ML16235A485

From kanterella
Revision as of 00:46, 5 February 2020 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Core Operating Limits Report Cycle 25 Pattern Bro Revision 1
ML16235A485
Person / Time
Site: North Anna Dominion icon.png
Issue date: 08/18/2016
From: Huber T
Virginia Electric & Power Co (VEPCO)
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
16-314
Download: ML16235A485 (21)


Text

VIRGINIA ELECTRIC AND POWER COMPANY RICHMOND, VIRGINIA 23261 August 18, 2016 United States Nuclear Regulatory Commission Serial No.: 16-314 Attention: Document Control Desk NRA/DEA: R1 Washington, D.C. 20555 Docket No.: 50-338 License No.: NPF-4 VIRGINIA ELECTRIC AND POWER COMPANY (DOMINION)

NORTH ANNA POWER STATION UNIT 1 CORE OPERATING LIMITS REPORT NORTH ANNA 1CYCLE25 PATTERN BRO REVISION 1 Pursuant to North Anna Technical Specification 5.6.5.d, attached is a copy of the Dominion Core Operating Limits Report (COLR) for North Anna Unit 1 Cycle 25, Pattern BRO, Revision 1. The COLR was revised to incorporate changes to the axial exclusion zones for FQ surveillance. Specifically, the N(z) function, a non-equilibrium multiplier on FQ for surveillance requirements, has been updated to reflect these changes.

If you have any questions or require additional information, please contact Ms. Diane Aitken at (804) 273-2694.

Sincerely,

/~

T. R. Huber, Director Nuclear Regulatory Affairs Dominion Resources Services, Inc. for Virginia Electric and Power Company

Attachment:

COLR-N1C25, Revision 1, Core Operating Limits Report, North Anna Unit 1 Cycle 25 Pattern BRO Commitment Summary: There are no new commitments contained in this letter.

Serial No.16-314 Docket No. 50-338 COLR N1C25 Page 2 of 2 cc: U.S. Nuclear Regulatory Commission Region II Marquis One Tower 245 Peachtree Center Avenue, NE Suite 1200 Atlanta, Georgia 30303-1257 Dr. V. Sreenivas NRC Project Manager U. S. Nuclear Regulatory Commission One White Flint North Mail Stop 08 G-9A 11555 Rockville Pike Rockville, Maryland 20852-2738 NRC Senior Resident Inspector North Anna Power Station

Serial No.16-314 Docket No. 50-338 ATTACHMENT COLR-N1C25, Revision 1 CORE OPERATING LIMITS REPORT North Anna Unit 1Cycle25 Pattern BRO COLR-N1C25, Revision 1 Page 1 of 19

Serial No.16-314 Docket No. 50-338 N1C25 CORE OPERATING LIMITS REPORT INTRODUCTION The Core Operating Limits Report (COLR) for North Anna Unit 1 Cycle 25 has been prepared in accordance with North Anna Technical Specification 5.6.5. The technical specifications affected by this report are listed below:

TS 2.1.1 Reactor Core Safety Limits TS 3.1.1 Shutdown Margin (SDM)

TS 3.1.3 Moderator Temperature Coefficient (MTC)

TS 3.1.4 Rod Group Alignment Limits TS 3.1.5 Shutdown Bank Insertion Limit TS 3.1.6

  • Control Bank Insertion Limits TS 3.1.9 PHYSICS TESTS Exceptions - Mody 2 TS 3.2.1 Heat Flux Hot Channel Factor TS 3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (FNm)

TS 3.2.3 Axial Flux Difference (AFD)

TS 3.3.l Reactor Trip System (RTS) Instrumentation TS 3.4.1 RCS Pressure, Temperature, and Flow DNB Limits TS 3.5.6 Boron Injection Tank (BIT)

TS 3.9.1 Boron Concentration In addition, a technical requirement (TR) in the NAPS Technical Requirements Manual (TRM) refers to the COLR:

TR 3.1.1 Boration Flow Paths - Operating The analytical methods used to determine the core operating limits are those previously approved by the NRC and dis.cussed in the documents listed in the References Section.

Cycle-specific values are presented in bold. Text in italics is provided for information only.

COLR-N1C25, Revision 1 Page 2of19

Serial No.16-314 Docket No. 50-338 REFERENCES

1. VEP-FRD-42, Rev. 2.1-A, "Reload Nuclear Design Methodology," August 2003.

Methodology for:

TS 3.1.1 - Shutdown Margin, TS 3.1.3 - Moderator Temperature Coefficient, TS 3.1.4 - Rod Group Alignment Limits TS 3.1.5 - Shutdown Bank Insertion Limit, TS 3.1.6 - Control Bank Insertion Limits, TS 3.1.9-Physics Tests Exceptions-Mode 2, TS 3.2.l -Heat Flux Hot Channel Factor, TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor TS 3.5.6-Boron Injection Tank (BIT) and TS 3.9.l -Boron Concentration

2. Plant-specific adaptation ofWCAP-16009-P-A, "Realistic Large Break LOCA Evaluation Methodology Using the Automated Statistical Treatment of Uncertainty Method (ASTRUM)," as approved byNRC Safety Evaluation Report dated February 29, 2012.

Methodology for: TS 3.2.1-Heat Flux Hot Channel Factor

3. WCAP-10054-P-A, "Westinghouse Small Break ECCS Evaluation Model Using the NOTRUMP Code," August 1985.

Methodology for: TS 3.2.1-Heat Flux Hot Channel Factor

4. WCAP-10079-P-A, "NOTRUMP, A Nodal Transient Small Break and General Network Code," August 1985.

Methodology for: TS 3 .2.1 - Heat Flux Hot Channel Factor

5. WCAP-12610-P-A, "VANTAGE+ FUEL ASSEMBLY -REFERENCE CORE REPORT,"

April 1995.

Methodology for:

TS 2.1.1 - Reactor Core Safety Limits TS 3.2.1 - Heat Flux Hot Channel Factor

6. VEP-NE-2, Rev. 0-A, Statistical DNBR Evaluation Methodology, June 1987.

Methodology for:

TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor and TS 3.4.1-RCS Pressure, Temperature and Flow DNB Limits COLR-NlC25, Revision 1 Page 3of19

Serial No.16-314 Docket No. 50-338

7. VEP-NE-1, Rev. 0.1-A, Relaxed Power Distribution Control Methodology and Associated FQ Surveillance Technical Specifications, August 2003.

Methodology for:

TS 3.2.1 - Heat Flux Hot Channel Factor and TS 3.2.3 -Axial Flux Difference

8. WCAP-8745-P-A, Design Bases for the Thermal Overpower ~T and Thermal Overtemperature ~T Trip Functions, September 1986.

Methodology for:

TS 2.1.1 - Reactor Core Safety Limits and TS 3 .3 .1 - Reactor Trip System Instrumentation

9. WCAP-14483-A, Generic Methodology for Expanded Core Operating Limits Report, January 1999.

Methodology for:

TS 2.1.1 - Reactor Core Safety Limits, TS 3 .1.1 - Shutdown Margin, TS 3 .1.4 - Rod Group Alignment Limits TS 3.1.9-Physics Tests Exceptions -Mode 2 TS 3 .3 .1 - Reactor Trip System Instrumentation, TS 3.4.1-RCS Pressure, Temperature, andFlowDNB Limits TS 3.5.6-Boron Injection Tank (BIT) and TS 3.9.1-Boron Concentration

10. DOM-NAF-2, Rev. 0.3- P-A, "Reactor Core Thermal-Hydraulics Using the VIPRE-D Computer Code," including Appendix C, "Qualification of the Westinghouse WRB-2M CHF Correlation in the Dominion VIPRE-D Computer Code," and Appendix D, "Qualification of the ABB-NV and WLOP CHF Correlations in the Dominion VIPRE-D Computer Code," September 2014.

Methodology for:

TS 3 .2.2 - Nuclear Enthalpy Rise Hot Channel Factor and TS 3.4.1 - RCS Pressure, Temperature and Flow DNB Limits

11. WCAP-12610-P-A and CENPD-404-P-A, Addendum 1-A, "Optimized ZIRLO'," July 2006.

Methodology for:

TS 2.1.1 - Reactor Core Safety Limits and TS 3 .2.1 - Heat Flux Hot Channel Factor Note: In some instances, the North Anna COLR lists multiple methodologies that are used to verify a single Technical Specification parameter. This is due to the reload verification scope split between Dominion and the fuel vendor.

COLR-NlC25, Revision 1 Page 4of19

Serial No.16-314 Docket No. 50-338 2.0 SAFETY LIMITS (SLs) 2.1 SLs 2.1.1 Reactor Core SLs In MODES 1 and 2, the combination of THERMAL POWER, Reactor Coolant System (RCS) highest loop average temperature, and pressurizer pressure shall not exceed the limits specified in COLR Figure 2.1-1; and the following SLs shall not be exceeded.

2.1.1.1 The departure from nucleate boiling ratio (DNBR) shall be maintained greater than or equal to the 95/95 DNBR criterion for the DNB correlations and methodologies specified in the References Section.

2.1.1.2 The peak fuel centerline temperature shall be maintained< 5080°F, decreasing by 58°F per 10,000 MWD/MTU ofbumup, for Westinghouse fuel and< 5173°F, decreasing by 65°F per 10,000 MWDIMTU ofburnup, for AREVAfuel.

COLR-NlC25, Revision 1 Page 5of19

Serial No.16-314 Docket No. 50-338 COLR Figure 2.1-1 NORTH ANNA REACTOR CORE SAFETY LIMITS 665 I

660 "--


** -- -**--*- *--*-*-  !'-*-~--*-

~~

655 """"--

650

'-.. --~-

--........, ~ I

~

psi a 645 640 ~- ............

I

~~

I

~

psi a 635 ....

I .....

~ ............ II

~ .............. ............... ........ '\

Cl)

....::s ltl 630 625 ... ,..........._ ~~L

-- ~ I\.

~\

Cl) a.

E 620

.......... ............... 2000 psi a

~ ---~~ --......._. \~

Cl) 615 ,........., ..........._

......... \

llQ ........

ltl Cl)

> 610 1860 osia ~ \ \

<C

~~ -.............. ~'

a; 605 --*--*-...- -----*---.

VI VI r----*--

~ ............._ ~ \-

" \

Cl)

> 600 595

'-........... \

590 585

\\

580 - --e-- *--..-*-**---** *------*- ~-

\

575 570 0 10 20 30 40 so 60 70 80 90 100 110 120 Percent of RATED THERMAL POWER COLR-Nl C25, Revision 1 Page 6of19

Serial No.16-314 Docket No. 50-338 3.1 REACTIVITY CONTROL SYSTEMS 3.1.1 SHUTDOWN MARGIN (SDM)

LCO 3.1.1 SDM shall be~ 1.77 % Ak/k.

3.1.3 Moderator Temperature Coefficient (MTC)

LCO 3.1.3 The MTC shall be maintained within the limits specified below. The upper limit ofMTC is +0.6x10- 4 Ak/k/°F, when< 70% RTP, and 0.0 Ak/k/°F when~ 70%

RTP.

The BOC/ARO-MTC shall be~ +0.6x10-4 8k/k/°F (upper limit), when< 70%

RTP, and~ 0.0 8k/k/°F when~ 70% RTP.

The EOC/ARO/RTP-MTC shall be less negative than-5.0x10-4 Ak/k/°F (lower limit).

The MTC surveillance limits are:

The 300 ppm/ARO/RTP-MTC should be less negative than or equal to

-4.0 x 10-4 8k/k/°F [Note 2].

The 60 ppm/ARO/RTP-MTC should be less.negative than or equal to

-4.7x10-4 8k/k/°F [Note 3].

SR 3 .1.3 .2 Verify MTC is within -5.0 x 10-4 Ak/k/°F (lower limit).

Note 2: If the MTC is more negative than-4.0x10-4 8k/k/°F, SR 3.(3.2 shall be repeated once per 14 EFPD during the remainder of the fuel cycle.

Note 3: SR 3.1.3.2 need not be repeated ifthe MTC measured at the equivalent of equilibrium RTP-ARO boron concentration of::;; 60 ppm is less negative than-4.7 x 10-4 8klkl°F.

3.1.4 Rod Group Alignment Limits Required Action A.1.1 Verify SDM to be ~ 1. 77 % Ak/k.

Required Action B.1.1 _ Verify SDM to be~ 1.77 % 8klk.

Required Action D.1.1 Verify SDM to be~ 1.77 % Ak/k.

COLR-N1C25, Revision 1 Page 7of19

Serial No.16-314 Docket No. 50-338 3.1.5 Shutdown Bank Insertion Limits LCO 3.1.5 Each shutdown bank shall be withdrawn to at least 227 steps.

Required Action A.1.1 Verify SDM to be ~ 1. 77 % Ak/k.

Required Action B. l Verify SDM to be ~ 1. 77 % Ak/k.

SR 3.1.5.1 Verify each shutdown bank is withdrawn to at least 227 steps.

3.1.6 Control Bank Insertion Limits LCO 3.1.6 Control banks shall be limited in physical insertion as shown in COLR Figure 3.1-1. Sequence of withdrawal shall be A, B, C and D, in that order; and the overlap limit during withdrawal shall be 99 steps.

Required Action A.1.1 Verify SDM to be ~ 1. 77 % Ak/k.

Required Action B.1.1 Verify SDM to be~ 1.77 % Ak/k.

Required Action C. l Verify SDM to be ~ 1.77 % Ak/k.

SR 3.1.6.1 Verify estimated critical control bank position is within the insertion limits specified in COLR Figure 3.1-1.

SR 3.1.6.2 Verify each control bank is within the insertion limits specified in COLR Figure 3.1-1.

SR 3.1.6.3 Verify each control bank not fully withdrawn from the core is within the sequence and overlap limits specified in LCO 3.1.6 above.

3.1.9 PHYSICS TESTS Exceptions-MODE 2 LCO 3.1.9.b SDM is ~ 1. 77 % Ak/k.

SR 3.1.9.4 Verify SDM to be~ 1.77 % Ak/k.

COLR-NlC25, Revision 1 Page 8of19

Serial No.16-314 Docket No. 50-338 COLR Figure 3.1-1 North Anna 1 Cycle 25 Control Rod Bank Insertion Limits 230

/ I 220 0.534, 227 210 /

200 /

190 / 1.0, 194 ,,

180

~-BANK / /

"C

~ 170 / ,,,V a.

2!Ill 160 / Fully w/d position= 227 steps /

i: 150 / .JV c

.!2 140 / /

+"'

'iii 0 130 / Av CL.

g.0 120 / /

I..

(!;I 110 0.0, 118 ,,/

"C 0

a: 100

/ P-BANK 90

/

80 /

70

/

60 /

50 /

40 /

30 /

20 /

10 /

0 / 0.048, 0 I

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Fraction of Rated Thermal Power COLR-NlC25, Revision 1 Page 9of19

Serial No.16-314 Docket No. 50-338 3.2 POWER DISTRIBUTION LIMITS 3.2.1 Heat Flux Hot Channel Factor (FQ(Z))

LCO 3.2.1 FQ(Z), as approximated by FQM(Z), shall be within the limits specified below.

CFQ=2.32 The Measured Heat Flux Hot Channel Factor, FQM(Z), shall be limited by the following relationships:

CFQ K(Z)

FM(Z)~---- for P>0.5 Q P N(Z)

CFQ K(Z)

FM(Z)~---- for P~0.5 Q 0.5 N(Z)

THERMAL POWER where:

P= RATEDTHERMALPOWER; and K(Z) is provided in COLR Figure 3.2-1 N(Z) is a cycle-specific non-equilibrium multiplier on FQM(Z) to account for power distribution transients during normal operation, provided in COLR Table 3.2-1.

The discussion in the Bases Section B 3.2.1 for this LCO requires the application ofa cycle dependent non-equilibrium multiplier, N(Z), to the CFQ limit. N(Z) accounts/or power distribution transients encountered during normal operation. As function N(Z) is dependent on the predicted equilibrium FQ(Z) and is sensitive to the axial power distribution, it is typically generatedfrom the actual EOC burnup distribution that can only be obtained after the shutdown of the previous cycle. The cycle-specific N(Z) function is presented in COLR Table 3.2-1.

COLR-NlC25, Revision 1 Page 10of19

Serial No.16-314 Docket No. 50-338 COLR Table 3.2-1 N1C25 Normal Operation N(Z)*

NODE HEIGHT Oto 1000 1000 to 2000 2000 to 3000 3000 to 4000 4000 to 5000 5000 to 7000 7000 to 9000 (FEET) MWD/MTU MWD/MTU MWD/MTU MWD/MTU MWD/MTU MWD/MTU MWD/MTU 5 11.2 1.099 1.106 1.1 06 1.118 1.118 1.138 1.138 6 11.0 1.097 1.105 1.105 1.118 1.118 1.138 1.138 7 10.8 1.094 1.105 1.105 1.117 1.117 1.137 1.137 8 10.6 1.091 1.105 1.105 1.116 1.116 1.137 1.137 9 10.4 1.089 1.105 1.105 1.115 1.115 1.135 1.135 10 10.2 1.086 1.105 1.104 1.115 1.115 1.133 1.133 11 10.0 1.086 1.103 1.103 1.114 1.114 1.132 1.132 12 9.8 1.088 1.102 1.104 1.112 1.112 1.132 1.132 13 9.6 1.093 1.104 1.107 1.110 1.110 1.135 1.135 14 9.4 1.095 1.107 1.111 1.113 1.113 1.136 1.136 15 9.2 1.098 1.113 1.116 1.120 1.120 1.139 1.141 16 9.0 1.104 1.121 1.124 1.128 1.128 1.147 1.153 17 8.8 1.109 1.128 1.131 1.135 1.135 1.156 1.166 18 8.6 1.112 1.132 1.134 1.139 1.139 1.160 1.170 19 8.4 1.114 1.133 1.134 1.140 1.140 1.163 1.172 20 8.2 1.116 1.134 1.135 1.140 1.140 1.170 1.178 21 8.0 1.116 1.134 1.134 1.139 1.139 1.174 1.182 22 7.8 1.115 1.132 1.132 1.138 1.138 1.175 1.183 23 7.6 1.112 1.129 1.129 1.133 1.133 1.173 1.181 24 7.4 1.107 1.125 1.125 1.127 1.127 1.169 1.178 25 7.2 1.103 1.119 1.119 1.121 1.121 1.165 1.177 26 7.0 1.101 1.114 1.114 1.115 1.115 1.161 1.177 27 6.8 1.099 1.111 1.112 1.113 1.113 1.160 1.178 28 6.6 1.099 1.110 1.110 1.110 1.110 1.156 1.177 29 6.4 1.098 1.101 1.099 1.098 1.099 1.143 1.171 30 6.2 1.097 1.092 1.084 1.083 1.088 1.127 1.161 31 6.0 1.097 1.089 1.077 1.077 1.085 1.120 1.159 32 5.8 1.097 1.089 1.073 1.073 1.083 1.114 1.153 33 5.6 1.095 1.083 1.057 1.057 1.071 1.097 1.135 34 5.4 1.093 1.081

  • 1.052 1.049 1.064 1.085 1.119 35 5.2 1.091 1.084 1.060 1.052 1.065 1.080 1.114 36 5.0 1.093 1.091 1.075 1.064 1.071 1.083 1.114 37 4.8 1.099 1.099 1.086 1.075 1.077 1.088 1.114 38 4.6 1.108 1.109 1.099 1.087 1.086 1.095 1.113 39 "4.4 1.117 1.117 1.109 1.098 1.097 1.101 1.111 40 4.2 1.124 1.123 1.117 1.105 1.104 1.103 1.108 41 4.0 1.130 1.130 1.124 1.111 1.110 1.104 1.108 42 3.8 1.143 1.141 1.138 1.127 1.126 1.116 1.113 43 3.6 1.158 1.155 1.155 1.147 1.147 1.136 1.124 44 3.4 1.167 1.164 1.165 1.157 1.157 1.145 1.133 45 3.2 1.174 1.173 1.173 1.162 1.162 1.150 1.144 46 3.0 1.185 1.187 1.187 1.174 1.174 1.159 1.151 47 2.8 1.199 1.203 1.203 1.189 1.189 1.170 1.159 48 2.6 1.213 1.218 1.218 1.203 1.203 1.182 1.164 49 2.4 1.227 1.232 1.232 1.217 1.217 1.193 1.174 50 2.2 1.239 1.245 1.245 1.230 1.230 1.204 1.192 51 2.0 1.250 1.256 1.256 1.242 1.242 1.213 1.203 52 1.8 1.261 1.268 1.268 1.253 1.253 1.222 1.204 53 1.6 1.270 1.278 1.278 1.264 1.264 1.229 1.206 54 1.4 1.279 1.288 1.288 1.274 1.274 1.235 1.213 55 1.2 1.286 1.296 1.296 1.282 1.282 1.241 1.221 56 1.0 1.292 1.303 1.303 1.290 1.290 1.247 1.226 57 0.8 1.297 1.308 1.308 1.295 1.295 1.253 1.231 COLR-NlC25, Revision 1 Page 11of19

Serial No.16-314 Docket No. 50-338 COLR Table 3.2-1 (continued)

NlC25 Normal Operation N(Z)*

NODE HEIGHT 9000 to 11000 11000 to 13000 13000to15000 15000 to 17000 17000 to 19000 19000 to EOR

{FEET) MWD/MTU MWD/MTU MWD/MTU MWD/MTU MWD/MTU MWD/MTU 5 11.2 1.138 1.138 1.130 1.130 1.093 1.093 6 11.0 1.137 1.137 1.129 1.129 1.093 1.093 7 10.8 1.136 1.136 1.127 1.127 1.093 1.093 8 10.6 1.135 1.135 1.126 1.126 1.093 1.093 9 10.4 1.135 1.135 1.124 1.124 1.094 1.094 10 10.2 1.134 1.134 1.123 1.123 1.093 1.093 11 10.0 1.134 1.134 1.123 1.123 1.093 1.093 12 9.8 1.132 1.132 1.121 1.120 1.099 1.098 13 9.6 1.132 1.132 1.119 1.119 1.108 1.107 14 9.4 1.133 1.131 1.113 1.115 1.113 1.112 15 9.2 1.140 1.135 1.116 1.119 1.119 1.121 16 9.0 1.153 1.143 1.137 1.138 1.131 1.138 17 8.8 1.166 1.152 1.161 1.161 1.144 1.157 18 8.6 1.170 1.155 1.167 1.167 1.148 1.163 19 8.4 1.172 1.160 1.173 1.173 1.156 1.172 20 8.2 1.178 1.170 1.188 1.188 1.175 1.192 21 8.0 1.182 1.178 1.199 1.199 1.189 1.206 22 7.8 1.182 1.180 1.202 1.202 1.192 1.209 23 7.6 1.182 1.182 1.209 1.209 1.196 1.214 24 7.4 1.182 1.186 1.221 1.221 1.205 1.223 25 7.2 1.182 1.187 1.229 1.229 1.211 1.228 26 7.0 1.182 1.186 1.230 1.230 1.213 1.228 27 6.8 1.183 1.186 1.232 1.232 1.215 1.228 28 6.6 1.182 1.187 1.231 1.231 1.213 1.227 29 6.4 1.176 1.188 1.229 1.229 1.208 1.226 30 6.2 1.167 1.187 1.224 1.224 1.199 1.224 31 6.0 1.165 1.188 1.224 1.224 1.195 1.226 32 5.8 1.159 1.184 1.218 1.218 1.192 1.223 33 5.6 1.142 1.174 1.201 1.201 1.189 1.214 34 5.4 1.128 1.161 1.184 1.183 1.185 1.204 35 5.2 1.125 1.156 1.176 1.176 1.182 1.200 36 5.0 1.123 1.146 1.164 1.166 1.176 1.192 37 4.8 1.118 1.131 1.142 1.152 1.167. 1.180 38 4.6 1.113 1.116 1.133 1.143 1.156 1.164 39 4.4 1.111 1.107 1.138 1.142 1.146 1.149 40 4.2 1.109 1.108 1.145 1.145 1.143 1.136 41 4.0 1.109 1.116 1.151 1.150 1.147 1.130 42 3.8 1.110 1.124 1.155 1.154 1.150 1.131 43 3.6 1.115 1.129 1.157 1.157 1.152 1.139 44 3.4 1.122 1.133 1.158 1.157 1.151 1.143 45 3.2 1.133 1.135 1.157 1.157 1.151 1.151 46 3.0 1.143 1.137 1.153 1.156 1.155 1.162 47 2.8 1.152 1.137 1.151 1.160 1.163 1.176 48 2.6 1.154 1.136 1.150 1.164 1.169 1.183 .

49 2.4 1.159 1.139 1.155 1.175 1.179 1.193 50 2.2 1.175 1.147 1.168 1.189 1..194 1.210 51 2.0 1.185 1.155 1.179 1.202 1.209 1.226 52 1.8 1.186 1.156 1.183 1.210 1.219 1.237 53 1.6 1.188 1.158 1.186 1.214 1.223 1.243 54 1.4 1.195 1.164 1.190 1.216 1.225 1.245 55 1.2 1.202 1.169 1.195 1.220 1.229 1.250 56 1.0 1.208 1.174 1.202 1.227 1.236 1.257 57 0.8 1.214 1.179 1.207 1.234 1.243 1.264

  • These decks are generated for normal operation flux maps that are typically taken at full power ARO.

Additional N(z) decks may be generated, if necessary, consistent with the methodology described in the RPDC topical (Reference 7). EOR is defined as Hot Full Power End of Reactivity.

COLR-NlC25, Revision 1 Page 12of19

Serial No.16-314 Docket No. 50-338 COLR Figure 3.2-1 K(Z) - Normalized FQ as a Function of Core Height 1.2 1.1 6, 1.0 1.0 I---

t - - r---

t-- r---...~

0.9 (12 .925) 0.8

~

fl 0.7 c

w N

J

<( 0.6 0::

0 z

~ 0.5

~

0.4 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 CORE HEIGHT (FT)

COLR-NlC25, Revision 1 Page 13of19

Serial No.16-314 Docket No. 50-338 3 .2.2 Nuclear Enthalpy Rise Hot Channel Factor (FNMI)

LCO 3 .2.2 FNm shall be within the limits specified below.

FN&H ~ 1.587 {1 + 0.3(1 - P)}

THERMAL POWER where: p = RATED THERMAL POWER SR 3 .2.2.1 Verify FNMI is within limits specified above.

3.2.3 AXIAL FLUX DIFFERENCE (AFD)

LCO 3 .2.3 The AFD in % flux difference units shall be maintained within the limits specified in COLR Figure 3.2-2.

COLR-NlC25, Revision 1 Page 14of19

Serial No.16-314 Docket No. 50-338 COLR Figure 3.2-2 North Anna 1 Cycle 25 Axial Flux Difference Limits 120 110

(-12, 100) (+6, 100) 100 I \

Un accep able

>pera ion Un accep able jboeral ion 90 Q) 80 I '\

I

==

0 c.

n;

... 70 j

Ac cepta Die Op eratio11

\ ,

7 E

\

Q)

.c I-

'O 60

....n:s I

\

Q) 0:::

....0c Q) 50

/

(-27, 50) (+20, 50) 0 Q)

c. 40 30 20 10 0

-30 -20 -10 0 10 20 30 Percent Flux Difference (Delta-I)

COLR-NlC25, Revision 1 Page 15of19

Serial No.16-314 Docket No. 50-338 3.3 INSTRUMENTATION 3.3.l Reactor Trip System (RTS) Instrumentation TS Table 3.3.1-1 Note 1: Overtemperature ~T The Overtemperature ~T Function Allowable Value shall not exceed the following nominal trip setpoint by more than 2% of ~T span, with the numerical values of the parameters as specified below.

where: ~T is measured RCS ~T, °F

~To is the indicated ~Tat RTP, °F s is the Laplace transform operator, sec- 1 T is the measured RCS average temperature, °F T' is the nominal T avg at R TP, S 586.8 °F p is the measured pressurizer pressure, psig P' is the nominal RCS operating pressure, ~ 2235 psig Kr ::; 1.2715 K1 ~ 0.02174 /°F K3 ~ 0.001145 /psig r1, r2 = time constants utilized in the lead-lag controller for Tavg

-c1 ~ 23.75 sec 't2 S 4.4 sec (1 + r1s)l(l + r2s) =function generated by the lead-lag controller for Tavg dynamic compensation fr (~I) ~ 0.0291 {-13 .0 - (qt - qb)} when (qt - qb) < -13.0% RTP 0 when-13.0% RTP::; (qt- qb)::; +7.0% RTP 0.0251 {(qt- qb)- 7.0} when (qt-qb) > +7.0% RTP Where qt and qb are percent RTP in the upper and lower halves of the core, respectively, and qt+ qb is the total THERMAL POWER in percent RTP.

COLR-NlC25, Revision 1 Page 16of19

Serial No.16-314 Docket No. 50-338 TS Table 3.3.1-1 Note 2: Overpower AT The Overpower AT Function Allowable Value shall not exceed the following nominal trip setpoint by more than 2% of AT span, with the numerical values of the parameters as specified below.

where: AT is measured RCS AT, °F.

ATo is the indicated AT at R TP, °F.

s is the Laplace transform operator, sec- 1*

T is the measured RCS average temperature, °F.

T' is the nominal Tavg at RTP, ;5; 586.8 °F.

~ ;5; 1.0865 Ks~ 0.0198 /°Ffor increasing Tavg K6 ~ 0.00162 /°F when T>T' 0 /°F for decreasing T avg 0 /°F when T:-s;T' T3 = time constant utilized in the rate lag controller for Tavg

't3;;::: 9.5 sec T3s/(J + T3s) = function generated by the rate lag controller for Tavg dynamic compensation f1(M) = 0, for all AI.

COLR-NlC25, Revision 1 Page 17of19

Serial No.16-314 Docket No. 50-338 3.4 REACTOR COOLANT SYSTEM (RCS) 3.4.1 RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits LCO 3 .4.1 RCS DNB parameters for pressurizer pressure, RCS average temperature, and RCS total flow rate shall be within the limits specified below:

a. Pressurizer pressure is greater than or equal to 2205 psig;
b. RCS average temperature is less than or equal to 591 °F; and
c. RCS total flow rate is greater than or equal to 295,000 gpm.

SR 3.4.1.1 Verify pressurizer pressure is greater than or equal to 2205 psig.

SR 3.4.1.2 Verify RCS average temperature is less than or equal to 591 °F.

SR 3.4.1.3 Verify RCS total flow rate is greater than or equal to 295,000 gpm.

SR 3.4.1.4 ------------------------------NOTE--------------------------------------------

N ot required to be performed until 30 days after;;:: 90% RTP.

Verify by precision heat balance that RCS total flow rate is ;;:: 295,000 gpm.

3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) 3.5.6 Boron Injection Tank (BIT)

Required Action B.2 Borate to a SDM;;:: 1.77 % ~k/k at 200 °F.

3 .9 REFUELING OPERATIONS 3.9 .1 Boron Concentration LCO 3 .9 .1 Boron concentrations of the Reactor Coolant System (RCS), the refueling canal, and the refueling cavity shall be maintained ;;:: 2600 ppm.

SR 3.9.1.1 Verify boron concentration is within the limit specified above.

COLR-N1C25, Revision 1 Page 18of19

Serial No.16-314 Docket No. 50-338 NAPS TECHNICAL REQUIREMENTS MANUAL TRM 3.1 REACTIVITY CONTROL SYSTEMS TR 3 .1.1 Boration Flow Paths - Operating Required Action D.2 Borate to a SHUTDOWN MARGIN~ 1.77 % L\k/k at 200 °F, after xenon decay.

COLR-NlC25, Revision 1 Page 19of19