ML19309G798
ML19309G798 | |
Person / Time | |
---|---|
Site: | Sequoyah |
Issue date: | 04/22/1980 |
From: | Becar N, Long W, Robert Williams KAMAN SCIENCES CORP. |
To: | |
Shared Package | |
ML19309G796 | List: |
References | |
K80-41U(R), NUDOCS 8005070587 | |
Download: ML19309G798 (73) | |
Text
{{#Wiki_filter:- g465674587 O l l FINAL REPORT SEQUOYAH AUXILIARY FEEDWATER SYSTEM RELIABILITY EVALUATION [ R. Larry Williams N. J. Becar W. T. Long D. W. Stoddard [ 22 April 1980 [
. This report was prepared by Kaman Sciences Corporation under contract to the Nuclear Engineering Branch of the Tennessee Valley Authority, Knoxville, Tennessee I
__ - _ - _ _ _ _ _ _ _ _ _ _ _ ._ -- I
l I I l I l ABSTRACT l This document reports the results of a reliability analysis of the Sequoyah Unit 1 Nuclear Power Plant Auxiliary Feedwater Systen. The GO methodology was employed to perfonn this analysis. Point estimates of the probability of successful start-up were calculated for five different initiating conditions. First and second order fault sets were identified for some cases and their relative importance detenained. The reliability as d function of time was Calculated for Continuous operation without 5 repair for a six month period for the case of both main feedwater pumps tripped. I I I E i i
SEQUOYAH AUXILIARY FEEDWATER SYSTEM RELIABILITY EVALUATION
SUMMARY
Kaman Sciences Corporation was contracted by the Tennessee Valley Authority to conduct a reliability evaluation of the Sequoyah Unit #1 Nuclear Power Plant Auxiliary Feedwater System (AFS). Kaman employed the G0 computerized event tree methodology to perfonn the analyses. l Results indicate that the probability of successfully starting the auxiliary feedwater system upon demand and providing adequate water flow and pressure to at least two out of four steam generators ~ is 0.99999 where the initiating event is both feedwater pumps tripped. In event of loss of offsite power (blackout) with diesel generators and battery back-up available the AFS start-up success probability is 0.99997. Other excursions were also evaluated. I The analysis revealed that there are no first order faults in the Sequoyah AFS for the initiating event both feedwater pumps tripped. A total of 116 second order faults were identified for this case. The largest contribution of unavailability msulting from a pair of faults is 10-7 . Most second order fault sets contribute to start-up unavailability on the order of 10-10 , I I . I I E B _ s
TABLE OF CONTENTS l PAGE ABSTRACT 1
SUMMARY
11
~
INTRODUCTION 1 PROCEDURE 1 Modeling Approach 2 Supertypes 3 RESULTS 9
& Sta rt-Up 9 Continuous Run 9 Fault Sets 9
[ APPENDIX A SEQU0YAH G0 MODEL DESCRIPTION A-1 APPENDIX B SEQUOYAH MODEL G0 CHARTS B-1 APPENDIX C INPUT DATA TO G02 C-1 [ [ E [ ra 111
l l 1 l SEQUOYAH AUXILIARY FEEDWATER SYSTEM I RELIABILITY EVALUATION l INTRODUCTION In November 1979 the Tennessee Valley Authority (TVA) contracted with V, aman Sciences Corporation (KSC) to conduct an evaluation of the reliability and availability of the auxiliary feedwater system of Se-quoyah Unit I nuclear power plant located at Daisy, Tennessee. This analysis had multiple objectives. The initial objective was to detennine the probability of successful start-up of the AFWS under the following conditions:
- 1. Both main feedwater pumps tripped and all power sources available.
- 2. Loss of offsite power with diesel generators and battery backup available.
- 3. Loss of all ac power, batteries only available.
- 4. Break on steam generator #1 water inlet line causing low steam generator #1 level.
I 5. Loss of Train A 120 volt ac inverter electrical power and s trip of both main feedwater pumps to cause AFS initiation. I Additional objectives included: an assessment of the long tenn reliability I of the AFS, assuming successful start-up; and the identification of all first and second order fault sets which could fail the system in the start-up mode for the initiating event both main feedwater pumps tripped. PROCEDURE TVA provided KSC with complete engineering drawings and operational descriptions of the Sequoyah AFS including requisite support systems such as compressed air, electrical power, etc. KSC used these data to con-I struct a comprehensive model of the AFS employing the GO methodology which I B
l l l l l KSC has developed. G0 is a collection of computer codes and modeling instructions which have been developed during the past 15 years to treat complex reliability and availability problems in a rigorous yet econuaical manner. In recent years its continuing development has been sponsored by the Electric Power Research Institute. Moaeling Approach A brief description of the programs presently in the G0 system and their primary functions are given below: G01 - Program G01 accepts a symbolic representation of the logical structure of a system, including definitions of the component I' types and their interactions. The intennediate and final signals i are explicitly defined, the operator sequence is specified and numerous diagnostic checks on the accuracy and validity of the GO model inputs are made. G02 - Program G02 accepts the canponent reliability or availability point estimates, interrelates them with the logic G0 type-kind operators from G01 and checks the data for internal consistency. G03 - I Program G03 uses the data files generated from G01 and G02 to create the sequential event spaces and calculate the probability of occurrence of each event. The final output is the joint I probability distribution of all final output signals which rep-resent all possible system operational states. FFl - Program FFl requires one or more of the G03 outputs (the selected event) as an input. It then abstracts the G03 arrays which have been preserveo on disc storage to only those tenns which ultimately produce the selected event of interest. I FF2 - Program FF2 uses the FFl generated event sequences and inverts the G03 process to specifically identify component failure combinations I which cause the selected event (usually systen failures). I 2 B
C. FG0 - Program FGO is used to create an abstracted G0! unavailability logic model from the FF2 generated minimal cut set data. eel - Program eel is similar to G02 and preprocesses the kind data for an Effect Evaluation analysis. The Effect Evaluation kind data includes both point estimates and estimates of the variability or uncertainty in those estimates. EE2 - Program EE2 uses the operatcr and kind data provided by G01 and eel to evaluate the system k+1 times where k is the number of variable kinds. Each evaluation uses logic fuentical to that in a single G03 run. EE2 thus calculates the sensitivity (partial derivative) of every elementary final event with respect to each variable kind. EE3 - Program EE3 calculates the required confidence intervals and bounds for any selected event. This is done by calculating both an estimate of the mean and an estimate of the variance of the mean for the selected event. Once obtained, these are used with statistical b algorithms to generate the desired confidence bounds and ii.cervals. Supertypes One feature of the G0 procedure which provides flexibility in modeling is the supertype capability. A supertype is a specified collection of regular G0 operators (representing equipments, etc.) which are treated as a { single module or block in the model. Redundant but identical groupings of equipments can thus be modeled only once but called up repeatedly in each application. This modular capability pennits the creation of relatively simple G0 charts where systems or subsystems, which in themselves may be extensive, dre represented as supertypes. Supertypes can be used then either for clarity or for ease of modeling replicated subsystems or both. 3
L [ C The G0 procedure has been thoroughly described in EPRI publications f{P-765, f4P-766 and NP-767. Figure 1 presents a basic schematic of the AFS and Figure 2 is the top level master G0 diagram of the AFS employing a number of supertypes. Using the GO modeling technique the sequential and logical operation of the system elements are represented by G0 operators. Currently there are 17 different operators available to the analyst to represent the system functinns. Appropriate reliability probabilities were assigned to the G0 operatcrs and the computer programs were exercised to generate the following outputs: reliability point estimates of start-up, reliability with time, an.1 first and second order fault sets. A detailed discussion g of the complete AFS model is presented in Appendix A, Sequoyah G0 Model L Description, and in Appendix B, Sequoyah Model G0 Charts. ( After independently developing the Sequoyah G0 model KSC submitted it to TVA for verification. KSC in conjunction with TVA also developed the re-quired reliability data inputs. A listing of these data and a discussion {' of their sources are presented in Appendix C, Inptc Data to G02. Following TVA approval of the model and input data, required computer runs wem made to accomplish the objectives previously stated. Results of the analysis are presented in the following section. [ [ [ , i 4
M' W W W W W W W W W W W W CONDENSATE STORAGE TANK CAP. 397,700 GAL. TANK A TANK 2 STE AM LINE
\
- MIN RESERVE e AUX FW RESERVE r 196.000 G A L 3 l r
l -1 STEAM GENERATOR l g _w LOOP NO. 4 o k a ST E AP.* LIN E h T D w i MOTOR DRIVEN AUXILIARY E STEAM GENERATOR FEEDWATER PUMPS E -> LOOP NO.1 RATED CAP. 440 G.P.M. $ qf
@ 2900 FT. TDH $
u h I
- _ n l > I +
' > _, STEAM GENER ATOR d j LOOP NO. 2 E - -
3 + .t3
/_\.
l .t1-
/\
g a ERCW ERCW 3 SUPPLY SUPPLY d q c E - STEAM GENERATOR ERCW
+ LOOP NO. 3 ySUPPLY o
hh TRIP & T6*90TTLE VALVE FIGURE 1 FLOW DIAGRAM
+
c AUXILIARY FEEDWATER SYSTEM TURBINE DRIVEN AUXILIARY FEEDWATER PUMP SEQUOYAH NUCLEAR PLANT R ATED CAP. 880 G.P.M. @ 2600 FT. TDH TENNESSEE VALLEY AUTHORITY
i t ' accio anomats 4 f ' II (39 t som ra 4as 6'/n mv.ana a eca .. 4 W2 *
- 94 .8 - g4
_ M >
%.. saast vakut Stral.MN,5 NC d*
( G _ 909 OI
.'O v v I M
Gv, LO .J ga 74 74
==
iM I -
, .:.7 t . v..v v a6va s **e 3 &B '
Gv
..n m r,-
e..._ e.mq - m.
- == $.;. : . , . .. '1 a ge GF 9 l
b S8 97 4 Si see seaE ._1 ,,&EA g --- O 1' ,',! _d_z b i g gesM. ses EE ' lil i- s o, _u ms.t ,,, inna i h U.'
,, ' 6 31 IIIIII 9111] rgTg CW 8CV I 89 A pCW i f9 8 e ., i 383 ERCH CT#b PR193SA N a
5es 888 .6 f.3
$135A Sea I4 m @ lee gg ) ,333 I I i ., == *:; M g
_3._ . .....
,,, .. '=' i >s . . .. _1.
991 aos g%
,,. se.t tel .
7..
- 6. ~ ..q I
97
\ .
isii I - j b - ?'
y
.a 4 u ve -.nc.av.a .,,.,. ,. -.n.a= ~ . i 8 tuft 8W84 w w - Ma , ., ., ,
aa.c=6 , V . in n. ..
=. .. s = ,,, Lt .LL n.,,,. ur .uc..b, . ',,a' , 'a,,- >. =
Ti'3 :: "' ,. = 2 ,-a ,,,,,, ,,, n ..
-e e .n , -
a n.. .,,,, .t.,.... TJ'." a..
.. ri-i i. ,,,,= = =n _ .'
- m. " s'
. . . . w =,o= u,.. .. . = = = ,
111.ll. b.e 8 g , 134 Fev,l F. ,f 7. ,2
.w . - ?- ^ ., g ,,,,, ?_v.MA. .
l . , . 1 C .u
"'.h,. . ..F. i a ** .
Ig ..,- in s .,. 'a- :
, 21., T...m.. ,, ^
f .o . .. !
- n. &,, ..~ ~ . . ..."n R,J,, m
'~ ",. -m. g::.';.,= .tL = =, . == m,. = , , = >
y a * .C. L't.' ' n,gn,6 .l>>.4 3 .., (>/ N -
- =.."=,"' .."' ^. = 'O, { .=.inv.s. , i s. we , comea . '" p. . luu.a - it <=6 03s t,3 '** ,* , " 'Y.o Asa .uppt? / -
s,.,,-
- 3. s .,..e
'.h .rm , ... c,. - - =,
g q.,t, 1
,,,e 9 Tee aos .r .t . J ., . , .. I I .sA .U.rt y A.m .uret y Tes .e M ,,3 ,
g ,,,u,.C,mL
'#*** e t.1 s v.
_ .,. , m. .-i.u,n,g -. ai 3s. 1 mi e 4880 2F. 48 43 i . gy y.g CW g 9e,
** ' = ,,, . sa ,,, , de.eia * *.F...AD. ' " " " Quart c..,ns ses ** 8,T'T.73F FF. N / "
l'88 .a J J. ~v~ g, W .......n.
,nU Of POUR .,. , G. Nim 4,OA. .,m6 c
TTT (*) / 1
*ee g, .
4 l / n ym ~ m., l 31 L . l <ww.s .t$.3 M,g I _- ,'.'n' . ._ m ,;, a
- s -
D h ., W
. .. y y-- ..m.? .4 , > =
- e e.
M h d
\/ u 'C _ d'/ ,., FIGURE 2 .3 .s .AAlttR CO CMART 3
8'
* 't
- V - .03 Sf0UUfAM ieUCLE AR PLAlut AUXILIARY Fif D.p ATER g.p/ ST ARTUP MODE L F
. l. JAN. t 0 R*.: 11 Apr. 0 '
w .08 Refer.nre DutG .7W5 01,
- ; . s.1 %.Ru.s p .
j
*m '* Lt ..,
cvaig
";, D .
D 04 4 h WM O P .; M } U ., 7
r 4 RESULTS [ L Start-Up g Table 1 presents the results of the start-up analyses. The five cases L described in the introduction were evaluated. For each case two outcomes as a function of system success were calculated. l I L System success for each outcome is defined as: I L 1. Proper auxiliary feedwater flow and pressure for at g least two-out-of-four steam generators. This event L is designated as signal 501 on the master G0 chart, Figure 2.
- 2. Proper auxiliary feedwater flow and pressure for al' four steam generators. This event is designated as ,
signal 500 on Figure 2. l l Continuous Run ' { Figure 3 presents the reliability as a function of running time of the AFS given a successful start and assuming no repair. The AFS start-up condition evaluated was both main feedwater pumps tripped and all power 1 sources available. The inset table in Figure 3 provides the calculated reliabilities at various time points for the two success conditions pre-viously defined. Fault Sets Because the tenn " cut set" is sc Stuately associated with fault trees and because of the more ger6 1 atu?e of a G0 model compared with a fault tree and the fact tha+ s g S Sperators may function in more than two operational states (nWes), the term fault set has been chosen [ 9
r h r i E P TABLE 1. PROBABILITY OF SUCCESSFUL STARTUP OF THE SEQUOYAH AUXILIARY FELDWATER SYSTEM l 501 500 l POSTULATED SCENARIO AFS Avail. AFS Avail. of 2-out-of-4 of 4-out-of 4 Steam Gen. Steam Gen. p Both MFW Pumps Tripped And All Power .99999 .99832 Sources Available Loss of Offsite Power With Diesel Gen- .99997 .99477 erators & Battery Backup Loss of all AC Power (Batteries Only) .99243 .89502 Break On Steam Generator # 1 Inlet Line .98633 .0 Loss of Train A Electrical Power and .99989 .94385 Both MFW Pumps Tripped System Error: ~10-5 [ [ 10
i i ~ F n a , n 1 __
\, M _
6 _
\ _
V T S o, M 3
\
k n x 1 T
$ E M
I T H
. M I
T I W R Y T I L n I S R B U A I O H L E R n S F A H
. 04 W A n 0 -
5f L - 0 746130 758239 996763 I Y O U At 999864 Q Nu E GO S n E , I - 1 MO S4 IN . T 3 H FT E OI n_ - N OT W 14 0 - 5f R U G I IR 0 997667 F TA L - 999556 S CT At 999968 W NS Nu 999998 F U GO A FL I - U S2 H SF M ; A AS Y O U Q E S YE TC IC LU IS B S R S
)) ss kooo wmmm 1136
((((
))
D 1 ANI R n . IEA LVP EIE RGR O U H 248000 126262 1713 24 0 W 7- l5' _
,!/r n 0 1
bdE W 6 . 31 - n 7 l
I L I L I rather than cut set to describe a minimal set of operator modes which p will produce a particular system event. The system event itself is called L the selected event because it is selected (defined) by the user from the list of all system events produced by a G0 analysis. Although it is not [ cessary, in most applications the selected event will be chosen to be some undesirable occurrence, and for this reason the adjective " fault" has been used. In this analysis the selected event is failure of the AFS to properly { function upon demand. This requires that two failure conditions be defined, one for the two-out-of-four event (G0 signal 501), and one for the four-out-of-four case (G0 signal 500). The case used to generate the fault sets is the two-out-of-four event (501). While the G0 methodology has the general capability to identify fault sets up through the fourth order, only first and second order fault sete I were identified in this analysis. One reason for truncating the analysis { at second order fault sets was economics. For a systen as complex as the AFS the computer running time to identify third and fourth ortier fault sets could be prohibitively expensive. Further, the failure probabilities assoc-iated with the AFS components are on the order of 10-3 or less. Thus if three elements fail, each with a failure probability of 10-3, the msulting joint failure probability would be <10-9, a value which is less than the accuracy of the start-up msults (10-5) previously noted in Table 1. The Fault Finder analysis for the case both main feedwater pumps trip-ped and all power sources available revealed that there are no first order fault :;ets in the Sequoyah AFS. That is, the failure of no single element will fail the systen. There are 116 second order fault sets. These are Isited in Table 2. The numbers appearing in the second and third columns refer to G0 operator numbers. By referring back to one of the initial listings generated by the G0 computer programs, the specific system elements, C E 12
4 I u e TABLE 2. SECOND ORDER FAULT SETS F L No. Go OPERATORS FAULT #1 FAULT #2 1 123(1) 525(1) Inverter "A" SG Inlet Break (B) 2 146(1) 526(1) Inverter "B" SG Inlet Break (A) 3 242(1) 265(1) Condensate Pipe Break No ERCW 4 243(1) 265(1) OP Error Closes Gate Valve No ERCW g 5 246(1) 265(1) Reducer Plugged No ERCW 6 266(1) 526(1) OP Error Closes GV, MDP-B Inlet SG Inlet Break (A) F 7 268(!) 526(1) Plugged CV, (MDP-B) Inlet L 8 293(1) Open Contact, Pump B Startup 526(1) 9 318(1) 526(1) Open ' l X ' Rel ay , " " " 10 Open 'lX' Contact, " " " r 319(1) 52 6(1 ) L 11 320(1) 526(1) Open '1X' Contact, " " " 12 321(1) Open 'lX' Contact, " " " 526(1) 13 Open '30X' Contact, " " " 322(1) 526(1) 14 323(1) 526(1) Open '30X' Relay, " " " 15 324(1) 526(1) Open '30X' Contact, 16 325(1) 526(1) Open '30X' Contact, " " " 17 326(1) 526(1 ) Open Delay Contact, " " " 18 334(1) 526(1) Faulty Pump Motor BreCer, B Startup 19 336(!) 526(1) Open Pump Breaker Contact, ( 20 337(1) B Startup Open Pump Breaker Contact, 526(1) l B Startup { 21 338(1) 526(1) Open Pump Breaker Contact, B Startup 22 349(1) 526(1) Plugged Reducer, Pump B Inlet r 23 350(1) 526(1) Faulty Pump B L 24 361(1) 526(1) Faulty Reducer Pump B Disch. 25 362(1) 526(1) Faulty CV, Pump B Disch. 26 363(1) 526(1) . aulty Reducer Pump B Disch. ( 27 28 365(1) 385(1) 526(1) 525(1) Faulty Reducer Pump B Disch. OP Error Closes GV, MDP-A SG Inlet Break (B) Inlet { 29 30 387(1) 412(1) 525(1) 525(1) Plugged CV, (MDP-A) Inlet Open Contact, Pump A Startup 31 437(1) 525(1) Open 'lX' Relay, Pump A H Startup L, 32 438(1) 525(1) Open 'lX' Contact, Pump A Startup 33 439(1) 525(1) Open 'lX' Contact, Pump A { 34 440(1) 525(1) Sta rtup Open 'lX' Contact, Pump A Startup f 35 441(1) 525(1) Open 'IX' Contact Pump A L Startup u 13 s.
L F TABLE 2. (Continued) L NO. GO OPERATORS FAULT #1 FAULT #2 L 36 442(1) 525(1) Open Box Relay, Pump A Startup 37 " SG Inlet Break (B) 443(1) 525(1) Open Box Contact, " " r 38 444(1) 525(1) Open Box Contact, " " " 39 445(1) 525(1) Open Delay Relay, " " " 40 453(1) 525(1) Faulty Pump Mtr Bkr, " " 41 455(1) 525(1) Open Pump Bkr Cnt., " " 42 456(l) 525(l) Open Pump Bkr Cnt., " " " 43 " " 457(1) 525(1) Open Pump Bkr Cnt. , 44 46G(1) 525(1) Plugged Reducer, Pump A Inlet i F 45 469(1) 525(1) Faulty Pump A L 46 480(1) 525(1) Faulty Reducer, Pump A Disch. 47 481(1) 525(1) Faulty CV, Pump A Disch. , 48 482(1) 525(1) Faulty Reducer, Pump A Disch. e L 49 484(1) 525(1) Faulty Reducer, Pump A Disch. 50 525(1) 526(1) SG Inlet Break, B SG Inlet Break (A) 51 728(1) 525(1) OP Error Closes GV, (Inlet SG Inlet Break (B) [ to LCV), MDP Line B, SG2 52 769(1) 525(1) Faulty Controller, (LCV Cntr Ckt), MDP Line B, SG2 53 794(1) 525(1) Foulty Level Modifier, (LCV Valve, LCV 3-156) Line B SG2 54 798(1) 525(1) Faulty Level Cntr Valve, [ (LCV Cntr Crt), MDP Line B SG2 55 801(1) 525(1) Plug / Burst CV, After LCV 1 j F 3-156 l L 56 802(1) 525(1) OP Error Closes GV, (LCV Dischs) MDP Line B,SG2 r 57 833(1) 525(1) Plugged /Btrst Flow Element, L (Inlet TD gr,2) 58 834(1) 525(1) Plugged / Burst Temp Well, (Inlet to SG2) [ 59 835(1) 525(1) Plugged / Burst Chec.% Valve, (Inlet to SG2) 60 836(1) 525(1) Plugged / Burst Check Valve, F (Inlet to SG2) L 61 839(1) 525(1) Plugged / Burst Reducer, on MDP-B Line to SGl 62 841(1) 525(1) OP Error Closes GV, (Inlet ( 63 882(1) 525(1) to LCV), MDP Line B SGl Faulty Controller, (LCV Cntr Ckt), MDP Line B SGl { 64 907(1) 525(1) Faulty Level Modifier, (LCV Cntr Ckt), MDP Line B SGl 65 911(1) 525(1) Faulty Level Cntr Valve, LCV 3-156, MDP Line B,.SG1 o . 14
N - TABLE 2. (Continued) fl0. G0 OPERATORS FAULT #1 FAULT #2 66 914(1) 525(1) Plug / Burst CV, After LCV 3-156 SG Inlet Break (B) 67 915(1) 525(1) OP Error Closes GV, (LCV Disch) - 68 946(1) 525(1) Plugged / Burst Flow Element, (Inlet to SGl) 69 947(1) 525(1) Plugged / Burst Tm p Well, J
- 70 (Inlet to SGl)
Plugged GV (LCV Disch Line), 916(2) 526(1) MDP Line, SGl 71 886(2) 525(1) Spurious Delay Relay Actuation, F LCV Cntr Ckt, MDF, SGl L 72 879(1) 525(1) Faulty Level Transmitter, LCV Cntr Ckt, MDP, SG 1 73 842(2) 525(1) Plugged GV, Inlet to LCV, MDP Line, SGl 74 803(2) 525(1) Plugged GV, (LCV Disch Line) SG2 75 773(2) 525(1) Spurious Delay Relay Actuation, I LCV Cntr Ckt, MDP, SG2 76 766(1) 525(1) Faulty Level Transmitter, LCV Cntr Ckt, MDP, SG2 77 729(2) 525(1) Plugged GV, Inlet to LCV, f0P F Line, SG2 I o 78 613(1) 526(1) OP Error Closes GV, (Inlet to , LCV), MDP Line A, SG3 SG Inlet Break (A) 1 79 654(1) 526(1) Faulty Controller, (LCV Cntr I l 80 679(1) 526(1) Ckt) MDP Line B, SG3 Faulty Level Modifier, (LCV Cntr Ckt) MDP Line B, SG3 81 683(1) 526(1) Faulty Level Cntr Valve, LCV 3-156, MDP Line B, SG3 l 82 686(1) 526(1) Plug / Burst CV, After LCV 3-156, f MDP , L i ne B , SG3 83 687(1) 526(1) OP Error Closes GV, (LCV Disch) MDP, Line B, SG3 l 84 718(1) 526(1) Plugged / Burst Flow Element, (Inlet to SG3) 85 719(1) 526(1) Plugged / Burst Temp Well, (Inlet l to SG3) 86 720(1) 526(1) Plugged / Burst Check Valve, (Inlet I' 87 721(1) 526(l) to SG3) Pingged/ Burst Check Valve, (Inlet to SG3) 88 950(1) 526(1) OP Error Closes GV, (Inlet to LCV) MDP Line B, SG4 l 89 991(1) 526(1) Faulty Controller, (LCV Cntr Ckt) I l 90 1016(1) 526(1) MDP Line B, SG4 Faul ty Level !!odifier, (LCV Cntr Ckt) MDP Line B, SG4 i 15 l - _ _ - - - - - _ - - -
I l l TABLE 2. (Continued) l NO. G0 OPERATORS FAULT #1 FAULT #2 91 1020(1) 526(1) Faulty Level Cntr Valve, LCV SG Inlet Break (A) I l 92 1023(1) 526(1) 3-156, MDP Line B, SG4 Plug / Burst CV, After LCV 3-156, MDP Line B, SG4 I 93 94 1024(1) 1055(1) 526(1) 526(1) OP Error Closes GV, (LCV Disch) MDP Line B, SG4 Plugged / Burst Flow Element, (Inlet to SG4) 95 1056(1) 526(1) Plugged / Burst Temp Well, (Inlet i to SG4) I 96 1025(2) 526(1) Plugged GV, (LCV Disch Line) MDP Line B, SG4 97 995(2) 526(1) Spurious Delay Relay Actuation, l LCV Cntr Ckt, MDP B, SG4 98 988(1) 526(1) Faulty Level Transmitter, LCV Cntr Ckt, MDP B, SG4 99 951(2) 526(1) Plugged GV, Inlet to LCV, MDP Line B, SG4 1 100 688(2) 526(1) Plugged GV, LCV Disch Line MDP Line B, SG3 101 658(2) 526(1) Spurious Delay Relay Actuation, LCV Cntr Ckt, MDP B, SG3 102 651(1) 526(1) Faulty Level Transmitter, LCV Cntr Ckt, MDP B, SG3 103 614(2) 526(1) Plugged GV, Inlet to LCV, MDP Line e B, SG3, 104 483(2) 525(1) Faulty / Plugged PCV, Valve 3-122 SG Inlet Break (B) 105 476(2) 525(1) Spurious Closure, PCV Control Ckt 106 4 78 (1) 525(1) Failed Hydraulic Sys. , PCV 3-122 107 396(2) 525(1) Spurious Delay Relay Act. , MDP-A, Sta rt-up 108 386(2) 525(1) Plugged GV, Inlet to MDP-A 109 364(2) 526(1 Faulty / Plugged PCV, Valve 3-122 110 357(2) 526(1)1 Spurious Closure PCV Control Ckt 111 354(1) 526(1) Failed Hydraulic Sys. , PCV 3-122 112 277(2) 526(1) Spurious Delay Relay Act., MDP-A, Sta rt-up g 113 267(2) 526(1) Plugged GV, Inlet to MDP-A 114 244(2) 265(1) Plugged GV, from Condensate Line No ERCW 115 150(2) 526(1) TR B, BD-2, DC Power Breaker Opened SG Inlet Break (A) 116 130(2) 525(1) TR A, BD-1, DC Power Breaker Opened SG Inlet Break (B) I E 8 l
or components involved, in each fault set are identified. These identifiers - appear in columns three and four. Note that most of the system elements were involved in more than one second order fault set. A ranking of the unique fault set with regard to its contribution to system unavailability is shown in Table 3. From Table 2 it can be seen ~ that breaks in steam generator water inlet lines are involved in 112 of the 116 second order fault sets. The unavailability of ERCW is involved F in the remaining four. These two faults in combination with 26 other ^ types of faults make up the 116 second order fault sets. Table 3 shows l 7 the frequency of these combination and the double fault joint probabilities. " For the Sequoyah AFS, the highest level contributor is a fault set involving ~ erroneous operator action in posit oning a condensate valve in a closed i L pcsition and the unavailability of emergency raw cooling water. These two events can be identified as signals 4 and 9, respectively, on the master G0 chart shown in Figure 2. I l L E 1 1 I t - I l 17
E E TABLE 3. SECOND ORDER FAULTS (RANK ORDERED) I 2nd FAULTS A: UNAVAILABILI1Y OF ERCW, 10-3 FAILURE / DEMAND B: STEAM GENERATOR INLET BREAK,10-6 FAILURE / DEMAND PROB. OF FAULT DOUBLE FAULT I FAULT 1 FAILURE 2 JOINT PROB PER DEMAND FAILURE PER DEMAND
~
FREQ. 1 Condensate valve 10~4 A 10 l I closed, operator error 2 Gate valve plugged 10-5 A 10~9 1 l 3 PCV control circuit 3.2x10-3 B 3.2x10-9 2 4 Level transmitter 2.0x10-3 B 2.0x10-9 4 5 Condensate feedwater 10-6 A 10-9 1 pipe break / vented l 6 Reducer plugged 10-6 A 10
-9 1
7 MDP fails 10-3 8
-9 10 2 8 Hydraulic system ~9 I fails 10-3 B 10 2 9 Breaker opened, oper- ~9 ator error 10-3 B 10 2 10 Breaker mechanism fails 4.0x10-4 B 4x10-10 2 11 Relay coil fails open 2.0x10~4 -10 B 2x10 4 12 Delay relay fails 2.0x10~4 B 2x10-10 2 13 Relay actuated spuriously, 120V 2.0x10-4 B 2x10-10 6 14 120V inverter fails 2.0x10-4 B- -10 2x10 2 15 Valve closed, op error 10-4 8 10-10 10 16 Check valve plugged /
ruptured 10-4 8 10-1C 12 17 Level modifier fails 10~4 B 10-10 4 I 18
L m L . [ TABLE 3. (Continued) PROB. OF FAULT DOUBLE FAULT FAUL T 1 FAILURE 2 J0!iiT PROB FREQ. PFR OFMAND FAILURE PER DtMAND 18 LCV fails 10-4 B 10-10 4 19 PCV plugged / stuck 10-4 8 10-10 2 20 Controller fails 7.0x10-5 B 7x10
-II 4
l 21 Switch contacts open 10-0 B 10-II 14 22 Breaker contacts open 10-5 B 10-II 6 23 Gate valve plugged 10 6 B 10-11 10 24 Flow element plugged 10-6 8 10-12 4 25 Temperature well plugged 10-6 B 10-12 4 26 Reducer plugged 10-6 B 10-12 9 j 27 Steam gererator inlet break 10-6 B 10-12 j TOTAL FAULTS: 116 I I I - I I I I - 19
I I L L [ APPENDIX A SEQUOYAH G0 MODEL DESCRIPTION b [ E E b [ [ [ [ [ [ [ ~ A-1
L % APPENDIX A SEQUOYAH MODEL DESCRIPTION I l THE MODEL
- l The GO modeling procedure is a mechanization of the basic event tree i
1 methodol ogy. Figure A-1 portrays the Sequoyah AFW Flow Diagram provided I by TVA in conjunction with approximately fifty other drawings in the TVA data package. Figure 2 in the main section of this report was created presenting a top level master GO chart for Sequoyah AFS. Before proceeding l with the details of the modeling, attention is focused on several aspects of the GO modeling procedure which may be instructive to those not inti-mately familiar with G0 tenninology, etc. The basic G0 procedure has 17 modeling elenents at the disposal of the analyst to represent the system. Many of the elements (referred to as I types) are perfect operators and are used to develop the operational logic and sequencing of the systen. Examples of these perfect operators appearing in Figure 2 are those operators with a single number in the circles', namely the type 2 which is an "0R" gate, type 10 which is an "AND" gate and type 11 which is an 'm out of n' gate. Other operators shown in Figure 2 are identified by two numbers either in a circle or triangle. Forexampg,1-2 indicates a type 1 operator and the 2 is a coded identifier of the proba-bility associated with this particular operator. I If one follows the flow of auxiliary feedwater on Figure 2 from;the condensate storage tanks through a series of valves and reducers to the motor driven pumps a box labeled ST 100 is encountered. ST 100 is an iden-tifier of a supertype which is simply a modeling convenience to represent repetitive portions of a systen. In addition, supertypes are convenient in simplifying the presentation of top level G0 charts. Note.that' ST'100 is used to represent the motor driven pumps in both the A and B' trains.- For a complete description of the GO methodology the reader should consult'. - the EPRI documentation. ,.. The reuainder of this appendix presents a detailed discussion of'the. master G0 chart and each of the supertypes involved. [, .
?'.
t i .
1 s f
- m ,.., -,,
a = c w- , e q J . . n ..w ._~ ,. . a u. ,_ ._,,
~-- m = . , w ='. -
l i C. imU; a .A. +-.a w,_=.=- m. ~ ~e.m u .. . . . ,._. -. ,. ,.. . ~ --
%% 4 m. m.t y' V ' " u. 5' as ^- ,.=
( _- .. , ._ ,u - ,- t, _um . . _c , .
.c e, . . . .
A ..s,
n .
Y. ._ r.
. - a Y ;.,X, ~ y t~***. )L ~
I 1 _ _JD .5 ~_D ./ d - Nl i - J.i V-?T. .p ~ .,.U'~ ~~,c.l9 e-an- 4e <-,~
,,,, g ..~~+t v 'g'
- c"m* [ p>il*.s .,, ,/ S -. / cw,ctr.ap;.'
*,r - .-.* ::," . * .-v:p , ,, u a - '**'** a. , .n g.-.Dn @ " ,=,a T f**
_,._ _ u - ,. a w ,,,
-) _ ~, . . ~= ' ==Q 'Tq Q q.e; ff=Q~'%9,., }.mtr> '
- lo fy . ' -
(a f.:gf;:::g,fM,_ e,, . . . . w h t,'p -':- g **~
- i. , mg. m.ewa.r mm ru
,,,, w.f, a ~. -aau mar.na a= a. r.
i @ l, "
- .h. ,Q,C.. N.. 4 'f* s I * < w ra s1 L. Iw. , nas e t~ ~ . . _ . . .
r;WZ ~~ ~' r: MQ - - r**\lm" lau. } l l ,.;**.,l f )-'a , b,Q,g.-~; [ E--v d v E - a C r srs u.ca,
~ ra. A y ra 2 .-n. ..n c (ce . [[,m f)a29,3 ses ,
m Wsq
;, g, s
- w,, ,i o
--A,u-- , t. ,i. - w; .: A,9,;.
v
.n3 2
l Jh 1 ~1 . m
. M" ~ >= ~ n 'n .d:' . ,~.,4 y--- v~. &' ,,s w/sj.bfL'&> .- @L ' E' '.n,~
2'.'.T;;%< ]x C, .
,:: W"9 _:h .
m .~4 - p.a -
,,. ynb. ~t G,,, n g*q<
e'.. "l.
- e 9,i A ,c.,..yg y ,,,, - T:;- (., O.
p.g. _f"C"'. e-,3 e--,.- ,ur g.s,-.#._
.g.
- 2. -p,--
. g . h .
i,. L.. T.i,e.n. e s.g. 7u y,, , ,,,,,,, w%su,-
, , , ~
o.2u f... . ,,,){ i.e.; @ ,_ -.-
.~
a g , g ... .. 4, . u.,. rc js i.'.; ;:::
=
l;_ i L. .< A. c-': , r=?~.~n'
"~' $g ,",y M~~'~ '" Y ~ "~ ".A.'" "~~
t v s rta u.u. ,.roo l
- O .m
~'*
- W q
U. f;. -.~ f*$, 44.'**.*** E.ri. u. wa c l' v m - V .., Al } ' P* *~*m . f.
~.~ , . . - ~ . -
g ay _ , ,
- w, -
y;73..unu. r ,
. 6 p - f .q QM,.y ..
J g.s.,
, . ...,n.
_..s.r ..-- ,,,,.3 e . m
.- c,..a . .1 mmi s _o n u.. - , , , ,
- u. r: .3
%9 ,,v - }-
m =- ,7, p., %
- C,* m-g,gy[;?gg
$;_;! jG m , ...
e -,. 5-_-_ *
~ c: A, w- .< 5t *' % a _-~ r-u:;,: '"" g ; gay... '~ r k au%u,,k ~ a ~.
y ? cp;.~: -h m: n ,-m m e~ ~- -
. ;;= ;~- ,,,,. un.- m, nm M >~ $.4%m-- p.==.:n.,;,1 -m e s <
w v
- a. o, ._ ,._ . w. '
'~~'
7 .aJ .~.~ e 9d,y,, , e
"*4 o, .vV~*~*~" "l
- m. .- . um,. ,., e----e ,,&, s ,- ... .,
,. ,i s .'
O~T ~Ic 9 _u. _j J,.a = g, I
~
n 1...,.we., n. ,.u. ._am w y.pw n vm <o.uaum ur
-r, a-u w,,,, =,.r NE~.,9,l.=...qpo.~ -~~ ,Q = ="r - --
I '! Ef 3 M$si:::,y::k:: $
,.m r O a*"4:=3:',"/.0 F':7 ~
s
; E:= =r c.~:."a=
{ ' E;
~@ ,, N, T,-
bem gneau.u 4cru.4 - r..,, . I, ON
.[ iiii sia y m eme a = = l..
i;l .tme=. .y g g p p p p p 1 o n. .. :,. ,
.t ~.:. < i. . .
t-I in l
i i o 4 b
.. ,.. .. .. ~ . . . . . .... . :- ,4 a m r,- .
e s ,'s ,; " ...hy... N, W' LWg'.>=x - - l
.* g -'- . , . L- i . . i ,
i 9 ;,7 yu a,,
,m% .1 ;;, g 7" :_Q] ,"$g kr . . -, . ,.,,a, ,r,,..,a . n ur,
- a. )
i,, ,
. . , .. .,. ~. ..
& ~n., ,,u u
~ . q ,q , , .,>-- y. ,~ , 1 .. n ... -
L,,I.., -n, ,
....-. s,.s...... .n m .i. .~ Q. '; t 6 . . , , , ,,', : - : .:;-~ .. ~ %, .vp': .yo. i - t. < 7 as - a.
. ., \ .-..~-
, : ., n z,.
~
, , ,w n . f .. .,. . . , . ,. +,, .., ., - r; ~s . - ;~, ;, e,. ,m=,,7 . , .. ^~ ~ . . , . - . p, n b;%Lmx t W, a.- -s a 1vuy.u , ,,n. -,~..
l
- i. - .s ~"*
y ,, e "~cO = *?LL. y .u p.1^LL* :.**, *;'
- n , ..a um,a . m no k' L rl' *..
,r 1
w. s.n.
.=
p.. L_,
.. - 4g.v
- i. . . . . .
r> y ,. n p <9 "a.r, q t_ ,,,C.;..- ,. p_ sQ. , j u
. . , u,. . ,,,, ,,g. u.,,...... ..,..m. >4 <> n, v o-- e q ,, qw,x ,+
o ,. * .L s . - .,. ...... s , , -e y -. _.._ f , -
- f. f
, ..- ... . . .
~ . ~ ~
3Jtlp:v.:,;;,;/
- t <
- m Q b--
l
~.- k. ., ! . u..c.,a n... .
tm% ) e w
- c. .:s a.s2 a s ,_,
g e.<, p - a..,[,,#a
.,.. ay n. , .,.. .x,.i- ,...p* **M. -~,. , u m__, ,T.
e , , , e .. , w , .u.+a
,*** o. *
, esc . e .r
.r o aw ,, s .'
- n. ,. w L... e- >
e *sr'u
*. , ,wa a .p,,,
%,.r ,,:,.** j n.c s
. . .s.ur ".**
- b, '
,,**f\ a l *** },
- t >#v e"**
. r e .~.
- v. " ",, '",f4 '.
c 2.' :,',g.: .-- r'~} 8.,
~. .%'jJ?n.R }f
- o. ,
yt:':$; r s..VM~.,j{
' ,,,3,. """ -
6 l \ p 6
.e.r. c9 .gs t (4 - ~~ ,.1,9 e
co ll3 r n F .,b] 3," , , },""* 7, { 8
%'y u.u-- y$/er ,.,..,
r -
- n.r ** 1 .
- ~ ~ " ', <m , Y35*'t"* ~ -
L~ ~I >
-\ , .tra .a ' *** "hj.
J
- m W1 k4 sruasesrwee "h,}"r. o..,.. .s . o<.o . . *. .a o po...
J."';:.- ,1 cs.ss c_.1p.o e rc. <a sa ?%#- **g,m:.,: ::,,*;. ~ ." ~ ". *** e " " ly st >.r *
, h.',,. m..n > ~
_t
< ,,,, .r , ~ ,,I,,,s u <-.1 Y ,*/
8 w
# ~4.,l;)xy .* ~en ,
4 Ini' Tan.,,,".,,.,..,,.,,a,,..,. * :7 = :.x:a "' - " '"* -~*
....,s ,.,,, , , ... ; r , ,, s e ,.. oron . .o n.e o.om .e-no s.r.e.
r . .nn e
.O ;' .' ' . M
m r7 *. ' ' '." '.#.. , '#
.]. ; D s.* )y . m. ~a 'qe.. r iT .
ka;v- ,
~~ *
- se
... d,'$ + .
e~
' *,*.)"A d\
t
- T ' ,,u.,, n p [** + W~
l
, - - . ,mc g,, ,y ..a, n.y .E,Mw WW6TP >i *w* 'id*tM.*
e.-.t.,ah..t,w LE( V 9 0,IDW1
.A$$
r G4E*.n Af! 1_LI 1
/ .l 4 *v
- n
.*L'?
r K' no yr g,',. *Wy ,. ro n. ufen ,Q p ; , gz~ggi,52 , f Q}QQ 3_, y OUn*Y
'))}O;
((.Q h.n .. *lQ eo er. 2r3 > , y.r. ,- :.;- tr. u , . - m ~ - -
.s ., u ' (,lp y}~~ - 1 q,; ;. ,, c'W,~! ,.; u. , '. l
( ,_ .2 % 1 VW Q :,>. W ryr, a a
,.grftt " M"~ .a.N? *
- =.:frN}s<a ,,.'g' g
1 I _.__. -- IL & gddrVr h
>^=*a=~ L.y 1 . ., Y
Y -[.)n,,. di G *r ' -b) xe- V **c srcn stwo#oe s.a* *s s Y'..?!YoYN
., q ; L3 r'-'r'$'f.
- ? '
s t - e = ,* W. . g 1 g. .. we. s . pon raseoce A f LNITS I&2
'"9 s. . -. - , _p.,r: , .,u;r,,' W"y~ ..m .v - 1 V ;'4- ~ '*.t"' y T te? sw *u .., FLOW DIAGRAM
- I'
., T r l'/
- lr; " ,,
o AUXILIARY l FEEDWATER p .n e Do Eth ncgr l. CEl+%&,'VI~.T..C ,
--- C*l 'd.' bE dy y_ND.a.sGJfI L L. .v E, n . . . . t e *. _- SEQUOYAH NUCLEAR PLA;-i [ p T Er.N EMt t 313'h . .n r ea}2...an.ni.1.g.b.,,c 2h.oe %l I Po!
- M.-vl . orol [
<~r--l r. _ 'f 3 ** s. V.AL.=LE.Y s> e,s > AU.TM.C.4ITY n ns l50%) indicating a steam supply line break. If this condition occurs, a signal is generated to close both of these valves, to isolate the line. The valves can be operated by hand switches in the main
{ control or auxiliary control room. The event of interest with these valves is the probability of premature signals inadvertently closing these valves just prior or during a demand. This can be accomplished with hand switch prematures, differential pressure switch prematures, or a premature in the "open" relay controlling the power to the valve motor. Upon loss of power, these valves will stay open. This supertype was reduced to a type ( 3-114 for incorporation in the master GO model. l AC Power System ST 518 (ST 517) Supertype 518 contains intennediate level logic for tha generation or supply of all ac power used in the AFWS. During nonnal operations it is assumed that the plant will be operating either on off-site or on-site power. For this analysis, the power from these switch yards is considered to be perfect in reliability. To simulate blackout, it was assumed that both ( of these two sources had failed. When this condition exists, a 'no signal' or 'not' logic module (9-90) is used to generate a simulated blackout signal { (B/0). This signal (201) represents the same signal propagated by the under voltage relays in the ac power distribution system upon loss of on-site or off-site power. Upon arrival of the B/0 signal, the primary 1700 and 1900 breakers (7-76) are opened, and the auxiliary diesels (3-61) are brou,..t on line to provide emergency power (6900v ac). This 6900v power is [ A-23
s F L F distributed to the auxiliary feedwater pump motors l A-A and 18-B, the p 480 volt transfonners, and through various hand breakers to the 480v L shut down boarvis, l Al-A, l A2-A, IB1-B, and 182-B. At this junction, power is distributed to the 120v transfonners and associated breakers, while the 480v powei is cross connected and sent to the 480v MOV shut down boards. After the 480v cross connection is accomplished, 480v I power is distributed to each of the valve operators. Each valve operator receives this power through a ST 517 breaker set which contains a hand breaker, and thennal and magnetic overload breakers for each valve serviced. Distribution of 480v power is also made at the MOV shut down boards to each cf the DC system boards I-IV in ST 516 (outputs A', B', C', and D'). DC power System ST 516 [ Supertype 516 contains the intennediate logic for the generation or { supply of all de power including ac inverte. power outputs. During nonnal operation 480v ac power is brought ove* from the 480v M0V shut down boards to the DC boards. The 480v goes to three battery chargers each of which supply a de charging voltage to two sets of batteries. The output of these batteries is fed as 125v dc in two trains to the AFW system. In addition to the charger inputs, the 480v is fed to a 120v transformer, rectified and fed along with the 125v de battery output to [ two dc/ac inverters. These inverters provide the' train A and train B 120v instrument power required by the AFWS. E Battery ST 305 E Supertype 305 is a replica model of the battery. units and precharge probability. [ [ A _ _ _ _ _ _ _ _ _ _ _
W APPENDIX B { SEQUOYAH I40 DEL G0 CHARTS t (Supertype Definition) l l L u r E E E E r B-1
=
ouna b 4;o v u .w L7e<^) Drt$c) jo ) P2
- gyf1 t <i!r. r e qi) l
~
l ns er 'I c! p,a ( g.g3 l- c1 l-t3 l-U c n ( esses 1 - '- R n + 7 ,, jo , - -, AfA - d '[,,,,,, c,m e ru n > ..,,
- m ,[
t i.r pug ! AIK patre,veA , Reces /sA (O f ) ($l) 7 4 ,, if 5/ 1 01 sef
) I'L OVA 4'ik /t.jt Asg"# 4 S/T SJU < l>J g ,7 p p ,, <
i tot 2ef b l SYS TfW1 b/R 3,; p,z f M A irJ t A u x V s/ O' Sy.tffn1 h/R SUj'fL f
~
ttfu
-3 IngvTJ f m 'v TiF + ' , f y > y ,., .@ i w s., & rgy ff9,rto Q, ,
f5 S/T .500 REPLICJ)
! { .
S/T 200 PRenu Tyre. 3 Replie (perfecr] Typoin.l l'renurt l Acr1SOA
SEqvoy M ().+17ss.urd 3 P I
' l' rec.bc ? scuc.
a , I/r Ace f I i IN1TN FwA ' tol em nrss.t.u
~fll sr us
_y 1/r200 1 ,ssg. V3 lot o uy.- , A Fv/ ; (m) 10 2. aq f*Nf,f,? ' Sir k 3 3/ T s"00 */'3 l'Rt:1 Lo!S TV)o-ounoF-Thaet Preciv&c ft n io rql, N e t VJoffs rvort: Peteurp & use.l for h hy on17 .
.4 '
AFWM "
*'f-q.g as I
- A- 4 e) "
y nor S '
. 92Lf"U~ >
t'R E~SL L=U =
'f,R* - 10 f'1 , fgess **l ss. toIU t &21 **l / Iti 3, . F (e. Lots SwK s/ r 1 o r freess H i S * "
- L,,ss Typ*in i fit'sv - N'a'h 2,/,'!//*
g um.s , B-2
P! AFw (, ,g im
- T;f) ws FpF- , y-A i i
.10/ 383 lea. g, /ey i " gg , ~~., . \ ...,c.,
( l-7 . M 2, g ("' I { l 9 /{ I1 1 4 gcc c., v n, ,.e : ~
! s(no ~
V w .,' '
,1 u,
z c it ' ~ SO
% ,,, F c v c.,,rn ot.o.4 ' , ,
CA u-q S/r So? s seu a s a. n f' 17 pg s og 7 cv- ., gr.2 sm .v l .. I-I 2-27 7 27 l -10 ( Re)acer MTR 0nM 3 steA,e (') r- I Qg", "
L ^
is o N G,
) /_. -. A8f h 8
A1D r lei - FL% 5M MfI
, C, rwor.
sirs. , ,.1+ f 1 -+
; ;;rr 9, nc . > me o aan R8 ftf O N $
2_. -d - 9
, s ,C. ,$
3 15 t' El Il IP (I h* 4,
~^
l3fa $1*0 s g w Ace.o s,y) dc a t- fewfSy. R= ggsq Elec.raic inoron Dmvdiv Ptimp .(mop) , m b w l(J
FS(2/2) Iso < a
- t-Icl los
.L e. ..(s -- ,
[;,el i. . Col I nr l ( ,7 * ) lef ( -
"2 <
{ pe) r Trol 41 o 4 s I fOwg: 17 hs Foz . 47kJfIl~3-3 . . . 47 Waio - J-J i
. , te re k,e 7We f '
- 10 %
.., s, w -
3/ir/ gyg Type I Reghes. - (FerM) B-3 . 1
f , 1 Jr4LT?A'c I I ( ( ( (; ( Tr0 GIA ?) vv > v 2t : ~ 2~ 2 ses' ' id ( S j y, c x .,Lcv conrnou
- me ,.m , ~3 f.yg c -- '
n,5 gjy 50L F.
**377) 125,0c 2 ' ' 8a' ""
712rr$ //f 4
*1 '03 4 6 ,
98 5-3 Gv y t.cv cv r,v To t = & 7-5 1 Q"' , 1-g , 7 v' 1,neU9 7,,;re,4 w
~ ?, )x. .~
u TPn-!/S % '
, ~
N/ Icl
?At53 :D1,$
{ Sir 20$s
,4, . ,, ,.
1 '$ 93 mcp
>c, s
c.a r e s s,
>q ,, >b9 ,, >[c'T ' ,,
q,2 12ML *-( TitA ?/6 :
,y ,
k',80 Jet 17 l! (mor) Q'"[ g,
\ )
('
) e L c v co evrnot.
(MOO sy
' h en ) >t ~ .s/ rZof 'I 9I T .-
E I I \<\
<\ s ? 2.s%I%I * %,; % .s...__.__,.__,. I ^ * *r*) '
p'Qtev Re.f Un".* tty wt); J yc ? J g-i r 1 47'u tro
. p -serm . 'w, =
g, ,, y a s s <,. S/T 10/ STE/1/>f GrEIV ER/1 TO& 1 l G
r _n._. - . . ~ . Iel
$P$ess .Tos!
- 3/ 7.2 0f FJ 2
- Si*M le t A
CC t s 3 cit R s s Fr ,7p .
- )~1; l-fy } OuT*T*
1 1. 23 20) i ~% .cta.
}} cct pgnf fj gys;L$
(,7 /8LArkouY 9f saferj rnreevon 4C dog mnr'N FEEo'aprrR h.ntp Titipeto
- 7. '/
?? SmGLC n' A;o) Fttot nyrra 1%r.'P TK offCQ a .3 ,
- 2. 9V Lov, Errnrn Gcrir/Arcd LcvEL (2U,ut 2 '& v l fNPu7' t
.1////60 n:C g-4
1 l . l M0f' . t r; ' '. 4 i I --. - - - - .
<- H 3-l!(. 3/C -> g-- p , ~ .11: 5p - y _ ,g ,) H/' .< \Cc/ q 3 H11 c, w 3 \ pal (a,,,7e) '{-u ' $ fu:c s u :: e(c,v, ,, , ; gu, , '~?*n y.,,, ..a/ (,_ ** , } ~
g- @N Y
' \'b SI k !^ lC3 tsy 1 . .
- 3
- % k' r ; g, tz,,
w :1 ,' L-!:I - ' & lit c,-ir r , I i e'l, L-ijp
'l '- 3 -1:9 I 9 f I - .~ fr"* n n i ~
j s _ 9- .~ m A t I ! -- ( l, n Yk 'Ju -w , f 9 ,, [.[1020 h"C 'O ,- - gao gh' to of.z f f ris \OI jkrs 1 q,' qarW[y% n,e y lo> Q v y zq .__
~ ~ -u ;c /2 fg JV '17 I
lt s ,u
) ^ f ,
I 'vL '\' f
*I
y on/17 su su >X},9-
.c .
V teg ,
.c go.u S l]f J 2o- -
cit
.{I7e t.ar '7-70 ' As r7 4" i LUed cru value; h'[,,
3-Ill A , z-m e & , s 3- 11 L A , ;i' ia g g 8 valvc. l Z-179 6 , 2-r yg g B MTR l N Ito4 N e'1*2,7 n a 1)-2 Oren
' 4 '
45 rJ 111-10 4crJ771-23 ,, [ WT COI E R C k) VALVE Cormtot 6.vg Rol '! l. y wir beeACuq e l
O . , st r; /24
- YMV
!:;s -
- or
<- 2 /
y I0I loa los ) > 4 Nr J- //4 c/G > 4 f e/j S& g Q CfCsJ 3. l4'$ Ct3 C'L v.o/ wf (/p,x Ga' 2 sr)"T g, s/a
^ ^",/, e-) vy *-
v ^ 7 \ s- j i Gre e.veR Ser a , .,<...-
~
t-irt t. ort g' (,- l < l s22 Mf J u -- %d {*f," , s/r .717 h, n 4 7 '-
%ri.g.)i,; .
a - ,, 1-If7f , b 2. !*3 i+4 us p- , C. l\ Zr 3 " 'M v 0
>** fo /O & 10 t
CL3 C L2.>t je+ws. cu2
*3^ , m,( , * *7' '
vert & , ;
.5-1 01 l **
t m ,- 2f 1y 3'v
' s .,o , l M fitem .
Lq c. ~ S /c 7 70 R 1I i 30 __ y apf* 3x Toegue Af t v su r 9 IMcm
, s a 3y reela y 3 13 [ .)
soss I ,/ D' 9 70 _. epen Lesur- 6 I .t (2-8) n ,, CL'5t- ~ 2 1
-1 (*a) / ~ (-!!t b!+
O f,, . P/ L-Ist 3f, 4-str ' L l
- 1 '- II Lecic. $ i 2. (5-4)
') 'to R R {ts (+6)
If
,g,p $ Re.) . a R wr C*
l'lif)( 2r. (($ */fY '(**el. T l-t[[ ' JMo06: NOR.111 '. 17
,'c lo s s . . N.T C - ) f,ts/f10 B-5' l
?
<---p t 3 -)?t 3 /C > < - - I" 3-12L G/h > < - - XS 3-!!
Gfrgw Sc-la'CD'X*? ~?~1bi' C G:c-1 4-otd w^ " Yf, 'y'n- 5[tP't ~l 2 gev
\[sr _,
I& ,E: c .a , M }n ec~.T
* ,, u. r l '
w n.... ,L ,,
+ ^ \ l~ I I lll 4 !- - !~!T r )< ^
f , m' 7-I:1' y 3 9-t ' q g'- x l - T'e , . - re ri . ,_
~
r 2 ,I.) 4 2 ' l _m_ - __ ss 7 : su ,, ms __, m . _C
, 10 -s l
il e,,a m ; it , q.; y,, , c r.1 C' l am' c,, 3 10 gq 10
'& jo y jp t o e--a , u)+"Ih L ,
9 W fAurt cx y h*L 2 q ,/ .i 2 .
) L tt Q_,f Er El I' O )q 13 l . a ' ,
3 30 e \yo_r i% h a n m (( jo)( V 7 7 4 wo
'A 3 l o T ,,,,,, r mf f 3-ld s -
t mp JV
.J
[: IW. . L*y 8.er pg,g 7-70 1 17 h Of** l) Scil OM Volue.L RAItJ "' d p9 ga [dV 3-/JI,d 6 1 f ( 5-if f ' est . yt fI-13 ' ,jj G"1" ft V Z-1242 W A- , 2'13 7 V. e y,,,, W " i
'~ n. x. s \
cour f C* "Y
)5/r so3 \ RoI % cm .
n %-irr i n
~
C f E,\ ( N C ,')
w(
~u e P, P,f ', ' r' 12 0 s 'fi^ v ^',.l*.* *; e s, 3 (
l .- 105 109 ' fez fc3 C B * ' -- > <. Hs 2-)ygis/c -> SgP h * * ' pg; crEN L
&\ C L* W '2 l
_r s 4 _ see gA 3 0 n - } gpggy; g Sm
/ :wr - ,3 a., e.. a i ,;L : > ~.,r ~
a r.z, !
~
O
~ ,I , Sl? Sl?
f* 4 7 f*0f? ? 'il T'/ *
,5 'enr-2 0 y, ;,, ~
5-lZf'
^ ~"
__ ___ f 07 oel - A'I' ' 3.jff If ' no hr'th suo suo . *>a 4y ms w2 !*#l 8,r.an ;g "" \ses
> 10 /0 - /0 T+T fMU (j 4 2 /
to &r . /0 + 4 10 _ 13.0 ac MC
- .5=n,. Ess pg 17
, If, Lj< 17 og s , f, ,,,x ... ,.4 ,.,
2r ,
/ /c t-r .fw A' a, /0 n m a.7 rkce L l-o+,c .
[qT Of( ; 21 (A ' rwo=c
/
2y vy u l sirs:1 . zg rec ~ l 3. jog
,C l. i !
t4 c.) ~ .r t L1 J F
- g"lI, Recucao 7 70 vmiad L O' l 2 8 -A Lv3.i M
c",%,}r- 9 'Irl - ~ #- 2- *l
- g. igg c '
'101 as 'I yo . .
W *
, pa g, ' . ( '/fN 771-10 ce~t y % ,l 17w Los-1-3 ,
(,.rtt ' MO O C ND&1. E+:c.us ya tvc tonirnoi. crop) ; B-6 " 0 ' lll#
l l l 4 Hs 3-/t4 > <-95 1 n y > ( x.c 2 e
~ # 9 No 6 fA s-cl 7 IM U) 715fY7
- f. gP hh??' g gy'( ; .
7
'N r
s .,
~ . , ,f . o3 f' o P h// , ,, /5 < ,/f Rw f'R ,w..,r Rf SU '
sa V sa 8 (.~sa (_ 1 a Ne ~r ear <mr y ~r - c..ar L'Ill (o1:l.* e L-t:1L f ug i.pgf $ b*lll \$-If%
< l Iff ,- %s J 4 (
- T' 7 (7 Aw I'l PJ
' 9-10 Rein 3 ~
2, , , 3-l? om- - , I, ', - jo r~
~
yg
~
w '
"TN - /5A v a - n _
d i 2 G=A L C,]W E I63 ,,- R A y t-A i ~70 CTitL ' CTR L, N Le I -
}Q
[ , 3 ' que. ' R #~# L QT-lix 104 IA l {1te . I~IT A R / +-A - ,
~~ .2 3
o*
, ,af. .;
Q Tt. s Msg Ae = )
~-
s D [ j IrurA 101 3-177
' l-41 An. v ,, , ,,,o 10 30 pwg, ' p,g y Mur) tAS G oeJ Vnt.ves wari ,
2 B kV 3"lW , 1-s y t'A A
$~
f Lev 3-) t , 3-ja A 'A g huro S/T foy 1,9 Corsman.L.cz . . Lev Z-It y , 3-It y A A 8 L e v Z-171, 2-171 4 8 8' , { V
\ S/r Kor In o e i evci. + ayma vm .e c.o,oruou ~ ~
A
( E o t\*r* F fHr13 TN.c rst c' 4 u k *1 A rg pun t<:S t% R. 12 f' d<. th 4 E n. .3 q v 9 ,3 p > > d o o I:7 1e9 11 0 , to'/ let los in 1*3 l*1 Inf I ~ cf__> /1 A .A i rs j- i ,I "c ; ; I I/
,A n .; f , e , ,,p -
Q e _ _ _ _ _y , air W l
^
1 J,
\ ff. L '/ E 1( he /7 5/r Sl'l r,,o . "'Tut .if, y l's 3r - --]' w_ w [
10)-
) ,77o m
_ _.w.e
~ . ~_ _ 4-w av
-"~
- a. I b6 nie n-e ' ne 3
f- .. , r >~o ;
%~ v ..w .
t.p ._9 _ ._ iw z' lo <- w to T4** m
&__ 10 J l 0 l= to : Yto RTn* ., ) ^ "'C , j r U2 %. -'~~ ~^
gr 112 24 s CR
.2./
n*@ ,r
-1 n---:- _a -= 7 9lJt7 9
~ $ ,,l., usa i a
& 3/ft" -
Y s- g '
-(. - '
t' r* 'A
~ .s ~
_- ~c f
- * (- t G A
-R - .1 . ,' Infwo q , , ,ylO~) gg1 -
I4 f l y 2J tyrt - 7 ,
~ \ y ' ) la&
tsv i use '
- xy C 3*/d i , 47 3 #4v A g,p .g ,'
(,. i g -. > 6If _ !
~47 n A J7 k f, p, !
- A*A '
- .' A ? r A*R , s n utz /C $D Lat. '
f& fu rtso t e nt. R e sul. j l*l:3 '
?.* $ l($ I ~ b'l' b ] 12 7 70 ill
( 'l l 50 %N) W L e el p g,3 IE E* (~l>] ~ * 'cmy
^
L"lS*f a..e / Cr p r ST* 'I2- Tus >Y f yL3 s 30 (,0 m
',1.y: '
7-70 7-70 m - s 8'h SMfo4 31
.57, a gg" 2*'
i ng H lO lO lReJ. Owl1
- 9 7 klf.II"Z~'l ys*r3 C 63*.? l-s) Wo1 sc]-tj 3, cA h1 OOC: IUo Rn1 .
1e; 2.c.1 y y 7/II'/fo OfErd OfEW g.7 "U R/61 VALVE Aux,-VALvr s T-c. *n hu nokT ' nqpey
<,. fo cm ku PA; t*1:tf.tj C LGV ([nergejc Litt 70 To rn .i left.) sr..l l it}
? r
< H: 3 - 17 2 > &-h :-o73 - > <--- Rs - 17 3 y
( ts Aora e t y) I, y c'{h Q ,,, ( y,ly f Hw v. i
.r ;- , 1 e 1 E!sf , 'El or ll.,7
- E!. - r '"' r
. . , r%
b*lli
- b-f:1 (~ -
f :( #k7 I f,- 1 ' $~I:1
# sf el e 4 . A 7 ' m'i':, e acte J' '9 '*
- pry 9- 3 *lS$
l m 3 n
'l A
14 ~ n , P sfA - ' Imm %:4 - a set o s s. sa3 ( n , Itd AeA gg ,.yg ' fAe u4 al-E pg \5121 3 1 , m ' JJ 9-45 ~ u ' g I 80 , 3 4/o 22 t y ara W y,.h ,e , mm *
~
l-7] uml Y - ' l 0"
- J Iu'J b n,w 3 . .L , l . fs-j pg Apg
(>;T nu , LUE Cid VA LvC!, T M irJ TRA rr) 7-7 .,
'it _
T <- Lcv 3 -172. A B
; ps.x sTns .
Lcv 3-l73 g g 2-tor, REOMCD LCV ]~}7y jg l} vrAsseet
- 1,p LCV 3 - 175~ h B m__
\
I . Ret nags : a
, ( S/r Kob 1~DP LevGL. + 2 pn.cs v e t y e c o n 7rz o i_
7
%ae-
A c e s o sucls_
$E Y n ',A '25 PH rn L"ri '
7,
?,"l* $ # I k 3.. E 103 foi Jef lest lo ff Ic,;1 Is1 IT, art ,tro II) .s -
9 .. n f - - m} - - . . l sit ear. Ocrec: ,,
; b'e (verr j vu se o __ _ n n A
ash '
\
__) '-
; m3g a n y y i
I n a w 2 r. ) s.,o er' i3 no to 'Y m ,,, m r: or
- w ^ *' L-
{ ZI 1 - ay
' to ./o , '), - '
10 K w [10 'a - l > f .- ^ *^
+
- J y z 2,, "
jL Ruc~ mn [D r.vn , D<3. y p / q, ;L 9'* <hy
#7 l i 10 3 ,fn 2r \ tr* Mn Sw c4 'l no C-In na , 2o3 -23 .,3 a y
IcT
<IO , . , _ - . ,, . e.,o O
3-
'i a n ot 10 aw\* . 1s2 M'W g &-
s t, uv ) 7
- ~ 'Sn g g fo. .re b32 - p,y I 11 y )
l o, Sn?
- a .s u , y-Qog n'is on e Y,a '~ '*l"' -
D3o 9.go m tio , L g/ l*09 sg le tf3 l* ~y
- s. - - t s
37 c^ IU
'1L 3,g . ^ ,?
( O
^"D f jo (2f ,,
m
, s _ ,g ) o,x go" * -
to e / ct IV y 77 2,y ( ru ) ,2
*1,,vo '
l .ttrroy
-- u / ter : p.p l'/ . I,<m D
(%tt, Crn.t. - (7 Wl,!l
- 3*'l lO cygg '
WU1'2- f " n i 2ct 11 2*1 MoDc: tu ogrq ' Y Ycyen B8
~
2//P//o Vc. late, . nag .
@ftA.LCV (oce,,wi,je u v 11C."Fs Lou Aud D Yh ' Art). .f0LoufwA ,. - ~~~ ~~~~ ~~' ~ '^^~~',
< HS 1// /' $ 7 <y',_' J - //j' > <.- N S J-//76 ->
1 P': "/.: HC g ,, 7,s PC UI.: IM MfJ
\ "$.1;7 5797 9 '$~I5l *!'*! (Z57]!trr-t C- tal ].5 O ** fiir 'WL Ci-Q'*f
( 's / if / yL It,
'., $1 I l V9 tsu a '
c..) Y.f ' , , ,
, V lt ~Y u '
J w T (, tl\fL~ r +>r <,. rr l-I:( ~
\ ff-10 l-ITf **> r l-In rne
[ 6-19 R[(-l."1 ' l ,, ' el:- ' ' CA H ur x G' f L , 7 9-Iff '17 1 & JS-10 'I
' 't-s : g). . ^ "
AE1 7 #3 - T t
^ n n t i j f
mm 1 I A L I % )
\ 'l '
- c. t./
Vd ' uw
,x $;g *k, sc >o *no no I
k 26 \y-y3 M g M1 jo - NM n't~~
/o her2- 57-1 jo 94* H ha l y
Y, 'A
&2 lo 23 Jy 37 Y, s o> o s R n ~ --g mn 7 10 - w - . - - - _D , ,
3r ,,, k
~
y '* s s s s s ,s t n 2. v,, 10 n'
.u - - -
x
~ - 'l*ritshs y fyo . . stys. - - < we huo to up s=o **s u- ' on n, 'Ri. y 10 )( so 'l40 ~ ,, 10 j , , , ,
10 4 3-1.y A *l BJo h n n 2,- A4. - [ f9se,) fm N 17 , nen 4,4 nan c., en Coen (wrf*
- fl g *SN $"SSY 4 Tnnrr) - n n LASC. Ora florefs u
/a-a 4 M7' "
16-8' J3 f - Y t/r co ? MDP MRT-af Iocic- (mm:on-) Jul g o 1, ('u n 1% n. f - % sTazr # 's . .' /. Y s *
'L-
.s n spr r v. ? AC ClO C oer ls)_--
12 : OG ' [ 'lCO V ) fe gg biffTu) W W I /2Sb 3 i . . ~ _ _ . _ . . . . . . _ l I d- H 3-tip c, y 10 7 ' 101 I foi lay for 14 1o7
'%' ' f/e
- r'7~<- /
2 3.;q srna r-] ';;.,gj s nf-3 . Tetf ' flG7 $ '
--. ~k _ ' _ _M , \/. -
IT ,
- 21 11 sz; r ~ N ,e *I Y"
(*! j' -
- 1. O C1 Io 2.1. A1 '
' eA ^ ~
d _ _ _ . _ , , y a.,
-i t.
l u s g k___(;__ .b .> I._ T s s
< (if
(
.o - v , ,, m. o I ,-o.,.
, q/op- ' 72
/0 L<
N / o k--- --.-
/o h ! ) ,. /o y ,1.sf-1 !!!n ,J1r3- !t/h \ ' art-? Tu , .trr.t. *c v .crf-I , }Y , }t 4 i, ;S1 a gy >% /\ _ - s--. .. . . . _ . % f%
..w - n s _.._...w -.r~ ^ Il l
,- 4 3 7 I ,
es l D .si" "3 T I I Isene <
< t x e ,e ncar o n ca.n .<.a s a s R e l*) - u.nz
{*lSI l-isi i-rrt G off 3-12f Yi C r:t C-ry; 9L 11 Vf VC 17 ,e Yr gag Del mirut it
- 3-/2r 4 3177)
[ ' vp s r b[ 7-70 m - s u f M owcr: 47w 4// 7-Z . 9tH?lt- C, N (AD S: AfoAzm ? B-9 zprp o 4t. MC
P' l T n rrt Pwg. Y tc31
<.- M S 3-1 2 > < X: 3-p z > J wm v.,u ne y- n
( \ mo ," # x ava venn w e 31
- y. 1 23 ggrR. , ,2y eNY ^ '$a f
% #c. &,
vs: < = (, ra :p
>Qcr i ~
s a s . MW yu 2 & 2 +ySM t - tr
- e. e a r E,Ars, = ,,(
v -<,u N~'YEE k $ S. ? ? . [-H e-H Atwa p( h c79 arer Centrul' c,,,yy, l , l I M,.[*E s/r S.,o8 i
*' s%
( C& f 1 ' l
/ r,, ,,i ge s 4.
7
$tTV9 $(rgg.
4y \/ 20 l r I-1 eart-(f.[(> y G4 Mto- Press fcif*f m o'f I-12I ,, 1. so,
&nX , m /7 usa,, ,, - w ,, >v r% '~' "i ~
T*U u. ({COoM VA1v63 7XAIAJ 12. A PCV 3-)22. A Pcv 2 - 13L 8 to Qn % [= ai - h,,,
-te : 39 t *Y S/r.co? ()CV Conrnos. Losc.(Inpp).
j ( Vq s
v r 4JD v PfI t'r- z
? ?
_ /01 6 'o! \ lok u:nsen ,, ro n ,Aun .. pr. M ,, "* Aug
,, l i i s I: t$ - ,? b ,, s
- e. -
SpeetEA An ac ! L/T fl7 Ind k "" rnsro. wa PT t rT-L ' I "*
- 2. ,,, ,,, ,. , ,o !
s ve IO v 30 1 J f 2 ', 3 h"ru f v*) L Nat C,
/0 l ].fA <
h! ,
~ ) - 9
{ s 4,ro V wo 10 10 ,< d l net , 3*l'l) 4e 9 > naso neo l . 10 l0
~ \ r -
P oA 4 201 V [ 7 o 10 o o< r.
'" l laa hr - %p 3 Jos rf 0 -
StrSo V sos Acruarve. ws-V il7u Gil-3".s stef 0a4 ' 'ITN Coz-) - , N)opf; Nortm
- Ano ,
&I J 2./IP/Jo
)l B-10 "J/
s, h orm (no) l .\
STEhm T14rtgFcts fu[f<LY t er g t.G mt rff 102 5 <- H e yt-n A---> r a y.57 > L M y,-:g s 3 ( trl' of; c > pt, --ur-
,- 10 ut; 7 E; Hie,g., 'M7 cos :r-r /tt u m Its is h
l t'*
. ro : _'
b / c % 9',, ...- N- ,, 7 "l,,7 G., - - -
-ost ' l r:1 N G-':! C -19 l , ) # 12 'l f G i f a -
gA th #d k /\ l Itts ht: : '
?
tit'\I }," "W ** TV7 2- (Ni g, . 7A V n,so y 73 r,,,, g
't, mrta J, t
W' 21 a
,9 1'[ /2 ' )o Ott $ 1O i "( - ** 8 wo y.{;T y,p, a ) O IO 0 ?CY. a I 4 l
11 ] l C - ?- 2 2 '
= :: , ; ' /.r [' #^ N 17 33 ,, ;.g%l xtj 1Y g 1 s T.;,, . > / srr ! 3#
Mo Q 7g , i f 23 3, y sci *~J x , P 24 J 27 , r .
.' er'*]
- Lk MM ,; g.[
A l T*1# 0- *" Fwtz, R. y lt .$ E O F*o f. Yttn ora _ s V ALvE Pcv I-Cl ' h /SLL=a'I')- wcr M k u ,r M.e u M c.a. (cf5T( (,1:1' y $'IA' p $'llV to MrA, - t,-
\ 3Is ~
3*37 " S/T CIO . zo,
, ,, \ ,,,
I l '
.Y Y. Y Off9. CL4G TC,P 1
~ vuve oemCne) i
" Ud.V. A!Jc'22. _ -- -.-..
V ( (8.l 3) /C/o .% I2 C<l e 5/1~ MFr'ful mrrrit) Low a, <, e,
'(2:1)
Jo/ 102 /*k / *.C~ /* C fo7 , i TfiT , Pfenf l
}
L**0> fC1* l 3 L b7 gy d q , 1
/*N O ,
l [>'/
~~ 3 >
l0 v t.q
- I og /f-7 S. A r % _,w A -l i s.
I 9
\..tv We 'I li y,,o . *no 40 I g;q p rie.1 n ,n,n Cl*/ A t<* L' 2. ff p yg 1* %*
l*t? IO ~A IO cs , G-?, Ele pf *180T **) ' o> 3 #- 9% l- 1 p l k,g 93 og 99 i' I< ?' E I l --- }
--), g ,
gn Y Aw if I A no - l0 y 1 Ly s s
- ,o .
Ler a.,
.w ,, .
Wr,4,5 v7 t , n x to.,e - eA g Arcacro 1-70 g L r,n,,c. Vestled ne( sq , w rearm s 1 Zll'$f0
- 5---. 9 3o .,g - 4 F73 Y
en A ,. J
; w u gu 3 -11 0 u,.
ss R '* 1. , Y m.* .. t
?lr , *:' , "!Lr &
V v IN (, Ity 6 111 g C IfE Nf Otos , 47w LII'Z-4 A 9 twin-4 , l h1u!)G: .tvo Am . . Tu R st s! 6 R 1P Y- TH Ro 7TLE - VA t. vg Ceiru TRo L
.2//V//* 'B-ll ; #%-
I r
B C!o S!C mj'id .ejW 1
"'(Q) , ([, d e- fl$ e i , ,
f yty lef lu b lef j h7i IL 1~ /cl 99 s a rs
, a g c., t r- s,:c , e o: 7 ( " "O , ',5 r . , -
g ', %
)E $,V,y iii.r- -
6, <, ) f.,. y($ (x( , Q@. c os, lo 3 v, A ou) 7
,7 v wo l'no c' 10 m '
Q
, ,58 a , 2c -- ? Q 2- )
o .r e e. 4 s 1
* % j( /
P10 gww desef 87 f hton ' C' #I" ~Y r,~~,Q-Qf ix Q1[=', s io
, Ry Vikl , ,I3 3 t so3 33, "$ys fG >g (flo MW c.,aa- , rec eu % > 9 '1 r,.
11rD+
,3 vi 2es
_ _l l Ss tr 22 1
- c. s I -r2. y 8
ltSEO on V%4C I%scR Tmod gunst %ca M
" s.e Stevo Aff M Fcv I-C.1 A te cs.. .p ,_ j.g y.y .p l . .
SlTSII GcVERMR Vhl vf ' Cc,vrRoc (tvo) . i rem e, ,. r-2cf j */ (
\ Vdtv6 .
( OfEMTC Cno, FO)
u 4 TtT W he-
}{e 103 Lowert cvw'ne t~ r:s e t e- t Vit \hlt7l ~ffi /r!
LSLAY HU' Le7 \ PZ tort * > Prsa
# uri,cf 4,u ) N ./ viri , - T M '\/ T3 ik Y7 \
VI
- g. v7 7.w.i o,,, , --- - "s u r~ r --- -
- t o w __
c'r
'f A .. $,, o
[ yo
,.,o ,e Yo, 3s ;W y\vp pt \
crc ' ']st ' I &gu .Q,of
\/ , 27 s, Y ',
s 40 g, r.+ 3 4
, 1..; c< ;
cts n IX 312f St + 9'1 2g ." ac SC cl sh - < ~r , s,. e l (,.gy - c. >Nh
~
jo '
%./ .
l 3o I f2-10
~o '" F** * \lff;*
v>) 'l & TS , I-sy '1, 10 1-??
){ ,
53
\
R r.rers 3' h Anmp r-ers itnren + src,nat. Convserca .' s ss <
^ <
NAmf
.s't 0-N 't- - $ , rno gg,,,g . I yy on so: ses In oss os ses JO 37 3*!1 **
x 27 I Lo-c,z . ! Se lets. Sftro I I 3-4r nem me., , 4
, Awo n y. 4-- ' f'
- o sr Rdelt OwM
,1 'Lif : $,*m 2. _ g jo tt 7 w Cll-3-y - \
L>
$!f VJ&9 4-f. 5/f!!\
7hrt ntc 27ytv l (AF[7/77Cjs-/,*t-2) 3-Ilj c l_ R(pgro MO CC! /tlori.n - , vgazgrera
- 3 ///'/10 tot f nm ,
e B-12.
?
( Z/l' Not ' I
-(fttah sof e o f. - I 'L) l4 #A- ' \$ tss /
103 10 'l L- HsIICA > < %S l-/? ' '
' e Hs I-I:c m x ) \S157lospt isl7 141!.
a Ils MC \f!ty'"!: RC:nl"C \ f-itT' " 'S ' N-'ll"'S
\/ cftra-t \/Clost-r , V tt: m \/nn \/Cpetx \/ct.ose 2 'YOFtnr2 b ,
18 (, ( f3 k i f u_c f"u 3r C-lctf-< >fL
& Is;'t j NG '
L-t glpi f5 4-ICI 't r (,-ISI $ S*ICI M", S*l:I' (1
./ %)
J N 1 2. jo ,3 1. ( 4 7 p- N 10 N/A 9 3 k n x
- ~.
9 5 j ( n __ - r
, ?, ,,
1 - ,, l0 9' o r 'l V Q ll [ oz ,, ,, , to f '
/ n.r of 90 r I3 '- 3 '!D ? jy " f f# s ,7 f L.3s
- 34
, 1s ? E A I
A~o
\ 14 , jo , - R . Lmy L ,, 'c [ '*1 f ig . 'sn() $w #
9z A sy I"70 Tertul Ng. 37 N f: O
\ 17 , ,16 * W C cc % 3-14 7-70 A' s > c, x .. ,. ~ . ,, n "~'
{ - cirg " & .,
,, ,t. 7, t
e a i 'c.-r
. f0n g3f' ' ^
( of ca. . si { We n. M-
*~'
useon vaug.s> nn,a i.~e c.,g g F cv I-If GV*) A 5 ' W
~
FevI-1L.(w-) A .,.,,, ofEN? ~C ^ losc, \ S/7~ [/2, Moof;raonm sn y
'/VOfcA ,
l- , l
(lj ' f[(fitu00\ lef# / ct /M ac 'lfo *
- L-Jc, o 10 1 IZD o e,
\ Hi /-t:8--> v I,j'f$(ttVS) ' 11t cio f.igyl WJ $ if W$ . '*' ) *':
\/C?. o:6-] y' rr,f.3 $f?
- V f f- ) o 7, 10y l *tr Sef' 19 l /03 17 -
mg e ah n V . . , sa f hc.~r . e. r Sjr 3 ;7 R r<e r t L- tn /
)
L-lll :. 2n '
,ja\fr ata-l pgh, 7 /o 2 IS 4/
) t W
]"*
10 ; 9-u g t r ho ,$- ' c L'$ W noee woou X uo ' so'
%d *t'd "4
2[ ),3 ,*4 lot le L
,1 g{
jo): 7 / hjo o g N ' ht 1-tsc *1-90 ,1 . Dels t L rte 13 - h 3-).W
, i I **# Ul 2eI , - jg ' *
[ye % <Awo sw Tw s fs<> 11o
<>o rfa.- h C ,, , . ~ \ ' ~
vtre-3 ll-ll1 , Str300 #'!'" ^ "'Y ' ItcY '*# %7 &cossctp, . %L, , % grft2, yo; [ f IO V
'l - etsout,o
- gr c
} , . . .,, W300Retlus, **1 f-l)( )
los. 6: f/rftf ' 1st i V kse c4 l*wrt. ge; Superrytt. ' TkA M ow. D T .C7Cs. 4 47*)t//4-/ rQcf- o wy 47vst/-/-/ yp p.y . zol s/r J;~tt' Sram Mrty 7Murcs y .2//;-/po rnnt Ti<nusnug Wrispen vntvs- cenritoL- . .
"it B-13 oyret) r,ynd
I s < ~ - t! ', 1 - 17A ,> <- >( 1-/7 > < ps: l- 17 c. > < c-ity/0f t rH 7,ftty,/ CLosE-r ' r,q rVJ re "rQ may 'yp,gy,irros z cu y .z
\ '0 / , SI j52 . /.I ' . sy /,ST ,'.-SL $'Y Y ^ ?,'l,,r E; / >r f h ',,, l" f, l \yt
{lCl 7 { (.typ f ~.r h [.,gy
">(,-1l:{. % (, t)[[ <^ 'r. crr R (,-I:L . . 'l ,%J } '" } }--'I- C A
7 V D '# d /0
/.,7 ~ ~ ~ ~ ) 5_q /* d
(' 'y 2
, - 4 ), u,s r 4 . ': y 2
n --- -E,
~o -N* m +up sus ceso 4 $ l0 D .--
J o $ )- jo *h' . I
}]]l 111 fo '*3 2* pg 'M j j L bl 4 } J2 C j iL L a . -s tt C ' 32 v ic &( f ^~o 3y f 3 l ,c D ',,
- N0) n
& y,u 99+ 1 s- ) 4/
i ~r Iy sw
, (ACM 36 .,T'oFcl. r' y
3*!") s
, wr < 'AD Sw far=1 s <*p' li ').]
Let' % ge l. - psl mo y, c...: <-r 41 j L-ifs (,trr ' l i 47 s [,YfT.'!r - Y:
- gjf 3, .- <Qur LLSek or) < ^ 4!
( vncvFL: _' w e r:1, f.$
, Fco I-17 Ltd) 1 - - Vut f.-in Jfcv I "I f (NO) 8 I L I v.in l l ,
1
~ r.<,( y.
3'l17 CL*Le gj'] ff f , s Overs . 2., l
, y v.oggA
6 rurs 1s-o v :nsr,e y,c,
~ - -- ? - - - - .
I *A J 1 . - ~ ~ H j j - / 7 g ... _. . _y < - l'a,. /-17 A- - y'i fol ic3 101 1
\1;/c7/ cu c.z Csin :r,(.3 'y,ppp,,. .;
fl Ol'r rl~Z ,
- 'l _ , to 7 % ," e 3 m.., f_ 2 :. I'E b- / ?/ $ [ t } ', ., 's '~ ~! , " ^ ~~f $f es b/'ctl J j j ,-
ser , Il i z. /3 3 s < i -. s L l S/r.n? f ge 2er
' I ^ ^ _
p,j - 3-r 3 m ~.o n wi ( '
# u y l t l ' ** Il 3o -g A7 -1/ 6 fh'8AA-j K[Sf x fl* W> Jsb1e
( d %- . 27 . u c4 n (jOp
\
E ) 6 ca
.t n, r, t khN Sus lO ' ~
3r 7.'.I 23 f u S sa e t .. c.
-)
7-70 ,e i (Turb f l<f tim) 27 . l. CL
~
ll l;LD at. 1%c Qm /*org .
., o <. > <- '
f a/4 R11eI
/
g es geg, ,,3 ,, y 37 s ' IO j , I^*Y feS{ IL A*'> lM ' 7-10 "d ' " t x
Sif [l]
3*11') Reduced f Ver(s'cd f 201 V Red- Gu$$*'l7Will-/-l
.tco tn 77oio ygyg Yrn7vyg d Ru Pt<istr> 71xie s.7sizie 4W4o Mc.
B-14 i 6
) llfD v et (fnm urfitt) COTT o 2.) gpgg a p o e. ,e <, y ee por osz lel loy Ic!_ loL
- r. - n n(
-r I
y Oc flenn.os-( 1+.t cA c (1. . o tt ( - -p 7 - -
- y \ a (/*2-Is t 7)k- I'% It1 l*2 1* 4 V
l j I : u ch.e.cA E a.r,.c.e v c;,,,g , r 'l' I- [[ l- Vf l- tf 1 i 7 se,e,-4 r ~ Lscars Sr.n 1
~
r ,,,. ( . n '\ (-* Wu ' 77: py, +i3 yy 7-9C) f 9 'l k* E Z % 0 j
- R g i 7
,O -
1 37 yo' , V_ QgN Slf2e$ '
;g ) S a/T of )
nem
,3 e eent.
I % 7-7 2 9 7-7 y 7-7 11 cA if c(t it, e l - ; 11 11 5o 3 cmr 4 VuI s s(7 . i sem i i sLe %* h qf p.g remy.
*tto f 'lt earer \ E ]*]]- h E# ,1 I*IYS "l'AS- f u g\f f3) gg3 ta 1 e c, Jo 22, 2 /17 dt. 30 3g 3s' , \ /ty oc ,.: or ox wy '
eg os sa+g DCFowER , He al A A He ff 1 ( 33 Wg - h fncORLE - 80-1 60-2 I l S/T [Ilom fWM /D3
' 1 -> .tes 1.t m 2, '/ '/ y y. y ,f Ih *L 120, e t. IM's. de I:ts. de, 12 o, = c l1re as M*"' Istmim (LA- ib t - noeg resTrm /4 fewt *2d - 2 * 's .l- I _
GJ-2 g at .1 L - W-6 -> < Ta -g > c
Altz + Yowe tt. OICilRICVT? for If'n'^1R f 8 ._ W L.v e- cn c n2 ant 12 cv J c- /*o
- ot f., 7 *2 e * < -
on,c n, e. - - c, .-
't av V a c ~ c-fj,&y , ~ f. -
- A h ri ?-! s- A
,( ,
t. t & V: 1 -tit P
/l yy A A PDTZ 1-77 g g l'cTJ l~1f (CV 3 -})( A/C A A P h3'lWfO 3-lig A/C & h A H 3121 Asit o 3-/14h/8 S B \ S fi 1-ifYM D t
3-179 t+/8 8 i 8 ; 8 i l
>C V 3 -122. A A ,
trf ru n,c. 1 -13x > 8 { rr3-tzzo,c- l t , i i
>cv 3 - JG/A A h , 6 3-/M h 3 - / t y/ Fr A A c i 2- h */
- k l f:
3 - / 3 -,.t.e4 { a ; ff 7-/+o 4;c 2-/7f h h ; . r1 E-ars,e h l l 1 - 173 C E - - , /s 2-typ c i e ! I ft I-/n a,s , 3 -11y 8 8 h 1-H* s c E' l i l u,,.y l a-A srrv y k ' h no,,p / 5- 2 w tr- 8' 8 l L hlra*H fv crup[*l'AL Bd-3 ac. 86*1 h /dt. bS l *V, $**d 6f) (Gd-y- q.a,[ i P l org: &lV/SO 8ctr fgeck,,p oc rne Gr .tra rr
vn), - = B-15 b! I2f <IG ' T'% ^ o H-stre t' owe, r1e r (/61 FV) c 133 l y,,g ( ( I C .i W(^ i m q , 'i - i ! I Tu ns 1ren in ~e rum u n,a tv c., n) I-tly Hl9 HIT 11:1 l-sty ** x L ~ ,s - - + a - (po ga g s FFA < % pg , Vsgu r '( S out: ( 3 7L l 7Cf ic 7-7L o ' 76 : 0 7-7L l0 l 2 s a u rg. 1 -s 7 3- f cA 7 2ey ( 3, Yf ( A_r FcA n , & 2 (Vno v ) is-h 9 .. Q o c,,33 ); cms rea 7 7t, , f 7 t, 7-7L Tita n3.' 3( p,,, g 7,gg 2: t/f'O v) j.gn INEh l-jy thl} ,h2 A . ";,Y e~;,, ,c - 'o e. .. ; 7 '? 7-77
- c. X,Y,,l" ~
" n 7-77 7-77 2y 77 f.77 ( '# 1 % Ar 8f n og g l 1 1 < R '450v h 1Mh th2% Tws ,BI _B so: L>*n\ Sj c2 f*I 2' 12p. v) c2 ' SKA R/* u 7-7P 27 f3 j% , , ,< .. M 2. - - ^ u*~dhJ[ I% x W 'W sf 1'b inod V' s f y q ~]b mg.n e -..e m w m .c no. yw . ..,n l i . & ' . I28 d L-Or)-s e ' W6 fewer rseT" (/4/ xv) ) 2. gog , p4 AaorNa1 3-(./ ~ Vr/K yy to Hof "*'- 24 soina I q \g.,,/ - 1 01 , , , % orent A ' 3-L/ '"*8 rw , p r,n , -%7 a. y i*)l f $*)I l I \l*// f\ 8}O- , , j' _ j' 3.r SIOI 32 . - 1 . f / '# \ *"",5 , '4? I7-7c p,,h ;p w f 7-71. l0 { 7-7c p-4 go ,+ , m - ss s- w.- go p->. , # a- I i Ic rr i n x ma roa. x Emvies.F*cg ~ *l ' ' s.,_ l t A LT fog n f es 31 gg/E2 r3 & g-un g "/" ' eng ** 7-76 y 7'74 'f3 37 tn::ra ,k % p., /G te )Ide ** s . ** -fJ/ -O n 77 ~7- .7, 5 W - n l L i I M. ?#2*C : 1-a; S/7~ 57 V AC PowEn , l c3 67 mg 'wo , .g, NWnbe!*$ % dkeep"oR 4 ~ . . - - s _ ~. *W- WTo w e x _. '~~ Shear i g,,,, 7 y y 4 B-16 ,; w ,.,, Wo c e. . lac ot- Hoo,rwrn
- e. ig-g _, J1
I A - TAA/M fowcR g ! I -~ d gg I UA A. ' A,t t. "J ~7 g 7r77 U 7-77 7j EL Sy 72 I 20 v MOV d~ uS.o Coerb fy 1 7.5-n I So t. W G t.n. 7 17 7-77 g, f4 7 77 ,, I3 j I Al-4 ,, 143-A -) ' I jgf.j , Icfr i 2ch loa 208/ 206 2/a ~ O' ygoyn occardt} 8'- 12o. 4tNv v c' (9tojn oc g Z/r f)L Ca G M S/T Z74 ( /)-T/26 trJ ') ( t i 8
- e. , e,c, s I
lJ xe+.o~4: 11 C/f Sl? ORCAKErr SET * *
- i ( 6 ,t rna,a /4 wen 77tn W LI:C '!3 ' L*14 FCV I-1i fc.y l-/?
f' SV I ~ /' pcv 3-/77 A g . R s1-17 I { fev 2-124 A,2 ?'# ~'#' 0 1 8
- Pcv 3- lit A, g Pcv 2 121 .
I'c 1 ~Z-12 2. - Tithirl Poweg , v~w $7 3D7 los Gntt. 7-77 y Ek1 S/r 5)V yy AC Yul*JES * (cm n.nrL % s w I) 2 (1~~c $/rnt Or v:oge) N a REf O >16 , , 1 CN 7&r- I,r,1,v,r V[^' 7? Y -/, x 7-77 3 YD' 719 -1,2,1 Y ir VEN ~151 - 1, it, 7, y /Z:-R '~~ 1b5
- 11) ^203 3o? . - _ .,.._ - -.
y,),} D' 11Ev C1 v N/W n c. o c. a c. N7g - ll - Th>yit) > Norr; Orcsi.11 lip-A ,18-6 o tv.,m,lty n -Jrs.idl y [Aun Tt ( ors loff af-o Wfo E $~ ON-Arit f L* Y , i P B-17 4-A cer ,Q, e ( i r htR g/ /)ted.qc An Ant F '#f'*U 5' ly Nr1erm ' 13 \ 12 ' 15 *A *~ 4tD *
- L f -nc
"' ,e t *[s l I 1os Ntil$$ "* g . IO y LLesK V* '(l1 lL /oA f y ) [00'O V~ 'Af6 5, g ]~7] .e3yN /* 1al ^ -Itf v gg, eg.,.y "c,.je 7e g? -91 ', 4-Lt Qic) { j,1 S/7 Co ('A ') t} lLx . S IE L f P' ly - I , AIM Ien TC VhL.V C gjg AJA I trgryl; r W 'A [ 4 Garc s' w ' LCv Z-l% A h n 101 1'l 3-ll'l, A A 3 -l9f, A 8 S/T 511 z.pyj,g- g { { 2-/72. A ~- 3-17f h 3-173 6 3-17Y 8 - L "f l i ? f Pt NA, CSV $ Pf W= 2a 27 21 - '$ ~f *v" YY p 'v n? . ; 7m 2, 1 , f"- 2,. 7 -71 %i,--M 2 l ,, >f,),e2 >ho? , > A'R 49 p.> C kg v~ ync,m 4 , f*1M'ajo er wng , 3., , j5 $ -l 2. (ep v = ir) ~l-g3 gg tm) i Me+ oraj 1: 't7v) tvP-I,1.2. R/17//C ll!arel ftret Reev'rer pte k,qs gurt kwavy c,y . i i B-18 3 e E E [ APPENDIX C INPUT DATA TO G02 { (Kind Data) b , l l I I l I I I I I C-1 [ r-L INPUT DATA [ Reliability input data used in the analysis are listed in Table C-1. Two pieces of data are provided, the failure upon demand used in the { start-up analyses and failure rate data used in evaluating reliability with time of the continuously operating systen. In making the continuous operation runs an exponential distribution of failures with time was assumed.. These data were derived from the following sources: WASil 1400 IEEE Nuclear Reliability Data Manual United Kingdom Atomic Energy Authwity ( Mil llandbook 2178 Nuclear Plant Reliability Data Systen in addition, TVA operating experience factors were used. [ [ [ [ . [ C-2 L [ TABLE C-1. RELIABILITY INPUT DATA FAILURE FAILURE PER RATE /HR KIND # DESCRIPT0R DEMAND { 2 Condensate Tank 10-6 10-8 Improper operator action, [ 3 valve position 10-4 0 5 Gate valve 10-5 10-8 [ 6 Pipe breaks, open drains & vant valve '0-0 10-8 7 Reducer 10-6 10-8 8 Check valve 10-4 3x10-7 9 Flow control valve, motor 2x10-5 1.6x10-6 [ operated (NC) 11 Turbine pump motor 1. 7x10-3 2.95x10-5 12 Flow element 10-0 10-8 { 13 Level Control valve, pneumatic 10-4 1.14x10-6 14 Temperature well 10-6 10-8 15 Pipe breaks, water 10-6 10-8 19 Pipe breaks, steam 10-6 10-9 [ I 20 Flow Ctrl Valve (NO) 2x10-5 1.6x10-6 21 Steam line breaks 10-6 10-9 [ 22 Trip and Throttle valve 2x10-4 3x10-7 23 Governor valve Part of Turbine - Driven Pump ( 24 Steam turbine Part of Turbine - Driven Pump 25 Pressure switch 10-4 2. 5x10-6 27 Pressure transmitter 10-5 6.5x10-7 28 Electric motor driven pump 10-3 5x10-5 29 Pressure control valve 10-4 1.14x10-6 31 ERCW, Availability 10-3 , [ 32 Pressure sensor 10-4 1.4x10-7 39 Trip & throttle valve limit switch 3x10-4 10-7 47 Battery prechar9e 10-3 - 48 Pressure switch, air 10-2 1.5x10-5 b 49 Solenoid, fail safe 4x10-4 5.5x10-7 53 Operator Action (Breaker) 10-3 2.5x10-6 . C-3 L E TABLE C-1. (Continued) FAILURE FAILURE F PER RATE /HR L KIND # DESCRIPT0R DEMAND 54 Operator Action, (Gate Valve) { 56 Hydraulic oil reservoir 10-3 2x10-3 10-8 3x10-6 58 Potentiometer motor 10-4 1.4x10-7 59 Integrator circuit 2x10-4 3x10-7 61 Auxiliary diesel 3x10-2 3x10-3 ( 63 Air compressor 3x10-3 3x10-4 64 Servo araplifier 2x10-4 10-7 { 65 66 Mechanical linkage 4x10-4 4x10-5 1.1 x ;0-4 EGM control box 8x10-5 Resistor box { 67 68 Hydraulic accumulator 10-5 2x10-3 1.4x10"8 3x10-6 69 Air line 10-6 1.4x10-7 /1 Air accumulator 2x10-3 3x10-6 72 Breaker plus fuze (series) 2x10-3 3x10-6 b 73 Breaker plus diode (series) 1.2x10-2 1.7x10-5 j 74 Transfomer plus diode rectifier 10-2 1.4x10-5 (series) 75 Breaker plus fuze plus themal 4x10-3 5.6x10-6 overload (series) [ 76 6900v breaker 4x10-4 5x10-7 77 480v breaker 2x10-3 2. 5x10-6 { 78 120v breaker 2x10-3 2.5x10-6 79 Gate valve - air line 10-4 3x10-5 80 Isolation valve, solenoid operated 10-4 1.6x10-6 E- 81 Motor operated potentiometer 3x10-3 3x10-6 82 Summing amplifier 2x10-4 3x10-7 83 DC battery (monitored) 3x10-5 0 84 dc/ac inverter )TRA-120V) 2x10-4 3x10-7 ( 85 Battery charger 3x10-3 4.2x10 86 Steam inlet valve limit switch 3x10-4 1.4x10-6 l [ [ C-4 - .l D ! L E TABLE C-1. (Continued) FAILURE FAILURE PER RATE /HR KIND # DESCRIPT0R DEMAND E 1 87 Thermal overload circuit 2x10-3 1.26x10-6 j 88 [ 89 Signal selector Limit switch premature 2x10-4 3x10-4 3x10-7 1.4x10-6 91 Steam Isol. Valve Limit Switch 3x10-4 10-7 92 Air line break 10-6 2x10-7 96 Air receiver 2x10-3 3x10-7 h 97 Air dryer 10-4 1.4x10-7 98 Air filter 2x10-3 2x10-6 [ 99 100 Air check valve Air valve & Multiple Valves 10-4 9x10-3 3x10-5 1.25x10-5 101 *Supertype 501, ERCW Ctrl Logic (MDP) 4. 56x10-3 1.3 x10-5 102 Servo power supply 2x10-3 3x10-6 103 *Supertype 503, ERCW Ctrl Logic (TDP) 4.76x10-3 6.6x10-6 104 Hydraulic filter 2x10-3 3x10-6 105 Hydraulic Operator 10-4 1.4x10-7 106 *Supertype 506, LCV Ctrl Logic 2.49x10-2 3.5x10-5 107 Analog voltage generator 2x10-4 'x10-7 108 Hydraulic pressure switch 10-4 2. 5x10-6 109 *Supertype 509, PCV Ctrl Logic 5.75x10-3 3. 5x10-6 [ 110 *Supertype 510, T&TV Ctrl Logic 3.3x10-3 4x10-6 111 *Supertype 511, Gov. Ctrl Logic 2.66x10-3 3. 55x10-6 { 112 *Supertype 512, Trans v Ctrl Logic 4.41x10-3 6.12x10-6 113 Overspeed sensor 10-3 10-6 114 *Supertype 514, Turb. Isol. Ctrl Logic 4.37x10-3 5.8x10-6 115 *Supertype 515, Transfer Module 7x10-4 9.7 x10-6 116 Prob. Flow Rate Too High 10-4 10-5 117 *DC board 3 1.02x10-3 1.4x10-6 118 AC board 3 2.1x10-4 3x10-7 [ 119 Transfomer (161/6.9kv) 2x10-5 2x10-8 120 *Supertype 520, Air System Module 3.10x10-2 4.3x10-5 { 121 122 Transfomer (480/120v) 2x10-5 2x10-8 Transfomer (6900/1480v) 2x10-5 2x10-8 h pes (values establish
- Used to represent by running supertypescomplex individual supertky with perfect inputs)d C-5 ,
L . TABLE C-1. (Continued) FAILURE FAILURE { , KIND # DESCRIPT0R PER DEMAND RATE /HR 124 Electrical controller 8x10-5 1.1 x10-7. 125 Relay 4x10-4 5.5x10-7 126 Trip & throttle solenoid 4x10-4 5. 5x10-7 127 Pressure regulator 2x10-3 3x10-6 128 Air Precharge 10-4 1.4x10-6 129 Level transmitter 3x10-3 4x10-0 133 Hydraulic system 10-3 1.4x10-6 135 Time delay relay 4x10-4 5.5x10-7 136 Hi/ low speed limit switch 3x10-4 4x10-7 [ 137 Valve motor 3x10-4 10-5 139 Breaker mechanism 4x10-4 5x10-7 140 Air intake, auxiliary compressor 10-3 1.4x10-6 { 141 Breaker (No. 6900v) 4x10-4 5x10-7 < 142 Ramp generator and signal converter 2x10-4 3x10-7 143 Probab. Pressure Too High 10-4 10-5 144 Breaker contacts 10-5 1.4 x10-8 145 DC/AC Inverter (TRB-120v) 2x10-4 3x10-7 146 Temperature switch 10-3 1.4 x10-6 ( 147 Electric fuze 10-5 1.4x10-8 148 Torque switch premature 10-4 1.4x10-5 [ 149 151 Trip & throttle valve switch Hand Switch Contacts 3x10-4 4x10-7 10-5 10-8 152 Solenoid valve controller 3x10-2 2.2x10-6 154 Level modifier 2x10-4 3x10-7 155 Pressure modifier 2x10-4 3x10-7 158 Relay Contacts 10-4 10-7 161 Probab. Flow Too High 3x10-3 10-5 [ C-6 .m_____ ) [ TABLE C-1. (Continued) { FAILURE PER FAILURE RATE /HR KIND # DESCRIPT0R DEMAND 162 Flow Modifier 2x10-4 10-7 165 Mechanical trip 4x10-4 5.5x10-7 168 Speed sensor 10-3 1.4x10-6 169 Gate Valve Prem. & Oper. Action 1.1x10-4 10-5 { 190 195 Steam pipe break (SG-4) Pipe break, steam generator 3 & 4 10 10-6 1.4x10-9 10-8 [ Kind numbers not listed represent perfect components [ [ [ M C [ [ C-7 _ _ _ _ _ - _ .}}