ML19254B407: Difference between revisions
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
StriderTol (talk | contribs) (StriderTol Bot change) |
||
Line 418: | Line 418: | ||
2800 _ l , _ _ _ _ . F-3 I I 2500 _ , , .......... F-4 52400 _ l | 2800 _ l , _ _ _ _ . F-3 I I 2500 _ , , .......... F-4 52400 _ l | ||
% I l | % I l | ||
2200 _ y , l1 It 2000 _ ;, f | 2200 _ y , l1 It 2000 _ ;, f I | ||
I i l 1; I 1800 _ l g g ; ,I i t I 1600 _ ; ,' | |||
t , | t , | ||
t 1400 _ I i I e | t 1400 _ I i I e | ||
Line 1,774: | Line 1,773: | ||
i: | i: | ||
LJ !!U U ijji ini i- | LJ !!U U ijji ini i- | ||
~: I IV | ~: I IV sMJ V D ,,. , | ||
sMJ V D ,,. , | |||
'n I | 'n I | ||
_ (U | _ (U | ||
Line 1,836: | Line 1,833: | ||
/ ,,3 7, I R-to Eb 'f/ | / ,,3 7, I R-to Eb 'f/ | ||
p' , | p' , | ||
'r w | 'r w | ||
N s,CW N p_J'# / af.. | N s,CW N p_J'# / af.. | ||
Line 1,867: | Line 1,863: | ||
1 | 1 | ||
,s | ,s | ||
; _ _ _ _ _. __ u | ; _ _ _ _ _. __ u | ||
-_1 y _ | -_1 y _ |
Latest revision as of 08:54, 22 February 2020
ML19254B407 | |
Person / Time | |
---|---|
Site: | Fort Saint Vrain |
Issue date: | 08/23/1979 |
From: | Alexander D, Holmes M, Jerrica Johnson COLORADO STATE UNIV., FORT COLLINS, CO, PUBLIC SERVICE CO. OF COLORADO |
To: | |
Shared Package | |
ML19254B405 | List: |
References | |
NUDOCS 7909270480 | |
Download: ML19254B407 (147) | |
Text
gADIATION A$~
~
'?
l,7 N'
\p[((
m t'1
. , m .
FORT ST. VRAIN '
i NUCLEAR
- ,y%
g' ,I GENERATING STATION \. 'O lu ' '. '
a
\
PUBLIC SERVICE COMPANY OF COLORADO
/ ,
(
f \,
l s- ',
~ -
N_ f PROGRAM
SUMMARY
REPORT FIRST AND SECOND QUARTERS 1979 PURCHASE ORDER 38951 1048 140 COLORADO STATE UNIVERSITY CORT COLLINS. COLORADO 80521 q909270L uBOr
FORT ST. VRAIN NUCLEAR GENERATING STATION ENVIRONMENTAL RADIATION SURVEILLANCE PROGRAM Summary Report for the period January 1,1979 - June 30,1979 Prepared by:/s/ \7.%
J ( t-O Jo Date James E. Johnso Q rofessor, Colorado State University Reviewed by:/s/ M Health Physics Department, Fort St. Vrain ' Date Reviewed by:/s/ g _
fj/j[y Nuclear Project Depa'rteent / Date Approved by:/s/ '
} O kh Operations Manager, Fort St. Vrain I/ 4 Date_ 7 ud y /s/ ' -
~
- M 2+ '
i Nuclear Project Department Date 1048 141
ENVIRONMENTAL RADIATION SURVEILLANCE conducted in the vicinity of the FORT ST. VRAIN NUCLEAR GENERATING STATION for the PUBLIC SERVICE COMPANY OF COLORADO Purchase Order No. 38951
SUMMARY
REPORT for the period JANUARY - JUNE 1979 by James E. Johnson Department of Radiology and Radiation Biology Department of Animal Sciences COLORADO STATE UNIVERSITY Fort Collins, Colorado July 1979 1048 142
Acknowledgements The following have worked hard and conscientiously on this project and are acknowledge here to receive credit for all phases of its operation.
For the past half year these have been:
Diane Berry Barry Berven Sharon Clow John Combs Charly Domingue Larry Hoffman Marion Mcdonald Shirley Mcdonald Jim Roberts Kati Tengerdy Frank Vumbaco Marilyn Watkins Susan White 1048 143
TABLE OF CONTENTS Page No.
List of Tables iii List of Figures vi I. INTRODUCTION 1 II. SURVEILLANCE DATA FOR JANUARY THROUGH JUNE 4 1979, AND INTERPRETATION OF RESULTS A. External Gamma Exposure Rates 4 B. Air Sampling Data 8 C. Water, Sedimen., and Precipitation 29 Sampling Data D. Food Chain Data 69 E. Aquatic Biota 91 F. Beef Cattle 101 G. Sample Cross Check Data 102 H. Conclusion and Summary 105 I. Errata 120 III. ENVIRONMENTAL RADIATION SURVEILLANCE PROGRAM AND SCHEDULE A. Collection and Analysis Schedule 132 B. Sampling Locations 134 ii 1048 144
LIST OF TABLES Page No.
II.A.1 Gamma Exposure Rates Measured by the TLD Technique. 6 II.B.1 Concentration of Long-lived Gross Alpha Activity in Airborne Particles
- a. First Quarter, 1979. 9
- b. Second Quarter,1979. 10 II.B.2 Concentrations of Long-lived Gross Beta Activity in Airborne Particles,
- a. First Quarter, 1979. 11
- b. Second Quarter,1979. 12 II.B.3 Tritium Concentrations in Atmospheric Water Vapor.
- a. First Quarter,1979 17
- b. Second Quarter,1979. 18 II.B.3a Tritium Concentrations in Air
- a. First Quarter,1979. 22
- b. Second Quarter,19/9. 23 II.B.3b Tritium Released in Reactor Effluents,1979. ?(
II.B.4 Iodine-131 Concentrations in Air (Composite). 26 II.B.5 Gamma-ray Emitting Radionuclide Concentrations 28 in Air (Composite).
II.C.1 Gross Beta Activity in Water 32 II.C.la Gross Beta Activity in Effluent Water, Goosequill 38 (E-38).
II.C.2 Tritium Concentrations in Surface Waters. 40 II.C.3 Strontium-90 Concentrations in Surface Waters. 41 II.C.4 Strontium-89 Concentrations in Surface Waters. 42 II.C.4a Tritium, Strontium-89-90 in Effluent Water, Goosequill, 43 (E-38).
II.C.5 Gamma-ray Emitting Radioniclide Concentrations in 44 Water.
iii 1048 145
List of Tables (Cont.)
Page No.
II.C.5a Gamma-ray Emitting Radionuclide Concentrations in 50 Effluent Water, Goosequill (E-38).
II.C.6 Gross Beta Activity Concentrations in Bottom 54 Sediment.
II.C.7 Strontium-90 Activity Concentrations in Bottom 55 Sediment.
II.C.8 Strontium-89 Activity Concentrations in Bottom 56 Sediment.
II.C.9 Gama-ray Emitting Radionuclide Concentrations 57 in Bottom Sediment.
II.C.10 Gross Beta an'J Tritium Deposition from Precipitation. 65 II.C.11 Gamma-ray Emitting Radionuclide Deposition from 66 Precipitation at Location F1.
II.C.12 Gamma-ray Emitting Radionuclide Deposition from 67 Precipitation at Location F4.
II.C.13 Radiostrontium Deposition from Precipitation. 68 II.D.1 Tritium Concentrations in Water Extracted from Milk. 71 II.D.2 Strontium-90 Activity in Milk. 72 II.D.3 Strontium-89 Activity in Milk. 73 II.D.4 Gama-ray Emitting Radionuclide Concentrations in 74 Composite Milk Samples.
II.D.5 Tritium, Strontium-89, and Strontium-90 Concentrations 77 in Forage.
II.D.6 Gamma-ray Emitting Radionuclide Concentrations in 79 Forage.
II.D.7 Gross Beta Concentrations in Forage (pCi/kg) and 83 Soil (pCi/kg)
II.D.8 Gross Beta Soil (pCi/m2 ). 84 II.D.9 Gamma-ray Emitting Radionuclide Concentrations in 85 Soil (nCi/m2 ),
8 II.D.10 Tritium, Strontium-89, and Strontium-90 Concentrations 88 in Soil.
iv 9
InaR 146
List of Tables (Cont.)
Page No.
II.E.1 Gross Beta and Radiostrontium Concentrations in 92 Aquatic Biota Samples.
II.E.2 Gamma-ray Emitting Radionuclide Concentrations 97 in Aquatic Biota Samples.
II.F.1 Radionuclides in Facility Area Beef Cattle. 101 II.G.1 Sample Cross Check Data Summary. 103 II.H.1 Data Summary. 108 II.I.1 Errata 120 III.A.1 Environmental Radiation Surveillance Program. 133 III.B.1 Facility Area and Effluent Sampling Locations for 136 Environmental Media.
III.B.2 Adjacent Area and Downstream Sampling Locations for 137 Envirnmental Media.
III.B.3 Reference Area and Upstream Sampling Locations for 138 Envirnmental Media, v
1048 147
List. of Figures Page No.
II.A.1 Exposure Rate Measured by TLD 7 II.B.1 Gross Beta Concentrations in Air 13 3
II.B.2 H as TH0 in Tropospheric Water Vapor, Facility 19 3
II.B.3 H as TH0 in Tropospheric Water Vapor, Adjacent 20 3
II.B.4 Batch Liquid Releases of H 21 III.B.1 On-site Sampling Locations 134 III.B.2 Off-site Sampling Locations 135 1048 148
I. Introduction to Radiation Surveillance Data for the First Half of 1979.
During the first six months of 1979 the Fort St. Vrain fluclear Generating Station generated power as follows:
Dates With Number of Gross Electric Days Without Generation Month Genera tion Generation (MWH)
January 1-19, 23-31 3 109,306 Februa ry* 1 27 546 March
- 0 31 0 April
- 0 30 0 f/ay
- O 31 0 June
- O 30 0
- Refueling outage from February 1,1979 through end of reporting period.
It is important to note that the reactor was shut down for nearly the entire reporting period. Reactor effluents were therefore minimal during the period and due only to scheduled releases from various holding sys te',1s .
It should also be noted that the Republic of China conducted an atmospheric test of a nuclear weapon December 14, 1978. Any tropospheric and/or stratospheric radioactive debris from this test should have been evident during the present reporting period.
The environmental sampling and analysis program was essentially unchanged as compared to previous reporting periods. Essentially all radioactivity data measured on this project are near background levels and more importantly near the minimum detectable activity (MDA) levels for each radionuclide and sample type. It is well documented that even independent of the above reasons, environmental data exhibit great inherent 1048 149
2 variability. As a result, the overall variability of the surveillance data is quite large and it is necessary to use mean values to make any conclusions about the true absolute radioactivity concentrations in any environmental pathway.
It is well documented that environmental radiation surveillance data commonly exhibit non-normal frequency distributions. More often than not the data can be satisfactorily treated using log-nonnal statistics. However, when the number of observations is small, i.e. less than 10, log-nonnal treatment is tentative.
When a high percentage of data points are less than MDA or MDC, the minimum detectable concentrations of activity in that sample type, calcu-lation of true mean values is impossible. Therefore in this report we have chosen to not include mean values with each data table. At the end of this report in Section II.H., Conclusions and Summary, we have listed the calculated arithmetic means and confidence intervals for the entire reporting period as well as for the last year. We also list the geometric means and standard deviations for the last year of data reporting. If the data point measured resulted in a negative value, this value was used in calculating the true mean value in Table II.H.1. This is the current accepted practice by the U. S. Nuclear Regulatory Commission. It should be noted that we have not used any footnote for values less than MDC. Rather we list the measured value as less than the actual MDC value. Because this value is dependent upon variables such as the background count time and sample size, the MDC value will be different for each sample type and even within sample type.
Many sets of data were compared in this report. The statistical test used was either a "t"-test cr a paired "t"-test. If data sets are noted to be significantly different or not significantly different, the confidence for the statement is at the 95% level (u=0.05).
1048 150
3 The following is the footnote system used in this report.
- a. Sample lost prior to analysis,
- b. Sample missing at site.
- c. Instrument malfunction.
- d. Sample lost during analysis.
- e. Insufficient weight or volume for analysis.
- f. Sanple unavailabe.
- g. Analysis in progress.
N.A. Not applicable.
1048 151
4 II. Surveillance Data for January through June 1979 and Interpretation of Results.
A. External Gamma-ray Exposure Rates The average gamma-ray exposure rates expressed in mR/ day are given in Table II . A.1. The values were determined by CaF2:Dy (TLD-200) crystals for each of the 37 locations (See Table III.B.1).
The total exposure recorded by each TLD was divided by the number of days that elapsed between pre-exposure and post-exposure annealing to obtain the average exposure rate. The TLD devices are changed monthly at each location.
The data are grouped for Facility (F), Adjacent (A) and Reference (R) zones. See Figures III.B.1 and III.B.2 and Table III.B.1, III.B.2, and III.B.3 for the exact TLD locations.
The TLD data indicate that the mean measured exposure rate in the Facility area was approximately 168 mR/ year. The standard deviation was 10.4 mR/ year. There were no significant differences between the values for the Facility, Adjacent and Reference areas.
The exposure rate is due to cosmic rays, to natural gamma-ray emitters in the earth's crust and to surface deposition of fission products from world wide fallout.
Inspection of the values recorded for the Adjacent area again show a pattern of high values for the station A-35. Figure II.A.1 shows that this pattern has been observed since June of 1978, and has been extremely regular. In June of 1979, we set out 5 additional TLD devices at the A-35 site and collected one per week. This data showed that a high value occurred during the period 7/12 to 7/17. The daily mean exposure rate for that 5-day period was 6.2 mR/ day.
1048 152
5 More importantly the correction is not perfonned so that the data collected during the preoperational phase may be compared directly to postoperational . The fading is particularly evident in the TLDs that are left at each site for a one-year period. The mean values for those are significantly lower than for the TLDs changed monthly.
The mean value for the Facility area was not significantly different from the values for the Adjacent or Reference areas.
The variation observed between collection dates at the same site are due to true site variatiol and variation in the TLD readout procedure.
As mentioned in previcus rcports the latter is probably the largest component of this variation.
1048 153
6 Table II. A.1 Gama Exposure Rates Measured by the TLD Technique (mR/ day).
Fac'.lity Area Average Daily Gamma Exposure Rates Annual Jan. Feb. Mar. Anril ! May ilono 197R-1970 F 1 .43 .39 .45 .46 .50 .42 .37 F 3 .45 .45 .48 .47 .49 .40 .28 F 4 .42 .40 .41 .41 .48 .41 .25 F 7 .48 .40 .51 .41 .48 .42 .31 F 8 .48 .44 .46 .45 .50 .46 b F 9 .48 .42 .54 .46 .49 .43 .24 F 11 .45 .38 .48 .42 .49 .46 .33 F 12 .49 .46 .51 .41 .53 .49 .38 F 13 .50 .40 .45 .46 .49 .49 .24 F 14 .46 .39 .36 .40 .47 .45 .29 F 46 .50 .44 .53 .45 .49 .49 .41 F 47 .52 .43 .49 .45 .48 .44 .20 F 51 .47 .42 .45 .42 .49 .42 .21 Adjacent Area Loca t ions 4 A 5 .49 .43 .44 .46 .45 47 .33 A 6 .44 .43 .42 .36 43 .41 .27 A 27 .46 .40 .44 .41 .44 .45 .30 A 28 .44 .39 .40 .41 .44 .42 .32 A 29 .45 .40 .44 .42 .47 .46 .15 A 30 b .45 .49 .42 .47 .48 b
- r. 31 .41 .38 .39 .41 .46 .42 .28 A 32 l 49 .40 .44 .42 .43 b .29 A 33 .47 .43 .46 .40 .50 .42 .31 A 34 .52 .47 .51 .49 .50 .46 .33 A 35 .52 1.09
- 47
. 2.50 .51 38 .22 A 36 .47 .53 .44 .42 .49 .48 .32 Reference Area Locations R 15 43 .39 45 .43 41 .49 .34 R 16 l i .50 .39 .54 .47 .55 .49 .27 R 17 ! .42 .36 .43 .39 .42 .42 .23 R 18 ! .41 .36 .44 .41 .42 .44 .31 R 19 i .41 .36 .44 b .42 .40 .28 R 20 .45 .41 b .42 .45 .45 .26 R 21 l .46 .41 .46 .42 .41 .47 .34 R 22 i
.45 .41 .46 .42 .49 .47 .37 R 23 .42 .41 .47 .40 .4; .42 .17 R 24 .52 .44 .54 .51 .54 .52 .40 R 25 .47 .39 .46 .45 .38 .48 .38 R 26 .42 .41 .44 .38 .42 .45 ,
.29
\ , 1
. TLD Moved to new site March 3
- b. Sample missing at site 1048 154
t i
- J D ,
2 J
6 M
5 3 9 d
7 A A 9 l
~ s M
~ _
e = F s J e D 5
8, f- a N
4
- ~.
0
, s,
\ ,- ' S
- u. '
A
- 8 7
' J 9
1 D
L T
y w ' J b
d e -
r u '
M s
a e
M 5 3 e - '
A t A a
R d n
e a r , '
M I u 4
. s -
A. o F p
I x t a
3 I E F g
i F
Jj 7
7 D 9 1
~ .- .- _ -
1 N 5 0 5 0 5 0 5 0 3
3 2 2 1 1
- 0 Es .M
=
_Q5@ - m (T.
8 II.B. Air Sampling Data
- 1. Gross alpha and beta activity The concentrations of gross alpha and beta activity measured on air particulates for the Facility and Adjacent sampling sites are listed in Table II.B.1 and II.B.2. Figure II.B.1 shows the data from F-1, F-4 and A-35. There is slight evidence of tropospheric debris from the December 14, 1978, Republic of China nuclear weapon test and also slight evidence of a spring time injection of stratospheric debris from previous weapons test. There is no correlation of air concentrations measured at A-35 and the exposure rate data.
As discussed in the previous section and in III.A. the A-35 location was changed in February of 1979.
}Okb
Table II. B.1 Concentrations of Lona-Lived Gross Alpha Activity in Airborne Particles (fCi/m3 ),
a) First Quarter,1979.
Date Facility Areas Adjacent Areas Collected 1 2 3 4 , 5 6 35 1979 Jan. 6 4.6 (0.8)* 4.6 (0.8) 9.8 (1.4) 6.9 (1.2) 4.2 (0.7) 6.0 (1.1) ***
Jan. 13 4.6 (0.9) 5.8 (1.1) 5.4 (1.0) 5.4 (1.0) 4.3 (0.7) 8.3 (1.5) ***
Jan. 20 8.4 (1.1) 6.3 (1.0) 5.2 (0.8) 4.0 (0.7) 4.5 (0.7) 9.0 (1.2) ***
Jan 27 2.5 (0.6) 5.4 (1.0) 1.7 (0.5) 4.9 a (1.0) 2.9 (0.8) ***
Feb. 3 1.0 (0.4) 1.7 (0.5) 1.2 (0.4) 6.5 (1.2) 2.6 (0.5) 3.9 (0.8) ***
Feb. 10 2.6 (0.9) 1.6 (0.4) 0.4 (0.2) 2.3 (0.6) 1.2 (0.3) 2.9 (0.8) 0.9 (0.3)
Feb. 17 5.0 (1.1) 4.2 (0.8) 2.9 (0.6) 3.2 (0.8) 3.0 (0.6) 2.8 (0.6) 4.9 (1.0)
Feb. 24 5.2 (1.0) 0.6 (0.2) 1.7 (0.4) 7.1 (1.2) 2.4 (0.6) 3.3 (0.8) 4.1 (0.8) e Mar. 3 4.4 (1.0) 3.2 (0.7) 2.4 (0.5) 4.0 (0.9) 1.4 (0.3) 2.6 (0.6) 3.0 (0.7)
Mar. 10 2.4 (0.5) 2.0 (0.4) 1.4 (0.3) 4.6 (1.0) 2.3 (0.5), 2.4 (0.7) 3.0 (0.8)
Mar. 17 3.6 (1.1) 3.3 (0.7) 7.3 (1.0) E.1 (1.2) 2.1 (0.6) 3.6 (0.7) 2.9 (0.8)
Mar. 24 3.2 (0.9) 1.2 (0.3) a 2.6 (0.6) 2.1 (0.4) 2.0 (0.5) 1.9 (0.4)
Mar. 31 3.3 '(0.8) 2.1 (0.6) 1.4 (0.4) 7.9 (1.3) 0.6 (0.4) 1.5 (0.4) **
Quarterly -minimum 0.4 (51 samples) Quarterly --minimum 0.6
-maximum 9.8 (32 samples)
-average 3.8
-maximum 9.0 cp -average 3.1 Q All concentrations are expressed in femtocuries per cubic meter of air: I fCi/m3 = 10 -15 Ci/ml.
- Uncertainties (in parenthesis) are for the 9J% confidence interval (1.96 S.D.).
- Excessive dust loading, analysis uncertain.
( n *** Purap removed from field 11/4/78. New site being located.
N a Sample lost prior to analysis.
Table II. B.1 Concentratior.s of Long-Lived Gross Alpha Activity in Airborne Particles (fCi/m3 ),
b) Second Quarter, 1979 Date Facili ty Areas Adjacent Areas Collected 1 l 2 3 4 5 6 35 1979 April 7 7.8 (1.2)* 1.2 (0.4) 4.7 (0.6) 4.1 (0.9) 1.4 (0.4) 2.1 (0.6) 4.8 (0.8)
April 14 1.8 (0.6) 1.8 (0.5) 4).8 2.9 (0.8) a 1.1. (0.3) 1.7 (0.4)
April 21 11.1 (1.5) 5.8 (0.9) 4.0 (0.7) 11.0 (1.8) 3.9 (0.7) 5.5 (1.1) 7.1 (1.1)
April 28 7.9 (1.5) 5.0 (0.9) 4.9 (0.8) 8.9 (1.6) 3.7 (0.7) 5.6 (1.1) 5.8 (1.0)
May 5 6.4 (1.1) 2.1 (0.5) 3.4 (0.7) 7.4 (1.4) 3.4 (0.8) 4.2 (0.8) 2.5 (0.6)
May 12 2.2 (0.4) 1.0 (0.3) 0.9 (0.3) 3.0 (0.8) 2.4 (0.7) 0.8 (0.3) 1.4 (0.4)
May 19 5.1 (1.0) 2.3 (0.4) 1.6 (0.4) 10.9 (1.7) 3.4 (0.8) 4.1 (0.9) 2.3 (0.5)
May 26 6.3 (0.8) 2.7 l 6.4 (1.1) (0.6) 14.7 (2.9) 4.3 (0.9) 2.1 (0.6) 2.9 (0.6)
June 2 4.8 (1.0) q 6.0 (1.0) 3.5 (0.1) 5.6 (0.1) 3.4 (6.7) 3.5 (0.8) 3.6 (0.7)
June 9 6.0 (0.1) '
7.0 (0.1) 3.9 (0.7) 10.3 (0.2) 6.4 (1.5) 3.2 (0.7) 4.2 (0.8)
June 16 4.7 5.9 (0.1) 3.2 (0.6) 11.8 (0.2) 5.7 (0.9) l (0.9) 6.1 (1.0) 2.4 (0.5)
June 23 4.5 (1.1) 7.4 (1.6) 8.4 (0.1) 7.1 (0.1) 4.6 (0.1) 3.4 (0.7) 2.1 (0.4)
June 30 4.6 (1.1) 7.5 (1.6) 8.6 (1.7) 8.4 (2.1) **
4.8 (1.0) 12.7 (1.3)
Quarterly -minimum 0.8 Quarterly -minimum 0.8 (52. samples ) -maximum 14.7 (38 samples) -maximum 12.7
-average 5.6 -average 3.8 All concentrations are expressed in femtocuries per cubic meter of air: I fCi/m 3= 10-15 uCi/ml.
Uncertainties (in parentheses) are for the 95% confidence interval (1.96 S.D.).
analysis uncertain.
a**Sample Excessive lost dust prior loading, to ana lysis.
.O.
CD CD
Table II.B.2 Concentrations of Long-lived Gross Beta Activity in Airborne Particles (fCi/m3 ),
b.) First Quarter, 1979 Date ( Facility Areas Adjacent Areas Collected 1 2 3 4 5 . 6 35 1979 Jan. 6 28 (1) 40 (2) 29 (2) 48 (2) 21 (1) 28 (1)
Jan. 13 23 (1) 26 (1) 30 (1) 25 (1) 17 (1) 39 (2)
Jan. 20 **
19 (1) 23 (1) ,
20 (1) 18 (1) 16 (1) 23 (1)
Jan. 27 **
12 (1) 16 (1) i 13 (1) 25 (2) a 17 (1)
Feb. 3 **
20 (1) 8 (1) 16 (1) 32 (2) 12 (1) 22 (1)
Feb. 10 31 (2) 10 (1) 11 (1) 13 (1) 7 (1) 6 (1) 9 (1)
Feb. 17 37 (2) 25 (1) ,
19 (1) 24 (2) 15 (1) ; 21 (1) 29 (1)
Feb. 24 29 (2) 5 (1) 11 (1) 27 (2) 11 (1) !
16 (1) 17 (1) _
~
Mar. 3 29 (2) l 21 (1) 16 (1) 26 (2) 5 (1) i 12 (1) l 20 (1)
Mar. 10 18 (1) l 11 (1) 9 (1) 22 (1) 10 (1) ! 15 (1) f 12 (1)
Mar. 17 39 (2) 25 (1) 19 (1) 40 (2) 17 (1) 17 (1) 26 (1) f l Mar. 24 24 (1) a 9 (1) 17 (1) 6 (1) 13 (1) j 12 (1)
Mar. 31 ,
19 (1) 14 (1) 10 (1) 19 (1) 9 (2) 12 (1) 10 (1)
Quarterly -minimum 5 Quarterly -minimum 5 (51 samples) -maximum 48 (33 samples) -maximum 39
-average 22 -average 16 S
Q All concentrations are expressed in femtocuries per cubic meter of air: 1 fCi/m = 10 -15 tCi/ml.
3
- Uncertainties (in parenthesis) are for the 95% confidence interval, (1.96 S.D.).
- ** Pump removed from field 11/4/78. f;ew site being located.
Ln w a. Sample lost prior to analysis.
Tacle II.B.2 Concentrations of Long-lived Gross Beta Activity in Airborne Particles (fCi/m3 ),
b) Second Quarter, 1979 Adjacent Areas Date Facility Areas Collected ,
1 1 2 3 4 5 6 35 1979 April 7 15 (1)* 11 (1) 6 (1) 20 (1) 7 (1) 10 (1) 11 (1)
April 14 22 (1) 16 (1) 12 (1) 23 (2) a 7 (1) 11 (1)
April 21 24 (1) 19 (1) 11 (1) 31 (2) 14 (1) 17 (1) 21 (1)
April 28 30 (2) 20 (1) 16 (1) 31 (2) 11 (1) 16 (1) 19 (1)
May 5 25 (1) 9 (1) 10 (1) 29 (2) 15 (1) 13 (1) 10 (1)
May 12 9 (1) 5 (1) 8 (1) 18 (1) 16 (1) 5 (1) 8 (1)
May 19 25 (1) 13 (1) 9 (1) 31 (2) 19 (1) 15 (1) 15 (1)
May 26 , 23 (1) 12 (1) 11 (1) 54 (4) 20 (1) 13 (1) 14 (1)
June 2 l 20 (1) 28 (2) 9 (1) 25 (1) 13 (1) 11 (1) 11 (1) Z June 9 j 23 (1) 35 (2) 11 (1) 25 (2) 25 (1) 9 (1) 11 (1)
June 16 16 (1) 28 (2) 11 (1) 26 (2) 17 (9) 9 (1) 11 (17)
June 23 ! 20 (1) 39 (1) 24 (1) 27 (1) 17 (1) 8 (1) 13 (1)
June 30 15 (1) 32 (2) 23 (1) 24 (1) 17 (1) 9 (1) 8 (1)
Quarterly -minimum 5 Quarterly -minimum 5 (52 samples) -maximum 54 (39 samples) -maximum 25
-average 20 -average 15 All concentrations are expressed in femtocuries per cubic meter of air: 1 fCi/m = 10-15 Ci/ml.
- Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
_ a Sample lost prior to analysis.
O 4
CO O
13 100 _.
96 92 _ .
88 _ Fig. II.B.1 84 _ Gross Beta Concentrations in Air 80 76 _
72 _ _
F-4 68 _ *----* ~
64 _ V- - - - - --T A-35 60 _
56 "a 52 _
Y 48 _
44 _
40 _
36 _ N ,
/ \
32 ,
y \ l \
28 _ q t 'T '
' ' [' , g ,'\
24 -
N s ,
, lh k , a' R, ,,% , ,,
20 - ' s'f s
\ T- D f j ' 8. he k s [ / M 1
g i s e s
- s t y gj .
s' 8 8 V
\g ry
\
\/ \v. * / i '
iz _ b 4 gilj p y g ,_,. ,
8 _
w i 4 _
0
,,,,,g,,,i, giiiiigiiiii JAN FEB MAR APR MAY JUN 1979 1048 161
14
- 2. Tritium Activity. Tropospheric water vapor samples are collected continuously on Silica Gel at all seven air sampling stations (four in the Facility area and three in the Adjacent area). The specific activity of tritium in water in weekly samples from these stations is listed in Table II.B.3. The air concentration of tritium for the same weekly samples is listed in Table II.B.3a.
Tne variation of the measured tritium specific activity in tropospheric water vapor is large at all facility and adjacent air sampling sites.
Figure II.B.2 shows the values for the facility sites and figure II.B.3 shows the values for the adjacent sites t ir the first half of 1979.
There is general temporal agreement at all sites. Table II.B.3b shows the tritium activity released from the reactor by month for all modes of release. It can be noted that the batch liquid releases accounted for 95%
of the total tritium released during the period. The individual batch release data is shown in Figure II.B.4. The temporal correlation of the release data and the measured specific activity in air water vapor is only reasonably correlated.
The peak values observed at all sites for the week ending 1/20/79 does correspond to the high batch release of 1/15 and 1/17 but the peak specific activity values observed at all sites for the week ending 2/3/79 proceeded the high batch releases of 2/13 and 2/15. It must be noted again that during this general time period tropospheric fallout debris from the 12/14/79 Republic of China weapon test was appearing in this area. It can be concluded that both the weapon test fallout and the liquid batch releases were responsible for the elevated tritit.m specific activity values. The values at F-2 which is closest to the principal liquid effluent discharge pathway seems to show the highest values and is probably the result of evaporation of tritium from the surface water. The actual measured concentration and temporal correlation is a function of environmental 1048 162
15 temperature and humidity as well as surface water impoundment and flow rate.
It can be seen in Table II.C.2 and in Table II.H.1 that tritium specific activity in surface water has greater average values than in atmospheric water vapor. Ostlund (1) and Jacobs (2) noted that tritiated water precipitation that falls into the ocean is rapidly diluted. Subse-quently, reevaporation of water into water vapor and precipitation on land has a much lower tritium content. Reevaporation from land surfaces undergoes less dilution and therefore, this water retains a higher tritium content. This observation implies that the current major source of back-ground tritium in water vapor (and also precipitation) is the oceans which have lower tritium concentrations due to their great dilution ability (1).
At location F-4 a hygrothermograp'1 has been operational for most of the first half of 1979. Using the temperature and relative humidity data from the hygrothermograph it is possible to convert specific activity data from the hygrothermograph it is possible to convert specific activity of tritiated water collected on Silica Gel (pCi/ liter) to activity per unit volume cf air (pCi/m3 ). This is critical if calculation of immersion dose from tritiated water vapor were ever necessary. Two equations are used in the conversion of pCi/ liter of water to pCi/m 3of air. The first equation is used to determine the vapor pressure of water (3):
log 10P = A - B (C+t), where: P = vapor pressure (mm Hg) t = temperature (C)
A = 8.10765 B = 1750.286 C = 235.0 The temperature used is the integrated weekly value taken from the hygrothermograph. The conversion is completed in the second equation 1048 163
16 which is the " Ideal Gas Equation:"
PV = nRT, where P = vapor pressure (atmospheres)
V = volume (liters) n = number of moles of gas R = 0.08206 liter-atmospheres / mole OK T = temperature in OK The number of grams of water per cubic meter of air is then determined.
The value of "n" obtained is for saturated air. The relative humidity is therefore integrated over the week and this percentage of the saturated air value is taken. The final value is reported in pCi/m 3. This procedure has been applied to data collected for the first and second quarters of 1979 and listed in Table II.B.3a. These values are functions of both specific activity of tritium in water and the concentration of water in the air and show essentially the same location and time variations as the data in Table II.B.3.
(1) H. G. Ostlund. Tritium in the Atmosphere and Oceans. In Tritium.
Edited by A. A. Moghissi and M. W. Carter, 1971.
(2) Jacobs, D. G., 1968, " Sources of Tritium and Its Behavior Upon Release to the Environment," Oak Ridge National Laboratory, USAEC Report TID-24635.
(3) H. A. Lange, Handbook of Chemistry. 19th edition, revised. McGraw-Hill Book Co., New York, 1967. pp. 1436-1450.
10A8 164
Table II. B.3 '
Tritium Concentrations ist Atmospheric Water Vapor (pci/1).
a) First Quarter, 1979.
Date Facility Areas Adjacent Areas 1 2 3 4 5 6 35 Collected 1-6-79 991 783 367 <304 812 e 928 (292) * (289) (285) (290) (291) 1-13-79 1,370 1,030 462 500 1,070 592 914 (396) (292) (286) (286) (292) (287) (287) 1-20-79 1,940 2,260 1,180 579 846 1,030 933 (301) (305) (294) (281) (290) (292) (290) 1-27-79 535 987 938 454 1,107 977 e (283) (287) (286) (281) (288) (286) 2-3-79 3,320 4,750 1,380 2,200 3,420 2,560 e (816) (324) (291) (300) (312) (304) 2-10-79 734 596 <299 358 561 389 322 (284) (284) (280) (283) (281) (280) 2-17-79 593 1,020 383 790 <299 474 669 (284) (287) (281) (285) _
(282) _
(284)_ _
2-24-79 644 554 741 <318 <318 <318 <318 (301) (300) (302) 3-3-79 <318 759 984 <318 1,038 777 1,470 (302) (305) (305) (303) (310) 3-10-79 <359 1,218 <318 <318 <318 395 404 o ,
(307) (298) (295)
<359 <359 Q 3-17-79 3-24-79
<359
<318
<359
<318
<359 334
<359
<318
<359 _
364 <318 <318
~
(298) (298) ~ ~ ~ ~
3-31-79 <311 380 505 549 <511 4b8 <311 (292) (292) (291) (292)
-* Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.Dl.
e Insufficient weight or volume for analysis.
Table II. B.3
- Tritium Concentrations in Atmospheric Water Vapor (pCi/1).
b)Second Quarter, 1979 Facility Areas Adjacent Areas Date 3 4 5 6 35 Collected 1 2 4-7-79 330 276 400 422 288 434 486 (256)* (256) (257) (257) (256) (257) (258) _
4-24-79 476 307 729 E97 436 <273 324 (258) (258) (261) (259) (257) (256) 4-21-/9 <279 <279 <279 <279 654 <279 <279 (265) 4-28-79 284 501 664 423 516 353 475 (261) (263) (265) _
(263) (264) (262) (263) 5-5-79 <310 <310 <310 372 <310 457 503 (291) (292) (293) 5-12-79 648 616 363 261 418 627
- 599 (295) (294) (291) (290) (292) (295) (294) 5-19-79 <310 897 743 744 991 767 622 (298) (290) (296) (298) (296) (294) 5-26-79 393 814 612 1,060 629 1,180 666 (292) (296) (294) (300) (295) (301) (260) 6-2-79 <310 690 699 748 735 875 775 (295) (295) (296) (296) (248) (246) 6-9-79 e 259 <250 <250 376 <250 <250
_ (234) (236)
O 6-16-79 255 708 288 328 <250 <250 397 g (234) (239) (235) (235) (236) 6-23-79 404 1,120 659 698 379 <290 615 (273) (260) (275) (276) (272) (275)
& 6-30-79 649 1,310 <290 <290 4290 334 1,060 (275) (282) (272) (280)
- Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
e Insufficient weight or' volume for analysis.
19 5000 4800 _
t 4600 _ gg 4400 _ ,I f
4200 _ ll Fig. i!.B.'
It 3
4000 __ lt H as TH0 in Tropospheric Water vapor i
3800 _ I I
II 3600 _ l t
! I 3400 _ ,;
3200 _ l 1
, ; e F-1 3000___ I I y_4 F-2 l
2800 _ l , _ _ _ _ . F-3 I I 2500 _ , , .......... F-4 52400 _ l
% I l
2200 _ y , l1 It 2000 _ ;, f I
I i l 1; I 1800 _ l g g ; ,I i t I 1600 _ ; ,'
t ,
t 1400 _ I i I e
i l'f , kI j 1200 _ l 11 '. t p e 1030 _ '.
4 ,t .', t 830 _ / '
g i
, h' 4 , /
600 _
y\ n;, r. g /\,)t ,
s ,n,
't p.
\ I p j *
'f i'* - A
~
I #'
f
4
' 'f
/ .
.h
/ ', , * ' #/ . 1 0 ' '^ ^
i i , i a giii i i, i ..ii giiie ijiiiiigiiiii JAN FEB MAR APR MAY JUN 1979 1048 167
20 5000 4800 _ .
4600 _
4400 _
4200 _ Fig. !!.8?.3 3
4000 _ 6 a: TH0 in Tropospheric Water Vapor 3800 _
3600 _
3400 _
3700 _ .
A-6 l, : :
3000 _
A__ __ A A-35 2800 _
~~~
2600 _
- 2400 .
> 8 i
% 7200 _ i 2000 _ i l i 1800 _ l I
16C0 _ '
It'^ \ $
I fi 1200 _ f ,' i,
. i 1000 _ jg
' l # i ,
' l iI /
Aq, am - < x / .. :
\ sj \',' N '
600 _ \ '4 o, i i ,
r N /
s I es ;
' n
~
400 _ N 's ,' ,
2x _ ' \ \\,,p+ ' s' \ ,1 vg) 0 v A' 'l i i ' i il i i i i i giiiii giiiiijiiiiigiiii JAN FEB MAR APR MAY JUN 1979 1048 168
21 12.5 12.0 _
11.5 _
- 11. 0 __
10.5 _ Ii9 II B 4 10.0 Batch Liquid Releases of H 9.5 _
9.0 8.5 _
8.0 7.5 _
7.0 6.5 _
G
- 6. 0 _
5.5 5.0 4.5 _
l
- 4. 0 _._
3.5 _
3.0 2.5 2.0 1.5 _
1.C 0.5 -
0.0 , , ,
i llt.
. i. i
,i
. . . . i i i i i i i iii i JM FEB MAR jg79 M N #
1048 169
Table II.B.3a Tritium Concentrations in Air (pCi/m )
a) First Quarter, 1979 Date Facility Areas Adjacent' Areas Collected 1 2 3 4 5 6 35 1-6-79 c c c c c ; c 1-13-79 c c c c c c' c 1-20-79 c c c c c c c 1-27-79 c c c c c c c 2-3-79 c c c c c c c 2-10-79 c c c c c c c 2-17-79 c c c c c c c M 2-24-79 1.93 1.66 2.22 <0.953 <0.953 <0.953 <0.953 3-3-79 1.05 2.50 3.25 <0.970 3.42 2.56 4.85 3-10-79 <1.20 4.08 <1.20 <1.20 <1.20 1.32 1.35 3-17-79 <1.27 <1.27 <1.27 <1.27 <1.27 <1.27 <1.27 3-24-79 <1.27 <1.27 1.33 <1.27 1.45 <1.27 <1.25 3-31-79 <1.50 1.84 2.44 1.69 <1.50 2.03 <1.50 c - Instrument malfunction C
4 CO CD
Table II.B.3a Tritium Concentrations in Air (pCi/m )
b) Second Quarter, 1979 Date Facility Areas Adjacent Areas Collected 1 2 3 4 5 6 35 4-7-79 1.21 1.01 1.46 1.55 1.05 1.59 1.78 4-14-79 2.10 1.35 3.21 2.63 1.92 <1.20 1.43 4-21-79 <1.52 <1.52 <1.52 <1.52 3.56 <1.52 <1.52 4-28-79 1.58 2.78 3.68 2.35 2.86 1.96 2.64 5-5-79 <1.59 <1.59 <1.59 1.91 <1.59 2.35 2.58 5-12-79 3.42 3.25 1.92 1.38 2.21 3.31 3.16 5-19-79 <2.42 "
7.12 5.89 5.91 7.87 6.09 4.93 5-26-79 3.53 7.31 5.49 9.52 5.65 10.6 5.98 6-2-79 2.18 5.03 5.09 5.45 5.36 6.38 5.65 6-9-79 e 2.25 <2.17 <2.17 3.27 <2.17 <2.17 6-16-79 c c c c c c c 6-23-79 4.13 11.4 6.73 7.13 3.87 <2.96 6.28 6-30-79 7.17 14.5 <3.20 <3.20 <3.20 3.69 11.7 c - Instrument malfunction n
e - Insufficient weight or volume for analysis CO
24 Table II.b.3b Tritium Released (Ci) in Reactor Effluents,1979.
Mode Jan Feb Mar Apr May June Totai Continuous liquid 0.857 0.114 0.099 0.152 0.142 0.053 1.33 Ci effluent, turbine sump and reactor sump Gaseous, stack 0.240 0.205 0.067 0.048 0.068 0.036 0.664 Ci Batch liquid 12.2 20.1 0.9 0.31 3.38 6.20 43.1 Ci Total 13.3 20.4 1.07 0.51 3.59 6.29 45.2 Ci 1048 172
25
- 3. Activity of gama-ray emitting radionuclides in air.
Table II.B.4 lists the concentrations of I-131 observed in air by activated charcoal sampling and gamma-ray spectrum analysis. The sample counted is a composite from all air sampling stations. All charcoal samples are counted approximately 20 days post collection to allow Rn-222 decay and minimize decay of I-131. The I-131 concentrations presented are the result of decay correction back to the midpoint of the sampling period. Decay correction to the midpoint of the sampling period is appropriate as any I-131 in air does not arrive at the sampling station at a constant rate, but rather in pulses short compared to the collection period. This is the case whether the I-131 source term is weapons testing fallout or reactor stack effluent. Table II.B.4 shows air concentrations of I-131 during the first half of 1979 to be generally lower than the last half of 1978. The peak values during January are the result of the Chinese weapons test of December 14, 1978.
Table II.B.5 lists the results of the gamma-ray spectral analyses of weekly composites of the membrane air filters in each sample head. Evi-dence of the December 14, Chinese weapons test was minimal.
The radioruthenium data is listed in the tables as Ru-106. However, it is true that the activity measured is often a mixture of Ru-103 and Ru-106. Both isotopes have gama-rays at essentially the same energy and they cannot be separated by NaI(Tl) spectral analysis. No separation by half-life determination was attempted on the data. Since the half-life of Ru-103 is 40 days and that of Ru-106 is one year, in periods soon after an atmospheric test, a high proportion is expected to be Ru-103, and at later times predominately Ru-106. Since the ruthenium isotopes have negligible biological availability, neither has any consequences in cal-culation of population dose and efforts to separate them are not warranted.
1048 173
26 Table II. B.4 Iodine-131 Concentrations in Air (Taken From Composites of Activated Charcoal at all Air Sampling Stations and Determined by Gamma Spectrometry).
Sample Ending Dates I (fCi/m )
1-6-79 <4.76 1-13-79 303 (27.7)*
1-20-79 <4.22 1-27-79 193 (31.0) 2-3-79 <4.65 2-10-79 <4.53 2-17-79 <4.05 2-24-79 <3.68 3-3-79 <3.79 3-10-79 <3.70 3-17-79 89.8 (18.1) 3-24-79 <3.88 3-31-79 <4.08 4-7-79 <3.35 4-14-79 <4.24 4-21-79 <3.36 4-28-79 <3.33 5-5-79 <3.24 5-12-79 <3.16 5-19-79 <3,01 AllconcentrationsareexPresygdinfemtocuriespercubic meter cf air: 1 fCi/m3 = 10- pCi/ml.
- Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
1048 174
27 Table *.I. B.4 Iodine-131 Concentrations in Air (Taken From Composites of Activated Charcoal at all Air Sampling Stations and Determined by Gamma Spectrometry).
Sample Ending Dates 131 I (fCi/m )
5-26-79 <3.42 6-2-79 <3.68 6-9-75 <4.18 6-16-79 16.4 (22.6)*
6-23-79 45.3 (22.0) 6-30-79 <4.28 All concentrations are exPresygd 3 in femtocuries per cubic meter of air: 1 fCi/m = 10- PCi/ml.
- Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
1048 175
28 Table II. B.5 Gamma-ray Emitting Radionuclide Concentrations in Air (Taken from Composites of all Air Sampling Stations) (fCi/m3 ),
Sample Ending 106 137 95 Ru Cs Zr & Nb Dates 1-6-79 <1.76 0.779 (0.367)* 0.587 (0.227) 1-13-79 <4.72 4.71 (0.901) 1.22 (0.523) 1-20-79 <4.42 <0.980 0.667 (0.458) 1-27-79 <5.94 <1.32 <0.567 2-3-79 <1.61 0.932 (0.339) 0.664 (0.156) 2-10-79 <2.08 0.493 (0.484) 0.439 (0.228) 2-17-79 <4.27 <0.948 <0.405 2-24-79 12.4 (4.82) <0.871 <0.376 3-3-79 10.9 (4.96) <0.896 <0.386 3-10-79 8.92 (3.94) <0.874 <0.377 3-17-79 6.05 (4.78) <0.872 <0.376 3-24-79 8.10 (5.23) 3.17 (;.S~) 2.71 (0.371) 3-31-79 <4.28 <0.952 <0.412 4-7-79 <3.48 <0.771 <0.334 4-14-79 3.30 (2.38) 0.752 (0.399) <0.123 4-21-79 <3.50 1.49 (0.708) <0.335 4-28-79 6.06 (4.37) 1.48 (0.702) <0.333 5-5-79 <3.35 0.832 (0.674) <0.322 5-12-79 5.86 (1.32) 0.734 (0.223) <C.0594 5-19-79 4.03 (3.85) 1.30 (0.634) 0.605 (0.275) 5-26-79 <3.45 2.29 (0.720) 0.374 (0.286) 6-2-79 <3.88 0.874 (0.767) <0.371 6-9-79 <4.28 1.79 (0.872) <0.411 6-16-79 <4.00 1.88 (0.831) 0.804 (0.387) 6-23-79 1.84 (2.38) 1.56 (0.397) 0.525 (0.172) 6-30-79 <4.38 3.15 (0.910) 0.801 (0.361)
Allcongentratgnsareexpressedinfemtocuriespercubicmeterofair:
1 fC1/m = 10 pCi/nl.
- Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
1048 176
29 II.C.1 Radionuclide Concentrations in Surface Water Table II.C.1 lists the gross beta activity in surface water and potable water supplies in the vicinity of the reactor. Values are given for both the suspended and dissolved solids fraction of the total water sample. The suspended solids fraction contains algae and sediment particles which have very high concentration factors for radionuclides and consequently is considerably higher than the dissolved solids fraction. These values are given for samples collected nonthly. Potable water retains a negligible suspended solids fraction and consequently the gross beta values for ootable water are significantly lower.
Values of gross beta concentrations in surface water fluctuated within upstream, downstream and effluent sites but the mean upstream and the mean downstream values were very similar. There was no significant difference between upstream and downstream water sample mean values.
Mean values were slightly less than those measured during the last half of 1978. The gross beta concentrations in both potable water sources are lower but more variable than in surface water. The concentrations should be lower due to water purification which removes suspended seis and the variation is probably due to mixing of different reservoir sources.
Weekly samples, although not required by the Technical Specifications, were collected at E-38, the fann pond on the Goosequill ditch. This is the principal effluent route for liquid discharges from the reactor and a monthly sample may not be adequate to reflect periodic discharges. Gross beta concentrations are shown in Table II.C.1A. The mean concentration was 12.1 pCi/L and the standard deviation was 3.3. The mean was not significantly different from downstream or upstream values.
Table II.C.2 lists tritium in surface water and potable water supplies for each monthly collection for the first half of 1979. Values occasionally 1048 177
30 fluctuate widely within Upstream and Downstream sites, but this variability cannot be attributed to any direct cause. The mean values for Upstream, Downstream and Potable water locations for tritium are not significantly different even though there were extremely wide variations. No reason can be given for these wide variations, particularly for the potable water supplies.
Significantly high tritium values were again observed at effluent sampling sites in the first half of 1979. This is directly attributed to liquid effluent releases by Fort St. Vrain. Downstream locations did not reflect any significant increases in tritium concentration, therefore no dose commitment calculations are warranted. Tritium values observed for weekly samples taken from E-38 are comparable to average tritium values in monthly composites. Note that Table II.C.2 indicates especially large values observed in March.
Table II.C.3 and II.C.4 lists Sr-90 and Sr-89 concentrations in surface water at the same sampling locations. Table II.C.4. A lists the same radionuclice; as well as tritium in reactor effluent water samples collected weekly at E-38. Note that Ta.ble II.B.3b and Table II.C.4. A indicates the major tritium releases to be in February. This discrepancy with Table II.C.2 substantiates the need for continuous monitoring at E-38.
A continuous sampling station will be designed for operation during the last half of 1979.
ThA concentrations of Ru-106, Cs-137 and Zr-Nb-95 in surface and potable water are given in Table II.C.5. The same radionuclides were measured in the weekly samples collected at E-38 and this data is shown in Table II .C.S. A. The elevated measure concentrations of the three fission products observed 1/27 and 4/21 cannot be explained at this time.
1048 178
31 It is suspected that Ra-226 and/or throrium-232 contamination from soil particulates may be responsible. The samples will be counted again after a significant decay period to check on this possibility.
1048 179
32 Table II. C.1 Gross Beta Activity in Water for Samples Collected January 20, 1979 .
Sampling Suspended Solids Dissolved Solids Total Water Locations pCi/kg pCi/kg Concentration pCi/l Effluent E 38: Farm Pond <45,900 3,850 20.1 (coosequill) (1,880) * (2.91)
E 41: Slough to <130,000 <2,530 7.45 St. Vrain Creek (2,49)
Downs t r; u.'.
D 37: Lower Latham <20,200 10,300 ?,2. 4 Reservoir (2,020) (2.64)
D 40: S. Platte River
<1,210,000 4,910 22.2 Below Confluence (1,880) (2.97)
D 45: St. Vrain <135,000 22,000 13.8 Creek (3,570) (2.74)
Upstream
<74,300 32,100 20.5 U 42: St. Vrain Creek (3,920) (2.96)
U 43: S. Platte <116,000 15,300 12.9 River (2,800) (2.63)
Potable F 49: Visitor's 23,300 1.65 N.A.
Center (7,270) (0.516)
D 39: Gilcrest 8,460 8.60 City Water N.A. (2,200) (2.23)
N.A. Not applicable.
- Uncertsinties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
1048 180
s 33 Table II. C.1 Gross Beta Activity in Water for Samples Collected February 24, 1979 .
Sampling Suspended Solids Dissolved Solids Total Water Locations pCi/kg pCi/kg Concentration pCi/l Effluent E 38: Farm Pond <55,300 4,110 10.9 (coose quill) (2,990)* (2.55)
E 41: Slough to <193,000 13,600 10.3 St. Vrain Creek (2,770) (2.62)
Downstream D 37: 16,600 9,470 11.5 Lower Latham Reservoir (16,100) (2,140) (2.53)
<75,600 9,320 6.87 D 40: S. Platte River nelow Confluence (2,570) (2.50)
D 45: St. Vrain <49,400 6,060 5,58 Creek (2,270) (2.39)
Upstream
<60,900 9,370 U 42: St. Vrain ,8.32 Creek (2,410) s2.50)
U 43: S. Platte <88,600 8,200 6.78 River (2,300) (2.50)
Potable F 49: Visitor's 19,400 1.01
"'^"
Center (9,290) (0.483)
D 39: ilcrest 7,670 7.42 City Water N.A. (2,250) (2.18)
N.A. Not applicable.
- Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
1048 181 L
34 Table II. C.1 Gross Beta Activity in Water for Samples Collected March 1. 1974 -
Sampling Suspended Solids Dissolved Solids Total Water Locations pCi/kg PCi/kg Concentration pCi/1 Effluent <50,800 14,500 , 10.6 E 38: Tarm Pond (3,040) (2.55)
(Goosequill)
E 41: Slough t <133,000 <2,430 <1.25 St. Vrain Creek Domstream 43,000 10,200 14.2 D 37: Lower Latham (16,700) (2,170) (2.49)
Reservoir D 40: S. Platte River < ,40v 11,600 10.5 Below Confluence (2,780) (2.46)
D 45: St. Vrain <33,300 8,080 7.75 Creek (2,580) (2.38)
Upstream u 42: St. Vrain <145,000 8,670 8.50 Creek (2,190) (2.50)
U 43: S. Platte 26,100 14,400 12.7 River (15,800) (3,110) (2.48)
Potable F 49: Visitor's 16,300 0.634 N.A.
Center (11,800) (0.460)
D 39: Gilcrest 8,880 8.85 City Water N.A. (2,450) (2.23)
N.A. Not applicable.
- Uncertainties (in parentheses) are for the 95% confidence interval.
(1.96 S.D.).
1048 182
35 Table II. C.1 Gross Beta Activity in Water for Samples Collected April 21, 1979 .
Sampling Suspended Solids Dissolved Solids Total Water Locations pCi/kg pCi/kg Concentration pCi/l Edluent 24,800 12,760 13.0 E 38: Farm Pond (6,330)* (3,640) (2.32)
(Goosequill) _
E 41: Slough t <13,900 12,840 7.40 St. Vrain Creek (3,240) (2.51)
Downstream <48,500 3,070 11.7 D 37: Lower Latham (721) (2.83)
Reservoir D 40: S. Platte River <45,700 10,100 5.94 Below Confluence (3.510) (2.17)
D 45: St. Vrain <49,000 12,433 8.18 Creek (3,300) (2.46)
Upstream 36,000 4,760 5.71 U 42: St. Vrain (13,100) (4,260)
Creek (2.14)
U 43: S. Platte 52,800 10,700 11.6 River (21,900) (2,790) (2.40)
Potable F 49: Visitor's 41,100 2.09 N.A. (10,500) (0.533)
Center D 39: Gilcrest 6,330 1.49 City Water N.A. (2,240) (0.527)
N.A. Not applicable.
- Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
1048 183
36 Table II. C.1 Gross Beta Activity in Water for Samples Collected May 26, 1979 .
Sampling Suspended Solids Dissolved Solids Total Water Loca t ions pCi/kg pCi/kg Concentration pCi/l Effluent E 38: Farm Pond <17,500 12,800 11.1 (Goosequill) (2,930)* (2.49)
E 41: Slough to d d d St. Vrain Creek Downstream
<44,200 9,180 10.2 D 37: 1.ow r gtham Reservoir (2,010) (2.59)
D 40: S. Platte River <49,800 10,500 3.83 Below Confluence (4,580) (2.34)
D 45: St. Vrain 41,100 13,000 6.95 Creek (18,300) (6,220) (2.22)
Upstream 23,100 12,400 5.69 U 42: St. Vrain (18,100) (9,920) (2.25)
Creek '
U 43: S. Platte 87,200 9,220 9.95 River (46,000) (2,640) .(2. 39 ),
Potable F 49: Vi<.itor's N.A. 44,300- 9.04 I"'"# (3,950) (0J05)
D 39: Gilcrest 9,630 2.44 City Water N.A. (2,260) (0.0571)
N.A. Not applicable.
- Uncertainties (in parentheses) are for the 957. confidence interval, (1.96 S.D.).
d Sample lost in analysis.
1048 184
o 37 Table II. C.1 Gross Beta Activf cy in Water for Samples Collected _JyM&,1929 .
Sampling Suspended Solids Dissolved Solids Total Water Locations pCi/kg pCi/kg Conc en t ra t ion pCI/l Effluent-28,000 16,800 10.9 E 38: Farm Pond (10,800)*
(Coos e qu il_~ 1 (4,790) (2.35)
E 41: Slough to 81,200 17,500 10.4 St. Vrain Creek (58,300) (4,390) (2.41)
Downstream 139,000 10,700 14.4 D 37: Lower Latham (56,000) (2,240)
Reservoir (2.50)
D 40: S. Platte River 59,500 21,300 11.5 Below Confluence (16,400) (6,690) (2.26)
D 45: St. V ra in 55,700 15,700 7.24 Creek (18,000) (9.410) (2.15)
Upstream 69,700 20,300 8.84, U 42: St. Vrain (19,400) (9,820) (2.17)
Creek -
U 43: S. Platte 48,400 25,600 River 8.18 (36,700) (8,020) (2.33) -
50,300 0.654 F 49: Visitor's (35,.0)
Center N.A. (0.460)
D 39: Gilcrest 12,200 City Water 2.50 N.A. (2,780) (0.568) __3 N.A. Not applicable.
- Uncertainties (in parentheses) are for the 95% confidence Interval, (1.96 S.D.).
1048 185
38 Table II.C.I.A.
Gross beta activity in effluent water, Goosequill Pond , E-38.
First Quarter, 1979 Total Water Collection Date Suspcaded Solids Dissolved Solids Concentrations pCi/Pg* pCi/kg* PCi/1 1-6-79 480,000 (302,000)
- 5,790 (1,660) 10.8 (2.43) 1-13-79 44,900 (28,300) 3,710 (1,360) 7.95 (2.42) 1-20-79 < 45,900 3,850 (1,880) 20.1 (2.91) 1-27-79 70,300 (57,900) 10,500 (2,000) 14.2 (2.61) 2-3-79 < 32,400 15,400 (2,840) 11.9 (2.66) 2-10-79 < 310,000 14,100 (2,900) 11.1 (2.57) 2-17-79 < 57,800 20,600 (3,070) 17.9 (2.72) 2-24-79 < 55,300 4,130 (2,990) 10.9 (2.55) 3-3-79 < 94,000 20,100 (4,530) 9.16 (2.51) 3-10-79 < 50,800 14,500 (3,040) 10.6 (2.55) 3-17-79 43,800 (28,800) 11,300 (4,300) 7.19(2.28) 3-24-79 < 56,700 14,700 (3,160) 11.2 (2.51) 3-31-79 < 40,800 13,200 (3,230) 9.45 (2.46)
Uncertainties (in parentheses) are for the 95% confidence interval.
104g 186
39 Tabl e II.C. I. A.
Gross beta activity in effluent water, Goosequill Pond, E-38.
Second Quarter, 1979.
Total Water Collection Date Suspended Solids Dissolved Solids Concentrations pCi/kg* pCi/kg* pCi/l 4-7-79 <64,700 23,000 (6,000)* 7.70 (2.43) 4-14-79 27,700 (10,900) 14,400 (4,550) 9.94 (2.30) 4-21-79 24,800 (6,330) 12,760 (3,640) 13.0 (2.321 4-28-79 2,810 (1,220) 13,800 (3 ,510) 12.1 (2.53) 5-5-79 25,600 (19,600) 14,100 (3,050) 12.3 (2.50) 5-12-79 31,100 (8,500) 19,500 (4,970) 13.6 (2.34) 5-19-79 161,000 (64,600) 11,100 (2,770) 12.1 (2.41) 5-26-79 <17,500 12,800 (2,930) 11.1 (2.49) 6-2-79 a a a 6-9-79 42,400 (29,300) 21,400 (4,840) 11.6 (2.45) 6-16-79 28,000 (10,800) 16,800 (4,790) 10.9 (2.35) 6-23-79 41,800 (6,140) 21,200 (5,300) 19.7 (2.27) 6-30-79 46,100 (7,650) 15,300 (5,350) 14.9 (2.18)
- Uncertainties (in parentheses) are for the 95% confidence interval.
a Sample lost prior to analysis.
1048 187
Table II. C.2 Tritium Concentrations in Surface Waters (pCi/l).
Sampling Monthly Collection Dates 1-20-79 2-24-79 3-10-79 4-21-79 5-26-79 6-9-79 Effluent 4,400 6,520 913 11,400 1,190 E 38: Farm Pond (coosequill) (321)* 2(249) 318 (318) (263) (276) (285) 573 1,300 14,200 1,620 f 581 E 41: slough to St. Vrain Creek (284) (343) (373) (270) (277)
Downstream o 37: Lower Latham <299 2,262 509 711 221 410 Reservoir (318) (260) (261) (275) (277)
<299 1,220 1,100 517 <295 <295 D 40: S. Platte River Below Confluence (307) (265) (258) 8 522 924 956 541 225 <295 o 45: St. Vrain Creek (282) (264) (264) (257) (275)
Upstream
<299 <359 1,130 745 726 354 U 42: St. Vrain Creek (266) (261) (281) (277) 425 <359 871 542 625 <295 U 43: s. Platte River (281) (263) (257) (279)
Potable 3,520 740 590 477 5,940 <295 F 49: Visitor's (327)
Center (312) (262) (260) (258)
<299 843 968 747 753 416 D 39: C11 crest City Water (303) (264) (261) ; (281) (277)
O
- Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
$ f Sample unavailable.
T
Table IT. C.3 Strontium 90 Concentrations in Surface Waters (pCi/1).
Sampling Monthly Collection Dates L cati ns 1-20-79 2-24-79 3-10-79 4-21-79 l 5-26-79 6-16-79 Effluent E 38: Farm Pond 21.9 <0.838 0.756 d <0.253 <0.815 (coosequill) (23.8)* (0.878)
E 41: Slough to <0.854 <0.798 0.821 d d <2.35 St. Vrain Creek (0.880)
Downstream D 37: Lower Latham <0.700 <0.659 2.57 d 1.59 <0.768 Reservoir (1.12) (5.23)
D 40: S. Platte River 0.953 <0.973 0.725 d <0.946 0.576 Below Confluence (0.671) (1.06) (0.574)
D 45: St. Vrain 1.36 <0.657 0.868 <0.693 <1.46 1.36 Creek (1.18) (1.25) (1.08)
Upstream U 42: St. Vrain 1.29 <0.789 d d <1.51 < 0. 686 Creek (0.675)
U 43: S. Platte 1.21 <0.562 <1.06 d <0.973 1.82 River (0.765) (1.53)
Potable b
A F 49: Visitor's Center 2.51 (1.28) 0.720 (0.883)
<0.644 <0.785 <1.25 3.19 (1.65)
D 39: G crest City
,c <0.699 <0.665 <0.949 d <0.749 <0.699
- Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
- d. Sample lost in analysis.
Table II. C.4 Strontium 89 Concentrations in Surface Waters (pCi/1).
Sampling Monthly Collection Dates L ^'I ""
1-20-79 2-24-79 3-10-79 4-21-79 5-26-79 6-16-79 Effluent E 38: Farm Pond <l1.1 <0.667 <0.653 d 0.755 <0.720 (Goosequill) (1.45)
E 41: Slough to St. Vrain Creek <0.696 <0.624 <0.590 d d <1.88 Downstream D 37: Lower Latham <0.600 5.05 <0.824 d <0.619 2.64 Reservoir (l.64) * (l.17)
D 40: S. Platte River <0.588 4.36 <0.698 d <0.888 <0.456 Below Confluence (1.83) 2 D 45: St. Vrain <0.964 2.94 <0.831 2.19 <1.09 < 0.803 Creek (1.41) (2.84)
Upstream U 42: St. Vrain <0.616 5.33 d d <1.18 < 0.669 Creek (2.17)
U 43: S. Platte River <0.626 <0.560 <0.904 d <0.973 <1.15 CD 5:= Potable Q <1.10 <0.606 <0.678 1.67 2.35 <1.29 F 49: Visitor's
- Center (2.60) (3.10)
D 39: I I CD <0.503 <0.629 <0.659 d <0.690 <0.573 ter
- Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.),
- d. Sample lost in analysis.
43 Tabic II.C.4.A Tritium, Strontium 89, and Strontium 90 Concentrations in Effluent Water, Goosequill Pond , E-38.
First and Second Quarter,1979 Collection Tritium Strontium 89 Strontium 90 Date (pCi/1) (PCi/1) (PCi/1) 1-6-79 460 (286)* <0.726 <0.776 1-13-79 154,000 (1,010) <0.532 <0.560 1-20-79 4,400 (321) <11.1 21.9 (13.8) 1-27-79 18,400 (439) <9.54 2.28 (1.08) 2-3-79 39,500 (568) 1.56 (2.31) <9.01 2-10-79 57,800 (560) <0.898 <0.822 2-17-79 316,000 (1,420) < 0. 728 <0.915 2-24-79 2,249 (318) <0.667 <0.838 3-3-79 10,200 (344) <0.546 12.4 (1.82) 3-10-79 6,520 (318) <0.653 0.756 (0.878) 3-17-79 809 (263) <1.24 1.70 (1.66) 3-24-79 381 (258) <1.11 <1.33 3-31-79 1,240 (267) <0.904 1.34 (1.17) 4-7-79 1,250 (267) <0.843 1.10 (1.18) 4-14-79 882 (263) <6.02 'O.818 4-21-79 913 (263) d d 4-28-79 1,160 (301) <0.921 2.39 (1.15) 5-5-79 746 (261) <0.658 <0.903 5-12-79 606 (259) <0.828 <0.936 5-19-79 21,700 (448) <0.774 <1.07 5-26-79 11,400 (276) 0.755 (1.45) <0.253 6-2-79 a a a 6-9-79 1,190 (285) <0.664 <0.508 6-16-79 715 (276) <0.720 <0.815 6-23-79 50,800 (612) <1.77 .2.70 (2.69) 6-30-79 34,700 (527) 0.733 < 0.833
- Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.)
- a. Sample lost prior to analysis d Sample lost in analysis.
1048 191
Table II. C.5 Gamma-ray Emitting Radionuclide Concentrations in Water for Samples Collected Janua ry 20,1979 .
Sampling Suspended Solids (pC1/kg) Dissolved Solids (pCi/kg) Water (pCi/l)
Locations 106 Ru 137 Cs 95 Zr&Nb 106 Ru 137 Cs 95 Zr6Nb 106 Ru 137 Cs 95 Zr&Nb Effluent E 38: Farm Pond 433,500 <26,000 <11,100 <516 <161 <68.0 <4.53 < 0. 809 <0.290 (Goosequill)
E 41: Slough to <220,000 <68,100 75,000 , < 468 304 184 <4 . 53 0.929 ' 1.05 St. Vrain Creek (31,200) (157) (73.8) (0.551) (0.305)
Downstream D 37: Lower Latham <38,900 <12,100 <5,170 3,110 4,170 987 3.69 4.79 1.31 Reservoir (1,940) (614) (259) (3.20) (0.838) (0.439)
D 40: S. Platte River <970,000 309,000 218,000 < 2,170 696 < 284 < 4. 53 1.47 0.720 Below Confluence (233.000) (136.000) ,
(544) (0 7R9) (0.434)
D 45:,St. Vrain <291,000 <90,600 <38,400 < 3,010 <933 <397 <4.53 *').809 <0.290 Creek Upstream U 42: St. Vrain 48,000
- 52,800 35,700 < 2,640 <818 <351 <4.53 0.951 0.501 Creek (47.700) (11,900) (6,980) (0.550) (0.308)
U 43: S. Platte 349,000 89,400 52,100 < 2,640 <816 <344 <4.53 1.20 0.842 River (176,000) (45,000) (21,200) (0.806) (0.462)
[
A Potable
< 30,100 9,980 7,330 <2.58 0.855 0.628 F 49: Visitor's Q .A. N.A. N.A. (7,550) (3,900)
Center (0.647) (0.334)
- b 3s: Gilcrest City < 2,870 <892 462 <2.39 < 0. 741 0.383 4 Water N.A. N.A. N.A. (6%) (0.445)
N
- Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
N.A. Not applicable.
Table II. C.5 Camma-ray Emitting Radionuclide Concentrations in Water for Samples Collected February 24,1979 .
Sampling Suspended Solids (pCi/kg) Dissolved Solids (pC1/kg) Water (pCi/1)
Locations 106 Ru 137- Cs 95 Zr&Nb 106 Ru 137 Cs 95 Zr&Nb 106 Ru 137 Cs 95 Zr&Nb Effluent E 38: Farm Pond 333,000 129,000 88,900 <544 <170 113 7.19 2.57 1.89 (Coosequill) (112,000) (28,200) f15,900) (162) (2.25) (O.561) (O.323) 41: Slough to 767,000 274,000 321,000 <783 <243 315 <4.53 0.939 1.40 St. Vrain Creek (648,000) (163,000) (96,200) (156) (0.569) (0.338)
Downstream D 37: Lower Latham 64,700 c9,270 d ,940 <484 298 154 4.93 <0.809 c0.290 Reservoir (29.100) (161) (99.2) (2.26)
D 40: S. Platte River <90,300 :28,000 <11,900 <844 287 <112 <4.53 <0.809 c0.290 Below Confluence (266)
D 45: St. Vrain 316,000 214,000 193,000 <2,420 <750 <320 <4.53 3.39 3.44
' Creek (52,900) (13,200 (7.860) (0.578) (0.349)
Upstream U 42: St. Vrain :94,200 <
29,300 :12,500 <2,690 1,180 382 <4.53 1.02 :0.290 Creek (670) (423) (0.705)
U 43: S. Platte 251,000 278,000 240,000 4,620 5,390 1,930 8.20 9.35 5.38 River ( 68',300 )~ _ (17,000) (10,200) (2,530) (660) 1403) (2.47) (0.636) (0.387)
Potable CD F 49: Visitor's <24,800 13,700 4,590 <2.59 1.43 0.480 N.A. N.A. N. A. ' (6,190) (3,910)
Center (0.647) (0.408) 4 D 39: Gilcrest City :2,080 <650 380 <2.35 <0.735 0.430 L*4 Water N.A. N.A. N.A. (352) (0.398)
- Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
N.A. Not applicable.
Table II. C.5 Gamma-ray Er.itting Radionuclide Concentrations in Water for Samples Collected March 10. 1979 .
Sampling Suspended Solids (pC1/kg) Dissolved Solids (pC1/kg) Water (pCi/l)
Locations 106 Ru 137 Cs 95 Zr&Nb 106 Ru 137 Cs 95 Zr&Nb 106 Ru 137 Cs 95 Zr&Nb c 98,400 c30,500 17,J00 , <2,730 3,860 1,730 E 38: Farm Pond <4.53 <3.90 1.91 (16,000) (724)
(Goosequill) (524) (0. 'G) (0.429)
<107,000 <33,200 32,000 3,510 1,000 <385 <4.53 E 41: Slough to 1.04 <0.290 St. Vrain Creek [20,8001 (2,820) (702) (0.850)
Downstream
<26,900 :8,300 r3,560 <1,910 2,230 1,070 <4.73 2.93 1.29 D 37: Lower Latham Reservoir (502) (365) (0.837) (0.598) 3 D 40: S. Platte River c42,900 13,300 10,500 <2,530 <785 <335 <4.73 <0.809 0.562 Below Confluence (7,020)
(0.506)
D 45: St. Vrain <61 100
, 18,900 8,090 1,300 331 438 <4.73 '0.809
' Creek
<0.290
_ (960) (236) (148)
Upstream U 42: St. Vrain 163,000 's 50,500 62,500 <2,060 <639 <273 <4.73 :0.809 Creek '(27,300) 1.14
[0.511)
- U 43: S. Platte : 52,900 16,300 6,990 <995
<309 <132 <4.73 <0.809 :0.290 CD River
~ ' ' ' '
4 CO Potable
. F 49: Visitor's N.A. N.A. N.A. ' " ' * # *
- e Center ( 3,'930)
- D 39: Gilcrest City :2,140 720 589 <4.73 0.809 0.662 Water N.A. N.A. N.A. ( 538 ) (400) (0.605) 0.449 )
- Uncertaint.'es (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
N.A. Not applicable.
Table II. C.5 Camma-ray Emitting Radionuclide Concentrations in Water for Samples Collected April 21, 1979 .
Sampling Suspended Solids (pCi/kg) Dissolved Solids (pCi/kg) Water (pCi/1)
Locations 106 Ru 137 Cs 95 Zr6Nb 106 Ru 137 Cs 95 Zr6Nb 106 Ru 137 Cs 95 Zr6Nb Effluent 107,000 28,900 33,900 <4 ,610 <1,430 < 610 14.6 2.22 2.23 E 38: Farm Pond (6,910b (1,720) (988) (2.59) (0.641) (0.395)
(Goosequill)
E 41: Slough to <118,000 <36,500 <15,600 q
<2,930 4,340 3,950 < 4.53 1.69 1.37 St. Vrain Creek (782) (543) (0.476) (0.380)
Downstream < 26,100 <8,040 < 3,440 <1,820 1,500 477 < 4.53 1.81 0.542 D 37: Lower Iatham (452) (311) (0.554) (0.363)
Reservoir D 40: S. Platte River <106,000 <32,800 <14,000 <2,780 < 862 < 367 < 4.53 <0.809 <0.290 Below Confluence D 45: St. Vrain <i]7,000 33,200 <14,100 < 790 '464 633 < 4.53 <0.809 0.827
' Creek (259) (180) (0.374)
Upstream <2,790 3,770 < 4.53 1.18 0.527
<21,100 <6,520 923 430 U 42: St. Vrain
- (1,620) (396) (258) (0.527) (0.339) o Creek p.
O U 43: S. Platte <36,600 21,100 5,160 5,110 1,320 528 < 4.53 2.41 0.775
- River
'(9,250) (5,450) (2,600) (644) (416) (0.790) (0.488)
Potable F 49: Visitor's 113,400 4,900 9,930 < 0.824 0.302 0.613 N.A. N.A. N.A. (4,350) (2,990) (0.268) (0.184)
Center D 39: Gilcrest City e7,630 < 2,370 1,230 < 2.49 <0.774 0.403 Water N.A. N.A. N.A. (1,230) (0.401)
- Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
N.A. Not applicable.
Table II. C.5 Gamma-ray Emitting Radionuclide Concentrations in Water for Samples Collected May 26, 1979 .
Sampling Suspended Solids (pC1/kg) Dissolved Solids (pC1/kg) Water (pCi/1)
Locations 106 Ru 137 Cs 95 Zr&Nb 106 Ru 137 Cs 95 Zr&Nb 106 Ru 137 Cs 95 Zr&Nb Effluent E 33: Farm ?ond <31,300 <9,710 6,130 <3,000 1,040 <396 <4.53 1.41 0.407 (Goosequill) (3,690), (744) (0.795) (0.389)
E 41: Slough to St. Vrain Creek d d d d d d d d d Downstream
<66,000 <20,500 <8,720 <702 <217 1,060 <4.53 <0.809 1.41 D 37: Lower Latham Reservoir (115) (0.282) ,
D 40: S. Platte River
<95,800 <29,700 18,900 <5,500 <1,700 <725 <4.53 <0.809 <0.290 Below Confluence (11,100)
<33,500 <10,400 <4,410 <8,770 <2,710 <1,150 <4.53 <0.809 <0.290 D 45: St. Vrain
' Creek
~~~
Upstream
<34,300 <10,700 <4,540 <6,520 <2,020 1,930 <4.53 0.742 0.880 c:3 U 42: St. Vrain '
4*" Creek (786) (0.783) (0.372)
Co U 43: S. Platte <31,900 <9,870 <4,200 <846 362 488 <4.53 <0.809 <0.290
-' River (294) (176) w C7s Potable
<3,110 <961 <435 <2.50 <0.772 <0.350 F 49: Visitor's N.A. N.A.
N.A.
Center D 39: Gilcrest City < 1,890 < 585 < 249 < 2. .!e < 3.759 < 0.323 Water N.A. N.A. N.A.
- Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
N.A. Not applica'ule.
- d. Lost in analysis.
Table II.C.5.A.
Gamna-ray Daitting Radionuclide Concentrations in Effluent Water, Goosequill Pond , E-38.
Collection Suspended Solids (oCi/kg) Dissolved Solids (pCi/kg) Water (pCi/1)
Date 106 Ru 137 Cs 95 ZrSNb 106 Ru 137 Cs 95 Zr6Nb 106 Ru 137 Cs 95 ZrGNb 1-6-79 <1,260,00 <392,000 <167,000 <1,670 3,320 874 <4.53 4.71 1.33 (452)* (231) (0.837) (0.508) 1-13-79 <53,300 <16,600 <7,080 <1,400 <434 <186 <4.53 <0.809 <0.290 1-20-79 <83,500 <26,000 <11,100 <516 <161 <68.0 <4.53 <0.809 <0.290 1-27-79 6,310,000 1,930,000 3,140,000 <3,530 <1,100 1.07 129 39.1 64.0 (179,000) (40,500) (40,300) (0.782) (4.38) (0.998) (0.943) 2-3-79 <336,000 <104,000 <44,200 2,890 <672 292 <4.53 <0.809 <0.209 w (2,320) *
(138) 2-10-79 <115,000 <35,700 <15,200 799 <246 269 <4.73 <0.809 0.330 (1,170) (210) (0.462) 2-17-79 <162,000 <50,200 <21,300 <2,550 <796 <339 <4.73 <0.809 <0.290 2-24-79 333,000 129,000 88,900 <544 <170 113 7.19 2.57 1.89 (112,000) (28,200) (15,900) (162) (2.25) (0.561) (0.323) c:) 3-3-79 1,510,000 <36,200 <15,500 <3,230 <998 <428 27.7 <0.809 <0.290 g (136,000) { 3. 62)
__. 3-10-79 <98,400 <30,500 17,100 <2,730 3,960 1,730 <4.53 3.90 1.91 sg) (16 0000) (724) (524) (0.828) (0.429)
N
- Concentrations (in parentheses) are for the 951 confidence interval, (1.96 S.D.).
Table II.C.5.A.
Gamma-ray Emit ting Radionuclide Concentrations in Effluent Water, Goosequill Pond , E-38.
Collection __ Suspended Solids (pCi/kg)
Date Dissolved Solids (pci/kg) Water (pCi/1) 106 Ru 137 Cs 95 ZrSNb 106 Ru 137 Cs 95 Zr6Nb 106 Ru 137 Cs 95 Zr6Nb 3-17-79 <57,700 <17,800 15,000 <2,990 1,120 <395 <4.73 1.19 0.813
( 9,920) * (752) (0.822) (O.566) 3-24-79 <125,000 <38,500 <16,500 1,430 408 134 <4.73 <0.809 0.300 (1,250) (307) (187) (0.358) 3-31-79 <92,000 <28,400 16,000 <2,700 <833 599 <4.73 <0.809 0.921 (13,600) (396) (0.482) 4-7-79 <42,800 <13,200 <5,650 <3,390 2,680 1,510 <4.73 2.02 1.05 (874) (472) (0.619) (0.334) 4-14-79 <8,080 4,000 <1,070 <3,860 <1,190 540 <4.73 <0.809 0.392 (2,930) (485) (0.305) 4-21-79 107,000 28,900 33,900 <4,610 <1,430 <610 14.6 2.22 2.23 (6,910) (1,720) (988) (2.59) (0.641) (0.395) 4-28-79 30,900 6,450 <2,860 5,940 823 (20,900) 551 8.32 0.969 0.372 (5,280) (1,980) (487) (290) (2.72) (0.677) (0.385) p 5-5-79 <37,400 <11,600 5,410 <2,970 (4,380) 1,300 2,750 <4.53 ' <d.809 2.47 (750) (687) (0.561)
CO 5-12-79 <18,100 <5,580 <2,390 9,310 2,190 1,010
- <4.73 1.16 0.336 4 (2,080) (535) (265) (0.548) (0.319)
CO 5-19-79 <114,000 <35,300 <15,000 <2,710 <837 <359 <4.73 <0.809 <0.290
- Concentrations (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
Table II.C.5.A.
Gamma-ray Emitting Radionuclide Concentrations in Effluent Water, Goosequill Pond , E-38.
Collection Suspended Solids (pCi/kg) Dissolved Solids (pCi/kg) Water (pCi/1)
Date 106 Ru 137 Cs 95 Zr6Nb 106 Ru 137 Cs 95 ZrSNb 106 Ru 137 Cs 95 Zr6Nb 6-2-79 d d d d d d d d d 6-9-79 <44,9G0 13,900 <5,910 <1,430 <440 <189 <4.53 <0.809 <0.290 6-16-79 <16,000 <4,980 <2,110 3,870 3,110 1,800 4.53 1.63 1.05 (994) (672) (0.798) (0.460) 6-23-79 <9,270 <2,870 <1,220 5,540 0,230 2,710 4.-53 3.89 1.13 (1,450) (846) (0.799) (0.432) 6-30-79 <11,700 < 3,620 <1,540 4,150 4,640 1,390 4.53 1.80 0.593 (1,140) (627) (0.642) (0.451)
CD
.p=
CD 4
4
- Concentrations (in parentheses) are for the 95'. confidence interval, (1.96 S.D.).
- d. Lost in analysis.
Table II. C.5 Gamma-ray Eraitting Radionuclide Concentrations in Water for Samples Collected June 16, 1979 .
Sampling Suspended Solids (pC1/kg) Dissolved Solids (pCi/kg) Water (pCi/1)
Locations 106 Ru 137 Cs 95 Zr&Nb 106 Fu 137 Cs 95 Zr6Nb 106 Ru 137 Cs 95 Zr&Nb Effluent E 38: Farm Pond < 16,000 < 4,980 < 2,110 <3,870 3,110 1,800 4.53 1.63 1.05 (Goosequill) (994) (672) (0.798) (0.460)
E 41: Slou <1,220 <4.53 to
, n Creek
<128,000 <39,800 <16,900 <3,930 Ig l
<0.809 J.g Downstrean D 37: L wer Latham < 36,400 <11,300 < 4,780 <1,860 642 631 <4.53 <0.809 0.727 Reservoir j468) (273) (0.311) ,
D 40: S. Platte River < 11,200 < 3,460 6,880 <1,900 1,860 1,740 <4.53 <0.809 1.13 Below Confluence (1_ qpm* (695) (468) (0.199)
D 45: St. Vrain < 30,500 < 9,430 < 4,030 <7,470 10,200 4,190 <4.53 3.50 1.56 Creek (1,970) (1,410) (0.817) (0.509)
Upstream
< 33,200; c10,300 < 4,370 <8,230 <2,550 1,090 <4.53 <0.809 <0.290 u 42: St. Vrain Creek
< 57,800 32,100 10,200 12,600 2,670 8,380 <4.53 2.12 3.25 O U 43: S. Platte (7,300) (1,890) (1,240)
.p- River (14,400) (7,370) (0.839) (0.495)
Co Potable N '
21,800 13,300 10,200 <3.05 1.86 1.43 F 49: Visitor,s O N.A. N.A. N.A. I (5,460) (4,050) (0.765) (0.569) o Center i D 39: Gilcrest City <1,930 <599 <256 <2.69 <0.837 <0.357 Water N.A. N.A. N.A.
- Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
N.A. Not applicable.
53 II.C.2. Radionuclide Concentrations in Sediment Sediment is always the major compartment for radionuclide contaminants in a fresh water system due to the high concentration factors for fission products in the sediment mineral matrices. Table II.C.6 lists gross beta activity in sediment samples from the sampling sites in the water courses.
The mean values for effluent, upstream, and downstream samples are very constant and were not significantly different (Table II.H.1).
Tables II.C.7 and II.C.8 list the Sr-90 and Sr-89 concentrations in the same sediment samples respectively. Table II.C.9 shows the concen-tration in sediment of the fission products Ru-106, Cs-137, and Zr-Nb-95.
Although occasional high values appear, the mean values for these sample types (Table II.H.1) indicate no significant difference for any of the fission products in each of the sampling locations.
It should be noted that the sand fraction of the sediment samples is removed and only the silt plus clay mineral fraction is analyzed.
These two particle size fractions contain essentially all of the radio-activity.
1048 201
Table II. C.6 Gross Beta Activity Concentrations in Bottom Sediment (pCi/kg).
Sampling Monthly Collection Dates Locations 1-20-79 2-24-79 3-10-79 4-21-79 5-26-79 6-16-79 Effluent 31,500 36,000 a 29,900 43,200 31,900 c s u 11)
(1,480)* (1,610) (1,450) (1,720) (1,550)
E 41: Slougt 35,400 27,800 31,000 39,200 33,600 42,100 ra Creek (1,580) (1,290) (1,480) (1,630) (1,620) (1,630)
Downstream D 37: ' h 34,700 35,000 a 28,100 36,700 32,700 R v (1,550) (1,550) (1,420) (1,590) (1,600)
D 40: S. Platte River a (1,'560) (1,'390) (1,'640) (1,450)
Below Confluence D 45: St # I" f 30,700 a 30,000 33,100 32,300 gr (1,460) (1,450) (1,520) (1,610)
Upstream u 42: S 33,900 31,200 a 28,000 35,300 33,300 CEe (1,530) (1,480) (1,420) (1,580) (1,630)
U b 35,500 34,500 a 12,700 33,300 32,700 R r (1,560) (1,540) (1,030) (1,520) (1,660)
- Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
a Sample lost prior to analysis.
- f Sample unavailable.
O
.p=
CO N
O N
Table II. C.7 Strontium 90 Activity Concentrations in Bottom Sediment (pCi/kg).
Sampling Monthly Collection Dates Locations 1-20-79 2-24-79 3-10-79 4-21-79 5-26-79 6-16-79 Effluent 117 -193 a <228 298 <166 E 38: Farm Pond (coosequill) (194 )* (366)
E 41: Slough to 212 <l46 708 <512 298 281 St. Vrain Creek (189 ) (272) (366) (296) _
Downstream D 37: I han
<l79 <107 <215 <248 Re rv a ( 99) g; D 40: S. Platte River 512 <130 a <155 231 f Below Confluence (263) (202)
D 45: St. Vrain <144 a f 289 <850 <295 Creek (288)
Upstream U 42 St. Vrain Creek <198 <144 a
. <305 <303 <163 U 43: S. Platte <224 g a 226 <261 <257 River _ (220)
Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
~~ a. Sample lost prior to analysis.
cp f. Sample unavailable.
.s==
CO N
CD V4
Table II. C.8 Strontium 89 Activity Concentratto.'s in Bottom Sediment (pC1/kg).
Sampling f Monthly Collection Dates L ati ns 1-20-79 2-24-79 3-10-79 4-21-79 5-26-79 6-16-79 Effluent E 38: Farm Pond <l97 898 a <277 <429 <129 (coosequill) (401)*_
E 41: Slough to <158 769 <242 <521 <429 <188 St. Vrain Creek (317)
Downstream
" 37: Lower Lathan <152 595, a <199 <178 <172 Reservoir (226) g D 40: S.Platte River <l45 733 h <139 <189 f Below Confluence (288)
D 45: St. Vrain f 809 a <233 <502 <231 Creek (314)
Upstream U 42: St. Vrain <l68 624 a <276 <195 <144 Creek (366)
U 43: S. Platte River <l52 g a <165 <194 <210
- Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
g a Sample lost prior to analysis.
f Sample unavailable.
N CD 4
Table II. C.9 Cama-ray Emitting Radionuclide Concentrations in Bottom Sediment (pCi/kg) for Samples Collected .Janua ry 20, 1979 .
Sampling 106 137 u Cs 95 Locations Zr & E Effluent E 38: Farm Pond <3800 <664 609 (Goosequill) * '
(402)
- E 41: Slough to St. Vrain Cree.. l <3910 972 (780) 318 (449)
Dosms tream D 37: Lower Latham <5590 <933 <352 Reservoir D 40:
S. Platte River Below Canfluence <3910 <653
<24 ,e D 45: St. Vrain f f Creek f Upstream U 42: St. Vr 'n Creek <3910 <771 <234 U 43: S. Platte River <3910 <654 <235
- Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
f Sample unavailable.
.c=
CD N
CD LT'i
rable II. C.9 Camma-ray for Samples Emitting CollectedRadionuclide Concentrations in Bottom Sediment (pri/kg)
Februa ry 24, 1979 .
Sampling 106 Ru 137 95 Locations Cs Zt & Nb Effluent E 38: Farm Pond <3,780 1,v40 , 407 (coosequill) * '
(754)* (543)
E 41: Slough to <4,260 915 2,890' St. Vrain Creek (850) (632)
Downstream D 37: Lower Latham <3,730 1,360 498 Reservoir (749) (548) g D 40: S. Platte River
<3,760 <646 Below Confluence <234 D 45: St. Vrain Creek <3,730 <650 <230 Upstream U 42: St. Vrain <3,780 813 331 Creek (744) (553)
U 43: S. Platte <3,730 <650 291 River (589)
- Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
.c=
CD N
CD Ch
Table II. C.9 Camma-ray Emitting Radionuclide Concentrations in Bottom Sediment (pCi/kg) for Samples Collected March 10. 1979 .
Sampling 106 " Zr & Nb Ru Cs Locations Effluent E 38: Farm Pond a a a (Goosequill)
E 41: Slough to < 3,720 1,220 442 St. Vrain Creek (861) * (548)
Downstream D 37: Lower Latham a a a Peservoir m
e D 40: S. Platte River a a a Below Confluence D 45: St. Vrain a a a Creek Upstream U 42: St. Vrain a a a Creek U 43: S. Platte River a a a
- Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
a Sample lost prior to analysis.
4 CD N
CD N
Table II. C.9 Gemma-ray Emitting Radionuclide Concentrations in Bottom Sedir.ent (pCi/kg) for Samples Collected April 21, 1979 .
Sampling 106 Ru Cs "Zr & Nb Locations Effluent 5,670 1,060 <237 E 38: Farm Pond (3,750)* (772)
(Goosequill)
E 41: Slough t <3,750 <653 <237 St. Vrain Creek Downstream 40,800 2,830 <237 D 37: Lower Latham (7,460) (870)
Reservoir m o
40: S. Platte River <4,400 <778 <276 Below Confluence D 45: St. Vrain <3,740 <652 <234 Creek Upstream <3,750 734 <237 U 42: St. Vrain (764)
Creek U 43: . Platte <3,740 <652 <234 River
- Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
4 CD N
CD CD
Table II. C.9 Gamma-ray Emitting Radionuclide Concentrations in Bottom Sediment (pCi/kg) for Samples Collected May pf,_1979 .
Sampling 106
'Zr & Nb Ru Cs Locations Effluent E 38: Farm Pond <5,240 <933 <332 (Goosequill)
E 41: Slough to 6,750 <822 <293 St. Vrain Creek (7,320)*
Downstream <4,420 4 02 553 D 37: Lower Latha.a (445)
Reservoir ,
~
D 40: S. Platte River <4,410 <785 <279 Below Confluence D 45: St. Vrain 6,010 <785 <279 Creek (7,200)
Upstream U 42: St. Vrain , <4,260 <704 <257 Creek U 43: S. Platte <5,100 <908 437 River (495) ,
- Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
CO N
CD
Table II. C.9 Camma-ray Enitting Radionuclide Concentrations in Bottom Sediment (pC1/kg) for Samples Collected June 9, 1979 .
Sampling 106 Ru 5 Locations Cs 2r & Nb Effluent E 38: Fa m Pond (Goosequill) <5,010
- 2,060 (917)*
460 (566) a Creek <5,010 1,390 (856) 380 (548)
Downstream
<5,010 < 656 Reservoir 453 (549)
D 40:
Q S. Platte River f
Below Confluence f f b 45: St. Vrain Creek 6,640 (9,780) 1,110 (861) 493 (564)
Upstream U 42: St. Vrain Creek <5,010 1,820 (869) 313 (512)
U 43: S. Platte River <5,010 1,250 (879) 663 (564)
- Uncertainties (in parentheses) are for the 95% confidence interval (1.96 S.D.).
- f. Sample unavailable.
4 CO N
)
63 II.C.3 Precipitation Gross beta and tritium deposition values are given in Table II.C.10.
Precipitation collectors of size sufficient to produce a significant sample are located at two locations, F-1 and F-4. Values are expressed as depo-sition (i.e. pCi/m )2 as only this value can be correlated to food chain transport. Studies of world-wide fallout have shown that forage and subsequent milk or meat values can be reasonably predicted from deposition values. The deposition measured is the sum of dry and precipitation deposition.
Tritium values have generally decreased in recent years and exhibit variability that originates from the variability of the source of the precipitation (i.e. thunderstorms, precipitation associated with fronts, etc.). Although there were great differences in the deposition of tritium between sites F-1 and F-4, particularly in January, the mean deposition for the 6 month period was not statistically significant between the two sites. It should
/ be noted here that no significant differences have ever been observed for F-1 and F-4. Since these collection sites are at opposite directions from th reactor this observation verifies the fact that observed deposition values are due to world-wide fallout and not to reactor effluents.
Table II.C.11 and II.C.12 list the precipitation deposition of Ru-106, Cs-137 and Zr-Nb-95. The mean values at F-1 and F-4 were not significantly different.
Table II.C.13 lists the deposition of the strontium radioisotopes.
There were no significant differences in Sr-90 between the mean values for F-1 and F-4 locations.
Note that radioruthenium data is listed in the tables as Ru-106.
However, it is true that the activity measured is often a mixture of Ru-103 and Ru-106. Both isotopes have gamma-rays at essentially the same energy and they cannot be separated by NaI(Tl) spectral analysis. No 1048 211
64 separation by half-life determination was attempted on the data. Since the half-life of Ru-103 is 40 days and that of Ru-106 is one year, in periods soon af ter an atmospheric test, a high proportion is expected to be Ru-103 and at later times predominately Ru-106. Since the ruthenium isotopes have negligible biological availability, neither has any consequences in calculation of population dose and efforts to separate them is not warranted.
1048 212
Table II. C.10 Gross Beta and Tritium Deposition from Precipitation at Locations F1 and F4.
Sample Cumulative Gross Beta Deposition (pCi/m ) Tritium Volume *
(liters) Suspended Solids Dissolved Solids Total Deposig)
(pCi/m ion t
F1 F4 F1 F4 F1 F4 F1 F4 F1 F4 1-27-79 10 20 < 3.41 < 10. 7 4.42 <10.8 0.666 7.90 16,500 2,360 (1.21 7 * (3.07) (3.74) (426) (306) 2-24-79 40 52 35.8 50.0 22.3 24.7 58.1 74.7 1,120 838 (10.6) (12.7) (5.02) (6.03) (11.0) (13.2) (266) (263) 3-31-79 100 100 37.7 < 9. 53 33.7 22.4 71.4 < 9.53 415 663 $
(28.0) (11.4) (10.3) (27.9) (259) (261) 4-28-79 100 100 <21. 4 139 34.2 31.4 23.7 171 396 411 (37.7) (11.5) (10.7) (31.6) (34.2) (364) (364) 5-26-79 135 150 73.6 81.9 128 218 202 299 345 349 (38.6) (41.0) (19.0) (22.6) (40.8) (44.7) (373) (374) 6-30-79 50 50 39.7 9.45 18.2 11.7 58.0 21.2 1,060 576 (16.2) (13.2) (6.60) (5.70) (16.1) (13.4) (280) (274)
- Samples are analyzed at the end of each month if sufficient volume has accumulated.
,_, ** Uncertainties (in parentheses) are fcr the 95% confidence interval, (1.96 S.D.).
CD CD N
Table II. C.ll Gamma-ray Emitt ing Rad ionuclide Deposit ion from Precipitation at Location Fl.
Sample Total
- Suspended Solids ()Ci/m ) Dissolved Solids (pCi/m ) Total (pci/m )
6 5 s ( t s) Ru Cs Zr-Nb Ru Cs Zr-Nb Ru Cs Zr-Nb 1979
<106 <32.9 <14.0 <66.1 51.0 9.87 <106 44.5 <14.0 January 10 (17.2) (14.5) (30.2)
<9.19 11.2 2.81 <31.9 <8.58 <3.65 16.3 15.5 5.06 Feb rua ry 40 (2.91) (2.19) (28.9) (6.96) (4.85)
<4.73 <1.46 <0.620 <12.8 <3.99 <1.70 <4.73 <1.46 <0.620 March 100
<16.8 <5.16 4.10 27.5 13.4 13.1 14.6 11.4 17.2 April 100 (2.22) (26.1) (6.03) (5.03) (18.5) (6.47) (5.11)
<35.5 36.7 15.6 <30.8 15.9 8.07 <35.5 52.6 23.1 May 135 (15.4) (7.62) (7.38) (4.05) (16.1) (8.25)
<25.5 <7.89 <3.35 <21.4 7.35 9.67 <25.5 3.41 12.4 June 50 (5.39) (3.80) (8.20) (4.03)
- Samples are analyzed at the end of each month if suf ficient volume has accumulated.
- Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
O
.c.
CD N
Table II. C.12 Gamma-ray Emitting Radionuclide Deposition f rom Precipitation at Location F4.
Sample Total
- Suspended Solids (pCi/m ) Dissolved Solids (pCi/m ) Total (pCi/m )
Da s 1 te s) Ru Cs Zr-Nb Ru Cs Zr-Nb Ru Cs Zr-Nb 1979
<35.5 <11.0 <4.66 <7.39 <2.29 5.97 <7.39 <2.29 5.23 January 20 (1.56) (3.13)
<11.5 10.0 3.18 10.2 6.08 <1.12 9.41 16.1 2.20 February 52 (3.17) (2.42) (10.5) (2.58) (16.9) (4.07) (2.87)
<13.6 < 4.19 <1.80 <3.86 <1.21 0.835 <3.86 2.81 1.02 March 100 (0.619) (3.32) (1.75)
<30.5 12.11 5.91 26.9 9.66 <0.701 <30.5 21.7 2.18 April 100 (6.62) (3.27) (13.9) (3.97) (7.49) (2.31)
<13.6 5.11 <1.80 <11.5 13.6 8.95 <13.6 18.7 9.50 May 150 (6.07) (6.62) (5.81) (8.97) (5.81)
<26.8 <8.32 <3.51 <18.5 9.31 7.80 <26.8 8.47 10.8 June 50 (4.25) (3.26) (6.83) (6.32)
- Samples are analyzed at the end of each month if suf ficient volume has accumulated.
- Uncertainties (in parentheses) are for the 93% confidence interval, (1.96 S.D.).
~
4 CD N
Table II. c.13 Radiostrontium Deposition f rom Precipitation at Locations F1 and F4 (pCi/m ).
'l Sample Ending
""f"e' ) j Strontium 89 Strontium 90 Dates F1 F4 F1 F4 F1 F4 1-27-79 10 20 l <0.360 <2.47 3.31 (2.33)** 2.90 (2.90) 2-24-79 40 52 <4.25 <6.29 <5.17 <7.08 3-31-79 100 100 18.7 (47.2) <17.2 <15.2 20.0 (22.0) 4-28-79 100 100 8.58 (54.6) 15.5 (47.4) <11.0 <10.9 5-26-79 135 150 ; <24.7 46.9 (91.8) <25.1 < 25.5 as co 6-30-79 50 50 <13.5 <10.6 <25.9 22.1 (17.3)
- Samples are analyzed at the end of ea:h month if sufficient volume has accumulated.
- Uncertainties (in parentheres) are for the 95% confidence interval, (1.96 S.D.).
O
.s>
CD N
69 II.D. Food Chain Data
- 1. Milk. Tritium concentrations in milk are summarized in Table II.D.1. There was no significant difference in mean tritium values obtained from water extracted from milk at the only dairy in the Facility area (F-44), the Adjacent Composite, and the Reference Composite, for the first half of 1979 (see also Table II.H.1). Tritium mean values for Facility, Adjacent and Reference sites were 455,473 and 372 pCi/l respectively and were similar to values observed the last half of 1978.
Tritium concentrations in milk should respond rapidly to changes in tritium concentrations of the water intake to the cow due to the short biological half-life for water in the cow (about three days for the lactatin; cow). As noted in previous reports, tritium activity per liter reflects the tritium in the water extracted from the milk and not the activity per liter of milk. Who.c milk is approximately 87% water
( 3-45, depending on the cow, pasture, and feed). Skim milk accordingly has a higher water content. It may be assumed though that the remaining solids in milk (proteins, carbohydrates, and lipids) also contain some tritium due to exchange of tritium with hydrogen on these large molecular structures. This tritium concentration will be very much lower than in the water fraction.
Tables II.D.2 and II.D.3 list the Sr-90 and Sr-89 concentrations in milk. There was no significant difference between the three sampling zones.
The concentrations of I-131, Cs-137 and K-nat in milk are given in Table II.D.4. Although there is some relationship between measured I-131 and Cs-137 concentrations in milk and those in air (Table II.B.4), the correlation is low and is due to feeding practices discussed behw.
K-nat, as measured by K-40 is very constant in milk. The mean literatue 1048 214
70 value is 1.5 9/L. K-nat is measured and reported therefore only as a quality control measure of the other radionuclides Cs-137 and I-131 measured in the same sample by gamma-ray spectrometry.
Due to the availability of a large NaI(Tl) scintillation crystal, shield and pulse height analyzer that has been dedicated to only counting project milk samples, we have lowered our MDC fcr I-131. A counting time of 3000 minutes per sample with a slight reduction in background nas achieved a MDC value of approximately 0.6 pCi/L. This is preferable to any chemical concentration process and nearly all milk sample data reported here were for 3000 minutes counting time.
It should also be noted here that a close relat'.onship between forage deposition and milk concentrations should be expected for the strontium radioisotopes, for Cs-137 and for I-131 only if the cows are on pasture or fed green cut grass or alfalfa. This unfortunately is not the general feeding practice at the dairies around the reactor.
Nearly all cattle feed is hay grown either locally, from Nebraska or the North Park region of Colorado. It can at times be even cuttings from the previous year. This makes correlation of milk concentrations very difficult. On the other hand, if elevated I-131 concentrations are noted, the surface deposition must have been reasonably related in time and location.
1048 218
Table II. D.1 Trittism Concentrations in Water Extracted from Milk (pCi/1).
"E Facility Area 44 Adjacent Composite
- Reference Composite
- 978 Pre-Pasture Season *,
January 6 583 (283) 327 (280) <299 February 3 <311 357 (292) 342 (291)
March 3 480 (293) <311 687 (295)
Pasture Season April 7 588 (260) <275 <275 -
April 14 <275 <275 <275 April 21 <290 930 (263) 706 (261) U April 28 906 (263) 1,009 (264) 606 (259)
May 5 639 (275) 704 (260) 597 (257)
May 12 498 (256) 569 (257) 552 (274)
May 19 620 (275) 419 (273) 603 (259)
May 26 667 (260) 776 (261) 728 (261)
June 2 <290 734 (276) <290 June 9 774 (276) <290 <290 June 16 392 (272) 596 (275) 390 (272)
June 23 523 (274) 288 (271) 342 (272)
June 30 495 (273) 659 (275) 455 (273)
- Adjacent Composite Locations: A6, A28, A31, A50, A 36, A48.
Reference Composite Locations: R16, R17, R20, R22, R23, R25.
- Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.),
b CD N
Table II. D.2 Strontium 90 Activity in Milk (pC1/1).
Facility Area 44 Adjacent Composite
- Reference Composite
- D 99 Pre-Pasture Season January 6 2.59 (2.25) *
- 2.96 (1.40) < 4.03 February 3 1 .09 2.82 (1.13) 4.11 (1.79)
March 3 3.36 (1.58) 2.80 (2.05) 2.84 (3.94)
Pasture Season April 7 <1.06 < 1. 56 < 2.36 April 14 <5.12 s 2.16 <4.33 y N
April 21 5.31 (5.55) 5.13 (2.12) 9.04 (6.61)
April 28 5.66 (2.58) 15.7 (11.1) 5.62 (3.30)
May 5 <2.53 <6.21 < 9.04 May 12 <2.75 <4.16 < 8.16 May 19 g 1.25 (1.24) < 6. 52 May 26 g d . <5.55 June 2 <17.2 < 9.35 - --
4.02 (2.80)
June 9 11.9 (8.32) 3.34 (2.48) < 4.06 June 16 d <3.40 <7.50 June 23 d d d June 30 2.59 (1.69) <6.50 d CD
.p-CD
- Adjacent Composite D> cations: A6, A28, A31, A50, A36, A48.
c> Reference Composite Locations: Rl6, R17, R20, R22, R23, R25.
i ntheses) are for die N conHdence intenal, U.% S.D.).
- d fa"spTe'Yo"s't ?n !inWy"s?s
Table II. D.3 Strontium 89 Activity in Milk (pCi/1).
Facility Area 44 Adjacent Composite
- Reference Composite
- D 99 Pre-Pasture Season January 6 <2.06 <1.27 <3.22 February 3 <7.05 <1.04 <1.56 March 3 <1.46 <1.01 <1.62 Pasture Season April 7 3.44 ( 3. 50) ** <1.30 <1.46 April 14 <7.61 <1.68 <4.06 April 21 <4.16 <1.75 <5.04 y April 28 <2.34 <9.08 "
<2.39 May 5 <2.27 8.83 (18.6) <7.97 May 12 4.71 (7.80) 6.00 (11.7) <7.91 May 19 g <0.840 <4.71 May 26 g d <4.08 June 2 (10.2 <5.81 <1.96 June 9 <5.22 <1.62 <2.98 June 16 d <4.05 <8.57 June 23 d d d June 30 <1.33 <4.58 d 1
-*
- Adjacent Composite Locaticas: A6, A28, A31, A50, A36, A48.
CD Reference Composite Locations: R16, R17, R20, R22, R23, R25.
- ** Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
@ d Sample lost in analysis.
N N
74 Table II. D.4 Camma-ray Emitting Radionuclide Concentrations in Composite Milk Samples.
C d I (PCi/l) Cs (pC1/1) Nat. K (g/l) 1-6-79 Facility 10.5 (1.10)** 11.3 (0.853)
Adjacent 18.0 (1.43) 11.1 1.54 (0.0118)
Reference (0.850) 1.62 (0.0118) 9.56!(2.30) 4.26 (0.947) 1.52 (0.0137) 2-3-79 Facility 46.6 Adjacent (1.02) 26.5 (0.360) 1.52 (0.116) 17.2 (1.98) 10.4 Reference 22.9 (0.d45) 1.49 (0.0117)
(2.34) 6.23 (0.836) 1.59 (0.0117) 3-3-79 Facility 7.72 (1.06)
Adjacent 11.7 9.50 (0.823) 1.49 (0.0115)
(1.52) 4.99 (0.843) 1.54 Reference 33.6 (3.58) (0.0117) 7.90 (0.830) 1.61 (0.0117) 4-7-79 Facility 11.7 (0.797) 13.1 (0.682)
Adjacent '
<0.104 1.48 (0.0101)
Reference <0.123 4.62 (0.929) 1.62 (0.0126) l 1.23 (0.966) 1.45 (0.0133) 4-14-79 Facility 17.0 (1.12) 13.6 Adjacent <0.149 (0.943) 1.61 (0.0126) 2.74 (1.04) 1.56 Reference 1.54 (1.90) (0.0150) 3.63 (1.14) 1.51 (0.0168) l 4-21-79 Facility <0.104 Adjacent 5.33 (0.927) 1.45 (0.0124) 0.922 (1.05) 2.13 (0.753) l Reference 2.00 (1.20) 3.12 1.50 (0.0110)
I (0.722) 1.42 (0.0103) 4-28-79! Facility 6.24 (0.868)
I Adjacent 4.71 6.26 (0.737) 1.49 (0.0105)
(1.30) 5.21 (0.859)
Reference 6.27 (1.53) 1.46 (0.0129) 5.02 (0.925) 1.50 (0.0143) 5-5-79 Facility Adjacent 6.55 (0.882) 7.33 (0.750) 1.57 (0.0108) j 12.1 (1.33) l Reference <0.103 7.37 (0.945) 1.59 (0.0130) 2.62 (0.914) 1.46 (0.0124) 5-12-79 Facility Adjacent 2.72 (0.913) 4.93 (0.767) 1.51 (0.0110) 4.22 (1.67) 5.51 (1.00) 1.55 (0.0157)
! Reference l <0.179 3.35 (0.993) 1.46 (0.0155) 5-19-79 Facility <0.102 2.76 0.750 Adjacent <0.379 1.47 0
.2.77 0.998 Reference <0_dl9 9m ,1 930
..g (g0107)
. 1
, Q}59 u194I ,[.
- Adjacen t Comoosi te 1.oca tion",: A6, A28, A31, A50, A36, A48
- Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
1048 222
75 Table TI. D.4 Camma-ray Emitting Radionuclide Concentrations in Composite Milk Samples.
C d I (PCi/1) Cs (pC1/1) Nat. K (g/l) 5-26-79 Facility <0.186 <0.185 Adjacent <0.179 1.50 (0.0165) **
<0.169 1.56 (0.0156)
Reference <0.107 <0.107 1.45 (0.0119) 6-2-79 Facility <0.108 Adjacent 3.77 (0.893) 1.53 (0.0120)
'O.186 <0.185 1.42 Reference <0.174 (0.0163)
<0.173 1.44 (0.0156) 6-9-79 Facility 12.8 (1.13) 11.9 Adjacent (0.811) 1.53 (0.0116) 20.8 (1.68) 9.82 (0.931)
Reference 13.9 1.66 (0.0142)
(2.06) 5.50 (0.959) 1.53 (0.0148) 6-16-79 Facility 6.98 (1.14) 12.7 Adjacent (0.824) 1.47 (0.0118) 8.28 (1.99) 3.48 (0.929) 1.49 (0.0143)
Reference <0.122 1.124 1.30 (0.0122) 6-23-79 Facility 0.583 (1.24) 18.6 Adjacent (0.897) 1.52 (0.0123) 12.7 (1.49) 7.50 (0.853) 1.62 Reference 10.3 (0.0126)
(1.75) 5.20 (1.14) 1.56 (0.0178) 6-30-79 Facility '
<0.124 Adjacent 9.32 (0.942) 1.46 (0.0135) 7.85 (1.51) 4.89 (0.984) 1.53 (0.0145)
Reference 18.1 (1.60) 7.43 (0.876) 1.49 (0.0121)
I
- Adjacent Composite locations: AG, A28, A31, A50, A36, A48
- Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.) .
1048 223
76 II.D. Food Chs'- Data
- 2. Fo ra ge. Table II.D.5 lists the tritium specific activity in water extracted from forage samples as well as Sr-89 and Sr-90 concentrations in the forage dry matter. Tritium values that were obtained were similar to those reported in past reports. There were no significant differences in mean tritium values between Facility, Adjacent and Reference locations.
The tritium in forage water was statistically the same as the concentration in milk.
Table II.D.6 lists Ru-106, Cs-137 and Zr-Nb-95 activities in forage samples for the first half of 1979.
Gross beta concentrations in soil and forage collected at the same locations are given in Table II.D.7.
From Table II.H.1 it is observed that mean values for all radio-nuclides in each sample type are very close to those measured in 1978.
Cattle forage samples, i.e. fresh cut grass or alfalfa hay is the sample of choice for several reasons. Forage integrates atmospheric wet and dry deposition over a large surface area per unit weight and also is a direct link in the dairy and beef food chain transport of H-3, Cs-137, and the strontium radioisotopes. Such samples are collected when possible.
However, due to feeding practices, vagaries of weather and other factors, of ten silage or cut hay samples must be collected. These samples may or may not be harvested locally and may represent different faliout periods.
This of ten presents dif ficulties in data interpretation.
1048 224
77 Table II. D.5 Tritium, Strontium 89, and Strontium 90 Concentrctions in Forage for Samples Collected May 12, 1979 .
^ * .** Tritittm Strontium 89 Strontium 90 (pCi/1) (pCi/kg) (pci/kg)
Facility 4 <273 g 9 44 467 (258)* <31.2 184 (28.9)
Adjacent 6 334 (256) <47.0 359 (52.7) 28 861 (262) <61.4 145 (80.7) 31 570 (257) <22.1 190 (20.2) 36 406 (257) < 35.8 134 (28.3) 48 e <21 6 86.0 (23.1) 50 637 (260) < 38. 7 185 (30.7)
Reference I
16 393 (257) < 43. 3 178 (43.0) 17 673 (260) <13.7 85.4 (16.4) 20 e 61.8 (26.6) < 12. 7 22 <273 < 18. 9 133 (16.3) 23 527 (257) <146 1,485 (114) 25 581 (259) < 3 0. 7 115 (25.5)
- Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
e Insufficient weight or volume for analysis.
g Analysis in progress.
1048 225
78 Table II. D.5 Tritium, Strontium 89, and Strontium 90 Concentrations in Forage for Samples Collected June 9, 1979 .
^'*"* Strontium 89 Strontium 90 (pCi/1) (pci/kg) (pCi/kg)
Facility 4 526 (278) * <36.1 263 (27.0) 44 583 (277) <36.8 442 (24.8)
Adjacent 6 376 (277) <27.9 267 (19.0) 28 <295 31.5 (39.6) 150 (24.5) 31 572 (277) <20.2 137 (15.4) 36 891 (282) <18.7 600 (19.9) 48 617 (279) g 9 50 465 (278) < 70. 2 90.0(17.6)
Reference 16 426 (277) < 60. 5 388 (50.9) 17 <295 < 33.5 226. (26.9) 20 482 (278) <24.6 184 (18.6) 22 416 (277) 38.1 (24.1) 107 (14.8) 762 (281) 390 23 (50.4) 179 (20.3) 25 <295 < 18. 4 126 (14.1)
- Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
g Analysis in progress.
1048 226
79 Table II. D.6 Cacma-ray Emitting Radionuclide Concentrations in Forage (pCi/kg) for Samples Collected May 19, 1979 .
Areas Ru Cs Zr & Nb Facility i 4 <69.1 281 (22.0)* 99.2 (13.9) 44 29.6 (70.3) 106 (7.94) 2,030 (541)
Adjacent 6 1,490 (62.7) <15.3 63.2 (9.81) 2s 80.6 (17.5) 41.7 (4.36) 20.0 (2.88) 31 <13.0 19.9 (4.55) 14.4 (2.70) 36 <55.4 81.3 (16.5) 22.3 (10.4) 48 61.0 (54.1) 108 (14.1) 48.2 (8.80) 50 <48.1 (59.5) 430 (16.1) 28.9 (8.79)
Reference 16 70.5 (28.6) 171 (7.41) 37.6 (4.79) 17 <47.5 35.2 (13.3) 11.5 (8.83) 20 90.2 (55.7) 102 (14.7) 55.5 (9.66) 22 <54.9 <17.1 8.47 (8.82) 23 <50.2 33.1 (13.7) 9.20 (8.06) 25 <57.0 40.6 (16.1) 17.0 (10.8)
- Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
1048 227
80 Table II. D.6 Gamma-ray Emitting Radionuclide Concentrations in Forage (pCi/kg) for Sampics Collected JG3e 9, 1979 Areas Ru Cs Zr & Nb Facility 4 <38.3 92.5 (11.6)* 29.3 (6.10) 44 <46.7 235 (15.4) 36.2 (8.33)
Adjacent 6 <57.9 185 (5.65) 22.1 (2.99) 28 <14.9 57.4 (5.42) 23.4 (3.24) 31 <11.9 39.9 (4.41) 24.8 (2.69) 36 <21.4 46.1 (6.25) 13.3 (3.72) 48 <17.7 54.7 (5.56) 26.2 (2.32) 50 <44.9 131 (14.1) 41.3 (8.13)
Reference 16 <61.6 119 (18.3) 36.6 (10.3) 17 <49.0 327 (16.2) 50.3 (8.08) 20 <51.5 31.9 (15.1) 12.9 (3.74) 22 <44.0 22.3 (12.2) 14.1 (7.40) 23 37.0 (27.2) 263 (7.82) 29.4 (4.20) 25 <22.8 33.9 (7.34) 25.5 (4.54)
- Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
1048 228
81 II.D. Food Chain Data
- 3. Soil. Table II.D.8 presents gross beta activity of soil per unit surface area for the first and second quarter of 1979.
Soil samples are collected at the same time and location as forage samples. A core borer is used to collect the sample. The sample depth is 10.3 cm and the area is 102 cm2 . Gross soil density is approximately 1 g/cm3 ,
There was no significant difference in the gross beta activity values between the Facility, Adjacent and Reference collection areas. The gross beta concentrations are very constant and due primarily to naturally occurring radionuclides.
The activities of the fission products Ru-106, Cs-137 and Zr-Nb-95 per unit surface area are given in Table II.D.9 for the same period.
Essentially only Cs-137 can be measured in the local soil. This is because the recent deposition of Ru-106 and Zr-Nb-95, the short-lived fission products, is minimal to the past deposition of Cs-137. Cs-137 has a half-life of 30 years and is trapped by ion exchange in the top 2-3 cm of soils with clay minerals. For this reason soils that are disturbed or turned over for agricultural purposes will have widely varying Cs-137 concentrations.
Tritium, Sr-89 and Sr-90 in soil are shown in Table II.D.10.
Tritium specific activity in soil is statistically the same as that in other environmental samples. e.g. water, forage and milk. The concentrations of the strontium radioisotopes was quite variable. Sr-89 was essentially zero and the mean concentration of Sr-90 was 426 ,549 and 330 pCi/kg for the Facility, Adjacent and Reference zones respectively. These mean values are not significantly different.
1048 229
82 The numbers given in parentheses next to all values above the minimum detectable concentration are the 95% confidence intervals for each measured value. This number is calculated solely on the basis of counting statistics. Obviously this uncertainty is only a part measure of the total expected variation that must be assigned to any measured analytical value. The total variation must include the true environmental (sometimes called sampling) variation as well as ~the analytical or methodological variation. The variation due to counting is only part of the methodological variation. While the true environmental variation cannot be determined directly the methodological variation can be measured. An experiment was conducted during the last reporting period in which a single large soil sample was thoroughly homogenized and 10 aliquots taken for Sr-90 analysis. The standard deviation as a percentage of the mean value (coefficient of variation) was 63%. This is the methodological standard daviation which in the experiment included counting statistics. The environmental variation is expected to be considerably greater. This is due to the fact that Sr-90, like Cs-137, is deposited largely on the soil surf _ce, and when the surface is disturbed the surface layer is of ten greatly diluted or not even part of the sample collected. For these reasons the variation in reported Sr-90 and Sr-89 soil concentrations, although large, should be expected.
1048 230
83 Table II. D.7 Gross Beta Concentrations in Soil and Forage (pCi/kg) for Samples Collected Second Quarter, 1979 Sampling April 28** May 19 June 9 Soil Forage Soil Forage Soil Forage Facility 4 35,800 27,400 12,900 29,400 17,700 (1,570) * (1,400) (342) (1,680) (341) 44 27,600 27,800 21,700 31,200 20,600 (1,400) (1,410) (373) (1,580) (397)
Adjacent 6 27,900 29,500 16,100 29,400 12,600 (1,410) (1,450) (347) (1,520) (318) 28 24,200 18,800 18,900 26,000 24,800 (1,330) (1,200) (375) (1,560) (423) 31 23,900 32,700 22,300 24,100 20,400 (1,320) (1,760) (957) (1,440) (370) 36 23,800 24,900 32,700 27,400 20,300 (1,320) (1,350) (665) (1,600) (448) 48 27,700 33,500 12,200 27,000 8,860 (1,410) (1,530) (806) (1,590) (245) ,
50 28,600 28,400 29,900 29,400 21,7 "
(1,430) (1,430) (703) (1,720) (437)
Reference 16 25,500 17,500 28,400 24,600 23,500 (1,360) (1,170) (1,200) (1,500) (532) 17 21,500 17,100 14,200 26,000 12,800 (1,260) (1,180) (609) (1,500) (448) 20 31,600 26,700 23,700 26,900 24,000 (1,490) (1,380) (461) (1,500) (423) 22 29,900 29,600 14,400 27,800 15,300 (1,450) (1,450) (666) (1,530) (306) 23 28,800 29,300 16,600 29,500 19,800 (1,430) (1,440) (676) (1,610) (392) 25 21,700 25,100 15,300 32,100 17,000 (1,270) ,(1,350) (686) (1,610) (434)
- Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
- No forage collected until growing season.
1048 2M
84 Table II. D.8 Gross Beta Activity in Soil per Unit Surface Area (pCi/m ) for Samples Collected Second Quarter , 1979 .
t Lo a $!s April 28 May 19 June 9 Fr.c ility 4 4.62 (0.202)
- 3.54 (0.181) 3.79 (0.217) 44 3.56 (0.181) 3.59 (0.182) 4.03 (0.084)
Adjacent 6 3.60 (0.182) 3.80 (0.187) 3.79 (0.196) 28 3.12 (0.171) 2.42 (0.155) 3.36 (0.201) 31 3.08 (0.170) 4.22 (0.227) 3.11 (0.186) 36 3.07 (0.170) 3.22 (0.174) 3.54 (0.206) 48 3.58 (0.181) 4.32 (0.198) 3.49 (0.205) 50 3.69 (0.184) 3.66 (0.184) 3.79 (0.222)
Reference 16 3.29 (0.175) 2.26 (0.150) 3.17 (0.194) 17 2.78 (0.163) 2.21 (0.150) 3.34 (0.194) 20 4.08 (0.192) 3.45 (0.179) 3.47 (0.202) 22 3.86 (0.187) 3.81 (0.187) 3.59 (0.197) 23 3.71 (0.184) 3.78 (0.186) 3.80 (0.208) .
25 2.80 (0.164) 3.24 (0.174) 4.14 (0.208)
- Uncertainties (in parentheses) are for the 95% confidence interval, (1. 96 S.D. ) .
1048 232
85 Table II. D.9 Gamma-ray Emitting Radionuclide Activity per Unit Surface Area of Soil (nCi/m2 ) for Samples Collected April 28, 1979 .
Sampling 106 Cs 95 Zr & Nb Ru Location Facility 4 <346 235 (70.2)* <20.9 44 <406 86.6 (74.0) <24.5 Adjacent 6 <413 93.9 (75.1) <25.0 28 <468 <77.5 <28.3 31 <366 103 (68.6) 57.0 (47.6) 36 <430 73.5 (76.2) 28.5 (53.0) 48 <392 <64.9 <23.7
<383 159 (73.0) <23.2 50 Reference 16 <304 177 (73.4) <23.2 17 <335 <55.3 42.2 (48.2) 20 <326 91.3 (64.9) <19.7 22
<399 73.8 (72.2) <24.1
<356 115 (68.6) <21.5 23 25
<359 87.2 (68.0) <21.7
- Uncertainties (in parentheses) are for t'..e 95% confidence interval, (1.96 S.D.).
1048 233
86 Table II. D.9 Gamma-ray Emf tting Radionuclide Activity per Unit Surface Area of Soil (nCi/m 2) for Samples Collected May 12,1979 .
Sampling 106 95 Ru Cs Zr & Nb Location Facility 4 <366 113 (70.0)* <22.1 44 <423 101 (76.0) <25.5 M acent 6 <338 246 (69.3) <20.4 28 <366 213 (74.4) 71.2 (53.4) 31 <326 86.8 '4.9) 10.7 (42.8) 36 <387 110 (/2.5) 30.6 (53.8) 48 <390 142 (73.4) 29.4 (53.5) 50 <454 104 (78.7) <27.5 Reference 16 $731 253 (132) 107 (98.3) 1/ <326 97.4(64.6) <19.7 20 <366 103 (70.3) <22.1 22 <412 96.6(75.2) ' <24.9 23 613 (699) 107 (79.5) <27.6 25 <366 110 (69.5) <22.1
- Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 E ".).
1048 234
87 Table II. D.9 Gamma-ray Emitting Radionuclide Activity per Unit Surface Area of Soil (nCi/m 2) for Samples Collected June 9, 1979 .
Sampling 106 95 Ru Cs Zr & Nb Location Fac ili ty 4 <366 264 (73.4)* 27.1 (40.6) 44 <392 111 (73.1) <23.7 Adjacent 6 <455 223 (83.1) <27.6 28 <409 113 (74.9) 48.6 (43.0) 31 1,260 (878) 152 (78.1) 64.0 (44.9) 36 <415 84.8 (75.6) 27.2 (42.8) 48 437 (872) 114 (77.4) 25.8 (44.4) 50 <400 95.5 (74.0) <24.1 Reference 16 <433 126 (97.8) <19.9 17 <433 81.8 (70.7) <19.9 20 <3Fo 141 (70.2) <22.1 22 <433 183 (78.9) <19.9 23 1,020 (909) 116 (80.3) 53.9 (46.8) 25 <366 104 (69.9) <22.1
- Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
1048 235
88 Table II. D.10 Tritium, Strontium 89, and Strontium 90 Concentrations in Soil for Samples Collected April 28, 1979 .
Sampling Tritium Strontium 89 Strontium 90 Location (pCi/1) (pCi/kg) (pci/kg)
Facility 4 493 (263)* <108 252 (120) 44 714 (266) < 101 - 297 (121)
Adjacent 6 <279 <499 2,780 (559) 28 657 (265) <95 314 ( 93) 31 720 (266) <180 (164) < 75 36 , 669 (265) <286 3,210 (1,270) 48 713 (266) <106 367 (122) 50 905 (268) <87 176 (126)
Reference 16 516 (264) 330 (366) 486 (137) 17 790 (267) <119 386 (154) 20 523 (264) <68.0 <74.0 22 584 (264) <124 122 (189) 23 514 (264) 929 (443) 652 (167) 25 629 (265) <91.0 252 (120)
- Uncertainties (fu parentheses) are for the 95% confidence interval, (1.96 S.D.).
1048 236
89 Table II. D.10 Tritium, Strontium 89, and Strontium 90 Concentrations in Soil for Samples Collected May 12, 1979 .
Sampling Tritium Strontium 89 Strontium 90 Location (pCi/1) (pCi/kg) (pCi/kg)
Facility 4 636 (236)* <91.9 171 (94.5) 44 497 (23h) .
<93.6 143 (149)
Adjacent 6 758 (240) d d 28 767 (240) <174 554 (167) 31 774 (240) <98.3 185 (133) 36 ,
745 (240) <201 <238 49 497 (237) 646 (126) <75.5 50 743 (240) < 14 170 (143)
Reference 16 307 (235) <297 1,650 (249) 17 756 (240) <1,010 <114 20 538 (237) <91.9 109 (120) 22 711 (239) (80.2 <80.2 23 812 (240) <101 <117 25 863 (241) 348 (334) 277 (159)
- Uncertaintics (in parentheses) are for the 95% confidence g interval, (1.96 S.D.).
d Samp'e lost in analysis.
1048 237
90 Ta'ule II. D.10 Tritium, Strontium 89, and Strontium 90 concentrations in Soil for Samples Collected June 9, 1979 .
Sampling Tritium Strontium 89 Strontium 90 Location (pCi/l) (pCi/kg) (pCi/kg)
Facility 4 483 (237)* <223 1,440 (195) 44 527 (237) . <130 251 (180)
Adjacent 6 520 (237) 165 761 (157) 28 <250 120 (220) 132 (135) 31 <250 < 114 170 (135) 36 ,
535 (237) < 121 168 (151) 48 897 (291) < 126 < 155 50 774 (240) < 92 < 131 Reference 16 629 (236) <123 491-(124) 17 <250 <14: <176 20 496 (237) <109 205 (150) 22 706 (239) <12 310 (139) 23 546 (237) <144 410 (229) 25 776 (240) <85 174 (109)
- Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
1048 238
91 II.E. Aquatic Biota Table II.E.1 shows gross beta and strontium concentrations observed in aquatic biota collected during the first half of 1979.
The collection of macroinvertebrates and algae (benthic organisms and seston) was seriously impeded this spring due to exceptionally high runoff. The combination of turbid water conditions, and late and frequent snow storms caused water temperatures to remain unseasonably low and delayed Decapod emergence. Collection at Goosequill was hampered as the water was drawn down to critically low levels. This prevented algae growth and left macroinvertebrate traps on dry ground. The extremely high water levels in the South Platte and St. Vrain rivers hampered fish collection.
The gross beta concentrations observed in all aquatic biota sample types were more constant and generally lower than observed during the last half of 1978.
Table II.E.2 lists Ru-106, Cs-137 and Zr-Nb-95 concentrations.
The high MDC values for seston are due to the fact that such samples are counted by a Ge(Li) spectrometer system rather than the Nal used for most other sample types. This is because seston, which is principally algae, collects and concentrates particulate radioactivity and high resolution is necessary for radionuclide measurement of fission product activity in the presence of Ra-226 and Th-232 natural radioactivity.
1048 239
Table II. E.1 Gross Beta and Radiostrontium concentrations in Aquatic Biota Samples (pCi/kg) for Samples Collected First Quartes, 1979. **
~
i Sampling Locations
Downstream 2-24-79 8,970 (298) <33.5 87.6 (48.3)
Effluent 2-24-79 7,500 (265) <27.4 93.6 (37.0)
N Benthic Organisms Upstream 3-31-79 6,940 (503) e e Downstream 3-31-79 5,370 (443) e e Effluent 3-31-79 6,170 (457) 503 (340) <79.2 I
- Upstream Composite: U 42, U 43.
__. Downs t ream: D 40, D 45.
C) Effluent: E 38.
Ja= ** Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
c%D e. Insufficient weight or volume for analysis.
N 4
CD
Table II. E.1 Gross Beta and Radiostrontit.m Concentrations in Anuatic Biota Samples (pCi/kg) for Samples Collected First Quarter, 1979**
Sampling Locations
- Gross Beta Strontium 89 ,
Strontium 90 Vascular Plants Upstream 2-24-79 21,500 (500) <34.4 331 (30.2)
Downstream 2-24-79 26,200 (602) 751 (145) 258 (35.3)
Ef ' ...ent 2-24-79 24,900 (539) 4 58 (103) 20.3 (24.9)
Seston Upstream 2-25-79 25,100 (1,020) <11.8 108 (181)
Downstream 2-25-79 31,400 (1,270). 313 (139) 291 (61.1)
Effluent 2-25-79 3,050 (134) 26.9 (27.0) <9.18
- Upstream Composite: U 42, U /*3.
Downstream Composite: D 40, D 45.
C3 Effluent: E 38.
- 42. ** Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
CD N
4
Table II. E.1 Gross Beta and Radiostrontium Concentrations in Aquatic Biota Samples (pCi/kg) for Samples Celtected April ,1979 Sampling Locations
Downstream 4-22-79 9,550 (356) <31.5 <38.6 Effluent 4-7-79 16,300 (421) <27.2 71.5 (43.1)
Benthic Organisms Upstream f f f Downstream f f f Effluent f f f
- Upstream Composite: U 42, U 43.
Downstream: D 40, D 45.
__. Effluent: E 38.
CZ) 43, f Sample unavaila(ble. parentheses) are for the 95% confidence interval, (1.96 S.D.).
- Uncertainties in CD N
4 N
Table II. E.1 Gross Beta and Radiostrontium Concentrations in Aquatic Biota Samples (pCi/kg) for Samples Collected May, 1979 _**
Sampling Locations
- Gross Beta Strontium 89 ,
Strontium 90 Fish !
Upstream 5-16-79 8,650 (384) <95.8 240 (198)
~
Downstream 5-16-79 9,270 (388) <104 205 (152) 5-16-79 9,160 (690)
Effluent < 5 2'. 4 114 (74.4)
Benthic Organisms Upstream 5-16-79 7,220 (469) 9 9 f f Downstream f Effluent 5-16-79 6,800 (431) g g - $
Vascular Plants Upstream 5-26-79 23,600 (443) . <52-. 8 159 (49.5)
Downstream 5-26-79 857 (117) <58.1 150 (60.6)
Effluent 5-26-79 40,400 (670) <27.0 201 (33.8)
Seston Upstream 9 9 9 f f
- Downstream f CD A f f f Effluent CD N
- Upstream Composite: U 42, U 43.
- Downstream Composite: D 40, D 45.
Effluent: E 38.
- f Sample Uncertainties (in unavailable. parentheses) are for the 95% confidence interval, (1.96 S.D.),
g Analysis in progress.
Table II. E.1 Cross Eeta and Radiostrontium Concentrations in Aquatic Biota Samples (pci/kg) for Samples Co11ceted June 1979 .**
I l
Sampling Locations
f f f Upstream f f Downstream f 9 9 9 Effluent Benthic Organisms Upstream f f f Downstream f f f Effluent f f f e
Vascular Plants Upstream 6-9-79 19,200 (416) < 23.6 46.4 (31.7)
Downstream 6-9-79 25,400 (492) < 29.4 122 (26.0)
Effluent 6-9-79 34,400 (596) < 33. 7 270 (16.7)
Seston Upstream f f f Dowastream f f f Effluent f f f CD h
- Upstream Composite: U 42, U 43.
Downstream Composite: D 40, D 45.
N Effluent: E 38.
b in y **f Sample Uncertaintie.s unavaila(ble. parentheses) are for the 95% confidence interval, (1.96 S.D.)'
g Analysis in prooress.
s
Table II. E.2 Ga:nma-ray Emitting Radionuclide Concentrations in Aquatic Biota Samples (pCi/kg) for Samples Collected First Quarter,1979 . **
Sampling Locations
- Ru Cs Zr & Nb Fish Upstream 2-24-79 655 (147) <39.7 17.1 (19.9)
Downstream 2-24-79 760 (255) <79.7 <33.9 Ef fitsent 2-24-79 536 (252) <79.7 <33.9 Benthic Organisms Upstream e e e Downstream e e e Effluent 3-31-79 $
187 (140) 98.0 (36.2) 27.2 (17.4)
Vascular Plants Upstream 2-24-79 <404 <126 <53.7 Downstream 2-24-79 793 (396) 201 (93.5) 272 (69.1)
Effluent 2-24-79 2,920 (436) 1,190 (110) 1,050 (78.0)
Seston Upntream 2-25-79 <6,720 <1,140 700 (905)
Downstream 2-25-79 <7,630 <1,290 <472 Effluent 2-25-79 <26,100 <4,450 <1,640
- Upstream Composite: U 42, U 43.
Co Downstream Composite: D 40, D 45.
Effluent: E 38.
N ** Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
A- e Insufficient weight of volume for analysis.
w
Table II. E.2 Gamma-ray Emitting Radionuclide Concentrations in Aquatic Biota Samples (pCi/kg) for Samples Collected April, 1979 .
Sampling Locations
- Ru Cs Zr & Nb Fish Upstream 4-7-79 < 249 < 77.1 112 (72.0)
Downstream 4-22-79
< 79.9 < 24. 7 29.9 (25.5)
Effluent 4-7-79
< 249 80.6 (62.6) 136 (72.3)
Benchic Organisms Upstream f f f Downstream f f f Effluent f f f $
Vascular Plants Upstream 7
Downstream f 7 f Effluent f f f Seston Upstream f f f Downstream f f f Effluent f f f O
- Upstream Composite: U 42, U 43.
Downstream Composite: D 40, D 45.
Effluent: E 38.
N ** Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
A f Sample unavailable.
cd
Table II. E.2 Cacr.a-ray Emitting Radionuclide Concentrations in Aquatic Biota Samples (pCi/kg) for Samples Collected May, 1979 .
Sampling Locations
- Ru Cs Zr & Nb Fish Upstream 5-16-79 <142 <43.9 49.2 (29.5)
Downstream 5-16-79 l < 98. 2 < 30.3 50.1 (22.6)
Effluent 5-16-79 <100 < 31.1 43.0 (23.2)
Benthic Organisms Upstream 5-16-79 <503 169 (127) 146 ((49.9)
Downstream f f f Effluent 5-16-79 445 < 261 Il i
177 (82.7) g Vascular Plants Upstream 5-26-79 <89.7 <27.8 <11.8 Downstream 5-26-79 <255 <79.1 <33.5 Effluent 5-26-79 <297 <92.3 <39.1 Seston Upstream 9 9 g Downstrean f f f Effluent f f f
}
o
- Upstream Composite: U 42, U 43.
.p= Downstream Composite: D 40, D 45.
CD Effluent: E 38.
- Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
f Sample unavailable.
N q Analysis in progress.
Table II. E.2 Gamma-ray Emitting Radionuclide Concentrations in Aq iatic Biota Samples (pCi/kg) for Samples collected June 1979 **
Sampling Locations
- Ru 95 f Cs Zr & Nb Fish Upstream f f f Downstream f f f Effluent 9 9 9 Benthic Organisms Upstream l f f f Downstream I f f Effluent f I f 5
Vascular Plants Upstream 6-9-79 - 88.5 152 (29.7) 82.2 (16.1)
Downstream 6-9-79 <252 <78.4 <33.2 Effluent 6-9-79 <255 <79.1 <33.5 Seston Upstream f f f Downstream f ,
f f Effluent f f f
~
- Upstream Composite: U 42, U 43.
Downstream Composite: D 40, D 45.
Effluent: E 38.
g ** Uncertainties (in parentheses) are for the 9'i confident intarval, (1.96 S.D.).
f Sample unavailable.
N g Analysis in progress.
4 CD
101 II.F. Beef Cattle. Two head of cattle that graze the Facility area are counted each quarter in the CSU whole-body counter. The animals are washed carefully and counted for 20 minutes each. This method is far more sensitive than counting meat samples and is the method of choice for detecting Cs-137 in the meat food chain to humans. If thyroid I-131 contamination were significant this would be detected from the whole body count.
Table II.F.1 gives values for the first half of 1979 for whole body counting of beef cattle. The animals are selected each quarter at random; however, the animal number is recorded and the animal may be retrieved and recounted if necessary. The Cs-137 concentrations ar e nearly identical to those observed during the last half of 1978. The slightly lower concen-trations in the second quarter of 1979 probably only reflects a different cutting and/or source of hay for these animals.
The Cs-137 activity is expressed as pCi per gram of K in the whole animal. This is done te more easily compare the counts between animals.
K and Cs are both intracellular cations and by normalizing the Cs-137 activity to K, diffe ences due to fat percentage in the animals are eliminated.
Table II.F. 1 In-Vivo Gamma Ray Activity in Fort St. Vrain Area Beef Cattle.
Date 1-131 Cs-137 (pCi/gK) 3/24/79 None Detected 24.7 3/24/79 None Detected 23.5 6/16/79 None Detected 16.3 6/16/79 None Detected 20.3 1048 249
102 II.G.1 Sample Cross Check Data Since 1975 we have participated in a national EPA sponsored laboratory intercomparison analytical program. We analyze air filters as well as milk and water samples. The results obtained since the last report are given in Table II.G.I. Although we analyze cross check samples at the maximum frequency offered by the EPA a full complement was not received during the last period due to unknown reasons.
Inspection of Table II.G.1 reveals few aberrant measured values i.e. greater than the 3 signed control limit. Our laboratory has not completed a calibration for Cr-51. This will be completed during the last half of 1979.
Other cross check possibilities exist for this program. We have participated with the reactor health physics group in a TLD intercomparison.
We analyze many duplicate samples with the state health department and we currently are participating in an international cross check program sponsored by the I. A.E.A. (International Atomic Energy Agency) in Vienna. The report for the end of 1979 will present a major analysis of these cross check values as well as an analysis of all the experience with the EPA program through that date.
1048 250
103 Table II.G.I. EPA Cross-Check Data Summary Radio CSU Actual Preci, ion Control Limits % deviation Date nuclide Value Value (1 sigma) (3 Sigma) from known Ai r Filters, pCi / filter 1/5/79 90Sr 9 6 1.5 4.5 50 137Cs d 6 5 15 --
Gross a 6 5 5 15 20 Gross s 15 18 5 15 17 3/30/79 90Sr 33 21 1.5 4.5 57 137Cs 25 21 5 15 19 Gross a 18 14 5 15 29 Gross s 53 63 5 15 16 eilk, pCi/l 1/26/79 e'3S r 34 53 5 15 36 90Sr 25 19 1.5 4.5 67 1317 151 105 5 15 44 137f5 93 49 5 15 90 140Ba 0 0 -- -- --
K 1630 1560 78 234 4 Water, tritium pCi/l 12/15/78 3H 1982 2030 346 1038 2 2/9/79 3H 999 1280 331 993 22 4/13/79 3H 2136 2270 349 1047 6 Wate , Alpha and Beta pCi/l 1/19/79 Gross a 9 6 5 15 50 Gross s 10 16 5 15 38 3/23/79 Gross a 16 10 5 15 60 Gross s 8 16 5 15 50 Nater, Gamma DCi/l 2/2/79 SICr 65 0 -- -- --
60Co 11 9 5 15 22 6sZn 36 21 5 15 70 106Ru 1 0 -- -- --
134Cs 10 6 5 15 67 13 7c.s 15 12 5 15 25 l
_1 ___ _
- o. Sample lost in analysis.
1048 251
104 Table II.G.I. EPA Cross-Check Data Summary Radio CSU Actual Precision Control Limits 's deviation Date nuclide Value Value (1 sigma) (3 Sigma) from known Ll ster, Strontium 09 and 90 1/5/79 89Sr 23 14 5 15 39 90Sr 14 6 1.5 4.5 133 1048 252
105 II.H. Summary and Conclusions Table II.H.1 presents a summary and analysis of data collected during the first half of 1979. The tabular data may be used for comparison to other operating power reactors. For each sample type the number of samples analyzed in the reporting period and the maximum and minimum values for each sample type are given. From log-normal analysis of each data set for the last 12 month period the geometric mean and standard deviation is presented.
The arithmetic mean is also calculated back for the entire year and for the reporting period. It should be noted that the tabular data presented in the body of this report contain only positive calculated values. Any calculated values less than zero or less than the minimum detectable concen-tration (MDC) are listed as less than the actual MDC for that sample analysis.
However, the actual result was used in the calculation for the arithmetic mean values for the last six months. Therefore all values, negative as well as positive, were included. This procedure is now generally accepted and gives a closer approximation to the true mean value. Because of this procedure, however, the values listed in Table II.H.1 cannot be calculated directly from the tabular values in the report.
It must be emphasized that while it is true that no sample can contain less than zero radioactivity due to the random r.- . e of radioactive decay it is statistically possible to obtain sample count rates less than the background and hence a negative result.
The log-nomal probability treatment is to plot all data for each sample type over the last full year on log-probit coordinates. The samples are ranked by increasing activity concentration and the cumulative percentage of rankings are plotted on the probit abcissa versus the activity concen-tration on the log ordinate. The geometric mean value x , is determined g
directly from the 50th percentile point. The geometric standard deviation 1048 253
106 is simply the slope of the line, which can be calculated from the ratio between the 84.1 percentile and the 50 percentile. In a normal distribution the arithmetic standard deviation is an additive parameter to the arithmetic mean (i o), whereas in the log-normal distribution the geometric standard deviation og, is a multipicative parameter to the geometric mean (x g -
o g),
i.e.,
the area betweeng i divided by og, andgi multiplied by ogshould contain 68% of the grequency values. The log-normal statistical treatment is difficult when the number of samples in the group is small. For this reason only the last full year of data points is treated by this method.
With the log-normal analysis, no bias results from using less than MDC values.
From the values presented in Table II.H.1 and the tabular data of the report the following observations and conclusions may be drawn:
- 1. No sample types except those collected in the effluent stream show radioactivity concentration; significantly different when comparing Facility, Adjacent or Reference mean values. This supports the conclusion that radioactivity released from the reactor has not produced concentrations off-site that are different from either background or that are due to weap7n testing fallout.
- 2. There was only slight evidence in several sample types of tropospheric debris from the December 14, 1978 Chinese nuclear weapon test.
- 3. The log-normal treatment of all the data revealed that for most of the data such analysis is appropriate. However, sigmoid distributions were quite often observed. Sigmoid distributions can be resolved into biomodal or even trimodal log-normal distributions. This is generally interpreted to mean that there is more than one significant activity source. It was again noted that for all of the data analyzed over the past year by the log-normal treatment, those sample types that are 1048 254
107 reservoirs or sinks for activity, e.g. , soil, sediment and TLD, tended to be described by a single distribution. Thoso sample types which are less stable and fluctuate, e.g., air and precipitation tended to be bimcdal or trimodally distributed.
- 4. As in every previous report, it was again apparent that the variability observed around the mean values was great. This variability is due to counting statistics and methodological error, but principally due to true environmental variation. It must be recognized and accounted for in analysis of any set of environmental data before meaningful conclusions can be drawn.
- 5. Environmental radioactivity data has been collected on this project since 1969. The methods or approach have not significantly changed since that time. During this period the reactor began power production.
Probably no more extensive or complete radiation surveillance program exists for any reactor in the U.S.A. For this reason a detailed and thorough analysis of all past data is warranted. At the end of the next reporting period we will present a complete statistical summary of all data collected on this project since its inception.
1048 255
Table I I . !! .1. Mean Values for all Sample Types.
Number of Minimum Maximun Sa:aples Value Observed Value Observed x o E 8 Analyzed 6 Months 6 ,Yonths i i Sample Type Area 6 Month:. 1 Year 1 Year 6 Months TLD Facility 90 .20 .54 .43 (1.23) .44 .43 External Adjacent 81 .15 2.50 .4 (1.20) .42 .42 (mR/ day) Refe rence 82 .17 .55 .41 (1.19) .42 .42 Composite 253 .15 2.50 .4 (1.19) .42 .43 Air Facility 103 <0.8 14.7 3.98 (2.25) 5.54 4.77 Gross a Adjacent 69 0.6 13 4.39 (2.37) 7.09 3.56 (fCi/m3 ) Composite 172 ,<0. 8 13 4.16 (2.31) 6.25 4.29 Air Facility 103 5 54 22.8 (1.98) 29.9 21.0 Gro.;s 8 ' Adjacent 71 5 81 20.1 (2.51) 36.9 15.4 5 171 21.7 *
(fCi/m3 ) Composite 5 81 (2.20) 32.7 18.7 Air Facility 103 <250 4,750 496 (2.43) 352 594 Tritium Adjacent 75 <250 3,420 448 (2.77) 740 538 (pCi/1) Composite 178 <250 4,750 475 (2.58) 401 576 A, i r, Composite
---I 26 <3.01 303 6.75 (5.45) <3.01 <3.01 (fCi/m3 )
Air Composite
'MRu 26 <1.32 12.4 4.41 (2.34) 1.63 .0841 (fCi/m 3) 0 '
5:=
CO N
LT1 Ch
Table II.H.1. 5?ean Values for all Sample Types.(Cont'd.)
Number of Mininum Maximum Samples Value Observed Value Observed i o Analyzed 6 Stonths 6 Sionths N E i i Sample Type Area 6 $!onths 1 Year 1 Year 6 Months Air Composite 137Cs (fCi/m3) 26 <0.771 4.71 1.32 (1.91) 1.33 1.03 Air Composite 9537 (fCi/m3) 26 <0.123 2.71 0.473 (3.19) 0.507 0.317 Water Effluent 11 <f.25 13.0 14.5 (2.12) 17.4 10.3 Gross S Downstream - 18 3.83 2 '. 2 11.5 13.6 (1.86) 10.4 (pCi/1) -Upstream 12 5.71 20.5 12.8 15.6 (1.81) 9.97 E Potable 12 0.634 9.04 3.23 (2.76) 5.43 3.86
- Composite 53 <1.25 22.2 9.29 (2.56) 13.1 8.80 Water Effluent 11 573 14,200 2.860 Tritium 18 (7.18) 99,200 4,090 Downstream <295 1,220 577 (2.51) 798 496 (pCi/l) Upstream 12 <299 1,130 613 (3.08) 1,380 487 Potable 12 <295 5,9 0 861 53 (2.09) 1,150 1,260 Composite <295 14,200 911 (3.94) 23,300 789 Water Effluent 28 0.253 21.9 1.41 (3.38) 3.28 2.28 30sr Downstream 16 <0.657 2.57 1.30 (5.58) 5.31 <0.657 (pCi/1) Upstream 9 <0.562 1.82 1.91 8.01 (6.27) 0.696 Potable 11 <0.644 3.19 1.34 (6.44) 5.88 <0.644 Composite 64 <0.253 21.9 1.44 (4.78) 5.01 1.30 4
CD N
W N
Table II .!!.1. 5'ean Values for all Sample Types. (Cont 'd.)
Number of Minimum Maximum Samples Value Observed Value Observed i o Analyzed 6 Months 3 E 6 Months E i Sample Type Area 6 Months 1 Year 1 Year 6 Months water Effluent 28 <0.532 1.56 1.89 (2.78) <0.532 40.532 89Sr Downstream 16. <0.456 5.05 1.34 (2.16) <0.456 <0.456 (pci/1) Upstream 9 <0.560 5.33 1.06 (3.42) <0.560 <0.560 Potable 11 <0.503 2.35 Composite 64 <0.456 0.750 (3.60) <0.503 <0.503 5.33 1.16: (2.89) <0.456 <0.456 Water Effluent 31 <4.53 129 2.73 106Ru Downstream 18 (4.00) <4.53 <4.53
< 4 .,53 4.93 3.11 (1.80) <4.53 <4.53 (pci/1) Upstream 12 <4.53 8.20 3.60 Potable 12 <2.35 (1.72) <4.53 <4.53 2.79 1.54 (2.62) <4.53 <4.53 sComposite 73 <2.35 129 2.69 -
(2.90) <4.53 <4.53 g riater Effluent 31 <0.809 39.1
'37Cs Downstream 18 <0.309 0.974 (2.63) 1.61 2.23 4.79 0.774 (3.25) 1.14 1.16 (pci/1) Upstream 12 <0.809 9.35 12 <0.735 0.866 (3.02) 1.34 1.54 Potable 1.86 0.878 (2.03) 0.896 0.432 Composite 73 <0.735 39.1 0.886 (2.73) 1.33 1.55 r;ater Ef fluen t 31 <0.290 64.0 952r 13 <0.290 0.515 (3.27) 1.60 2.64 Downstream 3.44 0.511 (2.A6) 0.665 0.732 Upstream 12 <0.290 5.35 (pci/1) 0.649 (2.47) 0.925 1.05 Potaby,, 12 <0.290 1.43 73 <0.290 0.486 (1.91) 0.407 <0.290 compostte 64.0 0.528 (2.69) 1.05 1.51 Sediment Effluent 11 27,800 43,200 35,200 (1.23) 47,800 34,700 Gross S Downstream 13 27,200 39,100 33,800 (1.33) 35,200 32,700 C (pCi/kg) Upstream
- 10 12,700 33,900 33,000 (1.34) 33,800 31,000 CO Composite 34 12,700 43,200 34,000 (1.30) 45,500 32,600 N
t.D CO
Table II .!!.1. Mean Values .%r all Sample Types.(Cont'd.)
Number of Minimum 5?aximum Samples Value Observed Value Observed E o Analyzed 6 Months 6 Months N S E i Sample Type Area 6 Months 1 Year I Year 6 , Months sediment Effluent 11 <146 708 263 1,040 905r (3.95) 227 Downstream 13 <107 512 304 (2.93) 543 107 (pci/kg) Upstream 10 <144 267 234 (2.86) 643 <144 Composite 34 <107 708 271 (3.17) 719 135 Sediment Effluent 11 <129 898 310 (3.05) <129 <129 89sr Downstream 13 <139 809 231 (5.51) <139 <139 (pCi/kg) Upstream 10 <1,44 624 371 (3.21) <144 <144 Composite ,
34 <129 898 286 (4.07) <129 <129 Sediment ' Effluent 11 <3,720 6,750 3,750 (2.22) <3,720 <3,720 C IC6Ru Downstream ?3 <3,730 40,800 2,750 (2.89) <3,730 <3,730 (pCi/kg) Upstream 10 <3,730 <3,730 3,110 (1.90) <3,730 <3,730 Composite 34 <3,720 40,800 3,130 (2.40) <3,720 <3,720 Sediment Effluent 11 <653 2,060 759 ( 1. 60) <653 792 137Cs Downstream 13 <646 2,830 352 (3.41) <646 <646 (pCi/kg) Upstream 10 <560 1,820 648 (1.59) <650 <650 Composite 34 <646 2,830 530 (2.51) <646 <046 Sediment Effluent 11 <237 2,890 251 (2.43) 237 434 952r Downstream 13 <230 553 193 (2.31) <230 <230 (pCi/kg) Upstream 10 <234 663 213 34 (2.14) <234 256 Composite <230 2,890 215 (2.29) <230 268 Precipitation F-1 6 0.670 Gross s F-4 202 52.5 (5.52) 142 69.0 g 6 <9.53 299 74.5 (5.04) 196 92.9 w (pci/m 2) Composite 12 <9.53 299 62.3 (5.14) 169 81.0 CD N
LD
Table II.lf.1, Mean V. lues for all Sample Types. (Cont'd.)
Nwaber of Minimum Maximum Samples Value Observed Value Observed i o Analyzed 6 Months 6 Months S 8 i Sample Type Area i 6 Months '. Year 1 Year 6 Months Precipitation F-1 6 345 16,500 Tritium F-4 6 733 (3.19) 1,970 3,310 349 2,360 521 (1.84) 620 666 (pCi/m )
2 Composite 12 345 16,500 818 (2.52) 1,290 2,080 Precipitation F-1 6 <4.73 16.3 lo6Ru F-4 33.5 (3.01) 23.5 11.0 6 <3.86 9.41 13.2 (5.38) 16.2 <3.86 (pci/m 2) Composite 12 <3.86 16.3 20.3 (4.41) 19.9 <3.86 Precipitation F-1 6 <l.46 52.6 14.0 (4.02) 29.0 21.2 137Cs F-4 6 <2.29 21.7 (pci/m 2) 12.5 (2.59) 16.9 10.3 Composite 12 <1.46 52.0 13.2 (3.21) 23.0 15.7 O N
Precipitation F-1 6 <0.620 23.1 95Zr 6.12(6.08) 9.40 9.18 F-4 6 1.02 10.8 5.29(2.49) 7.46 5.16 (pci/m 2) Composite 12 <0.620 23.1 5.79(4.07) 8.66 7.62 Precipitation F-1 6 <5.17 331 90Sr 24.8 (8.68) 62.5 <5.17 F-4 6 <7.08 221 11.2 (4.73) 48.5 7.23 2 12 (pci/m ). Composite <5.17 331 16.7 (6.59) 44.4 <5.17 Precipitaticn F-1 6 <0.360 18.7 11.3 (5.57) 0.360 <0.360 89Sr F-4 6 <2.47 46.9 13.0 (2.88) 2.47 <2.47 (pci/m 2) Composite 12 <0.360 46.9 12.1 (4.04) 0.360 <0.360 m Milk Facility 16 < 275 906 300 (2.65) 367 455 o Tritium Adjacent 16 < 275 1,009 A (pCi/1) Re fe rence 16 344 (2.00) 361 473
< 275 728 CO Composite 48 286 (2.67) 343 372
< 275 1,009 309 (2.43) 357 433 N
Ch -
CD
Table II .!!.1. Mean Values for all Sample Types. (Cont'd.)
Number of Minimum M1ximum Samples Value Observed Value Observed i o E 8 Analyzed 6 Months 6 Months i i Sample Type >
Area 6 Months 1 Year 1 Year 6 Months Milk Facility 14 <0.950 11.9 2.64 (2.67) 3.51 3.72 90Sr Adjacent 14 <3.40 15.7 3.89 (2.52) 5.13 3.40 (pCi/1) Reference 14 <4.03 9.04 <4.03 4.03 <4.03 Composite 42 <0.950 15.7 3.30 (2.45) 4.04 3.30 Milk Facility 14 <0.982 4.71 3.20 (2.54) <0.982 <0.982 89sr Adjacent 14 <1.01 8.83 3.15 (2.64) <1.01 <1.01 (pCi/l) Reference 4 4 <3.56 <1.56 3.45 (2.95) <1.56 <1.56 Composite , 42 <0.982 8.83 3.26 (2.68) <0.982 <0.982 Milk ' Facility 16 <0.102 46.6 1.18 (8.07) <0.101 5.82 131 1 Adjacent 16 <0.104 20.8 2.00 (7.16) 6.03 5.16 (pCi/1) Re ference 16 <0.103 33.6 2.14 (8.67) 8.30 4.15 Composite 48 <0.102 46.6 1.72 (7.92) 2 38 4.35 Milk Facility 16 <0.185 26.5 3.71 (5.25) 7.40 9.63 137Cs Adjacent 16 <0.169 11.1 3.82 (3.35) 4.98 5.31 (pCi/1) Re ference 16 <0.107 7.43 3.26 (4.04) 3.38 2.73 Composite 48 <0.107 26.5 3.59 (4.14) 5.37 5.78 Milk Facility 16 1.45 1.61 1.49 (1.04) 1.49 1.51 Nat. K Adjacent 16 1.42 (g/1) Reference 1.66 1.54 (1.06) 1.54 1.55 16 1.30 1.61 1.48 (1.05) 1.48 1.48
-- Composite 48 1.30 1.61 1.50 (1.05) 1.50 1.51 CD
- Forage Facility 4 <273 583 381 (4. 03) 583 400 Tritium Adjacent 11 <295 891 618 (1. 49) 667 573 g (pCi/1) Re ference 11 <273 762 426 (1.86) 488 483
& Composite a <273 891 487 (2.10) 578 426
Table 11.11.1. Mean Values for all Sample Types. (Cont'd.)
Number of Minimum Maximum Samples Value Observed Value Observed x,, o Analyzed 6 Months 6 Months " 8 x x
Sample Type Area 6 Months 1 Year 1 Year 6 Months Fo rar.e Facility g 89Sr Adjacent g (pci/kg) M ference 12 <13.7 390 23.5 (7.38) <13.7 <13.7 Composite 9 4
Forage Facility 9 90Sr Adjacent 9 (pci/kg) Reference 12 <12.7 1,485 127 (3.75) 241 257 Composite 9 Forage Facility 4 <38.3 29.5 62.4 (1.82) 18.0 13.0 10 '> R u Adjacent <11.9 u1.0 3
12 61.2 (3.20) 107 142 (pCi/kg) Reference 12 <22.8 90.2 59.3 (2.50) 37.2 8.4 Composite 28 <11.9 90.2 60.6 (2.67) 74.9 66.5 1 '
Fo rage Facility 4 92.5 235 152 (1.53) 164 179
~
137Cs Adjacent 12 <15.3 430 89.0 (2.42) 124 109 (pci/kg) Reference 12 <17.1 327 87.1 (2.52) 125 99.4 C0 Cor..pos it e 28 <]5.3 430 95.4 (2.37) 130 135
}
39 Forage Facility 4 29.3 2,030 83.8 (3.31) 260 549 95:r Adjacent 12 13.3 63.2 43.0 (2.08) 56.2 29.0 j (pci/kg) Reference 12 8.47 55.5 33.2 (2.66) 46.5 25.7 Composite 28 13.3 2,030 42.3 (2.60) 81.6 102 Forage Facility 4 12,900 31,200 17,400 (2.11) 20,600 18,200 Gross s Adjacent 12 8,860 32,700 16,900 (2.08) 20,200 20,100 i;- 12 12,800 32,100 16,000 (1.63) 17,600 (pci/kg) Reference 18,800 3 Composite 28 8,860 32,700 17,000 (1.99) 20.000 19,200 v
Table II.lf.1. Mean Values for all Sample Types. (Cont'd.)
Number of Minimum Maximum Samples Value Observed Value Observed i, o Aaalyzed 6 Nonths 6 Months 8 5 i Sample Type Area 6 Months 1 Year 1 Year 6 , Months Soil Facility 8 26,500 35,800 30,300 (1.11) 30,500 1,700 Gross 6 Adjacent 24 18,800 33,500 26,900 (1.14) 27,100 26,700 (pci/kg) Re ference 24 17,100 31,600 25,800 (1.19) 26,200 26,000 Composite 56 17,100 35,800 26,900 (1.16) 27,200 26,800 Soil Faci 1ity 8 3.42 4.60 3.92 (1.11) 3.94 3.83 Gross B Adjacent 24 2.42 4.32 3.48 (1.13) 3.51 3.45 (sci /m2) Reference 24 2. (1 4.14 3.33 (1.18) 3.37 3.36 Composite , 56 2.21 4.62 3.47 (1.16) 3.51 3.47 Soil 'Tacility 8 <366 <366 377 (1.13) <366 <366 C locRu Adjacent 22 <326 <326 393 (1.15) <326 <326 20 <326 <326 355 (1.66) <326 <326 (nci/m2) Reference 50 <326 <326 375 Composite (1.40) <326 <326 Soil Facility 8 86.6 264 79.7 (2.37) 107 119 137Cs Adjacent 22 73.5 223 78.3 (2.45) 89.9 92 7 (nci/m2 ) Re fe rence 20 62.8 183 85.9 (1.59) 88.4 94.4 Composite 50 62.8 264 81.7 (2.07) 91.8 97.2 Soil Facility 8 <19.7 27.1 12.3 (3.47) 24.8 14.1 95Zr Adjacent 22 <19.5 71.2 24.8 (2.77) 24.1 15.4 (nci/m2 ) Re ference 20 <19.5 107 27.4 (2.99) 57.9 20.0 Composite 50 <19.5 107 23.3 (3.02) 38.6 17. ?.
Soil Facility 6 483 714 430
<250 905 (1.62) 490 558 Adjacent Tri t ium (PCi/1) Reference 18 50 790 790
!$ h h 554l} g o composite 500 (1.66) 603 co -
N ON
- M
Table II .!!.1. Mean Values for all Sample Types. (Cont'd.)
Number of Minimum Maximum Samples Value Observed Value Observed i o Analyzed 6 Months 6 Months N 3 i i Sample Type Area 6 Months 1 Year 1 Year 6 Months Soil Facility <91.9 6 <91.9 118 (1.40) <91.9 <91.9 assr Adjacent 17 <92.0 646 <92.0 144 (1.94) <92.0 (pci/kg) Re ference 18 <68.0 929 111 (3.52) <68.0 <68.0 Composite 41 <68.0 929 125 (2.55) <68.0 <68.0 Soil Facility 6 143 1,440 271 (2.37) 395 426 9CSr Adjacent 17 <75.0 3,210 197 (5.39) 508 549 (pCi/kg) Reference 18 <74.0 1,650 210 (2.36) 307 330 Composite 41 <74.0 3,210 213 (3.46) 402 509 Aquatic Biota ' Upstream 3 8,650 11,400 8,900 (2.21) 10,700 10,400 C Fish Downstream 3 8,970 9,550 11,900 (2.35) 16,500 9,260
- Gross S Effluent 3 7,500 16,300 13,800 (2.41) 21,800 11,000 (pCi/kg) Composite 9 7,500 16,300 11,300 (2.27) 16,300 '0,200 Aquatic Biota Upstream 2 6,940 7,22C 6,400 (5.76) 30,100 7,080 Benthic Downstream 1 5,370 5,370 15,300 (3.36) 30,700 5,370 Gross 8 Effluent 2 6,170 6,800 12,100 (2.28) 16,500 6,490 (pci/kg). Composite 5 5,370 7,220 10,300 (3.66) 25,500 6,500 Aquatic Biota Upstream 3- 19,200 23,000 10,200 (2.85) 14,800 21,400 Vascular Plants Downstream 3 857 26,200 7,120 (3.02) 11,000 17,400 Gross S Effluent 3 24,900 40,400 8,960 (4.04) 16,600 33,200
- (pCi/kg) Composite 9 857 40,400 9,110 (3.20) 14,800 24,000 O
A Aquatie Biota Upstrean 1 25,100 25,100 35,800 (1.70) 41,100 25,100 O Seston 31,400 31,400 32,200 (1.30) ' 33,200 Downstream 1 31,400 Gross S Effluent 1 3,050 3,050 21,700 (2.70) 29,300 3,050 (pCi/kg) Composite 3 3,050 31,400 28,800 (2.00) 34,300 19,900 a
Table II.H.I. Mean Values for all Sample Types.(Cont'd.)
Number of Minimum )faximum Samples Value Observed Value Observed E o S 8 Analyzed 6 Months 6 Months E E Sample Type Area 6 Months 1 Year 1 Year 6 Months Aquatic Biota Upstream 3 <28.8 <28.8 59.7 (1.66) <28.8 <28.8 Fish Downstream 3 <31.5 <31.5 75.6 (1.86) <31.5 <31.5 8 '3 Sr Effluent 3 <27.2 <27.2 33.4 (1.58) <27.2 <27.2 (pci/kg) Composite 9 <27.2 <31.5 53.2 (1.85) <27.2 <27.2 Aquatic Biota Upstream 9 Benthic Downstream 0 NA NA 166 NA 83 Sr Effluent 9 s (pCi/kg) Composite , 9 Aquatic Biota 'Upstrean 5 <23.6 <23.6 63.7 (2.75) <23.6 <23.6 C Vascular Plants Downstream 6 <29.4 751 57.2 (2.77) <29.4 166 89sr Effluent b <27.6 458 67.4 (3.21) <27.6 <27.6 (pci/kg) Compo s it e 16 <23 6 151 62.6 (2.80) <23.6 <23.6 Aquatic Biota Upstream 4 <11.8 1,920 356 (6.27) 384 768 Seston Downstream 4 <133 1,680 470 (3.18) 504 525 8 '3Sr Effluent 2 26.9 2,590 150 (5.62) 586 1,310 (pci/kg) Composite 10 <11.8 2,590 304 (4.79) 479 745 Aquatic Biota Upstream 3 68.3 240 150 (2.04) 184 126 Fish Downstream 3 <38.6 205 127 (1.87) 145 110
'30Sr Effluent 3 71.5 114 114 (1.43) 121 93.0
- (pci/kg) Composite 9 <38.6' 240 129 (1.76) 150 110 CD
-C- Aquatic Biota Upstream 9 Downstream 0 NA NA 162 NA O Benthie 90 Sr Effluent 9 (pCi/kg) Composite 9 Aquatic Biota Upstream 4
46.4 331 91.9 (2.00) 112 169 4 152 (1.49) 183 158 Vascular Plants Downstream 122 258 90 Sr Effluent 4
20.3 270 87.9 (3.98) 119 177 I 98.5 (2.60) 132 168 (pci/kg) Composite 20.3 331
Table II .!!. I . ' dean Values for all Sample Types. (Cont'd.)
Number of Minimum Maximuta Samples Value Observed Value Observed i Analyzed 6 Months 6 'donths S 8 i Sample Type Area i 6 Months 1 Year 1 Year 6 Months Aquatic Biota Upstream 1 108 108 Seston Downstream 99.5 (3.21) 83.6 108 1 291 291 160 90Sr (2.18) 209 291 Effluent 1 10.3 10.3 147 (4.54) 128 (pci/kg) Composite 10.3 3 10.3 291 132 (3.04) 141 136 Aquatic Biota Upstream 3 <142 644 Fish 228 (1.90) 271 291 Ic6 Downstream 3 c 79.9 760 201 (2.91) 315 199 Ru Effluent 3 <100 536 218 (1.84) 254 356 (pci/kg) Conposite 9 < 79.9 760 216 (2.14) 280 270 Aqu: t ie Biota 'Upstrean 1 <503 <503 141 (1.78)
Bent e 211 211 C 1CC
.c Downstream < < 361 (1.36) 265 -
Ru Effluent 1 <845 <845 124 (11.2) <253 130 (pCi/kg) Conposite 2 503 <845 163 (4.95) <253 135 Aquatic Biota Upstream 3 88.5 <404 194 (2.27) 39.4 <88.5 Vascular plant Downstream 3 252 793 M Ru 185 (2.87) 174 62.7 Effluent 3 255 2,920 462 (2.35) 318 1,374 (pci/kg). Composite 9 88.5 2,920 255 (2.66) 205 364 Aquatic Biota Upstream 1 <6,720 <6,720 6,600 (1.25) <6,720 <6,720
<7,630 <7,630
--*5Sf" ;,)wnstream 1
1 <26,100 <26,100 3,960 (2.98) 5,910 (2.42)
<7,630)
<26,100
<7,630
<26,100 (pci kg) C ; si e 3 <6,700 <26,100 5,390 (2.25) <26,100 <26,100 Co Aquatte Biota Upstream 3 <39.7 < 77.1 45.0 (2.90) 55.6 < 39.7 g 1ligh Downstream 3 <24.7 < 79.7 20.5 (7.05) 43.0 < 24.7 os - ts Effluent 3 <31.1 80.6 56.9 (2.21) 47.0 < 31.1 (pCi/kg) Ccmposite 9 <24.7 80.6 37.4 (3.94) 35.1 < 24.7 1 169 169 Aquatic Biota Upstream . _
171 (1.17) 172 169 Benthic Downstream 2
211 (1.33) 218 -
l 3 'Cs EffIuent
<261 98.0 140 (3.39) <261 <261 (pCi/kg) 3 <261 169 Composite 175 (2.00) <261 <261
Table I I .11.1. Mean Values for all Sample Types.(Cont'd.)
Number of Minimum Maximum Samples Value Observed Value Observed i o E
Analyzed 6 Months 6 Months S i i Sample Type Area 6 Months 1 Year 1 Year 6 Months .
Aquatic niota Upstream 3 <27.8 152 111 (1.95) 126 40.2 vascular Plant . Downstream 3 <78.4 201 134 (2.03) 142 <78.4 137 Cs Effleent 3 <79.1 1,190 166 (2.49) 100 377 (pCi/kg) Composite 9 <27.8 1,190 135 (2.13) 123 153 Aquatic niota Upstream 1 -
<1,140 <1,140 1,130 (1.38) <1,140 <1,140 yeston Downstrean 1 <1,290 <1,290 685 (2.19) <1,290 <1,290
'37 <4,450 Cs Effluent 1 <4,450 1,000 (3.34) <4,450 <4,450 (pci/kg) Composite 3 <1,140 <4,450 924 (2.35) <1,140 <1,140 Aquatic Biota supstream 3 17.1 112 31.1 (1.99) 12.7 59.4 -
Fish Downstream 3 29.2 50.1 32.8 (2.05) 34.0 30.0 C
'35Zr Effluent 3 <33.9 136 25.5 (3.05) 40.5 64.8 (pci/kg) Compos it e 9 17.1 136 29.7 (2.27) 29.1 51.3 Aquatic Biota Upstream 1 146 146 114 (1.70) 129 146 Benthic Downstream e - -
120 (1.29) 108 -
95:r Effluent 2 27.2 177 87.8 (2.24) 112 102 (pci/kg) Composite 3 27.2 177 104 (1.80) 121 117 Aquatic Hiota Upstream 3 <11.8 <537 50.1 (2.12) 46.9 19.1 Vascular Plants Downstream 3 <33.2 272 68.7 (2.65) 90.5 72.0
'3 b r Effluent 3 <33.5 1,050 96.2 (2.93) 176 329 9 11.8 1,050 69.2 (2.58) 106 140 o (pci/kg) Composite
-c:.
Q Aquatic Biota Upstream 1 700 700 545 (1.30) 177 700 1 <472 <472 267 (4.16) <472 <472 Seston Downstream N 1 <1,640 <1,640 619 (1.77) <1,640 <1,640 95Zr E f fluent <1,640 3 <472 456 (2.50) <472 <472 (pCi/kg) Composite Beef F-44 137 g3 pCi/g Nat K 4 16.3 24.7 24.5 (1,3!) 25.3 21.2
120 II.I. ERRATA The following tables give data for samples on which the analysis was in progress at the date of the last progress report. The tabular data was included in Table II.H.1, the mean value table and this table is also presented for update purposes. The soil values in Table II.D.9 again show great variation but all elevated values are within the 95% corifidence level dictated by counting statistics and within the methodological variation dictated by the appropriate method as discussed in the soil section of this report.
1048 268
Table II. C.7 Strontium 90 Activity Concentrations in Bottom Sediment (pCi/kg).
Sampling Monthly Collection Dates Locations 7-8-78 8-5-78 9-9-78 10-14-73 11 11-78 12-23-78 Effluent E 38: Farm Pond 541 (Goosequill) <19S <259 (275) <250 <3 0 6 * * <365 E 41: Slough to 265 St. Vrain Creek <251 <359 (299) <192 <198 <409 Downstream D 37: Lower Latham 436 ,
U Reservoir <525 (216) <212 <209 <34 3 <303 D 40: S. Platte River 636 Below Confluence <215 (356) <202 <189 <34 0 <4 54 D 45: St. Vrain 767 Creek <113 (419) <256 <229 <316 <39 7 Uystream U 42: St. Vra in Creek <236 <377 <178 <184 < 605 <316 U 43: S. Platte 481 217 River <246 (356) <216 (235) <297 f
~
- l'nc e r ta in t ies (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
li3S collected 11/14/78.
g f Sample unavailable.
N Ch 4
Table II. C.8 Strontium 89 Activity Concentrations in Bottom Sediment (pC1/kg).
Sampling Monthly Collection Dates Locations 7-8-78 8-5-78 9-9-78 10-14-78 11-11-78 12-23-78 Effluent E 38: Farm Pond 303 4,310 565 220 419 (Goosequill) (4,180) * (1,600)
(773) (100) (907).* <271 E 41: Slough to 5,900 2,270 305 St. Vrain Creek (5,340) (1,900) <212 (609) <177 <338 Downst1 cam -
m D 37: Lower Latham 1,640 N Ret.e rvo ir (9,560) <204 <199 <193 <271 <243 D 40: S.Platte River 644 Below Confluence <188 <281 <193 (603) <261 <356 D 45: St. Vrain 474 248 1,070 Creek (2,540) <313 <216 (768) <221 (774)
Upstream U 42: St. Vrain 2,230 600 1,170 Creek <224 (3,600) (733) <181 <502 (675)
U 43: S. Platte 1,240 4,170 River (5,560) (1,840) <216 <182 <249
_ f O
- U'ncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
O O ** E3S collected 11/14/ 78.
f Sample u:.availabic.
N
'J O
123 Table II. D.7 Gross Beta Concentrations in Soil and Forage (pCi/kg) for Samples Collected Third Quarter, 1978.
Sampling July 22 Location Soil Forage Soil Forage Soil Forage l
Facility l
4 35,000 (1,560) 44 32,500 (1,500)
Adjacent 6 29,300 (1,440) 28 26,800 (1,390) 31 27,600 (1,400) 36 29,400 (1,440) 48 'J3,100 (1,520) 50 f Reference 16 f 17 19,500 (1,210) 20 28,600 (1,420) 22 28,900 (1,410) 23 32,000 (1,500) 25 25,300 (1,350) 1
- Uncertainties (in parentheses) are for the 95% contidence interval, (1.96 S.D.).
- f. Sample unavailable.
1048 271
124
.able II. D.8 Gross Beta Activity in Soil per Unit Surface Area (pCi/m ) for Samples Collected Third Quarter, 1978.
Sampling Locations July 22 Facility 4 4.54 (0. 201)
- 44 4.19 (0.194)
Adjacent 6 3.78 (0.185) 28 3.46 (0.179) 31 3.55 (0.181) 36 3.80 (0.186) 48 4.27 (0.196) f 50 Re f erenc e f
16 37 2.51 (0.156) 20 3.69 (0.183) 22 3.60 (0.182) 23 4.13 (0.193) 25 3.26 (0.174)
- lincertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
f Sample unavailable.
1048 272
125 Table II. D.9 Gamma-ray Emitting Radionuclide Activity per Unit Surface Area of Soil (nCi/m2) for Samples Collected July 22, 1978 ,
Sampling 106 137 Zr & Nb Cs Location Facility 4 <433 <58.1 <19.9 44 <433 <58.1 115 (373)
Adjacent 6 <433 <58.1 80.5 (268) 28** <433 64.9 (61.4) 53.9 (292) 31 <433 <58.1 42.9 (422) 36** 474 (),110) <58.1 <19.9 48 <442 145 (71.5) 133 (384) 50 f f f Reference 16 f f f 17 <433 <58.1 347 (281) 20 <433 90.7 (61.9) 309 (268) 22 <433 <58.1 155 (307) 23 <433 91.0 (61.6) 197 (271) 23** <433 <58.1 192 (293) t
- Uncertainties (in parentheses) are for the 957, confidence interval, (1.96 S.D.).
- Collected July 29, 1978 f Sample unavailable.
1048 273
126 Table II. D.10 Tritium, Strontium 89, and Strontium 90 concentrations in Soil for Samples Collected July 22, 1978 .
Sampling Tritium Strontium 89 Strontium 90 Location (pCi/1) (pCi/kg) (pCi/kg)
Facility 4 <288 <214 519 (256)* n 44 <288 2,350 (9,300) <235 Adjacent 585 (274) d d 6
<288 <145 374 (194) 28 475 (272) <181 <212 31
" <176 341 (240) 36 ,
421 (272) <146 428 (235) 48 50 f f f Reference 16 f f f 17 349 (270) <147 154 (140) 20 <288 <184 408 (230) r 22 <288 4172 380 (242) 23 <288 904 (S,830) <265 25 <288 <79.1 121 (97.5)
- Uncertainties (in parentheses) are for the 95% confidence interval (1.96 S.D.).
d Sanple lost in a -lysis.
e Insufficient weight or volume for analysis.
f Sample unavailable.
1048 274
Table II. E.1 Gross Beta and Radiostrontium Concentrations in Aquatic Biota**
Sampics (pci/kg) for Samples Collected December 1978 Sampling Locations
- Gross Beta Strontium 89 Strontium 90 Vascular Plants Upstream 12/23/78 5,040 (113) ** <31..S 140 (36.9)
Downstream 12/23/78 7,030 (222) <34.5 100 (24.4)
Effluent 12/23/78 2,000 (94.6) <185 218 (150) -
Seston Upstream 12/27/78 29,700 (1,340) 666 (330) <167 Downstream 12/21/78 34,400 (1,420) 454 (445) <188 Effluent 12/21/78 16,400 (1,030) d d
- Upstream Composite: U 42, U 43.
Downstrean Composite: D 40, D 45.
Effluent: E 38.
C:3 ** Uncertainties (in parentheses) are for the 95% confidence interval, (1.96 S.D.).
j[{ d Lost in analysis.
N N
U'I
Table II.!!.1, Mean Values for all Sample Types.(Cont'd.)
Number of Minimum Paximua -
Samples Value Observed Value Observed 2 o Analyzed 6 Months 2 U 6 Months ,
E i Sample Type Area 6 Months 1 Year 1 Year 6 Months Sediment Effluent 12 <192 359 155 (2.71) 141 138 MSr Downstream 18 <113 636 213 (2.03) 68.4 6.11 (pCi/kg) Upstream 11 <178 481 . 142 (2.45) 124 121 Composite 41 <113 636 173 (2.37) 104 79.5 Sediment Effluent 12 <177 5,900 393 (2.77) 701 1,240 89Sr Downstream 18 <193 1,640 136 (5.70) 85.0 6'5.2 (pCi/kg) Upstream 11 <182 4,170 300 (2.76) 41.7 723 Composite 41 <177 5,900 229 (4.24) 199 585 Sedinent Effluent 12 <3,810 31,300 3,750 (1.89) <3,810 <3,810 M C3 10GRu Downstream 18 <3,S80 4,470 3,320 (2.85) 1,260 891 (pCi/kg) Upstream 12 <3,810 c3,990 3,140 (2.57) <3,310 <3,810 Composite 42 (3,810 31,300 3,400 (2.47) <3,810 <3,810 Sediment Effluent 12 <663 810 378 (2.42) 64.6 <663 137Cs Downstream 18 <655 1,080 411 (2.57) 123 13.3 (pCi/kg) Upstream 12 <655 < 799 533 (1.79) 287 124 Composite 42 <663 1, '. 8 0 424 (2.47) 132 <648 Sediment Effluent 12 <117 <457 191 (1.75) <117 4117 95Zr Downstream 18 <239 633 196 (2.08) <231 60.5 (pCi/kg) Upstream 12 <235 434 214 (2.42) 155 105 Composite- 42 <1f7 633 201 (2.03) <117 <117 Precipitation F-1 6 49.3 935 147 (3.81), 355 - 75.1 Gross B F-4 6 <25.1 834 249 (6.72)- 947 300
" 2 (pCi/m ) Composite 12 <25.1 935 210 (5.24) 651 -
188 7.')
N)
N
Table II.!!.1. .Vean Values for all Sample Types. (Cont'd.)
Number of Minimum Ma.ximun Samples Value Observed Value Observed 2 0 g 8 y Analyzed 6 Nonths 6 Months ,
i Sample Type Area 6 Months 1 Year 1 Year 6 Months Soil Facility 2 32,500 35,000 42,800 (1.29) 43,850 33,800 Gross 8 Adjacent 5 26,800 }3,100 33,500 (1.40) 35,300 29,200-(pCi/kg) Reference 5 19,500 a ,000 31,400 (1.26) 32,200 12 19,500 a5,000 p,900
-),000 Composite 33,500'(1.40) 37,900 2 a.19 4.54 5.68 4 37 Soil Facility 4.27 5.51 (1.29)
Gross 8 Adjacent a 3.40 4.32 (1.40) 4.55 3.77 (pCi/m2) Re ference 5 2.51 4.13 4.05 (1.26) 4.15 3.44 Composite 12 2.51 4.54 4.35 (1.34) 4.54 3 73 Soil Facility 2 <433 <433 400 (1.65) 389 <433 %
10 r'Ru Adjacent 5 <433 474 306 (1.S7) 359 <433 (nCi/m2 ) Re ference 5 <433 <433 403 (1.60) 448 <433 Composite 12 (433 474 340 (1.80) 527 <433 Soil Facility 2 <58.1 <56.1 61.8 (2.64) 89.6 <58.1 137Cs Adjacent 5 <58.1 145 63.9 (1.93) 109 <56.1 2 <58.1 49.8 (2.47) 63.1 <58.1 (nCi/m ) Re ference 5 91.0 258.1 115 57.2 (2.24) 97.0 <58.1 Composite 12 Soil Facility 2 <19.9 115 19.1 (2.92) 27.8 66.0 952r Adjacent 5 <19.9 133 22.6 (2.91) 31.0 <19,9 (nCi/m2 ) Reference 5 155 347 28.5 (1.73) 67.4 240 Composite- 12 <19.9 347 23.3 (2.80) 60.5 113 Soil Facility 2 <288 <23b 416 (1.57) 466 <288 O Tritium Adjacent 4 <286 585 458 (1.44) 598 440 (pCi/1) Reference S <288 349 497 (1.66) 531 <288 Composite 11 <288 585 479 (1.49) 503 <288 N
N .
N
C s 1 1 h
t 4599 2358 0000 0000 0300 n 1 47 7 03 67 0000 0000 21 << 3322 0000 0206 2000 io < < < 9,6,0,4, 1
, 0, 8, 7, 3,7,0,4, M 3,6,6,0, 0900 271 7 '7737 4337 6 1 232 4346 3 1 2 4333 r 0000, a 0400 0000 0000 e 1 961 0000 0800 0000 0000 iY . . 901 1 6, 1, 9, 9, 2,6,8,1 , 4,6,5,5, 3,6,4,3, 1 1 498 31 53 071 6 431 1 9867 6379 4385 2222 1 221 3443 2 1 1 4 4333
, )))) )))) )))) )))) )))) ))))
3895 031 7 3085 6263 0764 591 0 8 9761 7'4 7 9 6299 3438 7085 71 76 4 . .
r 1 724 1 21 1 3332 7323 231 3 1 1 1 1
(((( (((( (((( (((( (((( ((((
n o
Y 0899
. . . . 041 3 0000 0000 0000 0000 S 1 5846 4529 4009 8000 3700 2 31 32 21 21 0000 8,4,4,4, 4,8,5,6, 0,0 6,7 , , 5, 9,1, 3, 6482 9964 6764 8203 1 1 1 1 1 1 3~
d' 33 e
v
- r mes ush 054 0 9889 0000 0000 0000 0000 nbt 5405 1 2 01 0000 0000 0000 0000 ion x o 3,1 <
93 5445 8,8,9,9, 0,0,2 0, , 8,3 2,3, 1
, 7 0, 0, aoM 2 2 9388 91 79 1 686 5000 Mu 1 488 51 45 31 1 1 9555 l6 1 1 1 a
V
)
d d
' e t v n
o mr ues 1 1 C nsh . .
( ibt 4599 5252 0000 0000 000U 0000
. nOn 1 477 31 61 3858 9099 7799 0000 s i o 21 < ( 2222 6,5,6,5, 4,4,7 4, e MeM < < < < < < , 9,0 0,0, , 8,2 4,4, ,
p y u 1 363 5755 1 31 1 2355 l6 221 1 T a V
e l
p m f a osds S och rl : t l epyn 2451 2451 l b ml o 1 1 4442 4 442 6668 5566 a maaM 1 1 1 1 r uSn N A6 o
f s ee ee m m m m e yt ct yt ct a e a e a e a e u a mett met t met t met t l e t nni t nni arni arni arni arni a r i ees i ees et es et es et es et es V A l cro i aep i aep l cro rsuo t nl p rs uo rsuo rsuo t nl p t nl p t nl p n cjf m cjf m s wf m swf m s wf m ad eo ad eo pof o pof o s wf m a FAI Ct FARC pof o pof o e UDEC UDEC UDEC UDEC M
s
. t 1 a a an a t t
. e o o t a t p el o i
!. y B i i P i I T B B B I
) ) ) ) r ) )
g g c Sg e k k i k ccSg caSg c Sg e l
/ / t s/
ii th s/
k il k i n k l p l ri l ri ah si t us/ t os/
b m at st acsi at si a iSC iSC usoC unoC usoC usoC a o9 p o0 p qi rp qerp qarp qerp T S S0 ( S ( AFG( ABG( AVG ( ASG(
- OfD Q4
Table I1.!!.1. Wan Values for all Sanplo ':ypes. (Cont'd.)
Number of Minimum >!ax ir,un Sampics Value Observed Valt e Observed E o g g g g Analyzed 6 Months 6 Months Sannie Type Area 6 Months 1 Year 1 Year 6 Months Aquatic Biota Upstream 4 < 35. 6 <35.6 52.2 (2.56) <26.0 <35.6 Fish Downstream 4 <76.7 164 92.9 (1.47) <51.1 <
'76.7 H Sr <14.2 54.1 <14.2 <14.2 Effluent 4 <14.2 (2.41)
(pCi/kg) Composite 12 <14.2 164 71.8 (1.87) <14.2 <14.2 Aquatic Biota Upstream 2 <68.1 412 158 (3.58) 30.0 142<
Uenthic Dewnstream 2 <60.7 305 129 (1.93) 76.4 166 MSr Effluent 4 <113 <113 135 (3.36) <43.4 <43.4 (pci/kg) Conposite 10 <60.7 413 158 (2. 4 2) < 4 3. 4 <43.4 Aquatic Biota Upstream 5 <26.8 391 109 (3.64) 127 <26.8 Vascular Plants Downstream 6 <29.0 51.4 58.1 (2.80) <29.0 <29.0 C'
~
6 '3 Sr Effluent 6 <27.6 <27.6 80.6 (4. 69) 25.8 <27.6 (pCi/kg) Composite 17 <26.8 391 82.1 .68) 50.9 <26.8 Aquatic Biota Upstream 5 <204 1720 242 (2.49) 493 646 Seston Downstream 5 <133 2070 714 (3.27) 542 542 63Sr Ef fluent 4 <60.1 2590 206 (4.29) 200 291 (pCi/kg) Composite 14 <60.1 2590 398 (3.49) 417 507 Aquatic Biota Upstream 4 81.4 355 147 (2. 83) 180 227 rish Downstream 4 111 237 157 (1.30) 162 344 LSr !!ffluent 4 100 '
222 122 (1.62) 152 142 12 100 355 141 (1.91) 157 180 (pCi/kg) Composite 2 170 391 276 (1.54) 292 281 Aquatic Diota Upstream 3enthic Downstream 4 62.2 252 192 (2.57) 242 162 4 253 590 359 (1.42) 181 181
- "Sr Effluent (pCi/kg) Composito 10 62.2 -
590 258 (1.89) 234 193 CD 4=
Q 5 <87.2 228 117 (1.74) 134 131 Aqu.itic Biota Upstream 92 5 246 153 156 Vascular Plants Downstream 6 131 (1.45)
N 6 4.52 21b 60.3 (3.18) 271 15e ng3" 96.8 149 N " C '.' 17 4.25 246 (2. 30) 193 e (pCi/kg) Composite
- Analysis in progress.
132 III. ENVIRONMENTAL RADIATION SURVEILLANCE PROGRAM SCHEDULE III.A. Environmental Radiation Surveillance Schedule Table III.A.1 outlines the collection and analysis schedule for the radiation surveillance program. This is identical to Tabie 5.9-1 in the Technical Specifications.
The surveillance program pr .vides for collection and analysis of environmental samples within an area extending to a twenty-mile radius from the reactor site. A concentrated area of sampling within a one-mile radius is designated the " Facility" zone; the area from one to ten miles, the " Adjacent" zone; while the " Reference" zone extends from ten to twenty miles. The data obtained from the Facility zone are statisti-colly compared to those from the Adjacent and Reference zones to test for any significant differences in values. A similar rationale is used for surface waters and sediments. These are partitioned into " Effluent" (Farm Pond and Slough), "Dotinstream" and " Upstream" locations for statistical analysis.
The sampling locations are shown in Figures III.B.1 and III.B.2.
Table II.B.1, III.B.2 and III.B.3 give some detail of the sampling sites in the Facility, Adjacent and Reference zones respectively.
It should be noted that the air sampler at the A-35 site was unoperative for a long period at the end of 1978. The owner apparently tt.rned the power off after the sampla collection personnel would install the new air filter. (This did not affect collecting water vapor by Silica Gel or the TLD operation). A new site could not be procured due to local innabitant retuutance and became operational until February 10, 1979. The new site is the Roy Miller farm on the corner of Colorado 66 and Weld County Road 19.
1048 280
""AULE TII. A.l. ENV:RONMENTAL RAD!ATION SURVEILLANCE PROGRAY SCHEDUL5 SAMPLING FREQUENC,lES AND AN ALYSES by Act'on Lovets.
E xecs.ra Routes er Vect.a & Sa rp'c Types based upoq actust emissions as percentaps of re:casc raics nuthorized by 10 CFR 20 l
Ae,;cn (ne,1: Lc:s than 3% Action Level 2. 3% is 10% Action Level 3 Greater than 10*'-
_._(No of Locat nns)
EXTERNAL EXPOSU3E TL3 Cnct Aver::.y mR/r y determir.ad bv OUARTERLY cumutative esaur;w Averaca mR/ day determined by (3 ; mat.orM con -Cor. Y analys.s in rotd*;nn of 1/3 of all TLos MOU<it.v. MONTHLY analym nf a't TLos.
A TMOSPri E R E Vembia se f.:',ers f a- Gross beta, every f:!co , WEE K LY; Same as for Levet 1 p?us g css Cross alpha and beta, every fitte*,
par ticulata, charco . camma spectrum of m:er and alpha on one weekly set of gamma spectrum of filter and car:r.dges fnt iod.nc. car tr.cte co nposites. MONTH LY. filters, MONT H LY. cartridge composites, a:t WEE KLY.
(7 IOCatior'.s)
Tritwm ox.ca Sp"c f.c activity of triteum in atmospheric water vapor by paavo absorption and liquid scintillation counting.
(7 focations) OUARTCDLY MONTHLY WEEKLY l l I
WATER Potab'e water Gross beta, tritium and namma spectrum ana:yscs; Facility area and nearest of f-s.te supply (sha"ow welfs at town of Ci! crest, C mies northeast).
(2 'ocations c49 & 033) MONTHLY MONTHLY. plus Sr 89 & 00 analyses Otf ARTE RLY Precip. tat.an No coltection or aneyses of Gross beta, MONTHLY Gross beta, tritium and Sr 89 & 90, (2 locationy F1 & r .) prec.pitation at Level 1. .VONTHLY; gamma spectrum of composite. QU A H T E R LY.
Same as for Level 1, but Same as for Level 2, plus ~
Sur f ace v,. iter & ou Gron beta, tribum and gamma (7 iocat.ons) spectrum. GUARTERLY. MONTHLY. Sr 89 & 90 analyses MONTHLY. d FOOD CH AING Cod, f orarp & crops Tritium and gamma socctrum analyses of forage anti crops in the most probab!c routes to man.
OUAR TE R LY, as avai!able MON fHLY dur ng growing season Same as Level 7, plus Sr 89 & 90, (14 locations) b.e., spring, summer cad f all). he., approx. Apr.6 to October). plus concurrent soit samples anatyred for t!'c same nuchdes, MONTitLY durinq growing season.
Ocefcatte No analysis of beef at Level 1. Gamma spectrum, tritium and Same as for Level 7, plus totat Sr 80 & 90 analyses on one meat body count of 2 to 4 ammals (F-1) samplo from beef raised in F aality from Facihty Area. QUAR TERLY.
Area; ANNUALLY, at end of sraring e season (i e., late f atil.
M.f k Tratmm, gamma spectrum and Sr 89 & 00 analyses on compoute: Same as for Levet 7, but f acil.ty Area only, QU AH T E H LY, Fac lity, Adeacent and 11eference Areas; W.L KLY durmg pasture season, (13 :oc.itions) otherwise, MON T H LY.
MONTHLY during pasturo season, otherwise CUAHlEHLY.
AQUATIC OIOTA .
(2 streams, abovo Gross beta and gamma spectrum analyses of composites of each of 4 categoriest Same as for level 7, plus (1) suspended arganisms (2) benthic organisms, (?) vascular plants und (4) fish. Sr 89 & CO anatyses.
and Oclow OU ARTE RLY, as available. MONTHt Y during summer;
. dischargo pmnts) ,
otherwise OU ARTE H LY, as ava tabic.
l C3
-c=
Q C t':
DO f Vl ], h) f UU J!Itj t
- hll, _ ,i t
i:
LJ !!U U ijji ini i-
~: I IV sMJ V D ,,. ,
'n I
_ (U
$ b(n; @
134 Figure III.B.1. On-site Sampling Locations. .
J d r) Il
$ 'E' I D.'lfiUI dbtj $ lll! O I! LjJ U fN .
l
~
l -
-- ]
, \ %'(# ,si - xT
'7'
~
~~
l N
/ 's A
/
I 9x ty x
/
/ I W! i x
\
l
/
/
is r-~ 20C=5 l, i
\
\
% e u 1 l .
bYk [P* l k k
[,,v e'" q Uina* l 4
j jf. m t acion
- erra" ' ~o L
_.-____i k ~_._..] :? l
\ i
]' ! t /
\ i i /
\ f 8
- t x l e /
F-It k= y y
,4
~% %
~#j
- k On-site and close-in sa:npling locations.
F = facility area, E = effluent stream, U = upstream, D = downstream.
1048 ?82
135 Off-site Sampling Lccations.
~
Figure III.B.2. -
) - - - - - - - - -
~~T a n f ~ lo '
l l N - '
, p_j__
og 0,(.*s O
]l l7g 2KA i ovttak o 1
- ~T 'ti A /l
/ ,,3 7, I R-to Eb 'f/
p' ,
'r w
N s,CW N p_J'# / af..
e I Of ' dLuxEN j !
o q '-} l
---] g , _%< A- d.
Pj p%On _
99 'N I lPECit AW Y
M[ A. It _s t I
N L
o R
-o-I
__h I __. _ _ _
m _ p _ _ 4 _. _. 1 .
k __
' 5 U-43' ' g'2 - ml - - - -
c3 <---o h )a3 f y l , l t 1 4 g g
V u tLTen_ n E s.
g g
- 9 '
i h - - , ,
lii r
- a -
"l -
i .m1,34! # --a i 2 o_G 1 1 E I
<e N _ t 1 i , i 3 k b b l Q [# # p}_t l Q( %}.l~~ ,. (~ J g'
q-7- -
3H__1 a 2
_ s _ ,_ .
1
,s
- _ _ _ _ _. __ u
-_1 y _
,- / y.____g_4.,.
i j g J. _s j , _ fq_ _ _ _
m T / r. r I T i ! , u,.re ~ i .
+m. #, e j 1 . . . wa g .
. -q fl i
~ b) r-i i WR ! .! fi I l 0 5 mile s 10 miles t__ _ j SCALE WM,'E,lL i' I p
3 ' H' , j v l 1048 283 du - u. . s
- 'd'
Table III.B.1. Facility area and effluent sampling locations for environmental media.
Loc. Media Sampled at Location Location and Description (see Fig. II.B.1)
No. TLD AIR M iS H0 7 AQB Distance and Direction from Peactor; Comments F 1 0.8 mi. N; potato cellar; TLD on pole at NE corner barn; precipitation F 2
- on hill E of barn 1.1 mi. NNE; cabin.
F 3- *
- F 4 * **
0.8 mi. S; first shed along drive; precipitation in corral; forage and soil S of shed.
F 7 0.8 mi. NNE; pole by gate at corner of Goosequill Rd.
F 8
- 0.6 mi. NE; 2nd pole S of cattle-guard on hill.
-F 9 0.8 mi. SSE; 2nd pole W of pump house.
F 11
- 0.9 mi. SSW; 0.3 mi. W of intersection of 195 and 34.
F 12
- 0.8 mi. SW; 7th pole N of intersection.
F 13
- 0.C mi. WSW; -pole nearest intersection.
F 14
- 1.0 mi. NW; pole nearest corner.
C F 44 *
- 1.1 mi. E; Leroy Odenbaugh dairy.
F 51
- 0.3 mi. N; Ted Horst farm, pole SW of house.
F 46 1.0 mi. SW; F 47
- 2nd pole N of intersection, near Aristocrat Angus office.
0.4 mi. E; pole near driveway to pump house.
F 49
- 0.1 mi. W; tap outside Visitors Center (well water)
~E 38 * *
- 1. 3 ,ni . NNE; Goosequill pond. '
E 41
- 0.2 mi. NW; Concrete slough above and below point of entry of plant water.
Codes: F = Facility area (within one mile). .---
E = Effluent surface streams. O=d TLD = Thermoluminescent Dosimeter for measuring external gamma exposure.
AIR t _ F.
= Air sampling location; ** = atmospheric precipitation collected. ' .._J_ Qaj M = Milk sampling locations. L,c
-. H0 = Water sampling locations; silt also sampled from surface sources.
c3 2
AQB = Aquatic biota sampling locations. H $ 'S S_
A S = Soil and Forage sampling locations. r- rc, - g-Co En ']
g ~i w ,
M
Table III.E.2 Adjacent area sampling locations for environmental media.
Loc. Media Sampled at Location Location Description see Figs. II.B.1 and II.B.2 No. TLD AIR M S HO 2 AQB Distance and Direction from Reactor; Comments A5 *
- 4.5 mi. NNE; Lloyd Rumsey farm; 2 mi. N.1.5 mi. W of Peckham.
A6 * * *
- 5.5 mi. S; Clifton Wissler farm; 2 mi. W, 2.5 mi. S of Platteville; TLD on pole 30 ft. N of parlor.
A 27
- 5.0 mi. NW; 1 mi. S of Colo. 56,1 mi. E of I-25, pole on NE corner.
A 28 * *
- 6.0 mi. NW; Virgil Podtburg dairy; Colo. 60, 2 mi. W of Johnstown; TLD on last pole on NE corner.
a 29
- 3.5 mi. NNW; 3 mi. S; 1.6 mi. E of Johnstown, TLD on pole by the stand of trees.
A 30 3.5 mi. NE; 1 mi. S of Colo. 256 on Colo. 60, pole on NE corner.
A 31 *
- 6.0 mi. ENE; 1.5 mi. E of Peckham; TLD on pole in front of house.
A 32 4.0 mi. E; 3 mi. N of Platteville; 1.2 mi. E of US 85; NW pole.
A 33 5.0 mi. SE; Niles Miller Dairy; 0.2 mi. S, 0.5 mi. E of Platteville.
A 34
A 35 *
- * * [3 A 36 8.0 mi. W; Bob Johnson dairy; 2 mi. W of I-25 on Colo. 56, then 1.5 mi. S. TLD 0.5 mi. W.
A 48 * * '
6.0 mi. NNE Bill Ewing Dairy; 1 mi. E of Peckham.
A 50 *
- 6.5 mi. SE;. Corner of Road 33 and 34, D. Dinnel dairy.
D 37
- Lower Lathan Res. 2.5 mi. E of LaSalle.
12.5 mi. ENE:
D 39
- 5.0 mi .- ENE; Gilcrest water f rom U.S. Post Office D 40 5.5 mi. ENE; South Platte River at Colo. 60.
D 45 *
- 1.0 mi. N; St. Vrain Creek at Jct. Rd. 194, 0.2 mi. from discharge.
Codes: A = Adjacent area (one to ten miles from reactor).
D = Downstream potable or surface waters.
All other symbols same as for Table III.B.1.
C b
CO N
Q LD
Table III. B.3. Reference area and upstream sampling locations for environmental medin _
Loc. Media Sampled at Location Location Description (see Fins. II. B.l. and II. B.2.)
H0 Distance and Direction from Reactor; Comments.
No. TLD AIR M S 7 AQB
- 11.5 mi. NW; 4.2 mi. W of I-25 on Colo. 60; TLD on pole W of f arm R 15 driveway.
R 16 * * *
- 11.8 mi. NNW; Mountain View Farms; N side of Colo. 402 W of I-25.
R 17 * *
- 11.8 mi. NNE; Bob Schneider Dairy; 1 mi. S of US 34 on RD 25; on pole 0.5. mi. N of parlor on RD 25.
R 18
- 10.0 mi. NNE; on pole on SE corner of intersection of 65th Ave. and 37th Street (Greeley).
R 19
- 13.3 mi. NNE; US 34 at 47th Ave. (Greeley); pole on SW corner, opposite golf course.
R 20 * *
- 11.1 mi. ENE; Wally Kaufman dairy; 0.5 mi. E; 1.6 mi. S of LaSalle; TLD -
on pole W of parlor. $
R 21
R 22 * *
- 11.1 mi. SE; Hagans Bros. Dairy; 4.2 mi. S of Platteville; 4.2 mi. E of US 85; TLD on 1st pole E of drive.
R 23 * *
- 11.5 mi. S; Alvin Dechant Dairy; 2.2 mi. W; 0.3 mi. S of Ft. Lupton; TLD on 1st pole W on drive.
- 12.2 mi. SSW; I-25 at Colo. 52; pole '.W. of the f rontage road; R 24 NW corner.
R 25 * *
- 11.7 mi WSW; Angelo Vendegna Dairy; 4 mi. N of Colo. 52 on RD 1.
R 26
- 12.2 mi. WNW; On US 287, 2.5 mi. of Colo. 56, 2nd pole S on RD 2E. _
U 42 * * .1.5 mi. WSW; St. Vrain Creek at bridge, RD 34.
U 43 *
- 0.6 mi. E South Platte River, at dam and inlet ponds.
Codes: R = Reference area (greater than 10 miles from reactor).
U = Upstream from effluent discharge points.
CD All other symbols as in Table III B.l.
as, CD rs)
CD Os