ML20113F227

From kanterella
Revision as of 09:02, 17 May 2020 by StriderTol (talk | contribs) (StriderTol Bot insert)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Rev 0 to Calculation PI-0103-00203.002-101, Ampacity Derating Evaluation
ML20113F227
Person / Time
Site: River Bend Entergy icon.png
Issue date: 06/12/1996
From:
VECTRA TECHNOLOGIES, INC.
To:
Shared Package
ML20113F222 List:
References
PI-0103-00203.0, PI-103-203.0, NUDOCS 9607080466
Download: ML20113F227 (61)


Text

.

., f ,

. V PROJECT INSTRUCTION COVER SHEET VECTRA (prM h, Enc 40N)

Project Number: 0103-00203.002, Task B0005 cuent: ENTERGY Operations,Inc. - RBS Project Name: Thermo-Lag Fire Barrier Resolution Project Instruction Number: PI-0103-00203.002-101 Project Instruction TPle: Ampacity Derating Evaluation Summary

Description:

i l

2 I

ENTERGY Appraval: 1.s Date: D u14 9 b h

2 Rettsion: REVISION DESCRWTION: TOTAL h L}iBER OF PAGFE:

i 0 INITIAL ISSUE 40 m$217> 1 '

/96 0 /hk-en+ m $ $a h /tCf9(.

/ Preparer ' / ilate Appruterd f,g gfy Date Rettsson: REvlsION DESCRIPTION: 'I OTAL NL11BER OF PAGES:

Preparrr Date Appreter Date 9607080466 960628 PDR ADOCK 05000458 P PDR Page1 of5 J

l PI-0103 00203.002-101 Revision 0 t

1.0 PURPOSE, SCOPE & BACKGROUND '

l 1.1 Purpose The purpose of this Project Instruction (PI) is to describe the various subtasks and the associated deliverables necessary to perform and complete the Cable Ampacity Analysis ,

task of the Thermo-Lag Barrier Resolution Project (Project Number 0103-00203), Task l l B0005, for River Bend Station (RBS). The overall guidance, methodology and schedule  !

! for performance of the various subtasks is contained in the following letters: l l

l e RBG-42159, George Zinke (EOI) to NRC, November 9,1995 i

. 0103-00203-OC-028, Steve Reichle (VECTRA) to Rudy Kerar (EOI), November l

14,1995 i

1.2 Scope Task B0005 encompasses all cables contained within raceways that are wrapped with Thermal Science Inc. (TSI) fire barrier material Thermo-Lag (T-L) 330-1. The scope l includes the following major subtasks:

1. Prenare Amoacity Calculation Niethodology - VECTRA will prepare the i methodology, basis and ccceptance criteria for the calculation of the ampacity of l power and various control cables in fire wrapped raceways. As part of this j subtask, all wrapped raceways will be identified and all applicable ampacity i correction factors and required ampacity calculation input data will be compiled, I input to PDMS and verified by VECTRA.  ;
2. Prenare PDNf S Software Soecification - VECTRA will prepare a software  ;

requirements specification to be used by General Physics Corporation (GPC).

GPC will use the specification and the above calculation methodology and )

associated data to prepare, verify and validate (V&V) the programming changes necessary for the Plant Data Management System (PDMS) to automatically perform the ampacity calculations and generate associated reports (on paper or on screen).

3. Evaluate Software Results - VECTRA will evaluate the PDMS ampacity calculation results to verify that PDMS produces correct results. Refer to Section 4.0, item 6 for a discussion of the scope of a revision to RBS Calculation E-218 which will document this verification.
4. Evaluate Inadeauate Amoacity - VECTRA will determine a course of action (e.g.

adjustment ofload current or ampacity correction factors to justify acceptability or recommend a plant modification) to resolve any cases where the PDMS

! calculated cable ampacity does not meet the acceptance criteria. Refer to Section l 4.0, item 6 for a discussion of the scope of a revision to RBS Calculation E-218 which will document justifications and modification recommendations.

I Page 2 of 5 1

. PI-0103-00203.002-101 Revision 0 All deliverables for this task are listed and described in Section 4.0 of this Pl.

1.3 Background

The ampacity analysis for cables in fire protected raceways at RBS is documented in Stone & Webster Engineering Corporation Calculation E-218, Rev. O. The calculation determines the ampacity for cables in fire wrapped raceways by using derating factors for T-L 330-1, combined with the standard industry derating factors for unwrapped raceways to determine a total ampacity derating factor. The total derating factor is :ised to calculate the derated ampacity rating of each cable in a fire wrapped raceway. The cc Mulation then compares the derated cable ampacity with the maximum load current to determine if the cable is adequately sized.

The T-L 330-1 derating factors used in E-218 were those identified by TSI testing and utilized throughout the industry to derate cables contained within fire wrapped raceway.

Subsequent industry testing and review as discussed in NRC Information Notice 94-22 indicated that the actual derating factors for T-L 330-1 are higher than those used in E-218.

2.0 PROJECT INPUT Project inputs for the various subtasks shall include:

. RBS Calculations

. RBS Procedures l

. RBS drawings, specifications and other design documents i e Correspondence

. Industry Standards (IEEE, IPCEA, NFPA, etc.)

Specific project inputs are listed within the applicable project deliverables discussed in Section 4.0.

l i

i 3.0 METHODOLOGY ,

1 The methodology for each subtask is contained within the associated project deliverables which are discussed in Section 4.0.

1 Page 3 of 5

/

! i

= l PI-0103-00203.002-101 I Revision 0 l

1 4.0 PROJECT DELIVERABLES l The major Task B0005 deliverables are:

1. Ampacity Calculat%n Methodology - This document is provided in Appendix A of this Pl.

' 2. Amoacity Calculation Data - This data includes cable data, ampacity derating factors and other data not already contained in PDMS but which PDMS requires in order to perform the ampacity calculations. This data will be compiled or calculated during development of Appendix A and provided to EOI with copy to GPC (hardcopy and electronic format).

3. Wranoed Raceway List - The list of all raceways wrapped with T-L 330-1 will be provided to EOI, with copy to GPC, via project letter. An electronic copy will also be provided to GPC.
4. Wranoed Raceway Configuration - This is a documentation package that will define existing typical RBS T-L 330-1 wrapped raceway configurations by sketch and description based on existing walkdown data. This package will be provided to EOI, with a copy to GPC, via project letter.
5. PDMS Software Soecification - This document is provided in Appendix B of this l PI. l
6. Calculation E-218 Revision - A revision package for E-218 will be prepared.

Since PDMS will be used compute and store all ampacity calculation results, no l results will be included in the E-218 revision. The E-218 revision will include the following:

PDMS ampacity calculation methodology as delineated in Appendix A.

PDMS calculation results verification - This will verify the numerical results of PDMS ampacity calculations by hand calculation (or spreadsheet) of a random sample of several cables.

Resolution of cables which do not meet the ampacity acceptance criteria.

After PDMS ampacity calculation results have been obtained, cables that l do not meet the acceptance criteria will be evaluated. Various methods will be investigated in order to reduce any conservatism in the PDMS calculation such as (1) adjustment ofload factor or various ampacity correction factors, (2) reevaluation and adjustment ofload current or (3) recommendation for plant modification (s). This section of the E-218 revision will document any such adjustments and provide conceptual details (e.g. cable resizing computation or T-L modification discussion) for any recommended modifications.

Page 4 of 5 l

l l

. l PI 0103-00203.002-101 Rnision 0 5.0 QUALITY RECORDS VECTRA shall prepare documents, correspondence and engineering evaluations, in accordance with the requirements of VECTRA's Quality Assurance Manual and associated Quality Procedures unless otherwise indicated.

GPC is responsible for documenting all programming and associated activities (i.e. V&V of software changes) and input of data to PDMS.

6.0 ATTACHMENTS & APPENDICES l Appendix A Ampacity Calculation Methodology 25 pages Appendix B PDMS Software Requirements Specification for Ampacity Analysis 10 pages i

1 I

. Page5of5

/

l- 1 1

Appendix A PI 0103-00203.002-101

. Ampacity Calculation Methodology Revision 0 t

t f

I

, i l

l l

l l

1 l f l  :

l  !

i i

[

t i

l i i l Appendix A  ;

L Ampacity Calculation Methodology  !

t l

l l

1 l

l I

4

}.

i I

Page Al of A25

Appendix A PI-0103-00203.002101 Ampacity Calculation Methodology Revision 0 TABLE OF CONTENTS l A.I. PURPOSE & SCOPE 4 A.l.1 Purpose 4 A.I.2 Scope 4 A.2. DEFINITIONS 5 A.3. ASSUMPTIONS 10 A.4. METHODOLOGY 10 A.4.1 Ampacity Correction Factors for Cables in Tray or Conduit 12 l A.4.2 Nominal Ampacity and Ampacity Correction Factors for Cables in Tray 14 l A.4.2.1 Nominal Ampacity - Cables With hiaintained Spacing 14 A.4.2.2 Multiple Cables in Tray with Maintained Spacing Correction Factor (MTCF) 14 A.4.2.3 Nominal Ampacity - Cables Without Maintained Spacing 14 A.4.2.4 Tray Cover Correction Factor (TCCF) 19 A.4.2.5 Ampacity Derating Factor (ADF) and Ampacity Correction Factor (ACF) 19 A.4.3 Nominal Ampacity and Ampacity Correction Factors for Cables in Conduit 19 A.4.3.1 Nominal Ampacity 19 A.4.3.2 Multiple Conductor Correction Factor (MCF) 19 A.4.3.3 Conduit Grouping Correction Factor (CGF) 20 A.4.3.4 Ampacity Derating Factor (ADF) and Ampacity Correction Factor (ACF) 21 A.4.4 Calculations and Acceptance Criteria 21 A.4.4.1 Protected Ampacity of Cable in Tray with Maintained Spacing 21 A.4.4.2 Protected Ampacity of Cable in Tray without Maintained Spacing 22 A.4.4.3 Protected Ampacity of Cable in Conduit 22 A.4.4.4 Cable Maximum Load Current 22 A.4.4.5 Ampacity Acceptance Criteria 23 A.S. REFERENCES 23 A.5.1 River Bend Station Documents 23 A.5.2 NRC Documents 24 Page A2 of A25

Appendix A PI-0103-00203.002-101 Ampacity Calculation Methodology Revision 0 A.5.3 Industry Standards & Papers 24 A.S.4 Miscellaneous 25 l

)

l l

i 1

Page A3 of A25

Appendix A PI 0103-00203.002-101

. Ampacity Calculation Methodology Revision 0

]

i A.I. PURPOSE & SCOPE l i

A.I.1 Purpose

The purpose of this document is to provide the methodology, basis and acceptance i criteria for the calculation of ampacity of cables in raceways wrapped with Thermo-Lag i (T-L) 330-1.

i l

Calculation E-218 (Reference A.5.1.1) currently documents the acceptability of the  !

ampacity of cables in raceways wrapped with T-L 330-1 at RBS. VECTRA reviewed this calculation to identify and understand the objective, assumptions, design inputs, methodology, formulas and conclusions. The review included the text in pages I through l

35, Attachment I through 13, and Addenda A through D. The ampacity derating factors for T-L 330-1 used in E-218 to compute cable ampacity were based on manufacturer's data which has since been proven erroneous (Reference A.5.2.1).

i A.I.2 Scope j Except as noted below, all cables, Class lE and non-lE, that are contained within a T-L 330-1 wrapped raceway are included in the scope of the ampacity calculation methodology.

1. Instrumentation Cable - All instrumentation cables are excluded from the scope.

Justification is provided in Section A.2, Cable, Instrumentation.

2. Control Cable - Only certain control cables are included in the scope.

Presentation and justification for the control cable selection criteria is provided in Section A.2, Cable, Control.

All wrapped raceway configurations are included in the scope of the methodology.

Typical wrapped raceway configurations, both 1-hour and 3-hour rated, include:

1. Single Conduit. Single Wran - A single conduit run alone is wrapped.
2. Conduit Groun. Single Wran - Several conduits are run in close proximity (i.e.

within one conduit diameter of each other - Reference A.5.3.4,Section II.E). One or more conduits in the group are individually wrapped.

3. Conduit Groun. Groun Wran - Several conduits are run in close proximity (i.e.

within one conduit diameter of each other - Reference A.5.3.4 Section II.E). The conduit group is wrapped within a single wrap enclosure.

4. Single Trav Single Wran - A single tray is wrapped.
5. Trav Stack. Groun Wran - Several stacked trays are wrapped together within a single enclosure.

Page A4 of A25

Appendix A PI-0103-00203.002 101

, Ampacity Calculation Methodology Revision 0 l

6. Combination. Single Wran - A tray and one or more conduits are mn in close proximity (i.e. within one conduit diameter of each other - Reference A.5.3.4,Section II.E). Both the tray and the conduit (s) are individually wTapped.
7. Combination. Grouo Wrao - A tray and one or more conduits are run in close proximity and are wrapped together within a single enclosure.

A.2. DEFINITIONS Ampacity, Baseline (I ,uo,):

b For the purpose of this document, the ampacity of a cable l in an unwrapped raceway.1,,,no, 6 equals the nominal ampacity, I,oo,, times all applicable l correction factors such as conductor and ambient temperature, conduit grouping, number of conductors in conduit, tray covers, etc.

Ampacity, Nominal (I,,,,,): The ampacity based on the constmetion of the cable (i.e.

conductor size, insulation, diameter, etc.) as given in the applicable standards such as IPCEA or NEC. I,,,,is selected as indicated in Section A.4.

Ampacity, Protected (Ig ,aa): The ampacity of a cable for the raceway con 6guration while protected by the fire barrier (Reference A.5.2.2). For this document, I,,,,,,,,, is i obtained mathematically as:

1 ,,,a,s = ls ,,,ii,, *ACF Ampacity Correction Factor (ACF): The ratio of ampacity measurement for the raceway configuration while protected by the fire barrier to the ampacity measurement for the unprotected raceway configuration (Reference A.5.2.2). ACF values are defined j in Sections A.4.2.5 and A.4.3.4.

l Ampacity Derating Factor (ADF): The percentage or decimal reduction in measured i ampacity between the unprotected configuration (baseline ampacity) and protected l configuration (Reference A.5.2.2). ADF values are def'med in Section A.4.2.5 and A.4.3.4.

I j ADF = 1 - ACF (Reference A.5.2.2)

'"~~ ""'#

ADF=

  • 100% (Reference A.5.2.1) l In.n.

l Cable Number: A standardized number assigned to each RBS scheduled cable. Each cable number has the following 10-character format (Reference A.5.1.9, pg. 5-6):

Page AS of A25

4 i ... '.

3 Appendix A PI-0103-00203.002 101 i Ampacity Calculation Methodology Revision 0 I

i

1AAAPCS###

r

!. ' where. 1 =

RBS Unit 1

AAA =

Plant System Code .

P =

, Part Code l C =

Color Code

! =

S Service Code

### =

Sequential Cable Number The Service Code defines the voltage level and type or function of each cable as follows:

4

C= Control i H= 5KV Power l J =

15KV Power K= 600V or Less Derated Power i L =

600V or Less Power j X= Instrumentation Cable, Control: A cable at RBS that has Service Code = C (Reference A.5.1.9). In general, control cables operate at relatively low current levels (typically below 2 Amps) or are used for intermittent operation to change the operating status of utilization equipment. At RBS, control cable current is limited to.10 Amps (Reference A.5.1.10, pg.

2). In general, control cables do not produce a tangible amount of heat compared to power cables because control cables are usually not sized for the required ampacity, rather they are sized to minimize voltage drop as evidenced by References A.5.1.4 and A.5.1.11. Furthermore, control cables do not generate a significant amount of heat when compared with power cables in the same raceway (Reference A.5.3.1, pg. 962).

The RBS sequential cable numbering scheme (i.e. the last three digits of the Cable Number) for Service Code = C cables is as follows (Reference A.5.1.9):

Cable No.

Seouence Service Code = C Cable Function or Service 001-199 AC or DC control circuits associated with 480 VAC Motor Control Centers 200-299 AC or DC control circuits associated with 480 VAC Switchgear 300-399 AC or DC control circuits associated with 13.8 or 4.16 kVAC Switchgear 400-499 AC current or potential transformer metering circuits 500-599 AC low voltage (e.g.120 VAC nominal) miscellaneous control circuits 600-699 DC low voltage (e.g.125 VDC nominal) miscellaneous control circuits 700-799 Annunciator circuits Page A6 of A25

Appendix A Pl.0103-00203.002-101  !

Ampacity Calculation Methodology Revision 0 l A review of PDMS (Reference A.5.1.14) was conducted to determine if any Service Code l

= C cables should be included in the wrapped raceway ampacity calculation. The results  ;

of the review indicate that ampacity calculations should be performed for Service Code =

C cables that meet the following criteria i

e The cable "from" or"to" equipment is a ISC panel l

. The cable "from" or "to" equipment is a 1VB panel I e The cable "from" or "to" equipment is a 1ENB panel

. The cable "from" or "to" equipment is a IBYS panel '

. The cable "from" or "to" equipment is 1E22*PNLS001 i

e The cable sequential number is a 500 series Cable, Instrumentation: A cable at RBS that has Service Code = X (Reference A.5.1.9). RBS instmmentation cables operate at 50 Volts or less, generally transmitting low level, under 1 Amp, information (Reference A.5.1.10, pg. 2). Industry standard process instmmentation operating current is 20 millixnps (Reference A.5.3.5, Sections l 3.2 and 3.3.1).

Based on this definition, instmmentation cables (i.e. those with Service Code = X) are excluded from the scope of ampacity calculation.

Cable, Power: A cable at RBS that has Service Code = H, J, K or L (Reference A.5.1.9). i These cables supply electrical power to motors and other utilization equipment  !

(Reference A.5.1.10). IPCEA and IEEE identify power cables as those in sizes #8 AWG and larger (Reference A.S.3.4,Section II.A).

Correction Factor, Conductor and Ambient Temperature (CATF): A multiplying factor applied to cable ampacity when the ambient and/or conductor rated temperatures are different from the baseline (i.e. industry standard) values. CATF is calculated using Equation 5 of Reference A.5.3.4,Section II.B.

Correction Factor, Conduit Grouping (CGF): A multiplying factor applied to cable ampacity when the spacing between the conduit surfaces is no greater than one conduit diameter and no less than 1/4 of the conduit diameter (Reference A.5.3.4,Section II.E).

Correction Factor, Diameter (DCF): A multiplying factor applied to the cable ampacity when the actual cable diameter is different from the referenced cable diameter.

This factor is used only for ampacity of cables in tray without maintained spacing and only when using the methodology ofICEA P-54-440 (Reference A.5.3.3, Section 2.3).

This factor is not used in the methodology defined in this document.

Correction Factor, Multiple Conductor (MCF): A multiplying factor applied to cable ampacity when there are more than three current-carrying conductors in a conduit or Page A7 of A25

f.

Appendix A PI 0103-00203.002-101 Ampacity Calculation Methodology Revision 0 l

cable (Reference A.S.3.2a, Anicle 310-15, Note 8(a) of Notes to Ampacity Tables of 0 to

'000 Volts).  !

Correction Factor, Multiple Cables in Tray with Maintained Spacing (MTCF): A multiplying factor applied to cable ampacity when there are two or more cables in a tray and cables are installed with spacing of from 1/4 to 1 cable diameter (Reference A.5.3.4,Section II.D).

Correction Factor, Tray Covers (TCCF): A multiplying factor applied to cable  !

ampacity for cables in tray that is continuously covered with solid unventilated covers for more than 6 feet (References A.5.3.1, pg. 969 and A.5.3.2a, Anicles 318-11 and 318-13).

Depth In Cable Tray: A calculated value for the equivalent depth of cables in a cable tray that is based on the number of cables in the tray and their associated diameters using ,

the following formula (Reference A.5.3.3): l 2

Depth = [nid i + n2d22 + ...nn d,2) f ,

where: d i, d2 ...d, = diameter of cable (inches) l ni, n2...n o = number of cables with diameter di, d2 ...do , respectively w = tray width (inches)  !

Full Load Current (FLA, In): The current required to operate the equipment at l specified or standard test conditions (Reference A.5.3.6, rated current, machine or apparatus). In in PDMS will be associated with an equipment number, not a cable number. Full load current data shall be obtained from the following RBS calculations:

G13.I8.3.6*011 (Reference A.5.1.13) for 3-phase AC system loads.  ;

e E-181 (Reference A.5.1.4) for 125 VDC system loads.

E-182 and E-218 (References A.5.1.2 and A.5.1.1) for other loads. E-218 shall be used only as a last resort.

Inductive Current Heating Effect (IHE): Heating of a raceway, particularly conduit, due to induced current flow in the raceway which is caused by a non-zero net or unbalanced current flow through the conductors enclosed by the raceway (References A.5.2.2 and A.5.2.3). This effect is apparent during ampacity testing of cables in fire wrapped raceway using the proposed IEEE P848 test procedure when a 3-conductor test specimen c;tble is energized from a single-phase source (Reference A.5.2.3). From testing and analyses performed to date, IHE appears to produce conservative ampacity derating results, although the effect is difficult to quantify. Therefore, the NRC has imposed a T-L 330-1 ACF penaby to ensure conservatism (References A.S.2.3). This penalty is included in the ACF vnlues provided in Section A.4.3.4.

Page A8 of A25

. l

., .. l Appendix A PI-0103-00203.002-101 Ampacity Calculation Methodology Revision 0 l

Load Diversity: The ratio of the sum of the individual maximum demands of the various system components to the maximum demand of the whole system under consideration i (Reference A.5.3.6, diversity factor). An example applicable to this document is a cable tray (the system) where a 60% load diversity means that 60% of the cable conductors (the system components) are fully loaded and 40% have no load.

Load Factor (LF): Refer to Maximum Load Current.

Maximum Load Current (MLA,I ):miThe full load current rating of a load, In, multiplied by a load factor (LF is typically 1.25 for continuous duty motors) determined by the overload requirements of the load being served. Section A.4.4.4 provides specific LF requirements. The load factor is usually applied during cable sizing (References l

A.5.1.3 and A.5.1.5) to account for the following:

The need to provide for a sustained running current greater than the rated fu;

  • current and for the protection of the conductor by the motor / equipment overload protective device which, per industry practice, is typically sized at not more than  ;

125% of the motor / equipment full load current (Reference A.5.3.2b, Article 430- j 22), 1 To accommodate proper operation of the cable against thermal aging; the l

relationship between conductor temperature and cable life expectancy is l exponential, therefore small over-temperature for extended pcriods of time can seriously shorten cable life (Reference A.5.3.6, thermal endurance).

  • Per the RBS USAR, all Class IE electrical equipment protective devices are set for a minimum of 125% of the full load current rating of the equipment at all Class lE voltage levels (Reference A.5.1.8, Section 8.3.1.1.6.2),

. Sizing of general branch circuit, feeder and single motor branch circuit conductors in accordance with the National Electrical Code (Reference A.5.3.2a, Articles  !

220-3(a), 220-10(b) and 430-22).

l Percent Fill: A ratio of the cable cross-sectional area (i.e. the sum of the cross-sectional areas of all cables in a tray) to the useful cross-sectional area of the tray (Reference A.5.3.1, pg. 964).

Plant Data Management System (PDMS): A computer system used in the design, installation and maintenance of the electrical cable and raceway systems at River Bend 1 Station (Refere ces A.5.1.7 and A.5.1.14).

l Wrapped Raceway: A cable raceway which is enveloped in a rated fire barrier.

Page A9 of A25 l l

^.* .. .

I Appendix A PI 0103 00203.002-101

. Ampacity Calculation Methodology l Revision 0 l

l A.3. ASSUMPTIONS A.3.1 For conservatism, if the as-built conduit routing con 6guration is unknown, CGF = 0.86 l

(the value for the number of horizontal / vertical conduits equal to 6/1) is assumed l (Reference A.5.1.1,Section II.B.3). '

A3.2 Ampacity values for single conductor cable types NGR-15,16 and 30 in Table A.4-1 are for triplexed cables. Triplexing of single conductor cables for 3-phase circuits reflects typical RBS cable installation in tray or conduit (Reference A.5.1.5, pg. 7).

A.4. METHODOLOGY In general, the protected ampacity of cable in wrapped raceway is calculated by multiplying the nominal cable ampacity by each of the applicable (based on configuration and environment) ampacity correction factors, including the ACF for the fire barrier (Reference A.5.1.1).

Tables A.4-1 and A.4-2 provide the nominal cable ampacity for various 5kV and 600V cable types used at RBS. Table A.4-2 also provides the conductor AC resistance which is 1 used for Service Code K or C tray only. The tables were developed by review of PDMS j data (Reference A.5.1.14). They are not intended to list all cable types, but they should l include those contained in wrapped raceways. Cables with more than 3 conductors or I cables smaller than #12 AWG are excluded from the tables because they are used almost exclusively for intermittent-load control circuits (i.e. not control power circuits) or instrumentation circuits. Other cable types and their associated data will be added later to an E-218 revision if additional data is required for PDMS calculations.  ;

Table A.4-1 provides the nominal ampacity, I,,,,,,,, for cables installed in tray or conduit

^

with Service Code H (i.e. SkV power). All values are from Reference A.5.3.4, rubber i insulated,8kV cable ampacities in air (i.e. tray) and conduit for 40 C ambient and 90 C conductor temperature. Values for NGR-15,16 and 30 are for triplexed cables per  ;

assumption A.3.2.

, Page A10 of A25

Appendix A PI-0103-CD203.002-101 Ampacity Calculation Methodology Revision 0 Table A.4-1 Nominal Ampacity, I,,,

Cable in Service Code H (SkV) Tray and Conduit Cable Cable Size, Ampacity Ampacity Mark Construction, in Tray in Conduit Number Material (Amps) (Amps)

NGR-11 4/0 3/C Cu 321 280 NGR-12 4/0 Tri Cu 342 287 NGR-13 350 Tri Cu 467 387 i

NGR-14 500 3/C Cu 536 458 NGR-15 5001/C Cu 578 473 NGR-16 7501/C Cu 728 579

[ NGR-30 10001/C Cu 847 657

Table A.4-2 provides the nominal ampacity, I , and conductor AC resistance, R., for 4

cables installed in tray or conduit with Service Code K, L or C (i.e. 600V power and l comrol). Notes and references are as follows:

e Amnacity - All values, except those shaded, are from Reference A.S.3.4, rubber insulated, ikV cable ampacities in air (i.e. tray) and conduit for 40*C ambient and 90"C conductor temperature. Shaded values are from Reference A.5.3.2a, Table  !

310-16 with ambient temperature corrected to 40 C from 30 C (CATF = 0.91 from Table 310-16). Values for NGP-42,50 and 99 are for triplexed cables since Reference A.5.3.4 values are not available for single conductor cable in conduit and triplexing reflects typical installation in tray or conduit (Reference A.5.1.3, pg. 20A). The values for NGP-28 are equal to the values for NGP-56 times the correction factor of 1.087 derived from the equation in Reference A.5.3.3, Section 2.5 using PDMS cable diameters (Reference A.5.1.14). ,

e Resistance - All values are for 600V cable in tray from Reference A.5.1.12.

Copper conductor values are for coated conductors since they are higher than uncoated values and values for 2-conductor cables are the 3-conductor values since they are higher than single-conductor values (i.e. more conservative for ampacity calculations). Values for NGP-42,50 and 99 are for triplexed cables.

Page AlI of A25

1 Appendix A PI o103-00203.002-101 Ampacity Calculation Methodology Revision 0 Table A.4-2 Nominal Ampacity, I,,,,,, & AC Resistance, R ,

Cable in Service Code K, L or C (600V) Tray and Conduit Cable Cable Size, Ampacity Ampacity R, Mark Construction, in Tray in Conduit (Ohms per Number Material (Amps) (Amps) 1000 ft)

NGP-10 #12 2/C Cu - 27 '- 27 2.2154 NGP-l l #12 2/C Cu  ? 27. n27. : 2.2154 NGP-12 #12 3/C Cu  ::27i :27 2.2154 NGP-22 #10 2/C Cu 2361 L36 1.3911 NGP-28 #8 2/C Cu 64 56 0.8750 NGP-42 7501/C Cu 747 598 0.0211 NGP-49 250 Tri Cu 374 317 0.0584 NGP-50 5001/C Al 458 381 0.0461 NGP-51 250 Tri Al 292 249 0.0918 NGP-52 2/0 Tri Al 193 159 0.1721 NGP-53 #2 Tri Cu 158 130 0.2178 NGP-54 #4 Tri Cu 117 97 0.3463 NGP-55 #6 Tri Cu 89 75 0.5505 NGP-56 #8 3/C Cu 59 52 0.8750 NGP-57 #10 3/C Cu <365 t36x 1.3911 NGP-58 #12 3/C Cu .27~ 274 2.2154 NGP-59 350 Tri Al 364 303 0.0657 NGP-99 4/01/C Cu 335 278 0.0682 Subsequent sections define data for nominal ampacity, ampacity correction factors, equations for calculations, and ampacity acceptance criteria as follows:

Section A.4.1 provides data applicable to cables in tray or conduit.

. Section A.4.2 provides data applicable to cables in tray only.

Section A.4.3 provides data applicable to cables in conduit only.

Section A.4.4 provides (1) the equations for computation of protected ampacity and maximum cable load cuirent and (2) the ampacity acceptance criteria.

A.4.1 Ampacity Correction Factors for Cables in Tray or Conduit Conductor and Ambient Temperature Correction Factor (CATF)

The nominal cable ampacities provided in Tables A.4-1 and A.4-2 and those calculated in Section A.4.2.3 are for cable with a 90*C insulation rating in an ambient temperature of 40 C. However, certain areas within the plant (containment, main steam line areas, etc.)

Page A12 of A25

-. - =

l Appendix A PI 0103-00203.002-101 I Ampacity Calculation Methodology Revision o i

may have higher ambient temperatures. The maximum noimal ambient temperature in a particular plant area is documented in Reference A.5.1.6 and in PDMS (Reference A.5.1.14).

If the maximum normal ambient temperature is above 40 C, or if the insulation

- temperature rating of a cable is not 90 C, an ampacity correction factor shall be applied.

The correction factor, CATF, is calculated by Equation 5 of Reference A.5.3.4 as follows and the effects of the terms DELTA TD' and DELTA TD are negligible:

T,'- T.'

  • 234.5 + T, CATF (for Copper) = I T. - T. 234.5 + T,' '

CATF(for Aluminum) = T, - T. 228.1 + T,' l where: T,' =

new conductor temperature ( C)

T,' =

new ambient temperature ( C)

T, =

conductor temperature for which ampacity table was derived ( C)

T, =

ambient temperature for which ampacity table was derived ( C)

Since all of the scheduled power cables at RBS were purchased with 90 C insulation temperature rating in a 40 C ambient (Reference A.S.I.10, pg. 8), Equation 5a of Reference A.5.3.4 may be used. Equation 5a reduces to the following and CATF becomes:

'~ " ~"

CATF = = l T, - T. y 50 \

l The following table provides the calculated CATF, using Equation Sa of Reference A.5.3.4, for various ambient temperatures above 40*C for 90 C rated cables.

l Table A.4.1  ;

Conductor and Ambient Temperature Correction Factor Temperature (C) CATF 45 0.95 50 0.89 55 0.84 60 0.77 65 0.71 70 0.63 Page A13 of A25

Appendix A PI4103-00203.002-101

. Ampacity Calculation Methodology Revision o A.4.2 Nominal Ampacity and Ampacity Correction Factors for Cables in Tray A.4.2.1 Nominal Ampacity - Cables With Maintained Spacing This section applies to RBS cables installed in tray with Service Code H or L only.

Table A.4-1 provides the nominal ampacity, I,,,,,,,, for cables installed in tray with Service Code H (i.e. SkV power tray) and Table A.4-2 provides the nominal ampacity, I,,,,,,, for cables installed in tray with Service Code L (i.e. 600V power tray).

A.4.2.2 Multiple Cables in Tray with Maintained Spacing Correction Factor (MTCF)

Per References A.5.1.9, pg. 4-9,4-10, A.5.1.10, pg.10,11 and A.5.3.4,Section II.D, multiple cables installed in tray with Service Code H or L, where cables are installed one layer deep only, shall be derated using the correction factor shown in the table below.

Table A.4.2.2 Multiple Cables in Tray Correction Factor Cables in Service Code H or L Tray  ;

Number of Cables l

Horizontally MTCF l 1 1.00 2 0.93 3 0.87 4 0.84 5 0.83 6 or More 0.82 A.4.2.3 Nominal Ampacity - Cables Without Maintained Spacing )

l l

This section applies to RBS cables installed in tray with Service Code K or C only.

Based on Reference A.5.3.1, Stolpe's analytical model for heat transfer from a tightly l packed cable tray, cable ampacity is determined on the basis of uniform heat generation over the cross-section of the tray. The allowable heat intensity, Q, per unit area 2

(watts /ft/in ) is a function of the total heat generated by the cables in the tray and the cable mass width and depth as shown in Equation 7 of Reference A.5.3.1, pg. 964. Cable mass depth is easily converted to percent fill. Tray percent fill is based on all cables in the tray, power and control, and no credit is taken for load diversity.

Page A14 of A25

. 1

.. .. l Appendix A Pl.0103-00203.002 101  ;

, Ampacity Calculation Methodology Revision 0  :

Figure 4 of Reference A.S.3.1 shows the Q versus percent fill cunes for cables with 60 C,75'C and 90*C insulation ratings in 3-inch deep tray, all operating in a 40 C ambient. The curves indicate that as tray percent fill (i.e. depth of cables in the tray) increases for a given cable temperature, allowable heat intensity is reduced. Using a straight-line approximation, the equation for any one of the Figure 4 curves can be written as:

log (Q) = m

  • log (% Fill) + log (b) log (Q) = log (% Fill)* + log (b) log (Q) = log [(% Fill)"
  • b)]

Therefore, the general equation for allowable heat intensity is:

Q = b * (% Fill)* I where:  % Fill is in percent - not a decimal value Using any two points on one of the curves from Figure 4 of Reference A.5.3.1, the constants m and b can be found. Since RBS cables are rated 90 C and the Semice Code K tray fill design maximum is 40% and the Senice Code C tray fill design maximum is 50% (References A.5.1.9, pg. 4-8,4-9 and A.5.1.10, pg. 9,10), points at 10% and 40% on the 90"C curve are chosen.

for % Fill = 10, Q = 24 watts /ft/in' for % Fill = 40, Q = 4.7 watts /ft/in2 The two simultaneous equations to solve for m and b are:

24 = b

  • 10" and 4.7 = b
  • 40" Multiplying the second equation by 24 + 4.7 = 5.1064 yields:

24 = 5.1064

  • b
  • 40" Since the left side of both equations are now equal, the simultaneous equations can be solved:

b

  • 10* = 5.1064
  • b
  • 40*

10" = 5.1064

  • 40" Page AIS of A25

Appendix A PI-0103-00203.002-101 Ampacity Calculation Methodology Revision 0 Taking the log of both sides of the equation:

m

  • log (10) = log (5.1064) + (m
  • log (40))

m = 0.70811 + 1.60206m

-0.60206m = 0.70811 m = -1.176 Substituting m = -1.176 into the equation 24 = b

  • 10*-

24 = b

  • 10"6 24 = 0.06668b i b = 359.92 = 360

! The equation for allowable heat intensity Q for a tightly packed tray containing 90 C l cables in a 40 C ambient becomes:

i 2

Q = 360 * (% Fill)'7' watts /ft/in A

This equation is suitable only for cables in tray with a usable (i.e. inside) depth of 3-inches (Reference A.5.3.1, pg. 964). Based on a review of PDMS data (Reference j A.5.1.14), all RBS tray types have 3-inch inside depth except tray type DJL-01, which j does not comprise any T-L wrapped trays (Reference A.5.4.1).

l The % Fill value calculated by PDMS is based on the % Fill Limii for the particular tray Service Code (e.g. if % Fill Limit = 40% and the % Fill = 40% based on tray and cable dimensions, then the PDMS result is 100%). Therefore:

4

% Fill = %Fillrous * % Fill Limit /100 And, the above Q equation must be modified as follows:

0 %Fillrous*%FillLimit' '" 2 e

Q = 360* watts /ft/in Eq. A.4.2.3a-1 s 100 s For a more general equation, since % Fill is calculated based on usable tray depth, Equation A.4.2.3a-1 would have to be modified for tray that has a usable depth of h inches where h = 3. The resulting equation encompasses this consideration and the % Fill Limit:

4 Page A16 of A25

l Appendix A Pl.0103-00203.002-101

, Ampacity Calculation Methodology Revisicn 0

% Filleow* w %FillLimit' "" 2 G = 360* watts /ft/in Eq. A.4.2.3a-2

( 3 *100 /

i where: h =

usable depth of tray (inches)

=

%Fillrous PDMS calculated % Fill based on tray fill design limit

% Fill Limit =

fill limit based on design criteria l For Service Code K tray, % Fill Limit = 40% and for Service Code C, % Fill Limit = 50% l (References A.5.1.9, pg. 4-8,4-9 and A.5.1.10, pg. 9,10). Therefore, for Service Code K and C tray, Equation A.4.2.3a-1 becomes:

K Tray G = 360 * (%Fillrms

  • 0.4)* watts /ft/in 2

Eq. A.4.2.3b-lK C Tray G = 360 * (% Fille ms

  • 0.5)* 7' watts /ft/in 2

Eq. A.4.2.3b-1C  !

And for trays with height x 3 inches, the equations become:

K Tray G = 360 * (%Fillems

  • h
  • 0.1333)*'76 watts /ft/in 2

Eq. A.4.2.3b-2K C Tray G = 360 * (%Fillems

  • h
  • 0.1666)*'7' watts /ft/in 2

Eq. A.4.2.3b-2C where: h =

usable depth of tray (inches)

=

%Fillrous PDMS calculated % Fill based on tray fill design limit An alternate form of this equation that utilizes depth of cable in tray instead of % Fill follows. The resulting equations can be used to compare the results of the Stolpe method to the ampacities ofIEEE P-54-440 (Reference A.5.3.3). For n cables of d diameter l

(assume all cables are the same) in a tray w inches wide and h inches high, % Fill based on cable and tray dimensions is:

% Fill = Areasi,

  • 100 / Areaoy 2

% Fill = n

  • x
  • d
  • 100 / (4
  • w
  • h) 2

% Fill = n

  • x
  • d
  • 25 / (w
  • h)

The depth of cable from Section A.2, Depth In Cable Tray, is Depth = n

  • d2 ,,

2 Substituting d into the % Fill equation:

% Fill = n

  • x
  • Depth
  • w
  • 25 / (w
  • h
  • n)

% Fill = x

  • Depth
  • 25 / h Page A17 of A25

Appendix A PI-0103-00203.002-101

. Ampacity Calculation Methodology Revision 0 Substituting % Fill into the original Q equation:

G = 360 * (78.54

  • Depth / h)*7' watts /ft/in z Eq. A.4.2.3c-1 l And for all 3-inch high tray:

1 l G = 360 * (26.18

  • Depth) 7' watts /ft/in2 Eq. A.4.2.3c-2 where: Depth =

depth of cable in tray (inches)

< Once Q is calculated for the tray, the nominal cable ampacity, I,om, for each cable in the

tray is then computed from Reference A.5.3.1, Equation 9 as

i D Qn l

' " ' " 5 nR 1

where: n = number of conductors in cable 2

f Q = heat generated per unit area of the tray (watts /ft/in )

4 D= cable diameter (inches) l R= a.c. resistance of conductor at 90 C (Ohms /ft) 4 i This equation can be modified to account for R values which are typically published in j Ohms /1000 feet and then simplified to combine constants as follows:

t I ,,,, = D 1000* Q

  • n 2 nR-i l I.,,, = 28.02
  • D
  • Eq. A.4.2.3d 4

nRa l l j where: R, =

a.c. resistance of conductor at 90*C (Ohms /1000 ft) l Values for cable diameter, D, are already contained in PDMS (Reference A.5.1.14) and values for R are provided in Table A.4-2.

If the calculated I,o, for any cable is greater than 80% of the cable ampacity in open air (i.e. tray), I,,ir, then I,om must be adjusted as follows (Reference A.S.3.3, Section 2.2).

Ioyo,i, ampacities are the ampacity in tray values shown in Table A.4-2.

Inom =l onn air

  • 0.8 Page A18 of A25

r-

., =,

Appendix A PI-ol03-00203.002-101

. Ampacity Calculation Methodology Revision 0 A.4.2.4 Tray Cover Correction Factor (FCCF)

The ampacity of cables in tray continuously covered with solid unventilated covers for more than 6 feet shall be corrected by the TCCF shown below (References A.5.3.1, pg.

969 and A.5.3.2a, Articles 318-11 and 318-13):

TCCF = 0.95 l A.4.2.5 Ampacity Derating Factor (ADF) and Ampacity Correction Factor (ACF) l The following table provides the ADF and ACF values for cables in fire wrapped tray l (Reference A.5.1.15).

Table A.4.2.5 T-L 330-1 Derating and Correction Factors Cables in Tray l Tray Configuration Barrier Rating ADF ACF l Single 1-hour 0.32 0.68 Single 3-hour Note Note i Two Tray Stack 1-hour 0.38 0.62 Two Tray Stack 3-hour Note Note l

Note hour and any additional ADF and ACF values will be provided by Reference A.5.1.15 and incorporated into the next revision to E-218.

1 A.4.3 Nominal Ampacity and Ampacity Correction Factors for Cables in Conduit A.4.3.I Nominal Ampacity Table A.4-1 provides the nominal ampacity, I,o,,, for cables installed in conduit with Service Code H (i.e. SkV power). Table A.4-2 provides the nominal ampacity, I,,,,,,, for cables installed in conduit with Service Code K, L or C (i.e. 600V power or control).

A.4.3.2 Multiple Conductor Correction Factor (MCF) l Where the number of current-carrying conductors in a conduit exceeds three, ampacity

shall be corrected by the MCF shown in the table below. The same MCF shall also be l used if the number of current-carrying conductors in a jacketed cable exceeds three l (Reference A.5.3.2a, Article 310-15, Note 8(a) of Notes to Ampacity Tables of 0 to 2000 1

Volts).

Page A19 of A25 l

1

=

! Appendix A PI-0103-00203.002 101 l Ampacity Calculation Methodology Revision 0 1

Table A.4.3.2 Multiple Conductor Correction Factor More Than 3 Conductors in Conduit or More Than 3 Conductors in a Jacketed Cable Number of

, Current-Carrying MCF Conductors a aa 4-6 0.80 l 7-9 0.70 10 - 20 0.50 21 - 30 0.45 31 -40 0.40 More than 40 0.35 Reference A.5.3.2a, Article 310-15, Notes 10 and 11 of Notes to Ampacity Tables of 0 to 2000 Volts may be used to determine which conductors may be excluded as current-carrying.

*
  • These factors include no diversity in the conductor loading, which is conservative.

l Reference A.S.3.2a, Article 310-15, Note 8(a)(FPN) of Notes to Ampacity Tables of 0 to 2000 Volts, provides direction to correction factors for a 50% diversity in conductor loading. Lse factors may be used if no more than 50% of the conductors in the conduit are energized.

l A.4.3.3 Conduit Grouping Correction Factor (CGF) l l Derating of cable ampacity is required if two or more conduits are routed together and the l spacing between conduit surfaces is not greater than the conduit diameter and is not less j than 1/4 of the conduit diameter. If the as-built routing configuration is known, CGF

shall be selected from the table below (Reference A.S.3.4,Section II.E).

l t

1 l

, Page A20 of A25 l

l Appendix A PI-0103-00203.002-101

, Ampacity Calculation Methodology Revision 0 i

Table A.4.3.3 Conduit Grouping Correction Factors Number of Conduits Number of Conduits Vertically Horizontally 1 2 3 4 5 6 )

1 1.00 0.94 0.91 0.88 0.87 0.86 i

2 0.92 0.87 0.84 0.81 0.80 0.79 '

3 0.85 0.81 0.78 0.76 0.75 0.74 4 0.82 0.78 0.74 0.73 0.72 0.72 5 0.80 0.76 0.72 0.71 0.70 0.70 6 0.79 0.75 0.71 0.70 0.69 0.68 1

If the as-built conduit routing configuration is unknown, the conduit grouping correction factor, CGF, as specified in assumption A.3.1 shall be assumed as 0.86, the value for the number of horizontal / vertical conduits equal to 6/1.

A.4.3.4 Ampacity Derating Factor (ADF) and Ampacity Correction Factor (ACF) i The following table provides the ADF and ACF values for cables in fire wrapped conduit (Reference A.5.1.15).  ;

1 Table A.4.3.4 i T-L 330-1 Derating and Correction Factors

Cables in Conduit i

Barrier Rating ADF ACF 1-hour 0.21 0.79 3-hour Note Note Note hour and any additional ADF and ACF values veill be provided by Reference A.5.1.15 and incorporated into the next revision to E-218.

A.4.4 Calculations and Acceptance Criteria A.4.4.1 Protected Ampacity of Cable in Tray with Maintained Spacing The following equation applies to the computation of protected ampacity of SkV and 600V concentric stranded rubber or thermoplastic-insulated cable in tray where cables are Page A21 of A25

l Appendix A PI-0103-00203.002-101

, Ampacity Calculation Methodology Revision 0 installed with maintained spacing. The equation applies to cables in trays with Service Code H or L only. l oom is obtained from Tables A.4-1 and A.4-2.

I,otecta=I p nom

  • h1TCF
  • TCCF
  • CATF
  • ACF A.4.4.2 Protected Ampacity of Cable in Tray without hiaintained Spacing The following equation applies to the computation of protected ampacity of 600V concentric stranded rubber or thermoplastic-insulated cable in tray where cables are installed without maintained spacing. The equation applies to cables in trays with Service Code K or C only. I nom is calculated using the equations from Section A.4 2.3 and shall not exceed 80% of the tray ampacity of Table A.4-2.

Iprotected = I nom

  • TCCF
  • CATF
  • ACF l

A.4.4.3 Protected Ampacity of Cable in Conduit The following equation applies to the computation of the protected ampacity of SkV and 600V concentric stranded rubber or thermoplastic-insulated cable installed in exposed conduit. loom is obtained from Tables A.4-1 and A.4-2.

Iprot,ct,a=I nom

  • CGF
  • AfCF
  • CATF
  • ACF A.4.4.4 Cable hiaximum Load Current By definition (refer to Section A.2), the cable maximum load current (Imi)is calculated as fMiows:

Imi " In

  • LF LF values and their allowable usage based on load type are:

1.25 Default value for all loads; specific for motors with service factor (SF) = 1.15, distribution panel loads,125 VDC loads (References A.5.1.1, pg.12, A.5.1.3, pg. 7 and A.5.1.5, pg. 8).

1.1 Specific for switchgear and transformer feeders, motors with SF = 1.0 (Reference A.5.1.5, pg. 8).

The above LF values may be applied to the stated load types without restriction. Use of other LF values or use of the above LF values for loads other than those stated is permitted provided that acceptablejustification is provided.

Page A22 of A25

___ _ . . _ _ - - - - -~. ,

Appendix A- .

PI-0103-00203.002-101 Ampacity Calculation Methodology . Revision 0 A.4.4.5 Ampacity Acceptance Criteria The criterion for acceptable ampacity is:

I protected DIml IfIproi,ct,a is less than Imi , inadequate ampacity is indicated and further analysis is required.

A.5. REFERENCES A.5.1 River Bend Station Documents A.5.1.1 Calculation E-218, Rev. O through Addendum D, Ampacity Verifcation ofCables Within Raceways Wrapped With Appendix R Fire Protection Barrier A.5.1.2 Calculation E-182, Rev. 3 through Addendum AJ,600VCable Verification and Normal (Non Class 1E) Distribution Transformer Tap Selection A.5.1.3 Calculation E-137, Rev. 6 through Addendum E,600VCable Siring A.5.1.4 Calculation E-181, Rev. I through Addendum F, D.C. Cable Size Verification

' A.5.1.5 Calculation E-167, Rev. 2 through Addendum B, SKVPower Cable Siring - Ampacity andMinimum Length A.5.1.6 215.150, Rev. 4, RBS Environmental Design Criteria I

A.5.l.7 3241. l00-503-001 A, Plant Data Management System User Manual '

A.5. I .8 UpdatedSafety Analysis Report, Rev. 7, January 1995

'A.5.1.9 241.100, May 26,1978, Cable Schedule Information System As Used On River Bend Station - Units 1 And 2 A.5.1.10 24 I.200, Rev. 3, Electrical Design Criteriafor Insulated Wire and Cable As Used On i River BendStation, Units 1 And2 l

A.5.1.11 Calculation E-209, Rev. l, Cable Loop Length Criteriafor Voltage Drop - DC Circuits  :

i Page A23 of A25

. 1 Appendix A PI-n103-00203.002-101

, Ampacity Calculation Methodology Revision 0 A.S. ) .12 7241.200-508-00l A, Cable Impedancesfor 90"C Conductor Temperature A.5.1.13 G 13. l 8.3.6*011, Rev. O, ETAP Database Input Source Study (DBISS)

A.5.1.14 PDMS, Version 10.06.00, Plant Data Afanagement System A.5.1.15 G13.18.14.0-178, Rev. O, Ampacity Derating Factorsfor Thermo-Lag 330-1 Enclosures A.S.2 NRC Documents A.5.2.1 Information Notice 94-22, March 16,1994, Fire Endurance andAmpacity Derating Test Residtsfor 3-Hour Fire Rated Thermo-Lag 330-1 Fire Barriers A.5.2.2 NRC Letter, October 18,1994, From Ronaldo Jenkins to Alex Marion of Nuclear Energy Institute A.S.2.3 Safety Evaluation Report, June 14,1995, AmpacityIssues Relatedto Thermo-Lag Fire Barriers, Texas Utilities Electric Company, Comanche Peak Steam Electric Station, Unit 2, Docket No. 50-446 A.5.3 Industry Standards & Papers A.5.3.1 IEEE Transaction Paper 70 TP 557-PWR, Ampacitiesfor Cables in Randomlyfilled Trays, J. Stolpe,1970 A.5.3.2a NFPA 70,1996, National Electrical Code A.5.3.2b NFPA 70,1996, National Electrical Code Handbook A.5.3.3 ICEA Standards Publication No. P-54-440 (Third Edition), NEMA Standards Publication No.WC51-1986, Ampacities ofCablesin Open-Top Cable Trays A.5.3.4 IEEE/IPCEA Standard S-135/P-46-426, Third Printing 1984, Power Cable Ampacities: Volume 1 - Copper Conductors and Volume 11- Aluminum Conductors A.5.3.5 ANSillS A-S50.1-1982, Compatibility ofAnalog Signalsfor Electronic Industrial ProcessInstruments A.5.3.6 ANSlllEEE Std. 100- 1984, IEEE Standard Dictionary ofElectrical and Electronic i Terms Page A24 of A25 I

1 Appendix A PI 0103-00203.002-101

, Anpacity Calculation Methodology Resision 0 A.5.4 Miscellaneous A.S.4.I VECTRA Report 0103-00203-R-02, Rev. O, Documentation of Thermo-Lag Fire Barrier MaterialInstalled on Electrical Race ways and Electrical Components at River BendStation l

+

l 1

1 h

i l

Page A25 of A25 l

I Appendix B PI-0103-00203.002-101

, PDMS Software Requirements Specification for Ampacity Analysis Revision 0 i

i 4

l l

l l

I 1

l Appendix B  !

PDMS Sofhvare Requirements Specification for Ampacity Analysis Page B1 of B10

3 Appendix B Pl.0103-00203.002-101

, PDMS Software Requirements Specification for Ampacity Analysis Revision 0 TABLE OF CONTENTS B.I. INTRODUCTION 3 B.I.1 Purpose 3 B.I.2 Scope 3 B.I.3 Definitions, Acronyms and Abbreviations 3 B.I.4 References 3 B.2. GENERAL DESCRIPTION 4 B.2.1 Performance Requirements 4 B.2.2 User and Data 1 *.v;tations 4  ;

B.2.3 Assumptions 4 l l

B.3. SPECIFIC REQUIREMENTS 4 l B.3.1 Functional Requirements 4 B.3.1.1 Data Elements 4 B.3.1.2 Equations 5 B.3.1.3 Look-Up Tables 7 i B.3.2 External Interface Requirements 7 i B.3.3 Design Considerations 8 B.3.4 Queries and Reports 8 B.3.4.1 Queries 8 B.3.4.2 Reports 9 B.3.5 Maintenance Considerations 9 B.4. SCI 1EDULE AND RESPONSIBILITIES 10 B.4.1 Schedule 10 B.4.2 Responsibilities 10 Page B2 of BIO

. b 1 ,, * ,

Appendix B PI-0103-00203.002-101 PDMS Software Requirements Specification for Ampacity Analysis Revision 0 B.I. INTRODUCTION l

B.I.1 Purpose The purpose of this document is to provide the software requirements for preparation of a

{

modification, called the Ampacity Analysis Module (AAM), to the Plant Data Management System (PDMS) at River Bend Station (RBS). PDMS is Essential Software (Reference B. I.4.1).

B.I.2 Scope l i The scope of the PDMS modification described in this document includes:

Adding a new analysis module that will perform ampacity analysis for cables within selected raceways that are wrapped with T-L 330-1 fire barrier material.

Modifying PDMS as necessary to provide error notification, queries and repons for the new module's calculation results and associated input data.  ;

e Modifying PDMS to include additional data fields and/or look-up tables required by the new module to perform the calculations.

B.1.3 Definitions, Acronyms and Abbreviations i

Ampacity Analysis Module (AAM): A software module within PDMS which performs ampacity calculations on cables within selected raceways.

l Plant Data Management System (PDMS): A computer system used in the design, installation and maintenance of the electrical cable and raceway systems at River Bend l Station (References B.I.4.2 and B.I.4.4).

Definitions of other terms and acronyms are contained in Appendix A.

B.I.4 References B.l.4.1 RBNP-041, Rev.6, Computer Software Management B.l.4.2 3241.100-503-001 A, Plant Data Management System User Manual B . I .4.3 RBG-42159, Letter from George Zinke (EOI) to NRC, November 9,1995 B.I.4.4 PDMS, Version 10.06.00, Plant Data Management System B.l.4.5 VECTRA Repon 0103-00203-R-02, Rev. O, Documentation of Thermo-Lag Fire Barrier Materialinstalled on Electrical Raceways and Electrical Components at River BendStation 4

Page B3 of B10

l

    • ,* Appendix B PDMS Software Requiremotts Specification for Ampacity AnalysisPl4103-00203.002-101 Revision 0 B.2. GENERAL DESCRIPTION B.2.1 Performance Requirements

?

specified elsewhere in this document. Results of repons as specified in Section B.3.4.2.

as B.2.2 User and Data Limitations Only those individuals authorized by the PDMS System Administrator to add, delete or revise AAM related information.

The AAM is currently intended for the calculation of ampacity for ca wrapped with T-L 330-1 only. However, the ampacity analysis methodology software requirements specified for the AAM are easily adaptable for a cables.

B.2.3 Assumptions There are no assumptions.

B.3. SPECIFIC REQUIREMENTS B.3.1 Functional Requirements As a minimum, the following requirements shall be implemented in the PD as the ampacity methodology described in Append modification.

B.3.1.1 Data Elements The PDMS database shall contain the following additional data elemen as a minimum for storage of the specified information. Provision for manu this data must be incorporated into the PDMS software.

Page B4 of B10

1 Appendix B PDMS Software Requirements Specification for Ampacity Analysis PI.0103-00203.002-101

. Revision 0 Table B.3.1.1 Required Data Elements I I

Data Element Data Element Type

,, Associated Data Source (Units) Record Nominal Ampacity Numeric - floating point in Tray Cable Mark Table A.4-1 (Amps)  !

Nominal Ampacity Number Table A.4-2 Numeric - floating point in Conduit Cable Mark Table A.4-1 (Amps)

Cable Diameter Number Table A.4 2 Numeric - floating point Cable Mark Reference (inches)

Conductor Number B.I.4.4 Numeric - floating point Resistance Cable Mark Table A.4-2 (Ohms /1000 feet) Number Number of i Numeric - floating point (none) Cable Mark Conductors Table A.4-1 Number  !

Comment Table A.4-2 Free Fonn - 80 character Cable Number minimum As needed to or Load l identify special  !

Equipment circumstances Tray Cover Number and/or references Logical - Default value = Tray Number Correction Factor FALSE, If TRUE, TCCF = A.4.2.4 (TCCF) 0.95, If FALSE, TCCF = 1.0 ALTERNATE Numeric - floating point, default = 1.0 (no cover)

Full Load Current Numeric - floating point l Load Equipment Refer to A.2, (FLA) (Amps)

Number Full Load '

Load Factor (LF) Current Numeric - floating point (none) Load Equipment A.4.4.4 Number Continuous / Alpha - C or I, default = C Load Equipment ESK or other Intermittent (C/I)

Number drawings B.3.1.2 Equations 1

The AAM shall perform the following calculations using the specified equations. Th t result of the calculations shall either be stored as data elements or immediately use subsequent calculations or reports as indicated.

Page B5 of BIO

    • Appendix B PDMS Software Requirements Specification for Arnpacity AnalysisPI 0103-00203.002101 Revision 0 Table B.3.1.2 Required Equations Computed Equation Value/ Result Calculation Limitations Reference Conductorand Ambient and Restrictions Results Usage A.4.1 Temperature Correction Required only if Fire Intermediate result Factor (CATF) Zone maximum normal to be used in ambient > 40 C, A.4.4.1,2 and 3 otherwise CATF = 1.0. calculations.

' CATF Look-Up Table Refer to Section Refer to Section B.3.1.3. Refer to Section 4

B.3.1.3.

Allowable Heat Intensity Eq. A.4.2.3a-1 B.3.1.3.

in Tray (Cable w/o Performed for Service Intermediate result or alternate Code K and C trays Maintained Spacing) equations to be used in Eq.

using existing PDMS A.4.2.3 d.

provided Nominal Ampacity of  % Fill calculation..

i Eq. A.4.2.3d Cable in Tray w/o Performed for cables in Intermediate result Maintained Spacing Service Code K and C to be used in trays.  :

Nominal Ampacity A.4.2.3 A.4.4.2 calculation.

(maximum) of Cable in Performed for cables in Intermediate result i

Service Code K and C

' Tray w/o Maintained to be used in trays. Calculatel op ,,&

  • I Spacing A.4.4.2 calculation 0.8 to compare tonI . ifI o from Eq.

from Eq. A.4.2.3d. I A.4.2.3d exceeds '

Protected Ampacityof I,n ,;,

  • 0.8.

A.4.4.1 Cable in Tray Performed for cables in PDMS Report w/ Maintained Spacing Service Code H and L trays.

Protected Ampacity of A.4.4.2 Cable in Tray w/o Performed for cables in PDMS Report Maintained Spacing Service Code K and C trays.

Protected Ampacityof A.4.4.3 i Performed for cables in PDMS Report Cable in Conduit conduits.

Cable Maximum Load A.4.4.4 Current Performed for cables Intermediate result with protected ampacity used in A.4.4.5 calculated per A.4.4.1,2 comparison.

or3.

Ampacity Problem A.4.4.5 Compare Igrot,ct,a to Imi, PDMS PROBLEM PROBLEM ifImi >

Ivrotected-Page B6 of B10

R Appendix B PDMS Software Requirements Specification for Ampacity Analysis PI 0103-00203.002-101

. Revision 0 B.3.1.3 Look-Up Tables The AAM shall perform calculations using the equations specified in ...

2 using various constants, variables or intermediate calculation results. S constants shall be maintained in look-up tables. Based on other data withi AAM will make a comparison between the information in the look-up t data and select the proper constant for input to an equation as follows:

Table B.3.1.3 Required Look-Up Tables Look-Up Table Look-Up Table Look-Up Table i Data Reference Conductor and Ambient Table A.4.1 Limitations and Restrictions Temperature Correction CATF = 1.0 if Fire Zone Factor (CATF) maximum normal ambient s; 40 C.

Multiple Cables in Tray Table A.4.2.2 with Maintained Spacing Look-up performed only for I Service Code H, K and L cables in Correction Factor (MTCF)

Ampacity Correction Service Code H and L trays.

Table A.4.2.5 None Factor (ACF) Table A.4.3.4  !

Multiple Conductor Table A.4.3.2 Correction Factor (MCF) Defcult value MCF = 1.0, look-up Conduit Grouping performed for cables in conduits.

Table A.4.3.3 Correction Factor (CGF) Default value CGF = 0.86, look-up performed for conduits.

In lieu of a look-up table, the required data may be stored in a data elemen field) associated with the required record.

B.3.2 ExternalInterface Requirements PDMS Input Data VECTRA shall provide the following data for input to PDMS. This data consist information for the look-up tables and for various other constants required fo perform the ampacity calculations. VECTRA is responsible for data input accomplished manually or electronically, and for data verification.

Page B7 of BIO

Appendix B PI-0103-00203.002-101

. PDMS Software Requirements Specification for Ampacity Analysis Revision 0 Table B.3.2 PDMS Data Supplied by VECTRA

, Associated Record Data Data Source Cable Mark Number Nominal Ampacityin Tray Tables A.4-1 & -2 Nominal Ampacityin Conduit Tables A.4-1 & -2 Cable Diameter Reference B. l .4.4 Conductor Resistance Table A.4-2 Number of Conductors Tables A.4-1 & -2 Load Equipment Full Load Current RBS Calculations /other Number Continuous / Intermittent ESK or other drawings Load Factor Section A.2/other N/A - Factor used is Multiple Cables in Tray with Table A.4.2.2 based on PDMS count of Maintained Spacing Correction cables in tray with Factor (MTCF) maintained spacing Raceway Fire Barrier Ampacity Correction Factor (ACF) Tables A.4.2.5 & A.4.3.4 Rating / Type Code '

N/A - Factor used is Multiple Conductor Correction Table A.4.3.2 based on PDMS count of Factor (MCF) conductors in conduit N/A - Factor used is Conduit Grouping Correction Table A.4.3.3 based on as-built conduit Factor (CGF) configuration or default value = 0.86 Raceway Number Raceway Fire Barrier Rating / Type Reference B. I.4.5 Code - Code is based on barrier rating and configuration B.3.3 Design Considerations GPC shall implement the required PDMS software modification in accordance with the GPC Software Quality Assurance Program.

B.3.4 Queries and Reports B.3.4.1 Queries GPC shall develop the necessary queries for implementation of the ampacity calculations and printout of reports specified in Section B.3.4.2. The query requirements are generally Page B8 of B10

Appendix B Pl.0103-00203.002-101 PDMS Software Requirements SpeciEcation for Ampacity Analysis

. Revision 0 l

i defined in Appendix A and the tables provided previously. The following list provides a summary:

Include only cables in tray or conduit wrapped with T-L 330-1 e Exclude all instrumentation cables (i.e. cables with Service Code = X) include only control cables (i.e. cables with Service Code = C) that meet the criteria described in Section A.2, Cable, Control

. l Exclude cables where C/I (continuous /intennittent) = I (intermittent) '

The new queries shall be documented in the PDMS User Manual (Reference B. I.4.2).

B.3.4.2 Repons The following definition represents minimum requirements for a Cable Derated Ampacity Report. This report prints derated ampacity and associated data for cables sorted by cable

{

number. This report shall present, for each selected cable, the following information:

e cable information - cable number, size, type, circuit number, minimum calculated derated cable ampacity raceway information - each raceway in the cable route shall be listed along with the applicable fire zone / area (s), cable nominal ampacity, all associated ampacity correction factors, calculated derated cable ampacity, calculated ampacity margin i or PROBLEM (ifIpm.a,a is less than mi I ).  !

e load information - equipment number, full load current, type (i.e. continuous or intermittent), load factor o comment A method shall be provided to print the report for user-selected cables as follows:

e individual cable e

all cables in wrapped raceway The report format shall be developed by VECTRA with input from GPC. Final approval is by EOI. '

B.3.5 Maintenance Considerations The maintenance requirements for the AAM are the same as those which already exist for the other PDMS analyses described in Chapter 4 of Reference B.I.4.2. There are no new maintenance requirements for the AAM.

Page B9 of BIO

_ _ . , _ _ . . ~ - -

4 e

" ,, Appendix B  !

PDMS Software Requirements Specification for Ampacity Analysis PI 0103-00203.002101 t Revision 0 i

B.4. SCliEDULE AND RESPONSIBILITIES ,

B.4.1 Schedule

)

Reference B.I.4.3 specifies that by June 30,1996, the ampacity methodology Appendix A) and a typical calculation (i.e. using the results from PDMS as imp in accordance with Appendix B) shall be completed.

B.4.2 Responsibilities General Physics Corporation (GPC) shall make all software changes to PDMS in o implement the AAM. This includes verification and validation (V&V) of all software changes.

1 VECTRA shall provide the necessary data not already in PDMS. .

EOI shall review and approve the PDMS software changes and documentation in accordance with the requirements of RBNP-041 (Reference B. I .4.1).

l 2

l l

Page B10 of B10

1 4

Supplemental Response to Request for Additional Information (re: Ampacity Derating),

Generic Letter 92-08, "Thermo-Lag 330-1 Fire Barriers," (TAC No. M85596)

June 28,1996

RBG-43067

] RBF!-96-0227 f

1 3

k

! l 1

2 l

ENCLOSURE 2 .

1 i

SAMPLE AMPACITY DERATING l CALCULATION REPORTS i

E 3

1 1

i r

P0MS Version: 10.06.00 Entergy Operations, Inc. River Bend Station Thu Jun 20 07:01:51 1996 CLble: 1 CA IBYSBNL605 DCD: Legend Items: 002 Wires: 002 -------..-----------

Type: NGP-50 Material: ALUMINUM Conductors: 001 DF = Derating Factor Ampacity: 458.000 (TR) Resistance: 0.046 (ohms /Kft) CADF = Conductor Ambient DF Ampacity: 381.000 (CO) CDDF = Cable Diameter DF Ampacity: 381.000 (DU) CGDF = Conduit Grouping DF CGDP = Multi Cbnductor DF Actual IPCEA/NEC MCDF = Tray Cover DF


--------- TCDF = Tray Cover DF Diameter 1.190 (in) 1.190 (in) CDDF: 1.000 WSDF = Wrap Status DF Area 1.112 (sq in) 1.112 (sq in)

Conductor Temp 90.000 (C) 90.000 (C) DCA = Derated Circuit Ampacity Ambient Temp 40.000 (C) FT = Fill Type A1.Sl= Pct of Available;Di= Inches VL = Voltage Level Losd: 1 EQ IBYS-PNLO2B2 DCD:

FLA: 123.000 Load Factor: 1.250 Circuit load: 153.750 C/I C AC/DC: DC Comment: X Q Nominal Derated U CT Route Point DCD Zone Ambient CADP Wrap Type WSDP TCDP CGDF # Cables Wires MCDP VL FT Fill W/ft/in2 Ampacity Ampacity 1 EQ 19YS-SWG01B-4 AB 0.000 1.000 1.000 1.000 1.000 0 14 1.000 0.000 0.000 381.000 381.000 1 TR 1TLOS2N AB 0.000 1.000 1.000 1.000 1.000 5 7 0.830 L S1 22.567 0.000 458.000 380.140 1 TR ITLO52N ID 0.000 1.000 1.000 1.000 1.000 5 7 0.830 L S1 22.567 0.000 458.000 380.140 1 CO ICLD52NA AB C.24/Z-1 32.200 1.000 STD(CO) [3] 0.500 0.860 1.000 0 4 0.800 0.000 0.000 381.000 131.064 1 CO ICLOS2NA AB MISSING 40.000 1.000 1.000 0.860 1.000 0 4 0.800 0.000 0.000 381.000 262.128 1 EQ 1BYS-PNLO2B2 AB 0.000 1.000 1.000 1.000 1.000 0 4 1.000 0.000 0.000 381.000 381 000 Circuit Load 153.750 Minimum DCA: 131.064 at ICLOS2NA in C-24/2-1 Derating Problems:

Loads 1 Found 2 Loads, there should only be 1 Load Override: Test Derating Override - See E218 for actual information CADF Missing Ambient Temperature or Derating Factor at ITLOS2N Override: Test Derating Override - See E218 for actual information

- _ - _ _ _ _ _ _ _ _ _ . . - . _ - _ _ _ _ _ - _ _ _ _ . _ - _ _ _ _ _ - - _ _ _ - - _ _ . _ _ _ _ _ - - _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _-_ ._ _ - _ . _________--_____a

=

PDMS Varsion: 10.06.00 Entergy Oper&tions, Inc. River Bend Station Thu Jun 20 06:58:35 1996 ,

Ctble: 1 CA 1CCPNBC506 DCDs Legend Items: 001 Wires: 002 ----------.-.--.--.-

Type: NGP-22 Material: COPPER Conductors: 002 DF = Derating Factor Ampacity: 36.000 (TR) Resistancer 1.391 (ohms /Kft) CADP = Conductor Ambient DF Anpacit y: 36.000 (CO) CDDP = Cable Diameter DF Ampacit y: 36.000 (DU) CGDF = Conduit Grouping DF CGDP = Multi Conductor DF Actual IPCEA/NEC MCDF = Tray Cover DF TCDP = Tray Cover DF Diameter 0.550 (in) 0.550 (in) CDDF: 1.000 WSDF = Wrap Status DF Area 0.238 (sq in) 0.238 (sq in)

Conductor Temp 90.000 (C) 90.000 (C) DCA = Derated Circuit Ampacity Ambient Temp 40.000 (C) FT = Fill Type A1,St Pct of AvailablesDI= Inches VL = Voltage Level load: 1 EQ ISCV*PNL2H1 DCD:

FLA: 0.210 Load Factor: 1.250 Circuit load: 0.262 C/I: C AC/DC: AC Comment: 25W H'11t/.21A Q Nominal Derated U CP Route Point DG Zone Ambient CADF Wrap Type WSDF TCDF CGDF # Cables Wires MCDF VL FT Fill W/f t/in2 Ampacity Ampacity 1 EQ 1CCP*MOV335-HTR AB AB-1/Z-1 0.000 1.000 1.000 1.000 1.000 0 4 1.000 0.000 0.000 36.000 36.000 1 CO ICC816BC2 AB AB-1/Z-1 50.000 0.894 1.000 0.860 1.000 0 9 0.700 0.000 0.000 36.000 19.384 1 JB 1*JB8190 AB AB-1/2-1 50.000 0.894 1.000 0.960 1.000 0 20 0.500 0.000 0.000 36.000 13.846 1 CO ICC816BC1 AB AB-1/Z-1 50.000 0. 894 STD(CO) [3] 0.500 0.860 1.000 0 7 0.700 0.000 0.000 36.000 9.692 1 EQ ICCP*MOV129-HTR AB AB.1/2-1 0.000 1.000 1.000 1.000 1.000 0 2 1.000 0.000 0.000 36.000 36.000 Circuit lead: 0.262 Minimum DCA: 9.692 at ICC816BC1 in AB-1/Z-1 Derating Problems:

CADF Missing Material type CU/AL Override: Test Derating Overrida - See E218 for actuel information Q IPCEA/NEC resistance should be greater than 0 Override: Test Derating Override - See E218 for actual information DCA Circuit load [0.262] exceeds DCA [0.000] in AB-1/Z-1 at 1CC816BC2 Override: Test Derating Override - See E218 for actual information

~

e 8

>, e O O O m O m O O @ m in m m e e @

s aW e O e @ v @ v e eD in a a m m m m ,

W e 6 f*

a U e O. f*.. e. e. e. m. . m. e. e. e. e. e. e. f*.

g g 8 m W N e4 N ce @ @ ce m m m m m m w he Q, e P= 0 O 9 O W D O N @ @ @ @ @ @ e e W W en M @ m W w m M m m m m m N e4 9

>.

  • e O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O q w e C U e O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O.
  • e m m eD e eD e m m m m m m m m m m M f* b b g 8 P, M, en .n e m P. P. r,* f,* c,m 6, &, P. e. N.

4 N

  • O O O O O O O O O O O O O O O O

@ U e O O O O O O O O O O O O O O O O m C .C-e

  • m og N e O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O.

ce B u a O O O O O O O O O O O O O O O O ce one a m  % I Q= Os 3

@.. W e O O O O O O O O O O O O O O O O O M e O O O O O O O O O O O O O O O O ag e O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O.

M.. 4 m *=0

  • O O N N N N O O O O O O O O O O es e.4e .e e N n n n

.4 b s m >

e4 h 4 5.e e e ce e e las e  % to U) UJ C .a.4 ee4 5 L U O e PJ Q 18. 8 Q u e u b b U 3 e il w C Q Un Q As > e Z Z 2 2 14 e b . .&.e k .C

.e k u ce

  • O O O O O O O O O O O O O O O O O e Q. O b + to Es. e o O e+ r* > > O O O O O O O O O O i a u :3 a ta. Ese Q  ;$ = es e e e e e.

e U G O U Q Q u es e a O. O. e. - - O* O. O. O. O. O. O. O. O.

e ce O- O O O ce c4 ee ce c4 e4 e m o m .b4 4 > e i e E w 5 c4 4 e n. u e O V h h :s o m m m m m m m m m m m m m m m m e O w CW @ u O G 4 m e De a Q 0 > > e e e m e C U .a4 8 U O O u 'O W i a

  • l3 & 5 O O U) W CM .b

-e

  • 4 u .O we %
  • a a 3 e e e C 4 C u h h Q. e es u-e i he O 4 0 ed 4 4 e he c4 e O O m m m m O O O O O O O O O O e W Q O O 5 h h k e
  • O m e e Q Z H H 3 Q Ia. > e i e e a e e4 s e e a e a e a e e e a e C
  • b b h. 4 e W e b b Ca. Ea. U e e Q e e a

e Q Is. ul 3

{*

sa.

e.3

> e O O O O O O O O O O O O O O O O Ea. e o O O O O O O O O O O O O O O O e

C O. O. O. O. O. O. O. O. O. O. O. ".). O. O. O. O.

O e ce c4 s.e ed e4 e4 es e4 es e4 ce ce ce ce c4 M M

u e O O O O O O O O O O O O O O O O og b e O @ O O O O @ @ @ @ @ @ @ @ @ %D op u e e O. eB. O. O. O. O. e. en. e. e. eD. ED. e. eD. e. .

U) ed O O O O O O O O O O e ce O re et e.e e o O O O O O O O O O O O O O O O

@ (n.

  • O O O eD O e O O m O O O O O O O (Q m **

O O Q

M 8

e O. O, O. @

. O.

.Q O, r*. O. O. O. O. O. O. O.

k O O m 3 e e4 e4 c4 O ce Q en. e4 O .4 et ce es ce M e4 W f*

e

> ~ .. O n

.** a a O - e E W k @ e w 0 O. m .

e e.e M es e 3 0 e g

3 ..

ta. D e en. en .*.

Q s c4 es ce

~ ~ ~

8 5 a _ _

~ "

8  : # # 8 Q 3.e es l3 Q.

e e =

Q w w Q

hs U e

% e he h e he be M C

  • 3 e (4 f4 E w U w 9 9 O

,C e O O O O O O O O O 9 9 4 O O' c- En.

  • O O O O O O O O O m m m e m m O M

.C~

.e U

g g w

% wet *t.p Qw a O. O. O. O. O. O. O. O. O. es. e. e. e. e. en. O. 7, M

we w O e ce ce ce es ce e.e ce s.e e4 O O O O O O ed Gas O O e 9 e O O M W O O a e O O O O O O O O O O O O O O O O (4

  • Os h3 e t H O. C O O O O O O O O O O O O O O O O 8O Z e ea e N s m. O. O. W s O O O O O O E e4 M O O O .-e t O. O. O. O. O. O. O. O. + O+ O. * * -
  • e m w me a O O O O O O O O O O O O O O O O C

.. 9 e e

@ to m W d a .4 e s W W W W f f f W @ en m 4 U e N.

  • ed
  • m k Iee a .. Ug e s

ee w ee ce e4 ,e ce w es ,4 .4 O

h u a e

g a

-e

.Ce kO .. O u U m ce e ** et **

e o N' N' N s ce e N e ce e

e N N i ce e

e e e N N N N N N Z e e i O eD tp g = 0 Q N e  % % N N % N % % N N N % % N N 4-e fD.J 6

& t N N N N N % @ N N re f'* re P N f* U) e k g O' a e N 3

  • Ul e4 g

u d

-C -a O e

t Es. O 4 4 N

C O e e

4 N N N e

O U' U U U U s

@ N

@ et N U' U' Ue W

  • e la 80' h CD' 84 CQ *'*

4 W 4 4 4 E e

u e 9 G e e C e O N O O

O

-#88-w

.=.

- .~

4 3:

U 8

e M e4 O

m

$e 2222222222222222 e @

m 4 e e4 As e P'

  • O. 2 O O O O 8 e f*

@ O m O O O O . e O ee O Q. e

@ w O. g O. O. O. e 2 a e N e e O y) m e m m n O

.?.

e a

.4 e4

  • 9 e4 N et O F* t* & G. N O O *e e 9 Ue o e y v Fe h3 O in O s O 4 Cl iD CD CD O O in O O m E,

e ce

m. N Q.
  • O O O0 0 O O O O O O O O O O e U1 N N N N N N N N N m m m e e d M

9 C

O et V h h..**h h 1.s O

b O N - 6 e

  • O O O O O O O O O M m
  • N N # 9 .*

w y u a 3 u u Wm **

u a e N O O O O O O O O O e e e e e e

I" t. t t. "g , , 8 .E. M .. .8l 0 ---

4 5 E Ee E.e E -5e c - - 5 5- -----

5e i s5is. u E I I

. . C .

E463 6@-U tl 885E558088228228 8gC O n .ue w 5b @

e e M M M M N N M N M M M M N M M M U E

. . .... ._. ..-n-- .. .. - ... - . ._.~. . -- -

e Dersting Problemas

  • O IPCEA/NEC resistance should be greater than 0 Override: Test Derating Override - See E218 for actual information DCA Circuit load (393.750] exceeds DCA (203.390] in C-16/Z-1 at 1010020B Override: Test DerEting Override - See E218 for actual information a

i b

1

___.____________m.______ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _._ _ _ _ _ _ _ _ _ _ _ _ _ _ __ m___ _ _ . _ _ _~ _ . .. . _. . ._ . - . , _ ..___ ,_ _. , - , -

A e o O O en m e e .4 ,4 m m e e N N N TW w w e O O@ O m m egm m o O m e @ m gmg wes O.

e O,4 .O.e m .O.a '

u o sg S e O. .w . m. . m. set. m. m. . . . . m.

ein g g

w. . .

.4 in.

l

(

e W ** et to in in ,m N m en g e f% - ,4 es c .4 1 be e N N N ce ,4 e 4 ee .N 4 c4 .4 es c4 6e - es me ce e I

h 4 O O O O O O O O O O O O O O C' O O O O O e'8 M

  • O O O O O O O O O O O O O O O O O O O O e5 .4 e I

C u O. O. O. O. O. O. O. O. O. O. O e O. O. O. O. O. O. O. O. O. i

  • a F > > > e o e e- o r- > > > r* o t- r. c > > l

% j N N N N N N N N N N N N N N N N N N N N '

e 2 e e .

4 NC e oO Oe eO OOO OO OesO Ocem m m in in#e m m e e O O O O O I W

  • u e o O m m O O O O O C
  • e w w e

e4 en s a O. O. O. .w . e. . e. e. e. e. ce. . ce.

e4 O. O. O. O. O. )

8 W

end e O e4 N N

.4 no e en m m m m m so e f* f* O O O O O I e s e i m.- o. . O 3 m

e e C e e in m m ei e- r. O O e4 m O O O O O

-4 e O w e r= f= w e en m og on ce c4 e, y O O O O O O 4 8 g w w e4 ,4 m l i

4 ** s O. e. ce. e. . . . N. N. m. O. O. O. O. O. O. O, P* ** *"e e O - et 9 e w g O O m 1

O m., m m f* r e # O O O O O l O

ge .4 es m m m m e in e m' N N j es >= 4 e ce es e .4 ,4 es ce e ,e .g me ,g - ,e i u e 4 4 4 4 id: 4 4 4 4 4 4 esl 4 4 '

b u o

  • e Q fa. a e
  • Q b U 3 i i w b Q & > i M M M M W W W W W W M M M M i C Q CD 8 1 he & C h a =e e O O O O O O O O O O O O O O O O O O O O l 0
  • h
  • O b w b e e & W Q. W in.i te. Q 3 M. e4 6 O O O O O O O O O O O O O O O O O O O O 1 e o a 3 o Q Q u ,4 e e O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. m. in. m. m. m. )

s e 6 0 5 m h 4 > e e. es es es ce c4 es ce ce .4 e4 e4 es ce ce o O O O O e 14. E be t k k 3 ce a he e O C W W W U .e3 m o N ce e e e 6 r* e en e et e r= w e @ W e e ,e4 e mO

  • O > e e e e e in in e in O O e e w w e- r- - c4 - ce e C u Q u U O w 'O W e .4 .4 e.e

. .4 eg N ne ce

  • ** O w U M e tn .be

-* e i

e w 3 @ 3 w u 4 3 e e m 2 ,ae a N A Q. e e4 w l e u - e e e u - ~ , O m m N = @ e e N N O O O O O 1

gga yygg g ;;e g a j N N N. N. n. . e- r- mm r,- r,- mm  !

T e 5 9 3 3 A G B B R B S 4 e C I 4 e e e is. In. fa. b ti. A ta. O e e Q e e e b m 14 4 e Q 3 fa. > e O O O O O O O O O O O O O O O O O O O O Es. e e

O O O O O O O O O O O O O O O O O O O O C e O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O.

.O

,e e ce .4 es ce - c4 .4 e4 es .4 e4 ce .4 eg ,4 es ce .4 e ce M e O O O O O O O O O O O O O O O O O O O N In. t O O O O O O O O O O O O O O O 4 4 4 @ .O W e m e O. O. O. O. O, O. O. O. O. O. O, O. O. O. O. e. e. e. e. e.

e ce ce ce ce c4 e4 - - - ce ce .4 e4 et .4 O O O O O  ;

W e O O O O O O O O O O O O O O O O O O O O mm lse e O O O O O O O O O O O O O O O O O O O O i 833 Q e O O,

i O O M e

  • O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. in. O. I he O O 3 o .4 et ce e4 es ce es e.e .4 ,4 ** e4 .4 ,4 - es .4 ce O ed i

& I

> .. -- O e 4 mW O O e I

Of. W ao e e -

be O O- e ce e p ce N. e m.* {

3 v W e a

3 .. e - l 1o 6  : 8 Q

g' e 4

ce I

I e e l

.e j e .

w .M.e p

  • i g 3 sh
  • w

- O he e N C he 3 4 m U e O O O O O O O O O O O O O O O O O O 9 O C O' e. = Es. 8 O O O O O O O O O O O O O O O O O O e o

u. w .a., U Uw e c ne .O w w s O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. e. O.

e.e E s ce ce .4 ,4 et ce ce ce ,ie ,is - ce se .4 ,4 es ,4 .4 0 -

k e.n U e N O O b 4 Es) e Oe en O O M e o O O O O O O O O O O O O O O O O O O O

e. O N z 8 C e O O O O O O O O O O O O O O O O O O O O d G e. N. O. O.

O N-a

  • O O O O ^

W 6 s

O

  • OO ~ O. O*

O

  • O O O O O O O O O O O O O O g e ..

e e e O e O O" O O O O O O O O O O O O O* O' O O* O O 4 in

  • 9 en 4 9 I N e if.

L 4 0 - e k C e e

- *U e a.ie a

g e.

g

.. 4 e o .4 be .. a O e h f e

  • OO
  • z N e p Q e M N I

m.

[ g -C (P = 0 % e M -

W gr. *

  • W- U 4 O I M
  • a b 4 d

l g[

-

  • O N O esg 4 e ce m O e O O g88 M e o e O O O Q e M O ==w -

4 e Os 4 8 O. M e

. O O O O e T. e O in O O O m 8 m

- e C.e M e o O e ne O. O. O. R g N.

o . m ce Q O f* r= f* @ Z .C.e e e en 4 M a a a a

  • 9OO g ( .. ..

he s

. N 2: yze e z I

zf- =6 =@ z @= z =

= = = 84z e4z N N f2z fa O O O e O O es 0 U h W e e N O O O O O O N

- .h .h ,. ,0 a B v. u o e o O O

. . . O. . .N .O . . .O. . O.= =O. O. . .O .

- .u - -

u, o O C m U C F, ,.

- ae we g g g e s- g s s= g s= e e b=50 3

= @

l >

se

. ~

t.3 4@

e

- - ce - - - - - - - - - - - - - - - - -

g 2:

o 3 s4 3 42M0 , 0: 2gggg2g########8E884 n, h D e ,4 ,4 ,4 es ce ce ce og ce ,4 es c4 e4 as ** - ce .4 e4 e4

O +

i 1 CO 1CK600NA2 AB 0.000 1.000 1.000 0.8GO 1.000 0 3 1.000 0.000 0.000 . 27.000 23.220 ,  !

1 EQ 1DFM-P8 AB 0.000 1.000 1.000 1.000 1.000 0 3 1.000 0.000. 0.000 . 27,000 27.000 j'

, I i i 1

' Circuit Icad: 4.250 Minimum DCAr 5.192 at 1CK600NA1 in FT-1/E-1 i

Derating Problems i Q Missing raceway fill data '!

Override: Test Derating Override - See E218 for actual information CADP Missing Ambient Temperature or Derating Factor at 1CK600NA l Override: Test Derating Override - See E218 for actual information f

CADF . Missing Ambient Temperature or' Derating Factor at 1CK600NA2 Override: Test Derating Override - See E218 for actual information f

CADF Missing Ambient Temperature or Detating Factor at 1-JB2105 i Override: Test Derating Override - See E218 for actual information.

CADF Missing Ambient Temperature or Derating Factor at ITK600N }

t Override: Test Derating Override - See E218 for actual information  ;

4 CADF Missing Ambient Temperature or Derating Factor at 1TK631N Override: Test Derating Override - See E218 for actual information CADF Missing Ambient Temperature or Derating Factor 'at 1TK602N Override: Test Derating Override - See E218 for actual information  ;

CADF Missing Ambient Temperature or Derating Factor at 1TK606N [

Override: Test Derating Override - See E218 for actual information I

CADF Missing Ambient Temperature or Derating Factor at ITK607N f Override: Test Derating Override - See E218 for actual information a CADF Missing Ambient Temperature or Derating Factor at 1TK608N 1

Override Test Derating Override - See E218 for actual information.  ;

CADF Missing Ambient Temperature or Derating Factor at ITK626N i Override: Test Derating Override - See E218 for actual information i t CADF. Missing Ambient Temperature or Derating Factor at IWK604N05 Overridet Test Derating Override - See E218 for actual information I

1 '

1

-l s

t l

w~ r- -,.e-i., - w- +  %-1 -,--y ,w-si e- - - - -ee---w= m-*.zu--ve+w- e nww m--*e-ww a-v+wv-tur-+m-w+ew- -+, rem-*renusve-,e. + + , - -- e+ecg-ree v .M

s PDMS Varston: 10.06.00 Entergy Operations, Inc. River Bend Station Thu Jun 20 07:02:30 1996 ,

CLble: 1 CA 1ENBBBL604 DCD: Legend items: 002 Wires: 002 --. ---..-......----

Typer NGP-50 Material: ALUMINUM Conductors: 001 DF = Derating Factor Ampacity: 458.000 (TR) Resistance: 0.046 (ohms /Kft) CADP = Conductor Ambient DF Ampacity: 381.000 (CO) CDDF = Cable Diameter DP Ampacity: 381.000 (DU) CGDF = Conduit Grouping DF CGDF = Multi Conductor DF Actual ' IPCEA/NEC MCDF = Tray Cover DF

--- .. ......... ICDP = Tray Cover DF Diameter 1.190 (in) 1.190 (in) CDDP: 1.000 WSDF = Wrap Status DP Area 1.112 (sq in) 1.112 (sq in)

Conductor Temp 90.000 (C) 90.000 (C) DCA = Derated Circuit Ampacity Ambient Temp 40.000 (C) FT = Fill Type A1,Sl= Pet of Available;Di= Inches VL = Voltage level Load: 1 EQ IENB*PNLO2B DCD:

FIA: 152.000 Load Factor: 1.250 Circuit load: 190.000 C/1: C AC/DC: DC Conenent : K Q Nominal Derated U CT Route Pofnt DCD Zone Ambient CADF Wrap Type WSDF TCDF CGDP # Cables Wires MCDP VL FT Fill W/ft/in2 Ampacity Ampacity 1 EQ 1ENB*SWG01B-4 AB C-14/Z-1 0.000 1.000 1.000 1.000 1.000 0 25 1.000 0.000 0.000 381.000 381.000 1 CO 1CL920BB AB C-14/2-1 40.000 1.000 1.000 0.860 1.000 0 2 1.000 0.000 0.000 381.000 327.660 1 CO 1CL920BB AB C-19/Z-1 32.200 1.000 1.000 0.860 1.000 0 2 1.000 0.000 0.000 381.000 327.660 1 CO ICL920BB AB C.24/Z-1 32.200 1.000 STD(CO) [3] 0.500 0.860 1.000 0 2 1.000 0.000 0.00J 381.000 163.830 1 CO 1CL920BB AB C-25/Z-1 23.900 1.000 1.000 0.860 1.000 0 2 1.000 0.000 0.090 381.000 327.660 1 EQ IENB*PNLO2B AB C-25/Z-1 0.000 1.000 1.000 1.000 1.000 0 16 1.000 0.000 0.000 381.000 381.000 Circuit load: 190.000 Minimum DCA: 163.830 at ICL920BB in C-24/Z.1 Derating Problems:

Ioads1 Found 2 toads, there should only be 1 Load Override- Test Derating Override - k e E218 for actual information DCA Circuit load (124998.750] exceeds DCA [163.830] in C-24/Z-1 at ICL920BB Override: Test Derating Override - See E218 for actual information

~ -

POMS Varsion: 10.06.00 Entergy Operations, Inc. River Bend Station Thu Jun 20 06:44:54 1996 ,

Cable: 1 CA 1ENSARC502 DCD: Legend items 001 Wires: 002 -- ------.. -----..

Type: NGF-28 Material: COFPER Condactors: 002 DF = Derating Factor Ampacity: 64.000 (TR) Resistance: 0.875 (ohms /Kft) CADF = Conductor Ambient DF Ampacity: 56.000 (CO) CDDF = Cable Diameter DF Ampacity: 56.000 (DU) CGDF = Conduit Grouping DF CGDF = Multi Conductor DF Actual IPCEA/NEC MCDP = Trg Cover DF

-- --- --------- TCDF = Tray Cover DF Diameter 0.710 (in) 0.710 (in)' CDDF: 1.000 WSDF = Wrap Status DF Area 0.396 (sq in) 0.396 (sq in)

Conductor Temp 90.000 (C) 90.000 (C) DCA = Derated Circuit Ampacity Ambient Temp 40.000 (C) FT = Fill Type A1.Sl= Pet of Available;Di= Inches VL = Voltage level Losd: 1 EQ ISCV*PNL8A1 DCD:

FLA: 2.500 Ioad Factor: 1.250 Circuit Load: 3.125 C/I: C AC/DC: AC Coment : 300VA/2.5A Q Nominal Derated U CT Route Point ,

DCD Zone Ambient CADF Wrap Type WSDF TCDF CGDP # Cables Wires MCDP VL FT Fill W/ft/in2 Ampacity Ampacity 1 EQ ISCV*FNL8A1 AB C-15/Z-1 0.000 1.000 1.000 1.000 1.000 0 54 1.000 0.000 0.000 56.000 56.000 1 CO 1CCO36RB AB C-15/Z-1 40.000 1.000 1.000 0.860 1.000 0 18 0.500 0.000 0.000 56.000 24.080 1 TR l'Ir036R AB C-15/Z-1 40.000 1.000 1.000 1.000 1.000 132 461 1.000 C A1 47.156 3.875 64.000 28.932 1 TR 1TCO36R ID C-15/Z-1 40.000 1.000 1.000 1.000 1.000 132 461 1.000 C A1 47.156 3.675 64.000 28.932 1 TR ITC041R AB C-13W/Z-1 40.000 1.000 1.000 1.000 1.000 140 547 1.000 C A1 52.250 3.434 64.000 27.239 1 TR ITC041R AB C-15/Z-1 40.000 1.000 1.000 1.000 1.000 140 547 1.000 C A1 52.250 3.434 64.000 27.239 1 TR ITC041R AB C-16/Z-1 40.000 1.000 1.000 1.000 1.000 140 547 1.000 C A1 52.250 3.434 64.000 27.239 1 TR 1TC041R AB C-9B/Z-1 40.000 1.000 1.000 1.000 1.000 140 547 1.000 C A1 52.250 3.434 64.000 27.239 1 TR ITC041R ID C-13W/Z-1 40.000 1.000 1.000 1.000 1.000 140 547 1.000 C Al $2.250 3.434 64.000 27.239 1 TR 1TC041R ID C-15/Z-1 40.000 1.000 1.000 1.000 1.On0 140 547 1.000 C A1 52.250 3.434 64.000 27.239 1 TR ITC041R ID C-16/Z-1 40.000 1.000 1.000 1.000 1.000 140 547 1.000 C At 52.250 3.434 64.000 27.239 1 TR ITC041R ID C-9B/Z-1 40.000 1.000 1.000 1.000 1.000 140 547 1.000 C A1 52.250 3.434 64.000 27.239 1 TR ITC068R AB C-9B/Z-1 40.000 1.000 1.000 1.000 1.000 45 161 1.000 C Al 27.756 7.226 64.000 39.512 k 1 TR ITC068R AB C-9C/Z-1 40.000 1.000 1.000 1.000 1.000 45 161 1.000 C Al 27.756 7.226 64.000 39.512 1 TR ITC068R ID C-9B/Z-1 40.000 1.000 1.000 1.000 1.000 45 161 1.000 C Al 27.756 7.226 64.000 39.512 1 TR ITC068R ID C-9C/Z-1 40.000 1.000 1.000 1.000 1.000 45 161 1.000 C Al 27.756 7.226 64.000 39.512 1 TR ITC067R AB C-9A/Z-1 40.000 1.000 1.000 1.000 1.000 38 124 1.000 C Al 23.437 8.816 64.000 43.643 1 *IR ITC067R AB C-9B/Z-1 40.000 1.000 1.000 1.000 1.000 38 124 1.000 C Al 23.437 8.816 64.000 43.643 1 TR ITC067R ID C-9A/Z-1 40.000 1.000 1.000 1.000 1.000 58 124 1.000 C Al 23.437 8.816 64.000 43.643 1 TR ITC067R ID C-9B/Z-1 40.000 1.000 1.000 1.000 1.000 38 124 1.000 C A1 23.437 8.816 64.000 43.643

1 TR ITC005R AB C-9A/Z-1 40.000 1.000 1.000 1.000 1.000 72 257 1.000 C al 27.130 7.423 64.000 40.046

  • 1 TR 1TC005R ID C-9A/Z-1 40.000 1.000 1.000 1.000 1.000 72 257 1.000 C al 27.130 7.423 64.000 40.046 1 TR ITC003R AB C-9A/Z-1 40.000 1.000 1.000 1.000 1.000 160 654 1.000 C A1 55.506 3.199 64.000 26.287 1 TR ITC003R ID C-9A/Z-1 40.000 1.000 1.000 1.000 1.000 160 654 1.000 C A1 55.506 3.199 64.000 26.287 1 TR ITC001R AB C-11/Z-1 40.000 1.000 1.000 1.000 1.000 161 657 1.000 C A1 55.742 3.183 64.000 26.222 1 TR ITC001R AB C-9A/Z-1 40.000 1.000 1.000 1.000 1.000 161 657 1.000 C At 55.742 3.183 64.000 26.222 1 TR ITC001R ID C-11/Z-1 40.000 1.000 1.000 1.000 1.000 161 657 1.000 C A1 55.742 3.183 64.000 26.222 1 TR ITC001R ID C-9A/Z-1 40.000 1.000 1.000 1.000 1.000 161 657 1.000 C At 55 742 3.183 64.000 26.222 1 TR ITC152R AB ET-1/Z-1 50.000 0.894 1.000 1.000 1.000 199 685 1.000 C A1 67.576 2.538 64.000 20.943 1 TR 1TC152R ID ET-1/Z-1 50.000 0.894 1.000 1.000 1.000 199 685 1.000 C A1 67.576 2.538 64.000 20.943 1 TR ITC155R AB ET-1/Z-1 50.000 0.894 1.000 1.000 1.000 44 138 1.000 C Al 23.325 8.867 64.000 39.146 1 TR ITC155R ID ET-1/Z-1 50.000 0.894 1.000 1.000 1.000 44 138 1.000 C Al 23.325 8.867 64 000 39.146 1 WS IWC601R04 AB WS/Z-1 40.000 1.000 1.000 0.860 1.000 0 73 0.350 0.000 0.000 56.000 16.856 1 TR ITC600R AB FB-1/Z-1 50.000 0,894 STD(TR) [3] 0.500 1.000 1.000 38 136 1.000 C Al 20.863 10.109 64.000 20.900 1 TR ITC600R AB FB-1/2-2 50.000 0.894 1.000 1.000 1.000 38 136 1.000 C A1 20.863 10.109 64.000 41.800 1 TR ITC600R- ID FB-1/Z-1 50.000 0.894 STD(TR) [3] 0.500 1.000 1.000 38 136 1.000 C Al 20.863 10.109 64.000 20.900 1 TR ITC600R ID FB-1/Z-2 50.000 0.894 1.000 1.000 1.000 38 136 1.000 C Al 20.863 10.109 64.000 41,800 1 CO 1CC600RB AB FB-1/Z-1 50.000 0.894 STD(CO) (1) 0.790 0.860 1.000 0 23 0.450 0.000 0.000 56.000 15.313 1 CO ICC600RB AB FB-1/2-2 50.000 0.894 1.000 0.860 1.000 0 23 0.450 0.000 0.000 56.000 19,384 1 EQ 1 ENS *SWG3A-35 AB 0.000 1.000 1.000 1.000 1.000 0 45 1.000 0.000 0.000 56.000 56.000 Circuit Icad: 3.125 Minimum DCA: 15.313 at ICC600RB in FB-1/Z-1 Derating Problems:

CADF Missing Material type CU/AL Override: Test Derating Override - See E218 for actual information Q IPCEA/NEC resistance should be greater than 0 Override: Test Derating Override - See E218 for actual information DCA Circuit load {3.125] exceeds DCA [0.000] in C-15/2-1 at ICCO36RB Override Test Derating Override - See E218 for actual information

0

  • b e O T u o O O @

O@ O @O @O @O O@ o@ O@ m @o Nm @ m m 6 O N N N M

@ w o

-e m m O O

m. m. @ F. @ @ IP. @ m. e. P. EN. @. m e. T.

@ e u o O. #. e.

O.

e e see m m m m .se W e b 6 6 5 6 5 N M M m m m m f* m m m m M m e m e m N 6 N N N @ e @ @ M e W W f 9 W W W W 9 9 9 9 w f T m N m M 9 M h e OO OO OO OO OO OO OOO OO OO OO OO OO OO O

& e O O O OO OO OO OO O e

  • C U e' O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O,
  • e m e e e e e e e e e e e e en e m m mO. mO. ,O. O.

e h h h h P 5 6 f* 6 f* 6 & 6 e 6 M fm e p 6 y 9 6 @ @@@ @ @ @#@ @@@ @ 9 e e g w l

e 4 N

  • U C e e o O O O O O o O o O O O O O O O O O O O O O O o O o O O O O O O O O O O O O O O

& C

  • e M

e.e N e o. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O.

E &

. l O O O O O O O O O O O O O O O O O O O O

% 8 6**

Q-- 0 3

  1. @ e OO O OO OOO O O N @6 @O OO OOO oO O O O O O O O O O M e

@ A e O O o O O O O O O a

e M e O. O. O. e. e. N. N. e. e. e. e. e. e. e. e. O. O. O. O. O.

m M e O @ @ e e @ @

O e e e e e e e e O O O O O j gl @ @ w w @ @ w e v e w w w e O >

N >. aC e c4 4 et m e ce ,e .4 ee e .= ,.e e 4 g, H.

u e m to to m to cc m m m to m to to to b U O e

  • "J Q h. e Q u e 3 o h. b g e g

w w gQ ge h

  • w Q

e m = = = m m m m m m m m m=

M a O W & O b d c4 h.

e

. O O O O O o O O O o O O O o o O o O o O e a a 3 s fa. b Q 3 .ae e O N N N N N N N N N N N N N N O O O O O u =e e. e. e. e. e. e. en. e. e. e. e. e. e. e. O.

w ( >e i u O U Q Q e O. O. O. O. O.

e a w s a e e O O O O O $ O O O O O O O O w w w w w e b u e U Le k 3 A O --s e e u O e O @ w N N4 N.4 N m m m m m m m e m m m m o e

e mu Q u e W e @ w e4 m e

.C O w w e w e e e .* 3 e 3 fa m

  • e
  • u % ~ .*e a e 3 e
  • 4 C 4 & b b Qe e sae u o w e - e e e w **
  • a e U 3 6e so 6e e w 0 m ee O w w a m O Ow mcem m m a em m m O O O O O
  • Q E H H 3 Q h. > W e a e a e a e 9 s e e a e 5 e e e A e C e fa. A las e e b e Q h. A fe. h. O e e O Q = e e b U m e Q . 3 e O O O o O O O O O O O O O O O O O O O O le. e o O O O O O O O O O O O O o O O O O O O e

C O. O. O, O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O.

O e w .e M M e eo eg

,4 eg c4 e.e .4 e e.s e-o e ce #4 .4 m u

ef h.

i O O o O O O O o o o O o O O o o O O O O 4

o e

O O O O O O O O O O O O O O O w w @ @ O

$4 e O. O. O. O. O. O. O, O. O. O. O. O. O. O. O. e. e. se. e. O.

. ---M M M - M - - M - - - M O O O O - l 2e e O O o o O O O O o o O o e o o O o O O o l n.

El m - Q ee o O O O O o O O O O o o o O O O O e O O O 1 O O O 0 0 m e O. O.

  • O. O. O. O. O. O. + O. O. O. O. O. O. r=. O.

le O O- @ 3 M e4 e.e M v4 eg M e4 M e #4 e4 ese e=* M e4 O ce c4 M Go N

> a .+

O w e

-*e WW D . .

E W be M e he O O. O e d u e4 m a 3 U e s ..

e t h. T e C e ==

a.

8 $ $  :

e a

. .. g g .ma Q

e b#

88 4 p D. e

  • W. U e N -

.he e.e e e C -e 3 e e O o o C O O v3 O o O w O w w w e e e e O O O' a a b e O O O O O O O O O O

  • O * * * * *
  • O O w .C

.4 e U U e O ep g w w w w e O. O. O. O. O. O. O. O. O. . O. e. e. e. e. e. e. m. o.

M O e ce M e4 e e ce mg eo se M M C re O O O O O O O e4 tal. O O e o e O O g

. c.

re O.

e N @ OO M e O O O O O O O O O O O O O O O O O O o O e m C e O O O O O O O O O O O o O O O O O O O O O e m. m. O. O. O @ e O OO O O O O O O m O g ,q y4 O O O **e -e e o. O. O. O. O. O. O.

  • O. * - O. * *
  • w g M w

g

.. s e T @

N 3

e C O+ O O O O O O O w T T W 9 w 9 9 9 6 9

  • O o O @ O O O* O O- O e O*

e e IA EH @ @ @ f M e e *

  • be -se 84 e Pe 44 g = M M M MM M M M M M
  • C 0 -
  • e M M M e4 =* M s.e ce e c4 e i e e e e a e h e W c.e

. N N NN N

  • e N
  • 8 e e e e e e N N N N N N N N p

be g

g .g De .

O e N Q.

e N N N N N N N N

$ e w % N N N N N N N N N N N N N P ** N T

  • N % % N %  % N N j g w e O 6 O e M w w g g g g g e g e e i e e a e o e o j

e e O e O c.

Q

666666666626 tutStt88

=. ~ e N w O em o O

g O w * - e w ce o m

eg O J i

m e e O 9 e O. m O O O i

v6 GJ @ O O O *e8 &

O.

m s=e e N s O. O. O. e 9 e

  • O O m a e m.

A N O C e M **

c4 O r= 6 O m W e a ** O

    • O en P, e H O ed D e El 2 2 6 o e m & e M S G G S S E E 2 S S S S E G @ G E he H m. e e em ee ce N N m m W 9 w f N N N N N e w

h b b he 0 ee W e e o O O O O O O o O O O O @ @ en en @ O e y g g g y g w w u s m O O O O O O O O O O O O O O O O O m M e - ttt - E a u c 3e e .

e M .. .. 8: 5 E E- E- E.e E E E E E E E E.e EE555E8 e - M - e4 - e4 - - M e ------M 2

A sa 6@-U t: 8ggggggg55gECDE88888 i h D m w w w w w w M M e M w M w e M M a M a  !

l l

a Circuit Load: 301.425 Minimum DCA: 287.430 at 1CHOS2BB in ET-1/Z-1 Derating Problea:

Icadst Found 2 Loads, there should only be 1 Load Override: Test Derating Override - See E218 for act'aal information Q IPCEA/NEC resistance should be greater than 0 Override: Test Derating Override - See E218 for actual information DCA Circuit load-[678.750) exceeds DCA [203.390) in DG-4/Z-1 at IDHH8BS1 Override: Test Derating Override - See E218 for actual infortnation M

- - . _ _ _ - - - --a-..-- - - - , - - __ ---_-- ---- - .- ___ _ _ - . -- a-----_a

e PDMS Version: 10.06.00 Enteryy Operations, Inc. River Bend Station Thu Jun 20 06:54:48 1996 ,

CEble: 1 CA 1HVCIBC511 DCD: legend itemsr 001 Wires: 002 ------- ------------

Type: NGF-11 MateriM: COFPER Conductors: 002 DF = Derating Factor Ampacity: 27.000 (TR) Resistance: 2.215 (ohms /Kft) CADF = Cbnductor Ambient DF Ampacity: 27.000 (CO) CDDF = Cable Diameter DF Ampacity: 27.000 (DU) CGDF = Conduit Grouping DF CGDF = Multi Conductor DF Actual IPCEA/NEC MCDF = Tray Cover DF


--------- TCDF = Tray Cover DF Diameter 0.490 (in) 0.490 (in) CDDF: 1.000 WSDF = Wrap Status DF Area 0.189 (sq in) 0.189 (sq in)

Conductor Temp 90.000 (C) 90.000 (C) DCA = Derated Circuit Ampacity Ambient Temp 40.000 (C) FT = Fill Type A1.S1-Pet of Available;Di= Inches VI., = Voltage Level load: 1 EQ 1HVC*AOD148-33C DCD:

FIA: 5.000 1 cad Factor: 1.250 Circuit lead: 6.250 C/I C AC/DC: AC Comment: SAEU Q Nominal Derated U CT Route Point DCD Zone Ambient CADF Wrap Type WSDF TCDF CGDF # Cables Wires MCDF VL FT Fill W/f t/in2 Ampacity Anpacity 1 JB 1*JB0028 AB C-17/Z-1 32.200 1.000 1.000 0.860 1.000 0 60 0.350 0.000 0.000 27.000 8.127 1 CO 1CC920BD4 AB C-17/Z-1 32.200 1.000 STD(CO) [3] 0.500 0.860 1.000 0 8 0.700 0.000 0.000 27.000 8.127 1 EQ 1HVC*AOD148-33C AB C-17/Z-1 0.000 1 000 1.000 1.000 1.000 0 4 1.000 0.0P0 0.000 27.000 27.000 Circuit lead: 6.250 Minimus DCA: 8.127 at 1*JB0028 in C-17/Z-1 Derating Problems:

CADF Missing Material type CU/AL Override: Test Derating Override - See E218 for actual information Q i*CEA/NEC resistance should be greater than 0 M rride: Test Derating Override - See E218 for actual information DCA Circuit load (6.250) exceeds DCA (0.000) in C-17/Z-1 at 1*JB0028 Override: Test Derating Override - See E218 for actual information

. . _ - _ --____ _ . - . . - _ . . - - - - - .- . _ _ . - _ - _ _ _ _ - - - - - _ _ _ _ _ - - --___--_____ _---_____. _ -___ - _ _=____-__ _ _ __-_.___--__ _ _ _-__-_--_._ _-_.

i I

6 8 i

l l

l I

A e O es e m e e ce m m e e O y W.=4 e O @ m m m m M O O m m @ mO w

y m

y e s

I O.

f*

m. e. m. m. m. m. m. m.

W @ m m m m N N m e W

.w . N. N. O.

6 f* @ b 4 N e ed et M e8 es e4 ce ce c4 ee N h a O O O O O O O O O O O O O O I

-e w e O O O O O O O O O O O O O O e e 6 O.

C U i O. O. O. O. O. O. O. O. O. O. O. O. O.

  • e f** f* b b f* f* f* F* 6 & 6 & 6 & l

' N N N N N N N N N N N N N N i a

z e l

4 N e O M m O O ee M m m m .fi O O O

@ U C o-e O W T C O O O O O m O O O m M C

  • N e e

.wwww O. e. e. e. w . . . . e. e'. O. O. O.

c4 5

.e

& e OW @ m m m m m M W W O O O I me s l > Q s e l i m O 3 1 W e O m m m m m m 6 6 O O O O O 3

@" -e e O N e > > w e m m m og O O O l 4

O..

e m ed

. ce M

e e O. O. O. v. e. w

.ww . . m. N. N. O. O. O.

I I

O + - .

e O e m w w w e O O m m O O O j N N m m m m m a m m 10 (s. e O > l N > 4l E.* e e4 en en et me et m en m en l

C 9

  • ew b e 4 4 4 4 4 4 4 4 4 4 1 3 U O e i
  • "J fa. 85 8 Q b & e D Q b U *J e u h. Q > '

W W as W M M M M M M b* C Q w f.e.  !

k as C he es s O O O O O O O O O c, O O O O O *e k

  • O b .a.e la h.
  • O O O O O O O O O O O O O O l e w W Q. a f6 h. Q 3 -
  • i O O e
  • e U w 3' O Q Q e O 3 m U e4 6 4 >

4 6 - O. O. O. O. O. O. O. O. O. O. r. t.

e k. E u m u u a e e ce ce c4 e4 es c4 es ce e e4 ee O O e4-e mO h e~a o e e w

e U .an 3 e a e > > e e > > m m em e e r= m e

W e r- m m m e e m o o e e e C w Q

.ue O a e W w a m ce m e4 es e4 N N e -e u Q c) e m w e e u 5 e s u e 3 e s e % ~ D 9  %% 0, e en a e w C a e* e e e w -e e O O N N N N # e e e O O O e e o e a w w w as e.e e O e e O, , w w w w r- r- m m e Q O O e

E b I.e 3 Q h. > W s M e 9 e e e a e a e e a e e e a e C e

_a e W e fa. fa. (s. h. b h. In. U e e Q e e a ti. un 8.e 3

  • Q 3 h. > e O O O O O O O O O O O O O O 4 i O O O O O O O O O O O O O O I e i g a O. O. O. O. O. O. O. O. O. O. O. O. O. O.

O 6 ce e4 c4 et et ce e4 et c4 et ce ce e4 M we 9 a O O O O O O O O O O O O O O al fas e O O O O O O O O O O O @ WD i

i

) '

g) e O. O. O. O. O. O. O. O. O. O. O. e. m. . i e ce M e4 ee M es ce ce M ce e4 O O ce '

3e mm

h. .e O O e O O O O O O O O O O O O O O O O O O O O O O O O O III Q e O O O U) e O. O. O. O. O. O. O. O. O. O. O. m. O. a be O O 3 e es e4 es c4 ce M e4 e4 ce e4 c4 O e4 ce 2 e N i

O e O we g

n~ 8 O O e @

D 6's O e M MO O. O e H

-s s.a ee - e ce 3 U W s 3 .. 4 (se 9"

e m e e m 4 4* be 1 I

e O J i

$ 3

.e 8 ":.U a e e

$ 2 M = be e

% 3 e

.C .h.e

.e .C

=e i

i

= Q e O O O O O O O O O O O e O O M U

O C m=

O' O O,=

in. s e

O O O O O O O O O O O m o O N e

b C g w ww w w w e o. O. O. O. O. O. O. O. O. O. O. e. o. O. N W w W e w e4 m c ce e4 e4 e4 es e4 es O ce c4 Q Q. O e N O O  %.e C m.e

. tal e O.e m o o c a e o O O O O O O O O O O O O O e. he R. O 2 e W C e o ce O O O O O O O O O O O O 0 N. 10 C Q N 4 . N. O. O. 6 e O.

O na N e O O O O m n O. O. O. O. O. O. O. O. O. O. O. O. - G

.O

.s 0% 9 O

  • O O O O O O O O O O O O O O e

C he I

a w .. e e a m e we 5 te e $ e N e &

w ,$ + e e O e h .e

.se

.h =

C

.. 4 s

e N O

E N

O I

I h

rn fem e

=

m he OO 4 Q

- e a

e e

N Z NM e W l'*

W C t'P = U N e4 {

  • U)

Ee G1 4 e N

  • m U e O C a w m 8 N E w &

-4 e O N O 9 8 '*'

s e ** dh O '

N .

Q e O

O.

O O

M

-588--

u 4 e e C O O e

M at:

e I {

O+

e O O O e o o O

= 0 Q

e

, y M

a e m e i O * .*W RS*

O w N

4 O > ce n. O. O. n

%. e a4l O. *

'I: O g r= r= o E .C

-* e e f*' E

. W w *E ce O z N N N H O s U U M e ce o m c. e E z 2 E 2 Z E E E E E 2 O "4 8., es; .. .. w g O e e- e- e- r- e e e e N N N N D 9" O U h .. h 0 O e. .

W e e 4~ w

- .h h. . . . N. N. O. O. N. N. O. O. O. O. O. O. u.

w ee g..

o u o e .

ye o C , o C =

e e

a H H

- x xH = = = = = = = * >

H H H H H H U U E 8b

, a 5 ..s. - .. ,O e - - - H, e ce - - - - - - - M M a e i h.

> e .

8g%8 3

n r~ I s; 3 42 u o t: EEEEEEEEEEE888 u e u 24 4e Q D M M M N M N M M M MM # d M U E

e Override: Test Derating Overrida - See E218 for actual information g CADF Missing Ambient Temperature or Derating Factor at ITK606N Overrider Test Derating Override - See E218 for actual information CADF Missing Ambient Temperature or Derating Factor at ITF607N Override: Test Derating Override - See E218 for actual information CADF Missing Ambient Temperature or Derating Factor at ITK626N Override: Test Derating Override - See E218 for actual information CADF Missing Ambient Temperature or Derating Factor at ITK627N Override: Test Derating Override - See E218 for actual information 6

t.

l L

I i

. _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ . _ . _ _ . _ _ _ . _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ . _ _ _ _ _ . . _ _ _ _ . _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ m .__ _ __ m _ m .___- . __ = _ - __ _ _ _ _ ~s

w> e OO wOw Ow wO wOw Ow O s-O O O O O O O O O O N N OO w N e w N w w N w eg e4

  • r*. W T. e. W 9 9 9 9 9 . 9 e. y e

O. v4 p U e . . W. r=. *e. m. O.

k e5 4 e m m m m m m m m m m egm m m ,m m m m g es es S i e m m m a m m m m g ese m ,g e e > g i

N N N N N N N N N f4 N N e4 N N e4 N == *=e N h e O O O O O O O O O O O O O O O O O O O O

    • 9 4 ee e O OO OO O O O O O O O O O O O O O O O O O C U s O. - - O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O.
  • Q e m N N N N N N N N N N N N N N N e e p p Q. e W m e e e m e m m m e m th e e m e g g ,

g g J N N N N N N N N N N N N N N N N N N N N

.C NC ie O OOO OO OO OO OO OO OO OO OO O O O O O O O O O O w U O O O O O O O O O O l

m C *=0 e th e.e  % e O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O.

Pd #

g l O O O O O O O O O O O O O O O O O O O O m N e N Q.. O 3 m"

e e O m m m e & > O @ O O O O O O O O O O O O M O M M w w w O 4 e

i w C O O O O O O O O O O O O

~

m ee e O. . w. &. r=. r=. o. e. b. e. c. r=. b. r=. e. r=. O. O, O. O.

o -e e4 e O e e m m m m e ce ce c4 ,e .4 e. .,4 O O O O O

g gj v v w w w w w w w w e w w .,.e ,

O >

N A aC ge .

ce ce ce c4 e4 m m . = m = m m . = m . . . .

es .4 es es ce ce ce ,4 es ce 3 b u O e

'3 Q h. g i O 9 e 3 a fa. A U 3 s C Q mQ e C Q=

e

> e .1 e1 e.3 e1 6.3 e.3 4 e.3 e.3 J e.2 4 1 e.3 4

. be w 6 w k u es e O O O O O O O O O O O O O O O O O O O O l O . e D. O he

  • m h. o O N N N N N N N N N N N r4 m N N O O O O e.J u 3 a fae h. Q ;5 = ee i O e o+
e. e. e. e. e. e. e. e. e. e. to. e. e. e.
  • O O O O O O O O O O O O O O O ce Oe.Oe.ceO.

t e U G O U Q Q u M 9 a -

e 4 E be 3 m be aC > e ce e

l e En. he e Q be be 3

  • i e O e e e u O 4 m e e ce ce o e & r= ce ce ce e4 .4 e4 es ce ce m w w w i

i mu Q w e C U -'

> > e O O u V @

e i e ch N N N N N N N N N N N N N N N be s

  • W 3 O O = 4 CN *e e e a ee % ee a M 3 e e e J2 a >= h Q. e e4 g e e e he ee .a r.

m,* m m m e be c= 4 e O m m r= r= e e e e e e O O O O e @ U 3 )e k k W ** O e e ce .4 ee e Q E e f* 3 Q h > W e i e a n -s s l T e # 5 s e R R 5 0 .Q e

( C e le. fa. Es. 4 e i & L he h. *s.

. U e r e Q e a r 8 b U) [e ,.1 1 e Q 3 sa. > e O O O O O O O O O O O O O e.s O O O O O O '

k e O O O O O O O O O O O O O O O O O O O O e

e O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O.

8

  • M ce og et ce see ce c4 et c4 es e4 es ce ce c4 m ese s=e c4

& s O O O O O O O O O O O O O O O O O O O O 4 4 e O O O O O O O O O O O O O O O O e w w O W e w e O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. en. e. e. O.

e e es ce eo e.e e. ce .4 .4 e.e ee ce ce ce .4 e. O O O e.e e O O O O O O O O O O O O 6 '3 O O O O O O G Ine e O O O O O O O O O O O f- O ta O O O O O O ID e's M Q e O. O. O. O. O. O. O. O. m. O.

est OO U) 4 O. J. . O. O. m. O, O. O. O.

be O O O 3 e et ce ce ce et c4 e4 ce ** O es ed O et ce O et ce et ce 9 m

> = =. O N e we a e O + s E W be O ce e - -

be O + e i m m

  • p ed es a w ==e .m.=

3 0 e 3 a .. e -

g g 3

e e e.

=

e @ w @

s e e e

.=. .. y a a M We M

.se 3

U O.

e e

I e *e ** *.*

% - be be s E E 2 C ao 3 s D D l1

+ U

- O O O O O O O O O O O O O O O O O O O O

+

0 C c' - - h. e O O O O O O O O O O O O O O O O O O OO O w .4 m U e g w w w U.e

. s o. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O.

es N e og ,e ce og we se ce ce ce et ce ce e4 es ce et e4 - Pe r4 m Q e O m O O O.

sas s ce & O O 9 I O O O O O O O O O O O O O O O O O O O O W. 3 e O.

ce

.O O.

C e O O O O O O O O O O O O O O O O O O O O C O N = b O O O O O O O O

e e N m o o O ce f

e = - O O O O O O O O O O O

- - - - - - * * -

  • O- - -
  • O-

.e4 y

a e m v m o O O* O O O O O O O O O O O O- O - O O O O O

  • =e $ e N e W W T T T 9 9 T di w "* f 9 9 9 W W W 4 8 0 e * '

i be we C es e ce l

i k $

e u .. U aC e

e ce ce ,4 ,e .e ,e .4 l y

.e o

i ce ce c4

  • ce og eiee ed Ni i c4 m e N
  • ce o m o es c4 e e h

s I m

,e e

C

=* k .. O w U O Q o

  • s e e e e N N N N N N N N N N N N N N N N N N N N i N i i N N N N'

%, m w w m e e m w w m m Ma Mm M N N M N N M N N M M

- a % % % % % %

be g c' - e N N e a w w e, v w e e .C. m

- U h U % C 4 ee ,e , ce ,e ce ce ce ce .4 ee a .* ce ce ce ,e m ce m a w w aC 3 0 e e o e e e a e e e e e o e e e e e e e e c t N e U U U U U U U U U U U U U U U U U U U U M e4 e O m O A

$i 22S2S2S222SSSSSS2222

= - g e ce r= 0

- p88 3l 9~9 l i O O -w - U e N m O ID '

O dC e m ce e a

N.3 O O O e.3 i w .4 O O O ltl Q. e O V 8 en O. m. O. O. - e . w e e O > ee Qi N m A M aC

.C* a e ID IE ce Z O O e w e > O w M ce -

e4 O Z N N N F* 2 O r= 0 Ese

.. se N Os e ID (D m CD 10 in 10 iD in 10 CD En ID m & 80 m ED ;C C at be p O. e e b W @ m M N N N N N N N N N N N N U Q U h....h h k O O F ~ W e

  • M d a
  • d d d M M M M
  • M N d M O d *
  • w w a W WM MM u u o m O O O M 2 ee

~ t t t. "3

" '. "t 8 23,,03}.Od F d d d 0 0 $e 0godegbgCd e . iE

> *3~G .

G

- e H

. , e c4 - - - - - - - - - - - - - - - --

62bU G 0: 8ggggggggggg####8488 2"

o 4 52 3 g h a g

D l w M N w w w w w - M M m M M m w * * * *

=

Circuit toad: 171.250 Minimum DCA: 119.120 at ITLO12B in C-16/Z-1 Derating Problems:

toads 1 Found 2 Loads, there should only be 1 Load Override: Test Derating Overside - See E218 for actual information Q Missing raceway fill data Override: Test Derating override - See E218 for actual information DCA Circuit load [171.250] exceeds DCA (119.720] in C-16/Z-1 at ITLO128 override: Test Derating override - See E218 for actual information

6 8 8 f

I i

h h e O N n w g m m M M N N O O .4 et m gg og m a

$w W 8 o @ W m.m O O N N M e O @ w w g M M e w w w m m m m N m a U i - . . . . m. m. m. m, e. p. e. e. O. O. m, e e b e e e e e e @ @ mm m in w w m. ' g m.

m.

be e m W w in en in en w e en in m in g g m m m n my= r t

B ce Wh e OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO 4

e M e i C U e o. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. }

M e e & P & F M e e p p 6 e p p p p p p p p p  :,

e & M M M N M M M M M M M M M M m m a e m  !

W e ed et ce c4 es e4 s=e e4 e4 et e4 es ce e4 e

G I

.C t e O C

NG eeO O w em O mO OO O M ce O.O m Om m mm m m m e e O O O O O O O M m O O O O O M

a O. e. e* @. @. w. @. w. w e. e. M. M. M. M. O. O. O.

1 'E ce  %.

M- a d e .

O. O, e O @ ,

O Q W W W m m m Mm m e m e e O O O O o m w e  !

W O 3 e

O r=4 e O m m m F*e Wa We in e O P W F e an6 O0%Om MceM ce e Wa eO OOO OO OO O O F

4 s w w :t e e M $ O. O. O. e. . w. . M. : M. N. . m. m. m. o. O. O. O. O. O. O.

M e o em 8% e w w w O O m m o O

O e

Me e M.

h e

e n n m m m m sn an m m m t=m mn enO O O O O .

N

> p N AC P

= ee l

M e4 et r4 e4 M es ce M ce ce ee ce es c .u.4 w 4 4 81l 4 4 4 4 4 4 sEl 4 4 4 4 -

5 b U O e eg . Q g s

b. 9 s 9 Q h. O .

c En. Q Q.

e.2

> e e

WWWWWWWWWWWWWW i e Q m a 6 be as C k M -* i s a O k e Q.

e O u h. Ea. Q

h. M p to. ** b ee Oo O OO OO OO OO OO OO OO OO OO OO OO OO OO en s O O O OenO an w

O Oen en r a

e u o u Q Q u M G e O. O. O< O. O. O. O. O. O. O. O. O. O. O. e. w. w. w.

e e as a k all > e e4 e4 e4 et ce r4 es ce ,4 et e4 e4 es 1

i h. k 8 be k 3 m e ,4 ee O O. O O O I e

'm aO M e Q G G u U e1 a e N & > e e rm > sn an 0% e > em *

  • N N n N N e -

> e e e e mv4metanet sn e C e we Up Q M O M UM 9

e 9

On he

~4 6

e ce anc4 et nnN ON O e e e4w-w c4 n rs N n n n n e a e .e a e 3 e e ehe e w A h G. E e4 i e e e e be ce .a.e T e e e Q E 5 k b e3 he e .e O e ee O vO wO wnw Nw nw N er= ee e m mey m v mo m n n O O O O O  ?

e .

O b > W e I M $

T C e e a h.

e e a e e s 8 e 5 4 6 .

W e h. e i b he b En. h. U * )

e .

O e a r e Is. M 8* 3 e Q 3 in. > e O O O O O O O O O O O O O O O O O O O O b I O O O O O O O O O O O O O O O O O O O O j g e e o. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. 1 w e M M M M M M M M M M M M M M M M M M M M-' I Yg e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u

g3 b e o o O O O o O O O O O O O O O e ww w w i j

$ O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. e. e. e. e. e. i og e4 c4 M ce ,4 e

e4 ce c4 es e4 ed e4 et c4 O O O O O In.

e O O O O O O O O O O O O O O O O O O O O mm Q e O t O OO O O OOO O O O O O O O O O O O O O O O c% O O O O. O. O* ' O+

O O O.O O P O U) & = *

  • O+ a O* *
  • O*
  • er e4 be o O 3 4 e e4 e4 ce ce* M e4 M M e4 ' e.4'

'l e4 e4 .4 M ce O' r.e h ..

O O 6 e a a O sn s c.

. e be O.

6 M

"'a N. e

.k.e ' W

. O e4 see e a 3 u N e O

b ..

e e

U w

@ l ce e e e

O i ee M

ee.e

=M 4 e

W ~4 Q: e

% =

D e e

.J be e C k 3 e O

C 7=

D h. e O O O O O O O O O O O O O O O O O O w O u- w O O . e O O O O O O O O O O O O O O O O O O m O

.g e.,

g Q g

.ee .a - .

e e O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O.

D.

6 .4 ce r4 v4 M e.s v4 e4 e4 r4 e4 ene M e4 ce e4 e4 e4 O+ ce

. ret e m W O u e O O O O O O O O O O O O O O O O O O O O 8O. G. C e O O OO OO O O O OO O O O OO O O O O O O O O O

- O O OO* O*OO OO* O* O e - 6 O O O O O O O e O O. O O O* O*

O O O O OO* O* O*

e 4 * - * * * * *

  • M g .e g-e m e o e O O* O O O' OO e nn e e an M e e N 9

" ~ '

8, Ie e a 404 e e

O & R ' = * ,,

g4 C **be **

e e f

.E .

_c F - 38 o s .

4 M

vi t

M 3

g .

e ce O

  • B e O m O E !il 9

,{ ' y i:

O O*

e O

-g8- 8 w

  • 3u i, OE58 81l s OO 8%
  • 3 4 r

0!22222222222222S'E2222 e O O O O **  % .

to O O M v g 8 N O. m. O.

O, O 8 W '

O ce Q. M M E ' 4'

. et O 6 M* fk * ' 8 pg ,, ce i E e44 ,n MO 4 ..

o =

  • b pE M a g
"2'd B g* bmb m a a m aaa mam b 6 W W w @

ma m N N M N EO= E E O O O e O O e m

4

.O h h h k O O + - G e

  • N N O O N N O O O O O O O O O O O *
  • g4 g y & W M & la) b M M e @ W @ @ W @ @ @ 8 * * * * @ # # #
  • Y g M u e g ggggggggggggggagg5,

,=e ,4 g3,ttt 3e j .. -

l W e rkkk e M M .4 M M M M M .4 M M M M M M M M - M je sie3 425l t: 8eeep#####geeeg8W882 1

3 3 Q M M M M M M M M M M M M M M M - M - M M

1 CO 1CK600ta42 AB 0. 000 1. 0 0f* 1.000 0.863 1.000 0 22 0.450 0.000 0.000 97.000 37.539 ,

1 JB 1-JB2150 AB 0.000 1.000 1.000 0.860 1.000 0 28 0.450 0.000 0.000 97.000 -37.539 1 CO 1CK600NM4 AB 0.000 1.000 1.000 0.860 1.000 0 5 0.800 0.000 0.000 97,000 66.736 1 EQ 1HVY-Oi14 AB 0.000 1.000 1.000 1.000 1 000 . 0 9 1.000 0.000 0.000 97.000 97.000 Circuit lead: 21.250 Minimum DCA: 26.525 at ICK600NM1 in PT-1/Z-1 Derating Problems:

Q Missing raceway fill data Override: Test Derating Override - See E218 for actual information CADF Missing Ambient Temperature or Derating Factor at ICK600NM Override: Test Derating Over' ride - See E218 for actual information DCA Circuit load [21.250] exceeds DCA (14.065) in MISSING at ICK600NM1 Override: Test Derating Override - See E218 for actual information CADF Missing Ambient Temperature or Derating Factor at ICK600NM2 Override: Test Derating Override - See E218 for actual information CADF Missing Ambient Temperature or Derating Factor at 1CK600NM4 Override: Test Derating Override - See E218 for actual information CADF Missing Ambient Temperature or Derating Factor at 1-JB2150 Override: Test Derating Override - See E218 for actual information CADF Missing Ambient Temperature or Derating Factor at 1TK600N Override: Test Derating Override - See E218 for actual information CADF Missipg Ambient Temperature or Derating Factor at 1TK601N Override: Test Derating Override - See E218 for actual information CADF Missing Ambient Temperature or Derating Factor at 1TK602N Override: Test Derating Override - See E218 for actual information CADF Missing Ambient Temperature or Derating Factor at 1TK606N Override: Test Derating Override - See E218 for actual information CADF Missing Ambient Temperature or Derating Factor at ITK607N Override: Test Derating Override - See E218 for actual information CADF Missing Ambient Temperature or Derating Factor at 1TK626N Override Test Derating Override - See E':18 for actual information CADF Missing Ambient Temperature or Derating Factor at ITK627N Override: Test Derating Override - See E218 for actual information CADF Missing Ambient Temperature or Derating Factor at 1WK298N15 Override: Test Derating Override - See E218 for actual information CADF Missing Ambient Tenperature or Derating Factor at IWK604ND1 Override Test Derating Override - See E218 for actual information

\

_ - _ _ . . _ _ _ _ - - - _ _ _ __--__ - -- _ _ - - - _ - _ - - - _ _ _ - _ _ _ _ _ _ - - _ _ - _ _ _ _ _ _ _ _ - _ - - _ _ - _ = _ - _ - _ _ - - _ - - _ _ _ _ _ _ _ _ _ _ - -

e ee 8 t u

>e e a

O O O @

O@ O WO WOw g OM m m OM Ne w @O @4% N e ED5%@ v eDm @9 m

$ O e e@ e

.4 s w- .w e O O u o e O. - O.

  • 9* e. - e. O. O. e. O. O. O. O. O.

e e 6 en e o o o O O O e m m e c% m e m m m c%

+

h e e ce .=8 eD ED e eD in A w m m e e m eD m e m e e

N m m M N N N N N N W - N N M N M N M N

>. s O O O O O O O O O O O O O O O O O O O O

    • d e' O O O O O O O O O O O O O O O O O O O O e

9 -.e C u e O. O. O. O. O. O. O, O. O. O. O. O. O. O. O. O. O. O. O. O.

~4 a e

b NW WN WNW Nw WN WNW NEDNg Pg ep CD N Ng g6 gNg Ng gN gN N N N a 2 8

e N m m m m m m m m N m m N m m m m m m m G

4 *1 s O O O O O O O O O O O O O O O O O O O O

. C e we e

e O O O O O O O O O O O O O O O O O O O O e N e o. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O.

es M. W N ime e O O O O O O O O O O O O O O O O O O O O s

.* s e O Q.. O 3 M"

W 6 O m m M N O O O O O m m O M M m m m m m M

a e

O m m . 4 O O O O O m m o m m m e m m m o.. e O. m. m. N. N. e. e. aD. e. O. m. m. O.

N m a e m. m. m. m. m. m. m.

d e O b m m e e. e. geDw ew eD ED O P S m O M b e f* 6 6 6 O e4e w e m f*

-e tai e m m m m m m m O >

N h 4 H e ce ce re c4 .-4 e4 e4 es ce ce M b ce ce et cv e4 ce ce C we in.e 6

f4 0) UJ to 03 to M C4 M fa U) M UJ to M f4 f4 3 h u O e

  • ) Q b e Q u e 3

E a % k u a e F C Q O Q G C a

> e E 2 3: 2 2 2 2 3 3 3 2 2 2 2 2 2 E as

  • be w be a ce
  • O O O O O O O O O O O O O O c O O O O O O W Q. O En. +e fa. e O m m N N N N N N O 6 & O 6 f* e h f* 6 6 e a u 3 u k Ca. Q p fA. me e e o e o u Q Q u e g e O. m. a%. e. o. e. e. e. eD. o. e. e. o. e. o. e. e. o. e. e.

e e E h 3 m be 4l > e ce O O O O O O O O ce O O ce O O O O O O O b

e. be, be

,O 4

- 0 '8 he Q u 3 we u 3 . s . . .

.n .n N N N m . . m . . . . . . .

e

- M M - - N.e e o *4 O W b e e

e .E. 3 . 2 u .M O .c.e e e t ** t +e 9 4 3 i e &. C o C u >. >. O. - o e be O 4 0 c.e e e g be we e4 e O N N O Oeg me4 d4 m 0% O m m o m m m m m m m o & Q O O 3 he > b as a O m i s

Q

. . . E b H 3 O Es. > -

W s e

t . . . , , . . .. e

.C e e i f re.

i

a. e Q

c o e, e

e re.

Q

. < et e

e i Q 3 6 les O O O O O O O O O O O O O O O O O O O O ri. .i O O O O O O O O O O O O O O O O O O O O e

e O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O.

e e4 e4 e.e a=e ce M M M e4 M pe ce ce c4 es e4 ee .=s M e4 4

M e O O O O O O O O O es O O O O O O O O O O

  • J (s. s O O O O O O O O O .O O O w O O O O O O O U, 8s b e w

, O. O. O.

w w e m M M w O. O. O. O. O. O.

M

e. O. O. eD. O.

O w M O w w w e M M w O. O. O. O. O. O.

C s O O O O O O O O O O O O O O O O O O O O

$ b 6 o o o n O O O O O O O O O O O O O O O O E mm Q s O O U, , O. O. O. O. O. O. O. O. O. O. d. A. O. O. m. o. en. O. in. O.

k O O 1 e ce ce ce ce ce ce M ce ce M C O we ce O ce C e4 O es

=

W be O

O in f-6 e - c em k O O. e. e c4 +4 ee ce e

- o e, ,n e - - - - _M E o f* 4 2 ..

e - -

'8 6,  :

e

-EE

__ E_ -_5 # _

e, M e. N M

.3 ,

e e N, N, e S

e64 .U es Q.

  • M q e w M w H H C be  :: : 55 5 5 5 O e O O O O O O O w er O 9 9 O N 9 N
  • N T N C O m fae I O O O O O O O m 0% O 0% 0% O N 0% 6 0% m 6 u f*

g ce g

WO

_O

._.e _a'O =_. O., e e o. O. O. O. O. O. O. e. e. O. eD. e. O.

e4

m. Os. CD. m. e. c%.

%O s e4 e4 es ce ce ce ce O O me O O ce O O O O O O O e M O O b e O, w O O v s O O O O O O O O O O O O O O O O O O O O

m. O O.
  • C e O O O O O O O O O O O O O O O O O O O O C QO N. 0%. O. O. t OO e-0 e

e N m o O,

~e 6

e O*

O O O O O O O

  • *
  • O*

O O* O e O eD O e u

e e o% O e O' O* O O* OO O'- O' O' OO O' O N O* N - O N O" N' e4 e en a w w w e w w @ en e an sn w e m e en e @ w eil e u e N.

e be we C e.e e k e eg O e

  • ~ .*  ! ** re M e4 es c' et M
  • c' M

.a. c c.e - ce ce es ce cg m

a .4 0 ..

6e u

e i N e * *

  • i % N N N N N N N N e e i e e i N N ** N N e4 N N N N N N N e N N e N e e i e N N N N e e s h .e wg O O N $ e in % % % N N % ** ee N ce M N ce N,4 Ne ce M re g

y C

_e _'

W _ (,) og O gn. 4 e

e ce i

f*

e f*

a P P P P e e e e e a e e N U) 2 e e 2

i *

  • Z e c.4 2

N e O U U U U U U Q 3 & b & &

W es e O e4 O V

$:e 22222222222222222222

~ q e 9 9 O O

O O ~# 8.* 8~ 3:e N m O

_-~

m e m e O. 2 O O O 4 . *

@ N O O O N '

ce b e N O. m

  • O. O. O. . , , e O 3
  • N N P & C e: 4-ce us O e e e 3 .e N N M * " " "

h > h u e

. 8 n

N 2: W =, =, = = = = = = = = = 2 = = = = = = =

a U, m m m m - - . O O . - - - - N N N h O O - W e

  • O O O O m e W
  • N O O e O O O O O O O 4 # y y W WW WO M" W e M O O O O O O O O e N N N Q N

!. M ""u u, I #

  • E 8l E.e -5 5 5 5 5 5 5 5e 5 2 N 5PE

> 8

t. .. -

g

. e ce c4 - - - ---M - ------

- M o Q kO 4 h g

O b khh h 3h e

a D M e w m e M w e M - M w w M M M M M M N

m ._ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ . _ _ . _ _ _ . . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _

t e

e 1 TR 1TH202R ID PT-1/Z-1 50.000 0.894 UNIQUE-2(TR) [1] O.500 1.000 1.000 3 6 0.870 H S1 37.333 0.000 342.000 133.064 .

1 TR 1TH203R AB PH-1/Z-1 42.800 0.972 1.000 1.000 1.000 2 3 0.930 H S1 24.889 0.000 342.000 309.026 1 TR ITK203R AB PT-1/Z-1 50.000 0.894 UNIQUE-2(TR) [1] 0.500 1.000 1.000 2 3 0.930 H S1 24.889 0.000 342.000 142.241 ,

1 TR ITH203R ID PH-1/Z-1 42,800 0.972 1.000 1.000 1.000 2 3 0.930 H S1 24.889 0.000 342.000 309.026 1 TR ITH20!R ID PT-1/Z-1 50.000 0.894 UNIQUE-2(TR) [1] O.500 1.000 1.000 2 3 0.930 H S1 24.889 0.000 342.000 142.241 1 CO 10i203RA AB PH-1/2-1 42.800 0.972 1.000 0.860 1,000 0 3 1.000 0.000 0.000 287.000 239.809 1 EQ 1SWP*P2A AB PH-1/Z-1 0.000 1,000 1.000 1.000 1.000 0 3 1.000 0.000 0.000 287.000 287.000 Circuit Load: 15.875 Minimum DCA: 133.064 at 1TH200R in PT-1/Z-1 -

Derating Problems:

Q IPCEA/NEC resistance should be greater than 0 Override: Test Derating Override - See E218 for actual intornation DCA Circuit load [137.500) exceeds DCA [92.500] in DL/Z-1 at 1DH920R02 Override: Test Derating Override - See E218 for actual informattnn DCA Circuit load (137.500] exceeds DCA [133.064) in PT-1/Z-1 at 1TH200R Override: Test Derating Override - See E218 for actual infonnation

_ _ - - - _ _ _ _ _ _ _ _ _ _ _ _ _ . __ . _ _ . - - _ _ - - _ _ _ _ . _ - __ _ _ _ - . _ - _ . _ .-- _ _ _ - - - . _ - _ _ . _)