchannel.Thefuelzonerangeinstrumentationmeasuresfrom-310inchesto-110inchesandoutputstoacontrolroomrecorder(onechannel)andacontrolroomindicator(onechannel).ThesethreerangesofinstrumentscombinetoprovidelevelindicationfromthebottomoftheCoretoabovethemainsteamline.Thewiderangelevelrecorders,thefuelzonelevelindicatorandlevelrecorder,andoneinnerringextendedrangelevelindicatorperchannelaretheprimarymethodofindicationusedbytheoperatorduringanaccident,thereforethePAN(continued)SUSQUEHANNA-UNIT1B3.3-66Revision0 PANInstrumentationB3.3.3.1BASESLCO2.ReactorVesselWaterLevel(continued)Specificationdealsspecificallywiththisportionoftheinstrumentchannel.3.SuressionChamberWaterLevelSuppressionchamberwaterlevelisaCategoryIvariablerovidedtodetectabreachinthereactorcoolantpressureoundary(RCPB).ThisvariableisalsousedtoverifyandprovidelongtermsurveillanceofECCSfunction.Acombinationoftwodifferentlevelinstrumentranges,withtwoindependentchannelseach,monitorSuppressionchamberwaterlevel.ThewiderangeinstrumentationmeasuresfromtheECCSsuctionlinestoapproximatelythetopofthechamberandoutputstoonecontrolroomrecorderperchannel.Thewiderangerecordersaretheprimarymethodofindicationusedbytheoperatorduringanaccident,thereforethePANSpecificationdealsspecificallywiththisportionoftheinstrumentchannel.4.PrimarContainmentPressurePrimaryContainmentpressureisaCategoryIvariableprovidedtodetectabreachoftheRCPBandtoverifyECCSfunctionsthatoperatetomaintainRCSintegrity.Acombinationoftwodifferentpressureinstrumentranges.withtwoindependentchannelseach,monitorprimarycontainmentpressure.TheLOCArangemeasuresfrom-15psigto65psigandoutputstoonecontrolroomrecorderperchannel.Theaccidentrangemeasuresfrom0psigto250psigandoutputstoonecontrolroomrecorderperchannel(samerecordersastheLOCArange).Therecorders(bothranges)aretheprimarymethodofindicationusedbytheoperatorduringanaccident,thereforethePAMSpecificationdealsspecificallywiththisportionoftheinstrumentchannel.5.PrimarContainmentHihRadiationPrimarycontainmentarearadiation(highrange)isprovidedtomonitorthepotentialofsignificantradiationreleases(continued)SUSQUEHANNA-UNIT183.3-67Revision0 PANInstrumentationB3.3.3.1BASESLCO5.PrimarContainmentHihRadiation(continued)andtoprovidereleaseassessmentforusebyoperatorsindeterminingtheneedtoinvokesiteemergencyplans.Twoindependentchannels,whichoutputtoonecontrolroomrecorderperchannelwitharangeof10'o1X10'/hr,monitorradiation.Therecordersaretheprimarymethodofindicationusedbytheoperatorduringanaccident.thereforethePANSpecificationdealsspecificallywiththisportionoftheinstrumentchannel.6.PrimarContainmentIsolationValvePCIVPositionPCIVpositionisprovidedforverificationofcontainmentintegrity.InthecaseofPCIVposition,theimportantinformation.istheisolationstatusofthecontainmentpenetration.TheLCOrequiresachannelofvalvepositionindicationinthecontrolroomtobeOPERABLEforanactivePCIVinacontainmentpenetrationflowpath,i.e.~twototalchannelsofPCIVpositionindicationforapenetrationflowpathwithtwoactivevalves.Forcontainmentpenett'ationswithonlyoneactivePCIVhavingcontrolroomindication,Note(b)requiresasinglechannelofvalvepositionindicationtobeOPERABLE.Thisissufficienttoredundantlyverifytheisolationstatusofeachisolablepenetrationviaindicatedstatusoftheactivevalve,asapplicable,andpriorknowledgeofpassivevalveorsystemboundarystatus.Ifapenetrationflowpathisisolated,positionindicationforthePCIV(s)intheassociatedpenetrationflowpathisnotneededtodeterminestatus.Therefore,thepositionindicationforvalvesinanisolatedpenetrationflowpathisnotrequiredtobeOPERABLE.ThesevalveswhichrequirepositionindicationarespecifiedinTableB3.6.1.3-1.Furthermore,thelossofpositionindicationdoesnotnecessarilyresultinthePCIVbeinginoperable.ThePCIVpositionPANinstrumentationconsistsofpositionswitchesuniquetoPCIVs,associatedwiringandcontrolroomindicatinglamps(notnecessarilyuniquetoaPCIV)foractivePCIVs(checkvalvesandmanualvalvesarenotrequiredtohavepositionindication).Therefore.thePAMSpecificationdealsspecificallywiththeseinstrumentchannels.(continued)SUSQUEHANNA-UNIT183.3-68Revision0 PAMInstrumentationB3.3.3.1BASESLCO(continued)7.NeutronFluxWiderangeneutronfluxisaCategoryIvariableprovidedtoverifyreactorshutdown.TheNeutronMonitoringSystemAveragePowerRangeMonitors(APRM)whichconsistof6channelsthatoutputtofourcontrolroomrecorders(oneforchannelsAandC,oneforchannelsBandD,oneforchannelEandoneforchannelF)providereliableneutronfluxmeasurementfromOXto125Koffullpower.ThePAMfunctionf'rneutronfluxissatisfiedbyanyonechannelofAPRMsineachdivision(channelsA,C,Ecomprisedivisionone,channelsB,D,Fcomprisedivisiontwo).Therecordersaretheprimarymethodofindicationusedbytheoperatorduringanaccident.thereforethePAMSpecificationdealsspecificallywiththisportionoftheinstrumentchannel.8.ContainmentHdroenandOxenAnalzersThedrywellandsuppressionchamberhydrogenandoxygenconcentrationsareCategoryIvariables.Twoindependentgasanalyzersmonitorhydrogenandoxygenconcentrationtodetectunsafecombustiblegaslevelsinprimarycontainment.Theanalyzersarecapableofdetermininghydrogenconcentrationin'therangeof0to30Kbyvolumeandoxygenconcentrationintherangeof0to10Kbyvolume,andeachprovidecontrolroomindicationandoutputtoacontrolroomrecorder.Eachgasanalyzermustbecapableofsamplingeitherthedrywellorthesuppressionchamber.Therecordersaretheprimarymethodofindicationusedbytheoperatorduringanaccident,thereforethePAMSpecificationdealsspecificallywiththisportionoftheinstrumentchannel.9.DrellAtmoshereTemeratureDrywellatmospheretemperatureisaCategoryIvariableprovidedtoverifyRCSandcontainmentintegrityandtoverifytheeffectivenessofECCSactionstakentopreventcontainmentbreach.Twoindependenttemperaturechannels,consistingoftwocontrolroomrecordersperchannelwitharangeof40to440degreesF,monitortemperature.Theinnerringtemperaturerecordersaretheprimarymethodofindicationusedbytheoperatorduringanaccident.(continued)SUSQUEHANNA-UNIT1B3.3-69Revision0 PAHInstrumentationB3.3.3.1BASESLCO(continued)thereforethePAHSpecificationdealsspecificallywiththisportionoftheinstrumentchannel.10.SuressionChamberWaterTemeratureSuppressionChamberwatertemperatureisaCategoryIvariableprovidedtodetectaconditionthatcouldpotentiallyleadtocontainmentbreachandtoverifytheeffectivenessofECCSactionstakentopreventcontainmentbreach.Thesuppressionchamberwatertemperatureinstrumentationallowsoperatorstodetecttrendsinsuppressionchamberwatertemperatureinsufficienttimetotakeactiontopreventsteamquenchingvibrationsinthesuppressionpool.TwochannelsarerequiredtobeOPERABLE.Eachchannelconsistsofeightsensorsofwhichaminimumoffoursensors(onesensorineachquadrant)mustbeOPERABLEtoconsiderachannelOPERABLE.Theoutputsforthetemperaturesensorsaredisplayedontwoindependentindicatorsinthecontrolroomandrecordedonthemonitoringunitslocatedinthecontrolroomonabackpanel.Thetemperatureindicatorsaretheprimarymethodofindicationusedby'theoperatorduringanaccident,thereforethePAHSpecificationdealsspecificallywiththisportionoftheinstrumentchannel.APPLICABILITYThePAHinstrumentationLCOisapplicableinHODES1and2.ThesevariablesarerelatedtothediagnosisandpreplannedactionsrequiredtomitigateDBAs.TheapplicableDBAsareassumedtooccurinHODES1and2.InHODES3,4,and5,plantconditionsaresuchthatthelikelihoodofaneventthatwouldrequirePAHinstrumentationisextremelylow;therefore,PAHinstrumentationisnotrequiredtobeOPERABLEintheseNODES.ACTIONSNote1hasbeenaddedtotheACTIONStoexcludetheHODEchangerestrictionofLCO3.0.4.ThisexceptionallowsentryintotheapplicableNODEwhilerelyingontheACTIONSeventhoughtheACTIONSmayeventuallyrequireplantshutdown.Thisexceptionisacceptableduetothepassivefunctionoftheinstruments,theoperator'sabilitytodiagnoseanaccidentusingalternativeinstrumentsand(continued)SUSQUEHANNA-UNIT183.3-70Revision0 PAMInstrumentationB3.3.3.1BASESACTIONS(continued)methods.andthelowprobabilityofaneventrequiringtheseinstruments.Note2hasbeenprovidedtomodifytheACTIONSrelatedtoPAMinstrumentationchannels.Section1.3.CompletionTimes,specifiesthatonceaConditionhasbeenentered,subsequentdivisions,subsystems,components,orvariablesexpressedintheConditiondiscoveredtobeinoperableornotwithinlimits,willnotresultinseparateentryintotheCondition.Section1.3alsospecifiesthatRequiredActionsoftheConditioncontinuetoapplyforeachadditionalfailure,withCompletionTimesbasedoninitialentryintotheCondition.However.theRequiredActionsforinoperablePAMinstrumentationchannelsprovideappropriatecompensatorymeasuresforseparateFunctions.Assuch,aNotehasbeenprovidedthatallowsseparateConditionentryforeachinoperablePAMFunction.A.1WhenoneormoreFunctionshaveonerequiredchannelthatisinoperable,therequiredinoperablechannelmustberestoredtoOPERABLEstatuswithin30days.The30dayCompletionTimeisbasedonoperatingexperienceandtakesintoaccounttheremainingOPERABLEchannels,thepassivenatureoftheinstrument(nocriticalautomaticactionisassumedtooccurfromtheseinstruments),andthelowprobabilityofaneventrequiringPAMinstrumentationduringthisinterval.B.1IfachannelhasnotbeenrestoredtoOPERABLEstatusin30days,thisRequiredActionspecifiesinitiationofactioninaccordancewithSpecification5.6.7,whichrequiresawrittenreporttobesubmittedtotheNRC.Thisreportdiscussestheresultsoftherootcauseevaluationoftheinoperabilityandidentifiesproposedrestorativeactions.ThisactionisappropriateinlieuofashutdownrequirementbecausealternativeactionsareidentifiedbeforethewrittenreportissubmittedtotheNRC,andgiventhelikelihoodofplantconditionsthatwouldrequireinformationprovidedbythisinstrumentation.(continued)SUSQUEHANNA-UNIT183.3-71Revision0

PAMInstrumentationB3.3.3.1BASESACTIONS(continued)C.1WhenoneormoreFunctionshavetworequiredchannelsthatareinoperable(i.e..twochannelsinoperableinthesameFunction),onechannelintheFunctionshouldberestoredtoOPERABLEstatuswithin7days.TheCompletionTimeof7daysisbasedontherelativelylowprobabilityofaneventrequiringPAMinstrumentoperationandtheavailabilityofalternatemeanstoobtaintherequiredinformation.ContinuousoperationwithtworequiredchannelsinoperableinaFunctionisnotacceptablebecausethealternateindicationsmaynotfullymeetallperformancequalificationrequirementsappliedtothePAMinstrumentation.Therefore,requiringrestorationofoneinoperablechanneloftheFunctionlimitstheriskthatthePAMFunctionwillbeinadegradedconditionshouldanaccidentoccur.D.1ThisRequiredActiondirectsentryintotheappropriateConditionreferencedinTable3.3.3.1-1.Theapp'licableConditionreferencedintheTableisFunctiondependent.EachtimeaninoperablechannelhasnotmetanyRequiredActionofConditionC,asapplicable,andtheassociatedCompletionTimehasexpired,ConditionDisenteredfor.thatchannelandprovidesfortransfertotheappropriatesubsequentCondition.ForthemajorityofFunctionsinTable3.3.3.1-1,ifanyRequiredActionandassociatedCompletionTimeofConditionCarenotmet.theplantmustbebroughttoaMODEinwhichtheLCOnotapply.Toachievethisstatus,theplantmustbebroughttoatleastMODE3within12hours.TheallowedCompletionTimesarereasonable,basedonoperatingexperience,toreachtherequiredplantconditionsfromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.(continued)SUSQUEHANNA-UNIT1B3.3-72Revision0 PAMInstrumentationB3.3.3.1BASESACTIONS(continued)Sincealternatemeansofmonitoringprimarycontainmentarearadiationhavebeendevelopedandtested,theRequiredActionisnottoshutdowntheplant,butrathertofollow,thedirectionsofSpecification5.6.7.ThesealternatemeanswillbetemporarilyinstalledifthenormalPAMchannelcannotberestoredtoOPERABLEstatuswithintheallottedtime.ThereportprovidedtotheNRCshoulddiscussthealternatemeansused,describethedegreetowhichthealternatemeansareequivalenttotheinstalledPAMchannels,justifytheareasinwhichtheyarenotequivalent,andprovideascheduleforrestoringthenormalPAMchannels.SURVEILLANCEREQUIREMENTSThefollowingSRsapplytoeachPAMinstrumentationFunctioninTable3.3.3.1-1.SR3.3.3.1.1Performanceofthe-CHANNELCHECKonceevery31daysensuresthatagrossfailureofinstrumentationhasnotoccurred.ACHANNELCHECKisnormallyacomparisonoftheparameterindicatedononechannelagainstasimilarparameteronotherchannels.Itisbasedontheassumptionthatinstrumentchannelsmonitoringthesameparametershouldreadapproximatelythesamevalue.Significantdeviationsbetweeninstrumentchannelscouldbeanindicationofexcessiveinstrumentdriftinoneofthechannelsorsomethingevenmoreserious.ACHANNELCHECKwilldetectgrosschannelfailure;thus,itiskeytoverifyingtheinstrumentationcontinuestooperateproperlybetweeneachCHANNELCALIBRATION.Agreementcriteriawhicharedeterminedbytheplantstaffbasedonaninvestigationofacombinationofthechannelinstrumentuncertainties,maybeusedtosupportthisparametercomparisonandincludeindicationandreadability.Ifachannelisoutsidethecriteria,itmaybeanindicationthattheinstrumenthasdriftedoutsideitslimitanddoesnecessarilyindicatethechannelisInoperable.(continued)SUSQUEHANNA-UNIT183.3-73Revision0 PANInstrumentationB3.3.3.1BASESSURVEILLANCEREQUIREMENTSSR3.3.3.1.1(continued)TheFrequencyof'1daysisbaseduponplantoperating'xperience,withregardtochannelOPERABILITYanddrift,whichdemonstratesthatfailureofmorethanonechannelofagivenFunctioninany31dayintervalisrare.TheCHANNELCHECKsupplementslessformalchecksofchannelsduringnormaloperationaluseofthosedisplaysassociatedwiththerequiredchannelsofthisLCO.SR3.3.3.1.2andSR3.3.3.1.3ACHANNELCALIBRATIONisperformedevery92daysforthecontainmentHydr'ogenandOxygenAnalyzersor24monthsfortheotherFunctionsexceptforthePCIVPositionFunction.ThePCIVPositionFunctionisadequatelydemonstratedbytheRemotePositionIndicationperformedinaccordancewith5.5.6,"InserviceTestingProgram".CHANNELCALIBRATIONverifiesthatthechannelrespondstomeasuredparameterwiththenecessaryrangeandaccuracy,anddoesnotincludealarms.TheCHANNELCALIBRATIONfortheContainmentHighRadiationinstrumentssh51Tconsistofanelectroniccalibrationofthechannel,notincludingthedetector,forrangedecadesabove10R/hrandaonepointcalibrationcheckofthedetectorbelow10R/hrwithaninstalledorportablegammasource.TheCHANNELCALIBRATIONforthehydrogenanalyzers,useasamplegascontaining:a)Nominalzerovolumepercent,hydrogen,balancenitrogenandb)Nominalthirtyvolumepercenthydrogen,balancenitrogen.TheFrequencyisbasedonoperatingexperienceandforthe24monthFrequencyconsistencywiththeindustryrefuelingcycles.REFERENCES1.RegulatoryGuide1.97Rev.2,"InstrumentationforLightWaterCooledNuclearPowerPlantstoAssessPlantandEnvironsConditionsDuringandFollowinganAccident,"February6,1985(continued)SUSQUEHANNA-UNIT183.3-74Revision0 PANInstrumentationB3.3.3.1BASESREFERENCES(continued)2.NuclearRegulatoryCommissionLetterA.SchwencertoN.Curtis,EmergencyResponseCapability.ConformancetoR.G.1.97,Rev.2,dtdFebruary6,1985.3.PP&LLetter(PLA-2222),N.CurtistoA.Schwencer,dtdHay31,1984.4.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR32193)SUSQUEHANNA-UNIT1B3.3-75Revision0 RemoteShutdownSystemB3.3.3.2B3.3INSTRUMENTATION'3.3.3.2RemoteShutdownSystemBASESBACKGROUNDTheRemoteShutdownSystemprovidesthecontrolroomoperatorwithsufficientinstrumentationandcontrolstoplaceandmaintaintheplantinasafeshutdownconditionfromalocationotherthanthecontrolroom.Thiscapabilityisnecessarytoprotectagainstthepossibilityofthecontrolroombecominginaccessible.AsafeshutdownconditionisdefinedasMODE3.WiththeplantinMODE3,theReactorCoreIsolationCooling(RCIC)System,thesafety/reliefvalves,andtheResidualHeatRemovalShutdownCoolingSystemcanbeusedtoremovecoredecayheatandmeetallsafetyrequirements.ThelongtermsupplyofwaterfortheRCICandtheabilitytooperateshutdowncoolingfromoutsidethecontrolroomallowextendedoperationinMODE3.Intheeventthatthecontrolroombecomesinaccessible,theoperatorscanestablishcontrolattheremoteshutdownpanelandplaceandmaintaintheplantinMODE3.Notallcontrolsandnecessarytransferswitchesarelocatedatthe=.remoteshutdownpanel.Somecontrolswillhavetobeoperatedlocallyattheswitchgear,motorcontrolpanels.or-.other'localstations.Theplantautomaticallyreaches'ODE3followingaplantshutdownandcanbemaintained;-safelyinMODE3foranextendedperiodoftime.TheOPERABILITYoftheRemoteShutdownSystemcontroland'nstrumentationFunctionsensuresthatthereissufficient-informationavailableonselectedplantparameterstoplaceandmaintaintheplantinMODE3shouldthecontrolroombecomeinaccessible.APPLICABLESAFETYANALYSESTheRemoteShutdownSystemisrequiredtoprovideequipmentatappropriatelocationsoutsidethecontrolroomwithadesigncapabilitytopromptlyshutdownthereactortoMODE3,includingthenecessaryinstrumentationandcontrols,tomaintaintheplantinasafeconditioninMODE3.(continued)SUSQUEHANNA-UNIT1B3.3-76Revision0 RemoteShutdownSystemB3.3.3.2BASESAPPLICABLESAFETYANALYSES(continued)ThecriteriagoverningthedesignandthespecificsystemrequirementsoftheRemoteShutdownSystemarelocatedin10CFR50,AppendixA.GDC19(Ref.1).TheRemoteShutdownSystemisconsideredanimportantcontributortoreducingtheriskofaccidents;assuch,ithasbeenretainedintheTechnicalSpecifications(TS)asindicatedintheNRCPolicyStatement.(Ref.3)LCOTheRemoteShutdownSystemLCOprovidestherequirementsfortheOPERABILITYoftheinstrumentationandcontrolsnecessarytoplaceandmaintaintheplantinMODE3fromalocationotherthanthecontrolroom.Thecontrols.instrumentation,andtransferswitchesarethoserequiredinTable3.3.3.2-1.TheRemoteShutdownSystemisOPERABLEifallinstrumentandcontrolchannelsneededtosupporttheremoteshutdownfunctionareOPERABLE.Insomecases,therequiredinformationorcontrolcapabilityisavailablefromseveralalternatesources.Inthesecases,theRemoteShutdownSystemisOPERABLEaslongasonechannelofanyofthealternateinformationorcontrolsourcesforeachFunctionisOPERABLE.TheRemoteShutdownSysteminstrumentsandcontrolcircuitscoveredbythisLCOdonotneedtobeenergizedtobeconsideredOPERABLE.ThisLCOisintendedtoensurethattheinstrumentsandcontrolcircuitswillbeOPERABLEifplantconditionsrequirethattheRemoteShutdownSystembeplacedinoperation.APPLICABILITYTheRemoteShutdownSystemLCOisapplicableinMODES1and2.ThisisrequiredsothattheplantcanbeplacedandmaintainedinMODE3foranextendedperiodoftimefromalocationotherthanthecontrolroom.ThisLCOisnotapplicableinMODES3,4,and5.IntheseMODES.theplantisalreadysubcriticalandinaconditionofreducedReactorCoolantSystemenergy.Undertheseconditions,considerabletimeisavailabletorestore(continued)SUSQUEHANNA-UNIT183.3-77Revision0 RemoteShutdownSystemB3.3.3.2BASESAPPLICABILITY(continued)necessaryinstrumentcontrolFunctionsifcontrolroominstrumentsorcontrolbecomesunavailable.Consequently.theTSdonotrequireOPERABILITYin.MODES3,4,and5.ACTIONSANoteisincludedthatexcludestheMODEchangerestrictionofLCO3.0.4.ThisexceptionallowsentryintoanapplicableMODEwhilerelyingontheACTIONSeventhoughtheACTIONSmayeventuallyrequireaplantshutdown.Thisexceptionisacceptableduetothelowprobabi1.ityofanev'entrequiringthissystem.Note2hasbeenprovidedtomodifythe'ACTIONSrelatedtoRemoteShutdownSystemFunctions.Section1.3,CompletionTimes.specifiesthatonceaConditionhasbeenentered,subsequentdivisions,subsystems,components,orvariablesexpressedintheCondition,discoveredtobeinoperableornotwithinlimits,willnotresultinseparateentryintotheCondition.Section1.3alsospecifiesthatRequiredActionsoftheConditioncontinuetoapplyforeachadditionalfailure,withCompletionTimesbasedoninitialentryintotheCondition.However,theRequiredActionsforinoperableRemoteShutdownSystemFunctionsprovideappropriatecompensatorymeasuresforseparateFunctions.Assuch,aNotehasbeenprovidedthatallowsseparateConditionentryforeachinoperableRemoteShutdownSystemFunction.A.1ConditionAaddressesthesituationwhereoneormorerequiredFunctionsoftheRemoteShutdownSystemisinoperable.ThisincludesanyFunctionlistedinTable3.3.3.2-1,aswellasthecontrolandtransferswitches.TheRequiredActionistorestoretheFunction(bothdivisions,ifapplicable)toOPERABLEstatuswithin30days.TheCompletionTimeisbasedonoperatingexperienceandthelowprobabilityofaneventthatwouldrequireevacuationofthecontrolroom.(continued)SUSQUEHANNA-UNIT1B3.3-78Revision0 RemoteShutdownSystemB3.3.3.2BASESACTIONS(continued)B.1IftheRequiredActionandassociatedCompletionTimeofConditionAarenotmet,theplantmustbebroughttoaMODEinwhichtheLCOdoesnotapply.Toachievethisstatus,theplantmustbebroughttoatleastMODE3within12hours.TheallowedCompletionTimeisreasonable,basedonoperatingexperience,toreachtherequiredMODEfromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.SURVEILLANCEREQUIREMENTSAsnotedatthebeginningoftheSRs,theSRsforeachRemoteShutdownSystemInstrumentFunctionarelocatedintheSRscolumnofTable3.3.3.2-1.SR3.3.3.2.1PerformanceoftheCHANNELCHECKonceevery31daysensuresthatagrossfailureofinstrumentationhasnotoccurred.ACHANNELCHECKisnormallyacomparisonoftheparameterindicatedononechanneltoasimilarparameteronotherchannels.Itisbasedontheassumptionthatinstrumentchannelsmonitoringthesameparametershouldreadapproximatelythesamevalue.Significantdeviationsbetweentheinstrumentchannelscouldbeanindicationofexcessiveinstrumentdriftinoneofthechannelsorsomethingevenmoreserious.ACHANNELCHECKwilldetectgrosschannelfailure;thus,itiskeytoverifyingtheinstrumentationcontinuestooperateproperlybetweeneachCHANNELCALIBRATION.Agreementcriteriawhicharedeterminedbytheplantstaffbasedonaninvestigationofacombinationofthechannelinstrumentuncertainties,maybeusedtosupportthisparametercomparisonandincludeindicationandreadability.Ifachannelisoutsidethecriteria,itmaybeanindicationthatthesensororthesignalprocessingequipmenthasdriftedoutsideitslimit,anddoesnotnecessaryindicatethechannelisInoperable.AsspecifiedintheSurveillance,aCHANNEL-CHECKisonlyrequiredforthosechannelsthatarenormallyenergized.TheFrequencyisbaseduponplantoperatingexperiencethatdemonstrateschannelfailureisrare.(continued)SUSQUEHANNA-UNIT183.3-79Revision0 RemoteShutdownSystemB3.3.3.2BASESSURVEILLANCEREQUIREMENTS(continued)SR3.3.3.2.2SR3.3.3.2.2verifieseachrequiredRemoteShutdownSystemtransferswitchandcontrolcircuitperformstheintendedfunction.Thisverificationisperformedfromtheremoteshutdownpanel.Operationoftheequipmentfromtheremoteshutdownpanelisnotnecessary.TheSurveillancecanbesatisfiedbyperformanceofacontinuitycheck.Thiswillensurethatifthecontrolroombecomesinaccessible,theplantcanbeplacedandmaintainedinMODE3fromtheremoteshutdownpanelandthelocalcontrolstations.OperatingexperiencedemonstratesthatRemoteShutdownSystemcontrolchannelsusuallypasstheSurveillancewhenperformedatthe24monthFrequency.SR3.3.3.2.3CHANNELCALIBRATIONverifiesthatthechannelrespondstomeasuredparametervalueswiththenecessaryrangeandaccuracy.The24monthFrequencyisbased=uponoperatingexperienceandconsistencywiththetypical;.industryrefuelingcycle'.REFERENCES.'.10CFR50;Appendix-A;GDC.19..2.FSAR7.4.1.4.3.FinalPolicyStatementonTechnica'I.SpecificationsImprovements,July22,1993(58;,FR32193)SUSQUEHANNA-UNIT1B3.3-80Revision0 EOC-RPTInstrumentationB3.3.4.1B3.3INSTRUMENTATIONB3.3.4.1EndofCycleRecirculationPumpTrip(EOC-RPT)InstrumentationBASESBACKGROUNDTheEOC-RPTinstrumentationinitiatesarecirculationpumptrip(RPT)toreducethepeakreactorpressureandpowerresultingfromturbinetriporgeneratorloadrejectiontransientstoprovideadditionalmargintocorethermalMCPRSafetyLimits(SLs).Theneedfortheadditionalnegativereactivityinexcessofthatnormallyinsertedonascramreflectsendofcyclereactivityconsiderations.FluxshapesattheendofcyclearesuchthatthecontrolrodsmaynotbeabletoensurethatthermallimitsaremaintainedbyinsertingsufficientnegativereactivityduringthefirstfewfeetofrodtraveluponascramcausedbyTurbineControlValve(TCV)FastClosure,TripOilPressure-LoworTurbineStopValve(TSV)-Closure.Thephysicalphenomenoninvolvedisthatthevoidreactivityfeedbackduetoapressurizationtransientcanaddpositivereactivityatafasterratethanthecontrolrods'anaddnegativereactivity.TheEOC-RPTinstrumentation,asshowninReference1,iscomposedofsensorsthatdetectinitiationofclosureoftheTSVsorfastclosureoftheTCVs,combinedwithrelays.logiccircuits,andfastactingcircuitbreakersthatinterruptpowerfromtherecirculationpumpmotorgenerator(MG)setgeneratorstoeachoftherecirculationpumpmotors.Whenthesetpointisreached,thechanneloutputrelayactuates,whichthenoutputsanEOC-RPTsignaltothetriplogic.WhentheRPTbreakerstripopen,therecirculationpumpscoastdownundertheirowninertia.TheEOC-RPThastwoidenticaltripsystems,eitherofwhichcanactuateanRPT.EachEOC-RPTtripsystemisatwo-out-of-twologicforeachFunction:thus.eithertwoTSV-ClosureortwoTCVFastClosure,TripOilPressure-Lowsignalsarerequiredforatripsystemtoactuate.TheTurbineStopValve-Closurefunctionssuchthat:(1)TheclosingofoneTurbineStopValvewillnotcauseanRPTtrip.(continued)SUSQUEHANNA-UNIT1B3.3-81Revision0 EOC-RPTInstrumentationB3.3.4.1BASESBACKGROUND(continued)(2)TheclosingoftwoTurbineStopValvesmayormaynotcauseanRPTtripdependingonwhichstopvalvesareclosed.(3)TheclosingofthreeormoreTurbineStopValveswillalwaysyieldanRPTtrip.Ifeithertripsystemactuates,bothrecirculationpumpswilltrip.TherearetwoRPTbreakersinseriesperrecirculationpump.OnetripsystemtripsoneofthetwoRPTbreakersforeachrecirculationpump,andthesecondtripsystemtripstheotherRPTbreakerforeachrecirculationpump.APPLICABLESAFETYANALYSES,LCO,andAPPLICABILITYTheTSV-ClosureandtheTCVFastClosure,TripOilPressure-LowFunctionsaredesignedtotriptherecirculationpumpsintheeventofaturbinetriporgeneratorloadrejectiontomitigatetheneutronflux,heatflux,andpressuretransients,andtoincreasethemargintotheHCPRSL.Theanalyticalmethodsandassumptionsusedinevaluatingtheturbinetripandgeneratorloadrejection,aswellasothersafetyanalysesthattakecreditf'rEOC-RPT,aresummarizediriReferences2and3.Tomitigatepressurizationtransienteffects,theEOC-RPTmusttriptherecirculationpumpsafterinitiationofclosuremovementofeithertheTSVsortheTCVs.Thecombinedeffectsofthistripandascramreducefuelbundle.powermorerapidlythanascramalone,resultinginanincreasedmargintotheHCPRSL.Alternatively,HCPRlimitsforaninoperableEOC-RPT,asspecifiedintheCOLR,aresufficienttomitigatepressurizationtransienteffects.TheEOC-RPTfunctionisautomaticallydisabledwhenturbinefirststagepressureis<30KRTP.EOC-RPTinstrumentationsatisfiesCriterion3oftheNRCPolicyStatement.(Ref.4)TheOPERABILITYof'heEOC-RPTisdependentontheOPERABILITYoftheindividualinstrumentationchannelFunctions.EachFunctionmusthavearequirednumberofOPERABLEchannelsineachtripsystem,withtheirsetpointswithinthespecifiedAllowableValueofSR3.3.4.1.2.Theactualsetpointiscalibratedconsistentwithapplicable(continued)SUSQUEHANNA-UNIT183.3-82Revision0

EOC-RPTInstrumentationB3.3.4.1BASESAPPLICABLESAFETYANALYSLCO,andAPPLICABILITY(continued)ES,setpointmethodologyassumptions.ChannelOPERABILITYalsoincludestheassociatedRPTbreakers.Eachchannel(includingtheassociatedRPTbreakers)mustalsorespondwithinitsassumedresponsetime.AllowableValuesarespecifiedforeachEOC-RPTFunctionspecifiedintheLCO.Nominaltripsetpointsarespecifiedinthesetpointcalculations.AchannelisinoperableifitsactualtripsetpointisnotwithinitsrequiredAllowableValue.ThenominalsetpointsareselectedtoensurethatthesetpointsdonotexceedtheAllowableValuebetweensuccessiveCHANNELCALIBRATIONS.Operationwithatripsetpointlessconservativethanthenominaltripsetpoint,butwithinitsAllowableValue,isacceptable.EachAllowableValuespecifiedismoreconservativethantheanalyticallimitassumedinthetransientandaccidentanalysisinordertoaccountforinstrumentuncertaintiesappropriatetotheFunction.Tripsetpointsarethosepredeterminedvaluesofoutputatwhichanactionshouldtakeplace.Thesetpointsarecomparedtotheactualprocessparameter(e.g.,TSVposition),andwhenthemeasuredoutputvalueoftheprocessparameterreachesthesetpoint,theassociateddevicechangesstate.Theanalyticlimitsarederivedfromthelimitingvaluesoftheprocessarametersobtainedfromthesafetyanalysis.TheAllowablealuesarederivedfromtheanalyticlimits,correctedforcalibration,process,andsomeoftheinstrumenterrors.Thetripsetpointsarethendeterminedaccountingfortheremaininginstrumenterrors(e.g.,drift).Thetripsetpointsderivedinthismannerprovideadequateprotectionbecauseinstrumentationuncertainties,processeffects,calibrationtolerances,instrumentdrift,andsevereenvironmenterrors(forchannelsthatmustfunctioninharshenvironmentsasdefinedby10CFR50.49)areaccountedfor.Alternatively,sincethisinstrumentationprotectsagainstaHCPRSLviolation,withtheinstrumentationinoperable,modificationstotheHCPRlimits(LCO3.2.2)maybeappliedtoallowthisLCOtobemet.TheHCPRpenaltyfortheEOC-RPTinoperableconditionisspecifiedintheCOLR.ThespecificApplicableSafetyAnalysis.LCO,andApplicabilitydiscussionsarelistedbelowonaFunctionbyFunctionbasis.(continued)SUSQUEHANNA-UNIT1B3.3-83Revision0 I

EOC-RPTInstrumentationB3.3.4.1BASESAPPLICABLESAFETYANALYSLCO,andAPPLICABILITY(continuedES,)TurbineStoValve-ClosureClosureoftheTSVsandamainturbinetripresultinthelossofaheatsinkthatproducesreactorpressure,neutronflux,andheatfluxtransientsthatmustbelimited.Therefore,anRPTisinitiatedonTSV-Closureinanticipationofthetransientsthatwouldresultfromclosureofthesevalves.EOC-RPTdecreasesreactorpowerandaidsthereactorscraminensuringthattheHCPRSLisnotexceededduringtheworstcasetransient.ClosureoftheTSVsisdeterminedbymeasuringthepositionofeachva'lve.Therearetwoseparatepositionswitchesassociatedwitheachstopvalve,thesignalfromeachswitchbeingassignedtoaseparatetripchannel.ThelogicfortheTSV-ClosureFunction.issuchthattwoormoreTSVsmustbeclosedtoproduceanEOC-RPT.ThisFunctionmustbeenabledatTHERMALPOWER>30XRTP.Thisisaccomplishedautomaticallybypressureinstrumentssensingturbinefirststagepressure.Becauseanincreaseinthemainturbinebypassflowcanaffectthisfunctionnonconservatively(THERMALPOWERis-derivedfromfirststagepressure),themairr:turbinebypass--valvesmustnotcausethetripFunctionstobe'-bypassedwhenthermalpoweris>30XRTP.Fourchannel,s-of:TSV'-'losure:,withtwochannelsineach'tripsystem;.are-ave:lab'1'e-and:requi:red.tobeOPEl'A'BL'Etoensurethatno=single:instrument-fai-lure=willpreclude.-an':EOC-RPTfrom.-thisFunction;-on=-a=vaj;idsignal:..Tfie:-TQI.-CTosure=.Al1owable=Value=is=selected~todetect=imarizent"TSV'closure.This-protects:on.,is=-requi.'red.;;const.stent.wi.th;the:safety..analysis-assumptions-.-,wheneverTHERHAL:PGWER-.'is=~30X=-RTP.Bel'ow='30XRTP,the=Reactor;=Vessel:Steam-DomePressure=-'Highand-the-"AveragePowerRangeHonitor(APRH)Fixed"Neutron"Flux-HighFunctionsoftheReactorProtectionSystem(RPS)areadequatetomaintainthenecessarysafetymargins.TurbineControlValveFastClosureTriOilPressure-LowFastclosureoftheTCVsduringageneratorloadrejectionresultsinthelossofaheatsinkthatproducesreactorressure,neutronflux,andheatfluxtransientsthatmustelimited.Therefore,anRPTisinitiatedonTCVFastClosure,TripOilPressure-Lowinanticipationofthetransientsthatwouldresultfromtheclosureofthesevalves.TheEOC-RPTdecreasesreactorpowerandaidsthe(continued)SUSQUEHANNA-UNIT183.3-84Revision0 EOC-RPTInstrumentationB3.3.4.1BASESAPPLICABLE'SAFETYANALYSES,LCO,andAPPLICABILITYTurbineControlValveFastClosureTriOilPressure-Low(continued)reactorscraminensuringthattheMCPRSLisnotexceededduringtheworstcasetransient.FastclosureoftheTCVsisdeterminedbymeasuringtheelectrohydrauliccontrolfluidpressureateachcontrol.valve.Thereisonepressureinstrumentassociatedwitheachcontrolvalve,andthesignalfromeachinstrumentisassignedtoaseparatetripchannel.ThelogicfortheTCVFastClosure.TripOilPressure-LowFunctionissuchthattwoormoreTCVsmustbeclosed(pressureinstrumenttrips)toproduceanEOC-RPT.ThisFunctionmustbeenabledatTHERMALPOWER>30KRTP.Thisisaccomplishedautomaticallybypressureinstrumentssensingturbinefirststagepressure.Becauseanincreaseinthemainturbinebypassflowcanaffectthisfunctionnonconservatively(THERMALPOWERisderivedfromfirststagepressure)themainturbinebypassvalvesmustnotcausethetripFunctionstobebypassedwhenthermalpoweris>30KRTP.FourchannelsofTCVFastClosure,TripOilPressure-Low,withtwochannelsineachtripsystem,areavailableandrequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurewillprecludeanEOC-'RPTfromthisFunctiononavalidsignal.TheTCVFastClosure.TripOilPressure-LowAllowableValueisselectedhighenoughtodetectimminentTCVfastclosure.Thisprotectionisrequiredconsistentwith'thesafetyanalysiswheneverTHERMALPOWERis>30KRTP.Below30KRTP,theReactorVesselSteamDomePressure-HighandtheAPRMFixedNeutronFlux-HighFunctionsoftheRPSareadequatetomaintainthenecessarysafetymargins.ACTIONSANotehasbeenprovidedtomodifytheACTIONSrelatedtoEOC-RPTinstrumentationchannels.Section1.3,CompletionTimes,specifiesthatonceaConditionhasbeenentered.subsequentdivisions,subsystems.components,orvariablesexpressedintheCondition,discoveredtobeinoperableor.notwithinlimits,willnotresultinseparateentryintotheCondition.Section1.3alsospecifiesthatRequiredActionsoftheConditioncontinuetoapplyforeachadditionalfailure,withCompletionTimesbasedoninitialentryintotheCondition.However,theRequiredActionsfor(continued)SUSQUEHANNA-UNIT1B3.3-85Revision0 EOC-RPTInstrumentationB3.3.4.1BASESACTIONS(continued)inoperableEOC-RPTinstrumentationchannelsprovideappropriatecompensatorymeasuresforseparateinoperablechannels.Assuch,aNotehasbeenprovidedthatallowsseparateConditionentryforeachinoperableEOC-RPTinstrumentationchannel.A.1A.2andA.3Withoneormorechannelsinoperable,butwithEOC-RPTtripcapabilitymaintained(refertoRequiredActionsB.1andB.2Bases),theEOC-RPTSystemiscapableofperformingtheintendedfunction.However,thereliabilityandredundancyoftheEOC-RPTinstrumentationisreducedsuchthatasinglefailureintheremainingtripsystemcouldresultintheinabilityoftheEOC-RPTSystemtoperformtheintendedfunction.Therefore,onlyalimitedtimeisallowedtorestorecompliancewiththeLCO.Becauseofthediversityofsensorsavailabletoprovidetripsignals.thelowprobabilityofextensivenumbersofinoperabilitiesaffectingalldiverseFunctions,andthelowprobabilityofaneventrequiringtheinitiationofanEOC-RPT,72hoursisprovidedtorestoretheinoperablechannels(RequiredActionA.1).Alternately,theinoperablechannelsmaybeplacedintrip(RequiredActionA.2)orRequiredActionA.3HCPRLimitsfo0inoperableEOC-RPTcanbeappliedsincethesewouldconservativelycompensatefortheinoperability.restorecapabilitytoaccommodateasinglefailure,andallowoperationtocontinue.Asnoted.placingthechannelintripwithnofurtherrestrictionsisnotallowediftheinoperablechannelistheresultofaninoperablebreaker,sincethismaynotadequatelycompensatefortheinoperablebreaker(e.g.,thebreakermaybeinoperablesuchthatitwillnotopen).Ifitisnotdesiredtoplacethechannelintrip(e.g..asinthecasewhereplacingtheinoperablechannelintripwouldresultinanRPT,oriftheinoperablechannelistheresultofaninoperablebreaker),ConditionCmustbeenteredanditsRequiredActionstaken.B.1andB.2RequiredActionsB.1andB.2areintendedtoensurethatappropriateactionsaretakenifmultiple.inoperable.untrippedchannelswithinthesameFunctionresultintheFunctionnotmaintainingEOC-RPTtripcapability.AFunctionisconsideredtobemaintainingEOC-RPTtrip(continued)SUSQUEHANNA-UNIT1B3.3-86Revision0 EOC-RPTInstrumentationB3.3.4.1BASESACTIONSB.1and8.2(continued)capabilitywhensufficientchannelsareOPERABLEorintrip,suchthattheEOC-RPTSystemwillgenerateatripsignalfromthegivenFunctiononavalidsignalandbothrecirculationpumpscanbetripped.ThisrequirestwochannelsoftheFunctioninthesametripsystem.toeachbeOPERABLEorintrip,andtheassociatedRPTbreakerstobeOPERABLEorintrip.Alternately,RequiredAction8.2requirestheMCPRlimitforinoperableEOC-RPT,asspecifiedintheCOLR,tobeapplied.ThisalsorestoresthemargintoMCPRassumedinthesafetyanalysis.The2hourCompletionTimeissufficienttimef'rtheoperatortotakecorrectiveaction,andtakesintoaccountthelikelihoodofaneventrequiringactuationoftheEOC-RPTinstrumentationduringthisperiod.Itisalsoconsistentwiththe2hourCompletionTimeprovidedinLCO3.2.2forRequiredActionA.1,sincethisinstrumentation'spurposeistoprecludeaMCPRviolation.C.1andC.2WithanyRequiredActionandassociatedCompletionTimenotmet,THERMALPOWERmustbereducedto<30KRTPwithin4hours.Alternately,theassociatedrecirculationpumpmayberemovedfromservice.sincethisperformstheintendedfunctionoftheinstrumentation.TheallowedCompletionTimeof4hoursisreasonable,basedonoperatingexperience,toreduceTHERMALPOWERto<30KRTPfromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.SURVEILLANCEREQUIREMENTSTheSurveillancesaremodifiedbyaNotetoindicatethatwhenachannelisplacedinaninoperablestatussolelyforperformanceofrequiredSurveillances,entryintoassociatedConditionsandRequiredActionsmaybedelayedforupto6hoursprovidedtheassociatedFunctionmaintainsEOC-RPTtripcapability.UponcompletionoftheSurveillance.orexpirationofthe6hourallowance,thechannelmustbereturnedtoOPERABLEstatusortheapplicableConditionenteredandRequiredActionstaken.ThisNoteisbasedonthereliabilityanalysis(Ref.4)assumptionoftheaverage(continued)SUSQUEHANNA-UNIT183.3-87Revision0 EOC-RPTInstrumentationB3.3.4.1BASESSURVEILLANCEREQUIREHENTS(continued)timerequiredtoperformchannelSurveillance.Thatanalysisdemonstratedthatthe6hourtestingallowancedoesnotsignificantlyreducetheprobabilitythattherecirculationpumpswilltripwhennecessary.SR3.3.4.1.1ACHANNELFUNCTIONALTESTisperformedoneachrequiredchanneltoensurethattheentirechannelwillperformtheintendedfunction.ThisSRismodifiedbyaNotethatprovidesageneralexceptiontothedefinitionofCHANNELFUNCTIONALTEST.Thisexceptionisnecessarybecausethedesignofinstrumentationdoesnotfacilitatefunctionaltestingofallrequiredcontactsoftherelaywhichinputintothecombinationallogic.(Reference7)Performanceofsuchatestcouldresultinaplanttransientorplacetheplantinanundorisksituation.Therefore,forthisSR,theCHANNELFUNCTIONALTESTverifiesacceptableresponsebyverifyingthechangeofstateoftherelaywhichinputsintothecombinationallogic.TherequiredcontactsnottestedduringtheCHANNELFUNCTIONALTESTaretestedundertheLOGICSYSTEMFUNCTIONALTEST,SR3.3.4.1.3.ThisisacceptablebecauseoperatingexperienceshowsthatthecontactsnottestedduringtheCHANNELFUNCTIONALTESTnormallypasstheLOGICSYSTEMFUNCTIONALTEST.andthetestingmethodologyminimizestheriskofunplannedtransients.TheFrequencyof92daysisbasedonreliabilityanalysisofReference5.SR3.3.4.1.2CHANNELCALIBRATIONverifiesthatthechannelrespondstothemeasuredparameterwithinthenecessaryrangeandaccuracy.CHANNELCALIBRATIONleavesthechanneladjustedtoaccountforinstrumentdriftsbetweensuccessivecalibrationsconsistentwiththeplantspecificsetpointmethodology.(continued)SUSQUEHANNA-UNIT1B3.3-88Revision0

-EOC-RPTInstrumentationB3.3.4.1BASESSURVEILLANCEREQUIREMENTSSR3.3.4.1.2(continued)TheFrequencyis.basedupontheassumptionofan24monthcalibrationintervalinthedeterminationofthemagnitudeofequipmentdriftinthesetpointanalysis.SR3.3.4.1.3TheLOGICSYSTEMFUNCTIONALTESTdemonstratestheOPERABILITYoftherequiredtriplogicforaspecificchannel.Thesystemfunctionaltestofthepumpbreakersisincludedasapartofthistest,overlappingtheLOGICSYSTEMFUNCTIONALTEST,toprovidecompletetestingof'heassociatedsafetyfunction.Therefore,ifabreakerisincapableofoperating,theassociatedinstrumentchannel(s)wouldalsobeinoperable.The24monthFrequencyisbasedontheneedtoperformportionsofthisSurveillanceundertheconditionsthatapplyduringaplantoutageandthepotentialforanunplannedtransientiftheSurveillancewereperformedwiththereactoratpower.Operatingexpenencehas'hownthesecomponentsusuallypasstheSurvei.llance;-'whenperformedatthe24monthFrequency.SR3.3.4.1'.4ThisSRensuresthatanEOC-RPTinitiatedfromtheTSV-ClosureandTCVFastClosure,TripOilPressure-LowFunctionswillnotbeinadvertentlybypassedwhenTHERMALPOWERis~30KRTP.ThisisperformedbyaFunctionalcheckthatensurestheEOC-RPTFunctionisnotbypassed.Becauseincreasingthemainturbinebypassflowcanaffectthisfunctionnonconservatively(THERMALPOWERisderivedfromfirststagepressure)themainturbinebypassvalvesmustnotcausethetripFunctionstobebypassedwhenthermalpoweris>30KRTP.Ifanyfunctionsarebypassedat~30KRTP.eitherduetoopenmainturbinebypassvalvesor.otherreasons,theaffectedTSV-ClosureandTCVFastClosure,TripOilPressure-LowFunctionsareconsideredinoperable.Alternatively.thebypasschannelcanbeplacedintheconservativecondition(nonbypass).Ifplacedinthenonbypasscondition,thisSRismetwiththechannelconsideredOPERABLE.(continued)SUSQUEHANNA-UNIT1B3.3-89Revision0 EOC-RPTInstrumentationB3.3.4.1BASESSURVEILLANCEREQUIREMENTSSR3.3.4.1.3(continued)TheFrequencyof24monthshasshownthatchannelbypassfailuresbetweensuccessivetestsarerare.SR3.3.4.1.5ThisSRensuresthattheindividualchannelresponsetimesarelessthanorequaltothemaximumvaluesassumedintheaccidentanalysis.TheEOC-RPTSYSTEMRESPONSETIMEacceptancecriteriaareincludedinReference5.ANotetotheSurveillancestatesthatbreakerinterruptiontimemaybeassumedfromthemostrecentperformanceofSR3.3.4.1.6.Thisisallowedsincethetimetoopenthecontactsafterenergizationofthetripcoilandthearcsuppressiontimeareshortanddonotappreciablychange,duetothedesignofthebreakeropeningdeviceandthefactthatthebreakerisnotroutinelycycled.EOC-RPTSYSTEMRESPONSETIMEtestsareconductedonan24monthSTAGGEREDTESTBASIS.ForthisSR,STAGGEREDTESTBASISmeansthateach24monthtestshallincludeatleastthelogicofone'typeofchannelinput.turbinecontrolvalvefastclosureorturbinestopvalveclosuresuchthatbothtypesofchannelinputsaretestedatleastoneper48months.Responsetimescannotbedeterminedatpowerbecauseoperationoffinalactuateddevicesisrequired.Therefore.the24monthFrequencyisconsistentwiththetypicalindustryrefuelingcycleandisbaseduponplantoperatingexperience,whichshowsthatrandomfailuresofinstrumentationcomponentsthatcauseseriousresponsetimedegradation,butnotchannelfailure,areinfrequentoccurrences.SR3.3.4.1.6ThisSRensuresthattheRPTbreakerinterruptiontime(arc,suppressiontimeplustimetoopenthecontacts)isprovidedtotheEOC-RPTSYSTEMRESPONSETIMEtest.The60monthFrequencyofthetestingisbasedonthedifficultyoferformingthetestandthereliabilityofthecircuitreakers.(continued)SUSQUEHANNA-UNIT1B3.3-90Revision0 EOC-RPTInstrumentationB3.3.4.1BASESREFERENCES1.FSAR,Figure7.2-1-4(EOC-RPTlogicdiagram).2.FSAR,Sections15.2and15.3.3.FSAR,Sections7.1and7.6.4.GENE-770-06-1,"BasesForChangesToSurveillanceTestIntervalsAndAllowedOut-Of-ServiceTimesForSelectedInstrumentationTechnicalSpecifications."February1991.5.FSARTable7.6-10.6.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR32193).7.NRCInspectionandEnforcementManual,Part9900:TechnicalGuidance,StandardTechnicalSpecificationSection1.0Definitions,Issuedate12/08/86.SUSQUEHANNA-UNIT1B3.3-91Revision0 ATWS-RPTInstrumentationB3.3.4.2B3.3INSTRUMENTATION.B3.3.4.2AnticipatedTransientWithoutScramRecirculationPumpTrip(ATWS-RPT)InstrumentationBASESBACKGROUNDTheATWS-RPTSysteminitiatesanRPT,addingnegativereactivity,followingeventsinwhichascramdoesnot(butshould)occur,tolessentheeffectsofanATWSevent.Trippingtherecirculationpumpsaddsnegativereactivityfromtheincreaseinsteamvoidinginthecoreareaascoreflowdecreases.WhenReactorVesselWaterLevel-LowLow,Level2orReactorSteamDomePressure-Highsetpointisreached,theRecirculationPumpTrip(RPT)breakerstrip.TheATWS-RPTSystemincludessensors.relays,bypasscapability,circuitbreakers,andswitchesthatarenecessarytocauseinitiationofanRPT.Whenthesetpointisreached,thechannelsensoractuates,whichthenoutputsanATWS-RPTsignaltothetriplogic.TheATWS-RPTconsistsoftwoindependenttripsystems,withtwochannelsofReactorSteamDomePressure-HighandtwochannelsofReactorVesselWaterLevel-LowLow,Level2ineachtripsystem.EachATWS-RPTtripsystemisatwo-out-of-twologicforeachFunction.Thus,eithertwoReactorWaterLevel-LowLow,Level2ortwoReactorPressure-Highsignalsareneededtotripatripsystem.Theoutputsofthechannelsinatripsystemarecombinedinalogicsothateithertripsystemwilltripbothrecirculationpumps(bytrippingtherespectiveRPTbreakers).TherearetwoRPTbreakersinseriesprovidedforeachofthetworecirculationpumpsforatotaloffourbreakers.Onetripsystemtripsoneofthetwobreakersforeachrecirculationpump,andthesecondtripsystemtripstheotherbreakerforeachrecirculationpump.APPLICABLESAFETYANALYSES,LCO,andAPPLICABILITYTheATWS-RPTiscreditedintheASIDEOverpressureSafetyAnalyses.TheATWS-RPTinitiatesanRPTtoaidinpreservingtheintegrityofthefuelcladdingfollowingeventsinwhicha'scramdoesnot,butshould,occur.Based(continued)SUSQUEHANNA-UNIT1B3.3-92Revision0

ATWS-RPTInstrumentationB3.3.4.2BASESAPPLICABLESAFETYANALYSESLCO,andAPPLICABILITY(continued)onitscontributiontothereductionofoverallplantrisk.theinstrumentationisincludedasrequiredbytheNRCPolicyStatement.(Ref;3)TheOPERABILITYoftheATWS-RPTisdependentontheOPERABILITYoftheindividualinstrumentationchannelFunctions.EachFunctionmusthavearequirednumberofOPERABLEchannelsineachtripsystem,withtheirsetpointswithinthespecifiedAllowableValueofSR3.3.4.2.3orSR3.3.4.2.4.Theactualsetpointiscalibratedconsistentwithapplicablesetpointmethodologyassumptions.ChannelOPERABILITYalsoincludestheassociatedRPTbreakers.AchannelisinoperableifitsactualtripsetpointisnotwithinitsrequiredAllowableValue.AllowableValuesarespecifiedforeachATWS-RPTFunctionspecifiedintheLCO.Nominaltripsetpointsarespecifiedinthesetpointcalculations.ThenominalsetpointsareselectedtoensurethatthesetpointsdonotexceedtheAllowableValuebetweenCHANNELCALIBRATIONS.Operationwithatripsetpointles'sconservativethanthenominaltripsetpoint,butwithinitsAllowableValue,isacceptable.Tripsetpointsare-thosepredeterminedvaluesofoutputatwhichanactionshouldtakeplace.Thesetpointsarecomparedtoth6actualprocessparameter(e.g..reactorvesselwaterlevel),andwhenthemeasuredoutputvalueoftheprocessparameterreachesthesetpoint,theassociateddevicechangesstate.Theanalyticlimitsarederivedfromthelimitingvaluesoftheprocessparametersobtainedfromthesafetyanalysis.TheAllowableValuesarederivedfromtheanalyticlimits,correctedforcalibration,process,andsomeoftheinstrumenterrors.Thetripsetpointsarethendeterminedaccountingfortheremaininginstrumenterrors(e.g..drift).Thetripsetpointsderivedinthismannerprovideadequateprotectionbecauseinstrumentationuncertainties,processeffects,calibrationtolerances,instrumentdrift,andsevereenvironmenterrors(forchannelsthatmustfunctioninharshenvironmentsasdefinedby10CFR50.49)areaccountedfor.TheindividualFunctionsarerequiredtobeOPERABLEinNODE1toprotectagainstcommonmodefailuresoftheReactorProtectionSystembyprovidingadiversetriptomitigatetheconsequencesofapostulatedATWSevent.TheReactorSteamDomePressure-HighandReactorVesselWaterLevel-LowLow,Level2Functionsarerequiredtobe'continued)SUSQUEHANNA-UNIT1B3.3-93Revision0 ATWS-RPTInstrumentationB3.3.4.2BASESAPPLICABLEOPERABLEinHODE1,sincethereactorisproducingSAFETYANALYSES,significantpowerandtherecirculationsystemcouldbeatLCO,andhighflow.DuringthisHODE.thepotentialexistsforAPPLICABILITYpressureincreasesorlowwaterlevel,assuminganATWS(continued)event.InHODE2,thereactorisatlowpowerandtherecirculationsystemisatlowflow:thus,thepotentialis.lowforapressureincreaseorlowwaterlevel,assuminganATWSevent.Therefore,theATWS-RPTisnotnecessary.InNODES3and4,thereactorisshutdownwithallcontrolrodsinserted;thus,anATWSeventisnotsignificantandthepossibilityofasignificantpressureincreaseorlowwaterlevelisnegligible.InHODE5,theonerodoutinterlockensuresthatthereactorremainssubcritical;thus,anATWSeventisnotsignificant.Inaddition,thereactorpressurevessel(RPV)headisnotfullytensionedandnopressuretransientthreattothereactorcoolantpressureboundary(RCPB)exists.ThespecificApplicableSafetyAnalysesandLCOdiscussionsarelistedbelowonaFunctionbyFunctionbasis.ReactorVesselWaterLevel-LowLowLevel2LowRPV'5tdrlevelindicatesthecapabilitytocoolthefuelmaybethreatened.ShouldRPVwaterleveldecreasetoofar,fueldamagecouldresult.Therefore,theATWS-RPTSystemisinitiatedatLevel2toaidinmaintaininglevelabovethetopoftheactivefuel.ThereductionofcoreflowreducestheneutronfluxandTHERMALPOWERand,therefore,therateofcoolantboiloff.Reactorvesselwaterlevelsignalsareinitiatedfromfourlevelinstrumentsthatsensethedifferencebetweenthepressureduetoaconstantcolumnofwater(referenceleg)andthepressureduetotheactualwaterlevel(variableleg)inthevessel.FourchannelsofReactorVesselWaterLevel-LowLow,Level2,withtwochannelsineachtripsystem,areavailableandrequiredtobeOPERABLEtoensurethatno'ingleinstrumentfailurecanprecludeanATWS-RPTfromthisFunctiononavalidsignal.TheReactorVesselWaterLevel-LowLow,Level2AllowableValueischosensothatthesystemwillnotbeinitiatedafter(continued)SUSQUEHANNA-UNIT1B3.3-94Revision0 ATWS-RPTInstrumentationB3.3.4.2BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITYReactorVesselWaterLevel-LowLowLevel2(continued)aLevel3scramwithfeedwaterstillavailable.andforconveniencewiththereactorcoreisolationcoolinghighpressurecoolantinjectioninitiation.ReactorSteamDomePressure-HihExcessivelyhighRPVpressuremayrupturetheRCPB.AnincreaseintheRPVpressureduringreactoroperationcompressesthesteamvoidsandresultsinapositivereactivityinsertion.ThisincreasesneutronfluxandTHERMALPOWER,whichcouldpotentiallyresultinfuelfailureandoverpressurization.TheReactorSteamDomePressure-HighFunctioninitiatesanRPTfortransientsthatresultinapressureincrease.counteractingthepressureincreasebyrapidlyreducingcorepowergeneration.Fortheoverpressurizationevent,theRPTaidsintheterminationoftheATWSeventand,alongwiththesafety/reliefvalves,limitsthepeakRPVpressuretolessthantheASMESectionIIICodeServiceLevelClimits(1500psig).TheReactorSteamDomePressure-Highsignalsareinitiatedfromfourpressureinstrumentsthatmonitorreactorsteamdomepressure.FourchannelsofReactorSteamDomePressure-High,withtwochannelsineachtripsystem,areavailableandarerequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludeanATWS-RPTfromthisFunctiononavalidsignal.TheReactorSteamDomePressure-HighAllowableValueischosentoprovideanadequatemargintotheASMESectionIIICodeServiceLevelCallowableReactorCoolantSystempressure.ACTIONSANotehasbeenprovidedtomodifytheACTIONSrelatedtoA%MS-RPTinstrumentationchannels.Section1.3,CompletionTimes,specifiesthatonceaConditionhasbeenentered,subsequentdivisions,subsystems,components,orvariablesexpressedintheCondition,discoveredtobeinoperableornotwithinlimits,willnotresultinseparateentryinto(continued)SUSQUEHANNA-UNIT183.3-95Revision0 ATWS-RPTInstrumentationB3.3.4.2BASESACTIONS(continued)theCondition.Section1.3alsospecifiesthatRequiredActionsoftheConditioncontinuetoapplyforeachadditionalfailure,withCompletionTimesbasedoninitialentryintotheCondition.However,theRequiredActionsforinoperableATWS-RPTinstrumentationchannelsprovideappropriatecompensatorymeasuresforsepa'rateinoperablechannels.Assuch,aNotehasbeenprovidedthatallowsseparateConditionentryforeachinoperableATWS-RPTinstrumentationchannel.A.1andA.2Withoneormorechannelsinoperable,butwithATWS-RPTcapabilityforeachFunctionmaintained(refertoRequiredActionsB.1andC.1Bases).theATWS-RPTSystemiscapableofperformingtheintendedfunction.However,thereliabilityandredundancyoftheATWS-RPTinstrumentationisreduced,suchthatasinglefailureintheremainingtripsystemcouldresultintheinabilityoftheATWS-RPTSystemtoperformtheintendedfunction.Therefore.onlyalimitedtimeisallowedtorestoretheinoperablechannelstoOPERABLEstatus.'ecauseof.thediversityofsensorsavailabletoprovidetripsignals,thelowprobabilityofextensivenumbersof'noperabilitiesaffectingalldiverseFunctions,andthelowprobabilityofaneventrequiringtheinitiationofA7)S-RPT,14daysisprovidedtorestoretheinoperablechannel(RequiredActionA.1).Alternately,theinoperablechannelmaybeplacedintrip(RequiredActionA.2),sincethiswouldconservativelycompensatefortheinoperability,restorecapabilitytoaccommodateasinglefailure,andallowoperationtocontinue.Asnoted.placingthechannelintripwithnofurtherrestrictionsisnotallowediftheinoperablechannelistheresultofaninoperablebreaker.sincethismaynotadequatelycompensatefortheinoperablebreaker(e.g.,thebreakermaybeinoperablesuchthatitwillnotopen).Ifitisnotdesiredtoplacethechannelintrip(e.g.,asinthecasewhereplacingtheinoperablechannelwouldresultinanRPT),oriftheinoperablechannelistheresultofaninoperablebreaker,ConditionDmustbeenteredandits.RequiredActionstaken.(continued)SUSQUEHANNA-UNIT183.3-96Revision0 ATWS-RPTInstrumentationB3.3.4.2ACTIONS(continued)B.lRequiredActionB.1isintendedtoensurethatappropriateactionsaretakenifmultiple,inoperable.untrippedchannelswithinthesameFunctionresultintheFunctionnotmaintainingATWS-RPTtripcapability.AFunctionisconsideredtobemaintainingATWS-RPTtripcapabilitywhensufficientchannelsareOPERABLEorintripsuchthattheATWS-RPTSystemwillgenerateatripsignalfromthegivenFunctiononavalidsignal,andbothrecirculationpumpscanbetripped.ThisrequirestwochannelsoftheFunctioninthesametripsystemtoeachbeOPERABLEorintrip,andtheRPTbreakerstobeOPERABLEorintrip.The72hourCompletionTimeissufficientfortheoperatortotakecorrectiveaction(e.g.,restorationortrippingofchannels)andtakesintoaccountthelikelihoodofaneventrequiringactuationoftheATWS-RPTinstrumentationduringthisperiodandthatoneFunctionisstillmaintainingAVOWS-RPTtripcapability.C.1RequiredAct'iohC.1isintendedtoensurethatappropriateActionsaretakenifmultiple,inoperable,untrippedchannelswithinbothFunctionsresultinbothFunctionsnotmaintainingAIWS-RPTtripcapability.ThedescriptionofaFunctionmaintainingATWS-RPTtripcapabilityisdiscussedintheBasesforRequiredActionB.1above.The1hourCompletionTimeissufficientfortheoperatortotakecorrectiveactionandtakesintoaccountthelikelihoodofaneventrequiringactuationoftheATWS-RPTinstrumentationduringthisperiod.D.1andD.2WithanyRequiredActionandassociatedCompletionTimenotmet,theplantmustbebroughttoaMODEorotherspecifiedconditioninwhichtheLCOdoesnotapply.Toachievethisstatus,theplantmustbebroughttoatleastMODE2within6hours(RequiredActionD.2).Alternately,theassociatedreci.rculationpumpmayberemovedfromservicesincethis(continued)SUSQUEHANNA-UNIT1B3.3-97Revision0 AVOWS-RPTInstrumentationB3.3.4.2BASESACTIONSD.1andD.2(continued)performstheintendedfunctionoftheinstrumentation(RequiredActionD.1).TheallowedCompletionTimeof6hoursisreasonable,basedonoperatingexperience,bothtoreachMODE2fromfullpowerconditionsandtoremovearecirculationpumpfromserviceinanorderlymannerandwithoutchallengingplantsystems.SURVEILLANCEREQUIREMENTSTheSurveillancesaremodifiedbyaNotetoindicatethatwhenachannelisplacedinaninoperablestatussolelyforperformanceofrequiredSurveillances.entryintotheassociatedConditionsandRequiredActionsmaybedelayedforupto6hoursprovidedtheassociatedFunctionmaintainsATWS-RPTtripcapability.UponcompletionoftheSurveillance,orexpirationofthe6hourallowance.thechannelmustbereturnedtoOPERABLEstatusortheapplicableConditionenteredandRequiredActionstaken.ThisNoteisbasedonthe'reliabilityanalysis(Ref.2)assumptionoftheaveragetimerequiredtoperformchannelSurveillance.Thatanalysis.demonstratedthatthe6hourtestingallowancedoesnotsignificantlyreducetheprobabilitythat'therecirculationpumpswilltripwhennecessary.SR3.3.4.2.1PerformanceoftheCHANNELCHECKonceevery12hoursensuresthatagrossfailureofinstrumentationhasnotoccurred.ACHANNELCHECKisnormallyacomparisonoftheparameterindicatedononechanneltoasimilarparameteronotherchannels.Itisbasedontheassumptionthatinstrumentchannelsmonitoringthesameparametershouldreadapproximatelythesamevalue.Significantdeviationsbetweentheinstrumentchannelscouldbeanindicationofexcessiveinstrumentdriftinoneofthechannelsorsomethingevenmoreserious.ACHANNELCHECKwilldetectgrosschannelfailure;thus,itiskeytoverifyingtheinstrumentationcontinuestooperateproperlybetweeneachCHANNELCALIBRATION.Agreementcriteriawhicharedeterminedbytheplantstaffbasedonaninvestigationofacombinationofthechannel(continued)SUSQUEHANNA-UNIT1B3.3-98Revision0 ATWS-RPTInstrumentation83.3.4.2BASESSURVEILLANCEREQUIREMENTSSR3.3.4.2.1(continued)instrumentuncertainties,maybeusedtosupportthisparametercomparisonandincludeindicationandreadability.Ifachannelisoutsidethecriteria,itmaybeanindicationthattheinstrumenthasdriftedoutsideitslimit,anddoesnotnecessarilyindicatethechannelisInoperable.TheFrequencyisbaseduponoperatingexperiencethatdemonstrateschannelfailureisrare.TheCHANNELCHECKsupplementslessformal,butmorefrequent,checksofchannelsduringnormaloperationaluseofthedisplaysassociatedwiththerequiredchannelsofthisLCO.SR3.3.4.2.2ACHANNELFUNCTIONALTESTisperformedoneachrequiredchanneltoensurethattheentirechannelwillperformtheintendedfunction.ThisSRismodifiedbyaNotethatprovidesageneralexceptiontothedefinitionofCHANNELFUNCTIONALTEST.Thisexceptionisnecessarybecausethedesignofinstrumentationdoesnotfacilitatefunctionaltestingofallrequiredcontactsof'herelaywhichinputintothecombinationallogic.(Reference4)Performanceofsuchatestcouldresultinaplanttransientorplacetheplantinanundorisksituation.Therefore,forthisSR,theCHANNELFUNCTIONAITESTverifiesacceptableresponsebyverifyingthechangeofstateoftherelaywhichinputsintothecombinationallogic.TherequiredcontactsnottestedduringtheCHANNELFUNCTIONALTESTaretestedundertheLOGICSYSTEMFUNCTIONALTEST.SR3.3.4.2.5.ThisisacceptablebecauseoperatingexperienceshowsthatthecontactsnottestedduringtheCHANNELFUNCTIONALTEST,normallypasstheLOGICSYSTEMFUNCTIONALTEST,andthetestingmethodologyminimizestheriskofunplannedtransients.TheFrequencyof92daysisbasedonthereliabilityanalysisofReference2.(continued)SUSQUEHANNA-UNIT1B3.3-99Revision0 ASS-RPTInstrumentationB3.3.4.2BASESSURVEILLANCEREQUIREMENTS(continued)SR3.3.4.2.3andSR3.3.4.2.4ACHANNELCALIBRATIONverifiesthatthechannelrespondstothemeasuredparameterwithinthenecessaryrangeandaccuracy.CHANNELCALIBRATIONleavesthechanneladjustedtoaccountforinstrumentdriftsbetweensuccessivecalibrationsconsistentwiththeplantspecificsetpointmethodology.ThecalibratedFrequencyisbasedupontheassumptionusedforthecalibrationintervalinthedeterminationofthemagnitudeofequipmentdriftinthesetpointanalysis.SR3.3.4.2.5TheLOGICSYSTEMFUNCTIONALTESTdemonstratestheOPERABILITYoftherequiredtriplogicforaspecificchannel.ThesystemfunctionaltestofthepumpRPTbreakersisincludedaspartofthisSurveillanceandoverlapstheLOGICSYSTEMFUNCTIONALTESTtoprovidecompletetestingoftheassumedsafetyfunction.Therefore,ifabreakerisincapableofoperating,theassociatedinstrumentchannel(s)wouldbeinoperable.The24monthFrequencyisbasedontheneedtoperformthisSurveillanceundertheconditionsthatapplyduringaplantoutageandthepotentialforanunplannedtransientiftheSurveillancewereperformedwiththereactoratpower.OperatingexperiencehasshownthesecomponentsusuallypasstheSurveillancewhenperformedatthe24monthFrequency.REFERENCES1.GENE-637,024,-0893,EvaluationofSSESATWSPerformanceforPowerUprateConditions,Sept1993.2.NEDE-770-06-1."BasesforChangesToSurveillanceTestIntervalsandAllowedOut-of-ServiceTimesForSelectedInstrumentationTechnicalSpecifications,"February1991.3.FinalPolicyStatementonTechnicalSpecificationsImprovements.July22,1993(58FR32193).4.NRCInspectionandEnforcementManual,Part9900:TechnicalGuidance,StandardTechnicalSpecificationSection1.0Definitions,Issuedate12/08/86.SUSQUEHANNA-UNIT183.3-100Revision0 ECCSInstrumentationB3.3.5.1B3.3INSTRUMENTATIONB3.3.5.1EmergencyCoreCoolingSystem(ECCS)InstrumentationBASESBACKGROUNDThepurposeoftheECCSinstrumentationistoinitiateappropriateresponsesfromthesystemstoensurethatthefuelisadequatelycooledintheeventofadesignbasisaccidentortransient.FormostanticipatedoperationaloccurrencesandDesignBasisAccidents(DBAs),awiderangeofdependentandindependentparametersaremonitored.TheECCSinstrumentationactuatescorespray(CS),lowpressurecoolantinjection(LPCI),highpressurecoolantinjection(HPCI),AutomaticDepressurizationSystem(ADS),thedieselgenerators(DGs)andotherfeaturesdescribedintheDGbackground.TheequipmentinvolvedwitheachofthesesystemswithexceptionoftheDGsandotherfeatures,isdescribedintheBasesforLCO3.5.1."ECCS-Operating."CoreSraSstemTheCSSystemmaybeinitiatedbyeitherautomaticormanualmeans.AutomaticinitiationoccursforconditionsofReactorVesselHaterLevelLow,Low,Low,Level1orDrywellPressure-HighconcurrentwithReactorPressure-Low.Eachofthesediversevariablesismonitoredbyfourredundantinstruments.TheinitiationlogicforoneCSloopisarrangedinaone-out-of-two-twicenetworkusinglevelandpressureinstrumentswhichwillgenerateasignalwhen:(1)bothlevelsensorsaretripped,or(2)twohighdrywellpressuresensorsandtwolowreactorvesselpressuresensorsaretripped,or(3)acombinationofonechanneloflevelsensorandoneoftheotherchannelofhighdrywellpressuresensortogetherwithitsassociatedlowreactorvesselpressuresensor(i.e.ChannelAlevelsensorandChannelChighdrywellandlowreactorvesselpressuresensor).(continued)SUSQUEHANNA-UNIT1B3.3-101Revision0 ECCSInstrumentationB3.3.5.1BASESBACKGROUNDCoreSraSstem(continued)OnceaninitiationsignalisreceivedbytheCScontrolcircuitry,thesignalissealedinuntilmanuallyreset.Thelogiccanalsobeinitiatedbyuseofamanualpushbutton(onepushbuttonpersubsystem).Uponreceiptofaninitiationsignal,theCSpumpsarestarted15secondsafterinitiationsignalifnormaloffsitepowerisavailableand10.5secondsafterdieselgeneratorpowerisavailable.TheCStestlineisolationvalve,whichisalsoaprimarycontainmentisolationvalve(PCIV),isclosedonaCSinitiationsignaltoallowfullsystemflowassumedintheaccidentanalysesandmaintainprimarycontainmentisolated.TheCSSystemalsomonitorsthepressureinthereactortoensurethat,beforetheinjectionvalvesopen,thereactorpressurehasfallentoavaluebelowtheCSSystem'smaximumdesignpressure.Thevariableismonitoredbyfourredundant'nstruments.Theinstrumentoutputsareconnectedtorelayswhosecontactsarearrangedinaone-out-of-twotakentwicelogic.LowPressureCoolantIn'ectionSstemTheLPCIisanoperatingmodeoftheResidualHeatRemoval(RHR)System,withtwoLPCIsubsystems.TheLPCIsubsystemsmaybeinitiatedbyautomaticormanualmeans.AutomaticinitiationoccursforconditionsofReactorVesselWaterLevelLow,Low,Low,Level1orDrywellPressure-HighconcurrentwithReactorPressure-Low.Eachofthesediversevariablesismonitoredbyfourinstrumentsintwodivisions.Eachdivisionisarrangedinaone-out-of-two-twicenetworkusinglevelandpressureinstrumentswhichwillgenerateasignalwhen:(1)bothlevelsensorsaretripped,or(2)twohighdrywellpressuresensorsandtwolowreactorvesselpressuresensorsaretripped,or(3)acombinationofonechannellevelsensorandoneoftheotherchannelofhighdrywellpressuresensortogetherwithitsassociatedlowreactorvesselpressuresensor.(continued)SUSQUEHANNA-UNIT1B3.3-102Revision0 ECCSInstrumentationB3.3.5.1BASESBACKGROUNDLowPressureCoolantIn'ectionSstem(continued)(i.e.ChannelAlevelsensorandChannelChighdrywellandlowreactorvesselpressuresensor.)Theinitiationlogiciscrossconnectedbetweendivisions(i.e.,eitherstartsignalwillstartallfourpumpsandopenbothloop'sinjectionvalves).OnceaninitiationsignalisreceivedbytheLPCIcontrolcircuitry,thesignalissealedinuntilmanuallyreset.Thecrossdivisionstartsignalsforthepumpsaffectboththeoppositedivision'sstartlogicandthepump's4KVbreakerstartlogic.Thecrossdivisionstartsignaltotheoppositedivision'sstartlogicisforimprovedreliability.Thecrossdivisionstartsignalstothepump's4KVbreakerstartlogicisneededtoensurespecificcontrolpowerfailuresdonotpreventthestartofanadequate,numberofLPCIpumps.Uponreceiptofaninitiationsignal.allLPCIpumpsstartaftera3secondtimedelaywhennormalACpowerislostandstandbydieselgenerator'owerisavailable.Ifnormalpowerisavailable,LPCIpumpsAandBwillstartimmediatelyandumpsCandDwilTstart7.0.secondsafterinitiationsignaltoimitloadingoftheoffsitesources.TheRHRtestlineandspraylinearealsoisolatedonaLPCIinitiationsignaltoallowthefullsystemflowassumedintheaccidentanalysesandforthosevalveswhicharealsoPCIVsmaintainprimarycontainmentisolated.TheLPCISystemmonitorsthepressureinthereactortoensurethat,beforeaninjectionvalveopens,thereactorpressurehasfallentoavaluebelowtheLPCISystem'smaximumdesignpressure.Thevariableismonitoredbyfourredundantinstruments.Theinstrumentoutputsareconnectedtorelayswhosecontactsarearrangedinaone-out-of-twotakentwicelogic.LogicisprovidedtoclosetherecirculationpumpdischargevalvestoensurethatLPCIflowdoesnotbypassthecorewhenitinjectsintotherecirculationlines.Thelogicconsistsofaninitiationsignal(Lowreactorwaterlevelandhighdrywellpressureinaoneoutoftwotakentwicelogic)frombothdivisionsofLPCIinstrumentsandapressurepermissive.Thepressurevariableismonitoredbyfourredundantinstruments.(continued)SUSQUEHANNA-UNIT1B3.3-103Revision0 ECCSInstrumentationB3.3.5.1BASESBACKGROUNDLowPressureCoolantInectionSstem(continued)Theinstrumentoutputsareconnectedtorelayswhosecontactsarearrangedinaone-out-of-twotakentwicelogic.HihPressureCoolantIn'ectionSstemTheHPCISystemmaybeinitiatedbyeitherautomaticormanualmeans.Automaticinitiationoccursf'rconditionsofReactorVesselWaterLevel-LowLow,Level2orDrywellPressure-High.Eachofthesevariablesismonitoredbyfourredundantinstruments.Theinstrumentoutputsareconnectedtorelayswhosecontactsarearrangedinaone-out-of-twotakentwicelogicforeachFunction.TheHPCISystemalsomonitorsthewaterlevelsinthecondensatestoragetank(CST)andthesuppressionpoolbecausethesearethetwosourcesofwaterforHPCIoperation.ReactorgradewaterintheCSTisthenormalsource.UponreceiptofaHPCIinitiationsignal,'theCSTsuctionvalveisautomaticallysignaledtoopen(itisnormallyintheopenposition)unlessthesuppressionpoolsuction.valveisopen.IfthewaterlevelintheCSTfallsbelowapreselectedlevel,firstthesuppressionpo61suctionvalveautomaticallyopens.andthentheCSTsuctionvalveautomaticallycloses.TwolevelswitchesareusedtodetectlowwaterlevelintheCST.EitherswitchcancausethesuppressionpoolsuctionvalvetoopenandtheCSTsuctionvalvetoclose.ThesuppressionpoolsuctionvalvealsoautomaticallyopensandtheCSTsuctionvalveclosesifhighwaterlevelisdetectedinthesuppressionpoolwhentheHPCIinjectionvalveisopen.SuppressionPoolWaterLevel-Highsignalsareinitiatedfromtwolevelinstruments.Thelogicisarrangedsuchthateitherswitchcancausethefunction.Topreventlosingsuctiontothepump.thesuctionvalvesareinterlockedsothatonesuctionpathmustbeopenbeforetheotherautomaticallycloses.TheHPCIprovidesmakeupwatertothereactoruntilthereactorvesselwaterlevelreachestheReactorVesselWaterLevel-High,Level8trip,atwhichtimetheHPCIturbinetrips,whichcausestheturbine'sstopvalve,minimumflowvalve,thecoolingwaterisolationvalve,andtheinjectionyalvetoclose.Thelogicistwo-out-of-twotoprovidehighreliabilityoftheHPCISystem.(continued)SUSQUEHANNA-UNIT1B3.3-104Revision0 ECCSInstrumentationB3.3.5.1BASESBACKGROUNDHihPressureCoolantInectionSstem(continued)TheHPCISystemautomaticallyrestartsifaReactorVesselWaterLevel-LowLow,Level2signalissubsequentlyreceived.AutomaticDeressurizationSstemTheADSmaybeinitiatedbyeitherautomaticormanualmeans.AutomaticinitiationoccurswhensignalsindicatingReactorVesselWaterLevel-LowLowLow,Level1:DrywellPressure-HighorADSDrywellBypassActuationTimer;confirmedReactorVesselWaterLevel-Low,Level3;andCSorLPCIPumpDischargePressure-HighareallpresentandtheADSInitiationTimerhastimedout.TherearetwoinstrumentseachforReactorVesselWaterLevel-LowLowLow,Level1andDrywellPressure-High,andoneinstrumentforconfirmedReactorVesselWaterLevel-Low,Level3ineachofthetwoADStripsystems.Eachoftheseinstrumentsdrivesarelaywhosecontactsformtheinitiationlogic.EachADStripsystemincludesatimedelaybetweensatisfyingtheinitiationlogicandthe.actuationoftheADSvalves.TheADSInitiationTimertimedelaysetpointischosentobelongenoughthatth6HPCIsystemhassufficientoperatingtimetorecovertoalevelaboveLevel1.yetnotsolongthattheLPCIandCSSystemsareunabletoadequatelycoolthefueliftheHPCIfailstomaintainthatlevel.Analarminthecontrolroomisannunciatedwheneitherofthetimersistiming.ResettingtheADSinitiationsignalsresetstheADSInitiationTimers.TheADSalsomonitorsthedischargepressuresofthefourLPCIpumpsandthefourCSpumps.EachADStripsystemincludestwodischargepressurepermissiveinstrumentsfrombothCSpumpsinthedivisionandfromeitherofthetwoLPCIpumpsintheassociatedDivision(i.e.,Division1LPCIpumpsAorCinputtoADStripsystemA,andDivision2LPCIpumpsBorDinputtoADStripsystemB).ThesignalsareusedasapermissiveforADSactuation,indicatingthatthereisasourceofcorecoolantavailableoncetheADShasdepressurizedthevessel.WithbothCSpumpsinadivisionoroneoftheLPCIpumpsoperatingsufficientflowisavailabletopermitautomaticdepressurization.TheADSlogicineachtripsystemisarrangedintwostrings.Eachstringhasacontactfromeachofthefollowingvariables:ReactorVesselWaterLevel-LowLowLow,Level1;Drywell(continued)SUSQUEHANNA-UNIT1B3.3-105Revision0

ECCSInstrumentationB3.3.5.1BASESBACKGROUNDAutomaticDeressurizationSstem(continued)Pressure-High;orDrywellPressureBypassActuationTimer.OneofthetwostringsineachtripsystemmustalsohaveaconfirmedReactorVesselWaterLevel-Low,Level3.Allcontactsinbothlogicstringsmustclose,theADSinitiationtimermusttimeout.andaloopofCSorLPCIpumpdischargepressuresignalmustbepresenttoinitiateanADStripsystem.EithertheAor8tripsystemwillcausealltheADSreliefvalvestoopen.OncetheDrywellPressure-Highsignal.theADSDrywellPressureBypassActuationTimer,ortheADSinitiationsignalispresent,itisindividuallysealedinuntilmanuallyreset.Manualinhibitswitchesareprovidedinthecontrolroomf'rtheADS:however,theirfunctionisnotrequiredforADSOPERABILITY(providedADSisnotinhibitedwhenrequiredtobeOPERABLE).DieselGeneratorsandOtherInitiatedFeaturesTheDGsmaybeinitiatedbyeitherautomaticormanualmeans.AutomaticinitiationoccursforconditionsofReactorVesselWaterLevel-L6w'LowLow,Level1orDrywellPressure-High.TheDGsarealsoinitiateduponlossofvoltagesignals(RefertotheBasesforLCO3.3.8.1,"LossofPower(LOP)Instrumentation,"foradiscussionofthesesignals.)Theinitiationlogicisarrangedinaone-out-of-two-twicenetworkusinglevelandpressureinstrumentswhichwillgenerateasignalwhen:(1)bothlevelsensorsaretripped.or(2)bothhighdrywellpressuresensorsaretripped.or(3)acombinationofonelevelsensorandonehighdrywellpressuresensoristripped.DGsAandBreceivetheirinitiationsignalfromCSsysteminitiationlogicDivisionIandDivisionIIrespectively.DGsCandDreceivetheirinitiationsignalsfromeitherLPCIsystemsinitiationlogicDivisionIorDivisionII.TheDGscanalsobestartedmanuallyfromthecontrolroomandlocallyfromtheassociatedDGroom.TheDGinitiationsignalisa(continued)SUSQUEHANNA-UNIT1B3.3-106Revision0 ECCSInstrumentationB3.3.5.1BASESBACKGROUNDDieselGeneratorsandOtherInitiatedFeatures(continued)sealedinsignalandmustbemanuallyreset.TheDGinitiationlogicisresetbyresettingtheassociatedECCSinitiationlogic.Uponreceiptofalossofcoolantaccident(LOCA)initiationsignal,eachDGisautomaticallystarted,isreadytoloadinapproximately10seconds.andwillruninstandbyconditions(ratedvoltageandspeed,withtheDGoutputbreakeropen).TheDGswillonlyenergizetheirrespectiveEngineeredSafetyFeaturebusesifalossofoffsitepoweroccurs.(RefertoBasesforLCO3.3.8.1.).InadditiontoDGinitiation.theECCSinstrumentationinitiatesotherdesignfeatures.ForCSinitiationonlevelandpressure,theEmergencyServiceWater(ESW)PumpresettimerandtheDrywellCoolingEquipmenttripareinitiated.ForLPCIinitiationonlevelandpressure,theESWPumptimerresetisinitiatedandtheturbinebuildingandreactorbuildingchillersaretripped.IftheassociatedECCSinitiationinstrumentationisnotcapableofcausingtheinitiation,theassociatedfeaturesmustbedeclaredinoperable.FortheESWPumptimerreset,andtheturbinebuildingandreactorbuildingchillertrip,inoperabilityofthesefeatureswouldrequireactionstobetakeninaccordancewithLCO3.8.1"ACSources-Operating"and3.8.2"ACSourcesShutdown".FortheESWpumptimerresetfeature,itwouldresultinbothoffsitecircuitsandtheassociatedDGbeingdeclaredinoperableortheaffectedESWpumpautomaticinitiationcapabilitybeingdisabledandtakingtheactionsrequiredbyLCO3.7.2"ESWSystem".TheESWpumptimerresetfeaturepreventsaLOCA/LOOPeventwheretheCSorLPCIstartatthesametimeastheESWpump.ThiseventcannotoccurinMODES4and5:therefore,thisfeatureisnotrequiredintheseMODES.FortheDrywellCoolingEquipmenttrip,inoperabilityofthisfeaturewouldrequirethattheassociateddrywellcoolingfansbedeclaredinoperableinaccordancewithLCO3.6.3.2"DrywellAirFlowSystem".SUSQUEHANNA-UNIT1B3.3-107(continued)Revision0 ECCSInstrumentationB3.3.5.1BASES(continued)APPLICABLESAFETYANALYSES,LCO,andAPPLICABILITYTheactionsof'heECCSareexplicitlyassumedinthesafetyanalysesofReferences1and2.TheECCSisinitiatedtopreservetheintegrityofthefuelcladdingbylimitingthepostLOCApeakcladdingtemperaturetolessthanthe10CFR50.46limits.ECCSinstrumentationsatisfiesCriterion3oftheNRCPolicyStatement(Ref.4).CertaininstrumentationFunctionsareretainedforotherreasonsandaredescribedbelowinthe-individualFunctionsdiscussion.TheOPERABILITYoftheECCSinstrumentationisdependentupontheOPERABILITYoftheindividualinstrumentationandchannelFunctionsspecifiedinTable3.3.5.1-1.EachFunctionmusthavearequirednumberofOPERABLEchannels,withtheirsetpointswithinthespecifiedAllowableValues,whereappropriate.Theactualsetpointiscalibratedconsistentwithapplicablesetpointmethodologyassumptions.EachECCSsubsystemmustalsorespondwithinitsassumedresponsetime.Table3.3.5.1-1.footnotes(b)and(c),areaddedtoshowthatcertainECCSinstrumentationFunctionsarealsorequiredtobeOPERABLEtoperformDGinitiationandactuation'ofotherTechnicalSpecifications(TS)function.AllowableValuesarespecifiedforeachECCSFunctionspecifiedinthetable.Nominaltripsetpointsarespecifiedinthesetpointcalculations.ThenominalsetpointsareselectedtoensurethatthesetpointsdonotexceedtheAllowableValuebetweenCHANNELCALIBRATIONS.Operationwithatripsetpointlessconservativethanthenominaltripsetpoint,butwithinitsAllowableValue,isacceptable.AchannelisinoperableifitsactualtripsetpointisnotwithinitsrequiredAllowableValue.Tripsetpointsarethosepredeterminedvaluesofoutputatwhichanactionshouldtakeplace.Thesetpointsarecomparedtotheactualprocessparameter(e.g.,reactorvesselwaterlevel),andwhenthemeasuredoutputvalueoftheprocessparameterreachesthesetpoint.theassociateddevicechangesstate.Theanalyticlimitsarederived'fromthelimitingvaluesoftheprocessparametersobtainedfromthesafetyanalysis.TheAllowableValuesarederivedfromtheanalyticlimits,correctedforcalibration,process,andsomeoftheinstrumenterrors.Thetripsetpointsarethendetermined.accountingfortheremaininginstrumenterrors(e.g.,drift).ThetripsetpointsderivedinthismanneraSUSQUEHANNA-UNIT183.3-108(continued)Revision0 ECCSInstrumentationB3.3.5.1BASESAPPLICABLESAFETYANALYSES,LCO.andAPPLICABILITY(continued)provideadequateprotectionbecauseinstrumentationuncertainties,processeffects,calibrationtolerances.instrumentdrift,andsevereenvironmenterrors(forby10CFR50.49)areaccountedfor.AnexceptiontothemethodologydescribedtoderivetheAllowableValueisthemethodology'sedtodeterminetheAllowableValuesfortheECCSpumpstarttimedelays,HPCICSTLevel1-Low,HPCISuppressionPoolWaterLevel-High.TheseAllowableValuesarebasedonsystemcalculationsand/orengineeringjudgementwhichestablishesaconservativelimitatwhichthefunctionshouldoccur.Ingeneral.theindividualFunctionsarerequiredtobeOPERABLEintheNODESorotherspecifiedconditionsthatmayrequireECCS(orDG)initiationtomitigatetheconsequencesofadesignbasistransientoraccident.ToensurereliableECCSandDGfunction,acombinationofFunctionsisrequiredtoprovideprimaryandsecondaryinitiationsignals.ThespecificApplicableSafetyAnalyses,LCO,andApplicabilitydiscussionsarelistedbelowonaFu'nctionbyFunctionbasis.CoreSraandLowPressureCoolantInectionSstems1.a2.a.ReactorVesselWaterLevel-LowLowLowLevel1Lowreactorpressurevessel(RPV)waterlevelindicatesthatthecapabilitytocoolthefuelmaybethreatened.ShouldRPVwaterleveldecreasetoofar,fueldamagecouldresult.ThelowpressureECCSandassociatedDGsareinitiatedatLevel1toensurethatcoresprayandfloodingfunctionsareavailabletopreventorminimizefueldamage.TheReactorVesselWaterLevel-LowLowLow.Level1isoneoftheFunctionsassumedtobeOPERABLEandcapableofinitiatingtheECCSduringthetransientsanalyzedinReferences2.Inaddition,theReactorVesselWaterLevel-'LowLowLow,Level1Functionisdirectlyassumedintheanalysisoftherecirculationlinebreak(Ref.1).ThecorecoolingfunctionoftheECCS,alongwith-thescramactionoftheReactorProtectionSystem(RPS),ensuresthatthefuelpeakcladdingtemperatureremainsbelowthelimitsof10CFR50.46.SUSQUEHANNA-UNIT1B3.3-109(continued)Revision0 ECCSInstrumentationB3.3.5.1BASESAPPLICABLESAFETYANALYSES,LCO.andAPPLICABILITY1.a2.a.ReactorVesselWaterLevel-LowLowLowLevel1(continued)ReactorVesselWaterLevel-LowLowLow,Level1signalsareinitiatedfromfourlevelinstrumentsthatsensethedifferencebetweenthepressureduetoaconstantcolumnofwater(referenceleg)andthepressureduetotheactualwaterlevel(variableleg)inthevessel.TheReactorVesselWaterLevel-LowLowLow,Level1AllowableValueischosentoallowtimeforthelowpressurecorefloodingsystemstoactivateandprovideadequatecooling.TheinitiationlogicforLPCIpumpsandinjectionvalvesiscrossconnectedsuchthateitherdivision'sstartsignalwillstartallfourpumpsandopenbothloop'sinjectionvalves.ThiscrossdivisionlogicisrequiredinHODES1,2,and3.InHODES4and5,redundancyintheinitiationcircuitryisnotrequired.Therefore,inHODES4and5forLPCI,onlyonedivisionofinitiationlogicisrequired.DGsCandDwhichareinitiatedfromtheLPCILOCAinitiationarecrossconnectedsuchthatbothDGsreceiveaninitiationsignalfrombothDivisionsoftheLPCILOCAinitiationcircuitry.This'crossconnectedlogicisonlyrequiredinHODES1,2.and3.InHODES4and5,redundancyintheDGinitiationcircuitryisnotrequired.Therefore,inHODES4and5forDGsCandDonlyonedivisionofECCSinitiationlogicisrequired.fourchannelsofReactorVesselWaterLevel-LowLowLow,Level1FunctionareonlyrequiredtobeOPERABLEwhentheECCSorDG(s)arerequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludeECCSandDGinitiation.RefertoLCO3.5.1andLCO3.5.2."ECCS-Shutdown,"forApplicabilityBasesforthelowpressureECCSsubsystems;LCO3.8.1,"ACSources-Operating";and,LCO3.8.2,"ACSources-Shutdown,"forApplicabilityBasesfortheDGs.1.b2.b.DrellPressure-HihHighpressureinthedrywellcouldindicateabreakinthereactorcoolantpressureboundary(RCPB).ThelowpressureECCS(providedaconcurrentlowreactorpressuresignalisSUSQUEHANNA-UNIT1B3.3-110(continued)Revision0 ECCSInstrumentationB3.3.5.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITYpresent)andassociatedDGs.withoutaconcurrentlowreactorpressuresignal,areinitiateduponreceiptoftheDrywellPressure-HighFunctioninordertominimizetheossibilityoffueldamage.TheDrywellPressure-Highunction,alongwiththeReactorWaterLevel-LowLowLow,Level1Function,isdirectlyassumedintheanalysisoftherecirculationlinebreak(Ref.1).ThecorecoolingfunctionoftheECCS,alongwiththescramactionoftheRPS,ensuresthatthefuelpeakcladdingtemperatureremainsbelowthelimitsof10CFR50.46.Highdrywellpressuresignalsareinitiatedfromfourpressureinstrumentsthatsensedrywellpressure.TheAllowableValuewasselectedtobeaslowaspracticalandbeindicativeofaLOCAinsideprimarycontainment.TheDrywellPressure-HighFunctionisrequiredtobeOPERABLEwhentheECCSorDGisrequiredtobeOPERABLEinconjunctionwithtimeswhentheprimarycontainmentisrequiredtobeOPERABLE.Thus,fourchannelsoftheCSandLPCIDrywellPressure-HighFunctionarerequiredtobeOPERABLEinMODES1,2,and3toensurethatnosingleinstrumentfailurecanprecludeECCSandDGinitiation.InMODES4and5,theDrywellPressure-HighFunctionisnotrequired.sincethereisinsufficientenergyinthereactortopressurizetheprimarycontainmenttoDrywellPressure-Highsetpoint.RefertoLCO3.5.1forApplicabilityBasesforthelowpressureECCSsubsystemsandtoLCO3.8.1forApplicabilityBasesfortheDGs.1.c1.d2.c2.dReactorSteamDomePressure-LowLowreactorsteamdomepressuresignalsareusedaspermissivesforthelowpressureECCSsubsystems.Thelowreactorpressurepermissiveisprovidedtopreventahighdrywellpressureconditionwhichisnotaccompaniedbylowreactorpressure,i.e.afalseLOCAsignal,fromdisablingtwoRHRpumpsontheotherunit.Thelowreactorsteamdomepressurepermissivealsoensuresthat,priortoopeningtheinjectionvalvesofthelowpressureECCSsubsystems,thereactorpressurehasfallentoavaluebelowthesesubsystems'aximumdesignpressure.TheReactorSteamDomePressure-LowisoneoftheFunctionsassumedtobeOPERABLEandcapableof'ermittinginitiationoftheECCSduringthetransientsanalyzedinReference2.Inaddition,theReactorSteamDomePressure-LowFunctionisdirectlyassumedintheanalysisoftherecirculationlinebreakSUSQUEHANNA-UNIT1B3.3-111(continued)Revision0 ECCSInstrumentationB3.3.5.1BASESAPPLICABLESAFETYANALYSES.LCO,andAPPLICABILITY1.c1.d2.c2.dReactorSteamDomePressure-Low(continued)(Ref.1).ThecorecoolingfunctionoftheECCS,alongwiththescramactionoftheRPS,ensuresthatthefuelpeakcladdingtemperatureremainsbelowthelimitsof10CFR50.46.TheReactorSteamDomePressure-Lowsignalsareinitiatedfromfourpressureinstrumentsthatsensethereactordomepressure.TheAllowableValueishighenoughtoensurethattheECCSinjectionpreventsthefuelpeakcladdingtemperaturefromexceedingthelimitsof10CFR50.46.DGsCandDwhichareinitiatedfromtheLPCILOCAinitiationarecrossconnectedsuchthatbothDGsreceiveaninitiationsignalfrombothDivisionsoftheLPCILOCAinitiationcircuitry.ThiscrossconnectedlogicisonlyrequiredinMODES1,2,and3.InMODES4and5,redundancyintheDGinitiationcircuitryisnotrequired.Therefore,inMODES4and5forDGsCandDonlyonedivisionofECCSinitiationlogicisrequired:-FourchannelsOfReactorSteamDomePressure-LowFunctionarerequiredtobeOPERABLEonlywhentheECCSisrequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludeECCSinitiation.RefertoLCO3.5.1andLCO3.5.2forApplicabilityBasesforthelowpressureECCSsubsystems.l.e2.f.ManualInitiationTheManualInitiationpushbuttonchannelsintroducesignalsintotheappropriateECCSlogictoprovidemanualinitiationcapabilityandareredundanttotheautomaticprotectiveinstrumentation.ThereisonepushbuttonforeachoftheCSandLPCIsubsystems(i.e.,twoforCSandtwoforLPCI).TheManualInitiationFunctionisnotassumedinanyaccidentortransientanalysesintheFSAR.However,theFunctionisretainedforoverallredundancyanddiversityofthelowressureECCSfunctionasrequiredbytheNRCintheplanticensingbasis.SUSQUEHANNA-UNIT1B3.3-112(continued)Revision0 ECCSInstrumentationB3.3.5.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY1.e2.f.ManualInitiation(continued)ThereisnoAllowableValueforthisFunctionsincethechannelsaremechanicallyactuatedbasedsolelyonthepositionofthepushbuttons.EachchanneloftheManualInitiationFunction(onechannelpersubsystem)isrequiredtobeOPERABLEonlywhentheassociatedECCSisrequiredtobeOPERABLE.RefertoLCO3.5.1andLCO3.5.2forApplicabilityBasesforthelowpressureECCSsubsystems.2.e.ReactorSteamDomePressure-LowRecirculationDischareValvePermissiveLowreactorsteamdomepressuresignalsareusedaspermissivesforrecirculationdischargeandbypassvalvesclosure.ThisensuresthattheLPCIsubsystemsinjectintotheproperRPVlocationassumedinthesafetyanalysis.TheReactorSteamDomePressure-LowisoneoftheFunctionsassumedtobeOPERABLEandcapableofclosingthevalvesduringthetransientsanalyzedinReference2.ThecorecoolingfunctionoftheECCS,alongwiththescramactionoftheRPS,ensuresthatthefuelpeak'claddingtemperatureremainsbelowthelimitsof10CFR50.46.TheReactorSteamDomePressure-LowFunctionisdirectlyassumedintheanalysisoftherecirculationlinebreak(Ref.2).TheReactorSteamDomePressure-Lowsignalsareinitiatedfromfourpressureinstrumentsthatsensethereactordomepressure.TheAllowableValueischosentoensurethatthevalvesclosepriortocommencementofLPCIinjectionflowintothecore,asassumedinthesafetyanalysis.FourchannelsoftheReactorSteamDomePressure-LowFunctionareonlyrequiredtobeOPERABLEinMODES1,2,and3withtheassociatedrecirculationpumpdischargevalveopen.Withthevalve(s)closed,thefunctioninstrumentationhasbeenperformed:thus,theFunctionisnotrequired.InMODES4and5,theloopinjectionlocationisnotcriticalsinceLPCIinjectionthroughtherecirculationloopineitherdirectionwillstillensurethatLPCIflowreachesthecore(i.e.,thereisnosignificantreactorsteamdomebackpressure).SUSQUEHANNA-UNIT1B3.3-113(continued)Revision0 ECCSInstrumentation83.3.5.1BASESAPPLICABLESAFETYANALYSES.LCO,andAPPLICABILITY(continued)HectSt3.a.ReactorVesselWaterLevel-LowLowLevel2LowRPVwaterlevelindicatesthatthecapabilitytocoolthefuelmaybethreatened.ShouldRPVwaterleveldecreasetoofar,fueldamagecouldresult.Therefore,theHPCISystemisinitiatedatLevel2tomaintainlevelabovethetopoftheactivefuel.TheReactorVesselWaterLevel-LowLow,Level2isoneoftheFunctionsassumedtobeOPERABLEanalyzedinReference2.Additionally,theReactorVesselWaterLevel-LowLow,Level2FunctionassociatedwithHPCIisdirectlyassumedintheanalysisoftherecirculationlinebreak(Ref.2).ThecorecoolingfunctionoftheECCS,alongwiththescramactionoftheRPS,ensuresthatthefuelpeakcladdingtemperatureremainsbelowthelimitsof10CFR50.46.ReactorVesselWaterLevel-LowLow,Level2signalsareinitiatedfromfourlevelinstrumentsthatsensethedifferencebetweenthepressureduetoaconstantcolumnofwater(referenceleg)andthepressureduetotheactualwaterlevel(variableleg)inthevessel.TheHPCIReactorVesselWaterLevel-LowLow,Level2AllowableValueischosen'o.beconsistentwiththeReactorCoreIsolationCooling(RCIC)SystemReactorVesselWaterLevel-LowLow,Level2Allowablevalue.FourchannelsofReactorVesselWaterLevel-LowLow,Level2Functionarerequi'red'tobeOPERABLEonlywhenHPCIisrequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludeHPCIinitiation.RefertoLCO3.5.1forHPCIApplicabilityBases.3.b.DrellPressure-HihHighpressureinthedrywellcouldindicateabreakintheRCPB.TheHPCISystemisinitiateduponreceiptoftheDrywellPressure-HighFunctioninordertominimizethepossibilityoffueldamage.TheDrywellPressure-HighFunction,alongwiththeReactorWaterLevel-LowLow,Level2Function,isdirectlyassumedintheanalysisoftherecirculationlinebreak(Ref.4).ThecorecoolingfunctionoftheECCS,alongwiththescramactionoftheSUSQUEHANNA-UNIT1B3.3-114(continued)Revision0 ECCSInstrumentationB3.3.5.1BASESAPPLICABLESAFETYANALYSES,LCO.andAPPLICABILITY3.b.DrellPressure-Hih(continued)RPS,ensuresthatthefuelpeakcladdingtemperatureremainsbelowthelimitsof10CFR50.46.Highdrywellpressuresignalsareinitiatedfromfourpressureinstrumentsthatsensedrywellpressure.TheAllowableValuewasselectedtobeaslowaspossibletobeindicativeofaLOCAinsideprimarycontainment.FourchannelsoftheOrywellPressure-HighFunctionarerequiredtobeOPERABLEwhenHPCIisrequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludeHPCIinitiation.RefertoLCO3.5.1fortheApplicabilityBasesf'rtheHPCISystem.3.c.ReactorVesselMaterLevel-HihLevel8HighRPVwaterlevelindicatesthatsufficientcoolingwaterinventoryexistsinthereactorvesselsuchthatthereisnodangertothefuel.Therefore.theLevel8signalisusedtotriptheHPCIturbinetopreventoverflowintothemainsteamlines(HSLs).TheReactorVesselWaterLevel-High.Level8Functionisnot'Assumedintheaccidentandtransientanalyses.Itwasretainedsinceitisapotentiallysignificantcontributortorisk.ReactorVesselWaterLevel-High,Level8signalsforHPCIareinitiatedfromtwolevelinstruments.BothLevel8signalsarerequiredinordertotripHPCI.ThisensuresthatnosingleinstrumentfailurecanprecludeanHPCIinitiationortrip.TheReactorVesselWaterLevel-High,Level8AllowableValueischosentopreventflowfromtheHPCISystemfromoverflowingintotheNSLs.Twochannelsof'eactorVesselWaterLevel-High,Level8FunctionarerequiredtobeOPERABLEonlywhenHPCIisrequiredtobeOPERABLE.RefertoLCO3.5.1andLCO3.5.2forHPCIApplicabilityBases.3.d.CondensateStoraeTankLevel-LowLowlevelintheCSTindicatestheunavailabilityofanadequatesupplyofmakeupwaterfromthisnormalsource.SUSQUEHANNA-UNIT1B3.3-115(continued)Revision0 ECCSInstrumentationB3.3.5.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY3.d.CondensateStoraeTankLevel-Low(continued)NormallythesuctionvalvesbetweenHPCIandtheCSTareopenand.uponreceivingaHPCIinitiationsignal,waterforHPCIinjectionwouldbetakenfromtheCST.However,ifthewaterlevelintheCSTfallsbelowapreselectedlevel,firstthesuppressionpoolsuctionvalveautomaticallyopens,andthentheCSTsuctionvalveautomaticallycloses.ThisensuresthatanadequatesupplyofmakeupwaterisavailabletotheHPCIpump.Topreventlosingsuctiontothepump,the'suctionvalvesareinterlockedsothatthesuppressionpoolsuctionvalvesmustbeopenbeforetheCSTsuctionvalveautomaticallycloses.TheFunctionisimplicitlyassumedintheaccidentandtransientanalyses(whichtakecreditforHPCI)sincetheanalysesassumethattheHPCIsuctionsourceisthesuppressionpool.CondensateStorageTankLevel-Lowsignalsareinitiatedfromtwolevelinstruments.ThelogicisarrangedsuchthateitherlevelswitchcancausethesuppressionpoolsuctionvalvestoopenandtheCSTsuctionvalvetoclose.TheCondensateStorageTankLevel-LowFunctionAllowableValueishighenoughtoensureadequatepumpsuctionheadwhilewaterisbeingtakenfromtheCST.TwochannelsoftheCondensateStorageTankLevel-LowFunctionarerequiredtobeOPERABLEonlywhenHPCIisrequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludeHPCIswaptosuppressionpoolsource.RefertoLCO3.5.1forHPCIApplicabilityBases.3.e.SuressionPoolWaterLevel-HihExcessivelyhighsuppressionpoolwatercouldresultintheloadsonthesuppressionpoolexceedingdesignvaluesshouldtherebeablowdownofthereactorvesselpressurethroughthesafety/reliefvalves.Therefore,signalsindicatinghighsuppressionpoolwaterlevelareusedtotransferthesuctionsourceofHPCIfromtheCSTtothesuppressionpooltoeliminatethepossibilityofHPCIcontinuingtoprovideadditionalwaterfromasourceoutsidecontainment.Topreventlosingsuctiontothepump,thesuctionvalvesareinterlockedsothatthesuppressionpoolsuctionvalvesmustbeopenbeforetheCSTsuctionvalveautomaticallycloses.SUSQUEHANNA-UNIT1B3.3-116(continued)Revision0 ECCSInstrumentationB3.3.5.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY3.e.SuressionPoolWaterLevel-Hih(continued)ThisFunctionisimplicitlyassumedintheaccidentandtransientanalyses(whichtakecreditforHPCI)sincetheanalysesassumethattheHPCIsuctionsourceisthesuppressionpool.SuppressionPoolWaterLevel-Highsignalsareinitiatedfromtwolevelinstruments.ThelogicisarrangedsuchthateitherswitchcancausethesuppressionpoolsuctionvalvestoopenandtheCSTsuctionvalvetocloseprovidedtheHPCIinjectionvalveisopen.TheAllowableValuefortheSuppressionPoolWaterLevel-HighFunctionischosentoensurethatHPCIwillbealignedforsuctionfromthesuppressionpoolbeforethewaterlevelreachesthepointatwhichsuppressionpooldesignloadswouldbeexceeded.TwochannelsofSuppressionPoolWaterLevel-HighFunctionarerequiredtobeOPERABLEonlywhenHPCIisrequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludeHPCIswaptosuppressionpoolsource.RefertoLCO3.5.1forHPCIApplicabilityBases.3.f.ManualIhitiationTheManualInitiationpushbuttonchannelintroducessignalsintotheHPCIlogictoprovidemanualinitiationcapabilityandisredundanttotheautomaticprotectiveinstrumentation.ThereisonepushbuttonfortheHPCISystem.TheManualInitiationFunctionisnotassumedinanyaccidentor.transientanalysesintheFSAR.However,theFunctionisretainedforoverallredundancyanddiversityoftheHPCIfunctionasrequiredbytheNRCintheplantlicensingbasis.ThereisnoAllowableValueforthisFunctionsincethechannelismechanicallyactuatedbasedsolelyonthepositionofthepushbutton.OnechanneloftheManualInitiationFunctionisrequiredtobeOPERABLEonlywhentheHPCISystemisrequiredtobeOPERABLE.RefertoLCO3.5.1forHPCIApplicabilityBases.SUSQUEHANNA-UNIT1B3.3-117(continued)Revision0 ECCSInstrumentationB3.3.5.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY(continued)AutomaticDeressurizationSstem4.a5.a.ReactorVesselWaterLevel-LowLowLowLevel1LowRPVwaterlevelindicatesthatthecapabilitytocoolthefuelmaybethreatened.ShouldRPVwaterleveldecreasetoofar,f'ueldamagecouldresult.Therefore,ADSreceivesoneofthesignalsnecessaryforinitiationfromthisFunction.TheReactorVesselWaterLevel-LowLowLow,Level1isoneoftheFunctionsassumedtobeOPERABLEandcapableofinitiatingtheADSduringtheaccidentanalyzedinReference1.ThecorecoolingfunctionoftheECCS.alongwiththescramactionoftheRPS,ensuresthatthefuelpeakcladdingtemperatureremainsbelowthelimitsof10CFR50.46.ReactorVesselWaterLevel-LowLowLow,Level1-signalsareinitiatedfromfourlevelinstrumentsthatsensethedifferencebetweenthepressureduetoaconstantcolumnofwater(referenceleg)andthepressureduetotheactualwaterlevel(variableleg)inthevessel.FourchannelsofReactorVesselWaterLevel-LowLowLow',Level1FunctionarerequiredtobeOPERABLEonlywhenADSisrequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludeADSinitiation.TwochannelsinputtoADStripsystemA,whiletheothertwochannelsinputtoADStripsystemB.RefertoLCO3.5.1forADSAppl.icabilityBases.The'eactorVesselWaterLevel-LowLowLow,Level1AllowableValue-:ischosentoallowtimeforthelowpressure-=corefloodj.ng::systemstoinitiateandprovideadequatecooling'.4.b5.b.DrellPressure-HihHighpressureinthedrywellcouldindicateabreakintheRCPB.Therefore,ADSreceivesoneofthesignalsnecessaryforinitiationfromthisFunctioninordertominimizethepossibilityoffueldamage.TheDrywellPressure-HighisassumedtobeOPERABLEandcapableofinitiatingtheADSduringtheaccidentsanalyzedinReference2.ThecorecoolingfunctionoftheECCS,alongwiththescramactionoftheRPS,ensuresthatthefuelpeakcladdingtemperatureremainsbelowthelimitsof10CFR50.46.SUSQUEHANNA-UNIT1B3.3-118(continued)Revision0 ECCSInstrumentationB3.3.5.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY4.b5.b.DrellPressure-Hih(continued)DrywellPressure-Highsignalsareinitiatedfromfourpressureinstrumentsthatsensedrywellpressure.TheAllowableValuewasselectedtobeaslowaspossibleandbei'ndicativeofaLOCAinsideprimarycontainment.FourchannelsofDrywellPressure-HighFunctionareonlyrequiredtobeOPERABLEwhenADSisrequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludeADSinitiation.TwochannelsinputtoADStripsystemA,whiletheothertwochannelsinputtoADStripsystemB.RefertoLCO3.5.1forADSApplicabilityBases.4.c5.c.AutomaticDeressurizationSstemInitiationTimerThepurposeoftheAutomaticDepressurizationSystemInitiationTimeristodelaydepressurizationofthereactorvesseltoallowtheHPCISystemtimetomaintainreactorvesselwaterlevel.SincetherapiddepressurizationcausedbyADSoperationisoneofthemost,.severetransientsonthereactorvessel,itsoccurrenceshouldbelimited.BydelayinginitiationoftheADSFunction,theoperatorisgiventhechancetomonitorthesuccessorfailureoftheHPCISystem:,to-,maintainwaterlevel,andthentodecidewhetherornotto.allowADStoinitiate,todelayinitiationfurtherbyrecycling.thetimer,ortoinhibitinitiationpermanently.TheAutomati'cDepressurizationSystemInitiationTimerFunctionisassumed:to..beOPERABLEfortheaccidentanalysesofReference1thatrequireECCSinitiationandassumefailureoftheHPCISystem.TherearetwoAutomaticDepressurizationSystemInitiationTimerrelays.oneineachofthetwoADStripsystems.TheAllowableValuefortheAutomaticDepressurizationSystemInitiationTimerischosensothatthereisstilltimeafterdepressurizationforthelowpressureECCSsubsystemstoprovideadequatecorecooling.TwochannelsoftheAutomaticDepressurizationSystemInitiationTimerFunctionareonlyrequiredtobeOPERABLEwhentheADSisrequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludeADSinitiation.(OnechannelinputstoADStripsystemA,whiletheotherchannelSUSQUEHANNA-UNIT1B3.3-119(continued)Revision0 ECCSInstrumentationB3.3.5.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY4.cS.c.AutomaticDeressurizationSstemInitiationTimer(continued)inputstoADStripsystemB.RefertoLCO3.5.1forADSApplicabilityBases.4.d5.d.ReactorVesselWaterLevel-LowLevel3TheReactorVesselWaterLevel-Low,Level3FunctionisusedbytheADSonlyasaconfirmatorylowwaterlevelsignal.ADSreceivesoneofthesignalsnecessary'forinitiationfromReactorVesselWaterLevel-LowLowLow,Level1signals.InordertopreventspuriousinitiationoftheADSduetospuriousLevel'1signals,aLevel3signalmustalsobereceivedbeforeADSinitiationcommences.ReactorVesselWaterLevel-Low,Level3signalsareinitiatedfromtwolevelinstrumentsthatsensethedifferencebetweenthepressureduetoaconstantcolumnofwater(referenceleg)andthepressureduetotheactualwaterlevel(variableleg)inthevessel.TheAllowableValueforReactorVesselWaterLevel-Low,Level.3isselectedattheRPSLevel3scramAllowableValueforconvenience.RefertoLCO3.3.1.1,"ReactorProteCtionSystem(RPS)Instrumentation,"fortheBasesdiscussionofthisFunction.TwochannelsofReactorVesselWaterLevel-Low,Level3FunctionarerequiredtobeOPERABLEonlywhentheADSisrequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludeADSinitiation.OnechannelinputstoADStripsystemA,whiletheotherchannelinputstoADStripsystemB.RefertoLCO3.5.1forADSApplicabilityBases.4.e4.f5.eS.f.CoreSraandLowPressureCoolantInectionPumDischarePressure-HihThePumpDischargePressure-HighsignalsfromtheCSandLPCIpumpsareusedaspermissivesforADSinitiation,indicatingthatthereisasourceoflowpressurecoolingwateravailableoncetheADShasdepressurizedthevessel.PumpDischargePressure-HighisoneoftheFunctionsassumedtobeOPERABLEandcapableofpermittingADSSUSQUEHANNA-UNIT1B3.3-120(continued)Revision0 ECCSInstrumentationB3.3.5.1BASESAPPLICABLESAFETYANALLCO,andAPPLICABILIYSES,TY4.e4.f5.e5.f.-CoreSraandLowPressureCoolantInectionPumDischarePressure-Hih(continued)initiationduringtheeventsanalyzedinReference1withanassumedHPCIfailure.FortheseeventstheADSdepressurizesthereactorvesselsothatthelowpressureECCScanperformthecorecoolingfunctions.ThiscorecoolingfunctionoftheECCS,alongwiththescramactionoftheRPS,ensuresthatthefuelpeakcladdingtemperatureremainsbelowthelimitsof10CFR50.46.Pumpdischargepressuresignalsareinitiatedfromtwelvepressureinstruments,twoonthedischargesideofeachofthefour'LPCIpumpsandoneonthedischargeofeachofCSpumps.InordertogenerateanADSpermissiveinonetripsystem,itisnecessarythatonlyoneLPCIpumporoneCSsubsystemindicatethehighdischargepressurecondition.ThePumpDischargePressure-HighAllowableValueislessthanthepumpdischargepressurewhenthepumpisoperatinginafullflowmodeandhighenoughtoavoidanyconditionthatresultsinadischargepressurepermissivewhentheCSandLPCIpumpsarealignedforinjectionandthepumpsarenotrunning.Theactualoperatingpointofthisfunctionisnotassumedinanytransientoraccidentanalysis.TwelvechannelsofCoreSprayandLowPressureCoolantInjectionPumpDischargePressure-HighFunctionareonlyrequiredtobeOPERABLEwhentheADSisrequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludeADSinitiation.TwoCSchannelsassociatedwithCSpumpsAandCandfourLPCIchannelsassociatedwithLPCIpumpsAandCarerequiredfortripsystemA.TwoCSchannelsassociatedwithCSpumpsBandDandfourLPCIchannelsassociatedwithLPCIpumps8andDarerequiredfortripsystemB.RefertoLCO3.5.1forADSApplicabilityBases.4.5..AutomaticDeressurizationSstemDrel1PressureBassActuationTimerOneofthesignalsrequiredforADSinitiationisDrywellPressure-High.However,iftheeventrequiringADSinitiationoccursoutsidethedrywell(e.g.,mainsteamlinebreakoutsidecontainment).ahighdrywellpressuresignalmayneverbepresent.Therefore,theAutomaticDepressurizationSystemDrywellPressureBypassActuationSUSQUEHANNA-UNIT183.3-121(continued)Revision0 ECCSInstrumentationB3.3.5.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY4.5..AutomaticDeressurizationSstemDrellPressureBassActuationTimer(continued)TimerisusedtobypasstheDrywellPressure-HighFunctionafteracertaintimeperiodhaselapsed.OperationoftheAutomaticDepressurizationSystemDrywellPressureBypassActuationTimerFunctionisnotassumedinanyaccidentanalysis.TheinstrumentationisretainedintheTSbecauseADSispartoftheprimarysuccesspathformitigationofaDBA.TherearefourAutomaticDepressurizationSystemDrywellPressureBypassActuationTimerrelays.twoineachofthetwoADStripsystems.TheAllowableValuefortheAutomaticDepressurizationSystemLowWaterLevelActuationTimerischosentoensurethatthereisstilltimeafterdepressurizationf'rthelowpressureECCSsubsystemstoprovideadequatecorecooling.FourchannelsoftheAutomaticDepressurizationSystemDrywellPressureBypassActuationTimerFunctionarerequiredtobeOPERABLEonlywhentheADSisrequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecan:-precludeADSinitiation.RefertoLCO3.5.1forADSApplicabilityBases.4.h5.h.ManualInitiationTheManualInitiationpushbuttonchannels=introducemignalsintotheADSlogictoprovidemanualinitiation'-capabi'lityandareredundanttotheautomaticprotecttve=instrumentation-.TherearetwopushbuttonsforeachADS;trip..system:fora.-totaloffour.TheManualInitiationFunctionisnotassumedinanyaccidentortransientanalysesintheFSAR.However,theFunctionisretainedforoverallredundancyanddiversityoftheADSfunctionsasrequiredbytheNRCintheplantlicensingbasis.ThereisnoAllowableValueforthisFunctionsincethechannelsaremechanicallyactuatedbasedsolelyonthepositionofthepushbuttons.FourchannelsoftheManualInitiationFunction(twochannelspertripsystem)areonlySUSQUEHANNA-UNIT1B3.3-122(continued)Revision0 ECCSInstrumentationB3.3.5.1BASESAPPLICABLESAFETYANALYSES,LCO.andAPPLICABILITY4.hS.h.ManualInitiation(continued)requiredtobeOPERABLEwhentheADSisrequiredtobeOPERABLE.RefertoLCO3.5.1forADSApplicabilityBases.ACTIONSANotehasbeenprovidedtomodifytheACTIONSrelatedtoECCSinstrumentationchannels.Section1.3,CompletionTimes,specifiesthatonceaConditionhasbeenentered.subsequentdivisions,subsystems,components,orvariablesexpressedintheConditiondiscoveredtobeinoperableornotwithinlimitswillnotresultinseparateentryintotheCondition.Section1.3alsospecifiesthatRequiredActionsoftheConditioncontinuetoapplyforeachadditionalfailure,withCompletionTimesbasedoninitialentryintotheCondition.However,theRequiredActionsforinoperableECCSinstrumentationchannelsprovideappropriatecompensatorymeasuresforseparateinoperableConditionentryforeachinoperableECCSinstrumentationchannel.A.1RequiredAct'noh'A.ldirectsentryintothe-appropriate=ConditionreferencedinTable3.3.5.1-1.Theapplicable.ConditionreferencedinthetableisFunctiondependent.Each.timeachannelisdiscoveredinoperable.Condition:-A's;enteredforthatchannelandprovidesfortransfertothe'app~opriatesubsequentCondition.8.1B.2andB.3RequiredActionsB.1andB.2areintendedtoensurethatappropriateactionsaretakenifmultiple,inoperable,untrippedchannelswithinthesameFunctionresultinredundantautomaticinitiationcapabilitybeinglostforthefeature(s).RequiredActionB.1featureswouldbethosethatareinitiatedbyFunctionsl.a,1.b,1.c,2.a,2.b,and2.c(e.g.,lowpressureECCS).TheRequiredActionB.2systemwouldbeHPCI.ForRequiredActionB.1,redundantautomaticinitiationcapabilityislostifeither(a)oneormoreFunctionl.aorFunction2.achannelsinbothdivisionsareinoperableanduntripped,or(b)oneormoreFunction1.borFunction2.bchannelsinbothdivisionsareSUSQUEHANNA-UNIT183.3-123(continued)Revision0 ECCSInstrumentation83.3.5.1BASESACTIONSB.18.2and8.3(continued)inoperableanduntripped.or(c)oneormoreFunction1.corFunction2.cchannelsinbothdivisionsareinoperableanduntripped.ForeachDivision,sinceeachinoperablechannelwouldhaveRequiredActionB.lappliedseparately(refertoACTIONSNote),eachinoperablechannelwouldonlyrequiretheaffectedportionoftheassociatedsystemoflowpressureECCS.DGs,andassociatedfeaturestobedeclaredinoperable.However,sincechannelsinbothDivisionsareinoperableanduntripped,andtheCompletionTimesstartedconcurrentlyforthechannelsinbothsubsystems,thisresultsintheaffectedportionsintheassociatedlowpressureECCSandDGsbeingconcurrentlydeclaredinoperable.ForRequiredAction8.2,redundantautomaticinitiationcapabilityislostiftwoFunction3.aortwoFunction3.bchannelsareinoperableanduntrippedinthesametripsystem.Inthissituation(lossofredundantautomaticinitiationcapability),the24hourallowanceof'equiredAction8.3isnotappropriateandthefeature(s)associatedwiththeinoperable,untrippedchannelsmustbedeclaredinoperablewithin1hour.Asvoted(Note1toRequiredAction8.1),RequiredActionB.1isonlyapplicableinMODES1,2,and3.InMODES4and5;thespecificinitiationtimeofthelowressureECCSisnotassumedandtheprobabilityofaLOCAisower.Thus.atotallossofinitiationcapabilityfor24hours(asallowedbyRequiredAction8.3)isallowedduringMODES4and5.ThereisnosimilarNoteprovidedforRequiredAction8.2sinceHPCIinstrumentationisnotrequiredinMODES4and5;thus,aNoteisnotnecessary.Notesarealsoprovided(Note2toRequiredActionB.1andtheNotetoRequiredAction8.2)todelineatewhichRequiredActionisapplicableforeachFunctionthatrequiresentryintoCondition8ifanassociatedchannelisinoperable.Thisensuresthattheproperlossofinitiationcapabilitycheckisperformed.TheCompletionTimeisintendedtoallowtheoperatortimetoevaluateandrepairanydiscoveredinoperabilities.ThisCompletionTimealsoallowsforanexceptiontothenormal"timezero"forbeginningtheallowedoutagetime"clock."ForRequiredAction8.1,theCompletionTimeonlybeginsupondiscoverythataredundantfeatureinbothDivisions(e.g.,bothCSsubsystems)cannotbeautomaticallySUSQUEHANNA-UNIT183.3-124(continued)Revision0 ECCSInstrumentation83.3.5.1BASESACTIONSB.18.2andB.3(continued)initiatedduetoinoperable,untrippedchannelswithinthesameFunctionasdescribedintheparagraphabove.ForRequiredActionB.2,theCompletionTimeonlybeginsupondiscoverythattheHPCISystemcannotbeautomaticallyinitiatedduetotwoinoperable,untrippedchannelsfortheassociatedFunctioninthesametripsystem.The1hourCompletionTimefromdiscoveryoflossofinitiationcapabilityisacceptablebecauseitminimizesriskwhileallowingtimeforrestorationortrippingofchannels.BecauseofthediversityofsensorsavailabletoprovideinitiationsignalsandtheredundancyoftheECCSdesign,anallowableoutofservicetimeof24hourshasbeenshowntobeacceptable(Ref.3)topermitrestorationofanyinoperablechanneltoOPERABLEstatus.IftheinoperablechannelcannotberestoredtoOPERABLEstatuswithintheallowableoutofservicetime,thechannelmustbeplacedinthetrippedconditionperRequiredActionBE3.Placingtheinoperablechannelintripwouldconservativelyco'mpensatefortheinoperability,restorecapabilitytoaccommodateasinglefailure,andallow"operation.tocontinue.Alternately,ifitisnotdesiredtoplacethechannelintrip(e.g.,asinthecasewherep1acingtheinoperablechannelintripwouldresultinaninitiation),ConditionGmustbeenteredanditsRequiredActiontaken.C.landC.2RequiredActionC.lisintendedtoensurethatappropriateactionsaretakenifmultiple,inoperablechanne'1swithinthesameFunctionresultinredundantautomaticinitiationcapabilitybeinglostforthefeature(s).RequiredActionC.1featureswouldbethosethatareinitiatedbyFunctions1.d,2.d,and2.e(i.e.,lowpressureECCS).Redundantautomaticinitiationcapabilityislostifeither(a)twoormoreFunction1.dchannelsareinoperablesuchthatthetripsystemlosesinitiationcapability,(b)twoormoreFunction2.dchannelsareinoperableinthesametripsystemsuchthatthetripsystemlosesinitiationcapability,or(c)twoormoreFunction2.echannelsareinoperableaffectingLPCIpumpsindifferentsubsystems.Inthissituation(lossofredundantautomaticinitiationSUSQUEHANNA-UNIT1B3.3-125(continued)Revision0 ECCSInstrumentationB3.3.5.1BASESACTIONSC.1andC.2(continued)capability),the24hourallowanceofRequiredActionC.2isnotappropriateandthefeature(s)associatedwiththeinoperablechannelsmustbedeclaredinoperablewithin1hour.SinceeachinoperablechannelwouldhaveRequiredActionC.1appliedseparately(refertoACTIONSNote),eachinoperablechannelwouldonlyrequiretheaffectedportionofthe.associatedsystemtobedeclaredinoperable.However,sincechannelsforbothlowpressureECCSsubsystemsareinoperable(e.g.,bothCSsubsystems),andtheCompletionTimesstartedconcurrentlyforthechannelsinbothsubsystems,thisresultsintheaffectedportionsinbothsubsystemsbeingconcurrentlydeclaredinoperable.ForFunctions1.d.2.d,and2.e,theaffectedportionsaretheassociatedlowpressureECCSpumps.Asnoted(Note1),RequiredActionC.1isonlyapplicableinMODES1.2,and3.InMODES4and5,thespecificinitiationtimeoftheECCSisnotassumedandtheprobabilityofaLOCAislower..Thus,atotallossofautomaticinitiationcapabilityfor24hours(asallowedbyRequiredActionC.2)isallowedduringMODES4and5.Note2statesthatRequiredActionC.1isonlyapplicableforFunctions1.d,2.d,and2.e.RequiredActionC.1isnotapplicabletoFunctionsl.e,2.f,and3.f(whichalsorequireentryintothisConditionifachannelintheseFunctionsisinoperable),sincetheyaretheManualInitiationFunctionsandarenotassumedinanyaccidentortransientanalysis.Thus,atotallossofmanualinitiationcapabilityfor24hours(asallowedbyRequiredActionC.2)isallowed.RequiredActionC.1isalsonotapplicabletoFunction3.c(whichalsorequiresentryintothisConditionifachannelinthisFunctionisinoperable),sincethelossofonechannelresultsinalossoftheFunction(two-out-of-twologic).ThislosswasconsideredduringthedevelopmentofReference3andconsideredacceptableforthe24hoursallowedbyRequiredActionC.2.TheCompletionTimeisintendedtoallowtheoperatortimetoevaluateandrepairanydiscoveredinoperabilities.ThisCompletionTimealsoallowsforanexceptiontothenormal"timezero"forbeginningtheallowedoutagetime"clock."ForRequiredActionC.1,theCompletionTimeonlybeginsupondiscoverythatthesamefeatureinbothsubsystems(e.g.,bothCSsubsystems)cannotbeautomaticallyinitiatedSUSQUEHANNA-UNIT1B3.3-126(continued)Revision0 ECCSInstrumentationB3.3.5.1BASESACTIONSC.1andC.2(continued)duetoinoperablechannelswithinthesameFunctionasdescribedintheparagraphabove.The1hourCompletionTimefromdiscoveryoflossofinitiationcapabilityisacceptablebecauseitminimizesriskwhileallowingtimeforrestoration'fchannels.BecauseofthediversityofsensorsavailabletoprovideinitiationsignalsandtheredundancyoftheECCSdesign.anallowableoutofservicetimeof24hourshasbeenshowntobeacceptable(Ref.3)topermitrestorationofanyinoperablechanneltoOPERABLEstatus.IftheinoperablechannelcannotberestoredtoOPERABLEstatuswithintheallowableoutofservicetime.ConditionGmustbeenteredanditsRequiredActiontaken.TheRequiredActionsdonotallowplacingthechannelintripsincethisactionwouldeithercausetheinitiationoritwouldnotnecessarilyresultinasafestateforthechannelinallevents.D.lD.2.1and0.2.2,RequiredActionD.1isintended.toensurethatappropriateactionsaretakenifmultipTe.=,.inoperable,untrippedchannelswithinthesameFunction"result:ina.completelossofautomaticcomponentinitiationcapabi-lityfor.theHPCISystem.Automaticcomponentinitiationcapzbi".l.ity=islostiftwoFunction3.dchannelsortwoFunction'.3e=channels.areinoperableanduntripped.Inthissituati.on(lossof.automaticsuctionswap),the24hourallowanceof.RequiredActions0.2.1and0.2.2isnotappropriateandtheHPCISystemmustbedeclaredinoperablewithin1hourafterdiscoveryoflossofHPCIinitiationcapability.ANoteidentifiesthatRequiredActionD.1isonlyapplicableiftheHPCIpumpsuctionisnotalignedtothesuppressionpool,since,ifaligned.theFunctionisalreadyperformed.ThisallowstheHPCIpumpsuctiontoberealignedtotheSuppressionPoolwithin1hour,ifdesired.TheCompletionTimeisintendedtoallowtheoperatortimetoevaluateandrepairanydiscoveredinoperabilities.Thi'sCompletionTimealsoallowsforanexceptiontothenormal"timezero"forbeginningtheallowedoutagetime"clock."ForRequiredActionD.1,theCompletionTimeonlybeginsupondiscoverythattheHPCISystemcannotbeautomaticallySUSQUEHANNA-UNIT1B3.3-127(continued)Revision0 ECCSInstrumentationB3.3.5.1ACTIONSD.1D.2.1and0.2.2(continued)alignedtothesuppressionpoolduetotwoinoperable,untrippedchannelsinthesameFunction.The1hourCompletionTimefromdiscoveryoflossofinitiationcapabilityisacceptablebecauseitminimizesriskwhileallowingtimeforrestorationortrippingofchannels.BecauseofthediversityofsensorsavailabletoprovideinitiationsignalsandtheredundancyoftheECCSdesign,anallowableoutofservicetimeof24hourshasbeenshowntobeacceptable(Ref.3)topermitrestorationofanyinoperablechanneltoOPERABLEstatus.IftheinoperablechannelcannotberestoredtoOPERABLEstatuswithintheallowableoutofservicetime,thechannelmustbeplacedinthetrippedconditionperRequiredActionD.2.1orthesuctionsourcemustbealignedtothesuppressionpoolperRequiredActionD.2.2.Placingtheinoperablechannelintripperformstheintendedfunctionofthechannel(shiftingthesuctionsourcetothesuppressionpool).PerformanceofeitherofthesetwoRequiredActionswillallowoperationtocontinue.IfitisnotdesiredtoperformRequiredActionsD.2.1andD.2.2,ConditionGmustbeenteredanditsRequiredActiontaken.E.landE.2RequiredActionE.lisintendedtoensurethatappropriateactionsaretakenifmultiple,inoperable,untrippedchannelswithinsimilarADStripsystemAandBFunctionsresultinredundantautomaticinitiationcapabilitybeinglostfortheADS.Redundantautomaticinitiationcapabilityislostifeither(a)oneFunction4.achannelandoneFunction5.achannelareinoperableanduntripped,(b)oneFunction4.bchannelandoneFunction5.bchannelareinoperableanduntripped,or(c)oneFunction4.dchannelandoneFunctionS.dchannelareinoperableanduntripped.Inthissituation(lossofautomaticinitiationcapability).the96houror8dayallowance,asapplicable,ofRequiredActionE.2isnotappropriateandallADSvalvesmustbedeclaredinoperablewithin1hourafterdiscoveryof'ossofADSinitiationcapability.TheCompletionTimeisintendedtoallowtheoperatortimetoevaluateandrepairanydiscoveredinoperabilities.ThisSUSQUEHANNA-,UNIT1B3.3-128(continued)Revision0 ECCSInstrumentationB3.3.5.1BASESACTIONSE.1andE.2(continued)CompletionTimealsoallowsforanexceptiontothenormal"timezero"forbeginningtheallowedoutagetime"clock."ForRequiredActionE.l,theCompletionTimeonlybeginsupondiscoverythattheADScannotbeautomaticallyinitiatedduetoinoperable,untrippedchannelswithinsimilarADStripsystemFunctionsasdescribedintheparagraphabove.The1hourCompletionTimefromdiscoveryoflossofinitiationcapabilityisacceptablebecauseitminimizesriskwhileallowingtimeforrestorationortrippingofchannels.BecauseofthediversityofsensorsavailabletoprovideinitiationsignalsandtheredundancyoftheECCSdesign,anallowableoutofservicetimeof8dayshasbeenshowntobeacceptable(Ref.3)topermitrestorationofanyinoperablechanneltoOPERABLEstatusifbothHPCIandRCICareOPERABLE.IfeitherHPCIorRCICisinoperable,thetimeisshortenedto96hours.IfthestatusofHPCIorRCICchangessuchthattheCompletionTimechangesfrom8daysto96hours,the96hoursbeginsupondiscoveryofHPCIorRCICinoperability.,However,thetotaltimeforaninoperable,untrippedchannelcannotexceed8days.'If'thestatusofHPCIorRCICchangessuchthattheCompletionTimechangesfrom96hoursto8days,the"timezero"f'rbeginningthe8day"clock"beginsupondiscoveryoftheinoperable,untrippedchannel.IftheinoperablechannelcannotberestoredtoOPERABLEstatuswithintheallowableoutofservicetime,thechannelmustbeplacedinthetrippedconditionperRequiredActionE.2.Placingtheinoperablechannelintripwouldconservativelycompensatefortheinoperability,restorecapabilitytoaccommodateasinglefailure,andallowoperationtocontinue.Alternately,ifitisnotdesiredtoplacethechannelintrip(e.g..asinthecasewhereplacingtheinoperablechannelintripwouldresultinaninitiation).Condition6mustbeenteredanditsRequiredActiontaken.F.landF.2RequiredActionF.lisintendedtoensurethatappropriateactionsaretakenifmultiple,inoperablechannelswithinsimilarADStripsystemFunctionsresultinautomaticinitiationcapabilitybeinglostf'rtheADS.AutomaticSUSQUEHANNA-UNIT1B3.3-129(continued)Revision0 ECCSInstrumentationB3.3.5.1BASESACTIONSF.1andF.2(continued)initiationcapabilityislostifeither(a)oneFunction4.cchannelandoneFunction5.cchannelareinoperable,(b)acombinationofFunction4.e,4.f,5.e,and5.fchannelsareinoperablesuchthatbothADStripsystemsloseinitiationcapability,or(c)oneormoreFunction4.gchannelsandoneormoreFunction5.gchannelsareinoperable.Inthissituation(lossofautomaticinitiationcapability).the96houror8dayallowance,asapplicable,ofRequiredActionF.2isnotappropriate,andallADSvalvesmustbedeclaredinoperablewithin1hourafterdiscoveryoflossofADSinitiationcapability.TheNotetoRequiredActionF.1statesthatRequiredActionF.1isonlyapplicableforFunctions4.c.4.e,4.f,4.g,5.c,5.e,5.f,and5.g.RequiredActionF.1isnotapplicabletoFunctions4.hand5.h(whichalsorequireentryintothisConditionifachannelintheseFunctionsisinoperable),sincetheyaretheHanualInitiationFunctionsandarenotassumedinanyaccidentortransientanalysis.Thus,atotallossofmanualinitiationcapabilityfor96hoursor8days(asallowedbyRequiredActionF.Z)isallowed.TheCompletionTi'meisintendedtoallowtheoperatortimetoevaluateandrepairanydiscoveredinoperabilities.ThisCompletionTimealsoallowsforanexceptiontothenormal"timezero"forbeginningtheallowedoutagetime"clock."ForRequiredActionF.l,theCompletionTimeonlybeginsupondiscoverythattheADScannotbeautomaticallyinitiatedduetoinoperablechannelswithinsimilarADStripsystemFunctionsasdescribedintheparagraphabove.The1hourCompletionTimefromdiscoveryoflossofinitiationcapabilityisacceptablebecauseitminimizesriskwhileallowingtimeforrestorationortrippingofchannels.BecauseofthediversityofsensorsavailabletoprovideinitiationsignalsandtheredundancyoftheECCSdesign.anallowableoutofservicetimeof8dayshasbeenshowntobeacceptable(Ref.3)topermitrestorationof'nyinoperablechanneltoOPERABLEstatusifbothHPCIandRCICareOPERABLE(RequiredActionF.2).IfeitherHPCIorRCICisinoperable,thetimeshortensto96hours.IfthestatusofHPCIorRCICchangessuchthattheCompletionTimechangesfrom8daysto96hours,the96hoursbeginsupondiscoveryofHPCIorRCICinoperability.However,thetotaltimeforSUSQUEHANNA-UNIT1B3.3-130(continued)Revision0 ECCSInstrumentationB3.3.5.1BASESACTIONSF.landF.2(continued)aninoperablechannelcannotexceed8days.IfthestatusofHPCIorRCICchangessuchthattheCompletionTimechangesfrom96hoursto8days,the"timezero"forbeginningthe8day"clock"beginsupondiscoveryoftheinoperablechannel.IftheinoperablechannelcannotberestoredtoOPERABLEstatuswithintheallowableoutofservicetime,ConditionGmustbeenteredanditsRequiredActiontaken.TheRequiredActionsdonotallowplacingthechannelintripsincethisactionwouldnotnecessarilyresultinasafestateforthechannelinallevents.G.1WithanyRequiredActionandassociatedCompletionTimenotmet.theassociatedsupportedfeature(s)maybeincapableofperformingtheintendedfunction,andthoseassociatedwithinoperableuntrippedchannelsmustbedeclaredinoperableimmediately.SURVEILLANCEREQUIREMENTSAsnotedinth6beginningoftheSRs,theSRsforeachECCSinstrumentationFunctionarefoundintheSRscolumnofTable3.3.5.1-1.TheSurveillancesaremodifiedbyaNotetoindicatethatwhenachannelisplacedinaninoperablestatussolelyforperformanceofrequiredSurveillances,entryintoassociatedConditionsandRequiredActionsmaybedelayedforupto6hoursasfollows:(a)forFunction3.cand3.f;and(b)forFunctionsotherthan3.cand3.fprovidedtheassociatedFunctionorredundantFunctionmaintainsECCSini-tiationcapability.UponcompletionoftheSurveillance,orexpirationofthe6hourallowance,thechannelmustbereturnedtoOPERABLEstatusortheapplicableConditionenteredandRequiredActionstaken.ThisNoteisbasedonthereliabilityanalysis(Ref'.3)assumptionoftheaveragetimerequiredtoperformchannelsurveillance.Thatanalysisdemonstratedthatthe6hourtestingallowancedoesnotsignificantlyreducetheprobabilitythattheECCSwillinitiatewhennecessary.SUSQUEHANNA-UNIT1B3.3-131(continued)Revision0

ECCSInstrumentationB3.3.5.1BASESSURVEILLANCEREQUIREMENTS(continued)SR3.3.5.1.1PerformanceoftheCHANNELCHECKonceevery12hoursensuresthatagrossfailureofinstrumentationhasnotoccurred.ACHANNELCHECKisnormallyacomparisonoftheparameterindicatedononechanneltoasimilarparameteronotherchannels.Itisbasedontheassumptionthatinstrumentchannelsmonitoringthesameparametershouldreadapproximatelythesamevalue.Significantdeviationsbetweentheinstrumentchannelscouldbeanindicationofexcessiveinstrumentdriftinoneofthechannelsorsomethingevenmoreserious.A.CHANNELCHECKguaranteesthatundetectedchannelfailureislimitedto12hours;thus.itiskeytoverifyingtheinstrumentationcontinuestooperateproperlybetweeneachCHANNELCALIBRATION.Agreementcriteriawhicharedeterminedbytheplantstaffbasedonaninvestigationofacombinationofthechannelinstrumentuncertainties,maybeusedtosupportthisparametercomparisonandincludeindicationandreadability.Ifachannelisoutsidethecriteria,itmaybeanindicationthattheinstrumenthasdriftedoutsideitslimit.anddoesnotnecessarilyindicatethe.channelisInoperable.TheFrequencyis'baseduponoperatingexperiencethatdemonstrateschannelfailureisrare.TheCHANNELCHECKsupplementslessformalchecksofchannelsduringnormaloperationaluseofthedisplaysassociatedwiththechannelsrequiredbytheLCO.SR3.3.5.1.2ACHANNELFUNCTIONALTESTisperformedoneachrequiredchanneltoensurethattheentirechannelwillperformtheintendedfunction.TheFrequencyof92daysisbasedonthereliabilityanalysesofReference3.ThisSRismodifiedbyaNotethatprovidesageneralexceptiontothedefinitionofCHANNELFUNCTIONALTEST.Thisexceptionisnecessarybecausethedesignofinstrumentation=doesnotfacilitatefunctionaltestingofallrequiredcontactsoftherelaywhichinputintothecombinationallogic.(Reference5)Performanceofsuchatestcouldresultinaplanttransientorplacetheplantinanundorisksituation.Therefore,forthisSR,theCHANNELFUNCTIONALTESTverifiesacceptableresponsebyverifyingtheSUSQUEHANNA-UNIT1B3.3-132(continued)Revision0 ECCSInstrumentationB3.3.5.1BASESSURVEILLANCEREQUIREMENTSSR3.3.5.1.2(continued)changeofstateoftherelaywhichinputsintothecombinationallogic.TherequiredcontactsnottestedduringtheCHANNELFUNCTIONALTESTaretestedundertheLOGICSYSTEMFUNCTIONALTEST,SR3.3.5.1.5.ThisisacceptablebecauseoperatingexperienceshowsthatthecontactsnottestedduringtheCHANNELFUNCTIONALTESTnormallypasstheLOGICSYSTEMFUNCTIONALTEST,andthetestingmethodologyminimizestheriskofunplannedtransients.SR3.3.5.1.3andSR3.3.5.1.4ACHANNELCALIBRATIONisacompletecheckthatverifiesthechannelrespondstothemeasuredparameterwithinthenecessaryrangeandaccuracy.CHANNELCALIBRATIONleavesthechanneladjustedtoaccountforinstrumentdriftsbetweensuccessivecalibrationsconsistentwiththeplantspecificsetpointmethodology.TheFrequencyofSR3.3.5.1.3isbasedupontheassumptionofa92daycalibrationintervalinthedeterminationofthemagnitudeofequipmentdriftinthesetpointanalysis.TheFrequencyofSR3.3.5.1.4isbasedupontheassumptionofa24monthcalibrationintervalinthedeterminationof'hemagnitudeofequipmentdriftinthesetpointanalysis.SR3.3.5.1.5TheLOGICSYSTEMFUNCTIONALTESTdemonstratesthe'OPERABILITYoftherequired,initiationlogicforaspecificchannel.ThesystemfunctionaltestingperformedinLCO3.5.1,LCO3.5.2,LCO3.8.1,andLCO3.8.2overlapsthisSurveillancetocompletetestingoftheassumedsafetyfunction.TheLOGICSYSTEMFUNCTIONALTESTteststheoperationoftheinitiationlogicuptobutnotincludingthefirstcontactwhichisuniquetoanindividuallysupportedfeaturesuchasthestartingofaDG.SUSQUEHANNA-UNIT1B3.3-133(continued)Revision0 ECCSInstrumentationB3.3.5.1BASESSURVEILLANCEREQUIREMENTSSR3.3.5.1.5(continued),The24monthFrequencyisbasedontheneedtoperformportionsofthisSurveillanceundertheconditionsthatapplyduringaplantoutageandthepotentialf'ranunplannedtransientiftheSurveillancewereperformedwiththereactoratpower.OperatingexperiencehasshownthatthesecomponentsusuallypasstheSurveillancewhenperformedatthe24monthFrequency.REFERENCES1.FSAR,Section6.3.2.FSAR,Chapter15.3.NEDC-30936-P-A,"BWROwners'roupTechnicalSpecificationImprovementAnalysesforECCSActuationInstrumentation.Part2,"December1988.4.FinalPolicyStatementonTechnicalSpecificationsImprovements;July22,1993(58FR32193).5.NRCInspectionandEnforcementManual,Part9900:TechnicalGuidance,StandardTechnicalSpecificationSection1.0Definitions,Issuedate12/08/86.SUSQUEHANNA-UNIT1B3.3-134Revision0 RCICSystemInstrumentationB3.3.5.2B3.3INSTRUMENTATIONB3.3.5.2ReactorCoreIsolationCooling(RCIC)SystemInstrumentationBASESBACKGROUNDThepurposeoftheRCICSysteminstrumentationistoinitiateactionstoensureadequatecorecoolingwhenthereactorvesselisisolatedfromitsprimaryheatsink(themaincondenser)andnormalcoolantmakeupflowfromtheReactorFeedwaterSystemisunavailable.suchthatinitiationofthelowpressureEmergencyCoreCoolingSystems(ECCS)pumpsdoesnotoccur.AmorecompletediscussionofRCICSystemoperationisprovidedintheBasesofLCO3.5.3,"RCICSystem."TheRCICSystemmaybeinitiatedbyeitherautomaticormanualmeans.AutomaticinitiationoccursforconditionsofreactorvesselLowLowwaterlevel.Thevariableismonitoredbyfourinstruments.Theoutputsofthetripunitsareconnectedtorelayswhosecontactsarearrangedinaone-out-of-twotakentwicelogicarrangement.Onceinitiated.theRCIClogicsealsinandcanberesetbytheoperatoronlywheni:hereactorvesselwaterlevelsignalshavecleared.TheRCICtestlineisolationvalveisclosedonaRCICinitiationsignaltoallowfullsystemflowandmaintainprimarycontainmentisolatedintheeventRCICisnotoperating.TheRCICSystemalsomonitorsthewaterlevelsinthecondensatestoragetank(CST)whichisthenormalsuctionsourceofreactorgradewaterforRCIC.UponreceiptofaRCICinitiationsignal,theCSTsuctionvalveisautomaticallysignaledtoopen(itisnormallyintheopenposition)unlessthepumpsuctionfromthesuppressionpoolvalveisopen.IfthewaterlevelintheCSTfallsbelowapreselectedlevel,firstthesuppressionpoolsuctionvalveautomaticallyopens,andthentheCSTsuctionvalveautomaticallycloses.Twolevelswitchesareusedtodetectlowwater,levelintheCST.EitherswitchcancausethesuppressionpoolsuctionvalvetoopenandtheCSTsuctionvalvetoclose.TheRCICSystemprovidesmakeupwatertothereactorunti1thereactorvesselwaterlevelreachesthehighwaterlevel(continued)SUSQUEHANNA-UNIT1B3.3-135Revision0 RCICSystemInstrumentationB3.3.5.2BASESBACKGROUND(continued)(Level8)trip(two-out-of-twologic),atwhichtimetheRCICsteamsupplyandcoolingwatersupplyvalvesclose(theinjectionvalvealsoclosesduetotheclosureofthesteamsupplyvalves).TheRCICSystemrestartsifvessellevelagaindropstothelowlevelinitiationpoint(Level2).APPLICABLESAFETYANALYSES,LCO,andAPPLICABILITYThefunctionoftheRCICSystemtoprovidemakeupcoolanttothereactorisusedtorespondtotransientevents.TheRCICSystemisnotanEngineeredSafetyFeatureSystemandnocreditistakeninthesafetyanalysesforRCICSystemoperation.Basedonitscontributiontothereductionofoverallplantrisk,however,thesystem,andthereforeitsinstrumentation,areincludedintheTechnicalSpecificationsasrequiredbytheNRCPolicyStatement(Ref.2).CertaininstrumentationFunctionsareretainedforotherreasonsandaredescribedbelowintheindividualFunctionsdiscussion.TheOPERABILITYoftheRCICSysteminstrumentationisdependentupontheOPERABILITYoftheindividualinstrumentationchannelFunctionsspecifiedinTable3.3.5.2-1.EachFunctionmusthavearequirednumberofOPERABLEchannelswiththeirsetpointswithinthespecifiedAllowableValues,whereappropriate.AchannelisinoperableifitsactualtripsetpointisnotwithinitsrequiredAllowableValue.Theactualsetpointiscalibratedconsistentwithapplicablesetpointmethodologyassumptions.AllowableValuesarespecifiedforeachRCICSysteminstrumentationFunctionspecifiedintheTable.Nominaltripsetpointsarespecifiedinthesetpointcalculations.ThenominalsetpointsareselectedtoensurethatthesetpointsdonotexceedtheAllowableValuebetweenCHANNELCALIBRATIONS.Operationwithatripsetpointlessconservativethanthenominaltripsetpoint,butwithinitsAllowableValue,isacceptable.EachAllowableValuespecifiedaccountsforinstrumentuncertaintiesappropriatetotheFunction.Theseuncertaintiesaredescribedinthesetpointmethodology.AnexceptiontothemethodologydescribedtoderivetheAllowableValueisthemethodologyusedtodeterminetheAllowableValuefortheCondensateStorageTankLowLevel.ThisAllowableValueisbasedonasystemcalculationand(continued)SUSQUEHANNA-UNIT1B3.3-136Revision0 RCICSystemInstrumentationB3.3.5.2BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY(continued)andengineeringjudgementwhichestablishesaconservativelimitatwhichtheFunctionshouldoccur.TheindividualFunctionsarerequiredtobeOPERABLEinMODE1,andinMODES2and3withreactorsteamdomeressure>150psigsincethisiswhenRCICisrequiredtoeOPERABLE.(RefertoLCO3.5.3forApplicabilityBasesfortheRCICSystem.)ThespecificApplicableSafetyAnalyses.LCO,andApplicabilitydiscussionsarelistedbelowonaFunctionbyFunctionbasis.'.ReactorVesselWaterLevel-LowLowLevel2Lowreactorpressurevessel(RPV)waterlevelindicatesthatnormalfeedwaterflowisinsufficienttomaintainreactorvesselwaterlevelandthatthecapabilitytocoolthefuelmaybethreatened.ShouldRPVwaterleveldecreasetoofar,fueldamagecouldresult.Therefore,theRCICSystemisinitiatedatLevel2toassistinmaintainingwaterlevelabovethetopoftheactivefuel.ReactorVesselMaterLevel-LowLow,Level2signalsareinitiatedfromfourlevelinstrumentsthatsensethedifferencebetweenthepressureduetoaconstantcolumnofwater(referenceleg)andthepressureduetotheactualwaterlevel(variableleg)inthevessel.TheReactorVesselWaterLevel-LowLow,Level2AllowableValueissethighenoughsuchthatforcompletelossoffeedwaterflow,theRCICSystemflowwithhighpressurecoolantinjectionassumedtofailwillbesufficienttoavoidinitiationoflowpressureECCSatLevel1.FourchannelsofReactorVesselWaterLevel-LowLow.Level2FunctionareavailableandarerequiredtobeOPERABLEwhenRCICisrequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludeRCICinitiation.RefertoLCO3.5.3forRCICApplicabilityBases.(continued)SUSQUEHANNA-UNIT1B3.3-137Revision0 RCICSystemInstrumentationB3.3.5.2BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY(continued)2.ReactorVesselWaterLevel-HihLevel8HighRPVwaterlevelindicatesthatsufficientcoolingwaterinventoryexistsinthereactorvesselsuchthatthereisnodangertothefuel.Therefore.theLevel8signalisusedtoclosetheRCICsteamsupplyandcoolingwatersupplyvalvestopreventoverflowintothemainsteamlines(MSLs).(Theinjectionvalvealsoclosesduetotheclosureofthesteamsupplyvalve.)ReactorVesselHaterLevel-High,Level8signalsforRCICareinitiatedfromtwolevelinstruments,whichsensethedifferencebetweenthepressureduetoaconstantcolumnofwater(referenceleg)andthepressureduetotheactualwaterlevel(variableleg)inthevessel.TheReactorVesselWaterLevel-High,Level8AllowableValueishighenoughtoprecludeisolatingtheinjectionvalveoftheRCICduringnormaloperation,yetlowenoughtotriptheRCICSystempriortowateroverflowingintotheNSLs.TwochannelsofReactorVesselWaterLevel-High,Level8FunctionareavailableandarerequiredtobeOPERABLEwhenRCICisrequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludeRCICinitiation.RefertoLCO3.5.3forRCICApplicabilityBases.3.CondensateStoraeTankLevel-LowLowlevelintheCSTindicatestheunavailabilityofanadequatesupplyofmakeupwaterfromthisnormalsource.Normally,thesuctionvalvebetweentheRCICpumpandtheCSTisopenand.uponreceivingaRCICinitiationsignal,waterfor-RCICinjectionwouldbetakenfromtheCST.However,ifthewaterlevelintheCSTfallsbelowapreselectedlevel,firstthesuppressionpoolsuctionvalveautomaticallyopens,andthentheCSTsuctionvalveautomaticallycloses.ThisensuresthatanadequatesupplyofmakeupwaterisavailabletotheRCICpump.Thislogic.alsohasamanualoverridefunctioninitiatedbymanualclosureofthesuppressionpoolsuctionvalve.Topreventlosingsuctiontothepump,thesuctionvalvesareinterlockedsothatthesuppressionpoolsuctionvalvesmustbeopenbeforetheCSTsuctionvalveautomaticallycloses.(continued)SUSQUEHANNA-UNIT1B3.3-138Revision0 RCICSystemInstrumentationB3.3.5.2BASESAPPLICABLESAFETYANALYSES.LCO,andAPPLICABILITY3.CondensateStoraeTankLevel-Low(continued).TwolevelswitchesareusedtodetectlowwaterlevelintheCST.TheCondensateStorageTankLevel-LowFunctionAllowableValueissethighenoughtoensureadequatepumpsuctionheadwhilewaterisbeingtakenfromthe'CST.TwochannelsofCondensateStorageTankLevel-LowFunctionareavailableandarerequiredtobeOPERABLEwhenRCICisrequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludeRCICswaptosuppressionpoolsource.RefertoLCO3.5:3forRCICApplicabilityBases.4.ManualInitiationTheManualInitiationpushbuttonswitchintroducesasignalintotheRCICSysteminitiationlogicthatisredundanttotheautomaticprotectiveinstrumentationandprovidesmanualinitiationcapability.ThereisonepushbuttonfortheRCICSystemresultinginasinglechanneltripFunction.TheManualInitiationFunctionisnotassumedinanyaccidentortransientanalysesintheFSAR.However,theFunctionisretainedforoverallredundancyanddiversityoftheRCICfunctionasrequiredbytheNRCintheplantlicensingbasis.ThereisnoAllowableValueforthisFunctionsincethechannelismechanicallyactuatedbasedsolelyonthepositionofthepushbutton.OnechannelofManualInitiationisrequiredtobeOPERABLEwhenRCICisrequiredtobeOPERABLE.ACTIONSANotehasbeenprovidedtomodifytheACTIONSrelatedtoRCICSystem-instrumentationchannels.Section1.3,CompletionTimes.specifiesthatonceaConditionhasbeenentered,subsequentdivisions,subsystems,components,orvariablesexpressedintheConditiondiscoveredtobeinoperableornotwithinlimitswillnotresultinseparateentryintotheCondition.Section1.3alsospecifiesthatRequiredActionsoftheConditioncontinuetoapplyforeachadditionalfailure,withCompletionTimesbasedoninitialentryintotheCondition.However,theRequiredActionsfor(continued)SUSQUEHANNA-UNIT1B3.3-139Revision0 RCICSystemInstrumentationB3.3.5.2BASESACTIONS(continued)inoperableRCICSysteminstrumentationchannelsprovideappropriatecompensatorymeasuresforseparateinoperablechannels.Assuch,aNotehasbeenprovidedthatallowsseparateConditionentryforeachinoperableRCICSysteminstrumentationchannel.RequiredActionA.1directsentryintotheappropriateConditionreferencedinTable3.3.5.2-1.TheapplicableConditionreferencedintheTableisFunctiondependent.Eachtimeachannelisdiscoveredtobeinoperable,ConditionAisenteredforthatchannelandprovidesfortransfertotheappropriatesubsequentCondition.B.land8.2RequiredActionB.lisintendedtoensurethatappropriateactionsaretakenifmulbple,inoperable,untrippedchannelswithinthesameFunctionresultinacompletelossofautomaticinitiationcapabilityfortheRCICSystem.Inthiscase,automaticinitiationcapabilityislostiftwoFunction1channelsinthesametripsystemareinoperableanduntripped.Inthissituation(lossofautomaticinitiationcapability),the24hourallowanceofRequired'ctionB.2isnotappropriate,andtheRCICSystemmustbedeclaredinoperablewithin1hourafterdiscoveryoflossof'CICinitiationcapability.TheCompletionTimeisintendedtoallowtheoperatortimetoevaluateandrepairanydiscoveredinoperabilities.ThisCompletionTimealsoallowsforanexceptiontothenormal"timezero"forbeginningtheallowedoutagetime"clock."ForRequiredActionB.l,theCompletionTimeonlybeginsupondiscoverythattheRCICSystemcannotbeautomaticallyinitiatedduetotwoinoperable,untrippedReactorVesselWaterLevel-LowLow,Level2channelsinthesametripsystem.The1hourCompletionTimefromdiscoveryoflossofinitiationcapabilityisacceptablebecauseitminimizesriskwhileallowingtimeforrestorationortrippingofchannels.(continued)SUSQUEHANNA-UNIT1B3.3-140Revision0 RCICSystemInstrumentationB3.3.5.2BASESACTIONSB.1andB.2(continued)BecauseoftheredundancyofsensorsavailabletoprovideinitiationsignalsandthefactthattheRCICSystemisnotassumedinanyaccidentortransientanalysis.anallowableoutofservicetimeof24hourshasbeenshowntobeacceptable(Ref'.1)topermitrestorationofanyinoperablechanneltoOPERABLEstatus.IftheinoperablechannelcannotberestoredtoOPERABLEstatuswithintheallowableoutofservicetime,thechannelmustbeplacedinthetrippedconditionperRequiredActionB.2.Placingtheinoperablechannelintripwouldconservativelycompensatefortheinoperability,restorecapabilitytoaccommodateasinglefailure,andallowoperationtocontinue.Alternately,ifitisnotdesiredtoplacethechannelintrip(e.g.,asinthecasewhereplacingtheinoperablechannelintripwouldresultinaninitiation),ConditionEmustbeenteredanditsRequiredActiontaken.C.1Ariskbasedanalysiswasperformedanddeterminedthatanallowableoutofservicetimeof24hours(Ref.1)isacceptabletopermitrestorationofanyinoperablechanneltoOPERABLEstatus(RequiredActionC.1).ARequiredAction(similartoRequiredActionB.1)limitingtheallowableoutofservicetime,ifalossofautomaticRCICinitiationcapabilityexists,isnotrequired.ThisConditionappliestotheReactorVesselWaterLevel-High,Level8FunctionwhoselogicisarrangedsuchthatanyinoperablechannelwillresultinalossofautomaticRCICtripprotectioncapability.Asstatedabove,thislossofautomaticRCICtripprotectioncapabilitywasanalyzedanddeterminedtobeacceptable.ThisConditionalsoappliestotheManualInitiationFunction.SincethisFunctionisnotassumedinanyaccidentortransientanalysis,atotallossofmanualinitiationcapability(RequiredActionC.1)for24hoursisallowed.TheRequiredActiondoesnotallowplacingachannelintripsincethisactionwouldnotnecessarilyresultinasafestateforthechannelinallevents.(continued)SUSQUEHANNA-UNIT1B3.3-141Revision0 RCICSystemInstrumentationB3.3.5.2BASESACTIONS(continued)D.10.2.1and0.2.2RequiredActionD.1isintendedtoensurethatappropriateactionsaretakenifmultiple,inoperable,untrippedchannelswithinthesameFunctionresultinautomaticcomponentinitiationcapabilitybeinglostforthefeature(s).ForRequiredAction0.1,theRCICSystemistheonlyassociatedfeature.Inthiscase,automaticinitiationcapabilityislostiftwoFunction3channelsareinoperableanduntripped.Inthissituation(lossofautomaticsuctionswap),the24hourallowanceofRequiredActions0.2.1and0.2.2isnotappropriate.andtheRCICSystemmustbedeclaredinoperablewithin1hourfromdiscoveryoflossofRCICinitiationcapability.AnoteidentifiesthatrequiredActionD.lisonlyapplicableiftheRCICpumpsuctionisnotalignedtothesuppressionpoolsince,ifaligned,theFunctionisalreadyperformed.ThisallowstheRCICpumpsuctiontoberealignedtothesuppressionpoolwithin1hour,ifdesired.TheCompletionTimeisi'ntendedtoallowtheoperatortimetoevaluateandrepairanydiscoveredinoperabilities.ThisCompletionTimealsoallowsforanexceptiontothenormal"timezero"forbeginningtheallowedoutagetime"clock."ForRequiredAction0.1,theCompletionTimeonlybeginsupondiscoverythattheRCICSystemcannotbeautomaticallyalignedtothesuppressionpoolduetotwoinoperable,untrippedchannelsinthesameFunction.The1hourCompletionTimefromdiscoveryoflossofinitiationcapabilityisacceptablebecauseitminimizesriskwhileallowingtimeforrestorationortrippingofchannels.BecauseoftheredundancyofsensorsavailabletoprovideinitiationsignalsandthefactthattheRCICSystemisnotassumedinanyaccidentortransientanalysis,anallowableoutofservicetimeof24hourshasbeenshowntobeacceptable(Ref.1)topermitrestorationofanyinoperablechanneltoOPERABLEstatus.IftheinoperablechannelcannotberestoredtoOPERABLEstatuswithintheallowableoutofservicetime,thechannelmustbeplacedinthe,trippedconditionperRequiredActionD.2.1,whichperformstheintendedfunctionofthechannel(shiftingthesuctionsourcetothesuppressionpool).Alternatively.RequiredActionD.2.2allowsthemanualalignmentoftheRCICsuction(continued)SUSQUEHANNA-UNIT183.3-142Revision0 RCICSystemInstrumentation~B3.3.5.2BASESACTIONSD.1D.2.1and0.2.2(continued)tothesuppressionpool,whichalsoperformstheintendedfunction.IfitisnotdesiredtoperformRequiredActionsD.2.1andD.2.2,ConditionEmustbeenteredanditsRequiredActiontaken.E.1.WithanyRequiredActionandassociatedCompletionTimenot.met.theRCICSystemmaybeincapableofperformingtheintendedfunction,andtheRCICSystemmustbedeclaredinoperableimmediately.SURVEILLANCEREQUIREMENTSAsnotedinthebeginningoftheSRs,theSRsforeachRCICSysteminstrumentationFunctionarefoundintheSRscolumnofTable3.3.5.2-1.TheSurveillancesaremodifiedbyaNotetoindicatethatwhenachanneli'splacedinaninoperablestatussolelyforperformanceofrequiredSurveillances.entryintoassociatedConditionsandRdquiredActionsmaybe'elayedasfollows:(a)forupto6hoursforFunction2and4;and(b)forupto6hoursforFunctionsotherthanFunction2and4,providedtheassociatedFunctionmaintainstripcapability.UponcompletionoftheSurveillance,orexpirationofthe6hourallowance,thechannelmustbereturnedtoOPERABLEstatusortheapplicableConditionenteredandRequiredActionstaken.ThisNoteisbasedonthereliabilityanalysis(Ref.1)assumptionoftheaveragetimerequiredtoperformchannelsurveillance.Thatanalysisdemonstratedthatthe6hourtestingallowancedoesnotsignificantlyreducetheprobabilitythattheRCICwillinitiatewhennecessary.SR3.3.5.2.1PerformanceoftheCHANNELCHECKonceevery12hoursensuresthatagrossfailureofinstrumentationhasnotoccurred.ACHANNELCHECKisnormallyacomparisonoftheparameterindicatedononechanneltoaparameteronothersimilar(continued)SUSQUEHANNA-UNIT1B3.3-143Revision0 RCICSystemInstrumentationB3.3.5.2BASESSURVEILLANCEREQUIREMENTSSR3.3.5.2.1(continued)channels.Itisbasedontheassumptionthatinstrumentchannelsmonitoringthesameparametershouldreadapproximatelythesamevalue.Significantdeviationsbetweentheinstrumentchannelscouldbeanindicationofexcessiveinstrumentdriftinoneofthechannelsorsomethingevenmoreserious.ACHANNELCHECKwilldetectgrosschannelfailure;thus,itiskeytoverifyingtheinstrumentationcontinuestooperateproperlybetweeneachCHANNELCALIBRATION.Agreementcriteriawhicharedeterminedbytheplantstaffbasedonaninvestigationofacombinationofthechannelinstrumentuncertainties,maybeusedtosupportthisparametercomparisonandincludeindicationandreadability.Ifachannelisoutsidethecriteria,itmaybeanindicationthattheinstrumenthasdriftedoutsideitslimit,anddoesnotnecessarilyindicatethechannelisInoperable.TheFrequencyisbaseduponoperatingexperiencethatdemonstrateschannelfai1ure.israre.TheCHANNELCHECKsupplementslessformalchecksofchannelsduringnormaloperationalus6ofthedisplaysassociatedwiththechannelsrequiredbytheLCO.SR3.3.5.2.2ACHANNELFUNCTIONALTESTisperformedoneachrequiredchanneltoensurethattheentirechannelwillperformtheintendedfunction.TheFrequencyof92daysisbasedonthereliabilityanalysisofReference1.ThisSRismodifiedbyaNotethatprovidesageneralexceptiontothedefinitionofCHANNELFUNCTIONALTEST.Thisexceptionisnecessarybecausethedesignofinstrumentationdoesnotfacilitatefunctionaltestingofallrequiredcontactsoftherelaywhichinputintothecombinationallogic.(Reference3)Performanceofsuchatestcouldresultinaplanttransientorplacetheplantinanundorisksituation.Therefore,forthisSR,theCHANNELFUNCTIONALTESTveritiesacceptableresponsebyverifying(continued)SUSQUEHANNA-UNIT1B3.3-144Revision0 RCICSystemInstrumentationB3.3.5.2BASESSURVEILLANCEREQUIREMENTSSR3.3.5.2.2(continued)thechangeofstateoftherelaywhichinputsintothecombinationallogic.TherequiredcontactsnottestedduringtheCHANNELFUNCTIONALTESTaretestedundertheLOGICSYSTEMFUNCTIONALTEST,SR3.3.5.2.5.ThisisacceptablebecauseoperatingexperienceshowsthatthecontactsnottestedduringtheCHANNELFUNCTIONALTESTnormallypasstheLOGICSYSTEMFUNCTIONALTEST,andthetestingmethodologyminimizestheriskofunplannedtransients.SR3.3.5.2.3andSR3.3.5.2.4ACHANNELCALIBRATIONverifiesthatthechannelrespondstothemeasuredparameterwithinthenecessaryrangeandaccuracy.CHANNELCALIBRATIONleavesthechanneladjustedtoaccountforinstrumentdriftsbetween,successivecalibrationsconsistentwiththeplantspecificsetpointmethodology.TheFrequencyofSR3.3.5.2.3isbasedupontheassumptionofa92daycalibrationintervalinthedeterminationofthemagnitudeofequipmentdriftinthesetpointanalysis.TheFrequencyofSR3.3.5.2.4of24monthsisbaseduponthehistoricaldriftoftheequipmentandtheassumptioninthesetpointanalysis.SR3.3.5.2.5TheLOGICSYSTEMFUNCTIONALTESTdemonstratestheOPERABILITYoftherequiredinitiationlogicforaspecificchannel.ThesystemfunctionaltestingperformedinLCO3.5.3overlapsthisSurveillancetoprovidecompletetestingofthesafetyfunction.(continued)SUSQUEHANNA-UNIT183.3-145Revision0 RCICSystemInstrumentationB3.3.5.2BASESSURVEILLANCEREQUIREMENTSSR3.3.5.2.5(continuedThe24monthFrequencyisbasedontheneedtoperformportionsofthisSurveillanceundertheconditionsthatapplyduringaplantoutageandthepotentialforanunplannedtransientiftheSurveillancewereperformedwiththereactoratpower.OperatingexperiencehasshownthatthesecomponentsusuallypasstheSurveillancewhenperformedatthe24monthFrequency.REFERENCES1.NEDE-770-06-2."AddendumtoBasesforChangestoSurveillanceTestIntervalsandAllowedOut-of-ServiceTimesforSelectedInstrumentationTechnicalSpecifications."February1991.2.FinalPolicyStatementonTechnicalSpecificationsImprovements.July22,1993(58FR32193).3.NRCInspectionandEnforcementManual,Part9900:TechnicalGuidance,StandardTechnicalSpecificationSection1.0Definitions.,Issuedate12/08/86.SUSQUEHANNA-UNIT1B3.3-146Revision0 PrimaryContainmentIsolationInstrumentation83.3.6.1B3.3INSTRUMENTATIONB3.3.6.1PrimaryContainmentIsolationInstrumentationBASESBACKGROUNDTheprimarycontainmentisolationinstrumentationautomaticallyinitiatesclosureofappropriateprimarycontainmentisolationvalves(PCIVs).ThefunctionofthePCIVs,incombinationwithotheraccidentmitigationsystems,istolimitfissionproductreleaseduringandfollowingpostulatedDesignBasisAccidents(DBAs).PrimarycontainmentisolationwithinthetimelimitsspecifiedforthoseisolationvalvesdesignedtocloseautomaticallyensuresthatthereleaseofradioactivematerialtotheenvironmentwillbeconsistentwiththeassumptionsusedintheanalysesforaDBA.Theisolationinstrumentationincludesthesensors.relays.andinstrumentsthatarenecessarytocauseinitiationofprimarycontainmentandreactorcoolantpressureboundary(RCPB)isolation.Whenthesetpointisreached,thesensoractuates,whichthenoutputsanisolationsignaltotheisolationlogic'.Functional.diversityisprovidedbymonitoringawide-rangeofindependentparameters.Theinputparameters=to-:theisolationlogicsare(a)reactorvesselwater.-level-,(b)areaambientandemergencycoolertemperatures,(c),nainsteamline(MSL)flowmeasurement,(d)StandbyLiqui;d;Control(SLC)Systeminitiation,(e)condenser--vacuum;.-.(f)mainsteamlinepressure,(g)highpressurecoolant:injection(HPCI)andreactorcoreisolationcooling(RCIC).steam-.linehpressure,(h)SGTSExhaustradiation,(i)HPCLandRCICsteamlinepressure,(j)HPCIandRCICturbineexhaustdiaphragmpressure,(k)reactorwatercleanup(RWCU)differentialflowandhighflow,(1)reactorsteamdomepressure.and(m)drywellpressure.Redundantsensorinputsignals,fromeachparameterareprovidedforinitiationofisolation.TheonlyexceptionisSLCSysteminitiation.Inaddition,manualisolationofthelogicsisprovided.Primarycontainmentisolationinstrumentationhasinputstothetriplogicoftheisolationfunctionslistedbelow.(continued)SUSQUEHANNA-UNIT1B3.3-147Revision0 PrimaryContainmentIsolationInstrumentationB3.3.6.1BASESBACKGROUND(continued)1.MainSteamLineIsolationMostMSLIsolationFunctionsreceiveinputsfromfourchannels.Theoutputsfromthesechannelsarecombinedinaone-out-of-twotakentwicelogictoinitiateisolationofallmainsteamisolationvalves(MSIVs).Theoutputsfromthesamechannelsarearrangedintotwotwo-out-of-twologictripsystemstoisolateallMSLdrainvalves.TheMSLdrainlinehastwoisolationvalveswithonetwo-out-of-twologicsystemassociatedwitheachvalve.TheexceptionstothisarrangementaretheMainSteamLineFlow-HighFunction.TheMainSteamLineflow-HighFunctionuses16flowchannels,fourf'reachsteamline.Onechannelfromeachsteamlineinputstooneofthefourtripstrings.TwotripstringsmakeupeachtripsystemandbothtripsystemsmusttriptocauseanMSLisolation.Eachtripstringhasfourinputs(oneperMSL),anyoneofwhichwilltripthetripstring.Thetripstringsarearrangedinaone-out-of-twotakentwicelogic.Thisiseffectivelyaone-out-of-eighttakentwicelogicarrangementtoinitiateisolationoftheMSIVs.Similarly,the16flowchannelsareconnectedintotwo-two-out-of-twologictripsystems(effectively,twoone-out-of-fourtwicelogic),witheachtripsystem)sdlatingoneofthetwoMSLdrainvalves.2.PrimarContainmentIsolationMostPrimaryContainmentIsolationFunctionsreceiveinputsfromfourchannels.Theoutputsfromthesechannelsarearrangedintotwotwo-out-of-twologictripsystems.Onetripsysteminitiatesisolationofallinboardprimarycontainmentisolationvalves,whiletheothertripsysteminitiatesisolationofalloutboardprimarycontainmentisolationvalves.Eachlogicclosesoneofthetwovalvesoneachpenetration,sothatoperationofeitherlogicisolatesthepenetration.Theexceptionstothisarrangementareasfollows.HydrogenandOxygenAnalyzerswhichisolateDivisionIAnalyzeronaDivisionIisolationsignal,andDivisionIIAnalyzeronaDivisionIIisolationsignal.Thisistoensuremonitoringcapabilityisnotlost.ChilledWatertorecirculationpumpsandLiquidRadwasteCollectionSystem,isolationvalves(continued)SUSQUEHANNA-UNIT183.3-148Revision0 CPrimaryContainmentIsolationInstrumentationB3.3.6.1BASESBACKGROUND2.PrimarContainmentIsolation(continued)wherebothinboardandoutboardvalveswillisolateoneitherdivisionprovidingtheisolationsignal.Traversingincoreprobeballvalvesandtheinstrumentgastothedrywelltosuppressionchambervacuumbreakersonlyhaveoneisolationvalveandreceivesasignalfromonlyonedivision.3.4.HihPressureCoolantIn'ectionSstemIsolationandReactorCoreIsolationCoolinSstemIsolationHostFunctionsthatisolateHPCIandRCICreceiveinputfromtwochannels,witheachchannelinonetripsystemusingaone-out-of-onelogic.Eachofthetwotripsystemsineachisolationgroupisconnectedtooneofthetwovalvesoneachassociatedpenetration.TheexceptionsaretheHPCIandRCICTurbineExhaustDiaphragmPressure-HighandSteamSupplyLinePressure-LowFunctions.TheseFunctionsreceiveinputsfromfourturbineexhaustdiaphragmpressureandfoursteamsupplypressurechannelsforeachsystem.Theoutputsfromtheturbineexhaustdiaphragmpressureandsteamsupplypressurechannelsareeachconnectedtotwotwo-out-of-twotripsystems.Eachtripsystemisolatesonevalveperassociatedpenetration.5.ReactorWaterCleanuSstemIsolationTheReactorVesselWaterLevel-LowLow,Level2IsolationFunctionreceivesinputfromfourreactorvesselwaterlevelchannels.Theoutputsfromthereactorvesselwaterlevelchannelsareconnectedintotwotwo-out-of-twotripsystems.TheDifferentialFlow-High,Flow-High,andSLCSystemInitiationFunctionsreceiveinputfromtwochannels,witheachchannelinonetripsystemusingaone-out-of-onelogic.ThetemperatureisolationsaredividedintothreeFunctions.TheseFunctionsarePumpArea,PenetrationArea,andHeatExchangerArea.Eachareaismonitoredbytwotemperaturemonitors,oneforeachtripsystem.Theseareconfiguredsothatanyoneinputwilltriptheassociatedtripsystem.EachofthetwotripsystemsisconnectedtooneofthetwovalvesoneachRWCUpenetration.(continued)SUSQUEHANNA-UNIT1B3.3-149Revision0 PrimaryContainmentIsolationInstrumentationB3.3.6.1BASESBACKGROUND(continued)6.ShutdownCoolinSstemIsolationTheReactorVesselWaterLevel-Low,Level3Functionreceivesinputfromfourreactorvesselwaterlevelchannels.Theoutputsfromthereactorvesselwaterlevelchannelsareconnectedtotwotwo-out-of-twotripsystems.TheReactorVesselPressure-HighFunctionreceivesinputfromtwochannels,witheachchannelinonetripsystem.usingaone-out-of-onelogic.Eachofthetwotripsystemsisconnectedtooneofthetwovalvesoneachshutdowncoolingpenetration.APPLICABLESAFETYANALYSES,LCO,andAPPLICABILITYTheisolationsignalsgeneratedbytheprimarycontainmentisolationinstrumentationareimplicitlyassumedinthesafetyanalysesofReferences1and2toinitiateclosureofvalvestolimitoffsitedoses.RefertoLCO3.6.1.3,"PrimaryContainmentIsolationValves(PCIVs),"ApplicableSafetyAnalysesBasesformoredetailofthesafetyanalyses.PrimarycontainmentisolationinstrumentationsatisfiesCriterion3oftheNRCPolicyStatement.(Ref.8)Certaininstrumentat'ioh'FunctionsareretainedforotherreasonsandaredescribedbelowintheindividualFunctionsdiscussion.TheOPERABILITYofthe'primarycontainmentinstrumentationisdependentontheOPERABILITYoftheindividualinstrumentationchannelFunctionsspecifiedinTable3.3.6.1-1.EachFunctionmusthavearequirednumberofOPERABLEchannels,'withtheirsetpointswithinthespecifiedAllowableValues,whereappropriate.AchannelisinoperableifitsactualtripsetpointisnotwithinitsrequiredAllowableValue.Theactualsetpointiscalibratedconsistentwithapplicablesetpointmethodologyassumptions.Eachchannelmustalsorespondwithinitsassumedresponsetime,whereappropriate.AllowableValuesarespecifiedforeachPrimaryContainmentIsolationFunctionspecifiedintheTable.Nominaltripsetpointsarespecifiedinthesetpointcalculations.ThenominalsetpointsareselectedtoensurethatthesetpointsdonotexceedtheAllowableValuebetweenCHANNEL(continued)SUSQUEHANNA-UNIT1B3.3-150Revision0 PrimaryContainmentIsolationInstrumentationB3.3.6.1BASESAPPLICABLESAFETYANALYSESLCO,andAPPLICABILITY(continued)CALIBRATIONS.Operationwithatripsetpointlessconservativethanthenominaltripsetpoint.butwithinitsAllowableValue.is'cceptable.Tripsetpointsarethosepredeterminedvaluesofoutputatwhichanactionshouldtakeplace.Thesetpointsarecomparedtotheactualprocessparameter(e.g.,reactorvesselwaterlevel),andwhenthemeasuredoutputvalueoftheprocessparameterreachesthesetpoint,theassociateddevicechangesstate.Theanalyticlimitsarederivedfromthelimitingvaluesoftheprocessparametersobtainedfromthesafetyanalysis.TheAllowableValuesarederivedfromtheanalyticlimits,correctedforcalibration,process,andsomeoftheinstrumenterrors.Thetripsetpointsarethendeterminedaccountingfortheremaininginstrumenterrors(e.g.,drift).Thetripsetpointsderivedinthismannerprovideadequateprotectionbecauseinstrumentationuncertainties,processeffects,calibrationtolerances,instrumentdrift,andsevereenvironmenterrors(forchannelsthatmustfunctioninharshenvironmentsasdefinedby10CFR50.49)areaccountedfor.Ingeneral,theindividualFunctionsarerequiredtobeOPERABLEinMODES1',2,and3consistentwiththeApplicabilityforLCO3.6.1.1,"PrimaryContainment."FunctionsthathavedifferentApplicabilitiesarediscussedbelowintheindividualFunctionsdiscussion.ThespecificApplicableSafetyAnalyses,LCO.andApplicabilitydiscussionsarelistedbelowonaFunctionbyFunctionbasis.ThepenetrationswhichareisolatedbythebelowlistedfunctionscanbedeterminedbyreferringtothePCIVTablefoundintheBasesofLCO3.6.1.3"PrimaryContainmentIsolationValves".MainSteamLineIsolationl.a.ReactorVesselWaterLevel-LowLowLowLevel1Lowreactorpressurevessel(RPV)waterlevelindicatesthatthecapabilitytocoolthefuelmaybethreatened.ShouldRPVwaterleveldecreasetoofar,fueldamagecouldresult.Therefore,isolationoftheMSIVsandotherinterfaceswiththereactorvesseloccurstopreventoffsitedoselimits(continued)SUSQUEHANNA-UNIT1B3.3-151Revision0 PrimaryContainmentIsolationInstrumentationB3.3.6.1BASESAPPLICABLESAFETYANALYSLCO,andAPPLICABILITYES,1.a.ReactorVesselWaterLevel-LowLowLowLevel1(continued)frombeingexceeded.TheReactorVesselWaterLevel-LowLowLow,Level1FunctionisoneofthemanyFunctionsassumedtobeOPERABLEandcapableofprovidingisolationsignals.TheReactorVesselWaterLevel-LowLowLow,Level1Functionassociatedwithisolationisassumedintheanalysisof'herecirculationlinebreak(Ref.1).TheisolationoftheHSLsonLevel1supportsactionstoensurethatoffsitedoselimitsarenotexceededforaDBA.Reactorvesselwaterlevelsignalsareinitiatedfromfourlevelinstrumentsthatsensethedifferencebetweenthepressureduetoaconstantcolumnofwater(referenceleg)andthepressureduetotheactualwaterlevel(variableleg)inthevessel.FourchannelsofReactorVesselWaterLevel-LowLowLow,Level1FunctionareavailableandarerequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludetheisolationfunction.The.ReactorVesselWaterLevel-LowLowLow,Level1ATTowableValueis-chosento,bethesameastheECCSLevel1AllowabTe:VaTue(LCO3.3.5.1)toensurethattheHSLsisolate;-ona.potentiallossofcoolantaccident(LOCA)toprevent.offsite.dosesfromexceeding.10CFR100limits.1.b.HaivSteam'inePressure-LowLowHSL,pressureindicatesthattheremaybeaproblemwiththe~turbinepressureregulation.whichcouldresultinalowreactorvesselwaterlevelconditionandtheRPVcoolingdownmorethan100'F/hrifthepressurelossisallowedtocontinue.TheHainSteamLinePressure-LowFunctionisdirectlyassumedintheanalysisofthepressureregulatorfailure(Ref.2).Forthisevent,theclosureoftheHSIVsensuresthattheRPVtemperaturechangelimit(100'F/hr)isnotreached.Inaddition,thisFunctionsupportsactionstoensurethatSafetyLimit2.1.1.1isnotexceeded.(ThisFunctionclosestheHSIVspriortopressuredecreasingbelow785psig,whichresultsinascramduetoHSIVclosure,thusreducingreactorpowerto<25KRTP.)TheHSLlowpressuresignalsareinitiatedfromfourinstrumentsthatareconnectedtotheHSLheader.The(continued)SUSQUEHANNA-UNIT1B3.3-152Revision0 PrimaryContainmentIsolationInstrumentationB3.3.6.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY1.b.MainSteamLinePressure-Low(continued)instrumentsarearrangedsuchthat.eventhoughphysicallyseparatedfromeachother,eachinstrumentisabletodetectlowMSLpressure.FourchannelsofMainSteamLinePressure-LowFunctionareavailableandarerequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludetheisolationfunction.TheHainSteamLinePressure-Lowtripwillonlyoccuraftera500milli-secondtimedelaytopreventanyspuriousisolations.TheAllowableValuewasselectedtobehighenoughtopreventexcessiveRPVdepressurization.TheMainSteamLinePressure-LowFunctionisonlyrequiredtobeOPERABLEinMODE1sincethisiswhentheassumedtransientcanoccur(Ref.2).1.c.MainSteamLineFlow-HihHainSteamLineF1ow-Highisprovidedtodetectabreakof.'heHSLandtoinitiateclosureoftheMSIVs.Ifthesteam~wereallowedto'continueflowingoutofthebreak,thereactorwoulddepressurizeandthecorecoulduncover.If*theRPVwaterleveldecreasestoofar,fueldamagecouldoccur.Therefore,theisolationisinitiatedonhighflow;-topreventorminimizecoredamage.TheHainSteamLine-Flow-HighFunctionisdirectlyassumedintheanalysisof-.themainsteamlinebreak(MSLB)(Ref.1).Theisolationaction,alongwiththescramfunctionoftheReactorProtectionSystem(RPS),ensuresthatthefuelpeakcladdingtemperatureremainsbelowthelimitsof10CFR50.46andoffsitedosesdonotexceedthe10CFR100limits.TheHSLflowsignalsareinitiatedfrom16instrumentsthatareconnectedtothefourHSLs.Theinstrumentsarearrangedsuchthat,eventhoughphysicallyseparatedfromeachother,allfourconnectedtooneHSLwouldbeabletodetectthehighflow.FourchannelsofMainSteamLineFlow-HighFunctionforeachunisolatedMSL(twochannelspertripsystem)areavailableandarerequiredtobeOPERABLEsothatnosingleinstrumentfailurewillprecludedetectingabreakinanyindividualMSL.(continued)SUSQUEHANNA-UNIT1B3.3-153Revision0 PrimaryContainmentIsolationInstrumentationB3.3.6.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY(continued)1.d.CondenserVacuum-LowTheAllowableValueischosentoensurethatoffsitedoselimitsarenotexceededduetothebreak.TheCondenserVacuum-LowFunctionisprovidedtopreventoverpressurizationofthemaincondenserintheeventofalossofthemaincondenservacuum.Sincetheintegrityofthecondenserisanassumptioninoffsitedosecalculations.theCondenserVacuum-LowFunctionisassumedtobeOPERABLEandcapableofinitiatingclosureoftheMSIVs.TheclosureoftheMSIVsisinitiatedtopreventtheadditionofsteamthatwouldleadtoadditionalcondenserpressurizationandpossibleruptureofthediaphragminstalledtoprotecttheturbineexhausthood,therebypreventingapotentialradiationleakagepathfollowinganaccident.Condenservacuumpressuresignalsarederivedfromfourpressureinstrumentsthatsensethepressureinthecondenser.Fourchannelsof'ondenserVacuum-LowFunctionareavailableandarerequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludetheisolationfunction.TheAllowableVhTueischosentopreventdamagetothecondenserduetopressurization,therebyensuringitsintegrityforoffsitedoseanalysis.Asnoted(footnote(a)toTable3.3.6.1-1).thechannelsarenotrequiredtobeOPERABLEinNODES2and3whenallmainturbinestopvalves(TSVs)areclosed.sincethepotentialforcondenseroverpressurizationisminimized.SwitchesareprovidedtomanuallybypassthechannelswhenallTSVsareclosed.l.e.ReactorBuildinMainSteamTunnelTemerature-HihReactorBuildingMainSteamTunneltemperatureisprovidedtodetectaleakintheRCPBandprovidesdiversitytothehighflowinstrumentation.Theisolationoccurswhenaverysmallleakhasoccurred.Ifthesmallleakisallowedtocontinuewithoutisolation,offsitedoselimitsmaybereached.However,.creditfortheseinstrumentsisnottakeninanytransientoraccidentanalysisintheFSAR,sinceboundinganalysesareperformedforlargebreaks,suchasMSLBs.(continued)SUSQUEHANNA-UNIT1B3.3-154Revision0 PrimaryContainmentIsolationInstrumentation83.3.6.1BASESAPPLICABLESAFETYANALYSES.LCO,andAPPLICABILITYl.e.ReactorBuildinMainSteamTunnelTemerature-Hih(continued)Areatemperaturesignalsareinitiatedfromthermocoupleslocatedintheareabeingmonitored.FourchannelsofReactorBuildingHainSteamTunnelTemperature-HighFunctionareavailableandarerequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludetheisolationfunction.Thereactorbuildingmainsteamtunneltemperaturetripwillonlyoccurafteraonesecondtimedelay.ThetemperaturemonitoringAllowableValueischosentodetectaleakequivalenttoapproximately25gpmofwater.1.f.ManualInitiationTheManualInitiationpushbuttonchannelsintroducesignalsintotheMSLisolationlogicthatareredundanttotheautomaticprotectiveinstrumentationandprovidemanualisolationcapabi'lity.There.isnospecificFSARsafetyanalysisthattakescreditforthisFunction.Itisretainedf'rtheoverallredundancyanddiversityoftheisolationfunctionasrequiredbytheNRCintheplantlicensingbasis.Therearefourpushbuttonsforthelogic,twomanualinitiationpushbuttonpertripsystem.ThereisnoAllowableValueforthisFunctionsincethechannelsaremechanicallyactuatedbasedsolelyonthepositionofthepushbuttons.TwochannelsofManualInitiationFunctionareavailableandarerequiredtobeOPERABLEinMODESl.2,and3,sincethesearetheMODESinwhichtheHSLisolationautomaticFunctionsarerequiredtobeOPERABLE.PrimarContainmentIsolation2.a.ReactorVesselMaterLevel-LowLevel3LowRPVwaterlevelindicatesthatthecapabilitytocoolthefuelmaybethreatened.Thevalveswhosepenetrations(continued)SUSQUEHANNA-UNIT1B3.3-155Revision0 PrimaryContainmentIsolationInstrumentationB3.3.6.1BASESAPPLICABLESAFETYANALYSESLCO,andAPPLICABILITY2.a.ReactorVesselWaterLevel-LowLevel3(continued)communicatewiththeprimarycontainmentareisolatedtolimitthereleaseoffissionproducts.TheisolationoftheprimarycontainmentonLevel3supportsactionstoensurethatoffsitedoselimitsof10CFR100arenotexceeded.TheReactorVesselWaterLevel-Low,Level3FunctionassociatedwithisolationisimplicitlyassumedintheFSARanalysisastheseleakagepathsareassumedtobeisolatedpostLOCA.ReactorVesselWaterLevel-Low,Level3signalsareinitiatedfromlevelinstrumentsthatsensethedifferencebetweenthepressureduetoaconstantcolumnofwater(referenceleg)andthepressureduetotheactualwaterlevel(variableleg)inthevessel.FourchannelsofReactorVesselWaterLevel-Low,Level3FunctionareavailableandarerequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludetheisolationfunction.TheReactorVesselWaterLevel-Low;Level3.AllowableValuewaschosento.bethesame=as-the:-RPS:Levej.3scramAllowableValue(LCO3.3.1.1),since.isolati'onof-these-valvesisnotcriticaltoorder'lyplant-shutdown.2.b.ReactorVes1ter-evel:Low=Lo:-..ve'ow.RPVwaterlevel.indicates=,that=;the.=.capabi;l,ital=tocoolthefuelmaybethreatened;The-valves-.whose;penetrationscommunicatewiththe-primar'y'containment-.are,iso,latedtolimitthereleaseoffission-'-products.The:-isolationoftheprimarycontainmentonLevel2supportsactions-toensurethatoffsitedoselimitsof10CFR100arenot-exceeded.TheReactorVesselWaterLevel-LowLow,Level2FunctionassociatedwithisolationisimplicitlyassumedintheFSARanalysisastheseleakagepathsareassumedtobeisolatedpostLOCA.ReactorVesselWaterLevel-LowLow,Level2signalsareinitiatedfromlevelinstrumentsthatsensethedifferencebetweenthepressureduetoaconstantcolumnofwater(referenceleg)andthepressureduetotheactualwaterlevel(variableleg)inthevessel.FourchannelsofReactorVesselWaterLevel-LowLow,Level2Functionare(continued)SUSQUEHANNA-UNIT1B3.3-156Revision0 PrimaryContainmentIsolationInstrumentationB3.3.6.1BASESAPPLICABLESAFETYANALYSES.LCO,andAPPLICABILITY2.b.ReactorVesselWaterLevel-LowLowLevel2(continued)availableandarerequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludetheisolationfunction.TheReactorVesselWaterLevel-LowLow,Level2AllowableValuewaschosentobethesameastheECCSLevel2AllowableValue(LCO3.3.5.1),sincethismaybeindicative'faLOCA.2.c.ReactorVesselWaterLevel-LowLowLowLevel1Lowreactorpressurevessel(RPV)waterlevelindicatesthatthecapabilitytocoolthefuelmaybethreatened.ShouldRPVwaterleveldecreasetoofar,fueldamagecouldresult.Thevalveswhosepenetrationscommunicatewiththeprimarycontainmentareisolatedtolimitthereleaseoffissionproducts.TheisolationoftheprimarycontainmentonLevel1supportsactionstoensuretheoffsitedose-limitsof-10CFR100arenotexceeded.TheReactorVesselWaterLevel-LowLowLow,Level1Functionassociatedwithisolation-is"implicitlyassumedintheFSARanalysisastheseleakage;.pathsareassumedtobeisolatedpostLOCA.Reactorvesselwaterlevelsignalsareinitiated-from=four:-.levelinstrumentsthatsensethedifferencebetween-.the<<pressureduetoaconstantcolumnofwater(reference"-leg')andthepressureduetotheactualwaterlevel(variable:-leg)inthevessel.FourchannelsofReactorVesselWaterLevel-LowLowLow,Level1FunctionareavailableandarerequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludetheisolationfunction.TheReactorVesselWaterLevel-LowLowLow,Level1AllowableValueischosentobethesameastheECCSLevel1AllowableValue(LCO3.3.5.1)toensurethattheassociatedpenetrationsisolateonapotentiallossofcoolantaccident(LOCA)topreventoffsitedosesfromexceeding10CFR100limits.(continued)SUSQUEHANNA-UNIT1B3.3-157Revision0

PrimaryContainmentIsolationInstrumentationB3.3.6.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY(continued)2.d.OrellPressure-HihHighdrywellpressurecanindicateabreakintheRCPBinsidetheprimarycontainment.Theisolationofsomeoftheprimarycontainmentisolationvalvesonhighdrywellpressuresupportsactionstoensurethatoffsite,doselimitsof10CFR100arenotexceeded.TheDrywellPressure-HighFunction,associatedwithisolationoftheprimarycontainment,isimplicitlyassumedintheFSARaccidentanalysisastheseleakagepathsareassumedtobeisolatedpostLOCA.Highdrywellpressuresignalsareinitiatedfrompressureinstrumentsthatsensethepressureinthedrywell.FourchannelsofDrywellPressure-HighperFunctionareavailableandarerequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludetheisolationfunction.TheAllowableValuewasselectedtobethesameastheECCSOrywellPressure-HighAllowableValue(LCO3.3.5.1),sincethismaybeindicativeofaLOCAinsideprimarycontainment.2.e.SGTSExhaustRadiation-HihHighSGTSExhaustradiationindicatespossiblegrossfailureofthefuelcladding.Therefore,whenSGTSExhaustRadiationHighisdetected,anisolationisinitiatedtolimitthereleaseoffissionproducts.However,thisFunctionisnotassumedinanyaccidentortransientanalysisintheFSARbecauseotherleakagepaths(e.g.,HSIVs)aremorelimiting.TheSGTSExhaustradiationsignalsareinitiatedfromradiationdetectorsthatarelocatedintheSGTSExhaust.TwochannelsofSGTSExhaustRadiation-HighFunctionareavailableandarerequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludetheisolationfunction.TheAllowableValueislowenoughtopromptlydetectgrossfailuresinthefuelcladding.(continued)SUSQUEHANNA-UNIT1B3.3-158Revision0 PrimaryContainmentIsolationInstrumentation83.3.6.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY(continued)2.f.,ManualInitiationTheManualInitiationpushbuttonchannelsintroducesignalsintotheprimarycontainmentisolationlogicthatareredundanttotheautomaticprotectiveinstrumentationandprovidemanualisolationcapability.ThereisnospecificFSARsafetyanalysisthattakescreditforthisFunction.ItisretainedforoverallredundancyanddiversityoftheisolationfunctionasrequiredbytheNRCintheplantlicensingbasis.Therearetwopushbuttonsforthelogic,onemanualinitiationpushbuttonpertripsystem.ThereisnoAllowableValueforthisFunctionsincethechannelsaremechanicallyactuatedbasedsolelyonthepositionofthepushbuttons.TwochannelsoftheManualInitiationFunctionareavailableandarerequiredtobeOPERABLEinMODES1,2,and3,sincethesearetheMODESinwhichthePrimaryContainmentIsolationautomaticFunctionsarerequiredtobeOPERABLE.HihPressureCoolantIn'ectionandReactorCoreIsolationCoolinSstemsI'solation3.a.4.a.HPCIandRCICSteamLinehPressure-HihSteamLineb,PressureHighFunctionsareprovidedtodetectabreakoftheRCICorHPCIsteamlinesandinitiateclosureofthesteamlineisolationvalvesoftheappropriatesystem.Ifthesteamisallowedtocontinueflowingoutofthebreak,thereactorwilldepressurizeandthecorecanuncover.Therefore,theisolationsareinitiatedonhighflowtopreventorminimizecoredamage.Theisolationaction.alongwiththescramfunctionoftheRPS,ensuresthatthefuelpeakcladdingtemperatureremainsbelowthelimitsof'0CFR50.46.SpecificcreditfortheseFunctionsisnotassumedinanyFSARaccidentanalysessincetheboundinganalysisisperformedforlargebreakssuchasrecirculationandMSLbreaks.However,theseinstrumentsreventtheRCICorHPCIsteamlinebreaksfrombecomingounding.TheHPCIandRCICSteamLineb,Pressure-Highsignalsareinitiatedfrominstruments(twoforHPCIandtwoforRCIC)(continued)SUSQUEHANNA-UNIT1B3.3-159Revision0 PrimaryContainmentIsolationInstrumentationB3.3.6.1BASESAPPLICABLESAFETYANAIYSES.LCO,andAPPLICABILITY3.a.4.a.HPCIandRCICSteamLineb,Pressure-Hih(continued)thatareconnectedtothesystemsteamlines.TwochannelsofbothHPCIandRCICSteamLine6pressure-HighFunctionsareavailableandarerequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludetheisolationfunction.Thesteamline6Pressure-Highwillonlyoccuraftera3secondtimedelaytopreventanyspuriousisolations.TheAllowableValuesarechosentobelowenoughtoensurethatthetripoccurstopreventfueldamageandmaintainstheMSLBeventastheboundingevent.andhighenoughtobeabovethemaximumtransientsteamflowduringsystemstartup.3.b.4.b.HPCIandRCICSteamSu1LinePressure-LowLowMSLpressureindicatesthatthepressureofthesteamintheHPCIorRCICturbinemay.betoolowtocontinueoperationoftheassociatedsystem'sturbine.TheseisolationsarefdrequipmentprotectionandarenotassumedinanytransientoraccidentanalysisintheFSAR.However,theyalsoprovideadiversesignaltoindicateapossiblesystembreak.TheseinstrumentsareincludedinTechnicalSpecifications(TS)becauseofthepotentialforriskduetopossiblefailureoftheinstrumentspreventingHPCIandRCICinitiations(Ref.3).TheHPCIandRCICSteamSupplyLinePressure-Lowsignalsareinitiatedfrominstruments(fourforHPCIandfourf'rRCIC)thatareconnectedtothesystemsteamline.FourchannelsofbothHPCIandRCICSteamSupplyLinePressure-LowFunctionsareavailableandarerequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludetheisolationfunction.TheAllowableValuesareselectedtobehighenoughtopreventdamagetothesystem'sturbine.(continued)SUSQUEHANNA-UNIT1B3.3-160Revision0 PrimaryContainmentIsolationInstrumentationB3.3.6.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY(continued)3.c.4.c.HPCIandRCICTurbineExhaustDiahram~P-HihHighturbineexhaustdiaphragmpressureindicatesthatareleaseofsteamintotheassociatedcompartmentispossible.Thatis,oneoftwoexhaustdiaphragmshasruptured.TheseisolationsaretopreventsteamfromenteringtheassociatedcompartmentandarenotassumedinanytransientoraccidentanalysisintheFSAR.TheseinstrumentsareincludedintheTSbecauseofthepotentialforriskduetopossiblef'ailureoftheinstrumentspreventingHPCIandRCICinitiations(Ref.3).TheHPCIandRCICTurbineExhaustDiaphragmPressure-Highsignalsareinitiatedfrominstruments(fourforHPCIandfourforRCIC)thatareconnectedtotheareabetweentherupturediaphragmsoneachsystem'sturbineexhaustline.FourchannelsofbothHPCIandRCICTurbineExhaustDiaphragmPressure-HighFunctionsareavailableandarerequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludethe'solationfunction.TheAllowableValuesislowenoughtoidentifyahighturbineexhaustpressureconditionresultingfromadiaphragmrupture,oraleakinthediaphragmadjacenttotheexhaustlineandhighenoughtopreventinadvertentsystemisolation.3.d.4.d.DrellPressure-HihHighdrywellpressurecanindicateabreakintheRCPB.TheHPCIandRCICisolationoftheturbineexhaustvacuumbreakerlineisprovidedtopreventcommunicationwiththewetwellwhenhighdrywellpressureexists.Apotentialleakagepathexistsviatheturbineexhaust.Theisolationisdelayeduntilthesystembecomesunavailableforinjection(i.e.,lowsteamsupplylinepressure).TheisolationoftheHPCIandRCICturbineexhaustvacuumbreakerlinebyDrywellPressure-HighisindirectlyassumedintheFSARaccidentanalysisbecausetheturbineexhaustvacuumbreakerlineleakagepathisnotassumedtocontributetooffsitedosesandisprovidedf'rlongtermcontainmentisolation.(continued)SUSQUEHANNA-UNIT1B3.3-161Revision0 PrimaryContainmentIsolationInstrumentationB3.3.6.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY3.d.4.d.DrellPressure-Hih(continued)Highdrywellpressuresignalsareinitiatedfrompressureinstrumentsthatsensethepressureinthedrywell.FourchannelsofbothHPCIandRCICDrywellPressure-HighFunctionsareavailableandarerequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludetheisolationfunction.TheAllowableValuewasselectedtobethesameastheECCSDrywellPressure-HighAllowableValue(LCO3.3.5.1),sincethisisindicativeofaLOCAinsideprimarycontainment.3.e.3.f.3..4.e.4.f.4..HPCIandRCICAreaandEmerencCoolerTemerature-HihHPCIandRCICAreaandEmergencyCoolertemperaturesareprovidedtodetectaleakfromtheassociatedsystemsteampiping.Theisolationoccurswhenasmallleakhasoccurredandisdiversetothehighflowinstrumentation.Ifthesmallleakisallowedtocontinuewithoutisolation,offsitedoselimitsmaybe"reached.,TheseFunctionsarenotassumedinanyFSARtransientoraccidentanalysis,sinceboundinganalysesareperformedf'rlargebreakssuchasrecirculationorNSLbreaks.AreaandEmergencyCoolerTemperature-Highsignalsareinitiatedfromthermocouplesthatareappropriatelylocatedtoprotectthesystemthatisbeingmonitored.Twoinstrumentsmonitoreacharea.TwochannelsforeachHPCIandRCICAreaandEmergencyCoolerTemperature-HighFunctionareavailableandarerequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludetheisolationfunction.TheHPCIandRCICPipeRoutingareatemperaturetripswillonlyoccuraftera15minutetimedelaytopreventanyspurioustemperatureisolationsduetoshorttemperatureincreasesandallowsoperatorssufficienttimetodeterminewhichsystemisleaking.Theotherambienttemperaturetripswillonlyoccurafteraonesecondtimedelaytopreventanyspurioustemperatureisolations.(continued)SUSQUEHANNA-UNIT1B3.3-162Revision0 PrimaryContainmentIsolationInstrumentationB3.3.6.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY3.e.3.f..3..4.e.4.f.4..HPCIandRCICAreaandEmerencCoolerTemerature-Hih(continued)TheAllowableValuesaresetlowenoughtodetectaleakequivalentto5gpm,andhighenoughtoavoidtripsatexpectedoperatingtemperature.3.h.4.h.ManualInitiationTheManualInitiationpushbuttonchannelsintroducesignalsintotheHPCIandRCICsystems'solationlogicsthatareredundanttotheautomaticprotectiveinstrumentationandprovidemanualisolationcapability.ThereisnospecificFSARsafetyanalysisthattakescreditfortheseFunctions.TheyareretainedforoverallredundancyanddiversityoftheisolationfunctionasrequiredbytheNRCintheplantlicensingbasis.ThereisonemanualinitiationpushbuttonforeachoftheHPCIandRCICsystems.Oneisolationpushbuttonpersystemwillintroduceanisolationtooneofthetwotripsystems.ThereisnoAllowableValuefortheseFunctions,sincethechannelsaremechanicallyactuatedbasedsolelyonthepositionofth5pushbuttons.TwochannelsofbothHPCIandRCICManualInitiationFunctionsareavailableandarerequiredtobeOPERABLEinMODES1,2,and3sincethesearetheMODESinwhichtheHPCIandRCICsystems'solationautomaticFunctionsarerequiredtobeOPERABLE.ReactorWaterCleanuSstemIsolation5.a.RWCUDifferentialFlow-HihThehighdifferentialflowsignalisprovidedtodetectabreakintheRWCUSystem.ThiswilldetectleaksintheRWCUSystemwhenareatemperaturewouldnotprovidedetection(i.e.,acoldlegbreak).Shouldthereactorcoolantcontinuetoflowoutofthebreak,offsitedoselimitsmaybeexceeded.Therefore,isolationoftheRWCUSystemisinitiatedwhenhighdifferentialflowissensedtopreventexceedingoffsitedoses.A45secondtimedelayisprovidedtopreventspurioustripsduringmostRWCU(continued)SUSQUEHANNA-UNIT1B3.3-163Revision0 PrimaryContainmentIsolationInstrumentationB3.3.6.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY5.a.RWCUDifferentialFlow-Hih(continued)operationaltransients.ThisFunctionisnotassumedinanyFSARtransientoraccidentanalysis,sinceboundinganalysesareperformedforlargebreakssuchasHSLBs.Thehighdifferentialflowsignalsareinitiatedfrominstrumentsthatareconnectedtotheinlet(fromtherecirculationsuction)andoutlets(tocondenserandfeedwater)oftheRWCUSystem.TwochannelsofDifferentialFlow-HighFunctionareavailableandarerequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludetheisolationfunction.TheDifferentialFlow-HighAllowableValueensuresthatabreakoftheRWCUpipingisdetected.5.b5.c5.dRWCUAreaTemeratures-HihRWCUareatemperaturesareprovidedtodetectaleakfromtheRWCUSystem.Theisolationoccursevenwhensmallleakshaveoccurredandisdiverse.tothehighdifferentialflowinstrumentationforthehotportionsoftheRWCUSystem.Ifthesmallleakcontinueswithoutisolation,offsitedoselimitsmaybereached.CreditfortheseinstrumentsisnottakeninanytransientoraccidentanalysisintheFSAR,sinceboundinganalysesareperformedforlargebreakssuchasrecirculationorHSLbreaks.Areatemperaturesignalsareinitiatedfromtemperatureelementsthatarelocatedintheareathatisbeingmonitored.SixthermocouplesprovideinputtotheAreaTemperature-HighFunction(twoperarea).SixchannelsarerequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludetheisolationfunction.Theareatemperaturetripwillonlyoccurafteraonesecondtimetopreventanyspurioustemperatureisolations.TheAreaTemperature-HighAllowableValuesaresetlowenoughtodetectaleakequivalentto25gpm.(continued)SUSQUEHANNA-UNIT1B3.3-164Revision.0 PrimaryContainmentIsolationInstrumentationB3.3.6.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY(continued)5.e.-SLCSstemInitiationTheisolationoftheRWCUSystemisrequiredwhentheSLCSystemhasbeeninitiatedtopreventdilutionandremovaloftheboronsolutionbytheRWCUSystem(Ref.4).SLCSysteminitiationsignalsareinitiatedfromthetwoSLCpumpstartsignals.ThereisnoAllowableValueassociatedwiththisFunctionsincethechannelsaremechanicallyactuatedbasedsolelyonthepositionoftheSLCSysteminitiationswitch.Twochannels(onefromeachpump)oftheSLCSystemInitiationFunctionareavailableandarerequiredtobeOPERABLEonlyinNODES1and2,sincethesearetheonlyNODESwherethereactorcanbecritical,withtheexceptionofSpecialOperationsLCO3.10.8,andtheseNODESareconsistentwiththeApplicabilityfortheSLCSystem(LCO3.1.7).Asnoted(footnote(b)toTable3.3.6.1-1),thisFunctionisonlyrequiredtoclosetheoutboardRWCUisolationvalvetripsystems.S.f.ReactorVesselWaterLevel-LowLowLevel2LowRPVwaterlevelindicatesthatthecapabilitytocoolthefuelmaybethreatened.ShouldRPVwaterleveldecreasetoofar,fueldamagecouldresult.Therefore,isolationofsomeinterfaceswiththereactorvesseloccurstoisolatethepotentialsourcesofabreak.TheisolationoftheRWCUSystemonLevel2supportsactionstoensurethatthefuelpeakcladdingtemperatureremainsbelowthelimitsof10CFR50.46.TheReactorVesselWaterLevel-LowLow,Level2FunctionassociatedwithRWCUisolationisnotdirectlyassumedintheFSARsafetyanalysesbecausetheRWCUSystemlinebreakisboundedbybreaksoflargersystems(recirculationandMSLbreaksaremorelimiting).ReactorVesselWaterLevel-LowLow,Level2signalsareinitiatedfromfourlevelinstrumentsthatsensethedifferencebetweenthepressureduetoaconstantcolumnofwater(referenceleg)andthepressureduetotheactualwaterlevel(variableleg)inthevessel.Fourchannelsof(continued)SUSQUEHANNA-UNIT1B3.3-165Revision0 PrimaryContainmentIsolationInstrumentationB3.3.6.1BASESAPPLICABLESAFETYANALYSES.LCO,andAPPLICABILITYS.f.ReactorVesselWaterLevel-LowLowLevel2(continued)ReactorVesselWaterLevel-LowLow,Level2FunctionareavailableandarerequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludetheisolationfunction.TheReactorVesselWaterLevel-LowLow',Level2AllowableValuewaschosentobethesameastheECCSReactorVesselWaterLevel-LowLow,Level2AllowableValue(LCO3.3.5.1).sincethecapabilitytocoolthefuelmaybethreatened.5..RWCUFlow-HihRWCUFlow-HighFunctionisprovidedtodetectabreakoftheRWCUSystem.Shouldthereactorcoolantcontinuetoflowoutofthebreak,offsitedoselimitsmaybeexceeded.Therefore,isolationisinitiatedonhighflowtopreventorminimizecoredamage.Theisolationaction,alongwiththescramfunctionoftheRPS,ensuresthatthefuelpeakcladdingtemperatureremains.belowthelimitsof10CFR50.46.SpecificcreditforthisFunctionisnotassumedinanyFSARaccidentanalysessincetheboundinganalysisisperformedforlargebreakssuchasrecirculationandMSLbreaks.,TheRWCUFlow-Highsignalsareinitiatedfromtwoinstruments.TwochannelsofRWCUFlow-HighFunctionsareavailableandarerequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludetheisolationfunction.TheRWCUflowtripwillonlyoccurafterasecondtimedelaytopreventspurioustrips.TheAllowableValueischosentobelowenoughtoensurethatthetripoccurstopreventfueldamageandmaintainstheMSLBeventastheboundingevent.5.h.ManualInitiationTheManualInitiationpushbuttonchannelsintroducesignalsintotheRWCUSystemisolationlogicthatareredundantto(continued)SUSQUEHANNA-UNIT1B3.3-166Revision0 PrimaryContainmentIsolationInstrumentationB3.3.6.1BASESAPPLICABLESAFETYANALYSES.LCO.andAPPLICABILITY5.h.ManualInitiation(continued)theautomaticprotectiveinstrumentationandprovidemanualisolationcapability.ThereisnospecificFSARsafetyanalysisthattakescreditforthisFunction.ItisretainedforoverallredundancyanddiversityoftheisolationfunctionasrequiredbytheNRCintheplantlicensingbasis.Therearetwopushbuttonsforthelogic,onemanualinitiationpushbuttonpertripsystem.ThereisnoAllowableValueforthisFunction,sincethechannelsaremechanicallyactuatedbasedsolelyonthepositionofthepush,buttons.TwochannelsoftheManualInitiationFunctionareavailableandarerequiredtobeOPERABLEinMODES1,2,and3sincethesearetheMODESinwhichtheRWCUSystemIsolationautomaticFunctionsarerequiredtobeOPERABLE.ShutdownCoolinSstemIsolation6.a.ReactorSteamDomePressure-HihTheReactorSteamDomePressure-HighFunctionisprovidedtoisolatetheshutdowncoolingportionoftheResidualHeatRemoval(RHR)System.ThisinterlockisprovidedonlyforequipmentprotectiontopreventanintersystemLOCAscenario,andcreditfortheinterlockisnotassumedintheaccidentortransientanalysisintheFSAR.TheReactorSteamDomePressure-Highsignalsareinitiatedfromtwoinstruments.TwochannelsofReactorSteamDomePressure-HighFunctionareavailableandarerequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludetheisolationfunction.TheFunctionisonlyrequiredtobeOPERABLEinMODES1~2,and.3,sincethesearetheonlyMODESinwhichthereactorcanbepressurizedwiththeexceptionofSpecialOperationsLCO3.10.1;thus,equipmentprotectionisneeded.TheAllowableValuewaschosentobelowenoughtoprotectthesystemequipmentfromoverpressurization.(continued)SUSQUEHANNA-UNIT183.3-167Revision0 PrimaryContainmentIsolationInstrumentation83.3.6.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY(continued)6.b.ReactorVesselWaterLevel-LowLevel3LowRPVwaterlevel,indicatesthatthecapabilitytocoolthefuelmaybethreatened.ShouldRPVwaterleveldecreasetoofar,fueldamagecouldresult.Therefore.isolationofsomereactorvesselinterfacesoccurstobeginisolatingthepotentialsourcesofabreak.TheReactorVesselWaterLevel-Low,Level3FunctionassociatedwithRHRShutdownCoolingSystemisolationisnotdirectlyassumedinsafetyanalysesbecauseabreakoftheRHRShutdownCoolingSystemisboundedbybreaksoftherecirculationandMSL.TheRHRShutdownCoolingSystemisolationonLevel3supportsactionstoensurethattheRPVwaterleveldoesnotdropbelowthetopoftheactivefuelduringavesseldraindowneventcausedbyaleak(e.g.,pipebreakorinadvertentvalveopening)intheRHRShutdownCoolingSystem.ReactorVesselWaterLevel-Low,Level3signalsareinitiatedfromfourlevelinstrumentsthatsensethedifferencebetweenthepressureduetoaconstantcolumnofwater(referenceleg)andthepressureduetothe.actua1waterlevel(variableleg)inthevessel.Four-channels.(twochannelspertripsystem)oftheReactor-Vesse'1WaterLevel-Low,Level3Functionareavailableand-are-required-.tobeOPERABLEtoensurethatnosingleinstrumentfai.l,ure=canprecludetheisolationfunction.Asnoted.-(footnote~(c),toTable3'.6.1-1).onlytwochannelsofthe-Reactor."-VesselWaterLevel-Low,Level3Functionarerequired.to.be=OPERABLEinMODES4and5(andmustinputintothe-same-trip-system).providedtheRHRShutdownCoolingSystem.integrityismaintained.Systemintegrityismaintainedprovidedtheipingisintactandnomaintenanceisbeingperformedthatasthepotentialfordrainingthereactorvesselthroughthesystem.TheReactorVesselWaterLevel-Low,Level3AllowableValuewaschosentobethesameastheRPSReactorVesselWaterLevel-Low.Level3AllowableValue(LCO3.3.1.1),sincethecapabilitytocoolthefuelmaybethreatened.TheReactorVesselWaterLevel-Low,Level3FunctionisonlyrequiredtobeOPERABLEinMODES3,4,and5topreventthispotentialflowpathfromloweringthereactorvessel(continued)SUSQUEHANNA-UNIT1B3.3-168Revision0 PrimaryContainmentIsolationInstrumentation83.3.6.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY6.b.,ReactorVesselWaterLevel-LowLevel3(continued)leveltothetopofthefuel.InMODES1and2,anotherisolation(i.e..ReactorSteamDomePressure-High)andadministrativecontrolsensurethatthisflowpathremainsisolatedtopreventunexpectedlossofinventoryviathisflowpath.6.cManualInitiationTheManualInitiationpushbuttonchannelsintroducesignalstoRHRShutdownCoolingSystemisolationlogicthatisredundanttotheautomaticprotectiveinstrumentationandprovidemanualisolationcapability.ThereisnospecificFSARsafetyanalysisthattakescreditforthisFunction.Itisretainedforoverallredundancyanddiversityof'heisolationfunctionasrequiredbytheNRCintheplantlicensingbasis.Therearetwopushbuttonsforthelogic.onemanualinitiationpushbuttonpertripsystem.ThereisnoAllowableValueforthisFunctionsincethechannelsaremechanicallyactuatedbasedsolelyonthepositionofthepushbuttons.TwochannelsoftheManualInitiationFunctionareavailableandarerequiredtobeOPERABLEinMODES3,4,and5,sincethesearetheMODESinwhichtheRHRShutdownCoolingSystemIsolationautomaticFunctionarerequiredtobeOPERABLE.ACTIONSANotehasbeenprovidedtomodifytheACTIONSrelatedtoprimarycontainmentisolationinstrumentationchannels.Section1.3.CompletionTimes,specifiesthatonceaConditionhasbeenentered,subsequentdivisions,subsystems,components,orvariablesexpressedintheCondition,discoveredtobeinoperableornotwithinlimits,willnotresultinseparateentryintotheCondition..Section1.3alsospecifiesthatRequiredActionsoftheConditioncontinuetoapplyforeachadditionalfailure,withCompletionTimesbasedoninitialentryintotheCondition.However,theRequiredActionsforinoperableprimarycontainmentisolationinstrumentationchannels(continued)SUSQUEHANNA-UNIT1B3.3-169Revision0 PrimaryContainmentIsolationInstrumentationB3.3.6.1BASESACTIONS(continued)provideappropriatecompensatorymeasuresforseparateinoperablechannels.Assuch,aNotehasbeenprovidedthatallowsseparateConditionentryforeachinoperableprimarycontainmentisolationinstrumentationchannel.A.1Becauseofthediversityofsensorsavailabletoprovideisolationsignalsandtheredundancyoftheisolationdesign,anallowableoutofservicetimeof12hoursforFunctions2.a,2.d,and6.band24hoursf'rFunctionsotherthanFunctions2:a,2.d,and6.bhasbeenshowntobeacceptable(Refs.5and6)topermitrestorationofanyinoperablechanneltoOPERABLEstatus.ThisoutofservicetimeisonlyacceptableprovidedtheassociatedFunctionisstillmaintainingisolationcapability(refertoRequiredActionB.1Bases).IftheinoperablechannelcannotberestoredtoOPERABLEstatuswithintheallowableoutofservicetime,thechannelmustbeplacedinthetrippedconditionperRequiredActionA.l.Placingtheinoperablechannelintripwouldconservativelycompensatefortheinoperability.restorecapabilitytoaccommodateasinglefailure.andallow-operation.tocontinuewithnofurtherrestrictions.Alternately,ifitisnotdesiredtoplacethechannelintrip(e.g.,asinthecasewhereplacingtheinoperablechannelintripwouldresultinanisolation),ConditionCmustbeenteredanditsRequiredActiontaken.B.landB.2RequiredActionB.1isintendedtoensurethatappropriateactionsaretakenifmultiple,inoperable,untrippedchannelswithinthesameFunctionresultinredundantautomaticisolationcapabilitybeinglostfortheassociatedpenetrationflowpath(s).TheHSLIsolationFunctionsareconsideredtobemaintainingisolationcapabilitywhensufficientchannelsareOPERABLEorintrip,suchthatbothtripsystemswillgenerateatripsignalfromthegivenFunctiononavalidsignal.TheotherisolationfunctionsareconsideredtobemaintainingisolationcapabilitywhensufficientchannelsareOPERABLEorintrip,suchthatonetripsystemwillgenerateatripsignalfromthegivenFunctiononavalidsignal.ThisensuresthatoneofthetwoPCIVsintheassociatedpenetrationflowpathcanreceiveanisolationsignalfromthegivenFunction.For(continued)SUSQUEHANNA-UNIT1B3.3-170Revision0 PrimaryContainmentIsolationInstrumentationB3.3.6.1BASESACTIONSB.1andB.2(continued)Functionsl.a,1.b,1.d,andl.e,thiswouldrequirebothtripsystemstohaveonechannelOPERABLEorintrip.ForFunction1.c,thiswouldrequirebothtripsystemstohaveonechannel,associatedwitheachMSL,OPERABLEorintrip.Therefore,thiswouldrequirebothtripsystemstohaveonechannelperlocationOPERABLEorintrip.ForFunctions2.a,2.b,2.c,2.d,3.b,3.c.3.d,4.b,4.c,4.d.5.f,and6.b,thiswouldrequireonetripsystemtohavetwochannels,eachOPERABLEorintrip.ForFunctions2.e,3.a,3.e.3.f,3.g,4:a,4.e,4.f.4.g,5.a,5.b,5.c,5.d,5.e,5.g.and6.a.thiswouldrequireonetripsystemtohaveonechannelOPERABLEorintrip.TheConditiondoesnotincludetheManualInitiationFunctions(Functionsl.f,2.f,3.h,4.h,5.h,and6.c),sincetheyarenotassumedinanyaccidentortransientanalysis.Thus.atotallossofmanualinitiationcapabilityfor24hours(asallowedbyRequiredActionA.1)isallowed.TheCompletionTimeisi'ntendedtoallowtheoperatortimetoevaluateandrepairanydiscoveredinoperabilities.The'hourCompletion.Timeisacceptablebecauseitminimizesriskwhileallowingtimeforrestorationortrippingof'hannels.C.1RequiredActionC.1directsentryintotheappropriateConditionreferencedinTable3.3.6.1-1.TheapplicableConditionspecifiedinTable3.3.6.1-1isFunctionandMODEorotherspecifiedconditiondependentandmaychangeastheRequiredActionofapreviousConditioniscompleted.EachtimeaninoperablechannelhasnotmetanyRequiredActionofConditionAorBandtheassociatedCompletionTimehasexpired,ConditionCwillbeenteredforthatchanneland(continued)SUSQUEHANNA-UNIT183.3-171Revision0

PrimaryContainmentIsolationInstrumentationB3.3.6.1BASESACTIONSC.1(continued)providesfortransfertotheappropriatesubsequentCondition.0.10.2.1and0.2.2IfthechannelisnotrestoredtoOPERABLEstatusorplacedintripwithintheallowedCompletionTime,theplantmustbeplacedinaMODEorotherspecifiedconditioninwhichtheLCOdoesnotapply.ThisisdonebyplacingtheplantinatleastMODE3within12hoursandinMODE4within36hours(RequiredActionsD.2.1andD.2.2).Alternately,theassociatedMSLsmaybeisolated(RequiredActionD.1),and,ifallowed(i.e.,plantsafetyanalysisallowsoperationwithanMSLisolated),operationwiththatMSLisolatedmaycontinue.IsolatingtheaffectedHSLaccomplishesthesafety-functionoftheinoperablechannel.TheCompletionTimesarereasonable,basedonoperatingexperience,toreachtherequiredplantconditionsfromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.E.lIfthechannelisnotrestored:-to:-OPERABLEstatusorplacedintripwithintheallowed:CompletionTime,theplantmustbeplacedinaMODEorother:,speci.fiedconditioninwhichtheLCOdoesnotapply.Thi:s-isdone-byplacingtheplantinatleastMODE2within6-hours.TheallowedCompletionTimeof6hoursisreasonable,basedonoperatingexperience,toreachHODE2fromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.F.1IfthechannelisnotrestoredtoOPERABLEstatusorplacedintripwithintheallowedCompletionTime,plantoperations(continued)SUSQUEHANNA-UNIT1B3.3-172Revision0 PrimaryContainmentIsolationInstrumentationB3.3.6.1BASESACTIONSF.l(continued)maycontinueif'heaffectedpenetrationflowpath(s)isisolated.Isolatingtheaffectedpenetrationflowpath(s)accomplishesthesafetyfunctionoftheinoperablechannels.Ifitisnotdesiredtoisolatetheaffectedpenetrationflowpath(s)(e.g.,asinthecasewhereisolatingthepenetrationflowpath(s)couldresultinareactorscram),ConditionHmustbeenteredanditsRequiredActionstaken.The1hourCompletionTimeisacceptablebecauseitminimizesriskwhileallowingsufficienttimeforplantoperationspersonneltoisolatetheaffectedpenetrationflowpath(s).G.lIfthechannelisnotrestoredtoOPERABL'EstatusorplacedintripwithintheallowedCompletionTime;plantoperationsmaycontinueiftheaffectedpenetrationflowpath(s)is,isolated.Isolatingtheaffectedpenetrationflowpath(s)accomplishesthesafetyfunctionoftheinoperablechannels.The24hourCompl'etionTimeisacceptableduetothefactthattheseFunctions(HanualInitiation)arenotassumedinanyaccidentortransientanalysisintheFSAR.Alternately,ifitisnotdesiredtoisolatetheaffectedpenetrationflowpath(s)(e.g.,asinthecasewhereisolatingthepenetrationflowpath(s)couldresultinareactorscram),ConditionHmustbeenteredanditsRequiredActionstaken.H.landH.2IfthechannelisnotrestoredtoOPERABLEstatusorplacedintripwithintheallowedCompletionTime,oranyRequiredActionofConditionForGisnotmetandtheassociatedCompletionTimehasexpired,theplantmustbeplacedinaNODEorotherspecifiedconditioninwhichtheLCOdoesnotapply.ThisisdonebyplacingtheplantinatleastNODE3within12hoursand,inNODE4within36hours.Theallowed(continued)SUSQUEHANNA-UNIT1B3.3-173Revision0 PrimaryContainmentIsolationInstrumentationB3.3.6.1BASESACTIONSH1andH2(continued)CompletionTimesarereasonable,basedonoperatingexperience,toreachtherequiredplantconditionsfromfullpowerconditionsinanorderlymannerandwithout.challengingplantsystems.I.landI.2IfthechannelisnotrestoredtoOPERABLEstatusorplacedin'ripwithintheallowedCompletionTime,theassociatedSLCsubsystem(s)isdeclaredinoperableortheRWCUSystemisisolated.SincethisFunctionisrequiredtoensurethattheSLCSystemperformsitsintendedfunction,sufficientremedialmeasuresareprovidedbydeclaringtheassociatedSLCsubsystemsinoperableorisolatingtheRWCUSystem.The1hourCompletionTimeisacceptablebecauseitminimizesriskwhileallowingsufficienttimeforpersonneltoisolatetheRWCUSystem.J.1andJ.2IfthechannelisnotrestoredtoOPERABLEstatusorplacedintripwithintheallowedCompletionTime,theassociatedpenetrationflowpathshouldbeclosed.However,iftheshutdowncoolingfunctionisneededtoprovidecorecooling,theseRequiredActionsallowthepenetrationflowpathtoremainunisolatedprovidedactionisimmediatelyinitiatedtorestorethechanneltoOPERABLEstatusortoisolatetheRHRShutdownCoolingSystem(i.e.,providealternatedecayheatremovalcapabiliti'essothepenetrationflowpathcanbeisolated).ActionsmustcontinueuntilthechannelisrestoredtoOPERABLEstatusortheRHRShutdownCoolingSystemisisolated.SURVEILLANCEREQUIREMENTSAsnotedatthebeginningoftheSRs,theSRsforeachPrimaryContainmentIsolationinstrumentationFunctionarefoundintheSRscolumnofTable3.3.6.1-'1.(continued)SUSQUEHANNA-UNIT183.3-174Revision0 PrimayContainmentIsolationInstrumentationB3.3.6.1BASESSURVEILLANCEREQUIREMENTS(continued)TheSurveillancesaremodifiedbyaNotetoindicatethatwhenachannelisplacedinaninoperablestatussolelyforperformanceofrequiredSurveillances.entryintoassociatedConditionsandRequiredActionsmaybedelayedforupto6hoursprovidedtheassociatedFunctionmaintainstripcapability.UponcompletionoftheSurveillance.orexpirationofthe6hourallowance,thechannelmustbereturnedtoOPERABLEstatusortheapplicableCondition.enteredandRequiredActionstaken.ThisNoteisbasedonthereliabilityanalysis(Refs.5and6)assumptionoftheaveragetimerequiredtoperformchannelsurveillance.Thatanalysisdemonstratedthatthe6hourtestingallowancedoesnotsignificantlyreducetheprobabilitythatthePCIYswillisolatethepenetrationflowpath(s)whennecessary.SR3.3.6.1.1PerformanceoftheCHANNELCHECKonceevery12hoursensuresthatagrossfailureofinstrumentationhasnotoccurred.ACHANNELCHECKisnormallyacomparisonoftheparameterindicatedononechanneltoasimilarparameteronotherchannels.Itisbasedontheassumptionthatinstrumentchannelsmonitoringthesame.parametershouldreadapproximatelythesamevalue.Significantdeviationsbetweentheinstrumentchannelscouldbeanindicationofexcessiveinstrumentdriftinoneof'hechannelsorofsomethingevenmoreserious.ACHANNELCHECKwilldetectgrosschannelfailure;thus,itiskeytoverifyingtheinstrumentationcontinuestooperate,properlybetweeneachCHANNELCALIBRATION.Agreementcriteriawhicharedeterminedbytheplantstaffbasedonaninvestigationofacombinationofthechannelinstrumentuncertainties,maybeusedtosupportthisparametercomparisonandincludeindicationandreadability.Ifachannelisoutsidethecriteria,itmaybeanindicationthattheinstrumenthasdriftedoutsideitslimit,anddoesnotnecessarilyindicatethechannelisInoperable.TheFrequencyisbasedonoperatingexperiencethat'demonstrateschannelfailureisrare.TheCHANNELCHECKsupplementslessformalchecksofchannelsduringnormaloperationaluseofthedisplaysassociatedwiththechannelsrequiredbytheLCO.(continued)SUSQUEHANNA-UNIT1B3.3-175Revision0 PrimaryContainmentIsolationInstrumentationB3.3.6.1BASESSURVEILLANCEREQUIREMENTS(continued)SR3.3.6.1.2ACHANNELFUNCTIONALTESTisperformedoneachrequiredchanneltoensurethattheentirechannelwillperformtheintendedfunction.The92dayFrequencyofSR3.3.6.1.2isbasedonthereliabilityanalysisdescribedinReferences5and6.ThisSRismodifiedbytwoNotes.Note1providesageneralexceptiontothedefinitionofCHANNELFUNCTIONALTEST.Thisexceptionisnecessarybecausethedesignofinstrumentationdoesnotfacilitatefunctionaltestingofallrequiredcontactsoftherelayswhichinputintothecombinationallogic.(Referencell)Performanceofsuchatestcouldresultinaplanttransientorplacetheplantinanundorisksituation.Therefore,forthisSR,theCHANNELFUNCTIONALTESTverifiesacceptableresponsebyverifyingthechangeofstateoftherelaywhichinputsintothecombinationallogic.TherequiredcontactsnottestedduringtheCHANNELFUNCTIONALTESTaretestedundertheLOGICSYSTEMFUNCTIONALTESTSR3.3.6.1.5.Thisisacceptable.because.operating.experienceshowsthatthecontactsnot,testedduringtheCHANNELFUNCTIONALTESTnormallypass.the-LOGICSYSTEMFUNCTIONALTEST,andthetestingmethodology=minimizes-..the.-ri-skof-'nplanned-transients..Note2provides-a.second:speci-fic.-exception:-to,.the.-definition-of"CHANNEL'.FUNCTIONAL".TES7".For.FunctionsZ.e,3.a,and4-.a-.certainchannel-relaysare=.notincjudedinthe.performance.-of=the-CHANNELFUNCTIONALTEST...Tfiese;exceptionsarenecessarybecausethecircuitdesigndoesnotfacilitatefunctionaltestingoftheentirechannelthroughtothecoiloftherelaywhichentersthecombinationallogic.(Reference11)Specifically,testingofallrequiredrelayswouldrequirerenderingtheaffectedsystem(i.e.,HPCIorRCIC)inoperable,orrequireliftingofleadsandinsertingtestequipmentwhichcouldleadtounplannedtransients.Therefore.forthesecircuits,theCHANNELFUNCTIONALTESTveritiesacceptableresponsebyverifyingtheactuationofcircuitdevicesuptothepointwherefurthertestingcouldresultinanunplannedtransient.(References10and12)TherequiredrelaysnottestedduringtheCHANNELFUNCTIONALTESTaretestedundertheLOGICSYSTEMFUNCTIONALTEST,SR3.3.6.1.5.Thisexception(continued)SUSQUEHANNA-UNIT183.3-176Revision0 PrimaryContainmentIsolationInstrumentationB3.3.6.1BASESSURVEILLANCEREQUIREMENTSSR3.3.6:1.2(continued)isacceptablebecauseoperatingexperienceshowsthatthedevicesnottestedduringtheCHANNELFUNCTIONALTESTnormallypasstheLOGICSYSTEMFUNCTIONALTEST,andthetestingmethodologyminimizestheriskofunplannedtransients.SR3.3.6.1.3andSR3.3.6.1.4ACHANNELCALIBRATIONverifiesthatthechannelrespondstothemeasuredparameterwithinthenecessaryrangeandaccuracy.CHANNELCALIBRATIONleavesthechanneladjustedtoaccountforinstrumentdriftsbetweensuccessivecalibrationsconsistentwiththeplantspecificsetpointmethodology.TheFrequencyofSR3.3.6.1.3isbasedontheassumptionofa92daycalibrationintervalinthedeterminationofthemagnitudeofequipmentdiriftinthesetpointanalysis.TheFrequencyof'R3.3.6.1.4isbasedontheassumptionofan24monthcalibrationintervalinthedeterminationofthemagnitudeofequipmentdriftinthesetpointanalysis.ItshouldbenotedthatsomeoftheprimarycontainmentHighDrywellpressureinstruments,althoughonlyrequiredtobecalibratedona24monthFrequency,arecalibratedquarterlybasedonotherTSrequirements.SR3.3.6.1.5TheLOGICSYSTEHFUNCTIONALTESTdemonstratestheOPERABILITYoftherequiredisolationlogicforaspecificchannel.ThesystemfunctionaltestingperformedonPCIVsinLCO3.6.1.3overlapsthisSurveillancetoprovidecompletetestingoftheassumedsafetyfunction.The24monthFrequencyisbasedontheneedtoperformportionsofthisSurveillanceundertheconditionsthatapplyduringaplantoutageandthepotentialforanunplannedtransientiftheSurveillancewereperformedwiththereactoratpower.OperatingexperiencehasshownthesecomponentsusuallypasstheSurveillancewhenperformedatthe24monthFrequency.(continued)SUSQUEHANNA-UNIT1B3.3-177Revision0 PrimaryContainmentIsolationInstrumentationB3.3.6.1BASESSURVEILLANCEREQUIREMENTS(continued)SR3;.3.6.1.6ThisSRensuresthattheindividualchannelresponsetimesarelessthanorequaltothemaximumvaluesassumedintheaccidentanalysis.TestingisperformedonlyonchannelswheretheguidancegiveninReference9couldnotbemet.whichidentifiedthatdegradationofresponsetimecanusuallybedetectedbyothersurveillancetests.AsstatedinNote1,theresponsetimeofthesensorsforFunctionsl.a,1.b,and1.careexcludedfromISOLATIONSYSTEMRESPONSETIMEtesting.Becausethevendordoesnotprovideadesigninstrumentresponsetime.apenaltyvaluetoaccountforthesensorresponsetimeisincludedindeterminingtotalchannelresponsetime.Thepenaltyvalueisbasedonthehistoricalperf'ormanceofthesensor.(Reference13)ThisallowanceissupportedbyReference9whichdeterminedthatsignificantdegradationofthesensorchannelresponsetimecanbedetectedduringperformanceofotherTechnicalSpecificationSRsandthatthesensorresponsetimeisasmallpartoftheoverallISOLATIONRESPONSETIMEtesting.AsstatedinNote-2;responsetimetestingofisolatingrelaysisnotrequiredforFunction5.a.ThisallowanceissupportedbyReference9.-Theserelaysisolatetheirrespectiveisolationvalveafteranominal45secondtimedelayinthecircuitry.Nopenaltyvalueisincludedintheresponsetimecalculationofthisfunction.Thisisduetothehistoricalresponsetimetestingresultsofrelaysofthesamemanufacturerandmodelnumberbeinglessthan100milliseconds,whichiswellwithintheexpectedaccuracyofthe45secondtimedelayrelay.ISOLATIONSYSTEMRESPONSETIMEacceptancecriteriaareincludedinReference7.Thistestmaybeperformedinonemeasurement,orinoverlappingsegments,withverificationthatallcomponentsaretested.ISOLATIONSYSTEMRESPONSETIMEtestsareconductedonan24monthSTAGGEREDTESTBASIS.The24monthFrequencyisconsistentwiththetypicalindustryrefuelingcycleandisbaseduponplantoperatingexperiencethatshowsthatrandomfailuresofinstrumentationcomponentscausingseriousresponsetimedegradation,butnotchannelfailure,areinfrequentoccurrences.(continued)SUSQUEHANNA-UNIT1B3.3-178Revision0

PrimaryContainmentIsolationInstrumentationB3.3.6.1BASES(continued)REFERENCESFSAR.Section6.3.FSAR,Chapter15.NED0-31466,"TechnicalSpecificationScreeningCriteriaApplicationandRiskAssessment,"November1987.FSAR.Section4.2.3.4.3.NEDC-31677P-A."TechnicalSpecificationImprovementAnalysisforBWRIsolationActuationInstrumentation,"July1990.6.NEDC-30851P-ASupplement2."TechnicalSpecificationsImprovementAnalysisforBWRIsolationInstrumentationCommontoRPSandECCSInstrumentation,"March1989.FSAR.Table7.3-29.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132)NEDO-32291P-A"SystemAnalysesforEliminationofSelectedResponseTimeTestingRequirements."January1994.10.12.13.PPLLettertoNRC,PLA-2618,ResponsetoNRCINSPECTIONREPORTS50-387/85-28AND50-388/85-23,datedApril22,1986.NRCInspectionandEnforcementManual,Part9900:TechnicalGuidance,StandardTechnicalSpecificationSection1.0Definitions,Issuedate12/08/86.SusquehannaSteamElectricStationNRCREGIONICOMBINEDINSPECTION50-387/90-20;50-388/90-20,FileR41-2,datedMarch5,1986.NRCSafetyEvaluationReportrelatedtoAmendmentNo.171forLicenseNo.NPF-14andAmendmentNo.144forLicenseNo.NPF-22.SUSQUEHANNA-UNIT1B3.3-179Revision0 SecondaryContainmentIsolationInstrumentationB3.3.6.2B3.3INSTRUMENTATIONB3.3.6.2SecondaryContainmentIsolationInstrumentationBASESBACKGROUNDThesecondarycontainmentisolationinstrumentationautomaticallyinitiatesclosureofappropriatesecondarycontainmentisolationvalves(SCIVs)andstartstheStandbyGasTreatment(SGT)System.Thefunctionofthesesystems,incombinationwithotheraccidentmitigationsystems,istolimitfissionproductreleaseduringandf'ollowingpostulatedDesignBasisAccidents(DBAs)(Ref.1).SecondarycontainmentisolationandestablishmentofvacuumwiththeSGTSystemwithintheassumedtimelimitsensuresthatfissionproductsthatleakfromprimarycontainmentfollowingaDBA,orarereleasedoutsideprimarycontainment,orarereleasedduringcertainoperationswhenprimarycontainmentisnotrequiredtobeOPERABLEaremaintainedwithinapplicablelimits.Theisolationinstrumentationincludesthesensors,relays,andswitchesthatarenecessarytocauseinitiationofsecondarycontainmentisolation.Whenthesetpointisreached.thechannelsensoractuates,whichthenoutputsasecondarycohtdinmentisolationsignaltotheisolationlogic.Functionaldiversityisprovidedbymonitoringawiderangeofindependentparameters.Theinputparameterstotheisolationlogicare(1)reactorvesselwaterlevel,(2)drywellpressure,(3)refuelfloorhighexhaustductradiation-high,(4)refuelfloorwallexhaustductradiation-high,and(5)railroadaccessshaftexhaustductradiation-high.Onlyappropriateventilationzonesareisolatedfordifferentisolationsignals.IsolationsignalsfordrywellpressureandvesselwaterlevelwillisolatetheaffectedUnit'szone(ZoneIforUnit1andZoneIIforUnit2)andZoneIII.Redundantsensorinputsignalsfromeachparameterareprovidedforinitiationofisolation.Inaddition,manualinitiationofthelogicisprovided.TheFunctionsarearrangedasfollowsforeachtripsystem.TheReactorVesselWaterLevel-LowLow.Level2andDrywellPressure-Highareeacharrangedinatwo-out-of-twologic.TheRefuelFloorHighExhaustDuctRadiation-High,RefuelFloorWallExhaustDuctRadiation-HighandtheRailroadAccessShaftExhaustDuctRadiation-Higharearrangedintoone-out-of-onetripsystems.Onetrip(continued)SUSQUEHANNA-UNIT183.3-180Revision0 SecondaryContainmentIsolationInstrumentationB3.3.6.2BASESBACKGROUND(continued)systeminitiatesisolationofoneautomaticisolationvalve(damper)andstartsoneSGTsubsystemwhiletheothertripsysteminitiatesisolationoftheotherautomaticisolationvalveinthepenetrationandstartstheotherSGTsubsystem.EachlogicclosesoneofthetwovalvesoneachpenetrationandstartsoneSGTsubsystem,sothatoperationofeitherlogicisolatesthesecondarycontainmentandprovidesforthenecessaryfiltrationoffissionproducts.APPLICABLESAFETYANALYSES,LCO,andAPPLICABILITYTheisolationsignalsgeneratedbythesecondarycontainmentisolationinstrumentationareimplicitlyassumedinthesafetyanalysesofReferences1and2toinitiateclosureofvalvesandstarttheSGTSystemtolimitoffsitedoses.RefertoLCO3.6.4',"SecondaryContainmentIsolationValves(SCIVs),"andLCO3.6.4.3."StandbyGasTreatment(SGT)System,"ApplicableSafetyAnalysesBasesformoredetailofthesafetyanalyses.ThesecondarycontainmentisolationinstrumentationsatisfiesCriter'ion3ofthe.NRCPolicyStatement.(Ref.7)CertaininstrumentationFunctionsareretainedforotherreasonsand.aredescribedbelowintheindividualFunctions-d)scussion.The..OPERABILITYofthesecondarycontainmentisolationinstrumentationisdependentontheOPERABILITYoftheindividualinstrumentationchannelFunctions.EachFunction-musthavetherequirednumberofOPERABLEchannelswiththeirsetpointssetwithinthespecifiedAllowableValues,asshowninTable3.3.6.2-1.Theactualsetpointiscalibratedconsistentwithapplicablesetpointmethodologyassumptions.AchannelisinoperableifitsactualtripsetpointisnotwithinitsrequiredAllowableValue.Eachchannelmustalsorespondwithinitsassumedresponsetime,whereappropriate.AllowableValuesarespecifiedforeachFunctionspecifiedintheTable.Nominaltripsetpointsarespecifiedinthesetpointcalculations.ThenominalsetpointsareselectedtoensurethatthesetpointsdonotexceedtheAllowableValuebetweenCHANNELCALIBRATIONS.Operationwithatripsetpointlessconservativethanthenominaltripsetpoint,butwithinitsAllowableValue,isacceptable.(continued)SUSQUEHANNA-UNIT183.3-181Revision0 SecondaryContainment.IsolationInstrumentationB3.3.6.2BASESAPPLICABLESAFETYANALYSLCO,andAPPLICABILITY(continued)ES,Trip,setpointsarethosepredeterminedvaluesofoutputatwhichanactionshouldtakeplace.Thesetpointsarecomparedtotheactualprocessparameter(e.g.,reactorvesselwaterlevel),andwhenthemeasuredoutputvalueoftheprocessparameterreachesthesetpoint;theassociateddevicechangesstate.Theanalyticlimitsarederivedfromthelimitingvaluesoftheprocessparametersobtainedfromthesafetyanalysis.TheAllowableValuesarederivedfromtheanalyticlimits,correctedforcalibration,process,andsomeoftheinstrumenterrors.Thetripsetpointsarethendeterminedaccountingfortheremaininginstrumenterrors(e.g.,drift).ThetripSAFETYANALYSES,setpointsderivedinthismannerprovideadequateprotectionbecauseinstrumentationuncertainties,processeffects,calibrationtolerances,instrumentdrift,andsevereenvironmenterrors(forchannelsthatmustfunctioninharshenvironmentsasdefinedby10CFR50.49)areaccountedfor.Ingeneral,theindividualFunctionsarerequiredtobeOPERABLEintheNODESorotherspecifiedconditionswhenSCIVsandtheSGTSystemarerequired.ThespecificApplicableSafetyAnalyses,LCO,andApplicabilitydiscussionsarelistedbelowonaFunctionbyFunctionbasis.1.ReactorVesselWaterLevel-LowLowLevel2Lowreactorpressurevessel(RPV)waterlevelindicatesthatthecapabilitytocoolthefuelmaybethreatened.ShouldRPVwaterleveldecreasetoofar,fueldamagecouldresult.AnisolationofthesecondarycontainmentandactuationoftheSGTSystemareinitiatedinordertominimizethepotentialofanoffsitedoserelease.TheReactorVesselWaterLevel-LowLow,Level2FunctionisoneoftheFunctionsassumedtobeOPERABLEandcapableofprovidingisolationandinitiationsignals.TheisolationandinitiationsystemsonReactorVesselWaterLevel-LowLow,Level2supportactionstoensurethatanyoffsitereleasesarewithinthelimitscalculatedinthesafetyanalysis.ReactorVesselWaterLevel-LowLow,Level2signalsareinitiatedfromlevelinstrumentsthatsensethedifferencebetweenthepressureduetoaconstantcolumnofwater(referenceleg)andthepressureduetotheactualwater(continued)SUSQUEHANNA-UNIT1B3.3-182Revision0 SecondaryContainmentIsolationInstrumentationB3.3.6.2BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY1.ReactorVesselWaterLevel-LowLowLevel2(continued)level(variableleg)inthevessel.FourchannelsofReactorVesselWaterLevel-LowLow,Level2FunctionareavailableandarerequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludetheisolationfunction.TheReactorVesselWaterLevel-LowLow,Level2AllowableValuewaschosentobethesameastheHighPressureCoolantInjection/ReactorCoreIsolationCooling(HPCI/RCIC)ReactorVesselWaterLevel-LowLow,Level2AllowableValue(LCO3.3.5.1andLCO3.3.5.2).sincethiscouldindicatethatthecapabilitytocoolthefuelisbeingthreatened.TheReactorVesselWaterLevel-LowLow,Level2FunctionisrequiredtobeOPERABLEinMODES1,2,and3whereconsiderableenergyexistsintheReactorCoolantSystem(RCS);thus,thereisaprobabilityofpipebreaksresultinginsignificantreleasesofradioactivesteamandgas.InMODES4and5,theprobabilityandconsequencesoftheseeventsarelowduetotheRCSpressureandtemperaturelimitationsoftheseMODES;thus,thisFunctionisnotrequired.Inaddition.theFunctionisalsorequiredtobeOPERABLEduringoperationswithapotentialfordrainingthereactorvessel(OPDRVs)becausethecapabilityofisolatingpotentialsourcesofleakagemustbeprovidedtoensurethat~offsitedoselimitsarenotexceededifcoredamageoccurs.ReactorVesselWaterLevel--LowLow,Level2willisolatetheaffectedUnit'szone(i.e.,ZoneIforUnit1andZoneIIforUnit2)andZoneIII.2.DrellPressure-HihHighdrywellpressurecanindicateabreakinthereactorcoolantpressureboundary(RCPB).AnisolationofthesecondarycontainmentandactuationoftheSGTSystemareinitiatedinordertominimizethepotentialofanoffsitedoserelease.Theisolationonhighdrywellpressuresupportsactionstoensurethatanyoffsitereleasesarewithinthelimitscalculatedinthesafetyanalysis.However,theDrywellPressure-HighFunctionassociatedwith(continued)SUSQUEHANNA-UNIT1B3.3-183Revision0 SecondaryContainmentIsolationInstrumentationB3.3.6.2BASESAPPLICABLESAFETYANALYSES.LCO,andAPPLICABILITY2.OrellPressure-Hih(continued)isolationisnotassumedinanyFSARaccidentortransientanalyses.ItisretainedfortheoverallredundancyanddiversityofthesecondarycontainmentisolationinstrumentationasrequiredbytheNRCapprovedlicensingbasis.Highdrywellpressuresignalsareinitiatedfrompressureinstrumentsthatsensethepressureinthedrywell.FourchannelsofDrywellPressure-HighFunctionsareavailableandarerequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludeperformanceoftheisolationfunction.TheAllowableValuewaschosentobethesameastheECCSDrywellPressure-HighFunctionAllowableValue(LCO3.3:5.1)sincethisisindicativeofalossofcoolantaccident(LOCA).TheDrywellPressure-HighFunctionisrequiredtobeOPERABLEinNODES1,2,and3whereconsiderableenergyexistsintheRCS;i:hus,thereisaprobabilityofpipebreaksresultinginsignificantreleasesofradioactivesteamandgas."ThisFunctionisnotrequiredinNODES4and5becausetheprobabilityandconsequencesoftheseeventsarelowduetotheRCSpressureandtemperaturelimitationsoftheseNODES.DrywellPres'sure-HighwillisolatetheaffectedUnit'szone(i.e.,ZoneIforUnit1andZoneIIforUnit2)andZoneIII.34567RefuelFloorHihExhaustDuctRefuelFloorWallExhaustDuctandRailroadAccessShaftExhaustDuctRadiation-HihHighsecondarycontainmentexhaustradiationisanindicationofpossiblegrossfailureofthefuelcladdingduetoafuelhandlingaccident.WhenExhaustRadiation-Highisdetected,secondarycontainmentisolationandactuationoftheSGTSystemareinitiatedtolimitthereleaseoffissionproductsasassumedintheFSARsafetyanalyses(Ref.4).(continued)SUSQUEHANNA-UNIT1B3.3-184Revision0 SecondaryContainmentIsolationInstrumentationB3.3.6.2BASESAPPLICABLESAFETYANALYSELCO,andAPPLICABILITYS,34567RefuelFloorHihExhaustDuctRefuelFloorWallExhaustDuctandRailroadAccessShaftExhaustDuctR~diti-Hih(tid)TheExhaustRadiation-HighsignalsareinitiatedfromradiationdetectorsthatarelocatedontheventilationexhaustductworkcomingfromtherefuelingfloorzonesandtheRailroadAccessShaft.Thesignalfromeachdetectorisinputtoanindividualmonitorwhosetripoutputsareassignedtoanisolationchannel.EightchannelsofRefuelfloorHighExhaustDuctandWallExhaustDuctRadiation-HighFunction(fourfromUnit1andfourfromUnit2)andtwochannelsofRailroadAccessShaftExhaustDuctRadiation-HighFunction(bothfromUnit1)areavailableandarerequiredtobeOPERABLEwhentheassociatedrefuelfloorexhaustsystemisinoperationtoensurethatnosingleinstrumentfailurecanprecludetheisolationfunction.TheAllowableValuesarechosentopromptlydetectgrossfailureofthefuelcladding.TheRefuelFloorExhaustRadiation-HighFunctionsarerequiredtobeOPERABLEduringCOREALTERATIONS,OPDRVs,andmovementof'irr'adiatedfuelassembliesinthesecondarycontainment,becausethecapabilityofdetectingradiationreleasesduetofuelfailures(duetoafuelhandlingaccident)mustbeprovidedtoensurethatoffsitedoselimitsarenotexceeded.TheRailroadAccessShaftExhaustDuctRadiation-HighFunctionisonlyrequiredtobeOPERABLEduringhandlingofirradiatedfuelwithintheRailroadAccessShaft,andabovetheRailroadAccessShaftwiththeRailroadAccessShaftEquipmentHatchopen.Thisprovidesthecapabilityofdetectingradiationreleasesduetofuelfailuresresultingfromdroppedfuelassemblieswhichensuresthatoffsitedoselimitsarenotexceeded.RefuelFloorHighandWallExhaustDuctandRailroadAccessShaftExhaustDuctRadiation-HighFunctionswillisolateZoneIIIofsecondarycontainment.(continued)SUSQUEHANNA-UNIT1B3.3-185Revision0 SecondaryContainmentIsolationInstrumentationB3.3.6.2BASESAPPLICABLESAFETYANALYSES,LCO.andAPPLICABILITY(continued)8.ManualInitiationAManualInitiationcanbeperformedforsecondarycontainmentisolationbyinitiatingaPrimaryContainmentIsolation.ThereisnospecificFSARsafetyanalysisthattakescreditforthisFunction.ItisretainedfortheoverallredundancyanddiversityofthesecondarycontainmentisolationinstrumentationasrequiredbytheNRCapprovedlicensingbasis.Therearetwopushbuttonsforthelogic,onemanualinitiationpushbuttonpertripsystem.ThereisnoAllowableValueforthisFunction,sincethechannelsaremechanicallyactuatedbasedsolelyonthepositionofthepushbuttons.TwochannelsofManualInitiationFunctiona'eavailableandarerequiredtobeOPERABLEinMODES1,2,and3,andduringCOREALTERATIONS.OPDRVs,andmovementofirradiatedfuelassembliesinthesecondarycontainment.ThesearetheMODESandotherspecifiedconditionsinwhichtheSecondaryContainmentIsolationautomaticFunctionsarerequiredtobeOPERABLE.ACTIONSANotehasbeenprovidedtomodifytheACTIONSrelatedtosecondarycontainmentisolationinstrumentationchannels.Section1.3,CompletionTimes,specifiesthatonceaConditionhasbeenentered'~.subsequentdivisions,subsystems,components,orvariablesexpressedintheCondition,discoveredtobeinoperableornotwithinlimits,willnotresultinseparateentryintotheCondition.Section1.3alsospecifiesthatRequiredActionsoftheConditioncontinuetoapplyforeachadditionalfailure,withCompletionTimesbasedoninitialentryintotheCondition.However,theRequiredActionsforinoperablesecondarycontainmentisolationinstrumentationchannelsprovideappropriatecompensatorymeasuresforseparateinoperablechannels.Assuch,aNotehasbeenprovidedthatallowsseparateConditionentryfoieachinoperablesecondarycontainmentisolationinstrumentationchannel.(continued)SUSQUEHANNA-UNIT1B3.3-186Revision0 SecondaryContainmentIsolationInstrumentationB3.3.6.2BASESACTIONS(continued)A.lBecauseofthediversityofsensorsavailabletoprovideisolationsignalsandtheredundancyoftheisolationdesign,anallowableoutofservicetimeof12hoursforFunction2,and24hoursforFunctionsotherthanFunction2,hasbeenshowntobeacceptable(Refs.5and6)topermitrestorationofanyinoperablechanneltoOPERABLEstatus.ThisoutofservicetimeisonlyacceptableprovidedtheassociatedFunctionisstillmaintainingisolationcapability(refertoRequiredActionB.1Bases).IftheinoperablechannelcannotberestoredtoOPERABLEstatuswithintheallowableoutofservicetime,thechannelmustbeplacedinthetrippedconditionperRequiredActionA.1.Placingtheinoperablechannelintrip'wouldconservativelycompensatefortheinoperability,restorecapabilitytoaccommodateasinglefailure,andallowoperationtocontinue.Alternately,ifitisnotdesiredtoplacethechannelintrip(e.g.,asinthecasewhereplacingtheinoperablechannelintripwouldresultinanisolation).ConditionCmustbeenteredanditsRequiredActionstaken.B.1RequiredActionB.1isintendedtoensurethatappropriateactionsaretakenifmultiple,inoperable.untrippedchannelswithinthesameFunctionresultinacompletelossofautomaticisolationcapabilityfortheassociatedpenetrationflowpath(s)oracompletelossofautomaticinitiationcapabilityfortheSGTSystem.AFunctionisconsideredtobemaintainingsecondarycontainmentisolationcapabilitywhensufficientchannelsareOPERABLEorintrip,suchthatonetripsystemwillgenerateatripsignalfromthegivenFunctiononavalidsignal.ThisensuresthatoneofthetwoSCIVs'ntheassociatedpenetrationflowpathandoneSGTsubsystemcanbeinitiatedonanisolationsignalfromthegivenFunction.FortheFunctionswithtwologictripsystems(Functions1~2,3,4,5,6and7).thiswouldrequireonetripsystemtohavetherequiredchannel(s)OPERABLEorintrip.TheConditiondoesnotincludetheHanualInitiationFunction(Function8),sinceitisnotassumedinanyaccidentortransientanalysis.Thus,atotallossofmanualinitiationcapabilityfor24hours(asallowedbyRequiredActionA.1)isallowed.(continued)SUSQUEHANNA-UNIT1B3.3-187Revision0 SecondaryContainmentIsolationInstrumentationB3.3.6.2BASESACTIONSB.l(continued)TheCompletionTimeisintendedtoallowtheoperatortimetoevaluateandrepairanydiscoveredinoperabilities.The1hourCompletionTimeisacceptablebecauseitminimizesriskwhileallowingtimeforrestorationortrippingofchannels.C.lC.2.1andC.2.2IfanyRequiredActionandassociatedCompletionTimeofConditionAorBarenotmet,theabilitytoisolatethesecondarycontainmentandstarttheSGTSystemcannotbeensured.Therefore,furtheractionsmustbeperformedtoensuretheabilitytomaintainthesecondarycontainmentfunction.Isolatingtheassociatedzone(closingtheventilationsupplyandexhaustautomaticisolationdampers)andstartingtheassociatedSGTsubsysteminemergencymode(RequiredActionC.1)performstheintendedfunctionoftheinstrumentationandallowsoperationtocontinue.Alternately.declaringtheassociatedSCIVsandSGTsubsystem(s)inoperable(RequiredActionsC.2.1andC.2.2)isalsoacceptablesincetheRequiredActionsoftherespectiveLCOs(LCO3.6.4.2andLCO3.6.4.3)provideappropriateactionsfortheinoperablecomponents.Onehourissufficientforplantoperationspersonneltoestablishrequiredplantconditionsortodeclaretheassociatedcomponentsinoperablewithoutunnecessarilychallengingplantsystems.SURVEILLANCEREQUIREMENTSAsnotedatthebeginningoftheSRs.theSRsforeachSecondaryContainmentIsolationinstrumentationFunctionarelocatedintheSRscolumnofTable3.3.6.2-1.TheSurveillancesaremodifiedbyaNotetoindicatethatwhenachannelisplacedinaninoperablestatussolelyforperformanceofrequiredSurveillances,entryintoassociatedConditionsandRequiredActionsmaybedelayedforupto6hoursprovidedtheassociatedFunctionmaintainssecondarycontainmentisolationcapability.UponcompletionoftheSurveillance,orexpirationofthe6hourallowance,the(continued)SUSQUEHANNA-UNIT1B3.3-188Revision0 SecondaryContainmentIsolationInstrumentationB3.3.6.2BASESSURVEILLANCEREQUIREMENTS(continued)channelmustbereturnedtoOPERABLEstatusortheapplicableConditionenteredandRequiredActionstaken.ThisNoteisbasedonthereliabilityanalysis(Refs.5and6)assumptionoftheaveragetimerequiredtoperformchannelsurveillance.Thatanalysisdemonstratedthe6hourtestingallowancedoesnotsignificantlyreducetheprobabilitythattheSCIVswillisolatetheassociatedpenetrationflowpathsandthattheSGTSystemwillinitiatewhennecessary.SR3.3.6.2.1PerformanceoftheCHANNELCHECKonceevery12hoursensuresthatagrossfailureofinstrumentationhasnotoccurred.ACHANNELCHECKisnormallyacomparisonoftheparameterindicatedononechanneltoasimilarparameteronotherchannels.Itisbasedontheassumptionthatinstrumentchannelsmonitoringthesameparametershouldreadapproximatelythesamevalue.Significantdeviationsbetweentheinstrumentchannelscouldbeanindicationofexcessiveinstrumentdriftinoneofthechannelsorsomethingevenmoreserious..ACHANNELCHECKwilldetectgrosschannelfailure;thus,itiskeytoverifyingtheinstrumentationcontinuestooperateproperlybetweeneachCHANNELCALIBRATION.Agreementcriteriawhicharedeterminedbytheplantstaffbasedonaninvestigationofacombinationofthechannelinstrumentuncertainties,maybeusedtosupportthisparametercomparisonandincludeindicationandreadability.Ifachannelisoutsidethecriteria,itmaybeanindicationthattheinstrumenthasdriftedoutsideitsl,imit,anddoesnotnecessarilyindicatethechannelisInoperable.TheFrequencyisbasedonoperatingexperiencethatdemonstrateschannelfailureisrare.'TheCHANNELCHECKsupplementslessformalchecksofchannelstatusduringnormaloperationaluseofthedisplaysassociatedwithchannelsrequiredbytheLCO.(continued)SUSQUEHANNA-UNIT1B3.3-189Revision0 SecondaryContainmentIsolationInstrumentationB3.3.6.2BASESSURVEILLANCEREQUIREMENTS(continued)SR3.3.6.2.2ACHANNELFUNCTIONALTESTisperformedoneachrequiredchanneltoensurethattheentirechannelwillperformtheintendedfunction.ThisSRismodifiedbyaNotethatprovidesageneralexceptiontothedefinitionofCHANNELFUNCTIONALTEST.Thisexceptionisnecessarybecausethedesignofinstrumentationdoesnotfacilitatefunctionaltestingofallrequiredcontactsoftherelaywhichinputintothecombinationallogic.(Reference8)Performanceofsuchatestcouldresultinaplanttransientorplacetheplantinanundorisksituation.Therefore,forthisSR,theCHANNELFUNCTIONALTESTverifiesacceptableresponsebyverifyingthechangeofstateoftherelaywhichinputsintothecombinationallogic.TherequiredcontactsnottestedduringtheCHANNELFUNCTIONALTESTaretestedundertheLOGICSYSTEMFUNCTIONALTEST,SR3.3.6.2.5.ThisisacceptablebecauseoperatingexperienceshowsthatthecontactsnottestedduringtheCHANNELFUNCTIONALTESTnormallypasstheLOGICSYSTEMFUNCTIONALTEST,andthetestingmethodologyminimizestheriskofunplannedtransients.TheFrequencyof92daysisbasedonthereliabilityanalysisofReferences5and6.SR3.3.6.2.3and.SR3.3.6.2.4ACHANNELCALIBRATIONverifiesthatthechannelrespondstothemeasuredparameterwithinthenecessaryrangeandaccuracy.CHANNELCALIBRATIONleavesthechanneladjustedtoaccountforinstrumentdriftsbetweensuccessivecalibrationsconsistentwiththeplantspecificsetpointmethodology.TheFrequenciesofSR3.3.6.2.3andSR3.3.6.2.4,arebasedontheassumptionofa92dayandan24monthcalibrationinterval,respectively,inthedeterminationofthemagnitudeofequipmentdriftinthesetpointanalysis.(continued)SUSQUEHANNA-UNIT1B3.3-190Revision0 SecondaryContainmentIsolationInstrumentationB3.3.6.2BASESSURVEILLANCEREQUIREMENTS(continued)SR3.3.6.2.5TheLOGICSYSTEMFUNCTIONALTESTdemonstratestheOPERABILITYoftherequiredisolationlogicforaspecificchannel.ThesystemfunctionaltestingperformedonSCIVsandtheSGTSysteminLCO3.6.4.2andLCO3.6.4.3,respectively,overlapsthisSurveillancetoprovidecompletetestingoftheassumedsafetyfunction.The24monthFrequencyisbasedontheneedtoperformportionsofthisSurveillanceundertheconditionsthatapplyduringaplantoutageandthepotentialforanunplannedtransientiftheSurveillancewereperformedwiththereactoratpower.OperatingexperiencehasshownthatthesecomponentsusuallypasstheSurveillancewhenperformedatthe24monthFrequency.REFERENCESFSAR,Section6.3.FSAR,Chapter15FSAR,Section15.2.4.FSAR,Sections15.7.5.NEDC-31677P-A,"TechnicalSpecificationImprovementAnalysisforBWRIsolationActuationInstrumentation",July1990.6.NEDC-30851P-ASupplement2."TechnicalSpecificationsImprovementAnalysisforBWRIsolationInstrumentationCommontoRPSandECCSInstrumentation,"March1989.7.FinalPolicyStatementonTechnicalSpecificationsImprovements.July22,1993.(58FR32193)8.NRCInspectionandEnforcementManual,Part9900:TechnicalGuidance,StandardTechnicalSpecificationSection1.0Definitions,Issuedate12/08/86.SUSQUEHANNA-UNIT1B3.3-191Revision0 CREOASSystemInstrumentationB3.3.7.1B3.3INSTRUMENTATIONB3.3.7.1ControlRoomEmergencyOutsideAirSupply(CREOAS)SystemInstrumentationBASESBACKGROUNDTheCREOASSystemisdesignedtoprovidearadiologicallycontrolledenvironmenttoensurethehabitabilityofthecontrolroomforthesafetyofcontrolroomoperatorsunderallplantconditions.TwoindependentCREOASsubsystemsareeachcapableoffulfillingthestatedsafetyfunction.Thein'strumentationandcontrolsfortheCREOASSystemautomaticallyinitiateactiontopressurizethemaincontrolroomtominimizetheconsequencesofradioactivematerialinthecontrolroomenvironment.Intheeventofalossofcoolantaccident(LOCA)signal(ReactorVesselWaterLevel-LowLow,Level2orDrywellPressure-High),RefuelFloorHighExhaustDuctRadiation-High.RefuelFloorWallExhaustDuctRadiation-High,RailroadAccessShaftExhaustDuctRadiation-HighorMainControlRoomOutsideAirIntakeRadiation-Highsignal.theCREOASSystemisautomaticallystartedinthepressurization/filtrationmode.TheCREOASSysteminstrumentationhastwotripsystems.EachtripsystemreceivesinputfromeachoftheFunctionslistedaboveandinitiatesassociatedsubsystem.TheFunctionsarearrangedforeachtripsystemasfollows:theReactorVesselWaterLevel-LowLow,Level2andDrywellPressure-Highareeacharrangedinatwo-out-of-twologic.TheRefuelFloorHighExhaustDuctRadiation-High,RefuelFloorWallExhaustDuctRadiation-High,theMainControlRoomOutsideAirIntakeRadiation-HighandtheRailroadAccessShaftExhaustDuctRadiation-Higharearrangedinaone-out-of-onelogic.WiththeexceptionoftheMainControlRoomOutsideAirIntakeRadiation-Highalltheinstrumentsalsoinitiateasecondarycontainmentisolation.Whenthesetpointisreached,thesensoractuates,whichthenoutputsaCREOASSysteminitiationsignaltotheinitiationlogic.SUSQUEHANNA-UNIT1B3.3-192(continued)Revision0 CREOASSystemInstrumentationB3.3.7.1BASES(continued)APPLICABLESAFETYANALYSES,LCO,andAPPLICABILITYTheabilityoftheCREOASSystemtomaintainthehabitabilityofthemaincontrolroomisexplicitlyassumed'orcertainaccidentsasdiscussedintheFSARsafetyanalyses(Refs.1and2).CREOASSystemoperationensuresthattheradiationexposureofcontrolroompersonnel,throughthedurationofanyoneofthepostulatedaccidents,doesnotexceedthelimitssetbyGDC19of10CFR50,AppendixA.CREOASSysteminstrumentationsatisfiesCriterion3oftheNRCPolicyStatement.(Ref.5)TheOPERABILITY'ftheCREOASSysteminstrumentationisdependentupontheOPERABILITYoftheindividualinstrumentationchannelFunctionsspecifiedinTable3.3.7.1-1.EachFunctionmusthavearequirednumberofOPERABLEchannels,withtheirsetpointswithinthespecifiedAllowableValues,whereappropriate.AchannelisinoperableifitsactualtripsetpointisnotwithinitsrequiredAllowableValue.Theactualsetpointiscalibratedconsistentwithapplicablesetpointmethodologyassumptions.AllowableValuesarespecifiedforeachCREOASSystemFunctionspecifiedintheTable.NominaltripsetpointsarespecifiedintHesetpointcalculations.ThenominalsetpointsareselectedtoensurethatthesetpointsdonotexceedtheAllowableValuebetweensuccessiveCHANNELCALIBRATIONS.Operationwithatripsetpointlessconservativethanthenominaltripsetpoint,butwithinitsAllowableValue,isacceptable.Tripsetpointsarethosepredeterminedvaluesofoutputatwhichanactionshouldtakeplace.Thesetpointsarecomparedtotheactualprocessparameter(e.g.,reactorvesselwaterlevel),andwhenthemeasuredoutputvalueoftheprocessparameterreachesthesetpoint,theassociateddevicechangesstate.Theanalyticlimitsarederivedfromthelimitingvaluesoftheprocessparametersobtainedfromthesafetyanalysis.TheAllowableValuesarederivedfromtheanalyticlimits,correctedforcalibration,process,andsomeoftheinstrumenterrors.Thetripsetpointsarethendeterminedaccountingfortheremaininginstrumenterrors(e.g..drift).Thetripsetpointsderivedinthismannerprovideadequateprotectionbecauseinstrumentationuncertainties,'rocesseffects,calibrationtolerances,instrumentdrift,andsevereenvironmenterrors(forchannelsthatmust(continued)SUSQUEHANNA-UNIT1B3.3-193Revision0 CREOASSystemInstrumentationB3.3.7.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY(continued)functioninharshenvironmentsasdefinedby10CFR50.49)areaccountedfor.ThespecificApplicableSafetyAnalyses,LCO.andApplicabilitydiscussionsarelistedbelowonaFunctionbyFunctionbasis.1.ReactorVesselWaterLevel-LowLowLevel2Lowreactorpressurevessel(RPV)waterlevelindicatesthatthecapabilityofcoolingthefuelmaybethreatened.AlowreactorvesselwaterlevelcouldindicateaLOCAandwillautomaticallyinitiatetheCREOASSystem,sincethiscouldbeaprecursortoapotentialradiationreleaseandsubsequentradiationexposuretocontrolroompersonnel.ReactorVesselWaterLevel-LowLow,Level2signalsareinitiatedfromfourlevelinstrumentsthatsensethedifferencebetweenthepressureduetoaconstantcolumnofwater(referenceleg)aridthepressureduetotheactualwaterlevel(variableleg)inthevessel.FourchannelsofReactorVesselWaterLevel-LowLow,Level2Functionareavailable(twochannelspertripsystem)andarerequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludeaCREOASSysteminitiation.TheReactorVesselWaterLevel-LowLow,Level2AllowableValuewaschosentobethesameastheHPCIandRCICReactorVesselWaterLevel-LowLowLow,Level1AllowableValue(LCO3.3.5.1,"ECCSInstrumentationandLCO3.3.5.2"RCICInstrumentation").TheReactorVesselWaterLevel-LowLow,Level2FunctionisrequiredtobeOPERABLEinMODES1,2,and3.andduringoperationswithapotentialfordrainingthereactorvessel(OPDRVs)toensurethatthecontrolroompersonnelareprotectedduringaLOCA.InMODES4and5attimesotherthanOPDRVs,theprobabilityofavesseldraindowneventresultinginareleaseofradioactivematerialintotheenvironmentisminimal.Inaddition,adequateprotectionisperformedbytheControlRoomAirInletRadiation-HighFunction.Therefore,thisFunctionisnotrequiredinotherMODESandspecifiedconditions.(continued)SUSQUEHANNA-UNIT183.3-194Revision0

CREOASSystemInstrumentationB3.3.7.1BASESAPPLICABLESAFETYANALYSES,LCO.andAPPLICABILITY(continued)2.DrellPressure-HihHighpressureinthedrywellcouldindicateabreakinthereactorcoolantpressureboundary.AhighdrywellpressuresignalcouldindicateaLOCAandwillautomaticallyinitiatetheCREOASSystem,sincethiscouldbeaprecursortoapotentialradiationreleaseandsubsequentradiationexposuretocontrolroompersonnel.DrywellPressure-Highsignalsareinitiatedfromfourpressureinstrumentsthatsensedrywellpressure.FourchannelsofDrywellPressure-HighFunctionareavailable(twochannelspertripsystem)andarerequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludeCREOASSysteminitiation.TheDrywellPressure-HighAllowableValuewaschosentobethesameastheECCSDrywellPressure-HighAllowableValue(LCO3.3.5.1).TheDrywellPressure-HighFunctionisrequiredtobeOPERABLEinNODES1,2,and3toensurethatcontrolroompersonnelareprotectedintheeventofaLOCA.InNOOES4and5,theDrywell'Pressure-HighFunctionisnotrequiredsincethereisinsufficientenergyinthereactortopressurizethedrywelltotheDrywellPressure-Highsetpoint.34567RefuelFloorHihExhaustDuctRefuelFloorWallExhaustDuctandRailroadAccessShaftExhaustDuctRadiation-HihHighsecondarycontainmentexhaustradiationisanindicationofpossiblegrossfailureofthefuelcladding.Thereleasemayhaveoriginatedfromtherefuelingfloorduetoafuelhandlingaccident.WhenExhaustRadiation-HighisdetectedCREOASisinitiatedtomaintainthehabitabilityofthemaincontrolroom.TheExhaustRadiation-HighsignalsareinitiatedfromradiationdetectorsthatarelocatedontheventilationexhaustductingcomingfromtherefuelingfloorzoneandtheRailroadAccessShaft.Thesignalfromeachdetectorisinputtoanindividualmonitorwhosetripoutputsareassignedtoanisolationchannel.EighttotalchannelsRefuelFloorHighExhaustDuctandWallExhaust(continued)SUSQUEHANNA-UNIT1B3.3-195Revision0 CREOASSystemInstrumentation83.3.7.1BASESAPPLICABLESAFETYANALYSELCO,andAPPLICABILITYS,34567RefuelFloorHihExhaustDuctRefuelFloorWallExhaustDuctandRailroadAccessShaftExhaustDuct~llditi-Hih(tid)DuctRadiation-HighFunction(fourfromUnit1andfourfromUnit2),andtwochannelsoftheRailroadAccessShaftExhaustRadiation-HighFunction(bothfromUnit1)areavailableandarerequiredtobeOPERABLEwhentheassociatedRefuelFloorExhaustSystemisinoperationtoensurethatnosingleinstrumentfailurecanprecludetheinitiationfunction.TheAllowableValuesarechosentopromptlydetectgrossfailureofthefuelcladding.TheRefuelFloorExhaustDuctandWallExhaustDuctRadiation-HigharerequiredtobeOPERABLEduringCOREALTERATIONS,OPDRVs,andmovementofirradiatedfuelassembliesinthesecondarycontainment,becausethecapabilityofdetectingradiationreleasesduetofuelfailures(duetofueluncoveryordroppedfuelassemblies)mustbeprovidedtoensurethatoffsitedoselimitsarenotexceeded.TheRailroadAcc'essShaftExhaustDuctRadiation-HighFunctionisonlyrequiretobeOPERABLEduringhandlingofirradiatedfueTwithintheRailroadAccessShaft.andabovetheRailroadAccessShaftwiththeRailroadAccessShaftEquipmentHatchopen,becausethecapabilityofdetectingradiationreleasesduetofuelfailures(droppedfuelassemblies)mustbeprovidedtoensurethatoffsitedoselimitsarenotexceeded.8.MainControlRoomOutsideAirIntakeRadiation-HihThemaincontrolroomoutsideairintakeradiationmonitorsmeasureradiationlevelsatthecontrolstructureoutsideairintakeduct.Ahighradiationlevelmayposeathreattomaincontrolroompersonnel;thus,automaticallyinitiatingtheCREOASSystem.TheControlRoomAirInletRadiation-HighFunctionconsistsoftwoindependentmonitors.TwochannelsofControlRoomAirInletRadiation-HighareavailableandarerequiredtobeOPERABLEtoensurethatnosingleinstrumentfailurecanprecludeCREOASSysteminitiation.TheAllowableValuewasselectedtoensureprotectionofthecontrolroompersonnel.(continued)SUSQUEHANNA-UNIT1B3.3-196Revision0 CREOASSystemInstrumentationB3.3.7.1BASESAPPLICABLESAFETYANALYSES,LCO.andAPPLICABILITY8.MainControlRoomOutsideAirIntakeRadiation-Hih(continued)TheControlRoomAirInletRadiation-HighFunctionisrequiredtobeOPERABLEinMODES1,2,and3andduringCOREALTERATIONS,OPDRVs,andmovementofirradiatedfuelassembliesinthesecondarycontainment.toensurethatcontrolroompersonnelareprotectedduringaLOCA,fuelhandlingevent,orvesseldraindownevent.DuringMODES4and5,whenthesespecifiedconditionsarenotinprogress(e.g.,COREALTERATIONS),theprobabilityofaLOCAorfueldamageislow;thus,theFunctionisnotrequired.9.ManualInitiationAManualInitiationcanbeperformedforCREOASisolationbyinitiatingaPrimaryContainmentIsolation.ThereisnospecificFSARsafetyanalysisthattakescreditforthisFunction.ItisretainedfortheoverallredundancyanddiversityofthesecondarycontainmentisolationinstrumentationasrequiredbytheNRCapprovedlicensingbasis.TherearetwoPo~hbuttons,forthelogic,onemanualinitiationpushbuttonpertripsystem.ThereisnoAllowableValueforthisFunction,sincethechannelsaremechanicallyactuatedbasedsolelyonthepositionofthepushbuttons.TwochannelsofManualInitiationFunctionareavailableandarerequiredtobeOPERABLEinMODES1,2,and3,andduringCOREALTERATIONS,OPDRVs,andmovementofirradiatedfuelassembliesinthesecondarycontainment.ThesearetheMODESandotherspecifiedconditionsinwhichtheSecondaryContainmentIsolationautomaticFunctionsarerequiredtobeOPERABLE.ACTIONSANotehasbeenprovidedtomodifytheACTIONSrelatedtoCREOASSysteminstrumentationchannels.Section1.3,CompletionTimes,specifiesthatonceaConditionhasbeenentered,subsequentdivisions,subsystems,components,orvariablesexpressedintheCondition,discoveredtobeinoperableornotwithinlimits,willnotresultinseparate(continued)SUSQUEHANNA-UNIT1B3.3-197Revision0 CREOASSystemInstrumentationB3.3.7.1BASESACTIONS(continued)entryintotheCondition.Section1.3alsospecifiesthatRequiredActionsoftheConditioncontinuetoapplyforeachadditionalfailure,withCompletionTimesbasedoninitialentryintotheCondition.However.theRequiredActionsforinoperableCREOASSysteminstrumentationchannelsprovideappropriatecompensatorymeasuresforseparateinoperablechannels.Assuch,aNotehasbeenprovidedthatallowsseparateConditionentryforeachinoperableCREOASSysteminstrumentationchannel.A.'1RequiredActionA.ldirectsentryintotheappropriateConditionreferencedinTable3.3.7.1-1.TheapplicableConditionspecifiedintheTableisFunctiondependent.Eachtimeachannelisdiscoveredinoperable.ConditionAisenteredforthatchannelandprovidesfortransfertotheappropriatesubsequentCondition.B.1.1B.1.2B.2.1andB.2.2Becauseofthediversityofsensorsavailabletoprovideinitiations'ighaTsandtheredundancyoftheCREOASSystemdesign,anallowableoutofservicetimeof12hoursforFunction2and24hoursforallotherFunctionshasbeenshowntobeacceptable(Refs.3and4)topermitrestorationofanyinoperablechanneltoOPERABLEstatus.However.thisoutofservicetimeisonlyacceptableprovidedtheassociatedFunctionisstillmaintainingCREOASSysteminitiationcapability.AFunctionisconsideredtobemaintainingCREOASSysteminitiationcapabilitywhensufficientchannelsareOPERABLEorintripsuchthatonetripsystemwillgenerateaninitiationsignalfromthegivenFunctiononavalidsignal.ForFunctions1and2,thiswouldrequireonetripsystemtohavetwochannelsperlogicstringOPERABLEorintrip.ForFunctions3.4.5.6and7,thiswouldrequireonetripsystemtohaveonechannelOPERABLE.(continued)SUSQUEHANNA-UNIT1B3.3-198Revision0 CREOASSystemInstrumentationB3.3.7.1BASESACTIONSB.1.1B.1.2B.2.1andB.2.2(continued)RequiredActionB.1.2isprovidedtoallowtheassociatedCREOASsubsystem(s)tobeplacedinthepressurization/filtrationmodeofoperationwithin1hour.ThisisacceptablebecauseplacingtheassociatedCREOASsubsystem(s)inthepressurization/filtrationmodeperformsthesafetyfunctionoftheaffectedinstrumentation.ThemethodusedtoplacetheCREOASsubsystem(s)inoperationmustprovideforautomaticallyre-initiatingthesubsystem(s)uponrestorationofpowerfollowingalossofpowertotheCREOASsubsystem(s).The1hourCompletionTime(B.l.l,B.1.2)isacceptablebecauseitminimizesriskwhileallowingtimeforrestoring,trippingofchannelsorplacinginoperation.IftheinoperablechannelcannotberestoredtoOPERABLEstatuswithintheallowableoutofservicetime,thechannelmustbeplacedinthetrippedconditionperRequiredActionB.2.1.Placingtheinoperablechannelintripwouldconservativelycompensatefortheinoperability.restorecapabilitytoaccommodateasinglefailure,andallowoperationtocontinue.RequiredAction8.2.2isprovidedtoallowtheassociatedCREOASsubsystem(s)tobeplacedinthepressurization/.filtrationmodeofoperation.ThisisacceptablebecauseplacingtheassociatedCREOASsubsystem(s)inthepressurization/filtrationmodeperformsthesafetyfunctionoftheaffectedinstrumentation.ThemethodusedtoplacetheCREOASsubsystem(s)inoperationmustprovideforautomaticallyre-initiatingthesubsystem(s)uponrestorationofpowerfollowingalossofpowertotheCREOASsubsystem(s).C.l.lC.1.2andC.2BecauseofthediversityofsensorsavailabletoprovideinitiationsignalsandtheredundancyoftheCREOASSystemdesign,anallowableoutofservicetimeof6hoursisprovidedtopermitrestorationofanyinoperablechanneltoOPERABLEstatus.However,thisoutofservicetimeisonlyacceptableprovidedtheassociatedFunctionisstillmaintainingCREOASSysteminitiationcapability.AFunction(continued)SUSQUEHANNA-UNIT1B3.3-199Revision0

~'

CREOASSystemInstrumentationB3.3.7.1BASESACTIONSC.l.1C.1.2andC.2(continued)isconsideredtobemaintainingCREOASSysteminitiationcapabilitywhensufficientchannelsareOPERABLEorintripsuchthatonetripsystemwillgenerateaninitiationsignalfromthegivenFunctiononavalidsignal.ForFunction8,thiswouldrequireonetripsystemtohaveonechannelOPERABLEorintrip.ForlossofCREOASSysteminitiationcapability,the6hourallowanceofRequiredActionC.2isnotappropriate.IftheFunctionisnotmaintainingCREOASSysteminitiationcapability,theCREOASSystemmustbedeclaredinoperablewithin1hourofdiscoveryofthelossofCREOASSysteminitiationcapabilityinbothtripsystems.RequiredActionC.1.2isprovidedtoallowtheassociatedCREOASsubsystem(s)tobeplacedinpressurization/filtrationmodeofoperationwithin1hour.ThisisacceptablebecauseplacingtheassociatedCREOASsubsystem(s)inthepressurization/filtrationmodeperformsthesafetyfunctionoftheaffectedinstrumentation.ThemethodusedtoplacetheCREOASsubsystem(s)inoperationmustprovideforautomaticallyre-initiatingthesubsystem(s)uponrestorationofpowerfollowingalossofpowertotheCREOASsubsystem(s).The1hourCompletionTime(C.l.landC.l.2)isacceptablebecauseitminimizesriskwhileallowingtimeforrestoringortrippingofchannels.IftheinoperablechannelcannotberestoredtoOPERABLEstatuswithintheallowableoutofservicetime,thechannelmustbeplacedinthetrippedconditionperRequiredActionC.2.Placingtheinoperablechannelintripperformstheintendedfunctionofthechannel(startstheleadCREOASsubsystemsinthepressurization/filtrationmode).Alternately,ifitisnotdesiredtoplacethechannelintrip(e.g.,asinthecasewhereitisnotdesiredtostartthesubsystem),ConditionDmustbeenteredanditsRequiredActiontaken.The6hourCompletionTimeisbasedontheconsiderationthatthisFunctionprovidestheprimarysignaltostarttheCREOASSystem;thus.ensuringthatthedesignbasisoftheCREOASSystemismet.(continued)SUSQUEHANNA-UNIT1B3.3-200Revision0 CREOASSystemInstrumentationB3.3.7.1BASESACTIONS(continued)D.1WithanyRequiredActionandassociatedCompletionTimenotmet,theassociatedCREOASsubsystemmustbedeclaredinoperableimmediatelyperRequiredActionD.1toensurethatcontrolroompersonnelwillbeprotectedintheeventofaDesignBasisAccident.SURVEILLANCEREQUIREMENTSAsnotedatthebeginningoftheSRs,theSRsforeachCREOASSysteminstrumentationFunctionarelocatedintheSRscolumnofTable3.3.7.1-1.TheSurveillancesaremodifiedbyaNotetoindicatethatwhenachannelisplacedinaninoperablestatussolelyforperformanceofrequiredSurveillances,entryintoassociatedConditionsandRequiredActionsmaybedelayed'forupto6hours,providedtheassociatedFunctionmaintainsCREOASSysteminitiationcapability.UponcompletionoftheSurveillance,orexpirationofthe6hourallowance,thechannelmustbereturnedtoOPERABLEstatusortheapplicableConditionenteredandRequiredActionstaken.ThisNoteisbasedonthereliabilityanalysis(Refs.3and4)assumptionoftheaveragetimerequiredtoperformchannelsurveillance.Thatanalysisdemonstratedthatthe6hourtestingallowancedoesnotsignificantlyreducetheprobabilitythattheCREOASSystemwillinitiatewhennecessary.SR3.371.1PerformanceoftheCHANNELCHECKonceevery12hoursensuresthatagrossfailureofinstrumentationhasnotoccurred.ACHANNELCHECKisnormallyacomparisonoftheparameterindicatedononechanneltoasimilarparameteronotherchannels.Itisbasedontheassumptionthatinstrumentchannelsmonitoringthesameparametershouldreadapproximatelythesamevalue.Significantdeviationsbetweentheinstrumentchannelscouldbeanindicationofexcessiveinstrumentdriftinoneofthechannelsorsomethingevenmoreserious.ACHANNELCHECKwilldetectgross'channelfailure;thus,itiskeytoverifyingtheinstrumentationcontinuestooperateproperlybetweeneachCHANNELCALIBRATION.(continued)SUSQUEHANNA-UNIT1B3.3-201Revision0 CREOASSystemInstrumentationB3.3.7.1BASESSURVEILLANCEREQUIREMENTSSR3.3.7.1.1(continued)Agreementcriteriawhicharedeterminedbytheplantstaffbasedonaninvestigationofacombinationofthechannelinstrumentuncertainties,may'beusedtosupportthisparametercomparisonandincludeindicationandreadability.Ifachannelisoutsidethecriteria,itmaybeanindicationthattheinstrumenthasdriftedoutsideitslimit,anddoesnotnecessarilyindicatethechannelisInoperable.TheFrequencyisbaseduponoperatingexperiencethatdemonstrateschannelfailureisrare.TheCHANNELCHECKsupplementslessformalchecksofchannelstatusduringnormaloperationaluseofthedisplaysassociatedwithchannelsrequiredbytheLCO.SR3.3.7.1.2ACHANNELFUNCTIONALTESTisperformedoneachrequiredchanneltoensurethattheentirechannelwillperformtheintendedfunction.TheFrequencyof92daysisbasedonthereliabilityanalyses-ofReferences3and4.ThisSRismodifiedbytwoNotes.Note1providesa.generalexceptiontothedefinitionofCHANNELFUNCTIONAL...TEST..Th'is-.exceptionisnecessarybecausethedesignofinstrumentati.on"-doesnotfacilitatefunctionaltestingofallrequired=contactsoftherelayswhichinputintothecombinational.-logic.(Reference6)Performanceofsuchatestcouldresultinaplanttransientorplacetheplantinanundorisksituation.Therefore,forthisSR.theCHANNELFUNCTIONALTESTverifiesacceptableresponsebyverifyingthechangeofstateoftherelaywhichinputsintothecombinationallogic.TherequiredcontactsnottestedduringtheCHANNELFUNCTIONALTESTaretestedundertheLOGICSYSTEMFUNCTIONALTEST,SR3.3.7.1.5.ThisisacceptablebecauseoperatingexperienceshowsthatthecontactsnottestedduringtheCHANNELFUNCTIONALTESTnormallypasstheLOGICSYSTEMFUNCTIONALTEST,andthetestingmethodologyminimizestheriskofunplannedtransients.(continued)SUSQUEHANNA-UNIT1B3.3-202Revision0 CREOASSystemInstrumentation83.3.7.1BASESSURVEILLANCEREQUIREMENTS(continued)SR3.3.7.1.2Note2providesasecondspecificexceptiontothedefinitionofCHANNELFUNCTIONALTEST.ForFunction8,certainchannelrelaysarenotincludedintheperformanceoftheCHANNELFUNCTIONALTEST.Theseexceptionsarenecessarybecausethecircuitdesigndoesnotfacilitatefunctionaltestingoftheentirechannelthroughtothecoiloftherelaywhichentersthecombinationallogic.(Reference6)Specifically,testingofallrequiredrelayswouldrequireliftingofleadsandinsertingtestequipmentwhichcouldleadtounplannedtransients.Therefore,forthesecircuits.theCHANNELFUNCTIONALTESTveritiesacceptableresponsebyverifyingtheactuationofcircuitdevicesuptothepointwhere-furthertestingwouldresultinanunplannedtransient.(References7and8)TherequiredrelaysnottestedduringtheCHANNELFUNCTIONALTESTaretestedundertheLOGICSYSTEMFUNCTIONALTEST,SR3.3.7.1.5.ThisisacceptablebecauseoperatingexperienceshowsthatthedevicesnottestedduringtheCHANNELFUNCTIONALTESTnormallypasstheLOGICSYSTEMFUNCTIONAL-TEST,andthetestingmethodologyminimizestheriskofunplannedtransients.SR3.3.7.1.35ndSR3.3.7.1.4ACHANNELCALIBRATIONverifiesthatthechannelrespondstothemeasuredparameterwithinthenecessaryrangeand.accuracy.CHANNELCALIBRATIONleavesthechanneladjustedtoaccountforinstrumentdriftsbetweensuccessivecalibrationsconsistentwiththeplantspecificsetpointmethodology.TheFrequenciesofSR3.3.7.1.3andSR3.3.7.1.4arebasedupontheassumptionof,a92dayanda24monthcalibrationintervalrespectively,inthedeterminationofthemagnitudeofequipmentdriftinthesetpointanalysis.(continued)SUSQUEHANNA-UNIT183.3-203Revision0 CREOASSystemInstrumentationB3.3.7.1SURVEILLANCEREQUIREMENTS(continued)SR3.3.7.1.5TheLOGICSYSTEMFUNCTIONALTESTdemonstratestheOPERABILITYoftherequiredinitiationlogicforaspecificchannel.ThesystemfunctionaltestingperformedinLCO3.7.3,"ControlRoomEmergencyOutsideAirSupply(CREOAS)System,"overlapsthisSurveillancetoprovidecompletetestingoftheassumedsafetyfunction.The24monthFrequencyisbasedontheneedtoperformportionsof'hisSurveillanceundertheconditionsthatapplyduringaplantoutageandthepotentialforanunplannedtransientiftheSurveillancewereperformedwiththereactoratpower.OperatingexperiencehasshownthesecomponentsusuallypasstheSurveillancewhenperformedatthe24monthFrequency.REFERENCES1.FSAR,Section6.4.1.FSAR,Table15.2.GENE-770-06-1,"BasesforChangestoSurveillanceTestInterva'lsaridAllowedOut-of-ServiceTimesforSelectedInstrumentationTechnicalSpecifications."February1991.4.NEDC-31677P-A,"TechnicalSpecificationImprovementAnalysisforBWRIsolationActuationInstrumentation."July1990.5.FinalPolicyStatementonTechnicalSpecificationImprovements,July22,1993(58FR32193).6.NRCInspectionandEnforcementManual.Part9900:TechnicalGuidance,StandardTechnicalSpecificationSection1.0Definitions,Issuedate12/08/86.7.PPLLettertoNRC.PLA-2618,ResponsetoNRCINSPECTIONREPORTS50-387/85-28and50-388/85-23,datedApril22,1986.8.SusquehannaSteamElectricStationNRCREGIONICOMBINEDINSPECTION50-387/90-20;50-388/90-20,FileR41-2,datedMarch5,1986.SUSQUEHANNA-UNIT1B3.3-204Revision0 LOPInstrumentationB3.3.8.1B3.3INSTRUMENTATIONB3.3.8.1LossofPower(LOP)InstrumentationBASESBACKGROUNDSuccessfuloperationoftherequiredsafetyfunctionsoftheEmergencyCoreCoolingSystems(ECCS)isdependentupontheavailabilityofadequatepowersourcesforenergizingthevariouscomponentssuchaspumpmotors,motoroperatedvalves,andtheassociatedcontrolcomponents.TheLOPinstrumentationmonitorsthe4.16kVemergencybuses.Offsitepoweristhepreferredsourceofpowerforthe4.16kVemergencybuses.Ifthemonitorsdeterminethatinsufficientpowerisavailable,thebusesaredisconnectedfromtheoffsitepowersourcesandconnectedtotheonsitedieselgenerator(DG)powersources.Each4.16kVemergencybushasitsownindependentLOPinstrumentationandassociatedtriplogic.Thevoltageforeachbusismonitoredatthreelevels,whichcanbeconsideredasthreedifferentundervoltageFunctions:LossofVoltage(<20K).4.16kVEmergencyBusUndervoltageDegradedVoltagetOCA(<93K),and4.16kVEmergencyBusUnderyoltageLowSetting(DegradedVoltage)(<65K).EachFunction,withtHeexceptionoftheLossofVoltagerelaysismonitoredbytwoundervoltagerelaysforeachemergencybus,whoseoutputsarearrangedinatwo-out-of-twologicconfiguration.TheLossofVoltageFunctionismonitoredbyoneundervoltagerelayforeachemergencybus,whoseoutputisarrangedinaone-out-of-onelogicconfiguration.Whenvoltagedegradesbelowthesetpoint,thechanneloutputrelayactuates,whichthenoutputsaLOPtripsignaltothetriplogic.APPLICABLESAFETYANALYSES,LCO,andAPPLICABILITYTheLOPinstrumentationisrequiredforEngineeredSafetyFeaturestofunctioninanyaccidentwithalossofoffsitepower.TherequiredchannelsofLOPinstrumentationensurethattheECCSandotherassumedsystemspoweredfromtheDGs.provideplantprotectionintheeventof'nyoftheReference1and2analyzedaccidentsinwhichalossofoffsitepowerisassumed.TheinitiationoftheDGsonlossofoffsitepower,andsubsequentinitiationoftheECCS,ensurethatthef'uelpeakcladdingtemperatureremainsbelowthelimitsof10CFR50.46.(continued)SUSQUEHANNA-UNIT1B3.3-205Revision0 LOPInstrumentationB3.3.8.1BASESAPPLICABLESAFETYANALYSES,LCO~andAPPLICABILITY(continued)AccidentanalysescredittheloadingoftheDGbasedonthelossofoffsitepowerduringalossofcoolantaccident.ThedieselstartingandloadingtimeshavebeenincludedinthedelaytimeassociatedwitheachsafetysystemcomponentrequiringDGsuppliedpowerfollowingalossofoffsitepower.TheLOPinstrumentationsatisfiesCriterion3oftheNRCPolicyStatement.(Ref.3)TheOPERABILITYoftheLOPinstrumentationisdependentupontheOPERABILITYoftheindividualinstrumentationchannelFunctionsspecifiedinTable3.3.8.1-1.EachFunctionmusthavearequirednumberofOPERABLEchannelsper4.16kVemergencybus,withtheirsetpointswithinthespecifiedAllowableValues.AchannelisinoperableifitsactualtripsetpointisnotwithinitsrequiredAllowableValue.Theactualsetpointiscalibratedconsistentwithapplicablesetpointmethodologyassumptions.TheAllowableValuesare'pecifiedf'reachFunctionintheTable.Tripsetpointsarespecifiedinthesystemcalculations.Thesetpointsare=selectedtoensurethatthesetpointsdonotexceedthe=Al.lowable-Value.Operationwithatripsetpointlessconservative:-thanthenominaltripsetpoint,butwithintheAllowable.Value.isacceptable.Tripsetpointsarethosepredetermined;valuesofoutputatwhichanactionshouldtake=place-.-.:The-setpointsarecomparedtotheactualprocess=parameter-(e.g.,degradedvoltage),andwhenthemeasured';outputvalueoftheprocessparameterreachesthesetpoint-'..the==associateddevicechangesstate.TheAllowable:Values-are-derivedfromthelimitingvaluesoftheprocessparametersobtainedfromthesafetyanalysis.Thetripsetpointsarethenderivedbasedonengineeringjudgement.ThespecificApplicableSafetyAnalyses,LCO,andApplicabilitydiscussionsarelistedbelowonaFunctionbyFunctionbasis.(continued)SUSQUEHANNA-UNIT1B3.3-206Revision0 LOPInstrumentationB3.3.8.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY(continued)1.4.16kVEmerencBusUndervoltaeLossofVoltae(~20KLossofvoltageona4.16kVemergencybusindicatesthatoffsitepowermaybecompletelylosttotherespectiveemergencybusandisunabletosupplysufficientpowerforproperoperationoftheapplicableequipment.Therefore.thepowersupplytothebusistransf'erredfromoffsitepowertoDGpowerwhenthevoltageonthebusdropsbelowtheLossofVoltageFunctionAllowableValues(lossofvoltagewithashorttimedelay).Thisensuresthatadequatepowerwillbeavailabletotherequiredequipment.TheBusUndervoltageAllowableValuesarelowenoughtopreventinadvertentpowersupplytransfer,buthighenoughtoensurethatpowerisavailabletotherequiredequipment.TheTimeDelayAllowableValuesarelongenoughtoprovidetimefortheoffsitepowersupplytorecovertonormalvoltages,butshortenoughtoensurethatpowerisavailabletotherequiredequipment.Onechannelof4.16kVEmergencyBusUndervoltage(LossofVoltage)Function.perassociatedemergencybusisrequiredtobeOPERABLEwhentheassociatedDGisrequiredtobeOPERABLEtoendor'ethatnosingleinstrumentfailurecanprecludetheDGfunction.4.16kVEmergencyBusUndervoltage(LossofVoltage)relaycontrolsandprovidesapermissivetoallowclosureoftheassociatedalternatesourcebreakerandtheassociatedDGbreaker.(onechannelinputtoeachofthefourDGs.)RefertoLCO3.8.1,"ACSources-Operating."and3.8.2."ACSources-Shutdown,"forApplicabilityBasesfortheDGs.2.3.4.16kVEmerencBusUndervoltaeDeradedVoltaeAreducedvoltageconditionona4kVemergencybusindicatesthat,whileoffsitepowermaynotbecompletelylosttotherespectiveemergencybus,availablepowermaybeinsufficientforstartinglargeECCSmotorswithoutriskingdamagetothemotorsthatcoulddisabletheECCSfunction.Therefore,powersupplytothebusistransferredfromoffsitepowertoonsiteDGpowerwhenthereisnooffsitepoweroradegradedpowersupplytothebus.ThistransferwilloccuronlyifthevoltageoftheprimaryandalternatepowersourcesdropbelowtheDegradedVoltageFunction(continued)SUSQUEHANNA-UNIT1B3.3-207Revision0 LOPInstrumentationB3.3.8.1BASESAPPLICABLESAFETYANALYSES,LCO,andAPPLICABILITY2.3.4.16kVEmerencBusUndervoltaeDeradedVoltae(continued)AllowableValues(degradedvoltagewithatimedelay)andthesourcebreakerstripwhichcausestheDGtostart.Thisensuresthatadequatepowerwillbeavailabletotherequiredequipment.TwoFunctionsareprovidedtomonitordegradedvoltageattwodifferentlevels.TheseFunctionsaretheDegradedVoltageLOCA((93K)andDegradedVoltageLowSetting((65K).Theserelaysrespondtodegradedvoltageasfollows:93Kforapproximately5minutes(whennoLOCAsignalispresent)andapproximately10seconds(withaLOCAsignalpresent),and65K(DegradedVoltageLowSetting).ThecircuitryisdesignedsuchthatwiththeLOCAsignalpresent,thenon-LOCAtimedelayisphysicallybypassed.TheDegradedVoltageLOCAFunctionpreservestheassumptionsoftheLOCAanalysisandtheDegradedVoltageLowSettingFunctionpreservestheassumptionsoftheaccidentsequenceanalysisintheFSAR.TheBusUndervoltageAllowableValuesarelowenoughtopreventinadvertentpowersupplytransfer,buthighenoughtoensurethatsufficientpowerisavailabletotherequiredequipment.TheTimeDelayAllowableValuesarelongenoughtoprovidetimefortheoffsitepowersupplytorecovertonormalvoltages,butshortenoughtoensurethatsufficientpowerisavailabletotherequiredequipment.Twochannelsof4.16kVEmergencyBusUndervoltage(DegradedVoltage)perFunction(Functions2and3)perassociatedbusarerequiredtobeOPERABLEwhentheassociatedDGisrequiredtobe.OPERABLE.ThisensuresnosingleinstrumentfailurecanprecludethestartofDGs(eachlogicinputstoeachofthefourDGs).RefertoLCO3.8.1andLCO3.8.2forApplicabilityBasesfortheDGs.ACTIONSANotehasbeenprovidedtomodifytheACTIONSrelatedtoLOPinstrumentationchannels.Section1.3,CompletionTimes.specifiesthatonceaConditionhasbeenentered,subsequentdivisions,subsystems,components,orvariablesexpressedintheCondition,discoveredtobeinoperableornotwithinlimits,willnotresultinseparateentryinto(continued)SUSQUEHANNA-UNIT1B3.3-208Revision0 LOPInstrumentationB3.3.8.1BASESACTIONS(continued)theCondition.Section1.3alsospecifiesthatRequiredActionsoftheConditioncontinuetoapplyforeachadditionalfailure,withCompletionTimesbasedoninitialentryintotheCondition.However,theRequiredActionsforinoperableLOPinstrumentationchannelsprovideappropriatecompensatorymeasuresforseparateinoperablechannels.Assuch,aNotehasbeenprovidedthatallowsseparateConditionentryforeachinoperableLOPinstrumentationchannel.A.1RequiredActionA.ldirectsentryintotheappropriateConditionreferencedinTable3.3.8.1-1.TheapplicableConditionspecifiedintheTableisFunctiondependent.Eachtimeachannelisdiscoveredinoperable,ConditionAisenteredforthatchannelandprovidesfortransfertotheappropriatesubsequentCondition.B.1Withoneormorechannelsof'Functioninoperable.theFunctionisnot'capableofperformingtheintendedfunction.Therefore.only1hourisallowedtorestoretheinoperablechanneltoOPERABLEstatus.IftheinoperablechannelcannotberestoredtoOPERABLEstatuswithintheallowable~outofser'vicetime,thechannelmustbeplacedinthetrippedconditionperRequiredActionB.1.Placingtheinoperablechannelintripwouldconservativelycompensatefortheinoperability,restorecapabilitytoaccommodateasihglefailure(withintheLOPinstrumentation),andallowoperationtocontinue.Alternately,ifitisnotdesiredtoplacethechannelintrip(e.g.,as'inthecasewhereplacingthechannelintripwouldresultinaDGinitiation),Condition0mustbeenteredanditsRequiredActiontaken.TheCompletionTimeisintendedtoallowtheoperatortimetoevaluateandrepairanydiscoveredinoperabilities.The1hourCompletionTimeisacceptablebecauseitminimizesriskwhileallowingtimeforrestorationortrippingofchannels.(continued)SUSQUEHANNA-UNIT1B3.3-209Revision0 LOPInstrumentation83.3.8.1BASESACTIONS(continued)C.1WithonechanneloftheFunctioninoperable,theFunctionisnotcapableofperformingtheintendedfunction.Therefore,only1hourisallowedtorestoretheinoperablechanneltoOPERABLEstatus.IftheinoperablechannelcannotberestoredtoOPERABLEstatuswithintheallowableoutofservicetime,ConditionDmustbeenteredanditsRequiredActiontaken.TheCompletionTimeisintendedtoallowtheoperatortimeto'evaluateandrepairanydiscoveredinoperabilities.The1hourCompletionTimeisacceptablebecauseitminimizesriskwhileallowingtimef'rrestorationofchannels.D.1IftheRequiredActionandassociatedCompletionTimesofConditionsBorCarenotmet,theassociatedFunctionisnotcapableofperformingtheintendedfunction.Therefore,theassociated.DG(s)isdeclaredinoperableimmediately.ThisrequiresentryintoapplicableConditionsandRequiredActionsofLCO3.'.8..'l.and,LCO3.8-.2.,whichprovide-appropriateact1ons"-for;the.-inoperable'-DG(s-)..-".URVBIL'LANCE:REQUIREMENTS..Asnotedatthe=.beginningof-the<SRs-.',the-SRs'or*eachLOPinstrumentationFunction-;are:1ocated=in-the.-SRs"col.umnofTable3.3.8.1-1.TheSurveillancesaremodifiedbyaNotetoindicatethatwhenachannelisplacedinaninoperablestatussolelyforperformanceofrequiredSurveillances,entryintoassociatedConditionsandRequiredActionsmaybedelayedforupto6hoursprovidedtheassociatedFunctionmaintainsDGinitiationcapability.UponcompletionoftheSurveillance,orexpirationofthe6hourallowance,thechannelmustbereturnedtoOPERABLEstatusortheapplicableConditionenteredandRequiredActionstaken.(continued)SUSQUEHANNA-UNIT1B3.3-Z10Revision0 LOPInstrumentationB3.3.8.1BASESSURVEILLANCEREQUIREMENTS(continued)SR3.3.8.1.1PerformanceoftheCHANNELCHECKonceevery12hoursensuresthatagrossfailureofinstrumentationhasnotoccurred.ACHANNELCHECKisnormallyacomparisonof'heparameterindicatedononechanneltoasimilarparameteronotherchannels.Itisbasedontheassumptionthatinstrumentchannelsmonitoringthesameparametershouldreadapproximatelythesamevalue.Significantdeviationsbetweentheinstrumentchannelscouldbeanindicationofexcessiveinstrumentdriftinoneofthechannelsorsomethingevenmoreserious.ACHANNELCHECKwilldetectgrosschannelfailure;thus,itiskeytoverifyingtheinstrumentationcontinuestooperateproperlybetweeneachCHANNELCALIBRATION.Agreementcriteriawhicharedeterminedbytheplant'staffbasedonaninvestigationofacombinationofthechannelinstrumentuncertainties,maybeusedtosupportthisparametercomparisonandincludeindicationandreadability.Ifachannelisoutsidethecriteria,itmaybeanindicationthattheinstrumenthasdriftedoutsideitslimit.TheFrequency'sbaseduponoperatingexperiencethatdemonstrateschannelfailureisrare.TheCHANNELCHECKsupplementslessformalchecksofchannelsduringnormaloperationaluseofthedisplaysassociatedwithchannelsrequiredbytheLCO.SR3.3.8.1.2ACHANNELFUNCTIONALTESTisperformedoneachrequiredchanneltoensurethattheentirechannelwillperformtheintendedfunction.TheFrequencyof31daysisbasedonoperatingexperiencewithregardtochannelOPERABILITYanddrift,whichdemonstratesthatfailureofmorethanonechannelofagivenFunctioninany31dayintervalisarareevent.SR3."3.8.1.3ACHANNELCALIBRATIONverifiesthatthechannelrespondstothemeasuredparameterwithinthenecessaryrangeand(continued)SUSQUEHANNA-UNIT1B3.3-211Revision0 LOPInstrumentationB3.3.8.1BASESSURVEILLANCEREQUIREMENTSSR3.3.8.1.3(continued)accuracy.CHANNELCALIBRATIONleavesthechanneladjustedtoaccountforinstrumentdriftsbetweensuccessivecalibrationsconsistentwiththeplantspecificsetpointmethodology.Anysetpointadjustmentshallbeconsistentwiththeassumptionsofthecurrentplantspecificsetpointmethodology.TheFrequencyisbasedupontheassumptionofan24monthcalibrationintervalinthedeterminationofthemagnitudeofequipmentdriftinthesetpointanalysis..SR3.3.8.1.4TheLOGICSYSTEMFUNCTIONALTESTdemonstratestheOPERABILITYoftherequiredactuationlogicforaspecificchannel.ThesystemfunctionaltestingperformedinLCO3.8.1andLCO3.8.2overlapsthisSurveillancetoprovidecompletetestingoftheassumedsafetyfunctions.The24monthFrequencyisbasedontheneedtoperformportionsofthisSurveillanceundertheconditionsthatapplyduringaplantoutageandthepotentialforan'nplannedtransientiftheSurveillancewereperformedwiththereactoratpower.OperatingexperiencehasshownthesecomponentsusuallypasstheSurveillancewhenperformedatthe24monthFrequency.REFERENCES1.FSAR,Section6.3.2.FSAR,Chapter15.3.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR32193)SUSQUEHANNA-UNIT1B3.3-212Revision0 RPSElectricPowerMonitoringB3.3.8.2B3.3INSTRUMENTATIONB3.3.8.2ReactorProtectionSystem(RPS)ElectricPowerMonitoringBASESBACKGROUNDRPSElectricPowerMonitoringSystemisprovidedtoisolatetheRPSbusfromthemotorgenerator(HG)setoranalternatepowersupplyintheeventofovervoltage,undervoltage,orunderfrequency.ThissystemprotectstheloadsconnectedtotheRPSbusagainstunacceptablevoltageandfrequencyconditions(Ref.1)andformsanimportantpartoftheprimarysuccesspathoftheessentialsafetycircuits.SomeoftheessentialequipmentpoweredfromtheRPSbusesincludestheRPSlogic,scramsolenoids,and,variousvalveisolationlogic.RPSelectricpowermonitoringassemblywilldetectanyabnormalhighorlowvoltageorlowfrequencyconditionintheoutputsofthetwoHGsetsorthealternatepowersupplyandwillde-energizeitsrespectiveRPSbus.therebycausingallsafetyfunctionsnormallypoweredbythisbustode-energize.IntheeventoffailureofanRPSElectricPowerMonitoringSystem(e.g..bothinserieselectricpowermonitoringassemblies),theRPSloadsmayexperiencesignificanteffectsfromtheunregulatedpowersupply.DeviationfromthenominalconditionscanpotentiallycausedamagetothescramsolenoidsandotherC1asslEdevices.Intheeventofalowvoltageconditionforanextendedperiodoftime.thescramsolenoidscanchatterandpotentiallylosetheirpneumaticcontrolcapability,resultinginalossofprimaryscramaction.Intheeventofanoveryoltagecondition,theRPSlogicrelaysandscramsolenoids,aswellasthemainsteamisolationvalve(HSIV)solenoids,mayexperienceavoltagehigherthantheirdesignvoltage.Iftheoyervoltageconditionpersistsforanextendedtimeperiod,itmaycauseequipmentdegradationandthelossofplantsafetyfunction.TworedundantClass1EcircuitbreakersareconnectedinseriesbetweeneachRPSbusanditsHGset.andbetweeneachRPSbusanditsalternatepowersupply.Eachofthese(continued)SUSQUEHANNA-UNIT1B3.3-213Revision0 RPSElectricPowerHonitoringB3.3.8.2BASESBACKGROUND(continued)circuitbreakershasanassociatedindependentsetofClass1Eovervoltage,undervoltage,andunderfrequencysensinglogic.Together,acircuitbreakeranditssensinglogicconstituteanelectricpowermonitoringassembly.IftheoutputoftheHGsetexceedspredeterminedlimitsofovervoltage,undervoltage,orunderfrequency,atripcoi1drivenbythislogiccircuitryopensthecircuitbreaker,whichremovestheassociatedpowersupplyfromservice.APPLICABLESAFETYANALYSESTheRPSelectricpowermonitoringisnecessarytomeettheassumptionsofthesafetyanalysesbyensuringthattheequipmentpoweredfromtheRPSbusescanperformitsintendedfunction.RPSelectricpowermonitoringprovidesprotectiontotheRPSandothersystemsthatreceivepowerfromtheRPSbuses,byactingtodisconnecttheRPSfromthepowersupplyunderspecifiedconditionsthatcoulddamagetheRPSbuspoweredequipment.RPSelectricpowermonitoringsatisfiesCriterion3oftheNRCPolicyStatement(Ref.3).LCOTheOPERABILITYofeachRPSelectricpowermonitoringassemblyisdependentontheOPERABILITYoftheovervoltage,undervoltage,andunderfrequencylogic,aswellastheOPERABILITYoftheassociatedcircuitbreaker.TwoelectricpowermonitoringassembliesarerequiredtobeOPERABLEforeachinservicepowersupply.ThisprovidesredundantprotectionagainstanyabnormalvoltageorfrequencyconditionstoensurethatnosingleRPSelectricpowermonitoringassemblyfailurecanprecludethefunctionofRPSbuspoweredcomponents.Eachinserviceelectricpowermonitoringassembly'striplogicsetpointsarerequiredtobewithinthespecifiedAllowableValue.Theactualsetpointiscalibratedconsistentwithapplicableanalysisassumptions.AllowableValuesarespecifiedforeachRPSelectricpowermonitoringassemblytriplogic(refertoSR3.3.8.2.2).Tripsetpointsarespecifiedinthesetpointcalculations.ThesetpointsareselectedtoensurethatthesetpointsdonotexceedtheAllowableValue.Achannelisinoperableif(continued)SUSQUEHANNA-UNIT1B3.3-214Revision0

RPSElectricPowerMonitoring83.3.8.2BASESLCO(continued)itsactualtripsetpointisnotwithinitsrequiredAllowableValue.Tripsetpointsarethosepredeterminedvaluesofoutputatwhichanactionshouldtakeplace.Thesetpointsarecomparedtotheactualprocessparameter(e.g.,overvoltage),andwhenthemeasuredoutputvalueoftheprocessparameterreachesthesetpoint,theassociateddevicechangesstate.TheRPSPowerMonitoringAllowableValuesarederivedfromthelimitingvaluesof'heprocessparametersobtainedfromthesafetyanalysis.TheAllowableValuesfortheinstrumentsettingsarebasedontheRPSpowersupplyprovidingasuitablepowersourcefortheassociatedelectricalloads.Themostlimitingvoltagerequirementandassociatedlinelossesdeterminethesettingsoftheelectricpowermonitoringinstrumentchannels.ThesettingsarecalculatedbasedonthecontinuousloadsonthebusesandRPSMGsetoralternatepowersupplybeing120VACand60Hz.AtimedelayisprovidedforeachoftheRPSpowermonitoringfunctions.ThetimedelayisprovidedonlytopreventspurioustripsanddoesnotimpacttheOPERABILITYoftheRPSpowermonitoringsystem,provideditwouldnotpreventa.requiredtripfromactuating.APPLICABILITYTheoperationoftheRPSelectricpowermonitoringassemblies:isessentialtodisconnecttheRPSbuspoweredcomponentsfromtheMGsetoralternatepowersupplyduringabnormalvoltageorfrequencyconditions.Sincethedegradationofanonclass1EsourcesupplyingpowertotheRPSbuscanoccurasaresultofanyrandomsinglefailure,theOPERABILITYoftheRPSelectricpowermonitoringassembliesisrequiredwhentheRPSbuspoweredcomponentsarerequiredtobeOPERABLE.ThisresultsintheRPSElectricPowerMonitoringSystemOPERABILITYbeingrequiredinMODES1,2.and3;andinMODES4and5.ACTIONSA.1IfoneRPSelectricpowermonitoringassemblyforaninservicepowersupply(MGsetoralternate)isinoperable,oroneRPSelectricpowermonitoringassemblyoneach(continued)SUSQUEHANNA-UNIT1B3.3-215Revision0 RPSElectricPowerMonitoringB3.3.8.2BASESACTIONSA.l(continued)inservicepowersupplyisinoperable,theOPERABLEassemblywillstillprovideprotectiontotheRPSbuspoweredcomponentsunderdegradedvoltageorfrequencyconditions.However,thereliabilityandredundancyoftheRPSElectricPowerMonitoringSystemisreduced,andonlyalimitedtime(72hours)isallowedtorestoretheinoperableassemblytoOPERABLEstatus.IftheinoperableassemblycannotberestoredtoOPERABLEstatus,theassociatedpowersupply(s)mustberemovedfromservice(RequiredActionA.1).ThisplacestheRPSbusinasafecondition.AnalternatepowersupplywithOPERABLEpoweringmonitoringassembliesmaythenbeusedtopowertheRPSbus.The72hourCompletionTimetakesintoaccounttheremainingOPERABLEelectricpowermonitoringassemblyandthelowprobabilityofaneventrequiringRPSelectri'cpowermonitoringprotectionoccurringduringthisperiod.Itallowstimeforplantoperationspersonneltotakecorrectiveactionsortoplacetheplantintherequiredconditioninanorderlymannerandwithoutchallengingplantsystems.Alternately,ifi'tisnotdesiredtoremovethepowersupplyfromservice(e.g.,asinthecasewhereremovingthepowersupply(s)fromservicewouldresultinascramorisolation),ConditionCorD,asapplicable,mustbeenteredanditsRequiredActionstaken.B.1Ifbothpowermonitoringassembliesforaninservicepowersupply(MGsetoralternate)areinoperableorbothpowermonitoringassembliesineachinservicepowersupplyareinoperable,thesystemprotectivefunctionislost.Inthiscondition,1hourisallowedtorestoreoneassemblytoOPERABLEstatusforeachinservicepowersupply.IfoneinoperableassemblyforeachinservicepowersupplycannotberestoredtoOPERABLEstatus,theassociatedpowersupply(s)mustberemovedfromservicewithin1hour(RequiredActionB.1).Analternatepowersupplywith(continued)SUSQUEHANNA-UNIT1B3.3-216Revision0 RPSElectricPowerMonitoringB3.3.8.2BASESACTIONSB.l(continued)'PERABLEassembliesmaythenbeusedtopoweroneRPSbus.The1hourCompletionTimeissufficientfortheplantoperationspersonneltotakecorrectiveactionsandisacceptablebecauseitminimizesriskwhileallowingtimeforrestorationorremovalfromserviceoftheelectricpowermonitoringassemblies.Alternately,if'tisnotdesiredtoremovethepowersupply(s)fromservice(e.g..asinthecasewhereremovingthepowersupply(s)fromservicewouldresultinascramorisolation),ConditionCorD,asapplicable,mustbeenteredanditsRequiredActionstaken.C.landC.2IfanyRequiredActionandassociatedCompletionTimeofConditionAorBarenotmetinMODE1,2,or3,aplantshutdownmustbeperformed.'Thisplacestheplantinaconditionwhereminimalequipment,poweredthroughtheinoperableRPSelectricpowermonitoringassembly(s),isrequiredandensuresthatthesafetyfunctionoftheRPS(e.g.,scramof'controlrods)isnotrequired.TheplantshutdownisaccomplishedbyplacingtheplantinMODE3within12hoursandinMODE4within36hours.TheallowedCompletionTimesarereasonable,basedonoperatingexperience,toreachtherequiredplantconditionsfromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.D.lD.2.1andD.2.2IfanyRequiredActionandassociatedCompletionTimeofConditionAor8arenotmetinMODE4or5,theoperatormustimmediatelyinitiateactiontofullyinsertallinsertablecontrolrodsincorecellscontainingoneormorefuelassemblies.RequiredActionD.1resultsintheleastreactiveconditionforthereactorcoreandensuresthatthesafetyfunctionoftheRPS(e.g.,scramofcontrolrods)isnotrequired.(continued)SUSQUEHANNA-UNIT1B3.3-217Revision0 RPSElectricPowerMonitoringB3.3.8.2BASESACTIONSD.1D.2.1and0.2.2(continued)Inaddition,actionmustbeimmediatelyinitiatedtoeitherrestoreoneelectricpowermonitoringassemblytoOPERABLEstatusfortheinservicepowersourcesupplyingtherequiredinstrumentationpoweredfromtheRPSbus(RequiredAction0.2.1)ortoisolatetheRHRShutdownCoolingSystem(RequiredActionD.2.2).RequiredAction0.2.1isprovidedbecausetheRHRShutdownCoolingSystemmaybeneededtoprovidecorecooling.Allactionsmustcontinueunti1theapplicableRequiredActionsarecompleted.SURVEILLANCEREQUIREMENTSSR3.3.8.2.1ACHANNELFUNCTIONALTESTisperformedoneachovervoltage,undervoltage,andunderfrequencysystemtoensurethattheentirechannelwillperformtheintendedfunction.Anysetpointadjustmentshallbeconsistentwiththeassumptionsofthecurrentplantspecificsetpointmethodology.AsnotedintheSurveillance,theCHANNELFUNCTIONALTESTisonlyrequiredtobeperformedwhiletheplantisinaconditioninw5ichthelossoftheRPSbuswillnotjeopardizesteadystatepoweroperation(thedesignofthesystemissuchthatthepowersourcemustberemovedfromservicetoconducttheSurveillance).The24hoursisintendedtoindicateanoutageofsufficientdurationtoallowforschedulingandproperperformanceoftheSurveillance.The184dayFrequencyandtheNoteintheSurveillancearebasedonguidanceprovidedinGenericLetter91-09(Ref.2).SR3.3.8.2.2CHANNELCALIBRATIONverifiesthatthechannelrespondstothemeasuredparameterwithinthenecessaryrangeandaccuracy.CHANNEL'CALIBRATIONleavesthechanneladjustedtoaccountforinstrumentdriftsbetweensuccessivecalibrationsconsistentwiththeplantspecificsetpointmethodology.(continued)SUSQUEHANNA-UNIT1B3.3-218Revision0 RPSElectricPowerMonitoringB3.3.8.2BASESSURVEILLANCEREQUIREMENTSSR3.3.8.2.2(continued)TheFrequencyisbasedontheassumptionofan24monthcalibrationintervalinthedeterminationofthemagnitudeofequipmentdriftinthesetpointanalysis.SR3.3.8.2.3Performanceofasystemfunctionaltestdemonstratesthat.witharequiredsystemactuation(simulatedoractual)signal,thelogicofthesystemwillautomaticallytripopentheassociatedpowermonitoringassembly.Onlyonesignalperpowermonitoringassemblyisrequiredtobetested.ThisSurveillanceoverlapswiththeCHANNELCALIBRATIONtoprovidecompletetestingofthesafetyfunction.ThesystemfunctionaltestoftheClass1Ecircuitbreakersisincludedaspartofthistesttoprovidecompletetestingofthesafetyfunction.Ifthebreakersareincapableofoperating,theassociatedelectricpowermonitoringassemblywouldbeinoperable.The24monthFrequencyisbasedontheneedtoperformthisSurveillanceundertheconditionsthatapplyduringaplantoutageandthepotentialforanunplannedtransientiftheSurveillancewereperformedwiththereactoratpower.OperatingexperiencehasshownthatthesecomponentsusuallypasstheSurveillancewhenperformedatthe24monthFrequency.REFERENCES1.FSAR.Section8.3.1.6.2.NRCGenericLetter91-09,"ModificationofSurveillanceIntervalfortheElectricalProtectiveAssembliesinPowerSuppliesfortheReactorProtectionSystem3.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR32193)SUSQUEHANNA-UNIT1B3.3-219Revision0

RecirculationLoopsOperatingB3.4.1B3.4REACTORCOOLANTSYSTEM(RCS)B3.4.1RecirculationLoopsOperatingBASESBACKGROUND.TheReactorCoolantRecirculationSystemisdesignedtorovideaforcedcoolantflowthroughthecoretoremoveeatfromthefuel.Theforcedcoolantflowremovesmoreheatfromthefuelthanwouldbepossiblewithjustnaturalcirculation.Theforcedflow,therefore,allowsoperationatsignificantlyhigherpowerthanwouldotherwisebepossible.Therecirculationsystemalsocontrolsreactivityoverawidespanofreactorpowerbyvaryingtherecirculationflowratetocontrolthevoidcontentofthemoderator.TheReactorCoolantRecirculationSystemconsistsoftworecirculationpumploopsexternaltothereactorvessel.Theseloopsprovidethepipingpathforthedrivingflowofwatertothereactorvesseljetpumps.Eachexternalloopcontainsonevariablespeedmotordrivenrecirculationpump,amotorgenerator(MG)settocontrolpumpspeedandassociatedpiping,jetpumps.valves,andinstrumentation.Therecirculationpump,piping,andvalvesarepartofthereactorcoolantpressureboundaryandarelocatedinsidethedrywellstructure.Thejetpumpsarereactorvesselinternals.Therecirculatedcoolantconsistsofsaturatedwaterfromthesteamseparatorsanddryersthathasbeensubcooledbyincomingfeedwater.Thiswaterpassesdowntheannulusbetweenthereactorvesselwallandthecoreshroud.Aportionofthecoolantflowsfromthevessel,throughthetwoexternalrecirculationloops.andbecomesthedrivingflowforthejetpumps.Eachofthetwoexternalrecirculationloopsdischargeshighpressureflowintoanexternalmanifold,fromwhichindividualrecirculationinletlinesareroutedtothejetpumpriserswithinthereactorvessel.Theremainingportionofthecoolantmixtureintheannulusbecomesthesuctionflowforthejetpumps.Thisflowentersthejetpumpatsuctioninletsandisacceleratedbythedrivingflow.Thedriveflowandsuctionflowaremixedinthejetpumpthroatsection.Thetotalflowthenpassesthroughthejetpumpdiffusersectionintotheareabelowthecore(lowerplenum),gainingsufficientheadintheprocesstodrivetherequiredflowupwardthroughthecore.Thesubcooledwaterentersthebottomofthefuelchannelsandcontactsthefuelcladding,whereheat(continued)SUSQUEHANNA-UNIT183.4-1Revision0 RecirculationLoopsOperatingB3.4.1BASESBACKGROUND(continued)istransferredtothecoolant.Asitrises,thecoolantbeginstoboil,creatingsteamvoidswithinthefuelchannelthatcontinueuntilthecoolantexitsthecore.Becauseof'educedmoderation,thesteamvoidingintroducesnegativereactivitythatmustbecompensatedfortomaintainortoincreasereactorpower.Therecirculationflowcontrolallowsoperatorstoincreaserecirculationflowandsweepsomeofthevoidsfromthefuelchannel.overcomingthenegativereactivityvoideffect.Thus,thereasonforhavingvariablerecirculationflowistocompensateforreactivityeffectsofboilingoverawiderangeofpowergenerationwithouthavingtomovecontrolrodsanddisturbdesirablefluxpatterns.Eachrecirculationloopismanuallystartedfromthecontrolroom.TheHGsetprovidesregulationofindividualrecirculationloopdriveflows.Theflowineachloop.ismanuallycontrolled.APPLICABLESAFETYANALYSESTheoperationoftheReactorCoolantRecirculationSystemisaninitialconditionassumed,inthedesignbasislossofcoolantaccident(LOCA)(Ref.1).DuringaLOCAcausedbyarecirculatiohlodppipebreak,theintactloopisassumedtoprovidecoolantflowduringthefirstfewsecondsoftheaccident.Theinitialcoreflowdecreaseisrapidbecausetherecirculationpumpinthebrokenloopceasestopumpreactorcoolanttothevesselalmostimmediately.Thepumpintheintactloopcoastsdownrelativelyslowly.Thispumpcoastdowngovernsthecoreflowresponseforthenextseveralsecondsuntilthejetpumpsuctionisuncovered(Ref.1).Theanalysesassumethatbothloopsareoperatingatthesameflowpriortotheaccident.However,theLOCAanalysiswasreviewedforthecasewithaflowmismatchbetweenthetwoloops,withthepipebreakassumedtobeintheloopwiththehigherflow.Whiletheflowcoastdownandcoreresponsearepotentiallymoresevereinthisassumedcase(sincetheintactloopstartsatalowerflowrateandthecoreresponseisthesameasifbothloopswereoperatingatalowerflowrate),asmallmismatchhasbeendeterminedtobeacceptablebasedonengineeringjudgement.Therecirculationsystemisalsoassumedtohavesufficientflowcoastdowncharacteristicstomaintainfuelthermalmarginsduringabnormaloperationaltransients(Ref.2),whichareanalyzedinChapter15oftheFSAR.(continued)SUSQUEHANNA-UNIT1B3.4-2Revision0 RecirculationLoopsOperatingB3.4.1BASESAPPLICABLESAFETYANALYSES(continued)PlantspecificLOCAanalyseshavebeenperformedassumingonlyoneoperatingrecirculationloop.Theseanalyseshavedemonstratedthat,intheeventofaLOCAcausedbyapipebreakintheoperatingrecirculationloop,theEmergencyCoreCoolingSystemresponsewillprovideadequatecorecooling,providedthattheLHGRlimitforSPC9x9-2fuelandGEleaduseassembliesandtheAPLHGRlimitf'rSPCATRIUMŽ-10fuelismodified.ThetransientanalysesofChapter15oftheFSARhavealsobeenperformedforsinglerecirculationloopoperationanddemonstratesufficientflowcoastdowncharacteristicstomaintainfuelthermalmarginsduringtheabnormaloperationaltransientsanalyzedprovidedtheMCPRrequirementsaremodified.Duringsinglerecirculationloopoperation,modificationtotheReactorProtectionSystem(RPS)averagepowerrangemonitor(APRM)instrumentsetpointsisalsorequiredtoaccountforthedifferentrelationshipsbetweenrecirculationdriveflowandreactorcoreflow.TheAPLHGR,LHGR,andMCPRsetpointsforsingleloopoperationarespecifiedintheCOLR.TheAPRMflowbiasedsimulatedTHERMALPOWERsetpointisinLCO3.3.1.1,"ReactorProtectionSystem(RPS)Instrumentation."Inaddition,arestrictiononrecirculationpumpspeedisincorporatedtd'addressreactorvesselinternalsvibrationconcernsandassumptionsintheeventanalysis.GeneralDesignCriterion10(GDC10)requiresthatthereactorcorebedesignedwithappropriatemargintoassurethatfueldesignlimitswillnotbeexceededduringanyconditionofnormaloperationincludinganticipatedoperationaloccurrences.GDC12requiresassurancethatpoweroscillationswhichcanresultinconditionsexceedingspecifiedacceptablefueldesignlimitsareeithernotpossibleorcanbereliablyandreadilydetectedandsuppressed.TheACTIONSinthissectionensurecompliancewithGDC12,therebyprovidingprotectionfromexceedingthefuelMCPRsafetylimit.BWRcoresmayexhibitthermal-hydraulicreactorinstabilitiesinhighpowerandlowflowportionsofthecorepowertoflowoperatingdomain.GDC12requiresassurancethatpoweroscillationswhichcanresultinconditionsexceedingspecifiedacceptablefueldesignlimitsareeithernotpossibleorcanbereliablyandreadilydetectedandsuppressed.ThisLCOandassociatedACTIONS(continued)SUSQUEHANNA-UNIT1B3.4-3Revision0 RecirculationLoopsOperatingB3.4.1BASESAPPLICABLESAFETYANALYSIS(continued)ensurecompliancewithGDC12byestablishingconservativeboundariesthatlimittheimpactofthermal-hydraulicinstabilities.ThisLCOandACTIONSestablishpower/flowregionsandassociatedrequirementsandrestrictionsconsistentwithreferences3and4andprovideaconservativeboundaryforplantoperationtoensurecompliancewithGDC12andthatthermal-hydraulicinstabilitiesareavoided.RecirculationloopsoperatingsatisfiesCriterion2oftheNRCPolicyStatement.(Ref.5).LCOTworecirculationloopsarerequiredtobeinoperationwiththeirflowsmatchedwithinthelimitsspecifiedinSR3.4.1.1toensurethatduringaLOCAcausedbyabreakofthepipingofonerecirculationlooptheassumptionsof'heLOCAanalysisaresatisfied.WiththelimitsspecifiedinSR3.4.1.1notmet.therecirculationloopwiththelowerflowmustbeconsiderednotinoperation.Withonlyonerecirculationloopinoperation.modificationstotherequiredAPLGHRlimits(LCO3.2.1,"AVERAGEPLANARLINEARHEATGENERATIONRATE"),LKGRlimits(LCO3.2:3,"LINEARHEATGENERATIONRATE(LHGR)"),MCPRlimits(LCO3.2.2."MINIMUMCRITICALPOWERRATIO(MCPR)"),andAPRMFlowBiasedSimulatedThermalPower-Highsetpoint(LCO3.3.1.1)maybeappliedto'allowcontinuedoperationconsistentwiththesafetyanalysisassumptions.Furthermore.restrictionsareplacedonrecirculationpumpspeedtoensuretheinitialassumptionoftheeventanalysisaremaintained.Inaddition,duringtwo-loopandsingle-loopoperation,thecombinationofcoreflowandTHERMALPOWERmustbeoutsideofLCORegionIorIIofFigure3.4.1-1tolimittheimpactofcorethermalhydraulicoscillations.TheplantisoperatedinconformancewiththerecommendationsinNRCBulletin88-07,Supplement1,(Ref.4).TheseoperatingrestrictionsprovideahighdegreeofconfidencethatreactorinstabilitieswillnotoccurorwillnotbeofsufficientseveritytoviolatetheMCPRsafetylimit.(continued)SUSQUEHANNA-UNIT1B3.4-4Revision0 RecirculationLoopsOperating83.4.1BASESLCO(continued)TheLCOismodifiedbyaNotethatallowsupto12hourstoestablishtherequiredlimitsandsetpointsafterachangefromtworecirculationloopsoperationtosinglerecirculationloopoperation.Ifthelimitsandsetpointsarenotincompliancewiththeapplicablerequirementsattheendofthethisperiod,theACTIONSrequiredbytheapplicablespecificationsmustbeimplemented.Thistimeisprovidedtostabilizeoperationwithonerecirculationloopby:limitingflowintheoperatingloop,limitingtotalTHERHALPOWER,monitorAPRHandlocalpowerrangemonitor(LPRH)neutronfluxnoiselevels;and,fullyimplementingandconfirmingtherequiredlimitandsetpointmodifications.APPLICABILITYInHODES1and2,requirementsforoperationoftheReactorCoolantRecirculationSystemarenecessarysincethereisconsiderableenergyinthereactorcoreandthelimitingdesignbasistransientsandaccidentsareassumedtooccur.InHODES3,4,and5,theconsequencesofanaccidentarereducedandthecoastdowncharacteristicsoftherecirculationloopsarenotimportant.ACTIONSA,1WhenoperatinginRegionIofFigure3.4.1-1orwithnorecirculationloopsoperatinginHODE1,thepotentialforthermal-hydraulicoscillationsisgreatlyincreasedandsufficientmarginmaynotbeavailableforoperatorresponsetosuppresspotentialthermal-hydraulicoscil1ations.Therefore,thereactormodeswitchmustbeimmediatelyplacedintheshutdownposition.Actionistakenimmediatelytoplacetheplantinaconditionwhereanypotentialforthermal-hydraulicinstabilitieswillbeterminated.TherequirementsareconsistenttothoseofReference4.(continued)SUSQUEHANNA-UNIT1B3.4-5Revision0 RecirculationLoopsOperatingB3.4.1BASESACTIONS(continued)B.1WhenoperatinginRegionIIofFigure3.4.1-1withindicationsthatthermalhydraulicoscillationsareoccurringasdefinedintheACTION,orwhenlessthan50KoftherequiredLPRMupscalealarmsareOPERABLEthepotentialforthermal-hydraulicoscillationsisgreatlyincreasedandsufficientmarginmaynotbeavailableforoperatorresponsetosuppresspotentialthermal-hydraulicoscillations.ThenumberandlocationofLPRMstringsineachzoneassurethatwith50KormoreoftheassociatedLPRMupscalealarmsOPERABLEsufficientmonitoringcapabilityisavailabletodetectcorewideandregionaloscillations.LPRHupscalealarmsarerequiredtodetectreactorcorethermal-hydraulicinstabilityevents.ThecriteriafordeterminingwhichLPRHupscalealarmsarerequiredis'basedonassignmentofthesealarmstodesignatedcorezones.ThesecorezonesconsistofthelevelA,B,andCalarmsin4or5adjacentLPRMstrings.ThenumberandlocationofLPRHstringsineachzoneassurethatwith50KormoreoftheassociatedLPRHupscalealarmsOPERABLEsufficientmonitoringcapabilityisavailabletodetectcorewideandregionaloscillations.OperatingplantinstabilitydataisusedtodeterminethespecificLPRMstringsassignedtoeachzone.TheACTIONtoplacethereactormodeswitchinshutdownimmediatelyisnecessarysincetheprobabilityofthermal-hydraulicoscillationsisgreatlyincreasedifinCONDITIONB.Withoutthemonitoringcapability,controlrodsmustbeinsertedtoterminateanypotentialforundetectedthermal-hydraulicinstabilities.C.1WhenoperatinginRegionIIofFigure3.4.1-1,thepotentialforthermal-hydraulicoscillationsisincreasedandsufficientmarginmaynotbeavailableforoperatorresponsetosuppresspotentialthermal-hydraulicoscillations.Therefore,actionmustbeinitiatedimmediatelytorestoreoperationoutsideofRegionsIIofFigure3.4.1-1.ThiscanbeaccomplishedbyeitherdecreasingTHERMALPOWERwithcontrolrodinsertionorincreasingcoreflowbyincreasingrecirculationpumpspeed.Thestartingofarecirculation(continued)SUSQUEHANNA-UNIT1B3.4-6Revision0 RecirculationLoopsOperatingB3.4.1BASESACTIONSC-1(continued)umpwillnotbeusedasameanstoentertherequiredRegionsecausethestartingofarecirculationpumpwiththeplantoperatingabovethe80Krodlineisprohibitedduetopotentialinstabilityproblems.D-1Recirculationloopflowmustmatchwithinrequiredlimitswhenbothrecirculationloopsareinoperation.Ifflowmismatchisnotwithinrequiredlimits,matchedflowmustberestoredwithin2hours.Ifmatchedflowsarenotrestored,therecirculationloopwithlowerflowmustbedeclared"notinoperation."ShouldaLOCAoccurwithrecirculationloopflownotmatched,thecoreflowcoastdownandresultantcoreresponsemaynotbeboundedbytheLOCAanalyses.Therefore,onlyalimitedtimeisallowedpriortoimposingrestrictionsassociatedwithsingleloopoperation.OperationwithonlyonerecirculationloopsatisfiestherequirementsoftheLCOandtheinitialconditionsoftheaccidentsequence.The2hourCompletionTimei.sbasedonthelowprobabilityofanaccidentoccurringduringthistimeperiod.providingareasonabletimetocompletetheRequiredAction,andconsideringthatfrequentcoremonitoringbyoperatorsallowsabruptchangesincoreflowconditionstobequicklydetected.TheseRequiredActionsdonotrequiretrippingtherecirculationpumpinthelowestflowloopwhenthemismatchbetweentotaljetpumpflowsofthetwoloopsisgreaterthantherequiredlimits.However.incaseswherelargeflowmismatchesoccur,lowfloworreverseflowcanoccurinthelowflowloopjetpumps,causingvibrationofthejetpumps.Ifzeroorreverseflowisdetected,theconditionshouldbealleviatedbychangingrecirculationpumpspeedto'e-establishforwardfloworbytrippingthepump.WithnorecirculationloopsinoperationwhileinMODE2orifaftergoingtosingleloopoperationstherequiredlimitsandsetpointscannotbeestablished,theplantmustbebroughttoMODE3.wheretheLCOdoesnotapplywithin(continued)SUSQUEHANNA-UNIT1B3.4-7Revision0 RecirculationLoopsOperatingB3.4.1BASESACTIONSE-1(continued)12hours.Inthiscondition.therecirculationloopsare'notrequiredtobeoperatingbecauseofthereducedseverityofDBAsandminimaldependenceontherecirculationloopcoastdowncharacteristics.TheallowedCompletionTimeof12hoursisreasonabletoreachMODE3fromfullpowerconditionsinanorderlymannerwithoutchallengingplantsystems.SURVEILLANCEREQUIREMENTSSR3.4.1.1ThisSRensurestherecirculationloopsarewithintheallowablelimitsformismatch'tlowcoreflow(i.e.,(75*millionibm/hr),theMCPRrequirementsprovidelargermarginstothefuelcladdingintegritySafetyLimitsuchthatthepotentialadverseeffectofearlyboilingtransitionduringaLOCAisreduced.Alargerflowmismatchcanthereforebeallowedwhencoreflowis(75millionibm/hr.Therecirculationloopjetpumpflow,asusedinthisSurveillance,isthesummationoftheflowsfromallofthejetpumpsassociatedwitha-singlerecirculationloop.Themismatchis.measuredintermsofcoreflow.Iftheflowmismatchexceedsthespecifiedlimits,theloopwiththelowerflowisconsideredinoperable.TheSRisnotrequiredwhenbothloopsarenotinoperationsincethemismatchlimitsaremeaninglessduringsingleloopornaturalcirculationoperation.TheSurveillancemustbeperformedwithin24hoursafterbothloopsareinoperation.The24hourFrequencyisconsistentwiththeSurveillanceFrequencyforjetpumpOPERABILITYverificationandhasbeenshownbyoperatingexperiencetobeadequatetodetectoffnormaljetpumploopflowsinatimelymanner.SR3.4.1.2ThisSRensuresthecombinationofcoreflowandTHERMALPOWERarewithinrequiredlimitstopreventuncontrolledthermalhydraulicoscillationsbyensuringtherecirculationloopsarewithinthelimitsestablishedbyFigure3.4.1-1.Atlowrecirculationflowsandhighreactorpower,(continued)SUSQUEHANNA-UNIT1B3.4-8Revision0 RecirculationLoopsOperating83.4.1BASESSURVEILLANCEREQUIREHENTSSR3.4.1.2(continued)thereactorexhibitsincreasedsusceptibilitytothermal-hydraulicinstability.Figure3.4.1-1isbasedonguidanceprovidedinReferences3and4whichalsoprovidedtheguidanceonhowtorespondtooperationintheseconditions.The24hourFrequencyisbasedonoperatingexperienceandtheoperator'sinherentknowledgeofthecurrentreactorstatus.includingsignificantchangesinTHERHALPOWERandcoreflowtoensuretherequirementsareconstantlymet.SR3.4.1.3Asnoted,thisSRisonlyapplicablewheninsingleloopoperation.ThisSRensurestherecirculationpumplimitismaintained.The24hourFrequencyisbasedonoperatingexperienceandtheoperatorsinherentknowledgeofthecurrentreactorstatus.REFERENCES2.3.FSAR,Section6.3.3.7.FSAR,Section5.4.1.4.GEServiceInformationLetterNo.380,"BWRCoreThermalHydraulicStability,"Revision1,February10,1984.4.NRCBulletin88-07,Supplement1,"PowerOscillationsinBoilingWaterReactors(BWRs),"December30,1988.5.FinalPolicyStatementonTechnicalSpecificationsImprovements.July22,1993(58FR39132).SUS()UEHANNA-UNIT183.4-9Revision0 JetPumpsB3.4.2B3.4REACTORCOOLANTSYSTEM(RCS)83.4.2JetPumpsBASESBACKGROUNDTheReactorCoolantRecirculationSystemisdescribedintheBackgroundsectionoftheBasesforLCO3.4.1,"RecirculationLoopsOperating,"whichdiscussestheoperatingcharacteristicsofthesystemandhowthesecharacteristicsaffecttheDesignBasisAccident(DBA)analyses.ThejetpumpsarepartoftheReactorCoolantRecirculationSystemandaredesignedtoprovideforcedcirculationthroughthecoretoremoveheatfromthefuel.Thejetpumpsarelocatedintheannularregionbetweenthecoreshroudandthevesselinnerwall.Becausethejetpumpsuctionelevationisattwo-thirdscoreheight.thevesselcanberefloodedandcoolantlevelmaintainedattwo-thirdscoreheightevenwiththecompletebreakoftherecirculationlooppipethatislocatedbelowthejetpumpsuctionelevation.Eachreactorcoolantrecirculationloopcontainstenjetpumps.RecircOlatedcoolantpassesdowntheannulusbetweenthereactorvesselwallandthecoreshroud.Aportionofthecoolantflowsfromthevessel,throughthetwoexternalrecirculationloops,andbecomesthedrivingflowforthejetpumps.Eachofthetwoexternalrecirculationloopsdischargeshighpressureflowintoanexternalmanifoldfromwhichindividualrecirculationinletlinesareroutedtothejetpumpriserswithinthereactorvessel.Theremainingportionofthecoolantmixtureintheannulusbecomesthesuctionflowforthejetpumps.Thisflowentersthejetumpatsuctioninletsandisacceleratedbythedriveflow.hedriveflowandsuctionflowaremixedinthejetpumpthroatsection.Thetotalflowthenpassesthroughthejetpumpdiffusersectionintotheareabelowthecore(lowerplenum),gainingsufficientheadintheprocesstodrivetherequiredflowupwardthroughthecore.APPLICABLESAFETYANALYSESJetpumpOPERABILITYisanexplicitassumptioninthedesignbasislossofcoolantaccident(LOCA)analysisevaluatedinReferencel.(continued)SUSQUEHANNA-UNIT1B3.4-10Revision0 JetPumpsB3.4.2BASESAPPLICABLESAFETYANALYSES(continued)Thecapabilityofrefloodingthecoretotwo-thirdscoreheightisdependentuponthestructuralintegrityofthejetpumps.Ifthestructuralsystem.includingthebeamholdingajetpumpinplace,fails,jetpumpdisplacementandperformancedegradationcouldoccur,resultinginanincreasedflowareathroughthejetpumpandalowercorefloodingelevation.ThiscouldadverselyaffectthewaterlevelinthecoreduringtherefloodphaseofaLOCAaswellastheassumedblowdownflowduringaLOCA.JetpumpssatisfyCriterion2oftheNRCPolicyStatement(Ref.4).LCOThestructuralfailureofanyofthejetpumpscouldcausesignificantdegradationintheabilityofthejetpumpstoallowrefloodingtotwo-thirdscoreheightduringaLOCA.OPERABILITYofalljetpumpsisrequiredtoensurethatoperationoftheReactorCoolantRecirculationSystemwillbeconsistentwiththeassumptionsusedinthelicensingbasisanalysis(Ref.1).APPLICABILITYInNODES1and2,thejetpumpsarerequiredtobeOPERABLEsincethereisalargeamountofenergyinthereactorcoreandsincethelimitingDBAsareassumedtooccurintheseMODES.ThisisconsistentwiththerequirementsforoperationoftheReactorCoolantRecirculationSystem(LCO3.4.1).InMODES3,4,and5,theReactorCoolantRecirculationSystemisnotrequiredtobeinoperation,andwhennotinoperation,sufficientflowisnotavailabletoevaluatejetpumpOPERABILITY.ACTIONSA.1Aninoperablejetpumpcanincreasetheblowdownareaandreducethecapabilityofrefloodingduringadesignbasis'OCA.Ifoneormoreofthejetpumpsareinoperable,the(continued)SUSQUEHANNA-UNIT1B3.4-11Revision0 JetPumpsB3.4.2BASESACTIONSA.1(continued)plantmustbebroughttoaMODEinwhichtheLCOdoesnotapply.Toachievethisstatus,theplantmustbebroughttoMODE3within12hours.TheCompletionTimeof12hoursisreasonable,basedonoperatingexperience.toreachMODE3fromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.SURVEILLANCEREQUIREMENTSSR3.4.2.1ThisSRisdesignedtodetectsignificantdegradationinjetumpperformancethatprecedesjetpumpfailure(Ref.2).hisSRisrequiredtobeperformedonlywhentheloophasforcedrecirculationflowsincesurveillancechecksandmeasurementscanonlybeperformedduringjetpumpoperation.Withnoforcedrecirculationflow,stressesonjetpumpassembliesaresignificantlyreduced.Thejetpumpfailureofconcernisacompletemixerdisplacementduetojetpumpbeamfailure.Jetpumppluggingisalsoofconcernsinceitaddsflow-resistancetotherecirculationloop.Significantdegradationisindicatedifthespecifiedcriteriaconfirm'unacceptabledeviationsfromestablishedpatternsorrelationships.Theallowabledeviationsfromtheestablishedpatternshavebeendevelopedbasedonthevariationsexperiencedatplantsduringnormaloperationandwithjetpumpassemblyfailures(Refs.2and3).Eachrecirculationloopmustsatisfytwooftheperformancecriteriaprovided.Sincerefuelingactivities(fuelassemblyreplacementorshuffle,aswellasanymodif'icationstofuelsupportorificesizeorcoreplatebypassflow)canaffecttherelationshipbetweencoreflow.jetpumpflow,andrecirculationloopflow,theserelationshipsmayneedtobere-establishedeachcycle.Similarly,initialentryintoextendedsingleloopoperationmayalsorequireestablishmentoftheserelationships.Duringtheinitialweeksofoperationundersuchconditions,whilebase-liningnew"establishedpatterns",engineeringjudgementofthedailysurveillanceresultsisusedtodetectsignificantabnormalitieswhichcouldindicateajetpumpfailure.Therecirculationpumpspeedoperatingcharacteristics(loop(continued)SUSQUEHANNA-UNIT183.4-12Revision0 JetPumpsB3.4.2BASESSURVEILLANCEREQUIREMENTSSR3.4.2.1(continued)driveflowversuspumpspeed)aredeterminedbytheflowresistancefromtheloopsuctionthroughthejetpumpnozzles.Achangeintherelationshipindicatesaplug,flowrestriction,lossinpumphydraulicperformance,leakage,ornewflowpathbetweentherecirculationpumpdischargeandjetpumpnozzle.Forthiscriterion,loopdriveflowversuspumpspeedrelationshipmustbeverified.Individualjetpumpsinarecirculationloopnormallydonothavethesameflow.Theunequalflowisduetothedriveflowmanifold,whichdoesnotdistributeflowequallytoallrisers.Theflow(orjetpumpdiffusertolowerplenumdifferentialpressure)patternorrelationshipofonejetpumptotheloopaverageisrepeatable.Anappreciablechangeinthisrelationshipisanindicationthatincreased(orreduced)resistancehasoccurredinoneofthejetpumps.Thismaybeindicatedbyanincreaseintherelativeflowforajetpumpthathasexperiencedbeamcracks.Thedeviationsfromnormalareconsideredindicativeofapotentialproblem.intherecirculationdrivefloworjetpumpsystem(Ref.2).NormalflowrangesandestablishedjetpumpfloWAnddifferentialpressurepatternsareestablishedbyplottinghistoricaldataasdiscussedinReference2.The24hourFrequencyhasbeenshownbyoperatingexperiencetobetimelyfordetectingjetpumpdegradationandisconsistentwiththeSurveillanceFrequencyf'rrecirculationloopOPERABILITYverification.ThisSRismodifiedbytwoNotes.IfthisSRhasnotbeenperformedintheprevious24hoursatthetimeanidlerecirculationloopisrestoredtoservice,Note1allows4hoursaftertheidlerecirculationloopisinoperationbeforetheSRmustbecompletedbecausethesecheckscanonlybeperformedduringjetpumpoperation.The4hoursisanacceptabletimetoestablishconditionsandcompletedatacollectionandevaluation.Note2allowsdeferringcompletionofthisSRuntil24hoursafterTHERMALPOWERisgreaterthan25KofRTP.Duringlowflowconditions,jetpumpnoiseapproachesthethreshold(continued)SUSQUEHANNA-UNIT1B3.4-13Revision0 JetPumpsB3.4.2BASESSURVEILLANCEREQUIREMENTSSR3.4.2.1(continued)responseoftheassociatedflowinstrumentationandprecludesthecollectionofrepeatableandmeaningfuldata.REFERENCES1.FSAR,Section6.3.2.GEServiceInformationLetterNo.330,June9,1990.3.NUREG/CR-3052.November1984.4.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA-UNIT1B3.4-14Revision0 S/RVsB3.4.3B3.4REACTORCOOLANTSYSTEH(RCS)83.4.3Safety/ReliefValves(S/RVs)BASESBACKGROUNDTheASHEBoilerandPressureVesselCoderequiresthereactorpressurevesselbeprotectedfromoverpressureduringupsetconditionsbyself-actuatedsafetyvalves.Aspartofthenuclearpressurereliefsystem,thesizeandnumberofS/RVsareselectedsuchthatpeakpressureinthenuclearsystemwillnotexceedtheASHECodelimitsforthereactorcoolantpressureboundary(RCPB).TheS/RVsarelocatedonthemainsteamlinesbetweenthereactorvesselandthefirstisolationvalvewithinthedrywell.Thereareatotalof16S/RVsofwhichany12arerequiredtobeOPERABLE.TheS/RVscanactuatebyeitheroftwomodes:thesafetymodeorthereliefmode.Inthesafetymode(orspringmodeofoperation),thevalveopenswhensteampressureatthevalveinletovercomesthespringforceholdingthevalveclosed.ThissatisfiestheCoderequirement.EachS/RVdischargessteamthroughadischargelinetoapointbelowth6minimumwaterlevelinthesuppressionpool.SixS/RVsalsoserveastheAutomaticDepressurizationSystem(ADS)valves.TheADSrequirementsarespecifiedinLCO3.5.1,"ECCS-Operating."APPLICABLESAFETYANALYSESTheoverpressureprotectionsystemmustaccommodatethemostseverepressurizationtransient.Evaluationshavedeterminedthatthemostseveretransientistheclosureofallmainsteamisolationvalves(HSIVs),followedbyreactorscramonhighneutronflux(i.e.,failureofthedirectscramassociatedwithHSIVposition)(Ref.1).Forthepurposeoftheanalyses.12ofthe16S/RVsareassumedtooperateinthesafetymode.TheanalysisresultsdemonstratethatthedesignS/RVcapacityiscapableof'aintainingreactorpressurebelowtheASHECodelimitof110Kofvesseldesignpressure(110Kx1250psig=1375psig).ThisLCOhelpstoensurethattheacceptancelimitof1375psigismetduringtheDesignBasisEvent.(continued)SUSQUEHANNA-UNIT1B3.4-15Revision0

S/RVsB3.4.3BASESAPPLICABLESAFETYANALYSES(continued)Fromanoverpressurestandpoint,thedesignbasiseventsareboundedbytheMSIVclosurewithfluxscrameventdescribedabove.Reference2discussesadditionaleventsthatare-expectedtoactuatetheS/RVs.S/RVssatisfyCriterion3oftheNRCPolicyStatement(Ref.4).LCOThesafetyfunctionof12ofthe16S/RVsarerequiredtobeOPERABLEtosatisfytheassumptionsofthesafetyanalysis(Refs.1and2).Therequirementsof'hisLCOareapplicableonlytothecapabilityoftheS/RVstomechanicallyopentorelieveexcesspressurewhenthelif'tsetpointisexceeded(safetyfunction).TheS/RVsetpointsareestablishedtoensurethattheASMECodelimitonpeakreactorpressureissatisfied.TheASMECodespecificationsrequirethelowestsafetyvalvesetpointtobeatorbelowvesseldesignpressure(1250psig)andthehighestsafetyvalvetobesetsothatthetotalaccumulatedpressuredoesnot.exceed110Kofthedesignpressureforoverpressurizationconditions.ThetransientevaluationsintheFSARareblsedonthesesetpoints,butalsoincludetheadditionaluncertaintyof+1Xofthenominalsetpointtoprovideanaddeddegreeofconservatism.OperationwithfewervalvesOPERABLEthanspecified,orwithsetpointsoutsidetheASMElimits,couldresultinamoreseverereactorresponsetoatransientthanpredicted,possiblyresultingintheASMECodelimitonreactorpressurebeingexceeded.APPLICABILITYInMODES1,2,and3,allrequiredS/RVsmustbeOPERABLE,sinceconsiderableenergymaybeinthereactorcoreandthelimitingdesignbasistransientsareassumedtooccurintheseMODES.TheS/RVsmayberequiredtoprovidepressurerelieftodischargeenergyfromthecoreuntilsuchtimethattheResidualHeatRemoval(RHR)Systemiscapableofdissipatingthecoreheat.InMODE4reactorpressureislowenoughthattheoverpressurelimitisunlikelytobeapproachedbyassumed(continued)SUSQUEHANNA-UNIT1B3.4-16Revision0 S/RVsB3.4.3BASESAPPLICABILITY(continued)operationaltransientsoraccidents.InMODE5,thereactorvesselheadisunboltedorremovedandthereactorisatatmosphericpressure.TheS/RVfunctionisnotneededduringtheseconditions.ACTIONSA.landA.2WithlessthantheminimumnumberofrequiredS/RVsOPERABLE,atransientmayresultintheviolationoftheASMECodelimitonreactorpressure.IfthesafetyfunctionofoneormorerequiredS/RVsisinoperable.theplantmustbebroughttoaMODEinwhichtheLCOdoesnotapply.Toachievethisstatus,theplantmustbebroughttoMODE3within12hoursandtoMODE4within36hours.TheallowedCompletionTimesarereasonable,basedonoperatingexperience,toreachrequiredplantconditionsfromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.SURVEILLANCEREQUIREMENTSR3.4.3.1ThisSurveillancerequiresthattherequiredS/RVswillopenatthepressuresassumedinthesafetyanalysisofReference1.ThedemonstrationoftheS/RVsafeliftsettingsmustbeperformedduringshutdown,sincethisisabenchtest,tobedoneinaccordancewiththeInserviceTestingProgram.Theliftsettingpressureshallcorrespondtoambientconditionsofthevalvesatnominaloperatingtemperaturesandpressures.TheS/RVsetpointis+1KofthenominalsetpointforOPERABILITY.RequirementsforacceleratedtestingareestablishedinaccordancewiththeInserviceTestProgram.Anyofthe16S/RVs,identifiedinthisSurveillanceRequirement,withtheirassociatedsetpoints,canbedesignatedasthe12requiredS/RVs.Thismaintainstheassumptionsintheoverpressureanalysis.ANoteisprovidedtoallowuptotwooftherequired12S/RVstobephysicallyreplacedwithS/RVswithlowersetpointsunti1thenextrefuelingoutage.Thisprovidesoperationalflexibilitywhichmaintainstheassumptionsintheover-pressureanalysis.(continued)SUSQUEHANNA-UNIT1B3.4-17Revision0 S/RVsB3.4.3BASESSURVEILLANCEREQUIREMENTSSR3.4.3.1(continued)TheFrequencyofthisSurveillanceisestablishedinaccordancewiththeInserviceTestingProgram.REFERENCES1.FSAR,Section5.2.2.1.4.2.FSAR,Section15.3.ASHE,BoilerandPressureVesselCode.SectionXI.4.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA-UNIT1B3.4-18Revision0 RCSOperationalLEAKAGEB3.4.4B3.4REACTORCOOLANTSYSTEM(RCS)83.4.4RCSOperationalLEAKAGEBASESBACKGROUNDTheRCSincludessystemsandcomponentsthatcontainortransportthecoolanttoorfromthereactorcore.ThepressurecontainingcomponentsoftheRCSandtheporti.onsofconnectingsystemsouttoandincludingtheisolationvalvesdefinethereactorcoolantpressureboundary(RCPB)ThejointsoftheRCPBcomponentsareweldedorbolted.Duringplantlife.thejointandvalveinterfacescanproducevaryingamountsofreactorcoolantLEAKAGE,througheithernormaloperationalwearormechanicaldeterioration.LimitsonRCSoperationalLEAKAGEarerequiredtoensureappropriateactionistakenbeforetheintegrityoftheRCPBisimpaired.ThisLCOspecifiesthetypesandlimitsof'EAKAGE.ThisprotectstheRCSpressureboundarydescribedin10CFR50.2,10CFR50.55a(c),andGDC55of10CFR50,AppendixA(Refs1,2.ahd3).ThesafetysignificanceofRCSLEAKAGEfromtheRCPBvarieswidelydependingonthesource,rate,andduration.Therefore,detectionofLEAKAGEintheprimarycontainmentisnecessary.MethodsforquicklyseparatingtheidentifiedLEAKAGEfromtheunidentifiedLEAKAGEarenecessarytoprovidetheoperatorsquantitativeinformationtopermitthemtotakecorrectiveactionshouldaleakoccurthatisdetrimentaltothesafetyofthefacilityorthepublic.Alimitedamountofleakageinsideprimarycontainmentisexpectedfromauxiliarysystemsthatcannotbemade100Kleaktight.Leakagefromthesesystemsshouldbedetectedandisolatedfromtheprimarycontainmentatmosphere,ifpossible,soasnottomaskRCSoperationalLEAKAGEdetection.ThisLCOdealswithprotectionoftheRCPBfromdegradationandthecorefrominadequatecooling,inadditiontopreventingtheaccidentanalysesradiationreleaseassumptionsfrombeingexceeded.TheconsequencesofviolatingthisLCOincludethepossibilityofalossofcoolantaccident.SUSQUEHANNA-UNIT1B3.4-19(continued)Revision0 RCSOperationalLEAKAGEB3.4.4BASES(continued)APPLICABLETheallowableRCSoperationalLEAKAGElimitsarebasedonSAFETYANALYSESthepredictedandexperimentallyobservedbehaviorofpipecracks.ThenormallyexpectedbackgroundLEAKAGEduetoequipmentdesignandthedetectioncapabilityof'heinstrumentationfordeterminingsystemLEAKAGEwerealsoconsidered.Theevidencefromexperimentssuggeststhat,forLEAKAGEevengreaterthanthespecifiedunidentifiedLEAKAGElimits,theprobabilityissmallthattheimperfectionorcrackassociatedwithsuchLEAKAGEwouldgrowrapidly.TheunidentifiedLEAKAGEflowlimitallowstimeforcorrectiveactionbeforetheRCPBcouldbesignificantlycompromised.The5gpmlimitisasmallfractionofthecalculatedflowfromacriticalcrackintheprimarysystempiping.Crackbehaviorfromexperimentalprograms(Refs.2and3)showsthatleakageratesofhundredsofgallonsperminutewillprecedecrackinstability(Ref.4).ThelowlimitonincreaseinunidentifiedLEAKAGEassumesafailuremechanismofintergranularstresscorrosioncracking(IGSCC)thatproducestightcracks.Thisflowincreaselimitiscapableofprovidinganearlywarningofsuchdeterioration.NoapplicablesafetyanalysisassumesthetotalLEAKAGElimit.ThetotalLEAKAGElimitconsidersRCSinventorymakeupcapabilityanddrywellfloorsumpcapacity.RCSoperationalLEAKAGEsatisfiesCriterion2oftheNRCPolicyStatement(Ref.7).LCORCSoperationalLEAKAGEshallbelimitedto:PressureBoundarLEAKAGENopressureboundaryLEAKAGEisallowed,beingindicativeofmaterialdegradation.LEAKAGEofthistypeisunacceptableastheleakitselfcouldcausefurtherdeterioration,resultinginhigherLEAKAGE.ViolationofthisLCOcouldresultincontinueddegradationoftheRCPB.LEAKAGEpastsealsandgasketsisnotpressureboundaryLEAKAGE.(continued)SUSQUEHANNA-UNIT183.4-20Revision0 RCSOperationalLEAKAGEB3.4.4BASESLCO(continued)b.UnidentifiedLEAKAGEThe5gpmofunidentifiedLEAKAGEisallowedasareasonableminimumdetectableamountthatthedrywellsumplevelmonitoringequipmentcandetectwithinareasonabletimeperiod.ViolationofthisLCOcouldresultincontinueddegradationoftheRCPB.c.TotalLEAKAGEThetotalLEAKAGElimitisbasedonareasonableminimumdetectableamount.ThelimitalsoaccountsforLEAKAGEfromknownsources(identifiedLEAKAGE).ViolationofthisLCOindicatesanunexpectedamountofLEAKAGEand,therefore,couldindicateneworadditionaldegradationinanRCPBcomponentorsystem.d.UnidentifiedLEAKAGEIncreaseAnunidentifiedLEAKAGEincreaseof>2gpmwithintheprevious4hourper'iodindicatesapotentialflawintheRCPBandmustbequicklyevaluatedtodeterminethesourceandextentoftheLEAKAGE.Theincreaseismeasuredrelativetothesteadystatevalue:temporarychangesihEAKAGErateasaresultoftransientconditions(e.g.,startup)arenotconsidered.Assuch,the2gpmincreaselimitisonlyapplicableinMODE1whenoperatingpressuresandtemperaturesareestablished.Violationof'hisLCOcouldresultincontinueddegradationoftheRCPB.APPLICABILITYInMODES1,2,and3,theRCSoperationalLEAKAGELCOapplies,becausethepotentialforRCPBLEAKAGEisgreatestwhenthereactorispressurized.InMODES4and5,RCSoperationalLEAKAGElimitsarenotrequiredsincethereactorisnotpressurizedandstressesintheRCPBmaterialsandpotentialforLEAKAGEarereduced.SUSQUEHANNA-UNIT1.B3.4-21(continued)Revision0 RCSOperationalLEAKAGEB3.4.4BASES(continued)ACTIONSA.1WithRCSunidentifiedortotalLEAKAGEgreaterthanthelimits,actionsmustbetakentoreducetheleak.BecausetheLEAKAGElimitsareconservativelybelowtheLEAKAGEthatwouldconstituteacriticalcracksize,4hoursisallowedtoreducetheLEAKAGEratesbeforethereactormustbeshutdown.IfanunidentifiedLEAKAGEhasbeenidentifiedandquantified,itmaybereclassifiedandconsideredasidentifiedLEAKAGE;however,thetotalLEAKAGElimitwouldremainunchanged.B.landB.2AnunidentifiedLEAKAGEincreaseof>2gpmwithina4hourperiodisanindicationofapotentialflawintheRCPBandmustbequicklyevaluated.AlthoughtheincreasedoesnotnecessarilyviolatetheabsoluteunidentifiedLEAKAGElimit,certainsusceptiblecomponentsmustbedeterminednottobethesourceoftheLEAKAG'EincreasewithintherequiredCompletionTime.ForanunidentifiedLEAKAGEincreasegreaterthanrequiredlimits,analternativetoreducingLEAKAGEincreasetowithinlimits(i.e.,reducingtheLEAKAGEratesucHthatthecurrentrateislessthan.the.-"2gpmincreaseintheprevious4hours"limit;either.:by.-'solatingthesourceorotherpossiblemethods)istoeva'luate.servicesensitivetype304andtype316austeniticstai;nlesssteelpipingthatissubjecttohigh-stress;orthai=containsrelativelystagnantorintermittentflowfluids.anddetermineitisnotthesourceoftheincreased=LENAGE.ThistypepipingisverysusceptibletoIGSCC.The4hourCompletionTimeisreasonabletoproperlyreducetheLEAKAGEincreaseorverifythesourcebeforethereactormustbeshutdownwithoutundulyjeopardizingplantsafety.C.landC.ZIfanyRequiredActionandassociatedCompletionTimeofConditionAorBisnotmetorifpressureboundaryLEAKAGEexists,theplantmustbebroughttoaHODEinwhichtheLCOdoesnotapply.Toachievethisstatus,theplantmustbebroughttoHODE3within12hoursandtoHODE4within36hours.TheallowedCompletionTimesarereasonable,(continued)SUSQUEHANNA-UNIT1B3.4-22Revision0

RCSOperationalLEAKAGEB3.4.4BASESACTIONSC.landC.2(continued)basedonoperatingexperience,toreachtherequiredplantconditionsfromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsafetysystems.SURVEILLANCEREQUIREMENTSSR3.4.4.1TheRCSLEAKAGEismonitoredbyavarietyofinstrumentsdesignedtoprovidealarmswhenLEAKAGEisindicatedandtoquantifythevarioustypesofLEAKAGE.LeakagedetectioninstrumentationisdiscussedinmoredetailintheBasesforLCO3.4.6,"RCSLeakageDetectionInstrumentation."SumplevelandflowratearetypicallymonitoredtodetermineactualLEAKAGErates;however,anymethodmaybeusedtoquantifyLEAKAGEwithintheguidelinesofReference5.Inconjunctionwithalarmsandotheradministrativecontrols,a12hourFrequencyforthisSurveillanceisappropriateforidentifyingLEAKAGEandfortrackingrequiredtrends(Ref.6).Theleakagelimitof<2gpmincreaseinunidentifiedLEAKAGEwithintheprevious4hourperiodisverifiedbyfirstdeterminingleakagedoesnotincrease-by.morethan2gpssintheprevious12hourperiodandifleakageisfoundtohaveincreasedby>2gpm.determine:ifa>2gpmincreaseoccurredoverany4hourperiod.REFERENCES1.10CFR50,AppendixA,GDC30.2.GEAP-5620,April1968.3.NUREG-76/067,October1975.4.FSAR,Section5.2.5.4.5.RegulatoryGuide1.45.6.GenericLetter88-01,Supplement1.7.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA-UNIT1B3.4-23Revision0 RCSPIVLeakageB3.4.5B3.4REACTORCOOLANTSYSTEM(RCS)B3.4.5RCSPressureIsolationValve(PIV)LeakageBASESBACKGROUNDThefunctionofRCSPIVsistoseparatethehighpressureRCSfromanattachedlowpressuresystem.ThisprotectstheRCSpressureboundarydescribedin10CFR50.2,10CFR50.55a(c),and.GDC55of10CFR50,AppendixA(Refs.1,2,and3).RCSPIVsaredefinedasanytwonormallyclosedvalvesinserieswithinthereactorcoolantpressureboundary(RCPB).PIVsaredesignedtomeettherequirementsofReference4.Duringtheirlives,thesevalvescanproducevaryingamountsofreactorcoolantleakagethrougheithernormaloperationalwearormechanicaldeterioration.TheRCSPIVLCOallowsRCShighpressureoperationwhenleakagethroughthesevalvesexistsinamountsthatdonotcompromisesafety.ThePIVleakagelimitappliestoeachindividualvalve.Leaka'gethroughthesevalvesisnotincludedinanyallowableLEAKAGEspecifiedinLCO3.4.4,"RCSOperationalLEAKAGE."AlthoughthisspecificationprovidesalimitonallowablePIVleakagerate,itsmainpurposeistopreventoverpressurefailureofthelowpressureportionsofconnectingsystems.TheleakagelimitisanindicationthatthePIVsbetweentheRCSandtheconnectingsystemsaredegradedordegrading.PIVleakagecouldleadtooverpressureofthelowpressurepipingorcomponents.Failureconsequencescou')dbealossof'oolantaccident(LOCA)outsideofcontainment,anunanalyzedeventthatcoulddegradetheabilityforlowpressureinjection.Astudy(Ref.5)evaluatedvariousPIVconfigurationstodeterminetheprobabilityofintersystemLOCAs.ThisstudyconcludedthatperiodicleakagetestingofthePIVscansubstantiallyreduceintersystemLOCAprobability.(continued)SUSQUEHANNA-UNIT183.4-24Revision0 RCSPIVLeakageB3.4.5BASESBACKGROUND(continued)PIVsareprovidedtoisolatetheRCSfromthefollowingtypicallyconnectedsystems:a.ResidualHeatRemoval(RHR)System;andb.CoreSpraySystem.ThePIVsarelistedinTable83.4.5-1"PressureIsolati.onValve".APPLICABLESAFETYANALYSESReference5evaluatedvariousPIVconfigurations.leakagetestingofthevalves,andoperationalchangestodeterminetheeffectontheprobabilityofintersystemLOCAs.ThisstudyconcludedthatperiodicleakagetestingofthePIVscansubstantiallyreducetheprobabilityofanintersystemLOCA.PIVleakageisnotconsideredinanyDesignBasisAccidentanalyses.ThisSpecificationprovidesformonitoringtheconditionoftheRCPBtodetectPIVdegradationthathastheotentialtocause-aLOCAoutsideofcontainment.RCSPIVeakagesatisfiesCriterion2oftheNRCPolicyStatement(Ref.6).LCORCSPIVleakageisleakageintoclosedsystemsconnectedtotheRCS.Isolationvalveleakageisusuallyontheorderofdropsperminute.Leakagethatincreasessignificantlysuggeststhatsomethingisoperationallywrongandcorrectiveactionmustbetaken.ViolationofthisLCOcouldresultincontinueddegradationofaPIV,whichcouldleadtooverpressurizationofalowpressuresystemandthelossoftheintegrityofafissionproductbarrier.TheLCOPIVleakagelimitis0.5gpmpernominalinchofvalvesizewithamaximumlimitof5gpm(Ref.4).APPLICABILITYInMODES1,2,and3,thisLCOappliesbecausethePIVleakagepotentialisgreatestwhentheRCSispressurized.InMODE3,valvesin.theRHRshutdowncoolingflowpatharenotrequiredtomeettherequirementsofthisLCOwhenin,(continued)SUSQUEHANNA-UNIT183.4-25Revision0 RCSPIVLeakageB3.4.5BASESAPPLICABILITY(continued)orduringtransitiontoorfrom,theRHRshutdowncoolingmodeofoperation.ThisisbecauseRHRshutdowncoolingwillbeplacedinoperationonlybelowthecurrentpressurepermissivesetpointwhenthehightolowpressureinterfacedoesnotexist.InMODES4and5,leakagelimitsarenotprovidedbecausethelowerreactorcoolantpressureresultsinareducedpotentialforleakageandforaLOCAoutsidethecontainment.Accordingly,thepotentialfortheconsequencesofreactorcoolantleakageisfarlowerduringtheseMODES.ACTIONSTheACTIONSaremodifiedbytwoNotes.Note1hasbeenprovidedtomodifytheACTIONSrelatedtoRCSPIVflowpaths.Section1.3.CompletionTimes,specifiesonceaConditionhasbeenentered,subsequentdivisions.subsystems,components,orvariablesexpressedintheConditiondiscoveredtobeinoperableornotwithinlimitswillnotresultinseparateentryintotheCondition.Section1.3alsospecifiesRequiredActionsoftheConditioncontinue=to.apply,for;eachadditionalfailure,withCompletion7imds="based:oninitialentryintotheCondition.However--,the.Requi'red=Acti.onsf'rtheConditionofRCSPIVleakage.limits:exceeded';provideappropriatecompensatorymeasures=for;-separate.affectedRCSPIVflowpaths.Assuch,aNote:-has=been=-provided-.thatallowsseparateConditionentry-'or=each>affecte'd-;RCSPIVflowpath.Note2requiresanevaluati'on=.of=affected.;systemsifa;PIVisinoperable.Theleakage.-may-have;.affectedsystem.OPERABILITY.orisolationofaleaking.flowpathwithanalternatevalvemayhavedegradedtheabilityoftheinterconnectedsystemtoperformitssafetyfunction.Asaresult,theapplicableConditionsandRequiredActionsforsystemsmadeinoperablebyPIVsmustbeentered.Thisensuresappropriateremedialactionsaretaken,ifnecessary,fortheaffectedsystems.A,lIfleakagefromoneormoreRCSPIVsisnotwithinlimit,theflowpathmustbeisolatedbyatleastoneclosedmanual,deactivatedautomatic,orcheckvalvewithin4hours.(continued)SUSQUEHANNA-UNIT1B3.4-26Revision0 RCSPIVLeakageB3.4.5BASESACTIONSA.1(continued)RequiredActionA.lismodifiedbyaNotestatingthatthevalvesusedforisolationmustmeetthesameleakagerequirementsasthePIVsandmustbeontheRCPBorthehighpressureportionofthesystem.Fourhoursprovidestimetoreduceleakageinexcessof'heallowablelimitandtoisolatetheflowpathifleakagecannotbereducedwhilecorrectiveactionstoreseattheleakingPIVsaretaken.The4hoursallowstimefortheseactionsandrestrictsthetimeofoperationwithleakingvalves.B.landB.2Ifleakagecannotbereducedorthesystemisolated,theplantmustbebroughttoaMODEinwhichtheLCOdoesnotapply.Toachievethisstatus,theplantmustbebroughttoMODE3within12hoursandMODE4within36hours.ThisactionmayreducetheleakageandalsoreducesthepotentialforaLOCAoutside.thecontainment.TheCompletionTimesarereasonable,basedonoperatingexperience-.to..achieve=therequiredplaritconditionsfromfullpower:.conditions=in'-anorderlymannerandwithoutchallenging.plant,systems-;SURVEILLANCEREQUIREMENTSSR3.4.5.1PerformanceofleakagetestingoneachRCSPIVisrequiredtoverifythatleakageisbelowthespecifiedlimitandtoidentifyeachleakingvalve.Theleakagelimitof0.5gpmperinchofnominalvalvediameterupto5gpmmaximumappliestoeachvalve.Leakagetestingrequiresastablepressurecondition.ForthetwoPIVsinseries,theleakagerequirementappliestoeachvalveindividuallyandnottothecombinedleakageacrossbothvalves.IfthePIVsarenotindividuallyleakagetested,onevalvemayhavefailedcompletelyandnotbedetectediftheothervalveinseriesmeetstheleakagerequirement.Inthissituation,theprotectionprovidedbyredundantvalveswouldbelost.(continued)SUSQUEHANNA-UNIT1B3.4-27Revision0 RCSPIVLeakageB3.4.5BASESSURVEILLANCEREQUIREMENTSSR3.4.5.1(continued)The24monthFrequencyrequiredbytheInserviceTestingProgramiswithintheASHECode,SectionXI,FrequencyrequirementandisbasedontheneedtoperformthisSurveillanceduringanoutageandthepotentialforanunplannedtransientiftheSurveillancewereperformedwiththereactoratpower.ThisSRismodifiedbyaNotethatstatestheleakageSurveillanceisnotrequiredtobeperformedinMODE3.EntryintoMODE3ispermittedforleakagetestingathighdifferentialpressureswithstableconditionsnotpossibleinthelowerMODES.REFERENCES1.10CFR50.2.2.10CFR50.55a(c).10CFR50,AppendixA,GDC55.ASHE,BoilerandPressureVesselCode.SectionXI.NUREG-0677,May1980.6.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA-UNIT1B3.4-28Revision0 RCSPIVLeakageB3.4.5BASES(continued)TABLEB3.4.5-1REACTORCOOLANTSYSTEMPRESSUREISOLATIONVALVES'stIsolationValve(s)Number(s)HV-E211F006AHV-E211F037AHV-E211F006BHV-E211F037BHV-E111F050AHV-E111F122AHV-E111F0508HV-ElllF12ZBHV-E111F022HV-E111F0092ndIsolationValve(s)Number(s)HV-E211FOOSAHV-E211F005BHV-E111F015AHV-E111F015BHV-Z111F023HV-E111F008ServiceCoreSprayInjectionCoreSprayInjectionLPCIInjectionLPCIInjectionMeadSrayShutdownCoolingSUSQUEHANNA-UNIT1B3.4-29Revision0

RCSLeakageDetectionInstrumentationB3.4.6B3.4REACTORCOOLANTSYSTEH(RCS)B3.4.6RCSLeakageDetectionInstrumentationBASESBACKGROUNDGDC30of10CFR50,AppendixA(Ref.1),requiresmeansfordetectingand,totheextentpractical,identifyingthelocationofthesourceof'CS,LEAKAGE.RegulatoryGuide1.45(Ref.2)describesacceptablemethodsforselectingleakagedetectionsystems.LimitsonLEAKAGEfromthereactorcoolantpressureboundary(RCPB)arerequiredsothatappropriateactioncanbetakenbeforetheintegrityoftheRCPBisimpaired(Ref.2).LeakagedetectionsystemsfortheRCSareprovidedtoalerttheoperatorswhenleakageratesabovenormalbackgroundlevelsaredetectedandalsotosupplyquantitativemeasurementofleakagerates.TheBasesforLCO3.4.4,"RCSOperationalLEAKAGE,"discussthelimitsonRCSLEAKAGErates.SystemsforseparatingtheLEAKAGEofanidentifiedsourcefromanunidentifiedsourcearenecessarytoprovidepromptandquantitativeinformationtotheoperatorstopermitthemtotakeimmediatecorrectiveaction.LEAKAGEfromtheRCPBinsidethedrywellisdetectedbyatleastoneoftwoorthreeindependentlymonitoredvariables.suchassumplevelchangesanddrywellgaseousandparticulateradioactivitylevels.TheprimarymeansofuantifyingLEAKAGEinthedrywellisthedrywellfloorrainsumpmonitoringsystemwhichconsistsoftwodrywellfloordrainsumplevelChannels.BothChannelsarerequiredtobeOperabletosatisfytheLCO.ThedrywellfloordrainsumpmonitoringsystemmonitorstheLEAKAGEcollectedinthefloordrainsump.ThisunidentifiedLEAKAGEconsistsofLEAKAGEfromcontrolroddrives,valveflangesorpackings,floordrains,theClosedCoolingWaterSystem,anddrywellaircoolingunitcondensatedrains,andanyLEAKAGEnotcollectedinthedrywellequipmentdraintank.ThelevelofeachdrywellsumpisrecordedbycontinuouspenrecorderslocatedintheHainControlRoom.Thechangein(continued)SUSQUEHANNA-UNIT1B3.4-30Revision0 RCSLeakageDetectionInstrumentationB3.4.6BASESBACKGROUND(continued)sumplevelperunittimedeterminestheleakrateandiscalculatedfromtherecorder.Thefloordrainsumplevelindicatorshaveswitchesthatstartandstopthesumppumpswhenrequired.Ifthesumpfillstothehighhighlevelsetpoint,analarmsoundsinthecontrolroom.Theprimarycontainmentairmonitoringsystemscontinuouslymonitortheprimarycontainmentatmosphereforairborneparticulateandgaseousradioactivity.Asuddenincreaseofradioactivity,whichmaybeattributedtoRCPBsteamorreactorwaterLEAKAGE,isannunciatedinthecontrolroom.Theprimarycontainmentatmosphereparticulateandgaseousradioactivitymonitoringsystemsarenotcapableofquanti'fyingLEAKAGErates.Thesemonitorsprovideanalternatemeansofleakdetectiontothatsuppliedbythesumplevelmonitors.andalthoughtheycannotensuredetectionofa1gpmleakin1hourinallcases,theyprovidea.diversemeansofleakdetection(Ref.3).APPLICABLESAFETYANALYSESAthreatofsignificantcompromisetotheRCPBexistsifthebarriercontairfs'acrackthat-islargeenoughtopropagaterapidly.LEAKAGEratelimi'ts;aresetlowenoughtodetecttheLEAKAGEemittedfroma:singlecrackintheRCPB(Refs.4and5).Eachoftheleakage-.dei.ecti'onsystemsinsidethedrywellisdesignedwiththecapabilityofdetectingLEAKAGElessthantheestablishedLEAKAGEratelimits.TheallowedLEAKAGEratesarewellbelowtheratespredictedforcriticalcracksizes(Ref.6).Therefore,theseactionsprovideadequateresponsebeforeasignificantbreakintheRCPBcanoccur.RCSleakagedetectioninstrumentationsatisfiesCriterion1oftheNRCPolicyStatement(Ref.7).LCOThedrywellfloordrainsumpmonitoringsystemisrequiredtoquantifytheunidentifiedLEAKAGEfromtheRCS.Thus,forthesystemtobeconsideredOPERABLE,thesystemmustbecapableofmeasuringreactorcoolantleakage.Theothermonitoringsystemsprovideearlyalarmstotheoperatorssocloserexaminationofotherdetectionsystemswillbemade(continued)SUSQUEHANNA-UNIT183.4-31Revision0 RCSLeakageDetectionInstrumentationB3.4.6BASESLCO(continued)todeterminetheextentofanycorrectiveactionthatmayberequired.Withtheleakagedetectionsystemsinoperable,monitoringforLEAKAGEintheRCPBisdegraded.APPLICABILITYInMODES1,2,and3,leakagedetectionsystemsarerequiredtobeOPERABLEtosupportLCO3.4.4.ThisApplicabilityisconsistentwiththatforLCO3.4.4.ACTIONSA.1Withthedrywellfloordrainsumpmonitoringsysteminoperable.theprimarycontainmentatmosphericactivitymonitorwillprovideindicationofchangesinleakage.Withthedrywellfloordrainsumpmonitoringsysteminoperable,operationmapcontinuefor30days.However,RCSunidentifiedandtotalLEAKAGEisstillrequiredtobedeterminedevery12hours(SR3.4.4.1).The30dayCompletionTimeof.RequiredActionA.1isacceptable,basedonoperatingexperience,consideringthemultipleformsofleakagedetectiorlthatarestillavailable.RequiredActionA.1ismodifiedbyaNotethatstatesthattheprovisionsofLCO3.0.4arenotapplicable.Asaresult.aMODEchangeisallowedwhenthedrywellfloordrainsumpmonitoringsystemisinoperable.ThisallowanceisprovidedbecauseotherinstrumentationisavailabletomonitorRCSleakage.B.landB.2Withbothgaseousandparticulateprimarycontainmentatmosphericmonitoringchannelsinoperable.grabsamplesoftheprimarycontainmentatmospheremustbetakenandanalyzedtoprovideperiodicleakageinformation.Providedasampleisobtainedandanalyzedonceevery12hours,theplantmaybeoperatedforupto30daystoallowrestorationofatleastoneoftherequiredmonitors.The12hourintervalprovidesperiodicinformationthatisadequatetodetectLEAKAGE.The30dayCompletionTimefor(continued)SUSQUEHANNA-UNIT1B3.4-32Revision0

RCSLeakageDetectionInstrumentationB3.4.6BASESACTIONSB.1andB.2(continued)restorationrecognizesthatatleastoneotherformofleakagedetectionisavailable.TheRequiredActionsaremodifiedbyaNotethatstatesthattheprovisionsofLCO3.0.4arenotapplicable.As'result,aMODEchangeisallowedwhenboththegaseousandparticulateprimarycontainmentatmosphericmonitoringchannelsareinoperable.ThisallowanceisprovidedbecauseotherinstrumentationisavailabletomonitorRCSleakage.C.landC.2IfanyRequiredActionofConditionAorBcannotbemetwithintheassociatedCompletionTime,theplantmustbebroughttoaMODEinwhichtheLCOdoesnotapply.Toachievethisstatus,theplantmustbebroughttoatleastMODE3within12hoursandMODE4within36hours.TheallowedCompletionTimes'rereasonable,basedonoperatingexperience,toperformtheactionsinanorderlymannerandwithoutchallengingplantsystems.D.lWithallrequiredmonitorsinoperable,norequiredautomaticmeansofmonitoringLEAKAGEareavailable,andimmediateplantshutdowninaccordancewithLCO3.0.3isrequired.SURVEILLANCEREQUIREMENTSSR3.4.6.1ThisSRisfortheperformanceofaCHANNELCHECKoftherequiredprimarycontainmentatmosphericmonitoringsystem.Thecheckgivesreasonableconfidencethatthechannelisoperatingproperly.TheFrequencyof12hoursisbasedoninstrumentreliabilityandisreasonablefordetectingoffnormalconditions.(continued)SUSQUEHANNA-UNIT183.4-33Revision0 0

RCSLeakageDetectionInstrumentationB3.4.6BASESSURVEILLANCEREQUIREMENTS(continued)SR3.4.6.2ThisSRisfortheperformanceofaCHANNELFUNCTIONALTESToftherequiredRCSleakagedetectioninstrumentation.Thetestensuresthatthemonitorscanperformtheirfunctioninthedesiredmanner.TheFrequencyof31daysconsidersinstrumentreliability,andoperatingexperiencehasshownitproperfordetectingdegradation.SR3.4.6.3ThisSRisfortheperformanceofaCHANNELCALIBRATIONofrequiredleakagedetectioninstrumentationchannels.,Thecalibrationverifiestheaccuracyoftheinstrumentstring.includingtheinstrumentslocatedinsidecontainment.TheFrequencyof24monthsisatypicalrefuelingcycleandconsiderschannelreliability.REFERENCESl.10CFR50.AppendixA,GDC30.2.RegulatoryGuide1.45,Hay1973.3.FSAR,Section5.2.5.1.2.4.GEAP-5620,April1968.5.NUREG-75/067,October1975.6.FSAR,Section5.2.5.4.7.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA-UNIT1B3.4-34Revision0 RCSSpecificActivity83.4.7B3.4REACTORCOOLANTSYSTEM(RCS)B3.4.7RCSSpecificActivityBASESBACKGROUNDDuringcirculation,thereactorcoolantacquiresradioactivematerialsduetoreleaseoffissionproductsfromfuelleaksintothereactorcoolantandactivationofcorrosionproductsinthereactorcoolant.TheseradioactivematerialsinthereactorcoolantcanplateoutintheRCS,and,attimes,anaccumulationwillbreakawaytospikethenormallevelofradioactivity.ThereleaseofcoolantduringaDesignBasisAccident(DBA)couldsendradioactivematerialsintotheenvironment.LimitsonthemaximumallowablelevelofradioactivityinthereactorcoolantareestablishedtoensurethatintheeventofareleaseofanyradioactivematerialtotheenvironmentduringaDBA,radiationdosesaremaintainedwithinthelimitsof10CFR100(Ref.1).ThisLCOcontainsiodinespecificactivitylimits.TheiodineisotopicactivitiespergramofreactorcoolantareexpressedintermsofaDOSEEQUIVALENTI-131.Theallowablelevelsareintendedtolimitthe2hourradiationdosetoanindividualatthesiteboundarytoasmallfractionofthe10CFR100limit.APPLICABLESAFETYANALYSESAnalyticalmethodsandassumptionsinvolvingradioactivematerialintheprimarycoolantarepresentedintheFSAR(Ref.2).Thespecificactivityinthereactorcoolant(thesourceterm)isaninitialconditionforevaluationoftheconsequencesofanaccidentduetoamainsteamlinebreak(HSLB)outsidecontainment.NofueldamageispostulatedintheMSLBaccident,andthereleaseofradioactivematerialtotheenvironmentisassumedtoendwhenthemainsteamisolationvalves(HSIVs)closecompletely.ThisHSLBreleaseformsthebasisfordeterminingoffsitedoses(Ref.2).Thelimitsonthespecificactivityoftheprimarycoolantensurethatthe2hourthyroidandwholebodydosesatthesiteboundary,resultingfromanMSLBoutsidecontainmentduringsteadystateoperation,willnotexceed10Xofthedoseguidelinesof10CFR100.(continued)SUSQUEHANNA-UNIT1B3.4-35Revision0 RCSSpecificActivityB3.4.7BASESAPPLICABLESAFETYANALYSES(continued)Thelimitsonspecificactivityarevaluesfromaparametricevaluationoftypicalsitelocations.Theselimitsareconservativebecausetheevaluationconsideredmorerestrictiveparametersthanforaspecificsite,suchasthelocationofthesiteboundaryandthemeteorologicalconditionsofthesite.RCSspecificactivitysatisfiesCriterion2oftheNRCPolicyStatement(Ref.3).LCOThespecificiodineactivityislimitedto~0.2pCi/gmDOSEEQUIVALENTI-131.ThislimitensuresthesourcetermassumedinthesafetyanalysisfortheMSLBisnotexceeded.soanyreleaseofradioactivitytotheenvironmentduringanMSLBislessthanasmallfractionofthe10CFR100limits.APPLICABILITYInMODE1,andMODES2and3withanymainsteamlinenotisolated,limitsontheprimarycoolantradioactivityareapplicablesincethereisan.escapepathforreleaseofradioactivematerialfromtheprimarycoolanttotheenvironmentintheeventofanMSLBoutsideofprimarycontainment.InMODES2and3withthemainsteamlinesisolated,suchlimitsdonotapplysinceanescapepathdoesnotexist.InMODES4and5,nolimitsarerequiredsincethereactorisnotpressurizedandthepotentialforleakageisreduced.ACTIONSA.landA.2WhenthereactorcoolantspecificactivityexceedstheLCODOSEEQUIVALENTI-131limit,butis~4.0pCi/gm,samplesmustbeanalyzedforDOSEEQUIVALENTI-131atleastonceevery4hours.Inaddition,thespecificactivitymustberestoredtotheLCOlimitwithin48hours.TheCompletionTimeofonceevery4hoursisbasedonthetimeneededtotakeandanalyzeasample.The48hourCompletionTimetorestoretheactivitylevelprovidesareasonabletimefortemporarycoolantactivityincreases(iodinespikesorcrudbursts)tobecleanedupwiththenormalprocessingsystems.(continued)SUSQUEHANNA-UNIT1B3.4-36Revision0

RCSSpecificActivityB3.4.7BASESACTIONS(continued)ANotetotheRequiredActionsofConditionAexcludestheMODEchangerestrictionofLCO3.0.4.ThisexceptionallowsentryintotheapplicableMODE(S)whilerelyingontheACTIONSeventhoughtheACTIONSmayeventuallyrequireplantshutdown.Thisexceptionisacceptableduetothesignificantconservatismincorporatedintothespecificactivitylimit,thelowprobabilityofaneventwhichislimitingduetoexceedingthislimit,andtheabilitytorestoretransientspecificactivityexcursionswhiletheplantremainsat,orproceedstopoweroperation.B.lB.2.1B.2.2.1andB.2.2.2IftheDOSEEQUIVALENTI-131cannotberestoredtos0.2pCi/gmwithin48hours,orifatanytimeitis>4.0pCi/gm,itmustbedeterminedatleastonceevery4hoursandallthemainsteamlinesmustbeisolatedwithin12hours.Isolatingthemainsteamlinesprecludesthepossibilityofreleasingradioactivematerialtotheenvironmentinanamountthatismorethanasmallfractionoftherequirementsof10CFR100duringapostulatedMSLBaccident.Alternatively,theplantcanbeplacedinMODE3within12hoursandinMODE4within36hours.Thisoptionisrovidedforthoseinstanceswhenisolationofmainsteaminesisnotdesired(e.g.,duetothedecayheatloads).InMODE4,therequirementsoftheLCOarenolongerapplicable.TheCompletionTimeofonceevery4hoursisthetimeneededtotakeandanalyzeasample.The12hourCompletionTimeisreasonable,basedonoperatingexperience,toisolatethemainsteamlinesinanorderlymannerandwithoutchallengingplantsystems.Also,theallowedCompletionTimesforRequiredActionsB.2.2.1andB.2.2.2forplacingtheunitinMODES3and4arereasonable,basedonoperatingexperience,toachievetherequiredplantconditionsfromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.SUSQUEHANNA-UNIT1B3.4-37(continued)Revision0 RCSSpecificActivityB3.4.7BASES(continued)SURVEILLANCEREQUIREMENTSSR3.4.7.1ThisSurveillanceisperformedtoensureiodineremainswithinlimitduringnormaloperation.The7dayFrequencyisadequatetotrendchangesintheiodineactivitylevel.ThisSRismodifiedbyaNotethatrequiresthisSurveillancetobeperformedonlyinMODE1becausetheleveloffissionproductsgeneratedinotherMODESismuchless.REFERENCES1.10CFR100.11,1973.2.FSAR,Section15.6.4.3.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA-UNIT1B3.4-38Revision0 RHRShutdownCoolingSystem-HotShutdown83.4.8B3.4REACTORCOOLANTSYSTEM(RCS)B3.4.8ResidualHeatRemoval(RHR)ShutdownCoolingSystem-HotShutdownBASESBACKGROUNDIrradiatedfuelintheshutdownreactorcoregeneratesheatduringthedecayoffissionproductsandincreasesthetemperatureofthereactorcoolant.Thisdecayheatmustberemovedtoreducethetemperatureof'hereactorcoolantto<200'F.Thisdecayheatremovalisinpreparationf'rerformingrefuelingormaintenanceoperations,orforeepingthereactorintheHotShutdowncondition.TheshutdowncoolingfunctionoftheRHRSystemprovidesdecayheatremovalandismanuallycontrolled.EachRHRloopconsistsoftwomotordrivenpumps,aheatexchanger,andassociatedpipingandvalves.Bothloopshaveacommonsuctionfromthesamerecirculationloop.Eachpumpdischargesthereactorcoolant,aftercirculationthroughtherespectiveheatexchanger,tothereactorviatheassociatedrecirculation'oop.TheRHRheatexchangerstransferheattotheRHRServiceWaterSystem(LCO3.7.1,"ResidualHeatRemovalServiceWater(RHRSW)System").APPLICABLESAFETYANALYSESDecayheatremovalbyoperationoftheRHRSystemintheshutdowncoolingmodeisnotrequiredformitigationofanyeventoraccidentevaluatedinthesafetyanalyses.Decayheatremovalis,however,animportantsafetyfunctionthatmustbeaccomplishedorcoredamagecouldresult.AlthoughtheRHRshutdowncoolingsubsystemdoesnotmeetaspecificcriterionoftheNRCPolicyStatement(Ref.1),itwasidentifiedintheNRCPolicyStatementasasignificantcontributortoriskreduction.Therefore,theRHRShutdownCoolingSystemisretainedasaTechnicalSpecification.LCOTwoRHRshutdowncoolingsubsystemsarerequiredtobeOPERABLE,andwhennorecirculationpumpisinoperation,oneshutdowncoolingsubsystemmustbeinoperation.AnOPERABLERHRshutdowncoolingsubsystemconsistsofoneOPERABLERHRpump,oneheatexchanger,andtheassociatedpipingandvalves.Thetwosubsystemshaveacommonsuctionsourceandareallowedtohaveacommonheatexchangerand(continued)SUSQUEHANNA-UNIT183.4-39Revision0 RHRShutdownCoolingSystem-HotShutdownB3.4.8BASESLCO(continued)commondischargepiping.Thus,tomeettheLCO.bothpumpsinonelooporonepumpineachofthetwoloopsmustbeOPERABLE.Sincethepipingandheatexchangersarepassivecomponentsthatareassumednottofail,theyareallowedtobecommontobothsubsystems.EachshutdowncoolingsubsystemisconsideredOPERABLEifitcanbemanuallyaligned(remoteorlocal)intheshutdowncoolingmodeforremovalofdecayheat.InMODE3,oneRHRshutdowncoolingsubsystemcanprovidetherequiredcooling,buttwosubsystemsarerequiredtobeOPERABLEtoprovideredundancy.Operationofonesubsystemcanmaintainorreducethereactorcoolanttemperatureasrequired.However.toensureadequatecoreflowtoallowforaccurateaveragereactorcoolanttemperaturemonitoring,nearlycontinuousoperationisrequired.Note1permitsbothRHRshutdowncoolingsubsystemstobeshutdownforaperiodof2hoursinan8hourperiod.Note2allowsoneRHRshutdowncoolingsubsystemtobeinoperableforupto2hoursfortheperformanceofSurveillancetests.ThesetestsmaybeontheaffectedRHRSystemoronsomeotherplantsystemorcomponentthatnecessitatesplacingtheRHRSystemin.aninoperablestatusduringtheperformance.Thisispermittedbecausethecoreheatgenerationcanb6lowenoughandtheheatuprateslowenoughtoallowsomechangestotheRHRsubsystemsorotheroperationsrequiringRHRflowinterruptionandlossofredundancy.APPLICABILITYInMODE3withreactorsteamdomepressurebelowtheRHRcutinpermissivepressure(i.e.,theactualpressureatwhichtheinterlockresets)theRHRSystemmaybeoperatedintheshutdowncoolingmodetoremovedecayheattoreduceormaintaincoolanttemperature.Otherwise,arecirculationpumpisrequiredtobeinoperation.InMODES1and2,andinMODE3withreactorsteamdomepressuregreaterthanorequaltotheRHRcutinpermissivepressure,thisLCOisnotapplicable.OperationoftheRHRSystemintheshutdowncoolingmodeisnotallowedabovethispressurebecausetheRCSpressuremayexceedthedesignpressureoftheshutdowncoolingpiping.DecayheatremovalatreactorpressuresgreaterthanorequaltotheRHRcutinpermissivepressureistypicallyaccomplishedbycondensing(continued)SUSQUEHANNA-UNIT1B3.4-40Revision0 RHRShutdownCoolingSystem-HotShutdownB3.4.8BASESAPPLICABILITY(continued)thesteaminthemaincondenser.Additionally,inMODE2belowthispressure,theOPERABILITYrequirementsfortheEmergencyCoreCoolingSystems(ECCS)(LCO3.5.1."ECCS-Operating")donotallowplacingtheRHRshutdowncoolingsubsystemintooperation.TherequirementsfordecayheatremovalinMODES4and5arediscussedinLCO3.4.9."ResidualHeatRemoval(RHR)ShutdownCoolingSystem-ColdShutdown";LCO3.9.8,"ResidualHeatRemoval(RHR)-HighWaterLevel";andLCO3.9.9,"ResidualHeatRemoval(RHR)-LowWaterLevel."ACTIONSANotetotheACTIONSexcludestheMODEchangerestrictionofLCO3.0.4.ThisexceptionallowsentryintotheapplicableMODE(S)whilerelyingontheACTIONSeventhoughtheACTIONSmayeventuallyrequireplantshutdown.ThisexceptionisacceptableduetotheredundancyoftheOPERABLEsubsystems,thelowpressureatwhichtheplantisoperating,thelowprobabilityofaneventoccurringduringoperationinthiscondition,andtheavailabilityofalternatemethods.ofdecayheatremovalcapability.AsecondNotehaSbeenprovidedtomodifytheACTIONSrelatedtoRHRshutdowncoolingsubsystems.Section1.3,CompletionTimes,specifiesonceaConditionhasbeenentered,subsequentdivisions,subsystems,componentsorvariablesexpressedintheCondition,discoveredtobeinoperableornotwithinlimits,willnotresultinseparateentryintotheCondition.Section1.3alsospecifiesRequiredActionsoftheCondition,continuetoapplyforeachadditionalfailure,withCompletionTimesbasedoninitialentryintotheCondition.However.theRequiredActionsforinoperableshutdowncoolingsubsystemsprovideappropriatecompensatorymeasuresf'rseparateinoperableshutdowncoolingsubsystems.Assuch,aNotehasbeenprovidedthatallowsseparateConditionentryforeachinoperableRHRshutdowncoolingsubsystem.A.1A.2andA.3WithonerequiredRHRshutdowncoolingsubsysteminoperablefordecayheatremoval,exceptaspermittedbyLCONote2.theinoperablesubsystemmustberestoredtoOPERABLE,status(continued)SUSQUEHANNA-UNIT1B3.4-41Revision0 RHRShutdownCoolingSystem-HotShutdownB3.4.8BASESACTIONSA.1A.2andA.3(continued)withoutdelay.Inthiscondition,theremainingOPERABLEsubsystemcanprovidethenecessarydecayheatremoval.Theoverallreliabilityisreduced,however,becauseasinglefailureintheOPERABLEsubsystemcouldresultinreducedRHRshutdowncoolingcapability.Therefore,analternatemethodofdecayheatremovalmustbeprovided.WithbothRHRshutdowncoolingsubsystemsinoperable,analternatemethodofdecayheatremovalmustbeprovidedinadditiontothat.providedfortheinitialRHRshutdowncoolingsubsysteminoperability.Thisre-establishesbackupdecayheatremovalcapabilities,similartotherequirementsoftheLCO.The1hourCompletionTimeisbasedonthedecayheatremovalfunctionandtheprobabilityofalossoftheavailabledecayheatremovalcapabilities.Therequiredcoolingcapacityofthealternatemethodmustbeensuredbyverifying(bycalculationordemonstration)itscapabilitytomaintainorreducetemperature.Decayheatremovalbyambientlossescanbeconsideredas,orcontributingto,thealternatemethodcapability.Alternatemethodsthatcanbeusedinclude(butarenotlimitedto)theSpentFuelPoolCoolingSystemandtheReactorWaterCleanupSystem.However,duetothepotentiallyreducedreliabilityof'healternatemethodsofdecayheatremoval,itisalsorequiredtoreducethereactorcoolanttemperaturetothepointwhereNODE4isentered.B.lB.2andB.3WithnoRHRshutdowncoolingsubsystemandnorecirculationpumpinoperation,exceptaspermittedbyLCONote1,reactorcoolantcirculationbytheRHRshutdowncoolingsubsystemorrecirculationpumpmustberestoredwithoutdelay.UntilRHRorrecirculationpumpoperationisre-established,analternatemethodofreactorcoolantcirculationmustbeplacedintoservice.Thiswillprovidethenecessarycirculationformonitoringcoolanttemperature.The1hourCompletionTimeisbasedonthecoolantcirculationfunction(continued)SUSQUEHANNA-UNIT1B3.4-42Revision0 RHRShutdownCoolingSystem-HotShutdown83.4.8BASESACTIONSB.18.2and8.3(continued)andismodifiedsuchthatthe1hourisapplicableseparatelyforeachoccurrenceinvolvingalossofcoolantcirculation.Furthermore,verificationofthefunctioningofthealternatemethodmustbereconfirmedevery12hoursthereafter.Thiswillprovideassuranceofcontinuedtemperaturemonitoringcapability.Duringtheperiodwhenthereactorcoolantisbeingcirculatedbyanalternatemethod(otherthanbytherequiredRHRshutdowncoolingsubsystemorrecirculationpump),thereactorcoolanttemperatureandpressuremustbeperiodicallymonitoredtoensureproperfunctionofthealternatemethod.TheonceperhourCompletionTimeisdeemedappropriate.SURVEILLANCEREQUIREMENTSSR3.4.8.1ThisSurveillanceverifiesthatoneRHRshutdowncoolingsubsystemorrecirculationpumpisinoperationandcirculatingreactorcoolant.Therequiredflowrateisdeterminedb>theflowratenecessarytoprovidesufficientdecayheatremovalcapability.TheFrequencyof12hoursissufficientinviewofothervisualandaudibleindicationsavailabletotheoperatorformonitoringtheRHRsubsysteminthecontrolroom.ThisSurveillanceismodifiedbyaNoteallowingsufficienttimetoaligntheRHRSystemforshutdowncoolingoperationafterthepressureinterlockthatisolatesthesystemresets,orforplacingarecirculationpumpinoperation.TheNotetakesexceptiontotherequirementsoftheSurveillancebeingmet(i.e.,forcedcoolantcirculationisnotrequiredforthisinitial2hourperiod),whichalsoallowsentryintotheApplicabilityofthisSpecificationinaccordancewithSR3.0.4sincetheSurveillancewillnotbe"notmet"atthetimeofentryintotheApplicability.REFERENCES1.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA-UNIT183.4-43Revision0 RHRShutdownCoolingSystem-ColdShutdownB3.4.983.4REACTORCOOLANTSYSTEH(RCS)B3.4.9ResidualHeatRemoval(RHR)ShutdownCoolingSystem-ColdShutdownBASESBACKGROUNDIrradiatedfuelintheshutdownreactorcoregeneratesheatduringthedecayoffissionproductsandincreasesthetemperatureofthereactorcoolant.Thisdecayheatmustberemovedtomaintainthetemperatureofthereactorcoolants200'F.Thisdecayheatremovalisinpreparationforerformingrefuelingormaintenanceoperations.orforeepingthereactorintheColdShutdowncondition.TheshutdowncoolingfunctionoftheRHRSystemprovidesdecayheatremovalandismanuallycontrolled.EachRHRloopconsistsoftwomotordrivenpumps,aheatexchanger,andassociatedpipingandvalves.Bothloopshaveacommonsuctionfromthesamerecirculationloop.Eachpumpdischargesthereactorcoolant,aftercirculationthroughtherespectiveheatexchanger,tothereactorviatheassociatedrecirculationloop.TheRHRheatexchangerstransferheattotheRHRServiceWaterSystem.APPLICABLESAFETYANALYSESDecayheatremovalbyoperationoftheRHRSystemintheshutdowncoolingmodeisnotrequiredformitigationofanyeventoraccidentevaluatedinthesafetyanalyses.Decayheatremovalis,however,animportantsafetyfunctionthatmustbeaccomplishedorcoredamagecouldresult.AlthoughtheRHRShutdownCoolingSystemdoesnotmeetaspecificcriterionoftheNRCPolicyStatement(Ref.1),itwasidentifiedintheNRCPolicyStatementasasignificantcontributortoriskreduction.Therefore.theRHRShutdownCoolingSystemisretainedasaTechnicalSpecification.LCOTwoRHRshutdowncoolingsubsystemsarerequiredtobeOPERABLE,andwhennorecirculationpumpisinoperation,oneRHRshutdowncoolingsubsystemmustbeinoperation.AnOPERABLERHRshutdowncoolingsubsystemconsistsofanRHRpumpwithanassociatedRHRSWpump,aheatexchanger,valves,piping,instruments,andcontrolstoensurethecorrespondingflowpathsareOPERABLE.Ontheprimaryside.thetwosubsystemshaveacommonsuctionsourceandare(continued)SUSQUEHANNA-UNIT1B3.4-44Revision0 RHRShutdownCoolingSystem-ColdShutdownB3.4.9BASESLCO(continued)allowedtohaveacommonheatexchangerandcommondischargepiping.Thus,tomeettheLCO,bothpumpsinonelooporonepumpineachofthetwoloopsmustbeOPERABLE.Sincethepipingandheatexchangersarepassivecomponentsthatareassumednottofail,theyareallowedtobecommontobothsubsystems.ForeachpumprequiredtobeOPERABLEontheprimary(RHR)side,anassociatedRHRSWpumpmustbeOPERABLEonthesecondarysidetotransportdecayheattotheUHS.Therefore,iftwoRHRpumps(andoneheatexchanger)inthesamelooparebeingusedtocomprisetwoshutdowncoolingsubsystems,thetwoRHRSWpumps(onefromUnit1andonefromUnit2)whicharecapableofservicingthesubjectheatexchangermustbeOPERABLE.InNODE4,theRHRcrosstievalves(HV-151-F010AandB)maybeopenedtoallowpumpsinonelooptodischargethroughtheoppositerecirculationlooptomakeacompletesubsystem.Additionally,eachshutdowncoolingsubsystemisconsideredOPERABLEifitcanbemanuallyaligned(remoteorlocal)intheshutdowncoolingmodeforremovalofdecayheat.InNODE4,oneRHRshutdowncoolingsubsystemcanprovidetherequiredcooling,buttwosubsystemsarerequiredtobeOPERABLEtoprovideredundancy.Operationofonesubsystemcanmaintainorreducethereactorcoolanttemperatureasrequired.However,toensureadequatecoreflowtoallowforaccurateaveragereactorcoolanttemperaturemonitoring,nearlycontinuousoperationisrequired.Note1permitsbothRHRshutdowncoolingsubsystemstobeshutdownforaperiodof2hoursinan8hourperiod.Note2allowsoneRHRshutdowncoolingsubsystemtobeinoperableforupto2hoursfortheperformanceofSurveillancetests.ThesetestsmaybeontheaffectedRHRSystemoronsomeotherplantsystemorcomponentthatnecessitatesplacingtheRHRSysteminaninoperablestatusduringtheperformance.ThisispermittedbecausethecoreheatgenerationcanbelowenoughandtheheatuprateslowenoughtoallowsomechangestotheRHRsubsystemsorotheroperationsrequiringRHRflowinterruptionandlossofredundancy.APPLICABILITYInNODE4,theRHRShutdownCoolingSystemmaybeoperatedintheshutdowncoolingmodetoremovedecayheatto(continued)SUSQUEHANNA-UNIT1B3.4-45Revision0 RHRShutdownCoolingSystem-ColdShutdownB3.4.9BASESAPPLICABILITY(continued)maintaincoolanttemperaturebelow200'F.Otherwise.arecirculationpumpisrequiredtobeinoperation.InMODES1and2,andinMODE3withreactorsteamdomepressuregreaterthanorequaltotheRHRcutinpermissivepressure.thisLCOisnotapplicable.OperationoftheRHRSystemintheshutdowncoolingmodeisnotallowedabovethispressurebecausetheRCSpressuremayexceedthedesignpressureoftheshutdowncoolingpiping.DecayheatremovalatreactorpressuresgreaterthanorequaltotheRHRcutinpermissivepressureistypicallyaccomplishedbycondensingthesteaminthe.maincondenser.Additionally,inMODE2belowthispressure,theOPERABILITYrequirementsfortheEmergencyCoreCoolingSystems(ECCS)(LCO3.5.1,"ECCS-Operating")donotallowplacingtheRHRshutdowncoolingsubsystemintooperation.TherequirementsfordecayheatremovalinMODE3belowthecutinpermissivepressureandinMODE5arediscussedinLCO3.4.8,"ResidualHeatRemoval(RHR)ShutdownCoolingSystem-HotShutdown";LCO3.9.8."ResidualHeatRemoval(RHR)-HighWaterLevel";andLCO3.9.9,"ResidualHeatRemoval(RHR)-Low.WaterLevel."ACTIONSANotehasbeenprovidedtomodifytheACTIONSrelatedtoRHRshutdowncoolingsubsystems.Section1.3.CompletionTimes,specifiesonceaConditionhasbeenentered.subsequentdivisions,subsystems,componentsorvariablesexpressedintheCondition,discoveredtobeinoperableornotwithinlimits,willnotresultinseparateentryintotheCondition.Section1.3alsospecifiesRequiredActionsoftheConditioncontinuetoapplyforeachadditionalfailure,withCompletionTimesbasedoninitialentryintotheCondition.However,theRequiredActionsforinoperableshutdowncoolingsubsystemsprovideappropriatecompensatorymeasuresforseparateinoperableshutdowncoolingsubsystems.Assuch.aNotehasbeenprovidedthatallowsseparateConditionentryforeachinoperableRHRshutdowncoolingsubsystem.(continued)SUSQUEHANNA-UNIT1B3.4-46Revision0 RHRShutdownCoolingSystem-ColdShutdownB3.4.9BASESACTIONS(continued)A.1WithoneofthetworequiredRHRshutdowncoolingsubsystemsinoperable,exceptaspermittedbyLCONote2,theremainingsubsystemiscapableofprovidingtherequireddecayheatremoval.However,theoverallreliabilityisreduced.Therefore.analternatemethodofdecayheatremovalmustbeprovided.WithbothRHRshutdowncoolingsubsystemsinoperable,analternatemethodofdecayheatremovalmustbeprovidedinadditiontothatprovidedfortheinitialRHRshutdowncoolingsubsysteminoperability.Thisre-establishesbackupdecayheatremovalcapabilities,similartotherequirementsoftheLCO.The1hourCompletionTimeisbasedonthedecayheatremovalfunctionandtheprobabilityofalossoftheavailabledecayheatremovalcapabilities.Furthermore,verificationofthefunctionalavailabilityofthesealternatemethod(s)mustbereconfirmedevery24hoursthereafter.Thiswillprovideassuranceofcontinuedheatremovalcapability.Therequiredcoolingcapacityofthealternatemethodmustbeensuredbyverifying(bycalculationordemonstration)itscapabilityto.maintainorreducetemperature.Decayheatremovalbyambientlossescanbeconsideredas,orcontributingt6;'thealternatemethodcapability.Alternatemethodsthatcanbeusedinclude(butarenotlimitedto)theReactorWaterCleanupSystem.B.landB.2WithnoRHRshutdowncoolingsubsystemandnorecirculationpumpinoperation,exceptaspermittedbyLCONote1,anduntilRHRorrecirculationpumpoperationisre-established.analternatemethodofreactorcoolantcirculationmustbeplacedintoservice.Thealternatemethodmayuseforcedornaturalcirculation.Thiswillprovidethenecessarycirculationformonitoringcoolanttemperature.The1hourCompletionTimeisbasedonthecoolantcirculationfunctionandismodifiedsuchthatthe1hourisapplicableseparatelyforeachoccurrenceinvolvingalossofcoolantcirculation.Furthermore.verificationofthefunctioningofthealternatemethodmustbereconfirmedevery12hoursthereafter.Thiswillprovideassuranceofcontinuedtemperaturemonitoringcapability.(continued)SUSQUEHANNA-UNIT183.4-47Revision0 RHRShutdownCoolingSystem-ColdShutdownB3.4.9BASESACTIONSB.1andB.2(continued)Duringtheperiodwhenthereactorcoolantisbeingcirculatedbyanalternatemethod(otherthanbytherequiredRHRShutdownCoolingSystemorrecirculationpump),thereactorcoolanttemperatureandpressuremustbeperiodicallymonitoredtoensureproperfunctionofthealternatemethod.TheonceperhourCompletionTimeisdeemedappropriate.SURVEILLANCEREQUIREMENTSSR3.4.9.1ThisSurveillanceverifiesthatoneRHRshutdowncoolingsubsystemorrecirculationpumpisinoperationandcirculatingreactorcoolant.Therequiredflowrateisdeterminedbytheflowratenecessarytoprovidesufficientdecayheatremovalcapability.TheFrequencyof12hoursissufficientinviewofothervisualandaudibleindicationsavailabletotheoperatorformonitoringtheRHRsubsysteminthecontrolroom.REFERENCES1.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA-UNIT1B3.4-48Revision0 RCSP/TLimitsB3.4.10B3.4REACTORCOOLANTSYSTEM(RCS)83.4.10RCSPressureandTemperature(P/T)LimitsBASESBACKGROUNDAllcomponentsoftheRCSaredesignedtowithstandeffectsofcyclicloadsduetosystempressureandtemperaturechanges.Theseloadsareintroducedbystartup(heatup)andshutdown(cooldown)operations,powertransients,andreactortrips.ThisLCOlimitsthepressureandtemperaturechangesduringRCSheatupandcooldown,withinthedesignassumptionsandthestresslimitsforcyclicoperation.ThisSpecificationcontainsP/Tlimitcurvesforheatup,cooldown,andinserviceleakageandhydrostatictesting,andlimitsforthemaximumrateofchangeofreactorcoolanttemperature.Theheatupcurveprovideslimitsforbothheatupandcriticality.EachP/Tlimitcurvedefinesanacceptableregionfornormaloperation.Theusualus'eofthecurvesisoperationalguidanceduringheatuporcooldownmaneuvering,whenpressureandtemperatureindicationsaremonitoredandcomparedtotheapplicablecurvetodeterminethatoperationiswithintheallowableregion.TheLCOestablishesoperatinglimitsthatprovideamargintobrittlefailureofthereactorvesselandpipingofthereactorcoolantpressureboundary(RCPB).Thevesselisthecomponentmostsubjecttobrittlefailure.Therefore,theLCOlimitsapplymainlytothevessel.10CFR50,AppendixG(Ref.1),requirestheestablishmentofP/TlimitsformaterialfracturetoughnessrequirementsoftheRCPBmaterials.Reference1requiresanadequatemargintobrittlefailureduringnormaloperation,anticipatedoperationaloccurrences,andsystemhydrostatictests.ItmandatestheuseoftheASMECode.SectionIII,AppendixG(Ref.2).TheactualshiftintheRopyofthevesselmaterialwillbeestablishedperiodicallybyremovingandevaluatingtheirradiatedreactorvesselmaterialspecimens,inaccordancewithASTME185(Ref.3)andAppendixHof10CFR50(Ref.4).TheoperatingP/Tlimitcurveswillbeadjusted,(continued)SUSQUEHANNA-UNIT183.4-49Revision0 RCSP/TLimitsB3.4.10BASESBACKGROUND(continued)'asnecessary,basedontheevaluationfindingsandtherecommendationsofReference5.TheP/Tlimitcurvesarecompositecurvesestablishedbysuperimposinglimitsderivedfromstressanalysesofthoseportionsofthereactorvesselandheadthatarethemostrestrictive.Atanyspecificpressure,temperature,andtemperaturerateofchange,onelocationwithinthereactorvesselwilldictatethemostrestrictivelimit.AcrossthespanoftheP/Tlimitcurves,differentlocationsaremorerestrictive,and,thus,thecurvesarecompositesofthemostrestrictive.regions.TheheatupcurveusedtodeveloptheP/TlimitcurvecompositerepresentsadifferentsetofrestrictionsthanthecooldowncurveusedtodeveloptheP/Tlimitcurvecompositebecausethedirectionsofthethermalgradientsthroughthevesselwallarereversed.Thethermalgradientreversalaltersthelocationofthetensilestressbetweentheouterandinnerwalls.ThecriticalitylimitsincludetheReference1requirementthattheybeatleast40'Fabovetheheatupcurveorthecooldowncurveandnotlowerthantheminimumpermissibletemperaturefo0theinserviceleakageandhydrostatictesting.Theconsequenceof'iolatingtheLCOlimitsisthattheRCShasbeenoperatedunderconditionsthatcanresultinbrittlefailureoftheRCPB,possiblyleadingtoanonisolableleakorlossofcoolantaccident.Intheeventtheselimitsareexceeded,anevaluationmustbeperformedtodeterminetheeffectonthestructuralintegrityoftheRCPBcomponents.ASHECode,SectionXI,AppendixE(Ref.6),providesarecommendedmethodologyforevaluatinganoperatingeventthatcausesanexcursionoutsidethelimits.APPLICABLESAFETYANALYSESTheP/TlimitsarenotderivedfromDesignBasisAccident(DBA)analyses.Theyareprescribedduringnormaloperationtoavoidencounteringpressure,temperature,andtemperaturerateofchangeconditionsthatmightcauseundetectedflawstopropagateandcausenonductilefailureoftheRCPB,aconditionthatisunanalyzed.Reference7establishesthe(continued)SUSQUEHANNA-UNIT183.4-50Revision0 RCSP/TLimitsB3.4.10BASESAPPLICABLEmethodologyfordeterminingtheP/Tlimits.SincetheP/TSAFETYANALYSESlimitsarenotderivedfromanyDBA.therearenoacceptance(continued)limitsrelatedtotheP/Tlimits:Rather,theP/Tlimitsareacceptancelimitsthemselvessincetheyprecludeoperationinanunanalyzedcondition.RCSP/TlimitssatisfyCriterion2oftheNRCPolicyStatement(Ref.9).LCOTheelementsofthisLCOare:a.RCSpressureandtemperaturearetotherightoftheapplicablecurvespecifiedinFigure3.4.10-1andwithintheapplicableheat-uporcooldownratespecifiedinSR3.4.10.1duringRCSheatup,cooldown,andinserviceleakandhydrostatictesting;Thetemperaturedifferencebetweenthereactorvesselbottomheadcoolantandthereactorpressurevessel(RPV)coolant~145'Fduringrecirculationpumpstartup,andduringincreasesinTHERMALPOWERorloopflowwhileoperatingatlowTHERMALPOWERorloopflow;Thetemperaturedifferencebetweenthereactorcoolantintherespectiverecirculationloopandinthereactorvesselare<50'Fduringrecirculationpumpstartup,andduringincreasesinTHERMALPOWERorloopflowwhileoperatingatlowTHERMALPOWERorloopflow;d.RCSpressureandtemperaturearetotherightofthecriticalitylimitsspecifiedinFigure3.4.10-1priortoachievingcriticality;ande.Thereactorvesselflangeandtheheadflangetemperaturesare~70'Fwhentensioningthereactorvesselheadboltingstuds.Theselimitsdefineallowableoperatingregionsandpermitalargenumberofoperatingcycleswhilealsoprovidingawidemargintononductilefailure.Therateofchangeoftemperaturelimitscontrolthethermalgradientthroughthevesselwallandareusedasinputsfor(continued)SUSQUEHANNA-UNIT1B3.4-51Revision0 RCSP/TLimitsB3.4.10BASESLCO(continued)calculatingtheheatup,cooldown,andinserviceleakageandhydrostatictestingP/Tlimitcurves.Thus,theLCOfortherateofchangeoftemperaturerestrictsstressescausedbythermalgradientsandalsoensuresthevalidityoftheP/Tlimitcurves.Thevesselbeltlinefractureanalysisassumesa100'F/hrheatingorcoolingrateforbeltlinecoolant.Therefore,the100'Fina1-hourperiodlimitappliestothebeltlinereioncoolant.Thislimittakesintoaccountthethermalinertiaofthevesselwall.ExceptduringpressuretestingoftheRPV,thesaturationtemperaturederivedfromreactorpressureisthepreferredmethodfordeterminingtheRPVcoolanttemperature.Thebottomheaddrainlinecoolanttemperatureisusedtodeterminethebottomheadcoolanttemperature.ThehydrostaticandleaktestinglimitsrequirethattemperaturesofvesselmetalsubjecttostressfromagivenpressureduringtestingmustbetotherightoflimitCurveA.Changesincoolanttemperaturemustnotexceed20'Fina1-hourperiod.ViolationofthelimitsplacesthereactorvesseloutsideoftheboundsofthestressanalysesandcanincreasestressesinotherRCScomponents.Theconsequencesdependonseveralfactors,asfollows:a.Theseveri'tyofthedeparturefromtheallowableoperatingpressuretemperatureregimeortheseverityoftherateofchangeoftemperature;b.Thelengthoftimethelimitswereviolated(longerviolationsallowthetemperaturegradientinthethickvesselwallstobecomemorepronounced):andc.Theexistences,sizes,andorientationsofflawsinthevesselmaterial.APPLICABILITYThepotentialforviolatingaP/Tlimitexistsatalltimes.Forexample.P/Tlimitviolationscouldresultfromambienttemperatureconditionsthatresultinthereactorvesselmetaltemperaturebeinglessthantheminimumallowedtemperatureforboltup.Therefore,thisLCOisapplicableevenwhenfuelisnotloadedinthecore.SUSQUEHANNA-UNIT1B3.4-52(continued)Revision0 RCSP/TLimitsB3.4.10BASES(continued)ACTIONSA.landA.2Operationoutside'heP/TlimitswhileinMODES1,2,and3mustbecorrectedsothattheRCPBisreturnedtoaconditionthathasbeenverifiedbystressanalyses.The30minuteCompletionTimereflectstheurgencyofrestoringtheparameterstowithintheanalyzedrange.Mostviolationswillnotbesevere,andtheactivitycanbeaccomplishedinthistimeinacontrolledmanner.Besidesrestoringoperationwithinlimits.anevaluationisrequiredtodetermineifRCSoperationcancontinue.TheevaluationmustverifytheRCPBintegrityremainsacceptableandmustbecompletedifcontinuedoperationisdesired.Severalmethodsmaybeused,includingcomparisonwithpre-analyzedtransientsinthestressanalyses.newanalyses.orinspectionofthecomponents.ASMECode,SectionXI,AppendixE(Ref.6),maybeusedtosupporttheevaluation.However,itsuseisrestrictedtoevaluationofthevesselbeltline.The72hourCompletionTimeisreasonabletoaccomplishtheevaluationof8mildviolation.Moresevereviolationsmayrequirespecial,eventspecificstressanalysesorinspections.Afavorableevaluationmustbecompletedifcontinuedoperationisdesired.ConditionAismodifiedbyaNoterequiringRequiredActionA.2becompletedwhenevertheConditionisentered.TheNoteemphasizestheneedtoperformtheevaluationoftheeffectsoftheexcursionoutsidetheallowablelimits.RestorationaloneperRequiredActionA.1isinsufficientbecausehigherthananalyzedstressesmayhaveoccurredandmayhaveaffectedtheRCPBintegrity.B.landB.2IfaRequiredActionandassociatedCompletionTimeofConditionAarenotmet.theplantmustbeplacedinalowerMODEbecauseeithertheRCSremainedinanunacceptableP/Tregionforanextendedperiodofincreasedstress,orasufficientlysevereeventcausedentryintoanunacceptableregion.Eitherpossibilityindicatesaneedformore(continued)SUSQUEHANNA-UNIT1B3.4-53Revision0 RCSP/TLimits83.4.10BASESACTIONSB.land8.2(continued)carefulexaminationoftheevent,bestaccomplishedwiththeRCSatreducedpressureandtemperature.Withthereducedpressureandtemperatureconditions,thepossibilityofpropagationofundetectedflawsisdecreased.PressureandtemperaturearereducedbyplacingtheplantinatleastMODE3within12hoursandinMODE4within36hours.TheallowedCompletionTimesarereasonable,basedonoperatingexperience,toreachtherequiredplantconditionsfromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.C.1andC.2OperationoutsidetheP/TlimitsinotherthanMODES1,2,and3(includingdefueledconditions)mustbecorrectedsothattheRCPBisreturnedtoaconditionthathasbeenverifiedbystressanaly'ses.TheRequiredActionmustbeinitiatedwithoutdelayandcontinueduntilthelimitsarerestored.BesidesrestoringtheP/Tlimitparameterstowithinlimits,anevaluationisrequiredtodetermineifRCSoperationisallowed.ThisevaluationmustverifythattheRCPBintegrityisacceptableandmustbecompletedbeforeapproachingcriticalityorheatingupto>200'F.Severalmethodsmaybeused,includingcomparisonwithpre-analyzedtransients,newanalyses,orinspectionofthecomponents.ASMECode,SectionXI,AppendixE(Ref.6),maybeusedtosupporttheevaluation;however,itsuseisrestrictedtoevaluationofthebeltlineSURVEILLANCEREQUIREMENTSSR3.4.10.1Verificationthatoperationiswithinlimits(i.e.,totherightoftheapplicablecurveinFigure3.4.10-1)isrequiredevery30minuteswhenRCSpressureandtemperatureconditionsareundergoingplannedchanges.ThisFrequencyisconsideredreasonableinviewofthecontrolroomindicationavailabletomonitorRCSstatus.Also,sincetemperaturerateofchangelimitsarespecifiedinhourly(continued)SUSQUEHANNA-UNIT1B3.4-54Revision0 RCSP/TLimitsB3.4.10BASESSURVEILLANCEREQUIREHENTSSR3.4.10.1(continued)increments,30minutespermitsareasonabletimeforassessmentandcorrectionofminordeviations.Surveillanceforheatup,cooldown,orinserviceleakageandhydrostatictestingmaybediscontinuedwhenthecriteriagivenintherelevantplantprocedureforendingtheactivityaresatisfied.ThisSRhasbeenmodifiedwithaNotethatrequiresthisSurveillancetobeperformedonlyduringsystemheatupandcooldownoperationsandinserviceleakageandhydrostatictesting.Notestotheacceptancecriteriaforheatupandcooldownratesensurethatmore.restrictivelimitsareapplicablewhentheP/Tlimitsassociatedwithhydrostaticandinservicetestingarebeingapplied.SR3.4.10.2Aseparatelimitisusedwhenthereactorisapproachingcriticality.Consequently.theRCSpressureandtemperaturemustbeverifiedwithintheappropriatelimits(i.e.,totherightofthecriticalitycurveinFigure3.4.10-1)beforewithdrawingcontrolrodsthatwillmakethereactorcritical.PerformingtheSurveillancewithin15minutesbeforecontrolrodwithdrawalf'rthepurposeofachievingcriticalityprovidesadequateassurancethatthelimitswillnotbeexceededbetweenthetimeoftheSurveillanceandthetimeofreactorcriticality.AlthoughnoSurveillanceFrequencyisspecified,therequirementsofSR3.4.10.2mustbemetatalltimeswhenthereactoriscritical.SR3.4.10.3andSR3.4.10.4Differentialtemperatureswithintheapplicablelimitsensurethatthermalstressesresultingfromthestartupofanidlerecirculationpumpwillnotexceeddesignallowances.Inaddition,compliancewiththeselimits(continued)SUSQUEHANNA-UNIT1,B3.4-55Revision0 RCSP/TLimitsB3.4.10BASESSURVEILLANCEREQUIREMENTSSR3.4.10.3andSR3.4.10.4(continued)ensuresthattheassumptionsoftheanalysisforthestartupofanidlerecirculationloop(Ref.8)aresatisfied.PerformingtheSurveillancewithin15minutesbeforestartingtheidlerecirculationpumpprovidesadequateassurancethatthelimitswillnotbeexceededbetweenthetimeoftheSurveillanceandthetimeoftheidlepumpstart.AnacceptablemeansofdemonstratingcompliancewiththetemperaturedifferentialrequirementinSR3.4.10.4istocomparethetemperaturesoftheoperatingrecirculationloopandtheidleloop.Ifbothloopsareidle,comparethetemperaturedifferencebetweenthereactorcoolantwithintheidlelooptobestartedandcoolantinthereactorvessel.SR3.4.10.3hasbeenmodifiedbyaNotethatrequirestheSurveillancetobeperformedonlyinMODES1,2,3,and4.InMODE5,theoverallstressonlimitingcomponentsislower.Therefore;hT'imitsarenotrequired.TheNotealsostatesthe-SRisonly-requiredtobemetduringarecirculationpumpstartup;becausuthi'siswhenthestressesoccur.SR3.4.-10-.5:.and-SR3.4:10.6Differential=temperatureswithintheapplicablelimitsensure.that=thermal-.stressesresultingfromincreasesinTHERMALPORER=or-recirculationloopflowduringsinglerecirculationloop:operate;on.wi:.1,1notexceeddesignallowances.Performingthe:SurveiI,lance:within15minutesbeforebeginningsuchanincrease.in",power.orflowrateprovidesadequateassurancethat'helimitswillnotbeexceededbetweenthetimeoftheSurveillanceandthetimeofthechangeinoperation.AnacceptablemeansofdemonstratingcompliancewiththetemperaturedifferentialrequirementinSR3.4.10.6istocomparethetemperaturesoftheoperatingrecirculationloopandtheidleloop.SURVEILLANCEREQUIREMENTSSR3.4.10.5andSR3.4.10.6(continued)Plantspecificstartuptestdatahasdeterminedthatthebottomheadisnotsubjecttotemperaturestratificationat(continued)SUSQUEHANNA-UNIT1B3.4-56Revision0 RCSP/TLimitsB3.4.10BASESpowerlevels)30KofRTPandwithsingleloopflowrate>21,320gpm(50Kofratedloopflow).Therefore.SR3.4.10.5andSR3.4.10.6havebeenmodifiedbyaNotethatrequirestheSurveillancetobemetonlyundertheseconditions.TheNoteforSR3.4.10.6furtherlimitstherequirementforthisSurveillancetoexcludecomparisonoftheidlelooptemperatureiftheidleloopisisolatedfromtheRPVsincethewaterintheloopcannotbeintroducedintotheremainderoftheReactorCoolantSystem.SR3.4.10.7SR3.4.10.8andSR3.4.10.9Limitsonthereactorvesselflangeandheadflange,temperaturesaregenerallyboundedbytheotherP/Tlimitsduringsystemheatupandcooldown.However,operationsapproachingMODE4fromMODE5andinMODE4withRCStemperaturelessthanorequaltocertainspecifiedvaluesrequireassurancethatthesetemperaturesmeettheLCOlimits.Theflangetemperaturesmustbeverifiedtobeabovethelimits30minutesb'eforeandwhiletensioningthevesselheadboltingstudstoensurethat.oncetheheadistensionedthelimitsaresatisfied.WheninMODE4withRCStemperature~80'F,30minOtechecksoftheflangetemperaturesarerequiredbecauseofthereducedmargintothelimits.WheninMODE4withRCStemperature~100'F,monitoringoftheflangetemperatureisrequiredevery12hourstoensurethetemperatureiswithinthespecifiedlimits.The30minuteFrequencyreflectstheurgencyofmaintainingthetemperatureswithinlimits,andalsolimitsthetimethatthetemperaturelimitscouldbeexceeded.The12hourFrequencyisreasonablebasedontherateoftemperaturechangepossibleatthesetemperatures.REFERENCESREFERENCES(continued)1.10CFR50,AppendixG.2.ASME,BoilerandPressureVesselCode,SectionIII,AppendixG.3.ASTME185-734.10CFR50,AppendixH.(continued)SUSQUEHANNA-UNIT1B3.4-57Revision0 RCSP/TLimitsB3.4.10BASES5.RegulatoryGuide1.99,Revision2,Hay1988.6.ASHE,BoilerandPressureVesselCode,SectionXI,AppendixE.7.NED0-21778-A,December1978.8.FSAR,Section15.4.4.9.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA-UNIT1B3.4-58Revision0 ReactorSteamDomePressureB3.4.11\B3.4REACTORCOOLANTSYSTEM(RCS)B3.4.11ReactorSteamDomePressureBASESBACKGROUNDThereactorsteamdomepressureisanassumedinitialconditionofdesignbasisaccidentsandtransientsandisalsoanassumedvalueinthedeterminationofcompliancewithreactorpressurevesseloverpressureprotectioncriteria.APPLICABLEThereactorsteamdomepressureofs1050psigisanSAFETYANALYSESinitialconditionofthevesseloverpressureprotectionanalysisofReference1.Thisanalysisassumesaninitialmaximumreactorsteamdomepressureandevaluatestheresponseofthepressurereliefsystem,primarilythesafety/reliefvalves,duringthelimitingpressurizationtransient.Thedeterminationofcompliancewiththeoverpressurecriteriaisdependentontheinitialreactorsteamdomepressure;therefore,thelimitonthispressureensuresthattheassumptions.oftheoverpressureprotectionanalysisareconserved.Reactorsteamdomepressuresatisfiestherequirementsof'riterion2oftheNRCPolicyStatement(Ref.3).LCOThespecifiedreactorsteamdomepressurelimitof<1050psigensurestheplantisoperatedwithintheassumptionsofthetransientanalyses.Operationabovethelimitmayresultinatransientresponsemoreseverethananalyzed.APPLICABILITYInMODES1and2,thereactorsteamdomepressureisrequiredtobelessthanorequaltothelimit.IntheseMODES.thereactormaybegeneratingsignificantsteamandthedesignbasisaccidentsandtransientsarebounding.InMODES3.4,and5.thelimitisnotapplicablebecausethereactorisshutdown.IntheseMODES,thereactor(continued)SUSQUEHANNA-UNIT1B3.4-59Revision0

ReactorSteamDomePressure83.4.11BASESAPPLICABILITYpressureiswellbelowtherequiredlimit,andno(continued)anticipatedeventswillchallengetheoverpressurelimits.ACTIONSA.lWiththereactorsteamdomepressuregreaterthanthelimit,promptactionshouldbetakentoreducepressuretobelowthelimitandreturnthereactortooperationwithintheboundsof'heanalyses.The15minuteCompletionTimeisreasonableconsideringtheimportanceofmaintainingthepressurewithinlimits.ThisCompletionTimealsoensuresthattheprobabilityofanaccidentoccurringwhilepressureisgreaterthanthelimitisminimized.Iftheoperatorisunabletorestorethereactorsteamdomepressuretobelowthelimit,thenthereactorshouldbeplacedinHODE3tobeoperatingwithintheassumptionsofthetransientanalyses.B.1Ifthe:reactor.steamdomepressurecannotberestoredtowithin-the=:.Timit-withintheassociatedCompletionTime,the,plant=must=-be=pro'ught-toaHODEinwhichtheLCOdoesnotapp:jy-'-.Toachi:eve=.thi.sstatus.,theplantmustbebroughttoatleast-;HODE3.w~thin12hours.Theall.owedCompletionTime==of==12hours-.is.-reasonable,basedonoperatingexperience=-,.to:-.reachNODE3fromfullpowerconditionsinanorder;lymann'er.an'd."-withoutchallengingplantsystems.SURVEILLANCEREQUIREHENTSSR3.4.11.1Verificationthatreactorsteamdomepressureiss1050psigensuresthattheinitialconditionsoftheover-pressurizationanalysisaremet.Operatingexperiencehasshownthe12hourFrequencytobesufficientforidentifyingtrendsandverifyingoperationwithinsafetyanalysesassumptions.SUSQUEHANNA-UNIT1B3.4-60(continued)Revision0 ReactorSteamDomePressureB3.4.11BASES(continued)REFERENCES1.FSAR,Section5.2.2.1.2.FSAR.Section15.3.FinalPolicyStatementonTechnicalSpecificationsImprovements.July22,1993(58FR39132).SUSQUEHANNA-UNIT1B3.4-61Revision0

ECCS-OperatingB3.5.1B3.5EMERGENCYCORECOOLINGSYSTEMS(ECCS)ANDREACTORCOREISOLATIONCOOLING(RCIC)SYSTEM83.5.1ECCS-OperatingBASESBACKGROUNDTheECCSisdesigned,inconjunctionwiththeprimaryandsecondarycontainment,tolimitthereleaseofradioactivematerialstotheenvironmentfollowingalossofcoolantaccident(LOCA).TheECCSusestwoindependentmethods(floodingandspraying)tocoolthecoreduringaLOCA.TheECCSnetworkconsistsoftheHighPressureCoolantInjection(HPCI)System.theCoreSpray(CS)System,thelowpressurecoolantinjection(LPCI)modeoftheResidualHeatRemoval(RHR)System,andtheAutomaticDepressurizationSystem(ADS).ThesuppressionpoolprovidestherequiredsourceofwaterfortheECCS.Althoughnocreditistakeninthesafetyanalysesforthecondensatestoragetank(CST),itiscapableofprovidingasourceofwaterfortheHPCIandCSsystems.Onreceiptofaninitiationsignal,ECCSpumpsautomaticallystart;simultaneously,thesystemalignsandthepumpsinjectwater.takeneitherfromtheCSTorsuppressionpool.intotheReactdr'CoolantSystem(RCS)asRCSpressureisovercomebythedischargepressureoftheECCSpumps.Althoughthesystemisinitiated,ADSactionisdelayed-,allowingtheoperatortointerruptthetimedsequence:-ifthe-systemisnotneeded.TheHPCIpumpdischargepressurequicklyexceedsthatoftheRCS,andthepumpinjects.coolantintothevesseltocoolthecore.Ifthebreakissmall,theHPCISystemwillmaintaincoolantinventoryaswellasvessellevelwhiletheRCSisstillpressurized.IfHPCIfails.itisbackedupbyADSincombinationwithLPCIandCS.Inthiseventabsentoperatoraction,theADStimedsequencewouldtimeoutandopentheselectedsafety/reliefvalves(S/RYs)depressurizingtheRCS.thusallowingtheLPCIandCStoovercomeRCSpressureandinjectcoolantintothevessel.Ifthebreakislarge,RCSpressureinitiallydropsrapidlyandtheLPCIandCScoolthecore.Waterfromthebreakreturnstothesuppressionpoolwhereitisusedagainandagain.WaterinthesuppressionpooliscirculatedthroughaheatexchangercooledbytheRHRServiceWaterSystem.Dependingonthelocationandsizeoft(continued)SUSQUEHANNA-UNIT1B3.5-1Revision0 ECCS-OperatingB3.5.1BASESBACKGROUND(continued)thebreak,portionsoftheECCSmaybeineffective;however,theoveralldesigniseffectiveincoolingthecoreregardlessofthesizeorlocationofthepipingbreak.AlthoughnocreditistakeninthesafetyanalysisfortheRCICSystem,itperformsasimilarfunctionasHPCI,buthasreducedmakeupcapability.Nevertheless,itwi11maintaininventoryandcoolthecorewhiletheRCSisstillpressurizedfollowingareactorpressurevessel(RPV)isolation.AllECCSsubsystemsaredesignedtoensurethatnosingleactivecomponentfailurewillpreventautomaticinitiationandsuccessfuloperationoftheminimumrequiredECCSequipment.TheCSSystem(Ref.1)iscomposedoftwoindependentsubsystems.Eachsubsystemconsistsoftwomotordrivenpumps,asprayspargerabovethecore,andpipingandvalvestotransferwaterfromthesuppressionpooltothesparger.TheCSSystemisdesignedtoprovidecoolingtothereactorcorewhenreactorpressureislow.Uponreceiptofaninitiationsignal,theCSpumpsinbothsubsystemsareautomaticallystartedwhenACpowerisavailable.WhentheRPVpressuredropssufficiently,CSSystemflowtotheRPVbegins.AfulTflowtestlineisprovidedtoroutewaterfromandtothesuppressionpooltoallowtestingoftheCSSystemwithoutsprayingwaterintheRPV.LPCIisanindependentoperatingmodeoftheRHRSystem.TherearetwoLPCIsubsystems(Ref.2),eachconsistingoftwomotordrivenpumpsandpipingandvalvestotransferwaterfromthesuppressionpooltotheRPVviathecorrespondingrecirculationloop.ThetwoLPCIsubsystemscanbeinterconnectedviatheRHRSystemcrosstievalves;however,atleastoneofthetwocrosstievalvesismaintainedclosedwithitspowerremovedtopreventlossofbothLPCIsubsystemsduringaLOCA.TheLPCIsubsystemsaredesignedtoprovidecorecoolingatlowRPVpressure.Uponreceiptofaninitiationsignal,allfourLPCIpumpsareautomaticallystarted.RHRSystemvalvesintheLPCIflowpathareautomaticallypositionedtoensuretheproperflowpathforwaterfromthesuppressionpooltoinjectintotherecirculationloops.WhentheRPVpressuredropssufficiently,theLPCIflowtotheRPV,viathecorrespondingrecirculationloop,begins.Thewaterthenentersthereactorthroughthejetpumps.(continued)SUSQUEHANNA-UNIT1B3.5-2Revision0 ECCS-OperatingB3.5.1BASESBACKGROUND(continued)FullflowtestlinesareprovidedforeachLPCIsubsystem.toroutewaterfromthesuppressionpool,toallowtestingoftheLPCIpumpswithoutinjecting-waterintotheRPV.'hesetestlinesalsoprovidesuppressionpoolcoolingcapability,asdescribedinLCO3.6.2.3,"RHRSuppressionPoolCooling."TheHPCISystem(Ref.3)consistsofasteamdriventurbinepumpunit,piping,andvalvestoprovidesteamtotheturbine,aswellaspipingandvalvestotransferwaterfromthesuctionsourcetothecoreviathefeedwatersystemline,wherethecoolantisdistributedwithintheRPVthroughthefeedwatersparger.SuctionpipingforthesystemisprovidedfromtheCSTandthesuppressionpool.PumpsuctionforHPCIisnormallyalignedtotheCSTsourcetominimizeinjectionofsuppressionpoolwaterintotheRPV.WhenevertheHPCIinjectionvalveisopenandthesuppressionpoollevelishighoriftheCSTwatersupplyislow,anautomatictransfertothesuppressionpoolwatersourceensuresawatersupplyforcontinuousoperationoftheHPCISystem.ThesteamsupplytotheHPCIturbineispipedfromamainsteamlineupstreamoftheassociatedinboardmainsteam-isolation.valve.TheHPCISystemfsdesignedtoprovidecorecoolingforawiderangeofreactorpressures(165psiato1225psia).Uponreceiptofaninitiationsignal,theHPCIturbinestopvalveandturbinecontrolvalveopenandtheturbineacceleratestoaspecifiedspeed.AstheHPCIflowincreases.theturbinecontrolvalveisautomaticallyadjustedtomaintaindesignflow.ExhauststeamfromtheHPCIturbineisdischargedtothesuppressionpool.AfullflowtestlineisprovidedtoroutewatertotheCSTtoallowtestingoftheHPCISystemduringnormaloperationwithoutinjectingwaterintotheRPV.TheECCSpumpsareprovidedwithminimumflowbypasslines,whichdischargetothesuppressionpool.Thevalvesintheselinesautomaticallyopentopreventpumpdamageduetoov'erheatingwhenotherdischargelinevalvesareclosed.ToensurerapiddeliveryofwatertotheRPVandtominimizewaterhammereffects,allECCSpumpdischargelinesarefilledwithwater.TheHPCI.LPCIandCSSystemdischargelinesarekeptfullofwaterusinga"keepfill"systemthatissuppliedusingthecondensatetransfersystem.(continued)SUSQUEHANNA-UNIT183.5-3Revision0 ECCS-OperatingB3.5.1BASESBACKGROUND(continued)TheADS(Ref.4)consistsof6ofthe16S/RVs.ItisdesignedtoprovidedepressurizationoftheRCSduringasmallbreakLOCAifHPCIfailsorisunabletomaintainrequiredwaterlevelintheRPV.ADSoperationreducestheRPVpressuretowithintheoperatingpressurerangeofthelowpressureECCSsubsystems(CSandLPCI),sothatthesesubsystemscanprovidecoolantinventorymakeup.EachoftheS/RVsusedforautomaticdepressurizationisequippedwithtwogasaccumulatorsandassociatedinletcheckvalves.Theaccumulatorsprovidethepneumaticpowertoactuatethevalves.APPLICABLESAFETYANALYSESTheECCSperformanceisevaluatedfortheentirespectrumofbreaksizesforapostulatedLOCA.TheaccidentsforwhichECCSoperationisrequiredarepresentedinReferences5,6,and7.TherequiredanalysesandassumptionsaredefinedinReference8.TheresultsoftheseanalysesarealsodescribedinReference9.ThisLCOhelpstoensurethatthefollowingacceptancecriteriafortheECCS,establishedby10CFR50.46(Ref.10),willbemetfollowingaLOCA,assumingtheworstcasesingleactivecomponentfailureintheECCS:a.Maximumfuelelementcladdingtemperatureis<2200'F;b.Maximumcladdingoxidationis~0.17timesthetotalcladdingthicknessbeforeoxidation;c.Maximumhydrogengenerationfromazirconiumwaterreactioniss0.01timesthehypotheticalamountthatwouldbegeneratedifallofthemetalinthecladdingsurroundingthefuel,excludingthecladdingsurroundingtheplenumvolume,weretoreact;d.Thecoreismaintainedinaeoolablegeometry;ande.Adequatelongtermcoolingcapabilityismaintained.TwoseparateanalysesformthebasisfortheLOCAanalysis:GeneralElectric(GE)performedLOCAcalculationsfortheSiemensPowerCorporation(SPC)9x9-2fueldesign.SPC(continued)SUSQUEHANNA-UNIT1B3.5-4Revision0 ECCS-OperatingB3.5.1BASESAPPLICABLESAFETYANALYSES-(continued)performedLOCAcalculationsfortheSPCATRIUMŽ-10fueldesign.ThelimitingsinglefailuresfortheGEandSPCanalysesarediscussedinReference11.ForalargebreakLOCA,boththeGEandSPCanalysesidentifytherecirculationloopsuctionpipingasthelimitingbreaklocation.However,thelimitingsinglefailuref'ralargebreakLOCAisdifferentforeachanalysis:a)TheGEanalysisidentifiestheoppositeunitfalseLOCAsignalasthemostlimitingsinglefailure.b)TheSPCanalysisidentifiesthefailureoftheLPCIinjectionvalveintotheintactrecirculationloopasthemostlimitingsinglefailure.ForasmallbreakLOCA,boththeGEandSPCanalysisidentifytherecirculationloopdischargepipingasthelimitingbreaklocation,andabatteryfailureasthemostseveresinglefailure.OneADSvalvefailureisanalyzedasalimitingsinglefailureforeventsrequiringADSoperation.TheremainingOPERABLEECCSsubsystemsprovidethecapabilitytoadequatelycoolthecoreandpreventexcessivefueldamage.TheECCSsatisQCriterion3oftheNRCPolicyStatement(Ref.15).LCOEachECCSinjection/spraysubsystemandsixADSvalvesarerequiredtobeOPERABLE.TheECCSinjection/spraysubsystemsaredefinedasthetwoCSsubsystems.thetwoLPCIsubsystems,andoneHPCISystem.ThelowpressureECCSinjection/spraysubsystemsaredefinedasthetwoCSsubsystemsandthetwoLPCIsubsystems.WithlessthantherequirednumberofECCSsubsystemsOPERABLE,thepotentialexiststhatduringalimitingdesignbasisLOCAconcurrentwiththeworstcasesinglefailure,thelimitsspecifiedinReference10couldbeexceeded.AllECCSsubsystemsmustthereforebeOPERABLEtosatisfythe'inglefailurecriteiionrequiredbyReference10.LPCIsubsystemsmaybeconsideredOPERABLEduringalignmentandoperationfordecayheatremovalwhenbelowtheactualRHRcutinpermissivepressureinMODE3,ifcapableof(continued)SUSQUEHANNA-UNIT183.5-5Revision0 ECCS-OperatingB3.5.1BASESLCO(continued)beingmanuallyrealigned(remoteorlocal)totheLPCImodeandnototherwiseinoperable.Attheselowpressuresanddecayheatlevels,areducedcomplementofECCSsubsystemsshouldprovidetherequiredcorecooling,therebyallowingoperationofRHRshutdowncoolingwhennecessary.APPLICABILITYAllECCSsubsystemsarerequiredtobeOPERABLEduringNODES1,2,and3,whenthereisconsiderableenergyinthereactorcoreandcorecoolingwouldberequiredtopreventfueldamageintheeventofabreakintheprimarysystempiping.InNODES2and3,whenreactorsteamdomepressureiss150psig,ADSandHPCIarenotrequiredtobeOPERABLEbecausethelowpressureECCSsubsystemscanprovidesufficientflowbelowthispressure.ECCSrequirementsforNODES4and5arespecifiedinLCO3.5.2."ECCS-Shutdown."ACTIONSA.1IfanyonelowpressureECCS.injection/spraysubsystemisinoperableforreasonsotherthanConditionB.theinoperablesubsystemmustberestoredtoOPERABLEstatuswithin7days.InthisCondition,theremainingOPERABLEsubsystemsprovideadequatecorecoolingduringaLOCA.However,overallECCSreliabilityisreduced,becauseasinglefailureinoneoftheremainingOPERABLEsubsystems.concurrentwithaLOCA.mayresultintheECCSnotbeingabletoperformitsintendedsafetyfunction.The7dayCompletionTimeisbasedonareliabilitystudy(Ref.12)thatevaluatedtheimpactonECCSavailability,assumingvariouscomponentsandsubsystemsweretakenoutofservice.TheresultswereusedtocalculatetheaverageavailabilityofECCSequipmentneededtomitigatetheconsequencesofaLOCAasafunctionofallowedoutagetimes(i.e.,CompletionTimes).B.1IfoneLPCIpumpinoneorbothLPCIsubsystemsisinoperable,theinoperableLPCIpumpsmustberestoredtoOPERABLEstatuswithin7days.InthisCondition.theremainingOPERABLELPCIpumpsandatleastoneCSsubsystem(continued)SUSQUEHANNA-UNIT1B3.5-6Revision0 ECCS-OperatingB3.5.1BASESACTIONSB.l(continued)provideadequatecorecoolingduringaLOCA.However,overallECCSreliabilityisreduced,becauseasinglefailureinoneoftheremainingOPERABLEsubsystems,concurrentwithaLOCA,mayresultintheECCSnotbeingabletoperformitsintended.safetyfunction.A7dayCompletionTimeisbasedonareliabilitystudycitedinReference12andhasbeenfoundtobeacceptablethroughoperatingexperience.C.landC.2IftheinoperablelowpressureECCSsubsystemorLPCIpump(s)cannotberestoredtoOPERABLEstatuswithintheassociatedCompletionTime,theplantmustbebroughttoaMODEinwhichtheLCOdoesnotapply.Toachievethisstatus.theplantmustbebroughttoatleastMODE3within12hoursandtoMODE4within36hours.TheallowedCompletionTimesarereasonable,basedonoperatingexperience.toreachtherequiredplantconditionsfromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.D.landD.2IftheHPCISystemisinoperableandtheRCICSystemisverifiedtobeOPERABLE,theHPCISystemmustberestoredtoOPERABLEstatuswithin14days.InthisCondition,adequatecorecoolingisensuredbytheOPERABILITYoftheredundantanddiverselowpressureECCSinjection/spraysubsystemsinconjunctionwithADS.Also,theRCICSystemwillautomaticallyprovidemakeupwateratmostreactoroperatingpressures.VerificationofRCICOPERABILITYisthereforerequiredwhenHPCIisinoperable.ThismaybeperformedasanadministrativecheckbyexamininglogsorotherinformationtodetermineifRCICisoutofserviceformaintenanceorotherreasons.ItdoesnotmeantoperformtheSurveillancesneededtodemonstratetheOPERABILITYoftheRCICSystem.IftheOPERABILITYof'heRCICSystemcannotbeverified,however,ConditionHmustbeimmediatelyentered.IfasingleactivecomponenttailsconcurrentwithadesignbasisLOCA,thereisapotential,dependingonthespecificfailure,thattheminimumrequiredECCSequipment(continued)SUSQUEHANNA-UNIT1B3.5-7Revision0 ECCS-OperatingB3.5.1BASESACTIONS0.1and0.2(continued)willnotbeavailable.A14dayCompletionTimeisbasedonareliabilitystudycitedinReference12andhasbeenfoundtobeacceptablethroughoperatingexperience.E.landE.2IfConditionAorCondition8existsinadditiontoaninoperableHPCISystem,theinoperablelowpressureECCSinjection/spraysubsystemortheLPCIpump(s)ortheHPCISystemmustberestoredtoOPERABLEstatuswithin72hours.InthisCondition,adequatecorecoolingisensuredbytheOPERABILITYoftheADSandtheremaininglowpressureECCSsubsystems.However,theoverallECCSreliabilityissignificantlyreducedbecauseasinglefailureinoneoftheremainingOPERABLEsubsystemsconcurrentwithadesignbasisLOCAmayresultintheECCSnotbeingabletoperformitsintendedsafetyfunction.Sincebothahighpressuresystem(HPCI)andalowpressuresubsystemareinoperable,amorerestrictiveCompletionTimeof72hoursisrequiredtorestoreeitherthe"HPCISystemorthelowpressureECCSinjection/spraysubsystemtoOPERABLEstatus.ThisCompletionTimeisbasedonareliabilitystudycitedinReference12andhasbeenfoundtobeacceptablethroughoperatingexperience.TheLCOrequiressixADSvalvestobeOPERABLEinordertoprovidetheADSfunction.ReferencellcontainstheresultsofananalysisthatevaluatedtheeffectofoneADSvalvebeingoutofservice.Perthisanalysis,operationofonlyfiveADSvalveswillprovidetherequireddepressurization.However,overallreliabilityoftheADSisreduced,becauseasinglefailureintheOPERABLEADSvalvescouldresultinareductionindepressurizationcapability.Therefore,operationisonlyallowedforalimitedtime.The14dayCompletionTimeisbasedonareliabilitystudycitedinReference12andhasbeenfoundtobeacceptablethroughoperatingexperience.(continued)SUSQUEHANNA-UNIT1B3.5-8Revision0 ECCS-OperatingB3.5.1BASESACTIONS(continued)G.1andG.2IfConditionAorCondition8existsinadditiontooneinoperableADSvalve,adequatecorecoolingisensuredbytheOPERABILITYofHPCIandtheremaininglowpressureECCSinjection/spraysubsystem.However,overallECCSreliabilityisreducedbecauseasingleactivecomponentfailureconcurrentwithadesignbasisLOCAcouldresultintheminimumrequiredECCSequipmentnotbeingavailable.Sincebothahighpressuresystem(ADS)andalowpressuresubsystemareinoperable,amorerestrictiveCompletionTimeof72hoursisrequiredtorestoreeitherthelowpressureECCSsubsystemortheADSvalvetoOPERABLEstatus.ThisCompletionTimeisbasedonareliabilitystudycitedinReference12andhasbeenfoundtobeacceptablethroughoperatingexperience.H.landH.2IfanyRequiredActionandassociatedCompletionTimeofConditionD,E,F,orGisnotmet,oriftwoormoreADSvalvesareinoperable,theplantmustbebroughttoaconditioninwhichtheLCOdoesnotapply.Toachievethisstatus,theplantmustbebroughttoatleastMODE3within12hoursandreactorsteamdomepressurereducedto<150psigwithin36hours.TheallowedCompletionTimesarereasonable,basedonoperatingexperience,toreachtherequiredplantconditionsfromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.WhenmultipleECCSsubsystemsareinoperable,asstatedinConditionI.LCO3.0.3mustbeenteredimmediately.SURVEILLANCEREQUIREMENTSSR3.5.1.1Theflowpathpipinghasthepotentialtodevelopvoidsandocketsofentrainedair.MaintainingthepumpdischargeinesoftheHPCISystem,CSSystem,andLPCIsubsystems(continued)SUSQUEHANNA-UNIT1B3.5-9Revision0 ECCS-OperatingB3.5.1BASESSURVEILLANCEREQUIREMENTSSR3.5.1.1(continued)fullofwaterensuresthattheECCSwillperformproperly,injectingitsfullcapacityintotheRCSupondemand.ThiswillalsopreventawaterhammerfollowinganECCSinitiationsignal.Oneacceptablemethodofensuringthatthelinesarefullistoventatthehighpoints.The31dayFrequencyisbasedonthegradualnatureofvoidbuildupintheECCSpiping,theproceduralcontrols,governingsystemoperation,andoperatingexperience.SR3.5.1.2Verifyingthecorrectalignmentformanual,poweroperated,andautomaticvalvesintheECCSflowpathsprovidesassurancethattheproperflowpathswillexistforECCSoperation.ThisSRdoesnotapplytovalvesthatarelocked,sealed,orotherwisesecuredinpositionsincethesewereverifiedtobeinthecorrectpositionpriortolocking,sealing,orsecuring.Avalvethatreceivesaninitiationsignalisallowedtobeinanonaccidentpositionprovidedthevalve.willautomaticallyrepositionintheproperstroketime.ThisSRdoesnotrequireanytestingorvalvemanipu'lation;rather,itinvolvesverificationthatthosevalvescapableofpotentiallybeingmispositionedareinthecorrectposition.ThisSRdoesnotapplytovalvesthatcannotbeinadvertentlymisaligned,suchascheckvalves.FortheHPCISystem,thisSRalsoincludesthesteamflowpathfortheturbineandtheflowcontrollerposition.The31dayFrequencyof'hisSRwasderivedfromtheInserviceTestingProgramrequirementsforperformingvalvetestingatleastonceevery92days.TheFrequencyof31daysisfurtherjustifiedbecausethevalvesareoperatedunderproceduralcontrolandbecauseimpropervalvepositionwouldonlyaffectasinglesubsystem.ThisFrequencyhasbeenshowntobeacceptablethroughoperatingexperience.ThisSRismodifiedbyaNotethatallowsLPCIsubsystemstobeconsideredOPERABLEduringalignmentandoperationfordecayheatremovalwithreactorsteamdomepressurelessthantheRHRcutinpermissivepressureinMODE3,ifcapableofbeingmanual,lyrealigned(remoteorlocal)tothe(continued)SUSQUEHANNA-UNIT1B3.5-10Revision0 ECCS-OperatingB3.5.1BASESSURVEILLANCEREQUIREHENTSSR3.5.1.2(continued)LPCImodeandnototherwiseinoperable.ThisallowsoperationintheRHRshutdowncoolingmodeduringNODE3,ifnecessary.SR3.5.1.3Verificationevery31daysthatADSgassupplyheaderpressureis~135psigensuresadequategaspressureforreliableADSoperation.TheaccumulatoroneachADSvalveprovidespneumaticpressureforvalveactuation.Thedesignpneumaticsupplypressurerequirementsfortheaccumulatoraresuchthat,followingafailureofthepneumaticsupplytotheaccumulator,atleastonevalveactuationscanoccurwiththedrywellat70Kofdesignpressure.TheECCSsafetyanalysisassumesonlyoneactuationtoachievethedepressurizationrequiredforoperationofthelowpressureECCS.Thisminimumrequiredpressureof>135psigisprovidedbythecontainmentinstrumentgassystem.The31dayFrequencytakesintoconsiderationadministrativecontrolsoveroperationofthegassystemandalarmsassociatedwiththecontainmentinstrumentgassystem.SR3.5.1.4Verificationevery31daysthatatleastoneRHRSystemcrosstievalveisclosedandpowertoitsoperatorisdisconnectedensuresthateachLPCIsubsystemremainsindependentandafailureoftheflowpathinonesubsystemwillnotaffecttheflowpathoftheotherLPCIsubsystem.Acceptablemethodsofremovingpowertotheoperatorincludeopeningthebreaker,orrackingoutthebreaker,orremovingthebreaker.IftheRHRSystemcrosstievalveisopenorpowerhasnotbeenremovedf'romthevalveoperator,bothLPCIsubsystemsmustbeconsideredinoperable.The31dayFrequencyhasbeenfoundacceptable,consideringthatthesevalvesareunderstrictadministrativecontrolsthatwillensurethevalvescontinuetoremainclosedwithmotivepowerremoved.(continued)SUSQUEHANNA-UNIT1B3.5-11Revision0 ECCS-OperatingB3.5.1BASESSURVEILLANCEREQUIREMENTS(continued)SR3.5.1.5Verificationevery31daysthateach480voltACswingbustransfersautomaticallyfromthenormalsourcetothealternatesourceonlossofpowerwhilesupplyingitsrespectivebusdemonstratesthatelectricalpowerisavailabletoensureproperoperationoftheassociatedLPCIinboardinjectionandminimumflowvalvesandtherecirculationpumpdischargeandbypassvalves.Therefore,each480voltACswingbusmustbeOPERABLEfortheassociatedLPCIsubsystemtobeOPERABLE.Thetestisperformedbyactuatingtheloadtestswitchorbydisconnectingthepreferredpowersourcetothetransferswitchandverifyingthatswingbusautomatictransferisaccomplished.The31dayFrequencyhasbeenfoundtobeacceptablethroughoperatingexperience.SR3.5.1.6CyclingtherecirculationpumpdischargeandbypassvalvesthroughonecompletecycleoffulltraveldemonstratesthatthevalvesaremechanicallyOPERABLEandprovidesassurancethatthevalveswillclosewhenrequiredtoensuretheproperLPCIflowpathisestablished.UponinitiationofanautomaticLPCIsubsysteminjectionsignal,thesevalvesarerequiredtobeclosedtoensurefullLPCI'subsystemflowinjectioninthereactorviatherecirculationjetpumps.De-energizingthevalveintheclosedpositionwillalsoensuretheproperflowpathfortheLPCIsubsystem.Acceptablemethodsofde-energizingthevalveincludeopeningthebreaker,orrackingoutthebreaker,orremovingthebreaker.ThespecifiedFrequencyisonceduringreactorstartupbeforeTHERHALPOWERis>25KRTP.However,thisSRismodifiedbyaNotethatstatestheSurveillanceisonlyrequiredtobeperformedifthelastperformancewasmorethan31daysago.Therefore.implementationofthisNoterequiresthistesttobeperformedduringreactorstartupbeforeexceeding25KRTP.Verificationduringreactorstartuppriortoreaching>25KRTPisanexceptiontothenormalInserviceTestingProgramgenericvalvecyclingFrequencyoi92days,butisconsideredacceptabledueto(continued)SUSQUEHANNA-UNIT1B3.5-12Revision0 ECCS-OperatingB3.5.1BASESSURVEILLANCEREQUIREMENTSSR3.5.1.6(continued)thedemonstratedreliabilityofthesevalves.Ifthevalveisinoperableandintheopenposition,theassociatedLPCIsubsystemmustbedeclaredinoperable.SR3.5.1.7SR3.5.1.8andSR3.5.1.9TheperformancerequirementsofthelowpressureECCSpumpsaredeterminedthroughapplicationofthe10CFR50,AppendixKcriteria(Ref.8).ThisperiodicSurveillanceisperformed(inaccordancewiththeASIDECode.SectionXI,requirementsfortheECCSpumps)toverifythattheECCSpumpswilldeveloptheflowratesrequiredbytherespectiveanalyses.ThelowpressureECCSpumpflowratesensurethatadequatecorecoolingisprovidedtosatisfytheacceptancecriteriaofReference10.ThepumpflowratesareverifiedagainstasystemheadequivalenttotheRPVpressureexpectedduringaLOCA.Thetotalsystempumpoutletressureisadequateto'overcometheelevationheadpressureetweenthepumpsuctionandthevesseldischarge.thepipingfrictionlosses,andRPVpressurepresentduringaLOCA.Thesevaluesmaybeestablishedduringpreoperationaltesting.TheflowtestsfortheHPCISystemareperformedattwodifferentpressurerangessuchthatsystemcapabilitytoprovideratedflowistestedatboththehigherandloweroperatingrangesofthesystem.Additionally,adequatesteamflowmustbepassingthroughthemainturbineorturbinebypassvalvestocontinuetocontrolreactorpressurewhentheHPCISystemdivertssteamflow.Reactorsteampressureisconsideredadequatewhen~920psigtoperformSR3.5.1.8and~150psigtoperformSR3.5.1.9.However,therequirementsofSR3.5.1.9aremetbyasuccessfulperformanceatanypressure<165psig.Adequatesteamflow'srepresentedbyatleast1.25turbinebypassvalvesopen.Therefore,sufficienttimeisallowedafteradequatepressureandflowareachievedtoperformthesetests.ReactorstartupisallowedpriortoperformingthelowpressureSurveillancetestbecausethereactorpressureislowandthetimeallowedtosatisfactorilyperformtheSurveillancetestisshort.Thereactorpressureisallowedtobeincreasedtonormaloperatingpressuresinceitisassumedthatthelowpressuretesthasbeensatisfactorily(continued)SUSQUEHANNA-UNIT1B3.5-13Revision0 ECCS-OperatingB3.5.1BASESSURVEILLANCEREQUIREHENTSSR3.5.1.7SR3.5.1.8andSR3.5.1.9(continued)completedandthereisnoindicationorreasontobelievethatHPCIisinoperable.Therefore,SR3.5.1.8andSR3.5.1.9aremodifiedbyNotesthatstatetheSurveillancesarenotrequiredtobeperformeduntil12hoursafterthereactorsteampressureandflowareadequatetoperformthetest.TheFrequencyf'rSR3.5.1.7andSR3.5.1.8isinaccordancewiththeInserviceTestingProgramrequirements.The24monthFrequencyforSR3.5.1.9isbasedontheneedtoperformtheSurveillanceundertheconditionsthatapplyjustpriortoorduringastartupfromaplantoutage.OperatingexperiencehasshownthatthesecomponentsusuallypasstheSRwhenperformedatthe24monthFrequency,whichisbasedontherefuelingcycle.Therefore,theFrequencywasconcludedtobeacceptablefromareliabilitystandpoint.SR3.5.1.10TheECCSsubsystemsarerequiredtoactuateautomaticallytoperformtheirdesignfunctions.ThisSurveillanceverifiesthat,witharequiredsysteminitiationsignal(actualorsimulated),theautomaticinitiationlogicofHPCI,CS,andLPCIwillcausethesystemsorsubsystemstooperateasdesigned,includingactuationofthesystemthroughoutitsemergencyoperatingsequence,automaticpumpstartupandactuationofallautomaticvalvestotheirrequiredpositions.ThisfunctionaltestincludestheLPCIandCSinterlocksbetweenUnit1andUnit2andspecificallyrequiresthefollowing:AfunctionaltestoftheinterlocksassociatedwiththeLPCIandCSpumpstartsinresponsetoanautomaticinitiationsignalinUnit1followedbyafalseautomaticinitiationsignalinUnit2;AfunctionaltestoftheinterlocksassociatedwiththeLPCIandCSpumpstartsinresponsetoanautomaticinitiationsignalinUnit2followedbyafalseautomaticinitiationsignalinUnit1;and(continued)SUSQUEHANNA-UNIT1B3.5-14Revision0 ECCS-OperatingB3.5.1BASESSURVEILLANCEREQUIREMENTSSR3.5.1.10(continued)Afunctionaltestof'heinterlocksassociatedwiththeLPCIandCSpumpstartsinresponsetosimultaneousoccurrencesofanautomaticinitiationsignalinbothUnit1andUnit2andalossofOffsitepowerconditionaffectingbothUnit1andUnit2.Thepurposeofthisfunctionaltest(preferredpumplogic)istoassurethatifafalseLOCAsignalweretobereceivedononeUnitsimultaneouslywithanactualLOCAsignalonthesecondUnit,thepreferredLPCIandCSpumpsarestartedandthenon-preferredLPCIandCSpumpsaretrippedforeachUnit.Thisfunctionaltestisperformedbyverifyingthatthenon-preferredLPCIandCSpumpsaretripped.TheverificationthatpreferredLPCIandCSpumpsstartisperformedunderaseparatesurveillancetest.OnlyonedivisionofLPCIreferredpumplogicisrequiredtobeOPERABLEforeachUnit,ecausenoadditionalfailuresneedstobepostulatedwithafalseLOCAsignal.Ifthepreferredornon-preferredpumplogicforCSisinoperable,theassociatedCSpumpsshallbedeclaredinoperableandthepumpsshouldnotbeoperatedtoensurethattheoppositeUnit'sCSpumpsor4.16kVESSBusesareprotected.ThisSRalsoensuresthattheHPCISystemwillautomaticallyrestartonanRPVlowwaterlevel(Level2)signalreceivedsubsequenttoanRPVhighwaterlevel(Level8)tripandthatthesuctionisautomaticallytransferredfromtheCSTtothesuppressionpool.TheLOGICSYSTEMFUNCTIONALTESTperformedinLCO3.3.5.1overlapsthisSurveillance.ThisSRcanbeaccomplishedbyanyseriesofsequentialoverlappingortotalstepssuchthattheentirechannelistested.The24monthFrequencyisacceptablebecauseoperatingexperiencehasshownthatthesecomponentsusuallypasstheSRwhenperformedatthe24monthFrequency,whichisbasedontherefuelingcycle.Therefore,theFrequencywasconcludedtobeacceptablefromareliabilitystandpoint.ThisSRismodifiedbyaNotethatexcludesvesselinjection/sprayduringtheSurveillance.Sinceallactivecomponentsaretestableandfullflowcanbedemonstratedbyrecirculationthroughthetestline,coolantinjectionintotheRPVisnotrequiredduringtheSurveillance.(continued)SUSQUEHANNA-UNIT183.5-15Revision0 ECCS-OperatingB3.5.1BASESSURVEILLANCEREQUIREMENTSSR3.5.1.11TheADSdesignatedS/RVsarerequiredtoactuateautomaticallyuponreceiptofspecificinitiationsignals.AsystemfunctionaltestisperformedtodemonstratethatthemechanicalportionsoftheADSfunction(i.e.,solenoids)operateasdesignedwheninitiatedeitherbyanactualorsimulatedinitiationsignal,causingproperactuationofalltherequiredcomponents.SR3.5.1.12andtheLOGICSYSTEMFUNCTIONALTESTperformedinLCO3.3.5.1overlapthisSurveillancetoprovidecompletetestingoftheassumedsafetyfunction.The24monthFrequencyisbasedontheneedtoperformportionsoftheSurveillanceundertheconditionsthatapplyduringaplantoutageandthepotentialforanunplannedtransientiftheSurveillancewereperformedwiththereactoratpower.OperatingexperiencehasshownthatthesecomponentsusuallypasstheSRwhenperformedatthe24monthFrequency,whichisbasedontherefuelingcycle.Therefore.theFrequencywasconcludedtobeacceptablefromareliabilitystandpoint.ThisSRismodifiedbyaNotethatexcludesvalveactuation.ThispreventsanRPVpressureblowdown.SR3.5.1.12AmanualactuationofeachADSvalveisperformedtoverifythatthevalveandsolenoidarefunctioningproperlyandthatnoblockageexistsintheS/RVdischargelines.Thisisdemonstratedbytheresponseoftheturbinecontrolorbypassvalveorbyachangeinthemeasuredfloworbyanyothermethodsuitabletoverifysteamflow.Adequatereactorsteamdomepressuremustbeavailabletoperformthistesttoavoiddamagingthevalve.Also,adequatesteamflowmustbepassingthroughthemainturbineorturbinebypassvalvestocontinuetocontrolreactorpressurewhentheADSvalvesdivertsteamflowuponopening.SufficienttimeisthereforeallowedaftertherequiredpressureandflowareachievedtoperformthisSR.AdequatepressureatwhichthisSRistobeperformedis150psig.However,therequirementsofSR3.5.1.12aremetbyasuccessfulperformanceatanypressure.Adequatesteamflowisrepresentedbyatleast1.25turbinebypassvalvesopen.ReactorstartupisallowedpriortoperformingthisSRbecause(continued)SUSQUEHANNA-UNIT1B3.5-16Revision0 ECCS-OperatingB3.5.1BASESSURVEILLANCEREQUIREMENTSSR3.5.1.12valveOPERABILITYandthesetpointsforoverpressureprotectionareverified'erASMErequirements.priortovalveinstallation.Therefore,thisSRismodifiedbyaNotethatstatestheSurveillanceisnotrequiredtobeperformeduntil12hoursafterreactorsteampressureandflowareadequatetoperformthetest.The12hoursallowedformanualactuationaftertherequiredpressureisreachedissufficienttoachievestableconditionsandprovidesadequatetimetocompletetheSurveillance.SR3.5.1.11andtheLOGICSYSTEMFUNCTIONALTESTperformedinLCO3.3.5.1overlapthisSurveillancetoprovidecompletetestingoftheassumedsafetyfunction.TheFrequencyof24monthsonaSTAGGEREOTESTBASISensuresthatbothsolenoidsforeachAOSvalvearealternatelytested.TheFrequencyisbasedontheneedtoperformtheSurveillanceundertheconditionsthatapplyjustpriortoorduringastartupfromaplantoutage.OperatingexperiencehasshownthatthesecomponentsusuallypasstheSRwhenperformedatthe24'monthFrequency,whichisbasedontherefuelingcycle.Therefore,theFrequencywasconcludedtobeacceptablefromareliabilitystandpoint.SR3.5.1.13ThisSRensuresthattheECCSRESPONSETIMEforeachECCSinjection/spraysubsystemislessthanorequaltothe-maximumvalueassumedintheaccidentanalysis.ResponseTimetestingacceptancecriteriaareincludedinReference13.This-SR'smodifiedbyaNotethatallowstheinstrumentationportionoftheresponsetimetobeassumedtobebasedonhistoricalresponsetimedataandtherefore,isexcludedfromtheECCSRESPONSETIMEtesting.ThisisallowedsincetheinstrumentationresponsetimeisasmallpartoftheECCSRESPONSETIME(e.g.,sufficientmarginexistsinthedieselgeneratorstarttimewhencomparedtotheinstrumentationresponsetime)(Ref.14).The24monthFrequencyisconsistentwiththetypicalindustryrefuelingcycleandisacceptablebaseduponplantoperating.experience.SUSQUEHANNA-UNIT1B3.5-17(continued)Revision0 ECCS-OperatingB3.5.1BASES(continued)REFERENCES1.FSAR,Section6.3.2.2.3.2.FSAR,Section6.3.2.2.4.3.FSAR,Section6.3.2.2.1.4.FSAR,Section6.3.2.2.2.5.FSAR,Section15.2.4.6.FSAR,Section15.2.5.7.FSAR,Section15.2.6.8.10CFR50,AppendixK.9.FSAR,Section6.3.3.10.10CFR50.46.11.FSAR,Section6.3.3.12.MemorandumfromR.L.Baer(NRC)toV.Stello,Jr.(NRC),"RecommendedInterimRevisionstoLCOsforECCSComponents;"December1,1975.13.FSAR,Section6.3.3.3.14.NEDO32291-A,"SystemAnalysisf'rtheEliminationofSelectedResponseTimeTestingRequirements,October1995.15.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA-UNIT1B3.5-18Revision0 ECCS-ShutdownB3.5.2B3.5EMERGENCYCORECOOLINGSYSTEMS(ECCS)ANDREACTORCOREISOLATIONCOOLING(RCIC)SYSTEMB3.5.2ECCS-ShutdownBASESBACKGROUNDAdescriptionoftheCoreSpray(CS)SystemandtheLowPressureCoolantInjection(LPCI)modeoftheResidualHeatRemoval(RHR)SystemisprovidedintheBasesforLCO3.5.1."ECCS-Operating."APPLICABLESAFETYANALYSESTheECCSperformanceisevaluatedfortheentirespectrumofbreaksizesforapostulatedlossofcoolantaccident(LOCA).ThelongtermcoolinganalysisfollowingadesignbasisLOCA(Reference1)demonstratesthatonlyonelowpressureECCSinjection/spraysubsystemisrequired,postLOCA.tomaintainadequatereactorvesselwaterlevelintheeventofaninadvertentvesseldraindown.Itisreasonabletoassume,basedonengineeringjudgement,thatwhileinMODES4and5,onelowpressureECCSinjection/spraysubsystemcanmaintainadequatereactorvesselwaterlevel.Toprovideredundancy,aminimumoftwolowpressureECCSinjection/spl.aysubsystemsarerequiredtobeOPERABLEinMODES4and5.ThelowpressureECCSsubsystemssatisfyCriterion3oftheNRCPolicyStatement(Ref.2).LCOTwolowpressureECCSinjection/spraysubsystemsarerequiredtobeOPERABLE.ThelowpressureECCSinjection/spraysubsystemsconsistoftwoCSsubsystemsandtwoLPCIsubsystems.EachCSsubsystemconsistsoftwomotordrivenpumps.piping.andvalvestotransferwaterfromthesuppressionpoolorcondensatestoragetank(CST)tothereactorpressurevessel(RPV).EachLPCIsubsystemconsistsofoneofthetwomotordrivenpumps,piping,andvalvestotransferwaterfromthesuppressionpooltotheRPV.OnlyasingleLPCIpumpisrequiredpersubsystembecauseofthelargerinjectioncapacityinrelationtoaCSsubsystem.InMODES4and5.theRHRSystemcrosstievalvesarenotrequiredtobeclosed.(continued)SUSQUEHANNA-UNIT1B3.5-19Revision0 ECCS-ShutdownB3.5.2BASESLCO(continued)LPCIsubsystemsmaybealignedfordecayheatremovalandconsideredOPERABLEfortheECCSfunction,iftheycanbemanuallyrealigned(remoteorlocal)totheLPCImodeandarenototherwiseinoperable.BecauseoflowpressureandlowtemperatureconditionsinMODES4and5.sufficienttimewillbeavailabletomanuallyalignandinitiateLPCIsubsystemoperationtoprovidecorecoolingpriortopostulatedfueluncovery.APPLICABILITYOPERABILITYofthelowpressureECCSinjection/spraysubsystemsisrequiredinMODES4and5toensureadequatecoolantinventoryandsufficientheatremovalcapabilityfortheirradiatedfuelinthecoreincaseofaninadvertentdraindownofthevessel.RequirementsforECCSOPERABILITYduringMODES1,2,and3arediscussedintheApplicabilitysectionoftheBasesforLCO3.5.1.ECCSsubsystemsarenotrequiredtobeOPERABLEduringMODE5withthespentfuelstoragepoolgatesremovedandthewaterlevelmaintainedat~22ftabovetheRPVflange.Thisprovidessufficientcoolantinventorytoallowoperatoractiontoterminatetheinventorylosspriortofuel.uncoveryincaseofaninadvertentdraindown.TheAutomaticDepressurizationSystemisnotrequiredtobeOPERABLEduringMODES4and5becausetheRPVpressureis<150psig,and.theCSSystemandtheLPCIsubsystemscanprovidecorecoolingwithoutanydepressurizationoftheprimarysystem.TheHighPressureCoolantInjectionSystemisnotrequiredtobeOPERABLEduringMODES4and5sincethelowpressureECCSinjection/spraysubsystemscanprovidesufficientflowtothevessel.ACTIONSA.1andB.1IfanyonerequiredlowpressureECCSinjection/spraysubsystemisinoperable,theinoperablesubsystemmustberestoredtoOPERABLEstatusin4hours.InthisCondition,theremainingOPERABLEsubsystemcanprovidesufficientvesselfloodingcapabilitytorecoverfromaninadvertent(continued)SUSQUEHANNA-UNIT183.5-20Revision0 ECCS-ShutdownB3.5.2BASESACTIONSA.landB.1(continued)vesseldraindown.However,overallsystemreliabilityisreducedbecauseasinglefailureintheremainingOPERABLEsubsystemconcurrentwithavesseldraindowncouldresultintheECCSnotbeingabletoperformitsintendedfunction.The4hourCompletionTimeforrestoringtherequiredlowpressureECCSinjection/spraysubsystemtoOPERABLEstatusisbasedonengineeringjudgmentthatconsideredtheremainingavailablesubsystemandthelowprobabilityofavesseldraindownevent.WiththeinoperablesubsystemnotrestoredtoOPERABLEstatusintherequiredCompletionTime,actionmustbeimmediatelyinitiatedtosuspendoperationswithapotentialfordrainingthereactorvessel(OPDRVs)tominimizetheprobabilityofavesseldraindownandthesubsequentpotentialf'rfissionproductrelease.ActionsmustcontinueuntilOPDRVsaresuspended.C.lC.2D.lD.2andD.3WithbothoftherequiredECCSinjection/spraysubsystemsinoperable,allcoolantinventorymakeupcapabilitymaybeunavailable.Therefore,actionsmustimmedi.atelybeinitiatedtosuspendOPDRVstominimizetheprobabi.lityofavesseldraindownandthesubsequentpotentialforfissionproductrelease.ActionsmustcontinueuntilOPDRVs.aresuspended.OneECCSinjection/spraysubsystemmustalsoberestoredtoOPERABLEstatuswithin4hours.IfatleastonelowpressureECCSinjection/spraysubsystemisnotrestoredtoOPERABLEstatuswithinthe4hourCompletionTime,additionalactionsarerequiredtominimizeanypotentialfissionproductreleasetotheenvironment.ThisincludesensuringsecondarycontainmentisOPERABLE;onestandbygastreatmentsubsystemisOPERABLE;andsecondarycontainmentisolationcapability(i.e.,oneisolationvalveandassociatedinstrumentationareOPERABLEorotheracceptableadministrativecontrolstoassureisolationcapability)ineachsecondarycontainmentpenetrationflowpathnotisolatedandrequiredtobeisolatedtomitigateradioactivityreleases.OPERABILITYmaybeverifiedbyanadministrativecheck,orbyexamininglogsorotherinformation,todeterminewhetherthecomponentsareoutof(continued)SUSQUEHANNA-UNIT183.5-21Revision0 ECCS-ShutdownB3.5.2BASESACTIONSC.1C.2D.1D.2andD.3(continued)serviceformaintenanceorotherreasons.ItisnotnecessarytoperformtheSurveillancesneededtodemonstratetheOPERABILITYofthecomponents.If,however,anyrequiredcomponentisinoperable,thenitmustberestoredtoOPERABLEstatus.Inthiscase,theSurveillancemayneedtobeperformedtorestorethecomponenttoOPERABLEstatus.ActionsmustcontinueuntilallrequiredcomponentsareOPERABLE.The4hourCompletionTimetorestoreatleastonelowpressureECCSinjection/spraysubsystemtoOPERABLEstatusensuresthatpromptactionwillbetakentoprovidetherequiredcoolingcapacityortoinitiateactionstoplacetheplantinaconditionthatminimizesanypotentialfissionproductreleasetotheenvironment.SURVEILLANCEREQUIREHENTSSR3.5.2.1andSR3.5.2.2Theminimumwater.levelof20ft0inchesrequiredforthesuppressionpoolisperiodicallyverifiedtoensurethatthesuppressionpo61willprovideadequatenetpositivesuctionhead(NPSH)fortheCSSystemandLPCIsubsystempumps,recirculationvolume,andvortexprevention.Withthesuppressionpoolwaterlevellessthantherequiredlimit,allECCSinjection/spraysubsystemsareinoperableunlesstheyarealignedtoanOPERABLECST.Whensuppressionpoollevelis<20ft0inches,theCSSystemisconsideredOPERABLEonlyifitcantakesuctionfromtheCST,andtheCSTwaterlevelissufficienttoprovidetherequiredNPSHfortheCSpump.Therefore,averificationthateitherthesuppressionpoolwaterlevelis>20ft0inchesorthatCSisalignedtotakesuctionfromtheCSTandtheCSTcontains~135,000gallonsofwater,equivalentto49Kofcapacity.ensuresthattheCSSystemcansupplyatleast135,000gallonsofmakeupwatertotheRPV.However,asnoted,onlyonerequiredCSsubsystemmaytakecreditfortheCSToptionduringOPDRVs.DuringOPDRVs,thevolumeintheCSTmaynotprovideadequatemakeupiftheRPVwerecompletelydrained.Therefore,onlyoneCSsubsystemisallowedtousetheCST.Thisensures(continued)SUSQUEHANNA-UNIT1B3.5-22Revision0 ECCS-ShutdownB3.5.2BASESSURVEILLANCEREQUIREMENTSSR3.5.2.1andSR3.5.2.2(continued)theotherrequiredECCSsubsystemhasadequatemakeupvolume.The12hourFrequencyoftheseSRswasdevelopedconsideringoperatingexperiencerelatedtosuppressionpoolwaterlevelandCSTwaterlevelvariationsandinstrumentdriftduringtheapplicableNODES.Furthermore,the12hourFrequencyisconsideredadequateinviewofotherindicationsavailableinthecontrolroom.includingalarms.toalerttheoperatortoanabnormalsuppressionpoolorCSTwaterlevelcondition.SR3.5.2.3SR3.5.2.5SR3.5.2.6andSR3.5.2.7TheBasesprovidedforSR3.5.1.1,SR3.5.1.7,SR3.5.1.10,andSR3.5.1.13areapplicabletoSR3.5.2.3.SR3.5.2.5,SR3.5.2.6andSR3.5.2.7,respectively.SR3.5.2.4VerifyingtheCor'rectalignmentformanual.poweroperated,andautomaticvalvesintheECCSflowpathsprovidesassurancethattheproperflowpathswillexistforECCSoperation.ThisSRdoesnotapplytovalvesthatarelocked,sealed,orotherwisesecuredinposition,sincethesevalveswereverifiedtobeinthecorrectpositionpriortolocking,sealing,orsecuring.Avalvethatreceivesaninitiationsignalisallowedtobeinanonaccidentpositionprovidedthevalvewillautomaticallyrepositionintheproperstroketime.ThisSRdoesnotrequireanytestingorvalvemanipulation;rather,itinvolvesverificationthatthosevalvescapableofotentiallybeingmispositionedareinthecorrectposition.hisSRdoesnotapplytovalvesthatcannotbeinadvertentlymisaligned,suchascheckvalves.The31dayFrequencyisappropriatebecausethevalvesareoperatedunderproceduralcontrolandtheprobabilityoftheirbeingmispositionedduringthistimeperiodislow.InNODES4and5,theRHRSystemmayoperateintheshutdowncoolingmodetoremovedecayheatandsensibleheatfromthereactor.Therefore,RHRvalvesthatarerequiredforLPCI(continued)SUSQUEHANNA-UNIT1B3.5-23Revision0

ECCS-ShutdownB3.5.2BASESSURVEILLANCEREQUIREMENTSSR3.5.2.4(continued)subsystemoperationmaybealignedfordecayheatremoval.Therefore,thisSRismodifiedbyaNotethatallowsLPCIsubsystemsoftheRHRSystemtobeconsideredOPERABLEfortheECCSfunctionifalltherequiredvalvesintheLPCIflowpathcanbemanuallyrealigned(remoteorlocal)toallowinjectionintotheRPV,andthesystemsarenototherwiseinoperable.ThiswillensureadequatecorecoolingifaninadvertentRPVdraindownshouldoccur.REFERENCES1.FSAR,Section6.3.2.2.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA-UNIT183.5-24Revision0 RCICSystemB3.5.3B3.5EMERGENCYCORECOOLINGSYSTEMS(ECCS)ANDREACTORCOREISOLATIONCOOLING(RCIC)SYSTEM83.5.3RCICSystemBASESBACKGROUNDTheRCICSystemisnotpartoftheECCS;however,theRCICSystemisincludedwiththeECCSsectionbecauseoftheirsimilarfunctions.TheRCICSystemisdesignedtooperateeitherautomaticallyormanuallyfollowingreactorpressurevessel(RPV)isolationaccompaniedbyalossofcoolantflowfromthefeedwatersystemtoprovideadequatecorecoolingandcontroloftheRPVwaterlevel.Undertheseconditions,theHighPressureCoolantInjection(HPCI)andRCICsystemsperformsimilarfunctions.TheRCICSystemdesignrequirementsensurethatthecriteriaofReference1aresatisfied.NTheRCICSystem(Ref.2)consistsofasteamdriventurbinepumpunit.piping,andvalvestoprovidesteamtotheturbine,aswellaspipingandvalvestotransferwaterfromthesuctionsourcetothecoreviathefeedwatersystemline,wherethe'coolantisdistributedwithintheRPVthroughthefeedwatersparger.Suctionpipingisprovidedfromthecondensatestoragetank(CST)andthesuppressionpool.PumpsuctionisnormallyalignedtotheCSTtominimizeinjectionofsuppressionpoolwaterintotheRPV.However,iftheCSTwatersupplyislow,anautomatictransfertothesuppressionpoolwatersourceensuresawatersupplyforcontinuousoperationoftheRCICSystem.Thesteamsupplytotheturbineispipedfromamainsteamlineupstreamoftheassociatedinboardmainsteamlineisolationvalve.TheRCICSystemisdesignedtoprovidecorecoolingforawiderangeofreactorpressures(165psiato1225psia).Uponreceiptofaninitiationsignal,theRCICturbineacceleratestoaspecifiedspeed.AstheRCICflowincreases.theturbinecontrolvalveisautomaticallyadjustedtomaintaindesignflow.ExhauststeamfromtheRCICturbineisdischargedtothesuppressionpool.AfullflowtestlineisprovidedtoroutewatertotheCSTtoallowtestingoftheRCICSystemduringnormaloperationwithoutinjectingwaterintotheRPV.(continued)SUSQUEHANNA-UNIT1B3.5-25Revision0 RCICSystemB3.5.3BASESBACKGROUND(continued)TheRCICpumpisprovidedwithaminimumflowbypassline,whichdischargestothesuppressionpool.Thevalveinthislineautomaticallyopenstopreventpumpdamageduetooverheatingwhenotherdischargelinevalvesareclosed.ToensurerapiddeliveryofwatertotheRPVandtominimizewaterhammereffects,theRCICSystemdischargepipingiskeptfullofwater.TheRCICSystemisnormallyalignedtotheCST.TheRCICdischargelineiskeptfullofwaterusinga"keepfill"systemsuppliedbythecondensatetransfersystem.APPLICABLESAFETYANALYSESThefunctionoftheRCICSystemistorespondtotransienteventsbyprovidingmakeupcoolanttothereactor.TheRCICSystemisnotanEngineeredSafetyFeatureSystemandnocreditistakeninthesafetyanalysesforRCICSystemoperation.Basedonitscontributiontothereductionofoverallplantrisk,however,thesystemisincludedintheTechnicalSpecifications,asrequiredbytheNRCPolicyStatement(Ref.4).LCOTheOPERABILITYoftheRCKSystem:provides=adequatecorecoolingsuchthatactuation.ofany'of-'the=lowpressureECCSsubsystemsisnotrequired.in.the'eveni.of;RPVisolation-accompaniedbyalossoffeedwater=f1'owTheRCICSystemhassufficientcapacityfor:maintaining='RPV.inventoryduringanisolationevent.APPLICABILITYTheRCICSystemisrequiredtobeOPERABLEduringMODEl.andMODES2and3withreactorsteamdomepressure)150psig,sinceRCICistheprimarynon-ECCSwatersourceforcorecoolingwhenthereactorisisolatedandpressurized.InMODES2and3withreactorsteamdomepressure~150psig,andinMODES4and5,RCICisnotrequiredtobeOPERABLEsincethelowpressureECCSinjection/spraysubsystemscanprovidesufficientflowtotheRPV.SUSQUEHANNA-UNIT1B3.5-26(continued)Revision0 RCICSystem83.5.3BASES(continued)ACTIONSA.landA..2IftheRCICSystemisinoperableduringMODE1,orMODE2or3withreactorsteamdomepressure)150psig,andtheHPCISystemisverifiedtobeOPERABLE,theRCICSystemmustberestoredtoOPERABLEstatuswithin14days.InthisCondition,lossoftheRCICSystemwillnotaffecttheoverallplantcapabilitytoprovidemakeupinventoryathighreactorpressuresincetheHPCISystemistheonlyhighpressuresystemassumedtofunctionduringalossofcoolantaccident(LOCA).OPERABILITYofHPCIisthereforeverifiedimmediatelywhentheRCICSystemisinoperable.Thismaybeperformedasanadministrativecheck.byexamininglogsorotherinformation,todetermineifHPCIisoutofserviceformaintenanceorotherreasons.ItdoesnotmeanitisnecessarytoperformtheSurveillancesneededtodemonstratetheOPERABILITYoftheHPCISystem.IftheOPERABILITYoftheHPCISystemcannotbeverified,however,ConditionBmustbeimmediatelyentered.FortransientsandcertainabnormaleventswithnoLOCA,RCIC(asopposedtoHPCI)isthepreferredsourceofmakeupcoolantbecauseofitsrelativelysmallcapacity,whichallowseasiercontroloftheRPVwaterlevel.Therefore,alimitedtimeisallowedtorestoretheinoperableRCICtoOPERABLEstatus.The14dayCompletionTimeisbasedonareliabilitystudy(Ref.3)thatevaluatedtheimpactonECCSavailability,assumingvariouscomponentsandsubsystemsweretakenoutofservice.TheresultswereusedtocalculatetheaverageavailabilityofECCSequipmentneededtomitigatetheconsequencesofaLOCAasafunctionofallowedoutagetimes(AOTs).BecauseofsimilarfunctionsofHPCIandRCIC.theAOTs(i.e.,CompletionTimes)determinedforHPCIarealsoappliedtoRCIC.B.landB.2IftheRCICSystemcannotberestoredtoOPERABLEstatuswithintheassociatedCompletionTime,oriftheHPCISystemissimultaneouslyinoperable,theplantmustbebroughttoaconditioninwhichtheLCOdoesnotapply.Toachievethisstatus,theplantmustbebroughttoatleastMODE3within12hoursandreactorsteamdomepressurereducedto~150psigwithin36hours.TheallowedCompletionTimes(continued)'USQUEHANNA-UNIT1B3.5-27Revision0 RCICSystemB3.5.3BASESACTIONSB.1andB.2(continued)arereasonable,basedonoperatingexperience,toreachtherequiredplantconditionsfromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.SURVEILLANCEREQUIREMENTSSR3.5.3.1Theflowpathpipinghasthepotentialtodevelopvoidsandocketsofentrainedair.MaintainingthepumpdischargeineoftheRCICSystemfullof'aterensuresthatthesystemwillperformproperly,injectingitsfullcapacityintotheReactorCoolantSystemupondemand.Thiswillalsopreventawaterhammerfollowinganinitiationsignal.Oneacceptablemethodofensuringthelineisfullistoventatthehighpoints.The31dayFrequencyisbasedonthegradualnatureofvoidbuildupintheRCICpiping,theproceduralcontrolsgoverningsystemoperation,andoperatingexperience.SR3.5.3.2Verifyingthecorrectalignmentformanual,poweroperated,andautomaticvalvesintheRCICflowpathprovidesassurancethattheproperflowpathwillexistforRCICoperation.ThisSRdoesnotapplytovalvesthatarelocked,sealed,orotherwisesecuredinpositionsincethesevalveswereverifiedtobeinthecorrectpositionpriortolocking,sealing,orsecuring.Avalvethatreceivesaninitiationsignalisallowedtobeinanonaccidentpositionprovidedthevalvewillautomaticallyrepositionintheproperstroketime.ThisSRdoesnotrequireanytestingorvalvemanipulation;rather,itinvolvesverificationthatthosevalvescapableofpotentiallybeingmispositionedareinthecorrectposition.ThisSRdoesnotapplytovalvesthatcannotbeinadvertentlymisaligned,suchascheckvalves.FortheRCICSystem,thisSRalsoincludesthesteamflowpathfortheturbineandtheflowcontrollerposition.The31dayFrequencyofthisSRwasderivedfromtheInserviceTestingProgramrequirementsforperformingvalvetestingatleastonceevery92days.TheFrequencyof(continued)SUSQUEHANNA-UNIT1B3.5-28Revision0 RCICSystemB3.5.3BASESSURVEILLANCEREQUIREMENTSSR3.5.3.2(continued)31daysisfurtherjustifiedbecausethevalvesareoperatedunderproceduralcontrolandbecauseimpropervalvepositionwouldaffectonlytheRCICSystem.ThisFrequencyhasbeenshowntobeacceptablethroughoperatingexperience.SR3.5.3.3andSR3.5.3.4TheRCICpumpflowratesensurethatthesystemcanmaintainreactorcoolantinventoryduringpressurizedconditionswiththeRPVisolated.TheflowtestsfortheRCICSystemareperformedattwodifferentpressurerangessuchthatsystemcapabilitytoprovideratedflowistestedbothatthehigherandloweroperatingrangesofthesystem.Additionally,adequatesteamflowmustbepassingthroughthemainturbineorturbinebypassvalvestocontinuetocontrolreactorpressurewhentheRCICSystemdivertssteamflow.Reactorsteampressureisconsideredadequatewhen>920psigtoperformSR3'.3.3and>150psigtoperformSR3.5.3.4.However,therequirementsofSR3.5.3.4aremetbyasuccessfulperformanceatanypressure<165psig.Adequatesteamflowisrepresentedbyatleast1.25turbinebypassvalves-6pdn.Therefore,sufficienttimeisallowedafteradequate:pressureandflowareachievedtoperformtheseSRs.ReactorsNrtupisallowedpriortoperformingthelowpressure:Surveillancebecausethereactorpressureislowandthe=time.-al.lowed.tosatisfactorilyperformtheSurveillance-isshort.Thereactorpressureisallowedtobeincreased=tonormaloperatingpressuresinceitisassumedthatthe'owpressureSurveillancehasbeensatisfactorilycompletedandthereisnoindicationorreasontobelievethatRCICisinoperable.Therefore,theseSRsaremodifiedbyNotesthatstatetheSurveillancesarenotrequiredtobeperformeduntil12hoursafterthereactorsteampressureandflowareadequatetoperformthetest.TheFrequencyforSR3.5.3.3isdeterminedbytheInserviceTestingProgramrequirements.The24monthFrequencyforSR3.5.3.4isbasedontheneedtoperformtheSurveillanceunderconditionsthatapplyjustpriortoorduringastartupfromaplantoutage.OperatingexperiencehasshownthatthesecomponentsusuallypasstheSRwhenperformedatthe24monthFrequency,whichisbasedontherefueling(continued)SUSQUEHANNA-UNIT1B3.5-29Revision0 RCICSystemB3.5.3BASESSURVEILLANCEREQUIREMENTSSR3.5.3.3andSR3.5.3.4(continued)cycle.Therefore,theFrequencywasconcludedtobeacceptablefromareliabilitystandpoint.SR3.5.3.5TheRCICSystemisrequiredtoactuateautomaticallyinordertoverifyitsdesignfunctionsatisfactorily.ThisSurveillanceverifiesthat,witharequiredsysteminitiationsignal(actualorsimulated),theautomaticinitiationlogicoftheRCICSystemwillcausethesystemtooperateasdesigned,includingactuationofthesystemthroughoutitsemergencyoperatingsequence:thatis,automaticpumpstartupandactuationofallautomaticvalvestotheirrequiredpositions.ThistestalsoensurestheRCICSystemwillautomaticallyrestartonanRPVlowwaterlevel(Level2)signalreceivedsubsequenttoanRPVhighwaterlevel(Level8)tripandthatthesuctionisautomaticallytransferredfromtheCSTtothesuppressionpool.TheLOGICSYSTEM-.FUNCTIONALTESTperformedinLCO3.3.5.2overlaps,thisSurveillancetoprovidecomplete.'estingoftheassumed;safetyfunction.The24month.Frequency.is;basedontheneedtoperformportionsofthe-Suevei.llance-undertheconditions-that-applyduringaplant-outageand.the-potentialforanunplannedtransientifthe-.Surveill'ance":wereperformedwith-the'-reactoratpower..Ope>attng-experiencehasshownthat.'these-.,componentsusually-pass-.the.=SRwhenperformedat-the-'4monthFrequency,whichisbasedontherefuelingcycle.Therefore,theFrequencywasconcludedtobeacceptablefromareliabilitystandpoint.ThisSRismodifiedbyaNotethatexcludesvesselinjectionduringtheSurveillance.Sinceallactivecomponentsaretestableandfullflowcanbedemonstratedbyrecirculationthroughthetestline,coolantinjectionintotheRPVisnotrequiredduringtheSurveillance.REFERENCES1.10CFR50,AppendixA,GDC33.2.FSAR,Section5.4.6.(continued)SUSQUEHANNA-UNIT1B3.5-30Revision0 RCICSystemB3.5.3BASESREFERENCES(continued)3.MemorandumfromR.L.Baer(NRC)toV.Stello,Jr.(NRC)."RecommendedInterimRevisionstoLCOsforECCSComponents,"December1,1975.4.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA-UNIT1B3.5-31Revision0 PrimaryContainmentB3.6.1.1B3.6CONTAINMENTSYSTEMSB3.6.1.1PrimaryContainmentBASESBACKGROUNDThefunctionoftheprimarycontainmentistoisolateandcontainfissionproductsreleasedfromtheReactorPrimarySystemfollowingaDesignBasisLossofCoolantAccidentandtoconfinethepostulatedreleaseofradioactivematerial.Theprimarycontainmentconsistsofasteellined,reinforcedconcretevessel,whichsurroundstheReactorPrimarySystemandprovidesanessentiallyleaktightbarrieragainstanuncontrolledreleaseofradioactivematerial'otheenvironment.Theisolationdevicesforthepenetrationsintheprimarycontainmentboundaryareapartofthecontainmentleaktightbarrier.Tomaintainthisleaktightbarrier:a.Allpenetrationsrequiredtobeclosedduringaccidentconditionsareeither:capable.of'eingclosedbyanOPERABLEautomaticcontainmentisolationsystem,orclosedbymanualvalves,blindflanges,orde-activatedautomaticvalvessecuredintheirclosedpositions,exceptasprovidedinLCO3.6.1.3."PrimaryContainmentIsolationValves(PCIVs)";b.TheprimarycontainmentairlockisOPERABLE,exceptasprovidedinLCO3.6.1.2,"PrimaryContainmentAirLock":andc.Allequipmenthatchesareclosed.ThisSpecificationensuresthattheperformanceoftheprimarycontainment.intheeventofaDesignBasisAccident(DBA),meetstheassumptionsusedinthesafetyanalysesofReferences1and2.SR3.6.1.1.1leakageraterequirementsareinconformancewith10CFR50,AppendixJ,OptionBandsupportingdocuments(Ref.3,4and5),asmodifiedbyapprovedexemptions.SUSQUEHANNA-UNIT1B3.6-1(continued)Revision0 PrimaryContainmentB3.6.1.1BASES(continued)APPLICABLESAFETYANALYSESThesafety.designbasisfortheprimarycontainmentisthatitmustwithstandthepressuresandtemperaturesofthelimitingDBAwithoutexceedingthedesignleakagerate.TheDBAthatpostulatesthemaximumreleaseofradioactivematerialwithinprimarycontainmentisaLOCA.Intheanalysisofthisaccident,itisassumedthatprimarycontainmentisOPERABLEsuchthatreleaseoffissionproductstotheenvironmentiscontrolledbytherateof'rimarycontainmentleakage.An'alyticalmethodsandassumptionsinvolvingtheprimarycontainmentarepresentedinReferences1and2.ThesafetyanalysesassumeanonmechanisticfissionproductreleasefollowingaDBA,whichformsthebasisfordeterminationofoffsitedoses.Thefissionproductreleaseis.inturn,basedonanassumedleakageratefromtheprimarycontainment.OPERABILITYof'heprimarycontainmentensuresthattheleakagerateassumedinthesafetyanalysesisnotexceeded.Themaximumallowableleakageratefortheprimarycontainment(L,)'s1.0Xbyweightof'hecontainmentairper24hoursatthedesignbasisLOCAmaximumpeakcontainmentprds~ure(P,)of45psig.PrimarycontainmentsatisfiesCriterion3oftheNRCPolicyStatement.(Ref.6)LCOPrimarycontainmentOPERABILITYismaintainedbylimitingleakageto~1.0L,,exceptpriortoeachstartupafterperformingarequiredPrimaryContainmentLeakageRateTestingProgramleakagetest.Atthistime.applicableleakagelimitsmustbemet.CompliancewiththisLCOwillensureaprimarycontainmentconfiguration,includingequipmenthatches,thatisstructurallysoundandthatwilllimitleakagetothoseleakageratesassumedinthesafetyanalyses.IndividualleakageratesspecifiedfortheprimarycontainmentairlockareaddressedinLCO3.6.1.2.LeakagerequirementsforHSIVsandSecondarycontainmentbypassareaddressedinLCO3.6.1.3.SUSQUEHANNA-UNIT1B3.6-2(continued)Revision0 PrimaryContainmentB3.6.1.1BASES(continued)APPLICABILITYInMODES1,2,and3,aDBAcouldcauseareleaseofradioactivematerialtoprimarycontainment.InMODES4and5,theprobabilityandconsequencesoftheseeventsarereducedduetothepressureandtemperaturelimitationsoftheseMODES.Therefore,primarycontainmentisnotrequiredtobeOPERABLEinMODES4and5topreventleakageofradioactivematerialfromprimarycontainment.ACTIONSA.lIntheeventprimarycontainmentisinoperable,primarycontainmentmustberestoredtoOPERABLEstatuswithin1hour.The1hourCompletionTimeprovidesaperiodoftimetocorrecttheproblemcommensuratewiththeimportanceofmaintainingprimarycontainmentOPERABILITYduringMODES1,2.and3.Thistimeperiodalsoensuresthattheprobabilityofanaccident(requiringprimarycontainmentOPERABILITY)occurringduringperiodswhereprimarycontainmentisinoperableisminimal.B.landB.2IfprimarycontainmentcannotberestoredtoOPERABLEstatuswithintherequiredCompletionTime,theplantmustbebroughttoaMODEinwhichtheLCOdoesnotapply.Toachievethisstatus,theplantmustbebroughttoatleastMODE3within12hoursandtoMODE4within36hours.TheallowedCompletionTimesarereasonable,basedonoperatingexperience,toreachtherequiredplantconditionsfromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.SURVEILLANCEREQUIREMENTSSR3.6.1.1.1MaintainingtheprimarycontainmentOPERABLErequirescompliancewiththevisualexaminationsandleakagerate'.testrequirementsofthePrimaryContainmentLeakageRateTestingProgram.Failuretomeetairlockleakagetesting(SR3.6.1.2.1)orresilientsealprimarycontainmentpurgevalveleakagetesting(SR3.6.1.3.6)doesnotnecessarilyresultinafailureofthisSR.Theimpactofthefailure(continued)SUSQUEHANNA-UNIT1B3.6-3Revision0 PrimaryContainment83.6.1.1BASESSURVEILLANCEREQUIREMENTSSR3.6.1.1.1(continued)tomeettheseSRsmustbeevaluatedagainsttheTypeA.8,andCacceptancecriteriaofthePrimaryContainmentLeakageRateTestingProgram.Asleftleakagepriortoeachstartupafterperformingarequiredleakagetestisrequiredtobe<0.6L,forcombinedType8andCleakage,and~0.75L,foroverallTypeAleakage.Atallothertimesbetweenrequiredleakageratetests,theacceptancecriteriaisbasedonanoverallTypeAleakagelimitof<1.0L,.At<1.0L,theoffsitedoseconsequencesareboundedbytheassumptionsofthesafetyanalysis.TheFrequencyisrequiredbythePrimaryContainmentLeakageRateTestingProgram.Asnotedintable83.6.1.3-1,anexemptiontoAppendixJisprovidedthatisolationbarrierswhichremainwaterfilledorawatersealremainsinthelinepost-LOCAaretestedwithwaterandtheleakageisnotincludedintheType8andC0.60L,total.SR3.6.1.1.2Maintainingthepressuresuppressionfunctionof'rimarycontainmentrequireslimitingtheleakagefromthedrywel1tothesuppressionchamber.Thus,if,aneventweretooccurthatpressurizedthedrywell,thesteamwouldbedirectedthroughthedowncomersintothesuppressionpool.ThisSRmeasuresdrywelltosuppressionchamberleakagetoensurethattheleakagepathsthatwouldbypassthesuppressionpoolarewithinallowablelimits.Theallowablelimitis10KoftheacceptableSSESA/+designvalve.ForSSES,theA/+designvalueis.0535ft'.SatisfactoryperformanceofthisSRcanbeachievedbyestablishingaknowndifferentialpressurebetweenthedrywellandthesuppressionchamberanddeterminingtheleakage.Theleakagetestisperformedwhenthe10CFR50.AppendixJ,TypeAtestisperformedinaccordancewiththePrimaryContainmentLeakageRateTestingProgram.ThistestingFrequencywasdevelopedconsideringthistestisperformedinconjunctionwiththeIntegratedLeakratetestandalsoinviewofthefactthatcomponentfailuresthatmighthaveaffectedthistestareidentifiedbyotherprimarycontainmentSRs.Twoconsecutivetestfailures,(continued)SUSQUEHANNA-UNIT183.6-4Revision0 PrimaryContainmentB3.6.1.1BASESSURVEILLANCE'EQUIREMENTSSR3.6.1.1.2(continued)however,wouldindicateunexpectedprimarycontainmentdegradation;inthisevent,astheNoteindicates,increasingtheFrequencytoonceevery24monthsisrequireduntilthesituationisremediedasevidencedbypassingtwoconsecutivetests.SR3.6.1.1.3Haintainingthepressuresuppressionfunctionofprimarycontainmentrequireslimitingtheleakagefromthedrywelltothesuppressionchamber.Thus,ifaneventweretooccurthatpressurizedthedrywell.thesteamwouldbedirectedthroughdowncomersintothesuppressionpool.ThisSRmeasuressuppressionchamber-to-drywellvacuumbreakerleakagetoensuretheleakagepathsthatwouldbypassthesuppressionpoolarewithinallowablelimits.Thetotalallowableleakagelimitis30KoftheSR3.6.1.1.2limit.Theallowableleakagepersetis12KoftheSR3.6.1.1.2limit.Theleakageisdeterminedbyestablishinga4.3psidifferentialpr'ensureacrossthedrywell-to-suppressionchambervacuumbreakersandverifyingtheleakage.Theleakagetestisperformedevery24months.The24monthFrequencywasdevelopedconsideringthesurveillancemustbeperformedduringaunitoutage.ANoteisprovidedwhichallowsthisSurveillancenottobeperformedwhenSR3.6.1.1.2isperformed.ThisisacceptablebecauseSR3.6.1.1.2ensurestheOPERABILITYofthepressuresuppressionfunctionincludingthesuppressionchamber-to-drywellvacuumbreakers.REFERENCES1.FSAR.Section6.2.2.FSAR.Section15.3.10CFR50.AppendixJ.OptionB.4.NuclearEnergyInstitute,94-01(continued)SUSQUEHANNA-UNIT1B3.6-5Revision0 PrimaryContainmentB3.6.1.1BASESREFERENCES(continued)5.ANSI/ANS56.8-19946.FinalPolicyStatementonTechnicalSpecificationsImprovementsJuly22,1993(58FR39132)SUSQUEHANNA-UNIT1B3.6-6Revision0 PrimaryContainmentAirLock83.6.1.283.6CONTAINMENTSYSTEMSB3.6.1.2PrimaryContainmentAirLockBASESBACKGROUNDOnedoubledoorprimarycontainmentairlockhasbeenbuiltintotheprimarycontainmenttoprovidepersonnelaccesstothedrywellandtoprovideprimarycontainmentisolationduringtheprocessofpersonnelenteringandexitingthedrywell.Theairlockisdesignedtowithstandthesameloads.temperatures,andpeakdesigninternalandexternalpressuresastheprimarycontainment(Ref.1).Aspartoftheprimarycontainment,theairlocklimitsthereleaseofradioactivematerialtotheenvironmentduringnormalunitoperationandthrougharangeoftransientsandaccidentsuptoandincludingpostulatedDesignBasisAccidents(DBAs).EachairlockdoorhasbeendesignedandtestedtocertifyitsabilitytowithstandapressureinexcessofthemaximumexpectedpressurefollowingaDBAinprimarycontainment.Each.ofthedoorscontainsdoublegasketedsealsandlocalleakageratetestingcapabilitytoensurepressureintegrity.Toeffectaleak.tightseal,theairlockdesignusespressureseateddoors(i.e.,anincreaseinprimarycontainmentinfernalpressureresultsinincreasedsealingforceoneachdoor).Theairlockisan8ft7inchinsidediametercylindricalpressurevesselwithdoorsateachendthatareinterlockedtopreventsimultaneousopening.DuringperiodswhenrimarycontainmentisnotrequiredtobeOPERABLE,theairockinterlockmechanismmaybedisabled,allowingbothdoorsofanairlocktoremainopenforextendedperiodswhenfrequentprimarycontainmententryisnecessary.UndersomeconditionsasallowedbythisLCO,theprimarycontainmentmaybeaccessedthroughtheairlock,whentheinterlockmechanismhasfailed,bymanuallyperformingtheinterlockfunction.Theprimarycontainmentairlockformspartoftheprimarycontainmentpressureboundary.Assuch,airlockintegrityandleaktightnessareessentialformaintainingprimarycontainmentleakageratetowithinlimitsintheeventofaDBA.Notmaintainingairlockintegrityorleaktightnessmayresultinaleakagerateinexcessofthatassumedintheunitsafetyanalysis.SUSQUEHANNA-UNIT1B3.6-7(continued)Revision0 PrimaryContainmentAirLockB3.6.1.2BASES(continued)APPLICABLESAFETYANALYSESTheDBAthatpostulatesthemaximumreleaseofradioactivematerialwithinprimarycontainmentisaLOCA.Intheanalysisofthisaccident,itisassumedthatprimarycontainmentisOPERABLE,suchthatreleaseoffissionproductstotheenvironmentiscontrolledbytherateofprimarycontainmentleakage.Theprimarycontainmentisdesignedwithamaximumallowableleakagerate(L,)of1.0Xbyweightofthecontainmentairper24hoursatthecalculatedmaximumpeakcontainmentpressure(P,)of45psig(Ref.3).ThisallowableleakagerateformsthebasisfortheacceptancecriteriaimposedontheSRsassociatedwiththeairlock.PrimarycontainmentairlockOPERABILITYisalsorequiredtominimizetheamountoffissionproductgasesthatmayescapeprimarycontainmentthroughtheairlockandcontaminateandpressurizethesecondarycontainment.TheprimarycontainmentairlocksatisfiesCriterion3oftheNRCPolicyStatement..(Ref.4)LCOAspartoftheprimarycontainmentpressureboundary,theairlock'ssafetyfunctionisrelatedtocontrolofcontainmentleakageratesfollowingaDBA.Thus,theairlock'sstructuralintegrityandleaktightnessareessentialtothesuccessfulmitigationofsuchanevent.TheprimarycontainmentairlockisrequiredtobeOPERABLE.FortheairlocktobeconsideredOPERABLE,theairlockinterlockmechanismmustbeOPERABLE,theairlockmustbeincompliancewiththeTypeBairlockleakagetest,andbothairlockdoorsmustbeOPERABLE.Theinterlockallowsonlyoneairlockdoortobeopenedatatime.ThisprovisionensuresthatagrossbreachofprimarycontainmentdoesnotexistwhenprimarycontainmentisrequiredtobeOPERABLE.Closureofasingledoorineachairlockissufficienttoprovidealeaktightbarrierfollowingpostulatedevents.Nevertheless,bothdoorsarekeptclosedwhentheairlockisnotbeingusedfornormalentryorexitfromprimarycontainment.SUSQUEHANNA-UNIT1B3.6-8(continued)Revision0 PrimaryContainmentAirLockB3.6.1.2BASES(continued)APPLICABILITYInMODES1,2,and3,aDBAcouldcauseareleaseofradioactivematerialtoprimarycontainment.InMODES4and5,theprobabilityandconsequencesoftheseeventsarereducedduetothepressureandtemperaturelimitationsoftheseMODES.Therefore,theprimarycontainmentairlockisnotrequiredtobeOPERABLEinMODES4and5topreventleakageofradioactivematerialfromprimarycontainment.ACTIONSTheACTIONSaremodifiedbyNote1,whichallowsentryandexittoperformrepairsof'heaff'ectedairlockcomponent.Iftheouterdoorisinoperable,thenitmaybeeasilyaccessedtorepair.Iftheinnerdooristheonethatisinoperable,however,thenashorttimeexistswhenthecontainmentboundaryisnotintact(duringaccessthroughtheouterdoor).TheabilitytoopentheOPERABLEdoor,evenifitmeanstheprimarycontainmentboundaryistemporarilynotintact,isacceptableduetothelowprobabilityofaneventthatcouldpressurizetheprimarycontainmentduringtheshorttimeinwhichtheOPERABLEdoorisexpectedtobeopen.TheOPERABLEdoormustbeimmediatelyclosed-aftereachentryandexit.TheACTIONSaremodifiedbyasecondNote.whichensuresappropriateremedialmeasuresaretakenwhennecessary.ThisisanexceptiontoLCO3.0.6whichwouldnotrequireaction,evenifprimarycontainmentisexceedingitsleakagelimit.Therefore,theNoteisaddedtorequireACTIONSforLCO3.6.1.1,"PrimaryContainment,"tobetakeninthisevent.A.lA.2andA.3Withoneprimarycontainmentairlockdoorinoperable,theOPERABLEdoormustbeverifiedclosed(RequiredActionA.l)intheairlock.ThisensuresthataleaktightprimarycontainmentbarrierismaintainedbytheuseofanOPERABLEairlockdoor.Thisactionmustbecompletedwithin1hour.The1hourCompletionTimeisconsistentwiththeACTIONSofLCO3.6.1.1,whichrequiresthatprimarycontainmentberestoredtoOPERABLEstatuswithin1hour.Inaddition,theairlockpenetrationmustbeisolatedbylockingclosedtheOPERABLEairlockdoorwithinthe24hour(continued)SUSQUEHANNA-UNIT1B3.6-9Revision0 PrimaryContainmentAirLockB3.6.1.2BASESACTIONSA.1A.2andA.3(continued)CompletionTime.The24hourCompletionTimeisconsideredreasonableforlockingtheOPERABLEairlockdoor,consideringthattheOPERABLEdoorisbeingmaintainedclosed.RequiredActionA.3ensuresthattheairlockwithaninoperabledoorhasbeenisolatedbytheuseofalockedclosedOPERABLEairlockdoor.Thisensuresthatanacceptableprimarycontainmentleakageboundaryismaintained.TheCompletionTimeofonceper31daysisbasedonengineeringjudgmentandisconsideredadequateinviewofthelowlikelihoodofalockeddoorbeingmispositionedandotheradministrativecontrols.RequiredActionA.3ismodifiedbyaNotethatappliestoairlockdoorslocatedinhighradiationareasorareaswithlimitedaccessduetoinertingandallowsthesedoorstobeverifiedlockedclosedbyuseofadministrativecontrols.Allowingverificationbyadministrativecontrolsisconsideredacceptable,sinceaccesstotheseareasistypicallyrestricted.Therefore.theprobabilityofmisalignmentofthedoor,onceithasbeenverifiedtobeintheproperposition,issmall.TheRequiredActionshavebeenmodifiedbytwoNotes.Note1ensuresthatonlytheRequiredActionsandassociatedCompletionTimesofConditidnCarerequiredif'othdoorsintheairlockareinoperable.Withbothdoorsintheairlockinoperable,anOPERABLEdoorisnotavailabletobeclosed.RequiredActionsC.1andC.2aretheappropriateremedialactions.TheexceptionofNote1doesnotaffecttrackingtheCompletionTimefromtheinitialentryintoConditionA;onlytherequirementtocomplywiththeRequiredActions.Note2allowsuseoftheairlockforentryandexitfor7daysunderadministrative.controls.This7daylimitisanaccumulatedlimitthatappliestothetotalcombinedtimeforallentriesandexits.PrimarycontainmententrymayberequiredtoperformTechnicalSpecifications(TS)SurveillancesandRequiredActions,aswellasotheractivitiesonequipmentinsideprimarycontainmentthatarerequiredbyTSoractivitiesonequipmentthatsupportTS-requiredequipment.ThisNoteisnotintendedtoprecludeperformingotheractivities(i.e.,non-TS-relatedactivities)iftheprimarycontainmentwasentered,usingtheinoperableairlock,toperforman(continued)SUSQUEHANNA-UNIT1B3.6-10Revision0

PrimaryContainmentAirLockB3.6.1.2BASESACTIONSA.1A.2andA.3(continued)allowedactivitylistedabove.ThisallowanceisacceptableduetothelowprobabilityofaneventthatcouldpressurizetheprimarycontainmentduringtheshorttimethattheOPERABLEdoorisexpectedtobeopen.B.l8.2and8.3Withanairlockinterlockmechanisminoperable.theRequiredActionsandassociatedCompletionTimesareconsistentwiththosespecifiedinConditionA.TheRequiredActionshavebeenmodifiedbytwoNotes.Note1ensuresthatonlytheRequiredActionsandassociatedCompletionTimesofConditionCarerequiredifbothdoorsintheairlockareinoperable.Withbothdoorsintheairlockinoperable,anOPERABLEdoorisnotavailabletobeclosed.RequiredActionsC.1andC.2aretheappropriateremedialactions.Note2allowsentryintoandexitfromtheprimarycontainmentunderthecontrolofadedicatedindividualstationedattheairlocktoensurethatonlyonedoorisopenedatatime(i.e..theindividualperformsthefunctionofthd'nterlock).RequiredActionB.3ismodifiedbyaNotethatappliestoairlockdoorslocatedinhighradiationareasorareaswithlimitedaccessduetoinertingandthatallowsthesedoorstobeverif'iedlockedclosedbyuseofadministrativecontrols.Allowingverificationbyadministrativecontrolsisconsideredacceptable,sinceaccesstotheseareasistypicallyrestricted.Therefore,theprobabilityofmisalignmentofthedoor,onceithasbeenverifiedtobeintheproperposition,issmall.C.1C.2andC.3IftheairlockisinoperableforreasonsotherthanthosedescribedinConditionAorB,RequiredActionC.1requiresactiontobeimmediatelyinitiatedtoevaluatecontainmentoverallleakageratesusingcurrentairlockleakagetestresults.Anevaluationisacceptablesinceitisoverlyconservativetoimmediatelydeclaretheprimarycontainmentinoperableifbothdoorsinanairlockhavefailedaseal(continued)SUSQUEHANNA-UNIT183.6-11Revision0 PrimaryContainmentAirLockB3.6.1.2BASESACTIONSC.1C.2andC.3(continued)testoriftheoverallairlockleakageisnotwithinlimits.Inmanyinstances(e.g.,onlyonesealperdoorhasfailed),primarycontainmentremainsOPERABLE,yetonly1hour(accordingtoLCO3.6.1.1)wouldbeprovidedtorestoretheairlockdoortoOPERABLEstatuspriortorequiringaplantshutdown.Inaddition,evenwithbothdoorsfailingthesealtest,theoverallcontainmentleakageratecanstillbewithinlimits.RequiredActionC.2requiresthatonedoorintheprimarycontainmentairlockmustbeverifiedclosed.Thisactionmustbecompletedwithinthe1hourCompletionTime.ThisspecifiedtimeperiodisconsistentwiththeACTIONSofLCO3.6.1.1,whichrequirethatprimarycontainmentberestoredtoOPERABLEstatuswithin1hour.Additionally,theairlockmustberestoredtoOPERABLEstatuswithin24hours.The24hourCompletionTimeisreasonableforrestoring'ninoperableairlocktoOPERABLEstatusconsideringthatatleastonedoorismaintainedclosedintheair-lock.0.1and0.2IftheinoperableprimarycontainmentairlockcannotberestoredtoOPERABLEstatuswithintheassociatedCompletionTime,the.-plantmustbebroughttoaMODEinwhichtheLCOdoesnotapply.Toachievethisstatus,theplantmustbebroughttoatleastMODE3within12hoursandtoMODE4within36hours.TheallowedCompletionTimesarereasonable,basedonoperatingexperience,toreachtherequiredplantconditionsfromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.SURVEILLANCEREQUIREMENTSSR3.6.1.2.1MaintainingprimarycontainmentairlocksOPERABLErequirescompliancewiththeleakageratetestrequirementsofthePrimaryContainmentLeakageRateTestingProgram.ThisSRreflectstheleakageratetestingrequirementswithrespecttoairlockleakage(TypeBleakagetests).Theacceptance(continued)SUSQUEHANNA-UNIT1B3.6-12Revision0 PrimaryContainmentAirLockB3.6.1.2BASESSURVEILLANCEREQUIREHENTSSR3.6.1.2.1(continued)criteriawereestablishedbasedonengineeringjudgementandindustryoperatingexperience.Theperiodictestingrequirementsverifythattheairlockleakagedoesnotexceedtheallowedfractionoftheoverallprimarycontainmentleakagerate.TheFrequencyisrequiredbythePrimaryContainmentLeakageRateTestingProgram.'heSRhasbeenmodifiedbytwoNotes,Note1statesthataninoperableairlockdoordoesnotinvalidatetheprevioussuccessfulperformanceoftheoverallairlockleakagetest.ThisisconsideredreasonablesinceeitherairlockdooriscapableofprovidingafissionproductbarrierintheeventofaDBA.Note2requirestheresultsofairlockleakagetestsbeevaluatedagainsttheacceptancecriteriaofthePrimaryContainmentLeakageTestingProgram,5.5.12.ThisensuresthattheairlockleakageisproperlyaccountedforindeterminingthecombinedType8andCprimarycontainmentleakage.SR3.6.1.2.Theair.lock.interlockmechanismisdesignedtoprevent=.simultaneous:opening'ofbothdoorsintheairlock-.Sinceboth=-the=inner'ndouterdoorsofanairlockare-designed=towi-thstand=themaximumexpectedpostaccidentprimary"containment-pressure,closureofeitherdoorwillsupport-primarycontainmentOPERABILITY.Thus,theinterlock"..featuresupportsprimarycontainmentOPERABILITYwhiletheairlockis=beingusedforpersonneltransitinandoutofthecontainment.Periodictestingofthisinterlockdemonstratesthattheinterlockwillfunctionasdesignedandthatsimultaneousinnerandouterdooropeningwi11notinadvertentlyoccur.Duetothepurelymechanicalnatureofthisinterlock,andgiventhattheinterlockmechanismisnotnormallychallengedwhenprimarycontainmentisusedforentryandexit(proceduresrequirestrictadherencetosingledooropenings),thistestisonlyrequiredtobeperformedevery24months.The24monthfrequencyisbasedontheneedtoperformthissurveillanceunderconditionsthatapplyduringaplantoutage,andthepotentialforlossofprimarycontainmentOPERABILITY,ifthesurveillancewereperformedwiththereactoratpower.The24monthfrequencyfortheinterlockisjustifiedbasedongenericoperating(continued)SUSQUEHANNA-UNIT1B3.6-13Revision0 PrimaryContainmentAirLockB3.6.1.2BASESSURVEILLANCEREQUIREMENTSSR3.6.1.2.2(continued)experience.The24monthFrequencyisbasedonengineeringjudgmentandisconsideredadequategiventheinterlockisnotchallengedduringtheuseoftheairlock.REFERENCES(continued)1.FSAR,Section3.8.2.1.2.2.10CFR50,AppendixJ,OptionB.3.FSAR,Section6.2.4.FinalPolicyStatementonTechnicalSpecificationsImprovementsJuly22,1993(58FR39132).SUSQUEHANNA-UNIT1B3.6-14Revision0 PCIVsB3.6.1.3B3.6CONTAINMENTSYSTEMSB3.6.1.3PrimaryContainmentIsolationValves(PCIVs)BASESBACKGROUNDThefunctionofthePCIVs,incombinationwithotheraccidentmitigationsystems,istolimitfissionproductreleaseduringandfollowingpostulatedDesignBasisAccidents(DBAs)towithinlimits.PrimarycontainmentisolationwithinthetimelimitsspecifiedforthoseisolationvalvesdesignedtocloseautomaticallyensuresthatthereleaseofradioactivematerialtotheenvironmentwillbeconsistentwiththeassumptionsusedintheanalysesforaDBA.TheOPERABILITYrequirementsforPCIVshelpensurethatanadequateprimarycontainmentboundaryismaintainedduringandafteran.accidentbyminimizingpotentialpathstotheenvironment.Therefore,theOPERABILITYrequirementsprovideassurancethatprimarycontainmentfunctionassumedinthesafetyanalysesw'illbemaintained.Theseisolationdevicesareeitherpassiveoractive(automatic).Manualvalves,de-activatedautomaticvalvessecuredintheirclosedposition(includingcheckvalveswithflowthroughthevalvesecured).blindflanges.andclosedsystemsareconsideredpassivedevices.Checkvalves,orotherautomaticvalvesdesignedtoclosewithoutoperatoractionfollowinganaccident,areconsideredactivedevices.Twobarriersinseriesareprovidedforeachpenetrationsothatnosinglecrediblefailureormalfunctionof'nactivecomponentcanresultinalossofisolationorleakagethatexceedslimitsassumedinthesafetyanalyses.Oneofthesebarriersmaybeaclosedsystem.Thedrywellventandpurgelinesare24inchesindiameter;thesuppressionchamberventandpurgelinesare18inchesindiameter.ThecontainmentpurgevalvesarenormallymaintainedclosedinMODES1,2,and3toensuretheprimarycontainmentboundaryismaintained.Theoutboardisolationvalveshave2inchbypasslinesaroundthemforuseduringnormalreactoroperation.SUSQUEHANNA-UNIT1B3.6-15(continued)Revision0

PCIVsB3.6.1.3BASES(continued)APPLICABLESAFETYANALYSESThePCIVsLCOwasderivedfromtheassumptionsrelatedtominimizingthelossofreactorcoolantinventory.andestablishingtheprimarycontainmentboundaryduringmajoraccidents.Aspartoftheprimarycontainmentboundary,PCIVOPERABILITYsupportsleaktightnessofprimarycontainment.Therefore,thesafetyanalysisofanyeventrequiringisolationofprimarycontainmentisapplicabletothisLCO.TheDBAsthatresultinareleaseofradioactivematerialwithinprimarycontainmentareaLOCAandamainsteamlinebreak(MSLB).Intheanalysisforeachoftheseaccidents,itisassumedthatPCIVsareeitherclosedorclosewithintherequiredisolationtimesfollowingeventinitiation.ThisensuresthatpotentialpathstotheenvironmentthroughPCIVs(includingprimarycontainmentpurgevalves)areminimized.OftheeventsanalyzedinReference1,theMSLBisthemostlimitingeventduetoradiologicalconsequences.Theclosuretimeofthemainsteamisolationvalves(MSIVs)isasignificantvariablefromaradiologicalstandpoint.TheMSIVsarerequiredtoclosewithin3to5secondssincethe5secondclosuretimeisassumedintheanalysis.Thesafetyanalyses'assumethatthepurgevalveswereclosedateventinitiation.Likewise,itisassumedthattheprimarycontainmentisimmolatedsuchthatreleaseoffissionproductstotheenvironmentiscontrolled.TheDBAanalysisassumesthatwithintherequiredisolationtimeleakageisterminated,exceptforthemaximumallowableleakagerate,L,.Thesinglefailurecriterionrequiredtobeimposedintheconductofunitsafetyanalyseswasconsideredintheoriginaldesignoftheprimarycontainmentpurgevalves.Twovalvesinseriesoneachpurgelineprovideassurancethatboththesupplyandexhaustlinescouldbeisolatedevenifasinglefailureoccurred.TheprimarycontainmentpurgevalvesmaybeunabletocloseintheenvironmentfollowingaLOCA.Therefore,eachofthepurgevalvesisrequiredtoremainclosedduringMODES1,2,and3exceptaspermittedunderNote2ofSR3.6.1.3.1.Inthiscase,thesinglefailurecriterionremainsapplicabletotheprimarycontainmentpurgevalve(continued)SUSQUEHANNA-UNIT1B3.6-16Revision0 PCIVsB3.6.1.3BASESAPPLICABLESAFETYANALYSES(continued)duetofailureinthecontrolcircuitassociatedwitheachvalve.TheprimarycontainmentpurgevalvedesignprecludesasinglefailurefromcompromisingtheprimarycontainmentboundaryaslongasthesystemisoperatedinaccordancewiththisLCO.PCIVssatisfyCriterion3oftheNRCPolicyStatement.(Ref.2)LCOPCIVsformapartoftheprimarycontainmentboundary.ThePCIVsafetyfunctionisrelatedtominimizingthelossofreactorcoolantinventoryandestablishingtheprimarycontainmentboundaryduringaDBA.Thepoweroperated,automaticisolationvalvesarerequiredtohaveisolationtimeswithinlimitsandactuateonanautomaticisolationsignal.ThevalvescoveredbythisLCOarelistedinTableB3.6.1.3-1.ThenormallyclosedPCIVsareconsideredOPERABLEwhenmanualvalvesareclosedoropeninaccordancewithappropriateadministrativecontrols,automaticvalvesareintheirclosedposition,blindflangesareinplace,andclosedsystemsareintact.ThesepassiveisolationvalvesanddevicesarethoselistedinTableB3.6.1..3;1...Purgevalveswithresilientseals,secondary-containmentbypassvalves,MSIVs,andhydrostaticallytestedvalvesmustmeetadditionalleakageraterequirements'..OtherPCIVleakageratesareaddressedbyLCO3.6.1.1~"PrimaryContainment,"asTypeBorCtesting.ThisLCOprovidesassurancethatthePCIVswillperformtheirdesignedsafetyfunctionstominimizethelossofreactorcoolantinventoryandestablishtheprimarycontainmentboundaryduringaccidents.APPLICABILITYInMODES1,2,and3,aDBAcouldcauseareleaseofradioactivematerialtoprimarycontainment.InMODES4and5.theprobabilityandconsequencesoftheseeventsarereducedduetothepressureandtemperaturelimitationsoftheseMODES.Therefore,mostPCIVsarenotrequiredtobe(continued)SUSQUEHANNA-UNIT1B3.6-17Revision0 PCIVsB3.6.1.3BASESAPPLICABILITY(continued)OPERABLEandtheprimarycontainmentpurgevalvesarenotrequiredtobeclosedinNODES4and5.Certainvalves,however,arerequiredtobeOPERABLEtopreventinadvertentreactorvesseldraindown.ThesevalvesarethosewhoseassociatedinstrumentationisrequiredtobeOPERABLEperLCO3.3.6.1,"PrimaryContainmentIsolationInstrumentation."(Thisdoesnotincludethevalvesthatisolatetheassociatedinstrumentation.)ACTIONSTheACTIONSaremodifiedbyaNoteallowingpenetrationflowpath(s)tobeunisolatedintermittentlyunderadministrativecontrols.Thesecontrolsconsistofstationingadedicatedoperatoratthecontrolsofthevalve.whoisincontinuouscommunicationwiththecontrolroom.Inthisway,thepenetrationcanberapidlyisolatedwhenaneedforprimarycontainmentisolationisindicated.AsecondNotehasbeenaddedtoprovideclarificationthat,forthepurposeofthisLCO~separateConditionentryisallowedforeachpenetrationflowpa'th.Thisisacceptable,sincetheRequired'ActionsforeachConChtionprovide-appropriatecompensatoryactionsforeachinoperablePCIV.ComplyingwiththeRequiredActionsmayallowforcontinuedoperation.andsubsequentinoperablePCIVs.aregovernedby.subsequentConditionentryandapplicationof.associated"RequiredActions.TheACTIONSaremodifiedbyNotes3and4.Note'3'ens'uresthatappropriateremedialactionsaretaken,if'ecessary,iftheaffectedsystem(s)arerenderedinoperablebyaninoperablePCIV(e.g.,anEmergencyCoreCoolingSystemsubsystemisinoperableduetoafailedopentestreturnvalve).Note4ensuresappropriateremedialactionsaretakenwhentheprimarycontainmentleakagelimitsareexceeded.PursuanttoLCO3.0.6,theseactionsarenotrequiredevenwhentheassociatedLCOisnotmet.Therefore,Notes3and4areaddedtorequiretheproperactionsbetaken.A.landA.2WithoneormorepenetrationflowpathswithonePCIVinoperableexceptforpurgevalveleakagenotwithinlimit,(continued)SUSQUEHANNA-UNIT1B3.6-18Revision0 PCIVsB3.6.1.3BASESACTIONSA.1andA.2(continued)theaffectedpenetrationflowpathsmustbeisolated.Themethodofisolationmustincludetheuseofatleastoneisolationbarrierthatcannotbeadverselyaffectedbyasingleactivefailure.Isolationbarriersthatmeetthiscriterionareaclosedandde-activatedautomaticvalve,aclosedmanualvalve,ablindflange.andacheckvalvewithflowthroughthevalvesecured.ForapenetrationisolatedinaccordancewithRequiredActionA.1,thedeviceusedtoisolatethepenetrationshouldbetheclosestavailablevalvetotheprimarycontainment.TheRequiredActionmustbecompletedwithinthe4hourCompletionTime(8hoursformainsteamlines).TheCompletionTimeof4hoursisreasonableconsideringthetimerequiredtoisolatethepenetrationandtherelativeimportanceofsupportingprimarycontainmentOPERABILITYduringMODES1,2,and3.Formainsteamlines,an8hourCompletionTimeisallowed.TheCompletionTimeof8hoursforthemainsteamlinesallowsaperiodoftimetorestoretheMSIVstoOPERABLEstatusgiventhefactthatMSIVclosurewillresultinisolationofthemainsteamline(s)andapotentialforplantshutdown.ForaffectedpenetrationsthathavebeenisolatedinaccordancewithRequiredActionA.1,theaffectedpenetrationflowpath(s)mustbeverifiedtobeisolatedonaperiodicbasis.Thisisnecessarytoensurethatprimarycontainmentpenetrationsrequiredtobeisolatedfollowinganaccident,andnolongercapableofbeingautomaticallyisolated,willbeintheisolationpositionshouldaneventoccur.ThisRequiredActiondoesnotrequireanytestingordevicemanipulation.Rather,itinvolvesverificationthatthosedevicesoutsidecontainmentandcapableofpotentiallybeingmispositionedareinthecorrectposition.TheCompletionTimeof"onceper31daysforisolationdevicesoutsideprimarycontainment"isappropriatebecausethedevicesareoperatedunderadministrativecontrolsandtheprobabilityoftheirmisalignmentislow.Forthedevicesinsideprimarycontainment,thetimeperiodspecified"priortoenteringMODE2or3fromMODE4,ifprimarycontainmentwasde-inertedwhileinMODE4,ifnotperformedwithintheprevious92days"isbasedonengineeringjudgmentandisconsideredreasonableinviewoftheinaccessibilityofthedevicesandotheradministrativecontrolsensuringthatdevicemisalignmentisanunlikelypossibility.(continued)SUSQUEHANNA-UNIT1B3.6-19Revision0 PCIVs83.6.1.3BASESACTIONSA.landA.2(continued)ConditionAismodifiedbyaNoteindicatingthatthisConditionisonlyapplicabletothosepenetrationflowpathswithtwoPCIVs.ForpenetrationflowpathswithonePCIV,ConditionCprovidestheappropriateRequiredActions.RequiredActionA.2ismodifiedbyaNotethatappliestoisolationdeviceslocatedinhighradiationareas,andallowsthemtobeverifiedbyuseofadministrativemeans.Allowingverificationbyadministrativemeansisconsideredacceptable,sinceaccesstotheseareasistypicallyrestricted.Therefore,theprobabilityofmisalignmentofthesedevices,oncetheyhavebeenverifiedtobeintheproperposition,islow.B.1WithoneormorepenetrationflowpathswithtwoPCIVsinoperableexceptforpu'rgevalveleakagenotwithinlimit,eithertheinoperablePCIVsmustberestoredtoOPERABLEstatusortheaffectedpenetrationflowpathmustbeisolatedwithin1hour.Themethodofisolationmustincludetheuseofatleastoneisolationbarrierthatcannotbeadverselyaffectedbyasingleactivefailure.Isolationbarriersthatmeetthiscriterionareaclosedandde-activatedautomaticvalve,aclosedmanualvalve,andablindflange.The1hourCompletionTimeisconsistentwiththeACTIONSofLCO3.6.1.1.ConditionBismodifiedbyaNoteindicatingthisConditionisonlyapplicabletopenetrationflowpathswithtwoPCIVs.ForpenetrationflowpathswithonePCIV,ConditionCprovidestheappropriateRequiredActions.C.landC.2WithoneormorepenetrationflowpathswithonePCIVinoperable.theinoperablevalvemustberestoredtoOPERABLEstatusortheaffectedpenetrationflowpathmustbeisolated.Themethodofisolationmustincludetheuseofatleastoneisolationbarrierthatcannotbeadverselyaffectedbyasingleactivefailure.Isolationbarriersthatmeetthiscriterionareaclosedandde-activated(continued)SUSQUEHANNA-UNIT1B3.6-20Revision0 PCIVsB3.6.1.3BASESACTIONSC.1andC.2(continued)automaticvalve,aclosedmanualvalve,andablindflange.Acheckvalvemaynotbeusedtoisolatetheaffectedpenetration.RequiredActionC.1mustbecompletedwithinthe72hourCompletionTime.TheCompletionTimeof72hoursisreasonableconsideringtherelativestabilityoftheclosedsystem(hence,reliability)toactasapenetrationisolationboundaryandtherelativeimportanceofsupportingprimarycontainmentOPERABILITYduringNODES1,2,and3.TheclosedsystemmustmeettherequirementsofReference6.FortheExcessFlowCheckValves(EFCV),theCompletionTimeof12hoursisreasonableconsideringtheinstrumentandthesmallpipediameterofpenetration(hence,reliability)toactasapenetrationisolationboundaryandthesmallpipediameteroftheaffectedpenetrations.IntheeventtheaffectedpenetrationflowpathisisolatedinaccordancewithRequiredActionC.1,theaffectedpenetrationmustbeverifiedtobeisolatedonaperiodicbasis.Thisisnecessarytoensurethatprimarycontainmentpenetrationsrequiredtobeisolatedfollowinganaccidentareisolated.TheCompletionTimeofonceper31daysforverifyingeachaffectedpenetrationisisolatedisappropriatebecausethevalvesareoperatedunderadministrativecontrolsandtheprobabilityoftheirmisalignmentislow.ConditionCismodifiedbyaNoteindicatingthatthisConditionisonlyapplicabletopenetrationflowpathswithonlyonePCIV.ForpenetrationflowpathswithtwoPCIVs,ConditionsAand8providetheappropriateRequiredActions.RequiredActionC.2ismodifiedbyaNotethatappliestovalvesandblindflangeslocatedinhighradiationareasandallowsthemtobeverifiedbyuseofadministrativemeans.Allowing.verificationbyadministrativemeansisconsideredacceptable,sinceaccesstotheseareasistypicallyrestricted.Therefore,theprobabilityofmisalignmentofthesevalves,oncetheyhavebeenverifiedtobeintheproperposition,islow.(continued)SUSQUEHANNA-UNIT183.6-21Revision0 PCIVsB3.6.1.3BASESACTIONS(continued)D.1Withthesecondarycontainmentbypassleakageratenotwithinlimit,theassumptionsofthesafetyanalysismaynotbemet.Therefore.theleakagemustberestoredtowithinlimitwithin4hours.Restorationcanbeaccomplishedbyisolatingthepenetrationthatcausedthelimittobeexceededbyuseofoneclosedandde-activatedautomaticvalve.closedmanualvalve,orblindflange.Whenapenetrationisisolated,theleakageratefortheisolatedpenetrationisassumedtobetheactualpathwayleakagethroughtheisolationdevice.Iftwoisolationdevicesareusedtoisolatethepenetration,theleakagerateisassumedtobethelesseractualpathwayleakageofthetwodevices.The4hourCompletionTimeisreasonableconsideringthetimerequiredtorestoretheleakagebyisolatingthepenetrationandtherelativeimportanceofsecondarycontainmentbypassleakagetotheoverallcontainmentfunction.E.1Intheeventoneormorecontainmentpurgevalvesarenot'ithinthepurge'valveleakage:=limits:,.purgevalveleakagemustberestoredtowithinlimits;;The-24hourCompletionTimeisreasonable,considering;that-one.-containmentpurgevalveremainsclosed,exceptas".control-ledbySR3.6.1.3.1sothatagrossbreachofcontainment=-does-notexist.F.landF.2IfanyRequiredActionandassociatedCompletionTimecannotbemetinMODE1,2,or3,theplantmustbebroughttoaMODEinwhichtheLCOdoesnotapply.Toachievethisstatus,theplantmustbebroughttoatleastMODE3within12hoursandtoMODE4within36hours.TheallowedCompletionTimesarereasonable,basedonoperatingexperience,toreachtherequiredplantconditionsfromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.(continued)SUSQUEHANNA-UNIT1B3.6-22Revision0 PCIVsB3.6.1.3BASESACTIONS(continued)G.1andG.2IfanyRequiredActionandassociatedCompletionTimecannotbemet,theunitmustbeplacedinaconditioninwhichtheLCOdoesnotapply.Ifapplicable,actionmustbeimmediatelyinitiatedtosuspendoperationswithapotentialf'rdrainingthereactorvessel(OPDRVs)tominimizetheprobabilityofavesseldraindownandsubsequentpotentialforfissionproductrelease.ActionsmustcontinueuntilOPDRVsaresuspendedorvalve(s)arerestoredtoOPERABLEstatus.IfsuspendinganOPDRVwouldresultinclosingtheresidualheatremoval(RHR)shutdowncoolingisolationvalves.analternativeRequiredActionisprovidedtoimmediatelyinitiateactiontorestorethevalve(s)toOPERABLEstatus.ThisallowsRHRtoremaininservicewhileactionsarebeingtakentorestorethevalve.SURVEILLANCEREQUIREMENTSSR3.6.1.3.1ThisSRensuresthattheprimarycontainmentpurgevalvesareclosedasrequiredor,ifopen,openforanallowablereason.IfapurgevalveisopeninviolationofthisSR,thevalveisc6ndideredinoperable.Iftheinoperablevalveisnototherwiseknowntohaveexcessiveleakagewhenclosed,itisnotconsideredtohaveleakageoutsideoflimits.TheSRisalsomodifiedbyNote1,statingthatprimarycontainmentpurgevalvesareonlyrequiredtobeclosedinMODES1,2.and3.IfaLOCAinsideprimarycontainmentoccursintheseMODES,thepurgevalvesmaynotbecapableofclosingbeforethepressurepulseaffectssystemsdownstreamofthepurgevalves,orthereleaseofradioactivematerialwi11exceedlimitspriortothepurgevalvesclosing.Atothertimeswhenthepurgevalvesarerequiredtobecapableofclosing(e.g.,duringhandlingofirradiatedfuel),pressurizationconcernsarenotpresentandthepurgevalvesareallowedtobeopen.TheSRismodifiedbyNote2statingthattheSRisnotrequiredtobemetwhenthepurgevalvesareopenforthestatedreasons.TheNotestatesthatthesevalvesmaybeopenedforinerting,de-inerting,pressurecontrol,ALARAorairqualityconsiderationsforpersonnelentry,orSurveillancesthatrequirethevalvestobeopen.TheventandpurgevalvesarecapableofclosingintheenvironmentfollowingaLOCA.Therefore,thesevalvesareallowedtobeopenfor(continued)SUSQUEHANNA-UNIT1B3.6-23Revision0 PCIVsB3.6.1.3BASESSURVEILLANCEREQUIREMENTSSR3.6.1.3.1(continued)limitedperiodsoftime.The31dayFrequencyisconsistentwithotherPCIVrequirementsdiscussedinSR3.6.1.3.2.SR3.6.1.3.2ThisSRverifiesthateachprimarycontainmentisolationmanualvalveandblindflangethatislocatedoutsideprimarycontainmentandnotlocked,sealed,orotherwisesecuredandisrequiredtobeclosedduringaccidentconditionsisclosed.TheSRhelpstoensurethatpostaccidentleakageofradioactivefluidsorgasesoutsidetheprimarycontainmentboundaryiswithindesignlimits.ThisSRdoesnotrequireanytestingorvalvemanipulation.Rather,itinvolvesverificationthatthosePCIVsoutsideprimarycontainment,andcapableofbeingmispositioned,areinthecorrectposition.SinceverificationofvalvepositionforPCIVsoutsideprimarycontainmentisrelativelyeasy,the31dayFrequencywaschosentoprovideaddedassurancethatthe"PCIVsareinthecorrectpositions.TwoNoteshavebeenaddedtothisSR.ThefirstNoteallowsvalvesandblindflangeslocatedinhighradiationareastobeverifiedbyuseofadministrativecontrols.AllowingverificationbyadministrativecontrolsisconsideredacceptablesinceaccesstotheseareasistypicallyrestrictedduringMODES1,2,and3forALARAreasons.Therefore,theprobabilityofmisalignmentofthesePCIVs,oncetheyhavebeenverifiedtobeintheproperposition,islow.AsecondNotehasbeenincludedtoclarifythatPCIVsthatareopenunderadministrativecontrolsarenotrequiredtomeettheSRduringthetimethatthePCIVsareopen.ThisSRdoesnotapplytovalvesthatarelocked,sealed,orotherwisesecuredintheclosedposition,sincethesewereverifiedtobeinthecorrectpositionuponlocking,sealing,orsecuring.SR3.6.1.3.3ThisSRverifiesthateachprimarycontainmentmanualisolationvalveandblindflangethatislocatedinsideprimarycontainmentandnotlocked,sealed,orotherwise(continued)SUSQUEHANNA-UNIT183.6-24Revision0 PCIVsB3.6.1.3BASESSURVEILLANCEREQUIREMENTSSR3.6.1.3.3(continued)securedandisrequiredtobeclosedduringaccidentconditionsisclosed.TheSRhelpstoensurethatpostaccidentleakageofradioactivefluidsorgasesoutsidetheprimarycontainmentboundaryiswithindesignlimits.ForPCIVsinsideprimarycontainment,theFrequencydefinedas"priortoenteringMODE2or3fromMODE4ifprimarycontainmentwasde-inertedwhileinMODE4,ifnotperformedwithintheprevious92days"isappropriatesincethesePCIVsareoperatedunderadministrativecontrolsandtheprobabilityoftheirmisalignmentislow.ThisSRdoesnotapplytovalvesthatarelocked,sealed,orotherwisesecuredintheclosedposition,sincethesewereverifiedtobeinthecorrectpositionuponlocking,sealing,orsecuring.TwoNoteshavebeenaddedtothisSR.ThefirstNoteallowsvalvesandblindflangeslocatedinhighradiationareastobeverifiedbyuseof'dministrativecontrols.AllowingverificationbyadministrativecontrolsisconsideredacceptablesincetheprimarycontainmentisinertedandaccesstotheseareasistypicallyrestrictedduringMODES1,2,and3forALARAreasons.Therefore,the~~robabilityofmisalignmentofthesePCIVs,oncetheyhaveeenverifiedtobeintheirproperposition,islow.AsecondNotehaCbeenincludedtoclarifythatPCIVsthatareopenunderadministrativecontrolsarenotrequiredtomeettheSRduringthetimethatthePCIVsareopen.SR3.6.1.3.4Thetraversingincoreprobe(TIP)shearisolationvalvesareactuatedbyexplosivecharges.SurveillanceofexplosivechargecontinuityprovidesassurancethatTIPvalveswillactuatewhenrequired.Otheradministrativecontrols,suchasthosethatlimittheshelflifeoftheexplosivecharges,mustbefollowed.The31dayFrequencyisbasedonoperatingexperiencethathasdemonstratedthereliabilityoftheexplosivechargecontinuity.SR3.6.1.3.5Verifyingtheisolationtimeof'achpoweroperatedandeachautomaticPCIViswithinlimitsisrequiredtodemonstrateOPERABILITY.HSIVsmaybeexcludedfromthisSRsinceHSIV(continued)SUSQUEHANNA-UNIT1B3.6-25Revision0 PCIVsB3.6.1.3BASESSURVEILLANCEREQUIREMENTS(continued)SR3.6.1.3.6f'ullclosureisolationtimeisdemonstratedbySR3.6.1.3.7.TheisolationtimetestensuresthatthevalvewillisolateinatimeperiodlessthanorequaltothatassumedintheFinalSafetyAnalysesReport.TheisolationtimeandFrequencyofthisSRareinaccordancewiththerequirementsoftheInserviceTestingProgram.Forprimarycontainmentpurgevalveswithresilientseals.additionalleakageratetestingbeyondthetestrequirementsof'10CFR50.AppendixJ.OptionB.(Ref.3),isrequiredtoensureOPERABILITY.Operatingexperiencehasdemonstratedthatthistypeofsealhasthepotentialtodegradeinashortertimeperiodthandoothersealtypes.Basedonthisobservationandtheimportanceofmaintainingthispenetrationleaktight(duetothedirectpathbetweenprimarycontainmentandtheenvironment),aFrequencyof184dayswasestablished.TheacceptancecriteriaforthesevalvesisdefinedinthePrimaryContainmentLeakageRateTestingProgram,5.5.12.TheSRismodified'byaNote.statingthattheprimarycontainmentpurgevalvesareonlyrequiredtomeetleakageratetesting-rdquirementsinMODES1,2,and3.IfaLOCAinsideprimarycontainmentoccursintheseMODES,purgevalveleakagemustbe.minimizedtoensureoffsiteradiological-.releaseiswithinlimits.Atothertimeswhenthepurgevalves.arerequiredtobecapableofclosing(e.g.,during..handl.ing-ofirradiatedtuel),pressurizationconcernsare.not:presentandthepurgevalvesarenotrequiredtomeetanyspecificleakagecriteria.SR3.6.1.3'.7VerifyingthattheisolationtimeofeachMSIViswithinthespecifiedlimitsisrequiredtodemonstrateOPERABILITY.TheisolationtimetestensuresthattheMSIVwillisolateinatimeperiodthatdoesnotexceedthetimesassumedintheDBAanalyses.Thisensuresthatthecalculatedradiologicalconsequencesoftheseeventsremainwithin10CFR100limits.TheFrequencyofthisSRisinaccordancewiththerequirementsoftheInserviceTestingProgram.(continued)SUSQUEHANNA-UNIT183.6-26Revision0 PCIVsB3.6.1.3BASESSURVEILLANCEREQUIREMENTSSR3.6.1.3.8(continued)AutomaticPCIVscloseonaprimarycontainmentisolationsignaltopreventleakageofradioactivematerialfromprimarycontainmentfollowingaDBA.ThisSRensuresthateachautomaticPCIVwillactuatetoitsisolationpositiononaprimarycontainmentisolationsignal.TheLOGICSYSTEMFUNCTIONALTESTinSR3.3.6.1.5overlapsthisSRtoprovidecompletetestingofthesafetyfunction.The24monthFrequencywasdevelopedconsideringitisprudentthatsomeoftheseSurveillancesbeperformedonlyduringaunitoutagesinceisolationofpenetrationscouldeliminatecoolingwaterflowanddisruptthenormaloperationofsomecriticalcomponents.OperatingexperiencehasshownthatthesecomponentsusuallypassthisSurveillancewhenperformedatthe24monthFrequency.Therefore,theFrequencywasconcludedtobeacceptablefromareliabilitystandpoint.SR3.6.1.3.9ThisSRrequiresademonstrationthateachreactorinstrumentation'lineexcessflowcheckvalve(EFCV)isOPERABLEbyverifyingthatthevalveactuatestocheckflowonasimulatedinstr'umentlinebreak.AsdefinedinFSARSection6.2.4.3.5(Reference4).theconditionsunderwhichanEFCVwillisolate,simulatedinstrumentlinebreak.areatflowrateswhichdevelopadifferentialpressureofbetween3psidand10psid.ThisSRprovidesassurancethattheinstrumentationlineEFCVswillperformitsdesignfunctiontocheckflow.NospecificvalveleakagelimitsarespecifiedbecausenospecificleakagelimitsaredefinedintheFSAR.The24monthFrequencyisbasedontheneedtoperformsomeoftheseSurveillancesundertheconditionsthatapplyduringaplantoutageandthepotentialforanunplannedtransientiftheSurveillancewereperformedwiththereactoratpower.OperatingexperiencehasshownthatthesecomponentsusuallypassthisSurveillancewhenperformedatthe24monthFrequency.Therefore,theFrequencywasconcludedtobeacceptablefromareliabilitystandpoint.SR3.6.1.3.10TheTIPshearisolationvalvesareactuatedbyexplosivecharges.Aninplacefunctionaltestisnotpossiblewiththis(continued)SUSQUEHANNA-UNIT1B3.6-27Revision0 PCIVsB3.6.1.3BASESSURVEILLANCEREQUIREMENTSSR3.6.1.3.10(continued)design.Theexplosivesquibisremovedandtestedtoprovideassurancethatthevalves.willactuatewhenrequired.Thereplacementchargefortheexplosivesquibshallbefromthesamemanufacturedbatchastheonefiredorfromanotherbatchthathasbeencertifiedbyhavingoneofthebatchsuccessfullyfired.TheFrequencyof24monthsonaSTAGGEREDTESTBASISisconsideredadequategiventheadministrativecontrolsonreplacementchargesandthefrequentchecksofcircuitcontinuity(SR3.6.1.3.4).SR3.6.1.3.11ThisSRensuresthattheleakagerateofsecondarycontainmentbypass'eakagepathsislessthanthespecifiedleakagerate.ThisprovidesassurancethattheassumptionsintheradiologicalevaluationsofReference4aremet.ThepotentialsecondarycontainmentleakagepathwaysandFrequencyaredefinedbythePrimaryContainmentLeakageRateTestingProgram.ThisSRsimplyimposesadditionalacceptancecriteria.AnoteisaddedtothisSRwhichstatesthatthesevalvesareonlyrequiredtomeetthisleakagelimitinMODES1,2,and3.IntheotherMODES,theReactorCoolantSystemisnotpressurizedandspecificprimarycontainmentleakagelimitsarenotrequired.SR3.6.1.3.12TheanalysesinReferences1and4arebasedonleakagethatislessthanthespecifiedleakagerate.LeakagethrougheachHSIVmustbe~100scfhforanyoneHSIVor(300scfhfortotalmaximumpathwayleakagethroughtheHSIVscombinedwiththeHainSteamLineDrainswhichshallbeverified(1.2scfh.TheMSIVscanbetestedateither)P~(22.5psig)orP,(45psig).HainSteamLineDrainsaretestedatP,(45psig).AnoteisaddedtothisSRwhichstatesthatthesevalvesareonlyrequiredtomeetthisleakagelimitinMODES1,2.and3.Intheotherconditions,theReactorCoolantSystemisnotpressurizedandspecificprimarycontainmentleakagelimitsarenotrequired.TheFrequencyisrequiredbythePrimaryContainmentLeakageRateTestingProgram.IfleakagefromtheHSIVsrequiresinternalworkonanyHSIV,theleakagewillbereducedf'rtheaffectedMSIVto~11.5scfh.(continued)SUSQUEHANNA-UNIT1B3.6-28Revision0 PCIVsB3.6.1.3BASESSURVEILLANCEREQUIREMENTS(continued)SR3.6.1.3.13SurveillanceofhydrostaticallytestedlinesprovidesassurancethatthecalculationassumptionsofReference2aremet.Theacceptancecriteriaforthecombinedleakageofallhydrostaticallytestedlinesis3.3gpmwhentestedat1.1P,,(49.5psig).ThecombinedleakageratesmustbedemonstratedinaccordancewiththeleakageratetestFrequencyrequiredbythePrimaryContainmentLeakageTestingProgram.AsnotedinTableB3.6.1.3-1,PCIVsassociatedwiththisSRarenotTypeCtested.ContainmentbypassleakageispreventedsincethelineterminatesbelowtheminimumwaterlevelintheSuppressionChamber.ThesevalvesaretestedinaccordancewiththeISTProgram.Therefore,thesevalvesleakageisnotincludedascontainmentleakage.ThisSRhasbeenmodifiedbyaNotethatstatesthatthesevalvesareonlyrequiredtomeetthecombinedleakagerateinMODES1,2,and3,sincethisiswhentheReactorCoolantSystemispressurizedandprimarycontainmentisrequired.Insomeinstances,thevalvesarerequiredtobecapableofautomaticallyclosingduring.MODESotherthanMODES1,2,and3.However,specificleakagelimitsarenotapplicableintheseotherMODESorconditions.REFERENCES1.FSAR,Chapter15.2.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).3.10CFR50,AppendixJ,OptionB.4.FSAR.Section6.2.5.NED0-30851-P-A,"TechnicalSpecificationImprovementAnalysesforBWRReactorProtectionSystem,"March1988.6.StandardReviewPlan6.2.4,Rev.1,September1975SUSQUEHANNA-UNIT1B3.6-29Revision0 PCIVsB3.6.1.3Table83.6.1.3-1PrimaryContaiwentIsolationValve(Page1of11)PlantSystemContaiwentAtmosphericControlValveNunber1-57-193(d)1-57-194(d)HV-15703HV-15704HV-15705HV-15711HV-15713HV-15714HV-15721HV-15722HV-15723HV-15724HV-15725ILRTILRTValveDescriptionContaiwentPurgeContainnentPurgeContaiwentPurgeContainnentPurgeContairmentPurgeContaiwentPurgeContainmentPurgeContairmentPurgeContaiwentPurgeContairmentPurgeContainmentPurgeTypeof'ValveManualManualAutomaticValveAutomaticValveAutomaticValveAutomaticValveAutomaticValveAutomaticValveAutomaticValveAutomaticValveAutomaticValveAutomaticValveAutomaticValveIsolationSignalLCO3.3.6.1FunctionNo.(MaxiaaaaIsolationTime(Seconds))N/AN/A2.b,2.d,2.e(15)2.b2.d2.e(15)2.b,2.d,2.e(15)2.b,2.d,2.e('15)2.b,2.d,2.e('15)2.b2.d2.e(15)2.b,2.d,2.e(15)2.b,2.d,2.e(15)2.b,2.d,2.e(15)2.b2.d2.e(15)2.b,2.d,2.e(15)HV-15766(a)HV-15768(a)SV-157100ASV-1571008SV-157101ASV-1571018SV-157102ASV-1571028SuressionPoolCleanuSressionPoolCleanuAutomaticValveAutomaticValveContairment.RadiationDetectionAutomaticValveSystContairmentRadiationDetectionAutomaticValveSystContaiwentRadiationDetectionAutomaticValveSystContairmentRadiationDetectionAutomaticValveSystContairmentRadiationDetectionAutomaticValveSystContaiwentRadiationDetectionAutomaticValveSyst2.b,2.d(30)2.b,2.d(30)2.b,2.d2.b,2.d2.b,2.d2.b,2.d2.b,2.d2.b,2.dSV-157103ASV-1571038SV-157104ContaiwentRadiationDetectionAutomaticValveSystContairmentRadiationDetectionAutomaticValveSyst2.b,2.d2.b,2.dContainmentRadiationDetectionAutomaticValve,2.b,2.dSystSV-157105SV-157106SV-157107SV-15734ASV-157348SV-15736ASV-157368SV-15737NitrogenMakeupAutomaticValveContaiwentRadiationDetectionAutomaticValveSystContaiwentRadiationDetectionAutomaticValveSystContairmentRadiationDetectionAutomaticValveSystContaiwentAtmosercSleAutomaticValveContairvnentAtmosphereSampleAutomaticValveContainmentAtmosereSaleAutomaticValveContairmentAtmosereSaleAutomaticValve2.b,2.d2.b,2.d2.b,2.d2.b2.d2.b,2.d2.b,2.d2.b,2.d2.b,2.d,2.cSUSQUEHANNA-UNIT1B3.6-30Revision0

PCIVs83.6.1.3Table83.6.1.3-1(continued)PrimaryContainmentIsolationValve(Page2of11)PlantSystemValveNumberValveOescriptionTypeofValveIsolationSignalLCO3.3.6.1FunctionNo.(MaximiaIsolationTime(Seconds))Contaim>>ntAtmosphericControl(continued)SV-15738SV-15740ASV-157408SV-15742ASV-157428SV-15750ASV-157508SV-15752ASV-157528SV-15767SV-15774ASV-157748SV-15776A,SV-157768SV-15780ASV-157808SV-15782ASV-157828SV-'15789NitrogenMakeupAutomaticValveNitrogenMakeupAutomaticValveContaim>>ntAtmosereSleAutomaticValveContainmentAtmosphereSampleAutomaticValveContaim>>ntAtmosphereSampleAutomaticValveContainmentAtmosereSaleAutomaticValveContainmentAtmosereSaleAutomaticValveContaim>>ntAtmosphereSampleAutomaticValveContaim>>ntAtmosereSaleAutomaticValveContaim>>ntAtmosereSaleAutomaticValveNitrogenMakeuAutomaticValveContaim>>ntAtmosereSaleAutomaticValveContaim>>ntAtmosereSaleAutomaticValveContainmentAtmosphereSampleAutomaticValveContajm>>ntAtmosereSaleAutomaticValveContaim>>ntAtmosereSaleAutomaticValveContainmentAtmosereSaleAutomaticValveContaim>>ntAtmosphereSampleAutomaticValveContainmentAtmosphereSampleAutomaticValve2.b,2.d,2.e2.b,2.d2.b2.d2.b,2.d2.b,2.d2.b,2.d2.b2.d2.b,2.d2.b,2.d2.b,2.d,2.e2.b,2.d2.b,2.d2.b,2.d2.b,2.d2.b2.d2.b,2.d2.b,2.d2.b,2.d2.b2.d2.eContaim>>ntInstrunentGas1-26-072(d)1-26-074(d)1-26-152(d)1-26-154(d)1-26-164(d)Contaim>>ntInstrunentGasContaim>>ntInstru(>>ntGasContainmentInstrut>>ntGasContaim>>ntInstrut>>ntGasContaim>>ntInstrut>>ntGasManualCheckManualCheckManualCheckHanualCheckManualCheckN/AN/AN/AN/AN/AHV-12603SV-12605SV-12651Contaim>>ntInstrunentGasContaim>>ntInstr(m>>ntGasContainmentInstr(m>>ntGasAutomaticValveAutomaticValve2.c,2.d2.c2.(jAutomaticValve2.c,2.d(20)CoreSpraySV-12654ASV-126548SV-12661SV-12671HV-152F001A(b)(c)HV-152F0018(b)(c)HV-152F005AHV-152F0058Contaim>>ntInstr(m>>ntGasContaim>>ntInstr(m>>ntGasContainmentInstrunentGasContaim>>ntInstru(>>ntGasCSSuctionValveCSSuctionValveCSInjectionCSInjectionValvePowerOperatedPower0ratedAutomaticValveAutomaticValvePowerOperatedPower0oratedPower0ratedPower0ratedN/AN/A2.c~2.d2.c2.dN/AN/AN/AN/AHV-152F006ACSInjectionValveAirOperatedCheckN/AValveHV-152F0068HV-152F015A(b)(c)HV-152F0158(b)(c)CSInjectionValveCSTestValveCSTestValveAutomaticValveAutomaticValve2.c,2.d(60)2.c,2.d(60)AirOperatedCheckN/AValveSUSQUEHANNA-UNIT1B3.6-31Revision0 PCIVsB3.6.1.3Table83.6.1.3-1(continued)PrimaryContaiwentIsolationValve(Page3of11)PlantSystemCoreSpray(continued)HPCILiquidRadwasteCollectionDeminWaterValveNunberHV-152F031A(b)(c)HV-152F0318(b)(c)HV-152F037AHV-152F037BXV-152F018AXV-152F018B1-55-038(d)155F046(b)(c)(d)155F049(a)(d)HV-155F002HV-155F003HV-155F006HV-155F012(b)(c)HV-155F042(b)(c)HV-155F066(a)HV-155F075HV-'155F079HV-155F100XV-155F024AXV-155F0248XV-155F024CXV-155F024DHV-16108A1HV-16108A2HV-16116A1HV-16116A21-41-017(d)1-41-018(d)ValveDescriptionCSMinimunRecirculationFlowCSMininunRecirculationFlowCSInjectionCSInjectionCoreSprayCoreSprayHPCIInjectionValveHPCIMininnmFlowCheckValveHPCITurbineExhaustValveHPCISteamSupplyValveHPCISteamSupplyValveHPCI-InjectionValveHPCIMininxanFlowValveHPCISuctionValveHPCITurbineExhaustValveHPCIVacuunBreakerIsolationValveHPCIVacuaBreakerIsolationValveHPCIStcamSupplyValveHPCIValveHPCIValveHPCIValveHPCIValveLiuidRadwasteIsolationValveLiuidRadwasteIsolationValveLiidRadwasteIsolationValveLiquidRadwasteIsolationValveDemineralizedWaterDemineralizedWaterTypeofValvePower0cratedPowerOperatedPo~erOperated(Air)PowerOperated(Air)ExcessFlowCheckValveExcessFlowCheckValveManualManualCheckManualCheckAutomaticValveAutomaticValvePower0ratedPower0ratedAutomaticValvePowerOperatedAutomaticValveAutomaticValveAutomaticValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveAutomaticValveAutomaticValveAutomaticValveAutomaticValveManualHanualIsolationSignalLCO3.3.6.1FunctionNo.(Max>nxznIsoiat>onTime(Seconds))H/AN/AN/AN/AN/AN/AN/AN/AN/A3.a,3.b,3.c,3.e,3.f,3.g(50)3.a,3.b,3.c,3.e,3',3.g(50)N/AN/A3.a,3.b,3.c,3.e3.f3.g(90)N/A3.b,3.d(15)3.b,3.d(15)3.a,3.b,3.c,3.e,3.f,3.g(6)N/AN/AN/AN/A2.b,2.d(15)2.b,2.d(15)2.b2.d(15)2.b,2.d(15)N/AN/ANuclearBoiler141F010A(d)141F0108(d)FeedwaterIsolationValveFcedwaterIsolationValveManualCheckManualCheckN/AN/ASUSQUEHANNA-UNIT1B3.6-32Revision0 I

PCIVsB3.6.1.3Table83.6.1.3-1(continued)PrimaryContaimentIsolationValve(Page4of11)PlantSystemNuclearBoiler(continued)ValveNumber14'IF039A(d)141F039B(d)141818A((j)1418188(d)HV-141F016HV-141F019HV-141F022AHV-141F0228HV-141F022CHV-141F022DHV-141F028AHV-141F028BHV.141F028CHV-141F028DHV-141F032AHV-141F0328XV-141F009XV-141F070AXV-141F0708XV-141F070CXV-141F070DXV-141F071AXV-141F0718XV-141F071CXV-141F071DValveDescriptionFeedwaterIsolationValveFeedwaterIsolationValveFeedwaterIsolationValveFeedwaterIsolationValveMSLDrainIsolationValveMSLDrainIsolationValveHSIVMSIVMSIVHSIVHSIVHSIVMSIVMSIVFeedwaterIsolationValveFeedwaterIsolationValveHuclearBoilerEFCVNuclearBoilerEFCVNuclearBoilerEFCVNuclearBoilerEFCVNuclearBoilerEFCVNuclearBoilerEFCVNuclearBoilerEFCVNuclearBoilerEFCVNuclearBoilerEFCVTypeofValveManualCheckManualCheckManualCheckManualCheckAutomaticValveAutomaticValveAutomaticValveAutomaticValveAutomaticValveAutomaticValveAutomaticValveAutomaticValveAutomaticValveAutomaticValvePowerOperatedCheckPo~erOperatedCheckExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveIsolationSignalLCO3.3.6.1FunctionNo.(Max'IIKÃlIsoiatIonTime(Seconds))N/AN/AN/AN/A1.a,1.b,1.c,1.d,1.e(10)1.a,1.b,1.c,1.d,1.e(10)1.a,1.b,1.c,1.d,1.e(5)1.a,1.b,'I.c,1.d,1~e(5)1.a,1.b,1.c,1.d,1.e(5)1.a,'1.b,1.c,1.d,1.e(5)1.a,1.b,1.c,1.d,1.e(5)1.a,1.b,1.c,1.d,1.e(5)1'.a,'I.b,1.c,1.d,'l.e(5)1.a,1.b,1.c,1.d,1.e(5)N/AN/AN/AN/AN/AN/AN/AN/AN/AH/AH/ASUSQUEHANNA-UNIT1B3.6-33Revision0 PCIVsB3.6.1.3TableB3.6.1.3-1(continued)PrimaryContairmentIsolationValve(Page5of11)PlantSystemNuclearBoiler(continued)NuclearBoilerVesselInstrwentationValveNurherXV-141F072AXV-141F072BXV-141F072CXV-141F072DXV-141F073AXV-141F073BXV-141F073CXV-141F073DXV-14201XV-14202XV-142F041XV-142F043AXV-142F0438XV-142F045AXV-142F045BXV-142F047AXV-142F047BXV-142F051AXV-142F051BXV-142F051CXV-142F051DXV-142F053AXV-142F053BValveDescriptionNuclearBoilerEFCVNuclearBoilerEFCVHuclearBoilerEFCVNuclearBoilerEFCVNuclearBoilerEFCVNuclearBoilerEFCVNuclearBoilerEFCVNuclearBoilerEFCVNuclearBoiler'esselInstrwentr,NuclearBoilerVesselInstrunentNuclearBoilerVesselInstrunentNuclearBoilerVesselInstrunentNuclearBoilerVesselInstrunentNuclearBoilerVesselInstrunentNuclearBoilerVesselInstrunentNuclearBoilerVesselInstrwentNuclearBoilerVesselInstrunentNuclearBoilerVesselInstrunent-NuclearBoilerVesselInstrunentNuclearBoilerVesselInstrunentNuclearBoilerVesselInstrwentNuclearBoilerVesselInstrwentNuclearBoilerVesselInstrwentTypeofValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckVatveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFtowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveIsolationSignalLCO3.3.6.1FunctionNo.(NaxinamIsolationTime(Seconds))N/AN/AN/AN/AH/AH/AH/AN/AN/AN/AH/AN/AN/AH/AH/AH/AN/AN/AH/AN/AH/AH/AH/ASUSQUEHANNA-UNIT1B3.6-34Revision0 PCIVsB3.6.1.3Table83.6.1.3-1(continued)PrimaryContainmentIsolationValve(Page6of11)PlantSystemNuclearBoilerVesselInstrunentation(continued)RBCCWValveNwberXV-142F053CXV-142F053DXV-142F055XV-142F057XV-142F059AXV-142F059BXV-142F059CXV-142F059DXV-142F059EXV-142F059FXV-142F059GXV-142F059HXV-142F059LXV-142F059HXV-142F059NXV-142F059PXV-142F059RXV-142F059SXV-'142F059TXV-142F059UXV-142F061HV-11313HV-11314HV-11345HV-11346ValveDescriptionNuclearBoilerVesselInstrunentNuclearBoilerVesselInstrunentNuclearBoilerVesselInstruaentNuclearBoilerVesselInstrunentNuclearBoilerVesselInstrunentNuclearBoilerVesselInstrunentNuclearBoilerVessel.InstrunentNuclearBoilerVesselInstrunentNuclearBoilerVesselInstrunent.NuclearBoilerVesselInstrunentNuclearBoilerVesselInstrunentNuclearBoilerVesselInstruaentNuclearBoilerVesselInstrunentHuclearBoilerVesselInstrunentNuclearBoilerVesselInstrunentNuclearBoilerVesselInstrunentNuclearBoilerVesselInstrunentNuclearBoilerVesselInstrunentNuclearBoilerVesselInstrunentNuclearBoilerVesselInstrunentNuclearBoilerVesselInstrunentRBCC'WRBCCWRBCCWRBCCWTypeofValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveAutomaticValveAutomaticValveAutomaticValveAutomaticValveIsolationSignalLCO3.3.6.1FunctionNo.(HaximjmIsolationTime(Seconds))N/AN/AH/AN/AN/AH/AN/AH/AH/AH/AN/AN/AH/AN/AH/AN/AN/AN/AN/AH/AN/A2.c,2.d(30)2.c,2.d(30)2.c,2.d(30)2.c,2.d(30)SUSQUEHANNA-UNIT1B3.6-35Revision0 PCIVsB3.6.1.3Table83.6.1.3-1(continued)PrimaryContairmentIsolationValve(Page7of11)PlantSystemRCICValveNumber1-49-020(d)ValveDescriptionRCICINJECTIONTypeofValveManualIsolationSignalLCO3.3.6.1FunctionHo.(MaximlaIsolationTime(Seconds))N/A149F021(b)(c)(d)RCICMinimusRecirculationFlowManualCheckH/A149F028(a)(d)'149F040(a)(d)RCICVacuuaPumpDischargeRCICTurbineExhaustManualCheckManualCheckN/AN/AHV-149F007HV-149F008RCICSteamSupplyRCICSteamSupplyFV-149F019(b)(c)RCICHiniremRecirculationFlowPowerOperatedAutomaticValveAutomaticValveN/A4.a,4.b,4.c,4.e,4.f,4.g(20)4.a,4.b,4.c,4.e,4',4.g(20)HV-149F013RCICInjectionPower0ratedN/AHV-149F059(a)HV-149F060(a)RCICTurbineExhaustRCICVacuaPDischargeHV-149F031(b)(c)RCICSuctionPower0ratedPowerOperatedPo~er0ratedN/AN/AH/ARBChilledMaterSystemReactorRecirculationHV-149F062HV-149F084HV-149FOBBXV-149F044AXV-'149F0448XV-149F044CXV-149F044DHV-1878'IA1HV-18781A2HV-1878181HV-1878182HV-18782A'IHV-18782A2HV-1878281HV-1878282HV-18791A1HV-18791A2HV-1879'IB1HV-1879182HV-18792A1HV-18792A2HV-1879281HV-18792B2143FO'13A(d)143F0138(d)RCICVacuaBreakerRCICVacuaBreakerRCICSteamSupplyRCICRCICRCICRCICRBChilledMaterRBChilledMaterRBChilledMaterRBChilledWaterRBChilledMaterRBChilledMaterRBChilledMaterRBChilledMaterRBChilledMaterRBChilledWaterRBChilledMaterRBChilledWaterRBChilledWaterRBChilledWaterRBChilledWaterRBChilledMaterRecirculationPunpSealMaterRecirculationPumpSealMaterAutomaticValveAutomaticValveAutomaticValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveAutomaticValveAutomaticValveAutomaticValveAutomaticValveAutomaticValveAutomaticValveAutomaticValveAutomaticValveAutomaticValveAutomaticValveAutomaticValveAutomaticValveAutomaticValveAutomaticValveAutomaticValveAutomaticValveManualCheckHanualCheck4.b,4.d(10)4.b,4.d(10)4.a,4.b,4.c,4.e4.f4.g(12)H/AN/AH/AH/A2.c,2.d(40)2.c,2.d(40)2.c,2.d(40)2.c2.d(40)2.c,2.d(6)2.c,2.d(6)2.c,2.d(6)2.c2.d(6)2.b,2.d(15)2.b,2.d(15)2.b,2.d(15)2.b2.d(15)2.b,2.d(4)2.b,2.d(4)2.b,2.d(4)2.b2.d(4)N/AN/ASUSQUEHANNA-UNIT1B3.6-36Revision0 PCIVsB3.6.1.3Table83.6.1.3-1(continued)PrimaryContaiwentIsolationValve(Page8of11)PlantSystemReactorRecirculation(continued)ValveNumberXV-143F003AXV-143F0038XV-143F004AXV-143F0048XV-143F009AXV-143F0098XV-143F009CXV-143F009DXV-143F010AXV-143F0108XV-143F010CXV-143F010DXV-143F011AXV-143F0118XV-143F011CXV-143F01'IDXV-143F012AXV-143F0128XV-143FO'12CXV-143F012DXV-143F017AXV-143F0178XV-143F040AValveDescriptionReactorRecirculationReactorRecirculationReactorRecirculationReactorRecirculationReactorRecirculationReactorRecirculationReactorRecirculationReactorRecirculationReactorRecircblationReactorRecirculationReactorRecirculationReactorRecirculationReactorRecirculationReactorRecirculationReactorRecirculationReactorRecirculationReactorRecirculationReactorRecirculationReactorRecirculationReactorRecirculationRecirculationPulpSealHaterRecirculationPumpSealHaterReactorRecirculationTypeofValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcess,FlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveIsolationSignalLCO3.3.6.1FunctionNo.(Hax>mmIsolat>onTime(Seconds))N/AH/AN/AN/AN/AN/AN/AN/AN/AN/AN/AN/AN/AN/AN/AN/AN/AN/AN/AN/AN/AN/AN/ASUSQUEHANNA-UNIT1B3.6-37Revision0 PCIVsB3.6.1.3Table83.6.1.3-1<continued)PrimaryContaiwentIsolationValve(Page9of11)PlantSystemReactorRecirculation(continued)ResidualHeatRemovalValveNunberXV-143F0408XV-143F040CXV-143F0400XV-143F057AXV-143F0578HV-143F019HV-143F020HV-151F004A(b)(c)HV-151F0048(b)(c)HV-151F004C(b)(c)HV-151F004D(b)(c)HV-151F007A<b)(c)HV-1510078(b)(c)HV-151FOOBHV-151F009HV-151F011A(b)<d)HV-151F0118(b)(d)HV-151F015AHV-15'IF0158HV-151F016A(b)HV-151F0168(b)HV-15'IF022HV-151F023HV-151F028A(b)HV-151F0288(b)ValveDescriptionReactorRecirculationReactorRecirculationReactorRecirculationReactorRecirculationReactorRecirculationReactorCoolantSaleReactorCoolantSaleRHR-SuppressionPoolSuctionRHR-SuressionPoolSuctionRHR-SuppressionPoolSuctionRHR-SuppressionPoolSuctionRHR-MinimssRecirculationFlowRHR-MinisamRecirculationFlowRHR-ShutdownCoolingSuctionRHR-ShutdownCoolingSuctionRHR-SuppressionPoolCooling/SrayRHR-SuppressionPoolCooling/SrayRHR-ShutdownCoolingReturn/LPCIInjectionRHR-ShutdownCoolingReturn/LPCIInjectionRHR-DrywellSrayRHR-DrellSraRHR-ReactorVesselHeadSprayRHR-ReactorVesselHeadSprayRHR-SuppressionPoolCooling/SprayRHR-SuppressionPoolCooling/SprayTypeofValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveAutomaticValveAutomaticValvePowerOperatedPower0ratedPo~erOperatedPowerOperatedPower0ratedPower0ratedAutomaticValveAutomaticValveManualManualPowerOperatedPowerOperatedAutomaticValveAutomaticValveAutomaticValveAutomaticValveAutomaticValveAutomaticValveIsolationSignalLCO3.3.6.1FunctionNo.(MaxisuaIsolationTime(Seconds))N/AN/AN/AN/AN/A2.b(9)2.b(2)N/AN/AN/AN/AN/AN/A6.a,6.b,6.c(52)6.a,6.b,6.c(52)N/AN/AN/AN/A2.c,2.d(90)2.c2.d(90)2.d,6.a,6.b,6.c(30)2.d,6.a,6.b,6.c(20)2.c,2.d(90)2.c,2.d(90)HV-151F050AHV-151F0508HV-151F103A(b)HV-151F1038(b)RHR-ShutdownCoolingReturn/LPCIInjectionValveRHR-ShutdownCoolingReturn/LPCIInjectionValveRHRHeatExchangerVentRHRHeatExchangerVentPowerOperatedPowerOperatedN/AN/AAirOperatedCheckN/AValveAirOperatedCheckN/AValveSUSQUEHANNA-UNIT1B3.6-38Revision0 PCIVsB3.6.1.3Table83.6.1.3-1(continued)PrimaryContairmentIsolationValve(Page10of11)PlantSystemResidualHeatRemoval(continued)ValveNumberHV-151F122AHV-151F1228ValveDescriptionRHR-ShutdownCoolingReturn/LPCIInjectionValveRHR-ShutdownCoolingReturn/LPCIInjectionValveTypeofValvePowerOperated(Air)PowerOperated(Air)IsolationSignalLCO3.3.6.1FunctionNo.(MaxisunIsolationTime(Seconds))H/AN/APSV-15'106A(b)(d)PSV-151068(b)(d)PSV-151F126(d)XV-15109ARHRExcessFlowCheckValveRHR-ReliefValveDischargeReliefValveRHR-ReliefValveDischargeReliefValveRHR-ShutdownCoolingSuctionReliefValveH/AN/AN/AN/ARWCUSLCSTIPSystemXV-151098XV-15109CXV-15'109DliV-144F001(a)HV-144F004(a)XV-14411AXV-144118XV-14411CXV-144110XV-'144F046HV-14182AHV-141828148FODT(a)(d)HV-'148F006(a)C51-J004A(ShearValve)C51-J0048(ShearValve)C5'I-J004C(ShearValve)C51-J004D(ShearValve)C51-J004E(ShearValve)RHRRHRRHRRWCUSuction.RWCUSuctionRWCURWCURMCURMCURWCURWCUReturnIsolationValveRWCUReturnIsolationValveSLCSSLCSTIPShearValvesTIPShearValvesTIPShearValvesTIPShearValvesTIPShearValvesExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveAutomaticValveAutomaticValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValveExcessFlowCheckValvePower0ratedPowerOperatedHanualCheckPowerOperatedCheckValveSquibValvesSquibValvesSquibValvesSquibValvesSquibValvesH/AH/AN/A5.a,5.b,5.c,5.d5'5.g(30)5.a,5.b,5.c,S.d,5.e,5.f,5.g(30)N/AN/AH/AN/AN/AH/AN/AN/AN/AN/AN/AN/AN/AN/ASUSQUEHANNA-UNIT1B3.6-39Revision0 PCIVsB3.6.1.3TableB3.6.1.3-1(continued)PrimaryContainnentIsolationValve(Page11of11)PlantSystemTIPSystem(continued)ValveNumberC5'I-J004A(BallValve)C51-J004B(BallValve)C51-J004C(BaLLValve)C51-J004D(BaLLValve)C51-J004E(BGLLValve)ValveDescriptionTIPBallValvesTIPBallValvesTIPBallValvesTIPBallValvesTIPBallValvesTypeofValveAutomaticValveAutomaticValveAutomaticValveAutomaticValveAutanaticValveIsolationSignalLCO3.3.6.1FunctionNo.(NaxlfMaIsolationTime(Seconds))2',2.d(5)2',2.d(5)2.a,2.d(5)2.a,2.ci(5)2.a,2.d(5)(a)Isolationbarrierremainswaterfilledorawatersealremainsinthelinepost-LOCA,isolationvalveistestedwithwater.Isolationvalveleakageisnotincludedin0.60L,totalTypeBandCtests.(b)RedundantisolationboundaryforthisvalveisprovidedbytheclosedsystemwhoseintegrityisverifiedbyTypeAtest.(c)ContainmentIsolationValvesarenotTypeC(ested.ContainmentbypassleakageispreventedsincethelineterminatesbelowtheminisxlnwaterlevelintheSuppressionChamber.RefertotheISTProgram.(d)LCO3.3.3'I,"PANInstrunentation",Table3.3.3.1-1,Function6,doesnotapplysincethesearereliefvalves,checkvalves,manualvalvesordeactivatedandclosed.SUSQUEHANNA-UNIT1B3.6-40Revision0 ContainmentPressureB3.6.1.4B3.6CONTAINMENTSYSTEMSB3.6.1.4ContainmentPressureBASESBACKGROUNDThecontainmentpressureislimitedduringnormaloperationstopreservetheinitialconditionsassumedintheaccidentanalysisforaDesignBasisAccident(DBA)orlossofcoolantaccident(LOCA).APPLICABLEPrimarycontainmentperformanceisevaluatedfortheentireSAFETYANALYSESspectrumofbreaksizesforpostulatedLOCAs(Ref.1).AmongtheinputstotheDBAistheinitialprimarycontainmentinternalpressure(Ref.1).Analysesassumeaninitialcontainmentpressureof-1.0to2.0psig.ThislimitationensuresthatthesafetyanalysisremainsvalidbymaintainingtheexpectedinitialconditionsandensuresthatthepeakLOCAcontainmentinternalpressuredoesnotexceedthemaximumallowable.ThemaximumcalculatedcontainmentpressureoccursduringthereactorblowdownphaseoftheDBA,whichassumesaninstantaneousrecirculationlinebreak.Thecalculatedpeakcontainmentpressureforthislimitingeventis44.8psig(Ref.1).Theminimumcontainmentpressureoccursduringaninadvertentsprayactuation.Thecalculatedminimumdrywellpressureforthislimitingeventis-4.72psig.(Ref.1)ContainmentpressuresatisfiesCriterion2oftheNRCPolicyStatement.(Ref.2)LCOIntheeventofaDBA,withaninitialcontainmentpressure-1.0to2.0psig,theresultantpeakcontainmentaccidentpressurewillbemaintainedbelowthecontainmentdesignressure.Thecontainmentpressureisdefinedtoincludeoththedrywellpressureandthesuppressionchamberpressure.(Ref.1)SUSQUEHANNA-UNIT1B3.6-41(continued)Revision0 ContainmentPressureB3.6.1.4BASES(continued)APPLICABILITYInMODES1-,2,and3,aDBAcouldcauseareleaseofradioactivematerialtoprimarycontainment.InNODES4and5,theprobabilityandconsequencesoftheseeventsarereducedduetothepressureandtemperaturelimitationsoftheseMODES.Therefore,maintainingcontainmentpressurewithinlimitsisnotrequiredinMODE4or5.ACTIONSA.1WithcontainmentpressurenotwithinthelimitoftheLCO,containmentpressuremustberestoredwithin1hour.TheRequiredActionisnecessarytoreturnoperationtowithintheboundsoftheprimarycontainmentanalysis.The1hourCompletionTimeisconsistentwiththeACTIONSofLCO3.6.1.1,"PrimaryContainment,"whichrequiresthatprimarycontainmentberestoredtoOPERABLEstatuswithin1hour.B.landB.2Ifcontainmentpressurecannotberestoredtowithinlimitwithintherequir'edCompletionTime,theplantmustbebroughttoaMODEinwhichtheLCOdoesnotapply.Toachievethisstatus,theplantmustbebroughttoatleastMODE3within12hoursandtoMODE4within36hours.TheallowedCompletionTimesarereasonable,basedonoperatingexperience.toreachtherequiredplantconditionsfromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.SURVEILLANCEREQUIREMENTSSR3.6.1.4.1hVerifyingthatcontainmentpressureiswithinlimitensuresthatunitoperationremainswithinthelimitassumedintheprimarycontainmentanalysis.The12hourFrequencyofthisSRwasdeveloped,basedonoperatingexperiencerelatedto-trendingofcontainmentpressurevariationsduringtheapplicableMODES.Furthermore,the12hourFrequencyisconsideredadequateinviewofotherindicationsavailableinthecontrolroom,includingalarms,toalerttheoperatortoanabnormalcontainmentpressurecondition.SUSQUEHANNA-UNIT183.6-42(continued)Revision0 ContainmentPressureB3.6.1.4BASES(continued)REFERENCES1.FSAR,Section6.2.2.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22.1993(58FR39132).SUSQUEHANNA-UNIT1B3.6-43Revision0 DrywellAirTemperature83.6.1.5B3.6CONTAINMENTSYSTEHSB3.6.1.5DrywellAirTemperatureBASESBACKGROUNDThedrywellcontainsthereactorvesselandpiping,whichaddheattotheairspace.Drywellcoolersremove-heatandmaintainasuitableenvironment.TheaverageairspacetemperatureaffectsthecalculatedresponsetopostulatedDesignBasisAccidents(DBAs).Thelimitationonthedrywellaverageairtemperaturewasdevelopedasreasonable.basedonoperatingexperience.ThelimitationondrywellairtemperatureisusedintheReference1safetyanalyses.APPLICABLEPrimarycontainmentperformanceisevaluatedforaSAFETYANALYSESspectrumofbreaksizesforpostulatedlossofcoolantaccidents(LOCAs)(Ref.1).Amongtheinputstothedesignbasisanalysisistheinitialdrywellaverageairtemperature(Ref.1).Analysesassumeaninitialaveragedrywellairtemperaturewhichboundsthealloweddrywellairtemperatureof135'F.This-limitationensuresthatthesafetyanalysisremainsvalidbymaintainingtheexpectedinitialconditionsandensuresthatthepeakLOCAdrywelltemperaturedoes.notexceedthemaximumallowabletemperatureof340'F(Ref.1).Exceedingthisdesigntemperaturemayresultinthedegradationoftheprimarycontainmentstructureunderaccidentloads.EquipmentinsideprimarycontainmentrequiredtomitigatetheeffectsofaDBAisdesignedtooperateandbecapableofoperatingunderenvironmentalconditionsexpectedfortheaccident.DrywellairtemperaturesatisfiesCriterion2oftheNRCPolicyStatement.(Ref.2)LCOIntheeventofaDBA,withaninitialdrywellaverageairtemperaturelessthanorequaltotheLCOtemperaturelimit,theresultantpeakaccidenttemperatureismaintainedbelowthedrywelldesigntemperature.Asaresult,theabilityofprimarycontainmenttoperformitsdesignfunctionisensured.SUSQUEHANNA-UNIT1B3.6-44(continued)Revision0

DrywellAirTemperatureB3.6.1.5BASES(continued)APPLICABILITYInHODES1,2,and3,aDBAcouldcauseareleaseofradioactivematerialtoprimarycontainment.InNODES4and5.theprobabilityandconsequencesoftheseeventsarereducedduetothepressureandtemperaturelimitationsoftheseHODES.Therefore,maintainingdrywellaverageairtemperaturewithinthelimitisnotrequiredinHODE4or5.ACTIONSA.1WithdrywellaverageairtemperaturenotwithinthelimitoftheLCO,drywellaverageairtemperaturemustberestoredwithin8hours.TheRequiredActionisnecessarytoreturnoperationtowithintheboundsoftheprimarycontainmentanalysis.The8hourCompletionTimeisacceptable,consideringthesensitivityoftheaccidentanalysistovariationsinthisparameter,andprovidessufficienttimetocorrectminorproblems.B.landB.2IfthedrywellaverageairtemperaturecannotberestoredtowithinlimitwfthintherequiredCompletionTime,theplantmustbebroughttoaHODEinwhichtheLCOdoesnotapply.Toachievethisstatus,theplantmustbebroughttoatleastHODE3within12hoursandtoHODE4within36hours.TheallowedCompletionTimesarereasonable,basedonoperatingexperience,toreachtherequiredplantconditionsfromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.SURVEILLANCEREQUIREMENTSSR3.6.1.5.1VerifyingthatthedrywellaverageairtemperatureiswithintheLCOlimitensuresthatoperationremainswithinthelimitsassumedfortheprimarycontainmentanalyses.Drywellairtemperatureismonitoredinthefollowingareas:(continued)SUSQUEHANNA-UNIT183.6-45Revision0 DrywellAirTemperatureB3.6.1.5BASESSURVEILLANCEREQUIREMENTSSR3.6.1.5.1(continued)AreasTopMiddleBottomPedestalElevation7978752'"737'11'r720'zimuth110',295'0',270'50',300'70'5'ndisthearithmeticalaverageofthehighertemperatureataminimumof3oftheabovelistedareas.The24hourFrequencyoftheSRwasdevelopedbasedonoperatingexperiencerelatedtodrywellaverageairtemperaturevariationsandtemperatureinstrumentdriftduringtheapplicableMODESandthelowprobabilityofaDBAoccurringbetweensurveillances.Furthermore.the24hourFrequencyisconsideredadequateinviewofotherindicationsavailableinthecontrolroom,includingalarms,toalerttheoperatortaanabnormaldrywellairtemperaturecondition.REFERENCES1.FSAR,Section6.2.2..FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA-UNIT1B3.6-46Revision0 SuppressionChamber-to-DrywellVacuumBreakersB3.6.1.6B3.6CONTAINMENTSYSTEMSB3.6.1.6SuppressionChamber-to-DrywellVacuumBreakersBASESBACKGROUNDrThefunctionofthesuppression-chamber-to-drywellvacuumbreakersistorelievevacuuminthedrywell.Therearefivepairsofvacuumbreakers.Eachpairconsistsoftwovalvesinseries.Theyareattachedtothecappeddowncomerstoallowairandsteamflowfromthesuppressionchambertothedrywellwhenthedrywellisatanegativeressurewithrespecttothesuppressionchamber.herefore,suppressionchamber-to-drywellvacuumbreakerspreventanexcessivenegativedifferentialpressureacrossthesuppressionchamberdrywellboundary.Eachvacuumbreakerisaselfactuatingvalve,similartoacheckvalve.whichcanberemotelyoperatedfortestingpurposes.Anegativedifferentihlpressureacrossthedrywellflooriscausedbyrapiddepressurizationofthedrywell.Eventsthatcausethisrapiddepressurizationarecoolingcycles,inadvertentdrywellsprayactuation.andsteamcondensationfromspraysorsubcooledwaterrefloodofabreakintheeventofaprimarysystemrupture.Coolingcyclesresultinminorpressuretransientsinthedrywellthatoccurslowlyandarenormallycontrolledbyheatingandventilationequipment.Sprayactuationorspillofsubcooledwateroutofabreakresultsinmoresignificantpressuretransientsandbecomesimportantinsizingtheinternalvacuumbreakers.Intheeventofaprimarysystemrupture,steamcondensationwithinthedrywellresultsinthemostseverepressuretransient.Followingaprimarysystemrupture.nitrogenandnon-combustiblesinthedrywellarepurgedintothesuppressionchamberfreeairspace,leavingthedrywellfullofsteam.Subsequentcondensationofthesteamcanbecausedintwopossibleways,namely,EmergencyCoreCoolingSystemsflowfromarecirculationlinebreak,ordrywellsprayactuationfollowingalossofcoolantaccident(LOCA).Thesetwocasesdeterminethemaximumdepressurizationrateofthedrywell.SUSQUEHANNA-UNIT183.6-47(continued)Revision0 SuppressionChamber-to-DrywellVacuumBreakersB3.6.1.6BASES(continued)APPLICABLESAFETYANALYSESAnalyticalmethodsandassumptionsinvolvingthesuppressionchamber-to-drywellvacuumbreakersarepresentedinReference1aspartoftheaccidentresponseoftheprimarycontainmentsystems.Suppressionchamber-to-drywellvacuumbreakersareprovidedaspartoftheprimarycontainmenttolimitthenegativedifferentialpressureacrossthedrywellandsuppressionchamberfloor.Thesafetyanalysesassumethatthevacuumbreakersareclosedinitiallyandareopenatadifferentialpressureof~0.25and~0.75psid(Ref.1).Additionally.oneofthefivevacuumbreakerpairsisassumedtofailinaclosedposition(Ref.1).Theresultsoftheanalysesshowthat'hedesignpressureisnotexceededevenundertheworstcaseaccidentscenario.DesignBasisAccident(DBA)analysesrequirethevacuumbreakerstobeclosedinitiallyandtoremainclosedandleaktight,withthesuppressionpoolatapositivepressurerelativetothedrywell.Thesuppressionchamber-to-drywellvacuumbreakerssatisfyCriterion3oftheNRCPolicyStatement.(Ref.2)LCOAllsuppressionchamber-to-drywellvacuumbreakersarerequiredtobeOPERABLEandclosed(exceptduringtestingorwhenthevacuumbreakersareperformingtheirintendeddesignfunction).ThevacuumbreakerOPERABILITYrequirementprovidesassurancethatthedrywell-to-suppressionchambernegativedifferentialpressureremainsbe1owthedesignvalue.TherequirementthatthevacuumbreakersbeclosedensuresthatthereisnoexcessivebypassleakageshouldaLOCAoccur.APPLICABILITYlInMODES1,2,and3,excessivenegativepressureinsidethedrywellcouldoccurduetoinadvertentactuationofcontainmentspray.Thevacuumbreakers,therefore.arerequiredtobeOPERABLEinMODES1,2,and3tomitigatetheeffectsofinadvertentactuationofthecontainmentspray.(continued)SUSQUEHANNA-UNIT1B3.6-48Revision0 SuppressionChamber-to-DrywellVacuumBreakersB3.6.1.6BASESAPPLICABILITY(continued)Also,inMODES1,2,and3,aDBAcouldresultinexcessivenegativedifferentialpressureacrossthedrywellfloor,causedbytherapiddepressurizationofthedrywell.Theeventthatresultsinthelimitingrapiddepressurizationofthedrywellistheprimarysystemrupturethatpurgesthedrywellofairandfillsthedrywellfreeairspacewithsteam.Subsequentcondensationofthesteamwouldresultindepressurizationofthedrywell.ThelimitingpressureandtemperatureoftheprimarysystempriortoaDBAoccurinMODES1.2.and3.InMODES4and5;theprobabilityandconsequencesoftheseeventsarereducedbythepressureandtemperaturelimitationsintheseMODES;therefore,maintainingsuppressionchamber-to-drywellvacuumbreakersOPERABLEisnotrequiredinMODE4or5.IACTIONSA.lWithoneofthevacuumbreakerpairsinoperableforopening(e.g.,thevacuumbreakeris.notopenandmaybestuckclosedornotwithinitsopeningsetpointlimit,sothatitwouldnotfuncfionasdesignedduringaneventthatdepressurizedthedrywell),theremainingfourOPERABLEvacuumbreakerpairsarecapableofprovidingthevacuumrelieffunction.However,overallsystemreliabilityisreducedbecauseasinglefailureinoneoftheremainingvacuumbreakerpairscouldresultinanexcessivesuppressionchamber-to-drywelldifferentialpressureduringalimitingplantevent.Therefore,withoneofthefivevacuumbreakerpairsinoperable,72hoursisallowedtorestoretheinoperablevacuumbreakerpairstoOPERABLEstatussothatplantconditionsareconsistentwiththoseassumedforthedesignbasisanalysis.The72hourCompletionTimeisconsideredacceptableduetothelowrobabilityofaneventinwhichtheremainingvacuumreakercapabilitywouldnotbeadequate.B.landB.2Withoneofthetwosuppressionchamber-to-drywellvacuumbreakersinapairnotclosed.theremainingclosedvacuumbreakeriscapableofpreventingdirectcommunication(continued)SUSQUEHANNA-UNIT1B3.6-49Revision0 SuppressionChamber-to-DrywellVacuumBreakersB3.6.1.6BASESACTIONSB.1andB.2(continued)betweenthedrywellandthesuppressionchamberairspace.However,overallsystemreliabilityisreducedbecauseasinglefailureintheoneremainingvacuumbreakercouldresultindirectcommunicationbetweenthedrywellandthesuppressionchamberairspace,and,asaresult,thereisthepotentialforsuppressionchamberoverpressurizationduetothisbypassleakageifaLOCAweretooccur.Therefore.withoneofthetwovacuumbreakersinapairnotclosedandtheotherverifiedclosedwithintwohours,72hoursisallowedtoclosetheopenvacuumbreakersothatplantconditionsareconsistentwiththoseassumedforthedesignbasisanalysis.Ifthevacuumbreakerpositionindicationisnotreliable,analternatemethodofverifyingthatthevacuumbreakerisclosedistoverifythatadifferentialpressureof0.5psidbetweenthedrywellandsuppressionchamberismaintainedfor1hourwithout.make-up.The72hourCompletionTimeisconsideredacceptableduetothelowgrobabilityofaneventinwhichtheremainingvacuumreakercapabilitywouldnotbeadequate.C.1Twoopenvacuumbreakersinavacuumbreakerpairallowscommunicationbetweenthedrywellandsuppressionchamberairspace,and,asaresult,thereisthepotentialforcontainmentoverpressurizationduetothelossoftheressuresuppressionfunction.Therefore,oneopenvacuumreakermustbeclosed.Ashorttimeisallowedtoclosethevacuumbreakerduetothelowprobabilityofaneventthatwouldpressurizeprimarycontainment.Ifvacuumbreakerpositionindicationisnotreliable,analternatemethodofverifyingthatthevacuumbreakersareclosedistoverifythatadifferentialpressureof0.5psidbetweenthesuppressionchamberanddrywellismaintainedfor1hourwithoutmakeup.Therequired2hourCompletionTimeisconsideredadequatetoperformthistest.(continued)SUSQUEHANNA-UNIT1B3.6-50Revision0 SuppressionChamber-to-DrywellVacuumBreakersB3.6.1.6BASESACTIONSD.landD.2Iftheinoperablesuppressionchamber-to-drywellvacuumbreakercannotbeclosedorrestoredtoOPERABLEstatuswithintherequiredCompletionTime.theplantmustbebroughttoaHODEinwhichtheLCOdoesnotapply.Toachievethisstatus,theplantmustbebroughttoatleastHODE3within12hoursandtoHODE4within36hours.TheallowedCompletionTimesarereasonable,basedonoperatingexperience,toreachtherequiredplantconditionsfromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.SURVEILLANCEREQUIREHENTSSR3.6.1.6.1Eachvacuumbreakerisverifiedclosedtoensurethatthispotentiallargebypassleakagepathisnotpresent.ThisSurveillanceisperformedbyobservingthevacuumbreakerpositionindicationorbyverifyingthatadifferentialpressureof0.5psidbetweenthesuppressionchamberanddrywellismaintainedfor1hourwithoutmakeup.The14dayFrequencyisbasedonengineeringjudgment,isconsideredadequateinviewofotherindicationsofvacuumbreakerstatusavailabletooperationspersonnel,andhasbeenshowntobeacceptablethroughoperatingexperience.Thisverificationisalsorequiredwithin2hoursafterdischargeofsteamtothesuppressionchamberfromsafety/reliefvalveoperation.ANoteisaddedtothisSRwhichallowssuppressionchamber-to-drywellvacuumbreakersopenedinconjunctionwiththeperformanceof'SurveillancetonotbeconsideredasfailingthisSR.Theseperiodsofopeningvacuumbreakersarecontrolledbyplantproceduresanddonotrepresentinoperablevacuumbreakers.(continued)SUSQUEHANNA-UNIT1B3.6-51Revision0 SuppressionChamber-to-DrywellVacuumBreakersB3.6.1.6BASESSURVEILLANCEREQUIREMENTS(continued)SR3.6.1.6.2Eachrequiredvacuumbreakermustbecycledtoensurethatitopensadequatelytoperformitsdesignfunctionandreturnstothefullyclosedposition.Thisensuresthatthesafetyanalysisassumptionsarevalid.The31dayFrequencyofthisSRwasdeveloped,basedonInserviceTestingProgramrequirementstoperformvalvetestingatleastonceevery92days.A31dayFrequencywaschosentoprovideadditionalassurancethatthevacuumbreakersareOPERABLE,sincetheyarelocatedinaharshenvironment(thesuppressionchamberairspace).Inaddition,thisfunctionaltestisrequiredwithin12hoursaftereitheradischargeofsteamtothesuppressionchamberfromsafety/reliefvalveoperationorafteranoperationthatcausesanyofthevacuumbreakerstoopen.SR3.6.1.6.3Verificationofthevacuumbreakeropeningsetpointisnecessarytoensurethatthesafetyanalysisassumptionregardingvacuumbreakeropendifferentialpressuresetpointof)0.25and<.525psidisvalid.The24monthFrequencyisbasedonthdneedtoperformthisSurveillanceundertheconditionsthatapplyduringaplantoutageandthepotentialforanunplannedtransientiftheSurveillancewereperformedwiththereactoratpower.Forthisfacility,the24monthFrequencyhasbeenshowntobeacceptable,basedonoperatingexperience,andisfurtherjustifiedbecauseofothersurvei1lancesperformedatshorterFrequenciesthatconveytheproperfunctioningstatusofeachvacuumbreaker.REFERENCES1.FSAR,Section6.2.2.FinalPolicyStatementonTechnicalSpecificationsImprovements.July22,1993(58FR39132).SUSQUEHANNA-UNIT1B3.6-52Revision0 SuppressionPoolAverageTemperatureB3.6.2.1B3.6CONTAINMENTSYSTEMS83.6.2.1SuppressionPoolAverageTemperatureBASESBACKGROUNDTheprimarycontainmentutilizesaMarkIIover/underpressuresuppressionconfigurationconsistingofadrywellandsuppressionchamber.Thedrywellisasteel-linedconcretetruncatedconelocatedabovethesteel-linedconcretecylindricalpressuresuppressionchambercontainingavolumeofwatercalledthesuppressionpool.Thesuppressionpoolisdesignedtoabsorbthedecayheatandsensibleenergyreleasedduringareactorblowdownfromsafety/reliefvalvedischargesorfromDesignBasisAccidents(DBAs).Thesuppressionpoolmustquenchallthesteamreleasedthroughthedowncomerlinesduringalossofcoolantaccident(LOCA).Thisistheessentialmitigativefeatureofapressuresuppressioncontainmentthatensuresthatthepeakcontainmentpressureismaintainedbelowthemaximumallowablepressureforcontainment(53psig)(Ref.1).Thesuppressionpoolmustalsocondensesteamfromsteamexhaustlinesintheturbinedrivensystems(i.e.,theHighPressureCoolantInjectionSystemandReactorCoreIsolationCoolingSystem).Suppressionpoolaveragetemperature(alongwithLCO3.6.2.2,"SuppressionPoolWaterLevel")isakeyindicationof'hecapacityofthesuppressionpooltofulfilltheserequirements.Thetechnicalconcernsthatleadtothedevelopmentofsuppressionpoolaveragetemperaturelimitsareasfollows:a.Completesteamcondensation;b.Primarycontainmentpeakpressureandtemperature;c.Condensationoscillationloads;andd.Chuggingloads.APPLICABLESAFETYANALYSESThepostulatedDBAagainstwhichtheprimarycontainmentperformanceisevaluatedistheentirespectrumofpostulatedpipebreakswithintheprimarycontainment.Inputstothesafetyanalysesincludeinitialsuppressionpoolwatervolumeandsuppressionpooltemperature(continued)SUSQUEHANNA-UNIT1B3.6-53Revision0 SuppressionPoolAverageTemperatureB3.6.2.1BASESAPPLICABLESAFETYANALYSES(continued)(Reference1forLOCAsandReference2forthepooltemperatureanalysesrequiredbyReference3).Aninitialpooltemperatureof90'FisassumedfortheReference1andReference2analyses.Reactorshutdownatapooltemperatureof110'Fandvesseldepressurizationatapooltemperatureof120FareassumedfortheReference2analyses.Thelimitof105'F,atwhichtestingisterminated,isnotusedinthesafetyanalysesbecauseDBAsareassumedtonotinitiateduringunittesting.SuppressionpoolaveragetemperaturesatisfiesCriteria2and3oftheNRCPolicyStatement.(Ref.4)LCOAlimitationonthesuppressionpoolaveragetemperatureisrequiredtoprovideassurancethatthecontainmentconditionsassumedforthesafetyanalysesaremet.ThislimitationsubsequentlyensuresthatpeakprimarycontainmentpressuresandtemperaturesdonotexceedmaximumallowablevaluesduringapostulatedDBAoranytransientresultinginheatupofthesuppressionpool.TheLCOrequirementsare:.-Averagetemperature~90'FwhenanyOPERABLEintermediaterangemonitor(IRH)channelis>25/40divisionsoffullscaleonRange7withIRHsfullyinsertedandnotestingthataddsheattothesuppressionpoolisbeingperformed.Thisrequirementensuresthatlicensingbasesinitialconditionsaremet.b.Averagetemperature~105'Fwhenany'PERABLEIRHchannelis>25/40divisionsof'ullscaleonRange7withIRHsfullyinsertedandtestingthataddsheattothesuppressionpoolisbeingperformed.Thisrequiredvalueensuresthattheunithastestingflexibility,andwasselectedtoprovidemarginbelowthe110'Flimitatwhichreactorshutdownisrequired.Whentestingends,temperaturemustberestoredto<90'Fwithin24hoursaccordingtoRequiredActionA.2.Therefore,thetimeperiodthatthetemperatureis>90'Fisshortenoughnottocauseasignificantincreaseinunitrisk.(continued)SUSQUEHANNA-UNIT1B3.6-54Revision0 SuppressionPoolAverageTemperature83.6.2.1BASESLCO(continued)c.Averagetemperature~110'FwhenallOPERABLEIRNchannelsares25/40divisionsoffullscaleonRange7withIRHsfullyinserted.Thisrequirementensuresthattheunitwillbeshutdownat>110'F.Thepoolisdesignedtoabsorbdecayheatandsensibleheatbutcouldbeheatedbeyonddesignlimitsbythesteamgeneratedifthereactorisnotshutdown.Notethat25/40divisionsoffullscale,onIRNRange7isaconvenientmeasureofwhenthereactorisproducingpoweressentiallyequivalentto1XRTP.Atthispowerlevel,heatinputisapproximatelyequaltonormalsystemheatlosses.APPLICABILITYInNODES1,2,and3,aDBAcouldcausesignificantheatupofthesuppression.pool.InNODES4and5,theprobabilityandconsequencesoftheseeventsarereducedduetotheressureandtemperaturelimitationsintheseNODES.herefore,maintainingsuppressionpoolaveragetemperaturewithinlimitsisnotrequiredinMODE4or5.ACTIONSA.landA.2Withthesuppressionpoolaveragetemperatureabovethespecifiedlimitwhennotperformingtestingthataddsheattothesuppressionpoolandwhenabovethespecifiedpowerindication.theinitialconditionsexceedtheconditionsassumedfortheReferences1and2analyses.However,primarycontainmentcoolingcapabilitystillexists,andtheprimarycontainmentpressuresuppressionfunctionwilloccurattemperatureswellabovethoseassumedforsafetyanalyses.Therefore,continuedoperationisallowedforalimitedtime.The24hourCompletionTimeisadequatetoallowthesuppressionpoolaveragetemperaturetoberestoredbelowthelimit.Additionally,whensuppressionpooltemperatureis)90'F,increasedmonitoringofthesuppressionpooltemperatureisrequiredtoensurethatitremains~110'F.TheonceperhourCompletionTimeisadequatebasedonpastexperience,whichhasshownthatpooltemperatureincreasesrelativelyslowlyexceptwhentestingthataddsheattothesuppressionpoolisbeingperformed.Furthermore.theonceperhourCompletionTimeisconsidered(continued)SUSQUEHANNA-UNIT1B3.6-55Revision0 SuppressionPoolAverageTemperatureB3.6.2.1BASESACTIONSA.1andA.2(continued)adequateinviewofotherindicationsinthecontrolroom,includingalarms,toalerttheoperatortoanabnormalsuppressionpoolaveragetemperaturecondition.B.lIfthesuppressionpoolaveragetemperaturecannotberestoredtowithinlimitswithintherequiredCompletionTime,theplantmustbebroughttoaNODEinwhichtheLCOdoesnotapply.Toachievethisstatus,thepowermustbereducedto<25/40divisionsoffullscaleonRange7forallOPERABLEIRMswithin12hours.The12hourCompletionTimeisreasonable,basedonoperatingexperience,toreducepowerfromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.C.1Suppressionpoolaveragetemperatureisallowedtobe>90'FwhenanyOPERABLEIRHchannelis)25/40divisionsoffullscaleonRange7;andwhentestingthataddsheattothesuppressionpoolisbeingperformed.However,iftemperatureis>105'F,al')testingmustbeimmediatelysuspendedtopreservetheheatabsorptioncapabilityofthesuppressionpool.Withthetestingsuspended,ConditionAisenteredandtheRequiredActionsandassociatedCompletionTimesareapplicable.D.lD.2andD.3Suppressionpoolaveragetemperature>110'Frequiresthatthereactorbeshutdownimmediately.Thisisaccomplishedbyplacingthereactormodeswitchintheshutdownposition.FurthercooldowntoNode4isrequiredatnormalcooldownrates(providedpooltemperatureremains~120'F).Additionally,whensuppressionpooltemperatureis)110'F.increasedmonitoringofpooltemperatureisrequiredtoensurethatitremains~120'F.Theonceper30minuteCompletionTimeisadequate,basedonoperatingexperience.Giventhehighsuppressionpoolaveragetemperatureinthis(continued)SUSQUEHANNA-UNIT1B3.6-56Revision0 SuppressionPoolAverageTemperatureB3.6.2.1BASESACTIONSD.1D.2andD.3(continued)Condition,themonitoringFrequencyisincreasedtotwicethatofConditionA.Furthermore,the30minuteCompletionTimeisconsideredadequateinviewofotherindicationsavailableinthecontrolroom,includingalarms,toalerttheoperatortoanabnormalsuppressionpoolaveragetemperaturecondition.E.1Ifsuppressionpoolaveragetemperaturecannotbemaintainedats120'F,theplantmustbebroughttoaMODEinwhichtheLCOdoesnotapply.Toachievethisstatus.thereactorpressuremustbereducedto<200psigwithin12hours,andtheplantmustbebroughttoatleastMODE4within36hoursfromthetimetheplantenteredConditionD.TheallowedCompletionTimesarereasonable,basedonoperatingexperience,toreachtherequiredplantconditionsfromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.Continuedadditionofheattothesuppressionpoolwithsuppressionpo6ltemperature>120'Fcouldresultinexceedingthedesignbasismaximumallowablevaluesforprimarycontainmenttemperatureorpressure.Furthermore,ifablowdownweretooccurwhenthetemperaturewas>120'F.themaximumallowablebulkandlocaltemperaturescouldbeexceededveryquickly.SURVEILLANCEREQUIREMENTSSR3.6.2.1.1Thesuppressionpoolaveragetemperatureisregularlymonitoredtoensurethattherequiredlimitsaresatisfied.TheaveragetemperatureisdeterminedbytakinganarithmeticaverageofatleasteightOPERABLEsuppressionoolwatertemperaturechannelscoveringatleastsixocations.Alternately,theprocesscomputerbulksuppressionpooltemperaturecalculationsmaybeusedtodeterminesuppressionpooltemperature.Ifnotransientsortestingthataddheattothecontainmentareinprogress,theprocesscomputerbulktemperaturecalculationalgorithmmaybeperformedmanually.The24hourFrequencyhasbeen(continued)SUSQUEHANNA-UNIT1B3.6-57Revision0 SuppressionPoolAverageTemperatureB3.6.2.1BASESSURVEILLANCEREQUIREMENTSSR3.6.2.1.1(continued)shown.basedonoperatingexperience,tobeacceptable.Whenheatisbeingaddedtothesuppressionpoolbytesting,however,itisnecessarytomonitorsuppressionpooltemperaturemorefrequently.The5minuteFrequencyduringtestingisjustifiedbytheratesatwhichtestswillheatupthesuppressionpool,hasbeenshowntobeacceptablebasedonoperatingexperience,andprovidesassurancethatallowablepooltemperaturesarenotexceeded.TheFrequenciesarefurtherjustifiedinviewofotherindicationsavailableinthecontrolroom,includingalarms,toalerttheoperatortoanabnormalsuppressionpool.averagetemperaturecondition.REFERENCES1.FSAR,Section6.2.2.FSAR,Section15.2.3.NUREG-0783.4.FinalPolicyStatementonTechnicalSpecificationsImprovements;July22,1993(58FR39132).SUSQUEHANNA-UNIT1B3.6-58Revision0 SuppressionPoolWaterLevelB3.6.2.283.6CONTAINMENTSYSTEMSB3.6.2.2SuppressionPoolWaterLevelBASESBACKGROUNDTheprimarycontainmentutilizesaMarkIIover/underpressuresuppressionconfigurationconsistingofadrywellandsuppressionchamber.Thedrywellisasteel-linedconcretetruncatedconelocatedabovethesteel-linedconcretecylindricalpressuresuppressionchambercontainingavolumeofwatercalledthesuppressionpool.Thesuppressionpoolisdesignedtoabsorbtheenergyassociatedwithdecayheatandsensibleheatreleasedduringareactorblowdownfromsafety/reliefvalve(S/RV)dischargesorfromaDesignBasisAccident(DBA).Thesuppressionpoolmust'enchallthesteamreleasedthroughthedowncomerlinesuringalossofcoolantaccident(LOCA).Thisistheessentialmitigativefeatureofapressuresuppressioncontainment,whichensuresthatthepeakcontainmentpressureismaintainedbelowthemaximumallowablepressureforcontainment(53psig).Thesuppressionpoolmustalsocondensesteamfromthesteamexhaustlinesintheturbinedrivensystems(i.e.,HighPressureCoolantInjection(HPCI)SystemandReactorCoreIsolationCooling(RCIC)System)andprovidesthemainemergencywatersupplysourceforthereactorvessel.Thesuppressionpoolvolumerangesbetween122,410ft'tthelowwaterlevellimitof22ft0inchesand133,540ft'tthehighwaterlevellimitof24ft0inches.Ifthesuppressionpoolwaterlevelistoolow,aninsufficientamountofwaterwouldbeavailabletoadequatelycondensethesteamfromtheS/RVquenchers,downcomers.orHPCIandRCICturbineexhaustlines.LowsuppressionpoolwaterlevelcouldalsoresultinaninadequateemergencymakeupwatersourcetotheEmergencyCoreCoolingSystem.Thelowervolumewouldalsoabsorblesssteamenergybeforeheatingupexcessively.Therefore,aminimumsuppressionpoolwaterlevelisspecified.Ifthesuppressionpoolwaterlevelistoohigh,itcouldresultinexcessiveclearingloadsfromS/RVdischargesandexcessivepoolswellloadsduringaDBALOCA.Therefore,amaximumpoolwaterlevelisspecified.ThisLCOspecifiesanacceptablerangetopreventthesuppressionpoolwaterlevelfrombeingeithertoohighortoolow.SUSQUEHANNA-UNITIB3.6-59(continued)Revision0 SuppressionPoolWaterLevelB3.6.2.2BASES(continued)APPLICABLESAFETYANALYSESInitialsuppressionpoolwaterlevelaffectssuppressionpooltemperatureresponsecalculations,calculateddrywellpressureduringventclearingforaDBA,calculatedpoolswellloadsforaDBALOCA,andcalculatedloadsduetoS/RVdischarges.SuppressionpoolwaterlevelmustbemaintainedwithinthelimitsspecifiedsothatthesafetyanalysisofReference1remainsvalid.SuppressionpoolwaterlevelsatisfiesCriteria2and3oftheNRCPolicyStatement.(Ref.2)LCOAlimitthatsuppressionpoolwaterlevelbe>22ft0inchesand~24ft0inchesisrequiredtoensurethattheprimarycontainmentconditionsassumedforthesafetyanalysesaremet.Eitherthehighorlowwaterlevellimitswereusedinthesafetyanalyses,dependinguponwhichismoreconservativeforaparticularcalculation.APPLICABILITYInHODES1,2,and3,aDBAwouldcausesignificantloadsontheprimarycontainment.InHODES4and5,theprobabilityandconsequencesoftheseeventsarereducedduetothepressureandtemperaturelimitationsintheseHODES.TherequirementsformaintainingsuppressionpoolwaterlevelwithinlimitsinHODE4or5isaddressedinLCO3.5.2,"ECCS-Shutdown."ACTIONSA.1Withsuppressionpoolwaterleveloutsidethelimits,theconditionsassumedforthesafetyanalysesarenotmet.Ifwaterlevelisbelowtheminimumlevel,thepressuresuppressionfunctionstillexistsaslongasdowncomersarecovered,HPCIandRCICturbineexhaustsarecovered.andS/RVquenchersarecovered.Ifsuppressionpoolwaterlevelisabovethemaximumlevel,protectionagainstoverpressurizationstillexistsduetothemargininthepeakcontainmentpressureanalysisandthecapabilityoftheDrywellSpraySystem.Therefore,continuedoperationfora(continued)SUSQUEHANNA-UNIT183.6-60Revision0 SuppressionPoolWaterLevel83.6.2.2BASESACTIONSA.l(continued)limitedtimeisallowed.The2hourCompletionTimeissufficienttorestoresuppressionpoolwaterleveltowithinlimits.Also,ittakesintoaccountthelowprobabilityofaneventimpactingthesuppressionpoolwaterleveloccurringduringthisinterval.B.1and8.2IfsuppressionpoolwaterlevelcannotberestoredtowithinlimitswithintherequiredCompletionTime,theplantmustbebroughttoaMODEinwhichtheLCOdoesnotapply.Toachievethisstatus,theplantmustbebroughttoatleastMODE3within12hoursandtoMODE4within36hours.TheallowedCompletionTimesarereasonable.basedonoperatingexperience,toreachtherequiredplantconditionsfromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.SURVEILLANCEREQUIREMENTS,SR3.6.2.2.1Verificationofthesuppressionpoolwaterlevelbyatleastonewaterlevelindicatoristoensurethattherequiredlimitsaresatisfied.The24hourFrequencyofthisSRwasdevelopedconsideringoperatingexperiencerelatedtotrendingvariationsinsuppressionpoolwaterlevelandwaterlevelinstrumentdriftduringtheapplicableMODESandtoassessingtheproximitytothespecifiedLCOlevellimits.Furthermore,the24hourFrequencyisconsideredadequateinviewofotherindicationsavailableinthecontrolroom,includingalarms,toalerttheoperatortoanabnormalsuppressionpoolwaterlevelcondition.REFERENCES1.FSAR,Section6.2.2.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA-UNIT183.6-61Revision0 RHRSuppressionPoolCoolingB3.6.2.3B3.6CONTAINMENTSYSTEMSB3.6.2.3ResidualHeatRemoval(RHR)SuppressionPoolCoolingBASESBACKGROUNDFollowingaDesignBasisAccident(DBA),theRHRSuppressionPoolCoolingSystemremovesheatfromthesuppressionpool.Thesuppressionpoolisdesignedtoabsorbthesuddeninputofheatfromtheprimarysystem.Inthelongterm,thepoolcontinuestoabsorbresidualheatgeneratedbyfuelinthereactorcore.Somemeansmustbeprovidedtoremoveheatfromthesuppressionpoolsothatthetemperatureinsidetheprimarycontainmentremainswithindesignlimits.ThisfunctionisprovidedbytworedundantRHRsuppressionpoolcoolingsubsystems.ThepurposeofthisLCOistoensurethatbothsubsystemsareOPERABLEinapplicableMODES.EachRHRsubsystemcontainseitheroneofthetwoRHRpumpsandaflowpathcapableofrecirculatingwaterfromthesuppressionchamberthroughanRHRheatexchangerandismanuallyinitiatedandindependentlycontrolled.Thetwosubsystemsperformthesuppressionpoolcoolingfunctionbycirculatingwate'r.fromthesuppressionpoolthroughtheRHR-heatexchangersandreturningittothesuppressionpool.RHRservicewafer,circulatingthroughthetubeside-ofthe=.heatexchangers~exchangesheatwiththesuppressionpool..wateranddischargesthisheattotheexternalheatsink.TheheatremovalcapabilityofoneRHRpumpinonesubsystem.issufficienttomeettheoverallDBApoolcoolingrequirementforlossofcoolantaccidents(LOCAs)andtransienteventssuchasaturbinetriporstuckopensafety/reliefvalve(S/RV).S/RVleakageandHighPressureCoolantInjectionandReactorCoreIsolationCoolingSystemtestingincreasesuppressionpooltemperaturemoreslowly.TheRHRSuppressionPoolCoolingSystemisalsousedtolowerthesuppressionpoolwaterbulktemperaturefollowingsuchevents.APPLICABLEReference1containstheresultsofanalysesusedtopredictSAFETYANALYSESprimarycontainmentpressureandtemperaturefollowinglargeandsmallbreakLOCAs.TheintentoftheanalysesistodemonstratethattheheatremovalcapacityoftheRHR(continued)SUSQUEHANNA-UNIT1B3.6-62Revision0 RHRSuppressionPoolCoolingB3.6.2.3BASESAPPLICABLESAFETYANALYSES(continued)SuppressionPoolCoolingSystemisadequatetomaintaintheprimarycontainmentconditionswithindesignlimits.Thesuppressionpooltemperatureiscalculatedtoremainbelowthedesignlimit.TheRHRSuppressionPoolCoolingSystemsatisfiesCriterion3oftheNRCPolicyStatement.(Ref.3)LCODuringaDBA,aminimumofoneRHRsuppressionpoolcoolingsubsystemisrequiredtomaintaintheprimarycontainmenteakpressureandtemperaturebelowdesignlimits(Ref.1).oensurethattheserequirementsaremet,twoRHRsuppressionpoolcoolingsubsystemsmustbeOPERABLE.Therefore,intheeventofanaccident,atleastonesubsystemisOPERABLEassumingtheworstcasesingleactive'ailure.AnRHRsuppressionpoolcoolingsubsystemisOPERABLEwhenoneofthepumps,theheatexchanger,andassociatedpiping,valves,instrumentation,andcontrolsareOPERABLE.APPLICABILITYInMODES1,2,and3,aDBAcouldcauseareleaseofradioactivematerialtoprimarycontainmentandcauseaheatupandpressurizationofprimarycontainment.InMODES4and5,theprobabilityandconsequencesoftheseeventsarereducedduetothepressureandtemperature'imitationsintheseMODES.Therefore,theRHRSuppressionPoolCoolingSystemisnotrequiredtobeOPERABLEinMODE4or5.ACTIONSA.1WithoneRHRsuppressionpoolcoolingsubsysteminoperable.theinoperablesubsystemmustberestoredtoOPERABLEstatuswithin7days.InthisCondition,theremainingRHRsuppressionpoolcoolingsubsystemisadequatetoperformtheprimarycontainmentcoolingfunction.However.theoverallreliabilityisreducedbecauseasinglefailureintheOPERABLEsubsystemcouldresultinlossofprimarycontainmentcoolingcapability.The7dayComp1etionTimeisacceptableinlightoftheredundantRHRsuppression(continued)SUSQUEHANNA-UNIT1B3.6-63Revision0 RHRSuppressionPoolCoolingB3.6.2.3BASESACTIONSA.1(continued)poolcoolingcapabilitiesaffordedbytheOPERABLEsubsystemandthelowprobabilityofaDBAoccurringduringthisperiod.B.landB.2IftheRequiredActionandassociatedCompletionTimeofConditionAcannotbemetwithintherequiredCompletionTimeoriftwoRHRsuppressionpoolcoolingsubsystemsareinoperable,theplantmustbebroughttoaMODEinwhichtheLCOdoesnotapply.Toachievethisstatus,theplantmustbebroughttoatleastMODE3within12hoursandtoMODE4within36hours.TheallowedCompletionTimesarereasonable,basedonoperatingexperience,toreachtherequiredplantconditionsfromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.SURVEILLANCEREQUIREMENTSSR3.6.2.3.1Verifyingthecorrectalignmentformanual,poweroperated.andautomaticvalvesintheRHRsuppressionpoolcoolingmodeflowpathprovidesassurancethattheproperflowpathexistsf'rsystemoperation.ThisSRdoesnotapplytovalvesthatarelocked.sealed,orotherwisesecuredinpositionsincethesevalveswereverifiedtobeinthecorrectpositionpriortolocking,sealing,orsecuring.Avalveisalsoallowedtobeinthenonaccidentpositionprovideditcanbealignedtotheaccidentpositionwithinthetimeassumedintheaccidentanalysis.ThisisacceptablesincetheRHRsuppressionpoolcoolingmodeismanuallyinitiated.ThisSRdoesnotrequireanytestingorvalvemanipulation;rather,itinvolvesverificationthatthosevalvescapableofbeingmispositionedareinthecorrectposition.ThisSRdoesnotapplytovalvesthatcannotbeinadvertentlymisaligned,suchascheckvalves.(continued)SUSQUEHANNA-UNIT1B3.6-64Revision0 RHRSuppressionPoolCoolingB3.6.2.3BASESSURVEILLANCEREQUIREMENTSSR3.6.2.3.1(continued)TheFrequencyof31daysisjustifiedbecausethevalvesareoperatedunderproceduralcontrol,impropervalvepositionwouldaffectonlyasinglesubsystem,theprobabilityofaneventrequiringinitiationofthesystemislow,andthesubsystemisamanuallyinitiatedsystem.ThisFrequencyhasbeenshowntobeacceptablebasedonoperatingexperience.SR3.6.2.3.2VerifyingthateachRHRpumpdevelopsaflowrate>9750gpmwhileoperatinginthesuppressionpoolcoolingmodewithflowthroughtheassociatedheatexchangerensuresthatpumpperformancehasnotdegradedduringthecycle.FlowisanormaltestofcentrifugalpumpperformancerequiredbyASMECode,SectionXI(Ref.2).Thistestconfirmsonepointonthepumpdesigncurve,andtheresultsareindicativeofoverallperformance.SuchinserviceinspectionsconfirmcomponentOPERABILITY,trendperformance,anddetectincipientfailuresbyindicatingabnormalperformance.TheFrequencyofthisSRisinaccordancewiththeInserviceTestingProgiarii:REFERENCES1.FSAR.Section6.2.2.ASME,BoilerandPressureVesselCode;SectionXI.3.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA-UNIT1B3.6-65Revision0 RHRSuppressionPoolSprayB3.6.2.483.6CONTAINMENTSYSTEMSB3.6.2.4ResidualHeatRemoval(RHR)SuppressionPoolSprayBASESBACKGROUNDFollowingaDesignBasisAccident(DBA).theRHRSuppressionPoolSpraySystemremovesheatfromthesuppressionchamberairspace.ThesuppressionpoolisdesignedtoabsorbthesuddeninputofheatfromtheprimarysystemfromaDBAorarapiddepressurizationofthereactorpressurevessel(RPV)throughsafety/reliefvalves.Theheatadditiontothesuppressionpoolresultsinincreasedsteaminthesuppressionchamber,whichincreasesprimarycontainmentpressure.SteamblowdownfromaDBAcanalsobypassthesuppressionpoolandendupinthesuppressionchamberairspace.Somemeansmustbeprovidedtoremoveheatfromthesuppressionchambersothatthepressureandtemperatureinsideprimarycontainmentremainwithinanalyzeddesignlimits.ThisfunctionisprovidedbytworedundantRHRsuppressionpoolspraysubsystems.ThepurposeofthisLCOistoensurethatbothsubsystemsareOPERABLEinapplicableNODES.EachofthetwoRHRsuppressionpoolspraysubsysi:erne==includeseither"oneofthetwoRHRpumpsand.-a.-flow=path="capableofrecirculatingwaterfromthe-suppression=chamber-'==throughtheRWRheatexchanger,andismanual-lyinitiated-.andindependentlycontrolled.Thetwo-subsystems;-per,form=..thesuppressionpoolsprayfunctionby-circulating=water.-fromthesuppressionpoolthroughthe--RHR-heat-exchangers~.,andreturningittothesuppressionpoolspray-spargeis-.Thespargersonlyaccommodateasmallportion-of-.the<otal;RHRpumpflow;theremainderoftheflownormallyreturns:tothesuppressionpoolthroughthesuppressionpoolcoolingreturnline.Thus,bothsuppressionpoolcoolingandsuppressionpoolsprayfunctionsarenormallyperformedwhentheSuppressionPoolSpraySystemisinitiated.RHRservicewater,circulatingthroughthetubesideoftheheatexchangers,exchangesheatwiththesuppressionpoolwateranddischargesthisheattotheexternalheatsink.EitherRHRsuppressionpoolspraysubsystemissufficienttocondensethesteamfromsmallbypassleaksfromthedrywelltothesuppressionchamberairspaceduringthepostulatedDBA.SUSQUEHANNA-UNIT183.6-66(continued)Revision0 RHRSuppressionPoolSprayB3.6.2.4BASES(continued)APPLICABLESAFETYANALYSESReference1containstheresultsofanalysesusedtopredictprimarycontainmentpressureandtemperaturefollowinglargeandsmallbreaklossofcoolantaccidents.TheintentoftheanalysesistodemonstratethatthepressurereductioncapacityoftheRHRSuppressionPoolSpraySystemisadequatetomaintaintheprimarycontainmentconditionswithindesignlimits.Thetimehistoryforprimarycontainmentpressureiscalculatedtodemonstratethatthemaximumpressureremainsbelowthedesignlimit.TheRHRSuppressionPoolSpraySystemsatisfiesCriterion3oftheNRCPolicyStatement.(Ref.2)LCOIntheeventofaDBA,aminimumofoneRHRsuppressionpoolspraysubsystemisrequiredtomitigatepotentialbypassleakagepathsandmaintaintheprimarycontainmentpeakpressurebelowthedesignlimits(Ref.1).Toensurethattheserequirementsaremet.twoRHRsuppressionpoolspraysubsystemsmustbeOPERABLE.Therefore,intheeventofanaccident.atleastonesubsystemisOPERABLEassumingtheworstcasesingleactivefailure.AnRHRsuppressionpoolspraysubsystemisOPERABLEwhenoneofthepumps.theheatexchanger,andassociatedpiping,valves,instrumentation,andcontrolsareOPERABLE.APPLICABILITYInMODES1,2,and3,aDBAcouldcausepressurizationofprimarycontainment.InMODES4and5.theprobabilityandconsequencesoftheseeventsarereducedduetothepressureandtemperaturelimitationsintheseMODES.Therefore,maintainingRHRsuppressionpoolspraysubsystemsOPERABLEisnotrequiredinMODE4or5.ACTIONSA.1WithoneRHRsuppressionpoolspraysubsysteminoperable,theinoperablesubsystemmustberestoredtoOPERABLEstatuswithin7days.InthisCondition,theremainingOPERABLERHRsuppressionpoolspraysubsystemisadequatetoperformtheprimarycontainmentbypassleakagemitigationfunction.(continued)SUSQUEHANNA-UNIT1B3.6-67Revision0 RHRSuppressionPoolSprayB3.6.2.4BASESACTIONSA.1(continued)However,theoverallreliabilityisreducedbecauseasinglefailureintheOPERABLEsubsystemcouldresultinreducedprimarycontainmentbypassmitigationcapability.The7dayCompletionTimewaschoseninlightoftheredundantRHRsuppressionpoolspraycapabilitiesaffordedbytheOPERABLEsubsystemandthelowprobabilityofaDBAoccurringduringthisperiod.B.lWithbothRHRsuppressionpoolspraysubsystemsinoperable,.atleastonesubsystemmustberestoredtoOPERABLEstatuswithin8hours.InthisCondition,thereisasubstantiallossoftheprimarycontainmentbypassleakagemitigationfunction.The8hourCompletionTimeisbasedonthislossoffunctionandisconsideredacceptableduetothelowprobabilityofaDBAandalternatemeanstoremoveheatfromprimarycontainmentareavailable.C.landC.2IftheinoperableRHRsuppressionpoolspraysubsystemcannotberestoredtoOPERABLEstatuswithintheassociatedCompletionTime,theplantmustbebroughttoaMODEinwhichtheLCOdoesnotapply:Toachievethisstatus,theplantmustbebroughttoatleastMODE3within12hoursandMODE4within36hours.TheallowedCompletionTimesarereasonable,basedonoperatingexperience,toreachtherequiredplantconditionsfromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.SURVEILLANCEREQUIREMENTSSR3.6.2.4.1Verifyingthecorrectalignmentformanual,poweroperated,andautomaticvalvesintheRHRsuppressionpoolspraymodeflowpathprovidesassurancethattheproperflowpathswillexistforsystemoperation.ThisSRdoesnotapplytovalvesthatarelocked,sealed.orotherwi'sesecuredinpositionsincethesevalveswereverifiedtobeinthecorrectpositionpriortolocking,sealing,orsecuring.A(continued)SUSQUEHANNA-UNIT1B3.6-68Revision0 RHRSuppressionPoolSprayB3.6.2.4BASESSURVEILLANCEREQUIREMENTSSR3.6.2.4.1(continued)valveisalsoallowedtobeinthenonaccidentpositionprovideditcanbealignedtotheaccidentpositionwithinthetimeassumedintheaccidentanalysis.ThisisacceptablesincetheRHRsuppressionpoolcoolingmodeismanuallyinitiated.ThisSRdoesnotrequireanytestingorvalvemanipulation;rather,itinvolvesverificationthatthosevalvescapableofbeingmispositionedareinthecorrectposition.ThisSRdoesnotapplytovalvesthatcannotbeinadvertentlymisaligned.suchascheckvalves.kTheFrequencyof31daysisjustifiedbecausethevalvesareoperatedunderproceduralcontrol,impropervalvepositionwouldaffectonlyasinglesubsystem,theprobabilityofaneventrequiringinitiationofthesystemislow,andthesubsystemisamanuallyinitiatedsystem.ThisFrequencyhasbeenshowntobeacceptablebasedonoperatingexperience.SR3.6.2.4.2ThisSurveillanceisperformedevery10yearstoverifythatthespraynozzTe5arenotobstructedandthatflowwillbeprovidedwhenrequired.The10yearFrequencyisadequatetodetectdegradationinperformanceduetothepassivenozzledesignanditsnormallydrystateandhasbeenshowntobeacceptablethroughoperatingexperience.REFERENCES1.FSAR,Section6.2.2.FinalPolicyStatementon.TechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA-UNIT1B3.6-69Revision0 PrimaryContainmentHydrogenRecombinersB3.6.3.183.6CONTAINMENTSYSTEMSB3.6.3.1PrimaryContainmentHydrogenRecombinersBASESBACKGROUNDTheprimarycontainmenthydrogenrecombinereliminatesthepotentialbreachofprimarycontainmentduetoahydrogenoxygenreactionandispartofcombustiblegascontrolrequiredby10CFR50.44,"StandardsforCombustibleGasControlSystemsinLight-Mater-CooledReactors"(Ref.1),andGDC41,"ContainmentAtmosphereCleanup"(Ref.2).Theprimarycontainmenthydrogenrecombinerisrequiredtoreducethehydrogenconcentrationintheprimarycontainmentfollowingalossofcoolantaccident(LOCA).Theprimarycontainmenthydrogenrecombineaccomplishesthisbyrecombininghydrogenandoxygentoformwatervapor.Thevaporremainsintheprimarycontainment,thuse1iminatinganydischargetotheenvironment.Theprimarycontainmenthydrogenrecombinerismanuallyinitiatedsinceflammabilitylimitswouldnotbereachedunti1severaldaysafteraDesignBasisAccident(DBA).Theprimarycontainmenthydrogenrecombinerfunctionstomaintainthehydrogengas.concentrationwithinthecontainmentatorbelow.the:flammabilitylimitof4.0volumepercent(v/o)following'apostulatedLOCA.Two100percentcapacityhydrogenrecombinersystemsarelocatedinthedrywellandsuppression-chambertomeetthesinglefailurecriterion.Eachhydrogen-.recombinersystemhastwohydrogenrecombinerunits,onelocatedinthedrywellandonelocatedinthesuppressionchamber-;-foratotaloffourhydrogenrecombinersperunit.Thehydrogenrecombinerisanaturalconvection,flameless,thermalreactor-typehydrogen/oxygenrecombiner.Therecombinerheatsacontinuousstreamofcontainmentatmospheretoatemperaturesufficientforrecombinationofthehydrogenandoxygentoformwater.Therecombinationunitconsistsofaninletpreheatersection,aheater-recombinationsection,andamixingchamber.Theairisdrawnintotheunitbynaturalconvectionviatheinletlouversandpassesthroughthepreheatersection,whichconsistsofashroudplacedaroundthecentralheaterstotakeadvantageofheatconduction(continued)SUSQUEHANNA-UNIT1B3.6-70Revision0 PrimaryContainmentHydrogenRecombinesB3.6.3.1BASESBACKGROUND(continued)throughthewalls.Inthisarea.thetemperatureoftheinletairisraised.Thisaccomplishesthedualfunctionof'ncreasingthesystemefficiencyandofevaporatinganymoisturedropletswhichmaybeentrainedintheair.Thewarmedairthenpassesthroughthefloworificewhichhasbeenspecificallysizedtoregulatetheairflowthroughtheunit.Afterpassingthroughtheorificeplate.theairflowsverticallyupwardthroughtheheatersection,whereitstemperatureisraisedtotherangeof1150-1400'F,causingrecombinationofhydrogenandoxygentooccur.Therecombinationtemperatureisapproximately1135'F.Theheatersectionconsistsoffivebanksofelectricheatersstackedvertically.Eachbankcontains60individualU-typeheatingelements.APPLICABLESAFETYANALYSESTheprimarycontainmenthydrogenrecombinerprovidesthecapabilityofcontrollingthebulkhydrogenconcentrationinprimary.containmenttolessthanthelowerflammableconcentrationof4.0v/ofollowingaDBA.Thiscontrolwouldpreventaprimarycontainmentwidehydrogenburn,thusensuring'hatpressureandtemperatureconditionsassumedintheanalysisarenotexceeded.ThelimitingDBArelativetohydrogengenerationisa,LOCA.HydrogenmayaccumulateinprimarycontainmentfollowingaLOCAasaresultof:a.Ametalsteamreactionbetweenthezirconiumfuelrodcladdingandthereactorcoolant-;orb.RadiolyticdecompositionofwaterintheReactorCoolantSystem.Toevaluatethepotentialf'rhydrogenaccumulationinprimarycontainmentfollowingaLOCA,thehydrogengenerationiscalculatedasafunctionoftimefollowingtheinitiationoftheaccident.AssumptionsrecommendedbyReference3areusedtomaximizetheamountofhydrogencalculated.(continued)SUSQUEHANNA-UNIT1B3.6-71Revision0 PrimaryContainmentHydrogenRecombinersB3.6.3.1BASESAPPLICABLESAFETYANALYSIS(continued)Thecalculationconfirmsthatwhenthemitigatingsystemsareactuatedinaccordancewithemergencyprocedures,thepeakhydrogenconcentrationintheprimarycontainmentis(4.0v/o(Ref.4).TheprimarycontainmenthydrogenrecombinerssatisfyCriterion3oftheNRCPolicyStatement.(Ref.5)LCO-TwodrywellandtwosuppressionchamberhydrogenrecombinersmustbeOPERABLE:Thisensuresoperationofatleastonedrywellandonesuppressionchamberhydrogenrecombinersubsystemintheeventofaworstcasesingleactivefailure.Operationwithatleastonedrywellandonesuppressionchamberhydrogenrecombinersubsystemensuresthatthepost-LOCAhydrogenconcentrationcanbepreventedfromexceedingtheflammabilitylimit.APPLICABILITYInMODES1and2,thetwodrywellandtwosuppressionchamberhydrogen'recombinersarerequiredtocontrolthehydrogenconcentrationwithinprimarycontainmentbelowitsflammabilitylimitof4.0v/ofollowingaLOCA,assumingaworstcasesinglefailure.InMODE3,boththehydrogenproductionrateandthetotalhydrogenproducedafteraLOCAwouldbelessthanthatcalculatedfortheDBALOCA.Also,becauseofthelimitedtimeinthisMODE,theprobabilityofanaccidentrequiringtheprimarycontainmenthydrogenrecombinerislow.Therefore.theprimarycontainmenthydrogenrecombinerisnotrequiredinMODE3.InMODES4and5.theprobabilityandconsequencesofaLOCAarelowduetothepressureandtemperaturelimitationsintheseMODES.Therefore,theprimarycontainmenthydrogenrecombinersarenotrequiredintheseMODES.SUSQUEHANNA-UNIT1B3.6-72(continued)Revision0 PrimaryContainmentHydrogenRecombinesB3.6.3.1BASES(continued)ACTIONSA.1Withonedrywelland/oronesuppressionchamberhydrogenrecombinerinoperable,theinoperablerecombinersmustberestoredtoOPERABLEstat'uswithin30days.InthisCondition,theremainingOPERABLErecombinersareadequatetoperformthehydrogencontrolfunction.However,theoverallreliabilityisreducedbecauseasinglefailure.intheOPERABLErecombinercouldresultinreducedhydrogencontrolcapability.The30dayCompletionTimeisbasedonthelowprobabilityoftheoccurrenceofaLOCAthatwouldgeneratehydrogeninamountscapableofexceedingtheflammabilitylimit,theamountoftimeavailableaftertheeventforoperatoractiontopreventexceedingthislimit,andthelowprobabilityoffailureoftheOPERABLEprimarycontainmenthydrogenrecombiner.RequiredActionA.1hasbeenmodifiedbyaNoteindicatingthattheprovisionsofLCO3.0.4arenotapplicable.Asaresult.aNODEchangeisallowedwhenonedrywellrecombinerand/oronesuppressionchamberrecombinerisinoperable.ThisallowanceisprovidedbecauseofthelowprobabilityoftheoccurrenceofaLOCAthatwouldgeneratehydrogeninamountscapableofexceedingtheflammabilitylimit,thelowprobabilityofthefailureoftheOPERABLEsubsystem,andtheamountoftimeavailableafterapostulatedLOCAforoperatoractiontopreventexceedingtheflammabilitylimit.B.landB.2Withtwodrywell.ortwosuppressionchamber,or3ormorehydrogenrecombinersinoperable,theabilitytoperformthehydrogencontrolfunctionviaalternatecapabilitiesmustbeverifiedbyadministrativemeanswithin1hour.Thealternatehydrogencontrolcapabilitiesareprovidedbythecontainmentnitrogenpurgesystem.The1hourCompletionTimeallowsareasonableperiodoftimetoverifythatalossofhydrogencontrolfunctiondoesnotexist.Inaddition,thealternatehydrogencontrolsystemcapabilitymustbeverifiedonceper12hoursthereaftertoensureitscontinuedavailability.Boththeinitialverificationandallsubsequentverificationsmaybeperformedasanadministrativecheckbyexamininglogsorotherinformationtodeterminetheavailabilityofthealternatehydrogen(continued)SUSQUEHANNA-UNIT1B3.6-73Revision0 PrimaryContainmentHydrogenRecombiners83.6.3.1BASESACTIONSB.1andB.2(continued)controlsystem.ItdoesnotmeantoperformtheSurveillancesneededtodemonstrateOPERABILITYofthealternatehydrogencontrolsystem.Iftheabilitytoperformthehydrogencontrolfunctionismaintained,continuedoperationispermittedwithtwodrywelland/ortwosuppressionchamberhydrogenrecombinersinoperableforupto7days.Sevendaysisareasonabletimetoallowtwodrywelland/ortwosuppressionchamberhydrogenrecombinerstobeinoperablebecausethehydrogencontrolfunctionismaintainedandbecauseofthelowprobabilityoftheoccurrenceofaLOCAthatwouldgeneratehydrogeninamountscapableofexceedingtheflammabilitylimit.C.1IfanyRequiredActionandassociatedCompletionTimecannotbemet,theplantmustbebroughttoaHODEinwhichtheLCOdoesnotapply.Toachievethisstatus,theplantmustbebroughttoatleastHODE3within12hours.TheallowedCompletionTimeof12hoursisreasonable,basedonoperatingexperience,toreachHODE3fromfullpowerconditionsinan'orderlymannerandwithoutchallengingplantsystems.SURVEILLANCEREQUIREHENTSSR3..6.3.1.1PerformanceofasystemfunctionaltestforeachprimarycontainmenthydrogenrecombinerensuresthattherecombinersareOPERABLEandcanattainandsustainthetemperaturenecessaryforhydrogenrecombination.Inparticular,thisSRverifiesthattheminimumheatersheathtemperatureismaintained)1150'Fand(1400'Ffor~4hourstochecktheabilityoftherecombinertofunctionproperly(andtomakesurethatsignificantheaterelementsarenotburnedout).OperatingexperiencehasshownthatthesecomponentsusuallypasstheSurveillancewhenperformedatthe24monthFrequency.Therefore,theFrequencywasconcludedtobeacceptablefromareliabilitystandpoint.(continued)SUSQUEHANNA-UNIT1B3.6-74Revision0

PrimaryContainmentHydrogenRecombinersB3.6.3.1BASESSURVEILLANCEREQUIREMENTS(continued)SR3.6.3.1.'2ThisSRensurestherearenophysicalproblemsthatcouldaffectrecombineroperation.Sincetherecombinersaremechanicallypassivetheyaresubjecttoonlyminimalmechanicalfailure.Theonlycrediblefailuresinvolvelossofpowerorblockageoftheinternalflowpath,missileimpact.etc.Avisualinspectionissufficienttodetermineabnormalconditionsthatcouldcausesuchfailures.Thevisualinspectionwillincludelookingforloosewiringorstructuralconnections,depositsofforeignmaterials,etc.OperatingexperiencehasshownthatthesecomponentsusuallypasstheSurveillancewhenperformedatthe24monthFrequency.Therefore,theFrequencywasconcludedtobeacceptablefromareliabilitystandpoint.SR3.6.3.1.3ThisSRrequiresperformanceofaresistancetogroundtestofeachheaterphasefollowingenergizationtomakesurethattherearenodetectablegroundsinanyheaterphase.ThisisaccompTishedbyverifyingthattheresistancetogroundforanyheaterphaseis>10,000ohms.OperatingexperiencehasshownthatthesecomponentsusuallypasstheSurveillancewhenperformedatthe24monthFrequency.Therefore,theFrequencywasconcludedtobeacceptablefromareliabilitystandpoint.REFERENCES1.10CFR50.44.2.10CFR50,AppendixA.GDC41.3.RegulatoryGuide1.7,Revision1.4.FSAR.Section6.2.5.5.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA-UNIT183.6-75Revision0 DrywellAirFlowSystemB3.6.3.2B3.6CONTAINHENTSYSTENSB3.6.3.2DrywellAir.FlowSystemBASESBACKGROUNDTheDrywellCoolingfansinlowspeedensureauniformlymixedpostaccidentprimarycontainmentatmosphere(Ref.1),therebyminimizingthepotentialforlocalhydrogenburnsduetoapocketofhydrogenabovetheflammableconcentration.TheDrywellCoolingfansareanEngineeredSafetyFeatureandaredesignedtowithstandalossofcoolantaccident(LOCA)inpostaccidentenvironmentswithoutlossoffunction.Thesystemconsistsofthreerequiredpairsoffanswitheachpairconsistingoftwoindependentfans.ThethreerequiredDrywellCoolingfanpairsareasfollows:a.DrywellUnitCoolerfans1V414A/1V414B;b.Drywel1UnitCoolerfans1V416A/1V416B;c.Recirculationfan1V418A/1V418BThefansareinitiatedmanuallysinceflammabilitylimitswouldnotbereacheduntilseveraldaysafteraLOCA.Eachfaninapairispowered"fromaseparateemergencypowersupply.Sinceonefanineachpaircanprovide100Kofthemixingrequirements,the.systemwillprovideitsdesignfunctionwithaworstcasesingleactivefailure.APPLICABLETheDrywellCoolingfansprovidethecapabilityforSAFETYANALYSESreducingthelocalhydrogenconcentrationtoapproximatelythebulkaverageconcentrationfollowingaDesignBasisAccident(DBA).ThelimitingDBArelativetohydrogengenerationisaLOCA.HydrogenmayaccumulateinprimarycontainmentfollowingaLOCAasaresultof:a.Ametalsteamreactionbetweenthezirconiumfuelrodcladdingandthereactorcoolant;or(continued)SUSQUEHANNA-UNIT1B3.6-76Revision0 DrywellAirFlowSystem83.6.3.2BASESAPPLICABLESAFETYANALYSES(continued)b.RadiolyticdecompositionofwaterintheReactorCoolantSystem.ToevaluatethepotentialforhydrogenaccumulationinprimarycontainmentfollowingaLOCA,thehydrogengenerationasafunctionoftimefollowingtheinitiationoftheaccidentiscalculated.ConservativeassumptionsrecommendedbyReference2areusedtomaximizetheamountofhydrogencalculated.TheReference3calculationsshowthathydrogenassumedtobereleasedtothedrywellfollowingaDBALOCAraisesdrywellhydrogenconcentrationtoover2.5volumepercent(v/o)within1.2days.Althoughnaturalcirculationphenomenareducesthegradientconcentrationdifferencesincontainment,acontainmentmixingsystemprovidesfurthermeansofpreventinglocalhydrogengasbuildupsincontainmentpost-accident.TheDrywellCoolingfanssatisfyCriterion3oftheNRCPolicyStatement.(Ref.4)LCOThreerequiredDrywellCoolingfanpairsmustbeOPERABLEinlowspeecltoensureoperationofatleastonefanineachoftherequiredpairsintheeventofaworstcasesingleactivefailure.ThethreerequiredDrywellCoolingfanpairsareasfollows:a.DrywellUnitCoolerfans1V414A/1V414B;b.DrywellUnitCoolerfans1V416A/1V416B;c.Recirculationfan1V418A/1V418B.Operationwithatleastonefanineachrequiredpairprovidesthecapabilityofcontrollingthebulkhydrogenconcentrationinprimarycontainmentwithoutexceedingtheflammabilitylimit.APPLICABILITYInMODES1and2,thethreeDrywellCoolingfanpairsensurethecapabilitytopreventlocalizedhydrogenconcentrations(continued)SUSQUEHANNA-UNIT183.6-77Revision0 DrywellAirFlowSystemB3.6.3.2BASESAPPLICABILITY(continued)abovetheflammabilitylimitof4.0v/oindrywell,assumingaworstcasesingleactivefailure.InMODE3,boththehydrogenproductionrateandthetotalhydrogenproducedafteraLOCAwouldbelessthanthatcalculatedfortheDBALOCA.Also,becauseofthelimitedtimeinthisMODE,theprobabilityofanaccidentrequiringtheDrywellCoolingfansislow.Therefore,theDrywellCoolingfansarenotrequiredinMODE3.InMODES4and5,theprobabilityandconsequencesofaLOCAarereducedduetothepressureandtemperaturelimitationsintheseMODES.Therefore,theDrywellCoolingfansarenotrequiredintheseMODES.ACTIONSA.lWithonerequiredDrywellCoolingfaninoneormorepairsinoperable.theinoperablefanmustberestoredtoOPERABLEstatuswithin30days.InthisCondition,theremainingOPERABLEfanisadequatetoperformthehydrogenmixingfunction.However,theoverallreliabilityisreducedbecauseasingTefailureintheOPERABLEfancouldresultinreducedhydrogenmixingcapability.The30dayCompletionTimeisbasedontheavailabilityofthesecondfan,thelowrobabilityoftheoccurrenceofaLOCAthatwouldgenerateydrogeninamountscapableofexceedingtheflammabilitylimit,theamountoftimeavailableaftertheeventforoperatoractiontopreventexceedingthislimit,andtheavailabilityofthePrimaryContainmentHydrogenRecombinerSystem.IRequiredActionA.lhasbeenmodifiedbyaNoteindicatingthattheprovisionsofLCO3.0.4arenotapplicable.Asaresult,aMODEchangeisallowedwhenoneDrywellCoolingfaninapairisinoperable.ThisallowanceisprovidedbecauseofthelowprobabilityoftheoccurrenceofaLOCAthatwouldgeneratehydrogeninamountscapableofexceedingtheflammabilitylimit.thelowprobabilityofthefailureoftheOPERABLEfan,andtheamountoftimeavailableafterapostulatedLOCAforoperatoractiontopreventexceedingtheflammabilitylimit.(continued)SUSQUEHANNA-UNIT1B3.6-78Revision0 DrywellAirFlowSystemB3.6.3.2BASESACTIONS(continued)B.landB.2WithtworequiredDrywellCoolingfansinoneormorepairsinoperable,theabilitytoperformthehydrogencontrolfunctionviaalternatecapabilitiesmustbeverifiedbyadministrativemeanswithin1hour.Thealternatehydrogencontrolcapabilitiesareprovidedbythecontainmentnitrogenpurgesystem.The1hourCompletionTimeallowsareasonableperiodoftimetoverifythatalossofhydrogencontrolfunctiondoesnotexist.Inaddition.thealternatehydrogencontrolsystemcapabilitymustbeverifiedonceper12hoursthereaftertoensureitscontinuedavailability.Boththeinitialverificationandallsubsequentverificationsmaybeperformedasanadministrativecheckbyexamininglogsorotherinformationtodeterminetheavailabilityofthealternatehydrogencontrolsystem.ItdoesnotmeantoperformtheSurveillancesneededtodemonstrateOPERABILITYofthealternatehydrogencontrolsystem.Iftheabilitytoperformthehydrogencontrolfunctionismaintained,continuedoperationispermittedwithtwoDrywellCooling'ansinoneormorepairsinoperableforupto7days.SevendaysisareasonabletimetoallowtwoDrywellCoolingfansinoneormorepairstobeinoperablebecausethehydrogencontrolfunctionismaintainedandbecauseofthelowprobabilityoftheoccurrenceofaLOCAthatwouldgeneratehydrogeninamountscapableofexceedingtheflammabilitylimit.C.1IfanyRequiredActionandassociatedCompletionTimecannotbemet,theplantmustbebroughttoaMODEinwhichtheLCOdoesnotapply.Toachievethisstatus,theplantmustbebroughttoatleastMODE3within12hours.TheallowedCompletionTimeof12hoursisreasonable,basedonoperatingexperience,toreachMODE3fromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.SURVEILLANCEREQUIREMENTSSR3.6.3.2.1OperatingeachrequiredDrywellCoolingfaninlowspeedfromthecontrolroomfora15minutesensuresthateach(continued)SUSQUEHANNA-UNIT1B3.6-79Revision0 DrywellAirFlowSystemB3.6.3.2BASESSURVEILLANCEREQUIREMENTSSR3.6.3.2.1(continued)subsystemisOPERABLEandthatallassociatedcontrolsarefunctioningproperly.SincerequiredfansareoperatedathighspeedduringnormaloperationsthisSRensuresthelowspeedmotorcircuitsoperate.The92dayFrequencyisconsistentwiththeInserviceTestingProgramFrequencies.operatingexperience,theknownreliabilityofthefanmotorsandcontrols,andthetworedundantfansavailable.REFERENCES1.FSAR9.4.52.RegulatoryGuide1.7,Revision1.3.FSAR,Section6.2.5.4.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA-UNIT1B3.6-80Revision0 PrimaryContainmentOxygenConcentrationB3.6.3.3B3.6CONTAINMENTSYSTEMSB3.6.3.3PrimaryContainmentOxygenConcentrationBASESBACKGROUNDAllnuclearreactorsmustbedesignedtowithstandeventsthatgeneratehydrogeneitherduetothezirconiummetalwaterreactioninthecoreorduetoradiolysis.Theprimarymethodtocontrolhydrogenistoinerttheprimarycontainment.Withtheprimarycontainmentinert,thatis,oxygenconcentration(4.0volumepercent(v/o),acombustiblemixturecannotbepresentintheprimarycontainmentforanyhydrogenconcentration.Thecapabilitytoinerttheprimarycontainmentandmaintainoxygen(4.0v/oworkstogetherwiththeHydrogenRecombinerSystem(LCO3.6.3.1,"PrimaryContainmentHydrogenRecombiners")andtheDrywellAirFlowSystem(LCO3.6.3.2,"DrywellAirFlowSystem")toprovideredundantanddiversemethodstomitigateeventsthatproducehydrogen.Forexample,aneventthatrapidlygenerateshydrogenfromzirconiummetalwaterreactionwillresultinexcessivehydrogeninprimarycontainment',butoxygen-concentrationwillremain(4.0v/oandnocombustioncanoccur;Longtermgenerationofbothhydrogenandoxygen=from=-radivlyticdecompositionofwatermayeventuallyresultin-acombustiblemixtureinprimarycontainment:;except=-that-the=hydrogenrecombinersremovehydrogenand.oxygen=gases=fasterthantheycanbeproducedfromradiolysis:and=-again.=.na=-combustioncanoccur.ThisLCOensuresthat=-oxygen=concentrationdoesnotexceed4.0v/oduringopera@~on.inthe=-appl.,icableconditions.APPLICABLESAFETYANALYSESTheReference1calculationsassumethattheprimarycontainmentisinertedwhenaDesignBasisAccidentlossofcoolantaccidentoccurs.Thus,thehydrogenassumedtobereleasedtotheprimarycontainmentasaresultofmetalwaterreactioninthereactorcorewillnotproducecombustiblegasmixturesintheprimarycontainment.Oxygen.whichissubsequentlygeneratedbyradiolyticdecompositionofwater,isrecombinedbythehydrogenrecombiners(LCO3.6.3.1)morerapidlythanitisproduced.PrimarycontainmentoxygenconcentrationsatisfiesCriterion2oftheNRCPolicyStatement.(Ref.2)SUSQUEHANNA-UNIT1B3.6-81(continued)Revision0 PrimaryContainmentOxygenConcentration83.6.3.3BASES(continued)LCOTheprimarycontainmentoxygenconcentrationismaintained(4.0v/otoensurethataneventthatproducesanyamountofhydrogendoesnotresultinacombustiblemixtureinsideprimarycontainment.APPLICABILITYTheprimarycontainmentoxygenconcentrationmustbewithinthespecifiedlimitwhenprimarycontainmentisinerted,exceptasallowedbytherelaxationsduringstartupandshutdownaddressedbelow.TheprimarycontainmentmustbeinertinMODE1,sincethisistheconditionwiththehighestprobabilityofaneventthatcouldproducehydrogen.Inertingtheprimarycontainmentisanoperationalproblembecauseitpreventscontainmentaccesswithoutanappropriatebreathingapparatus.Therefore,theprimarycontainmentisinertedaslateaspossibleintheplantstartupandde-inertedassoonaspossibleintheplantshutdown.Aslongasreactorpoweris(15KRTP,thepotentialforaneventthatgeneratessignificanthydrogenislowandtheprimarycontainmentneednotbeinert.Furthermore,theprobability.ofaneventthatgenerateshydrogenoccurringwithinthefirst24hoursofastartup,orwithintheladt24hoursbeforeashutdown,islowenoughthatthese"windows,"whentheprimarycontainmentisnotinerted,arealsojustified.The24hourtimeperiodisareasonableamountoftimetoallowplantpersonneltoperforminertingorde-inerting.ACTIONSA.1Ifoxygenconcentrationis~4.0v/oatanytimewhileoperatinginMODE1,withtheexceptionoftherelaxationsallowedduringstartupandshutdown,oxygenconcentrationmustberestoredto<4.0v/owithin24hours.The24hourCompletionTimeisallowedwhenoxygenconcentrationis>4.0v/obecauseoftheavailabilityofotherhydrogenmitigatingsystems(e.g.,hydrogenrecombiners)andthelowprobabilityandlongdurationofaneventthatwouldgeneratesignificantamountsofhydrogenoccuringduringthisperiod.(continued)SUSQUEHANNA-UNIT183.6-82Revision0

PrimaryContainmentOxygenConcentrationB3.6.3.3BASESACTIONS(continued)B.1IfoxygenconcentrationcannotberestoredtowithinlimitswithintherequiredCompletionTime,theplantmustbebroughttoaNODEinwhichtheLCOdoesnotapply.Toachievethisstatus,powermustbereducedto<15%RTPwithin8hours.The8hourCompletionTimeisreasonable,basedonoperatingexperience,toreducereactorpowerfromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.SURVEILLANCEREQUIREHENTSSR3.6.3.3.1Theprimarycontainmentmustbedeterminedtobeinertbyverifyingthatoxygenconcentrationis(4.0v/o.The7dayFrequencyisbasedontheslowrateatwhichoxygenconcentrationcanchangeandonotherindicationsofabnormalconditions(whichwouldleadtomorefrequentcheckingbyoperatorsinaccordancewithplantprocedures).Also,thisFrequencyhasbeenshowntobeacceptablethroughoperatingexperience.REFERENCES1.FSAR,Section6.2.5.2.FinalPolicyStatementonTechnicalSpecificationsImprovementsJuly22,1993(58FR39132).SUSQUEHANNA-UNIT1B3.6-83Revision0

~,

SecondaryContainmentB3.6.4.1B3.6CONTAINMENTSYSTEMS83.6.4.1SecondaryContainmentBASESBACKGROUNDThefunctionofthesecondarycontainmentistocontain,dilute,andholdupfissionproductsthatmayleakfromprimarycontainmentfollowingaDesignBasisAccident(DBA).InconjunctionwithoperationoftheStandbyGasTreatment(SGT)Systemandclosureofcertainvalveswhoselinespenetratethesecondarycontainment,thesecondarycontainmentisdesignedtoreducetheactivitylevelofthefissionproductspriortoreleasetotheenvironmentandtoisolateandcontainfissionproductsthatarereleasedduringcertainoperationsthattakeplaceinsideprimarycontainment,whenprimarycontainmentisnotrequiredtobeOPERABLE,orthattakeplaceoutsideprimarycontainment(Ref.1).Thesecondarycontainmentisastructurethatcompletelyenclosestheprimarycontainmentandthosecomponentsthat,maybepostulatedtocontainprimarysystemfluid.Thisstructureformsacontrolvolumethatservestoholdupanddilutethefissionproducts.Itispossibleforthepressureinthe'controlvolumetoriserelativetotheenvironmentalpressure(e.g.,duetopumpandmotorheatloadadditions).Thesecondarycontainmentboundaryconsistsofthereactorbuildingstructureandassociatedremovablewallsandpanels,hatches,doors,dampers.sealedpenetrationsandvalves.ThesecondarycontainmentisdividedintoZoneI,ZoneIIandZoneIII,eachofwhichmustbeOPERABLEdependingonplantstatusandthealignmentofthesecondarycontainmentboundary.Specifically.theUnit1secondarycontainmentboundarycanbemodifiedtoexcludeZoneIIwhentheUnit2TechnicalSpecificationsdonotrequireOPERABILITYofZoneII.TheUnit2secondarycontainmentboundarycanbemodifiedtoexcludeZoneIwhentheUnit1TechnicalSpecificationsdonotrequireOPERABILITYofZoneI.SecondarycontainmentmayconsistofonlyZoneIIIwheninMODE4or5duringCOREALTERATIONS,orduringhandlingofirradiatedfuelwithintheZoneIIIsecondarycontainmentboundary.(continued)SUSQUEHANNA-UNIT1B3.6-84Revision0 SecondaryContainmentB3.6.4.1BASESBACKGROUND(continued)Topr'eventgroundlevelexfiltrationwhileallowingthesecondarycontainmenttobedesignedasaconventionalstructure,thesecondarycontainmentrequiressupportsystemstomaintainthecontrolvolumepressureatlessthantheexternalpressure.RequirementsforthesafetyrelatedsystemsarespecifiedseparatelyinLCO3.6.4.2,"SecondaryContainmentIsolationValves(SCIVs),"andLCO3.6.4.3,"StandbyGasTreatment(SGT)System."Whenoneormore,zonesareexcludedfromsecondarycontainment,thespecificrequirementsforsupportsystemswillalsochange(e.g.,requiredsecondarycontainmentisolationvalves).APPLICABLESAFETYANALYSESTherearetwoprincipalaccidentsforwhichcreditistakenforsecondarycontainmentOPERABILITY.Thesearealossofcoolantaccident(LOCA)(Ref.2)andafuelhandlingaccidentinsidesecondarycontainment(Ref.3).Thesecondarycontainmentperformsnoactivefunctioninresponsetoeitheroftheselimitingevents;however,itsleaktightnessisrequiredtoensurethatthereleaseofradioactive.-materialsfrom:.the"primarycontainmentisrestrictedto'-those-leakage"paths-andassociatedleakagerates=assumed=--in-the=accÃdest=.analysisandthatfissionproducts"entrappedwithin-,the.=secondarycontainmentstructure=.-wi:l-l-be.=treated-bytheSGTSystemprior.to.'.*di-scharge;-to.th'.='envi.ronmentSecondary=-containment=.sati.sees=-,Criterion.3.of-the-5RCPol-icy=-.Statement=..(Ref.=;4')-.-LCOAnOPERABLEsecondarycontainmentprovidesacontrolvolumeintowhichfissionproductsthatbypassorleakfromprimarycontainment,orarereleasedfromthereactorcoolantpressureboundarycomponentslocatedinsecondarycontainment,canbedilutedandprocessedpriortoreleasetotheenvironment.ForthesecondarycontainmenttobeconsideredOPERABLE,itmusthaveadequateleaktightnesstoensurethattherequiredvacuumcanbeestablishedandmaintained.ThesecondarycontainmentboundaryrequiredtobeOPERABLEisdependentontheoperatingstatusofbothunits,aswellastheconfigurationofwalls,doors,hatches,SCIVs.andavailableflowpathstotheSGTSystem.(continued)SUSQUEHANNA-UNIT1B3.6-85Revision0 SecondaryContainmentB3.6.4.1BASES:LCO(continued)Therequiredboundaryencompassesthezoneswhichcanbepostulatedtocontainfissionproductsfromaccidentsrequiredtobeconsideredfortheconditionofeachunit.APPLICABILITYInNODES1.2.and3.aLOCAcouldleadtoafissionproductreleasetoprimarycontainmentthatleakstosecondarycontainment.Therefore,secondarycontainmentOPERABILITYisrequiredduringthesameoperatingconditionsthatrequireprimarycontainmentOPERABILITY.InNODES4and5,theprobabilityandconsequencesoftheLOCAarereducedduetothepressureandtemperaturelimitationsintheseNODES.Therefore,maintainingsecondarycontainmentOPERABLEisnotrequiredinNODE4or5toensureacontrolvolume,exceptforothersituationsforwhichsignificantreleasesofradioactivematerialcanbepostulated,suchasduringoperationswithapotentialfordrainingthereactorvessel(OPORVs),duringCOREALTERATIONS,orduringmovementofirradiatedfuelassembliesinthesecondarycontainment.ACTIONSA.1Ifsecondarycontainmentisinoperable,itmustberestoredtoOPERABLEstatuswithin4hours.The4hourCompletionTimeprovidesaperiodoftimetocorrecttheproblemthatiscommensuratewiththeimportanceofmaintainingsecondarycontainmentduringNODES1,2,and3.Thistimeperiodalsoensuresthattheprobabilityofanaccident(requiringsecondarycontainmentOPERABILITY)occurringduringperiodswheresecondarycontainmentisinoperableisminimal.(continued)SUSQUEHANNA-UNIT1B3.6-86Revision0 SecondaryContainment83.6.4.1BASESACTIONS(continued)B.1andB.2IfsecondarycontainmentcannotberestoredtoOPERABLEstatuswithintherequiredCompletionTime.theplantmustbebroughttoaMODEinwhichtheLCOdoesnotapply.Toachievethisstatus,theplantmustbebroughttoatleastMODE3within12hoursandtoMODE4within36hours.TheallowedCompletionTimesarereasonable,basedonoperatingexperience,toreachtherequiredplantconditionsfromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.C.lC.2andC.3Movementofirradiatedfuelassembliesinthesecondarycontainment,COREALTERATIONS,andOPDRVscanbepostulatedtocausefissionproductreleasetothesecondarycontainment.Insuchcases,thesecondarycontainmentistheonlybarriertoreleaseoffissionproductstotheenvironment.COREALTERATIONSandmovementofirradiatedfuelassembliesmustbeimmediatelysuspendedifthesecondarycontainmentisinoperable.Suspensionoftheseactivitiesshallnotprecludecompletinganactionthatinvolvesmovingacomponenttoasafeposition.Also,actionmustbeimmediatelyinitiatedtosuspendOPDRVstominimizetheprobabilityofavesseldraindownandsubsequentpotentialforfissionproductrelease.ActionsmustcontinueuntilOPDRVsaresuspended.RequiredActionC.1hasbeenmodifiedbyaNotestatingthatLCO3.0.3isnotapplicable.IfmovingirradiatedfuelassemblieswhileinMODE4or5,LCO3.0.3wouldnotspecifyanyaction.IfmovingirradiatedfuelassemblieswhileinMODE1,2,or3,thefuelmovementisindependentofreactoroperations.Therefore,ineithercase.inabilitytosuspendmovementofirradiatedfuelassemblieswouldnotbeasufficientreasontorequireareactorshutdown.SURVEILLANCEREQUIREMENTSSR3.6.4.1.1ThisSRensuresthatthesecondarycontainmentboundaryissufficientlyleaktighttoprecludeexfiltration.(continued)SUSQUEHANNA-UNIT183.6-87Revision0 SecondaryContainmentB3.6.4.1BASESSURVEILLANCEREQUIREMENTSSR3.6.4.1.1(continued)The24hourFrequencyofthisSRwasdevelopedbasedonoperatingexperiencerelatedtosecondarycontainmentvacuumvariationsduringtheapplicableMODESandthelowprobabilityofaDBAoccurringbetweensurveillances.Furthermore,the24hourFrequencyisconsideredadequateinviewofotherindicationsavailableinthecontrolroom,includingalarms,toalerttheoperatortoanabnormalsecondarycontainmentvacuumcondition.SR3.6.4.1.2andSR3.6.4.1.3Verifyingthatsecondarycontainmentequipmenthatches,removablewallsandaccessdoorsineachaccessopeningrequiredtobeclosedareclosedensuresthattheinfiltrationofoutsideairofsuchamagnitudeastopreventmaintainingthedesirednegativepressuredoesnotoccur.Whentherailroadbaydoor(No.101)isclosed:allZoneIandIIIhatches,removablewalls,dampers,anddoorsconnectedtotherailroadaccessbayareclosed;or,onlyZoneIremovablewallsand/ordoorsareopentotherailroadaccessshaft;or,onlyZoneIIIhatchesand/ordampersareopentotherailroadaccessshaft.Whentherailroadbaydoor(No.101)isopen;allZoneIandIIIhatches,removablewalls,dampers,anddoorsconnectedtotherailroadaccessbayareclosed.Thetruckbayhatchisclosedandthetruckbaydoor(No.102)isclosedunlessZoneIIisisolatedfromZonesIandIII.Verifyingthatallsuchopeningsareclosedprovidesadequateassurancethatexfiltrationfromthesecondarycontainmentwillnotoccur.Inthisapplication,theterm"sealed"hasnoconnotationofleaktightness.MaintainingsecondarycontainmentOPERABILITYrequiresverifyingeachdoorintheaccessopeningisclosed,exceptwhentheaccessopeningisbeingusedforentryandexit,thenatleastonedoormustremainclosed.The31dayFrequencyfortheseSRshasbeenshowntobeadequate.basedonoperatingexperience,andisconsideredadequateinviewoftheotherindicationsofdoorandhatchstatusthatareavailabletotheoperator.(continued)SUSQUEHANNA-UNIT1B3.6-88Revision0 SecondaryContainmentB3.6.4.1BASESSURVEILLANCEREQUIREMENTS(continued)SR3.6.4.1.4andSR3.6.4.1.5TheSGTSystemexhauststhesecondarycontainmentatmospheretotheenvironmentthroughappropriatetreatmentequipment.Toensurethatallfissionproductsaretreated.SR3.6.4.1.4verifiesthattheSGTSystemwillrapidlyestablishandmaintainapressureinthesecondarycontainmentthatislessthanthepressureexternaltothesecondarycontainmentboundary.ThisisconfirmedbydemonstratingthatoneSGTsubsystemwilldrawdownthesecondarycontainmentto~0.25inchesofvacuumwatergaugeinlessthanorequaltothemaximumtimeallowed.Thiscannotbeaccomplishedifthesecondarycontainmentboundaryisnotintact.SR3.6.4.1.5demonstratesthatoneSGTsubsystemcanmaintain~0.25inchesofvacuumwatergaugeforatleast1houratlessthanorequaltothemaximumflowratepermittedforthesecondarycontainmentconfigurationthatisoperable.The1hourtestperiodallowssecondarycontainmenttobeinthermalequiibriumatsteadystateconditions.Asnoted,bothSR3.6.4.1.4andSR3.6.4.1.5acceptancelimitsaredependentuponthesecondarycontainmentconfigurationwhentestingisbeingperformed.TheacceptancecnteriafortheSRsbasedonsecondarycontainmentconfigurationisdefinedasfollows:SECONDARYCONTAINMENTCONFIGURATIONThreeZoneOperationwithZoneIIOPERABLE.ThreeZoneOperationwithZonesI,IIandIII.TwoZoneOperationwithUn)t2ShutdownandZoneIIisolated.MAXIMUMDRAWNDOWNTIME(SEC)(SR3.6.4.1.4ACCEPTANCECRITERIA)C15Seconds(ZonesIandIII)C92Seconds(ZonesI,II,andIII)C83Seconds(ZonesIandIll)MAXIMUMFLOWRATE(CFM)(SR3.6.4.1.5ACCEPTANCECRITERIA)<2885CFMFromZonesIandIII(VerifybycalculationthatoneSGTsubsystemwillmaintaina.25inchesofvacuumwatergaugeinsecondarycontainmentataflowrateof64000CFM(FromZonesI,II,andIII)).64000CFM(FromZonesI,II,andIII)62885CFM(FromZonesIandIII)(continued)SUSQUEHANNA-UNIT1B3.6-89Revision0 SecondaryContainmentB3.6.4.1BASESSURVEILLANCEREQUIREMENTSSR3.6.4.1.4andSR3.6.4.1.5OnlyoneoftheabovelistedconfigurationsneedstobetestedtoconfirmsecondarycontainmentOPERABILITY.ANotealsomodifiestheFrequencyforeachSR.ThisNoteidentifiesthateachSRmustbeperformedinthemostlimitingSecondaryContainmentConfigurationevery60months.The60monthFrequencyisacceptablebecauseoperatingexperiencehasshownthatthesecomponentsusuallypasstheSurveillanceandallactivecomponentsaretestedmo'efrequently.'herefore,thesetestsareusedtoensuresecondarycontainmentboundaryintegrity.SincetheseSRsaresecondarycontainmenttests,theyneednotbeperformedwitheachSGTsubsystem.TheSGTsubsystemsaretestedonaSTAGGEREDTESTBASIS,however,toensurethatinadditiontotherequirementsofLCO3.6.4.3,eitherSGTsubsystemwillperformSR3.6.4.1.4andSR3.6.4.1.5.OperatingexperiencehasshownthesecomponentsusuallypasstheSurveillancewhenperformedatthe24monthFrequency.Therefore,theFrequencywasconcludedtobeacceptablefroma-reliabilitystandpoint.IREFERENCES1.FSAR,Section6.2.3.2.FSAR,Section15.6.3.FSAR.Section15.7.4.4.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA-UNIT1B3.6-90Revision0 SCIVs83.6.4.2B3.6CONTAINMENTSYSTEMSB3.6.4.2SecondaryContainmentIsolationValves(SCIVs)BASESBACKGROUNDThefunctionoftheSCIVs,incombinationwithotheraccidentmitigationsystems,istolimitfissionproductreleaseduringandfollowingpostulatedDesignBasisAccidents(DBAs)(Ref.1).SecondarycontainmentisolationwithinthetimelimitsspecifiedforthoseisolationvalvesdesignedtocloseautomaticallyensuresthatfissionproductsthatleakfromprimarycontainmentfollowingaDBA,orthatarereleasedduringcertainoperationswhenprimarycontainmentisnotrequiredtobeOPERABLEortakeplaceoutsideprimarycontainment.aremaintainedwithinthesecondarycontainmentboundary.TheOPERABILITYrequirementsforSCIVshelpensurethatanadequatesecondarycontainmentboundaryismaintainedduringandafteranaccidentbyminimizingpotentialpathstotheenvironment.Theseisolationdevicesconsistofeitherpassivedevicesoractive(automatic)devices.Manualvalvesordamper's;-de-activatedautomaticvalvesordamperssecuredintheirclosedposition(includingcheckvalveswithflowthroughthevalvesecured),andblindflangesareconsideredpassivedevices.AutomaticSCIVscloseonasecondarycontainmentisolationsignaltoestablishaboundaryforuntreatedradioactivematerialwithinsecondarycontainmentfollowingaDBAorotheraccidents.Otherpenetrationsareisolatedbytheuseofvalvesintheclosedpositionorblindflanges.APPLICABLESAFETYANALYSESTheSCIVsmust'eOPERABLEtoensurethesecondarycontainmentbarriertofissionproductreleasesisestablished.Theprincipalaccidentsforwhichthesecondarycontainmentboundaryisrequiredarealossofcoolantaccident(Ref.1)andafuelhandlingaccidentinsidesecondarycontainment(Ref.2).Thesecondarycontainmentperformsnoactivefunctioninresponsetoeitheroftheselimitingevents,buttheboundary(continued)SUSQUEHANNA-UNIT1B3.6-91Revision0 SCIVsB3.6.4.2BASESAPPLICABLESAFETYANALYSES(continued)establishedbySCIVsisrequiredtoensurethatleakagefromtheprimarycontainmentisprocessedbytheStandbyGasTreatment(SGT)Systembeforebeingreleasedtotheenvironment.MaintainingSCIVsOPERABLEwithisolationtimeswithinlimitsensuresthatfissionproductswillremaintrappedinsidesecondarycontainmentsothattheycanbetreatedbytheSGTSystempriortodischargetotheenvironment.SCIVssatisfyCriterion3oftheNRCPolicyStatement(Ref.3).LCOSCIVsthatformapartofthesecondarycontainmentboundaryarerequiredtobeOPERABLE.DependingontheconfigurationofthesecondarycontainmentonlyspecificSCIVsarerequired.TheSCIVsafetyfunctionisrelatedtocontrolofoffsiteradiationreleasesresultingfromDBAs.TheautomaticisolationvalvesareconsideredOPERABLEwhentheirisolationtimesarewithinlimitsandthevalvesactuateonanautomaticisolationsignal.ThevalvescoveredbythML'CO.alongwiththeirassociatedstroketimes,arelistedinTable83.6.4.2-1.ThenormallyclosedisolationvalvesorblindflangesareconsideredOPERABLEwhenmanualvalvesareclosedoropeninaccordancewithappropriateadministrativecontrols,automaticSCIVsaredeactivatedandsecuredintheirclosedposition,orblindflangesareinplace.ThesepassiveisolationvalvesordevicesarelistedinTableB3.6.4.2-2.Penetrationsclosedwithsealantsareconsideredpartofthesecondarycontainmentboundaryandarenotconsideredpenetrationflowpaths.APPLICABILITYInMODES1,2,and3,aDBAcouldleadtoafissionproductreleasetotheprimarycontainmentthatleakstothesecondarycontainment.Therefore,theOPERABILITYofSCIVsisrequired.InMODES4and5.theprobabilityandconsequencesof'heseeventsarereducedduetopressureandtemperature(continued)SUSQUEHANNA-UNIT1B3.6-92Revision0 SCIVsB3.6.4.2BASESAPPLICABILITY(continued)limitationsintheseMODES.Therefore,maintainingSCIVsOPERABLEisnotrequiredinMODE4or5,exceptforothersituationsunderwhichsignificantradioactivereleasescanbepostulated,suchasduringoperationswithapotentialfordrainingthereactorvessel(OPDRVs),duringCOREALTERATIONS,orduringmovementofirradiatedfuelassembliesinthesecondarycontainment.MovingirradiatedfuelassembliesinthesecondarycontainmentmayalsooccurinMODESl.2.and3.ACTIONSTheACTIONSaremodifiedbythreeNotes.ThefirstNoteallowspenetrationflowpathstobeunisolatedintermittentlyunderadministrativecontrols.Thesecontrolsconsistofstationingadedicatedoperator,whoisincontinuouscommunicationwiththecontrolroom,atthecontrolsoftheisolationdevice.Inthisway,thepenetrationcanberapidlyisolatedwhenaneedforsecondarycontainmentisolationisindicated.ThesecondNoteprovidesclarificationthatforthepurposeofthisLCOseparateConditionentryisallowedforeachpenetrationflowpath.Thisisacceptable,sincetheRequiredActionsforeachConditionprovideappropriatecompensatoryactionsforeachinoperableSCIV.ComplyingwiththeRequiredActionsmayallowforcontinuedoperation,andsubsequentinoperableSCIVsaregovernedbysubsequentConditionentryandapplicationofassociatedRequiredActions.ThethirdNoteensuresappropriateremedialactionsaretaken,ifnecessary,iftheaffectedsystem(s)arerenderedinoperablebyaninoperableSCIV.A.landA.2IntheeventthatthereareoneormorerequiredpenetrationflowpathswithonerequiredSCIVinoperable,theaffectedpenetrationflowpath(s)mustbeisolated.Themethodofisolationmustincludetheuseofatleastoneisolationbarrierthatcannotbeadverselyaffectedbyasingleactivefailure.Isolationbarriersthatmeetthiscriterionareaclosedandde-activatedautomaticSCIV,aclosedmanualvalve,andablindflange.Forpenetrationsisolatedin(continued)SUSQUEHANNA-UNIT183.6-93Revision0 SCIVsB3.6.4.2BASESACTIONSA.1andA.2(continued)accordancewithRequiredActionA.l.thedeviceusedtoisolatethepenetrationshouldbetheclosestavailabledevicetosecondarycontainment.TheRequiredActionmustbecompletedwithinthe8hourCompletionTime.Thespecifiedtimeperiodisreasonableconsideringthetimerequiredtoisolatethepenetration,andtheprobabilityofaDBA,whichrequirestheSCIVstoclose,occurringduringthisshorttimeisverylow.ForaffectedpenetrationsthathavebeenisolatedinaccordancewithRequiredActionA.1.theaffectedenetrationmustbeverifiedtobeisolatedonaperiodicasis.Thisisnecessarytoensurethatsecondarycontainmentpenetrationsrequiredtobeisolatedfollowinganaccident;butnolongercapableofbeingautomaticallyisolated,willbeintheisolationpositionshouldaneventoccur.TheCompletionTimeofonceper31daysisappropriatebecausethevalvesareoperatedunderadministrativecontrolsandtheprobabilityoftheirmisalignmentislow.ThisRequiredActiondoesnotrequireanytestingordevicemanipulation.Rather,itinvolvesverificationthattheaffectedpenetrationremainsisolated.ConditionAismodifiedbyaNote.indicatingthatthisConditionisonlyapplicabletothosepenetrationflowpathswithtwoSCIVs.ForpenetrationflowpathswithoneSCIV,ConditionCprovidestheappropriateRequiredActions.RequiredActionA.2ismodifiedbyaNotethatappliestodeviceslocatedinhighradiationareasandallowsthemtobeverifiedclosedbyuseofadministrativecontrols.Allowingverificationbyadministrativecontrolsisconsideredacceptable,sinceaccesstotheseareasistypicallyrestricted.Therefore.theprobabilityofmisalignment,oncetheyhavebeenverifiedtobeintheproperposition,islow.WithtwoSCIVsinoneormorepenetrationflowpathsinoperable.theaffectedpenetrationflowpathmustbeisolatedwithin4hours.Themethodofisolationmust(continued)SUSQUEHANNA-UNIT1B3.6-94Revision0 SCIVsB3.6.4.2BASESACTIONSB.l(continued)includetheuseofatleastoneisolationbarrierthatcannotbeadverselyaffectedbyasingleactivefailure.Isolationbarriersthatmeetthiscriterionareaclosedandde-activatedautomaticvalve,aclosedmanualvalve,andablindflange.The4hourCompletionTimeisreasonableconsideringthetimerequiredtoisolatethepenetrationandtheprobabilityofaDBA,whichrequirestheSCIVstoclose,occurringduringthisshorttime.isverylow.TheConditionhasbeenmodifiedbyaNotestatingthatConditionBisonlyapplicabletopenetrationflowpathswithtwoisolationvalves.ForpenetrationflowpathswithoneSCIV,ConditionCprovidestheappropriateRequiredActions.C.1andC.2WithoneormorerequiredpenetrationflowpathswithonerequiredSCIVinoperable,theinoperablevalvemustberestoredtoOPERABLEstatusortheaffectedpenetrationflowpathmustbeisolated.Themethodofisolationmustincludetheuseofatleastoneisolationbarrierthatcannotbeadverselyaffectedbyasingleactivefailure.Isolationbarriersthatmeetthiscriterionareaclosedandde-activatedautomaticvalve,aclosedmanualvalve.andablindflange.Acheckvalvemaynotbeused.toisolatetheaffectedpenetration.RequiredActionC.1mustbecompletedwithinthe4hourCompletionTime.TheCompletionTimeof4hoursisreasonableconsideringtherelativestabilityofthesystem(hence,reliability)toactasapenetrationisolationboundaryandtherelativeimportanceofsupportingsecondarycontainmentOPERABILITYduringNODES1,2.and3.IntheeventtheaffectedpenetrationflowpathisisolatedinaccordancewithRequiredActionC.1.theaffectedenetrationmustbeverifiedtobeisolatedonaperiodicasis.Thisisnecessarytoensurethatsecondarycontainmentpenetrationsrequiredtobeisolatedf'ollowinganaccidentareisolated.TheCompletionTimeofonceper31daysforverifyingeachaffectedpenetrationisisolatedisappropriatebecausethe(continued)SUSQUEHANNA-UNIT1B3.6-95Revision0 SCIVsB3.6.4.2BASESACTIONSC.1andC.2(continued)valvesareoperatedunderadministrativecontrolsandtheprobabilityoftheirmisalignmentislow.ConditionCismodifiedbyaNoteindicatingthatthisConditionisonlyapplicabletopenetrationflowpathswithonlyoneSCIV.ForpenetrationflowpathswithtwoSCIVs.ConditionsAandBprovidetheappropriateRequiredActions.RequiredActionC.2ismodifiedbyaNotethatappliestovalvesandblindflangeslocatedinhighradiationareasandallowsthemtobeverifiedbyuseofadministrativemeans.Allowingverificationbyadministrativemeansisconsideredacceptable.sinceaccesstotheseareasistypicallyrestricted.Therefore,theprobabilityofmisalignmentof'hesevalves,oncetheyhavebeenverifiedtobeintheproperposition,islow.D.landD.2IfanyRequiredActionandassociatedCompletionTimecannotbemet,theplantmustbebroughttoaNODEinwhichtheLCOdoesnotapp'ly.Toachievethisstatus.theplantmustbebroughttoatleastNODE3within12hoursandtoNODE4within36hours.TheallowedCompletionTimesarereasonable.basedonoperatingexperience,toreachtherequiredplantconditionsfromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.E.1E.2andE.3IfanyRequiredActionandassociatedCompletionTimearenotmet.theplantmustbeplacedinaconditioninwhichtheLCOdoesnotapply.Ifapplicable,COREALTERATIONSandthemovementofirradiatedfuelassembliesinthesecondarycontainmentmustbeimmediatelysuspended.Suspensionoftheseactivitiesshallnotprecludecompletionofmovementofacomponenttoasafeposition.Also,ifapplicable,actionsmustbeimmediatelyinitiatedtosuspendOPDRVsinordertominimizetheprobabilityofavesseldraindownandthesubsequentpotentialforfissionproductrelease.ActionsmustcontinueuntilOPDRVsaresuspended.(continued)SUSQUEHANNA-UNIT1B3.6-96Revision0

SCIVsB3.6.4.2BASESACTIONSE.1E.2andE.3(continued)RequiredActionE.1hasbeenmodifiedbyaNotestatingthatLCO3.0.3isnotapplicable.IfmovingirradiatedfuelassemblieswhileinMODE4or5,LCO3.0.3wouldnotspecifyanyaction.IfmovingfuelwhileinMODE1,2,or3,thefuelmovementisindependentofreactoroperations.Therefore,ineithercase,inabilitytosuspendmovement.ofirradiatedfuelassemblieswouldnotbeasufficientreasontorequireareactorshutdown.SURVEILLANCEREQUIREMENTSSR3.6.4.2.1ThisSRverifiesthateachsecondarycontainmentmanualisolationvalveandblindflangethatisrequiredtobeclosedduringaccidentconditionsisclosed.TheSRhelpstoensurethatpostaccidentleakageofradioactivefluidsorgasesoutsideofthesecondarycontainmentboundaryiswithindesignlimits.ThisSRdoesnotrequireanytestingorvalvemanipulation.Rather,itinvolvesverificationthatthoserequiredSCIVsin.secondarycontainmentthatarecapableofbeingmispositionedareinthecorrectposition.SincetheseSCIVsarereadilyaccessibletopersonnelduringnormaloperationandverificationoftheirpositionisrelativelyeasy,the31dayFrequencywaschosentoprovideaddedassurancethattheSCIVsareinthecorrectpositions.TwoNoteshavebeenaddedtothisSR.ThefirstNoteappliestovalvesandblindflangeslocatedinhighradiationareasandallowsthemtobeverifiedbyuseofadministrativecontrols.Allowingverificationbyadministrativecontrolsisconsideredacceptable,sinceaccesstotheseareasistypicallyrestrictedduringMODES1.2,and3forALARAreasons.Therefore,thegrobabilityofmisalignmentoftheseSCIVs,oncetheyhaveeenverifiedtobeintheproperposition,islow.AsecondNotehasbeenincludedtoclarifythatSCIVsthatareopenunderadministrativecontrolsarenotrequiredtomeettheSRduringthetimetheSCIVsareopen.(continued)SUSQUEHANNA-UNIT1B3.6-97Revision0 SCIVsB3.6.4.2BASESSURVEILLANCEREQUIREMENTS(continued)SR3.6.4.2.2SCIVswithmaximumisolationtimesspecifiedinTableB3.6.2.4-1aretestedevery92daystoverifythattheisolationtimeiswithinlimitstodemonstrateOPERABILITY.AutomaticSCIVswithoutmaximumisolationtimesspecifiedinTableB3.6.4.2-1aretestedundertherequirementsofSR3.6.4.2.3.TheisolationtimetestensuresthattheSCIVwillisolateinatimeperiodlessthanorequaltothatassumedinthesafetyanalyses.SR3.6.4.2.3VerifyingthateachautomaticrequiredSCIVclosesonasecondarycontainmentisolationsignalisrequiredtopreventleakageofradioactivematerialfromsecondarycontainmentfollowingaDBAorotheraccidents.ThisSRensuresthateachautomaticSCIVwillactuatetotheisolationpositiononasecondarycontainmentisolationsignal.TheLOGICSYSTEMFUNCTIONALTESTinSR3.3.6.2.5overlapsthisSRtoprovidecompletetestingofthesafetyfunction.-The24.monthFrequencyisbasedontheneedtoperformthisSurveillanceundertheconditionsthatapplyduringaplantoutageandthepotentialforanunplannedtransientiftheSurveillancewereperformedwiththereactoratpower.OperatingexperiencehasshownthesecomponentsusuallypasstheSurveillancewhenperformedatthe24monthFrequency.Therefore,theFrequencywasconcludedtobeacceptablefromareliabilitystandpoint.REFERENCES1.FSAR,Section6.2.2.FSAR,Section15.3.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA-UNIT1B3.6-98Revision0 SCIVsB3.6.4.2TableB3.6.4.2-1-SecondaryContainmentVentilationSystemAutomaticIsolationDampers(Page1oi')ReactorBuildingZoneValveNumberValveDescriptionTypeofValveHexi'solationTime(Seconds)HD-17586AEBSulSstemDarsHD-17524ARBFilteredExhaustSystemDarsAutomaticIsolationDarAutomaticIsolationDar7.55.0HD-17576ASBUnfilteredExhaustSystemDarsAutomaticIsolationDr3.0HD-27586A8BSupplySystemDampersHD-27524ASBFilteredExhaustSstemDarsAutomaticIsolationDamperAutomaticIsolationDar7.55'HD-27576ARBUnfilteredExhaustSystemOarsAutomaticIsolationDar3.0HD-'I7564ARBSulySystemOarsHD-'l7514ARBFilteredExhaustSystemDampersAutomaticIsolationDaerAutomaticIsolationDamper14.06.5HD-17502ASBUnfilteredExhaustSstemDarsAutomaticIsolationOaer6.0HD-27564A&BSulySystemDarsHD-27514AKBFilteredExhaustSystemDarsAutomaticIsolationDarAutomaticIsolationDar14~06.5HD-27502ARBUnfilteredExhaustSystemDampersAutomaticIsolationDamper6.0N/AN/AN/AN/AN/AN/AN/AN/AN/AN/AN/AH/AN/AN/AHD-17534AHD-17534BHD-17534CHD-17534DHD-17534EHD-17534FHO-'17534HHO-27534AHD-27534CHD-27534DHD-27534EHD-27534GHO-27534HHD-27534IZone3AirlockI-606Zone3AirlockI-611Zone3AirlockI-707Zone3AirlockI-803Zone3AirlockI-805Zone3AirlockI-617Zone3AirlockI-618Zone3AirlockII-606Zone3AirlockII-707Zone3AirlockII-803Zone3AirlockII-805Zone3AirlockC-806Zone3AirlockII-618Zone3AirlockII-609AutomaticIsolationDarAutomaticIsolationDaerAutomaticIsolationDaerAutomaticIsolationDamperAutomaticIsolationOarAutomaticIsolationDarAutomaticIsolationDarAutomaticIsolationOanperAutomaticIsolationDarAutomaticIsolationOaerAutomaticIsolationDarAutomaticIsolationDamperAutomaticIsolationDarAutomaticIsolationDamperN/AN/AN/AN/AN/AN/AN/AN/AN/AN/AN/AN/AN/AN/ASUSQUEHANNA-UNIT1B3.6-99Revision0 SCIVsB3.6.4.2TableB3.6.4.2-2SecondaryContainmentVenti1ationSystemAutomaticIsolationDampei"s(Page1of1)DeviceNumberDeviceDescriptionArea/EIev.RequiredPositionX---0Ut>>tyPenetratIontoUn>t1EastStaIrwelYar/8lndFangedX-29-2-44X-29-2-45X-29-2-46X-29-2-47X-29-2-48SDHRSstemtoFuelPoolCoolingSDHRSystemtoFuelPoolCoolingTraryChillertoRBCWTemporaryChillertoRBCWUtilitPenetrationtoUnit1RRBaYard/670Yard/670Yard/670Yard/670Yard/670BLindFlangedBlindFlangedBlindFlangedBlindFlangedCaX-33-2-3000UtilityPenetrationtoUnit2EastStairwellX-28-2-3000UtilityPenetrationtoUnit1EastStairwellX-29-2-48UtilityPenetrationtoUnit1RRBayX-33-2-3000UtilityPenetrationtoUnit2EastStairwellYard/67028/67029/67033/670BlindFlangedBlindFlangedCappedBlindFlangedX-29-3-54X-29-3-55X-29.5-95X-29.5-96X-29-5-91X-29-5-92X-29-5-97187388187389187390187391110176110186110'ISO1'1018'I110182110187210186210187210191210192210193Ut>lityPenetrat>ontoUn>t1RBCCWHxAreaUtilityPenetrationtoUnit1RBCCWHxAreaTemporaryChillertoUnit1RBCWTrarChillertoUnit1RBCWTraryChillertoUnit2RBCWTraryChillertoUnit2RBCWUtilityPenetrationfromUnit1RRBaytoUnit2Elev.749RBCWTChillerDischargeIsoVlvRBCWTChillerSulyIsoVlvRBCWTempChiIlerSupplyDrainVlvRBCWTChillerDischargeDrainVlvSDHRSupplyDrainVlvSDHRDischargeDrainVlvSOHRSupplyVentVlvSDHRDischargeFillVlvSDHRDischargeVentVlvSDHRSulyFillVlvSDHRSupplyDrainVlvSDHRSulVentVlvSDHRDischargeVentVlvSDHRDischargeDrainVlvSDHRDischargeVentVlv27/68327/68329/74929/74933/74933/74933/74929/67029/67029/67029/67029/67029/67029/74927/74927/74929/74933/74933/74930/74930/74933/749BlIndFlangedBlindFlangedBlindFlangedBlindFlangedBlindFlangedBlindFlangedCappedClosedManualIsolationValveClosedManualIsolationValveCLosedManualIsolationValveClosedManualIsolationValveClosedManualIsolationValveClosedManualIsolationValveClosedManualIsolationValveClosedManualIsolationValveClosedManualIsolationValveClosedManualIsolationValveClosedManualIsolationValveClosedManualIsolationValveClosedManualIsolationValveClosedManualIsolationValveClosedManualIsolationValveSUSQUEHANNA-UNIT1B3.6-100Revision0 SGTSystemB3.6.4.3B3.6CONTAINMENTSYSTEMSB3.6.4.3StandbyGasTreatment(SGT)SystemBASESBACKGROUNDTheSGTSystemisrequiredby10CFR50,AppendixA,GDC41,"ContainmentAtmosphereCleanup"(Ref.1).Thesaf'etyfunctionoftheSGTSystemistoensurethatradioa'ctivematerialsthatleakfromtheprimarycontainmentintothesecondarycontainmentfollowingaDesignBasisAccident(DBA)arefilteredandadsorbedpriortoexhaustingtotheenvironment.TheSGTSystemconsistsoftworedundantsubsystems,eachwithitsownsetofdampers,filtertrain.arecirculationfan,andassociateddampersandcontrols.Eachfiltertrainconsistsof(componentslistedinorderofthedirectionoftheairflow):a.Ademister;b.Anelectricheater;c.Aprefilter;d.Ahighefficiencyparticulateair(HEPA)filter;e.Acharcoaladsorber;AsecondHEPAfilter;andg.Acentrifugalfan.ThesizingoftheSGTSystemequipmentandcomponentsisbasedonhandlinganincomingairmixtureatamaximumof125'F.Theinternalpressureofthesecondarycontainmentismaintainedatanegativepressureof0.25incheswatergaugewhenthesystemisinoperation.Maintenanceofanegativepressureprecludesdirectoutleakage.Thedemisterisprovidedtoremoveentrainedwaterintheair,whiletheelectricheaterreducestherelativehumidityoftheairstreamtolessthan70K(Ref.2).Theprefilterremoveslargeparticulatematter,whiletheHEPAfilter(continued)SUSQUEHANNA-UNIT1B3.6-101Revision0 SGTSystemB3.6.4.3BASESBACKGROUND(continued)removesfineparticulatematterandprotectsthecharcoalfromfouling.Thecharcoaladsorberremovesgaseouselementaliodineandorganiciodides.andthefinalHEPA'iltercollectsanycarbonfinesexhaustedfromthecharcoaladsorber.TheSGTSystemautomaticallystartsandoperatesinresponsetoactuationsignalsindicativeofconditionsoranaccidentthatcouldrequireoperationofthesystem.Followinginitiationineachdivision,theassociatedfiltertrainfanstarts.Uponverificationthatbothsubsystemsareoperating,theredundantsubsystemmaybeshutdown.APPLICABLESAFETYANALYSESThedesignbasisfortheSGTSystemistomitigatetheconsequencesofalossofcoolantaccidentandfuelhandlingaccidents(Ref.2).Foralleventsanalyzed.theSGTSystemisshowntobeautomaticallyinitiatedtoreduce,viafiltrationandadsorption,theradioactivematerialreleasedtotheenvironment.TheSGTSystemsatisfiesCriterion3oftheNRCPolicyStatement(Ref.3).LCOFollowingaDBA,aminimumofoneSGTsubsystemisrequiredtomaintainthesecondarycontainmentatanegativepressurewithrespecttotheenvironmentandtoprocessgaseousreleases.MeetingtheLCOrequirementsfortwoOPERABLEsubsystemsensuresoperationofatleastoneSGTsubsystemintheeventofasingleactivefailure.ASGTsubsystemisconsideredOPERABLEwhenithasanOPERABLEsetof'ampers,filtertrain,recirculationfanandassociateddampers,andassociatedcontrols.APPLICABILITYInMODES1,2,and3,aDBAcould.leadtoafissionproductreleasetoprimarycontainmentthatleakstosecondarycontainment.Therefore,SGTSystemOPERABILITYisrequiredduringtheseMODES.(continued)SUSQUEHANNA-UNIT1B3.6-102Revision0 SGTSystem83.6.4.3BASESAPPLICABILITY(continued)InMODES4and5.theprobabilityandconsequencesoftheseeventsarereducedduetothepressureandtemperaturelimitationsintheseMODES.Therefore,maintainingtheSGTSysteminOPERABLEstatusisnotrequiredinMODE4or5,exceptforothersituationsunderwhichsignificantreleasesofradioactivematerialcanbepostulated,suchasduringoperationswithapotentialfordrainingthereactorvessel(OPDRVs),duringCOREALTERATIONS,orduringmovementofirradiatedfuelassembliesinthesecondarycontainment.ACTIONSA.1WithoneSGTsubsysteminoperable,theinoperablesubsystemmustberestoredtoOPERABLEstatusin7days.InthisCondition,theremainingOPERABLESGTsubsystemisadequatetoperformtherequiredradioactivityreleasecontrolfunction.However,theoverallsystemreliabilityisreducedbecauseasinglefailureintheOPERABLEsubsystemcouldresultintheradioactivityreleasecontrolfunctionnotbeingadequatelyperformed.The7dayCompletionTimeisbasedonconsiderationofsuchfactorsastheavailabilityoftheOPERABLEredundantSGTSystemandthelowprobabilityofaDBAoccurringduringthisperiod.B.1andB.2IftheSGTsubsystemcannotberestoredtoOPERABLEstatuswithintherequiredCompletionTimeinMODE1,2,or3,theplantmustbebroughttoaMODEinwhichtheLCOdoesnotapply.Toachievethisstatus,theplantmustbebroughttoatleastMODE3within12hoursandtoMODE4within36hours.TheallowedCompletionTimesarereasonable,basedonoperatingexperience.toreachtherequiredplantconditionsfromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.C.lC.2.1C.2.2andC.2.3Duringmovementofirradiatedfuelassemblies,inthesecondarycontainment,duringCOREALTERATIONS,orduringOPDRVs,whenRequiredActionA.1cannotbecompletedwithintherequiredCompletionTime,theOPERABLESGTfiltertrain(continued)SUSQUEHANNA-UNIT1B3.6-103Revision0 SGTSystemB3.6.4.3BASESACTIONSC.1C.2.1C.2.2andC.2.3(continued)shouldimmediatelybeplacedinoperation.ThisactionensuresthattheremainingfiltertrainisOPERABLE,thatnofailuresthatcouldpreventautomaticactuationhaveoccurred,andthatanyotherfailurewouldbereadilydetected.AnalternativetoRequiredActionC.1istoimmediatelysuspendactivitiesthatrepresentapotentialforreleasingradioactivematerialtothesecondarycontainment,thusplacingtheplantinaconditionthatminimizesrisk.Ifapplicable,COREALTERATIONSandmovementofirradiatedfuelassembliesmustimmediatelybesuspended.Suspensionoftheseactivitiesmustnotprecludecompletionofmovementofacomponenttoasafeposition.Also,ifapplicable,actionsmustimmediatelybeinitiatedtosuspendOPDRVsinordertominimizetheprobabilityofavesseldraindownandsubsequentpotentialforfissionproductrelease.ActionsmustcontinueuntilOPDRVsaresuspended.TheRequiredActionsofConditionChavebeenmodifiedbyaNotestatingthatLCO3.0.3isnotapplicable.IfmovingirradiatedfuelassemblieswhileinMODE4or5,LCO3.0.3wouldnotspecifyanyaction.IfmovingirradiatedfuelassemblieswhileinMODE1,2,or3,thefuelmovementisindependentofreactoroperations.Therefore,ineithercase,inabilitytosuspendmovementofirradiatedfuelassemblieswouldnotbeasufficientreasontorequireareactorshutdown.D.1IfbothSGTsubsystemsareinoperableinMODE1,2.or3,theSGTsystemmaynotbecapableofsupportingtherequiredradioactivityreleasecontrolfunction.The4hourCompletionTimeprovidesaperiodoftimetocorrecttheproblemthatiscommensuratewiththeimportanceof'aintainingtheSGTSystemcontributiontosecondarycontainmentduringMODES1,2,and3.Thistimeperiodalsoensuresthattheprobabilityofanaccident(requiringSGTOPERABILITY)occurringduringperiodswhereSGTisinoperableisminimal.(continued)SUSQUEHANNA-UNIT183.6-104Revision0 SGTSystemB3.6.4.3BASESACTIONS(continued)E.1andE.2IfatleastoneSGTsubsystemcannotberestoredtoOPERABLEstatuswithintherequiredCompletionTime,theplantmustbebroughttoaMODEinwhichtheLCOdoesnotapply.Toachievethisstatus,theplantmustbebroughttoatleastMODE3within12hoursandtoMODE4within36hours.TheallowedCompletionTimesarereasonable.basedonoperatingexperience,toreachtherequiredplantconditionsfromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.F.1F.2andF.3WhentwoSGTsubsystemsareinoperable,ifapplicable,CORE'AITERATIONSandmovementofirradiatedfuelassembliesinsecondarycontainmentmustimmediatelybesuspended.Suspensionoftheseactivitiesshallnotprecludecompletionofmovementofacomponenttoasafeposition.Also,ifapplicable,actionsmustimmediatelybeinitiatedtosuspendOPDRVsinordertominimizetheprobabilityofavesseldraindownandsubsequentpotentialforfissionproductrelease.ActionsmustcontinueuntilOPDRVsaresuspended.RequiredActionF.lhasbeenmodifiedbyaNotestatingthatLCO3.0.3isnotapplicable.IfmovingirradiatedfuelassemblieswhileinMODE4or5,LCO3.0.3wouldnotspecifyanyaction.IfmovingirradiatedfuelassemblieswhileinMODE1,2,or3.thefuelmovementisindependentofreactoroperations.Therefore,ineithercase,inabilitytosuspendmovementofirradiatedfuelassemblieswouldnotbeasufficientreasontorequireareactorshutdown.SURVEILLANCEREQUIREMENTSSR3.6.4.3.1OperatingeachSGTfiltertrainfor~10continuoushoursensuresthatbothfiltertrainareOPERABLEandthatallassociatedcontrolsarefunctioningproperly.Italsoensuresthatblockage,fanormotorfailure,orexcessivevibrationcanbedetectedforcorrectiveaction.Operationwiththeheaterson(automaticheatercyclingtomaintain(continued)SUSQUEHANNA-UNIT1B3.6-105Revision0 SGTSystemB3.6.4.3BASESSURVEILLANCEREQUIREMENTSSR3.6.4.3.1(continued)temperature)for~10continuoushoursevery31dayseliminatesmoistureontheadsorbersandHEPAfilters.The31dayFrequencyisconsistentwiththerequirementsofReference4.SR3.6.4.3.2ThisSRverifiesthattherequiredSGTfiltertestingisperformedinaccordancewiththeVentilationFilterTestingProgram(VFTP).TheVFTPincludestestingHEPAfilterperformance,charcoaladsorberefficiency,minimumsystemflowrate,andthephysicalpropertiesoftheactivatedcharcoal(generaluseandfollowingspecificoperations).SpecifictestfrequenciesandadditionalinformationarediscussedindetailintheVFTP.SR3.6.4.3.3ThisSRverifiesthateachSGTsubsystemstartsonreceiptofanactualorsimulatedinitiationsignal.WhilethisSurveillancec8nbeperformedwiththe-reactorŽat-power,operatingexperiencehasshownthatthesecomponentsusuallypasstheSurveillancewhenperformedatthe.24..mortthFrequency.TheLOGICSYSTEMFUNCTIONALTelinSR--3.3.6;2-.5overlapsthisSRtoprovidecompletetesting=of-the=sat'etyfunction.Therefore,theFrequencywas-found':be-;acceptablefromareliabilitystandpoint.,SR3.6.4.3.4ThisSRverifiesthatthefiltercoolingbypassandoutsideairdampersopenandthefanstartsonhighcharcoaltemperature.ThisensuresthatthecoolingmodeofSGTSystemoperationisavailable.WhilethisSurveillancecanbeperformedwiththereactoratpower,operatingexperiencehasshownthatthesecomponentsusuallypasstheSurveillancewhenperformedatthe24monthFrequency,whichisbasedontherefuelingcycle.Therefore,theFrequencywasfoundtobeacceptablefromareliabilitystandpoint.SUSQUEHANNA-UNIT1B3.6-106(continued)Revision0 SGTSystemB3.6.4.3BASES(continued)REFERENCES1.10CFR50,AppendixA,GOC41.2.FSAR,Section6.2.3.3.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).4.RegulatoryGuide1.52,Rev.2.SUSQUEHANNA-UNIT1B3.6-107Revision0 RHRSWSystemandUHSB3.7.1B3.7PLANTSYSTEMS83.7.1ResidualHeatRemovalServiceWater(RHRSW)SystemandtheUltimateHeatSink(UHS)BASES~BACKGROUNDTheRHRSWSystemisdesignedtoprovidecoolingwaterfortheResidualHeatRemoval(RHR)Systemheatexchangers,requiredforasafereactorshutdownfollowingaDesignBasisAccident(DBA)ortransient.TheRHRSWSystemisoperatedwhenevertheRHRheatexchangersarerequiredtooperateintheshutdowncoolingmodeorinthesuppressionpoolcoolingorspraymodeoftheRHRSystem.TheRHRSWSystemconsistsofthespraypondwhichactsastheUHSandtwoindependentandredundantsubsystems.Eachsubsystemismadeupofaheader,onepump,asuctionsource.valves,piping,heatexchanger,andassociatedinstrumentation.Eitherofthetwosubsystemsiscapableofprovidingtherequiredcoolingcapacitytomaintainsafeshutdownconditions.ThetwosubsystemsareseparatedsothatfailureofonesubsystemwillnotaffecttheOPERABILITYofthe'othersubsystem.TheRHRSWSystemisdesignedwithsufficientredundancysothatnosingleactivecomponentfailurecanpreventit-fromachievingitsdesignfunction.TheRHRSWSystemisdescribedintheFSAR,Section9.2.6.Reference1.CoolingwaterispumpedbytheRHRSWpumpsfromtheUHSthroughthetubesideoftheRHRheatexchangers.AfterremovingheatfromtheRHRSWheatexchanger,thewaterisdischargedtothespraypond(UHS)bywayofanetworkofspraysthatdissipatetheheattotheatmosphereordirectlytotheUHSviaabypassvalve.Thesystemisinitiatedmanuallyfromthecontrolroom.ThesystemcanbestartedanytimetheLOCAsignalismanuallyoverriddenorclears.APPLICABLESAFETYANALYSESTheRHRSWSystemremovesheatfromthesuppressionpooltolimitthesuppressionpooltemperatureandprimarycontainmentpressurefollowingaLOCA.Thisensuresthattheprimarycontainmentcanperformitsfunctionoflimitingthereleaseofradioactivematerialstotheenvironment(continued)SUSQUEHANNA-UNIT1B3.7-1Revision0 RHRSWSystemandUHSB3.7.1BASESAPPLICABLESAFETYANALYSES(continued)followingaLOCA.TheabilityoftheRHRSWSystemtosupportlongtermcoolingofthereactororprimarycontainmentisdiscussedintheFSAR.Chapters6and15(Refs.2and3,respectively).TheseanalysesexplicitlyassumethattheRHRSWSystemwillprovideadequatecoolingsupporttotheequipmentrequiredforsafeshutdown.TheseanalysesincludetheevaluationofthelongtermprimarycontainmentresponseafteradesignbasisLOCA.ThesafetyanalysesforlongtermcoolingwereperformedforvariouscombinationsofRHRSystemfailures.TheworstcasesinglefailurethatwouldaffecttheperformanceoftheRHRSWSystemisanyfailurethatwoulddisableonesubsystemoftheRHRSWSystem.AsdiscussedintheFSAR,Section6.2.2(Ref.2)fortheseanalyses,manualinitiationof'heOPERABLERHRSWsubsystemandtheassociatedRHRSystemisassumedtooccur30minutesafteraDBA.Inthiscase.themaximumsuppressionchamberwatertemperatureandpressureareanalyzedto,bebelowthedesigntemperatureof'20'Fandmaximumallowablepressureof53psig.TheRHRSWSystem,togetherwiththeUHS,satisfyCriterion3ofthe-NRCPolicyStatement.(Ref.4)LCOTwoRHRSWsubsystemsarerequiredtobeOPERABLEtoprovidetherequiredredundancytoensurethatthesystemfunctionstoremovepostaccidentheatloads,assumingtheworstcasesingleactivefailureoccurscoincidentwiththelossofoffsitepower.AnRHRSWsubsystemisconsideredOPERABLEwhen:a.OnepumpisOPERABLE;andb.AnOPERABLEflowpathiscapableoftakingsuctionfromtheUHSandtransferringthewatertotheRHRheatexchangerandreturningittotheUHSattheassumedflowrate,andc.AnOPERABLEUHS.TheOPERABILITYoftheUHSisbasedonhavingaminimumwaterlevelof678feet1inchabovemeansealevelandamaximumwatertemperatureof88'F.SUSQUEHANNA-UNIT1B3.7-2(continued)Revision0 RHRSWSystemandUHSB3.7.1BASES(continued)APPLICABILITYInMODESl.2,and3,theRHRSWSystemandtheUHSarerequiredtobeOPERABLEtosupporttheOPERABILITYoftheRHRSystemforprimarycontainmentcooling(LCO3.6.2.3."ResidualHeatRemoval(RHR)SuppressionPoolCooling,"andLCO3.6.2.4,"ResidualHeatRemoval(RHR)SuppressionPoolSpray")anddecayheatremoval(LCO3.4.8,"ResidualHeatRemoval(RHR)ShutdownCoolingSystem-HotShutdown").TheApplicabilityisthereforeconsistentwiththerequirementsofthesesystems.InMODES4and5.theOPERABILITYrequirementsoftheRHRSWSystemaredeterminedbytheRHRshutdowncoolingsubsystem(s)itsupports(LCO3.4.9,"ResidualHeatRemoval(RHR)ShutdownCoolingSystem-ColdShutdown";LCO3.9.7,"ResidualHeatRemoval(RHR)-HighWaterLevel";andLCO3.9.8,"ResidualHeatRemoval(RHR)-LowWaterLevel").InMODES4and5.theOPERABILITYrequirementsoftheUHSisdeterminedbythesystemsitsupports.ACTIONSTheACTIONSaremodifiedbyaNoteindicatingthattheapplicableConditionsofLCO3.4.8,beenteredandRequiredActionstakeniftheinoperableRHRSWsubsystemresultsininoperableRHRshutdowncooling(SDC)(i.e.,boththeUnit1andUnit2RHRSWpumpsinaloopareinoperableresultingintheassociatedRHRSDCsystembeinginoperable).ThisisanexceptiontoLCO3.0.6becausetheRequiredActionsofLCO3.7.1donotadequatelycompensateforthelossofRHRSDCFunction(LCO3.4.8).A.1RequiredActionA.lisintendedtoensurethatappropriateactionsaretakenifoneUnit1RHRSWsubsystemisinoperable.Althoughdesignatedandoperatedasaunitizedsystem,theassociatedUnit2subsystemisdirectlyconnectedtoacommonheaderwhichcansupplytheassociatedRHRheatexchangerineitherunit.TheUnit2subsystemsareconsideredcapableofsupportingUnit1RHRSWsubsystemwhentheUnit2subsystemisOPERABLEandcanprovidetheassumedflowtotheUnit1heatexchanger.ACompletiontimeof7days,whenoneorbothUnit2RHRSWsubsystemsarenotcapableofsupportingtheUnit1RHRSWsubsystems,isallowedtorestoretheUnit1RHRSWsubsystemtoOPERABLE(continued)SUSQUEHANNA-UNIT1B3.7-3Revision0 RHRSWSystemandUHSB3.7.1BASESACTIONSA.1(continued)status.Inthisconfiguration,theremainingOPERABLEUnit1RHRSWsubsystemisadequatetoperformtheRHRSWheatremovalfunction.However,theoverallreliabilityisreducedbecauseasinglefailureintheOPERABLERHRSWsubsystemcouldresultinlossofRHRSWfunction.TheCompletionTimeisbasedontheredundantRHRSWcapabilitiesaffordedbytheOPERABLEsubsystemandthelowprobabilityofaneventoccurringrequiringRHRSWduringthisperiod.WithoneRHRSWsubsysteminoperable,andbothoftheUnit2RHRSWsubsystemscapableofsupportingtheirrespectiveUnit1RHRSWsubsystems,thedesignbasiscoolingcapacityforbothunitscanstillbemaintainedevenconsideringasingleactivefailure.However,theconfigurationdoesreducetheoverallreliabilityoftheRHRSWSystem.Therefore,providedbothoftheUnit2subsystemsremaincapableofsupportingtheirrespectiveUnit1RHRSWsubsystems,theinoperableRHRSWsubsystemmustberestoredtoOPERABLEstatuswithin30days.The30dayCompletionTimeisbasedontheremainingRHRSWSystemheatremovalcapability.B.1RequiredActionB.lisintendedtoensurethatappropriateactionsaretakenifbothUnit1RHRSWsubsystemsareinoperable.Althoughdesignatedandoperatedasaunitizedsystem,theassociatedUnit2subsystemisdirectlyconnectedtoacommonheaderwhichcansupplytheassociatedRHRheatexchangerineitherunit.WithbothUnit1RHRSWsubsystemsinoperablenotcausedbytheinoperabilityoftwoUnit1RHRSWPumps(e.g.,bothsubsystemswithinoperableflowpaths,oronesubsystemwithaninoperablepumpandonesubsystemwithaninoperable-flowpath),theRHRSWSystemisnotcapableofperformingitsintendedfunction.AtleastonesubsystemmustberestoredtoOPERABLEstatuswithin8hours.The8hourCompletionTimeforrestoringoneRHRSWsubsystemtoOPERABLEstatus,isbasedontheCompletionTimesprovidedfortheRHRsuppressionpoolsprayfunction.WithbothUnit-1RHRSWsubsystemsinoperable,andbothoftheUnit2RHRSWsubsystemscapableofsupportingtheir(continued)SUSQUEHANNA-UNIT1B3.7-4Revision0

RHRSWSystemandUHSB3.7.1BASESACTIONSB.1(continued)respectiveUnit1RHRSWsubsystem,ifnoadditionalfailuresoccurwhichimpacttheRHRSWSystem,theremainingOPERABLEUnit2subsystemsandflowpathsprovideadequateheatremovalcapacityfollowingadesignbasisLOCA.However,capabilityforthisalignmentisnotassumedinlongtermcontainmentresponseanalysisandanadditionalsinglefailureintheRHRSWSystemcouldreducethesystemcapacitybelowthatassumedinthesafetyanalysis.Therefore,continuedoperationispermittedonlyforalimitedtime.OneinoperablesubsystemisrequiredtoberestoredtoOPERABLEstatuswithin7days.The7dayCompletionTimeforrestoringoneinoperableRHRSWsubsystemtoOPERABLEstatusisbasedonengineeringjudgment,consideringthelevelofredundancyprovided,andthelowprobabilityofaDBAwithconcurrentworstcasesinglefailure.C.1andC.2IftheRHRSWsubsystemscannotberestoredtoOPERABLEstatuswithintheassociated.CompletionTimes,ortheUHSisdeterminedtobeinoperable,theunitmustbeplacedinaMODEinwhichphdLCOdoesnotapply.Toachievethisstatus,theunitmustbeplacedinatleastMODE3within12hoursandinMODE4within36hours.TheallowedCompletionTimesarereasonable,basedonoperatingexperience,toreachtherequiredunitconditionsfromfullpowerconditionsinanorderlymannerandwithoutchallengingunitsystems.SURVEILLANCEREQUIREMENTSSR3.7.1.1ThisSRverifiesthewaterleveltobesufficientfortheTroperoperationoftheRHRSWpumps(netpositivesuctioneadandpumpvortexingareconsideredindeterminingthislimit).The12hourFrequencyisbasedonoperatingexperiencerelatedtotrendingoftheparametervariationsduringtheapplicableMODES.(continued)SUSQUEHANNA-UNIT1B3.7-5Revision0 RHRSWSystemandUHSB3.7.1BASESSURVEILLANCEREQUIREMENTS(continued)SR3.7.1.2VerificationoftheUHStemperature,whichisthearithmeticalaverageoftheUHStemperaturenearthesurface.middleandbottomlevels,ensuresthattheheatremovalcapabilityoftheESWandRHRSWSystemsarewithintheassumptionsoftheDBAanalysis.The24hourFrequencyisbasedonoperatingexperiencerelatedtotrendingoftheparametervariationsduringtheapplicableMODES.SR3.7.1.3Verifyingthecorrectalignmentforeachmanual.poweroperated.andautomaticvalveineachRHRSWsubsystemflowpathprovidesassurancethattheproperflowpathswillexistforRHRSWoperation.ThisSRdoesnotapplytovalvesthatarelocked,sealed,orotherwisesecuredinposition,sincethesevalvesareverifiedtobeinthecorrectpositionpriortolocking,sealing,orsecuring.Avalveisalsoallowedtobeinthenonaccidentposition,andyetconsideredinthecorrectposition,provideditcanberealignedtoits'ccidentposition.ThisisacceptablebecausetheRHRSWSystemisamanuallyinitiatedsystem..ThisSRdoesnotrequireanytestingorvalvemanipulation;rather,itinvolvesverificationthatthosevalvescapableofbeingmispositionedareinthecorrectposition.'hisSRdoesnotapplytovalvesthatcannotbeinadvertentlymisaligned.suchascheckvalves.The31dayFrequencyisbasedonengineeringjudgment,isconsistentwiththeproceduralcontrolsgoverningvalveoperation,andensurescorrectvalvepositions.REFERENCES1.FSAR,Section9.2.6.2.FSAR.Chapter6.3.FSAR,Chapter15.4.FinalPolicyStatementonTechnicalSpecificationsImprovements.July22,1993(58,FR39132).SUSQUEHANNA-UNIT1B3.7-6Revision0 ESWSystemB3.7.2B3.7PLANTSYSTENS83.7.2EmergencyServiceWater(ESW)SystemBASESBACKGROUNDTheESWSystemisdesignedtoprovidecoolingwaterfortheremovalofheatfromequipment,suchasthedieselgenerators(DGs),residualheatremoval(RHR)pumpcoolers,androomcoolersforEmergencyCoreCoolingSystemequipment,requiredforasafereactorshutdownfollowingaDesignBasisAccident(DBA)ortransient.Uponreceiptof'lossofoffsitepowerorlossofcoolantaccident(LOCA)signal.ESWpumpsareautomaticallystartedafteratimedelay.TheESW'Systemconsistsoftwoindependentandredundantsubsystems.Eachof'hetwoESWsubsystemsismadeupofaheader,twopumps,asuctionsource,valves,pipingandassociatedinstrumentation.ThetwosubsystemsareseparatedfromeachothersoanactivesinglefailureinonesubsystemwillnotaffecttheOPERABILITYoftheothersubsystem.CoolingwaterispumpedfromtheUltimateHeatSink(UHS)bytheESWpumpsCotheessentialcomponentsthroughthetwomainheaders.Afterremovingheatfromthecomponents,thewaterisdischargedtothespraypond(UHS)bywayofanetworkofspraysthatdissipatetheheattotheatmosphereordirectlytotheUHSviaabypassvalve.APPLICABLESAFETYANALYSESSufficientwaterinventoryisavailableforallESWSystempostLOCAcoolingrequirementsfora30dayperiodwithnoadditionalmakeupwatersourceavailable.TheabilityoftheESWSystemtosupportlongtermcoolingisassumedinevaluationsoftheequipmentrequiredforsafereactorshutdownpresentedintheFSAR,Chapters4and6(Refs.1and2,respectively).TheabilityoftheESWSystemtoprovideadequatecoolingtotheidentifiedsafetyequipmentisanimplicitassumptionforthesafetyanalysesevaluatedinReferences1and2.TheabilitytoprovideonsiteemergencyACpowerisdependentontheabilityoftheESWSystemtocooltheDGs.ThelongtermcoolingcapabilityoftheRHRandcorespray(continued)SUSQUEHANNA-UNIT1B3.7-7Revision0 ESWSystemB3.7.2BASESAPPLICABLESAFETYANALYSES(continued)pumpsisalsodependentonthecoolingprovidedbytheESWSystem.TheESWSystemsatisfiesCriterion3oftheNRCPolicyStatement.(Ref.3)LCOTheESWsubsystemsareindependentofeachothertothedegreethateachhasseparatecontrols,powersupplies,andtheoperationofonedoesnotdependontheother.IntheeventofaDBA,onesubsystemofESWisrequiredtoprovidetheminimumheatremovalcapabilityassumedinthesafetyanalysisforthesystemtowhichitsuppliescoolingwater.Toensurethisrequirementismet,twosubsystemsofESWmustbeOPERABLE.Atleastonesubsystemwilloperate,iftheworstsingleactivefailureoccurscoincidentwiththelossofoffsitepower.AsubsystemisconsideredOPERABLEwhenithastwoOPERABLEpumps,andanOPERABLEflowpathcapableoftakingsuctionfromtheUHSandtransferringthewatertotheappropriateequipmentandreturningflow.totheUHS.Ifindividualloadsareisolated,theaffectedcomponentsmayberenderedinoperable,but'tdoesnotnecessarilyaffecttheOPERABILITYoftheESWSystem.BecauseeachESWsubsystemsuppliesallfourrequiredDGs,anESWsubsystemisconsideredOPERABLEifitsuppliesatleastthreeofthefourDGsprovidednosingleDGdoesnothaveanESWsubsystemcapableofsupplyingflow.AnadequatesuctionsourceisnotaddressedinthisLCOsincetheminimumnetpositivesuctionheadoftheESWpumpsisboundedbytheResidualHeatRemovalServiceWaterSystemrequirements(LCO3.7.1,"ResidualHeatRemovalSystemandUltimateHeatSink(UHS)").APPLICABILITYInMODES1.2,and3,theESWSystemisrequiredtobeOPERABLEtosupportOPERABILITYoftheequipmentservicedbytheESWSystem.Therefore,theESWSystemisrequiredtobeOPERABLEintheseMODES.InMODES4and5.theOPERABILITYrequirementsoftheESWSystemisdeterminedbythesystemsitsupports.SUSQUEHANNA-UNIT1B3.7-8(continued)Revision0

ESWSystemB3.7.2BASES(continued)ACTIONSTheACTIONSaremodifiedbyaNoteindicatingthattheapplicableConditionsofLCO3.8.1,beenteredandRequiredActionstakeniftheinoperableESWsubsystemresultsininoperableDGs(i.e.,thesupplyfrombothsubsystemsofESWissecuredtothesameDG).ThisisanexceptiontoLCO3.0.6becausetheRequiredActionsofLCO3.7.2donotadequatelycompensateforthelossofaDG(LCO3.8.1)duetolossofESWflow.A.1WithoneESWpumpinoperableineachsubsystem.bothinoperablepumpsmustberestoredtoOPERABLEstatuswithin7days.Withtheunitinthiscondition,theremainingOPERABLEESWpumpsareadequatetoperformtheESWheatremovalfunction;however,theoverallreliabilityisreducedbecauseasinglefailurecouldresultinlossofESWfunction.The7dayCompletionTimeisbasedontheremainingESWheatremovalcapabilityandthelowprobabilityofanevent'occurringduringthistimeperiod.B.1WithoneorbothESWsubsystemsnotcapableofsupplyingESWflowtotwoormoreDGs,thecapabilitytosupplyESWtoatleastthreeDGsfromeachESWsubsystemmustberestoredwithin7days.Withtheunitsinthiscondition,theremainingESWflowtoDGsisadequatetomaintainthefullcapabilityofallDGs;however,theoverallreliabilityisreducedbecauseasinglefailurecouldresultinlossofthemultipleDGs.The7dayCompletionTimeisbasedonthefactthatallDGsremaincapableofrespondingtoaneventoccurringduringthistimeperiod.C.1WithoneESWsubsysteminoperableforreasonsotherthanConditionB,theESWsubsystemmustberestoredtoOPERABLEstatuswithin7days.Withtheunitinthiscondition,theremainingOPERABLEESWsubsystemisadequatetoperformtheheatremovalfunction.However,theoverallreliabilityisreducedbecauseasinglefailureintheOPERABLEESWsubsystemcouldresultinlossofESWfunction.(continued)SUSQUEHANNA-UNIT1B3.7-9Revision0 ESWSystemB3.7.2BASESACTIONSC.l(continued)The7dayCompletionTimeisbasedontheredundantESWSystemcapabilitiesaffordedbytheOPERABLEsubsystem,thelowprobabilityofanaccidentoccurringduringthistimeperiod,andisconsistentwiththeallowedCompletionTimeforrestoringaninoperableCoreSprayLoop,LPCIPumpsandControlStructureChiller.D.landD.2IftheESWsubsystemcannotberestoredtoOPERABLEstatuswithintheassociatedCompletionTime,orbothESWsubsystemsareinoperableforreasonsotherthanConditionAandB(i.e.,threeESWpumpsinoperable).theunitmustbeplacedinaMODEinwhichtheLCOdoesnotapply.Toachievethisstatus,theunitmustbeplacedinatleastMODE3within12hoursandinMODE4within36hours.TheallowedCompletionTimesarereasonable,basedonoperatingexperience,toreachtherequiredunitconditionsfromfullpowerconditionsinanorderlymannerandwithoutchallengingunitsystems.'ISURVEILLANCEREQUIREMENTSSR3.7.2.1Verifyingthecorrectalignmentforeachmanual,poweroperated,andautomaticvalveineachESWsubsystemflowpathprovidesassurancethattheproperflowpathswillexistforESWoperation.ThisSRdoesnotapplytovalvesthatarelocked,sealed.orotherwisesecuredinposition,sincethesevalveswereverifiedtobeinthecorrectpositionpriortolocking,sealing,.orsecuring.Avalveisalsoallowedtobeinthenonaccidentposition,andyetconsideredinthecorrectposition,provideditcanbeautomaticallyrealignedtoitsaccidentpositionwithintherequiredtime.ThisSRdoesnotrequireanytestingorvalvemanipulation;rather.itinvolvesverificationthatthosevalvescapableofbeingmispositionedareinthecorrectposition.ThisSRdoesnotapplytovalvesthatcannotbeinadvertentlymisaligned,suchascheckvalves.ThisSRismodifiedbyaNoteindicatingthatisolationoftheESWSystemtocomponentsorsystemsmayrenderthosecomponentsorsystemsinoperable.butdoesnotnecessarily(continued)SUSQUEHANNA-UNIT1B3.7-10Revision0 ESWSystemB3.7.2BASESSURVEILLANCEREQUIREMENTSSR3.7.2.1(continued)affecttheOPERABILITYoftheESWSystem.Assuch,whenallESWpumps,valves,andpipingareOPERABLE,butabranchconnectionoffthemainheaderisisolated,theESWSystemisstillOPERABLE.The31dayFrequencyisbasedonengineeringjudgment,isconsistentwiththeproceduralcontrolsgoverningvalveoperation,andensurescorrectvalvepositions.SR3.7.2.2ThisSRverifiesthattheautomaticvalvesoftheESWSystemwillautomaticallyswitchtothesafetyoremergencypositiontoprovidecoolingwaterexclusivelytothesafetyrelatedequipmentduringanaccidentevent.Thisisdemonstratedbytheuseofanactualorsimulatedinitiationsignal.ThisSRalsoverifiestheautomaticstartcapabilityoftheESWpumpsineachsubsystem.OperatingexperiencehasshownthatthesecomponentsusuallyasstheSRwhenperformedatthe24monthFrequency.herefore,thiSFrequencyisconcludedtobeacceptablefromareliabilitystandpoint.REFERENCES1.FSAR,Chapter4.2.FSAR,Chapter6.3.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22.1993(58FR39132)SUSQUEHANNA-UNIT1B3.7-11Revision0 CREOASSystemB3.7.383.7PLANTSYSTEHSB3.7.3ControlRoomEmergencyOutsideAirSupply(CREOAS)SystemBASESBACKGROUNDTheCREOASSystemprovidesaradiologicallycontrolledenvironmentfromwhichtheunitcanbesafelyoperatedfollowingaDesignBasisAccident(DBA).ThesafetyrelatedfunctionofCREOASSystemincludestwoindependentandredundanthighefficiencyairfiltrationsubsystemsforemergencytreatmentofoutsidesupplyair.Eachsubsystemconsistsofanelectricheater,aprefilter,anupstreamhighefficiencyparticulateair(HEPA)filter,anactivatedcharcoaladsorbersection,adownstreamHEPAfilter,aCREOASfan,acontrolstructureheatingandventilationfan,acontrolroomfloorcoolingfan.acomputerroomfloorcoolingfan,andtheassociatedductworkanddampers.PrefiltersandHEPAfiltersremoveparticulatematter,whichmayberadioactive.Thecharcoaladsorbersprovideaholdupperiodforgaseousiodine.allowingtimefordecay.WiththeexceptionoftheCREOASfan,allotherCREOASsubsystemfansoperatecontinuouslytomaintaintheaffectedcompartmentsenvironment.TheseotherventilationfansoperateindependentlyoftheCREOASfansandarerequiredtooperatetoensureapositivepressureinthecontrolstructureismaintainedutilizingfilteredoutsideairsuppliedbytheCREOASfans.Uponreceiptoftheinitiationsignal(s)(indicativeofconditionsthatcouldresultinradiationexposuretocontrolroompersonnel),theCREOASSystemautomaticallyswitchestothepressurization/filtrationmodeofoperationtopreventinfiltrationofcontaminatedairintothecontrolroom.AsystemofdampersalignstheoutsideairintaketotheCREOASfansuctionandfiltertrain.Outsideairistakeninatthenormalventilationintakeandpassedthroughoneofthecharcoaladsorberfiltersubsystems.ThefilteredairleavingtheCREOASfiltrationtrainisroutedtotheinletoftheotherventilationfansfordistribution.TheCREOASSystemisdesignedtomaintainthecontrolroomenvironmentfora30daycontinuousoccupancyafteraDBAwithoutexceeding5remwholebodydoseoritsequivalenttoanypartofthebody.AsingleCREOASsubsystemwillpressurizethecontrolroomtogreaterthanorequalto(continued)SUSQUEHANNA-UNIT1B3.7-12Revision0

CREOASSystemB3.7.3BASESBACKGROUND(continued)0.125incheswatergaugetopreventinfiltrationofairfromsurroundingbuildings.CREOASSystemoperationinmaintainingcontrolroomhabitabilityisdiscussedintheFSAR,Chapters6and9,(Refs.1and2,respectively).APPLICABLESAFETYANALYSESTheabilityoftheCREOASSystemtomaintainthehabitabilityofthecontrolroomisanexplicitassumptionforthesafetyanalysespresentedintheFSAR,Chapters6and15(Refs.1and3,respectively).Thepressurization/filtrationmodeof'heCREOASSystemisassumedtooperatefollowingalossofcoolantaccident,fuelhandlingaccident.andcontrolroddropaccident.asdiscussedintheFSAR,Section6.4.1(Ref.1).Theradiologicaldosestocontrolroompersonnelasaresultof'hevariousDBAsaresummarizedinReference3.Nosingleactivefailurewillcausethelossofoutsideorrecirculatedair.TheCREOASSystemsatisfiesCriterion3oftheNRCPolicyStatement.(Ref.4)LCOrTworedundantsubsystemsoftheCREOASSystemarerequiredtobeOPERABLEtoensurethatatleastoneisavailable.assumingasinglefailuredisablestheothersubsystem.Totalsystemfailurecouldresultinexceedingadoseof5remwholebodyorequivalenttothecontrolroomoperatorsintheeventofaDBA.TheCREOASSystemisconsideredOPERABLEwhentheindividualcomponentsnecessarytocontroloperatorexposureareOPERABLEinbothsubsystems.AsubsystemisconsideredOPERABLEwhen:a.AfiltertrainconsistingofaCREOASfan,heaters,aHEPAfilter,andcharcoaladsorberwhichisnotexcessivelyrestrictingflowisOPERABLE;andb.AnyoneofthetwoControlStructureHeatingandVentilationfans,ComputerRoomFloorCoolingfans,andControlRoomFloorCoolingfansareOPERABLE;and(continued)SUSQUEHANNA-UNIT1B3.7-13Revision0 CREOASSystemB3.7.3BASESLCO(continued)c.Ductwork,valves,anddampersareOPERABLE.andaircirculationcanbemaintained.Inaddition,thecontrolstructureboundarymustbemaintained,includingtheintegrityofthewalls,floors.ceilings,ductwork,andaccessdoorstomaintainapositivepressure.APPLICABILITYInMODES1,2,and3,theCREOASSystemmustbeOPERABLEtocontroloperator.exposureduringandfollowingaDBA,sincetheDBAcouldleadtoafissionproductrelease.InMODES4and5,theprobabilityandconsequencesofaDBAarereducedbecauseofthepressureandtemperaturelimitationsintheseMODES.Therefore,maintainingtheCREOASSystemOPERABLEisnotrequiredinMODE4or5,exceptf'rthefollowingsituationsunderwhichsignificantradioactivereleasescanbepostulated:a.Duringoperationswithpotentialfordrainingthereactorvessel(OPDRVs):b.DuringCOREALTERATIONS;andc.Duringmovementofirradiatedfuelassembliesinthesecondarycontainment.ACTIONSA,1WithoneCREOASsubsysteminoperable,theinoperableCREOASsubsystemmustberestoredtoOPERABLEstatuswithin7days.Withtheunitinthiscondition,theremainingOPERABLECREOASsubsystemisadequatetoperformcontrolroomradiationprotection.However,theoverallreliabilityisreducedbecauseasinglefailureintheOPERABLEsubsystemcouldresultinreducedCREOASSystemcapability.The7dayCompletionTimeisbasedonthelowprobabilityofaDBAoccurringduringthistimeperiod,andthattheremainingsubsystemcanprovidetherequiredcapabilities.(continued)SUSQUEHANNA-UNIT1B3.7-14Revision0

CREOASSystem83.7.3BASESACTIONS(continued)B.1andB.2InMODE1,2,or3,iftheinoperableCREOASsubsystemcannotberestoredtoOPERABLEstatuswithintheassociatedCompletionTime,theunitmustbeplacedinaMODEthatminimizesrisk.Toachievethisstatus,theunitmustbeplacedinatleastMODE3within12hoursandinMODE4within36hours.TheallowedCompletionTimesarereasonable,basedonoperatingexperience.toreachtherequiredunitconditionsfromfullpowerconditionsinanorderlymannerandwithoutchallengingunitsystems.C.1C.2.1C.2.2andC.2.3TheRequiredActionsofConditionCaremodifiedbyaNoteindicatingthatLCO3.0.3doesnotapply.IfmovingirradiatedfuelassemblieswhileinMODE1,2,or3,thefuelmovementisindependentofreactoroperations.Therefore,inabilitytosuspendmovementofirradiatedfuelassembliesisnotsuffic'ientreasontorequireeitheranentryintoLCO3.0.3orareactorshutdowninaccordancewithLCO3.0.3.'uringmovemenfofirradiatedfuelassembliesinthesecondarycontainment,duringCOREALTERATIONS,orduringOPDRVs,iftheinoperableCREOASsubsystemcannotberestoredtoOPERABLEstatuswithintherequiredCompletionTime,theOPERABLECREOASsubsystemmaybeplacedinthepressurization/filtrationmode.Thisactionensuresthat.theremainingsubsystemisOPERABLE,thatnofailuresthatwouldpreventautomaticactuationwilloccur,andthatanyactivefailurewillbereadilydetected.AnalternativetoRequiredActionC.1istoimmediatelysuspendactivitiesthatpresentapotentialforreleasingradioactivitythatmightrequireisolationofthecontrolroom.Thisplacestheunitinaconditionthatminimizesrisk.Ifapplicable,COREALTERATIONSandmovementofirradiatedfuelassembliesinthesecondarycontainmentmustbesuspendedimmediately.Suspensionoftheseactivitiesshallnotprecludecompletionofmovementofacomponenttoasafeposition.Also,ifapplicable,actionsmustbeinitiatedimmediatelytosuspendOPDRVstominimizetheprobabilityof(continued)SUSQUEHANNA-UNIT1B3.7-15Revision0 CREOASSystemB3.7.3BASESACTIONSC.1C.2.1C.2.2andC.2.3(continued)avesseldraindownandthesubsequentpotentialforfissionproductrelease.ActionsmustcontinueuntiltheOPDRVsaresuspended.D.1IfbothCREOASsubsystemsareinoperableinMODE1,2,or3.theCREOASSystemmaynotbecapableofperformingtheintendedfunctionandtheunitisinaconditionoutsidetheaccidentanalyses.Therefore,LCO3.0.3mustbeenteredimmediately.E.1E.2andE.3TheRequiredActionsofConditionEaremodifiedbyaNoteindicatingthatLCO3.0.3doesnotapply.IfmovingirradiatedfuelassemblieswhileinMODE1,2,or3,thefuelmovementisindependentofreactoroperations.Therefore.inabi'litytosuspendmovementofirradiatedfuelassembliesisnotsufficientreasontorequireeitheranentryintoLCO3:0.3orareactorshutdowninaccordancewithLCO3.0.3.Duringmovementofirradiatedfuelassembliesinthesecondarycontainment,duringCOREALTERATIONS,orduringOPDRVs,withtwoCREOASsubsystemsinoperable,actionmustbetakenimmediatelytosuspendactivitiesthatpresentapotentialforreleasingradioactivitythatmightrequireisolationofthecontrolroom.Thisplacestheunitinaconditionthatminimizesrisk.Ifapplicable,COREALTERATIONSandmovementofirradiatedfuelassembliesinthesecondarycontainmentmustbesuspendedimmediately.Suspensionoftheseactivitiesshallnotprecludecompletionofmovementofacomponenttoasafeposition.Ifapplicable,actionsmustbeinitiatedimmediatelytosuspendOPDRVstominimizetheprobabilityofavesseldraindownandsubsequentpotentialforfissionproductrelease.ActionsmustcontinueuntiltheOPDRVsaresuspended.SUSQUEHANNA-UNIT1B3.7-16(continued)Revision0 CREOASSystemB3.7.3BASES(continued)SURVEILLANCEREQUIREMENTSSR3.7.3.1ThisSRverifiesthataCREOASfaninastandbymodestartsondemandfromthecontrolroomandcontinuestooperatewithflowthroughtheHEPAfiltersandcharcoaladsorbers.Standbysystemsshouldbecheckedperiodicallytoensurethattheystartandfunctionproperly.Astheenvironmentalandnormaloperatingconditionsofthissystemarenotsevere,testingeachsubsystemonceeverymonthprovidesanadequatecheckonthissystem.Monthlyheateroperationdriesoutanymoisturethathasaccumulatedinthecharcoalasaresultofhumidityintheambientair.Systemswithheatersmustbeoperatedfor>10continuoushourswiththeheatersenergized.Furthermore,the31dayFrequencyisbasedontheknownreliabilityoftheequipmentandtheavailabilityoftworedundantsubsystems.SR3.7.3.2ThisSRverifiesthattherequiredCREOAStestingisperformedinaccordancewiththeVentilationFilterTestingProgram(VFTP).TheVFTPincludestestingHEPAfilterperformance,charcoaladsorberefficiency,minimumsystemflowrate,andthephysicalpropertiesoftheactivatedcharcoal(generaluseandfollowingspecificoperations).SpecifictestfrequenciesandadditionalinformationarediscussedindetailintheVFTP.SR3.7.3.3ThisSRverifiesthatonanactualorsimulatedinitiationsignal,eachCREOASsubsystemstartsandoperates.TheLOGICSYSTEMFUNCTIONALTESTinSR3.3.7.1.5overlapsthisSRtoprovidecompletetestingofthesafetyfunction.The24monthFrequencyisconsistentwithindustrypracticeandotherfiltrationsystemsSRs.SR3.7.3.4ThisSRverifiestheintegrityofthecontrolstructureenclosureandtheassumedinleakageratesofpotentiallycontaminatedair.Thecontrolstructurepositivepressure,(continued)SUSQUEHANNA-UNIT183.7-17Revision0 CREOASSystem83.7.3BASESSURVEILLANCEREQUIREMENTSSR3.7.3.4(continued)withrespecttopotentiallycontaminatedadjacentareas(theturbinebuilding),isperiodicallytestedtoverifyproperfunctionoftheCREOASSystem.Duringtheemergencymodeofoperation,theCREOASSystemisdesignedtoslightlypressurizethecontrolstructure~0.125incheswatergaugepositivepressurewithrespecttotheoutsideatmospheretopreventunfilteredinleakage.TheCREOASSystemisdesignedtomaintainthispositivepressureataflowrateof~5810cfmtothecontrolstructureinthepressurization/filtrationmode.TheFrequencyof24monthsonaSTAGGEREDTESTBASISisconsistentwithindustrypracticeandotherfiltrationsystemsSRs.REFERENCES1.FSAR,Chapter6.2.FSAR,Chapter9.3.FSAR,Chapter15.4.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA-UNIT183.7-18Revision0 ControlRoomFloorCoolingSystemB3.7.4B3.7PLANTSYSTEMSB3.7.4ControlRoomFloorCoolingSystemBASESBACKGROUNDTheControlRoomFloorCoolingSystemprovidestemperaturecontrolforthecontrolroom.TheControlRoomFloorCoolingSystemconsistsoftwoindependent,redundantsubsystemsthatprovidecoolingofrecirculatedcontrolroomair.Eachsubsystemconsistsofcoolingcoils,fans,chillers,compressors,ductwork,dampers,andinstrumentationandcontrolstoprovideforcontrolroomtemperaturecontrol.TheControlRoomFloorCoolingSystemisdesignedtoprovideacontrolledenvironmentunderbothnormalandaccidentconditions.Asinglesubsystemprovidestherequiredtemperaturecontroltomaintainasuitablecontrolroomenvironment.Thedesignconditionsforthecontrolroomenvironmentare75(+/-5)'Fand50(+/-5)Xrelativehumidity.TheControlRoomFloorCoolingSystemoperationinmaintainingthe"controlroomtemperatureisdiscussedintheFSAR,Section6.4(Ref.1).APPLICABLESAFETYANALYSESThedesignbasisoftheControlRoomFloorCoolingSystemistomaintainthecontrolroomtemperaturefora30daycontinuousoccupancy.TheControlRoomFloorCoolingSystemcomponentsarearrangedinredundantsafetyrelatedsubsystems.Duringemergencyoperation,theControlRoomFloorCoolingSystemmaintainsahabitableenvironmentandensurestheOPERABILITYofcomponentsinthecontrolroom.AsinglefailureofacomponentoftheControlRoomFloorCoolingSystem,assumingalossofoffsitepower,doesnotimpairtheabilityofthesystemtoperformitsdesignfunction.Redundantdetectorsandcontrolsareprovidedforcontrolroomtemperaturecontrol.TheControlRoomFloorCoolingSystemisdesignedinaccordancewithSeismicCategoryIrequirements.TheControlRoomFloorCoolingSystemiscapableofremovingsensibleandlatentheatloadsfromthecontrolroom.includingconsiderationofequipmentheat(continued)SUSQUEHANNA-UNIT183.7-19Revision0 ControlRoomFloorCoolingSystemB3.7.4BASESAPPLICABLESAFETYANALYSES(continued)loadsandpersonneloccupancyrequirementstoensureequipmentOPERABILITY.TheControlRoomFloorCoolingSystemsatisfiesCriterion3oftheNRCPolicyStatement.(Ref.2)LCOTwoindependentandredundantsubsystemsof'heControlRoomFloorCoolingSystemarerequiredtobeOPERABLEtoensurethatatleastoneisavailable.assumingasinglefailuredisablestheothersubsystem.Totalsystemfailurecouldresultintheequipmentoperatingtemperatureexceedinglimits.TheControlRoomFloorCoolingSystemisconsideredOPERABLEwhentheindividualcomponentsnecessarytomaintainthecontrolroomtemperatureareOPERABLEinbothsubsystems.Thesecomponentsincludethecoolingcoils,fans,chillers.compressors,ductwork,dampers.andassociatedinstrumentationandcontrols.TheControlRoomFloorCoolingSystemfans,ductwork,anddampersarealsoaddressedbyLCO3:7.3,"ControlRoomEmergencyOutsideAirSupplySystem".APPLICABILITYInNODE1,2,or3,theControlRoomFloorCoolingSystemmustbeOPERABLEtoensurethatthecontrolroomtemperaturewillnotexceedequipmentOPERABILITYlimitsfollowingcontrolroomisolation.InNODES4and5,theprobabilityandconsequencesofaDesignBasisAccidentarereducedduetothepressureandtemperaturelimitationsintheseNODES.Therefore.maintainingtheControlRoomFloorCoolingSystemOPERABLEisnotrequiredinNODE4or5,exceptforthefollowingsituationsunderwhichsignificantradioactivereleasescanbepostulated:a.Duringoperationswithapotentialfordrainingthereactorvessel(OPDRVs);b.DuringCOREALTERATIONS;and(continued)SUSQUEHANNA-UNITIB3.7-20Revision0 ControlRoomFloorCoolingSystemB3.7.4BASESAPPLICABILITY(continued)c.Duringmovementofirradiatedfuelassembliesinthesecondarycontainment.ACTIONSA.1WithonecontrolroomfloorcoolingsubsysteminoperabletheinoperablecontrolroomfloorcoolingsubsystemmustberestoredtoOPERABLEstatuswithin30days.Withtheunitinthiscondition,theremainingOPERABLEcontrolroomfloorcoolingsubsystemisadequatetoperformthecontrolroomairconditioningfunction.However,theoverallreliabilityisreducedbecauseasinglefailureintheOPERABLEsubsystemcouldresultinlossofthecontrolroomairconditioningfunction.The30dayCompletionTimeisbasedonthelowprobabilityofaneventoccurringrequiringcontrolroomisolation,theconsiderationthattheremainingsubsystemcanprovidetherequiredprotection,andtheavailabilityofalternatesafetyandnonsafetycoolingmethods.B.1andB.2InHODE1,2,or3,iftheinoperablecontrolroomfloorcoolingsubsystemcannotberestoredtoOPERABLEstatuswithintheassociatedCompletionTime,theunitmustbeplacedinaHODEthatminimizesrisk.Toachievethisstatus,theunitmustbeplacedinatleastHODE3within12hoursandinHODE4within36hours.TheallowedCompletionTimesarereasonable,basedonoperatingexperience,toreachtherequiredunitconditionsfromfullpowerconditionsinanorderlymannerandwithoutchallengingunitsystems.C.lC.2.1C.2.2andC.2.3TheRequiredActionsof'onditionCaremodifiedbyaNoteindicatingthatLCO3.0.3doesnotapply.IfmovingirradiatedfuelassemblieswhileinHODE1,2,or3,thefuelmovementisindependentofreactoroperations.Therefore,inabilitytosuspendmovementofirradiatedfuelassembliesisnotsufficientreasontorequireentryinto(continued)SUSQUEHANNA-UNIT1B3.7-21Revision0 ControlRoomFloorCoolingSystemB3.7.4BASESACTIONSC.1C.2.1C.2.2andC.2.3(continued)LCO3.0.3orareactorshutdowninaccordancewithLCO3.0.3.Duringmovementofirradiatedfuelassembliesinthesecondarycontainment,duringCOREALTERATIONS,orduringOPDRVs,ifRequiredActionA.1cannotbecompletedwithintherequiredCompletionTime,theOPERABLEcontrolroomfloorcoolingsubsystemmaybeplacedimmediatelyinoperation.ThisactionensuresthattheremainingsubsystemisOPERABLE,thatnofailuresthatwouldpreventactuationwilloccur,andthatanyactivefailurewillbereadilydetected.AnalternativetoRequiredActionC.1istoimmediatelysuspendactivitiesthatpresentapotentialforreleasingradioactivitythatmightrequireisolationofthecontrolroom.Thisplacestheunitinaconditionthatminimizesrisk.Ifapplicable.COREALTERATIONSandmovementofirradiatedfuelassembliesin.thesecondarycontainmentmustbesuspendedimmediately.Suspensionoftheseactivitiesshallnotprecludec6mpletionofmovementofacomponenttoasafeposition.Also.ifapplicable.actionsmustbeinitiatedimmediatelytosuspendOPDRVstominimizetheprobabilityofavesseldraindownandsubsequentpotentialforfissionproductrelease.Actionsmustcontinueunti1theOPDRVsaresuspended.D.lIfbothcontrolroomfloorcoolingsubsystems.areinoperableinNODE1,2,or3,theControlRoomFloorCoolingSystemmaynotbecapableofperformingtheintendedfunction.'herefore.LCO3.0.3mustbeenteredimmediately.E.lE.2andE.3TheRequiredActionsofConditionEaremodifiedbyaNoteindicatingthatLCO3.0.3doesnotapply.IfmovingirradiatedfuelassemblieswhileinNODE1,2,or3.thefuelmovementisindependentofreactoroperations.(continued)SUSQUEHANNA-UNIT1B3.7-22Revision0' ControlRoomFloorCoolingSystemB3.7.4BASESACTIONSE.1E.2andE.3(continued)Therefore,inabilitytosuspendmovementofirradiatedfuelassembliesisnotasufficientreasontorequireentryintoLCO3.0.3orareactorshutdowninaccordancewithLCO3.0.3.Duringmovementofirradiatedfuelassembliesinthesecondarycontainment,duringCOREALTERATIONS,orduringOPDRVs,withtwocontrolroomfloorcoolingsubsystemsinoperable,actionmustbetakenimmediatelytosuspendactivitiesthatpresentapotentialforreleasingradioactivitythatmightrequireisolationofthecontrolroom.Thisplacestheunitinaconditionthatminimizesrisk.Ifapplicable,COREALTERATIONSandhandlingofirradiatedfuelinthesecondarycontainmentmustbesuspendedimmediately.Suspensionoftheseactivitiesshallnotprecludecompletionofmovementofacomponenttoasafeposition.Also,ifappl'icable,'actionsmustbeinitiatedimmediatelytosuspendOPDRVstominimizetheprobabilityofavesseldraindown-.andsubsequentpotentialforfissionproductrelease.ActionsmustcontinueuntiltheOPDRVsaresuspended.SURVEILLANCEREQUIREMENTSSR3.7.4.1ThisSRverifiesthattheheatremovalcapabilityof'hesystemissufficienttoremovethecontrolroomheatloadassumedinthesafetyanalyses.TheSRconsistsofacombinationoftestingandcalculation.The24monthFrequencyisappropriatesincesignificantdegradationoftheControlRoomFloorCoolingSystemisnotexpectedoverthistimeperiod.REFERENCES1.FSAR,Section6.4.2.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA-UNIT1B3.7-23Revision0 HainCondenserOffgasB3.7.5B3.7PLANTSYSTEMSB3.7.5MainCondenserOffgasBASESBACKGROUNDDuringunitoperation,steamfromthelowpressureturbineisexhausteddirectlyintothecondenser.Airandnoncondensiblegasesarecollectedinthecondenser,thenexhaustedthroughthesteamjetairejectors(SJAEs)totheHainCondenserOffgasSystem.Theoffgasfromthemaincondensernormallyincludesradioactivegases.TheMainCondenserOffgasSystemhasbeenincorporatedintotheunitdesigntoreducethegaseousradwasteemission.Thissystemusesacatalyticrecombinetorecombineradiolyticallydissociatedhydrogenandoxygen.Thegaseousmixtureiscooledbytheoffgascondenser;thewaterandcondensiblesarestrippedoutbytheoffgascondenserandmoistureseparator.Theradioactivityoftheremaininggaseousmixture(i.e.,theoffgasrecombineeffluent)ismonitoreddownstreamofthemoistureseparatorpriortoenteringtheholdupline.APPLICABLESAFETYANALYSESThemaincondenseroffgasradioactivityrateisaninitialconditionoftheMainCondenserOffgasSystemfailureevent,discussedintheFSAR.Section15.7.1(Ref.1).TheanalysisassumesagrossfailureintheMainCondenserOffgasSystemthatresultsintheruptureoftheMainCondenserOffgasSystempressureboundary.Theradioactivityrateof'hespecifiednoblegases(Xe-133,Xe-135,Xe-138,Kr-85m,Kr-87,andKr-88)iscontrolledtoensurethat,duringtheevent,thecalculatedoffsitedoseswillbewellwithinthelimitsof10CFR100(Ref.2)ortheNRCstaf'fapprovedlicensingbasis.ThemaincondenseroffgaslimitssatisfyCriterion2oftheNRCPolicyStatement.(Ref.3)LCOToensurecompliancewiththeassumptionsoftheHainCondenserOffgasSystemfailureevent(Ref.1),thefissionproductreleaserateshouldbeconsistentwithaspecifiednoblegasreleasetothereactorcoolantof(continued)SUSQUEHANNA-UNIT1B3.7-24Revision0 HainCondenserOffgasB3.7.5BASESLCO(continued)100pCi/MWt-second.TheLCOisestablishedconsistentwiththisrequirement(3293HWtx100yCi/MWt-second=330mCi/second),andisbasedontheoriginallicensedratedthermalpower.APPLICABILITYTheLCOisapplicablewhensteamisbeingexhaustedtothemaincondenserandtheresultingnoncondensiblesarebeingprocessedviatheHainCondenserOffgasSystem.ThisoccursduringMODE1,andduringMODES2and3withanymainsteamlinenotisolated.InMODES4and5,steamisnotbeingexhaustedtothemaincondenserandtherequirementsarenotapplicable.ACTIONSA.1Iftheoffgasradioactivityratelimitisexceeded,72hoursisallowedtorestoretheradioactivityratetowithinthelimit.The72hourCompletionTimeisreasonable,basedonengineeringjudgment,thetimerequiredtocompletetheRequiredAction,thelargemarginsassociatedwithpermissibledose'andexposurelimits,andthelowprobabilityof'HainCondenserOffgasSystemrupture.B.lB.2.1andB.2.2IftheradioactivityrateisnotrestoredtowithinthelimitsintheassociatedCompletionTime,allmainsteamlinesmustbeisolated.ThisisolatestheMainCondenserOffgasSystemfromthesourceoftheradioactivesteam.Themainsteamlinesareconsideredisolatedifatleastonemainsteamisolationvalveineachmainsteamlineisclosed,andatleastonemainsteamlinedrainvalveisclosed.The12hourCompletionTimeisreasonable.basedonoperatingexperience,toperformtheactionsfromfullpowerconditionsinanorderlymannerandwithoutchallengingunitsystems.AnalternativetoRequiredActionB.1istoplacetheunitinaNODEinwhichtheLCOdoesnotapply.Toachievethisstatus,theunitmustbeplacedinatleastMODE3within12hoursandinMODE4within36hours.Theallowed(continued)SUSQUEHANNA-UNIT183.7-25Revision0 MainCondenserOffgasB3.7.5BASESACTIONSB.1B.2.1andB.2.2(continued)CompletionTimesarereasonable,basedonoperatingexperience,toreachtherequiredunitconditionsfromfullpowerconditionsinanorderlymannerandwithoutchallengingunitsystems.SURVEILLANCEREQUIREMENTSSR3.7.5.1ThisSR,ona31dayFrequency,requiresthattheradioactivityratebedetermined,whichisanisotopicanalysisof'noffgassampletoensurethattherequiredlimitsaresatisfied.ThespecifiednoblegasestobesampledareXe-133,Xe-135,Xe-138,Kr-85m,Kr-87,andKr-88.Ifthenominalsteadystatefissiongasreleaseasindicatedbythecondenseroffgaspretreatmentradioactivitymonitorincreasessignificantly(by~50KaftercorrectingforexpectedincreasesduetochangesinTHERMALPOWER),anisotopicanalysisisalsoperformedwithin4hoursaftertheincreaseisnoted,toensurethattheincreaseisnotindicativeofasustainedincreaseintheradioactivityrate.The31dayFrequencyisadequateinviewofotherinstrumentationthatcontinuouslymonitortheoffgas,andisacceptable.basedonoperatingexperience.ThisSRismodifiedbyaNoteindicatingthattheSRisnotrequiredtobeperformeduntil31daysafteranymainsteamlineisnotisolated.Duringthisperioditisimprobablethatradioactivegaseswillbeinthemaincondenseroffgassystematsignificantratesandanypotentialproblemwillbedetectedbythecondenseroffgaspretreatmentradioactivitymonitor.REFERENCES1.FSAR,Section15.7.1.2.10CFR100.3.FinalPolicyStatementonTechnicalSpecification'sImprovements,July22.1993(58FR39132).SUSQUEHANNA-UNIT1B3.7-26Revision0 MainTurbineBypassSystemB3.7.683.7PLANTSYSTEMS,B3.7.6MainTurbineBypassSystemBASESBACKGROUNDTheMainTurbineBypassSystemisdesignedtocontrolsteampressurewhenreactorsteamgenerationexceedsturbinerequirementsduringunitstartup,suddenloadreductionandcooldown.Itallowsexcesssteamflowfromthereactortothecondenserwithoutgoingthroughtheturbine.Thebypasscapacityofthesystemis25KoftheNuclearSteamSupplySystemratedsteamflow.Suddenloadreductionswithinthecapacityofthesteambypasscanbeaccommodatedwithoutreactorscram.TheHainTurbineBypassSystemconsistsoffivevalvesconnectedtothemainsteamlinesbetweenthemainsteamisolationvalvesandtheturbinestopvalve'bypassvalvechest.Eachofthesefivevalvesisoperatedbyhydrauliccylinders.ThebypassvalvesarecontrolledbythepressureregulationfunctionoftheTurbineElectroHydraulicControlSystem,asdiscussedintheFSAR.Section7.7.1.5(Ref.1).Thebypass.valvesarenormallyclosed,andthepressure:-regulator.:,canteotwtheturbinecontrolvalvesthatdirect-allsteam=flow=-to-.theturbine.Ifthespeedgovernor;.or.-the=-load=--l=imi:ter==restrictssteam.flowtothetut'bine-.thepressure'regu1,ator-'ontrolsthesystempressurebyopening<he=bypass"-va]ves=Whenthebypassvalvesopen.the;steam=flows=.from&he=bypasschest,throughconnectingpiping.-to=-th"-pro""-use=-breakdownassemblies,whereaseries==of-.oritices:--axe:-usedtofurtherreducethesteampressure=be3'ore:-th~s+Mmentersthecondenser'PPLICABLESAFETYANALYSESTheMainTurbineBypassSystemfastopeningfeatureisassumedtofunctionduringtheturbinegeneratorloadrejectionandfeedwatercontrollerfailuretransients,asdiscussedintheFSAR,Section15.2.2(Ref.2).Openingthebypassvalvesduringthepressurizationeventmitigatestheincreaseinreactorvesselpressure,whichaffectstheMCPRduringtheevent.AninoperableHainTurbineBypassSystemmayresultinanMCPRpenalty.TheHainTurbineBypassSystemsatisfiesCriterion3oftheNRCPolicyStatement.(Ref.3)SUSQUEHANNA-UNIT1B3.7-27(continued)Revision0 MainTurbineBypassSystemB3.7.6BASES(continued)LCOTheMainTurbineBypassSystemfastopeningfeatureisrequiredtobeOPERABLEtolimitpeakpressureinthemainsteamlinesandmaintainreactorpressurewithinacceptablelimitsduringeventsthatcauserapidpressurization,sothattheSafetyLimitMCPRisnotexceeded.WiththeMainTurbineBypassSysteminoperable.modificationstotheMCPRlimits(LCO3.2.2,"MINIMUMCRITICALPOWERRATIO(HCPR)")maybeappliedtoallowthisLCOtobemet.TheMCPRlimitfortheinoperableHainTurbineBypassSystemisspecifiedintheCOLR.AnOPERABLEMainTurbineBypassSystemrequiresthebypassvalvestoopeninresponsetoincreasingmainsteamlinepressure.LicensinganalysiscreditsanOPERABLEMainTurbineBypassSystemashavingthebypassvalvefastopeningfeatureinresponsetoturbinecontrolvalveorturbinestopvalveclosure.Thisresponseiswithintheassumptionsoftheapplicableanalysis(Ref.2).APPLICABILITYTheHainTurbineBypassSystemisrequiredtobeOPERABLEat>25KRTPtoensurethat'hefuelcladdingintegritySafetyLimitisnotviolatedduringtheturbinegeneratorloadrejectiontransient..AsdiscussedintheBasesf'rLCO3.2.2,sufficientmargintotheselimitsexistsat<25KRTP.Therefore,theserequirementsareonlynecessarywhenoperatingatorabovethispowerlevel.ACTIONSA.1IftheHainTurbineBypassSystemisinoperable(oneormorebypassvalvesinoperable),andtheMCPRlimitsforaninoperableMainTurbineBypassSystem,asspecifiedintheCOLR,arenotapplied,theassumptionsofthedesignbasistransientanalysismaynotbemet.Undersuchcircumstances,promptactionshouldbetakentorestoretheHainTurbineBypassSystemtoOPERABLEstatusoradjusttheHCPRlimitsaccordingly.The2hourCompletionTimeisreasonable.basedonthetimetocompletetheRequiredActionandthelowprobabilityofaneventoccurringduringthisperiodrequiringtheHainTurbineBypassSystem.(continued)SUSQUEHANNA-UNIT183.7-28Revision0 MainTurbineBypassSystemB3.7.6BASESACTIONS(continued)B.1IftheMainTurbineBypassSystemcannotberestoredtoOPERABLEstatusortheMCPRlimitsforaninoperableMainTurbineBypassSystemarenotapplied,THERMALPOWERmustbereducedto<25KRTP.AsdiscussedintheApplicabilitysection,operationat(25KRTPresultsinsufficientmargintotherequiredlimits,andtheMainTurbineBypassSystemisnotrequiredtoprotectfuelintegrityduringtheturbinegeneratorloadrejectiontransient.The4hourCompletionTimeisreasonable,basedonoperatingexperience,toreachtherequiredunitconditionsfromfullpowerconditionsinanorderlymannerandwithoutchallengingunitsystems.SURVEILLANCEREQUIREMENTSSR3.7.6.1CyclingeachmainturbinebypassvalvethroughonecompletecycleoffulltraveldemonstratesthatthevalvesaremechanicallyOPERABLEandwillfunctionwhenrequired.The31dayFrequencyisbasedonengineeringjudgment.isconsistentwiththeproceduralcontrolsgoverningvalveoperation,andensurescorrectvalvepositions.OperatingexperiencehasshownthatthesecomponentsusuallypasstheSRwhenperformedatthe31dayFrequency.Therefore,theFrequencyisacceptablefromareliabilitystandpoint.SR3.7.6.2TheMainTurbineBypassSystemisrequiredtoactuateautomaticallytoperformitsdesignfunction.ThisSRdemonstratesthat.withtherequiredsysteminitiationsignals(simulateautomaticactuation),thevalveswillactuatetotheirrequiredposition.The24monthFrequencyisbasedontheneedtoperformthisSurveillanceundertheconditionsthatapplyduringaunitoutageandbecauseofthepotentialforanunplannedtransientiftheSurveillancewereperformedwiththereactoratpower.Operatingexperiencehasshownthe24monthFrequency,whichisbasedontherefuelingcycle,isacceptablefromareliability.standpoint.(continued)SUSQUEHANNA-UNIT1B3.7-29Revision0 MainTurbineBypassSystemB3.7.6BASESSURVEILLANCEREQUIREMENTS(continued)SR3.7.6.3ThisSRensuresthattheTURBINEBYPASSSYSTEMRESPONSETIMEisincompliancewiththeassumptionsoftheappropriatesafetyanalysis.Theresponsetimelimitsarespecifiedinunitspecificdocumentation.The24monthFrequencyisbasedontheneedtoperformthisSurveillanceundertheconditionsthatapplyduringaunitoutageandbecauseofthepotentialforanunplannedtransientiftheSurveillancewereperformedwiththereactoratpower.Operatingexperiencehasshownthe24monthFrequency,whichisbasedontherefuelingcycle,isacceptablefromareliabilitystandpoint.REFERENCES1.FSAR.Section7.7.1.5.2.FSAR,Section15.2.2.3.FinalPolicyStatem'entonTechnicalSpecificationsImprovements,July22,1993(58FR39132).ISUSQUEHANNA-UNIT1B3.7-30Revision0 SpentFuelStoragePoolWaterLevelB3.7.7B3.7PLANTSYSTEMSB3.7.7SpentFuelStoragePoolWaterLevelBASESBACKGROUNDTheminimumwaterlevelinthespentfuelstoragepoolmeetstheassumptionsofiodinedecontaminationfactorsfollowingafuelhandlingaccident.AgeneraldescriptionofthespentfuelstoragepooldesignisfoundintheFSAR,Section9.1(Ref.1).TheassumptionsofthefuelhandlingaccidentarefoundintheFSAR,Section15.7.4(Ref.2).APPLICABLESAFETYANALYSESThewaterlevelabovetheirradiatedfuelassembliesisanexplicitassumptionofthefuelhandlingaccident.Afuelhandlingaccidentisevaluatedtoensurethattheradiologicalconsequences(calculatedwholebodyandthyroiddosesattheexclusionareaandlowpopulationzoneboundaries)ares25Kof10CFR100(Ref.4)exposureguidelinesNUREG-0800(Ref.3).Afuelhandlingaccidentcould.releaseafractionofthefissionproductinventorybybreachingthefuelrodcladdingasdiscussedinttie'RegulatoryGuide1.25(Ref.5).Thefuelhandlingaccidentisevaluatedforthedroppingofanirradiatedfuel.assemblyontothereactorcore.Withanassumedminimumwaterlevelof21ftandaminimumdecaytimeof24hourspriortofuelhandling,theanalysisandtestprogramsdemonstratethattheiodinereleaseduetoapostulatedfuelhandlingaccidentisadequatelycapturedbythewaterandthatoffsitedosesaremaintainedwithinallowablelimits(Ref.2).Theconsequencesofafuelhandlingaccidentoverthespentfuelstoragepoolarenomoreseverethanthoseof'hefuelhandlingaccidentoverthereactorcore,asdiscussedintheFSAR,Section15.7.4(Ref.2).Thewaterlevelinthespentfuelstoragepoolprovidesforabsorptionofwatersolublefissionproductgasesandtransportdelaysofsolubleandinsolublegasesthatmustpassthroughthewaterbeforebeingreleasedtothesecondarycontainmentatmosphere.Thisabsorptionandtransportdelayreducesthepotentialradioactivityofthereleaseduringafuelhandlingaccident.ThespentfuelstoragepoolwaterlevelsatisfiesCriteria2and3oftheNRCPolicyStatement(Ref.6).SUSQUEHANNAUNIT1B3.7-31(continued)Revision0 SpentFuelStoragePoolWaterLevelB3.7.7BASES(continued)LCOThespecifiedwaterlevelpreservestheassumptionsofthefuelhandlingaccidentanalysis(Ref.2).Assuch,itistheminimumrequiredforfuelmovementwithinthespentfuelstoragepool.APPLICABILITYThisLCOappliesduringmovementofirradiatedf'uelassembliesinthespentfuelstoragepoolsincethepotentialforareleaseoffissionproductsexists.ACTIONSA.lRequiredActionA.1ismodifiedbyaNoteindicatingthatLCO3.0.3doesnotapply.IfmovingirradiatedfuelassemblieswhileinMODE1,2,or3,thefuelmovementisindependentofreactoroperations.Therefore,inabilitytosuspendmovementofirradiatedfuelassembliesisnotasufficientreasontorequireareactorshutdown.Whentheinitialconditionsforanaccidentcannotbemet.actionmustbetakentoprecludetheaccidentfromoccurring.Ifthespentfuel'toragepoollevelislessthanrequired,themovementofirradiatedfuelassembliesinthespentfuelstoragepoolissuspendedimmediately.Suspensionofthisactivityshallnotprecludecompletionofmovementofanirradiatedfuelassemblytoasafeposition.Thiseffectivelyprecludesaspentfuelhandlingaccidentfromoccurring.SURVEILLANCEREQUIREMENTSSR3.7.7.1ThisSRverifiesthatsufficientwaterisavailableintheeventofafuelhandlingaccident.Thewaterlevelinthespentfuelstoragepoolmustbecheckedperiodically.The7dayFrequencyisacceptable,basedonoperatingexperience,consideringthatthewatervolumeinthepoolisnormallystable,andallwaterlevelchangesarecontrolledbyunitprocedures.SUSQUEHANNAUNIT1B3.7-32(continued)Revision0 SpentFuelStoragePoolWaterLevelB3.7.7BASES(continued)REFERENCES1.FSAR,Section9.1.2.FSAR,Section15.7.4.3.NUREG-0800,Section15.7.4,Revision1.July1981.4.10CFR100.5.RegulatoryGuide1.25,March1972.6.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNAUNIT1B3.7-33Revision0 ACSources-OperatingB3.8.1B3.8ELECTRICALPOWERSYSTEMSB3.8.1ACSources-OperatingBASESBACKGROUNDTheunitClass1EACElectricalPowerDistributionSystemACsourcesconsistoftwooffsitepowersources(preferredpowersources.normalandalternate),andtheonsitestandbypowersources(dieselgenerators(DGs)A,B,CandD).Afifthdieselgenerator,DGE,canbeusedasasubstituteforanyoneofthefourDGsA,B,CorD.Asrequiredby10CFR50,AppendixA,GDC17(Ref.1),thedesignoftheACelectricalpowersystemprovidesindependenceandredundancytoensureanavailablesourceofpowertotheEngineeredSafetyFeature(ESF)systems.TheClass1EACdistributionsystemisdividedintoredundantloadgroups,solossofanyonegroupdoesnotpreventtheminimumsafetyfunctionsfrombeingperformed.EachloadgrouphasconnectionstotwopreferredoffsitepowersuppliesandasingleDG.Thetwoqualified.circuitsbetweentheoffsitetransmissionnetworkandtheonsiteClass1EACElectricalPowerDistributionSystemaresupportedbytwoindependentoffsiteowersources.A230kVlinefromtheSusquehannaT10230Vswitchingstationfeedsstart-uptransformerNo.10;and~a230kVtapfromthe500-230kVtielinefeedsthestartuptransformerNo.20.Thetwoindependentoffsitepowersourcesaresuppliedtoandaresharedbybothunits.ThesetwoelectricallyandphysicallyseparatedcircuitsprovideACpower,throughstartuptransformers(ST)No.10andSTNo.20,tothefour4.16kVEngineeredSafeguardsSystem(ESS)buses(A.B,CandD)forbothUnit1andUnit2.AdetaileddescriptionoftheoffsitepowernetworkandcircuitstotheonsiteClass1EESSbusesisfoundintheFSAR,Section8.2(Ref.2).,Anoffsitecircuitconsistsofallbreakers,transformers,switches.automatictapchangers,interruptingdevices,cabling,andcontrolsrequiredtotransmitpowerfromtheoffsitetransmissionnetworktotheonsiteClass1EESSbusorbuses.(continued)SUSQUEHANNA-UNIT2B3.8-1AmendmentB,02/28/98 ACSources-OperatingB3.8.1BASESBACKGROUND(continued)STNo.10andSTNo.20eachprovidethenormalsourceofpowertotwoofthefour4.16kVESSbusesineachUnitandthealternatesourceofpowertotheremainingtwo4.16kVESSbusesineachUnit.Ifany4.16kVESSbuslosespower,anautomatictransferfromthenormaltothealternateoccursafterthenormalsupplybreakertrips.Whenoff-sitepowerisavailabletothe4.16kVESSBusesfollowingaLOCAsignal,therequiredESSloadswillbesequencedontothe4.16kVESSBusesinordertocompensateforvoltagedropsintheonsitepowersystemwhenstartinglargeESSmotors.Theonsitestandbypowersourcefor4.16kVESSbusesA.B,CandDconsistsoffiveDGs.DGsA,B,CandDarededicatedtoESSbusesA,B,CandDErespectively.DGEcanbeusedasasubstituteforanyoneofthefourDGs(A,B.CorD)tosupplytheassociatedESSbus.EachDGprovidesstandbypowertotwo4.16kVESSbuses-oneassociatedwithUnit1andoneassociatedwithUnit2.Thefour"required"DGsarethosealignedtoa4.16kVESSbustoprovideonsitestandbypowerforbothUnit1andUnit2.ADG,whenalignedtoanESSbus,startsautomaticallyonalossofcoolantaccident(LOCA)signal(i.e.,lowreactorwaterlevelsignalorhighdrywellpressuresignal)oronanESSbusdegradedvoltageorundervo1tagesignal.AftertheDGhasstarted,itautomaticallytiestoitsrespectivebusafteroffsitepoweristrippedasaconsequenceofESSbusundervoltageordegradedvoltage.independentoforcoincidentwithaLOCAsignal.TheDGsalsostartandoperateinthestandbymodewithouttyingtotheESSbusonaLOCAsignalalone.Followingthetripofoffsitepower,non-permanentloadsarestrippedfromthe4.16kVESSBuses.WhenaDGistiedtotheESSBus,loadsarethensequentiallyconnectedtotheirrespectiveESSBusbyindividualloadtimers.TheindividualloadtimerscontrolthestartingpermissivesignaltomotorbreakerstopreventoverloadingtheassociatedDG.Intheeventoflossofnormalandalternateoffsitepowersupplies,the4.16kVESSbuseswillshedallloadsexceptthe480VloadcentersandthestandbydieselgeneratorswillconnecttotheESSbusses.WhenaDGistiedtoitsrespectiveESSbus,loadsarethensequentiallyconnectedto(continued)SUSQUEHANNA-UNIT2B3.8-2AmendmentB.02/28/98 ACSources-OperatingB3.8.1BASESBACKGROUND(continued)theESSbusbyindividualloadtimerswhichcontrolthepermissiveandstartingsignalstomotorbreakerstopreventoverloadingtheDG.Intheeventofalossofnormalandalternateoffsitepowersupplies,theESSelectricalloadsareautomaticallyconnectedtotheDGsinsufficienttimetoprovideforsafereactoishutdownandtomitigatetheconsequencesofa.DesignBasisAccident(DBA)suchasaLOCA.CertainrequiredplantloadsarereturnedtoserviceinapredeterminedsequenceinordertopreventoverloadingoftheDGsintheprocess.Within286secondsaftertheinitiatingsignalisreceived,allautomaticandpermanentlyconnectedloadsneededtorecovertheunitormaintainitinasafeconditionarereturnedtoservice.RatingsfortheDGssatisfytherequirementsofRegulatoryGuide1.9(Ref.3).DGsA,B,CandDhavethefollowingratings:a.4000kW-conti'nuous,b.4700kW-2000hours,DGEhasthefollowingratings:a.5000kM-continuous,b.5500kW-2000hours.APPLICABLESAFETYANALYSESTheinitialconditionsofDBAandtransientanalysesintheFSAR,Chapter6(Ref.4)andChapter15(Ref.5),assumeESFsystemsareOPERABLE.TheACelectricalpowersourcesaredesignedtoprovidesufficientcapacity.capability.redundancy,andreliabilitytoensuretheavailabilityofnecessarypowertoESFsystemssothatthefuel,ReactorCoolantSystem(RCS),andcontainmentdesignlimitsarenotexceeded.Theselimitsarediscussedinmoredetai1intheBasesforSection3.2,PowerDistributionLimits;Section3.4,ReactorCoolantSystem(RCS);andSection3.6,ContainmentSystems.TheOPERABILITYoftheACelectricalpowersourcesisconsistentwiththeinitialassumptionsoftheaccidentanalysesandisbaseduponmeetingthedesignbasisoftheunitandsupportingsafeshutdownoftheotherunit.ThisincludesmaintainingtheonsiteoroffsiteACsources(continued)SUSQUEHANNA-UNIT2B3.8-3AmendmentB,02/28/98 ACSources-OperatingB3.8.1BASESAPPLICABLESAFETYANALYSES(continued)OPERABLEduringaccidentconditionsintheeventofanassumedlossofalloffsitepowerorallonsiteACpower;'ndaworstcasesinglefailure.ACsourcessatisfyCriterion3oftheNRCPolicyStatement(Ref.6).LCOTwoqualifiedcircuitsbetweentheoffsitetransmissionnetworkandtheonsiteClasslEDistributionSystemandfourseparateandindependentDGs(A,B,CandD)ensureavailabilityoftherequiredpowertoshutdownthereactorandmaintainitinasafeshutdownconditionafterananticipatedoperationaloccurrence(AOO)orapostulatedDBA.DGEcanbeusedasasubstituteforanyoneofthefourDGsA.B.CorD.QualifiedoffsitecircuitsarethosethataredescribedintheFSAR,andarepartofthelicensingbasisfortheunit.Inaddition,therequire'dautomaticloadtimersforeachESFbusshallbeOPERABLE.TheSafetyAnalysisforUnit2assumestheOPERABILITYofsomeequipmentthatreceivespowerfromUnit1ACSources.Therefore.Unit2TechnicalSpecificationsestablishrequirementsfortheOPERABILITYoftheDG(s)andqualifiedoffsitecircuitsneededtosupporttheUnit1onsiteClass1EACelectricalpowerdistributionsubsystem(s)requiredbyLCO3.8.7,DistributionSystems-Operating.Eachoffsitecircuitmustbecapableof'aintainingratedfrequencyandvoltage,andacceptingrequiredloadsduringanaccident,whileconnected,totheESSbuses.OneOPERABLEoffsitecircuitconsistsofanenergizedST.No.10transformerandtherespectivecircuitpathincludingenergizedESStransformers101and111andfeederbreakerscapableofsupplyingthreeofthefour4.16kVESSBuses.TheotherOPERABLEoffsitecircuitconsistsofanenergizedST.No.20transformer,andtherespectivecircuitpathincludingenergizedESStransformers201and211andfeederbreakerscapableofsupplyingthreeofthefour4.16kVESSBuses.BothoffsitecircuitsareOPERABLEprovidedeachmeetsthecriteriadescribedaboveandprovidedthatno4.16kVESSBushaslessthanoneOPERABLEoffsitecircuit(continued)SUSQUEHANNA-UNIT2B3.8-4AmendmentB,02/28/98 ACSources-OperatingB3.8.1BASESLCO(continued)capableofsupplyingtherequiredloads.IfnoOPERABLEoffsitecircuitiscapableofsupplyinganyofthe4.16kVESSBuses,providedthattheassociatedDGiscapableofsupplyingtheaffected4.16kVESSBusandtheoffsitecircuitsotherwisemeettheaboverequirements,oneoffsitesourceshallbedeclaredinoperable.FourofthefiveDGsarerequiredtobeOperabletosatisfytheinitialassumptionsoftheaccidentanalyses.EachrequiredDGmustbecapableofstarting.acceleratingtoratedspeedandvoltage,andconnectingtoitsrespectiveESSbusondetectionofbusundervoltageafterthenormalandalternatesupplybreakersopen.Thissequencemustbeaccomplishedwithin10seconds.EachDGmustalsobecapableofacceptingrequiredloadswithintheassumedloadingsequenceintervals,andmustcontinuetooperateuntiloffsitepowercanberestoredtotheESSbuses.Thesecapabilitiesarerequiredtobemetfromavarietyofinitialconditions,suchasDGinstandbywiththeenginehotandDGinnormalstandbyconditions.NormalstandbyconditionsforaDGmean'hatthedieselengineoilisbeingcontinuouslycirculatedandenginecoolantiscirculatedasnecessarytomaintaintemperatureconsistentwithmanufacturerrecommendations.AdditionalDGcapabilitiesmustbedemonstratedtomeetrequiredSurveillances,e.g.,capabilityoftheDGtoreverttostandbystatusonanECCSsignalwhileoperatinginparalleltestmode.AlthoughnotnormallyalignedasarequiredDG,DGEisnormallymaintainedOPERABLE(i.e.,SurveillanceTestingcompleted)sothatitcanbeusedasasubstituteforanyoneofthefourDGsA,B,CorD.Propersequencingofloads,includingtrippingofnonessentialloads,isarequiredfunctionforDGOPERABILITY.TheACsourcesmustbeseparateandindependent(totheextentpossible)ofotherACsources.FortheDGs.theseparationandindependencearecomplete.FortheoffsiteACsources,theseparationandindependencearetotheextentpractical.AcircuitmaybeconnectedtomorethanoneESSbus,withautomatictransfercapabilitytotheothercircuitOPERABLE,andnotviolateseparationcriteria.AcircuitthatisnotconnectedtoanESSbusisrequiredto(continued)SUSQUEHANNA-UNIT1B3.8-5Revision0 ACSources-OperatingB3.8.1BASESLCO'aveOPERABLEautomatictransferinterlockmechanismsto(continued)eachESSbustosupportOPERABILITYofthatoffsitecircuit.APPLICABILITYTheACsourcesarerequiredtobeOPERABLEinMODES1,2,and3toensurethat:AcceptablefueldesignlimitsandreactorcoolantpressureboundarylimitsarenotexceededasaresultofAOOsorabnormaltransients;andAdequatecorecoolingisprovidedandcontainmentOPERABILITYandothervitalfunctionsaremaintainedintheeventofapostulatedDBA.TheACpowerrequirementsforMODES4and5arecoveredinLCO3.8.2,"ACSources-Shutdown."ACTIONSTheACTIONSaremodifiedbyaNotewhichallowsentryintoassociatedConditionsandRequiredActionstobedelayedforupto8hourswhenanOPERABLEdieselgeneratorisplacedinaninoperableStatusforthealignmentofdieselgeneratorEtoorfromtheClass1Edistributionsystem.Useofthisallowancerequiresbothoffsitecircuits.to,beOPERABLE.EntryintotheappropriateConditionsandRequiredActionsshallbemadeimmediatelyuponthedeterminationthatsubstitutionofarequireddieselgeneratorwillnotorcannotbecompleted.A.lToensureahighlyreliablepowersourceremainswithoneoffsitecircuitinoperable,itisnecessarytoverifytheavailabilityoftheremainingrequiredoffsitecircuitonamorefrequentbasis.SincetheRequiredActiononlyspecifies"perform,"afailureofSR3.8.1.1acceptancecriteriadoesnotresultinaRequiredActionnotmet.However,ifasecondrequiredcircuitfailsSR3.8.1.1,thesecondoffsitecircuitisinoperable,andConditionC,fortwooffsitecircuitsinoperable,isentered.(continued)SUSQUEHANNA-UNIT1B3.8-6Revision0 ACSources-OperatingB3.8.1BASESACTIONS(continued)A.2RequiredActionA.2,whichonlyappliesifone4.16kYESSbuscannotbepoweredfromanyoffsitesource,isintendedtoprovideassurancethataneventwithacoincidentsinglefailureoftheassociatedDGdoesnotresultinacompletelossofsafetyfunctionofcriticalsystems.Thesefeatures(e.g..system,subsystem,division,component,ordevice)aredesignedtobepoweredfromredundantsafetyrelated4.16kVESSbuses.Redundantrequiredfeaturesfailuresconsistofinoperablefeaturesassociatedwithanemergencybusredundanttotheemergencybusthathasnooffsitepower.TheCompletionTimeforRequiredActionA.2isintendedtoallowtimefortheoperatortoevaluateandrepairanydiscoveredinoperabilities.ThisCompletionTimealsoallowsanexceptiontothenormal"timezero"forbeginningtheallowedoutagetime"clock."InthisRequiredAction.theCompletionTimeonlybeginsondiscoverythatboth:a.A4.16kVESSbushasnooffsitepowersupplyingitsloads;andb.Aredundantrequiredfeatureonanother4.16kVESSbusisinoperable.If.atanytimeduringtheexistenceofthisCondition(oneoffsitecircuitinoperable)arequiredfeaturesubsequentlybecomesinoperable,thisCompletionTimewouldbegintobetracked.Discoveringnooffsitepowertoone4.16kVESSbusontheonsiteClasslEPowerDistributionSystemcoincidentwithoneormoreinoperablerequiredsupportorsupportedfeatures,orboth.thatareassociatedwithanyotheremergencybusthathasoffsitepower,resultsinstartingtheCompletionTimesfortheRequiredAction.Twenty-fourhoursisacceptablebecauseitminimizesriskwhileallowingtimeforrestorationbeforetheunitissubjectedtotransientsassociatedwithshutdown.TheremainingOPERABLEoffsitecircuitsandDGsareadequatetosupplyelectricalpowertotheonsiteClass1EDistributionSystem.Thus,onacomponentbasis,singlefailureprotectionmayhavebeenlostfortherequiredfeature'sfunction;however,functionisnotlost.The24(continued)SUSQUEHANNA-UNIT1B3.8-7Revision0 ACSources-OperatingB3.8.1BASESACTIONSA.2(continued)hourCompletionTimetakesintoaccountthecomponent'PERABILITYoftheredundantcounterparttotheinoperablerequiredfeature.Additionally,the24hourCompletionTimetakesintoaccountthecapacityandcapabilityoftheremainingACsources,areasonabletimeforrepairs,andthelowprobabilityofaDBAoccurringduringthisperiod.A.3AccordingtoRegulatoryGuide1.93(Ref.7),operationmaycontinueinConditionAforaperiodthatshouldnotexceed72hours.Withoneoffsitecircuitinoperable,thereliabilityoftheoffsitesystemisdegraded,andthepotentialforalossofoffsitepowerisincreased,withattendantpotentialforachallengetotheplantsafetysystems.Inthiscondition,however,theremainingOPERABLEoffsitecircuitandDGsareadequate'tosupplyelectricalpowertotheonsiteClass1EDistributionSystem.The72hourCompletionTimetakesintoaccountthecapacityandcapabilityoftheremainingACsources,reasonabletimeforrepairs,and'thelow.probabilityofaDBAoccurringduringthisperiod.ThesecondCompletionTimeforRequiredActionA.2establishesalimitonthemaximumtimeallowedforanycombinationofrequiredACpowersourcestobeinoperableduringanysinglecontiguousoccurrenceoffailingtomeettheLCO.IfConditionAisenteredwhile,forinstance,aDGisinoperable,andthatDGissubsequentlyreturnedOPERABLE,theLCOmayalreadyhavebeennotmetforupto72hours.Thissituationcouldleadtoatotalof144hours,sinceinitialfailuretomeettheLCO,torestoretheoffsitecircuit.Atthistime,aDGcouldagainbecomeinoperable,thecircuitrestoredOPERABLE,andanadditional72hours(foratotalof9days)allowedpriortocompleterestorationoftheLCO.The6dayCompletionTimeprovidesalimitonthetimeallowedinaspecifiedconditionafterdiscoveryoffailuretomeettheLCO.ThislimitisconsideredreasonableforsituationsinwhichConditionsAandBareenteredconcurrently.The"AND"connectorbetweenthe72hoursand6dayCompletionTimesmeansthatboth(continued)SUSQUEHANNA-UNIT1B3.8-8Revision0 ACSources-OperatingB3.8.1BASESACTIONSA.3(continued)CompletionTimesapplysimultaneously,andthemorerestrictiveCompletionTimemustbemet.AsinRequiredActionA.2.theCompletionTimeallowsforanexceptiontothenormal"timezero"forbeginningtheallowedoutagetime"clock."Thisexceptionresultsin.establishingthe"timezero"atthetimetheLCOwasinitiallynotmet,insteadof',atthetimethatConditionAwasentered.B.1ToensureahighlyreliablepowersourceremainswithonerequiredDGinoperable,itisnecessarytoverifytheavailabilityoftherequiredoffsitecircuitsonamorefrequentbasis.SincetheRequiredActiononlyspecifies"perform,"afailureofSR3.8.1.1acceptancecriteriadoesnotresultinaRequiredActionbeingnotmet.However,ifacircuitfailstopassSR3.8.1.1,itisinoperable.Uponoffsitecircuit'inoperability,additionalConditionsmustthenbeentered.B.2RequiredActionB.2isintendedtoprovideassurancethatalossofoffsitepower,duringtheperiodthataDGisinoperable.doesnotresultinacompletelossofsafetyfunctionofcriticalsystems.Thesefeaturesaredesignedwithredundantsafetyrelateddivisions(i.e.,singledivisionsystemsarenotincluded).RedundantrequiredfeaturesfailuresconsistofinoperablefeaturesassociatedwithadivisionredundanttothedivisionthathasaninoperableDG.TheCompletionTimeisintendedtoallowtheoperatortime-toevaluateandrepairanydiscoveredinoperabilities.ThisCompletionTimealsoallowsforanexceptiontothenormal"timezero"forbeginningtheallowedoutagetime"clock."InthisRequiredActiontheCompletionTimeonlybeginsondiscoverythatboth:a.AninoperableDGexists;and(continued)SUSQUEHANNA-UNIT1B3.8-9Revision0 ACSources-OperatingB3.8.1BASESACTIONSB.2(continued)b.Arequiredfeaturepoweredfromanotherdieselgenerator(Division1or2)isinoperable.If,atanytimeduringtheexistenceofthisCondition(onerequiredDGinoperable),arequiredfeaturesubsequentlybecomesinoperable,thisCompletionTimebeginstobetracked.DiscoveringonerequiredDGinoperablecoincidentwithoneormoreinoperablerequiredsupportorsupportedfeatures,orboth,thatareassociatedwiththeOPERABLEDGsresultsinstartingtheCompletionTimefortheRequiredAction.Fourhoursfromthediscoveryoftheseeventsexistingconcurrentlyisacceptablebecauseitminimizesriskwhileallowingtimeforrestorationbeforesubjectingtheunittotransientsassociatedwithshutdown.TheremainingOPERABLEDGsandoffsitecircuitsareadequatetosupplyelectricalpowertotheonsiteClasslEDistributionSystem.Thus,onacomponentbasis,singlefailureprotectionfortherequiredfeature'sfunctionmayhavebeenlost;however,functionhasnotbeenlost.The4hourCompletionTimetakesintoaccountthecomponentOPERABILITYoftheredundantcounterparttotheinoperablerequiredfeature.Additi'onal'ly,the4hourCompletionTimetakesintoaccountthecapacityandcapabilityoftheremainingACsources,reasonabletimeforrepairs.andlowprobabilityofaDBAoccurringduringthisperiod.B.3.1andB.3.2RequiredActionB.3.1providesanallowancetoavoidunnecessarytestingofOPERABLEDGs.IfitcanbedeterminedthatthecauseoftheinoperableDGdoesnotexistontheOPERABLEDG,SR3.8.1.7doesnothavetobeperformed.IfthecauseofinoperabilityexistsonotherDG(s),theyaredeclaredinoperableupondiscovery,andConditionEofLCO3.8.1isentered.Oncethefailureisrepaired,andthecommoncausefailurenolongerexists,RequiredActionB.3,.1issatisfied.IfthecauseoftheinitialinoperableDGcannotbedeterminednottoexistontheremainingDG(s),performanceofSR3.8.1.7sufficestoprovideassuranceofcontinuedOPERABILITYofthoseDGs.(continued)SUSQUEHANNA-UNIT1B3.8-10Revision0 ACSources-OperatingB3.8.1BASESACTIONSB.3.1andB.3.2(continued)However,thesecondCompletionTimeforRequiredActionB.3.2allowsaperformanceofSR3.8.1.7completedupto24hourspriortoenteringConditionBtobeacceptedasdemonstrationthataDGisnotinoperableduetoacommoncausefailure.IntheeventtheinoperableDGisrestoredtoOPERABLEstatuspriortocompletingeitherB.3.1orB.3.2,theplantcorrectiveactionprogramwillcontinuetoevaluatethecommoncausepossibility.Thiscontinuedevaluation,however,isnolongerunderthe24hourconstraintimposedwhileinConditionB.AccordingtoGenericLetter84-15(Ref.8),24hoursisareasonabletimetoconfirmthattheOPERABLEDGsarenotaffectedby.thesameproblemastheinoperableDG.B.4AccordingtoRegulatoryGuide1.93(Ref.7),operationmaycontinueinConditionBforaperiodthatshouldnotexceed72hours.InConditionB,theremainingOPERABLEDGsandoffsitecircuitsareadequatetosupplyelectricalpowertotheonsiteClass1EDistributionSystem.The72hourCompletionTimetakesintoaccountthecapacityandcapabilityoftheremainingACsources,reasonabletimeforrepairs,andlowprobabilityofaDBAoccurringduringthisperiod.ThesecondCompletionTimeforRequiredActionB.4establishesalimitonthemaximumtimeallowedforanycombinationofrequiredACpowersourcestobeinoperableduringanysinglecontiguousoccurrenceoffailingtomeettheLCO.IfConditionBisenteredwhile,forinstance,anoffsitecircuitisinoperableandthatcircuitissubsequentlyrestoredOPERABLE,theLCOmayalreadyhavebeennotmetforupto72hours.Thissituationcouldleadtoatotalof144hours,sinceinitialfailureoftheLCO,torestoretheDG.Atthistime.anoffsitecircuitcouldagainbecomeinoperable,theDGrestoredOPERABLE,andanadditional72hours(foratotalof9days)allowedpriortocompleterestorationoftheLCO.The6dayCompletionTimeprovidesalimitonthetimeallowedinaspecified(continued)SUSQUEHANNA-UNIT1B3.8-11Revision0 ACSources-OperatingB3.8.1BASESACTIONSB.4(continued)conditionafterdiscoveryoffailuretomeettheLCO.ThislimitisconsideredreasonableforsituationsinwhichConditionsAandBareenteredconcurrently.The"AND"connectorbetweenthe72hourand6dayCompletionTimesmeansthatbothCompletionTimesapplysimultaneously.andthemorerestrictivemustbemet.AsinRequiredAction8.2,theCompletionTimeallowsforanexceptiontothenormal"timezero"forbeginningtheallowedoutagetime"clock."Thisexceptionresultsinestablishingthe"timezero"atthetimethattheLCOwasinitiallynotmet,insteadofthetimethatConditionBwasentered.C.1RequiredActionC.1addressesactionstobetakenintheeventofconcurrentinop'erabilityoftwooffsitecircuits.TheCompletionTimeforRequiredActionC.1isintendedtoallowtheoperatortimetoevaluateandrepairanydiscoveredinoperabilities.AccordingtoRegulatoryGuide1.93(Ref.7),operationmaycontinueinConditionCforaperiodthatshouldnotexceed24hours.Thislevelofdegradationmeansthattheoffsiteelectricalpowersystemdoesnothavethecapabilitytoeffectasafeshutdownandtomitigatetheeffectsofanaccident;however,theonsiteACsourceshavenotbeendegraded.Thislevelofdegradationgenerallycorrespondstoatotallossoftheimmediatelyaccessibleoffsitepowersources.Becauseofthenormallyhighavailabilityoftheoffsitesources,thislevelofdegradationmayappeartobemoreseverethanothercombinationsoftwoACsourcesinoperablethatinvolveoneormoreDGsinoperable.However.twofactorstendtodecreasetheseverityofthisdegradationlevel:a.TheconfigurationoftheredundantACelectricalpowersystemthatremainsavailableisnotsusceptibletoa'inglebusorswitchingfailure;and(continued)SUSQUEHANNA-UNIT183.8-12Revision0 ACSources-OperatingB3.8.1BASESACTIONSC.1(continued)b.ThetimerequiredtodetectandrestoreanunavailableoffsitepowersourceisgenerallymuchlessthanthatrequiredtodetectandrestoreanunavailableonsiteACsource.Withbothoftherequiredoffsitecircuitsinoperable,sufficientonsiteACsourcesareavailabletomaintaintheunitinasafeshutdownconditionintheeventofaDBAortransient.Infact.asimultaneouslossofoffsiteACsources,aLOCA,andaworstcasesinglefailurewerepostulatedasapartofthedesignbasisinthesafetyanalysis.Thus,the24hourCompletionTimeprovidesaperiodoftimetoeffectrestorationofoneoftheoffsitecircuitscommensuratewiththeimportanceofmaintaininganACelectricalpowersystemcapableofmeetingitsdesigncriteria.AccordingtoRegulatoryGuide1.93(Ref.7),withtheavailableoffsiteACsourcestwolessthanrequiredbytheLCO.operationmaycontinuefor24hours.Iftwooffsitesourcesarerestoredwithin24hours,unrestrictedoperationmaycontinue.Ifonlyoneoffsitesourceisrestoredwithin24hours,poweroperationcontinuesinaccordancewithConditionA.D.1and0.2PursuanttoLCO3.0.6,theDistributionSystemActionswouldnotbeenteredevenif'llACsourcestoitwereinoperable,resultinginde-energization.Therefore.theRequiredActionsofConditionDaremodifiedbyaNotetoindicatethatwhenConditionDisenteredwithnoACsourcetoanyESSbus,ActionsforLCO3.8.7,"DistributionSystems-Operating,"mustbeimmediatelyentered.ThisallowsCondition0toproviderequirementsforthelossoftheoffsitecircuitandoneDGwithoutregardtowhetheradivisionisde-energized.LCO3.8.7providestheappropriaterestrictionsforade-energizedbus.AccordingtoRegulatoryGuide1.93(Ref.7)~operationmaycontinueinConditionDforaperiodthatshouldnotexceed12hours.InConditionD,individualredundancyislostinboththeoffsiteelectricalpowersystemandtheonsiteACelectricalpowersystem.Sincepowersystemredundancyisprovidedbytwodiversesourcesofpower,however,the(continued)SUSQUEHANNA-UNIT1B3.8-13Revision0 ACSources-OperatingB3.8.1BASESACTIONSD.landD.2(continued)reliabilityofthepowersystemsinthisConditionmayappearhigherthanthatinConditionC(lossofbothrequiredoffsitecircuits).Thisdifferenceinreliabilityisoffsetbythesusceptibilityofthispowersystemconfigurationtoasinglebusorswitchingfailure.The12hourCompletionTimetakesintoaccountthecapacityandcapabilityoftheremainingACsources,reasonabletimeforrepairs,andthelowprobabilityofaDBAoccurringduringthisperiod.E.1WithtwoormoreDGsinoperableandanassumedlossofoffsiteelectricalpower,insufficientstandbyACsourcesareavailabletopowertheminimumrequiredESFfunctions.SincetheoffsiteelectricalpowersystemistheonlysourceofACpowerforthemajorityofESFequipmentatthislevelofdegradation,theriskassociatedwithcontinuedoperationforaveryshorttimecouldbelessthanthatassociatedwithanimmediatecontrolledshutdown.(Theimmediateshutdowncouldcausegridinstability,whichcouldresultinatotallossofACpower.)Sinceanyinadvertentunitgeneratortripcouldalsoresultinatotallossof"offsiteACpower,however,thetimeallowedforcontinuedoperationisseverelyrestricted.Theintenthereistoavoidtheriskassociatedwithanimmediatecontrolledshutdownandtominimizetheriskassociatedwiththislevelofdegradation.Accordi'ngtoRegulatoryGuide1.93(Ref.7),withtwoormore'Gsinoperable,operationmaycontinueforaperiodthatshouldnot-exceed2hours.F.landF.2IftheinoperableACelectricalpowersourcescannotberestoredtoOPERABLEstatuswithintheassociatedCompletionTime,theunitmustbebroughttoaHODEinwhichtheLCOdoesnotapply.Toachievethisstatus,theunitmustbebroughttoatleastHODE3within12hoursandtoHODE4within36hours.TheallowedCompletionTimesarereasonable,basedonoperatingexperience,toreachtherequiredplantconditionsfromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.(continued)SUSQUEHANNA-UNIT1B3.8-14Revision0 ACSources-OperatingB3.8.1BASESACTIONS(continued)G.lConditionGcorrespondstoalevelofdegradationinwhichallredundancyintheACelectricalpowersupplieshasbeenlost.Atthisseverelydegradedlevel,anyfurtherlossesintheACelectricalpowersystemwillcausealossoffunction.Therefore.noadditionaltimeisjustifiedforcontinuedoperation.TheunitisrequiredbyLCO3.0.3tocommenceacontrolledshutdown.SURVEILLANCE,REQUIREMENTSTheACsourcesaredesignedtopermitinspectionandtestingofallimportantareasandfeatures,especiallythosethathaveastandbyfunction,inaccordancewith10CFR50,GDC18(Ref.9).Periodiccomponenttestsaresupplementedbyextensivefunctionaltestsduringrefuelingoutages(undersimulatedaccidentconditions).TheSRsfordemonstratingtheOPERABILITYoftheDGsareinaccordancewiththerecommendationsofRegulatoryGuide1.9(Ref.3),andRegulatoryGuide1.137(Ref.11).asaddressedintheFSAR.TheSafetyAnalysisforUnit.2,assumestheOPERABILITYofsomeequipmentthatreceivespowerfromUnit1ACSources.Therefore.Survei'llancerequirementsareestablishedfortheUnit1onsiteClass1EACelectricalpowerdistributionsubsystem(s)requiredtosupportUnit2byLCO3.8.7,DistributionSystems-Operating.TheUnit1SRsrequiredtosupportUnit2areidentifiedintheUnit2TechnicalSpecifications.WheretheSRsdiscussedhereinspecifyvoltageandfrequencytolerances,thefollowingsummaryisapplicable.Theminimumsteadystateoutputvoltageof3793Visthevalueassumedinthedegradedvoltageanalysisandisapproximately90Kofthenominal4160Voutputvoltage.Thisvalueallowsforvoltagedroptotheterminalsof4000Vmotorswhoseminimumoperatingvoltageisspecifiedas90Kor3600V.Italsoallowsforvoltagedropstomotorsandotherequipmentdownthroughthe120Vlevelwhereminimumoperatingvoltageisalsousuallyspecifiedas90Kofnameplaterating.Thespecifiedmaximumsteadystateoutputvoltageof4400Visequaltothe(continued)SUSQUEHANNA-UNIT1B3.8-15Revision0 ACSources-OperatingB3.8.1BASESSURVEILLANCEREQUIREMENTS(continued)maximumoperatingvoltagespecifiedfor4000Vmotors.Itensuresthatforalightlyloadeddistributionsystem,thevoltageattheterminalsof4000Vmotorsisnomorethanthemaximumratedoperatingvoltages.ThespecifiedminimumandmaximumfrequenciesoftheDGare58.8Hzand61.2Hz,respectively.Thesevaluesareequalto+2Xofthe60HznominalfrequencyandarederivedfromtherecommendationsfoundinRegulatoryGuide1.9(Ref.3).ThelowerfrequencylimitisnecessarytosupporttheLOCAanalysisassumptionsforlowpressureECCSpumpflowrates.(Reference12)TheSurveillance~.TablehasbeenmodifiedbyaNote,toclarifythetestingrequirementsassociatedwithDGE.TheNoteisnecessarytodefinetheintentoftheSurveillanceRequirementsassociatedwiththeintegrationofDGE.Specifically,theNotedefinesthataDGisonlyconsideredOPERABLEandrequiredwhenitisalignedtotheClass1Edistributionsystem.Forexample,ifDGAdoesnotmeettherequirementsofaspecificSR,butDGEissubstitutedforDGAandalignedtotheClass1Edistributionsystem,DGEisrequiredtobeOPERABLEtosatisfytheLCOrequirementof4DGsandDGAisnotrequiredtobeOPERABLEbecauseitisnotalignedtotheClass1Edistributionsystem;Thisisacceptablebecauseonly4DGsareassumedintheeventanalysis.Furthermore,theNoteidentifieswheretheSurveillanceRequirements,asmodi.fiedbySRNotes,havebeenmetandperformed,DGEcanbesubstitutedforanyotherDGanddeclaredOPERABLEatterperformanceoftwoSRswhichverifyswitchalignment.ThisisacceptablebecausethetestingregimendefinedintheSurveillanceRequirementTableensuresDGEisfullycapableofperformingallDGrequirements.SR3.8.1.1ThisSRensurespropercircuitcontinuityfortheoffsiteACelectricalpowersupplytotheonsitedistributionnetworkandavailabilityofoffsiteACelectricalpower.ThebreakeralignmentverifiesthateachbreakerisinitscorrectpositiontoensurethatdistributionbusesandloadsareconnectedtoanOperableoffsitepowersourceandthatappropriateindependenceofoffsitecircuitsismaintained.The7dayFrequencyisadequatesincebreakerpositionisnotlikelytochangewithouttheoperatorbeingawareofitandbecauseitsstatusisdisplayedinthecontrolroom.(continued)SUSQUEHANNA-UNIT1B3.8-16Revision0 ACSources-OperatingB3.8.1BASESSURVEILLANCEREQUIREMENTS(continued)SR3.8.1.2NotUsed.SR3.8.1.3ThisSurveillanceverifiesthattheDGsarecapableofsynchronizingandacceptinggreaterthanorequaltotheequivalentofthemaximumexpectedaccidentloads.Aminimumruntimeof60minutesisrequiredtostabilizeenginetemperatures,whileminimizingthetimethattheDGisconnectedtotheoffsitesource.AlthoughnopowerfactorrequirementsareestablishedbythisSR,theDGisnormallyoperatedatapowerfactorbetween0.8laggingand1.0.The0.8valueisthedesignratingofthemachine,while1.0isanoperationallimitationtoensurecirculatingcurrentsareminimized.TheloadbandisprovidedtoavoidroutineoverloadingoftheDG.RoutineoverloadingmayresultinmorefrequentteardowninspectionsinaccordancewithvendorrecommendationsinordertomaintainDGOPERABILITY.Note1modif)eCthisSurveillancetoindicatethatdieselenginerunsforthisSurveillancemayincludegradualloading,asrecommendedbytheCooperBessemerServiceBulletin728,sothatmechanicalstressandwearonthedieselengineareminimized.Note2modifiesthisSurveillancebystatingthatmomentarytransientsbecauseofchangingbusloadsdonotinvalidatethistest.Similarly,momentarypowerfactortransientsdonotinvalidatethetest.Note3indicatesthatthisSurveillanceshouldbeconductedononlyoneDGatatimeinordertoavoidcommoncausefailuresthatmightresultfromoffsitecircuitorgridperturbations.Note4stipulatesaprerequisiterequirementforperformanceofthisSR.AsuccessfulDGstartmustprecedethistesttocreditsatisfactoryperformance.Note5providestheallowancethatDGE,whennotalignedassubstituteforDGA,B.CandDbutbeingmaintainedavailable.(continued)SUSQUEHANNA-UNIT1B3.8-17Revision0

ACSources-OperatingB3.8.1BASESSURVEILLANCEREQUIREMENTS(continued)SR3.8.1.3mayusethetestfacilitytosatisfyloadingrequirementsinlieuofsynchronizationwithanESSbus.Note6allowsasingletest(insteadoftwotests.oneforeachunit)tosatisfytherequirementsforbothunits,withtheDGsynchronizedtothe4.16kVESSbusofUnit1foroneperiodictestandsynchronizedtothe4.16kVESSbusofUnit2duringthenextperiodictest.ThisisacceptablebecausethepurposeofthetestistodemonstratetheabilityoftheDGtooperateatitscontinuousrating(withtheexceptionofDGEwhichisonlyrequiredtobetestedatthecontinuousratingofDGsAthroughD)andthisattributeistestedattherequiredFrequency.Eachunit'scircuitbreakersandbreakercontrolcircuitry,whichareonlybeingtestedeverysecondtest(duetothestaggeringofthetests),historicallyhaveaverylowfailurerate.IfaDGfailsthisSurveillance,theDGshouldbeconsideredinoperableforbothunits,unlessthecauseofthefailurecanbedirectlyrelatedtoorilyoneunit.Inaddition,ifthetestis'scheduledtobeperformedontheotherUnit,andtheotherUnit'sTSallowancethatprovidesanexceptiontoperforming.thetestisused(i.e.,theNotetoSR3.8.2.1fortheotherUnitprovidesanexceptiontoperformingthistestwhentheotherUnitisinMODE4or5,ormovingirradiatedfuelassembliesinthesecondarycontainment),oritisnotpossibletoperformthetestduetoequipmentavailabililty,thenthetestshallbeperformedsynchronizedtothisUnit's4.16kVESSbus.The31dayFrequencyforthisSurveillanceisconsistentwithRegulatoryGuide1.9(Ref.3).SR3.8.1.4ThisSRverifiestheleveloffueloilintheenginemounteddaytank.Fueloilisautomaticallyadded.Additionally,administrativecontrolsensureausablevolumeoffueloilinthedaytankadequateforapproximately60minutesofDGoperationpluslOXatthecontinuousratedload.The31dayFrequencyisadequatetoensurethatasufficientsupplyoffueloilisavailable,sincelowlevelalarmsareprovidedandoperatorswouldbeawareofanylargeusesoffueloilduringthisperiod.(continued)SUSQUEHANNA-UNIT2B3'-18AmendmentB.02/28/98 II ACSources-OperatingB3.8.1BASESSURVEILLANCEREQUIREHENTS(continued)SR3.8.1.5Microbiologicalfoulingisamajorcauseoffueloildegradation.Therearenumerousbacteriathatcangrowinfueloilandcausefouling,butallmusthaveawaterenvironmentinordertosurvive.Removalofwaterfromtheenginemounteddaytanksonceevery31dayseliminatesthenecessaryenvironmentforbacterialsurvival.Thisisthemosteffectivemeansofcontrollingmicrobiologicalfouling.Inaddition,iteliminatesthepotentialforwaterentrainmentinthefueloilduringDGoperation.Watermaycomefromanyofseveralsources,includingcondensation,groundwater,rainwater,contaminatedfueloil,andbreakdownofthefueloilbybacteria.Frequentcheckingforandremovalofaccumulatedwaterminimizesfoulingandprovidesdataregardingthewatertightintegrityofthefueloilsystem.TheSurveillanceFrequenciesareestablishedbyRegulatoryGuide1.137(Ref.11).ThisSRisforpreventivemaintenance.ThepresenceofwaterdoesnotnecessarilyrepresentafailureofthisSRprovidedthataccumulatedwaterisremovedduringperformanceofthisSurveillance.~5R3'.8:.6.This.Surveil1'ance=-demonstratesthateachrequired=fue1oiltranrrer.pumpoperatesandtransfersfueloilfrom.its-assosiatedstoragetanktoitsassociatedday-tank-.It.is'requi.redtosupportcontinuousoperationof'tandbypower:~ourcemThisSurveillanceprovidesassurance-thatthe-'ttel..oiltransferpumpisOPERABLE,thefueloi.lpipingsystem.->.s,...intact-,thefueldeliverypipingisnotobstructed;,and.thecontrolsandcontrolsystemsforautomaticfueltransfersystemsareOPERABLE.(continued)SUSQUEHANNA-UNIT1B3.8-19Revision0 ACSources-OperatingB3.8.1BASESSURVEILLANCEREQUIREMENTS(continued)SR3.8.1.6TheFrequencyforthisSRis31daysbecausethedesignofthefueltransfersystemrequiresthatthetransferpumpsoperateautomatically.Administrativecontrolsensureanadequatevolumeoffueloilinthedaytanks.ThisFrequencyallowsthisaspectofDGOperabilitytobedemonstratedduringorfollowingroutineDGoperation.SR3.8.1.7ThisSRhelpstoensuretheavailabilityof'hestandbyelectricalpowersupplytomitigateDBAsandtransientsandmaintaintheunitinasafeshutdowncondition.Tominimizethewearonmovingpartsthatdonotgetlubricatedwhentheengineisnotrunning,thisSRhasbeenmodifiedbyNote1toindicatethatallDGstartsfortheseSurveillancesmaybeprecededbyanengineprelubeperiod(whichforDGsAthroughDincludesoperationofthelubeoilsystemtoensuretheDGsturbochargerissufficientlyprelubicatedtopreventundowearandtear)'.Forthepurposes'ofthistesting,theDGsarestartedfromstandbyconditions.StandbyconditionsforaDGmeanthatthedieselengineoilisbeingcontinuouslycirculatedanddieselenginecoolantisbeingcirculatedasnecessarytomaintaintemperatureconsistentwithmanufacturerrecommendations.TheDGstartsfromstandbyconditionsandachievestheminimumrequiredvoltageandfrequencywithin10secondsandmaintainstherequiredvoltageandfrequencywhensteadystateconditionsarereached.The10secondstartrequirementsupportstheassumptionsinthedesignbasisLOCAanalysisofFSAR,Section6.3(Ref;.12).TominimizetestingoftheDGs,Note2allowsasingletesttosatisfytherequirementsforbothunits(insteadoftwotests,oneforeachunit).ThisisacceptablebecausethistestisintendedtodemonstrateattributesoftheDGthatarenotassociatedwitheitherUnit.IftheDGfailsthisSurveillance,theDGshouldbeconsideredinoperableforboth(continued)SUSQUEHANNA-UNIT1B3.8-20Revision0 ACSources-OperatingB3.8.1BASES.SURVEILLANCEREQUIREMENTS(continued)SR3.8.1.7units,unlessthecauseofthefailurecanbedirectlyrelatedtooneunit.ThetimefortheDGtoreachsteadystateoperationisperiodicallymonitoredandthetrendevaluatedtoidentifydegradation.The31dayFrequencyisconsistentwithRegulatoryGuide1.9(Ref.3).ThisFrequencyprovidesadequateassuranceof'GOPERABILITY.SR3.8.1.8Transferofeach4.16kVESSbuspowersupplyfromthenormaloffsitecircuittothealternateoffsitecircuitdemonstratestheOPERABILITYofthealternatecircuitdistributionnetworktopowertheshutdownloads.The24monthFrequencyoftheSurveillanceisbasedonengineeringjudgmenttakingintoconsiderationtheplantconditionsrequiredtoperformtheSurveillance,andisintendedtobeconsistentwithexpectedfuelcyclelengths.OperatingexperiencehasshownthatthesecomponentsusuallypasstheSRwhenperformedonthe24monthFrequency.Therefore,theFrequencywasconcludedtobeacceptablefromareliabilitystandpoint.ThisSRismodifiedbyaNote.ThereasonfortheNoteisthat,duringoperationwiththereactorcritical,performanceoftheautomatictransferoftheunitpowersupplycouldcauseperturbationstotheelectricaldistributionsystemsthatcouldchallengecontinuedsteadystateoperationand,asa'result,plantsafetysystems.Themanualtransferofunitpowersupplyshouldnotresultinanyperturbationtotheelectricaldistributionsystem,therefore.nomoderestrictionisspecified.ThisSurveillanceteststheapplicablelogicassociatedwithUnit1.Thecomparabletestspeci@edinUnit2TechnicalSpecificationsteststheapplicablelogicassociatedwithUnit2.Consequently,atestmustbeperformedwithinthespecifiedFrequencyforeachunit.AstheSurveillancerepresentsseparatetests,theNotespecifyingtherestrictionfornotperformingthetestwhiletheunitisinMODE1or2doesnothaveapplicabilitytoUnit2.TheNOTE(continued)SUSQUEHANNA-UNIT1B3.8-21Revision0 ACSources-OperatingB3.8.1BASESSURVEILLANCEREQUIREMENTS(continued)SR3.8.1.8onlyappliestoUnit1,thustheUnit1SurveillanceshallnotbeperformedwithUnit1inMODE1or2.SR3.8.1,9EachDGisprovidedwithanengineoverspeedtriptopreventdamagetotheengine.Recoveryfromthetransientcausedbythelossofalargeloadcouldcausedieselengineoverspeed,which,ifexcessive,mightresultinatripoftheengine.ThisSurveillancedemonstratestheDGloadresponsecharacteristicsandcapabilitytorejectthelargestsingleloadwithoutexceedingpredeterminedvoltageandfrequencyandwhilemaintainingaspecifiedmargintotheoverspeedtrip.ThelargestsingleloadforeachDGisaresidualheatremoval(RHR)pump(1425kW).ThisSurveillancemaybeaccomplishedby:TrippingtheDGoutputbreakerwiththeDGcarryinggreaterthanorequaltoitsassociatedsinglelargestpost-accident-loadwhileparalleledtooffsitepower,orwhilesolelysupplyingthebus;orTrippingitsassociatedsingle1argestpost-accident1oadwiththeDGsolelysupplyingthebus.AsrecommendedbyRegulatoryGuide1.9(Ref.3).theloadrejectiontestisacceptableiftheincreaseindieselspeeddoesnotexceed75Kofthedifferencebetweensynchronousspeedandtheoverspeedtripsetpoint,or15Kabovesynchronousspeed,whicheverislower.ForDGsA,B,C,DandE,thisrepresents64.5Hz,equivalentto75Kofthedifferencebetweennominalspeedandtheoverspeedtripsetpoint.Thetime,voltage,andfrequencytolerancesspecifiedinthisSRarederivedfromRegulatoryGuide1.9(Ref.3)recommendationsforresponseduringloadsequenceintervals.The4.5secondsspecifiedisequalto60Kof'he7.5secondloadsequenceintervalassociatedwithsequencingtheRHRpumpsduringanundervoltageonthebusconcurrentwithaLOCA.Thevoltageandfrequencyspecifiedareconsistentwiththedesignrangeof'heequipmentpoweredbytheDG.SR3.8.1.9.a(continued)SUSQUEHANNA-UNIT1B3.8-22Revision0 ACSources-OperatingB3.8.1BASESSURVEILLANCEREQUIREHENTS'(continued)SR3.8.1.9correspondstothemaximumfrequencyexcursion,whileSR3.8.1.9.cspecifiesthesteadystatevoltageandfrequencyvaluestowhichthesystemmustrecoverfollowingloadrejection.The24monthFrequencyisconsistentwiththerecommendationofRegulatoryGuide1.9(Ref.3)andisintendedtobeconsistentwithexpectedfuelcyclelengths.TominimizetestingoftheDGs,aNoteallowsasingletesttosatisfytherequirementsforbothunits(insteadoftwotests,oneforeachunit).ThisisacceptablebecausethistestisintendedtodemonstrateattributesoftheDGthatarenotassociatedwitheitherUnit.IftheOGfailsthisSurveillance,theDGshouldbeconsideredinoperableforbothunits,unlessthecauseofthefailurecanbedirectlyrelatedtoonlyoneunit.SR3.8.1.10ThisSurveillancedemonstratestheOGcapabilitytorejectafullloadwithout'verspeedtrippingorexceedingthepredeterminedvoltagelimits.The.DG.fullloadrejectionmayoccurbecauseofasystemfaultor,inadvertentbreakertripping.ThisSurveillanceensuresproperenginegeneratorloadresponseunderthesimulated.testconditions.ThistestsimulatesthelossofthetotalconnectedloadthattheDGexperiencesfollowingafullloadrejectionandverifiesthattheOGdoesnottripuponlossoftheload.TheseacceptancecriteriaprovideDGdamageprotection.WhiletheDGisnotexpectedtoexperiencethistransientduringanevent,andcontinuestobeavailable,thisresponseensuresthattheDGisnotdegradedforfutureapplication,includingreconnectiontothebusifthetripinitiatorcanbecorrectedorisolated.(continued)SUSQUEHANNA-UNIT1B3.8-23Revision0 ACSources-OperatingB3.8.1BASESSURVEILLANCEREQUIREMENTSSR3.8.1.10(continued)TominimizetestingoftheDGs,aNoteallowsasingletesttosatisfytherequirementsforbothunits(insteadoftwotests,oneforeachunit).ThisisacceptablebecausethistestisintendedtodemonstrateattributesoftheDGthatarenotassociatedwitheitherUnit.IftheDGfailsthisSurveillance,theDGshouldbeconsideredinoperableforbothunits,unlessthecauseofthefailurecanbedirectlyrelatedtoonlyoneunit.The24monthFrequencyisconsistentwiththerecommendationofRegulatoryGuide1.9(Ref.3)andisintendedtobeconsistentwithexpectedfuelcyclelengths.SR3.8.1.11AsrequiredbyRegulatoryGuide1.9(Ref.3),thisSurveillancedemonstratestheasdesignedoperationofthestandbypowersourcesduringlossoftheoffsitesource.Thistestverifiesallactionsencounteredfromthe,lossofoffsitepower,includingsheddingofthenonessentialloadsandenergizationoftheESSbusesandrespective4.16kVloadsfromtheDG.ItfurtherdemonstratesthecapabilityoftheDGtoautomaticallyachieveandmaintaintherequiredvoltageandfrequencywithinthespecifiedtime.TheDGauto-starttimeof10secondsisderivedfromrequirementsofthelicensedaccidentanalysisforrespondingtoadesignbasislargebreakLOCA.TheSurveillanceshouldbecontinuedforaminimumof5minutesinordertodemonstratethatallstartingtransientshavedecayedandstabilityhasbeenachieved.The24monthFrequencyisconsistentwiththerecommendationofRegulatoryGuide1.9(Ref.3),takesintoconsiderationplantconditionsrequiredtoperformtheSurveillance,andisintendedtobeconsistentwithexpectedfuelcyclelengths.(continued)SUSQUEHANNA-UNIT1B3.8-24Revision0 ACSources-OperatingB3.8.1BASESSURVEILLANCEREQUIREMENTSSR3.8.1.11(continued)ThisSRismodifiedbythreeNotes.ThereasonforNote1istominimizewearandtearontheDGsduringtesting.Note1allowsallDGstartstobeprecededbyanengineprelubeperiod(whichforDGsAthrough0includesoperationofthelubeoilsystemtoensuretheDG.'sturbochargerissufficientlyrelubicated).Forthepurposeofthistesting,theDGsshallestartedfromstandbyconditions,thatis,withtheengineoilbeingcontinuouslycirculatedandenginecoolantbeingcirculatedasnecessarytomaintaintemperatureconsistentwithmanufacturerrecommendations.ThisSRisalsomodifiedbyNote2.TheNotespecifieswhenthisSRisrequiredtobeperformedfortheDGsandthe4.16kVESSBuses.TheNoteisnecessarybecausethisSRinvolvesanintegratedtestbetweentheDGsandthe4.16kVESSBusesandtheneedforthetestingregimentoincludeDGEbeingtested(substitutedforallDGsforbothUnits)withall4.16kVESSBuses.Toensurethenecessarytestingisperformed,thefollowingrotationaltestingregimenhasbeenestablished:UNITINOUTAGEDIESELESUBSTITUTEDFOR2DGEnottested1DieselGenerator02DieselGeneratorA1DGEnottest'ed2DieselGeneratorB1DieselGeneratorA2DieselGeneratorC1DieselGeneratorB2DieselGeneratorD1DieselGeneratorCThespecifiedrotationaltestingregimencanbealteredtofacilitateunanticipatedeventswhichrenderthetestingregimenimpracticaltoimplement,butanyalternative(continued)SUSQUEHANNA-UNIT1B3.8-25Revision0 ACSources-OperatingB3.8.1BASESSURVEILLANCEREQUIREMENTSSR3.8.1.'ll(continued)testingregimenmustprovideanequivalentleveloftesting.ThisSRdoesnothavetobeperformedwiththenormallyalignedDGwhentheassociated4.16kVESSbusistestedusingDGEandDGEdoesnotneedtobetestedwhennotsubstitutedoralignedtotheClass1Edistributionsystem.TheallowancesspecifiedintheNoteareacceptablebecausethetestedattributesofeachofthefiveDGsandeachunit'sfour4.16kVESSbusesareverifiedatthespecifiedFrequency(i.e.,eachDGandeach4.16kVESSbusistestedevery24months).Specifically,whenDGEistestedwithaUnit14.16kVESSbus,theattributesofthenormallyalignedDG,althoughnottestedwiththeUnit14.16kVESSbus,aretestedwiththeUnit24.16kVESSbuswithinthe24monthFrequency.Thetestingallowancesdoresultinsomecircuitpathwayswhichdonotneedtochangestate(i.e.,cabling)notbeingtestedona24monthFrequency.Thisisacceptablebecausethesecomponentsarenotrequiredtochangestatetoperformtheirsafety.functionandwhensubstituted--normaloperationofDGEwillensurecontinuityofmostofthecablingnottested.ThereasonforNote'isthatperformingtheSurveillancewouldremovearequiredoffsitecircuitfromservice,perturbtheelectricaldistributionsystem,andchallengesafetysystems.ThisSurveillanceteststheapplicablelogicassociatedwithUnit1.ThecomparabletestspecifiedintheUnit2TechnicalSpecificationsteststheapplicablelogicassociatedwithUnit2.Consequently,atestmustbeperformedwithinthespecifiedFrequencyforeachunit.AstheSurveillancerepresentsseparatetests.theNotespecifyingtherestrictionfornotperformingthetestwhiletheunitisinMODE1,2,or3doesnothaveapplicabilitytoUnit2.TheNoteonlyappliestoUnit1,thustheUnit1SurveillancesshallnotbeperformedwithUnit1inMODES1,2or3.SR3.8.1.12ThisSurveillancedemonstratesthattheDGautomaticallystartsandachievestherequiredvoltageandfrequencywithinthespecifiedtime(10seconds)fromthedesignbasisactuationsignal(LOCAsignal)andoperatesfor~5minutes.The5minuteperiodprovidessufficienttimetodemonstrate(continued)SUSQUEHANNA-UNIT1B3.8-26Revision0 ACSources-OperatingB3.8.1BASESSURVEILLANCEREQUIREMENTSSR3.8.1.12(continued)stability.SR3.8.1.12.dandSR3.8.1.12.eensurethatpermanentlyconnectedloadsandemergencyloadsareenergizedfromtheoffsiteelectricalpowersystemonaLOCAsignalwithoutlossofoffsitepower.Therequirementtoverifytheconnectionandpowersupplyofpermanentandautoconnectedloadsisintendedtosatisfactorilyshowtherelationshipoftheseloadstotheloadinglogicforloadingontooffsitepower.Incertaincircumstances,manyoftheseloadscannotactuallybeconnectedorloadedwithoutunduehardshiporpotentialforundesiredoperation.Forinstance,ECCSinjectionvalvesarenotdesiredtobestrokedopen,highpressureinjectionsystemsarenotcapableofbeingoperatedatfullflow,orRHRsystemsperformingadecayheatremovalfunctionarenotdesiredtoberealignedtotheECCSmodeofoperation.Inlieuofactualdemonstrationoftheconnectionandloadingoftheseloads,testingthatadequatelyshowsthecapabilityoftheDGsystemtoperformthesefunctionsisacceptable.Thistestingmayincludeanyseriesofsequential,overlapping,ortotalstepssothattheentireconnectionandloadingsequenceisverified.SR3.8.1.12.athroughSR3.8.1.12.08reperformedwiththeDGrunning.SR3.8.1.12.ecanbe-performedwhentheDGisnotrunning.TheFrequencyof24monthstakesintoconsiderationplantconditionsrequiredtoperformtheSurveillanceandisintendedtobeconsistentwiththeexpectedfuelcyclelengths.OperatingexperiencehasshownthatthesecomponentsusuallypasstheSRwhenperformedatthe24monthFrequency.Therefore,theFrequencyisacceptablefromareliabilitystandpoint.ThisSRismodifiedbytwoNotes.ThereasonforNote1istominimizewearandtearontheDGsduringtesting.Note1allowsallDGstartstobeprecededbyanengineprelubeperiod(whichforDGAthroughDincludesoperationofthelubeoilsystemtoensuretheDG'sturbo-chargerissuf'ficientlyrelubicated).Forthepurposeof'histesting,theDGsmustestartedfromstandbyconditions,thatis,withtheengineoilbeingcontinuouslycirculatedandenginecoolantbeingcirculatedasnecessarytomaintaintemperatureconsistentwithmanufacturerrecommendations.(continued)SUSQUEHANNA-UNIT1B3.8-27Revision0 ACSources-OperatingB3.8.1BASESSURVEILLANCEREQUIREMENTS(continued)SR3.8.1.13ThereasonforNote2istoallowDGE,whennotalignedassubstituteforDGA,B,CorDtousethetestfacilitytosatisfyloadingrequirementsinlieuofaligningwiththeClass1Edistributionsystem.Whentestedinthisconfiguration,DGEsatisfiestherequirementsofthistestbycompletionofSR3.8.1.12.a,bandconly.SR3.8.1.12.dand3.8.1.12.emaybeperformedbyanyDGalignedwiththeClass1Edistributionsystemorbyanyseriesofsequential.overlapping,ortotalstepssothattheentireconnectionandloadingsequenceisverified.ThisSurveillancedemonstratesthatDGnon-criticalprotectivefunctions(e.g..highjacketwatertemperature)arebypassedonanECCSinitiationtestsignal.Thenon-criticaltrip4arebypassedduringDBAsandprovideanalarmonanabnormalenginecondition.Thisalarmprovidestheoperatorwithsufficienttimetoreactappropriately.TheDGavailabilitytomitigatetheDBAismorecriticalthanprotectingtheengineagainstminorproblemsthatarenotimmediatelydetrimentaltoemergencyoperationoftheDG.The24monthFrequencyisbasedonengineeringjudgment,takesintoconsidelationplantconditionsrequiredtoperformtheSurveillance,andisintendedtobeconsistentwithexpectedfuelcyclelengths.OperatingexperiencehasshownthatthesecomponentsusuallypasstheSRwhenperformedatthe24monthFrequency.Therefore,theFrequencywasconcludedtobeacceptablefromareliabilitystandpoint.TheSRismodifiedbytwoNotes.TominimizetestingoftheDGs.Note1toSR3.8.1.13allowsasingletest(insteadoftwotests,onef'reachunit)tosatisfytherequirementsforbothunits.ThisisacceptablebecausethistestisintendedtodemonstrateattributesoftheDGthatarenotassociatedwitheitherUnit.IftheDGfailsthisSurveillance,theDGshouldbeconsideredinoperableforbothunits,unlessthecauseofthefailurecanbedirectlyrelatedtoonlyoneunit.Note2providestheallowancethatDGE,whennotalignedasasubstituteforDGA,B,C,andDbutbeingmaintainedavailable.mayuseasimulatedECCSinitiationsignal.(continued)SUSQUEHANNA-UNIT1B3.8-28Revision0 0

ACSources-OperatingB3.8.1BASESSURVEILLANCEREQUIREMENTS(continued)SR3.8.1.14RegulatoryGuide1.9(Ref.3),requiresdemonstrationonceper24monthsthattheDGscanstartandruncontinuouslyatfullloadcapabilityforanintervalofnotlessthan24hours-22hoursofwhichisataloadequivalentto90Kto100KofthecontinuousratingoftheDG,and2hoursofwhichisataloadequivalentto105Kto110KofthecontinuousdutyratingoftheDG.SSEShastakenexceptiontothisrequirementandperformsthetwohourrunatthe2000hourratingforeachDG.Therequirementtoperformthetwohouroverloadtestcanbeperformedinanyorderprovideditisperformedduringasinglecontinuoustimeperiod.TheDGstartsforthisSurveillancecanbeperformedeitherfromstandbyor.hotconditions.TheprovisionsforprelubediscussedinSR3.8.1.7,andforgradualloading,discussedinSR3.8.1.3.areapplicabletothisSR.AloadbandisprovidedtoavoidroutineoverloadingoftheDG.RoutineoverloadingmayresultinmorefrequentteardowninspectionsinaccordancewithvendorrecommendationsinordertomaintainDGOPERABILITY..The24monthFrequencyisconsistentwiththerecommendationofRegulatoryGuide1.9(Ref.3),takesintoconsiderationplantconditionsrequiredtoperformtheSurveillance.andisintendedtobeconsistentwithexpectedfuelcyclelengths.ThisSurveillancehasbeenmodifiedbyfourNotes.Note1statesthatmomentarytransientsduetochangingbusloadsdonotinvalidatethistest.TominimizetestingoftheDGs,Note2allowsasingletest(insteadoftwotests,oneforeachunit)tosatisfytherequirementsforbothunits.ThisisacceptablebecausethistestisintendedtodemonstrateattributesoftheDGthatarenotassociatedwitheitherUnit.IftheDGfailsthisSurveillance,theDGshouldbeconsideredinoperableforbothunits.unlessthecauseofthefailurecanbedirectlyrelatedtoonlyoneunit.Note3stipulatesthatDGE,whennotalignedassubstituteforDGA,8,CorDbutbeingmaintainedavailable.mayuse(continued)SUSQUEHANNA-UNIT1B3.8-29Revision0 ACSources-OperatingB3.8.1SURVEILLANCEREQUIREMENTSSR3.8.1.14(continued)thetestfacilitytosatisfythespecifiedloadingrequirementsinlieuofsynchronizationwithanESSbus.SR3.8.1.15ThisSurveillancedemonstratesthatthedieselenginecanrestartfromahotcondition,suchassubsequenttoshutdownfromfullloadtemperatures.andachievetherequiredvoltageandfrequencywithin10seconds.The10secondtimeisderivedfromtherequirementsoftheaccidentanalysistorespondtoadesignbasislargebreakLOCA.The24monthfrequencyisconsistentwiththerecommendationofRegulatoryGuide1.9(Ref.3),takesintoconsiderationplantconditionsrequiredtoperformtheSurveillance.andisintendedtobeconsistentwithexpectedfuelcyclelengths.ThisSRismodifiedbythreeNotes.Note1ensuresthatthetestisperformedwiththedieselsufficientlyhot.Therequirementthat'hedieselhasoperatedforatleast2hoursatfullloadconditionspriortoperformanceofthisSurveillanceiSbasedonmanufacturerrecommendationsforachievinghotconditions.TheloadbandisprovidedtoavoidroutineoverloadingoftheDG.RoutineoverloadsmayresultinmorefrequentteardowninspectionsinaccordancewithvendorrecommendationsinordertomaintainDGOPERABILITY.Momentarytransientsduetochangingbusloadsdonotinvalidatethistest.Note2allowsallDGstartstobeprecededbyanengineprelubeperiod(whichforDGsAthroughDincludesoperationofthelubeoilsystemtoensuretheDGsturbochargerissufficientlyprelubricated)tominimizewearandtearonthedieselduringtesting.TominimizetestingoftheDGs,Note3allowsasingletesttosatisfytherequirementsforbothunits(insteadoftwotests.oneforeachunit).ThisisacceptablebecausethistestisintendedtodemonstrateattributesoftheDGthatarenotassociatedwitheitherUnit.IftheDGfailsthisSurveillance.theDGshouldbeconsideredinoperableforbothunits,unlessthecauseofthefailurecanbedirectlyrelatedtoonlyoneunit.(continued)SUSQUEHANNA-UNIT1B3.8-30Revision0 ACSources-OperatingB3.8.1BASESSURVEILLANCEREQUIREMENTS(continued)SR3.8.1.16AsrequiredbyRegulatoryGuide1.9(Ref.3),thisSurveillanceensuresthatthemanualsynchronizationandautomaticloadtransferfromtheDGtotheoffsitesourcecan-bemadeandthattheDGcanbereturnedtoready-to-loadstatuswhenoffsitepowerisrestored.Italsoensuresthattheauto-startlogicisresettoallowtheDGtoreloadifasubsequentlossofoffsitepoweroccurs.TheDGisconsideredtobeinready-to-loadstatuswhentheDGisatratedspeedandvoltage,theDGcontrolsareinisochronousandtheoutputbreakerisopen.The24monthFrequencyisconsistentwiththerecommendationofRegulatoryGuide1.9(Ref.3),takesintoconsiderationplantconditionsrequiredtoperformtheSurveillance,andisintendedtobeconsistentwithexpectedfuelcyclelengths.ThisSRismodifiedbyanotetoaccommodatethetestingregimennecessaryforDGE.SeeSR3.8.1.11fortheBasesoftheNote.SR3.8.1.17Demonstrationof'hetestmodeoverrideensuresthattheDGavailabilityunderaccidentconditionsisnotcompromisedastheresultoftesting.InterlockstotheLOCAsensingcircuitscausetheDGtoautomaticallyresettoready-to-loadoperationifanECCSinitiationsignalisreceivedduringoperationinthetestmode.Ready-to-loadoperationisdefinedastheDGrunningatratedspeedandvoltage.theDGcontrolsinisochronousandtheDGoutputbreakeropen.TheseprovisionsforautomaticswitchoverarerequiredbyIEEE-308(Ref.10),paragraph6.2.6(2).TherequirementtoautomaticallyenergizetheemergencyloadswithoffsitepowerisessentiallyidenticaltothatofSR3.8.1.12.TheintentintherequirementsassociatedwithSR3.8.1.17.bistoshowthattheemergencyloadingisnotaffectedbytheDGoperationintestmode.Inlieuof'ctualdemonstrationofconnectionandloadingofloads,testingthatadequatelyshowsthecapabilityoftheemergencyloadstoperformthesefunctionsisacceptable.ThistestisperformedbyverifyingthataftertheDGistripped,theoffsitesourceoriginallyinparallelwiththeDG,remainsconnectedtothe(continued)SUSQUEHANNA-UNIT1B3.8-31Revision0 ACSources-OperatingB3.8.1BASESSURVEILLANCEREQUIREHENTSSR3.8.1.17(continued)affected4.16kVESSBus.SR3.8.1.12isperformedseparately,toverifytheproperoffsiteloadingsequence.The24monthFrequencyisconsistentwiththerecommendationofRegulatoryGuide1.9(Ref.3),takesintoconsiderationplantconditionsrequiredtoperformtheSurveillance,andisintendedtobeconsistentwithexpectedfuelcyclelengths.ThisSRismodifiedbyanotetoaccommodatethetestingregimennecessaryforDGE.SeeSR3.8.1.11fortheBasesoftheNote.SR3.8.1.18Underaccidentconditions,loadsaresequentiallyconnectedtothebusbyindividualloadtimerswhichcontrolthepermissiveandstartingsignalstomotorbreakerstopreventoverloadingoftheACSourcesduetohighmotorstartingcurrents.TheloadsequencetimeintervaltoleranceensuresthatsufficienttimeexistsfortheACSourcetorestorefrequencyandvoltagepriortoapplyingthenextloadandthatsafetyanalysisassumptionsregardingESFequipmenttimedelaysarenotviolated.Reference2providesasummaryoftheautomaticloadingofESSbuses.AlistoftherequiredtimersandtheassociatedsetpointsareincludedintheBasesasTableB3.8.1-1,Unit1andUnit2LoadTimers.Failureofatimeridentifiedasanoffsitepowertimermayresultinbothoffsitesourcesbeinginoperable.FailureofanyothertimermayresultintheassociatedDGbeinginoperable.AtimerisconsideredfailedforthisSRifitwillnotensurethattheassociatedloadwillenergizewithintheAllowableValueinTableB3.8.1-1.TheseconditionswillrequireentryintoapplicableConditionsofthisspecification.Withaloadtimerinoperable,theloadcanberenderedinoperabletorestoreOPERABILITYtotheassociatedACsources.Inthiscondition,theConditionandRequiredActionsoftheassociatedspecificationshallbeenteredfortheequipmentrenderedinoperable.The24monthFrequencyisconsistentwiththerecommendationofRegulatoryGuide1.9(Ref.3),takesintoconsiderationplantconditionsrequiredtoperformtheSurveillance,andisintendedtobeconsistentwithexpectedfuelcyclelengths.(continued)SUSQUEHANNA-UNIT1B3.8-32Revision0, ACSources-OperatingB3.8.1BASESSURVEILLANCEREQUIREMENTSSR3.8.1.18(continued)ThisSRismodifiedbyaNotethatspecifiesthatloadtimersassociatedwithequipmentthathasautomaticinitiationcapabilitydisabledarenotrequiredtobeOperable.Thisisacceptablebecauseiftheloaddoesnotstartautomatically,theadverseeffectsofanimproperloadingsequenceareeliminated.Furthermore.loadtimersareassociatedwithindividualtimerssuchthatasingletimeronlyaffectsasingleload.SR3.8.1.19IntheeventofaDBAcoincidentwithalossofoffsitepower,theDGsarerequiredtosupplythenecessarypowertoESFsystemssothatthefuel,RCS,andcontainmentdesignlimitsarenotexceeded.ThisSurveillancedemonstratesDGoperation,asdiscussedintheBasesforSR3.8.1.11,duringalossofoffsitepoweractuationtestsignalinconjunctionwithanECCSinitiationsignal.Inlieuofactualdemonstrationofconnectionandloadingofloads,testingthatadequatelyshowsthecapabilityoftheDGsystem'toperformthesefunctionsisacceptable.Thistestingmayincludeanyseriesofsequential,overlapping,ortotalstepssothattheentireconnectionandloadingsequenceisverified.Tosimulatethenon-LOCAunit4.16kVESSBusloadsontheDG,boundingloadsareenergizedonthetested4.16kVESSBusafterallautoconnectedenergizingloadsareenergized.TheFrequencyof24monthstakesintoconsiderationplantconditionsrequiredtoperformtheSurveillanceandisintendedtobeconsistentwithanexpectedfuelcyclelength.ThisSRismodifiedbythreeNotes.ThereasonforNote1istominimizewearandtearontheDGsduringtesting.Note1allowsallDGstartstobeprecededbyanengineprelubeperiod(whichforDGsAthroughDincludesoperationofthelubeoilsystemtoensuretheDG'sturbochargerissufficientlyrelubricated.)Forthepurposeofthistesting,theDGsmustestartedfromstandbyconditions,thatis,withtheengineoilbeingcontinuouslycirculatedandenginecoolantbeingcirculatedasnecessarytomaintaintemperatureconsistentwithmanufacturerrecommendations.(continued)SUSQUEHANNA-UNIT1B3.8-33Revision0 0

ACSources-OperatingB3.8.1BASESSURVEILLANCEREQUIREHENTSSR3.8.1.19(continued)Note2isnecessarytoaccommodatethetestingregimenassociatedwithDGE.SeeSR3.8.1.11fortheBasesoftheNote.ThereasonforNote3isthatperformingtheSurveillancewouldremovearequiredoffsitecircuitfromservice,perturbtheelectricaldistributionsystem,andchallengesafetysystems.ThisSurveillanceteststheapplicablelogicassociatedwithUnit1.ThecomparabletestspecifiedintheUnit2TechnicalSpecificationsteststheapplicablelogicassociatedwithUnit2.Consequently,atestmustbeperformedwithinthespecifiedFrequencyforeachunit.AstheSurveillancerepresentsseparatetests,theNotespecifyingtherestrictionfornotperformingthetestwhiletheunitisinHODE1,2or3doesnothaveapplicabilitytoUnit2.TheNoteonlyappliestoUnit1.thustheUnit1SurveillancesshallnotbeperformedwithUnit1inHODE1,2or3.SR3.8.1.20ThisSurveillancedemonstratesthattheDGstartingindependencehasnotbeencompromised.Also,thisSurveillancedemonstratesthateachenginecanachieveproperspeedwithinthespecifiedtimewhentheDGsarestartedsimultaneously.The10yearFrequencyisconsistentwiththerecommendationsofRegulatoryGuide1.9(Ref'.3).ThisSRismodifiedbytwoNotes.Thereasonf'rNote1istominimizewearontheDGduringtesting.TheNoteallowsallDGstartstobeprecededbyanengineprelubeperiod(whichforDGsAthroughDincludesoperationofthelubeoilsystemtoensuretheDG'sturbochargerissufficientlyrelubricated).Forthepurposeofthistesting,theDGsmustestartedfromstandbyconditions,thatis,withtheengineoilcontinuouslycirculatedandenginecoolantbeingcirculatedasnecessarytomaintaintemperatureconsistentwithmanufacturerrecommendations.Note2isnecessarytoidentifythatthistestdoesnothavetobeperformedwithDGEsubstitutedforanyDG.TheallowanceisacceptablebasedonthedesignoftheDGEtransfer-switches.Thetransferofcontrol,protection,indication.(continued)SUSQUEHANNA-UNIT1B3.8-34Revision0 ACSources-OperatingB3.8.1BASESSURVEILLANCEREQUIREMENTSSR3.8.1.20(continued)andalarmsisbyswitchesattwoseparatelocations.TheseswitchesprovideadoublebreakbetweenDGEandtheredundantsystemwithinthetransferswitchpanel.Thetransferofpoweristhroughcircuitbreakersattwoseparatelocationsforeachredundantsystem.TherearefournormallyemptyswitchgearpositionsatDGEfacility,associatedwitheachofthefourexistingDGs.Onlyonecircuitbreakerisavailableatthislocationtobeinsertedintooneofthefourpositions.AteachoftheexistingDGs,therearetwoswitchgearpositionswithonlyonecircuitbreakeravailable.Thisdesignprovidestwoopencircuitsbetweenredundantpowersources.Therefore,basedonthedescribeddesign.itcanbeconcludedthatDGredundancyandindependenceismaintainedregardlessofwhetherDGEissubstitutedforanyotherDG.REFERENCESl.10CFR50,AppendixA,GDC17.2.FSAR,Section8.2.3.RegulatoryGuide1.9.4.FSAR,Chapter6.5.FSAR.Chapter15.6.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).7.RegulatoryGuide1.93.8.GenericLetter84-15.9.10CFR50,AppendixA,GDC18.10.IEEEStandard308.11.RegulatoryGuide1.137.12.FSAR,Section6.3.13.ASMEBoilerandPressureVesselCode.SectionXI.(continued)SUSQUEHANNA-UNIT1B3.8-35Revision0 ACSources-OperatingB3.8.1TABLEB3.8.1-1(page1of2)UNIT1ANDUNIT2LOADTIMERSDEVICETAGNO.62A-2010262A-2020262A-2030262A-2040262A-2010262A-2020262A-2030262A-20402SYSTEMLOADINGTIMERRHRPunp1ARHRPunp18RHRPunp1CRHRPump1DRHRPump2ARHRPunp28RHRPunp2CRHRPunp2DNOMINALSETTINGLOCATION(seconds)1A2011A2021A2031A2042A2012A2022A2032A204ALLOWABLEVALUE(seconds)a2.7ands3.6c2.7ands3.6~2.7ands3.6~2.7ands3.6z2.7ands3.6a2.7ands3.6z2.7ands3'a2.7ands3.6E11A-K2028E11A-K120AE11A-K1208E11A-K202AE11A-K120AE'11A-K2028E11A-K1208E11A-K202ARHRPump1C(OffsitePowerTimer)1C618RHRPwp1C(OffsitePowerTimer)1C617RHRPump1D(OffsitePowerTimer)1C618RHRPanp1D(OffsitePowerTimer)1C617RHRPump2C(OffsitePowerTimer)2C617RHRPunp2C(OffsitePowerTimer)2C618RHRPwp2D(OffsitePowerTimer)2C618RHRPwp2D(OffsitePo~erTimer)2C6177.07.07.07.07.07.07.07.026.5ands7,5h6.5ands7.5~6.5ands7.5~6.5ands7.526.5ands7.526.5ands7.5~6.5ands7.5R6.5ands7.5E21A-K116AE21A-K1168E21A-K125AE21A-K1258E21A-K116AE21A-K1168E21A-K125ACSPump1ACSPunp18CSPwp1CCSPutp1DCSPump2ACSPump28CSPunp2C1C6261C6271C6261C6272C6262C6272C62610.510'10.510.510.510.5'10.5~9.4ands11.6~9.4ands11.6a9.4ands11.6~9.4ands11.6~9.4and~11.6z9.4ands11.6i9.4ands11.6E21A-K1258E21A-K16AE21A-K168E21A-K25AE21A-K258E21A-K16AE21A-K168E21A-K25AE21A-K25862AX2-20108CSPump2D2C627CSPump1A(OffsitePowerTimer)1C626CSPump18(OffsitePowerTimer)1C627CSPwp1C(OffsitePowerTimer)1C626CSPunp1D(OffsitePowerTimer)1C627CSPump2A(OffsitePowerTimer)2C626CSPunp28(OffsitePowerTimer)2C627CSPwp2C(OffsitePowerTimer)2C626CSPunp20(OffsitePowerTimer)2C627EmergencyServiceWater1A20110.51515151515151540a9.4ands11.6a14.0ands16.0a'14.0ands16.0a14.0ands16.0>14.0ands16.0~14.0ands16.0z14~0ands16.0a14.0ands16.0>14.0and<16.0~36ands4462AX2-2020862AX2-2030362AX2-2040362X3-2040462X3-2030462X-2010462X-2020462X-5653AEmergencyServiceWaterEmergencyServiceWaterEmergencyServiceWaterControlStructureChilledWaterSystemControlStructureChilled'WaterSystemEmergencySwitchgearRmCoolerA&RHRSWPwpH&VFanAEmergencySwitchgearRmCooler8&RHRSWPH&VFan8DGRoomExhaustFanE31A2021A2031A204OC8778OC877AOC877AOC877808565406060606060~36ands44a39.6ands48.4~43.2ands52.8~54h54~54i54~5462X-5652A262K-20204262K-20104DGRoomExhaustsFanE4OB565EmergencySwitchgearRmCooler8OC8778EmergencySwitchgearRmCoolerAOC877A60120120a54~54~54(cont)nued)SUSQUEHANNA-UNIT1B3.8-36Revision0 ACSources-OperatingB3.8.1TABLEB3.8.1-1(page2of2)UNIT1ANDUNIT2LOADTIMERSDEVICETAGNO.SYSTEMLOADINGTIMERHNALSETt'INGLOCATION(seconds)ALLOWABLEVALUE(seconds)62X-54662X-53662X-52662X-516CRX-5652A62X2-2041062X1-2030462X1-2031062X1-2040462X2-2030462X2-2040462X-K118862X-K11ABDGRmExhFanDDGRmExhFanCDGRmExhFan8DGRmExhFanADGRoomSupplyFansE1andE2ControlStructureChilledWaterSystemControlStructureChilledWaterSystemControlStructureChilledWaterSystemControlStructureChilledWaterSystemControlStructureChilledWaterSystemControlStructureChilledWaterSystemEmergencySwitchgearRmCooling,.CompressorBEmergencySwitchgearRmCoolingCompressorA085460853608526OB51608565OC876BOC877AOC876AOC8778OC877AOC87782CB25082CB250A120120120120120180180180180210210260260h54254a54h54a54254h54a54~54a54i54~54~54SUSQUEHANNA-UNIT1B3.8-37Revision0 ACSources-ShutdownB3.8.2B3.8ELECTRICALPOWERSYSTEMSB3.8.2ACSources-ShutdownBASESBACKGROUNDAdescriptionoftheACsourcesisprovidedintheBasesforLCO3.8.1,"ACSources-Operating."APPLICABLETheOPERABILITYoftheminimumACsourcesduringMODES4SAFETYANALYSESand5andduringmovementofirradiatedfuelassembliesensuresthat:a.Thefacilitycanbemaintainedintheshutdownorrefuelingconditionforextendedperiods;b.Sufficientinstrumentationandcontrolcapabilityisavailableformonitoringandmaintainingtheunitstatus;andc.AdequateACelectricalpowerisprovidedtomitigateeventspostulatedduringshutdown,suchasaninadvertentdraindownofthevesselorafuelhandlingaccident.Ingeneral,whentheunitisshutdowntheTechnicalSpecificationsrequirementsensurethattheunithasthecapabilitytomitigatetheconsequencesofpostulatedaccidents.However,assumingasinglefailureandconcurrentlossofalloffsiteorlossofallonsitepowerisnotrequired.TherationaleforthisisbasedonthefactthatmanyDesignBasisAccidents(DBAs)thatareanalyzedinMODES1,2,and3havenospecificanalysesinMODES4and5.WorstcaseboundingeventsaredeemednotcredibleinMODES4and5becausetheenergycontainedwithinthereactorpressureboundary,reactorcoolanttemperatureandpressure.andcorrespondingstressesresultintheprobabilitiesofoccurrencessignificantlyreducedoreliminated,andminimalconsequences.ThesedeviationsfromDBAanalysisassumptionsanddesignrequirementsduringshutdownconditionsareallowedbytheLCOforrequiredsystems.TheSafetyAnalysisforUnit2assumestheOPERABILITYofsomeequipmentthatreceivespowerfromUnit1ACSources.(continued)SUSQUEHANNA-UNIT1B3.8-38Revision0 ACSources-ShutdownB3.8.2BASESAPPLICABLETherefore,Unit2TechnicalSpecificationsestablishSAFETYANALYSESrequirementsfortheOPERABILITYoftheDG(s)andqualified(continued)offsitecircuitsneededtosupporttheUnit1onsiteClass1EACelectricalpowerdistributionsubsystem(s)requiredbyUnit2LCO3.8.8.DistributionSystems-Shutdown.DuringMODES1,2,and3,variousdeviationsfromtheanalysisassumptionsanddesignrequirementsareallowedwithintheACTIONS.Thisallowanceisinrecognitionthatcertaintestingandmaintenanceactivitiesmustbeconducted.providedanacceptablelevelofriskisnotexceeded.DuringMODES4and5,performanceofasignificantnumberofrequiredtestingandmaintenanceactivitiesisalsorequired.InMODES4and5,theactivitiesaregenerallyplannedandadministrativelycontrolled.RelaxationsfromtypicalMODES1,2,and3LCOrequirementsareacceptableduringshutdownMODES,basedon:a.Thefactthattimeinanoutageislimited.Thisisariskprudentgoalaswellasautilityeconomicconsideration.b.Requiringappropriatecompensatorymeasuresforcertainconditions.Thesemayincludeadministrativecontrols,relianceonsystemsthatdonotnecessarilymeettypicaldesignrequirementsappliedtosystemscreditedinoperationMODEanalyses,orboth.c.Prudentutilityconsiderationoftheriskassociatedwithmultipleactivitiesthatcouldaffectmultiplesystems.d.Maintaining,totheextentpractical.theabilitytoperformrequiredfunctions(evenifnotmeetingMODES1,2.and3OPERABILITYrequirements)withsystemsassumedtofunctionduringanevent.Intheeventofanaccidentduringshutdown,thisLCOensuresthecapabilityofsupportingsystemsnecessaryforavoidingimmediatedifficulty.assumingeitheralossof'lloffsitepoweroralossofallonsite(dieselgenerator(DG))power.TheACsourcessatisfyCriterion3oftheNRCPolicyStatement(Ref.1).SUSQUEHANNA-UNIT1B3.8-39(continued)Revision0 ACSources-ShutdownB3.8.2BASES(continued)LCOOneoffsitecircuitcapableofsupplyingtheonsiteClass1Epowerdistributionsubsystem(s)ofLCO3.8.8,"DistributionSystems-Shutdown,"ensuresthatallrequiredloadsarepoweredfromoffsitepower.AnOPERABLE.DG,associatedwithaDistributionSystemEngineeredSafeguardsSystem(ESS)busrequiredOPERABLEbyLCO3.8.8,ensuresthatadiversepowersourceisavailableforprovidingelectricalpowersupportassumingalossoftheoffsitecircuit.Together.OPERABILITYoftherequiredoffsitecircuitandDGensurestheavailabilityofsufficientACsourcestooperatetheplantinasafemannerandtomitigatetheconsequencesofpostulatedeventsduringshutdown(e.g.,fuelhandlingaccidentsandreactorvesseldraindown).Thequalifiedoffsitecircuit(s)mustbecapableofmaintainingratedfrequencyandvoltagewhileconnectedtotheirrespectiveESSbus(es),andofacceptingrequiredloadsduringanaccident.QualifiedoffsitecircuitsarethosethataredescribedintheFSARandarepartofthelicensingbasisf'rtheunit.Anoffsitecircuitincludesallbreakers,transformers,switches.automatictapchangers,interruptingdevices,cabling,andcontrolsrequiredtotransmitpowerfromtheoffsitetransmissionnetworktotheonsiteClass1EESSbusorbuses.Theoffsitecircuit'consistsoftheincomingbreakeranddisconnecttostartuptransformers(ST)No.10.and.STNo.20andtherespectivecircuitpathincludingfeederbreakerstothefour4.16kVESSbuses(A,B,CandD)forbothUnit1andUnit2.AdetaileddescriptionoftheoffsitepowernetworkandcircuitstotheonsiteClass1E.ESSbusesisfoundintheFSAR,Section8.2.TherequiredDGmustbecapableofstarting,acceleratingtoratedspeedandvoltage,connectingtoitsrespectiveESSbusondetectionofbusundervoltage,andcapableof'cceptingrequiredloads.Thissequencemustbeaccomplishedwithin10seconds.EachDGmustalsobecapableofacceptingrequiredloadswithintheassumedloadingsequenceintervals,andmustcontinuetooperateuntiloffsitepowercanberestoredtotheESSbuses.ThesecapabilitiesarerequiredtobemetfromavarietyofinitialconditionssuchasDGinstandbywithengine.hot.AdditionalDGcapabilitiesmustbedemonstratedtomeetrequiredSurveillances,e.g.,(continued)SUSQUEHANNA-UNIT1B3.8-40Revision0 ACSources-ShutdownB3.8.2BASESLCO(continued)capabilityoftheDGtoreverttostandbystatusonanECCSsignalwhileoperatinginparalleltestmode.Propersequencingofloads,includingtrippingofnonessentialloads.isarequiredfunctionforDGOPERABILITY.Inaddition,propersequenceoperationisanintegralpartofoffsitecircuitOPERABILITYsinceitsinoperabilityimpactstheabilitytostartandmaintainenergizedloadsrequiredOPERABLEbyLCO3.8.8.APPLICABILITYTheACsourcesarerequiredtobeOPERABLEinMODES4and5andduringmovementofirradiatedfuelassembliesinthesecondarycontainmenttoprovideassurancethat:a.Systemsprovidingadequatecoolantinventorymakeupareavailablefortheirradiatedfuelassembliesinthecoreincaseofaninadvertentdraindownofthereactorvessel;b.Systemsneededtomitigateafuelhandlingaccidentareavailable;c.Systemsnecessarytomitigatetheeffectsofeventsthatcanleadtocoredamageduringshutdownareavailable;andd.Instrumentationandcontrolcapabilityisavailableformonitoringandmaintainingtheunitinacoldshutdownconditionorrefuelingcondition.ACpowerrequirementsforMODES1,2,and3arecoveredinLCO3.8.1.ACTIONSTheACTIONShavebeenmodifiedbyaNotestatingthatLCO3.0.3isnotapplicable.IfmovingirradiatedfuelassemblieswhileinMODE4or5,LCO3.0.3wouldnotspecifyanyaction.IfmovingirradiatedfuelassemblieswhileinMODE1,2,or3,thefuelmovementisindependentofreactoroperations.(continued)SUSQUEHANNA-UNIT1B3.8-41Revision0

ACSources-ShutdownB3.8.2BASESACTIONS(continued)A.1WithoneormorerequiredACSources(DGsor4.16kVESSbuses)inoperable,theremainingrequiredsourcesmaybecapableofsupportingsufficientrequiredfeatures(e.g.,system,subsystem,divisions,componentordevice),toallowcontinuationofCOREALTERATIONS,fuelmovement,andoperationswithapotentialfordrainingthereactorvessel.Forexample,iftwoormore4kVemergencybusesarerequiredperLCO3.8.8,one4.16kVemergencybuswithoffsitepoweravailablemaybecapableofsupportingsufficientrequiredfeatures.Therefore,theoptionprovidedbyRequiredActionA.1todeclarerequiredfeaturesinoperablewhennotpoweredfromanoffsitesourceornotcapableofbeingpoweredbytherequiredDGrecognizesthatappropriaterestrictionswillberequiredbyACTIONSintheLCOfortheaffectedfeature(s).A.2.1A.2.2A.2.3andA.2.4WithoneormorerequiredACSourcesinoperable,theoptionexistsinACTIONA:1todeclareallaffectedfeaturesinoperable.Sincethisoptionmayinvolveundesiredadministrativeefforts,theallowanceforsufficientlyconservativeactionsismade.WithoneormorerequiredACSourcesinoperable.theminimumrequireddiversityofACpowersourcesisnotavailable.Itis,therefore,requiredtosuspendCOREALTERATIONS,movementofirradiatedfuelassembliesinthesecondarycontainment.andactivitiesthatcouldresultininadvertentdrainingofthereactorvessel.Suspensionoftheseactivitiesshallnotprecludecompletionofactionstoestablishasafeconservativecondition.Theseactionsminimizetheprobabilityoftheoccurrenceofpostulatedevents.ItisfurtherrequiredtoimmediatelyinitiateactiontorestoretherequiredACsourcesandtocontinuethisactionuntilrestorationisaccomplishedinordertoprovidethenecessaryACpowertotheplantsafetysystems.TheCompletionTimeofimmediatelyisconsistentwiththerequiredtimesforactionsrequiringpromptattention.TherestorationoftherequiredACelectricalpowersourcesshouldbecompletedasquicklyaspossibleinorderto(continued)SUSQUEHANNA-UNIT1B3.8-42Revision0 ACSources-ShutdownB3.8.2BASESACTIONSA.2.1A.2.2A.2.3andA.2.4(continued)minimizethetimeduringwhichtheplantsafetysystemsmaybewithoutsufficientpower.BecauseoftheallowanceprovidedbyLCO3.0.6,theDistributionSystemACTIONSwouldnotbeenteredevenifallACsourcestoitareinoperable,resultinginde-energization.Therefore,theRequiredActionsofConditionAhavebeenmodifiedbyaNotetoindicatethatwhenConditionAisenteredwithnoACpowertoanyrequiredESSbus,ACTIONS.forLCO3.8.8mustbeimmediatelyentered.ThisNoteallowsConditionAtoproviderequirementsforthelossoftheoffsitecircuitwhetherornota4.16kVESSbusisde-energized.LCO3.8.8providestheappropriaterestrictionsforthesituationinvolvingade-energized4.16kVESSbus.SURVEILLANCEREQUIREMENTSSR3.8.2.1SR3.8.2.1requires.theSRsfromLCO3.8.1thatarenecessaryforensuringtheOPERABILITYoftheACsourcesinotherthanMODES1,2,and3.SR3.8.1.8isnotrequiredtobemetsinceonlyoneoffsitecircuitisrequiredtobeOPERABLE.SR3.8.1.17isnotrequiredtobemetbecausetherequiredOPERABLEDG(s)isnotrequiredtoundergoperiodsofbeingsynchronizedtotheoffsitecircuit.SR3.8.1.20isexceptedbecausestartingindependenceisnotrequiredwiththeDGsthatarenotrequiredtobeOPERABLE.RefertothecorrespondingBasesforLCO3.8.1foradiscussionofeachSR.ThisSRismodifiedbyaNotethatspecifiedSRsmustbemetbutarenotrequiredtobeperformed.ThereasonfortheNoteistoprecluderequiringtheOPERABLEDG(s)frombeingparalleledwiththeoffsitepowernetworkorotherwiserenderedinoperableduringtheperformanceofSRs,andtoprecludede-energizingarequired4.16kVESSbusordisconnectingarequiredoffsitecircuitduringperformanceofSRs.WithlimitedACsourcesavailable,asingleeventcouldcompromiseboththerequiredcircuitandtheDG.(continued)SUSQUEHANNA-UNIT1B3.8-43Revision0 ACSources-ShutdownB3.8.2BASESSURVEILLANCEREQUIREMENTSSR3.8.2.1(continued)ItistheintentthattheseSRsmuststillbecapableofbeingmet,butactualperformanceisnotrequiredduringperiodswhentheDGandoffsitecircuitisrequiredtobeOPERABLE.REFERENCES1.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA-UNIT1B3.8-44Revision0 DieselFuelOil,LubeOil,andStartingAirB3.8.3B3.8ELECTRICALPOWERSYSTENSB3.8.3DieselFuelOil,LubeOil,andStartingAirBASESBACKGROUNDEachdieselgenerator(DG)isprovidedwithastoragetankhavingafueloilcapacitysufficienttooperatethatDGforaperiodof7dayswhiletheDGissupplyingmaximumpostlossofcoolantaccident(LOCA)loaddemanddiscussedinFSAR,Section9.5.4(Ref.1).ThemaximumloaddemandiscalculatedusingtheassumptionthatatleastthreeDGsare,available.ThisonsitefueloilcapacityissufficienttooperatetheDGsforlongerthanthetimetoreplenishtheonsitesupplyfromoutsidesources.Fueloilistransferredfromstoragetanktodaytankbyatransferpumpassociatedwitheachstoragetank.Independentpumpsandpipingprecludethefailureofonepump,ortheruptureofanypipe,valve,ortanktoresultinthelossofmorethanoneDG.Alloutsidetanks,pumps,andpipingarelocatedunderground.ForproperoperationofthestandbyDGs,itisnecessarytoensuretheproperqualityofthefueloil.RegulatoryGuide1.137(Rdf.2)addressestherecommendedfueloilpracticesassupplementedbyANSIN195(Ref.3).ThefueloilpropertiesgovernedbytheseSRsarethewaterandsedimentcontent,thekinematicviscosity,specificgravity(orAPIgravity)andimpuritylevel.TheDGlubricationsystemisdesignedtoprovidesufficientlubricationtopermitproperoperationofitsassociatedDGunderallloadingconditions.Thesystemisrequiredtocirculatethelubeoiltothedieselengineworkingsurfacesandtoremoveexcessheatgeneratedbyfrictionduringoperation.Eachengineoilsumpcontainsaninventorycapableofsupportingaminimumof7daysofoperation.Thissupplyissufficienttoallowtheoperatortoreplenishlubeoilfromoutsidesources.EachDGhasanairstartsystemwithtwoairreceivers(DGEhasfourairreceivers)eachofwhichprovideadequatecapacityforfivesuccessivestartcyclesontheDGwithoutrechargingtheairstartreceivers.SUSQUEHANNA-UNIT1B3.8-45(continued)Revision0

DieselFuelOil.LubeOil.andStartingAirB3.8.3BASES(continued)APPLICABLESAFETYANALYSESTheinitialconditionsofDesignBasisAccident(DBA)andtransientanalysesinFSAR,Chapter6(Ref.4),andChapter15(Ref.5),assumeEngineeredSafetyFeature(ESF)systemsareOPERABLE.TheDGsaredesignedtoprovidesufficientcapacity,capability,redundancy,andreliabilitytoensuretheavailabilityofnecessarypowertoESFsystemssothatfuel,ReactorCoolantSystem,andcontainmentdesignlimitsarenotexceeded.TheselimitsarediscussedinmoredetailintheBasesforSection3.2,PowerDistributionLimits;Section3.4,ReactorCoolantSystem(RCS);andSection3.6.ContainmentSystems.Sincedieselfueloil,lubeoil,andstartingairsubsystemsupporttheoperationofthestandbyACpowersources,theysatisfyCriterion3oftheNRCPolicyStatement(Ref.6).LCOStoreddieselfueloilisrequiredtohavesufficientsupplyfor7daysoffullloadoperation.Itisalsorequiredtomeetspecificstandardsforquality.Additionally,sufficientlubeoilsupplymustbeavailabletoensurethecapabilitytooperateatfullloadfor7days.Thisrequirement,inconjunctionwithanabilitytoobtainreplacementsuppl'iesw'ithin7days,supportstheavailabilityofDGsrequiredtoshutdownthereactorandto.maintainitinasafeconditionforananticipatedoperationaloccurrence(AOO)orapostulatedDBAwithlossofoffsitepower.DGdaytankfueloilrequirements,aswellastransfercapabilityfromthestoragetanktothedaytank,areaddressedinLCO3.8.1,"ACSources-Operating,"andLCO3.8.2,"ACSources-Shutdown."ThestartingairsystemisrequiredtohaveaminimumcapacityforfivesuccessiveDGstartattemptswithoutrechargingtheairstartreceivers.APPLICABILITYTheACsources(LCO3.8.1andLCO3.8.2)arerequiredtoensuretheavailabilityoftherequiredpowertoshutdownthereactorandmaintainitinasafeshutdownconditionafteranAOOorapostulatedDBA.Becausestoreddieselfueloil,lubeoil,andstartingairsubsystemsupportLCO3.8.1andLCO3.8.2,storeddieselfueloil,lubeoil,(continued)SUSQUEHANNA-UNIT1B3.8-46Revision0 DieselFuelOil,LubeOil,andStartingAirB3.8.3BASESAPPLICABILITYandstartingairarerequiredtobewithin-limitswhenthe(continued)associatedDGisrequiredtobeOPERABLE.ACTIONSTheACTIONSTableismodifiedbyaNoteindicatingthatseparateConditionentryisallowedforeachDG.Thisisacceptable,sincetheRequiredActionsforeachConditionprovideappropriatecompensatoryactionsforeachinoperableDGsubsystem.ComplyingwiththeRequiredActionsforoneinoperableDGsubsystemmayallowforcontinuedoperation,andsubsequentinoperableDGsubsystem(s)governedbyseparateConditionentryandapplicationofassociatedRequiredActions.A,1InthisCondition,the7dayfueloilsupplyforaDGisnotavailable.However.theConditionisrestrictedtofueloillevelreductionsthatmaintainatleasta6daysupply.Thesecircumstancesmaybecausedbyeventssuchas:Ca.Fullloadoperationrequiredforaninadvertentstartwhileatminimumrequiredlevel;orb.Feedandbleedoperationsthatmaybenecessitatedbyincreasingparticulatelevelsoranynumberofotheroilqualitydegradations.Thisrestrictionallowssufficienttimeforobtainingtherequisitereplacementvolumeandperformingtheanalysesrequiredpriortoadditionofthefueloiltothetank.Aperiodof48hoursisconsideredsufficienttocompleterestorationoftherequiredlevelpriortodeclaringtheDGinoperable.Thisperiodisacceptablebasedontheremainingcapacity()6days),thefactthatactionwillbeinitiatedtoobtainreplenishment,theavailabilityoffueloilinthestoragetankofthefifthdieselgeneratorthatisnotrequiredtobeOPERABLE,andthelowprobabilityofaneventduringthisbriefperiod.(continued)SUSQUEHANNA-UNIT1B3.8-47Revision0 DieselFuelOil,LubeOil.andStartingAirB3.8.3BASESACTIONS(continued)B.1Withlubeoilsumplevelnotvisibleinthesightglass,sufficientlubeoiltosupport7daysofcontinuousDGoperationatfullloadconditionsmaynotbeavailable.Therefore,theDGisdeclaredinoperableimmediately.C.1ThisConditionisenteredasaresultofafailuretomeettheacceptancecriterionforparticulates.Normally,trendingofparticulatelevelsallowssufficienttimetocorrecthighparticulatelevelspriortoreachingthelimitofacceptability.Poorsampleprocedures(bottomsampling),contaminatedsamplingequipment,anderrorsinlaboratoryanalysiscanproducefailuresthatdonotfollowatrend.Sincethepresenceofparticulatesdoes,notmeanfailureofthefueloiltoburnproperlyinthedieselengine.sinceparticulateconcentrationisunlikelytochangesignificantlybetweenSuiveillanceFrequencyintervals,andsinceproperengine.performancehasbeenrecentlydemonstrated(within:33:days.),it.is.prudenttoallowabriefperiodprior-todeclaring:theassociatedDGinoperable.The:7dayCompletionTimeallowsforfurtherevaluation,resampl'ing-;-and=-re=analysisoftheDGfueloil.0.1Withthenewfuel-oil'.properties-definedintheBasesforSR3.8.3.3notwithinthe-requi'red-.limits,aperiodof30daysisallowedfor-restoring=thestoredfueloilproperties.Thisperiodprovides-sufficienttimetotestthestoredfueloiltodetermtnethatthenewfueloil,whenmixedwithpreviouslystoredfueloil,remainsacceptable,ortorestorethestoredfueloilproperties.Thisrestorationmayinvolvefeedandbleedprocedures,filtering,orcombinationoftheseprocedures.EvenifaDGstartandloadwasrequiredduringthistimeintervalandthefueloilpropertieswereoutsidelimits,thereishighlikelihoodthattheDGwouldstillbecapableofperformingitsintendedfunction.(continued)SUSQUEHANNA-UNIT1B3.8-48Revision0 DieselFuelOil,LubeOil,andStartingAirB3.8.3BASESACTIONS(continued)E.1Withstartingairreceiverpressure<240psiginoneormoreairreceivers,sufficientcapacityforfivesuccessiveDGstartattemptsdoesnotexist.However,aslongasallreceiverpressuresare>180psig,thereisadequatecapacityforatleastonestartattempt.andtheDGcanbeconsideredOPERABLEwhiletheairreceiverpressureisrestoredtotherequiredlimit.Aperiodof48hoursisconsideredsufficienttocompleterestorationtotherequiredpressurepriortodeclaringtheDGinoperable.Thisperiodisacceptablebasedontheremainingairstartcapacity,thefactthatmostDGstartsareaccomplishedonthefirstattempt.andthelowprobabilityofaneventduringthisbriefperiod.EntryintoConditionEisnotrequiredwhenairreceiverpressureislessthanrequiredlimitsfollowingasuccessfulstartwhiletheDGisoperating.F.1WithaRequiredActionandassociatedCompletionTimeofAthroughEnotmet,orthestoreddieselfueloil,lubeoil,orstartingair'notwithinSRlimitsforreasonsotherthanaddressedbyConditionsA,B,C,DorE,theassociatedDGmaybeincapableofperformingitsintendedfunctionandmustbeimmediatelydeclaredinoperable.SURVEILLANCEREQUIREMENTSSR3.8.3.1ThisSRprovidesverificationthatthereisanadequateinventoryoffueloilinthestoragetankstosupporteachDG'soperationfor7daysatthemaximumpostaccidentloaddemand.The7dayperiodissufficienttimetoplacetheunitinasafeshutdownconditionandtobringinreplenishmentfuelfromanoffsitelocation.The31day,Frequencyisadequatetoensurethata-sufficientsupplyoffueloilisavailable.sincelowlevelalarmsareprovidedandunitoperatorswouldbeawareofanylargeusesoffueloilduringthisperiod.(continued)SUSQUEHANNA-UNIT1B3.8-49Revision0 DieselFuelOil,LubeOil.andStartingAirB3.8.3BASESSURVEILLANCEREQUIREMENTS(continued)SR3.8.3.2ThisSurveillanceensuresthatsufficientlubricatingoilinventoryisavailabletosupportatleast7daysoffullloadoperationforeachDG.ThesumplevelrequirementisbasedontheDGmanufacturer'sconsumptionvalues.Theacceptancecriteriaofmaintainingavisiblelevelinthesightglassensuresadequateinventoryfor7daysoffullloadoperationwithoutthelevelreachingthemanufacturer'srecommendedminimumlevel.A31dayFrequencyisadequatetoensurethatasufficientlubeoilsupplyisonsite,sinceDGstartsandruntimearecloselymonitoredbytheplantstaff.SR3.8.3.3Thetestslistedbelowareameansofdeterminingwhethernewfueloilisof'heappropriategradeandhasnotbeencontaminatedwithsubstancesthatwouldhaveanimmediatedetrimentalimpactondieselenginecombustion.Ifresultsfromthesetests'rewithinacceptablelimits.thefueloilmaybe-addedtothestoragetankswithoutconcernforcontaminatingt'eentirevolumeoffueloilinthestoragetanks.Thesetestsaretobeconductedpriortoaddingthenewfueltothestoragetank(s),butinnocaseisthetimebetweenreceiptofnewfuelandconductingtheteststoexceed31days.Thetests,limits,andapplicableASTMStandardsareasfollows:a.SamplethenewfueloilfollowingtheguidelinesofASTHD4057-88(Ref.7);b.VerifyfollowingtheguidelinesofthetestsspecifiedinASTMD975-93(Ref.7)thatthesamplehasadensityat15'Cof~0.816kg/Land~0.876kg/LoranAPIgravityof>30'nd~42'.akinematicviscosityat40'Cof~1.9centistokesand~4.1centistokes,andaflashpointof~52'C;andc.VerifythatthenewfueloilhasaclearandbrightappearancewhentestedfollowingtheguidelinesofASTMD4176-91procedure(Ref.7),orhas~0.05K(vol)WaterandsedimentwhentestedfollowingtheguidelinesofASTHD1796-83(1990)(Ref.7).(continued)SUSQUEHANNA-UNIT1B3.8-50Revision0 DieselFuelOil,LubeOil.andStartingAirB3.8.3BASESSURVEILLANCEREQUIREHENTSR3.8.3.3(continued).Failuretomeetanyofthelimitsforkeypropertiesofnewfueloilpriortoadditiontothestoragetankiscauseforrejectingthenewfueloil,butdoesnotrepresentafailuretomeettheLCOconcernsincethefueloilisnotaddedtothestoragetanks.Within31daysfollowingtheinitialnewfueloilsample,thefueloilisanalyzedtoestablishthattheotherpropertiesspecifiedinSpecification5.5.9andReference7aremetfornewfueloilwhentestedfollowingtheguidelinesof'STHD975-93(Ref.7).The31dayperiodisacceptablebecausethefueloilpropertiesofinterest.eveniftheywerenotwithinstatedlimits,wouldnothaveanimmediateeffectonDGoperation.ThisSurveillanceensurestheavailabilityofhighqualityfueloilfortheDGs.Fueloildegradationduringlongtermstorageshowsupasanincreaseinparticulate,mostlyduetooxidation.Thepresenceofparticulatedoesnotmeanthatthefueloilwillnotburnproperlyinadieselengine.Theparticulatecancausefoulingoffiltersandfueloilinjectionequipment,however,whichcancauseenginefailure.ParticulateconcentrationsshouldbedeterminedfollowingtheguidelinesofASTHD2276-89(Ref.7),appropriatelymodifiedtoincreasetherangeto>10mg/1.Thismethodinvolvesagravimetricdeterminationoftotalparticulateconcentrationinthefueloil.Thislimitis10mg/l.Itisacceptabletoobtainafieldsampleforsubsequentlaboratorytestinginlieuoffieldtesting.TheFrequencyofthistesttakesintoconsiderationfueloildegradationtrendsthatindicatethatparticulateconcentrationisunlikelytochangesignificantlybetweenFrequencyintervals.SR3.8.3.4ThisSurveillanceensuresthat,withouttheaidoftherefillcompressor,sufficientairstartcapacityforeachDGisavailable.Thesystemdesignrequirementsprovideforaminimumoffiveenginestartcycleswithoutrecharging.(continued)SUSQUEHANNA-UNIT1B3.8-51Revision0

DieselFuelOil,LubeOil,andStartingAirB3.8.3BASESSURVEILLANCEREQUIREMENTSSR3.8.3.4(continued)ThepressurespecifiedinthisSRisintendedtoreflectthelowestvalueatwhichthefivestartscanbeaccomplished.Theairstartingsystemcapacityforeachstartcycleiscalculatedbasedonthefollowing:1.eachcrankingcycledurationshouldbeapproximatelythreeseconds.or2.consistoftwotothreeenginerevolutions,or3.airstartrequirementsperenginestartprovidedbytheenginemanufacturer.whicheverairstartrequirementislarger.TheSurveillanceismodifiedbyaNotewhichdoesnotrequiretheSRtobemetwhentheassociatedDGisrunning.ThisisacceptablebecauseoncetheDGisstarted,thesafetyfunctionoftheairstartsystemisperformed.The3l.day..Frequencytakesintoaccountthecapacity,capability-,redundancy,-,anddiversityoftheACsourcesandother.-indications.avatlableinthecontrolroom,includingalarms=,to.alertthe=operatortobelownormalairstartpressure;-.~SII3..3.RMicrobi.ological..foul;ing-.isamajorcauseoffuel-oildegradation-.'here=are.=numerousbacteriathatcangrowinfueloiland-cause'-fouling,butallmusthaveawaterenvironmentinordertosurvive.Removalofwaterfromthefuelstoragetanksonceevery31dayseliminatesthenecessaryenvironmentforbacterialsurvival.Thisisthemosteffectivemeansofcontrollingmicrobiologicalfouling.Inaddition,iteliminatesthepotentialforwaterentrainmentinthefue1oilduringDGoperation.Watermaycomefromanyofseveralsources,includingcondensation,groundwater,rainwater,contaminatedfueloil,andfrombreakdownofthefueloilbybacteria.Frequentcheckingforandremovalofaccumulatedwaterminimizesfoulingand(continued)SUSQUEHANNA-UNIT1B3.8-52Revision0 DieselFuelOil,LubeOil,andStartingAirB3.8.3BASESSURVEILLANCEREQUIREMENTSSR3.8.3.5(continued)providesdataregardingthewatertightintegrity,ofthefueloilsystem.TheSurveillanceFrequenciesareestablishedbyRegulatoryGuide1.137(Ref.2).ThisSRisforpreventivemaintenance.ThepresenceofwaterdoesnotnecessarilyrepresentfailureofthisSR,providedtheaccumulatedwaterisremovedduringperformanceoftheSurveillance.REFERENCES1.FSAR,Section9.5'.2.RegulatoryGuide1.137.3.ANSIN195,1976.4.FSAR,Chapter6.5.FSAR,Chapter15.6~FinalPolicyStatementonTechnicalSpecificationsImprovements;July22.1993(58FR39132).7.ASTMStandard:D4057-88:D975-93;D4176-91;D1552-90:D2622-87;D4294-90;andD2276-89.SUSQUEHANNA-UNIT1B3.8-53Revision0 DCSources-OperatingB3.8.4B3.8ELECTRICALPOWERSYSTENSB3.8.4DCSources-Operating'ASESBACKGROUNDTheDCelectricalpowersystemprovidestheACemergencypowersystemwithcontrolpower.Italsoprovidesbothmotiveandcontrolpowertoselectedsafetyrelatedequipment.Asrequiredby10CFR50,AppendixA,GDC17(Ref.1),theDCelectricalpowersystemisdesignedtohavesufficientindependence,redundancy,andtestabilitytoperformitssafetyfunctions,assumingasinglefailure.The'DCelectricalpowersystemalsoconformstotherecommendationsofRegulatoryGuide1.6(Ref.2)andIEEE-308(Ref.3).TheUnitDCpowersourcesprovidebothmotiveandcontrolpowertoselectedsafetyrelatedequipment,aswellascircuitbreakercontrolpowerforthenonsafetyrelated13.8kV,4.16kV,and480VandlowerACdistributionsystems.EachDCsubsystemisenergizedbyone125/250Vbatteryandatleast1Class1Ebatterycharger.The250VDCbatteriesfordivisionIaresupportedbytwohalf-capacitychargers;the250VDCbatteriesfordivisionIIaresupportedby'afullcapacitycharger;and.the125VDCbatteriesareeachsupportedbyasinglefullcapacitycharger.Eachbatteryisexclusivelyassociatedwithasingle125/250VDCbusandcannotbeinterconnectedwithanyother125/250VDC'ubsystem.ThechargersaresuppliedfromthesameACloadgroupsforwhichtheassociatedDCsubsystemsuppliesthecontrolpower.TransferswitchesprovidethecapabilitytopowerUnit1andcommonDCloadsfromUnit2DCsources.DieselGenerator(DG)EDCpowersourcesprovidecontrolandinstrumentationpowerforDGE.Duringnormaloperation,theDCloadsarepoweredfromthebatterychargerswiththebatteriesfloatingonthesystem.Incaseoflossofnormalpowertothebatterycharger,theDCloadsareautomaticallypoweredfromthestationbatteries.(continued)SUSQUEHANNA-UNIT1B3.8-54Revision0 DCSources-OperatingB3.8.4BASESBACKGROUND(continued)TheDCpowerdistributionsystemisdescribedinmoredetailinBasesforLCO3.8.7,"DistributionSystem-Operating,"andLCO3.8.8,"DistributionSystem-Shutdown."Eachbatteryhasadequatestoragecapacitytocarrytherequiredloadcontinuouslyforapproximately4hours.Eachsubsystem,includingthebatterybank,chargersandDCswitchgear,islocatedinanareaseparatedphysicallyandelectricallyfromtheothersubsystemstoensurethatasinglefailureinonesubsystemdoesnotcauseafailureinaredundantsubsystem.ThereisnosharingbetweenredundantClasslEsubsystemssuchasbatteries,orbatterychargers.Thebatteriesfortheelectricalpowersubsystemsaresizedtoproducerequiredcapacityat80Kofnameplaterating,correspondingtowarrantedcapacityatendoflifecyclesandthe100Kdesigndemand.Theminimumdesignvoltagelimitis105/210V.EachbatterychargerofDCelectricalpowersubsystemhasamplepoweroutputcapacityforthesteadystateoperationofconnectedl(fadsrequiredduringnormaloperation,whileatthesametimemaintainingitsbatterybankfullycharged.Eachbatterychargerhassufficientcapacitytorestorethebatteryfromthedesignminimumchargetoitsfullychargedstatewithindesignbasisrequirementswhilesupplyingnormalsteadystateloads(Ref.3).APPLICABLESAFETYANALYSESTheinitialconditionsofDesignBasisAccident(DBA)andtransientanalysesintheFSAR,Chapter6(Ref.4)andChapter15(Ref.5),assumethatEngineeredSafetyFeature(ESF)systemsareOPERABLE.TheDCelectricalpowersystemprovidesnormalandemergencyDCelectricalpowerfortheDGs,emergencyauxiliaries,andcontrolandswitchingduringallNODESofoperation.TheOPERABILITYof'heDCsubsystemsisconsistentwiththeinitialassumptionsoftheaccidentanalysesandisbaseduponmeetingthedesign-basisoftheunit.ThisincludesmaintainingDCsourcesOPERABLEduringaccidentconditionsintheeventof:(continued)SUSQUEHANNA-UNIT1B3.8-55Revision0 DCSources-OperatingB3.8.4BASESAPPLICABLESAFETYANALYSES(continued)a.AnassumedlossofalloffsiteACpowerorallonsiteACpower;andb.Aworstcasesinglefailure.TheDCsourcessatisfyCriterion3of'heNRCPolicyStatement(Ref.6).LCOTheDCelectricalpowersubsystemsarerequiredtobeOPERABLEtoensuretheavailabilityoftherequiredpowertoshutdownthereactorandmaintainitinasafeconditionafterananticipatedoperationaloccurrence(AOO)orapostulatedDBA.LossofanyDCelectricalpowersubsystemdoesnotpreventtheminimumsafetyfunctionfrombeingperformed(Ref.3).TheDCelectricalpowersubsystemsinclude:a)eachUnit1DCelectricalpowersubsystemidentifiedinTable3.8.4-1includinga125voltor250voltDCbatterybankinparallelwithabatterychargerandthecorrespondingcontrolequipmentandinterconn6ctingcablingsupplyingpowertotheassociatedbus;and,b)theDieselGeneratorEDCelectricalpowersubsystemidentifiedinTable3.8.4-1includinga125voltDCbatterybankinparallelwithabatterychargerandthecorrespondingcontrolequipmentandinterconnectingcablingsupplyingpowertotheassociatedbus.APPLICABILITYTheDCelectricalpowersourcesarerequiredtobeOPERABLEinNODES1,2.and3toensuresafeunitoperationandtoensurethat:a.AcceptablefueldesignlimitsandreactorcoolantpressureboundarylimitsarenotexceededasaresultofAOOsorabnormaltransients;and(continued)SUSQUEHANNA-UNIT1B3.8-56Revision0 DCSources-OperatingB3.8.4BASESAPPLICABILITY(continued)b.Adequatecorecoolingisprovided,andcontainmentintegrityandothervitalfunctionsaremaintainedintheeventofapostulatedDBA.TheDCelectricalpowerrequirementsforMODES4and5areaddressedintheBasesforLCO3.8.5,"DCSources-Shutdown."ACTIONSA.lConditionArepresentsonesubsystemwithalossofabilitytocompletelyrespondtoanevent,andapotentiallossofabilitytoremainenergizedduringnormaloperation.Itisthereforeimperativethattheoperator'sattentionfocusonstabilizingtheunit,minimizingthepotentialforcompletelossof'Cpowertotheaffecteddivision.The2hourlimitisconsistentwiththeallowedtimeforaninoperable.DCDistributionSystemdivision.IfoneoftherequiredDCelectricalpowersubsystems,isinoperable(e.g.,-inoperablebattery,inoperablebattery,charger(s),orinoperablebatterychargerandassociatedinoperablebbtter'y),theremainingDCelectricalpower"subsystemshavethecapacitytosupportasafeshutdownandto.;mitigateanaccidentcondition.Sinceasubsequent-,worstcase=singlefailurecould,however,resultinthe-loss-,of-mi'nimum-necessaryDCelectricalsubsystemstomitigate:aworst.caseaccident,continuedpoweroperation=should.not"exceed.2hours.The2hourCompletionTimeisbasedonRegul'atoryGuide1.93(Ref.7)andreflectsareasonabletimetoassessunitstatusasafunctionoftheinoperableDCelectricalpowersubsystemand,iftheDCelectricalpowersubsystemisnotrestoredtoOPERABLEstatus.topreparetoeffectanorderlyandsafeunitshutdown.ConditionAismodifiedbyaNotethatstatesthatConditionAi'snotapplicabletotheDGEDCelectricalpowersubsystem.ConditionCorDisapplicabletoaninoperableDGEDCelectricalpowersubsystem.(continued)SUSQUEHANNA-UNIT1B3.8-57Revision0

DCSources-OperatingB3.8.4BASESACTIONS(continued)B.landB.2IftheUnit1DCelectricalpowersubsystemcannotberestoredtoOPERABLEstatuswithintherequiredCompletionTime,theunitmustbebroughttoaNODEinwhichtheLCOdoesnotapply.Toachievethisstatus'heunitmustbebroughttoatleastMODE3within12hoursandtoNODE4within36hours.TheallowedCompletionTimesarereasonable.basedonoperatingexperience,toreachtherequiredplantconditionsfromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.TheCompletionTimetobringtheunittoNODE4isconsistentwiththetimerequiredinRegulatoryGuide1.93(Ref.7).C.1IfDieselGeneratorEisnotalignedtotheclass1Edistributionsystem,theonlysupportedsafetyfunctionisfortheESWsystem.Therefore,underthiscondition,ifDieselGeneratorEDCpowersubsystemisnotOPERABLEactionsaretakentoeitherrestorethebatteryto'PERABLEstatusorshutdownDieselGeneratorEandclosetheassociatedESWvalvesinordertoensuretheOPERABILITYoftheESWsystem.The2hourlimitisconsistentwiththeallowedtimeforotherinoperableDCsourcesandprovidessufficienttimetoevaluatetheconditionofthebatteryandtakethecorrectiveactions.D.1IftheDieselGeneratorisalignedtotheclass1Edistributionsystem,thelossofDieselGeneratorEDCpowersubsystemwillresultinthelossofaon-siteClass1Epowersource.Therefore,underthiscondition,ifDieselGeneratorEDCpowersubsystemisnotOPERABLEactionsaretakentoeitherrestorethebatterytoOPERABLEstatusordeclareDieselGeneratorEinoperableandtakeActionsofLCO3.8.1.The2hourlimitisconsistentwiththeallowedtimeforotherDCsourcesandprovidessufficienttimetoevaluatetheconditionofthebatteryandtakethenecessarycorrectiveactions.SUSQUEHANNA-UNIT1B3.8-58(continued)Revision0 DCSources-OperatingB3.8.4BASES(continued)SURVEILLANCEREQUIRB1ENTSSR3.8.4.1Verifyingbatteryterminalvoltagewhileonfloatchargeforthebatterieshelpstoensuretheeffectivenessofthechargingsystemandtheabilityofthebatteriestoperformtheirintendedfunction.Floatchargeistheconditioninwhichthechargerissupplyingthecontinuouschargerequiredtoovercometheinternallossesofabattery'(orbatterycell)andmaintainthebattery(orabatterycell)inafullychargedstate.Thevoltagerequirementsareconsistentwiththeinitialvoltagesassumedinthebatterysizingcalculations.TheSRmustbeperformedevery7daysconsistentwithmanufacturerrecommendationsandIEEE-450(Ref.8).However,thisFrequencyismodifiedbyaNotethatallowstheFrequencytobeextendedforupto14dayswhenthebatteryisonequalizechargeorhasbeenonequalizechargeanytimeduringtheprevious24hours.Thischangerecognizestheroutine7dayFrequencymustbeextendeduntil24hoursafteranequalizechargeiscompletedsothatmeaningfulresultsareobtainedforthisSR.The14dayFrequencyisnotmodifiedbytheNote.therefore,theSRmustbeperformedevery14daysregardlessofhowoftenthebatteryisplacedonequalizecharge.SR3.8.4.2Visualinspectiontodetectcorrosionofthebatterycellsandconnections;or,measurementoftheresistanceofeachinter-cell,inter-rack,inter-tier,andterminalconnectionwithvisiblecorrosion,providesanindicationthatthereisnophysicaldamageorabnormaldeteriorationthatcouldpotentiallydegradebatteryperformance.TheconnectionresistancelimitsestablishedforthisSRprovidetwoacceptancelimitsforanyconnectionwherethereisvisiblesignsofcorrosion.Thefirstlimit,ifmet,requiresnoadditionalactionsandensuresthedesigncapabilityofthebatteryismaintained.Ifthesecondlimitisused,thecalculatedaverageresistancefortheassociatedbatterydeterminedisSR3.8.4.5shallberecalculatedusingthenewresistancevalue.Resistancevaluesshallbemeasuredforonlythoseconnectionswherethereisvisiblesignsofcorrosion.Todeterminetheaverageconnectionresistance,datafromtheperformanceofSR3.8.4.5canbeusedforunaffectedconnections.(continued)SUSQUEHANNA-UNIT1B3.8-59Revision0 DCSources-OperatingB3.8.4BASESSURVEILLANCEREQUIREMENTSSR3.8.4.2(continued)TheFrequencyfortheseinspections,whichcandetectconditionsthatcancausepowerlossesduetoresistanceheating,is92days.ThisFrequencyisconsideredacceptablebasedonoperatingexperiencerelatedtodetectingcorrosiontrends.SR3.8.4.3Visualinspectionofthebatterycells,cellplates,andbatteryracksprovidesanindicationofphysicaldamageorabnormaldeteriorationthatcouldpotentiallydegradebatteryperformance.ThepresenceofphysicaldamageordeteriorationdoesnotrepresentafailureofthisSR,providedanevaluationdeterminesthatthephysicaldamageordeteriorationdoesnotaffecttheOPERABILITYofthebattery(itsabilitytoperformitsdesignfunction).TheFrequencyofthisSRisacceptablebecauseotheradministrativecontrolsensureadequatebatteryperformanceduringthe18monthinterval.Furthermore,operatingexperiencehasshownthesecomponentsusuallypasstheSurveillancewHenperformedatthe18monthFrequency;therefore.theFrequencyisacceptablefromareliabilitystandpoint.SR3.8.4.4andSR3.8.4.5Visualinspectionandresistancemeasurementsofinter-cell,inter-rack,inter-tier,andterminalconnectionsprovidesanindicationofphysicaldamageorabnormaldeteriorationthatcouldindicatedegradedbatterycondition.Theanti-corrosionmaterialisusedtohelpensuregoodelectricalconnectionsandtoreduceterminaldeterioration.Thevisualinspectionforcorrosionisnotintendedtorequireremovalofandinspectionundereachterminalconnection.TheremovalofvisiblecorrosionisapreventivemaintenanceSR.ThepresenceofvisiblecorrosiondoesnotnecessarilyrepresentafailureofthisSR,providedvisiblecorrosionisremovedduringperformanceofthisSurveillance.The(continued)SUSQUEHANNA-UNIT1B3.8-60Revision0 DCSources-'OperatingB3.8.4BASESSURVEILLANCEREQUIREMENTSSR3.8.4.4andSR3.8.4.5(continued)connectionresistancelimitsforthisSRmustbebelowthelimitsspecifiedintheSR.Thecalculatedaverageresistancelimitensurethatthetotalvoltagedropacrossthebatteryconnectionsisconsistenttothoseassumedinthebatterycalculations,whiletheupperlimitforbatteryresistancepreventsthepossibilityofbatterydamageduetooverheatingoftheconnections.TheFrequencyofthisSRisacceptablebecauseotheradministrativecontrolsensureadequatebatteryperformanceduringthe18monthinterval.Furthermore,operatingexperiencehasshownthesecomponentsusuallypasstheSurveillancewhenperformedatthe18monthFrequency;therefore.theFrequencyisacceptablefroma-reliabilitystandpoint.SR3.8.4.6Batterychargercapabilityrequirementsarebasedonthedesigncapacityofthechargers(Ref.3).AccordingtoRegulatoryGuide1.32(Ref.9).thebatterychargersupplyisrequiredtobebasedonthelargestcombineddemandsofthevarioussteadystateloadsandthechargingcapacitytorestorethebatteryfromthedesignminimumchargestatetothefullychargedstate,irrespectiveofthestatusof'heunitduringthesedemandoccurrences..Theminimumrequiredamperesanddurationensuresthattheserequirementscanbesatisfied.TheFrequencyisacceptable,giventheunitconditionsrequiredtoperformthetestandtheotheradministrativecontrolsexistingtoensureadequatechargerperformanceduringthese24monthintervals.InadditionsthisFrequencyisintendedtobeconsistentwithexpectedfuelcyclelengths.(continued)SUSQUEHANNA-UNIT1B3.8-61Revision0 DCSources-OperatingB3.8.4BASESSURVEILLANCEREQUIREMENTS(continued)SR3.8.4.7Abatteryservicetestisaspecialtestofthebattery'scapability.asfound,tosatisfythedesignrequirements(batterydutycycle)oftheDCelectricalpowersystem.Thetestcanbeconductedusingactualorsimulatedloads.ThedischargerateandtestlengthcorrespondstothedesigndutycyclerequirementsasspecifiedinReference4.TheFrequencyof24monthsisconsistentwiththerecommendationsofRegulatoryGuide1.32(Ref.9)andRegulatoryGuide1.129(Ref.10),whichstatethatthebatteryservicetestshouldbeperformedduringrefuelingoperationsoratsomeotheroutage,withintervalsbetweentestsnottoexceed24months.ThisSRismodifiedbyaNotewhichallowstheperformanceofamodifiedperformancedischargetestinlieuof'servicetestonceper60months.Amodifiedperformancedischargetestisatestofthebatterycapacityanditsabilitytoprovideahighrate,shortdurationload(usually.thehighestrateofthedutycycle).Thiswillconfirmthebattery'sabilitytomeetthecriticalperiodoftheloaddutycycle,inadditiontodeterminingitspercentageofratedcapacity.Initialconditionsforthemodifiedperformancedischargetestshouldbeidenticaltothosespecifiedforaservicetest.Themodifiedperformancedischargetestisatestofsimulateddutycycleconsistingoftwodif'ferentdischargerates.Thefirstdischargerateconsistsoftheoneminutepublishedrateforthebatteryorthelargestcurrentloadsofthedutycyclefollowedbyaseconddischargeratewhichemploysthetestratefortheperformancedischargetest.Thesedischargeratesenvelopethedutycycleof'heservicetest.Sincetheampere-hoursremovedbyapublishedoneminutedischargeraterepresentaverysmallportionofthebatterycapacity,thetestratecanbechangedtothatfortheperformancedischargetestwithoutcompromisingtheresultsoftheperformancedischargetest.Thebatteryterminalvoltageforthemodifiedperformancedischargetestshouldremainabovetheminimumbatteryterminalvoltagespecifiedintheservicetest.(continued)SUSQUEHANNA-UNIT1B3.8-62Revision0 DCSources-OperatingB3.8.4BASESSURVEILLANCEREQUIREMENTSSR3.8.4.7(continued)Whenthebatteryloadsafterthefirstminuteexceedstheperformancetestdischargerate,themodifiedperformancedischargetestisperformedbyfirstconductingtheservicetest,thanadjustingthedischargeratetotheconstantcurrentvaluenormallyusedfortheperformancedischargetest.Thistestisterminatedwhenthespecifiedminimumbatteryterminalvoltageisreached.Whenthebatteryloadsafterthefirstminuteexceedstheperformancedischargetestrate,thebatterycapacityiscalculatedasfollows:Iofratedcapacityat25'C(75'F)=LT,/T,](100)(1/K)where:T.istheactualtimeoftesttoreachspecifiedterminalvoltageT,isthetimeoftheservicedutycycleplusthecalculatedtimeoftheperformanceKTemperatureCorrectionFactorfromIEEE450.ThisRofratedcapacityequationusesthetemperaturecorrectedtimeinsteadofthetemperaturecorrecteddischargeratesasspecifiedinIEEE450-1995.Itisnotpossibletotemperaturecorrectthedischargeratewithoutimpactingtheservicetest.TheSRismodifiedbyaNote.ThereasonfortheNoteisthatperformingtheSurveillancewouldremovearequiredOCelectricalpowersubsystemfromservice.perturbtheElectricalDistributionSystem,andchallengesafetysystems.(continued)SUSQUEHANNA-UNIT1B3.8-63Revision0

DCSources-OperatingB3.8.4BASESSURVEILLANCEREQUIREMENTSSR3.8.4.8Abatteryperformancedischargetestisatestofconstantcurrentcapacityofabattery.normallydoneintheasfoundcondition,afterhavingbeeninservice,'odetectanychangeinthecapacitydeterminedbytheacceptancetest.Thetestisintendedtodetermineoverallbatterydegradationduetoageandusage.AbatterymodifiedperformancedischargetestisdescribedintheBasesf'rSR3.8.4.7.EitherthebatteryperformancedischargetestorthemodifiedperformancedischargetestisacceptableforsatisfyingSR3.8.4.8;however,onlythemodifiedperformancedischargetestmaybeusedtosatisfySR3.8.4.8whilesatisfyingtherequirementsofSR3.8.4.7atthesametime.TheacceptancecriteriaforthisSurveillanceisconsistentwithIEEE-450(Ref.8)andIEEE-485(Ref.11).Thesereferencesrecommendthatthebatterybereplacedifitscapacityisbelow80Kofthemanufacturer'srating.Acapacityof80Kshowsthatthebatteryrateofdeteriorationisincreasing,evenifthereisamplecapacitytomeettheloadrequirements.TheFrequencyforthistestisnormally60months.Ifthebatteryshowsdegradation.orifthebatteryhasreached85Kofitsexpectedservicelifeandcapacityis<100Kof'hemanufacturer'srating,theSurveillanceFrequencyisreducedto12months.However,ifthebatteryshowsnodegradationbuthasreached85Kofitsexpectedservicelife,theSurveillanceFrequencyisonlyreducedto24monthsforbatteriesthatretaincapacity>100Kofthemanufacturer'srating.Degradationisindicated,accordingtoIEEE-450(Ref.8),whenthebatterycapacitydropsbymorethan10Krelativetoitscapacityonthepreviousperformancetestorwhenitis10Kbelowthemanufacturer'srating.AlltheseFrequenciesareconsistentwiththerecommendationsinIEEE-450(Ref.8).(continued)SUSQUEHANNA-UNIT1B3.8-64Revision0 DCSources-Operating83.8.4BASESSURVEILLANCEREQUIREHENTSSR3.8.4.8(continued)TheSRismodifiedbyaNote.ThereasonfortheNoteisthatperformingtheSurveillancewouldremovearequiredDCelectricalpowersubsystemfromservice,perturbtheElectricalDistributionSystem,andchallengesafetysystems.REFERENCES1.10CFR50,AppendixA.GDC17.2.RegulatoryGuide1.6.3.IEEEStandard308.4.FSAR.Chapter6.5.FSAR,Chapter15.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22.1993(58FR39132).RegulatoryGuide1.93.IEEEStandard450.9.RegulatoryGuide1.32.February1977.10.RegulatoryGuide1.129,December1974..ll.IEEEStandard485,1983.SUSQUEHANNA-UNIT1B3.8-65Revision0 DCSources-ShutdownB3.8.5B3.8ELECTRICALPOWERSYSTEMSB3.8.5DCSources-ShutdownBASESBACKGROUNDAdescriptionoftheDCsourcesisprovidedintheBasesforLCO3.8.4."DCSources-Operating."APPLICABLETheinitialconditionsofDesignBasisAccidentandSAFETYANALYSEStransientanalysesintheFSAR,Chapter6(Ref.1)andChapter15(Ref.2),assumethatEngineeredSafetyFeaturesystemsareOPERABLE.TheDCelectricalpowersystemprovidesnormalandemergencyDCelectricalpowerforthedieselgenerators(DGs),emergencyauxiliaries,andcontrolandswitchingduringallMODESofoperation.TheOPERABILITYoftheDCsubsystemsisconsistentwiththeinitialassumptionsoftheaccidentanalysesandtherequirementsforthesupportedsystems'PERABILITY.TheOPERABILITYoftheminimumDCelectricalpowersourcesduringMODES4and5andduringmovementofirradiatedfuelassembliesensOresthat:a.Thefacilitycanbemaintainedintheshutdownorrefuelingconditionforextendedperiods;b.Sufficientinstrumentationandcontrolcapabilityisavailableformonitoringandmaintainingtheunitstatus;andc.AdequateDCelectricalpowerisprovidedtomitigateeventspostulatedduringshutdown,suchasaninadvertentdraindownofthevesselorafuelhandlingaccident.LCO3.8.5isnormallysatisfiedbymaintainingtheOPERABILITYofallDivisionIorallDivisionIIDCsourceslistedinTable3.8.4-1andtheDieselGeneratorEbatterybank.However,anycombinationofDCsourcesthatmaintainOPERABILITYofequipmentrequiredbyTechnicalSpecificationsmaybeusedtosatisfythisLCO..(continued)SUSQUEHANNA-UNIT1B3.8-66Revision0 DCSources-ShutdownB3.8.5BASESAPPLICABLETheDCsourcessatisfyCriterion3oftheNRCPolicySAFETYANALYSESStatement(Ref.3).(continued)LCOTheDCelectricalpowersubsystemsarerequiredtobeOPERABLEasneededtosupportrequiredDCdistributionsubsystemsrequiredOPERABLEbyLCO3.8.8,"DistributionSystems-Shutdown."ThisrequirementensurestheavailabilityofsufficientDCelectricalpowersourcestooperatetheunitinasafemannerandtomitigatetheconsequencesofpostulatedeventsduringshutdown(e.g.,fuelhandlingaccidentsandinadvertentreactorvesseldraindown).TheDCelectricalpowersubsystemsconsistofthefollowing:a)eachUnit1DCelectricalpowersubsystemidentifiedinTable3.8.4-1includinga125voltor250voltDCbatterybankinparallelwithabatterychargerandthecorrespondingcontrolequipmentandinterconnectingcablingsupplyingpowertotheassociated'bus;and,b)theDieselGeneratorEDCelectricalpowersubsystemidentifiedinTable3.8.4-1includinga125voltDCbatterybankinparallelwithabatterychargerandthecorrespondingcontrolequipmentandinterconnectingcablingsupplyingpowertotheassociatedbus.APPLICABILITYTheDCelectricalpowersourcesrequiredtobeOPERABLEinNODES4and5andduringmovementofirradiatedfuelassembliesinthesecondarycontainmentprovideassurancethat:a.Requiredfeaturestoprovideadequatecoolantinventorymakeupareavailablefortheirradiatedfuelassembliesinthecoreincaseofaninadvertentdraindownofthereactorvessel;(continued)SUSQUEHANNA-UNIT1B3.8-67Revision0 DCSources-ShutdownB3.8.5BASESAPPLICABILITY(continued)b.Requiredfeaturesneededtomitigateafuelhandlingaccidentareavailable;c.Requiredfeaturesnecessarytomitigatetheeffectsofeventsthatcanleadtocoredamageduringshutdownareavailable;andd.Instrumentationandcontrolcapabilityisavailableformonitoringandmaintainingtheunitinacoldshutdownconditionorrefuelingcondition.TheDCelectricalpowerrequirementsforMODES1,2,and3arecoveredinLCO3.8.4.ACTIONSTheACTIONShavebeenmodifiedbyaNotestatingthatLCO3.0.3isnotapplicable.ThisisacceptablebecauseLCO3.0.3wouldnotspecifyanyadditionalactionswhileinMODE4or5andmovingirradiatedfuelassemblies.A.1A.2.1A.2.2A.2.3andA.2.4Ifmorethan.oneSnit1DCdistributionsubsystemisrequiredaccordingtoLCO3.8.8,theremainingoperableUnit1DCsubsystemsmaybecapableofsupportingsufficientrequiredfeaturestoallowcontinuationofCOREALTERATIONS,fuelmovement,andoperationswithapotentialfordrainingthereactorvessel.Therefore,theoptionisprovidedtodeclarerequiredfeatureswithassociatedDCpowersourcesinoperablewhichensuresthatappropriaterestrictionsareimplementedinaccordancewiththeaffectedsystemLCOs'CTIONS.Inmanyinstances,thisoptionmayinvolveundesiredadministrativeefforts.Therefore,theallowanceforsufficientlyconservativeactionsismade(i.e.,tosuspendCOREALTERATIONS,movementofirradiatedfuelassemblies,andanyactivitiesthatcouldresultininadvertentdrainingofthereactorvessel).Suspensionoftheseactivitiesshallnotprecludecompletionofactionstoestablishasafeconservativecondition.Theseactionsminimizetheprobabilityoftheoccurrenceofpostulatedevents.Itisfurtherrequiredtoimmediatelyinitiateactiontorestore(continued)SUSQUEHANNA-UNIT1B3.8-68Revision0 DCSources-ShutdownB3.8.5BASESACTIONSA.1.A.2.1A.2.2A.2.3andA.2.4(continued)therequiredUnit1DCelectricalpowersubsystemsandtocontinuethisactionuntilrestorationisaccomplishedinordertoprovidethenecessaryDCelectricalpowertotheplantsafetysystems.TheCompletionTimeofimmediatelyisconsistentwiththerequiredtimesforactionsrequiringpromptattention.TherestorationoftherequiredDCelectricalpowersubsystemsshouldbecompletedasquicklyaspossibleinordertominimizethetimeduringwhichtheplantsafetysystemsmaybewithoutsufficientpower.ConditionAismodifiedbyaNotethatstatesthatConditionAisnotapplicabletotheDGEDCelectricalpowersubsystem.ConditionBorCisapplicabletoaninoperableDGEDCelectricalpowersubsystem.B.1IfDieselGeneratorEisnotalignedtotheclass1Edistributionsystem,theonlysupportedsafetyfunctionisfortheESWsystem.Therefore,underthiscondition,ifDieselGeneratorEDCpowersubsystemisnotOPERABLE,toensuretheOPERABILITYoftheESWsystem,actionsaretakentorestorethebatterytoOPERABLEstatus.The2hourlimitisconsistentwiththeallowedtimeforotherinoperableDCsourcesthatresultinalossofsafetyfunctionandprovidessufficienttimetoevaluatetheconditionof'hebatteryandtakethecorrectiveactions.C.1IftheDieselGeneratorEisalignedtotheclass1Edistributionsystem,thelossofDieselGeneratorEDCpowersubsystemwillresultinthelossofaon-siteClasslEpowersource.Therefore,underthiscondition,ifDieselGeneratorEDCpowersubsystemisnotOPERABLEactionsaretakentoeitherrestorethebatterytoOPERABLEstatusordeclareDieselGeneratorEinoperableandtakeActionsofLCO3.8.2.The2hourlimitisconsistentwiththeallowed'imeforotherDCsourcesthatresultinalossofsafety(continued)SUSQUEHANNA-UNIT1B3.8-69Revision0 DCSources-ShutdownB3.8.5BASESACTIONSC.1(continued)functionandprovidessufficienttimetoevaluatetheconditionofthebatteryandtakethenecessarycorrectiveactions.SURVEILLANCEREQUIREMENTSSR3.8.5.1SR3.8.5.1requiresperformanceofallSurveillancesrequiredbySR3;8.4.1throughSR3.8.4.8.Therefore,seethecorrespondingBasesforLCO3.8.4foradiscussionofeachSR.ThisSRismodifiedbyaNote.ThereasonfortheNoteistoprecluderequiringtheOPERABLEDCsourcesfrombeingdischargedbelowtheircapabilitytoprovidetherequiredpowersupplyorotherwiserenderedinoperableduringtheperformanceofSRs.ItistheintentthattheseSRsmuststillbecapableofbeingmet,butactualperformanceisnotrequired.REFERENCES1.FSAR,Chapter6.2.FSAR,Chapter15.3.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA-UNIT1B3.8-70Revision0 BatteryCellParametersB3.8.6B3.8ELECTRICALPOWERSYSTEMSB3.8.6BatteryCellParametersBASESBACKGROUNDThisLCOdelineatesthelimitsonelectrolytetemperature,level,floatvoltage,andspecificgravityfortheDCelectricalpowersubsystemsbatteries.AdiscussionofthesebatteriesandtheirOPERABILITYrequirementsisprovidedintheBasesforLCO3.8.4,"DCSources-Operating,"andLCO3.8.5,"DCSources-Shutdown."APPLICABLESAFETYANALYSESTheinitialconditionsofDesignBasisAccident(DBA)andtransientanalysesinFSAR,Chapter6(Ref.1)andChapter15(Ref.2).assumeEngineeredSafetyFeaturesystemsareOPERABLE.TheDCelectricalpowersubsystemsprovidenormalandemergencyDCelectricalpowerforthedieselgenerators(DGs),emergencyauxiliaries,andcontrolandswitchingduringallMODESofoperation.TheOPERABILITYof.theDCsubsystemsisconsistentwiththeinitialassumptionsoftheaccidentanalysesandisbaseduponmeetingthedesignbasisoftheunit.ThisincludesmaintainingDCsourcesidentifiedinTable3.8.4-1OPERABLEduringaccidentconditions.intheeventof:a.AnassumedlossofalloffsiteACorallonsiteACpower;andb.Aworstcasesinglefailure.SincebatterycellparameterssupporttheoperationoftheDCelectricalpowersubsystems,theysatisfyCriterion3oftheNRCPolicyStatement(Ref.3).LCOBatterycellparametersmustremainwithinacceptablelimitstoensureavailabilityoftherequiredDCpowertoshutdownthereactorandmaintainitinasafeconditionafterananticipatedoperationaloccurrenceorapostulatedDBA.(continued)SUSQUEHANNA-UNIT1B3.8-71Revision0

BatteryCellParametersB3.8.6LCO(continued)Electrolytelimitsareconservativelyestablished,allowingcontinuedDCelectricalsystemfunctionevenwithCategoryAandBlimitsnotmet.APPLICABILITYThebatterycellparametersarerequiredsolelyforthesupportoftheassociatedDCelectricalpowersubsystem.Therefore,batterycellparametersarerequiredtobewithinrequiredlimitsonlywhentheassociatedDCpowersourceisrequiredtobeOPERABLE.RefertotheApplicabilitydiscussionsinBasesforLCO3.8.4andLCO3.8.5.ACTIONSANotehasbeenaddedtoprovideclarificationthat,forthepurposeofthisLCO,separateConditionentryisallowedforeachbattery.Thisisacceptable,sincetheRequiredActionsforeachConditionprovideappropriatecompensatoryactionsforeachinoperablebattery.ComplyingwiththeRequiredActionsmayallowforcontinuedoperation.andsubsequentinoperablebatteriesaregovernedbysubsequentConditionentryandapplicationofassociatedRequiredActions.A.lA.2andA.3Withparametersofoneormorecellsinoneormorebatteriesnotwithinlimits(i.e.,CategoryAlimitsnotmetorCategoryBlimitsnotmet,orCategoryAandBlimitsnotmet)butwithintheCategoryClimitsspecifiedinTable3.8.6-1,thebatteryisdegradedbutthereisstillsufficientcapacitytoperformtheintendedfunction.Therefore,theaffectedbatteryisnotrequiredtobeconsideredinoperablesolelyasaresultofCategoryAorBlimitsnotmet,andcontinuedoperationispermittedforalimitedperiod.ThepilotcellelectrolytelevelandfloatvoltagearerequiredtobeverifiedtomeettheCategoryClimitswithin1hour(RequiredActionA.1).Thischeckprovidesaquickindicationofthestatusoftheremainderofthebatterycells.Onehourprovidestimetoinspecttheelectrolyte(continued)SUSQUEHANNA-UNIT1B3.8-72Revision0 BatteryCellParametersB3.8.6BASESACTIONSA.1A.2andA.3(continued)levelandtoconfirmthefloatvoltageofthepilotcell.Onehourisconsideredareasonableamountoftimetoperformtherequiredverification.VerificationthattheCategoryClimitsaremet(RequiredActionA.2)providesassurancethatduringthetimeneededtorestoretheparameterstotheCategoryAandBlimits,thebatteryisstillcapableofperformingitsintendedfunction.Aperiodof24hoursisallowedtocompletethein'itialverificationbecausespecificgravitymeasurementsmustbeobtainedforeachconnectedcell.Takingintoconsiderationboththetimerequiredtoperformtherequiredverificationandtheassurancethatthebatterycell~parametersare.notseverelydegraded,thistimeisconsideredreasonable.Theverificationisrepeatedat7dayintervalsuntiltheparametersarerestoredtoCategoryAandBlimits.ThisperiodicverificationisconsistentwiththenormalFrequencyofpilotcellSurveillances.Continuedoperationisonlypermittedfor31daysbeforebatterycellparametersmustberestoredtowithinCategoryAandBlimits.Takingintoconsiderationthat,whilebatter>Capacityisdegraded,sufficientcapacityexiststoperformtheintendedfunctionandtoallowtimetofullyrestorethebatterycellparameterstonormallimits,thistimeisacceptableforoperationpriortodeclaringtheDCbatteriesinoperable.B.lWhenanybatteryparameterisoutsidetheCategoryClimitforanyconnectedcell,sufficientcapacitytosupplythemaximumexpectedloadrequirementisnotensuredandthecorrespondingDCelectricalpowersubsystemmustbedeclaredinoperable.Additionally,otherpotentiallyextremeconditions.suchasnotcompletingtheRequiredActionsofConditionAwithintherequiredCompletionTimeoraverageelectrolytetemperatureofrepresentativecellsfallingbelow60'F,alsoarecauseforimmediatelydeclaringtheassociatedDCelectricalpowersubsysteminoperable.SUSQUEHANNA-UNIT1B3.8-73(continued)Revision0 BatteryCellParametersB3.8.6BASES(continued)SURVEILLANCEREQUIREMENTSSR3.8.6.1ThisSRverifiesthat.CategoryAbatterycellparametersareconsistentwithIEEE-450(Ref.4),whichrecommendsregularbatteryinspectionsincludingvoltage,specificgravity,andelectrolytetemperatureofpilotcells.TheSRmustbeperformedevery7days,unless(asspecifiedbytheNoteintheFrequency)thebatteryisonequalizingchargeorhasbeenonequalizingchargeanytimeduringtheprevious4days.Thisallowstheroutine7dayFrequencytobeextendeduntilsuchatimethattheSRcanbeproperlyperformedandmeaningfulresultsobtained.The14dayFrequencyisnotmodifiedbytheNote,thusregardlessofhowoftenthebatteryisplacedonequalizingcharge,theSRmustbeperformedevery14days.SR3.8.6.2ThequarterlyinspectionofspecificgravityandvoltageisconsistentwithIEEE-450(Ref.4).Inaddition,within24hoursofabatterydischarge<110Vfora125VOCbatteryand(220-Vfora250VDCbatteryorabatteryovercharge>150Vfora125VDCbatteryand>300Vfora250VDCbattery;thebatterymustbedemonstratedtomeet,CategoryBlimits.Transients,suchasmotorstartingtransients,whichmaymomentarilycausebatteryvoltagetodropto~110Vfora125VDCbatteryand<220Yfora250VOCbattery,donotconstituteabatterydischargeprovidedthebatteryterminalvoltageandfloatcurrentreturntopre-transientvalues.ThisinspectionisalsoconsistentwithIEEE-450(Ref.4),whichrecommendsspecialinspectionsfollowingaseveredischargeorovercharge,toensurethatnosignificantdegradationofthebatteryoccursasaconsequenceofsuchdischargeorovercharge.SR3.8.6.3ThisSurveillanceverificationthattheaveragetemperatureofrepresentativecellsiswithinlimitsisconsistentwitharecommendationofIEEE-450(Ref.4)thatstatesthatthetemperatureofelectrolytesinrepresentativecellsshouldbedeterminedonaquarterlybasis.Thenumberofrepresentativecellshasbeendeterminedtobe10cellsfora125VDCbatteryand20cellsfora250VDCbattery.(continued)SUSQUEHANNA-UNIT1B3.8-74Revision0 BatteryCellParametersB3.8.6BASESSURVEILLANCEREQUIREMENTSSR3.8.6.3(continued)Lowerthannormaltemperaturesacttoinhibitorreducebatterycapacity.ThisSRensuresthattheoperatingtemperaturesremainwithinanacceptableoperatingrange.Thislimitisbasedonmanufacturer'srecommendations.Table3.8.6-1Thistabledelineatesthelimitsonelectrolytelevel,floatvoltage,andspecificgravityforthreedifferentcategories.Themeaningofeachcategoryisdiscussedbelow.CategoryAdefinesthenormalparameterlimitforeachdesignatedpilotcellineachbattery.Thecellsselectedaspilotcellsarethosewhosetemperature,voltage,andelectrolytespecificgravityprovideanindicationofthestateofchargeoftheentirebattery.TheCategoryAlimitsspecifiedforelectrolytelevelarebasedonmanufacturer'srecommendationsandareconsistentwiththeguidanceinIEEE-450(Ref.4),withtheextra/iinchallowance'abovethehighwaterlevelindicationforoperatingmargintoaccountfortemperatureandchargeeffects.Inadditiontothisallowance,footnoteatoTable3.8.6-1permitstheelectrolyteleveltobeabovethespecifiedmaximumlevelduringequalizingcharge,provideditisnotoverflowing.Theselimitsensurethattheplatessuffernophysicaldamage,andthatadequateelectrontransfercapabilityismaintainedintheeventoftransientconditions.IEEE-450(Ref.4)recommendsthatelectrolytelevelreadingsshouldbemadeonlyafterthebatteryhasbeenatfloatchargeforatleast72hours.TheCategoryAlimitspecifiedforfloatvoltageis>2.13Vpercell.ThisvalueisbasedontherecommendationofIEEE-450(Ref.4),whichstatesthatprolongedoperationofcellsbelow2.13Vcanreducethelifeexpectancyofcells.TheCategoryAlimitspecifiedforspecificgravityforeachpilotcellis~1.200(0.015belowthemanufacturer'sfullychargednominalspecificgravityorabatterychargingcurrentthathadstabilizedatalowvalue).Thisvalueischaracteristicofachargedcellwithadequatecapacity.(continued)SUSQUEHANNA-UNIT1B3.8-75Revision0 BatteryCellParametersB3.8.6BASESSURVEILLANCEREQUIREMENTSTable3.8.6-1(continued)AccordingtoIEEE-450(Ref.4),thespecificgravityreadingsarebasedonatemperatureof77F(25'C).Thespecificgravityreadingsarecorrectedforactualelectrolytetemperature.Foreach3'F(1.67'C)above77'F(25'C),1point(0.001)isaddedtothereading;1pointissubtractedforeach3'Fbelow77F.Thespecificgravityoftheelectrolyteinacellincreaseswithalossofwaterduetoelectrolysisorevaporation.CategoryBdefinesthenormalparameterlimitsf'reachconnectedcell.Theterm"connectedcell"excludesanybatterycellthatmaybejumperedout.TheCategoryBlimitsspecifiedforelectrolytelevelandfloatvoltagearethesameasthosespecifiedforCategoryAandhavebeendiscussedabove.TheCategoryBlimitspecifiedforspecificgravityforeachconnectedcellis>1.195(0.020belowthemanufacturer'sfullycharged,nominalspecificgravity)withtheaverageofallconnectedcells.1.205(0.010belowthe.manufacturer'sfullycharged,nominalspecificgravity).Thesevaluesarebasedonmanufacturer"srecommendations.Theminimumspecificgravityvaluerequiredforeachcellensuresthattheeffectsofahighlychargedornewlyinstalledcelldonotmaskoveralldegradationofthebattery.CategoryCdefinesthelimitsforeachconnectedcell.Thesevalues,althoughreduced,provideassurancethatsufficientcapacityexiststoperformtheintendedfunctionandmaintainamarginofsafety.WhenanybatteryparameterisoutsidetheCategoryClimits,theassuranceofsufficientcapacitydescribedabovenolongerexists,andthebatterymustbedeclaredinoperable.TheCategoryClimitspecifiedforelectrolytelevel(abovethetopoftheplatesandnotoverflowing)ensuresthattheplatessuffernophysicaldamageandmaintainadequateelectrontransfercapability.TheCategoryCallowablelimitforvoltageisbasedonIEEE-450(Ref.4),whichstatesthatacellvoltageof2.07Vorbelow,underfloatconditionsandnotcausedbyelevatedtemperatureofthecell,indicatesinternalcellproblemsandmayrequirecellreplacement.(continued)SUSQUEHANNA-UNIT1B3.8-76Revision0 BatteryCellParametersB3.8.6BASESSURVEILLANCEREQUIREMENTSTable3.8.6-1(continued)TheCategoryClimitonaveragespecificgravity>1.195,isbasedonmanufacturer'srecommendations(0.020belowthemanufacturer'srecommendedfullycharged,nominalspecificgravity).Inadditiontothatlimit,itisrequiredthatthespecificgravityforeachconnectedcellmustbenolessthan0.020belowtheaverageofallconnectedcells.Thislimitensuresthattheeffectof'highlychargedornewcelldoesnotmaskoveralldegradationofthebattery.ThefootnotestoTable3.8.6-1thatapplytospecificgravityareapplicabletoCategoryA,B,andCspecificgravity.Footnote(b)ofTable3.8.6-1requirestheabovementionedcorrectionforelectrolytetemperature.Abatterychargingcurrentof<0.25ampforClass1E250Vbatteriesand<0.1ampClass1E125Vbatterieswhenonfloatchargeisacceptableformeetingspecificgravitylimitsbecausemaintainingthiscurrentprovidesanindicationthatthestateofchangeofthebatteryisacceptable.Becauseofspecificgravitygradientsthatareproducedduringtherechargingprocess,delaysofseveraldaysmayoccurwhile-waitingforthe'speci-ficgravitytostabilize.However,followinga.minorbatteryrecharge(suchasequalizingchargethatdoesnotfollow-.a,'deepdischarge)specificgravitygradientsarenot.si,gm.:fi:cant.Astabilizedchargercurrentisanacceptabl.e'lternativetospecificgravitymeasurement-f'rdeterminingthestateofcharge.Thisphenomenonisdiscussed.in.IEEE:-450(Ref.4).Footnote(c)toTable3.8.6-1allows.the-floatchargecurrenttobeusedasanalternatetospecificgravity.REFERENCES1.FSAR,Chapter6.2.FSAR,Chapter15.3.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).4.IEEEStandard450.SUSQUEHANNA-UNIT1B3.8-77Revision0 DistributionSystems-OperatingB3.8.7B3.8ELECTRICALPOWERSYSTEMSB3.8.7DistributionSystems-OperatingBASESBACKGROUNDTheonsiteClass1EACandDCelectricalpowerdistributionsystemisdividedintoredundantandindependentACandDCelectricalpowerdistributionsubsystemsandaDGEelectricalpowerdistributionsubsystem.TheprimaryACdistributionsystemconsistsoffour4.16kVEngineeredSafeguardsSystem(ESS)buseseachhavingaprimaryandalternateoffsitesourceofpoweraswellasanonsitedieselgenerator(DG)sourcethatsupportsone4.16kVESSbusineachunit.Each4.16kVESSbusisnormallysuppliedbyeitherStartupTransformer(ST)No.10orSTNo.20.STNo.10andSTNo.20eachprovidethenormalsourceofpowertotwoofthefour4.16kVESSbusesineachUnitandthealternatesourceofpowertotheremainingtwo4.16kVESSbusesineachUnit.Ifany4.16kVESSbuslosespower,anautomatictransferfromthenormaltothealternateoccursafterthenormalsupplybreakertrips.Ifbothoffsitesourcesareunavailable,theonsiteemergencyDGssupplypowertothe4.16kVESSbuses.Therearetwo250VDCelectricalpowerdistributfonsubsystems.four125VDCelectricalpowerdistributionsubsystems,andone125VDCDGEelectricalpowerdistributionsubsystem,allofwhichsupport.thenecessarypowerforESFfunctions.Inaddition,somecomponentsrequiredbyUnit2receivepowerthroughUnit1electricalpowerdistributionsubsystems.theUnit1ACandDCelectricalpowerdistributionsubsystemsneededtosupporttherequiredequipmentareaddressedinUnit2LCO3.8.7.RequireddistributionsubsystemsarelistedinLCO3.8.7,Table3.8.7-1.~APPLICABLESAFETYANALYSESTheinitialconditionsofDesignBasisAccident(DBA)andtransientanalysesintheFSAR.Chapter6(Ref.1)andChapter15(Ref.2),assumeESFsystemsareOPERABLE.TheACandDCelectricalpowerdistributionsystemsaredesigned(continued)SUSQUEHANNA-UNIT1B3.8-78Revision0 DistributionSystems-OperatingB3.8.7BASESAPPLICABLESAFETYANALYSES(continued)toprovidesufficientcapacity,capability,redundancy,andreliabilitytoensuretheavailabilityofnecessarypowertoESFsystemssothatthefuel,ReactorCoolantSystem,andcontainmentdesignlimitsarenotexceeded.TheselimitsarediscussedinmoredetailintheBasesforSection3.2,PowerDistributionLimits;Section3.4,ReactorCoolantSystem(RCS);andSection3.6ContainmentSystems.TheOPERABILITYoftheACandDCelectricalpowerdistributionsubsystemsisconsistentwiththeinitialassumptionsoftheaccident.analysesandisbaseduponmeetingthedesignbasisoftheunit.ThisincludesmaintainingdistributionsystemsOPERABLEduringaccidentconditionsintheeventof:a.Anassumedlossofalloffsitepower,orallonsiteACelectricalpower;andb.Aworstcasesinglefailure.TheACandDCelectricalpowerdistributionsystemsatisfiesCriterion3oftheNRCPolicyStatement(Ref.4).I'COrTherequiredelectricalpowerdistributionsubsystemslistedinTable3.8.7-1ensuretheavailabilityofACandDCelectricalpowerforthesystemsrequiredtoshutdownthereactorandmaintainitinasafeconditionafterananticipatedoperationaloccurrence(AOO)orapostulatedDBA.TheACandDCelectricalpowerdistributionsubsystemsarerequiredtobeOPERABLE.MaintainingtheACandDCelectricalpowerdistributionsubsystemsOPERABLEensuresthattheredundancyincorporatedintothedesignofESFisnotdefeated.Therefore,asinglefailurewithinanysystemorwithintheelectricalpowerdistributionsubsystemswillnotpreventsafeshutdownofthereactor.ACelectricalpowerdistributionsubsystemsrequiretheassociatedbusesandelectricalcircuitstobeenergizedtotheirpropervoltages.DCelectricalpowerdistributionsubsystemsrequiretheassociatedbusestobeenergizedtotheirpropervoltagefromeithertheassociatedbatteryorcharger.TheACandDCelectricalpowerdistribution(continued)SUSQUEHANNA-UNIT1B3.8-79Revision0 DistributionSystems-OperatingB3.8.7BASESLCO(continued)subsystemisonlyconsideredInoperablewhenthesubsystemisnotenergizedtoitspropervoltage.APPLICABILITYTheelectricalpowerdistributionsubsystemsarerequiredtobeOPERABLEinNODESl.2,and3toensurethat:a.AcceptablefueldesignlimitsandreactorcoolantpressureboundarylimitsarenotexceededasaresultofAOOsorabnormaltransients;andb.Adequatecorecoolingisprovided,andcontainmentOPERABILITYandother.vitalfunctionsaremaintainedintheeventofapostulatedDBA.-.ElectricalpowerdistributionsubsystemrequirementsforNODES4and5arecoveredintheBasesforLCO3.8.8,"DistributionSystems-Shutdown."ACTIONSA.1WithoneorlaoPe'requiredACbuses.loadcenters,motorcontrolcenters,ordistributionpanelsinoperablebutnotresultinginalossofsafetyfunction,theremainingACelectricalpowerdistributionsubsystemsarecapableofsupportingtheminimumsaf'etyfunctionsnecessarytoshutdownthereactorandmaintainitinasafeshutdowncondition,assumingnosinglefailure.Theoverallreliabilityisreduced,however,becauseasinglefailureintheremainingpowerdistributionsubsystemscouldresultintheminimumrequiredESFfunctionsnotbeingsupported.Therefore,therequiredACbuses,loadcenters.motorcontrolcenters,anddistributionpanelsmustberestoredtoOPERABLEstatuswithin8hours.TheConditionAworstscenarioisonedivisionwithoutACpower(i.e.,nooffsitepowertothedivisionandtheassociatedDGinoperable).InthisCondition,theunitismorevulnerabletoacompletelossof'Cpower.Itis,therefore,imperativethattheunitoperators'ttentionbefocusedonminimizingthepotentialforlossofpowertotheremainingdivisionbystabilizingtheunit,andonrestoringpowertotheaffecteddivision.The8hourtimelimit(continued)SUSQUEHANNA-UNIT1B3.8-80Revision0 DistributionSystems-OperatingB3.8.7BASESACTIONSA.l(continued)beforerequiringaunitshutdowninthisConditionisacceptablebecause:a.Thereisapotentialfordecreasedsafetyiftheattentionofunitoperatorsisdivertedfromtheevaluationsandactionsnecessarytorestorepowertotheaffecteddivisiontotheactionsassociatedwithtakingtheunittoshutdownwithinthistimelimit.b.ThepotentialforaneventinconjunctionwithasinglefailureofaredundantcomponentinthedivisionwithACpower.(TheredundantcomponentisverifiedOPERABLEinaccordancewithSpecification5.5.11,"SafetyFunctionDeterminationProgram(SFDP).")ThesecondCompletionTimeforRequiredActionA.lestablishesalimitonthemaximumtimeallowedforanycombinationofrequired'distributionsubsystemstobeinoperableduringanysinglecontinuousoccurrenceoffai'lingtomeet'LCO3.8.7..IfConditionAisenteredwhile,forinstance,aDCbusisinoperableandsubsequentlyreturnedOPERABLE,thisLCOmayalreadyhavebeennotmetforupto2hours.Thissituationcouldleadtoatotaldurationof10hours'inceinitialfailureoftheLCO.torestoretheACdistributionsystem.AtthistimeaDCcircuitcouldagainbecomeinoperable.andACdistributioncouldberestoredOPERABLE.Thiscouldcontinueindefinitely.ConditionAismodifiedbyaNotethatstatesthatConditionAisnotapplicabletotheDGEDCelectricalpowersubsystem.ConditionDorEisapplicabletoaninoperableDGEDCelectricalpowersubsystem.ThisCompletionTimeallowsforanexceptiontothenormal"timezero"forbeginningtheallowedoutagetime"clock."Thisresultsinestablishingthe"timezero"atthetimethisLCOwasinitiallynotmet.insteadofatthetimeConditionAwasentered.The16hourCompletionTimeisanacceptablelimitationonthispotentialtofailtomeettheLCOindefinitely.ThecompletiontimeexceptionisnotapplicabletoConditionDorEbecauseConditionsDandEareonlyapplicabletoDGEDCelectricalpowersubsystem.(continued)SUSQUEHANNA-UNIT1B3.8-81Revision0 DistributionSystems-OperatingB3.8.7BASESACTIONS(continued)B.1WithoneormoreUnit1DCbusesinoperable,theremainingDCelectricalpowerdistributionsubsystemsmaybecapableofsupportingtheminimumsafetyfunctionsnecessarytoshutdownthereactorandmaintainitinasafeshutdowncondition,assumingnosinglefailure.Theoverallreliabilityisreduced,however,becauseasinglefailureinoneoftheremainingDCelectricalpowerdistributionsubsystemscouldresultintheminimumrequiredESFfunctionsnotbeingsupported.Therefore,therequiredDCbusesmustberestoredtoOPERABLEstatuswithin2hoursbypoweringthebusfromtheassociatedbatteryorcharger.ConditionBrepresentsonesubsystemormultipleDCbuseswithoutadequateDCpower,potentiallywithboththebatterysignificantlydegradedandtheassociatedchargernon-functioning.InthissituationtheplantissignificantlymorevulnerabletoalossofminimallyrequiredDCpower.Itis,therefore,imperativethattheoperator'sattentionfocusonstabilizingtheplant.minimizingthepotentialforlossofpowertotheremainingdivisions.andrestoringpowertotheaffecteddivision.This2hourlimitismore;conservative.thanCompletionTimesallowedforthemajority-ofcomponentsthatwouldbewithoutpower.Takingexceptionto.LCO3.0.2forcomponentswithoutadequateDCpower,which'woul.d.'aveRequiredActionCompletionTimesshorter.than2hours,isacceptablebecauseof:a.Thepotentialfordecreasedsafetywhenrequiringachangeinplantconditions(i.e.,requiringashutdown)whilenotallowingstableoperationstocontinue:b.ThepotentialfordecreasedsafetywhenrequiringentryintonumerousapplicableConditionsandRequiredActionsforcomponentswithoutDCpower,whilenotprovidingsufficienttimefortheoperatorstoperformthenecessaryevaluationsandactionsf'rrestoringpowertotheaffecteddivision;c.Thepotentialforaneventinconjunctionwithasinglefailureof'redundantcomponent.(continued)SUSQUEHANNA-UNIT1B3.8-82Revision0 DistributionSystems-OperatingB3.8.7BASESACTIONSB.l(continued)The2hourCompletionTimeforDCbusesisconsistentwithRegulatoryGuide1.93(Ref.3).ThesecondCompletionTimeforRequiredActionB.1establishesalimitonthemaximumtimeallowedforanycombinationofrequireddistributionsubsystemstobeinoperableduringanysinglecontinuousoccurrenceoffailingtomeettheLCO.IfConditionCisenteredwhile,forinstance,anACbusisinoperableandsubsequentlyrestoredOPERABLE,theLCOmayalreadyhavebeennotmetforupto8hours.Thissituationcouldleadtoatotaldurationof10hours,sinceinitialfailureoftheLCO,torestoretheDCdistributionsystem.Atthistime,anACdivisioncouldagainbecomeinoperable,andDCdistributioncouldberestoredOPERABLE.Thiscouldcontinueindefinitely.ConditionBismodifiedbyaNotethatstatesthatConditionBisnotapplicabletotheDGEDCelectricalpowersubsystem.ConditionDorEisapplicabletoaninoperableDGEDCelectrical-powersubsystem.ThisCompletiofvTimeallowsforanexceptiontothenormal"timezero"forbeginningtheallowedoutagetime"clock."Thisallowanceresultsinestablishingthe"timezero"atthetimetheLCOwasinitiallynotmet,insteadofatthetimeConditionCwasentered.The16hourCompletionTimei'sanacceptablelimitationonthispotentialoffailingtomeettheLCOindefinitely.TheCompletionTimeexceptionisnotapplicabletoCondition0orEbecauseCondition0andEareonlyapplicabletoDGEDCelectricalpowersubsystem.C.landC.2IftheinoperabledistributionsubsystemcannotberestoredtoOPERABLEstatuswithintheassociatedCompletionTime,theunitmustbebroughttoaMODEinwhichtheLCOdoesnotapply.Toachievethisstatus,theplantmustbebroughttoatleastMODE3within12hoursandtoMODE4within36hours.TheallowedCompletionTimesarereasonable,basedonoperatingexperience,toreachtherequiredplantconditionsfromfullpowerconditionsinanorderlymannerandwithoutchallengingplantsystems.(continued)SUSQUEHANNA-UNIT1B3.8-83Revision0 DistributionSystems-OperatingB3.8.7BASESACTIONS(continued)D.1IfDieselGeneratorEisnotalignedtotheClass1Edistributionsystem,theonlysupportedsafetyfunctionisfortheESWsystem.Therefore,underthiscondition,ifDieselGeneratorEDCpowerdistributionsubsystemisnotOPERABLE,toensuretheOPERABILITYoftheESWsystem,actionsaretakentoeitherrestorethepowerdistributionsubsystemtoOPERABLEstatusorshutdownDieselGeneratorEandclosetheassociatedESWvalves.The2hourlimitisconsistentwiththeallowedtimeforotherinoperableDCpowerdistributionsubsystemsandprovidessufficienttimetoevaluatetheconditionandtakethecorrectiveactions.E.1IftheDieselGeneratorEisalignedtotheclasslEdistributionsystem,thelossofDieselGeneratorEDCpowerdistributionsubsystemwillresultinthelossofaon-siteclass1Epowersource.Therefore,underthiscondition,if'ieselGeneratorEDCpowerdistributionsubsystemisnotOPERABLEactionsaretakentoeitherrestorethepowerdistributionsubsystemtoOPERABLEstatusordeclareDieselGeneratorEinoperableandtakeActionsofLCO3.8.1.The2hourlimitisconsistentwiththeallowedtimeforotherDCsourcesandprovidessufficienttimetoevaluatetheconditionandtakethenecessarycorrectiveactions.ConditionFcorrespondstoalevelofdegradationintheelectricaldistributionsystemthatcausesarequiredsafetyfunctiontobelost.WhenmorethanoneACorDCelectricalpowerdistributionsubsystemislost,andthisresultsinthelossofarequiredfunction,theplantisinaconditionoutsidetheaccidentanalysis.Therefore,noadditionaltimeisjustifiedforcontinuedoperation.LCO3.0.3mustbeenteredimmediatelytocommenceacontrolledshutdown.EntryintoConditionFisnotrequiredifthelossofsafetyfunctionistheresultofentryintoConditionAincombinationwiththelossofsafetyfunctionsgovernedbyLCOsotherthanLCO3.8.7.Inthiscase,enterLCO3.8.7,ConditionA,andtheConditionforlossoffunctionintheLCOthatgovernsthesafetyfunctionthatislost.SUSQUEHANNA-UNIT1B3.8-84(continued)Revision0 DistributionSystems-OperatingB3.8.7BASES(continued)SURVEILLANCEREQUIREMENTSSR3.8.7.1ThisSurveillanceverifiesthattheACandDC,electricalpowerdistributionsystemsarefunctioningproperly,withthecorrectcircuitbreakeralignment.Thecorrectbreakeralignmentensurestheappropriateindependenceoftheelectricalbusesaremaintained.andtheappropriatevoltageorindicatedpowerisavailabletoeachrequiredbus.ThisincludesaverificationthatUnit1andcommon125VDCloadsarealignedtoaUnit1DCpowerdistributionsubsystem.Theverificationofvoltageavailabilityonthebusesensuresthatthe.requiredvoltageisreadilyavailableformotiveaswellascontrolfunctionsforcriticalsystemloadsconnectedtothesebuses.The7dayFrequencytakesintoaccounttheredundantcapabilityoftheACandDCelectricalpowerdistributionsubsystems,andotherindicationsavailableinthecontrolroomthatalerttheoperatortosubsystemmalfunctions.REFERENCES1.2.3.FSAR,Chapter6.FSAR,Chapter15.RegulatoryGuide1.93,December1974.4.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA-UNIT1B3.8-85Revision0

DistributionSystems-ShutdownB3.8.8B3.8ELECTRICALPOWERSYSTEMSB3.8.8DistributionSystems-ShutdownBASESBACKGROUNDAdescriptionoftheACandDCelectricalpowerdistributionsystemisprovidedintheBasesforLCO3.8.7."DistributionSystems-Operating."APPLICABLETheinitialconditionsofDesignBasisAccidentandSAFETYANALYSEStransientanalysesintheFSAR,Chapter6(Ref.1)andChapter15(Ref.2),assumeEngineeredSafetyFeature(ESF)systemsareOPERABLE.TheACandDCelectricalpowerdistributionsystemsandtheDGEDCelectricalpowerdistributionsubsystemaredesignedtoprovidesufficientcapacity,capability,redundancy,andreliabilitytoensuretheavailabilityofnecessarypowertoESFsystemssothatthefuel,ReactorCoolantSystem.andcontainmentdesignlimitsarenotexceeded.TheOPERA'SIL'ITY-of-the.-ACandDCelectricalpowerdistrib'upon.system+i's=--'consistentwiththeinitial,assumptions=-of=the>accident=analysesandtherequirementsfor-the"supported-systemx4~0PERABILITY.The'OPERABXLDY..'of;thymi;mmum.ACandDCelectricalpowersources-and=asso'cÃatedpower;distributionsubsystemsduringMODES.,4-and=5,:and=dur-ing-movementofirradiatedfuelassemblies-in-the=-.secondarycontainmentensuresthat:a.Thefacil;sty-.can:be'maintainedintheshutdownorrefuelingconditionforextendedperiods;b.Sufficientinstrumentationandcontrolcapabilityisavailableformonitoringandmaintainingtheunitstatus;andc.Adequatepowerisprovidedtomitigateeventspostulatedduringshutdown,suchasaninadvertentdraindownofthevesselorafuelhandlingaccident.LCO3.8.8isnormallysatisfiedbymaintainingtheOPERABILITYofallDivisionIorallDivisionIIDCdistributionsubsystemslistedinTable3.8.7-1andthe(continued)SUSQUEHANNA-UNIT1B3.8-86Revision0

DistributionSystems-ShutdownB3.8.8BASESAPPLICABLESAFETYANALYSES(continued)dieselgeneratorEdistributionsubsystem.However,anycombinationofDCdistributionsubsystemsthatmaintainOPERABILITYofequipmentrequiredbyTechnicalSpecificationsmaybeusedtosatisfythisLCO.TheACandDCelectricalpowerdistributionsystemssatisfyCriterion3oftheNRCPolicyStatement(Ref.3).LCOVariouscombinationsofsubsystems,equipment.andcomponentsarerequiredOPERABLEbyotherLCOs.dependingonthespecificplantcondition.ImplicitinthoserequirementsistherequiredOPERABILITYofnecessarysupportrequiredfeatures.ThisLCOexplicitlyrequiresenergizationoftheportionsoftheelectricaldistributionsystemnecessarytosupportOPERABILITYofTechnicalSpecificationsrequiredsystems,equipment,andcomponents-bothspecificallyaddressedbytheirownLCO,andimplicitlyrequiredbythedefinitionofOPERABILITY.Maintainingtheseportionsofthedistributionsystemenergizedensures.theavailabilityofsufficientpowertooperatetheplantinasafemannertomitigatetheconsequencesofpostulatedeventsduringshutdown(e.g.,fuelhandlingaccidentsandinadvertentreactorvesseldraindown).TheACandDCelectricalpowerdistributionsubsystemisonlyconsideredinoperablewhenthesubsystemisnotenergizedtoitspropervoltage.APPLICABILITYTheACandDCelectricalpowerdistributionsubsystemsrequiredtobeOPERABLEinMODES4,and5andduringmovementofirradiatedfuelassembliesinthesecondarycontainmentprovideassurancethat:a.Systemstoprovideadequatecoolantinventorymakeupareavailablefortheirradiatedfuelinthecoreincaseofaninadvertentdraindownofthereactorvessel;b.Systemsneededtomitigateafuelhandlingaccidentareavailable;(continued)SUSQUEHANNA-UNITIB3.8-87Revision0 DistributionSystems-ShutdownB3.8.8BASESAPPLICABILITY(continued)c.Systemsnecessarytomitigatetheeffectsofeventsthatcanleadtocoredamageduringshutdownareavailable;andd.Instrumentationandcontrolcapabilityisavailableformonitoringandmaintainingtheunitinacoldshutdownconditionorrefuelingcondition.TheAC,DCandDGEelectricalpowerdistributionsubsystemrequirementsforMODES1,2,and3arecoveredinLCO3.8.7.ACTIONSTheACTIONShavebeenmodifiedbyaNotestatingthatLCO3.0.3isnotapplicable.ThisisacceptablebecauseLCO3.0.3wouldnotspecifyanyadditionalActionsinMODE4or5movingirradiatedfuelassemblies.A.1TheUnit1ACandDCsubsystemsremainingOPERABLEwithoneormoreUnit1ACand'DCpowersourcesinoperablemaybecapableofsupportingsufficientrequiredfeaturestoallowcontinuationofCOREALTERATIONS,fuelmovement.andoperationswithapotentialfordrainingthereactorvessel.Therefore.theoptionisprovidedtodeclarerequiredfeatureswithassociatedpowersourcesinoperablewhichensuresthatappropriaterestrictionsareimplementedinaccordancewiththeaffectedsystemLCOs'CTIONS.ConditionAismodifiedbyaNotethatstatesthatConditionAisnotapplicabletotheDGEDCelectricalpowersubsystem.ConditionBorCisapplicabletoaninoperableDGEDCelectricalpowersubsystem.A.2.1A.2.2A.2.3A.2.4andA.2.5Inmanyinstancestheoptionabovemayinvolveundesiredadministrativeefforts.Therefore,theallowanceforsufficientlyconservativeactionsismade,(i.e.,tosuspendCOREALTERATIONS.movementofirradiatedfuelassembliesinthesecondarycontainment,andanyactivitiesthatcouldresultininadvertentdrainingofthereactorvessel).(continued)SUSQUEHANNA-UNIT1B3.8-88Revision0 DistributionSystems-ShutdownB3.8.8BASESACTIONSA.2.1A.2.2A.2.3A.2.4andA.2.5(continued)Suspensionoftheseactivitiesshallnotprecludecompletionofactionstoestablishasafeconservativecondition.Theseactionsminimizetheprobabilityoftheoccurrenceofpostulatedevents.ItisfurtherrequiredtoimmediatelyinitiateactiontorestoretherequiredACandDCelectricalpowerdistributionsubsystemsandtocontinuethisactionuntilrestorationisaccomplishedinordertoprovidethenecessarypowertotheplantsafetysystems.RequiredActionsA.2.1throughA.2.4donotadequatelyaddresstheconcernsrelatingtocoolantcirculationandheatremoval.PursuanttoLCO3.0.6.theRHR-SDCACTIONSwouldnotbeentered.Therefore,RequiredActionA.2.5isprovidedtodirectdeclaringRHR-SDCinoperableandnotinoperation,whichresultsintakingallappropriateRHR-SDCACTIONS.TheCompletionTimeofimmediatelyisconsistentwiththerequiredtimesf'ractionsrequiringpromptattention.Therestorationoftherequireddistributionsubsystemsshouldbecompletedasquicklyaspossibleinordertominimizethetimetheplantsafetysystemsmaybewithoutpower.RequiredActionA.2ismodifiedbyaNote.TheNoteensuresthatappropriateremedialactionsaretaken,ifnecessary,if'requiredECCSsubsystemisrenderedinoperablebytheInoperabilityoftheelectricaldistributionsubsystem.PursuanttoLCO3.0.6.theseactionsarenotrequiredevenwhentheassociatedLCOisnotmet.Therefore,theNoteisaddedtorequiretheproperactionsbetaken.B.1IfDieselGeneratorEisnotalignedtotheclass1Edistributionsystem.theonlysupportedsafetyfunctionistheESWsystem.Therefore,ifDieselGeneratorEDCpowerdistributionsubsystemisnotOPERABLE,actionsaretakentoeitherrestorethebatterytoOPERABLEstatusorshutdownDieselGeneratorEandclosetheassociatedESWvalvestoensuretheOPERABILITYof'heESWsystem.The2hourlimitisconsistentwiththeallowedtimeforotherinoperableDCsourcesandprovidessufficienttimetoevaluatetheconditionofthebatteryandtakethecorrectiveactions.(continued)SUSQUEHANNA-UNIT1B3.8-89Revision0 DistributionSystems-ShutdownB3.8.8BASESACTIONS(continued)C.1IfDieselGeneratorEisalignedtotheclass1Edistributionsystem,thelossofDieselGeneratorEDCpowerdistributionsubsystemwillresultinthelossofaon-siteClass1Esubsystemsource.Therefore.ifDieselGeneratorEDCpowersubsystemisnotOPERABLEactionsaretakentoeitherrestorethebatterytoOPERABLEstatusordeclareDieselGeneratorEinoperableandtakeActionsofLCO3.8.2.The2hourlimitisconsistentwiththeallowedtimeforotherDCsourcesandrovidessufficienttimetoevaluatetheconditionoftheatteryandtake.thenecessarycorrectiveactions.SURVEILLANCEREQUIREHENTSSR3.8.8.1ThisSurveillanceverifiesthattheACandDCelectricalpowerdistributionsubsystemsarefunctioningproperly.withthebusesenergized.Theverificationofpropervoltageorindicatedpoweravailabilityonthebusesensuresthattherequiredpowerisreadilyavailableformotiveaswellascontrolfunctions.forcriticalsystemloadsconnectedtothesebuses.The7dayFrequencytakesintoaccounttheredundantcapabilityoftheelectricalpowerdistributionsubsystems,aswellasotherindicationsavailableinthecontrolroomthatalerttheoperatortosubsystemmalfunctions.REFERENCES1.FSAR,Chapter6.2.FSAR,Chapter15.3.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA'-UNIT1B3.8-90Revision0 RefuelingEquipmentInterlocksB3.9.1B3.9REFUELINGOPERATIONSB3.9.1RefuelingEquipmentInterlocksBASESBACKGROUNDRefuelingequipmentinterlocksrestricttheoperationoftherefuelingequipmentorthewithdrawalofcontrolrodstoreinf'orceunitproceduresthatpreventthereactorfromachievingcriticalityduringrefueling.Therefuelinginterlockcircuitrysensestheconditionsoftherefuelingequipmentandthecontrolrods.Dependingonthesensedconditions,interlocksareactuatedtopreventtheoperationoftherefuelingequipmentorthewithdrawalofcontrolrods.GDC26of'0CFR50,AppendixA,requiresthatoneofthetworequiredindependentreactivitycontrolsystemsbecapableofholdingthereactorcoresubcriticalundercoldconditions(Ref.1).Thecontrolrods,whenfullyinserted,serveasthesystemcapableofmaintainingthereactorsubcriticalincoldconditionsduringallfuelmovementactivitiesandaccidents.Twoseparateinputsareprovidedforrefuelplatform.position.TheRodPositionIndicationSystem(RPIS)providesthe"allcontrolrodsinserted"inputtotheReactorManualControlSystem(RHCS).Additionally,inputsareprovidedfortheloadingoftherefuelingplatformframemountedhoist,theloadingoftherefuelingplatformmonorailmountedhoist,andtheloadingoftherefuelingplatformfuelgrapple.Withthereactormodeswitchintheshutdownorrefuelingposition,theindicatedconditionsarecombinedinlogiccircuitstodetermineifallrestrictionsonrefuelingequipmentoperationsandcontrolrodinsertionaresatisfied.Acontrolrodnotatitsfull-inpositioninterruptspowertotherefuelingequipmentandpreventsoperatingtheequipmentoverthereactorcorewhenloadedwithafuelassembly.Conversely,therefuelingequipmentlocatedoverthecoreandloadedwithfuelinsertsacontrolrodwithdrawalblockintheControlRodDriveSystemtopreventwithdrawingacontrolrod.Therefuelingplatformhastwomechanicalswitchesthatopenbeforetheplatformoranyofitshoistsarephysically(continued)SUSQUEHANNA-UNIT1B3.9-1Revision0 0

RefuelingEquipmentInterlocksB3.9.1BASESBACKGROUND(continued)locatedoverthereactorvessel.OnlyoneoftheseswitchesisrequiredfortheinterlocktobeconsideredOPERABLE.Allrefuelinghoistshaveswitchesthatopenwhenthehoistsareloadedwithfuel.Therefuelinginterlocksusetheseindicationstopreventoperationoftherefuelingequipmentwithfuelloadedoverthecorewheneveranycontrolrodiswithdrawn,ortopreventcontrolrodwithdrawalwheneverfuelloadedrefuelingequipmentisoverthecore(Ref.2).Thehoistswitchesopenataloadlighterthantheweightofasinglefuelassemblyinwater.APPLICABLESAFETYANALYSESTherefuelinginterlocksareexplicitlyassumedintheFSARanalysesforthecontrolrodremovalerrorandFuelLoadingduringrefueling(Ref.3).Thereference3analysisevaluatestheconsequencesofcontrolrodwithdrawalduringrefuelingandalsofuel'movementwithacontrolrodremoved.Apromptreactivityexcursionduringrefuelingcouldpotentiallyresult-infuelfailurewithsubsequentreleaseofradioactivematerialtotheenvironment.Criticalityand,therefore,subsequentpromptreactivityexcursionsarepreventedduringtheinsertionoffuel,providedallcontrolrodsarefullyinsertedduringthefuelinsertion.Therefuelinginterlocksaccomplishthisbypreventingloadingoffuelintothecorewithanycontrolrodwithdrawnorbypreventingwithdrawalofarodfromthecoreduringfuelloading.Therefuelingplatformlimitswitchesactivateatapointoutsideofthereactorcoresuchthattheplatformwillnotcarryaloadedfuelbundleoverthecorewhenacontrolrodiswithdrawn.RefuelingequipmentinterlockssatisfyCriterion3oftheNRCPolicyStatement.(Ref.4)SUSQUEHANNA-UNIT1B3.9-2(continued)Revision0 0yO RefuelingEquipmentInterlocksB3.9.1BASES(continued)LCOTopreventcriticalityduringrefueling,therefuelinginterlocksensurethatfuelassembliesarenotloadedwithanycontrolrodwithdrawn.Topreventtheseconditionsfromdeveloping,theall-rods-in,oneofthetworefuelingplatformposition.therefuelingplatformfuelgrapplefuelloaded,therefuelingplatformtrolleyframemountedhoistfuelloadedandtherefuelingplatformmonorailmountedhoistfuelloadedinputsarerequiredtobeOPERABLE.Theseinputsarecombinedinlogiccircuits,whichproviderefuelingequipmentorcontrolrodblockstopreventoperationsthatcouldresultincriticalityduringrefuelingoperations.APPLICABILITYInMODE5,apromptreactivityexcursioncouldcausefueldamageandsubsequentreleaseofradioactivematerialtotheenvironment.TherefuelingequipmentinterlocksprotectagainstpromptreactivityexcursionsduringMODE5.TheinterlocksarerequiredtobeOPERABLEduringin-vesselfuelmovementwithrefuelingequipmentassociatedwiththeinterlocks.InMODES1,2,3;and4.thereactorpressurevesselheadison,andCOREALTERATIONSarenotpossible.Therefore,therefuelinginterlocksarenotrequiredtobeOPERABLEintheseMODES.ACTIONSA.1Withoneormoreoftherequiredrefuelingequipmentinterlocksinoperable(doesnotincludetheone-rod-outinterlockaddressedinLCO3.9.2),theunitmustbeplacedinaconditioninwhichtheLCOdoesnotapply.In-vesselfuelmovementwiththeaffectedrefuelingequipmentmustbeimmediatelysuspended.Thisactionensuresthatoperationsarenotperformedwithequipmentthatwouldpotentiallynotbeblockedfromunacceptableoperations(e.g.,loadingfuelintoacellwithacontrolrodwithdrawn).Suspensionofin-vesselfuelmovementshallnotprecludeinsertingcontrolrodsorremovingfuelfromthecoretoreducethetotalreactivity.SUSQUEHANNA-UNIT1B3.9-3(continued)Revision0 RefuelingEquipmentInterlocks83.9.1BASES(continued)SURVEILLANCEREQUIREHENTSSR3.9.1.1PerformanceofaCHANNELFUNCTIONALTESTdemonstrateseachrequiredrefuelingequipmentinterlockwillfunctionproperlywhenasimulatedoractualsignalindicativeofarequiredconditionisinjectedintothelogic.Acceptabletestingmethodsinclude:providingsimulatedsignalsfortherefuelingequipmentinputstothereactormodeswitch(i.e.,main/auxiliaryhoistsloadedandplatformposition);or,performingactualmain/auxiliaryhoistliftingoperationswithtestweightsinconjunctionwithplatf'ormmovementsoverthereactorcavity.TheCHANNELFUNCTIONALTESTmaybeperformedbyanyseriesofsequential,overlapping,ortotalchannelstepssothattheentirechannelistested.The7dayFrequencyisbasedonengineeringjudgmentandisconsideredadequateinviewofotherindicationsofrefuelinginterlocksandtheirassociatedinputstatusthatareavailabletounitoperationspersonnel.REFERENCES1.10CFR50,AppendixA,GDC26.2.FSAR,Section7.7.1.3.FSAR,Section15.4.1.1.4.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA-UNIT1B3.9-4Revision0 RefuelPositionOne-Rod-OutInterlockB3.9.2B3.9REFUELINGOPERATIONSB3.9.2RefuelPositionOne-Rod-OutInterlockBASESBACKGROUNDTherefuelpositionone-rod-outinterlockrestrictsthemovementofcontrolrodstoreinforceunitproceduresthatpreventthereactorfrombecomingcriticalduringrefuelingoperations.Duringrefuelingoperations,nomorethanonecontrolrodispermittedtobewithdrawn.GDC26of10CFR50,AppendixA,requiresthatoneofthetworequiredindependentreactivitycontrolsystemsbecapableofholdingthereactorcoresubcriticalundercoldconditions(Ref.1).Thecontrolrodsserveasthesystemcapableofmaintainingthereactorsubcriticalincoldconditions.Therefuelpositionone-rod-outinterlockpreventstheselectionofasecondcontrolrodformovementwhenanyothercontrolrodisnotfullyinserted(Ref.2).Itusestheall-rods-insignal(fromthecontrolrodfull-inpositionindicatorsdiscussedinLCO3.9.4,"ControlRodPositionIndication")andarodselectionsignal(fromtheReactorManualControlSystem).ThisSpecificationensuresthattherefuelpositionone-rod-outinterlockmeets*theassumptionsusedinthesafetyanalysisofReference3.APPLICABLESAFETYANALYSESTherefuelingpositionone-rod-outinterlockisexplicitlyassumedintheFSARanalysisforthecontrolrodwithdrawalerrorduringrefueling(Ref.3).Thisanalysisevaluatestheconsequencesofcontrolrodwithdrawalduringrefueling.Apromptreactivityexcursionduringrefuelingcouldpotentiallyresultinfuelfailurewithsubsequentreleaseofradioactivematerialtotheenvironment.Therefuelpositionone-rod-outinterlockandadequateSDM(LCO3.1.1,"SHUTDOWNMARGIN(SDM))"preventcriticalitybypreventingwithdrawalofmorethanonecontrolrod.With(continued)SUSQUEHANNA-UNIT1B3.9-5Revision0 RefuelPositionOne-Rod-OutInterlockB3.9.2BASES.APPLICABLESAFETYANALYSES(continued)onecontrolrodwithdrawn,thecorewillremainsubcritical.therebypreventinganypromptcriticalexcursion.Therefuelpositionone-rod-outinterlocksatisfiesCriterion3oftheNRCPolicyStatement.(Ref.4)LCOTopreventcriticalityduringMODE5,therefuelpositionone-rod-outinterlockensuresnomorethanonecontrolrodmaybewithdrawn..Therefuelpositionone-rod-outinterlockisrequiredtobeOPERABLEandthereactormodeswitchmustbelockedintherefuelpositiontosupporttheOPERABILITYofthisinterlock.APPLICABILITY.InMODE5,withthereactormodeswitchintherefuelposition,theOPERABLErefuelpositionone-rod-outinterlockprovidesprotectionagai'nstpromptreactivityexcursions.InMODES1,2,3.-and4,the.refuelpositionone-rod-outinterlockisnotrequiredtobeOPERABLEandisbypassed.'InMODES1and2;theReactorProtectionSystem(LCO3.3.1.1)andthecontrolrods(LCO3.1.3)providemitigationofpotentialreactivityexcursions.InMODES3and4,withthereactormodeswitchintheshutdownposition,acontrolrodblock(LCO3.3.2.1)ensuresallcontrolrodsareinserted(exceptaspermittedbyLCO3.10.3andLCO3.10.4).therebypreventingcriticalityduringshutdownconditions.CACTIONSA.landA.2Withtherefuelingpositionone-rod-outinterlockinoperable,therefuelinginterlocksmaynotbecapableofpreventingmorethanonecontrolrodfrombeingwithdrawn.Thisconditionmayleadtocriticality.Controlrodwithdrawalmustbeimmediatelysuspended,andactionmustbeimmediatelyinitiatedtofullyinsertallinsertablecontrolrodsincorecellscontainingoneormore(continued)SUSQUEHANNA-UNIT183.9-6Revision0 RefuelPositionOne-Rod-OutInterlockB3.9.2BASESACTIONSA.1andA.2(continued)fuelassemblies.Actionmustcontinueuntilallsuchcontrolrodsarefullyinserted.Controlrodsincorecellscontainingnofuelassembliesdonotaffectthereactivityofthecoreand,therefore,donothavetobeinserted.SURVEILLANCEREQUIREMENTSSR3.9.2.1Properfunctioningoftherefuelingpositionone-rod-outinterlockrequiresthereactormodeswitchtobeinRefuel.DuringcontrolrodwithdrawalinMODE5,improperpositioningofthereactormodeswitchcould,insomeinstances,allowimproperbypassingofrequiredinterlocks.Therefore,thisSurveillanceimposesanadditionallevelofassurancethattherefuelingpositionone-rod-outinterlockwi11beOPERABLEwhenrequired.By"locking"thereactormodeswitchintheproperposition(i.e.,removingthereactormodeswitchkey'fromtheconsolewhilethereactormodeswitchispositionedinrefuel),anadditionaladministrativecontrolisinplacetoprecludeoperatorerrorsfromresultinginunanalyzedoperation.TheFrequencyof12hoursissufficientinviewofotheradministrativecontrolsutilizedduringrefuelingoperationstoensuresafeoperation.SR3.9.2.2PerformanceofaCHANNELFUNCTIONALTESTdemonstratestheassociatedrefuelpositionone-rod-outinterlockwillfunctionproperlywhenasimulatedoractualsignalindicativeofarequiredconditionisinjectedintothelogic.TheCHANNELFUNCTIONALTESTmaybeperformedbyanyseriesofsequential,overlapping,ortotalchannelstepssothattheentirechannelistested.The7dayFrequencyisconsideredadequatebecauseofdemonstratedcircuitreliability,proceduralcontrolsoncontrolrodwithdrawals,andvisualandaudibleindicationsavailableinthecontrolroomtoalerttheoperatortocontrolrodsnotfullyinserted.Toperformtherequiredtesting,theapplicableconditionmustbeentered(i.e.,acontrolrodmust(continued)SUSQUEHANNA-UNIT183.9-7Revision0 RefuelPositionOne-Rod-OutInterlock83.9.2BASESSURVEILLANCEREQUIREHENTSSR3.9.2.2(continued)bewithdrawnfromitsfull-inposition).Therefore,SR3.9.2.2hasbeenmodifiedbyaNotethatstatestheCHANNELFUNCTIONALTESTisnotrequiredtobeperformeduntil1hourafteranycontrolrodiswithdrawn.TheintentofthisallowanceisthatSR3.9.2.2beperformedinconjunctionwiththewithdrawalofthefirstcontrolrod.REFERENCES1.'0CFR50,AppendixA,GDC26.2.FSAR,Section7.7.1.3.FSAR,Section15.4.1.1.4.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA-UNIT183.9-8Revision0 ControlRodPositionB3.9.3B3.9REFUELINGOPERATIONSB3.9.3ControlRodPositionBASESBACKGROUNDControlrodsprovidethecapabilitytomaintainthereactorsubcriticalunderallconditionsandtolimitthepotentialamountandrateofreactivityincreasecausedbyamalfunctionintheControlRodDriveSystem.Duringrefueling,movementofcontrolrodsislimitedbytherefuelinginterlocks(LCO3.9.1andLCO3.9.2)orthecontrolrodblockwiththereactormodeswitchintheshutdownposition(LCO3.3.2.1).GDC26of10CFR50,AppendixA,requiresthatoneofthetworequiredindependentreactivitycontrolsystemsbecapableofholdingthereactorcoresubcriticalundercoldconditions(Ref.1).Thecontrolrodsserveasthesystemcapableofmaintainingthereactorsubcriticalincoldconditions.Therefuelinginterlocksallowasinglecontrolrodtobewithdrawnatanytimeunless.fuelisbeingloadedintothecore.Toprecludeloadingfuelassembliesintothecorewithacontr'olrodwithdrawn,allcontrolrodsmustbefullyinserted.Thispreventsthereactorfromachievingcriticalityduringrefuelingoperations.APPLICABLESAFETYANALYSESPreventionandmitigationofpromptreactivityexcursionsduringrefuelingareprovidedbytherefuelinginterlocks(LCO3.9.1andLCO3.9.2).theSDM(LCO3.1.1),theintermediaterangemonitorneutronfluxscram(LCO3.3.1.1),theaveragepowerrangemonitorneutronfluxscram(LCO3.3:1.1),andthecontrolrodblockinstrumentation(LCO3.3.2.1).ThesafetyanalysisforthecontrolrodwithdrawalerrorduringrefuelingintheFSAR(Ref.2)assumesthefunctioningoftherefuelinginterlocksandadequateSDM.Theanalysisforthefuelloadingduringrefueling(Ref.2)assumesthecontrolrodforthecellbeingloadedisfullyinserted.Thus.priortofuelreload,allcontrolrodsmustbefullyinsertedtominimizetheprobabilityofaninadvertentcriticality.(continued)SUSQUEHANNA-UNIT1B3.9-9Revision0 ControlRodPositionB3.9.3BASESAPPLICABLEControlrodpositionsatisfiesCriterion3oftheNRCPolicySAFETYANALYSESStatement(Ref.3).(continued)LCOAllcontrolrodsmustbefullyinsertedduringapplicablerefuelingconditionstominimizetheprobabilityofaninadvertentcriticalityduringrefueling.APPLICABILITYDuringMODE5,loadingfuelintocorecellswithcontrolrodswithdrawnmayresultininadvertentcriticality.Therefore,thecontrolrodsmustbeinsertedbeforeloadingfuelintoacorecell.Allcontrolrodsmustbeinsertedbeforeloadingfueltoensurethatafuelloadingerrordoesnotresultinloadingfuelintoacorecellwiththecontrolrodwithdrawn.InMODES1.2.3,and4,thereactorpressurevesselheadison,andnofuelloadingactivitiesarepossible.Therefore,thisSpecification-isnotapplicableintheseMODES.ACTIONSA.1Withallcontrolrodsnotfullyinsertedduringtheapplicableconditions,aninadvertentcriticalitycouldoccurthatisnotanalyzedintheFSAR.Allfuelloadingoperationsmustbeimmediatelysuspended.Suspensionoftheseactivitiesshallnotprecludecompletionofmovementofacomponenttoasafeposition.SURVEILLANCEREQUIREMENTSSR3.9.3.1Duringrefueling,toensurethatthereactorremainssubcritical,allcontrolrodsmustbefullyinsertedpriortoandduringfuelloading.Periodicchecksofthecontrolrodpositionensurethisconditionismaintained.(continued)SUSQUEHANNA-UNIT183.9-10Revision0 ControlRodPositionB3.9.3BASESSURVEILLANCEREQUIREMENTSSR3.9.3.1(continued)The12hourFrequencytakesintoconsiderationtheproceduralcontrolsoncontrolrodmovementduringrefuelingaswellastheredundantfunctionsoftherefuelinginterlocks.REFERENCES1.10CFR50,AppendixA,GDC26.2.FSAR,Section15.4.1.1.3.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA-UNIT183.9-11Revision0 ControlRodPositionIndicationB3.9.4B3.9REFUELINGOPERATIONSB3.9.4ControlRodPositionIndicationBASESBACKGROUNDThefull-inpositionindicationchannelforeachcontrolrodprovidesnecessaryinformationtotherefuelinginterlockstopreventinadvertentcriticalitiesduringrefuelingoperations.Duringrefueling,therefuelinginterlocks(LCO3.9.1andLCO3.9.2)usethefull-inpositionindicationchanneltolimittheoperationoftherefuelingequipmentandthemovementofthecontrolrods.Theabsenceofthefull-inpositionchannelsignalforanycontrolrodremovestheall-rods-inpermissivefortherefuelingequipmentinterlocksandpreventsfuelloading.Also,thisconditioncausestherefuelpositionone-rod-outinterlocktonotallowthewithdrawalofanyothercontrolrod.GDC26of10CFR50,AppendixA,requiresthatoneofthetworequiredindependentreactivitycontrolsystemsbecapableofholdingthereactorcoresubcriticalundercoldconditions(Ref.1).Thecontrolrodsserveasthesystemcapableofmaintainingthereactorsubcriticalincoldconditions.APPLICABLESAFETYANALYSES.,Preventionandmitigationofpromptreactivityexcursionsduringrefuelingareprovidedbytherefuelinginterlocks(LCO.3.9.1andLCO3.9.2),theSDH(LCO3.1.1).theintermediaterangemonitorneutronfluxscram(LCO3.3.1.1).andthecontrolrodblockinstrumentation(LCO3.3.2.1).Thesafetyanalysisforthecontrolrodwithdrawalerrorduringrefueling(Ref.2)assumesthefunctioningoftherefuelinginterlocksandadequateSDH.Theanalysisforfuelloadingduringrefueling(Ref.2)assumesthecontrolrodforthecellbeingloadedisfullyinserted.Thefull-inpositionindicationchannelisrequiredtobeOPERABLEsothattherefuelinginterlockscanensurethatfuelcannotbeloadedwithanycontrolrodwithdrawnandthatnomorethanonecontrolrodcanbewithdrawnatatime.ControlrodpositionindicationsatisfiesCriterion3oftheNRCPolicyStatement.(Ref.3)SUSQUEHANNA-UNIT1B3.9-12(continued)Revision0 ControlRodPositionIndicationB3.9.4BASES(continued)LCOEachcontrolrodfull-inpositionindicationchannelmustbeOPERABLEtoprovidetherequiredinputtotherefuelinginterlocks.AchannelisOPERABLEifitprovidescorrectpositionindicationtotherefuelinginterlocklogic.APPLICABILITYDuringMODE5,thecontrolrodsmusthaveOPERABLEfull-inpositionindicationchannelstoensuretheapplicablerefuelinginterlockswillbeOPERABLE.InMODES1and2;requirementsforcontrolrodpositionarespecifiedinLCO3.1.3,"ControlRodOPERABILITY."InMODES3and4,withthereactormodeswitchintheshutdownposition,acontrolrodblock(LCO3.3.2.1)ensuresallcontrolrodsareinserted(exceptaspermittedbyLCO3.10.3andLCO3.10:4),therebypreventingcriticalityduringshutdownconditions.ACTIONSANotehasbeenprovidedtomodifytheACTIONSrelatedtocontrolrodpositionindicationchannels.Section1.3,CompletionTimes,specifiesthatonceaConditionhasbeenentered.subsequentdivisions,subsystems,components,orvariablesexpressedintheCondition,discoveredtobeinoperableornotwithinlimits,willnotresultinseparate:entryintotheCondition.Section1.3alsospecifiesthatRequiredActionsoftheConditioncontinuetoapplyforeach=additionalfailure,withCompletionTimesbasedoninitialentryintotheCondition.However,theRequiredActionsforinoperablecontrolrodpositionindicationchannelsprovideappropriatecompensatorymeasuresforseparateinoperablechannels.Assuch,thisNotehasbeenprovided.whichallowsseparateConditionentryforeachinoperablerequiredcontrolrodpositionindicationchannel.A.1.1A.1.2A.1.3A.2.1andA.2.2Withoneormorerequiredfull-inpositionindicationchannelsinoperable,compensatingactionsmustbetakentoprotectagainstpotentialreactivityexcursionsfromfuelassemblyinsertionsorcontrolrodwithdrawals.Thismaybeaccomplishedbyimmediatelysuspendingin-vesselfuelmovementandcontrolrodwithdrawal,andimmediately(continued)SUSQUEHANNA-UNIT1B3.9-13Revision0 ControlRodPositionIndicationB3.9.4BASESACTIONSA.1.1A.1.2A.1.3A.2.1andA.2.2(continued)initiatingactiontofullyinsertallinsertablecontrolrodsincorecellscontainingoneormorefuelassemblies.Actionsmustcontinueuntilallinsertablecontrolrodsincorecellscontainingoneormorefuelassembliesarefullyinserted.Suspens'ionofin-vesselfuelmovementsandcontrolrodwithdrawalshallnotprecludemovingacomponenttoasafeposition.Alternatively,actionsmustbeimmediatelyinitiatedtofullyinsertthe.controlrod(s)associatedwiththeinoperablefull-inpositionindicator(s)anddisarmthedrive(s)toensurethatthecontrolrodisnotwithdrawn.Actionsmustcontinueuntilallassociatedcontrolrodsarefullyinsertedanddrivesaredisarmed.Undertheseconditions(controlrodfullyinsertedanddisarmed),aninoperablefull-inchannelmaybebypassedtoallowrefuelingoperationstoproceed.Analternatemethodmustbeusedtoensurethecontrolrodisfullyinserted(e.g.,usethe"00"notchpositionindication).SURVEILLANCEREQUIREMENTSSR3.9.4.1Thefull-inpositionindicationchannelsprovideinputtotheone-rod-outinterlockandotherrefuelinginterlocksthatrequireanall-rods-inpermissive.Theinterlocksareactuatedwhenthefull-inpositionindicationforanycontrolrodisnotpresent.sincethisindicatesthatallrodsarenotfullyinserted.Therefore,testingofthefull-inpositionindicationchannelsisperformedtoensurethatwhenacontrolrodiswithdrawn,thefull-inpositionindicationisnotpresent.Thefull-inpositionindicationchannelisconsideredinoperableevenwiththecontrolrodfullyinserted,ifitwouldcontinuetoindicatefull-inwiththecontrolrodwithdrawn.PerformingtheSReachtimeacontrolrodiswithdrawnisconsideredadequatebecauseoftheproceduralcontrolsoncontrolrodwithdrawalsandthevisualandaudibleindicationsavailableinthecontrolroomtoalerttheoperatortocontrolrodsnotfullyinserted.SUSQUEHANNA-UNIT1B3.9-14(continued)Revision0 ControlRodPositionIndicationB3.9.4BASES(continued)REFERENCES1.10CFR50,AppendixA,GDC26.2.FSAR,Section15.4.1.1.3.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA-UNIT183.9-15Revision0 ControlRodOPERABILITY-RefuelingB3.9.5B3.9REFUELINGOPERATIONSB3.9.5ControlRodOPERABILITY-RefuelingBASESBACKGROUNDControlrodsarecomponentsoftheControlRodDrive(CRD)System,theprimaryreactivitycontrolsystemforthereactor.Inconjunctionwith'heReactorProtectionSystem.theCRDSystemprovidesthemeansforthereliablecontrolofreactivitychangesduringrefuelingoperation.Inaddition,thecontrolrodsprovidethecapabilitytomaintainthereactorsubcriticalunderallconditionsandtolimitthepotentialamountandrateofreactivityincreasecausedbyamalfunctionintheCRDSystem.GDC26of10CFR50,AppendixA,requiresthatoneofthetworequiredindependentreactivitycontrolsystemsbecapableofholdingthereactorcoresubcriticalundercoldconditions(Ref.1).TheCRDSystemisthesystemcapableofmaintainingthereactorsubcriticalincoldconditions.APPLICABLESAFETYANALYSESPreventionandmitigationofpromptreactivityexcursionsduringrefueling'areprovidedbyrefuelinginterlocks(LCO3.9.1andLCO3.9.2),theSDH(LCO3.1.1),theintermediaterangemonitorneutronfluxscram(LCO3.3.1.1),andthecontrolrodblockinstrumentation(LCO3.3.2.1).Thesafetyanalysesforthecontrolrodwithdrawalerrorduringrefueling(Ref.2)assumesthefunctioningoftherefuelinginterlocksandadequateSDN.Theanalysisforfuelloadingduringrefueling(Ref.2)assumesthatthecontrolrodforthecellbeingloadedisfullyinserted.Apromptreactivityexcursionduringrefuelingcouldpotentiallyresultinfuelfailurewithsubsequentreleaseofradioactivematerialtotheenvironment.Controlrodscramprovidesprotectionshouldapromptreactivityexcursionoccur.ControlrodOPERABILITYduringrefuelingsatisfiesCriterion3oftheNRCPolicyStatement(Ref.3).USQUEHANNA-UNIT1B3.9-16(continued)Revision0 ControlRodOPERABILITY-RefuelingB3.9.5BASES(continued)LCOEachwithdrawncontrolrodmustbeOPERABLE.ThewithdrawncontrolrodisconsideredOPERABLEifthescramaccumulatorressureis>940psigandthecontrolrodiscapableofeingautomaticallyinserteduponreceiptofascramsignal.Insertedcontrolrodshavealreadycompletedtheirreactivitycontrolfunction,andthereforearenotrequiredtobeOPERABLE.APPLICABILITYDuringMODE5,withdrawncontrolrodsmustbeOPERABLEtoensurethatina-scramthecontrolrodswillinsertandprovidetherequirednegativereactivitytomaintainthereactorsubcritical.ForHODES1and2,controlrodrequirementsarefoundinLCO3.1.2,"ReactivityAnomalies,"LCO3.1.3,"ControlRodOPERABILITY."LCO3.1.4,"ControlRodScramTimes,"andLCO3.1.5,"ControlRodScramAccumulators."DuringMODES3and4,controlrodsarenotabletobewithdrawn(exceptaspermittedbyLCO3.10andLCO3.10.4)since.=thereactormodeswitchisinshutdownandacontrolrod:blockis-.applied.ThisprovidesadequaterequirementsforcontrolrodOPERABILITYduringtheseconditions..'CTIONS-;A.1Withoneormorewithdrawncontrolrods-inoperable,actionmustbeimmediatelyinitiatedtofullyinsert-the.=inoperable.controlrod(s).Insertingthecontrolrod(s)ensures-the=shutdownandscramcapabilitiesarenotadverselyaffected.Actionsmustcontinueuntiltheinoperablecontrolrod(s..)isfullyinserted.SURVEILLANCEREQUIREMENTSSR3.9.5.1andSR3.9.5.2DuringMODE5,theOPERABILITYofcontrolrodsisprimarilyrequiredtoensureawithdrawncontrolrodwillautomaticallyinsertifasignalrequiringareactorshutdownoccurs.Becausenoexplicitanalysisexistsforautomaticshutdownduringrefueling,theshutdownfunctionissatisfiedifthewithdrawncontrolrodiscapableof(continued)USQUEHANNA-UNIT1B3.9-17Revision0 ControlRodOPERABILITY-RefuelingB3.9.5BASESSURVEILLANCEREQUIREMENTSSR3.9.5.1andSR3.9.5.2(continued)automaticinsertionandtheassociatedCRDscramaccumulatorpressureis~940psig.The7dayFrequencytakesintoconsiderationequipmentreliability,proceduralcontrolsoverthescramaccumulators,andcontrolroomalarmsandindicatinglightsthatindicatelowaccumulatorchargepressures.SR3.9.5.1ismodifiedbyaNotethatallows7daysafterwithdrawalofthecontrolrodtoperformtheSurveillance.ThisacknowledgesthatthecontrolrodmustfirstbewithdrawnbeforeperformanceoftheSurveillance,andthereforeavoidspotentialconflictswithSR3.0.3andSR3.0.4.REFERENCES1.10CFR50,AppendixA,GDC26.2.FSAR,Section15.4.1.1.3.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).USQUEHANNA-UNIT1B3.9-18Revision0 RPVWaterLevelB3.9.6B3.9REFUELINGOPERATIONSB3.9.6ReactorPressureVessel(RPV)WaterLevelBASESBACKGROUNDThemovementoffuelassembliesorhandlingofcontrolrodswithintheRPVrequiresaminimumwaterlevelof22ftabovethetopoftheRPVflange.Duringrefueling,thismaintainsasufficientwaterlevelinthereactorvesselcavityandspentfuelpool.Sufficientwaterisnecessarytoretainiodinefissionproductactivityinthewaterintheeventofafuelhandlingaccident(Refs.1and2).Sufficientiodineactivitywouldberetainedtolimitoffsitedosesfromtheaccidentto~25Kof10CFR100limits,asprovidedbytheguidanceofReference3.APPLICABLESAFETYANALYSESDuringmovementoffuelassembliesorhandlingofcontrolrods,thewaterlevelintheRPVisaninitialconditiondesignparameterinthe'analysisofafuelhandlingaccidentincontainmentpostulatedbyRegulatoryGuide1.25(Ref.1).Adecontamination-factorof100(RegulatoryPositionC.l.gofRef.1)isusedintheaccidentanalysisforiodine.Thisrelatestotheassumptionthat99Kofthetotaliodinereleasedfromthepellettocladdinggapofallthedroppedfuelassemblyrodsisretainedbythewater.Thefuelpellettocladdinggapisassumedtocontain10Kofthetotalfuelrodiodineinventory(Ref.1).AnalysisofthefuelhandlingaccidentinsidecontainmentisdescribedinReference2.Withanassumedminimumwaterlevelof21ftandaminimumdecaytimeof24hourspriortofuelhandling,theanalysisandtestprogramsdemonstratethattheiodinereleaseduetoapostulatedfuelhandlingaccidentisadequatelycapturedbythewaterandthatoffsitedosesaremaintainedwithinallowablelimits(Ref.2).Whiletheworstcaseassumptionsincludethedroppingoftheirradiatedfuelassemblybeinghandledontothereactorcore,thepossibilityexistsofthedroppedassemblystrikingtheRPV'flangeandreleasingfissionproducts.Therefore,theminimumdepthforwatercoveragetoensure(continued)SUSQUEHANNA-UNIT1B3.9-19Revision0 RPVWaterLevelB3.9.6BASESAPPLICABLESAFETYANALYSES(continued)acceptableradiologicalconsequencesisspecifiedfromtheRPVflange.Sincetheworstcaseeventresultsinfailedfuelassembliesseatedinthecore,aswellasthedroppedassembly,droppinganassemblyontheRPVflangewillresultinreducedreleasesoffissiongases.RPVwaterlevelsatisfiesCriterion2oftheNRCPolicyStatement(Ref.5).LCOA'minimumwaterlevelof22ftabovethetopoftheRPVflangeisrequiredtoensurethattheradiologicalconsequencesofapostulatedfuelhandlingaccidentarewithinacceptablelimits,asprovidedbytheguidanceofReference3.APPLICABILITYLCO3.9.6isapplicablewhenmovingfuelassembliesorhandlingcontrolrods(i'.e.,movementwithotherthanthenormalcontrolroddrive)withintheRPV.TheLCOminimizesthepossibilityof-afuelhandlingaccidentincontainmentthatisbeyondtheassumptionsofthesafetyanalysis.RequirementsforfuelhandlingaccidentsinthespentfuelstoragepoolarecoveredbyLCO3.7.7."SpentFuelStoragePoolWaterLevel."ACTIONSA.1Ifthewaterlevelis(22ftabovethetopoftheRPVflange,alloperationsinvolvingmovementoffuelassembliesandhandlingcontrolrodswithintheRPVshallbesuspendedimmediatelytoensurethatafuelhandlingaccidentcannotoccur.Thesuspensionof'uelmovementandhandlingcontrolrodsshallnotprecludecompletionofmovementofacomponenttoasafeposition.SURVEILLANCEREQUIREMENTSSR3.9.6.1Verificationofaminimumwaterlevelof22ftabovethetopoftheRPVflangeensuresthatthedesignbasisf'rthe(continued)SUSQUEHANNA-UNIT1B3.9-20Revision0 0

RPVWaterLevel83.9.6BASESSURVEILLANCEREQUIREMENTS(continued)postulatedfuelhandlingaccidentanalysisduringrefuelingoperationsismet.Waterattherequiredlevellimitstheconsequencesofdamagedfuelrods.whicharepostulatedtoresultfromafuelhandlingaccidentincontainment(Ref.2).TheFrequencyof24hoursisbasedonengineeringjudgmentandisconsideredadequateinviewofthelargevolumeofwaterandthenormalproceduralcontrolsonvalvepositions,whichmakesignificantunplannedlevelchangesunlikely.REFERENCES1.RegulatoryGuide1.25,March23,1972.2.FSAR,Section15.7.4.3.NUREG-0800,Section15.7.4.4.10CFR100.11.5.FinalPolicyStatement-onTechnicalSpecificationsImprovements;-July.2Z..1993.(58FR39132).SUSQUEHANNA-UNIT1B3.9-21Revision0 RHR-HighWaterLevelB3.9.7B3.9REFUELINGOPERATIONS83.9.7ResidualHeatRemoval(RHR)-HighWaterLevelBASESBACKGROUNDThepurposeoftheRHRSysteminMODE5istoremovedecayheatandsensibleheatfromthereactorcoolant,asrequiredbyGDC34.EachofthetwoshutdowncoolingloopsoftheRHRSystemcanprovidetherequireddecayheatremoval.Eachloopconsistsoftwomotordrivenpumps,aheatexchanger,andassociatedpipingandvalves.Bothloopshaveacommonsuctionfromthesamerecirculationloop.Eachpumpdischargesthereactorcoolant.afterithasbeencooledbycirculationthroughtherespectiveheatexchangers.tothereactorviathelowpressurecoolantinjectionpath.TheRHRheatexchangerstransferheattotheRHRServiceWaterSystem.TheRHRshutdowncoolingmodeismanuallycontrolled.InadditiontotheRHRsubsystems,thevolumeofwaterabovethereactorpressurevessel(RPV)flangeprovidesaheatsinkfordecayheatremoval.APPLICABLESAFETYANALYSESWiththeunitinMODE5,withRPVwaterlevel~22feetabovetheRPVFlange.theRHRSystemisnotrequiredtomitigateanyeventsoraccidentsevaluatedinthesafetyanalyses.TheRHRSystemisrequiredforremovingdecayheattomaintainthetemperatureofthereactorcoolant.AlthoughtheRHRSystemshutdowncoolingrequirementsdonotmeetaspecificcriterionoftheNRCPolicyStatement(Ref.1),itwasidentifiedintheNRCPolicyStatementasanimportantcontributortoriskreduction.Therefore,theRHRSystemisretainedasaSpecification.LCOOnlyoneRHRshutdowncoolingsubsystemisrequiredtobeOPERABLEandinoperationinMODE5withirradiatedfuelintheRPVandthewaterlevel~22ftabovetheRPVflange.OnlyonesubsystemisrequiredbecausethevolumeofwaterabovetheRPVflangeprovidesbackupdecayheatremovalcapability.(continued)SUSQUEHANNA-UNIT183.9-22Revision0 RHR-HighWaterLevelB3.9.7BASESLCO(continued)AnOPERABLERHRshutdowncoolingsubsystemconsistsofanRHRpumpwithanassociatedRHRSWpump,aheatexchanger.valves,piping,.instruments,andcontrolstoensurethecorrespondingflowpathsareOPERABLE.InMODE5,theRHRcrosstievalvesarenotrequiredtobeclosed;thus,thevalvemaybeopenedtoallowpumpsinonelooptodischargethroughtheoppositeloop'sinjectionflowpathtomakeacompletesubsystem.Additionally,eachRHRshutdowncoolingsubsystemisconsideredOPERABLEifitcanbemanuallyaligned(remoteorlocal)intheshutdowncoolingmodeforremovalof'ecayheat.Operation(eithercontinuousorintermittent)ofonesubsystemcanmaintainandreducethereactorcoolanttemperatureasrequired.However,toensureadequatecoreflowtoallowforaccurateaveragereactorcoolanttemperaturemonitoring,nearlycontinuousoperationisrequired.ANoteisprovidedtoallowa2hourexceptiontoshutdowntheoperatingsubsystemevery8hours.APPLICABILITYUOneRHRshutdowncoolingsubsystemmustbeOPERABLEandinoperationinMODE5,withirradiatedfuelinthereactorpressurevessel.andwiththewaterlevel>22feetabovethetopoftheRPVflange,toprovidedecayheatremoval.RHRSystemrequirementsinotherMODESarecoveredbyLCOsinSection3.4.ReactorCoolantSystem(RCS);Section3.5,EmergencyCoreCoolingSystems(ECCS)andReactorCoreIsolationCooling(RCIC)System;andSection3.6.ContainmentSystems.RHRShutdownCoolingSystemrequirementsinMODE5withirradiatedfuelinthereactorpressurevesselandwiththewaterlevel(22ftabovetheRPVflangearegiveninLCO3.9.8.ACTIONSA.lWithnoRHRshutdowncoolingsubsystemOPERABLE,analternatemethodofdecayheatremovalmustbeverifiedavailablewithin1hour.Inthis'condition,thevolumeofwaterabovetheRPVflangeprovidesadequatecapabilitytoremovedecayheatfromthereactorcore.However,theoverallreliabilityisreducedbecauselossofwaterlevel(continued)SUSQUEHANNA-UNIT1B3.9-23Revision0 RHR-HighWaterLevelB3.9.7BASESACTIONSA.1(continued)couldresultinreduceddecayheatremovalcapability.The1hourCompletionTimeisbasedondecayheatremovalfunctionandtheprobabilityofalossoftheavailabledecayheatremovalcapabilities.Furthermore,verificationofthefunctionalavailabilityofthesealternatemethod(s)mustbereconfirmedevery24hoursthereafter.Thiswillensurecontinuedheatremovalcapability.Alternatedecayheatremovalmethodsareavailabletotheoperatorsforreviewandpreplanningintheunit'sOperatingProcedures.Forexample,thismayincludetheuseoftheReactorWaterCleanupSystem.operatingwiththeregenerativeheatexchangerbypassed.Themethodusedtoremovethedecayheatshouldbethemostprudentchoicebasedonunitconditions.B.lB.2B.3and8.4IfnoRHRshutdowncoolingsubsystemisOPERABLEandanalternatemethodefdecayheatremovalisnotavailableinaccordancewithRequiredActionA.1,actionsshallbetakenimmediatelyter.suspendoperationsinvolvinganincreaseinreactordecayheatloadbysuspendingloadingofirradiatedfuelassembliesintotheRPV.Additionalactionsarerequiredtominimizeanypotentialfissionproductreleasetotheenvironment.ThisincludesensuringsecondarycontainmentisOPERABLE;onestandbygastreatmentsubsystemisOPERABLE;andsecondarycontainmentisolationcapability(i.e.,onesecondarycontainmentisolationvalveandassociatedinstrumentationareOPERABLEorotheracceptableadministrativecontrolstoassureisolationcapability)ineachsecondarycontainmentpenetrationnotisolatedandrequiredtobeisolatedtomitigateradioactivereleases.Thismaybeperformedasanadministrativecheck,byexamininglogsorotherinformationtodeterminewhetherthecomponentsareoutofserviceformaintenanceorotherreasons.ItisnotnecessarytoperformtheSurveillancesneededtodemonstratetheOPERABILITYofthecomponents.If,however,anyrequiredcomponentisinoperable,thenitmustberestoredtoOPERABLEstatus.Inthiscase,asurveillancemayneedto(continued)SUSQUEHANNA-UNIT183.9-24Revision0 RHR-HighWaterLevelB3.9.7BASESACTIONSB.1B.2B.3andB.4(continued)beperformedtorestorethecomponenttoOPERABLEstatus.ActionsmustcontinueuntilallrequiredcomponentsareOPERABLE.C.landC.2IfnoRHRShutdownCoolingSystemisinoperation,analternatemethodofcoolantcirculationisrequiredtobeestablishedwithin1hour.Thisalternatemethodmayuseforcedornaturalcirculation.TheCompletionTimeismodifiedsuchthatthe1hourisapplicableseparatelyforeachoccurrenceinvolvingalossofcoolantcirculation.Duringtheperiodwhenthereactorcoolantisbeingcirculatedbyanalternatemethod(otherthanbytherequiredRHRShutdownCoolingSystem),thereactorcoolanttemperaturemustbeperiodicallymonitoredtoensureproperfunctioningofthea')ter'natemethod.TheonceperhourCompletion'Timeisdeemedappropriate.SURVEILLANCEREQUIREMENTSSR3.9.7.1ThisSurveillancedemonstratesthattheRHRsubsystemisinoperationandcirculatingreactorcoolant.Therequiredflowrateisdeterminedbytheflowratenecessarytoprovidesufficientdecayheatremovalcapability.TheFrequencyof12hoursissufficientinviewofothervisualandaudibleindicationsavailabletotheoperatorformonitoringtheRHRsubsysteminthecontrolroom.REFERENCE1.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA-UNIT1B3.9-25Revision0 RHR-LowWaterLevelB3.9.8B3.9REFUELINGOPERATIONSB3.9.8ResidualHeatRemoval(RHR)-LowWaterLevelBASESBACKGROUNDThepurposeoftheRHRSysteminMODE5istoremovedecayheatandsensibleheatfromthereactorcoolant,asrequiredbyGDC34.EachofthetwoshutdowncoolingloopsoftheRHRSystemcanprovidetherequireddecayheatremoval.Eachloopconsistsoftwomotordrivenpumps,aheatexchanger,andassociatedpipingandvalves.Bothloopshdveacommonsuctionfromthesamerecirculationloop.Eachpumpdischargesthereactorcoolant,afterithasbeencooledbycirculationthroughtherespectiveheatexchangers,tothereactorviathelowpressurecoolantinjectionpath.TheRHRheatexchangerstransferheattotheRHRServiceWaterSystem.TheRHRshutdowncoolingmodeismanuallycontrolled.APPLICABLESAFETYANALYSESWiththeunitinMODE5,theRHRSystemisnotrequiredtomitigateanyeventsoraccidentsevaluatedinthesafetyanalyses.TheRHRSystemisrequiredforremovingdecayheattomaintainthetemperatureofthereactorcoolant.AlthoughtheRHRSystemshutdowncoolingrequirementsdonotmeetaspecificcriterionoftheNRCPolicyStatement(Ref.1),itwasidentifiedintheNRCPolicyStatementasanimportantcontributortoriskreduction.Therefore,theRHRSystemisretainedasaSpecification.LCOInMODE5withirradiatedfuelinthereactorpressurevessel(RPV)andthewaterlevel<22ftabovethereactorpressurevessel(RPV)flange,twoRHRshutdowncoolingsubsystemsmustbeOPERABLE.AnOPERABLERHRshutdowncoolingsubsystemconsistsofanRHRpumpwithanassociatedRHRSWpump,aheatexchanger,valves.piping,instruments,andcontrolstoensurethecorrespondingflowpathsareOPERABLE.TomeettheLCO.bothpumpsinonelooporonepumpineachofthetwoloops(continued)SUSQUEHANNA-UNIT1B3.9-26Revision0 RHR-LowWaterLevelB3.9.8BASESLCO(continued)mustbeOPERABLE.Sincethepipingandheatexchangersarepassivecomponentsandassumednottofail,theyareallowedtobecommontobothsubsystems.ForeachpumprequiredtobeOPERABLEontheprimary(RHR)side,anassociatedRHRSWpumpmustbeOPERABLEonthesecondarysidetotransportdecayheattotheUHS.Therefore,iftwoRHRpumps(andoneheatexchanger)inthesamelooparebeingusedtocomprisetwoshutdowncoolingsubsystems.thetwoRHRSWpumps(onefromUnit1andonefromUnit2)whicharecapableofservicingthesubjectheatexchangermustbeOPERABLE.InMODE5,theRHRcrosstievalvesarenotrequiredtobeclosed;thus,thevalvesmaybeopenedtoallowpumpsinonelooptodischargethroughtheoppositeloop'sinjectionflowpathtomakeacompletesubsystem.Additionally,eachRHRshutdowncoolingsubsystemisconsideredOPERABLEifitcanbemanuallyaligned(remoteorlocal)intheshutdowncoolingmodeforremovalofdecayheat.Operation(eithercontinuousorintermittent)ofonesubsystemcanmaintainandreducethereactorcoolanttemperatureasrequired.However,toensureadequatecoreflowtoallowfor-accurateaveragereactorcoolanttemperaturemonitoring,nearlycontinuousoperationisrequired.RNoteisprovidedtoallowa2hourexceptiontoshutdowntheoperatingsubsystemevery8hours.APPLICABILITYTwoRHRshutdowncoolingsubsystemsarerequiredtobeOPERABLE,andonemustbeinoperationinMODE5,withirradiatedfuelintheRPVandwiththewaterlevel(22ftabovethetopoftheRPVflange,toprovidedecayheatremoval.RHRSystemrequirementsinotherMODESarecoveredbyLCOsinSection3.4,ReactorCoolantSystem(RCS);Section3.5,EmergencyCoreCoolingSystems(ECCS)andReactorCoreIsolationCooling(RCIC)System;andSection3.6,ContainmentSystems.RHRShutdownCoolingSystemrequirementsinMODE5withirradiatedfuelintheRPVandwiththewaterlevel~22ftabovetheRPVflangearegiveninLCO3.9.7,"ResidualHeatRemoval(RHR)-HighWaterLevel."SUSQUEHANNA-UNIT1B3.9-27(continued)Revision0

RHR-LowWaterLevel83.9.8BASESACTIONSANotehasbeenprovidedtomodifytheACTIONSrelatedtoRHRshutdowncoolingsubsystems.Section1.3.CompletionTimes,specifiesonceaConditionhasbeenentered,subsequentdivisions,subsystems,componentsorvariablesexpressedintheCondition,discoveredtobeinoperableornotwithinlimits,willnotresultinseparateentryintotheCondition.Section1.3alsospecifiesRequiredActionsoftheConditioncontinuetoapplyforeachadditionalfailure.withCompletionTimesbasedoninitialentryintotheCondition.However,theRequiredActionsforinoperableshutdowncoolingsubsystemsprovideappropriatecompensatorymeasuresforseparateinoperableshutdowncoolingsubsystems.Assuch,aNotehasbeenprovidedthatallowsseparateConditionentryforeachinoperableRHRshutdowncoolingsubsystem.A.1WithoneofthetworequiredRHRshutdowncoolingsubsystemsinoperable,theremainingsubsystemiscapableofprovidingtherequireddecayheat'removal.However.theoverallreliabilityisreduced.Thereforeanalternatemethodofdecayheatremoval-mustbeverifiedavailable.WithbothrequiredRHRshutdowncoolingsubsystemsinoperable,analternatemethodofdecayheatremovalmustbeverifiedavailableinadditiontothatverifiedavailablefortheinitialRHRshutdowncoolingsubsysteminoperability.Thisre-establishesbackupdecayheatremovalcapabilities,similartotherequirementsoftheLCO.The1hourCompletionTimeisbasedonthedecayheatremovalfunctionandtheprobabilityofalossoftheavailabledecayheatremovalcapabilities.Furthermore,verificationofthefunctionalavailabilityofthisalternatemethod(s)mustbereconfirmedevery24hoursthereafter.Thiswillensurecontinuedheatremovalcapability.Alternatedecayheatremovalmethodsareavailabletotheoperatorsforreviewandpreplanningintheunit'sOperatingProcedures.Forexample,thismayincludetheuseoftheReactorWaterCleanupSystem,operatingwiththeregenerativeheatexchangerbypassed.Themethodusedtoremovedecayheatshouldbethemostprudentchoicebasedonunitconditions.(continued)SUSQUEHANNA-UNIT1B3.9-28Revision0 RHR-LowWaterLevelB3.9.8BASESACTIONS(continued)B.lB.2andB.3Withtherequireddecayheatremovalsubsystem(s)inoperableandtherequiredalternatemethod(s)ofdecayheatremovalnotavailableinaccordancewithRequiredActionA.1,additionalactionsarerequiredtominimizeanypotentialfissionproductreleasetotheenvironment.ThisincludesensuringsecondarycontainmentisOPERABLE;onestandbygastreatmentsubsystemisOPERABLE;andsecondarycontainmentisolationcapability(i.e.,onesecondarycontainmentisolationvalveandassociatedinstrumentationareOPERABLEorotheracceptableadministrativecontrolstoassureisolationcapability)ineachsecondarycontainmentpenetrationnotisolatedandrequiredtobeisolatedtomitigateradioactivereleases.Thismaybeperformedasanadministrativecheck,byexamininglogsorotherinformationtodeterminewhetherthecomponentsareoutofserviceformaintenanceorotherreasons.ItisnotnecessarytoperformtheSurveillancesneededtodemonstratetheOPERABILITYofthecomponents.If,however,anyrequiredcomponentisinoperable,'henitmustberestoredtoOPERABLEstatus.Inthiscase.thesurveillancemayneedtobeperformedtorestorethe.componenttoOPERABLEstatus.ActionsmustcontinueuntilallrequiredcomponentsareOPERABLE.C.1andC.2IfnoRHRsubsystemisinoperation,analternatemethodofcoolantcirculationisrequiredtobeestablishedwithin1hour.Thisalternatemethodmayuseforcedornaturalcirculation.TheCompletionTimeismodifiedsuchthatthe1hourisapplicableseparatelyforeachoccurrenceinvolvingalossofcoolantcirculation.Duringtheperiodwhenthereactorcoolantisbeingcirculatedbyanalternatemethod(otherthanbytherequiredRHRShutdownCoolingSystem),thereactorcoolanttemperaturemustbeperiodicallymonitoredtoensureproperfunctioningofthealternatemethod.TheonceperhourCompletionTimeisdeemedappropriate.SUSQUEHANNA-UNIT1B3.9-29(continued)Revision0 RHR-LowWaterLevelB3.9.8BASESSURVEILLANCEREQUIREMENTSSR3.9.8.1ThisSurveillancedemonstratesthatoneRHRshutdowncoolingsubsystemisinoperationandcirculatingreactorcoolant.Therequiredflowrateisdeterminedbytheflowratenecessarytoprovidesufficientdecayheatremovalcapability.TheFrequencyof12hoursissufficientinviewofothervisualandaudibleindicationsavailabletotheoperatorformonitoringtheRHRsubsystemsinthecontrolroom.REFERENCE1.FinalPolicyStatementonTechnicalSpecificationsImprovements,July22,1993(58FR39132).SUSQUEHANNA-UNIT1B3.9-30Revision0 InserviceLeakandHydrostaticTestingOperationB3.10.1B3.10SPECIALOPERATIONSB3.10.1InserviceLeakandHydrostaticTestingOperationBACKGROUNDThepurposeofthisSpecialOperationsLCOistoallowcertainreactorcoolantpressureteststobeperformedinNODE4withtemperaturesashighas212'Fwhenoperationalconditionsorthemetallurgicalcharacteiristicsofthereactorpressurevessel(RPV)requirethepressuretestingattemperatures)200'F(normallycorrespondingtoMODE3).InservicehydrostatictestingandsystemleakagepressuretestsrequiredbySectionXIoftheAmericanSocietyofHechanicalEngineers(ASHE)BoilerandPressureVesselCode(Ref.1)areperformedpriortothereactorgoingcriticalafterarefuelingoutage.RecirculationpumpoperationandawatersolidRPV(exceptforanairbubbleforpressurecontrol)areusedtoachievethenecessarytemperaturesandpressuresrequiredforthesetests.Theminimumtemperatures(attherequiredpressures)allowedforthesetestsaredeterminedfromtheRPVpressureandtemperature(P/T)limitsrequiredbyLCO3.4.10,"ReactorCoolantSystem(RCS)PressureandTemperature(P/T)Limits."Theselimitsareconservativelybasedonthefracturetoughnessofthereactorvessel,takingintoaccountanticipatedvesselneutronfluence.Withincreasedreactorvesselfluenceovertime,theminimumallowablevesseltemperatureincreasesatagivenpressure.PeriodicupdatestotheRPVP/Tlimitcurvesareperformedasnecessary,basedupontheresultsofanalysesofirradiatedsurveillancespecimensremovedfromthevessel.Hydrostaticandleaktestingmayeventuallyberequiredwithminimumreactorcoolanttemperatures)200'F.Thehydrostatictestrequiresincreasingpressureto1035(+10.-0)psig,becauseoftheexpectedincreaseinreactorvesselfluence,theminimumallowablevesseltemperatureaccordingtoLCO3.4.10isincreasedto160FforUnitl.ThehydrostatictestpressuredoesnotexceedtheSafetyLimitof1375psig.SUSQUEHANNA-UNIT1B3.10-1(continued)Revision0 InserviceLeakandHydrostaticTestingOperationB3.10.1BASES(continued)APPLICABLESAFETYANALYSESAllowingthereactortobeconsideredinMODE4duringhydrostaticorleaktesting,whenthereactorcoolanttemperatureis)200'Fbut~212'F,effectivelyprovidesanexceptiontoMODE3requirements,includingOPERABILITYofprimarycontainmentandthefullcomplementof'edundantEmergencyCoreCoolingSystems.Sincethehydrostaticorleaktestsareperformednearlywatersolid,atlowdecayheatvalues,andnearMODE4conditions,thestoredenergyinthereactorcorewillbeverylow.Undertheseconditions,thepotentialforfailedfuelandasubsequentincreaseincoolantactivityabovetheLCO3.4.7,"RCSSpecificActivity,"limitsareminimized.Inaddition,thesecondarycontainmentwillbeOPERABLE,inaccordancewiththisSpecialOperationsLCO,andwillbecapableofhandlinganyairborneradioactivityorsteamleaksthatcouldoccurduringtheperformanceofhydrostaticorleaktesting.TherequiredpressuretestingconditionsprovideadequateassurancethattheconsequencesofasteamleakwillbeconservativelyboundedbytheconsequencesofthepostulatedmainsteamlinebreakoutsideofprimarycontainmentdescribedinReference2.Therefore,theserequirementswillconservativelylimitradiationreleasestotheenvironment.Intheeventof.alargeprimarysystemleak,thereactorvesselwouldrapidlydepressurize,allowingthelowpressurecorecoolingsystemstooperate.Thecapabilityofthelowpressurecoolantinjectionandcorespraysubsystems,asrequiredinMODE4byLCO3.5.2."ECCS-Shutdown."wouldbemorethanadequatetokeepthecorefloodedunderthislowdecayheatloadcondition.Smallsystemleakswouldbedetectedbyleakageinspectionsbeforesignificantinventorylossoccurred.Forthepurposesofthistest.theprotectionprovidedbynormallyrequiredMODE4applicableLCOs,inadditiontothesecondarycontainmentrequirementsrequiredtobemetbythisSpecialOperationsLCO,willensureacceptableconsequencesduringnormalhydrostatictestconditionsandduringpostulatedaccidentconditions.AsdescribedinLCO3.0.7,compliancewithSpecialOperationsLCOsisoptional,andtherefore,nocriteriaof(continued)SUSQUEHANNA-UNIT1B3.10-2Revision0 InserviceLeakandHydrostaticTestingOperation83.10.1BASESAPPLICABLESAFETYANALYSES(continued)theNRCPolicyStatementapply.SpecialOperationsLCOsprovideflexibilitytoperformcertainoperationsbyappropriatelymodifyingrequirementsofotherLCOs.AdiscussionofthecriteriasatisfiedfortheotherLCOsisprovidedintheirrespectiveBases.LCOAsdescribedinLCO3.0.7,compliancewiththisSpecial'perationsLCOisoptional.Operationatreactorcoolanttemperatures)200'Fbut~212FcanbeinaccordancewithTable1.1-1forMODE3operationwithoutmeetingthisSpecialOperationsLCOoritsACTIONS.ThisoptionmayberequiredduetoplantconditionsorP/Tlimits,however,whichrequiretestingattemperatures)200F,whiletheASMEinservicetestitselfrequiresthesafety/reliefvalvestobegagged,preventingtheirOPERABILITY.IfitisdesiredtoperformthesetestswhilecomplyingwiththisSpecialOperationsLCO,thentheMODE4applicableLCOsandspecifiedLCOsmustbemet.ThisSpecialOperationsLCOallowschangingTable1.1-1temperaturelimitsforMODE4to"~212"andsuspendingtherequirementsofLCO3.4.9,"ResidualHeatRemoval(RHR)ShutdownCoolingSystem-ColdShutdown."TheadditionalrequirementsforsecondarycontainmentLCOstobemetwillprovidesufficientprotectionforoperationsatreactorcoolanttemperatures)200'Fforthepurposeofperformingeitheraninserviceleakorhydrostatictest.ThisLCOallowsprimarycontainmenttobeopenforfrequentunobstructedaccesstoperforminspections,andforoutageactivitiesonvarioussystemstocontinueconsistentwiththeMODE4applicablerequirementsthatareineffectimmediatelypriortoandimmediatelyafterthisoperation.APPLICABILITYTheMODE4requirementsmayonlybemodifiedfortheperformanceofinserviceleakorhydrostatictestssothattheseoperationscanbeconsideredasinMODE4,eventhoughthereactorcoolanttemperatureis)200F.TheadditionalrequirementforsecondarycontainmentOPERABILITYaccordingtotheimposedMODE3requirementsprovidesconservatismintheresponseoftheunittoanyeventthatmayoccur.OperationsinallotherMODESareunaffectedby.thisLCO.SUSQUEHANNA-UNIT1B3.10-3(continued)Revision0 InserviceLeakandHydrostaticTestingOperationB3.10.1BASES(continued)ACTIONSANotehasbeenprovidedtomodifytheACTIONSrelatedtoinserviceleakandhydrostatictestingoperation.Section1.3,CompletionTimes,specifiesthatonceaConditionhasbeenentered,subsequentdivisions,subsystems.components,.orvariablesexpressedintheConditiondiscoveredtobeinoperableornotwithinlimits,willnotresultinseparateentryintotheCondition.Section1.3alsospecifiesthatRequiredActionsoftheConditioncontinuetoapplyforeachadditionalfailure,withCompletionTimesbasedoninitialentryintotheCondition.However,theRequiredActionsforeachrequirementoftheLCOnotmetprovideappropriatecompensatorymeasuresforseparaterequirementsthatarenotmet.Assuch,aNotehasbeenprovidedthatallowsseparateConditionentryforeachrequirementoftheLCO.A:1IfanLCOspecifiedinLCO3.10.1isnotmet,theACTIONSapplicabletothestatedrequirementsareenteredimmediatelyandcompliedwith.RequiredActionA.1hasbeenmodifiedbyaNote"thatclarifiestheintentofanotherLCO'sRequiredActiontobeinNODE4includesreducingtheaveragereactorcoolanttemperatureto~200'F.A.2.1andA.2.2.RequiredActionA.2.1andRequiredActionA.2.2arealternateRequiredActionsthatcanbetakeninsteadofRequiredActionA.1torestorecompliancewiththenormalNODE4requirements.andtherebyexitthisSpecialOperationLCO'sApplicability.Activitiesthatcouldfurtherincreasereactorcoolanttemperatureorpressurearesuspendedimmediately,inaccordancewithRequiredActionA.2.1~andthereactorcoolanttemperatureisreducedtoestablishnormalNODE4requirements.Theallowed-CompletionTimeof24hoursforRequiredActionA.2.2isbasedonengineeringjudgmentandprovidessufficienttimetoreducetheaveragereactorcoolanttemperaturefromthehighestexpectedvaluetos200'Fwithnormalcooldownprocedures.TheCompletionTimeisalsoconsistentwiththetimeprovidedinLCO3.0.3toreachNODE4fromMODE3.SUSQUEHANNA-UNIT1B3.10-4(continued)Revision0 InserviceLeakandHydrostaticTestingOperationB3.10.1BASES(continued)SURVEILLANCEREQUIREMENTSSR3.10.1.1TheLCOsmadeapplicablearerequiredtohavetheirSuryeillancesmettoestablishthatthisLCOisbeingmet.AdiscussionoftheapplicableSRsisprovidedintheirrespectiveBases.REFERENCESl.AmericanSocietyofMechanicalEngineers.BoilerandPressureVesselCode,SectionXI.2.FSAR,Section15.6.4.SUSQUEHANNA-UNIT183.10-5Revision0 ReactorModeSwitchInterlockTestingB3.10.2B3.10SPECIALOPERATIONS83.10.2ReactorModeSwitchInterlockTestingBASESBACKGROUNDThepurposeofthisSpecialOperationsLCOistopermitoperationofthereactormodeswitchfromonepositiontoanothertoconfirmcertainaspectsofassociatedinterlocksduringperiodictestsandcalibrationsinMODES3,4,and5.Thereactormodeswitchisaconvenientlylocated,multiposition,keylockswitchprovidedtoselectthenecessaryscramfunctionsforvariousplantconditions(Ref.1).Thereactormodeswitchselectstheappropriatetriprelaysforscramfunctionsandprovidesappropriatebypasses.Themodeswitchpositionsandrelatedscraminterlockfunctionsaresummaizedasfollows:a.Shutdown-Initiatesareactorscram;.bypassesmainsteamlineisolationscram;b.Refuel-SelectsNeutronMonitoringSystem(NMS)scramfunctionfor-lowneutronfluxleveloperation(butdoesnotdisabletheaveragepowerrangemonitorscram);bypassesmainsteamlineisolationscram;c.Startup/HotStandby-SelectsNMSscramfunctionforlowneutronfluxleveloperation(intermediaterangemonitorsandaveragepowerrangemonitors);bypassesmainsteamlineisolationscram;andd.Run-SelectsNMSscramfunctionforpowerrangeoperation.Thereactormodeswitchalsoprovidesinterlocksforsuchfunctionsascontrolrodblocks,scramdischargevolumetripbypass,refuelinginterlocks.andmainsteamisolationvalveisolations.APPLICABLESAFETYANALYSESTheacceptancecriterionforreactormodeswitchinterlocktestingistopreventfuelfailurebyprecludingreactivityexcursionsorcorecriticality.Theinterlockf'unctionsoftheshutdownandrefuelpositionsnormallymaintainedforthereactormodeswitchinHODES3,4,and5areprovidedto(continued)SUSQUEHANNA-UNIT1B3.10-6Revision0 ReactorNodeSwitchInterlockTestingB3.10.2BASESAPPLICABLESAFETYANALYSES(continued)precludereactivityexcursionsthatcouldpotentiallyresultinfuelfailure.Interlocktestingthatrequiresmovingthereactormodeswitchtootherpositions(run,startup/hotstandby,orrefuel)whileinNODE3,4,or5,requiresadministrativelymaintainingallcontrolrodsinsertedandnootherCOREALTERATIONSinprogress.Withallcontrolrodsinsertedincorecellscontainingoneormorefuelassemblies,andnoCOREALTERATIONSinprogress,therearenocrediblemechanismsforunacceptablereactivityexcursionsduringtheplannedinterlocktesting.Forpostulatedaccidents,suchascontrolrodremovalerrorduringrefuelingorloadingoffuelwithacontrolrodwithdrawn,theaccidentanalysisdemonstratesthatfuelfailurewillnotoccur(Ref.2).ThewithdrawalofasinglecontrolrodwillnotresultincriticalitywhenadequateSDNismaintained.Theanalysisforfuelloadingduringrefueling(Ref.2)assumesthatthecontrolrodforthecellbeingloadedisfullyinserted.However,ifadequateSDNismaintained,withdrawalofthiscontrolrodwillnotresultincriticality.AsdescribedinLCO3.0.7,compliancewithSpecialOperationsLCOsisoptional,andtherefore,nocriteriaoftheNRCPoli.cy-Statementapply.SpecialOperationsLCOsprovideflexibilitytoperformcertainoperationsbyappropriatelymodifyingrequirementsofotherLCOs.AdiscussionofthecriteriasatisfiedfortheotherLCOsisprovidedintheirrespectiveBases.LCOAsdescribedinLCO3.0.7,compliancewiththisSpecialOperationsLCOisoptional.NODES3,4,and5operationsnotspecifiedinTable1.1-1canbeperformedinaccordancewithotherSpecialOperationsLCOs(i.e.,LCO3.10.1,"InserviceLeakandHydrostaticTestingOperation,"LCO3.10.3,"SingleControlRodWithdrawal-HotShutdown,"LCO3.10.4,"SingleControlRodWithdrawal-ColdShutdown,"andLCO3.10.8,"SDMTest-Refueling")withoutmeetingthisLCOoritsACTIONS.IfanytestingisperformedthatinvolvesthereactormodeswitchinterlocksandrequiresrepositioningbeyondthatspecifiedinTable1.1-1forthecurrentNODEofoperation,thetestingcanbeperformed,providedallinterlockfunctionspotentiallydefeatedare(continued)SUSQUEHANNA-UNIT1B3.10-7Revision0 ReactorModeSwitchInterlockTestingB3.10.2BASESLCO(continued)administrativelycontrolled.InMODES3.4,and5withthereactormodeswitchinshutdownasspecifiedinTable1.1-1.allcontrolrodsarefullyinsertedanda'controlrodblockisinitiated.Therefore,allcontrolrodsincorecellsthatcontainoneormorefuelassembliesmustbeverifiedfullyinsertedwhileinMODES3,4,and5,withthereactormodeswitchinotherthantheshutdownposition.TheadditionalLCOrequirementtoprecludeCOREALTERATIONSisappropriateforMODE5operations,asdiscussedbelow,andisinherentlymetinMODES3and4bythedefinitionofCOREALTERATIONS,whichcannotbeperformedwiththevesselheadinplace.InMODE5,withthereactormodeswitchintherefuelposition,onlyonecontrolrodcanbewithdrawnundertherefuelpositionone-rod-outinterlock(LCO3.9.2."RefuelPositi'onOne-Rod-OutInterlock").Therefuelingequipmentinterlocks(LCO3.9.1,"RefuelingEquipmentInterlocks")appropriatelycontrolotherCOREALTERATIONS.Duetotheincreasedpotentialforerrorincontrollingthesemultipleinterlocks,andthelimiteddurationoftestsinvolvingthereactormodeswitchposition,conservativecontrolsarerequired,consistentwithMODES3and4.TheadditionalcontrolsofadministrativelynotpermittingotherCOREALTERATIONSvilladequatelyensurethatthereactordoesnotbecomecriticalduringthesetests.APPLICABILITYAnyrequiredperiodicinterlocktestinginvolvingthereactormodeswitch,whileinMODES1and2,canbeperformedwithouttheneedforSpecialOperationsexceptions.ModeswitchmanipulationsintheseMODESwouldlikelyresultin.unittrips.InMODES3,4,and5.thisSpecialOperationsLCOisonlypermittedtobeusedtoallowreactormodeswitchinterlocktestingthatcannotconvenientlybeperformedwithoutthisallowance.SuchinterlocktestingmayconsistofrequiredSurvejllances,ormaybetheresultofmaintenance,repair,ortroubleshootingactivities.InMODES3,4,and5,theinterlockfunctionsprovidedbythereactormodeswitchinshutdown(i.e.,allcontrolrodsinsertedandincapableofwithdrawal)andrefueling(i.e.,refuelinginterlockstopreventinadvertentcriticalityduringCOREALTERATIONS)positionscanbeadministrativelycontrolledadequatelyduringtheperformanceofcertaintests.SUSQUEHANNA-UNIT1B3.10-8(continued)Revision0 ReactorModeSwitchInterlockTestingB3.10.2BASES(continued)ACTIONSA.1A.2A.3.1andA.3.2TheseRequiredActionsareprovidedtorestorecompliancewiththeTechnicalSpecificationsoverriddenbythisSpecialOperationsLCO.RestoringcompliancewillalsoresultinexitingtheApplicabilityofthisSpecialOperationsLCO.AllCOREALTERATIONS,exceptcontrolrodinsertion,ifinprogress,areimmediatelysuspendedinaccordancewithRequiredActionA.1,andallinsertablecontrolrodsincorecellsthatcontainoneormorefuelassembliesarefullyinsertedwithin1hour,inaccordancewithRequiredActionA.2.Thiswillprecludepotentialmechanismsthatcouldleadtocriticality.SuspensionofCOREALTERATIONSshallnotprecludethecompletionofmovementofacomponenttoasafecondition.Placingthereactormodeswitchintheshutdownpositionwillensurethatallinsertedcontrolrodsremaininsertedandresultinoperatinginaccordance.with~Table1.1-1.Alternatively,ifinMODE5,thereactormodeswitchmaybeplacedintherefuelposition,whichwillalsoresultinoperatinginaccordancewithTable1.1-1.ANoteisaddedtoRequiredActionA.3.2toindicatethatthisRequiredActionis-notapplicableinMODES3and4,sinceonlytheshutdownpositionisallowedintheseMODES.TheallowedCompletionTimeof1hourforRequiredActionA.2,RequiredActionA.3.1,andRequiredActionA.3.2providessufficienttimetonormallyinsertthecontrolrodsandplacethereactormodeswitchintherequiredposition,basedonoperatingexperience,andisacceptablegiventhatalloperationsthatcouldincreasecorereactivityhavebeensuspended.SURVEILLANCEREQUIREMENTSSR3.10.2.1andSR3.10.2.2MeetingtherequirementsofthisSpecialOperationsLCOmaintainsoperationconsistentwithorconservativetooperatingwiththereactormodeswitchintheshutdownposition(ortherefuelpositionforMODE5).Thefunctionsofthereactormodeswitchinterlocksthatarenotineffect.duetothetestinginprogress,areadequatelycompensatedforbytheSpecialOperationsLCOrequirements.Theadministrativecontrolsaretobeperiodicallyverified(continued)SUSQUEHANNA-UNIT1B3.10-9Revision0 ReactorNodeSwitchInterlockTestingB3.10.2BASESSURVEILLANCEREQUIREHENTSSR3.10.2.1andSR3.10.2.2(continued)toensurethattheoperationalrequirementscontinuetobemet.TheSurveillancesperformedatthe12hourand24hourFrequenciesareintendedtoprovideappropriateassurancethateachoperatingshiftisawareofandverifiescompliancewiththeseSpecialOperationsLCOrequirements.REFERENCES1.FSAR,Chapter7.2.FSAR,Section15.4.1.1.SUSQUEHANNA-UNIT183.10-10Revision0 0

SingleControlRodWithdrawal-HotShutdownB3.10.3B3.10SPECIALOPERATIONSB3.10.3SingleControlRodWithdrawal-HotShutdownBASESBACKGROUNDThepurposeofthisNODE3SpecialOperationsLCOistopermitthewithdrawalofasinglecontrolrodfortestingwhileinhotshutdown,byimposingcertainrestrictions.InNODE3,thereactormodeswitchisintheshutdownposition,andallcontrolrodsareinsertedandblockedfromwithdrawal.Nanysystemsandfunctionsarenotrequiredintheseconditions;duetotheotherinstalledinterlocksthatareactuatedwhenthereactormodeswitchisintheshutdownposition.However.circumstancesmayarisewhileinNODE3thatpresenttheneedtowithdrawasinglecontrolrodforvarioustests(e.g.,frictiontests.scramtiming,andcouplingintegritychecks).Thesesinglecontrolrodwithdrawalsarenormallyaccomplishedbyselectingtherefuelpositionforthereactormodeswitch.ThisSpecialOperationsLCOprovidestheappropriateadditionalcontrolstoallowasinglecontrolrodwithdrawalinNODE3.APPLICABLESAFETYANALYSESWiththereactormodeswitchintherefuelposition,theanalysesforcontrolrodwithdrawalduringrefuelingareapplicableand,providedtheassumptionsoftheseanalysesaresatisfiedinNODE3,theseanalyseswi11boundtheconsequencesofanaccident.ExplicitsafetyanalysesintheFSAR(Ref'.1)demonstratethatthefunctioningoftherefuelinginterlocksandadequateSDHwillprecludeunacceptablereactivityexcursions.Refuelinginterlocksrestrictthemovementofcontrolrodstoreinforceoperationalproceduresthatpreventthereactorfrombecomingcritical.Theseinterlockspreventthewithdrawalofmorethanonecontrolrod.Undertheseconditions,sinceonlyonecontrolrodcanbewithdrawn,thecorewillalwaysbeshutdownevenwiththehighestworthcontrolrodwithdrawnifadequateSDNexists.Thecontrolrodscramfunctionprovidesbackupprotectiontonormalrefuelingproceduresandtherefuelinginterlocks,whichpreventinadvertentcriticalitiesduringrefueling.(continued)SUSQUEHANNA-UNIT183.10-11Revision0

SingleControlRodWithdrawal-HotShutdownB3.10.3BASESAPPLICABLESAFETYANALYSES(continued)Alternatebackupprotectioncanbeobtainedbyensuringthatafivebyfivearrayofcontrolrods,centeredonthewithdrawncontrolrod,areinsertedandincapableofwithdrawal.AsdescribedinLCO3.0.7,compliancewithSpecialOperationsLCOsisoptional,andtherefore,nocriteriaoftheNRCPolicyStatementapply.SpecialOperationsLCOsprovideflexibilitytoperformcertainoperationsbyappropriatelymodifyingrequirementsofotherLCOs.Adiscussionofthecriteriasatisfiedf'rtheotherLCOsisprovidedintheirrespectiveBases.LCOAsdescribedinLCO3.0.7,compliancewiththisSpecialOperationsLCOisoptional.OperationinNODE3withthereactormodeswitchintherefuelpositioncanbeperformedinaccordancewithotherSpecialOperationsLCOs(i.e.,LCO3.10.2,"ReactorNodeSwitchInterlockTesting,"withoutmeetingthisSpecialOperationsLCOoritsACTIONS.However,ifasinglecontrolrodwithdrawalisdesiredinNODE3,controlsconsistentwiththoserequiredduringrefuelingmustbeimplementedandthisSpecialOperationsLCOapplied.:"Withdrawal"inthisapplicationincludestheactual-withdrawa1ofthe"controlrodaswellasmaintainingthecontrolrodina-positionotherthanthe'ful.l-in'osition.=andreinsertingthecontrol.rod.The-refuelinginterlocks-ofLCO3.9.2,"RefuelPosition.-One-Rod-OutInterlock."requiredbythisSpecialOperations.LCQ,.willensure=thatonlyonecontrolrodcanbewithdrave=.Tobackuptherefuelinginterlocks(LCO3.9.2).theabilitytoscramthewithdrawncontrolrodintheeventofaninadvertentcriticalityisprovidedbythisSpecialOperationsLCO'srequirementsinItemd.l.Alternately,providedasufficientnumberofcontrolrodsinthevicinityofthewithdrawncontrolrodareknowntobeinsertedandincapableofwithdrawal(Itemd.2),thepossibilityofcriticalityonwithdrawalofthiscontrolrodissufficientlyprecluded,soasnottorequirethescramcapabilityofthewithdrawncontrolrod.Also,oncethisalternate(Itemd.2)iscompleted,theSDNrequirementtoaccountforboththewithdrawn-untrippablecontrolrodandthehighestworthcontrolrodmaybechangedtoallowthe(continued)SUSQUEHANNA-UNIT1B3.10-12Revision0 SingleControlRodWithdrawal-HotShutdownB3.10.3BASESLCO{continued)withdrawn-untrippablecontrolrodtobethesinglehighestworthcontrolrod.APPLICABILITYControlrodwithdrawalsareadequatelycontrolledinNODES1,2,and5byexistingLCOs.InNODES3and4,controlrodwithdrawalisonlyallowedifperformedinaccordancewiththisSpecialOperationsLCOorSpecialOperationsLCO3.10.4,andiflimitedtoonecontrolrod.Thisallowanceisonlyprovidedwiththereactormodeswitchintherefuelposition.Fortheseconditions,theone-rod-outinterlock(LCO3.9.2).controlrodpositionindication(LCO3.9.4,"ControlRodPositionIndication"),fullinsertionrequirementsforallothercontrolrodsandscramfunctions{LCO3.3.1.1,"ReactorProtectionSystem(RPS)Instrumentation,"andLCO3.9.5,"ControlRodOPERABILITY-Refueling"),ortheaddedadministrativecontrolsinItemd.2of'his'SpecialOperationsLCO,minimizepotentialreactivityexcursions.ACTIONSANotehasbeenprovidedtomodifytheACTIONSrelatedtoasinglecontrol-.rodwithdrawalwhileinNODE3.Section1.3,CompletionTimes,specifiesonceaConditionhas.beenentered,subsequentdivisions.subsystems,componentsorvariablesexpressedintheConditiondiscoveredtobe-inoperableornotwithinlimits,willnotresult'nseparateentryintotheCondition.Section1.3alsospecifiesRequiredActionsoftheConditioncontinuetoapplyforeachadditionalfailure,withCompletionTimesbasedoninitialentryintotheCondition.However,theRequiredActionsforeachrequirementoftheLCOnotmetprovideappropriatecompensatorymeasuresforseparaterequirementsthatarenotmet.Assuch.aNotehasbeenprovidedthatallowsseparateConditionentryforeachrequirementoftheLCO.A.lIfoneormoreof'herequirementsspecifiedinthisSpecialOperationsLCOarenotmet,theACTIONSapplicabletothestatedrequirementsoftheaffectedLCOsareimmediatelyenteredasdirectedbyRequiredActionA.l.RequiredActionA.lhasbeenmodifiedbyaNotethatclarifiesthe(continued)SUSQUEHANNA-UNIT1B3.10-13Revision0 SingleControlRodWithdrawal-HotShutdownB3.10.3BASESACTIONSA.l(continued)intentofanyotherLCO'sRequiredAction,toinsertallcontrolrods.ThisRequiredActionincludesexitingthisSpecialOperationsApplicabilitybyreturningthereactormodeswitchtotheshutdownposition.AsecondNotehasbeenadded,whichclarifiesthatthisRequiredActionisonlyapplicableiftherequirementsnotmetareforanaffectedLCO.A.2.1andA.2.2-RequiredActionsA.Z.1andA.2.2arealternateRequiredActionsthatcanbetakeninsteadofRequiredActionA.1torestorecompliancewiththenormalMODE3requirements,therebyexitingthisSpecialOperationsLCO'sApplicability.Actionsmustbeinitiatedimmediatelytoinsertallinsertablecontrolrods.Actionsmustcontinueuntilallsuchcontrolrodsarefullyinserted.PlacingthereactormodeswitchintheshutdownpositionwillensureallinsertedrodsremaininsertedandrestoreoperationinaccordancewithTable1.1-1.TheallowedCompletionTimeof1hourtoplacethereactormodeswitchintheshutdownpositionprovidessufficienttimetonormallyinsertthecontrolrods.SURVEILLANCEREQUIREMENTSSR3.10.3.1SR3.10.3.2andSR3.10.3.3TheotherLCOsmadeapplicableinthisSpecialOperationsLCOarerequiredtohavetheirSuryeillancesmettoestablishthatthisSpecialOperationsLCOisbeingmet.Ifthelocalarrayofcontrolrodsisinsertedanddisarmedwhilethescramfunctionforthewithdrawnrodisnotavailable.periodicverificationinaccordancewithSR3.10.3.2isrequiredtoprecludethepossibilityofcriticality.SR3.10.3.2hasbeenmodifiedbyaNote,which'larifiesthatthisSRisnotrequiredtobemetifSR3.10.3.1issatisfiedforLCO3.10.3.d.1requirements,sinceSR3.10.3.2demonstratesthatthealternativeLCO3.10.3.d.2requirementsaresatisfied.Also,SR3.10.3.3verifiesthatallcontrolrodsotherthanthecontrolrodbeingwithdrawnarefullyinserted.The24hourFrequencyisacceptablebecauseoftheadministrative(continued)SUSQUEHANNA-UNIT1B3.10-14Revision0 SingleControlRodWithdrawal-HotShutdown83.10.3BASESSURVEILLANCEREQUIREMENTSSR3.10.3.1SR3.10.3.2andSR3.10.3.3(continued)controlsoncontrolrodwithdrawal.theprotectionaffordedbytheLCOsinvolved,andhardwireinterlocksthatprecludeadditionalcontrolrodwithdrawals.REFERENCE1.FSAR,Section15.4.1.1.SUSQUEHANNA-UNIT1B3.10-15Revision0 SingleControlRodWithdrawal-ColdShutdownB3.10.4B3.10SPECIALOPERATIONSB3.10.4SingleControlRodWithdrawal-ColdShutdownBASESBACKGROUNDThepurposeofthisMODE4SpecialOperationsLCOistopermitthewithdrawalofasinglecontrolrodfortestingormaintenance,whileincoldshutdown,byimposingcertainrestrictions.InMODE4,thereactormodeswitchisintheshutdownposition,andallcontrolrodsareinsertedandblockedfromwithdrawal.Manysystemsandfunctionsarenotrequiredintheseconditions'uetotheinstalledinterlocksassociatedwithtPereactormodeswitchintheshutdownposition.CircumstancesmayarisewhileinMODE4,however,thatpresenttheneedtowithdrawasinglecontrolrodforvarioustests(e.g.,frictiontests,scramtimetesting,andcouplingintegritychecks).Certainsituationsmayalsorequiretheremovaloftheassociatedcontrolroddrive(CRD).Thesesinglecontrolrodwithdrawalsandpossiblesubsequentremovalsarenormallyaccomplishedbyselectingtherefuelpositionforthereactormodeswitch.APPLICABLE=SAFET'Y'NALYSES'iththereactormodeswitchintherefuelposition,theanalysesforcontrolrodwithdrawalduringrefuelingareapplicableand,providedtheassumptionsoftheseanalysesaresatisfiedinMODE4,theseanalyseswillboundtheconsequencesofanaccident.ExplicitsafetyanalysesintheFSAR(Ref.1)demonstratethatthefunctioningoftherefuelinginterlocksandadequateSDMwillprecludeunacceptablereactivityexcursions.Refuelinginterlocksrestrictthemovementofcontrolrodstoreinforceoperationalproceduresthatpreventthereactorfrombecomingcritical.Theseinterlockspreventthewithdrawalofmorethanonecontrolrod.Undertheseconditions,sinceonlyonecontrolrodcanbewithdrawn,thecorewillalwaysbeshutdownevenwiththehighestworthcontrolrodwithdrawnifadequateSDMexists.Thecontrolrodscramfunctionprovidesbackupprotectionintheeventnormalrefuelingproceduresandtherefuelinginterlocksfai1topreventinadvertentcriticalitiesduringrefueling.Alternatebackupprotectioncanbeobtainedby(continued)SUSQUEHANNA-UNIT1B3.10-16Revision0 SingleControlRodWithdrawal-ColdShutdownB3.10.4BASESAPPLICABLESAFETYANALYSES(continued)ensuringthatafivebyfivearrayofcontrolrods,centered,onthewithdrawncontrolrod,areinsertedandincapableofwithdrawal(i.e.,electricallyorhydraulicallydisarmed).ThisalternatebackupprotectionisrequiredwhenremovingaCRDbecausethisremovalrendersthewithdrawncontrolrodincapableofbeingscrammed.AsdescribedinLCO3.0.7,compliancewithSpecialOperationsLCOsisoptional,andtherefore,nocriteriaoftheNRCPolicyStatementapply.SpecialOperationsLCOsprovideflexibilitytoperformcertainoperationsbyappropriatelymodifyingrequirementsofotherLCOs.AdiscussionofthecriteriasatisfiedfortheotherLCOsisprovidedintheirrespectiveBases.LCOAsdescribedinLCO3.0.7,compliancewiththisSpecialOperationsLCOisoptional.OperationinNODE4withthereactormodeswitchintherefuelpositioncanbeperformedinaccordancewithotherLCOs(i.e.,SpecialOperationsLCO3.10.2,"ReactorNodeSwitchInterlockTesting")withoutmeetingthisSpecialOperationsLCOoritsACTIONS.Ifasinglecontrolrodwithdrawalisdesired-in-NODE-4,controlsconsistentwiththoserequiredduringrefuelingmustbeimplementedandthisSpecialOperationsLCOapplied."Withdrawal"inthisapplicationincludestheactualwithdrawalofthecontrolrodaswellasmaintainingthecontrolrodinapositionotherthanthe-full-inposition,andreinsertingthecontrolrod.TherefuelinginterlocksofLCO3.9.2,"RefuelPositionOne-Rod-OutInterlock,"requiredbythisSpecialOperationsLCOwi11ensurethatonlyonecontrolrodcanbewithdrawn.TherequirementsofLCO3.9.4,"ControlRodPositionIndication"cancontinuetobemetevenwhenthecontrolrodpositionindicationprobeisdisconnectedtoallowdecoupling,providedthewithdrawncontrolroddoesnoterroneouslyindicate"full-in."However,intheeventthecontrolroddoesindicate"full-in"(eitherduetocomponentmalfunctionorintentionaljumperingtocausea"full-in"indication),acontrolrodwithdrawalblockisrequiredtobeinsertedtoensurethatnoadditionalcontrolrodscanbewithdrawnandthatcompliancewiththisSpecialOperationsLCOismaintained.(continued)SUSQUEHANNA-UNIT1B3.10-17Revision0 SingleControlRodWithdrawal-ColdShutdownB3.10.4BASESLCO(continued)Tobackuptherefuelinginterlocks(LCO3.9.2)orthecontrolrodwithdrawalblock,theabilitytoscramthewithdrawncontrolrodintheeventofaninadvertentcriticalityisprovidedbytheSpecialOperationsLCOrequirementsinItemc.1.Alternatively,whenthescramfunctionisnotOPERABLE,orwhentheCRDistoberemoved,asufficientnumberofrodsinthevicinityofthewithdrawncontrolrodarerequiredtobeinsertedandmadeincapableofwithdrawal(Itemc.2).Thisprecludesthepossibilityofcriticalityuponwithdrawalofthiscontrolrod.Also,oncethisalternate(Itemc.2)iscompleted,theSDNrequirementtoaccountforboththewithdrawn-untrippablecontrolrodandthehighestworthcontrolrodmaybechangedtoallowthewithdrawn-untrippablecontrolrodtobethesinglehighestworthcontrolrod.APPLICABILITYControlrodwithdrawalsareadequatelycontrolledinMODES1.2,and5byexistingLCOs.InNODES3and4,controlrodwithdrawalisonlyallowedifperformedinaccordancewithSpecialOperationsLCO3.10.3,orthisSpecialOperations-LCO,andiflimitedtoonecontrolrod.Thisallowanceisonlyprovidedwiththereactormodeswitchintherefuelposition.Duringtheseconditions,thefullinsertionrequirementsforallothercontrolrods,theone-rod-outinterlock(LCO3.9.2),controlrodpositionindication(LCO3.9.4),andscramfunctions(LCO3.3.1.1."ReactorProtectionSystem(RPS)Instrumentation,"andLCO3.9.5,"ControlRodOPERABILITY-Refueling"),ortheaddedadministrativecontrolsinItemb.2andItemc.2ofthisSpecialOperationsLCO,providemitigationofpotentialreactivityexcursions.ACTIONSANotehasbeenprovidedtomodifytheACTIONSrelatedtoasinglecontrolrodwithdrawalwhileinNODE3.Section1.3,CompletionTimes,specifiesthatonceaConditionhasbeenentered,subsequentdivisions,subsystems,components,orvariablesexpressedintheConditiondiscoveredtobeinoperableornotwithinlimits,willnotresultinseparateentryintotheCondition.Section1.3alsospecifiesthat(continued)SUSQUEHANNA-UNIT1B3.10-18Revision0 SingleControlRodWithdrawal-ColdShutdownB3.10.4BASESACTIONS(continued)RequiredActionsoftheConditioncontinuetoapplyforeachadditionalfailure,withCompletionTimesbasedoninitialentryintotheCondition.However,theRequiredActionsforeachrequirementoftheLCOnotmetprovideappropriatecompensatorymeasuresforseparaterequirementsthatarenotmet.Assuch,aNotehasbeenprovidedthatallowsseparateConditionentryforeachrequirementoftheLCO.A.lA.2.1andA.2.2Ifoneormoreoftherequirementsof'hisSpecialOperationsLCOarenotmetwiththeaffectedcontrolrodinsertable,theseRequiredActionsrestoreoperationconsistentwithnormalHBDE4conditions(i.e..allrodsinserted)orwiththeexceptionsallowedinthisSpecialOperationsLCO.RequiredActionA.1hasbeenmodifiedbyaNotethatclarifiesthattheintentofanyotherLCO'sRequiredActiontoinsertallcontrolrods.ThisRequiredActionincludesexitingthisSpecialOperationsApplicabilitybyreturningthereactormodeswitchtotheshutdownposition.AsecondNotehasbeenaddedtoRequiredActionA.1toclarifythatthisRequiredActionisonlyapplicableiftherequirementsnotmetareforanaffectedLCO.RequiredActionsA.2.1andA.2.2arespecified,basedontheassumptionthatthecontrolrodisbeingwithdrawn.Ifthecontrolrodisstillinsertable,actionsmustbeimmediatelyinitiatedtofullyinsertallinsertablecontrolrodsandwithin1hourplacethereactormodeswitchintheshutdownposition.Actionsmustcontinueuntilallsuchcontrolrodsarefullyinserted.TheallowedCompletionTimeof'hourforplacingthereactormodeswitchintheshutdownpositionprovidessufficienttimetonormallyinsertthecontrolrods.B.l8.2.1andB.2.2IfoneormoreoftherequirementsofthisSpecialOperationsLCOarenotmetwiththeaffectedcontrol'rodnotinsertable.withdrawalofthecontrolrodandremovaloftheassociatedCRDmustbeimmediatelysuspended.IftheCRDhasbeenremoved,suchthatthecontrolrodisnotinsertable,theRequiredActionsrequirethemost(continued)SUSQUEHANNA-UNIT1B3.10-19Revision0 SingleControlRodWithdrawal-ColdShutdownB3.10.4BASESACTIONSB.18.2.1and8.2.2(continued)expeditiousactionbetakentoeitherinitiateactiontorestoretheCRDandinsertitscontrolrod,orinitiateactiontorestorecompliancewiththisSpecialOperationsLCO.TheRequiredActionsdonotpreventthecompletionofthemovementofthecomponenttoasafeconservativeposition.SURVEILLANCEREQUIREMENTSSR3.10.4.1SR3.10.4.2SR3.10.4.3andSR3.10.4.4TheotherLCOsmadeapplicablebythisSpecialOperationsLCOarerequiredtohavetheirassociatedsurveillancesmettoestablishthatthisSpecialOperationsLCOisbeingmet.Ifthelocalarrayofcontrolrodsisinsertedanddisarmedwhilethescramfunctionforthewithdrawnrodisnotavailable,periodicverificationisrequiredtoensurethatthepossibilityofcriticalityremainsprecluded.VerificationthatalltheothercontrolrodsarefullyinsertedisrequiredtomeettheSDMrequirements.Verificationthatacontrolrodwithdrawalblockhasbeeninsertedensures.thatnoothercontrolrodscanbeinadvertentlywithdrawnunderconditionswhenpositionindicationinstrumentationisinoperablefortheaffectedcontrolrod.The24hourFrequencyisacceptablebecauseoftheadministrativecontrolsoncontrolrodwithdrawals.theprotectionaffordedbytheLCOsinvolved,andhardwireinterlockstoprecludeanadditionalcontrolrodwithdrawal.SR3.10.4.2andSR3.10.4.4havebeenmodifiedbyNotes,whichclarifythattheseSRsarenotrequiredtobemetifthealternativerequirementsdemonstratedbySR3.10.4.1aresatisfied.REFERENCE1.FSAR,Section15.4.1.1.SUSQUEHANNA-UNIT183.10-20Revision0 SingleCRD-Removal-RefuelingB3.10.5B3.10SPECIALOPERATIONSB3.10.5"SingleControlRodDrive(CRD)Removal-RefuelingBASESBACKGROUNDThepurposeofthisNODE5SpecialOperationsLCOistopermittheremovalofasingleCRDduringrefuelingoperationsbyimposingcertainadministrativecontrols.Refuelinginterlocksrestrictthemovementofcontrolrodsandtheoperationoftherefuelingequipmenttoreinforceoperationalproceduresthatpreventthereactorfrombecomingcriticalduringrefuelingoperations.Duringrefuelingoperations,nomorethanonecontrolrodispermittedtobewithdrawnfromacorecellcontainingoneormorefuelassemb1ies.Therefuelinginter1ocksusethe"fullin"positionindicatorstodeterminethepositionof'llcontro1rods.Ifthe"fullin"positionsignalisnotpresentforeverycontrolrod.thentheallrodsinpermissivef'rtherefuelingequipmentinterlocksisnotpresentandfuelloadingisprevented.Also,therefuelpositionone-rod-outinterlockwillnotallowthewithdrawalofasecondcontrolrod.Thecontrolrodscramfunctionprovidesbackupprotectionintheeventnormal-refuel~ing"procedures,andtherefuelinginterlocksdescribed:above-fbi..lto.preventinadvertentcriticalitiesduring-refueling.-.:TherequirementforthisfunctiontobeOPERABLEprecludes.thepossibi1ityofremovingtheCRDonce~a.-controlrodiswithdrawnfromacorecellcontainingoneor"more=tuelassemblies.ThisSpecialOperationsLCOprovides:controls-sufficienttoensurethepossibilityofaninadvertentcriticalityisprecluded.whileallowingasingleCRDtoberemovedfromacorecellcontainingoneormorefuelassemblies'.TheremovaloftheCRDinvolvesdisconnectingthepositionindicationprobe.TherequirementsofLCO3.9.4,"ControlRodPositionIndication"cancontinuetobemetevenwhenthecontrolrodpositionindicationprobeisdisconnectedtoallowde-coupling,providedthewithdrawncontrolroddoesnoterroneouslyindicate"full-in."However,intheeventthecontrolroddoesindicate"full-in"(eitherduetocomponentmalfunctionorintentionaljumperingtocausea"full-in"indication),thisSpecialOperationhasprovisionforthisevent.TheCRDremovalalsorequiresisolationoftheCRDfromtheCRDHydraulicSystem,therebycausinginoperabilityofthecontrolrod(LCO3.9.5,"ControlRodOPERABILITY-Refueling")SUSQUEHANNA-UNIT1B3.10-21(continued)Revision0

SingleCRDRemoval-Refueling83.10.5BASESAPPLICABLESAFETYANALYSESWiththereactormodeswitchintherefuelposition,theanalysesforcontrolrodwithdrawalduringrefuelingareapplicableand.providedtheassumptionsoftheseanalysesaresatisfied,theseanalyseswillboundtheconsequencesofaccidents.ExplicitsafetyanalysesintheFSAR(Ref.1)demonstratethatproperoperationoftherefuelinginterlocksandadequateSDNwillprecludeunacceptablereactivityexcursions.Refuelinginterlocksrestrictthemovementofcontrolrodsandtheoperationoftherefuelingequipmenttoreinforceoperationalproceduresthatpreventthereactorfrombecomingcritical.Theseinterlockspreventthewithdrawalofmorethanonecontrolrod.Undertheseconditions,sinceonlyonecontrolrodcanbewithdrawn,thecorewillalwaysbeshutdownevenwiththehighestworthcontrolrodwithdrawnifadequateSDHexists.Thecontrolrodscramfunctionprovidesbackupprotectiontonormalrefuelingproceduresandtherefuelinginterlocks,whichpreventinadvertentcriticalitiesduringrefueling.Sincethescramfunctionissuspended,alternatebackupprotectionrequiredbythisSpecialOperationsLCOisobtainedbyensuringthatafivebyfivearrayofcontrolrods,centered-enthewithdrawncontrolrod,areinsertedandareincapableofbeingwithdrawnandallothercontrolrodsarefullyinserted.TherequirementsofLCO3.9.4,"ControlRodPositionIndication"(andtherefore,LCO3.9.1andLCO3.9.2)cancontinuetobemetevenwhenthecontrolrodpositionindicationprobeisdisconnectedtoallowde-coupling,providedthewithdrawncontrolroddoesnoterroneouslyindicate"full-in"(eitherduetocomponentmalfunctionorintentionaljumperingtocausea"full-in"indication),byrequiringallothercontrolrodstobeinsertedandacontrolrodwithdrawalblockinitiated,thefunctionoftheinoperableone-rod-outinterlock(LCO3.9.2)isadequatelymaintained.ThisSpecialOperationsLCOrequirementtosuspendallCOREALTERATIONSadequatelycompensatesfortheinoperableallrodsinpermissivefortherefuelingequipmentinterlocks(LCO3.9.1).AsdescribedinLCO3.0.7.compliancewithSpecialOperationsLCOsisoptional,andtherefore,nocriteriaoftheNRCPolicyStatementapply.SpecialOperationsLCOsprovideflexibilitytoperformcertainoperationsbyappropriatelymodifyingrequirementsofotherLCOs.(continued)SUSQUEHANNA-UNIT1B3.10-22'evision0 SingleCRDRemoval-RefuelingB3.10.5BASESAPPLICABLESAFETYANALYSES(continued)AdiscussionofthecriteriasatisfiedfortheotherLCOsisprovidedintheirrespectiveBases.LCOAsdescribedinLCO3.0.7,compliancewiththisSpecialOperationsLCOisoptional.OperationinMODE5witheitherthefollowingLCOs.LCO3.3.1.1,"ReactorProtectionSystem(RPS)Instrumentation"orLCO3.3.8.2"ReactorProtectionSystem(RPS)ElectricPowerMonitoring,"notmet,canbeperformedinaccordancewiththeRequiredActionsoftheseLCOswithoutmeetingthisSpecialOperationsLCOoritsACTIONS.However.ifasingleCRDwithdrawalandremovalfromacorecellcontainingoneormorefuelassembliesisdesiredinMODE5,controlsconsistentwiththoserequiredbyLCO3.3.1.1andLCO3.3.8.2mustbeimplemented,andthisSpecialOperationsLCOapplied."Withdrawal"inthisapplicationincludestheactualwithdrawalofthecontrolrodaswellasmaintainingthecontrolrodinapositionotherthanthefull-inposition,andreinsertingthecontrolrod.Ensuringthat%hefivebyfivearrayofcontrolrods,centeredonthewithdrawncontrolrod,areinsertedandincapableofwithdrawal(i.e.,electricallyorhydraulicallydisarmed)adequatelysatisfiesthebackupprotectionthatLCO3.3.1.1andLCO3.9.2wouldhaveotherwiseprovided.Also,oncethisrequirementiscompleted,theSDMrequirementtoaccountforboththewithdrawn-untrippablecontrolrodandthehighestworthcontrolrodmaybechangedtoallowthewithdrawn-untrippablecontrolrodtobethesinglehighestworthcontrolrod.TherequirementsofLCO3.9.4,"ControlRodPositionIndication"(andtherefore,LCO3.9.1andLCO3.9.2)cancontinuetobemetwhenthecontrolrodpositionindicationprobeisdisconnectedtoallowde-coupling,providedthewithdrawncontrolroddoesnoterroneouslyindicate"full-in".However,intheeventthecontrolroddoesindicate"full-in"(eitherduetocomponentmalfunctionorintentionaljumperingtocausea"full-in"indication),byrequiringallothercontrolrodstobeinsertedandacontrolrodwithdrawalblockinitiated,thefunctionoftheinoperableone-rod-outinterlock(LCO3.9.2)isadequately(continued)SUSQUEHANNA-UNIT1B3.10-23Revision0 SingleCRDRemoval-RefuelingB3.10.5BASESLCO(continued)maintained.ThisSpecialOperationsLCOrequirementtosuspendallCOREALTERATIONSadequatelycompensatesfortheinoperableallrodsinpermissivefortherefuelingequipmentinterlocks(LCO3.9.1).APPLICABILITYOperationinMODE5iscontrolledbyexistingLCOs.TheallowancetocomplywiththisSpecialOperationsLCOinlieuoftheACTIONSofLCO3.3.1.1,LCO3.3.8.2,LCO3.9.1,LCO3.9.2,LCO3.9.4,andLCO3.9.5isappropriatelycontrolledwiththeadditionaladministrativecontrolsrequiredbythisSpecialOperationsLCO,whichreducethepotentialforreactivityexcursions.ACTIONSA.1A.2.1andA.2.2IfoneormoreoftherequirementsofthisSpecialOperationsLCOarenotmet,theimmediateimplementationoftheseRequiredActionsrestoresoperationconsistentwiththenormalrequirementsforfailuretomeetLCO3.3.1.1,LCO3.9.1.LCO3.9.2,LCO3:9',andLCO3.9.5(i.e.,allcontrolrodsieserted)orwiththeallowancesofthisSpecialOperationsLCO.TheCompletionTimesforRequiredActionA.1,RequiredActionA.2.1,andRequiredActionA.2.2areintendedtorequirethattheseRequiredActionsbeimplementedinaveryshorttimeandcarriedthroughinanexpeditiousmannertoeitherinitiateactiontorestoretheCRDandinsertitscontrolrod,orinitiateactiontorestorecompliancewiththisSpecialOperationsLCO.ActionsmustcontinueuntileitherRequiredActionA.2.1orRequiredActionA.2.2issatisfied.TheRequiredActionsdonotpreventthecompletionofthemovementofthecomponenttoasafeconservativeposition.SURVEILLANCEREQUIREMENTSSR3.10.5.1SR3.10.5.2SR3.10.5.3SR3.10.5.4andSR3.10,5.5Verificationthatallthecontrolrods,otherthanthecontrolrodwithdrawnfortheremovaloftheassociatedCRD,arefullyinsertedisrequiredtoensuretheSDMiswithinlimits.Verificationthatthelocalfivebyfivearrayof(continued)SUSQUEHANNA-UNIT1B3.10-24Revision0 SingleCRDRemoval-RefuelingB3.10.5BASESSURVEILLANCEREQUIRENENTSSR3.10.5.1SR3.10.5.2SR3.10.5.3SR3.10.5.4andSR3.10.5.5(continued)controlrods,otherthanthecontrolrodwithdrawnforremovaloftheassociatedCRD,isinsertedanddisarmed,whilethescramfunctionforthewithdrawnrodisnotavailable,isrequiredtoensurethatthepossibilityofcriticalityremainsprecluded.TheSurveillanceforLCO3.1.1,whichismadeapplicablebythisSpecialOperationsLCO,isrequiredinordertoestablishthatthisSpecialOperationsLCOisbeingmet.VerificationthatacontrolrodwithdrawalblockhasbeeninsertedandthatnootherCOREALTERATIONSarebeingmadeisrequiredtoensuretheassumptionsofthesafetyanalysisaresatisfiedunderconditionswhenpositionindicationinstrumentationisinoperableforthewithdrawncontrolrod.PeriodicverificationoftheadministrativecontrolsestablishedbythisSpecialOperationsLCOisprudenttopreclude-thepossibilityof'ninadvertentcriticality.The24hour.Frequencyis.,acceptable,giventheadministrativecontrols=on.controlrod'emovalandhardwireinterlocktoblock-an.additional-control'rodwithdrawal.REFERENCE1.FSAR-,.Sects;on-;..154=.1..1.SUS()UEHANNA-UNIT1B3.10-25Revision0 MultipleControlRodWithdrawal-RefuelingB3.10.683.10SPECIALOPERATIONSB3.10.6MultipleControlRodWithdrawal-Ref'uelingBASESBACKGROUNDThepurposeofthisMODE5SpecialOperationsLCOistopermitmultiplecontrolrodwithdrawalduringrefuelingbyimposingcertainadministrativecontrols.Refuelinginterlocksrestrictthemovementof'ontrolrodsandtheoperationoftherefuelingequipmenttoreinforceoperationalproceduresthatpreventthereactorfrombecomingcriticalduringrefuelingoperations.Duringrefuelingoperations,nomorethanonecontrolrodispermittedtobewithdrawnfromacorecellcontainingoneormorefuelassemblies.Whenallfourfuelassembliesareremovedfromacell,thecontrolrodmaybewithdrawnwithnorestrictions.Anynumberofcontrolrodsmaybewithdrawnandremovedfromthereactorvesseliftheircellscontainnofuel.Therefuelinginterlocksusethe"fullin"positionindicatorstodeterminethepositionofallcontrolrods.Ifthe"fullin"positionsignalisnotpresentforeverycontrolrod,thentheallrodsinpermissivefortherefuelingequipmentinterlocksis.notpresentandfuelloadingisprevented.Also,therefuelpositionone-rod-outinterlockwillnotallowthewithdrawalofasecondcontrolrod.Toallowmorethanonecontrolrodtobewithdrawnduringrefueling,theseinterlocksmustbedefeated.ThisSpecialOperationsLCOestablishesthenecessaryadministrativecontrolstoallowbypassingthe"fullin"positionindicators.APPLICABLESAFETYANALYSESExplicitsafetyanalysesintheFSAR(Ref.1)demonstratethatthefunctioningoftherefuelinginterlocksandadequateSDMwillpreventunacceptablereactivityexcursionsduringrefueling.Toallowmultiplecontrolrodwithdrawals,controlrodremovals,associatedcontrolroddrive(CRD)removal.oranycombinationofthese,the"fullin"positionindicationisallowedtobebypassedforeachwithdrawncontrolrodifallf'uelhasbeenremovedfromthecell.Withnofuelassembliesinthecorecell,theassociatedcontrolrodhasno(continued)SUSQUEHANNA-UNIT1B3.10-26Revision0

HultipleControlRodWithdrawal-RefuelingB3.10.6BASESAPPLICABLESAFETYANALYSES(continued)reactivitycontrolfunctionandisnotrequiredtoremaininserted.Priortoreloadingfuelintothecell,however,theassociatedcontrolrodmustbeinsertedtoensurethataninadvertentcriticalitydoesnotoccur,asevaluatedintheReference1analysis.AsdescribedinLCO3.0.7,compliancewithSpecialOperationsLCOsisoptional,andtherefore,nocriteriaoftheNRCPolicyStatementapply.SpecialOperationsLCOsprovideflexibilitytoperformcertainoperationsbyappropriatelymodifyingrequirementsofotherLCOs.AdiscussionofthecriteriasatisfiedfortheotherLCOsisprovidedintheirrespectiveBases.LCOAsdescribedinLCO3.0.7,compliancewiththisSpecialOperationsLCOisoptional.OperationinNODE5witheitherLCO3.9.3,"ControlRodPosition,"LCO3.9.4,"ControlRodPositionIndication,"orLCO3.9.5,"ControlRodOPERABILITY-Refueling,"notmet,canbeperformedinaccordancewiththeRequiredActionsoftheseLCOswithoutmeetingthisSpecialOperationsLCOoritsACTIONS.Ifmultiplecontrolrodwithdrawalorremoval,orCRDremovalisdesired,allfourfuelassembliesarerequiredtoberemovedfromtheassociatedcells.PriortoenteringthisLCO,anyfuelremaininginacellwhoseCRDwaspreviouslyremovedundertheprovisionsofanotherLCOmustberemoved."Withdrawa')"inthisapplicationincludestheactualwithdrawalofthecontrolrodaswellasmaintainingthecontrolrodinapositionotherthanthefull-inposition,andreinsertingthecontrolrod.Whenfuelisloadedintothecorewithmultiplecontrolrodswithdrawn,specialreloadsequencesareusedtoensurethatreactivityadditionsareminimized.Otherwise,allcontrolrodsmustbefullyinsertedbeforeloadingfuel.LCO3.9.2mustbemetduringtheapplicationofthisSpecialOperationsLCO.TheOne-Rod-OutinterlockmustremainOPERABLEforallcontrolrodswhichareNOTwithdrawninaccordancewith3.10.6topreventinadvertentcriticalityduetoaControlRodWithdrawalerror.ThoseControlRodswhicharewithdrawnperthisLCOhavenofuelinthesurroundingcell,soitispermissib1etobypasstheirinputstotheone-rod-outinterlockandwithdrawthem,withoutaffectingOPERABILITYoftheone-rod-outinterlock.SUSQUEHANNA-UNIT1B3.10-27(continued)Revision0 MultipleControlRodWithdrawal-RefuelingB3.10.6BASES(continued)APPLICABILITYOperationinMODE5iscontrolledbyexistingLCOs.TheexceptionsfromotherLCOrequirements(e.g.,theACTIONSofLCO3.9.3.LCO3.9.4,orLCO3.9.5)allowedbythisSpecialOperationsLCOareappropriatelycontrolledbyrequiringallfueltoberemovedfromcellswhose"fullin"indicatorsareallowedtobebypassed.ACTIONSA.1A.2A.3.1andA.3.2IfoneormoreoftherequirementsofthisSpecialOperationsLCOarenotmet,theimmediateimplementationoftheseRequiredActionsrestoresoperationconsistentwiththenormalrequirementsforrefueling(i.e.,allcontrolrodsinsertedincorecellscontainingoneormorefuelassemblies)orwiththeexceptionsgrantedbythisSpecialOperationsLCO.TheCompletionTimesforRequiredActionA.1,RequiredActionA.2,RequiredActionA.3.1,andRequiredActionA.3.2areintendedtorequirethattheseRequiredActionsbeimplementedinaveryshorttimeandcarriedthroughinanexpeditiousmannertoeitherinitiate"actionto.restoretheaffectedCRDsandinserttheircontrolrods,orinitiateactiontorestorecompliancewitBthisSpecialOperationsLCO.TheRequiredActionsdonotpreventthecompletionofthemovementofthecomponenttoasafeconservativeposition.SURVEILLANCEREQUIREMENTSSR3.10.6.1SR3.10.6.2andSR3.10.6.3PeriodicverificationoftheadministrativecontrolsestablishedbythisSpecialOperationsLCOisprudenttoprecludethepossibilityofaninadvertentcriticality.The24hourFrequencyisacceptable,giventheadministrativecontrolsonfuelassemblyandcontrolrodremoval,andtakesintoaccountotherindicationsofcontrolrodstatusavailableinthecontrolroom.REFERENCE1.FSAR,Section15.4.1.1.SUSQUEHANNA-UNIT1B3.10-28Revision0 ControlRodTesting-OperatingB3.10.7B3.10SPECIALOPERATIONSB3.10.7ControlRodTesting-OperatingBASESBACKGROUNDThepurposeofthisSpecialOperationsLCOistopermitcontrolrodtesting,whileinMODES1and2,byimposingcertainadministrativecontrols.Controlrodpatternsduringstartupconditionsarecontrolledbytheoperatorandtherodworthminimizer(RWM)(LCO3.3.2.1,"ControlRodBlockInstrumentation").suchthatonlythespecifiedcontrolrodsequencesandrelativepositionsrequiredbyLCO3.1.6,"RodPatternControl,"areallowedovertheoperatingrangefromallcontrolrodsinsertedtothelowowersei;point(LPSP)oftheRWM.Thesequenceseffectivelyimitthepotentialamountandrateofreactivityincreasethatcouldoccurduringacontrolroddropaccident(CRDA).Duringtheseconditions,controlrodtestingissometimesrequiredthatmayresultincontrolrodpatternsnotincompliancewiththeprescribedsequencesofLCO3.1.6.ThesetestsincludeSDMdemonstrations,controlrodscramtimetesting,controlrodfrictiontesting,andtestingperformedduringtheStartupTestProgram(e.g.localcriticality).ThisSpecialOperationsLCOprovidesthenecessaryexemptiontotherequirementsofLCO3.1.6andprovidesadditionaladministrativecontrolstoallowthedeviationsinsuchtestsfromtheprescribedsequencesinLCO3.1.6.APPLICABLESAFETYANALYSESTheanalyticalmethodsandassumptionsusedinevaluatingtheCRDAaresummarizedinReferences1and2.CRDAanalysesassumethereactoroperatorfollowsprescribedwithdrawalsequences.ThesesequencesdefinethepotentialinitialconditionsfortheCRDAanalyses.TheRWMprovidesbackuptooperatorcontrolofthewithdrawalsequencestoensuretheinitialconditionsoftheCRDAanalysesarenotviolated.Forspecialsequencesdevelopedforcontrolrodtesting.theinitialcontrolrodpatternsassumedinthesafetyanalysisofReferences1and2maynotbepreserved.ThereforespecialCRDAanalysesarerequiredtodemonstratethatthesespecialsequenceswillnotresultinunacceptableconsequences,shouldaCRDAoccurduringthetesting.These(continued)SUSQUEHANNA-UNIT183.10-29Revision0 ControlRodTesting-OperatingB3.10.7BASESAPPLICABLESAFETYANALYSES(continued)analyses,performedinaccordancewithanNRCapprovedmethodology,aredependentonthespecifictestbeingperformed.AsdescribedinLCO3.0.7.compliancewithSpecialOperationsLCOsisoptional,andtherefore,nocriteriaoftheNRCPolicyStatementapply.SpecialOperationsLCOsprovideflexibilitytoperformcertainoperationsbyappropriatelymodifyingrequirementsofotherLCOs.AdiscussionofthecriteriasatisfiedfortheotherLCOsisprovidedintheirrespectiveBases.LCOAsdescribedinLCO3.0.7,compliancewiththisSpecialOperationsLCOisoptional.ControlrodtestingmaybeperformedincompliancewiththeprescribedsequencesofLCO3.1.6,andduringthesetests,noexceptionstotherequirementsofLCO3.1.6arenecessary.FortestingperformedwithasequencenotincompliancewithLCO3.1.6.therequirementsofLCO3.1.6maybesuspended.providedadditionaladministrativecontrolsareplacedonthetesttoensurethatthe-assumptionsofthespecialsafetyanalysisforthetestsequencearesatisfied.Assurancesthatthetestsequence-isfollowedcanbeprovidedbyeitherprogrammingthetestsequenceintotheRWM,withconformanceverifiedasspecifiedinSR3.3.2.1.8andallowingthe.RWM=tomonitorcontrolrodwithdrawalandprovideappropriate.-controlrodblocksifnecessary,orbyverifying,conformancetotheapprovedtestsequencebyasecondlicensedoperatororotherqualifiedmemberofthetechnicalstaff.These=..controlsareconsistentwiththosenormallyappliedtooperationinthestartuprangeasdefinedintheSRsandACTIONSofLCO3.3.2.1~"ControlRodBlockInstrumentation."APPLICABILITYControlrodtesting,whileinMODES1and2,withTHERMALPOWERgreaterthantheLPSPoftheRWM,isadequatelycontrolledbytheexistingLCOsonpowerdistributionlimitsandcontrolrodblockinstrumentation.ControlrodmovementduringtheseconditionsisnotrestrictedtoprescribedsequencesandcanbeperformedwithintheconstraintsofLCO3.2.1."AVERAGEPLANARLINEARHEATGENERATIONRATE(APLHGR),"LCO3.2.2,"MINIMUMCRITICALPOWERRATIO(MCPR),"LCO3.2.3."LINEARHEATGENERATIONRATE(LHGR),"and(continued)SUSQUEHANNA-UNIT1B3.10-30Revision0 ControlRodTesting-OperatingB3.10.7BASESAPPLICABILITY(continued)LCO3.3.2.1.WithTHERHALPOWERlessthanorequaltotheLPSPof'heRWH,theprovisionsofthisSpecialOperationsLCOarenecessarytoperformspecialteststhatarenotinconformancewiththeprescribedsequencesofLCO3.1.6.WhileinNODES3and4,controlrodwithdrawalisonlyallowedifperformedinaccordancewithSpecialOperationsLCO3.10.3,"SingleControlRodWithdrawal-HotShutdown,"orSpecialOperationsLCO3.10.4,"SingleControlRodWithdrawal-ColdShutdown."whichprovideadequatecontrolstoensurethattheassumptionsofthesafetyanalysesofReference1and2aresatisfied.DuringtheseSpecialOperationsandwhileinHODE5,theone-rod-outinterlock(LCO3.9.2,"RefuelPositionOne-Rod-OutInterlock,")andscramfunctions(LCO3.3.1.1,"ReactorProtectionSystem(RPS)Instrumentation,"andLCO3.9.5,"ControlRodOPERABILITY-Ref'ueling"),ortheaddedadministrativecontrolsprescribedintheapplicableSpecialOperationsLCOs,providemitigationofpotentialreactiveexcursions.ACTIONSA.1WiththerequirementsoftheLCOnotmet(e.g.,thecontrolrodpattern-is"notincompliancewiththespecialtestsequence,thesequenceisimproperlyloadedintheRWH)thetestingisrequiredtobeimmediatelysuspended.Uponsuspensionofthespecialtest,theprovisionsofLCO3.1.6arenolongerexcepted,andappropriateactionsaretobetakentorestorethecontrolrodsequencetotheprescribedsequenceofLCO3.1.6,ortoshutdownthereactor,ifrequiredbyLCO3.1.6.SURVEILLANCEREQUIREHENTSSR3.10.7.1WiththespecialtestsequencenotprogrammedintotheRWH.asecondlicensedoperatororotherqualifiedmemberofthetechnicalstaffisrequiredtoverifyconformancewiththeapprovedsequenceforthetest.Thisverificationmustbeperformedduringcontrolrodmovementtopreventdeviationsfromthespecifiedsequence.ANoteisaddedtoindicatethatthisSurveillancedoesnotneedtobeperformedifSR3.10.7.2issatisfied.(continued)SUSQUEHANNA-UNIT1B3.10-31Revision0 ControlRodTesting-OperatingB3.10.7BASESSURVEILLANCEREQUIREMENTS(continued)SR3.10.7.2WhentheRWMprovidesconformancetothespecialtestsequence,the'testsequencemustbeverifiedtobecorrectlyloadedintotheRWMpriortocontrolrodmovement.ThisSurveillancedemonstratescompliancewithSR3.3.2.1.8.therebydemonstratingthattheRWMisOPERABLE.ANotehasbeenaddedtoindicatethatthisSurveillancedoesnotneedtobeperformedifSR3.10.7.1issatisfied.REFERENCES1.FSAR15.4.92.PL-NF-90-001-A"ApplicationofReactorAnalysisMethodsforBWRDesignandAnalysis,"July1992andSupplementl-A,August1995,andSupplement2-A,July1996.SUSQUEHANNA-UNIT183.10-32Revision0 SDMTest-RefuelingB3.10.8B3.10SPECIALOPERATIONSB3.10.8SHUTDOWNMARGIN(SDM)Test-RefuelingBASESBACKGROUNDThepurposeofthisMODE5SpecialOperationsLCOistopermitSDMtestingtobeperformedforthoseplantconfigurationsinwhichthereactorpressurevessel(RPV)headiseithernotinplaceortheheadboltsarenotfullytensioned.LCO3.1.1."SHUTDOWNMARGIN(SDH)."requiresthatadequateSDMbedemonstratedfollowingfuelmovementsorcontrolrodreplacementwithintheRPV.Thedemonstrationmustbeperformedpriortoorwithin4hoursaftercriticalityisreached.ThisSDHtestmaybeperformedpriortoorduringthefirststartupfollowingtherefueling.PerformingtheSDHtestpriortostartuprequiresthetesttobeperformedwhileinMODE5,withthevesselheadboltslessthanfullytensioned(andpossiblywiththevesselheadremoved).WhileinMODE5,thereactormodeswitchisrequiredtobeintheshutdownorrefuelposition,wheretheapplicablecontrolrodblocksensurethatthereactorwillnotbecomecritical.TheSDMtestrequiresthereactormodeswitchtobeinthestartup/hotstandbyposition.sincemorethanonecontrolrodwillbewithdrawnforthepurposeofdemonstratingadequateSDH.ThisSpecialOperationsLCOprovidestheappropriateadditionalcontrolstoallowwithdrawingmorethanonecontrolrodfromacorecellcontainingoneormorefuelassemblieswhenthereactorvesselheadboltsarelessthanfullytensioned.APPLICABLESAFETYANALYSESPreventionandmitigationofunacceptablereactivityexcursionsduringcontrolrodwithdrawal,withthereactormodeswitchinthestartup/hotstandbypositionwhileinMODE5,isprovidedbytheintermediaterangemonitor(IRH)neutronfluxscram(LCO3.3.1.1,"ReactorProtectionSystem(RPS)Instrumentation"),andcontrolrodblockinstrumentation(LCO3.3.2.1,"ControlRodBlockInstrumentation").ThelimitingreactivityexcursionduringstartupconditionswhileinMODE5isthecontrolroddropaccident(CRDA).(continued)SUSQUEHANNA-UNIT1B3.10-33Revision0 SDMTest-RefuelingB3.10.8BASESAPPLICABLESAFETYANALYSES(continued)CRDAanalysesassumethatthereactoroperatorfollowsprescribedwithdrawalsequences.ForSDMtestsperformedwithinthesedefinedsequences.theanalysesofReference1isapplicable.However,forsomesequencesdevelopedfortheSDMtesting,thecontrolrodpatternsassumedinthesafetyanalysesofReference1maynotbemet.Therefore,specialCRDAanalyses.performedinaccordancewithanNRCapprovedmethodology,arerequiredtodemonstratetheSDMtestsequencewillnotresultinunacceptableconsequencesshouldaCRDAoccurduringthetesting.Forthepurposeofthistest.theprotectionprovidedbythenormallyrequiredMODE5applicableLCOs,inadditiontotherequirementsofthisLCO,willmaintainnormaltestoperationsaswellaspostulatedaccidentswithintheboundsoftheappropriatesafetyanalyses(Ref.1).InadditiontotheaddedrequirementsfortheRWM,APRM.andcontrolrodcoupling,thenotchoutmodeisspecifiedforcontrolrodwithdrawalsthatarenotinconformancewiththeBPWS.Requiringthenotchoutmodelimitswithdrawalstepstoasinglenotch,whichlimitsinsertedreactivity,andallowsadequatemonitoringofchangesinneutronflux,whichmayoccurduringthetest.AsdescribedinLCO3.0.7,compliancewithSpecialOperationsLCOs.isoptional,andtherefore,nocriteriaoftheNRCPolicyStatementapply.SpecialOperationsLCOsprovideflexibilitytoperformcertainoperationsbyappropriatelymodifyingrequirementsofotherLCOs.Adiscussionofthecriteriasatisf'iedfortheotherLCOsisprovidedintheirrespectiveBases.LCOAsdescribedinLCO3.0.7,compliancewiththisSpecialOperationsLCOisoptional.SDMtestsmaybeperformedwhileinMODE2,inaccordancewithTable1.1-1,withoutmeetingthisSpecialOperationsLCOoritsACTIONS.ForSDMtestsperformedwhileinMODE5,additionalrequirementsmustbe,mettoensurethatadequateprotectionagainstpotentialreactivityexcursionsisavailable.Toprovideadditionalscramprotection,beyondthenormallyrequiredIRMs,theAPRMsarealsorequiredtobeOPERABLE(LCO3.3.1.1,Functions2.aand2.d)asthoughthereactorwereinMODE2.Becausemultiplecontrolrodswillbewithdrawnandthereactorwillpotentiallybecomecritical,RPSMODE2requirementsforFunctions2.aand2.dofTable3.3.1.1-1(continued)SUSQUEHANNA-UNIT1B3.10-34Revision0 SDMTest-RefuelingB3.10.8BASESLCO(continued)mustbeenforcedandtheapprovedcontrolrodwithdrawalsequencemustbeenforcedbytheRWM(LCO3.3.2.1,Function2,MODE2),ormustbeverifiedbyasecondlicensedoperatororotherqualifiedmemberofthetechnicalstaff.TheSDMmaybedemonstratedduringaninsequencecontrolrodwithdrawal,inwhichthehighestworthcontrolrodisanalyticallydetermined,orduringlocalcriticals,wherethehighestworthcontrolrodisdeterminedbyanalysisortesting.LocalcriticaltestsrequirethewithdrawalofcontrolrodsinasequencethatisnotinconformancewiththeBPWS.Thistestingwouldthereforerequirebypassingorreprogrammingoftherodworthminimizertoallowthewithdrawalof'odsnotinconformancewithBPWS,andthereforeadditionalrequirementsmustbemet(seeLCO3.10.7,"ControlRodTesting-Operating").ControlrodwithdrawalsthatdonotconformtothebankedpositionwithdrawalsequencespecifiedinLCO3.1.6,"RodPatternControl."(i.e.,'utofsequencecontrolrodwithdrawals)mustbemadeintheindividualnotchedwithdrawalmodeto-minimizethepotentialreactivityinsertionassociatedwitheachmovement.CouplingintegrityofwithdrawncontrolrodsisrequiredtominimizetheprobabilityofaCRDAandensureproperfunctioningofthewithdrawncontrolrods.iftheyarerequiredtoscram.Becausethereactorvesselheadmayberemovedduringthesetests,nootherCOREALTERATIONSmaybeinprogress.Furthermore,sincethecontrolrodscramfunctionwiththeRCSatatmosphericpressurereliessolelyontheCRDaccumulator,itisessentialthattheCRDchargingwaterheaderremainpressurized.ThisSpecialOperationsLCOthenallowschangingtheTable1.1-1reactormodeswitchpositionrequirementstoincludethestartup/hotstandbyposition,suchthattheSDMtestsmaybeperformedwhileinMODE5.APPLICABILITYTheseSDMtestSpecialOperationsrequirementsareonlyapplicableiftheSDMtestsperformedinaccordancewithLCO3.1.1,"SDM"aretobeperformedwhileinMODE5withthereactorvesselheadremovedortheheadboltsnotfullytensioned.Additionalrequirementsduringtheseteststo(continued)SUSQUEHANNA-UNIT1B3.10-35Revision0 SDNTest-RefuelingB3.10.8BASESAPPLICABILITY(continued)enforcecontrolrodwithdrawalsequencesandrestrictotherCOREALTERATIONSprovideprotectionagainstpotentialreactivityexcursions.OperationsinallotherNODESareunaffectedbythisLCO.ACTIONSA.1WithoneormorecontrolrodsdiscovereduncoupledduringthisSpecialOperation,acontrolledinsertionofeachuncoupledcontrolrodisrequired;eithertoattemptrecoupling,ortoprecludeacontrolroddrop.Thiscontrolledinsertionispreferredsince,ifthecontrolrodfailstofollowthedriveasitiswithdrawn(i.e.,is"stuck"inaninsertedposition),placingthereactormodeswitchintheshutdownpositionperRequiredActionB.1couldcausesubstantial-secondarydamage.Ifrecouplingisnotaccomplished,operationmaycontinue,providedthecontrolrodsarefullyinsertedwithin3hoursanddisarmed(electricallyorhydraulically)within4hours.Insertingacontrolrodensurestheshutdownandscramcapabilitiesarenotadverselyaffected.Thecontrolrodisdisarmedtopreventinadvertentwithdrawalduringsubsequentoperations.Thecontrolrods.canbehydraulicallydisarmedbyclosingthedrivewaterandexhaustwaterisolationvalves.Electricallythecontrolrodscanbe.disarmedbydisconnectingpowerfromallfourdirectionalcontrolvalvesolenoids.RequiredActionA.1ismodifiedbyaNotethatallowstheRWMtobebypassedifrequiredtoallowinsertionoftheinoperablecontrolrodsandcontinuedoperation.LCO3.3.2.1,"ControlRodBlockInstrumentation,"ActionsprovideadditionalrequirementswhentheRWHisbypassedtoensurecompliancewiththeCRDAanalysis.TheallowedCompletionTimesarereasonable,consideringthesmallnumberofallowedinoperablecontrolrods,andprovidetimetoinsertanddisarmthecontrolrodsinanorderlymannerandwithoutchallengingplantsystems.ConditionAismodifiedbyaNoteallowingseparateConditionentryforeachuncoupledcontrolrod.ThisisacceptablesincetheRequiredActionsforthisConditionprovideappropriatecompensatoryactionsforeachuncoupledcontrolrod.ComplyingwiththeRequiredActionsmayallowforcontinuedoperation.Subsequentuncoupledcontrolrods(continued)SUSQUEHANNA-UNIT183.10-36Revision0 SDMTest-RefuelingB3.10.8BASESACTIONSA.l(continued)aregovernedbysubsequententryintotheConditionandapplicationoftheRequiredActions.B.1WithoneormoreoftherequirementsofthisLCOnotmetforreasonsotherthananuncoupledcontrolrod,thetestingshouldbeimmediatelystoppedbyplacingthereactormodeswitchintheshutdownorrefuelposition.ThisresultsinaconditionthatisconsistentwiththerequirementsforMODE5wheretheprovisionsofthisSpecialOperationsLCOarenolongerrequired.SURVEILLANCEREQUIREMENTSSR3.10.8.1Performanceoftheappli'cableSRsforLCO3.3.1.1,Functions2.aand2.dwillensurethatthereactorisoperatedwithintheboundsofthe.safetyanalysis.rSR3.10.8.1SR3.10.8.2andSR3.10.8.3LCO3.3.1.1,Functions2.aand2.d.madeapplicableinthisSpecialOperationsLCO,arerequiredtohaveapplicableSurveillancesmettoestablishthatthisSpecialOperationsLCOisbeingmet.However,thecontrolrodwithdrawalsequencesduringtheSDMtestsmaybeenforcedbytheRWM(LCO3.3.2.1,Function2,MODE2requirements)orbyasecondlicensedoperatororotherqualifiedmemberofthetechnicalstaff.Asnoted,eithertheapplicableSRsfortheRWM(LCO3.3.2.1)mustbesatisfiedaccordingtotheapplicableFrequencies(SR3.10.8.2),orthepropermovementofcontrolrodsmustbeverified(SR3.10.8.3).Thislatterverification(i.e.,SR3.10.8.3)mustbeperformedduringcontrolrodmovementtopreventdeviationsf'romthespecifiedsequence.Thesesurveillancesprovideadequateassurancethatthespecifiedtestsequenceisbeingfollowed.(continued)SUSQUEHANNA-UNIT1B3.10-37Revision0 SDMTest-RefuelingB3.10.8BASESSURVEILLANCEREQUIREMENTS(continued)SR3.10.8,4PeriodicverificationoftheadministrativecontrolsestablishedbythisLCOwillensurethatthereactorisoperatedwithintheboundsofthesafetyanalysis.The12hourFrequencyisintendedtoprovideappropriateassurancethateachoperatingshiftisawareofandverifiescompliancewiththeseSpecialOperationsLCOrequirements.SR3.10.8.5Couplingverificationisperformedtoensurethecontrolrodisconnectedtothecontrolroddrivemechanismandwillperformitsintendedfunctionwhennecessary.Theverificationisrequiredtobeperformedanytimeacontrolrodiswithdrawntothe"fullout"notchposition,orpriortodeclaringthecontrolrodOPERABLEafterworkonthecontrolrodorCRDSystemthatcouldaffectcoupling.ThisFrequencyisacceptable,consideringthelowprobabilitythatacontrolrodwillbecomeuncoupledwhenitisnotbeingmovedaswellasoperatingexperiencerelatedtouncouplingevents.SR3.10.8.6-CRDchargingwaterheaderpressureverificationisperformedtoensurethemotiveforceisavailabletoscramthecontrolrodsintheeventofascramsignal.Aminimumaccumulatorpressureisspecified,belowwhichthecapabilityoftheaccumulatortoperformitsintendedfunctionbecomesdegradedandtheaccumulatorisconsideredinoperable.Theminimumaccumulatorpressureof940psigiswellbelowtheexpectedpressureof1100psig.The7dayFrequencyhasbeenshowntobeacceptablethroughoperatingexperienceandtakesintoaccountindicationsavailableinthecontrol.room.REFERENCE1.PL-NF-90-001-A,"ApplicationofReactorAnalysisMethodsforBWRDesignandAnalysis,"July1992andSupplement1-A,August1995,andSupplement2-A,July1996.SUSQUEHANNA-UNIT1B3.10-38Revision0