ML20134H459

From kanterella
Revision as of 06:11, 2 July 2020 by StriderTol (talk | contribs) (StriderTol Bot insert)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Rev 1.8 to Chapter 10 Odcm,Zion Annex Index
ML20134H459
Person / Time
Site: Zion  File:ZionSolutions icon.png
Issue date: 10/31/1996
From:
COMMONWEALTH EDISON CO.
To:
References
PROC-961031, NUDOCS 9611140107
Download: ML20134H459 (24)


Text

-. . . ~ . _

X24 AI.L Document Control Desk Director of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission

^

Mail Station PI-137 Washington,DC 20555 l

October 24, 1996 i

Attached is a revision to the Offsite Dose Calculation Manual, Zion Annex, Chapter 10. Please update your manual as follows i

Remove:

Zion Chapter 10, Revision 1.7  !

Insert:

l 1

Zion Chapter 10, Revision 1.8 l

I Please sign below indicating your manual has been updated and i that your controlled copy number is correct.  ;

t Name Date  !

Return to:  !

Comed i r

Central' Files  !

1400 Opus Place, 4th Floor ~  !

Downers Grove, IL 60515 ,

L

-or-Central Files I 4th Floor Downers Grove I 1

i 009 i

4

,g 1300G 17611140107 961031295 PDR ADOCK O P l l

1 -- . - . . .

. . . - . .--.-. - - ....-. .. - - _ . . _ ~ _ _ . . . . - . . . . - . . ~ . _ _ . - _ . - . - . - _ . . -

2 '

~ ZION Revision 18 i -

, October 1996

i ZION ANNEX INDEX '

CHAPTER 10 l REVISION 1.8 1

1 i

1 l

1  :

1 i

odemtzen/ziort4wpf 10-i

- .. . -. . ~ . . _ . . - - - - --. -

ZION Rzvtsion 1,8 October 1996 CHAPTER 10

'i RADIOACTIVE EFFLUENT TREATMENT AND MONITORING TABLE OF CONTENTS l

PAGE ,

i 10.1 AIRBORNE RELEASES .  ;

10 1 10.1.1 System Description . . .. . , 10-1 10.1.1.1 Waste Gas Holdup System . .

10-1 )

10.1.1.2 Ventilation Exhaust Treatment System 10-1 10.1.2 Radiation Monitors . . ... . .. . . . 10-1 i 10.1.2.1 Final Vent Stack Emuent Monitors . .

10 1 10.1.2.2 Auxiliary Building Vent Emuent Monitors . . . . . . . 10-2 10.1.2.3 Containment Purge Emuent Monitors . . .... . 10-2 i 10.1.2.4 Waste Gas Dccay Tank Monitors . . . . . . 10-2 3 10.1.2.5 Condenser Air Ejector Monitors . . . . . . 10-3 10.1.3 Alarm and Trip Setpoints . . . . . . . . .. . 10-3 <

10.1.3.1 Setpoint Calculation . . . ... . .. . .. .. 10-3 ,

10.1.3.2 Release Limits .... . . . . . 10-3 l 10.1.3.3 Release Mixture . . . . . ..... . . . . . . 10-4 10.1.3.4 Conversion Factors . . . . . . . . . , 10-4 i 10.1.3.5 HVAC Flow Rates . . . .. . . . . .. . 10-5  ;

10.1.4 Allocation of Effluents from Common Release Points . .. .. 10-5 10.1.5 Dose Projections foi Batch Releases . . ,, , 10-6 10.2 LIQUID RELEASES . . . ... . . . 10-6 i 10.2.1 System Description . ... .. . . . . . . 10-6 10.2.1.1 Lake Discharge Tanks . . .. . ... .. . 10-6 ,

10.2.1.2 Turbine Building Fire Sump .. . . . . . . . . . 10-6 i

10.2.2 Radiation Monitors . . . . . .. ... . 10-6 10.2.2.1 Lake Discharge Tank Monitors . . . .

10-6 10.2.2.2 Turbine Building Fire Sump Monitor . .. . .. 10-6 l 10.2.3 . Alarm and Trip Setpoints . ... . . . . 10-7 l

10.2.3.1 Setpoint Calculation .. . .. . . . . . 10-7 i

odem/ zen /zi0r18 wpf 10-ii l

1 i

ZION Revision 18 l October'1996

-l CHAPTER 10 RADIOACTIVE EFFLUENT TREATMENT AND MONITORING TABLE OF CONTENTS (Cont'd)

PAGE 10.2.3.2 Discharge Flow Rates 10-8 10.2.3 2.1 Lake Discharge Tank Discharge Flow Rate 10-8 10.2.3.2.2 Turbine Building Fire Sump Discharge Flow Rate 10-8 10.2.3.3 Release Limits 10-8 10.2.3.4 Release Mixture 10-8 10.2.3.5 Conversion Factors 10-9 10.2.3.6 Liquid Dilution Flow Rates . . 10-9 10.2.4 Allocation of Effluents from Common Release Points . 10-9 10.2.5 Projected Concentrations for Releases . 10-9 10.3 SOLIDIFICATION OF WASTE / PROCESS CONTROL PROGRAM 10-9 O

O odem/zon/ziori 8 wpf 10-iii

.__ ___ _ . . .._. .. .__...._.__m,_.._.._.. _1___ _ . . . . . _ . _ . _ . . _ _ _ _ _ . . _ . _ _ _ . . _ _ . . _ _ . _ _ . _ . _

i

! . Z!ON Ravision 1.8 i i
  • October 1996 i CHAPTER 10 4

i  !

j I LIST OF TABLES  !

a- ,

I i NUMBER IIILE PAGE {

l 10-1 Assumed Composition of the Zion Station Noble Gas Effluent 10-10 i .,

2 HVAC Exhaust Fan Capacities '

11 l 10-3 Liquid Dilution Flow Pump Capacities 10-12 I

1t

.~~ ,

t

)

a  :

i '

t 6

a e s = ,v.a e

g d,

i j i i

$ I e

f 1

1 e-l 1

l i

i odem/ tion /r10ri-8 wpf 10-iv

~

1 ZION Rsvision 1.8 .

October 1996

  • CHAPTER 10 l LIST OF FIGURES Ol NUMBER TITLE PAGE 10-1 Simplified Gaseous Radwaste and Gaseous Effluent Flow Diagram 10-13 10-2 Simplified Liquid Radwaste Processing Diagram 10-15 10-3 Simplified Liquid Effluent Flow Diagram 10-16 10-4 Simplified Solid Radwaste Processing Diagram 10-17 10-5 Example NidC Monitor Response 10-18 9

l 9

odem/ zion /zior18 wpf 10-v

ZION Revision 1.0

~.

October 1996 CHAPTER 10 1

RADIOACTIVE EFFLUENT TREATMENT AND MONITORING 10.1 AIRBORNE RELEASES 10.1.1 System Description 1

A simplified gaseous radwaste and gaseous effluent flow diagram is provided in Figure 10-1. The principal release points for potentially radioactive airbome effluents are the two

auxiliary building vent stacks (designated Unit i Vent Stack and Unit 2 Ver t Stack in
j Figure 10-1). In the classification scheme of Section 4.1.4 each is classified as a ground  ;

level release point (see Table A-1 of Appendix A).

j 10.1.1.1 Waste Gas Holdup System

- The waste gas hoidup system is designed and installed to reduce radioactive gaseous j i effluents by collecting reactor coolant system off-gases from the reactor coolant system 4

l and providing for delay or holdup to reduce the total radioactivity by radiodecay prior to release to the environment. The system is described in Sechon 11.1.2.3 of the Zion

!' FSAR.

i

~

[ 10.1.1.2 Ventilation Exhaust Treatment System i Ventilation exhaust treatment systems are designed and installed to reduce gaseous j

. radioiodine or radioactive material in particulate form in gaseous effluents by passing  ;

ventilation or vent exhaust gases through charcoal adsorbers and/or HEPA filters prior to j release to the environment. Such a system is not considered to have any effect on noble l gas effluents. The ventilation exhaust treatment systems are shown in Figure 10-1.

l Engineered safety features atmosphenc cleanup systems are not considered to be ventilation exhaust treatment system components.

10.1.2 Radiation Monitors 10.1.2.1 Final Vent Stack Effluent Monitors i Monitors 1RIA-PR49 (Unit 1) and 2RIA-PR49 (Unit 2) continuously monitor the final effluent from the vent stacks. Both vent stack monitors feature automatic isokinetic . ,

sampling and grab sampling. l During normal operation, all three noble gas channels (Iow range, mid range, high range) .l are on line and active. A high alarm condition from the mid and/or high range noble gas {

channels isolates the particulate, iodine, low range noble gas and mid range noble gas i channels. The high alarm signal diverts sample flow through a sample cart (particulate and iodine) and then to the high range noble gas channel.

~ ~ ~ ~ ' -'

O

ZION R:;vis'on 18 .

October 1996 .

Upon receipt of the high alarm, the control room operator will notify the health physics group and reduce the release rate as appropnate. Due to conservatism built into the setpoint calculations (Section 10.1.3), there is an adequate margin between the high alarm setpoint and the release limit to accommodate this procedure.

Pertinent information on these monitors is provided in UFSAR Table 11.5-1.

10.1.2.2 Auxiliary Building Vent Effluent Monitors Monitors 1RT-PR25 (Unit 1), 2RT-PR25 (Unit 2) and ORE-0014 (common) continuously monitor the effluent from the auxiliary building vent stacks.

No automatic isolation or control functions are performed by these monitors. On high alarm, the control room operator will notify the health physics group and reduce the release rate as appropnate. Because of the conservatism built into the setpoint calculations (Section 10.1.3) there is an adequate margin between the setpoint and release limit to accommodate this procedure.

i Pertinent information on monitor ORE-0014 is provided in UFSAR Table 11.5-2.

10.1.2.3 Containment Purge Effluent Monitors Monitors 1RT-PR09 (Unit 1) and 2RT-PR09 (Unit 2) continuously monitor the effluent from the Unit 1 and Unit 2 containments, respectively. On high alarm, the monitors automatically initiate closure of the four air-operated butterfly valves (RV0001/2/3/4 purge valves for each unit).

Pertinent information on these monitors is provided in UFSAR Tables 11.5-1 and 11.5-2.

Monitors 1(2)RIA-PR40 continuously monitor the Unit 1(2) atmosphere. On high alarm, the monitors automatically initiate closure of valves RV0001-RV0006 inclusive.

10.1.2.4 Waste Gas Decay Tank Monitors Monitors OR1A-PR10 (Channels 1 and 3) continuously monitor the noble gas activity released from the gas decay tanks.

On high alarm, the monitors automatically initiate closure of the valve ORCV-WG014 thus terminating the release.

Pertinent information on these monitors is provided in UFSAR Section 11.5.2.2.1 and Table 11.5-2.

The monitor is capable of collecting particulate and iodine samples for post release quantification.

odenVzmn/zi0rt-8 wpf 10-2

ZION Rsvision 18

  • {

October 1996 10.1.2.5 Condenser Air Ejector Monitors Monitors 1RE-0015 and 2RE-0015 continuously monitor the condenser air ejector gas from Units 1 and 2, respectively. No control device is initiated by these channels.

l 1

Pertinent information on these monitors is provided in UFSAR Table 11.5-2. '

10.1.3 Alarm and Trip Setpoints 10.1.3.1 Setpoint Calculation 2

  • The effluent noble gas monitor setpoints are conservatively based on the assumption that a release is occumng simultaneously for all seven gaseous release points at the maximum expec'4d flow rate for each pathway. Furthermore, the setpoints are chosen such that an occurrence of simultaneous high alarms on all seven pathways would correspond to a station release rate of one half of the Technical Specification limit. .

P , s 0.5 x Q, x 1/F" x K' x C" (10-1) a P,= Setpoint for monitor, M, on release path, P. (cpm]

s  :

0.5 = Factor to reduce release rate by 50%.  !

Q, = Total Allowed Release Rate, Vent Release (pCi/sec]

F' = Flow rate through Release Path, P.

[ cc/sec]

K' = Factor to apportion a fraction of the total release rate, Q,, to release path, Q -

, C" = Conversion Factor for monitor, M (cpm per pCi/cc] ,

i- 10.1.3.2 Release Limits Alarm and trip setpoints of gaseous effluent monitors are established to ensure that the release rate limits of the RETS are not exceeded The release limits are found -

2 by solving Equations 10-2 and 10-3 for the total allowed release rate of vent l releases, Q,.

! (1,11)0,, { ((f,) < 500 mrem /yr (10-2)  !

Ot , [ { ( f,) D~(X/0), exp(-1,R/3600u,)

+ 1.11 V,]} < 3000 mrem /yr 4

)

odem/ zion /z10rt-8 wpf 10-3

ZION Rsvision 18 -

October'1996 . -

j The summations are over noble gas radionuclides i.

f, Fractional Radionuclide Composition The release rate of noble gas radionuclide i divided by the total release rate of all noble gas radionuclides.

Q, Total Allowed Release Rate, [pCi/sec)

Vent Release The tota l allowed release rate of all noble gas radionuclides released as vent releases.

The remaining parameters in Equation 10-2 have the same definitions as in '

Equation A-8 of Appendix A. The remaining parameters in Equation 10-3 have the same definition as in Equation A-9 of Appendix A.

Equation 10-2 is based on Equation A-8 of Appendix A and the RETS restriction on whole body dose rate (500 mrem /yr) due to noble gases released in gaseous effluents (see Section A.1.3.1 of Appendix A). Equation 10-3 is based on Equation A-9 of Appendix A and the RETS restriction on skin dose rate (3000 mremlyr) due to noble gases re: eased in gaseous effluents (see Section A.1.3.2 of Appendix A).

Equations 10-2 and 10-3 can each be solved for a value of Q . The monitor alarm and trip setpoints will be established based on the equation which yields the smaller release limit, Q,. The exact settings are selected to ensure that 10 CFR 20 limits are not exceeded.

Calibration methods and surveillance frequency for the monitors will be conducted as specified in the RETS.

10.1.3.3 Release Mixture in the determination of alarm and trip setpoints, the radioactivity mixture in exhaust air is assumed to have the radionuclide composition of Table 10-1. This mixture was conservatively chosen based on station isotopic release data averaged over a period of 7 years (1977 through June 1984).

10.1.3.4 Conversion Factors The response curves used to determine the monitor count rates are chosen in order to best match the reference noble gas mix. Because Xe-133 and Xe-135 comprise 83.6% and 8.79% of this mix respectively, the Xe-133/Xe-135 90%/10% curves are  :

used to ensure that the setpoints would be conservative with respect to quantity. l Example curves are shown in Figure 10-5.

i l

odemtziontzior1-a wpf 10 4 l

. _ . _ . _ _ - ._.m _ _ ._ _ . _ , _____ _ . - . _ _ . _ . _ . _ . _ . _ . - - _ . _ . . . . _ _ _. _ . .

I -

, ZION Rsvision 18 r -

October 1996 i

) 10.1.3.5 HVAC Flow Rates 1-i HVAC flow rates are computed for 1(2)RT-PR25, ORE-0014 and 1(2)RIA-PR49

) based on the number of operating fans in the monitored flow path.

j Fu = { { F ,x N,  !

i (10-4) I

- )

F. = Total Flow in Monitored Flow Path [ cc/sec]

I  :

F, = Flow from fan i in path p. [ cc/sec]  !

t

N,- = Number of fans, in operation The maximum flow for each fan is used for setpoint calculations because this 1

maximizes the flow, and therefore minimizes the calculated monitor sensitivity which l 4- is conservative.  :

I Pertinent data for the fans is provided in Table 10-2.

. l

{ {c

/

4 HVAC flows for the remaining monitors are conservatively fixed at upper bound  !

values. They are listed below.

4 i Monitor Flow in cc/sec I

+

!- ORIA-PRio 6.61E5 '(  !

! .g 1(2)RE-0015 7.32E5 ,

i-1RT-PR09A 1.65E6 (vent mode)  ;

, 1.46E6 (mini-purge mode) f 1.46E7 (purge mode) j 2RT-PR09A 4.35E6 (vent mode)*  ;

4.11E6 (mini-purge mode)  !

1.99E7 (purge-mode)  !

2.70E6 (routine, hot lab only) t - 4 4

10.1.4 Allocation of Effluents from Common Release Points -

l~ Radioactive gaseous effluents released from the auxiliary building miscellaneous .

, ventilation system and the gas decay tanks are compnsed of contnbutions from i

both units. Under normal operating conditions, it is difficult to apportion the  ;

radioactivity between the units. Consequently, allocation normally is made evenly  !

} between units.  !

l l

[

i

' Flow greater than Unit i due to " hot lab" hood exhaust fan flow. j odemmon/ziort swpf 10-5 i

4 l l .-,.a..

ZION Revision 1.8 -

October '1996 10.1.5 Dose Projections for Batch Releases Projected doses are calculated before purging the containment or venting the waste gas decay tanks. Per procedure, a representative sample is obtained and analyzed, and the total release is calculated. Pnor to the release the projected dose rate (in mrem / year) is calculated based CS Se assumption that the release is continuous for the entire year.

10 2 LIQUID RELEASES 10.2.1 System Description A simplified liquid waste processing diagram is provided in Figure 10-2. A simplified liquid effluent flow diagram is provided in Figure 10-3.

The liquid radwaste treatment system is designed and installed to reduce radioactive liquid effluents by collecting the liquids, providing for retention or holdup, and providing for treatment by demineralizer for the purpose of reducing the total radioactivity prior to release to the environment. The system is described in Section 11.1.3 of the Zion FSAR.

10.2.1.1 Lake Discharge Tanks There are two take discharge tanks (OA and 08, 30,000-gallon capacity each) which receive liquid waste before discharge to Lake Michigan.

10.2.1.2 Turbine Building Fire Sump The turbine building floor and equipment drain tanks receive turbine building waste which is released to the fire sump for processing by the waste water treatment facility and ultimate discharge into Lake Michigan. The discharge constitutes a low level radioactive release.

10.2.2 Radiation Monitors

  • 10.2.2.1 Lake Discharge Tank Monitors Monitors ORT-PR04 and ORT-PROS are used to monitor all releases from the lake discharge tanks. On high alarm, the monitor automatically initiates closure of a valve to prevent further releases. The valve is located over 250 feet downstream of the monitor to allow closure prior to exceeding release limits. The monitor setpoints are found by solving Equation 10-5 for release setpoint P.

Pertinent information on these monitors is provided in UFSAR Table 11.5-3.

10.2.2.2 Turbine Building Fire Sump Monitor Monitor ORT-PR25 continuously monitors the discharge line from the fire sump pumps to the waste water treatment facility. On high alarm, the monitor automatically trips all of the fire sump pumps, thereby containing the liquid in the odem/ zen /zior1-a wpf 10-6

ZION R vision 1.8 October 1996 turbine building. The monitor setpoints are found by solving Equation 10-5 for p release setpoint P.

I b

Pertinent information on the monitor is provided in UFSAR Table 11.5-3.

10.2.3 Alarm and Trip Setpoints 10.2.3.1 Setpoint Calculation i Alarm and tnp setpoints of liquid effluent monitors at the principal release points are established to ensure that the limits of the Technical Specifications and 10 CFR 20 are not exceeded in the unrestricted area. The monitor setpoints are found by solving Equation 10-5 for a conservative mixture of radionuclides found in liquid effluents.

P s K x (C.,)(F'/F') (10-5)

P Release Setpoint (pCi/mL) .

The alarm setpoint for radioactivity to be released in liquid effluents. .

C, Maximum Permissible Concentration (pCi/mL]

F8 Dilution Flow Rate (gpm] l The flow rate of the radwaste dilution stream (condenser cooling water).

F' Discharge Flow Rate [gpm) j The flow rate from the lake discharge tank or fire sump as appropriate.

i K Factor of conservatism. '

K = 0.5 for take discharge tank K = 1.0 for for sump i i

l I

i i

l l

' m odem/ zen /ziort-8 wpf 10-7 l

l I

~

ZION R2veion 18 October 1996 .

10.2.3.2 Discharge Flow Rates 10.2.3 2.1 Lake Discharge Tank Discharge Flow Rate Prior to each batch release, the water is recirculated, sampled, and analyzed.

The results of the analysis of the waste sample determine the discharge rate of each batch as follows:

F',, = (C,,)(F(/C) (10-6)

F',, Maximum Permitted Discharge Flow Rate [gpm)

The maximum permitted flow rate from the lake discharge tank. [gpm)

F% Actual Dilution Flow Rate (gpm)

The actual flow rate of the radwaste dilution stream (based on pump curves).

C Sample Radioactivity Concentration [pCi/mL]

The concentration of radioactivity in the lake discharge tank based on measurements of a sample drawn from the tank.

C., has the same definition as in Equation 10-5.

10.2.3.2.2 Turbine Building Fire Sump Discharge Flow Rate This release path is a continuous discharge. Consequently, the release rate F' in Equation 10-6 is set equal to ma-imum design capacity for the pumps on the effluent of the waste water treatment facility.

10.2.3.3 Release Limits Release limits are determined from 10 CFR 20.

10.2.3.4 Release Mixture 1

The release mixture used for setpoint determination is the worst case radionuclide i mix chosen on the basis of station isotopic analysis data reviewed for 1978. I i

l 1

1 odemtziorvziort-8 wpf 10-8 01 l

. .. -..... _ . _ .-.-..~. - . ..- - _ ..... ~ ~.~....-.-. ....- -. _ . - -

ZION Ravision 18

,4 - -

. October 1996 10.2.3.5 Conversion Factors

! The conversion factor for ORT-PR25 (fire sump monitor) is based on detector j response curves for 1-131. The conversion factors for monitor ORT-PR04 and ORT-PRO 5 are based on detector response curves for Cs-137.

10.2.3.6 , Liquid Dilution Flow Rates a

g Dilution flow rates are computed based on the number of operating pumps in the j flow path. '

! l t

i F' ;

=

{ r F* x N,

' (10-7) ,

y

F* = Dilution Flow Rate {gpm)

}

F', ' = Dilution Flow Rate from pump i (gpm] f I

h N, = Number of pumps of type i operating i ,

Pertinent flow data for the pumps is provided in Table 10-3. *

10.2.4 Allocation of Effluents from Common Release Points 'l

. L

!- t Radioactive liquid effluents released from the lake discha(ge tank and turbine  :

- building fire sump are comprised of contributions from both units. Under normal operating conditions, it is difficult to apportion the radioactivity between the units. {

i Consequently, allocation is based on the unit discharge canal used for dilution.  !

6

[ '10.2.5 Projected Concentrations for Releases i . i a-Projected concentrations are calculated before initiating liquid discharges. Per {

procedure, a representative sample is obtained and analyzed and the projected concentrations are calculated using conservative dilution flows prior to release. t Because the fire sump is a continuous release, it is sampled daily and isotopic ~!

analyses are performed weekly  :

l Doses due to liquid effluents are calculated as required by the RETS.

10.3 SOLIDIFICATION OF WASTE / PROCESS CONTROL PROGRAM i  !

The process control program (PCP) contains the 'sampling, analysis, and i

i. formulation determination by which solidification of radioachve wastes from liquid  !
t. systems is ensured. 1 1

l

.l i

j

l. odem/ zion /zior1.a wpr 10-9 4'

. . . . - . - . ~ , - , . _ , , , , . . . - - , -- , - . , _ , , - , . _ , , - - - , . . . - - - - , , . , ,

i ZION R; vision 1.8 -

October i996 .

Table 10-1 Assumed Composition of the Zion Station Noble Gas Effluent Isotope Percent of Effluent Ar-41 1.92E-1 Kr-83m 1.0E-4 Kr-85m 2.24E-1 Kr-85 5.50E-2 Kr-87 1.22 Kr-88 3.19 Kr-89 1.0E-4 Xe-131m 1 85 Xe-133m 7.56E-1 Xe-133 8.36E1 Xe-135m . 03E-1 Xe-135 8.79 Xe-137 1.0E-4 Xe-138 4.37E-3 5

Note: Based on station isotopic release data averaged over 7 years (1977 through June 1984).

odem/ zion /ziori a wpf 10 10

ZION Revision 1.8

., October 1996

) . TABLE 10-2

g- HVAC EXHAUST FAN CAPACITIES 4

FAN CC/SEC CFM CFH y #1 Aux. Bida OA Exh. Fan 3.16 x 10' 6.70 x 10' 4.020.000; OB Exh. Fan 3.16 x 10' 6.70 x 10' 4,020.000 OC Exh. Fan 3.16 x 10' 6.70 x 10' 4,020,000-

  1. 2 Aux. Bida.

1 OD Exh. Fan 3.16 x 10' 6.70 x 10' 4,020.000 OE Exh. Fan 3.16 x 10' 6.70 x 10* 4.020,000

0F Exh. Fan 3.16 x 10' 6.70 x 10' 4,020,000 i
  1. 1 Purae Exh.

i 1 A Purge Fan 1.46 x 10' 3.10 x 10' '1,860,000 1B Purge Fan 1.46 x 10' 3.10 x 10' 1,680,000 H2 Purge Fan 1A 1.70 x 10 5 3.60 x 10' 21,600

- H2 Purge Fan 18 1.75 x 10 5 3.40 x 10 2- 22,200

  1. 2 Purae Exh.

2A Purge Fan O 2B Purge Fan H, Purge Fan 2A 1.65 x 10' 1.72 x 10' 1,82 x 10 5 3.50 x 10' 3.65 x 10' 3 85 x 102 2,102,400 2,188.800 23,100 H2 Purge Fan 28 1.75 x 10' 3.71 x 102 22,260 Hot Lab Exh. 0A 1.50 x 10' 3.18 x 10 8 191,000 Hot Lab Exh. OB 1.18 x 10' 2.51 x 10 8 150,600 Misc. Exh.

Comp & Misc. Exh. 0A 2.81 x 10' 5.95 x 108 357,000 Comp & Misc. Exh 08 2.81 x 10' . 5.95 x 10 8 357,000 Ser. Bida.

Decon Rm. Exh. 1.91 x 10' 4.04 x 10' 242,580 Welding Rm. Exh. 1.09 x 10' 2.30 x 10 8 -138,000 Sandblast Rm. Exh. 9.44 x 105 2.00 x 108 120,000 Cave Exh. . 6.14 x 10 5 1.30 x 10' 78,000 Machine Shop Exh. 1.42 x 10' 3.00 x 10 8 180,000 O

odem/ zion /zi0rt wpf 10-11 l

i

1 ZION Revision 18 -

October '1996 ,

TABLE 10-3 LIQUID DILUTION FLOW PUMP CAPACITIES ,

PUMP NUMBER OF PUMPS DILUTION FLOW RUNN!NG CIRCULATING WATER 1 250,000 gpm CIRCULATING WATER 2 530,000 gpm CIRCULATING WATER 3 640,000 gpm SERVICE WATER 1 13,500 gpm SERVICE WATER 2 27,000 gpm SERVICE WATER 3 40,500 gpm O

O oderwzervriori-a wpf 10 12

r ' ,  :,  ;  ;  : i iu L

' A a l

c M.

r m

A A n ?

M EO T

St A 4

N AD N W W)

D O2

.O I 1

.. A. m A LF

. Ea 0 RFO 1 ST Cu L

E UN T 1

- 6 Ls A R U OE EU E 8 9 , Cn G SL E 1 1 9 .* "

=."

l_ o I F AT H GFE(S nr oe Mn DS _

i b s o . EU .

RO ivt e c .

-M

@J. FO LE PS MA l

=

g M E S G

- n I e

.m

. s G -

- , f- .

u_- , -

. .e i

m '

.a ,. -

a r

m ,

g , _

a i . ,

jl.!

D

  1. i .7 w g _

lo F

t n

= . I m

eu = .

E s

o u '

.. s e ;V _

&i3 n3 _

1 e

s a

=

.:. ,: .. g : g ::::: . :

l o a 0

G _

OO N I

Z 1

e r

u g

d a

n e

~

lI

&c P -

3 1

0 1

i F t s ,

a 1 w _ -

d R

a c4 -

s u "

o -

am a

e s " .g m

u _-

m aa ~. .

G ~

,)

d .

ie \ g f

i lp ,= .

im S

3=

u

.' 7. t 7

.' ,n.

B4. n - e.m

- i i m , . u s

. e

Ia

~ . .

r se 1, ' .

s=

=

=

. > 3i_,

34t = . . a t

m  ;

m  :.J fp

m. 6 " u .

U A .7 ..; -

- e w

. - lg

. - 1 s ' - - r

.: n : , I - -

o t

. u . - z

-( m l

=

t n

e r

O

/

- i3 u l m

a= -

l

- }

c o

c o

- }

- .- ' _S ,,

,.,m t L

i

[- 7 ---- ar-8,.ar- i M. S'ae"lMe i

6 -j-l ~('*h M I

RCFC(1 of 5) l p

! h hEG- -hini7.r]-2 9 >R i $

(

int-Amo4A a a g-_

g Puny (roei san r. _ l

_y UU inE Anna a:

mi a-ve)

, i 4 =

l 4-H I RIA PR40

'" =

eiiii.aium r-_

l , n L. _... . . . . _ _ _

hhh l uar i e=*=

1 RHR Gee RHR CHG gges BA RW j PMP Desey HX PMP EVAP EVAP '

! DD H DD DD DD DD n==

Unit 2 l

4

.e - Cubistes 4 o u o o i r u o o i i

u -o u l From A g = = pi =

p gp a

! 1RT PR15 2RT-PR15 1

nerna.aP aux atna cumscuis v ,

4 44sco l LBBiD

! PE

_- o.s.sions n Pam g

! Area w Dust i m  :

. L.J Radiasion Deseosor ,

i l

@t.swAnnesans j E "'"^ ""- g R.,,,e es. l

) -h charo.alPher 3 High Range Gee OPP 51TE DOSE CALCULATION MANUAL  :

amena un DON STATION l l

{ looidnete Prot

  • FIGURE 101 l

NOTE: Mow rates are desi values (not acsua4 in CFM.gn o-G G'-

SBAPUFIED GASEOUS RADWASTE AND GASEOUS EFFLUENT P.OW DIAGRAM i

j a odemtrion/ziort-8 wpf 10-14 (SHEET 2 OF 2) l i

%-di i i d -t4i i- 1  ; e s .,

, O 11 ijo 3 i'

  • ppb 21 i)i is I (gj)ii) ld I h Ih .

9@

I .

j

,i

{.a-m Ek. g O '

~BI rgii v f m mf.,

i "

vi' s '

t bi  :- hl y-1 11,cl t i-i V

!" " 9, O z. z g,ghg{j *!$k N el lic* I i

i %< i'-

i

  • h.1 1

g g ,o g j b @}$\ b l

. , \f1 g

g

f o m4 11

, ii, 4

I

-. . _ _ _ _ _ ..____.__..___.__,m.

_ . _ _ . . . _ _ . . _ . . _ _ _ . _ _ _ _ _ _ . . _ _ _ _ ~ _ _ . . _ _ _ _ _ _ _ . _ _ _ _ . . _ _ _

i

~

ZION Rev;sion 1 S -

! **

  • Octoesr 1996 -

~

r----

! I 1

m.m mm A

"",4", V l

W

=

! a i n

=

, === nus i

senmes

  1. g TRIE

,i

=

i=new seus IMeests 1

I t

, f.ngsem.me ums m

=s= _

~

<=murns ====== cammmen - ,",,'"',',

mien IMit IAstt IP 1'

use wie sumus osamus = == summa asisa um W 8EEI === =

j ,, , W Taas u

j

[ [ n i I l

j f -"'"*'

, I

. I

- , -- i m._

9 - - ,

CRWeblM h 15 M

16

~

~ M x s ~ --

x - -

um If na m a

el di meus it uma iP

.aut i 1 OFPSITE DOBE CALCULATION MANUAL i

[ answa====sa unna ZION STATION

-- sammmu PIGUME 10 3 M uennuarmassneue SIMPUFIED UQUID EFFLUENT i iN.wasme. R.OW DIAGRAM 3  :. n . u ..e.

i.unwnumen w eu== '

s odem/zentriort-8 wpf 10 16

_ . . , ---,L a - r.- 4 .A L4---4 n.--a- mwa uk a4+-u- +a.'* ---ss.we.-

Aa ' ~=a ---A=-m-- 4e a,A -

' l

, ZION Revis.cn 18  ;

. Octobsr 1996 Figure 10-4 Simplified Solid Radwaste Processing Diagram v

seneses panan. oomm 4 mr uoms AL Reesseses s.e o.mm and snow a wn m .o s

n,..

-a  : %

med Domm Rosm Tm un.r N m Radnese gy, W i U

onens DW  !

t LEGEND OFP81TE DOBE CALCULATION MANUAL M N m Hose glgg gygyggy FIGURE 10 4 SIMPURED SOUD RADWASTE PROCESSNG DIAGRAM O

oocentzentz1 ort-e wpf 10-17

NMC Mondor Response R 1(2)RT-PR25 1 - 100% Kr-85 k 1(2)RT-PR09A ORT-PR10A 2 - 50% Xe-133/50% Kr-85

{"- 3 - 67% Xe-133/33% Kr-85 9 4 - 90% Xe-133/10% Kt-85

d. 5 - 100% Xe-133 I
1. 0E +05 . . . - - - . . . . . . . . . - .... . . . . . -. . . . 8 8J .* "

=..:::.::-.:::.::.=..

. . . . . n.::::=

. .-.. =_ =n,.n..  :::::::. . . . ::::

= = = - .  ::::

. . . . ....= . = . =. . . n.. .

:. .. ..-.. : = = ::: . . .*C. . .

. .n. : . =_ ::. ,:

~..t..+.I+1400 a &.+.0 +0 0 01 ..a bat.1 t ette "..b t.4 4 Stet ....to p + t. . . . .

t" ^ stI::: t" t : ? :::: "" "? !?::::  :"t";?:::: "":~ e t .

g . oso aggs

~". t."t. *.$ t.."..". .lII.I.t.a .. t.

. l + 0 0.tt.

'I

.:~ a . :-:::: g

~. 4.4448000 *.. &.+ 4 + 3 801 ." aa t.a t 4. t.I*t.t.

b.+4 +1881

.l .".."l.a t. 4 4.a .9 a t.-9.t.t.t. .4( a

\

n g.

. . .+t.i. g

.. 4~4 4 44001 ..a l. 4 o. ~4 4g es 1.0E+04  : : :::::-

: ::: n  :

.:::n m

r: u u, .

Meter =:.:..E.:5:.

.:n.:E.:5.:.

4

. . n.:.: n.).:'.I.E e..n

... .:n.::.:5.'.lC

..a .. . . .. . .u.n. .. ._ .-

Response ~~.;t t..

, m ..  ::n:i 1. 5

..m.,. .

..: e.:,g:in

.: n .. .t;..:

. t. :::.,ggu

. . ,n ~~t-t.:..:;tingt

~ ~ ;. n ,: ~~g ~~..;t et ..n ..t.. , .:  ;.in. n z (cprn) . ,.

..::..et.:.t.:n::: c n g ~ ~ t. t. : :. i.. n.. . - t. e..:. :::=..  : t. t. : t...u. n.. ~~ t.- t . t.

o

- . . t ^ .. t "~ tat

  • tt gt0 "- " & t t ttttt "" t. .- t .*

- : . :?.n. .. . . - " :- ?. t. p: n.:. ... ,

's, ~._

,s  : g .: g . :::  :  : ..t t 31 a a ta t t t ilts

  • O

. ..  ; : g. :ii 3  ::::n.. f: t

, . n.: .  : : .::::  :. :. . ::::

o a z

=.::=. i :^1:sts

,g..- g . . n.

1.0E+08 g... s.

.. .a: : a n:: nas n' .u..n.  : W .=  :

6

  • n..n..::.

. . . .u.

.* .a -

n.. r. m'

..t..+.+ . ,

. . . ...w.+.

4 . . . - .. i

..* : o. .

O n

. 4..i 343ges .. a 4. 4..aeq

.. ... ,. 4 4 l808

....< a4 s

aa i

b.

48

...i:.

..u

.o a- +

n. .a...==*a.

n . 4... .:4gt : ... 4. 4e,enti: ....U..  : ..F 444 gI 1 811

....L.

ae.4448"88 nalabe 44888 4 44 8::: ....:~344: ::::

3 N

M ..j.1.11llll ....l.111 I)": . . . . < ,..h1 jf In

: n:: g  :  !! ,n: /. Mg,

....h.f. f.f.!!!!

*n!~fI!h!!!

z t 8 1.0E*02 1. 8 :

11-. _ r 12. - _ r st n.

u

.agr.=

_re_- r i ter."

e i:22--:nn 3

o o tf M o" =.n.

.. . . . =r: . . =n.::=. =.: =. =n.n..

m=-s#u m.=:Mu,

=.

n n===nn in.in ===:n.a:

1 n.::.n : : : = au. "

gc z m a zg  :::t,.:.3,151lIl 31uns

C * $ W

.. o 2

en . . .a SI ..::C:33Ellli ::::l~:

= = ==u n .. .

~~ ...a==.~

""l"C33331i

+*..t a-t_.E35 Illi gaggs gn .*

>t o,_ ,,,, ,, , , ,g 4u gg ..

. . 4.,gggg . .g" t 4 ttles

.o g.4. g4. g gg t ttists a t t t tstti 9 oog g 4. g4.ggs. oogop4.

C M ... . . . . .

. . . . . . . .ua

@M

  • dg M .n.4. 4 448883 ... 4. 4 448888 ... 8~4 4 44888 " "3" I 4 34333 a @do  : : ::::n .
::::n i I lin'"  : ::::n  : : ::::::  : : ::::::  : : ::::::

m i I tila" i Itil"' I I liina I I tilaan o-.o g

  • 1.0E+01 1 i lintu

% 10E-07 ge O

z 5 10E-06 1.0E-05 10E-04 10E-03 10E-02 1.0E-01 *8 .

El E

> SOURCE ACTIVITY (uCi/cc) 6 ."

r-g e - - _ _ . _ _

G _

- -