ML120120152

From kanterella
Revision as of 10:47, 12 November 2019 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
Virginia Electric and Power Company (Dominion) North Anna Power Station Unit 2 Cycle 22 Core Operating Limits Report, Revision 1
ML120120152
Person / Time
Site: North Anna Dominion icon.png
Issue date: 01/11/2012
From: Huber T
Dominion Resources Services, Virginia Electric & Power Co (VEPCO)
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
Download: ML120120152 (23)


Text

Dominion Resources Services, Inc.

Innsbrook Technical Center 5000 Dominion Boulevard, 2SE, Glen Allen, VA 23060 January 11, 2012 U. S. Nuclear Regulatory Commission Serial No.11-699 Attention: Document Control Desk NLOS lETS One White Flint North Docket No. 50-339 11555 Rockville Pike License No. NPF-7 Rockville, MD 20852-2738 VIRGINIA ELECTRIC AND POWER COMPANY (DOMINION)

NORTH ANNA POWER STATION UNIT 2 CYCLE 22 CORE OPERATING LIMITS REPORT, REVISION 1 Pursuant to North Anna Technical Specification 5.6.5.d, attached is a copy of the Dominion Core Operating Limits Report for North Anna Unit 2 Cycle 22, Pattern ZAP, Revision 1.

If you have any questions regarding this submittal, please contact Mr. Thomas Shaub at (804) 273-2763.

Sincerely, T. R. Huber, Director Nuclear Licensing and Operations Support Dominion Resources Services, Inc.

for Virginia Electric and Power Company

Attachment:

Core Operating Limits Report for North Anna Unit 2 Cycle 22 Pattern ZAP, Revision 1 Commitments made in this letter: None

Serial No.11-699 Docket No. 50-339 Cycle 22 Pattern ZAP COLR Page 2 of 2 cc: U.S. Nuclear Regulatory Commission - Region II Marquis One Tower 245 Peachtree Center Ave., NE, Suite 1200 Atlanta, Georgia 30303-1257 Mr. J. E. Reasor, Jr.

Old Dominion Electric Cooperative Innsbrook Corporate Center 4201 Dominion Blvd.

Suite 300 Glen Allen, Virginia 23060 NRC Senior Resident Inspector North Anna Power Station Dr. V. Sreenivas NRC Project Manager U. S. Nuclear Regulatory Commission One White Flint North Mail Stop 08 G-9A 11555 Rockville Pike Rockville, Maryland 20852-2738 Ms. K. R. Cotton NRC Project Manager U. S. Nuclear Regulatory Commission One White Flint North Mail Stop 08 G-9A 11555 Rockville Pike Rockville, Maryland 20852-2738

Serial No.11-699 Docket No. 50-339 ATTACHMENT CORE OPERATING LIMITS REPORT FOR NORTH ANNA UNIT 2 CYCLE 22 PATTERN ZAP, REVISION 1 NORTH ANNA POWER STATION VIRGINIA ELECTRIC AND POWER COMPANY (DOMINION)

N2C22 CORE OPERATING LIMITS REPORT INTRODUCTION The Core Operating Limits Report (COLR) for North Anna Unit 2 Cycle 22 has been prepared in accordance with North Anna Technical Specification 5.6.5. The Technical Specifications affected by this report are listed below:

TS 2.1.1 Reactor Core Safety Limits TS 3.1.1 Shutdown Margin (SDM)

TS 3.1.3 Moderator Temperature Coefficient (MTC)

TS 3.1.4 Rod Group Alignment Limits TS 3.1.5 Shutdown Bank Insertion Limit TS 3.1.6 Control Bank Insertion Limits TS 3.1.9 Physics Test Exceptions-Mode 2 TS 3.2.1 Heat Flux Hot Channel Factor TS 3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (FNLlli)

TS 3.2.3 Axial Flux Difference (AFD)

TS 3.3.1 Reactor Trip System (RTS) Instrumentation TS 3.4.1 RCS Pressure, Temperature, and Flow DNB Limits TS 3.5.6 Boron Injection Tank (BIT)

TS 3.9.1 Boron Concentration In addition, a technical requirement (TR) in the NAPS Technical Requirements Manual (TRM) refers to the COLR:

TR3.1.1 Boration Flow Paths - Operating The analytical methods used to determine the core operating limits are those previously approved by the NRC and discussed in the documents listed in the References Section.

Cycle-specific values are presented in bold. Text in italics is provided for information only.

Page 1 of20

REFERENCES

1. VEP-FRD-42, Rev 2.1-A, Reload Nuclear Design Methodology, August 2003.

(Methodology for TS 3.1.1 - Shutdown Margin, TS 3.1.3 - Moderator Temperature Coefficient, TS 3.1.5 - Shutdown Bank Insertion Limit, TS 3.1.6 - Control Bank Insertion Limits, TS 3.2.1 -

Heat Flux Hot Channel Factor, TS 3.2.2 - Nuclear Enthalpy Rise Hot Channel Factor, and TS 3.9.1- Boron Concentration)

2. VEP-NE-2, Rev. O-A, Statistical DNBR Evaluation Methodology, June 1987.

(Methodology for TS 3.2.2 - Nuclear Enthalpy Rise Hot Channel Factor and TS 3.4.1- RCS Pressure, Temperature and Flow DNB Limits)

3. VEP-NE-l Rev. OJ-A, Relaxed Power Distribution Control Methodology and Associated FQ Surveillance Technical Specifications, August 2003.

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor and TS 3.2.3 - Axial Flux Difference)

4. WCAP-8745-P-A, Design Bases for the Thermal Overpower ~ T and Thermal Overtemperature

~ T Trip Functions, September 1986.

(Methodology for TS 2.1.1 - Reactor Core Safety Limits and TS 3.3.1 - Reactor Trip System Instrumentation)

5. WCAP-14483-A, Generic Methodology for Expanded Core Operating Limits Report, January 1999.

(Methodology for TS 2.1.1 - Reactor Core Safety Limits, TS 3.1.1 - Shutdown Margin, TS 3.3.1- Reactor Trip System Instrumentation, TS 3.4.1 - RCS Pressure, Temperature, and Flow DNB Limits, and TS 3.9.1 - Boron Concentration)

6. BAW-I0227P-A, Rev. 0, "Evaluation of Advanced Cladding and Structural Material (M5) in PWR Reactor Fuel."

(Methodology for TS 2.1.1 - Reactor Core Safety Limits, TS 3.2.1 - Heat Flux Hot Channel Factor)

7. EMF-2103 (P) (A), Rev. 0, "Realistic Large Break LOCA Methodology for Pressurized Water Reactors," April 2003.

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor and TS 3.2.2 - Nuclear Enthalpy Rise Hot Channel Factor)

8. EMF-96-029 (P) (A), Rev. 0 "Reactor Analysis System for PWRs," January 1997.

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor and TS 3.2.2 - Nuclear Enthalpy Rise Hot Channel Factor)

Page 2 of20

9. BAW-10168P-A, Rev. 3, "RSG LOCA - BWNT Loss-of-Coolant Accident Evaluation Model for Recirculating Steam Generator Plants," December 1996. Volume II only (SBLOCA models).

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor and TS 3.2.2 - Nuclear Enthalpy Rise Hot Channel Factor)

10. DOM-NAF-2, Rev. O.2-P-A, "Reactor Core Thermal-Hydraulics Using the VIPRE-D Computer Code," including Appendix A, "Qualification ofthe F-ANP BWU CHF Correlations in the VIPRE-D Computer Code," August 2010.

(Methodology for TS 3.2.2 - Nuclear Enthalpy Rise Hot Channel Factor and TS 3.4.1 - RCS Pressure, Temperature and Flow DNB Limits)

Page 3 of20

2.0 SAFETY LIMITS (SLs) 2.1 SLs 2.1.1 Reactor Core SLs In MODES 1 and 2, the combination of THERMAL POWER, Reactor Coolant System (RCS) highest loop average temperature, and pressurizer pressure shall not exceed the limits specified in COLR Figure 2.1-1; and the following SLs shall not be exceeded.

2.1.1.1 The departure from nucleate boiling ratio (DNBR) shall be maintained greater than or equal to the 95/95 DNBR criterion for the DNB correlations and methodologies specified in the References Section.

2.1.1.2 The peak fuel centerline temperature shall be maintained < 5173 of, decreasing by 65°F per 10,000 MWD/MTU of burnup.

Page 4 of20

COLR Figure 2.1-1 NORTH ANNA REACTOR CORE SAFETY LIMITS 665 660

..........

............... .......

655 -...

~I....

650

..............

~ ........ -......I~ ,,~'"

645 ......

~ -......... .......... I 640 j ........... I~ psia ... ~ ....

635 -

............. ~ .......

!

"f\\

'U:' i f...

630

........... i

~

....!II

~

~ '- ........ !~ I\.

...GJ 625 -

~ ......... ,-

.............

.......... ~ 2000 psia

"

Q.

E 620

~ .........

,,,,,,,,,,,,-,,,-

~

GJ 615 .... I \

tlO

............ ........

...GJ

!II 610 .. ......."

.-"

........... i 1860 psia '-...... \ ,,\-

<<> ~

a:; 605 VI VI GJ

> 600 I '" ....

.........

..............

........

--~ .,,-~

595 590 585 I

II

"

!

,~..., .. _." .....

....

..........

~

~

~

580

\,

575 1

j 570 o 10 20 30 40 50 60 70 80 90 100 110 120 Percent of RATED THERMAL POWER Page 5 of20

3.1 REACTIVITY CONTROL SYSTEMS 3.1.1 SHUTDOWN MARGIN (SDM)

LCO 3.1.1 SDM shall be ~ 1.77 % L\k/k.

3.1.3 Moderator Temperature Coefficient (MTC)

LCO 3.1.3 The MTC shall be maintained within the limits specified below. The upper limit ofMTC is +0.6 x 10-4 L\k/k/oF, when < 70% RTP, and 0.0 L\k/k/oF when ~ 70%

RTP.

The BOC/ARO-MTC shall be ~ +0.6 x 10-4 L\k/k/oF (upper limit), when < 70%

RTP, and ~ 0.0 L\k/k/oF when ~ 70% RTP.

The EOC/ARO/RTP-MTC shall be less negative than -5.0 x 10-4 L\k/k/oF (lower limit).

The MTC surveillance limits are:

The 300 ppm/ARO/RTP-MTC should be less negative than or equal to

-4.0 x 10-4 L\k/k/oF [Note 2].

The 60 ppm/ARO/RTP-MTC should be less negative than or equal to

-4.7 x 10-4 L\k/k/oF [Note 3].

SR 3.1.3.2 Verify MTC is within -5.0 x 10-4 L\k/k/OF (lower limit).

Note 2: If the MTC is more negative than -4.0 x 10-4 L\k/k/oF, SR 3.1.3.2 shall be repeated once per 14 EFPD during the remainder of the fuel cycle.

Note 3: SR 3.1.3.2 need not be repeated if the MTC measured at the equivalent of equilibrium RTP-ARO boron concentration of~ 60 ppm is less negative than -4.7 x 10-4 L\k/k/oF.

3.1.4 Rod Group Alignment Limits Required Action A.l.l Verify SDM to be ~ 1.77 % L\k/k.

Required Action B.l.l Verify SDM to be ~ 1.77 % L\k/k.

Required Action D.1.1 Verify SDM to be ~ 1.77 % L\k/k.

Page 6 of20

3.1.5 Shutdown Bank: Insertion Limits LCO 3.1.5 Each shutdown bank shall be withdrawn to at least 228 steps.

Required Action A. 1.1 Verify SDM to be;;:: 1.77 % .6k/k.

Required Action 8.1 Verify SDM to be ;;:: 1.77 % .6k/k.

SR 3.1.5.1 Verify each shutdown bank: is withdrawn to at least 228 steps.

3.1.6 Control Bank Insertion Limits LCO 3.1.6 Control banks shall be limited in physical insertion as shown in COLR Figure 3.1-1. Sequence of withdrawal shall be A, B, C and D, in that order; and the overlap limit during withdrawal shall be 100 steps.

Required Action A.1.1 Verify SDM to be ;;:: 1.77 % .6k/k.

Required Action 8.1.1 Verify SDM to be ;;:: 1.77 % .6k/k.

Required Action C.1 Verify SDM to be ;;:: 1.77 % .6k/k.

SR 3.1.6.1 Verify estimated critical control bank position is within the insertion limits specified in COLR Figure 3.1-1.

SR 3.1.6.2 Verify each control bank: is within the insertion limits specified in COLR Figure 3.1-1.

SR 3.1.6.3 Verify each control bank not fully withdrawn from the core is within the sequence and overlap limits specified in LeO 3.1.6 above.

3.1.9 PHYSICS TESTS Exceptions - MODE 2 LCO 3.1.9.b SDM is;;:: 1.77 %.6k/k.

SR 3.1.9.4 Verify SDM to be;;:: 1.77 % .6k/k.

Page 70f20

COLR Figure 3.1-1 North Anna 2 Cycle 22 Control Rod Bank Insertion Limits 230 220 V (0.539, 228) 210

/

200 1/ -d 190

/ (1.0, 194) 180 C-BANK 1/ Fully wId position = 228 steps /

"t]

/ A 7

3170 c.

~160

/ 7

/ AV VI

  1. 150 r::,'

.2140

....

/ /

  • iii / V

~130

§l20 / /

...

o C'110 (0, 118) /

"t]

~100

/ D-BANK 90

/

80

/

70

/

60

/

50

/

40

/

30 V

20

/

10 V

o / (0.048,0) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Fraction of Rated Thermal Power Page 8 of20

3.2 POWER DISTRIBUTION LIMITS 3.2.1 Heat Flux Hot Channel Factor (FQ(Z))

LCO 3.2.1 FQ(Z), as approximated by FQM(Z), shall be within the limits specified below.

CFQ =2.32 The Measured Heat Flux Hot Channel Factor, FQM(Z), shall be limited by the following relationships:

CFQ K(Z) pM (Z) ::; - - - - for P>0.5 Q P N(Z)

CFQ K(Z) pM (Z) ::; - - - - for P::;0.5 Q 0.5 N(Z)

THERMAL POWER where: P- ;md

- RATED THERMAL POWER K(Z) is provided in COLR Figure 3.2-1, N(Z) is a cycle-specific non-equilibrium multiplier on F QM(Z) to account for power distribution trmsients during normal operation, provided in COLR Table 3.2-1.

The discussion in the Bases Section B 3.2.1 for this LCO requires the application ofa cycle dependent non-equilibrium multiplier, N(Z), to the measured peaking factor, FQM(Z), before comparing it to the limit. N(Z) accounts for power distribution transients encountered during normal operation. As function N(Z) is dependent on the predicted equilibrium FQ(Z) and is sensitive to the axial power distribution, it is typically generated from the actual EOC burnup distribution that can only be obtained after the shutdown of the previous cycle. The cycle-specific N(Z) function is presented in COLR Table 3.2-1.

Page 90f20

COLR Table 3.2-1 N2C22 Normal Operation N(Z)

NODE HEIGHT o to 1000 1000 to 3000 3000 to 5000 5000 to 7000 7000 to 9000 9000 to 11000 (FEET) MWD/MTU MWD/MTU MWD/MTU MWD/MTU MWD/MTU MWD/MTU 10 10.2 1.101 1.111 1.112 1.123 1.135 1.138 11 10.0 1.100 1.119 1.119 1.127 1.134 1.138 12 9.8 1.103 1.125 1.125 1.134 1.136 1.136 13 9.6 1.110 1.131 1.131 1.141 1.141 1.136 14 9.4 1.112 1.133 1.133 1.141 1.141 1.135 15 9.2 1.116 1.135 1.135 1.142 1.142 1.138 16 9.0 1.130 1.146 1.146 1.152 1.152 1.151 17 8.8 1.144 1.157 1.157 1.165 1.165 1.166 18 8.6 1.151 1.160 1.159 1.171 1.171 1.171 19 8.4 1.154 1.160 1.161 1.175 1.175 1.174 20 8.2 1.159 1.161 1.166 1.180 1.181 1.181 21 8.0 1.161 1.161 1.171 1.184 1.185 1.185 22 7.8 1.162 1.161 1.173 1.185 1.187 1.187 23 7.6 1.160 1.160 1.173 1.184 1.187 1.187 24 7.4 1.157 1.157 1.173 1.181 1.187 1.187 25 7.2 1.155 1.155 1.173 1.178 1.186 1.186 26 7.0 1.153 1.153 1.173 1.176 1.185 1.185 27 6.8 1.152 1.152 1.173 1.173 1.184 1.184 28 6.6 1.148 1.148 1.169 1.169 1.181 1.181 29 6.4 1.142 1.142 1.164 1.163 1.175 1.175 30 6.2 1.134 1.134 1.155 1.155 1.165 1.165 31 6.0 1.127 1.129 1.149 1.149 1.161 1.162 32 5.8 1.120 1.123 1.139 1.141 1.153 1.155 33 5.6 1.110 1.111 1.118 1.125 1.135 1.137 34 5.4 1.103 1.103 1.103 1.112 1.119 1.121 35 5.2 1.100 1.100 1.101 1.109 1.115 1.118 36 5.0 1.100 1.100 1.104 1.108 1.113 1.117 37 4.8 1.101 1.098 1.102 1.104 1.106 1.113 38 4.6 1.102 1.099 1.100 1.100 1.103 1.109 39 4.4 1.103 1.102 1.097 1.097 1.103 1.105 40 4.2 1.110 1.110 1.101 1.101 1.103 1.103 41 4.0 1.122 1.122 1.111 1.111 1.103 1.103 42 3.8 1.132 1.132 1.120 1.119 1.106 1.104 43 3.6 1.140 1.140 1.128 1.125 1.114 1.110 44 3.4 1.145 1.145 1.134 1.132 1.123 1.120 45 3.2 1.150 1.150 1.141 1.139 1.134 1.134 46 3.0 1.154 1.154 1.148 1.148 1.144 1.144 47 2.8 1.161 1.161 1.157 1.157 1.153 1.153 48 2.6 1.170 1.170 1.164 1.164 1.156 1.156 49 2.4 1.184 1.184 1.175 1.175 1.164 1.163 50 2.2 1.201 1.201 1.192 1.192 1.181 1.180 51 2.0 1.212 1.212 1.204 1.204 1.192 1.192 52 1.8 1.214 1.214 1.207 1.207 1.194 1.194 These decks are generated for normal operation flux maps that are typically taken at full power ARO.

Additional N(z) decks may be generated for the specific plant conditions at the time of the flux map, if necessary, consistent with the methodology described in the RPDC topical (Reference 3). EOR is defined as Hot Full Power End of Reactivity.

Page 10 of20

COLR Table 3.2-1 (continued)

N2C22 Normal Operation N(Z)

NODE HEIGHT 11000 to 13000 13000 to 15000 15000 to 17000 17000 to 19000 19000 to EOR (FEET) MWD/MTU MWD/MTU MWD/MTU MWD/MTU MWD/MTU 10 10.2 1.138 1.126 1.107 1.114 1.117 11 10.0 1.138 1.124 1.106 1.114 1.117 12 9.8 1.136 1.121 1.105 1.113 1.116 13 9.6 1.136 1.120 1.108 1.112 1.115 14 9.4 1.135 1.115 1.107 1.109 1.112 15 9.2 1.138 1.117 1.112 1.113 1.115 16 9.0 1.151 1.135 1.128 1.126 1.127 17 8.8 1.166 1.155 1.146 1.141 1.142 18 8.6 1.170 1.161 1.151 1.146 1.148 19 8.4 1.173 1.165 1.157 1.154 1.157 20 8.2 1.178 1.175 1.170 1.171 1.174 21 8.0 1.181 1.182 1.180 1.183 1.187 22 7.8 1.183 1.184 1.183 1.186 1.190 23 7.6 1.187 1.187 1.188 1.192 1.196 24 7.4 1.191 1.191 1.196 1.202 1.206 25 7.2 1.194 1.194 1.201 1.207 1.212 26 7.0 1.193 1.193 1.201 1.208 1.212 27 6.8 1.194 1.193 1.202 1.209 1.214 28 6.6 1.192 1.192 1.202 1.210 1.215 29 6.4 1.188 1.188 1.201 1.210 1.215 30 6.2 1.180 1.182 1.196 1.206 1.211 31 6.0 1.178 1.183 1.196 1.206 1.212 32 5.8 1.170 1.180 1.188 1.199 1.205 33 5.6 1.150 1.169 1.172 1.182 1.188 34 5.4 1.133 1.158 1.157 1.166 1.171 35 5.2 1.129 1.154 1.152 1.160 1.165 36 5.0 1.127 1.147 1.148 1.156 1.161 37 4.8 1.121 1.134 1.140 1.149 1.153 38 4.6 1.115 1.122 1.133 1.144 1.147 39 4.4 1.109 1.114 1.128 1.139 1.142 40 4.2 1.104 1.113 1.123 1.130 1.132 41 4.0 1.103 1.118 1.120 1.121 1.122 42 3.8 1.107 1.125 1.123 1.123 1.123 43 3.6 1.116 1.131 1.130 1.135 1.135 44 3.4 1.122 1.135 1.137 1.144 1.144 45 3.2 1.128 1.138 1.144 1.153 1.153 46 3.0 1.137 1.140 1.151 1.160 1.160 47 2.8 1.145 1.142 1.156 1.165 1.165 48 2.6 1.147 1.142 1.157 1.167 1.166 49 2.4 1.151 1.147 1.160 1.170 1.171 50 2.2 1.165 1.159 1.167 1.179 1.183 51 2.0 1.175 1.167 1.173 1.187 1.195 52 1.8 1.176 1.168 1.176 1.193 1.202 These decks are generated for normal operation flux maps that are typically taken at full power ARO.

Additional N(z) decks may be generated for the specific plant conditions at the time of the flux map, if necessary, consistent with the methodology described in the RPDC topical (Reference 3). EOR is defined as Hot Full Power End of Reactivity.

Page 11 of20

COLR Figure 3.2-1 K(Z) - Normalized FQ as a Function of Core Height 1.2 1.1

-

6,1.0 1.0 r-- r---

r-- r--

~

0.9 (12 .925) 0.8 f:i fl 0.7 c

w N

i

<C 0.6

E a:::

o z

ir 0.5

~

0.4 0.3 0.2 0.1 0.0 o 1 2 3 4 5 6 7 8 9 10 11 12 13 CORE HEIGHT (FT)

Page 12 of20

3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (FN Lm)

LCO 3.2.2 FN m shall be within the limits specified below.

F NMI ~ 1.587{I + 0.3(1 - P)}

THERMAL POWER where:

P= RATED THERMAL POWER SR 3.2.2.1 Verify FN m is within limits specified above.

3.2.3 AXIAL FLUX DIFFERENCE (AFD)

LCO 3.2.3 The AFD in % flux difference units shall be maintained within the limits specified in COLR Figure 3.2-2.

Page 13 of20

COLR Figure 3.2-2 North Anna 2 Cycle 22 Axial Flux Difference Limits 120 110

(-12, 100) (+6, 100) 100 90 UnIaccep able ppera ion V \ \

Unaccep able boera ion

,

...

(1) 80

/ ~

c.

~

0 / Ac cepta ~Ie Op ~ratior

\

iii 70 I E

...

.c I-(1)

't:I

....I'll 60

/ ~

I II

'\

(1)

-....

cr:

0 c(1) 50 / (-27,50) (+20, 50) c.

~

(1) 40 I

30 I

20 10 o

-30 -20 -10 o 10 20 30 Percent Flux Difference (Delta-I)

Page 14 of20

3.3 INSTRUMENTATION 3.3.1 Reactor Trip System (RTS) Instrumentation TS Table 3.3.1-1 Note 1: Overtemperature LlT The Overtemperature LlT Function Allowable Value shall not exceed the following nominal trip setpoint by more than 2% of LlT span, with the numerical values of the parameters as specified below.

where: LlT is measured RCS LlT, OF.

LlT0 is the indicated LlT at RTP, of.

s is the Laplace transform operator, sec-I.

T is the measured RCS average temperature, OF.

T' is the nominal T avg at RTP, ~ 586.8 of.

P is the measured pressurizer pressure, psig.

P' is the nominal RCS operating pressure, ;;::: 2235 psig.

K I ~ 1.2715 K 3 ;;::: 0.001144 /psig T], T2 = time constants utilized in the lead-lag controller for Tavg 1'1 ;;::: 23.75 sec 1'2 ~ 4.4 sec (1 + T]s)/(1 + T2S) = function generated by the lead-lag controller for Tavg dynamic compensation fI(LlI) ;;::: 0.0165{ (qt - qb)} when (qt - qb) < -'35% RTP o when-35% RTP ~ (qt-qb) ~ +3% RTP 0.0198{(qt - qb) - 3} when (qt - qb) > +3% RTP Where qt and qb are percent RTP in the upper and lower halves of the core, respectively, and qt + qb is the total THERMAL POWER in percent RTP.

Page 15 of20

TS Table 3.3.1-1 Note 2: Overpower LiT The Overpower LiT Function Allowable Value shall not exceed the following nominal trip setpoint by more than 2% of LiT span, with the numerical values of the parameters as specified below.

where: LiT is measured RCS LiT, of.

LiTo is the indicated LiT at RTP, of.

s is the Laplace transform operator, sec-I.

T is the measured RCS average temperature, OF.

T' is the nominal T avg at RTP, ~ 586.8 of.

~~ 1.0865 Ks ~ 0.0197 /oF for increasing T avg K 6 ~ 0.00162 /OF when T > T' o /oF for decreasing T avg o /OF when T ~ T' T3 = time constant utilized in the rate lag controller for Tavg

't3 ~ 9.5 sec T3s/(1 + T3S) = function generated by the rate lag controller for Tavg dynamic compensation f 2(M) = 0, for all M.

Page 16 of20

3.4 REACTOR COOLANT SYSTEM (RCS) 3.4.1 RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits LCO 3.4.1 RCS DNB parameters for pressurizer pressure, RCS average temperature, and RCS total flow rate shall be within the limits specified below:

a. Pressurizer pressure is greater than or equal to 2205 psig;
b. RCS average temperature is less than or equal to 591°F; and
c. RCS total flow rate is greater than or equal to 295,000 gpm.

SR 3.4.1.1 Verify pressurizer pressure is greater than or equal to 2205 psig.

SR 3.4.1.2 Verify RCS average temperature is less than or equal to 591°F.

SR 3.4.1.3 Verify RCS total flow rate is greater than or equal to 295,000 gpm.

SR 3.4.1.4 ------------------------------N()TE--------------------------------------------

Not required to be performed until 30 days after 290% RTP.

Verify by precision heat balance that RCS total flow rate is 2 295,000 gpm.

Page 17 of20

3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) 3.5.6 Boron Injection Tank (BIT)

Required Action B.2 Borate to an SDM ~ 1.77 % L1k/k at 200 of.

Page 18 of20

3.9 REFUELING OPERATIONS 3.9.1 Boron Concentration LCO 3.9.1 Boron concentrations of the Reactor Coolant System (RCS), the refueling canal, and the refueling cavity shall be maintained ~ 2600 ppm.

SR 3.9.1.1 Verify boron concentration is within the limit specified above.

Page 19 of20

NAPS TECHNICAL REQUIREMENTS MANUAL TRM 3.1 REACTIVITY CONTROL SYSTEMS TR 3.1.1 Boration Flow Paths - Operating Required Action D.2 Borate to a SHUTDOWN MARGIN ~ 1.77 % Milk at 20P of, after xenon decay.

Page 20 of20