ML20205H107: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot insert)
 
(StriderTol Bot change)
 
Line 16: Line 16:


=Text=
=Text=
{{#Wiki_filter:}}
{{#Wiki_filter:a l
* b i
s QUAD-CITIES NUCLEAR POWER STATION UNIT 2 CYCLE 10 STARTUP TEST RESULTS 1484H/
8010280394 881019 PDR  ADOCK 05000265 h[
P              PDC
  . . . . . ..                                                                _ _ _ _ _ _ __ _ _ _ _ _1
 
-                      e TABLE OF CONTENTS Test No.          Title            Page 1            Scram Timing            i 2            Shutdown Margin        3 3            Initial Critical        4 4            TIP Reproducibility and Core Power Symetry      4 1484H/
 
o                  .
: 1. Control Rod Scram Timing Purpose The purpose of this test is to demonstrate the scram capability of all of the operable control rod. In compilance with Technical Specifications 4.3.C.1 and 4.0.0.2.
  <                    Criteria A.      The average scram inser$1on time, based on the de-energization of the scram pilot valve solenoids at time zero .of all operable control rods in the reactor power operation condition.shall be no greater than:
                                      % INSERTED FROM                              AVG. SCRAM INSERTION FULLY WITHDRAWN                                    TIMES (sec) 5                                        0.375 20                                        0.900 50                                        2.00 90                                        3.50 The average of the scram insertion times for the three fastest control rods of all groups of four control rods in a two by two array shall be no greater than:
                                      % INSERTED FROM                              AVG SCRAM INSERTION FULLY WITHDRAWN                                    TIMES (sec) 5                                        0.398 20                                        0.954 50                                        2.12 90                                        3.80 If these times cannot be met, the reactor shall not be made supercritical; if operating, the reactor shall be shutdown immediately upon determination that average scram time is deficient.
B.        The maximum scram insertion time for 90% insertion .:if any operable
,                                control rod shall not exceed 7.00 seconds. If this requirement cannot be met, the deficisnt control rods shall be considered inoperable, fully inserted into the core, and electrically disarmed.
Results and Olscussion All 177 control rods were scram tested.                        The results are presented in Table
: 1. The maximum 90% insertion time was 2.96 seconds for control rod H-5(30-19). Both criteria A and B were met.
1484H/
 
Table 1.
Control Rod Scram Results NUMBER  REACTOR        AVERAGE TIMES FOR % INSERTED, SEC OF ROOS CONDITIONS    5%        20%      50%      90%
177    Cold          0.27      0.49      0.96      1.65 177    Hot            0.31      0.68      1.44    2.52 s
1484H/
: 2. Shutdown Marcin Demonstration and Control Rod Functional Checks Purpose The purpose of this test is to demonstrate for this core loading in the most reactive condition during the operating cycle, that the reactor is subcritical with the strongest control rod full out and all other rods fully inserted.
Criteria If a shutdown margin of 0.890% AK ( 0.25% + R + B    4 C settling penalty) cannot be demonstrated with the strongest control rod fully withdrawn, the core loading must be altered to achieve this margin. The core reactivity has been calculated to be at a maximum 5500 MHD/MT into the cycle and R is given as 0.590% AK. The control rod 84 C settling penalty for Unit Two is 0.05% AK.
Results and Discussion
.                                                        On May 28, 1988, control rod H-13 (the rod which was calculated by General 1                                                        Electric to be of the highest worth) was fully withdrawn to demonstrate
:                                                        that the reactor would remain subtritical with the strongest rod full out, i
This maneuver was performed to allow cold control rod testing prior to the shutdown margin demonstration.
Control Rod functional subcritical checks were performed as part of the cold scram timing and control rod friction testing. No unexpected reactivity insertions were observed when any of the 177 control rods were withdrawn.
General Electric provided rod worth information for the two strongest j                                                        diagonally adjacent rods G-12 and G-14 with rod H-13 full out. This method provided an adequate reactivity insertion to demonstrate the desired shutdown margin. On June 22, 1988, a diagonally adjacent shutdown margin demonstration was successfully performed. Using the G.E. supplied rod worth for H-13 (the strongest rod) and diagonally adjacent rods G-12 and
?                                                        G-14, it was determined that with H-13 & G-12 at position 48, and G-14 at position 12, a moderator temperature of 145'F, and the reactor subtritical,
!                                                        a shutdown margin of 1.279% AK was demonstrated. The G.E. calculated shutdown margin with H-13 withdrawn and 68'F reactor water temperatu.e was 1.950% AK at the beginning of cycle 10.
,                                                        At approximately 5500 MH0/MT into cycle 10 a minimum calculated shutdown
;                                                        margin of 1.360% AK will occur with N-10 fully withdrawn. Note that the
!                                                        minimum shutdown margin shifts from rod H-13 at beginning of cycle to rod l                                                        N-10 at 5500 MWD /MT.
1 l
l 1484H/
t
 
o                    o G.E.'s ability to determine rod worth was demonstrated by the accuracy of their in-sequence criticality prediction. The AK difference between the expected critical rod pattern and the actual critical rod pattern was determined to be 0.116% AK. This initial critical demonstrated that the actual shutdown margin at the beginning of cycle 10 was 2.066% AK and 1.476% AK at 5500 MWO/MT into cycle 10.
: 3. Initial Critical Prediction Purpose The purpose of this test is to demonstrate General Electric's ability to calculate control rod worths and shutdown margin by predicting the insequence critical, Criteria General Electric's prediction for the critical rod pattern must agree within 1% AK to actual rod pattern. A discrepancy greater than 1% AK will be cause for an On-Site Review and Investigation by Nuclear fuel Services.
Results and Olscussion On June 24, 1988, at 1647 hours the reactor was brought critical with reactor water temperature at the time of criticality of 189'F. The AK difference between the expected critical rod pattern at 68*F and the actual critical rod pattern at 189'F was 0.00388 from rod worth tables supplied by General Electric. The temperature effect was -0.0024 AK from General Electric supplied corrections. The excess reactivity yleiding ;he 202 second positive period was 0.00032 AK. These reactivities result in a 0.00116 AK difference (0.116% AK) between the expected critical rod pattern and the actual rod pattern. This is within the 1% AK required in the criteria of this test, and General Electric's ability to predict control rod worth is, therefore, successfully demonstrated.
: 4. Core Power Olstribution Symmetry Analysis Purpose The purpose of this test was to determine the magnitude of indicated core power distribution asymmetries using data (TIP traces and 00-1) collected in conjunction with the LPRM calibration.
Criteria A. The total TIP uncertainty (including random noise and geometric uncertainties obtained by averaging the uncertaintles for all data sets) must be less than 8.7%
B. The gross check of TIP signal symmetry should yleid a maximum deviation between symmetrically located pairs of less than 25%.
1484H/
 
Results and Olscussion The core power symmetry calcuations for cycle 10 were performed based upon computer program 00-1 data runs on July 6, 1988, and August 26, 1988, both at 99% power. However, a failure of the TIP dry tube in LPRM assembly 16-09 prevented obtaining any cycle 10 data for LPRM string #1. The base data for string #1 remaining from the final cycle 9 00-1 data run (March 30, 1988 at 93% power) was used in the completion and calculation of the uncertainties for the two cycle 10 data sets. The average total TIP uncertainty from the two TIP sets was 5.964%, wnich is within the 8.7%
limit. The random noise uncertainty was 1.393%. This yields a geometrical uncertainty of 5.799%.
Table 2 lists the symmetrical TIP pairs and their respective average deviations. Figure 1 shows the core locations of the TIP pairs and the average TIP readings. The results in Table 2 show that the second criterton, mentioned above, was also met. The maximum deviation between symmetrical TIP pairs was 23.99 for pair 1-6. Tnts could be expected since this symmetric pal" contained cycle 9 data for string #1 and cycle 10 data for string #6. Tre true deviation, had only cycle 10 data been able to be used, would most likely be much lower. This would also result in a lower average total TIf and geometrical uncertainty. However, even with the inclusion of cycle 9 data for string #1, both of the core power symmetry crtierta were met.
The method used to obtain the uncertainties consisted f calculating the average of the nodal ratio of TIP pairs by:
                              ~                  ~
n      22 1        I      I  Rij j.1    15 R . 18n                          -
where Rij is the ratin for the Ith node of TIP pair j, there being n such pairs, where n.18.
Next the standard deviation of the ratios is calculated by:
                      ~                              '
n        22 I        I      (Rij - R)2  1/2 o_.      31        15 R
(18n - 1)            ,
og is multiplied by 100 to express og as a percentage of the ideal value of og of 1.0.
              % og          og x 100 The total TIP uncertainty is calculated by dividing % og by / 2' in order to account for data being taken at 3 inch intervals and analyzed on a 6 inch nodal basis.
1484H/
 
g FIGURE 1
                                                                                                                            .NA.D CI,115 x
                                                                                                                                                                                                                                                              - . ,,, - x to g                                                        _
                                                                                            ''74.61 " " 83.08 l l l
                                                                                                                                                                          " ''54.76 ll                                                        TIP/LPRM
                                                                                                                                                                                                                                              **i'      I 8 Y'"'"#Y
                                                                                                        !b'.o!                                                              A
                                                                                                                                                                            . _L.g'll i
M-
                                                                ]_.L.                  I 9I.. ..I                        40
_        .  . . l. .
1              I            !                  i    ,          l                          I            I            i            i M                            I.                lii                          I l i                              i ll                                      l l l                      II' y                        50.63 "                93.50 " *117.47'' ~ ~ 10 7. 08 " ~110.60                                                                                  "  ~      82.54''
                        "                    J e-                      'e*
* o -- i
                                                                                                                                          'ei_                                        __
                                                                                                                                                                                                '              i            -
                                          . .I. i 3 3I .
e i
l'.l. _ . .I_ . 22,I.'_. .I.. 2$I_.
                                                                                        ,            ,                                                                      .. ,_.          7i I .
I i                                                                                                        .
I            e 3          e                                i                l                          I            .            i            i              l,,,
                        "                                                                                                                                                                3
                                  ~
: _1 I                  iTI                          Ii1                                I Ii                                            I t/.              !      l,__I              !
u-                " 90. 74 " ''112. 98 "                            ~ 115. 4 7 " "117.78 " "108.68 ~ ~110 52~~ " 57.73 e'                    '
o-.3-                    ~e                                                                  'e-r!
t                                                      -
1'e1 t--
                                                                                                                                                                                                      ,,j_
3 s
i            .
26 l      271 1            28:
i      291 i
30                          3 11            ! e32l        _
i                                                                                                                                                i                                          i          ,
l ,i.L e            i        l              i            i                                                                                          I e                                      i M        i            l li                    l l l l                        ,i e            i                          i              i          e          i 3 " e" l    i                                  l l l                      l l l                      l l I t        ~ 1,17,.15."~106.g 24. **~ 11?                                  ,p
                                                                                                                . 38 "          ~ 110.,88,[~                              ~ 115. 59. ~ ~ 106g 96.~~~.84.55."
'                      M      i            i                                20!                                                      '                                                                                                      4 19I            I                          l              2 11                              22l_ _ l,_ g231                                          l 24l_        _l            ;5,l_
M      l'            !            l        !              !          I                    !                                                        !, I g                        i    g !                                                            l              1          !          l I                      a 1                  i li a ";" ~106,.98,- ~113.94"''
* 115.10./-
l I                I I l                                i                            i            l l l                      l l 1 ~~! l i
                                                                            ,                                                ~113. 60," ~115. 78." ' 117. 34i "
78.12 ~
86      I            I          ld            i        131              l                                    l ,15l                                    l ,16l                    l ,17 l                            44 141 n      .                          i                                                                                                                                                                _    _l_          181 ,
.l 80 - -
y,
                                ~ "l80 l l l
e            i        .i l3      l
: i.          .
l1
: e.              i.
                                                                                                                                      ! l !
e.
i3 I l I i
e e
i i ) I i
e l
i i
ta
                                                    ,.42 ~      ~ 100.,3 6.[~                              g              12            6.
1,0 7,. 2 2,"          2              2.      "
                                                                                                                                                                          ~ 112,. 9 6.'~            '" 9 2,. 7 3,        e i
;                      16                              6i            i
                                            .            e          i 7i
                                                                                                !              8I i
l      9l _                        , ,I _        1 01            !          1 11          l i
i                            i j                    t-
_i                                          i,    , i                      i              i.                          i 4 i i
i            j              l          .
!                    to                                  '
l    ,l                                                                                                                                      3
                                                                                    !          l l l                                l l l                                    il          l              l              1
                                                  - ", -        " 63.20 " 115.04 " ~ 108.14 t,                                                                                                                                                " " 95.32 '' " 54.67 "
l                                                                          C e'                        '
e                                        e'                  '
                                          /                      .. '. 1              ..  -                    1 -. .. .. 3. . .                                          _ . . .        '. - . . I. 5 s            '
Tt I              i                        l i
                          .t ., o, ,, ,                    t,    t,    t,      n      1,  ,, ,, ,, ,, ,, , u o n
:              i                        e
:        Ti > > u ,                        ,1    ,, ,, ,, ,,
l-
,                              .                    ..t      n.t        t ..,.. m                      at=>
l j                                                                                                                                                                                                    Baae e uma t< .st= te- tmit= rw att m .untme)                                                                                                                            Average i
e ras se**sta*                                                                                                                                                            O String No.
;                              a saat .stne i
UNIT TWO POWER SYMMETRY (Average Base Readings for nodes 5-22)
Cycle 9 OD-1 data (03-30-88 at 931 power) used for string #1.
Cycle 10 OD I data (07-06-88 and 08-26-88 at 993 power) used for string #2-41.
                                                                                                                                                                                                                                                                        /
 
e                                .
In order to calculate random noise uncertainty the average reading at each node for nodes 5 through 22 is calculated by:
MT      NT I      I      I    BASE (N, M K)
E (K) = NT x MT            ,
M1      N=1                ,
where NT = number of runs per machine - 5 MT = number of machines - 5 E (K) = average reading at nodal level K.
K = 5 through 22 The random noise is derived from the average of the nodal variances by:
                                                        ~
22 MT      NT      .
                                                                                                      ,2 ' 1/2 I  I      I        8ASE (N. M. K) - E (K)
                                      %e noise -          K5 M-1      N=1      ,
BASE (K)        ,
x 100 18 (NT x MT -1)
Finally the TIP geometric uncertainty can be calculated by:
                                      % o geometric = (% o total 2 - % e noise 2)1/2 1484H/
 
Table 2 CORE SYMMETRY Based on 00-l's From 07-06-88 and 08-26-88 (99% power)
SYMMETRICAL TIP-                                                    AVERAGE PAIR NUMBERS      ABSOLUTE DIFFERENCE                        % DEVIATION a-b      T=    Ta - Ib                    % - 100 X T/((Ta+T@/2) 1-6          17.23                                23.99 2-12          8.06                                  7.26 3-19          9.02                                  8.00 4-26          4.58                                  4.92 5-33          4.04                                  7.65                '
8-13          12.29                                10.24 9-20          0.98                                  0.92 10-27          0.57                                  0.51 11-34          1.42                                  1,54 15-21          0.69                                  0.61 16-28          0.37                                  0.32 17-35          1.87                                  1.59 18-39          3.51                                  4.60 23-29            2.19                                  1.87 24-36            1.12                                  1.05 25-40            1.46                                  1.75 31-37          0.55                                  0.50 32-41          2.96                                  5.27 22                                  Average Deviation = 4.05 Tg=l-5I Tg(K) /18 I
Cycle 9 00-1 data (03-30-88 at 93% power) used for string #1.
1 1
i 1484H/
 
                  . O )%One First Natiorcl Ptara.,y
        *  *  .                                                                                  Chicago, libnoit O            '] lddrcss Reply ta: #fsi'Difice Box 767                                                                '
s                                CNcago, !!hnois 60690 October 19, 1988 l
Mr. Thomas E. Murley, Director Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Conselssion Washington, DC 20555 Subject                                                        Quad Cities Station Unit 2 Transmittal of Cycle 10 Startup Test Report Summary NRC_DncitLHa 50-26s Dear Mr. Murley Enclosed, please find a copy of the Unit 2 Cycle 10 Startup Test Report Summary.                                                          In accordance with previous requests from the HRC Staff and in fulfillment of our Technical Specification requirements, this report is being submitted to your staff.
Pinase direct any questions you may have regarding this transmittal to this office.
i Vpry tru                        yours l
\                                                                                                                                                                                            >
l                                                                                                                                                                                                            (, -_
l                                                                                                                                                                                !. M. Johnson Nuclear Licensing A&olnistrator t
Im Enclosure cca    T. Ross - NRR l                    A.B. Davis - RI!! (w/o Enc.)
j Quad Cities Resident Inspector (w/o Enc.)
i 5241K                                                                                                                                                                                                    k 6
                                                                                                  ~,}}

Latest revision as of 16:09, 29 December 2020

Cycle 10 Startup Test Results
ML20205H107
Person / Time
Site: Quad Cities Constellation icon.png
Issue date: 10/19/1988
From: Jonson I
COMMONWEALTH EDISON CO.
To:
References
5241K, NUDOCS 8810280394
Download: ML20205H107 (11)


Text

a l

  • b i

s QUAD-CITIES NUCLEAR POWER STATION UNIT 2 CYCLE 10 STARTUP TEST RESULTS 1484H/

8010280394 881019 PDR ADOCK 05000265 h[

P PDC

. . . . . .. _ _ _ _ _ _ __ _ _ _ _ _1

- e TABLE OF CONTENTS Test No. Title Page 1 Scram Timing i 2 Shutdown Margin 3 3 Initial Critical 4 4 TIP Reproducibility and Core Power Symetry 4 1484H/

o .

1. Control Rod Scram Timing Purpose The purpose of this test is to demonstrate the scram capability of all of the operable control rod. In compilance with Technical Specifications 4.3.C.1 and 4.0.0.2.

< Criteria A. The average scram inser$1on time, based on the de-energization of the scram pilot valve solenoids at time zero .of all operable control rods in the reactor power operation condition.shall be no greater than:

% INSERTED FROM AVG. SCRAM INSERTION FULLY WITHDRAWN TIMES (sec) 5 0.375 20 0.900 50 2.00 90 3.50 The average of the scram insertion times for the three fastest control rods of all groups of four control rods in a two by two array shall be no greater than:

% INSERTED FROM AVG SCRAM INSERTION FULLY WITHDRAWN TIMES (sec) 5 0.398 20 0.954 50 2.12 90 3.80 If these times cannot be met, the reactor shall not be made supercritical; if operating, the reactor shall be shutdown immediately upon determination that average scram time is deficient.

B. The maximum scram insertion time for 90% insertion .:if any operable

, control rod shall not exceed 7.00 seconds. If this requirement cannot be met, the deficisnt control rods shall be considered inoperable, fully inserted into the core, and electrically disarmed.

Results and Olscussion All 177 control rods were scram tested. The results are presented in Table

1. The maximum 90% insertion time was 2.96 seconds for control rod H-5(30-19). Both criteria A and B were met.

1484H/

Table 1.

Control Rod Scram Results NUMBER REACTOR AVERAGE TIMES FOR % INSERTED, SEC OF ROOS CONDITIONS 5% 20% 50% 90%

177 Cold 0.27 0.49 0.96 1.65 177 Hot 0.31 0.68 1.44 2.52 s

1484H/

2. Shutdown Marcin Demonstration and Control Rod Functional Checks Purpose The purpose of this test is to demonstrate for this core loading in the most reactive condition during the operating cycle, that the reactor is subcritical with the strongest control rod full out and all other rods fully inserted.

Criteria If a shutdown margin of 0.890% AK ( 0.25% + R + B 4 C settling penalty) cannot be demonstrated with the strongest control rod fully withdrawn, the core loading must be altered to achieve this margin. The core reactivity has been calculated to be at a maximum 5500 MHD/MT into the cycle and R is given as 0.590% AK. The control rod 84 C settling penalty for Unit Two is 0.05% AK.

Results and Discussion

. On May 28, 1988, control rod H-13 (the rod which was calculated by General 1 Electric to be of the highest worth) was fully withdrawn to demonstrate

that the reactor would remain subtritical with the strongest rod full out, i

This maneuver was performed to allow cold control rod testing prior to the shutdown margin demonstration.

Control Rod functional subcritical checks were performed as part of the cold scram timing and control rod friction testing. No unexpected reactivity insertions were observed when any of the 177 control rods were withdrawn.

General Electric provided rod worth information for the two strongest j diagonally adjacent rods G-12 and G-14 with rod H-13 full out. This method provided an adequate reactivity insertion to demonstrate the desired shutdown margin. On June 22, 1988, a diagonally adjacent shutdown margin demonstration was successfully performed. Using the G.E. supplied rod worth for H-13 (the strongest rod) and diagonally adjacent rods G-12 and

? G-14, it was determined that with H-13 & G-12 at position 48, and G-14 at position 12, a moderator temperature of 145'F, and the reactor subtritical,

! a shutdown margin of 1.279% AK was demonstrated. The G.E. calculated shutdown margin with H-13 withdrawn and 68'F reactor water temperatu.e was 1.950% AK at the beginning of cycle 10.

, At approximately 5500 MH0/MT into cycle 10 a minimum calculated shutdown

margin of 1.360% AK will occur with N-10 fully withdrawn. Note that the

! minimum shutdown margin shifts from rod H-13 at beginning of cycle to rod l N-10 at 5500 MWD /MT.

1 l

l 1484H/

t

o o G.E.'s ability to determine rod worth was demonstrated by the accuracy of their in-sequence criticality prediction. The AK difference between the expected critical rod pattern and the actual critical rod pattern was determined to be 0.116% AK. This initial critical demonstrated that the actual shutdown margin at the beginning of cycle 10 was 2.066% AK and 1.476% AK at 5500 MWO/MT into cycle 10.

3. Initial Critical Prediction Purpose The purpose of this test is to demonstrate General Electric's ability to calculate control rod worths and shutdown margin by predicting the insequence critical, Criteria General Electric's prediction for the critical rod pattern must agree within 1% AK to actual rod pattern. A discrepancy greater than 1% AK will be cause for an On-Site Review and Investigation by Nuclear fuel Services.

Results and Olscussion On June 24, 1988, at 1647 hours0.0191 days <br />0.458 hours <br />0.00272 weeks <br />6.266835e-4 months <br /> the reactor was brought critical with reactor water temperature at the time of criticality of 189'F. The AK difference between the expected critical rod pattern at 68*F and the actual critical rod pattern at 189'F was 0.00388 from rod worth tables supplied by General Electric. The temperature effect was -0.0024 AK from General Electric supplied corrections. The excess reactivity yleiding ;he 202 second positive period was 0.00032 AK. These reactivities result in a 0.00116 AK difference (0.116% AK) between the expected critical rod pattern and the actual rod pattern. This is within the 1% AK required in the criteria of this test, and General Electric's ability to predict control rod worth is, therefore, successfully demonstrated.

4. Core Power Olstribution Symmetry Analysis Purpose The purpose of this test was to determine the magnitude of indicated core power distribution asymmetries using data (TIP traces and 00-1) collected in conjunction with the LPRM calibration.

Criteria A. The total TIP uncertainty (including random noise and geometric uncertainties obtained by averaging the uncertaintles for all data sets) must be less than 8.7%

B. The gross check of TIP signal symmetry should yleid a maximum deviation between symmetrically located pairs of less than 25%.

1484H/

Results and Olscussion The core power symmetry calcuations for cycle 10 were performed based upon computer program 00-1 data runs on July 6, 1988, and August 26, 1988, both at 99% power. However, a failure of the TIP dry tube in LPRM assembly 16-09 prevented obtaining any cycle 10 data for LPRM string #1. The base data for string #1 remaining from the final cycle 9 00-1 data run (March 30, 1988 at 93% power) was used in the completion and calculation of the uncertainties for the two cycle 10 data sets. The average total TIP uncertainty from the two TIP sets was 5.964%, wnich is within the 8.7%

limit. The random noise uncertainty was 1.393%. This yields a geometrical uncertainty of 5.799%.

Table 2 lists the symmetrical TIP pairs and their respective average deviations. Figure 1 shows the core locations of the TIP pairs and the average TIP readings. The results in Table 2 show that the second criterton, mentioned above, was also met. The maximum deviation between symmetrical TIP pairs was 23.99 for pair 1-6. Tnts could be expected since this symmetric pal" contained cycle 9 data for string #1 and cycle 10 data for string #6. Tre true deviation, had only cycle 10 data been able to be used, would most likely be much lower. This would also result in a lower average total TIf and geometrical uncertainty. However, even with the inclusion of cycle 9 data for string #1, both of the core power symmetry crtierta were met.

The method used to obtain the uncertainties consisted f calculating the average of the nodal ratio of TIP pairs by:

~ ~

n 22 1 I I Rij j.1 15 R . 18n -

where Rij is the ratin for the Ith node of TIP pair j, there being n such pairs, where n.18.

Next the standard deviation of the ratios is calculated by:

~ '

n 22 I I (Rij - R)2 1/2 o_. 31 15 R

(18n - 1) ,

og is multiplied by 100 to express og as a percentage of the ideal value of og of 1.0.

% og og x 100 The total TIP uncertainty is calculated by dividing % og by / 2' in order to account for data being taken at 3 inch intervals and analyzed on a 6 inch nodal basis.

1484H/

g FIGURE 1

.NA.D CI,115 x

- . ,,, - x to g _

74.61 " " 83.08 l l l

" 54.76 ll TIP/LPRM

    • i' I 8 Y'"'"#Y

!b'.o! A

. _L.g'll i

M-

]_.L. I 9I.. ..I 40

_ . . . l. .

1 I  ! i , l I I i i M I. lii I l i i ll l l l II' y 50.63 " 93.50 " *117.47 ~ ~ 10 7. 08 " ~110.60 " ~ 82.54

" J e- 'e*

  • o -- i

'ei_ __

' i -

. .I. i 3 3I .

e i

l'.l. _ . .I_ . 22,I.'_. .I.. 2$I_.

, , .. ,_. 7i I .

I i .

I e 3 e i l I . i i l,,,

" 3

~

_1 I iTI Ii1 I Ii I t/.  ! l,__I  !

u- " 90. 74 " 112. 98 " ~ 115. 4 7 " "117.78 " "108.68 ~ ~110 52~~ " 57.73 e' '

o-.3- ~e 'e-r!

t -

1'e1 t--

,,j_

3 s

i .

26 l 271 1 28:

i 291 i

30 3 11  ! e32l _

i i i ,

l ,i.L e i l i i I e i M i l li l l l l ,i e i i i e i 3 " e" l i l l l l l l l l I t ~ 1,17,.15."~106.g 24. **~ 11? ,p

. 38 " ~ 110.,88,[~ ~ 115. 59. ~ ~ 106g 96.~~~.84.55."

' M i i 20! ' 4 19I I l 2 11 22l_ _ l,_ g231 l 24l_ _l ;5,l_

M l'  ! l  !  ! I  !  !, I g i g ! l 1  ! l I a 1 i li a ";" ~106,.98,- ~113.94"

  • 115.10./-

l I I I l i i l l l l l 1 ~~! l i

, ~113. 60," ~115. 78." ' 117. 34i "

78.12 ~

86 I I ld i 131 l l ,15l l ,16l l ,17 l 44 141 n . i _ _l_ 181 ,

.l 80 - -

y,

~ "l80 l l l

e i .i l3 l

i. .

l1

e. i.

! l !

e.

i3 I l I i

e e

i i ) I i

e l

i i

ta

,.42 ~ ~ 100.,3 6.[~ g 12 6.

1,0 7,. 2 2," 2 2. "

~ 112,. 9 6.'~ '" 9 2,. 7 3, e i

16 6i i

. e i 7i

! 8I i

l 9l _ , ,I _ 1 01  ! 1 11 l i

i i j t-

_i i, , i i i. i 4 i i

i j l .

! to '

l ,l 3

! l l l l l l il l l 1

- ", - " 63.20 " 115.04 " ~ 108.14 t, " " 95.32 " 54.67 "

l C e' '

e e' '

/ .. '. 1 .. - 1 -. .. .. 3. . . _ . . . '. - . . I. 5 s '

Tt I i l i

.t ., o, ,, , t, t, t, n 1, ,, ,, ,, ,, ,, , u o n

i e
Ti > > u , ,1 ,, ,, ,, ,,

l-

, . ..t n.t t ..,.. m at=>

l j Baae e uma t< .st= te- tmit= rw att m .untme) Average i

e ras se**sta* O String No.

a saat .stne i

UNIT TWO POWER SYMMETRY (Average Base Readings for nodes 5-22)

Cycle 9 OD-1 data (03-30-88 at 931 power) used for string #1.

Cycle 10 OD I data (07-06-88 and 08-26-88 at 993 power) used for string #2-41.

/

e .

In order to calculate random noise uncertainty the average reading at each node for nodes 5 through 22 is calculated by:

MT NT I I I BASE (N, M K)

E (K) = NT x MT ,

M1 N=1 ,

where NT = number of runs per machine - 5 MT = number of machines - 5 E (K) = average reading at nodal level K.

K = 5 through 22 The random noise is derived from the average of the nodal variances by:

~

22 MT NT .

,2 ' 1/2 I I I 8ASE (N. M. K) - E (K)

%e noise - K5 M-1 N=1 ,

BASE (K) ,

x 100 18 (NT x MT -1)

Finally the TIP geometric uncertainty can be calculated by:

% o geometric = (% o total 2 - % e noise 2)1/2 1484H/

Table 2 CORE SYMMETRY Based on 00-l's From 07-06-88 and 08-26-88 (99% power)

SYMMETRICAL TIP- AVERAGE PAIR NUMBERS ABSOLUTE DIFFERENCE  % DEVIATION a-b T= Ta - Ib  % - 100 X T/((Ta+T@/2) 1-6 17.23 23.99 2-12 8.06 7.26 3-19 9.02 8.00 4-26 4.58 4.92 5-33 4.04 7.65 '

8-13 12.29 10.24 9-20 0.98 0.92 10-27 0.57 0.51 11-34 1.42 1,54 15-21 0.69 0.61 16-28 0.37 0.32 17-35 1.87 1.59 18-39 3.51 4.60 23-29 2.19 1.87 24-36 1.12 1.05 25-40 1.46 1.75 31-37 0.55 0.50 32-41 2.96 5.27 22 Average Deviation = 4.05 Tg=l-5I Tg(K) /18 I

Cycle 9 00-1 data (03-30-88 at 93% power) used for string #1.

1 1

i 1484H/

. O )%One First Natiorcl Ptara.,y

  • * . Chicago, libnoit O '] lddrcss Reply ta: #fsi'Difice Box 767 '

s CNcago, !!hnois 60690 October 19, 1988 l

Mr. Thomas E. Murley, Director Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Conselssion Washington, DC 20555 Subject Quad Cities Station Unit 2 Transmittal of Cycle 10 Startup Test Report Summary NRC_DncitLHa 50-26s Dear Mr. Murley Enclosed, please find a copy of the Unit 2 Cycle 10 Startup Test Report Summary. In accordance with previous requests from the HRC Staff and in fulfillment of our Technical Specification requirements, this report is being submitted to your staff.

Pinase direct any questions you may have regarding this transmittal to this office.

i Vpry tru yours l

\ >

l (, -_

l  !. M. Johnson Nuclear Licensing A&olnistrator t

Im Enclosure cca T. Ross - NRR l A.B. Davis - RI!! (w/o Enc.)

j Quad Cities Resident Inspector (w/o Enc.)

i 5241K k 6

~,