ML17319B048: Difference between revisions
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
StriderTol (talk | contribs) (StriderTol Bot change) |
||
(9 intermediate revisions by the same user not shown) | |||
Line 17: | Line 17: | ||
=Text= | =Text= | ||
{{#Wiki_filter:D,C. | {{#Wiki_filter:D,C. COOK PLANT UNIT NO. 2 REACTOR BUILDING CONTAINMENT INTEGRATED LEAK RATE TEST APRIL 30 - MAY 4, 1981 INDIANA 8 MICHIGAN ELECTRIC COMPANY 988 8109i50437 8i09i0 PDR ADOCK 05000315 PDR | ||
D.C. | D.C. COOK PLANT UNIT NO. 2 CONTAINMENT INTEGRATED LEAK RATE TEST APRIL 30 - MAY 4, 1981 TABLE OF CONTENTS Section ~Pa e 1.0 Introduction 2.0 ILRT Acceptance Criteria 3.0 ILRT Results 4.0 Conduct of Test 4.1 Organization of Test 4.2 Log of Time and Events 5.0 Test Instrumentation and Equipment 10 | ||
: 5. 1 Table of Instruments 10 5.2 Instrument Specifications 11 5.3 Sensor Locations 12 5.4 Instrument Error Analysis 12 5.5 Pressurization Apparatus 14 6.0 Containment Model and Leak Rate Calculations 14 6.1 Volume lleighing Factors 6.2 Containment Pressure and Vapor Pressure 17 6.3 Containment Temperatures 17 6.4 Statistical Determination of the Leak Rate 18 6.5 6.6 Upper Confidence Limit Leak Rate Computer Program, | |||
'LRTEST'5 19 22 7.0 'LRT'rogram Printout 24 Page i | |||
Table of Contents Continued . | |||
Section ~Pa e 8.0 Data Analysis and Summaries 32 8.1 Graphical Analysis 32 8.2 Program Summaries 35 9.0 Local Leak Test Program 44 9.1 Past Test Results Summary 44 9.2 l1ay'1981 Local Leak Test Results 53 | |||
: 10. 0 References Page ii | |||
1.0 Introduction The first periodic Integrated Leak Rate Test (ILRT) for the Donald C. Cook Nuclear Plant - Unit 2 reactor containment was successfully completed on May 4, 1981 by personnel of Indiana 8 Michigan Electric Company (18M). | |||
The ILRT was performed as specified in surveillance test procedure 12 THP 4030 STP.202, Rev. 3 and in compliance with American National Standard - ANSI N45.4 1972, 'Leakage Rate Testing of Containment Struc-tures for Nuclear Reactors'nd Code of Federal Regulations 10 CFR 50 Appendix J - 'Primary Reactor Containment Leakage Testing for Hater Cooled Power Reactors'. The absolute test method was used on the 3 com-partment containment model developed for both the Unit 1 and Unit 2 Preoperational Integrated"Leak Rate Tests. | |||
Data was collected at half hour intervals over a 24 hour test period. This data was used to. calculate the normalized weight of the initial dry air mass remaining in the containment at each half hour interval. The measured Type A leakage rate, Lam, is the slope of a straight line determined for a linear least-squares fit of the calculated normalized weight vs. time. | |||
2.0 ILRT Acce tance Criteria The Unit 2 Technical Specifications and Section 5 of the Final Safety Analysis Report (FSAR) define the containment allowable leakage, La, as 0.25 percent by weight of the containment air per 24 hours at a pressure, Pa, of 12.0 psig. The measured leakage rate. Lam, must be demonstrated to be less than 0.75 La, (0. 1875'A wt/day) as required by 10 CFR 50 Appendix J. In addition, the accuracy of the leakage measurement must be verified by performing a supplemental test, the results of which are acceptable provided the difference between the supplemental test results and the Type A results is within'.25 La '(0.'0625/ wt/day). | |||
As specified in Section 5. 0 of D; C. Cook Plant Surveillance Test Procedure 12 THP 4030 STP.202 and in accordance with 10 CFR 50 Appendix J Section III-A, 'Leakage Test- Requirements, Type A'ests', the test was considered acceptable when the following criteria had been met: | |||
: 2. 1 The leak rate, as determined by the 95% upper confidence limit of the least squares line, Lam/955 has converged to an'acceptable level: | |||
Lam/95K (0.75 La - Type C Leakage Penalty} | |||
2.2 The duration of the ILRT has exceeded the minimum of 12 hou'rs and the difference between the 954 upper confidence leakage limit and the leakage rate itself does not exceed | |||
,0.0625/ wt/day in the most recent data set. | |||
Page 1 | |||
2.3 The upper confidence level leakage and the measured leakage do not show a negative trend over the last four data runs. | |||
The Supplemental Test was considered acceptable when the'following criteria were met: | |||
2.4 The duration of the Supplemental Test meets or exceeds the minimum of 6 hours.- | |||
2.5 The sum of the imposed leak, L , and the leakage measured | |||
~ | |||
during the Type A test, L , i3 within + 0.25 L of the composite leakage, L , meNured in the supplemental test. | |||
(L + L - 0.25 L ) < L < (L + L + 0.25 L ) | |||
The criteria used for this Integrated Leak Rate Test is more stringent than that specified in 10 CFR 50 Appendix J. These criteria incorporate additional test commitments made by D. C. Cook to the Nuclear Regulatory Commission. These .additional commitments are embodied in a response to guestion 22. 14 of Appendix g o'f the D. C. Cook Nuclear Plant Unit 2 FSAR. | |||
3.0 ILRT Results | |||
: 3. 1 | |||
= | |||
Leakage Rate Summary: | |||
Duration of Type A Test: 24 hours Duration of Supplemental Test: 6 hours Neasured Leakage* Allowable Leakage* | |||
wt 24 hours X wt/24 hours A. ILRT 'Type Rate, A'eak Lam -0.05287 -0.1875** | |||
B. ILRT 'Type A'55 Upper Confidence -0. 05748 0.75 La - Type C Leakage Limit Leak Rate, Lam/95% Penalty ++ | |||
= -0.1875 - (-0.015975) | |||
= -0.17153 C. Type C Leakage Penalty -0.015975 N/A D. Imposed Leak Rate, Lo -0.2006 0 5 La < Lo < La | |||
-0.125 < Lo < -0.25 E. Suppl cmental Test= | |||
Composite Leakage, Lc -0.24631 N/A F. Supplemental Test- - (Lc ** | |||
Correlation am (Lc Lo) Lam Lo) <. 25 La | |||
: 0. 00716 Lam - (Lc " Lo) < 0625 | |||
~ | |||
Page 2 | |||
The slope of the linear regression line computed for weight remaining in the containment as a function of time is negative since weight remaining in the containment decreases as a function of time. | |||
Hence leakage out of the containment is shown as negative in the | |||
-table. | |||
** 10 CFR 50 Appendix J criterion | |||
++ Test criterion specified by plant procedure 12 THP 4030 STP.202 | |||
+ Guideline proposed by ANS 274 Draft No. 1. | |||
Item A, L , is the measured containment leakage after 24 hours of tBing data in one-half hour intervals. It was calculated using the 'Absolute Method'n a 'total time'asis as described in American National Standard N45.4 - 1972. | |||
Item B, L /95%, is the 95K upper confidence limit of the leak rate I't is calculated from the variance of the slope of the least-squares line and the value of the t-distribution for a 95K confidence that L /95/ is the upper limit of the actual leak rate. | |||
Item C, The type C penalty leakage is calculatd from the local leakage test program conducted per plant procedure 12 THP 4030 STP.203, | |||
'Type B and C Leak Rate Test'. The Type C penalty leakage represents the leakage of systems penetrating the containment pressure boundary that is required to be drained and vented for the Type A test, that due to existing piping, configurations or plant conditions could not be drained or vented. The leakage of isolation valves associated with these systems appears in Table 3.2. The ".otal on Table 3.2, expressed in weight percent per day, is subtracted from the allowable leakage specified for Item B in Section 3. 1. | |||
The use of the Type C penalty in li'eu of draining the affected system was part of commitments made to the NRC and appears formally in Appendi,x g, question 22.'l4 of the Unit 2 FSAR. | |||
Item D, L , is the imposed leak used in the supplemental test to verify t3e accuracy of the Type A test. In accordance with guidelines of ANS 274 Draft No. 1 and the Unit 2 Technical Specifications the rate of the air bleed, in weight X/day, was established at | |||
.2006 wt 5/day. | |||
Page 3 | |||
Table 3.2 T e C Penalt Leaka e For Undrain S stems Isolation Leakage CPNP Valves ~SCCM RCDT to RCDT pps 40 DCR-205 DCR-206 RC System accumulator fill lines 68 ICM-256 49.6 Refueling water line to Refueling Cavity 36 SF-151 SF-153 Cont. Sump Line to Haste Hold up Tanks 41 DCR-600 748.6 DCR-601 NESW to and from Containment 6061.4 RCP Seal Hater Lines 11 CS-442-1 76.2 12 CS-442-2 13 CS-442-3 14 CS-442-4 CVCS Letdown and Excess Letdown Lines 34 QCR-300 ~ | |||
50.0 37 QCM-250 & -350 Sample Lines from Accumulators 81 ICR-5 ICR-6 Sample Lines from Pressuri zer 66 NCR-109 & 110 0 NCR-107 & 108 CYCS Charging Line 35 . CS-321 60.6 Glycol Lines to.and From Ice Condenser 86 VCR-10 & 11 AHU's VCR-201 Total Type C Leakage Penalty (SCCM) = 7046.4 Expressed in / La = 6.39 Expressed in / wt/day = .015975 Page 4 | |||
fl l, | |||
f l | |||
Item E, the composite leakage, L , is the slope of the least squares line determined from the data taken during the .supplemental test. | |||
Ideally, Lc would be equal to the sum of Lam and Lo . | |||
Item F, Supplemental Test Correlation. 10 CFR 50 Appendix J requires that the agr'cement between L and (L + L ) is within .25 L . The table shows that th5 correlHion 8etween L and (L + L ) is | |||
/ wt/day or 0.03 L . | |||
a'00716 4.0 Conduct of Test 4.1 Or anization of Test The D. C. Cook Plant Performance Engineering Section was responsibile for the Integrated Leak Rate Test. Functions performed by persons involved in the test could be subdivided between pre-test and test activities. Figure 4. 1. 1 and 4. 1.2 illustrate the organization of pre-test and test activities, respectively. | |||
Pre-Test Res onsibilities Test Supervisor - Organized efforts required to ensure the readiness of Unit 2 Containment Systems and test instrumentation for the conduct of this test. This included arranging for instrument calib'ration, installation, and system channel verification, and completing test prerequisites. | |||
Instrument Technicians - Performed installation and channel verification of test. instrument system. | |||
Containment Inspection Group - Organized and conducted an inspection of all accessible containment interior and exterior surfaces, penetrations and associated systems. Evaluated and reported inspection results and was responsible f'r initiating any 'corrective action required. | |||
Local Leak Test Program Group - Performed Type B and C Leak Rate Test as per plant procedure 12 THP.4030 STP.203. Responsible for initiation corrective action as indicated by test results. Reported results to Test Supervisor. | |||
Department Interfaces - Contacted as required to help safisfy test prerequisites. | |||
Test Res onsibilities Test Supervisor - (1 per 12 hour shift) Responsible for maintenance of test documentation, data inspection, and the general conduct of the test. | |||
Page 5 | |||
Timekeeper/Data Coordinator - (1 per 12 hour'hift) Maintained control over data collection intervals and transferred data to the computer input format. | |||
Data Dispatcher - (1 per 12 hour shift) Checked the transfer of data from data acquisition system tapes and data takers'heets to the computer input format. Shuttled coding forms from test area to computer terminal, loaded punched cards into card reader, and checked transfer of data from coding forms to computer printout. | |||
Data Takers - (3 per 12 hour shift) Responsible for the recording of specific test instrument readings. | |||
Keypunch Operator - (1 per 8 hour shift) Responsible for punching data onto cards from coding sheet. Assisted data dispatcher in checking transfer of data from coding forms to computer printout. | |||
Page 6 | |||
FIGURE 4.1.1 - PRE-TEST ORGANIZATION TEST SUPERVISOR INSTRUMENT CONTA INMENT LOCAL DEPARTMENT TECHNIC IANS INSPECTION LEAK TEST INTERFACES PROGRAM w/OPERATIONS, TEST GROUP CSI, MAINT. | |||
FIGURE 4.1.2 - TEST ORGANIZATION | |||
'EST SUPERVISOR KEYPUNCH INSTRUMENT TIME KEEPER AEPSC COMPUTER DEPARTMENT OPERATOR DATA COLLEC-TECHNICAL INTERFACES SUPPORT w/OPERATIONS, TION COOR. | |||
CANTON C8tI, MAINT., | |||
RAD PROTECTIO DATA DATA DISPATCHERS TAKERS Page 7 | |||
AEPSC Computer Technical Support - Canton - On call in case of a failure of either the data analyais program or the computer system. | |||
Instrument Technicians - (2 per 12 hour shift) Responsible for maintaining all test instrumentation in a proper operating condition. | |||
Department Interfaces - Contacted as required to complete test requirements. | |||
4.2 Lo of Times and Events Having satisfactorily completed the installation and checkout of all test instrumentation, a successful containment inspection, the valve line-up. initial conditions, and all other test pre-requisites, pressurization 'of the containment was initiated. | |||
Pressurization of the Unit 2 reactor containment began at 0530 hours on May 1, 1981. Containment temperatures, pressures,'nd vapor pressures, and ambient temperature and barometric pressure were logged on an hourly basis. Each data set collected were assigned a 'Run Number'tar ting with Run 81 at 0600 hours. | |||
At 0130 on May 2, 1981 pressurization was terminated at a pressure of 12.4932 PSIG (Run 25 P). During the pressurization period two separate entries were made into the containment instrument room to work on dew point hygrometers. Rewiring of the hygrometer readouts corrected the hygrometer problems on all hygrometers except VPL-2. It was decided just prior to the end of the pressurization period to run the test without this redundant hygrometer. Throughout the remainder of the test YPL-I was used alone for lower volume dew point. | |||
The stabilization period was initiated at 0200 on May 2. After the minimum period of 4 hours, containment temperatures were monitored closely to determine when the stabilization criteria had been met. Stabilization criteria defined by procedure 12 THP 4030 STP.202 are: | |||
: a. The duration of the stabilization period has exceeded the minimum 4 hours. | |||
: b. The containment has been maintained at a pressure of 12.0 (+ 0.5, - 0.0) psig for a minimum of 2 hours. | |||
: c. The weighed average temperature in the Upper, Lower, and'Ice Condenser compartments has not varied more than 0. 1 'F/hr over the last four (4) hour period. | |||
: d. No single Upper, Lower or Ice Condenser compartment temperature reading has changed more than 0.5'F during the last hour of the stabilization period. | |||
Page 8 | |||
ij At approximately 0300 it was discovered that a heater was energized on HV-CUV-2 which was running. This heater was secured and all ventilating units in the containment were started to try to circulate air to improve the temperature distribution. | |||
tlost of the fans tripped off due to thermal overload after about one hour and were left off. All fans were secured at about 0530. | |||
After 15 hours all of the stabilization criteria were met and the stabilization period was declared over at 1700 on Hay 2, 1981 (Run 31S). | |||
The 'Type A'est was begun at 1730 on Hay 2, 1981 with a containment pressure of 12.3799 psig. Preliminary leakage cal-culations performed for the stabilization period had indicated that the 'Type A'est criterion had already been satisfied. It was now just a matter of continuing the half-hour data collection intervals until the minimum 24 hour time requirement and other self imposed criteria had been met. After 24 hours of data collection the | |||
'Type A'est was declared successfully complete. (Run 49T). | |||
After Radiation Protection drew a sample of the containment air for analysis, air was bled from the containment through a cali-brated rotameter. This leak rate was established at 3.1 scfm | |||
(.2006 wt I/day) which is in accordance with the Unit 2 Technical Specifications (quantity greater than 255 of total measured leakage at Pa) and the guidelines of ANS 274 Draft 1 (.5 L L < L ). At the completion of the minimum 6 hours of dat3 c8lleciion the supplemental test and the ILRT was declared successfully complete. The supplemental test showed a correlation between the measured leak and the imposed leak of .03 L , well within the requirement of less than .25 L . The contaikment was subsequently depressurized and sy'stems were restored to normal as required by plant operations. | |||
Page 9 | |||
5.0 Test Instrum ion 8 E ui ment Table 5.1 Tes nstrumentation Item Manufacturer Model Ran<ac ~Accurac Test ID Pressure Mensor Quartz QM10100-001 0-100 psi g + 0.015 reading PU-l, PL-1, PL-2 Measurement 0-75 psia* .0001 psi resolution PI-1, PI-2 PU-2" Texas Instr. Manometer 145 0-50 psia +.03% reading Patm | |||
.0001 psi resolution Temperature Hycal 1000 Platinum RTS-4233-B Upper Cont., ETR-101 thru Sensors/ Engineering RTD's/Matched ESD-9050-A Ice Cond. (0-100'F) +0.06'F ETR-146, Bridge Modular Lin- Lower Cont. (0-120'F) Ambient earizing Bridges Dew Point EG3tG Mirror 992 (B) 0-100'F i0. 5'F YPL-l, VPL-2 Temperature Surface 660 4) -50 to +100'C +0. 3'C VPI-1, VPI-2, VPU-1, VPU-2 Temperature Fluke Data Logger 22408 0 - 40 mV +0.014 reading ETR's Recorder 0 - 4 v +0.005K span Dew Points Supplemental Brooks Rotameter 1110-08 0.2 to 5.6 SCFM + lc/ FS Test Flowmeter Suppl cmental Hei se Bourdon CCM 0- 3 psig 0. 1Ã,FS N/A Test Tube Pressure Gage | |||
*0 - 75 psia Quartz manometer used at test connection PU-2. | |||
Page 10 | |||
5.2 Instrument S ecifications The instrumentation used during the ILRT is shown in Table 5.1. | |||
Each of the instruments shown here was supplied with calibration performed within 6 months of the test and traceable to the National Bureau of Standards. Calibration conversion formulas and corrections were preprogrammed into the ILRT computer program to allow direct input of all pressure, temperature and dew point instrument readings. | |||
Two precision t3ensor quartz manometers were used for redundant measurement of the pressure in each of the upper, lower, and ice condenser compartments of the containment. A seventh was used to moni tor atmospheric pressure during the test. | |||
The three containment compartments were instrumented with a total of forty-six.(46) 100 platinum RTD sensors. The upper, lower, and ice condenser compartments contained 16, 23 and 7 sensors respectively. Each sensor is located to represent the temperature of a unique sub-volume within its compartment. | |||
The sub-volumes collectively represent the total volume of their respective compartment. Each RTD reading is converted in the leak rate computer program to temperature in degrees Fahrenheit. | |||
Each temperature is weighed by the fraction of the total compartment volume contained in the sub-volume the RTD represents. The sum of the weighed temperatures in each compartment is the weighed average temperature of that compartment. | |||
Page ll | |||
Six Cambridge Dew Point Hygrometers were used for monitoring compartment dew point temperatures for the determination of vapor pressure in the leak rate computer program. They provided redundant measurement of dew point in each of the lower containment, upper containment and ice condenser. | |||
The Unit 1 and Unit 2 preoperational tests used only 4 hygrometers, 2 i n the lower volume and one in both the upper and ice condenser volumes. For this test, two hygrometers were added for the upper and ice condenser volumes. The original 4 hygrometers are the t1odel 8992 dew point hygrometers used in the Unit 1 and Unit 2 preoperational tests. The new )1odel 8660 hygrometers are improved and more compact than the Nodel f992. They all operate on the same principle. The air sample is drawn through instrument lines across a mirrored surface of which the temperature is controlled by an optical feedback circuit to precisely the point at which a dew (or frost) appears. The mirror temperature is measured by a platinum RTD imbedded in the body of the mi rror. The sensor and control units were located inside the lower containment volume so that the samples would be maintained at the containment pressure. The er ror associated with each individual dew point measurement is + 0.5 F. The addition of redundant measurements did not significantly affect the error of the overall dew point temperature measurement system. | |||
~ | Page 12 | ||
1J A Brooks rotameter was used in the supplemental test to measure and maintain a constant flow rate for the imposed leak. It was calibrated in the range of 0.6 to 6 scfm at 14.7 psia and 70 F with an accuracy of + 1.05 of Full Scale. The actual inlet temperature and pressure for the supplemental test were 63.7 and 18.8 psia. The temperature was measured using ETR-133 which is in close proximity to the end of the rotameter inlet line inside the lower containment. Pressure was measured at the inlet to the rotameter itself using a 0-30 psia Heise gage. The temperature and pressure readings were used to correct the indicated rotameter readings to standard conditions using the following relationship: | |||
Wcorr= X Gage atm Wind X +T ETR-133 14.7 Wcorr Corrected rotameter flow in path Wind Indicated rotameter flow in cfm ETR-133 Rotameter inlet temperature, ' | |||
atm Atmospheric pressure, psia 5.3 Sensor Locations The locations of the sensors used for this test were identical to the locations originally specified for the Unit 1 and Unit 2 preoperational ILRT's, Figure 5.2. 1 (MSK-78C) shows the location in section views of the containment. | |||
5.4 ~A The inaccuracies associated with the use of the test instrumentation package used in the Unit 2 Preoperational ILRT in measurement of the containment leakage rate was determined to be + 0.076 L . | |||
A copy of the analysis calculation is contained in the Unit 2 . | |||
Preoperational Integrated Leak Rate Test Report. In terms of the impact on this error analysis only insignificant differences exist between the instrumentation package used in the Unit 2 Preoperational- ILRT and the package used, in this test. The error analysis and the + 0.076 L result obtained for the Unit 2 Pre-operational ILRT Ts considlred to be also representative of the modified instrumentation package used in this test. | |||
Page 13 | |||
5.5 Containment Pressurization A aratus As in the Unit 1 and Unit 2 Preoperational tests, the plant air system, in conjunction with test pressurization filters and driers, were used for pressurizing the containment. The air enters the containment at approximately ambient temperature and a dew point of approximately -20'F. The air enters the con'tainment through a spare penetration in the upper volume. A valve is provided at the penetration outside the containment, where the air line can be isolated and closed with a blank flange. | |||
6.0 Containment Model and Leak Rate Calculation The containment leak are performed by the 'absolute'ethod on a | |||
'total time's described in AHS-N45.4-1972. The containment design pressure is 12.0 psig and allowable leakage (0.75 La) is | |||
: 0. 18755 wt/day. The containment model and leakage calculations used to perform this test -are essentially the same as the ones used in the Unit 1 and Unit 2 preoperational tests. | |||
A 3-compartment model is employed for the calculation of the containment leak rate. It was developed to accommodate the distinct and widely varied envi ronmental condi tions existing in each of the Upper, Lower and Ice Condenser Volumes. The normalized fraction of the initial containment dry air mass, W , is calculated on a compartmental basis by ratioing the sum ofnthe product of each compartment's dry air density and compartment volume fractions as determined from data collected at time t , to the same value deter-mined from the initial data collected atntime t . | |||
0 Expressed in equation fons: | |||
1 P un -VP Un P Ln -VP Ln PIn - VPIn WF + VWF + VWF Wn= K u Tun L T TIn 1 VWFU Uo Uo + VWF Lo L + VWF Io - VPIo R | |||
Uo Lo TIo Page 14 | |||
Ip li | |||
Where: W = normalized weight remaining in containment at time tn (dimensionless) ft-1 bs R = gas constant for dry air = 53.34 ibm-'R (The terms cancel) | |||
VWF = Volume Weighing Factor (Each compartment volume is ratioed to the Lower Compartment Volume) | |||
(dimensionless) | |||
P = Compartment Total Pressure (psia) | |||
VP = Compartment Vapor Pressure (psi) | |||
T = Compartment Weighed Average Temperature (degrees Rankine) | |||
Upper Compartment Lower Compartment Ice Condenser Initial Time time at nth data collection 6.1 Volume Wei hin Factors Table 6.1.1 shows the compartment free volume distribution for normal operation: | |||
Table 6.1.1* . | |||
Containment Free Volume Com artment Free Volume ft Upper 687,819 Lower 365,614 Ice Condenser 210,723 Total 1,264,156 The volume distribution existing at the time of the test may differ from the values indicated in Table 6.1. 1 in two ways: | |||
* Ref. AEPSC I&C Calculation 12-PI-05 'Volume Weighing Factors'age 15 | |||
: 1. The total volume of the ice condenser in Table 6. 1. 1 does not include the volume of ice resident in the 'ice basket'. | |||
: 2. The location of the moveable sections of the reactor missile shield do not necessarily have to be in place during the test. | |||
The ice condenser volume was adjusted for the presense of the volume of ice in the ice condenser as determined by the Ice Basket Weighing Program, performed per plant procedure 12 THP 4030 STP.211 between Majch 16 and April 8, 1981. The total ice weight w~s 2.637 x 10 pounds. The standard density of ice, 563lbs/ft , is assumed to calculate the volume displaced, 47,095 ft .3 This reduces the net free volume in the Ice Condenser to 163,628 ft . | |||
The location of the movable sections of the reactor missile shield affects the volume distribution between the upper and lower volumes. | |||
When the shield is removed from its normal operating position it provides open access to the cont~ol rod drives, and reactor head from the upper volume. The 16, 147 ft of free volume above the head normally isolated from the upper volume by the shields, is then in direct communications with the upper volume. When the shields are in place, the volume is vented only. to the lower containment and is therefore considered part of the lower volume. Table 6. 1 shows the volume distribution of the'containment with a missile shield removed, which is the position the shields were in for )he performance of this test. | |||
Had the shields been in place, 16, 147 ft would have been subtracted from the upper volume total and added to the lower volume. | |||
The containment volumes used in the calculations of the leak rate in this test are shown in Table 6. 1.,2. | |||
Table 6. 1. 2 Containment Volume Ad 'usted For Conditions Existin Durin Unit 2 ILRT. | |||
Com artment Free Volume ft Upper 703,966 Lower 349,467 Ice Condenser 163,628 Total 1,217,061 Volume weighing factors were determined from the values in Table | |||
: 6. 1.2'. The volume weighing factors express compartment volumes in per-unit using the lower volume as 'base'. Table 6. 1.3 shows the volume weighing factors used for the calculation of the leak rate in this, test. | |||
Page 16 | |||
Table 6.1.3 Containment Volume Hei hin Factors derived from Table 6.1.2 Com artment Volume liei hin Factor Upper Vu 2. 0144 L | |||
Lower VL 1.0000 L | |||
Ice Condenser I 0.4682 VL 6.2 Containment Pressure and Va or Pressure Equation 6-1 shows that the compartment pressures are compen-sated for vapor pressure in the calculation of weight remain-ing in the containment volume. The evaporation of water from the exposed surfaces of water volumes in the containment would result in an increase in containment vapor pressure as well as total pressure. The condensation of water vapor onto containment surfaces cooler than the dew point of the vapor would cause a decrease in both the vapor pressure and total pressure. If the total pressure were not compensated for vapor pressure, vapor pressure increases due to evaporation would reflect an apparent increase of the containment air mass, which when superimposed over a mass loss due to containment leakage would result in a measured leak rate of a less magnitude than the actual leak rate. Condensation would result in a measured leakage greater than the actual leak rate if the correspondi ng vapor pressure change were not accounted for. | |||
The sensitivity of the leak rate calculations to vapor pressure changes is especially great in an Ice Condenser Containment since the energy absorbing ice bed reduces the design accident pressure from 50-60 psig, typical of conventional containments, to 12 psig. The vapor pressure therefore represents a large fraction of the total pressure in the ice condenser containment. | |||
6.3 Containment Tem eratures Containment temperatures are used to compensate the weight remaining calculation for total pressure changes caused by the thermal expansion or contraction of the containment atmosphere. | |||
It is recognized that temperature gradients exist in the containment and temperature changes will not necessarily be uniform throughout the containment. Therefore the containment Page 17 | |||
is instrumented with 46 temperature probes, located such that each monitors a fraction of the total containment volume. | |||
In the establishment of temperature sub-volume boundaries and temperature probe location, consideration was given to the location of physical thermal barriers and heat sources and sinks. The sub-volumes are generally different in size as well as shape, thus, in determining average containment temp-erature, temperature readings are weighed as a function of the volume fraction they represent. The weighing of temperature readings occurs on a compartmental basis. The weighted average temperature in a compartment is given by the following expression. | |||
Nc T Z T vgcn i=]. cni Kci T | |||
av l< e i g h e d a v e ra g e c o m p a r tm e n t te mpe ra t u re ( | |||
' ) | |||
cn for compartment c at time tn Temperature at sensor i in compartment c at K | |||
cn 'ime t K . Temperature weighing factor associated with sensor Ci i in compartment c. | |||
Total number of sensors ih compartment c. | |||
Temperature weighing factors, like the volume weighing factors discussed in Section 6.1 vary as a function of both ice condenser load and reactor missile shield placement. | |||
6.4 The Statistical Determination of the Leak Rate There is inevitably a certian amount of random error associated with the leak rate measurements and the containment leakage itself that cause a variance in the calculated remaining weight, Wn, and the leak rate, Lam. In order to determine the leak rate from Wn after a test period of t , a fi rst order (linear) least-squares fit of W n vs t is performed. | |||
This method selects a function, W(t)=bt+a, in which slope, b and intercept, a, are determined by minimizing the variance g , of W wi th respect to W( t) . The variance of Wn relative to W(t) fs: | |||
Page 18 | |||
n 2 | |||
" - W(t )) = z - (bt. + a)) (6. 4-1) | |||
(Wi (Wi 1=1 The values of a and b that establish the minimum variance ~ are given by the homogeneous simultaneous solution of the partial derivatives of a with respect to a and b: | |||
Ba aa 0 and Ba~ | |||
Bb | |||
= 0 (6.4-2) | |||
The solution of the above yield: | |||
n n n E Wt - E W E i=1 i=1 i=1 (6.4-3) n n n n E t .2 | |||
~ . z W ~ - z t. E W ~ (6.4-4 i=1 i=1 i=1 i=1 n n z | |||
i=1 ti 2 -(z t) 1=1 The slope of w(t), b, is the leak rate expressed as the change in normalized containment weight per unit time. The unit of time used is hours, and thus, L is given by 2400 | |||
= (Xwt/day) | |||
Lam tn 6.5 The U er Confidence Limit The 951 Upper Confidence Limit of the leak rate is determined from'he variance of the slope of the least-squares line, W(t), and the value of the t-distribution for n-2 degrees of freedom based on a one-sided 95% confidence interval. | |||
The use of the one-sided interval in this test has replaced the two-sided interval used in the Unit 1 and Unit 2 Preoperational tests. The two-sided limit placed upper and lower bounds about the measured leak rate within which there was a 95K certainty of the 'actual'eak rate existing. | |||
Since the interval determined by this method is symmetrical, the 954 two-sided interval was actually imposing a 97.5Ã confidence on the upper bound of the leak rate. The imposition of a 954 confidence on the upper limit of the leak rate is equivalent to taking the upper bound of a 90/ two-sided interval. | |||
Page 19 | |||
The t-distribution is used to estimate the interval about the mean value of a finite set of v (nu) independent normally distributed measurements within which the mean of the popu-lation of infinite measurements from which the finite set was taken; exists to a stated level of confidence. | |||
Referring to Table 6.5. 1, the value K of the t-distribution, as determined from the point at which the cumulative dis-tribution of the t-distribution has the normalized value | |||
~/2, defines a two sided interval about the mean of o(nu) independent measurements the entire population of measurements exist to a confidence of 1n . The t-distribution is normalized such that its mean is zero and the standard deviation is one. | |||
This allows K(v,a) to be applied directly to the mean, x, and standard deviation s, of any sample U independent measure-ments representing a normally distributed population. The confidence limits are expressed as x + K(u,a ) S. | |||
In the application of this statistical method to the leak rate test, the slope of the least-squares line, b, is the of the leak rate and the variance of the 'mean', | |||
'mean'a/ue S , is given by: | |||
n S = E (W. - (bt. + a)) | |||
b i=1 n | |||
where, t = E t. | |||
l=l Page 20 | |||
t I, | |||
Oh>> Oa>> | |||
TABL~ 6,$ , | |||
DISTR!St TIOlS OF g l | |||
) | |||
K o K O>>Sr>>ca of Probabilicy o freeclocn 0.10 0.0$ I 0.0l l 0.001 I 6314 12.706 &3.657 636.619 . | |||
2 2.920 4305 9.925 31398 nM3 3.182 5.841 IÃ941 4 2.132 2.776 4.604 8.610 5 XOI5 5571 4.032 6.859 6 1.943 2.447 3.'707 $ .959 7 1 JL95 2365 3.499 5;405 8 1.860 2306 3355 5.041 9 I JU3 2262 3250 4.781 10 1.8'12 222S 5.169 4387 II 1.796 LAI 5.106 4.437 12 1.782 . 2.179 3.055 4318 13 1.771 ~ | |||
2.160 3.012 4221 14 I 761 2.14$ 2.977 '.140 15 1.753 2.131 2,947 4.073 16 1.746 2.120 2.921 4.015 17 I 740 '.110 23198 3.965 18 1.734 2.101 2.S78 3.922 19 1.729 2.093 2.S61 ~ 3.88) 20 1.725. 2.086 2445 ~ 3.850 21 1.72l %080 X$31 3.819 22 1.717 2.074 ZSI9 3.792 23 1.714 2.069 2307 3.767 24 1.711 2.064 2.797 3.745 25 1.708 2960 5787 3.725 26 I.r06 2.056, 2.779 3.707 27 1.703 2.052 Z.r 7I 3.690 28 1.701 2.048 2.763 ~ 3.674 29 I.&99 2.045 2.756 3.659 30 1.697 2.042 L750 3.646 1.684 '.021 2.704 3851 . | |||
60 1.671 2.000 2.&60 3.460 120 1.658 I.980'.960 2.617 )373 1.645 Zi76 3491 icua mblc Sires the >>aloes of c corresponding to>>ccsnus>>aloes o(the prooabiiicy o 0 >>eel of silnifceancel ofa random eaciablc iaUin9 cnsccte che shaded areas inthe Rlscre. for a ci>>cn number of dryrees of free dom raeaihblcforcheccticnacicm of error. For a onnudcd tcs chcennfcdcncc0rnftsareobtaincd for ocr ihistablciscahcnfromiaoic ill of Fisher fs Yaccsc Sccruoorf i>>kkc j>>r Bi>>f>>fcrcf. Byn'cafe>>r>>f. >>M | |||
.Mrec& Erst>>rnt oublashed by Qliect Bc Boyd l 'd EoinburSil by permission of the authors and publishers'he above ~~able 's used to determine the aporopriate value of'K'ased on prevai3.'cg demees of freedom. | |||
This table has be n ez"racted " om Basic Statistical Methods :or =. ~i . ers ~cd, Sci ntists. | |||
I Page 21 | |||
Of the total of n measurements (W.t.) only n-2 are independent since a and b, the slope and interchpt of the least-squares line, having been derived from n (W.t.), can predict any two (W.t.) with the other n-2 measuremeht3. Hence, v =n-2. | |||
1 1 The value of a used is that which corresponds to a 90/ | |||
two-sided confidence interval which is equivalent to a 1 - a/2 or 95Ã one-sided interval. The value of a is therefore | |||
: 0. 1. Now, the upper confidence limit of the leak rate, b, is expressed as: | |||
b-K(n-2, O. 1) = Sb The negative sign defines the upper limit since the value of b is negative. | |||
6.6 The Leak Rate Com uter Pro ram 'LRTEST'he leak rate computer program, 'LRTEST', has replaced earlier versions of the two programs used in the Unit I and Unit 2 preoperational test, know as 'CCVDREP'nd 'CCVREPT'. | |||
'LRTEST'ncorporates the revised statistical analysis discussed in Section 6.5 and an added degree of flexibility that its predecessors lacked. | |||
'LRTEST'ccommodates the operator input of certain 'fixed-data': the calibration conversion and correction coefficients of the present instrumentation system, and the volume and temperature weighing factors., The fixed data represents that which is fixed for the duration of one ILRT, but will vary from one ILRT to the next. | |||
'LRTEST'eceives test data from a card reader. The raw test data collected for each test interval is coded onto input data coding sheets and punched on to computer cards. The data includes the data run number, the elapsed decimal time from run 81 in hours, the 46 containment temperatures in millivolts, seven pressures (6 containment, 1 barometric) in psia, and dew point temperatures in millivolts. The data cards are accumulated in a deck in the order of the run numbers. | |||
The program establishes a file for the raw data and computes values expressed in the proper engineering units. The program computes the average compartment and containment pressures, the containment pressure relative to atmospheric, the weighed average compartment temperatures, and the average compartment dew point temperatures. From the average dew point, the vapor pressure is calculated using the Goff-Gratch formulas for saturation vapor pressure over water or over ice. | |||
Page 22 | |||
For each run of the computer program, the raw input data and the above computed values are summarized for the most recent data run. This is a valuable aid to input data error checking and analysis. Also, at the option of the program operator this summary may be printed for an operator-specified range of runs ending with the last data run. | |||
A separate summary of average compartment pressures, temperatures and vapor pressures is also printed for either all the runs entered into the program, or for all the runs in a range specified by the operator. The elapsed time printed for both the individual run summaries and the overall summary is controlled by the starting point of the range. | |||
After three data runs have been made or three runs are available in the user specified range, (a minimum of three runs is required to perform the least-squares and statistical analysis) the program calculates the leak rate and 95% | |||
upper confidence limit of the leak rate. In addition, the program calculates the remaining weight of the containment, and of each compartment. The remaining weights in a compartment | |||
'c', is given by the following: . | |||
P cn | |||
-PV cn cn cn P PV co The individual compartment remaining weights are used only as an aid to data interpretation. | |||
A copy of 'ILRTEST'ppears as Section 7.0 of this report. | |||
The program outputs for this test can be found in Section 8.0 of this report. | |||
Page 23 | |||
7.0 D. C. COOK NUCLEAR PLANT CONTAINMENT INTEGRATED LEAK RATE TEST PROGRAM LRTEST | |||
'age 24 | |||
e- ANERICAN ELECTRZ R COMPUTER APPLICATIONS SERVICE CORPORATION DIVISIO'.( | |||
HBR=ILRTEST ol/14/75 LIB=>>%%%%%%% SOURCE LIBRARY OUTPUT ol/28/81 11.23. 27 PAGE 0002-=- - | |||
000100 IMPLICIT REAL>>8(A-H P-Z) %% ol/27/78 000200 REAL>>8 K>LVP %% 02/02/78 000300 DIMENSION TEHPUC( 16 ) <<TEMP LC(24) > TEHPZC(7) %% 01/27/78 ------ | |||
000400 DIMENSION TEHPU( 16) <<TEHPL(24) > TEHPI(7) %% 01/27/78 000500 000600 000700 000800 000900 DATA ETR LUC<<LLCtLIC/16~ 24>7/ | |||
DIMENSION ill RTDLl(16) <<RTDL2(24) <<RTOL3(07) | |||
DATA RTDL1/'ETR-101 ' 'ETR-102 ' 'ETR-103 ' 'ETR-104 ''ETR 105'>.-- | |||
'ETR-106 ' 'ETR-107 ' 'ETR-108 ' 'ETR-109 ' 'ETR-110' | |||
~ 'TR 112 > ETR ll t ' 'TR 128 <<ETR 133 > ETR 113 / | |||
01/27/78 01/27/78 01/27/78 01/27/78 ol/27/78 | |||
= -- | |||
001000 DATA RTOL2/'ETR-122 'ETR-123 'ETR-124 'ETR-125 'ETR-126 %% 01/27/78 001100 'TR-127 ' 'TR-129 ' 'TR-130 ' ETR-131 ' 'TR-132 %% 01/27/78 001200 'ETP.-134 'ETR-135 '<<'ETR-136 '>'ETR-137 'ETR-138 %% 01/27/78 001300 'TR-139 ' 'TR-140 ' 'TR-141 ' 'TR-142 ' 'TR-143 t 01/27/78 001400 'ETR 144 ' 'ETR 145 ' 'ETR-146 ' 'ETR-113 '/ %% | |||
%% Ol/27/78 001500 DATA RTDL3/'ETR-115 -'<<'ETR-116 '>'ETR-117 '>'ETR-118 '<<'ETR-119-'> = =-- %% 01/27/78 001600 'ETR-120 '>'ETR-121 '/ %% ol/27/78 001700 DIHENSION MUC(99) <<MLC(99) tWZC(99) >M(99) >TINE(99) <<NRA(99) t %% 01/27/78 001800 - ATUC(99) >APUC(99) >AVPUC(99) >ATLC(99) >APLC(99) >AVPLC(99) > %% ol/27/78 001900 ATIC( 99) >APZC(99) <<AVPIC( 99) %>> 01/27/78== -- -= | |||
002000 DIMENSION K( 18) <<SR(70 ) >DP(6 ) <<LVP(6 ) >PRES( 7) t PRESC'( 7) <<VPR(6 ) %% 01/27/78 002100 DIMENSION WTUP(16) >WTLOM(24) >WTICE(7) >TABLE(97) %% 05/23/78 DATA TABLE /6 ~ 314<<2 ~ 920<<2 ~ 353>2 132<<2 ~ 015<<l 943>l 895<<l 860<<l 833 ~ | |||
002200 002300 002400 | |||
-1.812>1.796>1.782>1.771>1.761>1.753>1.746>1.740>1.734<<1.729>1.725<< | |||
-1.721,1.717,1.714,1.711,1.708,1.706,1.703,1.701,1.699,1.697,1.695, 05/23/78 05/23/78=-- | |||
05/23/78 002500 -1 694>l 692>1 691>l 689tl 688>1 687<<1 686>l 685>1 684>l 683<<l 682> | |||
~ ~ %% 05/23/78 002600 1 681>l 680<<l 679<<l 679<<l 678>l 677>l 676<<l 676>l 675>1 675<<l 674<< %% 05/23/78 002700 -1.673 >1.673 >1.672 >1.672 >1.671 >1.671 >1.671 >1.670 <<1.670 <<1.669 <<1.669 << >>>> 05/23/78=-- = ==- | |||
002800 -1. 669 <<3%1. 668 > 3%1. 667 <<3%1. 666 > 4%1. 665 > 4%1. 664 > 5%1. 663 > 5%1. 662 > %% 05/23/78 002900 -5%1.661/ %% 05/23/g8 003000 003100 DATA MDUP<<MDLO>MDIC/ UPPER START OF PROGRAH | |||
<<LOWER > ZCE / %% 01/27/78 | |||
%%=01/27/78 003200 I=1 = | |||
%% 01/27/78 003300 OLGIOO = DLOGZQ(1013.246DO) %% ol/27/78 003400 DLGO = OLOG10(6.107100) 01/27/78 QIBRARYj 003500 003600 | |||
. MDEH = 0.0 READ (5<<300>ERR=22<<END=12) Cl>C2>C3>C4>C5>C6<<IXS>IXE<<IPR | |||
%>> 02/22/78 | |||
%% 01/27/78 | |||
===-= . | |||
003?00 30 0 FORMAT(6F6 ~ 3<<4X<<13>?X>13>?X<<13) 02/22/78%% 02/22/78 003800 I-"2 %% 01/27/78 FEB 5 l98i 003900 READ (5>301>ERR=22<<END=12). K 01/27/78 004000 30 1 FORMAT(6F11.6/6F11.6/6F11.6) %% 01/27/78 I "- 3 RKCiKTVF 1 004100 004200 004300 %302 READ (5<<302<<ERR 22>END 12) SK FORHAT(ZOF8.5/10F8.5/10F8.5/loF8.5/10F8.5/10F8.5/ZOF8.5) 01/27/78 Ol/27/78 | |||
-= ==--- . %% 10/24/77 004400 Z=4 %% 01/27/78 004500 READ (5>303<<ERR 22<<END=12) MTUP<<MTLOMtMTZCE %% 01/27/78 004600 %303 FORHAT(loF6.5/6F6.5/11F6.5/13F6.5/7F6.5) %% 10/18/77 004700 I= 5 %% = 01/27/78 004800 READ (5>304>ERR 2'2>END-12) VWFltVWF2>VWF3 02/02/78 004900 %304 FORMAT(3F7.5) %% 10/18/77 005000 WRITE (6>305) Cl>C'2<<C3>C4>C5<<C6tK(l) tK(2) >K(3) >K(7) <<K(8) <<K(9) << %% 01/27/78 005100 005200 K( 13) <<K( 14) >K(15) <<K(4) ~ K(5) >K(6) <<K( 10) <<K( | |||
K( 16) tK( 17) tK( 18) >SR ll) <<K( 12) ~ %>> Ol/27/78-- ----=-- | |||
%% ol/27/78 005300 %305 FORMAT( 1Hl << l4X> %%% THIS IS A CHECK OF THE INPUT DATA %%% ////1H %% 10/18/77 005400 'RTD )1ILLI-VOLT TO FAHRENHEIT CONVERSION COEFFICIENTS'/lH >6X> %% 10/18/77 005500 UPPER >12X> LPO'OR >13X> ICE /1H >F5 ~ 2<<3X>F5 2>4X<<F5 ~ 2 ~ 3X<< 10/1 ~77 Paae 25 | |||
R=ILRTEST 01/14/75 LIB=<)))))))))))))) SOUR ~NARY OUTPUT 01/28/81, 11.23.27 003 005600 2//Ii 1H t(ILLI VOLT 10/18/77 005700 005800 F5 ~ 2 >4X > F5 2 ~ 3X > F5 ~ > HYGROtlETER TO | |||
'FAtlREt(HEIT COHVERSIOi( COEFFZCIEt(TS'/lH ) T15> 'UPPER-1' T48>> -= | |||
LO)1ER 1 ) T82> ICE 1 /1H ) 9( Flo 5) 1X)//1H ) T15> UPPER 2 ) T )8) | |||
-- = | |||
01/27/78 01/27/78 005900 'LO'HER-2')TG2)'ICE-2'/1H )9(F10.5)1X)////1H )'t(At(Ot(ETER PRESSUR Ol/27/76 006000 E CORRECTICt( COEFFICIENTS'/T40) PU 1 /10(lX>F7 4)//1H ~ 38X> 02/D2/78 006100 PU 2 /1H )9(F7 4>>lX)>>F7 4//1H >38X>'PL 1 /1H >9(F7 4)lX)> | |||
~ ~ 10/24/77 006200 F7.4//1H )38X) 'PL-2'/1H )9(F7.4>lX) >F7.4//1H )36X) 'PZ-1'/ 10/24/77 006300 1H )9(F7 4>lX) ~ F7 4//1H ~ 3SX> 'PI 2'/1H >9(F7 4>>lX) >F7 )// 10/24/77 006400 1H >36X>> P ATt1 llH >9(F7 4>1X) ~ F7 4) 10/24/77 006500 WRITE (6>306) WTUP>WTLOW>WTZCE>VWF1>VWF2>VWF3 Ol/27/78 = | |||
ooeeoo 306 FORHAT(lH-> 'RTD WEIGHTItlG FACT/?5'/jH >27X> 'UPPER'/ZH >9(F5.4)lX)) 01/27/76 006700 F5 4/jH >5(F5 4>lX) >F5 4//1H" >27X> LO>iER /1H slo(F5 4 ~ 1X) > 10/18/77 ooesoo F5 4/lH >12( F5 4) 1X) >F5 4//1H ) 28X> 'CE I 1H )6(F5 4>lX) >F5 4// 10/18/77 006900 //1H > 'VOLU11E WEIGHTING FACTORS'/1H >1X> UPPER > 2X> 'OWER'3X> 10/18/77-- | |||
007000 'ICE'/1H >2(F6.4)lX) >F6.4) 10/18/77 007100 IF (IXS.LE.O) ZXS = 1 01/27/78 007200 IF (ZXE.LE.O) IXE = 999 02/22/78<)) o2/22/7e 007300 IF (WTUP(16).LE.O.O) GO TO 701- 01/27/78= | |||
007400 LLC = 23 01/27/78 007500 GO TO 702 01/27/78 007600 701 LUC = 15 01/27/78 007700 702 NR | |||
"-0 02/02/78 =--- . | |||
007800 LZCP1 = LIC + 1 01/27/78 007900 ODSDOO <C 008100 )t 008200 008300 LUCP1 = LUC DO 20 IR = 1 99 IBYP = 0 t 1 NR IS STORAGE INDEX>PROGRAtl DATA ACCESS LOOP STARTS HERE. | |||
READ (5>>100>ERR=42>END=32) NRD>TZHER 01/27/78 Ol/27/78 Ol/27/78-01/27/78 01/27/78 | |||
=- | |||
008400 100 FOPt1AT(Z3,1X)F5.2) 02/22/78lE% 02/22/78 006500 %C INPUT SEQUEt(CE CHECK ))% 01/27/78 008600 ZF (t(R.EQ.O.OR.HRD.GT.HRO) GO TO 703 02/09/78 008700 WRITE (10)901) IR>t(RD %)f Ol/27/78 008800 901 FORilAT (1HO>2X, 'ILR005I D INCORRECT DATA SEQUENCE'2X>I2,2X,I3) 02/24/78<)) 02/24/78 006900 GO TO 23 0 1/27/78 =- == =- | |||
009000 32 IF (IPR.HE.O) GO TO 40 ol/27/7e 009100 IPR -"99 01/27/78 009200 GO TO 55 01/27/78 009300 703 HRO = t(RO =.= .K% 01/27/78 === == -= | |||
009400 IF (t(RO.GT.ZXE) GO TO 32 01/27/78 009500 ZF (t(RO.GE.IXS) GO TO 705 01/27/78 OD9600 IBYP = 1 01/27/78 009700 GO TO 707 01/27/78 =- | |||
009800 705 ZF (t(RO.EQ.ZXS) TZt(EST = TZtlER 01/27/78 009900 NR = NR + 1 02/02/78 010000 TINE(ti)\ ) = TIt(ER Tlt(EST 01/27/78 010100 ttRA(t'iR) = HRD 01/27/78 010200 200 FORHAT(lHl> 'RUN t(UHBER'4XsZ3/lH s 'ELAPSED TINE'2X>F5 2///1H ~ ~ 02/22/78))> 02/22/78 010300 'COtlTAItli(EHT TEtlPERATURES DATA CHECK'//1H >7X>'UPPER VOLUHE's 10/18/77 010400 010500 010600 21X> 'LOWER VOLUHE')19X) 'ZCE CONDEt(SER'llH )3X) 'RTD'2X> | |||
't1ILLI-VOLTS'2X)'DEG ~ F- ' 7X) 'RTD' 2X> 'HILLZ-VOLTS'2X>> | |||
'DEG. F. '7X) 'RTD'2X>> 't)ILLI-VOLTS'2X>'DEG. F. ' | |||
10/24/77 10/16/77 -=- =- ==- | |||
10/le/77 010700 707 READ (5ilol>ERR=42 Et?D=62) TEtlPUC | |||
~ 01/27/78 01D600 101 FORtlAT(10(F5.2 1X)/6(F5.2 1X) ) 10/18/77 010900 READ (5)102 ERR=42 END=62) TEHPLC 01/27/76-- | |||
011000 102 FORMAT(jj(F5.2>>jX)/13(F5.2>jX)) 10/24/77 011100 READ (5>103>ERR=42>END=62) TEt1PIC 01/27/78 011200 103 FORtlAT(7(F5.2,1X) ) 10/18/77 011300 IF (ZBYP EQ 1) GO TO 45 01/2 f78 Page 26 | |||
BR=ILRTEST 01/14/75 LIB=NNNKmwxx SO BRARY OUTPUT 01/28/81 1 1. 23. 27 0005 017200 505 FORMAT (1H t32XtABt2XtF6.2t5XtF6.2) 01/27/78 017300 WRITE (6t507) TtlSMUCtTMSMLCtTMSMICtTMSMURtTt!SMLRtTMSMIR 02/02/78 017400 507 FORtlAT (1H-t17Xt'SUtl"IARY OF WEIGHTED AVERAGE TEMPERATURES'//1H 02/02/78 017500 -'UPPER VOLUtlE (DEG- F ~ ) 'F5.2t4Xt 'LOllER VOLU)1E (DEG. F ~ ) 02/02/78 017600 017700 017800 F6 ~ 2t tXt ICE CONDENSER (DEG ~ F ~ ) | |||
UPPER VOLUtlE (DEG ~ R ) | |||
tF5 2/1H tF6 ~ 2t4Xt LOWER VOLUME (DEG ~ R ~ | |||
F7 2t tXt ICE COtlDEt>SER (DEG ~ R ~ ) t F7 2) | |||
)'= 02/02/78 02/02/78 02/02/78 017900 ZF (ZFR.EQ.99) GO TO 35 01/27/78 018000 018100 018200 45 509 READ (5t509 ~ ERR=42tEND=62) VPRltVPR2tVPR3tVPR4tVPR5tVPRbtPRES FORMAT (6F6.3/7F8.5) | |||
IF (IBYP.EQil) GO TO 20 01/27/78 01/27/78 - -= | |||
01/27/78 018300 DP(1) = K(l)>VPRl<VPR1 + K(2)>VFRl + K(3) 01/27/78 018400 DP(2) = K(4)NVPR2NVPR2 + K(5)>VFR2 + K(6) 01/27/78 018500 DP(3) = K(7)>VFR3<VPR3 + K(8)KVPR3 + K(9) 01/27/78 018500 DP(4) =K(10)>VPR4>VPR4 + K(ll)<VPR4 + K(12) 01/27/'78 018700 DP(5) =K(13)xVPR5xVPR5 + K(14)>VPR5 + K(15) 01/27/78 018800 018900 019000 DP(6) =K(16)<VPR6<VPR6 + K(17)<VPR6 + K(18) | |||
. -DO 403 J=lt4 ZF (DP(J).LE.0.0) GO TO 403 01/27/78 01/27/'78 01/27/78 | |||
= | |||
019100 CIOOC = 373.16/((DP(J)-32.)/1.8 + 273.16) 01/27/78 019200 LVP(J) = -7.90298>(CIOOC - 1.0) + 5.02808>DLOG10(CIOOC) + DLGIOO 01/27/ je 019300 -1.3816<(10M>(-7.0) )>(10<<(11.344<(1.0-1.0/CIOOC) ) - 1<<) 01/27/78-==-=-- == | |||
019400 019500 403 COtlTZNUE t8.1328%(lOKW(-3 0) )<(10>>(-3.49149<(CIOOC - 1.0) | |||
~ ) - l. ) 01/27/78 01/27/78 019600 DO 50 J=5t6 01/27/78 f 019700 = ZF (DP(J).LE.O.O) GO TO 50 01/27/78 019800 COC = 273.16/((DP(J)-32.0)/1.8 + 273.16) 01/27/78 019900 LVP(J) = -9.09718<(COC-1.0) - 3.56654ttDLOG10(COC) 02/02/78 020000 >0.876793%( 1.0 - 1.0/COC) + DLGO 01/27/78 020100 50 CONTI'/E 01/27/78 =- =- | |||
020200 DO 404 KAY =lt6 01/27/78 020300 IF (DP(KAY).LE.O.O) GO TO 404 01/27/78 020400 VPR(KAY) = 0. 0145038<10>>LVP(KAY) 01/27/78 020500 020600 404 COHTIHUE 01/27/78 - | |||
CHECK FOR MISSIHG VAPOR PRESSURE AND CALCULATE AVERAGE. 01/27/78 020700 IF (DP(1).LE.0.0) GO TO 713 01/27/78 020800 IF (DP(2).GT.O.O) GO TO 715 01/27/78 020900 VPAUC = VPR(1) 01/27/78 -- = = | |||
= | |||
021000 VFR(2) = 0.0 01/27/78 021100 021200 021300 021400 021500 713 GO TO 717 VPAUC = VPR(2) | |||
VPR(l) | |||
GO TO 717 | |||
= 0.0 715 VPAUC = 0.5<(VPR(l) + VPR(2) ) | |||
01/'27/78 01/27/78 01/27/78 01/27/78 01/27/78 021600 717 IF (DP(3).LE.0.0) GO TO 719 01/27/78 021700 IF (DP(4).GT.0.0) GO TO 721 01/27/'78-021800 VPALC = VPR(3) 01/27/78 021900 022000 022100 022200 022300 VPR(4) = 0.0 GO TO 723 719 VPALC = VPR(4) | |||
VFR(3) = 0.0 GO TO 723 01/27/78 01/27/78 01/27/78 01/27/78 01/27/78 | |||
= | |||
022400 721 VPALC = 0.5<(VPR(3) t VPR(4)) 01/27/78 022500 723 IF (DP(5).LE.O.O) GO TO 725 01/27/78 ---=-= | |||
022600 IF (DP(6) GT.0.0) GO TO 727 01/27/78 022700 VPAIC = VPR(5) 01/27/78 022800 VFR(6) = 0.0 01/27/'78 022900 GO TO 729 01/27/78 == =-=- == | |||
Paae 28 | |||
I r | |||
BR=ILRTEST Ol/14/75 LIB-"wwwwwwwe SOUR QRARY OUTPUT 01/28/81 11.23.27 il006 023000 725 VPAIC = VPR(6) 01/27/78 023100 VPR(5) = 0.0 01/27/78 023200 GO TO 729 01/27/78 023300 727 VPAIC = 0.5<(VFR(5) + VPR(6)) Ol/27/78 023400 023500 023600 LXtlEAR ItlTERPOLATIOtl FOR PRESSURES. | |||
729 DO 405 tl=l>70)10 HX=Mtl Ol/27/78 01/27/78 10/20/77 | |||
= -== -- = | |||
023700 NR=tl>9 10/20/77 023800 tlY=( (M-1)/10)+1 10/20/77 023900 PRDG = PRES(MY) 01/27/78=-= | |||
024000 ZF (FRDG.EQ.O.O) GO TO 408 02/09/78 024100 DO 406 tl=Hl>t(2>2 10/20/77 024200 IF (FRDG.LT.SR(tl)) GD TO 406 01/27/78 024300 IF (PRDG.EQ.SR(tl) ) GO TO 731 01/27/78 024400 IF (H.EQ.tll) GO TO 444 01/27/78 024500 PRESC(MY)"-SR(tl-1)+ (FRDG-SR(N) )w(SR(H-3)-SR(N-I) )/(SR(N-2)-SR(H) ) 01/27/78 024600 GOTO 405 10/20/77 024700 <406 COitlTINUE = 'K% 10/20/77 024800 444 V/RITE (10 ~ 407) NRD)MY>PRDG OR/22/78<> 02/22/78 024900 407 FORilAT(T2) KK))MANOMETER READItlG OFF CALIBRATZOH>>< )RX)I3)RX) 02/22/78<> 02/22/78 025000 - ZR>F9.4) 02/22/78<> 02/22/78 025100 408 PRESC(MY) " -0.0 02/09/78-=-=-=- - -* | |||
025200 GO TO 405 01/27/78 025300 731 PRESC(MY) = SR(H-1) 01/27/78 025400 <405 025500 >C 025600 COtlTINUE AVERAGItlG PRESSURES ALLOMZtlG FOR ZERO ENTRY. | |||
PRESCU = 0.5<(PRESC(l) + PRESC(2) ) | |||
10/20/77 01/27/78= | |||
01/27/78 025700 FRESCL = 0.5w(PRESC(3) + PRESC(4)) 01/27/78 025800 PRESCZ "- 0.5))(PRESC(5) t FRESC(6)) 01/27/78 025900 ZF (PRESC(1).LE.O.O.OR.FRESC(2).LE.O.O) PRESCU = 2.0<PRESCU - =--= .. Ol/27/78 026000 IF (PRESC(3).LE.O.O.OR.PRESC(4) ~ LE.O.O) PRESCL = R.OKPRESCL 01/27/78 026100 IF (PRESC(5).LE.O.O.OR.PRESC(6).LE.O.O) PRESCI = 2.0>PRESCZ 01/27/78 026200 026300 0264>00 ACPA=(PRESCUOPRESCLIPRESCZ)/3 ACPG=ACPA-FRESC(7) | |||
IF (IPR.EQ.O.OR.IPR.GT.HPD) GO TO 747 | |||
==)EK 10/20/77 10/20/77 01/R7/78 026500 35 VRITE (6)508) VPRl)DP(1) >VPR(l) ) PRES(1) >PRESC(1) > 01/27/78 026600 VPRR)DP(2) )VPR(2))PRES(2) >PRESC(2) > 01/27/78 026700 VPR3>DP(3) >VPR(3) ) PRES(3) PRESC(3) > | |||
> 01/27/78= | |||
026800 VFR4>DP(4) >VPR(4) >PRES(4) >PRESC(4) > 01/27/78 026900 VPR5 >DP(5) ) VPR(5) ) PRES(5) > PRESC'(5) ~ 01/R7/78 027000 027100 027200 VPR6)DP(6 ) ) VPR(6) )PRES(6) )PRESC(6) )PRES(7) >PRESC(7) ~ | |||
VPAUC) VPALC > FRESCU) VPAXC ) PRESCL) PRESCI ) ACPA>ACPG 508 FORMAT (1H,llX, COtlTAItlMEtlT VAPOR PRESSURE DATA CHECK',T83, | |||
~ | |||
01/27/78 02/02/78 01/27/78 | |||
==- | |||
027300 'COtlTAXt(MENT PRESSURES DATA CHECK'//1H >19X) t'1ZLLI- SX 10/21/77 027400 'DEN POItlT'4X) VAPOR PRESSURE'30X) 'Ut(CORRECTED'7X> 10/21/77 027500 CORRECTED /1H ~ RX> 'HYGROiMETER )SX> VOLTS ~ 8X> (DEG F ) >7X> 10/21/77= | |||
027600 ( PSIA ) > 23X > MAtlOMETER > RX > READXNG ( PSIA ) > RX > READIHG 10/21/77 027700 (PSXA) /1H )5X) 'VPU 1 >10X>F5 2>10X)F5 ~ 2)9X>F7 ~ 4)25X> PU 1 10/24/77 027800 2(SX>F7 4)/T7> VPU 2 ~ 2'( 10X>FS 2) ~ 9X)F7 ~ 4> T83) PU 2 ) 2(8X>F7 ~ 4)/ 01/27/78 027900 T7) VPL 1 ~ 2( 10X)F5 2) >9X>F7 4) T83 ~ PL 1 ) 2(8X)F7 ~ 4)/ 01/27/78. | |||
028000 T7> 'VPL-2'2(lOX>F5 2))9X>F7 4)T83> 'PL-2')2(SX)F7 4)/ 01/27/78 028100 T7) VPI 1 )2(lOX>F5 ~ 2) >9X>F7 4>T83> PI 1 )2(8X)F7 4)/ | |||
~ 01/27/78 028200 T7 VPI 2 )2( 10X)F5 2) ) 9X>F7 4>T83) 'PI 2 >2(8X)F7 4)/ | |||
~ ~ ~ 01/27/78 028300 T83 ~ At(BIEtlT ) T95)F7 4) 8X>F7 4/XH ) T24> AVERAGE VAPOR PRESSURES 02/02/78= =- | |||
028400 T86>'SUtlMARY OF CORRECTED AVERAGE PRESSURES'/ 02/02/78 028500 - 1H >T17> 'UPPER CONTAItltlEtlT (PSIA)'T47>F7.4/ 02/02/78 028600 1H > T17> 'ONER CONTAINMEtlT ( PSIA ) ' T47> F7.4) TS1 > 01/27/78 028700 -. 'AVERAGE UPPER PR SSURE (PSIA)'>T120>F7.4/lH >T17> 01/27 j78 -= | |||
Page 29 | |||
SR=ZLRTEST 01/14/75 LIB=>>>>>>>>>>Nues>> SOUR RARY OUTPUT 01/28/81 11.23.27 007 028800 028900 029000 029100 ICE COiNDEtlSER SIA)>> T120 | |||
-F7.4/T81, | |||
( PSIA) >T47> F7 4 > T81 > AVERAGE LOWER PRESSURE ( P F7 ~ 4/T81 > AVERAGE ICE COt(DENSER PRESSURE ( PSIA ) > T120>- | |||
'AVERAGE CONTAINMENT PRESSURE AVERAGE COslTAXtll'IENT PRESSURE (PSIA) T120,F7.4/Tel, | |||
( PSIG) > T120 > F7 4 ) | |||
01/27/78 01/27/78 01/27/78 01/27/78 029200 029300 029400 ZF (IPR.EQ.99) GO TO 40 CALCULATE NORNALIZED WEIGHT FRACTIONS> STORE WITH PRESSURES ~ | |||
747 WUCt(UN = (FRESCU - VPAUC)/THStlUR | |||
= - = | |||
01/'27/78 01/27/78-- | |||
01/27/78 | |||
= | |||
029500 WLCtlUN = (PRESCL VPALC)/TNStlLR 01/27/78 029600 WXCHUN = (PRESCI - VPAIC)/THStlIR 01/27/78 029700 029800 MNUH = VWF1>>>ltUCNUN + VMF2NWLCHUN + VWF3%WICNUN IF (MDEt1.GT.O.O) GO TO 749 | |||
%>f 01/27/78== | |||
02/22/78 029900 WUCDEN = WUCNUi1 01/27/78 030000 WLCDEN = WLCtlUN %K 01/27/78 030100 WICDEN - "WXCt(UH 01/27/78 030200 VDEN = VtiUtl K% 01/'27/78 030300 749 WUC(tlR) = WUCtlUN/VUCDEN 01/27/78 030400 WLC(NR)=WLCtiUN/WLCDEN 030500 W I IC( t(R ) = WICt(UN/M COEN 030600 W(HR)=WNUN/WDEH 030700 ATUC(HR) "- TtlStlUC 02/02/78 030800 ATLC(HR ) = THSNLC 3f% 02/02/78 030900 ATIC(NR) TH-HIC 02/02/78-= | |||
031000 APUC(HR) = PRESCU 02/02/78 031100 APLC(HR ) = PRESCL 02/02/78 031200 APZC(tlR ) = PRESCX 02/02/78 031300 -AVPUC(hR) = VPAUC - %K 02/02/78. == | |||
031400 AVPLC(t(R) = VPALC << OR/02/78 031500 AVPXC(tlR) = VPAIC 02/02/78 031600 031700 031800 20 Cot(TItiVE WRITE (10>903) 903 FORllAT (1HO>2X> 'ZLR006I 0 <w>>>DATA SPACE EXCEEDED>>>ww>) 02/24/78<w 01/27/78 01/27/78 o2r24/7e | |||
=-- | |||
031900 GO TO 23 01/27/78 032000 END OF FILE AND OTHER ERROR NESSAGES 01/27/78 032100 12 WRITE (10>904) I 01/27/78 032200 904 FORHAT (1HO>2X> ILR002I 0 <>END OF DATA ZH SYSTEN GROUP > 02/24/78<< 02/24/78 032300 I2>2X>'x>>>>') 02/24/78%% 02/24/78 032400 032500 032600 23 VPITE (10>905) 905 FOPtlAT (1H >2X> 'ZLR008Z 0 tt>WABHORNAL RUH TERNIHATZON<>>Ht' GO TO 24 | |||
- 02/24/78<> | |||
01/27/78 02/24/78 01/27/78 032700 22 WRITE ( 10 > 906 ) I ' | |||
01/27/78 032800 906 FORHAT (1HO ~ 2X> 'ZLR001I D <>>>READ ERROR IH SYSTEN DATA GROUP 02/24/78<< 02/24/78 032900 - X2>2X>'') - - -====- 02/24/78% K 02/24/78 033000 GO TO 23 %If 01/27/78 033100 42 WRITE (10>907) NRD 01/27/78 033200 907 FORMAT ( 1HO > 2X> ILR003I 0 <>>READ ERROR IH TEST GROUP > I3 > 2X > <> ) 02/24/78<> 02/24/78 033300 033400 033500 033600 GO TO 23 62 li'RITE (10>90S) NRD 908 FORNAT (1HO>>2X> 'ZLR004I D GO TO 23 f | |||
>>>>END OF DATA ZN TEST GROUP 'I3> '>> )02/24/78ll>>l | |||
= Klf 01/27/78 = =-- | |||
01/27/78 02/24/78 01/27/78 033700 RESULT PORTIOH OF PROGRAM 01/27/'78 033800 40 IF (HR.GE.3) GO TO 41 K>>> 01/27/78 033900 VPZTE (10>909) %K 01/27/78 034000 909 FORtlAT ( 1HO >2X> ILR007Z D <l>>LESS THAN 3 TEST POINTS NORE DATA HE02/24/78ll< 02/24/78 034100 -EDED<w') 02/24/78K'O 02/24r7e 034200 TO 23 %34 01/27/78 034300 41 TSS -"TINE(1 ) xTINE( 1 ) + TINE( 2 ) NTINE( 2 ) 01/27/78 034400 TS = TINE(1) TItlE(2) 034500 T2SW = TINE(l)>>>W(1) | |||
+ | |||
+ TINE(2)NW(2) 01/'27/78 01/27/78 . =. | |||
Page 30 | |||
R=ILRTEST 01/14/75 LIB=>><wwNwxw SOUR RARY OUTPUT 01/28/81 11.23.27 oo> | |||
034600 WS = W(l) + W(2) %% 01/27/78 034700 WRITE ( 9 > 201 ) =-= - ==- %% 01/27/78 =--- - =- | |||
034800 201 FORMAT(lHl>4SX> ' | |||
==SUMMARY== | |||
OF AVERAGES'///1H >2X>> 'RUN It'2X> 'ELAPSED 01/27/78 034900 >2X>3(34HAVG TEtlP AVG PRESS AVG V PRESS )/lH >10X> TINE'6X> U 01/27/78 035000 PPER' 6X> 'UPPER'7X> UPPER >6X> 'LOWER'6X> 'LOWER'7X> 'LOWER'7X> Z 02/'02/78 035100 -CE'BX> 'ICE'9X> 'ICE'/) 02/02/78 035200 DO 43 I=1>HR 01/27/78 035300 43 WRITE I I I | |||
( 9> 202) HRA( ) > TIME( ) ~ ATUC( ) ~ APUC( I ) >AVPUC( I ) >ATLC( I ) 01/27/78 035400 APLC( I) ~ AVPLC( I I I | |||
) >ATIC( ) >APIC( ) >AVPIC( ) I 01/27/78 035500 035600 202 FOR)'IAT (1H >2X> Z3>4X>F6.2>2X>3(F9.4>2X>F9-4 ~ 3X ~ F9-4>2X) J VRITE (9,205) 01/27/78 01/27/78 | |||
=- | |||
035700 205 FORtIAT(lH1>34X> 'RESULTS OF THE LINEAR REGRESSZOH ANALYSIS'/// 01/27/78 035800 -1H >2X>'RUH it'>SX>'W'>llX>'LEAKAGERATE'>9X>'LEAKAGE'>9X> 05/23/78 035900 W UPPER >7X> 'W LOWER >9X> W ICE /1H >10X> 'EXPERIMENTAL ~ 05/23/78 036000 -6X> 'UPPER LItfIT' llX> 'RATE 'SX> 'CONTAZHMEtiT'>3X> 05/23/78 036100 'COtiTAItitlEtiT'5X>'CONDENSER'/) 01/27/'78 036200 REGRESSZOH LOOP 01/27/78 036300 DO 44 Z=3>HR 01/'27/78 036400 TSS = TSS + TINE(I)%TINE(Z) 01/27/78 036500 TS = TS + TIt'IE(Z) 01/27/78 036600 WS = WS + M(Z) 01/27/78 036700 T2SW = T25W + TINE(I)I>M(I) 01/27/78 036800 ARUM = TSS<WS - TS<T2SW 01/27/78 036900 XHRR = I 01/27/78 037000 037100 037200 037300 ADEN = XHRR<TSS A = AtmM/ADEN Bt(UM = Xt(RRNT2SW | |||
- TS<TS | |||
- TS>WS | |||
.3ftt 01/27/78 01/27/78==- = | |||
01/27/78 | |||
= = | |||
B "- SHUN/ADEtl 01/27/78 037400 037500 II=I0.0 WSUil = | |||
01/27/78 01/27/78 ..= = . | |||
037600 SUM OF SQUARED DIFFERENCES 01/27/78 037700 DO 46 L=l>ZI 01/27/78 037800 WLR = A i 8<TINE(L) 3f% 01/27/78 037900 IF (DABS(W(L)-MLR).LE.1.0D-39) GO TO 46- 01/27/78==- =- - - | |||
038000 VSUtl = WSUtl + (W(L)-MLR)<(M(L)-MLR) 01/27/78 038100 COtiTItiUE 01/27/78 038200 AT = TS/Xt(RR 01/27/78 038300 TOT = AT%AT 01/27/78 . . | |||
038400 DO 48 tl= 2 > ZI 01/27/78 038500 48 TOT = TOT + (TIME(N)-AT)I>(TINE(N)-AT) 02/02/78 038600 B = 2400.0MB 01/27/78 038700 EKK = TABLE(ZI-2) 01/27/78 = | |||
038800 SIGMAB = DSQRT(WSUN/(TOT<(XHRR-2.0) ) ) 01/27/78 038900 DEL = EKK<SIGMAB+2400.0 01/27/78 039000 BU = B - DEL 05/23/78 039100 V>RITE (9>206) HRA( II ) >W( ZZ) >BU>B>llUC(IZ)>WLC(ZZ) >WIG(ZZ) = . = = )It( 05/23/78 039200 206 FORtIAT (T4>Z3>5X>F9.5>2(9X ~ F9.5)>7X>F9.5>SX>F9 '>6X>F9.5) 05/23/78 039300 44 COHTItIUE 01/27/78 039400 %C EHD OF REGRESSION LOOP 01/27/78 039500 WRZTE (9>203) B>A 01/27/?8 039600 203 FORMAT(IHO 21X 'FINAL LEAKAGE RATE (% PER DAY) ='9.5 5X 'INTERCE 01/27/78 039700 -PT='>F9.5) 01/27/78 039800 I'RZTE (9,204) BU 05/23/78 039900 204 FORMAT ( 1HO > 21X> 'PPER COHFIDEtiCE LIMIT FOR THE RATE IS > F9 5) 05/23/78 040000 24 CALL EXIT 01/27/78 040100 EHD Paqe 31 | |||
8.0 Data Anal sis and Summaries This section of the report contains graphical analysis of data obtained during the conduct of the ILRT. The 'ILRTEST'rogram summaries of average containment temperatures, pressures, and vapor pressures, and leak rate calculations appear in Section 8.2 of this report. | |||
Past test experience has shown that the instrumentation package used for this'est is quite capable of measuring the leak rate accurately, as evidenced by the rapid convergence of the 95Ã upper confidence limit of the leak rate and the excellent correlation of results between the 'Type A'nd the Supplemental Test. The error analysis for the instrumentation system predicts + 0.0195 wt/day, and this test correlates well within that interval. | |||
8.1 Gra hical Anal sis Figure '8. 1.1 is a plot of containment weight remaining vs. time for the Type A Test, the slope of the least-squares line is the calculated leak rate. A second line is drawn using the vertical intercept of the least-squares line and a slope corresponding to the 955 upper confidence limit leakage . A line corresponding to the allowable leak rate (0.75 L ) is also shown to illustrate the relatively wide margin 5y which the leakage criterion was met. | |||
Figure 8. 1.2 is a plot of the containment weight remaining vs. time for the Supplemental Test. The slope of the least-squares line is the composite leakage rate (L ). Using the vertical intercept of this least-squares line, two additional lines are drawn corresponding to the Supplemental Test correlation limits | |||
[(L + L + .25 L ) > L > (L + L - .25 L 0]. | |||
Page 32 | |||
4 I. | |||
f> | |||
ik | |||
'' I 4 | |||
4 t-J ~ | |||
Itooooo I D.CICooK Pcrrur | |||
~ << Vivre 2'/RT, | |||
/Ay /'78/ | |||
k. | |||
Tr<E 8'@sr Cavrwurrzur Wester Re~we vs. 7i~r' 8 | |||
0 | |||
-k-! I JO! O 1 0 | |||
8 8 i 0 | |||
0 '-I 0499/ | |||
00 I ~00 0 Lrwsr Sovt9zrs 4'J're PMEJ9 Co/vrrortacs';', . Twas R'rsr lrAKRArr | |||
. 78' 0 99)DO | |||
/0 IE ECSWun 7ine h'49'o Page 33 | |||
1I 4 | |||
4 1 | |||
li)O O.C. CoOA PSAAIr. | |||
~ 1 UkIT c Z'I,RT, . | |||
PAT I'IBI! | |||
+ Surr Zenana>P. riSI 4 | |||
COPITAIAlnEP7 LVEIGk 4 | |||
QEftAIIJIIIJI'4 VS. 7IIIII 4 | |||
4 4 | |||
~ | |||
t l | |||
1 JJJ | |||
! 4, i g 4 4 0 | |||
~o (MIISS E/MIITA 4j. [- >==PP J | |||
4 x~ -. '41 0 | |||
V 4 PL EnEA(Th CoZASJ! | |||
4 4,' | |||
' 4 | |||
-, 4 4 | |||
I IO | |||
/8'ZuerwcaXuia's | |||
., Page 34 | |||
'f I | |||
y | |||
8.2 'LRTEST'ro ram Summaries D. C. Cook Unit 2, Integrated Leak Rate Test April 30 - May 4, 1981 8.4.1 Fixed Pro ram Information ~Pa e 8.4.2 Pressurization Runs 1P-25P Summary of Averages 8.4.3 Stabilization Runs 1S - 31A Summary of Averages Preliminary Leak Rate Analysis 8.4.4 'Type A'est Runs 1T - 49T Summary of Averages Type A Leak Rate Analysis 8.4.5 Supplemental Test Runs 1Su - 13Su Summary of'verages Supplemental Leak Rate Analysis Page 35 | |||
THIS IS A CHLCV, OF T>(j IHOIJT l)ATA PTn HILLI-vOLI I(> I'Af<<F<>><f. IT Cn)!vhvslow COFf F tel j)IIS | |||
<J>.PF.>> LO'4F I' CF. | |||
?.nn . <).<> 2.oo n.o ?.ou n.u | |||
>>Yor O>>f IF>>>>ILI.I-VOLT TO Fn><<IF~HE,IT COWVI:><SIO < COf:Ff IcftNTS | |||
>> I>>i>> P-I LOWt>(-I ICL-I n,r! 1<.unnOO 32.(>OAnn n.nOO>)5 1.9bhol 0.04nl? I>I.AOAOA l?.unnOO pi<>r r. >~- 7 I.O<>I'.>r 2 I <:F.-2 n.n I ~, n r> n 0 u 32 . 0 n 0 n o 0~n 0~0 0~0 r> ~ 0 If>ooouou 37 normo | |||
~ >!'hr>PI; Tf. <( )><>t S<(I>'f COH>>LCT I(>>< toFFF IC IF.NTS I V-I ln.Ann<> 3<>.l lan 77.0000 27.IS60 2>>.soon ?6.64< 0 26 Vnnn ?6.1530 ?S.nn<>n 7> .1490 I >I I-7 3(. ~ Anno 3'9 ~ 4<>60 ?1 ~ norm 35 ~ 5430 2(> ~ Rnnu 34 ~ >:>?10 26 ~ OOA(> 34 ~ 2350 75 ~ Anno l? ~ <)7.'jo Pl.- I ln.Anno 29.>'r>I<'7.noun 76.82( n 2<..anno 26.3300 26.norm 25.>>3;In 75.Anon 74.)>420 PI -2 lo.onno ?9. ><.24 27.noun ?6.97on 2<,.sono 76.4 rno 26.unnu ?s.974n 2s.Anno 74.9750 P 1-1 ln ~ Anno 3(> Shl <I 7/ 000('7 ~ < '>?0 2( ~ Snou 76>>lbu 26 ~ OOOO 76 ~ 4700 ?5 ~ On<>n ?5 4490 P 1-2 79 (><30 79 ~ T 9 ln ? I Oo I ) ?7 ~ <>03A ?r ~ 4850 7> ~ 4>'bn 26 0030 ?6 ~ 0020 ?5 ~ <>A ln 7N ~ AO30 P-ATM | |||
??.30<>n 44.656A 19.<>?n<> 3<>.r>040 14.66()u 20.7140 I?.49no 74.9390 9.<>><on I>>.f>>I>(o PTO >'f 16HT l><O r ACT<>AS UI>I I'<> | |||
~ r>67>< I ) < I ~ u>>31 A831 A<>r 0 0960 ~ 0960 ~ A>>60 ~ 0296 ~ I'?'96 | |||
.A?nr .0296 .AI< r) .OIO> .nl67 .0>I3 I O>>/ I | |||
~ 0415 ~ 0415 ~ <>41'> I>41~ nl ni ~ 02d4 ~ ASH6 ~ <>>>><(> ~ A26h U'&<6 I<>31 | |||
.Inaf .1037 . IA3I .Osor> .On>)2 .n24< .(>1<>5 .nl r<<; .>2>9 .<)719 .(>7r.r> .<<4?l ICF | |||
. r 730 . 0 73n . u 7<>6 . 0 70< .?23 I . 779<. ~ ? 094 | |||
>rnl,(I'~F ><I; 1n<>T l<>v f >>CT<)> ~ | |||
IIPPI <> I.<>I>F I' CI 7 ~ 014> ~ I ~ (>Ann >> ~ 46> 7 Page 36 | |||
SUNF(ANY 0 .HAG/5 f(UN f'APSF 0 hV(j TFHV AVG Pf)F.SS AVG V PAF.SS AVG TF.'t)P AVG PAF SS hvG v f)(F.SS AVG TF.F)P AVG I HF.SS AVG V P))FSS 7 I HL ~ 'PPI: R ()PPF:R ()ppE)r LOWE)( LOMF.)0 LOWE)( ICF; I Cf. I CF. | |||
I O~U e8.9045 26+9463 n.)osr /0 '930 26 9162 0.08OY 1/.3049 ze.946? 0 '35/ | |||
2 O.bo 60 F007 26.944e Oo)049 7'492 26 9152 Q.nTYT I I 3<a(( I 26 '452 0 '354 3 I VO 60.0289 Zb.94)2 0 )042 IU ~ Hlol 26 '122 0 0/YV I I 3'ji? 9 26 '417 0 0349 4 ).Sn 60.7654 26.9306 0 '034 rv. rr44 26 '071 0 F 07))b 49( 7 26 94)h 0 ~ 0348 VU 60 SV77 26.92ro Oe)0?3 rl ~ 2822 26 '981 0 ~ OUZY I I ~ 4032 26,92f(4 0 '343 6 Z.bo 60. | |||
eral 1160 2'239 Oe 1023 r) 369) 26 ~ 0<4) 0 '030 I /.4002 26~9?44 0.0329 | |||
')er | |||
~ | |||
I F 00 60.1199 26 n. Io)z I I o4 /25 26 HHYI 0 '039 17.3129 26~91'94 0 ~ 0 33') | |||
3.bn 67.7060 Zb Ylls 0 F 1005 7) ~ 49)3 26.0((4) 0 '840 I I ~ 2440 26.9124 0 0337 4 ~ OV 67.0249 2'016 0 ~ IUOY 7'052 ?6 ~ 874Q o.OUlb I / ~ 2103 26.9030 0 ~ 0 '333 ln 4.50 6/ 8274 zboU956 Oe)OQY TU ~ 0401 Ze.f(675 n.oHos I 'I ~ )687 26 '961 0. 0.32 7 11 5.00 67 '/154 26 'Y05 0 ~ Ioob ro ~ 7940 Ze.f)640 0+0792 I r. 1263 26 'Y67 0 '320 12 'j.bo 6623 26.UUb9 0 '994 TO;eH)4 26 '574 0,07H4 I 'I ~ V980 ze.UHse 0 '325 | |||
)3 6 ~ 00 67 F 598/ 26 '832 0 ~ 090/ Toe6384 26 US34 0 '775 1/ 0752 26 '011 0 '330 14 6.bo 67.5606 | |||
'6ze.U/e9 26 0035 0 ~ 0'980 7'913 26 F 85?4 o.oTeS I/ ~ 1103 26 0002 0 0348 lb 7 QU 67.4056 '703 0F 09/3 70 '408 26 '464 0.0761 I/ 1047 26 '732 0 '330 Ib 7 bn e7.44o3 0 '963 IU ~ 5102 26 '449 Q 07b4 I / ~ 1307 26.8'/1/ 0.0337 l/ 8+Un 67 4099 26 '/40 0 '956 'ro.4ezY 26.13419 0+0729 I I ~ 2209 zero/03 0 F 03?1 10 0.50 b/.3510 26 '/39 0 '946 70 '342 26 '4)4 0 F 0728 I I ~ 2171 26 '680 0 '321 19 9 ~ Uo er.?783 26 '696 0 '932 70 '104 26 '394 0 '727 )7 ~ )049 26.0643 0 0:319 ZU 9 bn 6/o?562 26 '679 0+0922 Ivy 3/91 TUBE 26 '369 0 '725 I/ 2020 26 '620 0 0317 | |||
?I )oooo 67 ?321 26 '657 0 '91'Y '/0 '50'9 26 '559 0 F 0724 I? ~ 1930 26 '593 0 0310 | |||
?2 lo ~ bo 67.1276 26.H635 0 '912 70 '286 26 '534 U.O719 )7+2)40 Zeo857Y 0 '310 23 11 ~ VV 67.)053 ?6+0509 0 '90'9 /VS 3300 26 '404 O.oTZI I 'I ~ 1731 26.0519 0 0315 | |||
?4 Il-bn 67.0400 ?ee0575 0 '099 70 '?/34 26.8459 0 '717 I I ~ 1361 26 '509 0 '322 | |||
?b 12.00 67.0235 26.0b41 0 '892 /0 '5?4 26 '4)9 O.OTIS )7 '700 26 '479 0 0'342 | |||
~ | |||
,jn 66 'YH02 26 Ub31 O.0806 TV ~ 2190 zbe0429 0 0711 I/o 1431 26 '469 0 '336 l/ | |||
F 2/ 13 F 00 66 F 9404 i?6 ~ US05 0+0800 70 '169 26+03((9 0 F 0710 170'5 26 '430 0 0304 20 )3. b(( 66.'9130 2'sns 0 ~ 0873 /0 ~ 2131 26 '384 0 '708 II 3090 | |||
~ 26 '984 0 ~ 0'.307 | |||
?Y 14. UU ee.UHs0 Zb.U4ee 0 F 08/3 70 ~ )762 26 '363 0 '710 1/ 1936 26 '395 0 '332 3() )4 'bo 66.8549 26 '470 0 ~ VH51 1403 26 '343 0 0706 I I .263'5 26 '30'5 0. 031'I. | |||
31 IS. on 66.8321 ?6 ~ 044 0 0 'H73 /0 '5)2 26 '320 0 '707 I /. Z359 ?6 '371 0 0320 Page 37 | |||
HF.SULTS OF IHE LINEAR H ION ANALYSIS HVN W LEAKAGE. HATE. ( CAKAOC W I)PPFH W LOWER W ICC F.XPCHI tiCNTAL ()PPCH LIMIT Ha'(C CONTAINMENT CONTAINMFNT C0NOF I IS 8 R J I 00008 -0 '07?6 0 ~ 18/12 I.OOOle 1.00008 0 ~ 99976 4 l.nnuOJ -0 26726 0 '4V91 I.noo21 0 '9997 0 '9946 5 0 '99hs -0 '2300 -0 'b991 I ~ 000J4 0 99852 | |||
~ 0 '9919 0 99988 -0 ~ 62003 -0 'bb98 I 00093 0 '9817 0 '9908 | |||
/ 0 ~ 94963 -0 57978 | |||
~ -0 ~ J3200 I.nnovo 0 ~ 99779 0 99906 | |||
~ | |||
0 '99'91 -O.438e8 -Oe22206 I 00132 0 ~ 99756 0 '9895 0 '99/1 -0 '8287 -0 '1919 Ioooovl 0 ~ 99823 0.99869 IU 0 ~ 99958 -0 '/062 -0 '4045 I ~ 00048 0 ~ 99830 0 99854 II 0.99961 -0 'J833 -O.ZJ33c I 00051 0~99830 0 ~ 998b4 12 (1+99954 -0 '1941 -0 2J303 I.ono48 0 '9830 0 ~ 99830 IJ U.99954 -0.29810 -OoZZ530 I ~ 00053 0 99827 0.99817 14 0 ~ 99940 -0.27152 -0 ~ cubRV I.nnoe2 0 ~ 99836 '0.99799 15 0.99951 -o.Z!~e52 -VS 20044 I.nOOel 0 '9824 0.9976~ | |||
16 0 '9956 -n 23vlv -0 e 18634 1.00069 0 '9827 0 99766 I/ 0 99955 | |||
~ ~0 21993 -0 ~ I/34J 1,00069 0 99834 0.99747 Id 0 '9963 -0 '0026 -0 Ibb19 | |||
~ I.nonni 0 '9838 0 99/44 19 0.9996Z -0 18296 F -0 ~ I J99/ I ~ 00084 0.99835 VS 9973'5 Zo 0 ')9961 "0 16815 -O I@770 U 1.00085 0 ~ 99832 u.99727 21 0+99980 -0 14814 -0 I IV&39 I ~ 00083 0 ~ 99909 0 '9715 22 0 '9985 -0 12826 F -o.u84oe 1.00097 0 ~ 99906 0 ~ 99705 23 0 99971 -n.llS9o -0 '/455 1.00085 0 ~ 99885 0 ~ 99693 24 0 '99/8 -o.lozes >>0 '6320 I ~ 00095 0 '9889 0 ~ 99694 25 Oe99968 -0 '9474 -O.ob818 I.oon89 0 '9879 0 ~ 99669 26 0 ~ 999/5 -Oi0853? -0 ~ 0>08/ I.oon94 0+99890 0 '9673 2/ 0.99970 -0 '7845 -0 04629 F I 00096 0 '9876 0 '9664 ZH 0 ~ 99946 -0.08120 -0.05102 I.ooln4 0 99875 | |||
~ 0 '9469 29 0 '9965 -0 07639 | |||
~ -Oou4820 1.00094 0 '9874 0 ~ 99636 30 0 '99/Z -0 07005 | |||
~ -0 F 04334 Iooollo 0 ~ 9987'5 0.99624 31 O.99961 -o.oevzv -0 '4230 I ~ 00095 0 ~ 99867 0.99623 FINaL LEAKAGE PaTE (% PLH OAY) = -0 ~ 04230 INTERCFPT= 0 ~ 99984 UPPER CONFIOCNCE LIMIT FOR THC HATE IS -0 '67?7 Page 38 | |||
==SUMMARY== | |||
0 GES RUN ll ELAN SEU AVG TEMP AVG PRESS AVG V PRESS AVG TEMP AVG PRESS AVG V PRESS AVG TEHP AVG PRESS AVG V PRESS I I HE UPPER . UPPER, .. . =. UPPER ,.LONER . .. LOWER ... LOHER .. . ]CK . ICE . ICE I 0~0 69.]4]7 0~0 601 '130 7'935 0~0 o.]2]e ]6<<8504 0 ~ 0 0<<5266 2 1.00 69 6250 0~0 590 '125 72 '897 . 0~0 o.12eS 16.8627<< 0 ~ 0 0 ~ 5330 3 2 F 00 69.7087 69 '494 0~0 523.0715 72.1841 0.0 0 ~ 1294 1'522 0 ~ 0 468 ~ 3?41 2.50 577 '485 5))<<]095 5 | |||
6 F 00 F 00 69,7495 69 '869 0~0 0 ' | |||
0~0 | |||
. = 610.7735 590 '403 72 1833 | |||
..72+]569 72 '169 | |||
. 0 ~ 0 0~0 . | |||
0~0 0<<]303 0 ~ 1310 0<<]320 | |||
]6+8584 1'793 17 0197 | |||
= | |||
0 0 | |||
0 | |||
~ | |||
~ | |||
~ | |||
0 0 | |||
0 537 '050 505.7419 7 5.00 69 A]68 0~0 603 'Z79 72 '790 0~0 0 '344 1'073 0~0 542 '652 8 6 F 00 69 '557 0~0 609 '247 , 72+]753 0~0 0 1334 16 ~ 9747 . - 0~0 516 '?28 9 7+00 69 '588 0~0 670.8578 72 '192 0~0 0 ~ ]304 17 ~ 0934 0~0 420 0445 10 8 00 69 '956 0~0 659 '614 72 '877 0~0 0<<]264 17 ~ 0955 0<<0 372 '063 11 9.00 69 '198 0~0 636 1914 71 '969 . . 0 0 0 ~ 1216 16 9156 0~0 364 2604 12 10.00 69<<9078 0~0 608 '686 7]<<9208 0~0 0 ~ 1170 ]6 8032 0~0 3]4<<8742 13 11.00 69 '333 0<<0 1]1.9387 7l.eso6 o.o 0<<))29 1'725 0~0 244.0879 14 12 00 69.9612 0 ' 0<<]335 . 7]<<8?8] . .0 ~ 0 0<<]090 16.7524 0~0 0 ~ 0321 15 ]3<<00 69 '?78 0<<0 0<<]580 7]<<7335 0~0 o.lo4e 16 '894 0,0 0 '600 | |||
]6 14.00 69 '736 ~ | |||
0 0 0<<]530 71 F 6629 0~0 0 F 1010 16 '264 0~0 0 ~ 1549 | |||
]7 15.00 69 '950 0~0 0<<]020 .. 7] ~ 59]3 0 0 = 0 ~ 0967 =- 16 ~ 9594 . 0 ~ 0= , .-0 1508 | |||
]8 16.00 70.0228 25 '803 0<<))22 71 4495 25 ~ 1663 0 ~ 0944 ]7+]786 25 '932 0 '345 19 17 F 00 70 '340 26 '857 0 1103 71 '489 26 1586 0 ~ 0898 1'7S2 26<<]833 0.0345 20 ]7<<50 To.oe58 26 '290 0<<]095 = . 7] ~ 3925 Zb<<5045 0 ~ 0887 17 2175<< | |||
~ 26<<532] 0 ~ 0321 21 18.00 69 '084 26<<79]8 0.1072 71 2694 26.'7611 0 ~ 0874 17 '705 26 '914 0 ~ 0334 22 18 ~ So 69.2748 26 '733 0.1072 71.1176 26 '435 0 ~ 0857 17 '442 26.7741 0 ~ 0345 23 19 F 00 69.2124 26.8254 ==0 1072 71 0603 26 7962 0 0847. 17 2955 . 26 8271 0 ~ 0342 24 1'0 69 '284 2e.8]e7 26 '550 0 1068 70 9698 | |||
'595 26 7862 0 ~ 0827 ]7 ~ 2903 26 '152 0 ~ 0336 25 20.00 69.1597 0 1064 70 26 9257 0 ~ 0819 1'240 26 '556 0 '348 Page 39 | |||
q<1>15'h<IY <s). 5 Vt.e>h('t aa | |||
~ r< i ~ ~ ~ | |||
I I 5) <ai i> c>V6 Il /apc >.I I 4<< AV<> sc Ie>pl- c>$ A V< ~ (< rile h V(i s>sr) ha< i,o<> V 85.1 '~h hV< ~ I< Ie)P />V(~ I Ie).64 hV( V I>4]:.<8>h I)" I 5 i "r'<<pa. | |||
Is< > h<a < <as<a) IP ) Ii<<5 u ( I ><ch <r I < ~ >at >a )CI )(:), ) Cf. | |||
) (' <> f >s, ps-'.<a> r C> ~ r< ie le h <>i'rsb I <i ~ ),Ics>s )r. ~ 5<'3) < i'I. 07('6 ) / ~ .)(s i ~ | |||
i ts.l6 I n.n 3)n l | |||
es, hes <<t>. / </rs pis ~ tace ) ce <I s<.3'I I,>. ) 0) .I ri 0 <) <I ~ O Ines I I.J( e>h i.'+ n.O.3) ii a ).< ~ >> i>i, I])! r'i., >>i, Ah <> ~ <>> I'19 i | |||
I <' ) 03 I | |||
~ | |||
r'C ~ I'sr'I' 0 O I l>ci 1/ 43)J 2< | |||
~ | |||
~ | |||
IS.S .<Cs H 3)) 0.03) I ee ) <> ~ a Ice/a )is l7 I | |||
~ <5 0~ s>>> lis 1 ae) lh ~ >i)ca<< 0 7(see ) I.<<o<i) Ii) I>i 0.A )ln | |||
<le> <<ii r; ~ I, ital <I, <s><,5<s I>>.<i<,) ~ r is ~ >> )isla <I 0 7(l<< I ~ 17<>.s )6 ~ t)C>a<i 0 ~ 0 l<<6 r, | |||
1 | |||
~ aii 5 h ra sin >>.C>&c> I I>> 0 IC> I r'.> ~ 0 ~ 0 I <ice ) / ~ c>i> 0!p Cs> 8)i>fp 0.0 354 l, <e<i fera ~ C a>h'> rf. ~ Ia,)pia I>i e (~ 11M ~ | |||
itr,'l'r. | |||
H) sl; 0 ~ 0703 )t .Csp/< A~ 0 35h ia(p 's,eilr pis tt Jef. 0 <>> l) 8 I<1 ~ 04)c? r'4 I')r'3 | |||
~ 0, A7(eap ) / ~ eases e i',5> 8 i? I | |||
~ f> A.n 1)1 ie ~ < | |||
~ c> iar> ~ | |||
~ 37 ) i'i b'<) i, 0 oit) i ci ~ cc>5>5) 2h. I') 'l.l 4. <i'Io< ) I.!>4) 0 i? F 8 i'I | |||
~ 1 n.nla I i'6 6277 '331 e'> | |||
)<s 4 ~ >.6 ~ | |||
a | |||
~ <>>s) r I u 0!i'30 c'< ~ >a 1 c>3 O ~ Atsh'I ) I ~ i>C Zi, ~ 55)ie P 0 1) bi'sa> | |||
.') i 5 cs ~ +e><<e> ?.C r) lee 0 ~ 'I >> 0 II 'I 0 ~ )!;ct< P(s ~ ><1'>3 <I ~ (i>s 14 ) / ~ 4i-><IS | |||
'I ri.lr'i c.'<- 0.0.3?ep C ~ fsh,>-e>7>< <a)Fh 0 ~ 0 1><e< Io ~ 0425 pf .>a) 73 0 Ots /(5 ) | |||
ts).l)'<-.t<Z]7. | |||
0.03? 7 1< | |||
) i f,< '> ~ i (> | |||
i fs | |||
~ | |||
' '>0,3 e ~ as<>9 7>> b)%(s | |||
)ei ~ h)i> 3 0 ~ <> I '> 1 (i ~ 07') ) | |||
7!1 C>4 | |||
~ | |||
~ | |||
: 0) / 1 C>a>(sf> | |||
P (a a lt ) re 53 Zh Sa) a>1 0 ~ (1 ti 0 0 0 ~ 0(aj ai | |||
]I 46)J | |||
) | |||
~ | |||
I,<<902 i6 ta ~ | |||
t)i'.)c.' | |||
8191 0 ~ 03'31 0 ~ 0334 | |||
)9 I <I <> I ts . " 1 .3 ) pfi.<s)) I 0 ~ 0 /91 h9 ~ 99i!4 AH))H A.P619 1 / <<7i>4 2<p. IS) 7'I 0 ~ <1334 | |||
) ii 7 p>E 66eee ]%IS P('ie I< ) Qh A, <I? e35s C s> ~ 99ea) i!Ci 8 o o'I A. 06)to ) I c<<]6 25' 8) 4 / 0 '339 | |||
) I It ~ (e <s ,'l <ah P i'fi bc'.) 7 0 ~ 0 /Hb IO ~ 0162 76 ~ H)(>7 0. Af>81 11 ~ !3861 ?ti ~ 8) 'pl 0 0 l.'l9 lH >e ~ | |||
>4 I 6 ra Iei<< | |||
~ 7(i. b 1 c>] 0. 0182 (a9 ~ Vt. 01 26 AH]07 n.06P) 11 h7/>0 2( .81iil 0 ~ nia ) <I a> n. 0<> f 6. )'pc?<I ps4. <'Si? 0'e 0 ~ 0 /7'9 C>9 '514 ?6 ~ Hn+I 0.0679 ] I.t 15/ Zf. ~ 8)h? n.n3c 0 | |||
)e> ne csea faf>, '<ee ] .> r f>ihi 04 0.0777 69.9601 2/paHn47 0 0 (stab ] I ~ C>hr..p 2(i. 814 I 0 ~ UJ41 | |||
: 7) ) A~ <es> cscp ~,)hie I< 7+.ts) 753 0 ~ 0/7/ 69.<ihn9 ?Cp ~ Ho<a?. o.n684 1 /.842<< 26.8171 o.n.354 | |||
) 0 ~ ~s> Fii, 3473 Pc -815) n 0768 69.9<<h<< P6 ~ H f)'P 0. (>686 ) I a<<hi<9 Zii ~ 8098 n.n33(i 7 < ] ) .isn ia(>, l lgo ph t<1'IA 0 ~ 0 76.> ip'9 9:<6'r? i?f.'o+a C> ~ Hot<6 11.<<.181 2(' H 1 0R n.n3:lo | |||
)) who C (> ~ 79'If> 76 ~ 8 1 t'0 0.07hI c>9 ~ 919's ? fa 5<e)4P 0 06H6 11 <<1'/9 2i <5108 0 0337. | |||
Ph ) ) ~ (io f.!5 ~ I ) Hcl i'f ~ 0143 n. 075/ 69 '0H3 ?6,4077 n.06Ht, ) /.:3( )e ZC .8045< 0 '331 | |||
)ia )7.5n 3 ie<s>l 76 F 8)39 o,07%1 C>9 ~ (<942 P6 HA27 0.0692 1 / ~ 'i831 2f i8084 O.o33n r" I ) | |||
'l ~ (}n C I,)'ebu ?Ca ~ 8176 0.07<>1 69 ~ HHBC> )f Hno'I 0,06H8 1 I ~ J97.1 Z(i 8 0653 o.n32i pea ) l,h<1 Ca6 ~ jPr<75< Pis ~ 8c>c 6 0. A /cp I 69 '496 Ph 79<<7 na069( ) I.J(.0 J Zf 8023 0 '310 | |||
)4 ~ O<s 76.8)]3 0 ~ 0'I,j I 69 '558>9 2f. 7997 0.0688 1/.2'?Ca( if> ~ 802H 0 '3155 | |||
<<s )4 ~ pcl 6(s ~ r 106 76 ~ <10P3 0.6754 69.>5535 76. 79/7 <) ~ 06H9 1/ J431 Zc ~ 8003 0 '340 31 (a(p ~ )314 ?c>.805>3 0. o 7<><< 6'/ 8570 Pf .7977 n.0693 1 | |||
'I ~ 31(i(i 2fi ~ 8004 0 ~ 03i>2 nr ) h ~ 5<> 66 ~ c <si>4 ?i .<)0( 1 0 ~ 015) 69.8i?92 76i /912 0 ~ nt>92 ) I ..I))5 ih. 7919 n.nJZ) | |||
C i) ~ pi<94 ?hi <5074 0 ~ 0 131 6'9 ~ >53ti / jj?i. ~ 7947 n. eh'> I 1 / ~ 3916 Z6 ~ 79H4 0 a 03'3'5 | |||
)ca ) Ca fa(i, )nh7 Pri 8045 f> ~ 0740 69.8299 Zf 7'977 <3. 064 ] ] I.27hb 2fs. 7959 0.0331 lh 17.00 tsf> r" s?95 PCi ~ 8>oh7 0 ~ 0 Iran i>9 8?cs 0 26.7942 0.06<<J 11.3]58 ?6.'1969 A.na?7 | |||
$6 11 ~ | |||
>>> t cp ~ ))HA )Cs. an? 7 0 '732 69. 8)9>< 26 7>>]7F 0.064/ 1/.3o]1 Zf ~ 7964 n.n331 | |||
<I ) >s ~ <io F(i ~ ) <<5'p 76 ~ 8<)46 0 ~ 0735 69 '95h Zf ~ 7947, <1 ~ 064(> 1/.3)>35 (f ~ 7914 0 0.3? I e | |||
) Ie C>n i'ci ~ ) a>foal 76 ~ <><1 I h 0 '735 69 ~ /90<> Ph, 7ali.'?. 0 ~ At>r>5 1 I ~ JS<<<4 Zt . r964 0 ~ 0308 | |||
) aV . <. n Csfp ~ ) e>91 ph. )s(iPA 0 ~ oIJ5 69 ~ 7880 2f> ~ 7937 0 '647 1 I . <<ce)5 2 .7964 0 '311 ie rs ) '1. 5>I C 6, )h76 pc .8onp o. <1135 69 ''9i'9 26 ~ 785<7 n. 06>a<< ] I ..I> ~ | |||
>cs (ie ~ 79i>4 o.n3) (3 | |||
<<r 70 ~ s><1 i(i,).<a< < pc ~ 79'13 0 ~ 0 /35 ii9i 1715 Pr, ~ 7877 0.06<<o 1 / ~ 47<pZ C.'6 7934 0 '3i'7 r ~ | |||
I Fh ~ ) e>'.3>t 76 ~ /94<> 0 ~ <I /32 is Y ~ I I i.'4 pt . 751<<6 <1 ~ Ah<a 3 1 I 4?ca 6 | |||
~ c?fa ~ 7'r04 A.n33J 4 > 71 ~ (io Ftpe ) ) 1'I ?ha 794/ 0 <I /3i.' c>4. lhi:J ph,7al77 n. n(.ii<< ] 1 ~ 4<<68 ?.i- ~ 7904 0 '333 ie<< P),h< ~ f <'>, I '>) 0 7 I'i ~ 7 as cia> I)9 e>9 ~ 746>> pF ~ 7>< I) <1 ~ (i 64 cp 11.ei7 )C 26./u)n oioJ?r". | |||
reh pr <I 0 fsf> ~ | |||
Ce > ri | |||
] Pie ~ /9ho A.o/)>t i9 /J19 pt> 7>sr ) A.AC 4) ] I e'>9ca / (6 '<<45 n.0.3C.O Ca e, ei (> i ip ~ s arr>9 )ha 79r" <1. lc) | |||
<> 5 4./J/9 I'3)6 A.nt.ri<< 11.<<o]h )h.'I /0 >a 0 ~ 03i'9 ie I 7<.on r6.( /0) 7/s ~ Ia?46 A.o/) 1 6'i 'I 3 /4 | |||
~ Ph ~ 75)cac> <1 ~ (i(>.)'9 1/ <<r 11: Zi . I >'u(I 0 0327 ce> )g ~ hes iefp I')I> | |||
~ pfi /a<ps< (i 0/) cs | |||
~ aay, 7) <] ?i ~ I>', jia 0 ~ ni 4) ] I . 3i'5< J 2h.lht h n.nl)1 ca ie )ia ~ <>>1 C6 "173 pi> ~ I'>74 0. <>'I ) <i isi> ~ 7 ) ]es Zh, I <36 ~ 0 ~ (>Cire( ) 7 cap<<I'. 26. Ic<f>5 0 ~ 0J)1 Page 40 | |||
kF '>tlt. TS OF IHF. L]I''Lhw kFG)>FSS)ON h:IALYR)r. | |||
I.F AYI<GL la A I f, Lt.hhDGF. I)I>>>r.t> ts'(><<F.I- ]C]; | |||
I x)-I ~ 't.l Nl ht. I)I'PFk l. )!4) I kn 11. | |||
W C(iNI A)N> F)4T CON)A)N>>LN) C{>NI)F t)SF I> | |||
3 (1 ~ <) YU'),1 I')ll 0 bors/4 | |||
- tl. 2< {>68 | |||
-Va ] 163) ].r nor I 0 ~ 9>>992 0 ~ 999t> 1 (a ~ 19 ~ -0 ~ 08>>7'I n.>>>> ><i7 l.uooai u ~ 99'>44 l> (1, 'j>>>>'>7 n ~ ) 7<><j4 -U ~ 04563 1 . norm.'I n.9<</9U 0 '9950 ci | |||
'I 0 ~ G>>9 /<> -n.?7>>]f, -rl,) I?H9 0.9>>>>G? 0 99'?HO 0 '9>>i?3 | |||
: n. > )9><2 -r..23c 60 -o. ] 62<jH,. n.>>>>>>c>c, Os9>>981 0.99929 | |||
>1 ri 99<>><ca 0 ~ I 9f>Ca 4 -0 1 J I'.jb ].nr>non 0.999H) 1? ~ 99929 | |||
>> n. <>99'>n c> ~ )>>7/a -I) ~ 09$ 6)3 ].nnnn>> O>><>9>>c 0 ~ 9991? | |||
] rl 0 ~ -n 1'3<> -0. 09i? H.I >><)c)>>7 cl 9>>l/84 os 999]f ll '>>>9'c'.<>9'>> | |||
O | |||
~ | |||
-n. 130<in -U.U909'I 1. nunc>h | |||
~ | |||
: n. 999(. (i U ~ 99917 r..ail/9i 4 0 1 1406 -0.(I /vt)b ) .Onr>p7 0 s9>>912 U ~ 99916 | |||
) ) {1 ~ >>l><>usa -O.O'97>>?. -Q.ueb?] ].r<nn)3 n. 99913 0.999U9 | |||
)4 0 ~ <>c)<? >< | |||
1 -O.nb?hi -O.oh]ie ).(>nnnk ~ 0. 9<>91? 0.99896 | |||
] Cs ct ~ 9<>911 0 ~ t)8691 -0 ~ r? bi?74 1 .nouns 0 ~ 99<If>c> U ~ | |||
]6 0 ~ >>us>fsC> -(1. 0969C. -Qao/332 n.9>>9>>c, 0.9995? 998'9c'.9988/- | |||
)7 (> ~ <>9 <> / c) -n.0970? -o ~ u/6)) ) arm(i)3 O.9>>94n u.99R59 I >< r'. >>91 n -n.]04m -U ~ 0>3459 0 ~ <>>>l>c><j V. 9'? 9hli u.99828 | |||
)9 (1, <isj>>'/5 -n.(l~l?H -0. 01'1>>v ].Onn)~ n.99961 0 '9851 7(i (1 ~ C>9>> /rp 0 ~ 0'90?R -0.07)9V ].nnr)l>> 0.9>>956 0 ~ 99HC<? | |||
i>] li<jl)>s<> -0 '87?5 -U ~ U 1062 ].non>>1 0.99953 U.99852 | |||
?? 11 ~ >>c)<>cs ( 0 ~ Q8h20 -0.07112 ].norm? 0 ~ 999<>2 0 '9864 73 n.'>9<>10 -n ~ 08?3? -u.06829 1. 1) nrlnc Q ~ 99 jc>H r).9>>815 | |||
? I4 (< ~ c>9<> I1 -n.o76?H -U ~ 06203 ).nno]p 0 99943 U~ 99H78 | |||
? ra (l ~ >>9>>10 -n ~ U72n > -0 F 06929 1 e nein()P 0 0 '98H3 ra Ca (> ~ >>>>>>1 R -h 06<?>>3 -0 ~ V5749 ).nnnn>> o.9994n 0 '?9865 | |||
?.7 (1 ~ '>>''><16 -n.nb7>>O -U ~ Ub635 ].nnnoh 0 9"935 U. 9981? | |||
. c c< O.<>9>>55 -O.O7O33 -0.059?4 n ~ <<997 0.99915 0 '9868 | |||
?s> 0 ~ <><j>>(ar> -n.of>806 -U ~ Ob7c>4 ].nnnol 0 '9'937 0 '9880 I <) 0 ~ >><>a/5(a -n. (){<Hhr! -0 ~ Ubol<9 0 ~ 9>>li>>6 0 )>>9? R 0 ~ 998'52 | |||
: n. <>9<>4n -O.nt Ic 3 -u.obt<?e . ).nOnr? 0,9>>92>3 0 '9R59 32 (1 ~ G>>94 1 -n.ne987 -0 ~ Vt>0<9) 1) <>>>s)<>O n.999()9 0 ~ 9<j><55 | |||
: 3) (a >>s)9l>I> -n.0683o -0 V'.>9>>2 ) ~ onnln 0 ~ 99'j]9 0 '9H35 | |||
>I ~ ci ~ <>9<) >>> -n.0665H -O ~ UHH5(> n ~ 9>>9>>9 9>>9'IC< 0.99>353 | |||
'35 <) ~ <>9<>63 -r..0642? -0 ube3) | |||
~ I . Otic>(>3 0.99940 0 '9HSO | |||
';3/> Q ~ >>>><<54 0 ~ 06'.(%6 -O.ubh]u n.9<>>> >3 n ~ 999< '> 0 '9H50 | |||
;31 {1 ">99h? -Q ~ (16] l3 -0 '5398 onnn4 0 ~ 9'9944 U ~ 9983); | |||
'I >1 11 ~ >>Ct<>s j4 -{> Qenr>4 -0 '53<3/ | |||
1 0 ')>>99] n. 999.'ll > O. 9c?8<, 1 I~ > (1 ~ >>>>9 > ) -n.n58>>c -U ~ ub2?1> ).()nnn3 0.9>>943 0 ~ '99817 Ca (1 V.>>>>960 n ~ 0'>867 -0 ~ u bc> 2'I n.9<)G>>4 0 '>>92'5 0 ~ 99H29 c.) n 9994 I Oa>>>76 -Q ~ 06261 o ~ G>><>Gr> 0.9992' u ~ 99805 Ca s> (s ~ '>9<<s 0 -n.o~986 -u ~ nb393 O.>>>>lin>> ~ 9<>914 0 '9HU) | |||
Ca t (> ~ c) 9 l 1 ca ca -n.neon) 0 ~ U64 14 n. >>>><><> ) n ~ 9>>9?5 0 ~ >>9197 Cs Ca 0 ~ c>99cs > -n.0~9< 4 -Q ~ nb44.< n ~ <)C>9<>) n. >>>9?1 u ~ 99/'?7 Ii ~ c)9<>ca I -n.n,<>>69 0 ~ ttb4<jl {1 ~ i<cia) ~ >ca n ~ 9'99?>s u ~ 9>>18(i Ca (i {'>>9>> <C> -O.uf 04? 0 u >54) 0 ~ < > Ca s | |||
)> 4 s 1> ~ c?>>9].l u,>>9794 Ca / n ~ <><a<>< sl <1 ~ n5>>40 -u ~ l>645 3 n ~ >><><><<9 rl. 9'?9?2 U. '>9'199 ca sl Ci ~ >>9't's I -n. Oct><4:1 -u. ub.l7(a 11 ~ 9<> ~ >l>)s (1 ~ 99 /2{1 0.99><V3 Ca '> (1 ~ <>I lj<s I -n. ti- Ic>>! -u ~ bees>< / C) ~ <> <> l> ra <> U '>>>97? u ~ 991'94 I'.;/I I I n~nr>F kn)F I< >>&<a . c)'>c.'~1 <I I vr FP] 1> ~ >>99<>3 | |||
<is ~ tsr la C;>>>f II;I 1>r'I IP I I f {?1 ~ lait." < n(F IR (1 ~ nas'/Cl> ~ | |||
Page 41 | |||
==SUMMARY== | |||
OF ES RUN 0 ELAPSE Q AVG TEMP AVG PRFS5 AVG V PRESS AVG TEMP AVG PRFSS AVG V PRESS AVG TEMP AVC>> PRES5 AVG V PRF:SS ~ | |||
TIME UPPER UPPF.R UPPER .. LOWER. . LOWFR --== LOWFH---= ICE ICE ICE I | |||
1 0~0 6549482 26 ~ 7813 0 '705 69.6664 26 '726 0 ~ 0639 17 '456 26 '781 0 '327 2 0 F 50 65 9211 26 '817 0>>0708 69 '478 ze.vvee 0 ~ 0641 17 5942 26 '781 0.0331 3 I ~ 00 65 '956 26>>7778 0 ~ 0708 69.esl8 26 '691 o.Oele 1744517 26 '746 0 '335 1.50 65.9656 ?6 '783 n.nvoo 69 6357 ze.veoe 0 ~ 0623 17 454e 26 '751 040303 65 '304 ..0 69 '392 '623 26 '721 0 '306 4 | |||
F 00 26 7757 0703= 26.7671 = 0 17 3863. | |||
0 '624 '786 4>> | |||
6 2 50 65 8933 26 I753 0 0705 | |||
~ 69.e41e ze.veee 17 26.7716 0.0318 7 F 00 65.P828 26. f723 0.0705 69 6091 26 '631 0.0622 17 3872 26 ~ 7681 0.0321 8 3.50 65.9042 26.7714 0 '708 69 '121 26 76?I 0.0624 1744723 26 '676 0.0322 9 F 00 65.9025 26 '688 0.0705 6'9.5984 26 '616 o.nezs 17 '711 26 '661 0.0317 10 F 50 65 '304 26 7667 0 ~ 0705 69 5950 26 '590 0 '627 17.4224 26.7637 0 '324 11 5.00 65.9242 26 '667 0 0705 6945948 26 '590 0 '62S 17 4143 26 '622 0 '322 lz S.bn 65.~zee ?64 I654 0 '703 69.5842 ?647570 o.nbzs 17.2215 26 '622 0 ~ 0327 13 6.00 65 '557 26 '624 0 ~ 0695 69 '940 26 '540 0 '626 1744470 26 7607 0 ~ 0329 l X 1'( | |||
It C>> | |||
4 Page 42 | |||
I' RESULTS OF THE LINEAP RE. ON ANALYSIS I | |||
RUN LEAKAGE RATE LEAKAGE w UPPER W LOwER w ICE EXPE.RIMENTAL UPPER LIMIT, .. .RATE = CONTAINMENT =CONTAINMENT .CONOENSER t | |||
3 0.99998 -I ~ 39701 -0 '5509 0 '9996 0 '9998 I ~ 00003 4 0 '9995 -0 '0246 -0 '0993 0 '9987 I F 00000 I ~ 00017 5 0 '9991 -0 '8909 -0 14493 | |||
~ 0 '9983 0 99991 I ~ 00019 6 0 '9992 -0.21488 -0.12636 0 '9988 0 '9988 lo00014 7 0 '9982 -0.22165 =Oe 15421 0 '9979 0+99982= ... 0 '9998 8 0 '9973 -0+25223 -0 '8959 0 '9970 0.99976 0 '9978 0.99968 -0 '6284 -0 21035 F 0 '9962 0 '9977 0 '9975 ~1 ~ | |||
10 0 '9957 -0 '8690 -0 '3688 0 99949 0 '9967 0 '9973 ll 0 '9958 -0 '8017 -0.23981 0 '9950 0 99968 0 '9970 12 0 '9959 0 '6445 -0 '2956 0 '9946 0 '9961 1.00008 13 0 '9940 -0 '8030 -0 '4631 0.99932 0 '9949 0 '99SS.. | |||
FINAL LEAKAGE. RATE l% PFR OAY) = -0 ~ 24631 INTERCFPT= I ~ 00009 UPPER CONFIOENCE LIMIT FOR THE RATE IS -0 28030 | |||
~ | |||
Pane 43 | |||
9.0 Local Leak Test Pro ram 9.1 Past Test Results Summar Local leak tests have been conducted periodically on Unit 2 in accordance with guidelines specified in 10 CFR 50 Appendix J, the FSAR, and the Plant Technical Specifications. | |||
Testing is performed under plant procedure 12 THP 4030 STP.203, | |||
'Type B and C Leak Rate Test'. The program consists of | |||
'Type B'ests designed to determine leakage through the containment electrical and pipe penetrations, air lock door seals and overall air lock leakage, and 'ype C'ests designed to determine leakage through containment isolation valves. Table 9.1.1 summarizes the test results for Type B and C testing performed since the Unit 2 Preoperational test. | |||
The leakage detection instrumentation used in the conduct of the 'Type B and C'ests is certified, traceable to NBS, and calibrated pr ior'to the tests. The instruments consist of 4 cali brated flow meters, of different ranges, connected in parallel. A test is performed by isolating a test volume bound by the containment isolation barriers under examination. | |||
The test volume is pressurized to 12.0 psig. A regulator in the air supply line to the leak rate monitor maintains the test volume pressure at 12.0 psig while the flowmeters measure the air flow required to maintain this pressure. This flow is equivalent to the leakage out of the test volume. | |||
Exact test pressure and temperature is recorded and used to convert the measured leakage to standard conditions. | |||
Table 9.1.1 T e B and C Test Results Summar Leakage Expresse as Fraction of L ) | |||
Test Date Type B Type C Type B8 C Allowable 0.147 0.443 0.6 May 1979 0.0033 0.1261 0.129 Dec. 1979 0.0041 0.2090 0.213 May 1981 0.0116 0.1633 0.175 Table 9.1.2 shows the valves which were found to leak in excess of the guideline leakage during the two previous surveillance tests, May - June 1979 and October - December 1979. The valves marked with an asterisk (*) were also found to exhibit excessive leakage during the most recent surveillance, May 1981. (See, also Table 9.1.3). Table 9..1.4 lists those valves which were repaired, during the May 1981 surveillance, and also gives a short synopsis of the repair. | |||
Page 44 | |||
It should be noted that the guideline leakage is not an acceptance cri teria. It is strictly a guide for the Test Engineer to use in determining whether repairs should be made. | |||
Seventeen of the thirty-eight valves which failed the Type C test were found in the Non-Essential Service Water System (NSW). Three of these valves (check valves NSW-415-1, NSW-417-1, NSW-244-1) have failed the two previous surveillance tests, while 9 other check valves failed the last test. | |||
Three of the seven air operated valve failures were repeats from the previous test. | |||
The check valves were repaired by cleaning the seating surfaces and replacing the gaskets. If the check valve had a neoprene seat, the enti re valve was replaced. The air operated valves were repaired by cleaning and lapping the seating surfaces. | |||
The other group of valves found leaking above guideline values the Containment Purge valves. The valves in this group which failed were: | |||
VCR-101 8 VCR-201 Instr. Rm. Supply VCR-102 8 VCR-202 Instr. Rm. Exhaust VCR-104 5 VCR-204 Lower Cont. Exhaust I | |||
The Instrument Room Supply and the Lower Containment Exhaust Purge Valves have failed the previous two tests while the Instrument Room Exhaust Purge Valves failed for the first time in 1981. All of these valves were repaired by cleaning the neoprene seal, and then lubricating with Dow-Corning Silicone III. When VCR-104 and VCR-204 were tested after the above mentioned repair, the leakage was still excessive (27,000 SCCt1). | |||
A bead was then welded to the edge of the valve flapper to increase the tightness of the neoprene seal when the valve was closed . This repair reduced the leakage in VCR-104 and VCR-204 to 50 SCCH. | |||
Page 45 | |||
Table 9.1.2 Valves May-June 1979 Leakage Oct.-Dec. 1979 Leakage As Found As Left As Found As Left sccm ~sccm ~sccm ~sccm NSW-415-1 5000 39,900 NSW-415-3 Passed 14,000 NSW-415-4 5000 681 46,000 718 NSW-419-2 Passed 24,000 NS 3 Teste A asnst WCR-930 47,000 62 NSW-419-4 Tested A ainst WCR-934 47,000 150 NSW-244-1 5000 .0 5,000 764 NSW-244-2 Passed 37,000 220 NS -244-3 Passed 14,000 NS 4 5000 37,000 219 Passed 8,000 100 NS -417-4 2000 40,000 1000 CR-930 5000 Passed CR-934 5000 Tested A ainst NSW-419-4 CR-967 2000 Passed WCR-901 Passed 7 400 | |||
* WCR-909 Passed 8,000 5618 (CR-921 5000 17 000 WCR-933 Passed 5 000 125 CR-951 Passed 24 000 137 | |||
* WCR-952 Passed 14 000 WCR-954 Passed 24 000 400 | |||
* WCR-958 Passed Tested A ainst WCR-954 WCR-961 Passed 10 000 | |||
* VCR-101 Passed Tested A ainst VCR-201 VCR-201 2000 25,000 325 VCR-103 Tested A ainst VCR-203 Passed VCR-203 6000 44 Passed VCR-104 Tested A ainst VCR-204 Tested A ainst VCR-204 | |||
~ VCR-204 6000 301 41 000 3000 VCR-105 Tested A ainst VCR-205 Passed CR- 05 2000 2472 Passed ECR-18 Passed Tested ainst ECR-28 ECR-28 asse CS-442-1 5000 105 SI-189 Passed 38 SM-1 5000 360 Passed N-102 Passed 500 500 VCR-10 Tested A ainst VCR-11 Passed VCR-11 4959 975 Passed VCR-20 Tested Against VCR-21 Passed VCR-21 29 0 asse N-160 .Passed 1300 520 Page 46 | |||
~ | |||
~ | |||
~ ~ | |||
~ ~ | |||
I ~ ~ | |||
I ' I ~ | |||
e | |||
~ ~ I ' I I ' III I ' | |||
'e I | |||
I I | |||
I | |||
'l | |||
' II I | |||
III III | |||
~ '. | |||
~ I ~ | |||
~ | |||
I | |||
- ~ '. | |||
~ e ~ | |||
~ ~ - ~ 'I ~ | |||
~ ~ | |||
~ ~ - ~ ' . ~ ~ | |||
I III III | |||
~ I | |||
~ I I e el | |||
~ 'e | |||
~ | |||
~ | |||
4 Table 9.1.3 ~ ~ | |||
- Type C Failures - May 1981 IAULL Nu dt VALVt.b I.fA<<AGL IN f.XCfSS | |||
------------ OI till. .. ~)t<f L f AKAGf VOL UtIL LfA<tAGf LLAI nrif. LfAICAbf DfSC>> IP) ION Gut uf I. I r<F. AS fQU<<D AS Lf.t I I SCCHI ISCCHI tSCCHI CI.V I IISW-415" I At<D Melt-903 CVN-I'I <2l 720.00 29')43.55 0~0 CUV I NSM".<<lo-I AND Melt-.922 CI'II-.2b . . <<uu.ao ... .. )502.uh . 35.la cuv 4 NSW-,I)-4 AND MCtt-')34 CIN-eh 4<la, UU 2000+00 2u')0 ~ I6 ltCI' NSM-24<<- I At<0 'MCI<-945 CVtt-26 360.00 i 2ooo,uo 0~u IICP I MCII-95I AND Melt.-.955.,CI!tt:26 360 ~ 00 .............t.. 2000 ~ 00 )0.05 ltcl' Nsw-244 4 AND wet<-')hll cPN-uh 360.UO 2000 ~ UU 0~0 IICV 4 WCR-954 ANI) MCII-95u CI'N-uh 360 F 00 2000 F 00 239,32 CLV.2 NSM-.<<l5"2 At<D.MCA=9OD. CPN=i.'2 ../20.00......... >..2000,0U, 0~0 CLV 3 NSW-hl5-3 AND MCII-9l I CPtt-23 I20,00 2000.00 0+0 CLV 3 MCN-')U') Attu ASCII-') I 0 CI'N-23 720.00 , + 2000 F 00 I Sl.23 CUV 2.r<SM-hl9-.2 AND MCI<=926. Cl'N=27.... 400.00: .... .t 2000 00, F I.996. 2<< | |||
CUV 3 NSW-4 I9-3 ANU MCI<-')30 CI'N-u5 400 F 00 i 2000.0U 6<<, rlu CUV 3 WCI'I-929 At<0 Wert-93) CVN-45 400,00 > 2000.uo 0 ' | |||
IICI' NSM-2!<9-2 AND MCII-.')46 CI'tt-.27 3bo F 00 ..... C,2000 F 00 Ooo NCI' WCI<-952 AND WCII-')56 CON-27 360 F 00 2000.UU 0 ~ U INSII<~ i<Ha t.A'SI tlSM-4l7-h<MCN-963 CPN-73 240 qua + 20UU ~ Uo a.o Ittsllto I'IM. MLSI t<SW-.OI7;3<MCII-967 CPtt=73 . 240.00 . . .. }. 20UO.UU. 0+0 fA>>AUST'CII-I02,iu2 Ir<STII. I<H. Iul<Gf SUPI<LY Vert-tut,aal l6UU F 00 4470 bl 24 tl<< | |||
INSIII. I<H. IIUIIGfl leuU.UO i<<0000.00 20<<o6) | |||
Lowflt Put<<if tl<tl VCll..lao 204 ~ CPN.63 ........3600 ~ 00 ... >r<oooa.ou. 49.77 Itft.lff vl.vt:. <loo. Io vltr sl-luu cl'lt-I5 I i'.0 ~ 00 <<UI ~67 hut,e7 All< I AIII/I<AU GAS HO>>l Jul< St<" I CVN-3l 60.00 2340 ~ Uu 2340 ou | |||
. N-.Z At<D vt.rtl IIDII Ful< IICD1 NIDU<DCII=2UI,.......,-'......... I20 00 ......v 2000.0U. AU Page 48 | |||
(, Table 9.1.3 Continued IAt)Lt. NU 4t VALVES SIIOMlttG LEAKAGE IN UI I)It, GUIUEL INf. I.EAKAIif. | |||
Cxcfss VOLUHC , . LCAKAGt...,....,. LEAKAGt: I.faKnGE..... | |||
OCSCH )PI IOII GIIIOEL It)E AS FOUND AS LEFI ISCCHI I SCCH) I SCCH) | |||
CLV ANO CUV OIIAIN )ID)I OCII-62U 162) Cf'N-3l l20 00 F l290 ~ 70 0 ' | |||
EUNI sut)P Io IIUI ~ | |||
5 oct)-600e60l cl'N-4I 360+00 ..., ..., 740 ~ 59 ..., . 740.5') . | |||
)<litt Ilf.C INC IL t ICH 305 CPN 45 I UIIU ~ 00 l390 F 00 l390 F 00 | |||
) | |||
I)CI UFL IN)i CAVe OIIAltt SF-l59 l60 CPN-42 | |||
~ 360 F 00 > 2000 F 00 0~0 ItCU I SAHI'Lt'. NCII- I 00 e I0 I CI'N"0 I ..:60 ~ 00.......... I I9'9..... I I9 ~ 8$ | |||
altt I'nul/Itnu Gas Hut)lion Ectl-33 cPN-3l 60 F 00 l40l ~ 32 I 401 o 32 AIH I'nttl/Ital) GAS Hutt tC)l-Jl)32 CPN-32 I20IOO, 3303 ~ I2 3303 '2 CUN A III lu Cut)1 ~ AC)I )02 t I 03 CPN=29 l20 ~ 00 ... = ...399 ~ 25 ... .399 '5 tt"2 IO I'Al IiCft-30 I CPN-74 45.0n l)9.71 I)9+77 UOltON INJ ~ ICH-250 CPN"44 2t n.oo >40000.00 99.62 LC)t IO CI'N COII.S 2e5 CC)t-243-25 CPN-25 60.00 . I 009 ~ 57 0.0 CC>t 10 Cl'tI COILS 2 s5 CC)I-244-25 CPN-25 60 00 007 ~ 66 Own CC)t 'IO CI'N COILS 3 ~ 4 CCII-244-72 CPII-72 60+00 IOO)o70 250 '7 CCM FIIOH CEI)-I CCH-43l CPI~-25 90,00 ...>.?000.00 Oen CCw IO Ctt)-2 CCI~-n32 CPN-12 90 F 00 l24.76 0,0 CC)t FAOH CEO-2 CCII-433 CPtt-12 90,00 I 19 ~ 66 0~0 Page 49 | |||
Table 9.1.4 Leak Rates of Containment Isolation Valves, and Corrective Actions Taken As Found As Left Val ve ~SCCM ~SCCM Corrective Action NSW-415-1 30,000.0 0.0 Replaced disc, replaced gaskets (SJO - 07592-4) | |||
NSW-419-1 1,500. 0 35. 0 Cleaned seating surface (SJO - 07592-1) | |||
NSW-419-4 2,000. 0 2100. 0 Cleaned valve, replaced gaskets (SJO - 07592-12) | |||
NSW-244-1 2,000. 0 0.0 Clean seat, replace gaskets (SJO - 07592-13) | |||
WCR-951 2,000.0 10. 0 Lap seats. replaced gaskets (SJO - 07592-14) | |||
WCR-948 2,000.0 0.0 Lapped seat, replaced gaskets (SJO - 07592-16) | |||
WCR-958 2,000.0 240.0 Lapped seat (SJO - 07592-17, 39) | |||
NSW-415-2 2,000. 0 0.0 Lapped seats, replaced gaskets, disc (SJO - 07592-9, 45) | |||
NSW-415-3 2,000. 0 0.0 Replaced valve (SJO - 07592-3, 40) | |||
WCR-909 2,000.0 650. 0 Cleaned 5 replaced gaskets (SJO - 07592-2) | |||
NSW-419-2 2,000. 0 2000.0 Replaced valve (SJO - 07592-5, 41) | |||
NSW-419-3 2,000. 0 65. 0 Replaced valve (SJO - 07592-6) | |||
WCR-929 2;000.0 0.0 Lap seats, replaced gaskets (SJO - 07592-7) | |||
NSW-244-2 2,000.0 0.0 Replaced valve (SJO - 07592-10) | |||
WCR-952 2,000. 0 0.0 Cleaned valve (SJO - 07592-11) | |||
NSW-417-4 2,000.0 0.0 Lapped, replaced gaskets (SJO - 07592-33, 48) | |||
NSW-417-3 2,000.0 0.0 Lapped seat, replaced gaskets (SJO - 07592-32) | |||
Page 50 | |||
Table 9.1.4 Continued As Found As Left Valve ~SCCM ~SCCM Corrective Action VCR-101, 201 4,500. 0 25. 0 Cleaned internals, tubed with Silicone 111 (SJO - 07592-42) | |||
VCR-102, 202 40,000. 0 205. 0 Cleaned, lubed seal with Silicone 11 (SJO - 07592-49) | |||
VCR-104, 204 40,000. 0 50. 0 Wel ded S.S. to val ve so i t would seat against the neoprene seal (SJO - 07592-43) | |||
SM-1 2,340.1 2340.0 Cancelled (SJO - 07592-31) | |||
N-160 2,000. 0 0.0 Lapped seat and cleaned (SJO - 07592-46 DCR-620 ~ | |||
1,300. 0 Tested Against Cleaned, blued seat DCR-621 (SJO - 07592-24) | |||
DCR-621 1,300. 0 0.0 Cleaned and blued seat (SJO - 07592-25, 50) | |||
SF-159 2,000.0 0.0 Replaced diaphragm (SJO - 07592-27) | |||
ECR-33 1,400. 0 1400.0 Cancelled (SJO - 07592-28) | |||
ECR-31, 33 3,300.0 3300.0 Cancelled (SJO - 07592-29) | |||
CCW-243-25 1,000.0 0.0 Replaced seats (SJO - 07592-22) | |||
CCW-244-25 800.0 0.0 Replaced seats (SJO - 08592-23) | |||
CCW-244-72 1,800. 0 250.0 Installed new disc, lapped seat (SJO - 08592-21) | |||
CCM-431 2,000. 0 0.0 Lapped seat, cleaned (SJO - 08592-18) | |||
CCM-432 125. 0 0.0 Lapped seat, cleaned (SJO - 08592-19) | |||
CCM-433 180. 0 0.0 Lapped seat, cleaned (SJO - 07592-20) | |||
NSW-244-4 2,000.0 0.0 Replaced valve (SJO - 08592-15) | |||
Page 51 | |||
Table 9.1.4 Continued As Found As Left Valve ~SCCM ~SCCM Corrective Action CTS-131-W 15. 491 CCM 0.0 CCM Cleaned, blued seat (SJO - 07592-34) | |||
CTS-131-E 3.853 CCM 0.861 CCN Cleaned, blued seat (SJO - 07592-36) | |||
I CN-250 40,000.0 0.0 Lapped seat (SJO - 07592-51) | |||
Page 52 | |||
9.2 Hay 1981 L eak Test Results 0, C~ COOK NUC AR PLANT UNIT NO ~ 2 TYPE "8" AND "C" LEAK RA)E TFST OF CONTAINMENT ISOLATION VALVES DURING APRL 1981 OUTAGE TY) E. "8" DATA INFORMATION COHPLtTED TEST VOLUHFS TtST VOLUHE OESCR IP T ION GUIDELINE CORRECTEO TRIAL NO WHEN LEAKAGE LEAKAGE VOLUHE PASSED 1 PERSONNEL AIRLOCKS 612'L ~ CPN-N/A 5511 0 58~0 I 2 PERSONNEL AIRLOCKS 650'L ~ CPN-N/A 5511 ' I~0 I 3 | |||
4 ZONE 3 PENETRATIONSltttCTf?ICAL) CPN-N/A ZONE 4 PENETRATIONS(HECHANICAI ) CPN-N/A 1173.0 0 ' I CPN-BOER | |||
)173+0 171.7 I 5 BLIND FLANGE-FUEL TRANS)'tR CPN-I 1200 0 850.0 I BLIND FLANGE-PLANT AIR TO CONT CPN-29 1200.0 0 ' I 7 BLIND FLANGE-ICE, LOADING . CPN-57 480 ' 0 ' I BL'IND FLANGE-ICE LOADING 720 ' 120+I 1 BLIND FLANGE;-FLUX THHBLt HANDLE CPN 76 960 ' 74 ' I 10 BLIND FLANGE-SPARE(UNIT 2 ONLY) CPN-67 240 ' 0 ' I Page 53 | |||
o~+"4~~o~" D ~ I: ~ COOK NUCLEAR PLANTe UNIT NO TYPE "8" AND "C" LEAK RAIE TEST OF CONTAINMENT ISOLATION VALVES DURING APRL 1981 OUTAGE TYI'F. "C" DATA INFORMATION COMPLETED TEST VOLUMES TEST VOLUME, OESCR lP I ION GUI OEL INE CORRECTEO TR I AL NO 'WHEN 1.EAKAGE LEAKAGF. VOLUME PASSED 1 CLV 1 NSW-415-1 AND WCH-903 CPN-17 ~ 21 7?0 ~ 0 0 ~ 0. 2 2 CLV I WCR901 AND WCR-'902 CPN-17 UZI 720 ' 350+3 I 3 CLV 4 NSW-415-4 ANO WCH-915 CPN-s Oi24 720 ' 149+4 1 4 CLV 4 WCR-913 AND WCH-914 5 CPN-ZQ)24. 720 ' 0~0 I 5 CUV 1 NSW-419-1 ANO WCH-9?Z CPN-26 480 ' 35 ' 2 e CUQ I WCR-921 ANU WCH-923 CPN-Z6 480 ' 99 ' I 7 CUV 4 NSW-419-4 AND WCH-934 CPN-84 480 ' 2090 ' 2 8 CUV 4 WCR-933 ANI) WCR-935 CPN 84 480 ' 99 ' I 9 RCP I NSW-244-1 ANO WCH-945 CPN-26 360 ' 0 ' 2 10 RCP 1 WCR-951 ANO WCH-'955 CPN-26 . 360 ' .10 ~ 0 2 11 Rcp 4 Nsw-244-4 AND wcH-94H cpN-84 360 ' 0~0 2 12 RCP 4 WCR-954 AMI) WCH-958 CPN-84 360 ' 239 ' 3 13 CLV 2 NSW-415-2 AND WCH-906 CPN-22 , 7?0 ' ..0 0. | |||
~ 3 14 CLV 2 WCR-905 AND WCH-907 CPN 2? 720.0 185. 2 1 15 CLV 3 NSW-415-3 AND WCH"911 CPN-23 720+0 0+0 3 16 CLV 3 WCR-909 ANI) WCH-910 CPN-23 720 ' 651+2 2 17 CUV 2 NSW 419-2 ANO WCH-926 CPN-27 480 ' 1996.2 3 18 CUV 2 WCR-925 ANI) WCH-927 CPN-27 480 ' 0~0 I 19 CUV 3 NSW-419-3 AND WCH 930 CPN-85 480 ' 64 ~ 9 = 3 20 CUV 3 WCR-929 AND WCH-931 CPN-85 480 ' 0~0 2 | |||
?I Hcp 2 Nsw-244-z AND wcH-946 cpN-27 360 ' 0 ' | |||
22 RcP 2 'wcR-952 AND wcH-956 cPN-27 360 ' Oio 2 23 Rcp 3 Nsw-z44-3 AND wcH-947 cpN-Bs 36Q ~ 0 0~0 1 24 RCP 3 WCR-953 ANO WCH-957 CPN-85 360 ' 0.0 25 INSTR ~ RH ~ EAST NSW-411-4 WCR-963 CPN-73 . . 240 ' 0 ' 3 26 INSTR'M ~ | |||
lent EAST wcR-961~WCH-962 CPN-73 240 ' Oeo I 27 INSTR'H, WFST NSW-417-3iWCH-967 CPN-73 240 ' 0 ' 2 28 INSTR. RH. WEST WCR-965~WCH-966 CPN-73 240 ' 90 ' I | |||
: 29. .INSTR'H PURGE SUPPLY VCH-101 F 201 leBO.O 24 ' 2 30 INSTR'H EXHAUST VCH-102 ~ ?02 IPUHGE) leoo.o 204 F 6 31 LOWER PURGE SUPPLY VCH-103 '03 CPN 64 2880io 79 5 32 LOWER PIIRGE EX'CR-104t204 CPN-63 3600.0 49 ' | |||
33 UPPER PURGE SUPPLY VCH )05ti05 CPN 59 3600oo 124.2 34 UPPER PIIRGE EXH VCH-lob 206 CPN 60 2880 ' 794 ' | |||
35 PRESS ~ RELIEF PU>eE VCH-10 I ~ 207 CPN-65 1440 ' 0 ' | |||
36 HYn~ RETURN LINE tCH-lotZO CPN 95 eo.o 0 ' | |||
37 HYDE SAMPLE ECR-11 F 21 CPN-95 eo.o 48 ' | |||
38 MY'AMPLE ECf)-IZ ~ ZZ CPM 95 eo.o Qio 39 HYD. SA~~LE ECR-I3.23 CPN-95 60 ' 0~0 40 HYn. saMpLE ECR-14.24 cpN-93 eo.o 39 ' | |||
41 HYD ~ SAMPI E ECR 25 CPN 95 60 ' 0 ' | |||
Hvo. 5AMpLE EcR-le.26 cpN-93 eo ~ 0 0~0 43 HYO ~ SAMPLE ECR )7+27 CPN 93 eo.o 0~0 Page 54 | |||
4 o"~" D CD COOK NUCLEAR PLANT ~ UNIT NP 2 ~o<<>>~ooo TYPE "8" ANO "C" LEAK Rn(E TES) Or CONTAINMENT ISOLATION VALVES DURING APRL 1981 OUTAGE TYPE'C" DATA INFORMATION COMPLETED TEST VOLUMES TEST VOLUHE OFSCRIP'(ION GUIOEL I NE CORRECTEO TRIAL NO WHEN LEAKAGE LEAKAGE VOLUHF. PASSED ECH-IVAN 44 HYO ~ SAMPLE ECR-Jr) ~ 28 CPN-93 60 ' 26.7 45 HYO ~ SAMPLE 29 CPN"93 60 ' 19 F 8 4e HCP-I SEAL WATER CS-442-1 CPN-11 120 ' 0 0 47 RCP-4 SEAL WATFH CS-442-4 CPN-14 120 ' 25.4 48 RCP-2 SEAL WATFP CS-442-2 CPN-12 120.0 20 ' | |||
49 RCP-3 SEAL WATFP. CS-442-3 CPN-13 120 ' 30+5 50 RELIEF VLVE. HDR. To PHT .S1-189 CPN-IS 120.0 401 ~ 9 -.=-- | |||
51 AIR PART/RAD GAS HONITOH SH"I CPN-31 eo.o 2340.1 52 N-2 TO ACCUHULATOHS N102 CPN-32 60 ' 0~0 53 N-? TO PRT N159 CPN-74 45 ' 0~0 54 PRIMARY 'WATER TO PHT PW"275 CPN-33 180 0 Ioo2 55 CHG TO REGEN HEAT EX's-321 CPN-35 180 ' eo.e sory se DEAD WEIGHT CnLI8. Nlx-151-Vl CPN-30 30 ' 0~0 sr GLYCOL SUPP( Y VCH-10 ~ ll CPN-86 480 ' 0~0 58 GLYCOL RETURN VCH-20y2i CPN-56 480 ' 0~0 59 N-2 AND VENT HDR l'OR HCUT UCR-203e207 120 ' 25 ' | |||
60 N-2 AND VENT HOR FOR HCUT N160 ~ OCH-201 120 ' 0~0 el ICF. COND AHU DRAIN HUH UCR-610 '11 300 ' 10.0 e2 CLV ANU CUV DRAIN HOH U(H-620 '21 CPN-31 120 ' 0~ 0..... | |||
63 64 RCDT ORAI)l HDH OCH-205rcve CPN-40 480 ' 0~0 CONT SUMP TO HUT'S OCH-600 bol CPN-41 360 0 '748 ~ 6 es RCS LETDOWN OCR-300 CPN-34 120 ' 0 ~ 0 ee HCP SFAL WATER RElURN OCH-250 350 CPN-37 RHR HECIRC ~ E'CM-305 480 ' 0 67 CPN-45 1080.0 1390 ' | |||
e8 RH(r RECIRC >W'CM-306 CPN-46 1080 ' 105 ~ 0 =-.-- | |||
69 pw FDH Rx cnv scH ow209(212) .2lo(21 ll 120.0 0' | |||
' 0' 70 REFUELING H20 RX CAV SFISI (152) rl53(154) 300 71 72 REFUFLING CAV ~ DRAIN 5)'-159eleo CPN 42 HOT LEG sAMPLES NCH-Iobiloe CPN-ee 360 ' 0 0 73 PHFSS Llo SAMPLE. NCR-107.108 CPN-ee eo.o 0 ' | |||
60 0 0~0 74 STEAH SAHPLE NCR-109 ~ llv CPN-ee 60 ' 0 ' | |||
75 RcoT snMpLE RGR-)vo.loi cpN-81 60 ' 119+9 76 PHT sAMP(E DcR-202i204 cPN-81 60 ' 0~0 77 ACCUH SAHPLES ICP-5 ~ 6 CPN-81 eo.o 0~0 78 AIH PAHT/HAO GAS MONITOH ECH-33 CPN-31 eo.o 1401 ' | |||
'N ~ SI PP OISCHe ICM"26V 79 80 'S'I PP OISCH ICM-265 CPN-43(68) | |||
CPN-68(43) 240 240 0 | |||
49 ' | |||
81 AIR PAHT/HAO GAS MON tcH-31 ~ 32 CPN-32 120 ' 3303.1 82 CON AIR TO CONT ~ XCR-100 ~ 101 CPN-74 120 ' 0' 83 84 CON AIH TO CONT ~ XCH-IOZe)OJ CPN-29 N-2 TO PRT GCH-301 120 ' 399 ' | |||
85 N-2 TO ACCUMULATORS SV-101 'CR-314 CPN-74 45 F 0 119 ' | |||
60.0 0~0 8e ll SI TEST LINE SI I ~ I /2t 194 CPN 32 270 ' 0 ' | |||
Page 55 | |||
DE CD COOK NUCLFAR PLANTe UNIT No+ 2 >>O4ooooo TYPE "8" ANO "C" LEAK RATE TEST OF CONTAINMENT ISOLATION VALVES OUHING APHL 1981 OUTAGE TYPE "C" OATA INFORMATION COMPLETED TEST VOLUMFS TEST VOLUME OESCRIPT ION GUIOEL INE CORRECTEO TRIAI NO WHEN LFAKAGE LEAKAGE VOLUME PASSEO 87 PW TO PRT NCR-252 CPN-33 180 0 139 ~ 7 88 CCW FOR HCP OIL CLHS CCM-452 '54t458 1200 ' 79 ~ 6 89 CCW FOH RCP OIL CLHS CCM-4bli453t459 1200 ' 99 ' | |||
90 CCW FOR EXCESS LU MX CCH-460 46Z CPN-75 360 ' 119 7 91 92 CCW FOH RX SUPPOHIS CCH 457 ~ CCW-135 240 ' 159 ~ 7 CCW FOR HX SUPPORTS CCH-4bb~456 CPN-82 240 0 109 ' | |||
93 94 GRAB SAMr LE SM-4~6 CPN-92 ' 60 ' 74 ' . | |||
CONT PRESS AD 8 ISOL PPP-300 CPN-94 ooo 0' 95 CONT PRESS AiB ISOL PPP 301 "6N-92 0' 0 0 | |||
~ | |||
96 CONT PRFSS AiB ISOL PPP-302 CPN-91 0' 0' 0' | |||
97 CONT PHFSS A 8 ISOL PPP-30J CPN-96 0 0 0' | |||
98 CONT PFFSS ALARM PPA-310 311 CPN-97 0~0 99 CONT VHFSS ALARM PPA-312 '1J CPN-98 .0 ~ 0- .49 ~ 8-.. | |||
100 BORON INJe ICM-?50 CPN"44 240 ~ 0 99 ~ 6 101 BORON IN'CM-?51 CPN-44 240 ' 0~0 102 WELO CHANtlEL PRESS CA-181S CPN-83 30 ' 0 ' | |||
103 wELO CHANNEL PRESS CA-181N CPN-83 30 ' 0~0 104 GRAB SAMPLE SM-8+ 10 CPN-89 eo.o 5' 105 CCW TO CPN COII.S Ze5 CCw-243-25 CPN-25 60 ' 0' . | |||
106 107 CCW TO CPN COILS 2 ' | |||
CCW TO CPN COILS 3 ' | |||
CCW-244-25 CPN-25 60 ' 0~0 CCW-243-72 CPN-72 eo.o 0 ' | |||
108 CCw TO CPN COILS 3e4 CCW-244-72 CPN-72 60 ' 250.5 109 CCW TO CEO-I CCM-430 CPN-25 90 F 0 0' 110 FROM CFO-I CCM-431 CPN-25 90 ' | |||
lll ll? | |||
CCW CCW FHOM CPN COILS 2 ~ 5 CCH-440 CPN-25 90 0 0 0 0~0 CCW TO CEO-2 CC<-432 CPN"72 90 ' 0 ' | |||
113 CCW FHOM CEO-2 CCM-433 CPN-72 90 ' 0~0 114 CC'W FROM CPN COILS 3e4 CCH-441 CPN-72 90 ' 35.0 115 GLYCOL SUPPLY EXP'-Ibetl'~9 CPN-86 eo.o 0~0 116 GLYCOL RETURN EXP'-Ibl)158 CPN-56 eo.o 0~0 117 POST ACCIOENT SAMPLING RETUHN CPN-67 30 ' 24 ' | |||
118 POST ACCIOFNT SAMPLING SUPPLY CPN-67 30 ' 90 ' | |||
119 POST ACCIOENT SAMPLING H-II/IZ CPN-32 eo.o 0 ' | |||
Page 56 | |||
0 ~ C ~ COOK NUCLEA PI ANT ~ UNIT NP ~ 2 ++++++++4+ | |||
TYPE "8" ANO "C" LEAK PAlE TEST Ot CONTAINHENT ISOLATION VALVES OURING APRL 1981 OUTAGE CONTAINMENT SPRAY CHECK VALVFS CHECK START F INISH START FINISH LEAK RATE LEAK RATE DATE SUPPLEMtNTAL VALVE, TIME I IHF ELEVAT ION ELEVATION TO PASS ACTUAL TESTEO JOB VROUW,R CTS-127E. 12-' | |||
12:ll l 16:I) 634 F 000 634 F 000 21 '10 -0 ~ 0- 3-?7 CTS-127W 16'- ll 634 ~ OOV 633 '90 22 '50 i 0 237 3-27 CTS" 131E CTS-1318 12:11 9: | |||
16:11 640.000 639 '06 F 000 3 '53 3-27 36 12:ll 0 13: 0 640 ~ OOV 640 F 000 F 000 0 ' 4-20 CTS-131W 16:11 640 F 000 639 '22 3 '30 15 '91 3-27 34 CTS-131W 9: 0 IO: 0 640 ~ OOU 639 '79 3 '30 0 861 4-20 Page 57 | |||
D C~ COOK NUCLE.AR PLANT ~ UNI T NO TYPE "8" ANO "C" LEAK RATF. TEST OF CONTAINMENT ISOLATION VALVES DURING APRL 1981 OUTAGE LEAK R AT F.SUHHARV SCCH LA I YPE s>8n 1275.6S 0 '116 . | |||
TYPF. "C" 19423.07 0+1762 TOTAL 20698 F 71 0 1878 COHPLLT I ON RATE,SUHHARY TOTAL TESTED INITIALLY- 129 TOTAL RETESTEO- 30 F AILEO" 30 FA ILEO- 0 PASSED- 99 PASSED- 30 OUT OF 129 VOLUHES TO TFST ~ 0 STILL HAVE TO 8E 'TESTED OVERALL COHPLET ION RATE. IS 100 F 00'5 Page 58 | |||
==10.0 REFERENCES== | |||
: 10. 1 Donald C. Cook Nuclear Plant Final Safety Analysis Report | |||
: 10. 1. 1 Initial Leakage Rate Testing of Containment Section 5.2. 1 10.1.2 Containment Leakage Test Program Question 5.93, Appendix Q Containment Integrated Leak Rate (Type A) Testing Question 022. 14, Appendix Q (Unit 2) | |||
: 10. 1.4 Local Leak Rate (Type B and C) Testing Question 022. 15, Appendix Q (Unit 2) 10.2 Donald C. Cook Nuclear Plant Unit No. 1 Technical Specifications 10.2. 1 Containment Systems - Containment Leakage Specifications: 3.6. 1.2 Surveillance Requirements: 4.6. 1.2 10.2.2 Containment Systems - Containment Air Locks Specifications: 3.6. 1.3 Surveillance Requirements: 4.6. 1.3 10.3 American National Standards Institute (ANSI) 10.3. 1 ANS N 45.4-1972 'Leakage Rate Testing of Containment Structures for Nuclear Reactors'0.3.2 ANS N 274 Draft No. 1, 'Containment System Leakage Testing Requirements'0.4 Code of Federal Regulations, 10 CFR 50 Appendix J, 'Primary Reactor Containment Leakage Testing for Water-Cooled Power Reactors. | |||
10.5 Donald C. Cook Plant, Unit 2 'Reactor Containment Building Integrated Leak Rate Test (Preoperational) Test Report'. | |||
10.6 Donald C.- Cook Plant Surveillance Test Procedures 10.6. 1 12 THP 4030 STP.202, 'ntegrated Leak Rate Test'0.6.2 12 THP 4030 STP.203, 'Type B and C Leak Rate Test'0.6.3 12 THP 4030 STP.204, 'Personnel Air Lock Leakage Test'age 59 | |||
g, . t I | |||
0 | |||
Attachment No. 1 to AEP:NRC:00500E Additional Ini'ormation on Hydrogen Mitigation and Control Donald C. Cook Nuclear Plant Unit Nos.' and 2 | |||
. Supplement to AEP:NRC:00500C | |||
1.0 Distributed I nition S stem DI S Instrument Room Isolation Our review of the communication paths between the instrument room and the lower volume subcompartments has revealed that limited communication exists through several small openings and a number of pipe sleeves which are not sealed. Therefore, the DIS design described in Attachment No. 2'o our AEP:NRC:00500A letter has been modified to include two 'additional igniters (one per train) in the instrument room. These two additional igniters will be installed | |||
~ | |||
,}n Unit 1 during the current refueling outage and in Unit 2 during the next ice weighing surveillance shutdown (late 1981) (See Section 3.0 below for a discussion of Clasix results). Thus, the Cook Plant DIS will employ a total of seventy (70) igniters per Unit. | |||
1.2 DIS Technical S ecifications, Proposed Technical Specification Table 3.6-1A, submitted by our AEP:NRC:00500C letter dated May 29, 1981, has been modified to reflect the addition of two igniters (one per train) in the instrument room. | |||
Revised pages reflecting this change for each Unit of the Cook Plant are contained in Attachment No. 4. | |||
2.0 Ice Condenser Insulation s The ice condensers in Cook Units 1 and 2 are very similar to those in McGuire and Sequoyah-. ,However,, instead of polyurethane foam, fiber-glass encapsulated in polyethylene bags is'mployed in the Cook Units for insulation purposes. The insulation is'ocated between the con-tainment wall and the crane wall and the air handling ducts, and is covered by galvanized steel sheets with joints between panels sealed to prevent vapor penetration. | |||
Fiberglass exhibits very stable material characteristics even at high temperatures. Existing data indicate that fiberglass begins to | |||
'soften(1) at about 1350oF, and that significant decomposition is not expected except at much higher temperatures. | |||
The other component which makes up the insulation assemblies is polyethylene sheets. The thickness of these sheets is about 6 mi ls. | |||
Review of existing literature on the thermophysical properties of polyethylene shows that. significant degradation (greater than a few percept per hour) has been observed at temperatures in excess of 700oF< ). The energy content of polyethylene is reported to be about 1.3x104 BTU (3f | |||
P | |||
~ J | |||
~ A t | |||
1 I | |||
0 | |||
Recent analysis performed for the Cook Units using the modified CLASIX code predicts upper plenum temperatures of approximately 1100oF for short durations (see Attachment No. 2). Burns in the upper plenum exist for no more than 10 seconds. The shortest interval between burns is approximately 60 seconds. The Cook temperature profile of the upper plenum generated by CLASIX is similar to that of Sequoyah. Using the CLASIX results at the upper plenum as temperature inputs, TVA has calculated the heat-up rate of equipment, such as igniter assembly box and cable within condui ts, in the region and found that the inside surface temperature of the metal casing does not exceed 270oF. Therefore, it is reasonable to believe that, due to the similarity between th'e transient temperature input data for Cook and Sequoyah, the results obtained by TVA can be used as a good approximation for the inside surface temperature of the galvanized steel cover on the insulation. Given these conditions at the upper plenum, the insulation behind the steel covers is not expected to be exposed to temperatures which might lead to sub-stantial amount of polyethylene degradation. | |||
Calculation of the energy content for all the polyethylene in the upper plenum reveals that there would be about 7x106 BTU re-leased into the containment even in the unlikely event of its complete decomposition. This amount of energy is. less than forty percent of the energy calculated by Duke Power for the'ntermediate deck doors and is less than ten percent of the energy generated from hydrogen combustion for a typical CLASIX analysis . | |||
Moreover, based on the heat transfer calculations performed on insulation heat-up in the ice-bed region by Duke Power for the McGuire Plant, the temperature of the surface adjacent to the insulation is estimated to be about 370oF. Due to the similar configuration of the Cook and McGuire ice condensers, the heat transfer results reported by Duke are applicable to Cook. Hence, the polyethylene in the ice-bed region of the ice condenser is not likely to experience substantial degradation under these predicted conditions. | |||
Therefore, despite the fact that a different type of insulation is used at the Cook ice condensers, it appears that the potential impact of insulation degradation on the containment is similar to that of McGuire and Sequoyah. | |||
3.0 CLASIX Code Results Attachment No. 2 to this submittal contains the preliminary results of a Cook-specific CLASIX analysis utilizing passive heat sinks, a fan flow/head curve and a separate nodal volume representation | |||
~ I V@I | |||
(p~ | |||
I | |||
. of the ice condenser upper plenum. This analysis indicates that the peak pressure due to hydrogen combustion remains below the containment design pressure. As expected, no combustion occurred, in the upper volume, the fan/accumula'tor rooms, or'he dead-ended volume. A total of thirty seven (37) burns are predicted; seven i.n the lower volume and thirty in the upper plenum. Slightly less than one million pounds of ice remain at the completion of the transient. | |||
4.0 Containment Air Recir culation/ dro en Skimmer (HYS) Fans V | |||
The results of the CLASIX analysis mentioned in Section 3.0 indicate that maximum differential pressure between the fan/ | |||
accumulator room and upper volume'of 2.5 psi; with the higher pressure existing in the upper volume. | |||
In the cours'e of our investigation of the fan survivabi li identified a potential failure'echanism due to the possible ty,'e have development of a differential pressure across the 'fan housing when the upper compartment pressure is greater than the fan/accumulator room pressure. In such case the fan housing could collapse. l<e are investigating various modifications to the HYS fans which would eliminate this concern and will report to you on the schedule for the completion of the selected modifications in a later submittal. | |||
==References:== | ==References:== | ||
(1) Baumeister,.T., et al, 'Standard Handbook for Mechanical Engineers,'cGraw-Hill (2) Madorsky, S., 'Thermal Degradation of Organic 1964 Polymers,'nterscience, (3) Tewarson, A., et al, 'Categorization of Cable Flammability,'PRI Report NP-1200, Part 1, 1979 (4) 'Resolution of Equipment Survivability Issues for the Sequoyah Nuclear Plant,'VA, May 1981 | |||
I | |||
~o <g 4 | |||
I | |||
Attachment No. 2 to AEP:NRC:00500E Additional Information on Hydrogen Mitigation and Control Donald C. Cook Nuclear Plant Unit Nos. I and 2 CLASIX Code Analysis | |||
( | |||
~ | |||
l%,~ | |||
i | |||
0 | TABLE 1 Cook CLASIX Input MARCH Reactor Coolant Mass and Energy Release Rates S2D S uence Time .,H20 Mass Release Rate H20 Energy Release Rate (seconds) (1bn/sec) (B tu/sec) 0.0 197.2 1.167 x 10 2172 190.5 1.097 x 10 2478 44.85 5.230 x 10 3180 53.53 6.547 x 10 3804 34.82 4.262 x 10 4428 21.40 2.842 x 10 4752 48.42 5.558 x 10 4 | ||
5700 19.42 2.182 x 10 6012 14.07 1.583 x 10 6960 5.253 5.989 x 10 7062 4.718 5.388 x 10 7206 4.060 4.693 x 10 | |||
I l | |||
TABLE 2 | |||
. Cook CLASIX Input MARCH Hydrogen Generation Rates and Temperatures S2D S uence Time H Mass Release Rate H2 Temperature (seconds) (1hn/sec) (F) 0.0 0.0 61 3480 0.0 61 3804 0.0413 67 4116 0.260 1582 4428 0.740 795 4752 1.07 771 5700 0.430 612 6330 0.223 555 6648 0.160 535 6960 0.117 519 8070 0.0367 519 | |||
I | |||
'k V | |||
e | |||
TABLE 3 Cook CIASIX Input MARCH Fission Product Energy Release Rates S2D Se uence Time Energy Release Rate (seconds) (Btu/sec) 0.0 0.0 3810 0.0 4116 1803 4428 4800 4752 6708 5376 7000 7080 7135 | |||
I l, | |||
I 0 | |||
TABLE 4 Cook CLASIX Input Burn Parameters Lower Ice Condenser Ice Condenser Upper Dead Ended FAN/ACC Compar tment Lower Plenum Upper Plenum Compartment Region Rooms Hydrogen 7F for Ignition 0.08 0.08 0.08 0.08 0.08 0.08 V | |||
Hydrogen /F for Propagation 0.08 0.08 0.08 0.08 0.08 0.08 Hydrogen Fraction Burned 0.85 0.85 0.85 0.85 0.85 0.85 Minimum Oxygen PF for Ignition 0.05 0.05 0.05 0.05 0.05 0.05 Minima Oxygen PF to Support Combustion 0.0 0.0 0.0 0.0 0.0 0.0 Burn Time (sec)* 13 | |||
*Based on a flame speed of 6 ft/sec. | |||
TABLE 5 Cook CLASIX Input Com rtment Initial Conditions Lower Ice Condenser Ice Condenser Upper Dead Ended FAN/ACC Compar tment Lower Plenum Upper Plenum Compartment Region Rooms Volume (ft3 ) 249/681 24700 47010 681283 61105 54828 Temperature (F) 110 32 32 75 98 110 02 pressure (psia) 3.14 3.18 3.18 3.17 3.16 3.14 N2 pressure (psia) 11.67 11.81 11.81 11.77 11.71 11.67 H20 pressure (psia) 0.19 0. OQ 0. 0.06 0.13 0.19 | |||
TABLE 6 Cook CLASIX Input Flow Path Parameters LC-LP LP-UP UP-UP UC-LC DE-LC F/A-LC Minimum Flow Area (ft ) ** ** ** 2 2 40 30'low Loss Coefficient 2.05 3.04 1.45 1.5 4.2 4.2 Burn Propagation Delay Time (sec) | |||
* 0 *Based on a flame speed of | |||
**Function of door opening. | |||
6 ft/sec. | |||
TABLE 7 Cook CLASIX Input Ice Bed Parameters Parameter Value Initial Ice Mass 2.37 x 10 ibm Initial Ice Heat Transfer Area 2.93 x 10 ft Heat of Fusion of Ice 248 Btu/ibm~ | |||
Flow Loss Coefficient 0.42 Initial Net Free Gas Volume 86780 ft | |||
*Includes 150 Btu/ibm actual heat of fusion plus 98 Btu/ibm to raise ice condenser drain temperature from 32 F to 130 F. | |||
TABLE 8 Cook CLASIX Input Ice Condenser Door Parameters Lower Inlet Doors Maximun Opening Angle 55 Minimum Differential Pressure for Maximum Opening 0.0069 psi Maximum Flow Area 990 ft Bypass Flow Area Intermediate Deck Coors Maximum Opening Angle 89 Ninimum Differential Pressure for Maximum Opening 5.5 psi Maximum Flow Area 1326 ft Bypass Flow Area 20 ft Top Deck Doors Maximum Opening Angle 89 Minimum Differential Pressure for Maximum Opening 1.15 psi Maximum Flow area 2040 ft Bypass Flow Area 20 ft Minimum Differential Pressure to Initiate Door Opening 0.005 psi | |||
TABLE 9 Cook CIASIX Input Air Return Fan/H dr en Skimmer S stem Parameters Parameter Value Number of Trains Initiation Time Flow Fractions per Train UC-F/A 0.9569 LC-F/A 0.0359 DE-F/A 0.0024 Flow Rate Head Flow Rate Per Train (in H20) (cfm) 0.0 5.30 x 104 1.0 5.05 x 104 2.0 4.75 x 104 3.0 4.45 x 10 4.0 4.15 x 104 4.5 3.97 x 104 5.0 3.80 x 104 6.0 3.42 x 1044 6.5 3.10 x 10 4 | |||
6.8 2.50 x 104 6.9 1.60 x 10 6.9 0.0 | |||
*Initiated 10 minutes after the containment reaches 3.0 psig pressure. | |||
TABEZ 10 Cook CIASIX Input S ra S stem Parameters Parameter F/A Drop Diameter (in) 0.0276 0.0276 0.0276 Drop Fall Time 10.66 5.75 1.68 Flow Rate gpn 4000 1800 528 Temperature (F) 125 125 125 Drop Film Coefficient (Btu/hr ft F) 20 20 20 Initiation Time sec | |||
*Initiated 30 seconds after the containment reaches 3.0 psig pressure. | |||
P | |||
~ | |||
0 | |||
TABLE ll Cook CLASIX Input Com rtment De ndent Passive Heat Sink Parameters Parameter Value Temperature Lower Compar tment 110 F Ice Condenser Lower Plenum Ice Condenser Upper Plenum 15 F Upper Compartment 75 F Dead Ended Region 98 F Fan/Accumulator Rooms 110 F Radiant Heat Transfer Lower Compartment 25.0 ft Beam Leng& | |||
Ice Condenser Lower Plenum 8.5 ft Ice Condenser .Upper Plenum 8.5 ft Upper Compartment 59.0 ft Dead Ended Region 8.5 ft Fan/Accumulator Rooms 8.5 ft | |||
*See Table 15. | |||
TABLE 12 Cook CIASIX Input Material De ndent Passive Heat Sink Parameters Parameter Material Value Emmissivity* Concrete 0.9 Carbon Steel 0.9 Paint 0.9 Stainless Steel 0.4 Thermal Conductivit+ Paint on Steel (UC" 0. 21 (Btu/hr ft F) Paint on Steel (LC, DE, F/A$ gP) 0.22 Paint on Concrete 0.087 Concrete 0.84 Carbon Steel 27.3 Stainless Steel 9.87 | |||
~~ nt on ~oAc.<Q&< g.8+ | |||
Volumetric Heat Capacity* Paint on Steel (UC) 29.8 (Btu/ft F) Paint on Steel (LC, DE< F/AQVf) 14.7 Paint on Concrete 29.8 Concrete 30.2 Carbon Steel 59. 2 Stainless Steel 59.2 er Exit Heat Transfer Coefficient* Paint to Steel or Concrete 10 (Btu/hr ft 2 F) Concrete to Concrete 10 Conor~tc Qe Steel IO Steel to Concrete 10 | |||
'teel to Steel 10 Last Layer Adiabatic Wall 0 | |||
*See individual lower plenum wall data in Table 15. | |||
~6 lQ ) tlpug ~pp~~ een~ider M i~ipwi S'<<~+> ~" + | |||
cozz~c~cz en ~i.&~ed vs~p guava | |||
r ~ | |||
TABLE 13 Cook CLASIX Input U r Com rtment Passive Heat Sinks CLASIX Initial Wall Wall Temperature Surface Layer Number Layer Layer Number 'escription (F) Area (ft2 ) Number of Nodes Material Thickness (ft) 75 26086 2 Paint 0.001 15 Carbon steel 0.03 12 Concrete 1 10 Concrete 1.89 75 2 Paint 0.001 15 Carbon steel 0.03 75 5284 2 Paint 0.001 25 Carbon steel 0.05 12 Concrete 1 6 Concrete 1 3 Concrete 1.5 75 595 2 Paint 0.001 30 Carbon steel 0.06 10 Concrete 0.83 75 350 3 Concrete 0.15 15 Carbon steel 0.03 | |||
~ | |||
8 Concrete 0.63 75 25433 12 Concrete 3 Concrete 75 4381 12 Concrete 1 8 Concrete 1.53 | |||
0 TABLE 14 Cook CIASIX Input Lower Com rtment Passive Heat Sinks CLASIX Initial Wall Wall Temperature Surface Layer Number Layer Layer Number Description (F) Area (ft2 ) Number of Nodes Material Thickness (ft) 110 540 1 2 Paint 0.001 2 15 S. steel 0.03 110 595 1 2 Paint 0.001 2 30 S. steel 0.06 3 It) CD~~$ g a. Rp 10 110 3224 1 2 Paint 0.001 2 15 S. steel 0.03 3 12 Concrete 1 4 6 Concrete 1 5 Concrete 2.05 gR304 110 k7972 2 Paint 0.001 12 Concrete 3 Concrete GVV 12 110 2 Paint 0.001 12 Concrete 1 6 Concrete 1 3 Concrete 1.61 | |||
lp TABLE 15 Cook CIASIX Input Ice Condenser Lower Plenum Passive Heat Sinks C[ASIX Initial Wall Layer Layer Layer Heat Layer Heat Wall Temperature Surface Layer Number Layer Thickness Conductivity Capacity Heat Transfer Number (F) Area (ft2 ) Number of Nodes Material (ft) (Btu/hr ft F) (Btq/ft F) (Btu/hr ft F) 13 80 19100 5 insulation 1 0.15 2.75 0.7 31 steel 0.0625 26.0 56.4 0.0 14 80 13055 5 insulation 1 0.2 3.663 0.7 12 concrete 1 0.8 28.8 0.0 15 15 paint .000833 0.0833 28.4 10 concrete .33 0.8 28.8 0.0 | |||
'I l | |||
't e | |||
I | |||
TABLE 16 Cook CIASIX Input Ice Condenser U r Plenum Passive Heat Sinks CLASIX Initial Wall Wall Temperature Surface 2 Layer Number Layer Layer Number Description (F) Area (ft ) Number of Nodes Material Thickness (ft) 16 15 9453 1 2 paint 0.001 2 ~/5 carbon steel %-.66- 0-OQ I 3 lG Q-Of 3 ln s~) o 4 o4 | |||
I TABLE 17 Cook CLASIX Input Dead Ended R ion Passive Heat Sinks CLASIX Initial Wall Wall Temperature Surface 2 Layer Number Layer Layer Number Description (F) Area (ft ) Number of Nodes Material Thickness (ft) 17 98 6590 2 paint 0.001 25 carbon steel 0.05 12 concrete 1 6 concrete 1 3 concrete 1.5 18 98 16789 2 paint 0.001 12 concrete 1 3 concrete | |||
TABLE 18 Cook CLASIX Input Fan/Accumulator Rooms Passive Heat Sinks CLASIX Initial Wall Wall Temperature Surface 2 Layer Number Layer Layer Number Description (F) Area (ft ) Number of Nodes Material Thickness (ft) 19 110 5640 1 2 paint 0.001 2 25 carbon steel 0.05 3 12 concrete 1 4 6 concrete 1 5 3 concrete 1.5 20 110 10134 2 paint 0.001 12 concrete 1 3 concrete 0.54 | |||
r TABLE 19 Cook CLASIX Analysis Summar of Results Lower Ice Condenser Ice Condenser Upper Dead Ended Fan/Acc Compartment Lower Plenum Upper Plenum Compartment Region Rooms Number of Burns 30 Magnitude of Burns (ibm) 62-73 15-40 Total H2 Burned (ibm) 481 595 H2 Remaining (ibm) 88 47 26 256 24 21 Peak Temperature (F) 828 383 1155 168 216 205* | |||
Peak Pressure (psig) 10.9 10.8 10.8 10. 5 10.9 10.8 Ice Remaining in Ice Bed at 7080 sec. 9.9 x 10 ibm. | |||
*Occurs before burn period. | |||
~ Stt Chttl OOOOOCFII Fh)I 030$ 0PII SPAIY ~ OSPCT hT OWO OFPO Ilh)il)%II TSIIPKRATLÃC r Tllit IOOIIIOH PIKSOISIE r Tlllt NA)IIISNI POSOONC / T1IK IF) IOKC) IPSlh) CSKC) IPSLO) I SEC) r / M$t / $051 Ott 0 30toO llMot / | |||
NOO | |||
/ Nit NT1 tSo0 tSoS tS S | |||
/ ~ | |||
/ MI 10oO 10.0 14+0 r ~ | |||
/ $034 1St+i r $03$ OS.t r $03$ 10.$ r Sea tltof / $40$ tSo0 r MS4 10.0 r %034 Fh t4$ ot r 707 tS,S r SM4 10ot / SCH IIOXlRH tlFFERS)ITlhL PRES%Ã% / TllKISKC) | |||
%TO LC Fh LC ~ oO / ~ ~ 0 / NOO loi / NOO 1 0/$ 0$ t ~ 0 / $00$ ~ t / $400 LP t.O r Nae ~. ~ r ~ i+i / 4710 1.$ / $030 tel / NO to< / SttO toS / Nlt tel r N1$ ~ eO r ~ i+4 / $ 030 toS / Stlt t.S r NI~ | |||
I)C toS r Nlt t.t r N1$ ~ 3 / 4044 ~ oO / ~ teS r'tlt t.S r Nlt o3 / $03$ ~ 0/N10 lot r NOO loS r 4TN ~ oO / ~ ~ t r $03$ | |||
FA el / NIS ~ 0 / $ 000 lot / NOO iA / SOSt ~ 4 / SOtt Oat / ~ | |||
il | |||
)l | |||
~AEP SZ CASEI 80oOOCF~ FKN 6328GPV< SP RAY OURN 05 AT HV/0 6FPS | |||
~~~=< S~>ORT OUTPUT T IHE PRESSURE(P 5 IA) /TE.'tP ERATURE( F) | |||
(SEC) LC LP UP UC DE PR 5 200E+03 2L ~ 5/ 101. 7 2). 5/ 160 ' 2I. 5/ 012 5 21- 5/ 140- I 21.4/ 173. 3 21 5/ 129 2 5 201 E+03 21 2/ LBO. I. 21. 2/ 162 ~ 4 21 I / 463 0 21 2/ l 38 4 21.3/ 173.8 21.21 LZB 7 5.202E+03 Zl I/ 178 9 20 ~ 9/ 170 2 21 I/ l 64 I 21 0/ 316 9/ | |||
~ | |||
7 21-0/ 137 2 | |||
'3 21-1/ | |||
21 0/ | |||
173.4 21 I/ 128 5 5.203E+03 5 204E+03 5.205E+03 5 206E+03 5 ZOTE+03 20 '/ | |||
: 20. 8/ 177 6 L77 3 20 7/ 17r I 21 9/ 282 5 20 ~ | |||
20 8/ | |||
20 0/ | |||
20 71 9/ | |||
21 ~ 9/ | |||
165 5 166 ~ 8 167 9 169 0 187 3 20 ZO.B/ 184 2 2o.r/ I43 ~ 4 20 7/ 138 2 21 I/ | |||
235 8 I. 36 ~ 2 20 91 20 8/ | |||
20 7/ | |||
20 7/ | |||
21 0/ | |||
~ | |||
136 135 134 133 134 5 | |||
0 20.8/ | |||
20 20 | |||
~ | |||
173. I 171 9 7/ I 71 7 0/ l 72 6 21 0/ 178 6 20 20 9/ | |||
20 8/ | |||
20 7/ | |||
21 9/ | |||
9/ 128 2 128 1 1ZB 0 127 9 136 0 5 208E+03 22 9/ 409 3 22 0/ 216 0 21 5/ 134 ' 21 5/ 135 7 22. 8/ 106.7 22 9/ 148 I 209E+03 23 3/ 523 8 23. 0/ 22 ~ 4/ 133 ' 22 0/ 23.3/ 23 3/ | |||
5 5 | |||
5 5 | |||
210E+03 ZLLE+03 212E+03 | |||
: 5. ZINE+03 23 7/ 629 8 23.7/ 716 ~ 4 23 0/ 791 3 Z3.0/ 764. 0 22 9/ | |||
23 I/ | |||
23 6/ | |||
: 22. 8/ | |||
264 ~ 7 301 3 346 302 9 379 I 22-8/ | |||
22 ~ 0/ | |||
Z3 I/ | |||
23 2/ | |||
131. 9 130 LZB F 7 IZT 4 l. | |||
22 4/ | |||
22 8/ | |||
23 0/ | |||
23 2/ | |||
136 137 138 130 130 7 | |||
5 3 | |||
6 5 | |||
23.7/ | |||
23 7/ | |||
23 0/ | |||
23 2/ | |||
193 2 198 4 199 8 201 198 8 | |||
4 23 '/ | |||
23 0/ | |||
23 2/ | |||
7/ | |||
155 164 5 168 173 3 172 9 5'3 5 214E+03 21 4/ 614 1 21 3/ 252 I 22 9/ 126 7 23 0/ 137 2 21 5/ 100 ~ I 21 5/ 163 9 5 215E+03 20 5/ 519 0 20 5/ 176 ~ 7 22 6/ )26 I 22 7/ 135 7 20 6/ 181 20 6/ 158 I. | |||
5 ZioE+03 20 1/ | |||
19 7/ | |||
453 2 21 l/ 170 8 22 4/ | |||
22.1/ | |||
126 0 22 4/ | |||
22 2/ | |||
134 4 20 1/ | |||
7/ | |||
177 2 20 I/ | |||
19 7/ | |||
l.53 ' | |||
5 ZLTE~03 5 ~ 218E+03 5 ~ 219E+03 5 220E 4 03 5 221E+03 | |||
: 19. 5/ | |||
19 3/ | |||
1-9 2/ | |||
~ | |||
19 2/ | |||
403 ~ 8 365 9 336 4 312 8 293-0 21 ~ | |||
21 21 7/ | |||
21 6/ | |||
21 51 5/ | |||
7/ | |||
160 167 0 165 0 163 I 161. 2 22.0/ | |||
21 0/ | |||
21 7/ | |||
21.6/ | |||
125 0 124 6 124. 3 | |||
)23 123 9 9 | |||
22 0/ | |||
21 8/ | |||
21 ~ TI 21 ~ 6/ | |||
133 132 131 130.5 129.7 2 | |||
2 3 | |||
19 19 | |||
).9 1.9.2/ | |||
5/ | |||
3/ | |||
: 1. 74~ 0 171 ~ 0 170 2 170 2 19 2/ 169. I 19 '/ | |||
19 5/ | |||
19 2/ | |||
19 2/ | |||
150 4 147 6 145 143 141 | |||
'3 7 | |||
5 ~ 222E+03 19 2/ 270 1 21 4/ 159 3 21 41 123 6 21 4/ 129 I 19 I/ 169 I 19 2/ 140 3 i.)3 19.7/ 264 ~ 9 21 3/ 15l 5 21, 3/ 123 0 21 3/ 120 4 19 2/ 170 19 2/ 139 I raceme>03 19 3/ 255 3 2l. 2/ 155. 8 21 2/ 172 7 21 2/ LZT 8- 19 2/ 169 ~ 3 19 3/ 138 2 5.225E+03 19 3/ 247 ~ 3 21 1/ 154 I 2 1. ~ I/ 122 6 2 1. 1./ 127 2 19 3/ 169 6 ~ 19 3/ 137 3 5.226E+03 19 41 240- 5 21 0/ 152 2I. 0/ 122 I 21 0/ 126 T 19-4/ 169 ~ 9 19 4/ 136 6 5'27E+03 19.5/ 234 7 20 9/ 150 8 ?. 0 9/ | |||
~ IZL.U c'. 0 9/ | |||
~ 126 1 19 5/ 170. I 19.5/ 135.9 | |||
'28E+03 19 7/ 8/ )49 2 20 8/ 20. 8/ 19 7/ 19 7/ | |||
5 5.229E+03 5.230E+03 5 | |||
5 23LE+03 232E+03 19 0/ | |||
19 9/ | |||
20 0/ | |||
20 2/ | |||
229 225 221 9 7 | |||
5 Zie ~ 6 215 9 20 20 20 20 20 7/ 147~ 6 6/ 146 I 5/ 144 6 4/ L43 2 20 7/ | |||
20 6/ | |||
20 5/ | |||
20 4/ | |||
LZ1 5 121 2 120 9 120.7 | |||
)20 4 20 7/ | |||
20 6/ | |||
20 5/ | |||
20 4/ | |||
125 ~ 7 125 2 IZ4 ~ 8 IZ4 ~ 4 124 0 19 20 20 | |||
'/I/ | |||
19 F 81 0/ | |||
171 4 171 0 172 L71 ~ 4 I 71 0 I. | |||
19 0/ | |||
19.9/ | |||
20 0/ | |||
20 2/ | |||
135 134 134 133 133 3 | |||
' 92 8 | |||
5.233E+03 20 3/ 213-6 20 3/ 141 0 20 4/ 120- 5 20 41 123 6 20 3/ 172 20 3/ 133 5.234E+03 20 3/ 211 I 20 3/ 142 8 20 3/ 119 ~ 0 20 3/ 123 3 20 3/ 172 3 20 3/ 132 6 20.4/ | |||
5 235E+03 5.236E+03 5.237E+03 5 238E+03 | |||
'39E+03 20 3/ | |||
20 3/ | |||
20.3/ | |||
20 ~ 3/ | |||
20.3/ | |||
208 6 206 3 204 3 202 5 20 20 20 20 3/ 146 1 3/ 149 3 3/ 152 3 3/ 155 2 | |||
~ 20 3/ | |||
20 3/ | |||
20 20 3/ | |||
20 3/ | |||
'/ 117 2 115 4 113 6 ILL 8 110 I | |||
?0 3/ | |||
20 3/ | |||
: 20. 3/ | |||
20 3/ | |||
20 3/ | |||
123 123 122 8 122 6 I | |||
0 20. 3/ | |||
20 3/ | |||
20 3/ | |||
20 3/ | |||
173 3 I. T2 ~ | |||
173 ~ 3 173 3 3 | |||
20 3/ | |||
20 3/ | |||
20 3/ | |||
20 3/ | |||
20 3/ | |||
131 131 130 130 I 2 | |||
6 9 | |||
'/'/3/ | |||
5 200~9 20 ~ 3/ 157 9 122 4 ITZ 2 129 5 5.24OE+03 Zu.3/ 199 5 20 3/ 160 4 20 3/ 100.4 20 3/ )22 2 20 31 173 ~ 2 20 3/ 129 0 5 24 LE+03 20 3/ 190. ~ 20 '3/ L62 8 20 3/ l. 06 ~ 8 20. 3/ 12' 20 3/ l73.Z 20 12' 5.242E+03 20 ~ 3/ L97 0 20 3/ 165 1 20 3/ 105 I 20 3/ 121 0 20 ~ 3/ Lrz 2 20 IZB ~ 4 | |||
: 5. 243E I 03 23 3/ 196 0 20 3/ 1.67 1 7.0 3/ 103 5 20.3/ l. 2 I ~ 5 20 ~ 3/ 173 ~ ?. 20 128 3 5 ~ 244F.+03 20.3/ 195 0 20 3/ 169 0 20 3/ 102 0 20 3/ I~4 20 3/ I r3 2 20 3/ 128 2 5 ~ 245E +03 Zu 3/ 194 I 20 ~ 3/ I TO. 8 20 3/ ~ 100 5 20- 2/ 121-2, 20 3/ 173 20-3/ ).20 0 20~ 3/ 20 3/ 172 ~ 4 20. 2/ 70 2/ 23 3/ 20 3/ 12' 5 ~ 24oE+ C3 5.247E+03 5 | |||
5 | |||
'40E+03 | |||
~ 249E+03 20 ~ 3/ | |||
20 ~ 31 20.3/ | |||
193 19? | |||
192 191 3 | |||
6 0 | |||
20.3/ 173 9 20 3/ l.75 3 20 3/ I r~> 5 20 2/ | |||
20 | |||
?O.Z/ | |||
2/ | |||
98 9 97.5 96 ~ I | |||
: 94. r 20 '/ | |||
20 21 120 7 20 2/ LZO ~ 8 120 9 120 6 20 3/ | |||
20 3/ | |||
ZO.J/ | |||
IT3 2 172- I IT2 2 1.72. 2 20 3/ 127 20 3/ 1.27 20 3/ 127 8 | |||
7 9 | |||
'i I | |||
i r | |||
I I | |||
'I c E | |||
I 4 | |||
L ver sm cern ooecium ~ amseTI%eww ~ aver ar ~ one lSXOQS) | |||
KKF SSD CASH MOOQCFR SWI TII% CKCOOO) | |||
~578 %WIV M%I ~ AT Sit@ %PS | |||
(s SOP SOS CIISEi ~ | |||
TSK (NXOOS) | |||
MNSRI FW OJeÃtll %%IV SECT AT SAO IFFY t | |||
ii | |||
~~a+ 'I I" l~ I | |||
<<CF SRO ~ SOCOSCAI FWI TQC lSBX8$01 tÃSOPII %%IV RHS KPCT Cf 8%% %Pl | |||
0 I | |||
I I~ ~ | |||
I ' I "" ~ | |||
S TQK (SKOQQS) | |||
SCP'R CASH NONCPll RN t'ai"XWt SANER SION SSPCf NT 8&0 OR% | |||
I j5 ~ | |||
C ~" | |||
( | |||
TBK (RCO$ $ 1 SCt SSQ CNEf CNNVII FWI CNiÃRI $ %hV LHI IWCT NT SWO OVO | |||
%~@ | |||
.) ~ ~- | |||
~ $ ., ~ | |||
J | |||
%F I w l~ ~ | |||
) < ~ ~ ' A | |||
i e | |||
J | |||
>ir-- | |||
7 . ~ ~ S . - ~ | |||
0 I I~ ~ | |||
~ 7' | |||
~ | |||
I' | |||
~ | |||
lI | |||
~ ~ | |||
F | |||
~ SR@ ~ INCtll TBK tSEOOO) | |||
FSI NQRPII %%AY RHI SECT AT 04% %SO t | |||
l J'R I | |||
'Y | |||
'c I j l e I | |||
r t n | |||
L I | |||
I I | |||
I i l jl I | |||
I ~I l ' tW | |||
I tl L | |||
W I" ~l ~ ~ | |||
) A ~ .>$ ~ | |||
~ | |||
~ \ | |||
I I~ ~ | |||
1 hm cmeeei SCF SRD OCQ NSNVII AW Cl~Rl SPWIV WW SECT ¹T SA% OPPl 1 ~ | |||
t 4 | |||
V4 | |||
~ ~ | |||
Attachment No.. 3 to AEP:NRC:00500E Additional Information on Hydrogen Mitigation and Control Donald C. Cook Nuclear Plant Unit Nos. 1 and 2 SMA Report on Containment Ultimate Strength}} |
Latest revision as of 07:19, 18 March 2020
ML17319B048 | |
Person / Time | |
---|---|
Site: | Cook |
Issue date: | 09/10/1981 |
From: | INDIANA MICHIGAN POWER CO. (FORMERLY INDIANA & MICHIG |
To: | |
Shared Package | |
ML17319B047 | List: |
References | |
NUDOCS 8109150437 | |
Download: ML17319B048 (157) | |
Text
{{#Wiki_filter:D,C. COOK PLANT UNIT NO. 2 REACTOR BUILDING CONTAINMENT INTEGRATED LEAK RATE TEST APRIL 30 - MAY 4, 1981 INDIANA 8 MICHIGAN ELECTRIC COMPANY 988 8109i50437 8i09i0 PDR ADOCK 05000315 PDR
D.C. COOK PLANT UNIT NO. 2 CONTAINMENT INTEGRATED LEAK RATE TEST APRIL 30 - MAY 4, 1981 TABLE OF CONTENTS Section ~Pa e 1.0 Introduction 2.0 ILRT Acceptance Criteria 3.0 ILRT Results 4.0 Conduct of Test 4.1 Organization of Test 4.2 Log of Time and Events 5.0 Test Instrumentation and Equipment 10
- 5. 1 Table of Instruments 10 5.2 Instrument Specifications 11 5.3 Sensor Locations 12 5.4 Instrument Error Analysis 12 5.5 Pressurization Apparatus 14 6.0 Containment Model and Leak Rate Calculations 14 6.1 Volume lleighing Factors 6.2 Containment Pressure and Vapor Pressure 17 6.3 Containment Temperatures 17 6.4 Statistical Determination of the Leak Rate 18 6.5 6.6 Upper Confidence Limit Leak Rate Computer Program,
'LRTEST'5 19 22 7.0 'LRT'rogram Printout 24 Page i
Table of Contents Continued . Section ~Pa e 8.0 Data Analysis and Summaries 32 8.1 Graphical Analysis 32 8.2 Program Summaries 35 9.0 Local Leak Test Program 44 9.1 Past Test Results Summary 44 9.2 l1ay'1981 Local Leak Test Results 53
- 10. 0 References Page ii
1.0 Introduction The first periodic Integrated Leak Rate Test (ILRT) for the Donald C. Cook Nuclear Plant - Unit 2 reactor containment was successfully completed on May 4, 1981 by personnel of Indiana 8 Michigan Electric Company (18M). The ILRT was performed as specified in surveillance test procedure 12 THP 4030 STP.202, Rev. 3 and in compliance with American National Standard - ANSI N45.4 1972, 'Leakage Rate Testing of Containment Struc-tures for Nuclear Reactors'nd Code of Federal Regulations 10 CFR 50 Appendix J - 'Primary Reactor Containment Leakage Testing for Hater Cooled Power Reactors'. The absolute test method was used on the 3 com-partment containment model developed for both the Unit 1 and Unit 2 Preoperational Integrated"Leak Rate Tests. Data was collected at half hour intervals over a 24 hour test period. This data was used to. calculate the normalized weight of the initial dry air mass remaining in the containment at each half hour interval. The measured Type A leakage rate, Lam, is the slope of a straight line determined for a linear least-squares fit of the calculated normalized weight vs. time. 2.0 ILRT Acce tance Criteria The Unit 2 Technical Specifications and Section 5 of the Final Safety Analysis Report (FSAR) define the containment allowable leakage, La, as 0.25 percent by weight of the containment air per 24 hours at a pressure, Pa, of 12.0 psig. The measured leakage rate. Lam, must be demonstrated to be less than 0.75 La, (0. 1875'A wt/day) as required by 10 CFR 50 Appendix J. In addition, the accuracy of the leakage measurement must be verified by performing a supplemental test, the results of which are acceptable provided the difference between the supplemental test results and the Type A results is within'.25 La '(0.'0625/ wt/day). As specified in Section 5. 0 of D; C. Cook Plant Surveillance Test Procedure 12 THP 4030 STP.202 and in accordance with 10 CFR 50 Appendix J Section III-A, 'Leakage Test- Requirements, Type A'ests', the test was considered acceptable when the following criteria had been met:
- 2. 1 The leak rate, as determined by the 95% upper confidence limit of the least squares line, Lam/955 has converged to an'acceptable level:
Lam/95K (0.75 La - Type C Leakage Penalty} 2.2 The duration of the ILRT has exceeded the minimum of 12 hou'rs and the difference between the 954 upper confidence leakage limit and the leakage rate itself does not exceed
,0.0625/ wt/day in the most recent data set.
Page 1
2.3 The upper confidence level leakage and the measured leakage do not show a negative trend over the last four data runs. The Supplemental Test was considered acceptable when the'following criteria were met: 2.4 The duration of the Supplemental Test meets or exceeds the minimum of 6 hours.- 2.5 The sum of the imposed leak, L , and the leakage measured
~
during the Type A test, L , i3 within + 0.25 L of the composite leakage, L , meNured in the supplemental test. (L + L - 0.25 L ) < L < (L + L + 0.25 L ) The criteria used for this Integrated Leak Rate Test is more stringent than that specified in 10 CFR 50 Appendix J. These criteria incorporate additional test commitments made by D. C. Cook to the Nuclear Regulatory Commission. These .additional commitments are embodied in a response to guestion 22. 14 of Appendix g o'f the D. C. Cook Nuclear Plant Unit 2 FSAR. 3.0 ILRT Results
- 3. 1
=
Leakage Rate Summary: Duration of Type A Test: 24 hours Duration of Supplemental Test: 6 hours Neasured Leakage* Allowable Leakage* wt 24 hours X wt/24 hours A. ILRT 'Type Rate, A'eak Lam -0.05287 -0.1875** B. ILRT 'Type A'55 Upper Confidence -0. 05748 0.75 La - Type C Leakage Limit Leak Rate, Lam/95% Penalty ++
= -0.1875 - (-0.015975) = -0.17153 C. Type C Leakage Penalty -0.015975 N/A D. Imposed Leak Rate, Lo -0.2006 0 5 La < Lo < La -0.125 < Lo < -0.25 E. Suppl cmental Test=
Composite Leakage, Lc -0.24631 N/A F. Supplemental Test- - (Lc ** Correlation am (Lc Lo) Lam Lo) <. 25 La
- 0. 00716 Lam - (Lc " Lo) < 0625
~
Page 2
The slope of the linear regression line computed for weight remaining in the containment as a function of time is negative since weight remaining in the containment decreases as a function of time. Hence leakage out of the containment is shown as negative in the
-table.
- 10 CFR 50 Appendix J criterion
++ Test criterion specified by plant procedure 12 THP 4030 STP.202 + Guideline proposed by ANS 274 Draft No. 1. Item A, L , is the measured containment leakage after 24 hours of tBing data in one-half hour intervals. It was calculated using the 'Absolute Method'n a 'total time'asis as described in American National Standard N45.4 - 1972. Item B, L /95%, is the 95K upper confidence limit of the leak rate I't is calculated from the variance of the slope of the least-squares line and the value of the t-distribution for a 95K confidence that L /95/ is the upper limit of the actual leak rate. Item C, The type C penalty leakage is calculatd from the local leakage test program conducted per plant procedure 12 THP 4030 STP.203,
'Type B and C Leak Rate Test'. The Type C penalty leakage represents the leakage of systems penetrating the containment pressure boundary that is required to be drained and vented for the Type A test, that due to existing piping, configurations or plant conditions could not be drained or vented. The leakage of isolation valves associated with these systems appears in Table 3.2. The ".otal on Table 3.2, expressed in weight percent per day, is subtracted from the allowable leakage specified for Item B in Section 3. 1.
The use of the Type C penalty in li'eu of draining the affected system was part of commitments made to the NRC and appears formally in Appendi,x g, question 22.'l4 of the Unit 2 FSAR. Item D, L , is the imposed leak used in the supplemental test to verify t3e accuracy of the Type A test. In accordance with guidelines of ANS 274 Draft No. 1 and the Unit 2 Technical Specifications the rate of the air bleed, in weight X/day, was established at
.2006 wt 5/day.
Page 3
Table 3.2 T e C Penalt Leaka e For Undrain S stems Isolation Leakage CPNP Valves ~SCCM RCDT to RCDT pps 40 DCR-205 DCR-206 RC System accumulator fill lines 68 ICM-256 49.6 Refueling water line to Refueling Cavity 36 SF-151 SF-153 Cont. Sump Line to Haste Hold up Tanks 41 DCR-600 748.6 DCR-601 NESW to and from Containment 6061.4 RCP Seal Hater Lines 11 CS-442-1 76.2 12 CS-442-2 13 CS-442-3 14 CS-442-4 CVCS Letdown and Excess Letdown Lines 34 QCR-300 ~ 50.0 37 QCM-250 & -350 Sample Lines from Accumulators 81 ICR-5 ICR-6 Sample Lines from Pressuri zer 66 NCR-109 & 110 0 NCR-107 & 108 CYCS Charging Line 35 . CS-321 60.6 Glycol Lines to.and From Ice Condenser 86 VCR-10 & 11 AHU's VCR-201 Total Type C Leakage Penalty (SCCM) = 7046.4 Expressed in / La = 6.39 Expressed in / wt/day = .015975 Page 4
fl l, f l
Item E, the composite leakage, L , is the slope of the least squares line determined from the data taken during the .supplemental test. Ideally, Lc would be equal to the sum of Lam and Lo . Item F, Supplemental Test Correlation. 10 CFR 50 Appendix J requires that the agr'cement between L and (L + L ) is within .25 L . The table shows that th5 correlHion 8etween L and (L + L ) is
/ wt/day or 0.03 L .
a'00716 4.0 Conduct of Test 4.1 Or anization of Test The D. C. Cook Plant Performance Engineering Section was responsibile for the Integrated Leak Rate Test. Functions performed by persons involved in the test could be subdivided between pre-test and test activities. Figure 4. 1. 1 and 4. 1.2 illustrate the organization of pre-test and test activities, respectively. Pre-Test Res onsibilities Test Supervisor - Organized efforts required to ensure the readiness of Unit 2 Containment Systems and test instrumentation for the conduct of this test. This included arranging for instrument calib'ration, installation, and system channel verification, and completing test prerequisites. Instrument Technicians - Performed installation and channel verification of test. instrument system. Containment Inspection Group - Organized and conducted an inspection of all accessible containment interior and exterior surfaces, penetrations and associated systems. Evaluated and reported inspection results and was responsible f'r initiating any 'corrective action required. Local Leak Test Program Group - Performed Type B and C Leak Rate Test as per plant procedure 12 THP.4030 STP.203. Responsible for initiation corrective action as indicated by test results. Reported results to Test Supervisor. Department Interfaces - Contacted as required to help safisfy test prerequisites. Test Res onsibilities Test Supervisor - (1 per 12 hour shift) Responsible for maintenance of test documentation, data inspection, and the general conduct of the test. Page 5
Timekeeper/Data Coordinator - (1 per 12 hour'hift) Maintained control over data collection intervals and transferred data to the computer input format. Data Dispatcher - (1 per 12 hour shift) Checked the transfer of data from data acquisition system tapes and data takers'heets to the computer input format. Shuttled coding forms from test area to computer terminal, loaded punched cards into card reader, and checked transfer of data from coding forms to computer printout. Data Takers - (3 per 12 hour shift) Responsible for the recording of specific test instrument readings. Keypunch Operator - (1 per 8 hour shift) Responsible for punching data onto cards from coding sheet. Assisted data dispatcher in checking transfer of data from coding forms to computer printout. Page 6
FIGURE 4.1.1 - PRE-TEST ORGANIZATION TEST SUPERVISOR INSTRUMENT CONTA INMENT LOCAL DEPARTMENT TECHNIC IANS INSPECTION LEAK TEST INTERFACES PROGRAM w/OPERATIONS, TEST GROUP CSI, MAINT. FIGURE 4.1.2 - TEST ORGANIZATION
'EST SUPERVISOR KEYPUNCH INSTRUMENT TIME KEEPER AEPSC COMPUTER DEPARTMENT OPERATOR DATA COLLEC-TECHNICAL INTERFACES SUPPORT w/OPERATIONS, TION COOR.
CANTON C8tI, MAINT., RAD PROTECTIO DATA DATA DISPATCHERS TAKERS Page 7
AEPSC Computer Technical Support - Canton - On call in case of a failure of either the data analyais program or the computer system. Instrument Technicians - (2 per 12 hour shift) Responsible for maintaining all test instrumentation in a proper operating condition. Department Interfaces - Contacted as required to complete test requirements. 4.2 Lo of Times and Events Having satisfactorily completed the installation and checkout of all test instrumentation, a successful containment inspection, the valve line-up. initial conditions, and all other test pre-requisites, pressurization 'of the containment was initiated. Pressurization of the Unit 2 reactor containment began at 0530 hours on May 1, 1981. Containment temperatures, pressures,'nd vapor pressures, and ambient temperature and barometric pressure were logged on an hourly basis. Each data set collected were assigned a 'Run Number'tar ting with Run 81 at 0600 hours. At 0130 on May 2, 1981 pressurization was terminated at a pressure of 12.4932 PSIG (Run 25 P). During the pressurization period two separate entries were made into the containment instrument room to work on dew point hygrometers. Rewiring of the hygrometer readouts corrected the hygrometer problems on all hygrometers except VPL-2. It was decided just prior to the end of the pressurization period to run the test without this redundant hygrometer. Throughout the remainder of the test YPL-I was used alone for lower volume dew point. The stabilization period was initiated at 0200 on May 2. After the minimum period of 4 hours, containment temperatures were monitored closely to determine when the stabilization criteria had been met. Stabilization criteria defined by procedure 12 THP 4030 STP.202 are:
- a. The duration of the stabilization period has exceeded the minimum 4 hours.
- b. The containment has been maintained at a pressure of 12.0 (+ 0.5, - 0.0) psig for a minimum of 2 hours.
- c. The weighed average temperature in the Upper, Lower, and'Ice Condenser compartments has not varied more than 0. 1 'F/hr over the last four (4) hour period.
- d. No single Upper, Lower or Ice Condenser compartment temperature reading has changed more than 0.5'F during the last hour of the stabilization period.
Page 8
ij At approximately 0300 it was discovered that a heater was energized on HV-CUV-2 which was running. This heater was secured and all ventilating units in the containment were started to try to circulate air to improve the temperature distribution. tlost of the fans tripped off due to thermal overload after about one hour and were left off. All fans were secured at about 0530. After 15 hours all of the stabilization criteria were met and the stabilization period was declared over at 1700 on Hay 2, 1981 (Run 31S). The 'Type A'est was begun at 1730 on Hay 2, 1981 with a containment pressure of 12.3799 psig. Preliminary leakage cal-culations performed for the stabilization period had indicated that the 'Type A'est criterion had already been satisfied. It was now just a matter of continuing the half-hour data collection intervals until the minimum 24 hour time requirement and other self imposed criteria had been met. After 24 hours of data collection the
'Type A'est was declared successfully complete. (Run 49T).
After Radiation Protection drew a sample of the containment air for analysis, air was bled from the containment through a cali-brated rotameter. This leak rate was established at 3.1 scfm (.2006 wt I/day) which is in accordance with the Unit 2 Technical Specifications (quantity greater than 255 of total measured leakage at Pa) and the guidelines of ANS 274 Draft 1 (.5 L L < L ). At the completion of the minimum 6 hours of dat3 c8lleciion the supplemental test and the ILRT was declared successfully complete. The supplemental test showed a correlation between the measured leak and the imposed leak of .03 L , well within the requirement of less than .25 L . The contaikment was subsequently depressurized and sy'stems were restored to normal as required by plant operations. Page 9
5.0 Test Instrum ion 8 E ui ment Table 5.1 Tes nstrumentation Item Manufacturer Model Ran<ac ~Accurac Test ID Pressure Mensor Quartz QM10100-001 0-100 psi g + 0.015 reading PU-l, PL-1, PL-2 Measurement 0-75 psia* .0001 psi resolution PI-1, PI-2 PU-2" Texas Instr. Manometer 145 0-50 psia +.03% reading Patm
.0001 psi resolution Temperature Hycal 1000 Platinum RTS-4233-B Upper Cont., ETR-101 thru Sensors/ Engineering RTD's/Matched ESD-9050-A Ice Cond. (0-100'F) +0.06'F ETR-146, Bridge Modular Lin- Lower Cont. (0-120'F) Ambient earizing Bridges Dew Point EG3tG Mirror 992 (B) 0-100'F i0. 5'F YPL-l, VPL-2 Temperature Surface 660 4) -50 to +100'C +0. 3'C VPI-1, VPI-2, VPU-1, VPU-2 Temperature Fluke Data Logger 22408 0 - 40 mV +0.014 reading ETR's Recorder 0 - 4 v +0.005K span Dew Points Supplemental Brooks Rotameter 1110-08 0.2 to 5.6 SCFM + lc/ FS Test Flowmeter Suppl cmental Hei se Bourdon CCM 0- 3 psig 0. 1Ã,FS N/A Test Tube Pressure Gage *0 - 75 psia Quartz manometer used at test connection PU-2.
Page 10
5.2 Instrument S ecifications The instrumentation used during the ILRT is shown in Table 5.1. Each of the instruments shown here was supplied with calibration performed within 6 months of the test and traceable to the National Bureau of Standards. Calibration conversion formulas and corrections were preprogrammed into the ILRT computer program to allow direct input of all pressure, temperature and dew point instrument readings. Two precision t3ensor quartz manometers were used for redundant measurement of the pressure in each of the upper, lower, and ice condenser compartments of the containment. A seventh was used to moni tor atmospheric pressure during the test. The three containment compartments were instrumented with a total of forty-six.(46) 100 platinum RTD sensors. The upper, lower, and ice condenser compartments contained 16, 23 and 7 sensors respectively. Each sensor is located to represent the temperature of a unique sub-volume within its compartment. The sub-volumes collectively represent the total volume of their respective compartment. Each RTD reading is converted in the leak rate computer program to temperature in degrees Fahrenheit. Each temperature is weighed by the fraction of the total compartment volume contained in the sub-volume the RTD represents. The sum of the weighed temperatures in each compartment is the weighed average temperature of that compartment. Page ll
Six Cambridge Dew Point Hygrometers were used for monitoring compartment dew point temperatures for the determination of vapor pressure in the leak rate computer program. They provided redundant measurement of dew point in each of the lower containment, upper containment and ice condenser. The Unit 1 and Unit 2 preoperational tests used only 4 hygrometers, 2 i n the lower volume and one in both the upper and ice condenser volumes. For this test, two hygrometers were added for the upper and ice condenser volumes. The original 4 hygrometers are the t1odel 8992 dew point hygrometers used in the Unit 1 and Unit 2 preoperational tests. The new )1odel 8660 hygrometers are improved and more compact than the Nodel f992. They all operate on the same principle. The air sample is drawn through instrument lines across a mirrored surface of which the temperature is controlled by an optical feedback circuit to precisely the point at which a dew (or frost) appears. The mirror temperature is measured by a platinum RTD imbedded in the body of the mi rror. The sensor and control units were located inside the lower containment volume so that the samples would be maintained at the containment pressure. The er ror associated with each individual dew point measurement is + 0.5 F. The addition of redundant measurements did not significantly affect the error of the overall dew point temperature measurement system. Page 12
1J A Brooks rotameter was used in the supplemental test to measure and maintain a constant flow rate for the imposed leak. It was calibrated in the range of 0.6 to 6 scfm at 14.7 psia and 70 F with an accuracy of + 1.05 of Full Scale. The actual inlet temperature and pressure for the supplemental test were 63.7 and 18.8 psia. The temperature was measured using ETR-133 which is in close proximity to the end of the rotameter inlet line inside the lower containment. Pressure was measured at the inlet to the rotameter itself using a 0-30 psia Heise gage. The temperature and pressure readings were used to correct the indicated rotameter readings to standard conditions using the following relationship: Wcorr= X Gage atm Wind X +T ETR-133 14.7 Wcorr Corrected rotameter flow in path Wind Indicated rotameter flow in cfm ETR-133 Rotameter inlet temperature, ' atm Atmospheric pressure, psia 5.3 Sensor Locations The locations of the sensors used for this test were identical to the locations originally specified for the Unit 1 and Unit 2 preoperational ILRT's, Figure 5.2. 1 (MSK-78C) shows the location in section views of the containment. 5.4 ~A The inaccuracies associated with the use of the test instrumentation package used in the Unit 2 Preoperational ILRT in measurement of the containment leakage rate was determined to be + 0.076 L . A copy of the analysis calculation is contained in the Unit 2 . Preoperational Integrated Leak Rate Test Report. In terms of the impact on this error analysis only insignificant differences exist between the instrumentation package used in the Unit 2 Preoperational- ILRT and the package used, in this test. The error analysis and the + 0.076 L result obtained for the Unit 2 Pre-operational ILRT Ts considlred to be also representative of the modified instrumentation package used in this test. Page 13
5.5 Containment Pressurization A aratus As in the Unit 1 and Unit 2 Preoperational tests, the plant air system, in conjunction with test pressurization filters and driers, were used for pressurizing the containment. The air enters the containment at approximately ambient temperature and a dew point of approximately -20'F. The air enters the con'tainment through a spare penetration in the upper volume. A valve is provided at the penetration outside the containment, where the air line can be isolated and closed with a blank flange. 6.0 Containment Model and Leak Rate Calculation The containment leak are performed by the 'absolute'ethod on a
'total time's described in AHS-N45.4-1972. The containment design pressure is 12.0 psig and allowable leakage (0.75 La) is
- 0. 18755 wt/day. The containment model and leakage calculations used to perform this test -are essentially the same as the ones used in the Unit 1 and Unit 2 preoperational tests.
A 3-compartment model is employed for the calculation of the containment leak rate. It was developed to accommodate the distinct and widely varied envi ronmental condi tions existing in each of the Upper, Lower and Ice Condenser Volumes. The normalized fraction of the initial containment dry air mass, W , is calculated on a compartmental basis by ratioing the sum ofnthe product of each compartment's dry air density and compartment volume fractions as determined from data collected at time t , to the same value deter-mined from the initial data collected atntime t . 0 Expressed in equation fons: 1 P un -VP Un P Ln -VP Ln PIn - VPIn WF + VWF + VWF Wn= K u Tun L T TIn 1 VWFU Uo Uo + VWF Lo L + VWF Io - VPIo R Uo Lo TIo Page 14
Ip li
Where: W = normalized weight remaining in containment at time tn (dimensionless) ft-1 bs R = gas constant for dry air = 53.34 ibm-'R (The terms cancel) VWF = Volume Weighing Factor (Each compartment volume is ratioed to the Lower Compartment Volume) (dimensionless) P = Compartment Total Pressure (psia) VP = Compartment Vapor Pressure (psi) T = Compartment Weighed Average Temperature (degrees Rankine) Upper Compartment Lower Compartment Ice Condenser Initial Time time at nth data collection 6.1 Volume Wei hin Factors Table 6.1.1 shows the compartment free volume distribution for normal operation: Table 6.1.1* . Containment Free Volume Com artment Free Volume ft Upper 687,819 Lower 365,614 Ice Condenser 210,723 Total 1,264,156 The volume distribution existing at the time of the test may differ from the values indicated in Table 6.1. 1 in two ways:
- Ref. AEPSC I&C Calculation 12-PI-05 'Volume Weighing Factors'age 15
- 1. The total volume of the ice condenser in Table 6. 1. 1 does not include the volume of ice resident in the 'ice basket'.
- 2. The location of the moveable sections of the reactor missile shield do not necessarily have to be in place during the test.
The ice condenser volume was adjusted for the presense of the volume of ice in the ice condenser as determined by the Ice Basket Weighing Program, performed per plant procedure 12 THP 4030 STP.211 between Majch 16 and April 8, 1981. The total ice weight w~s 2.637 x 10 pounds. The standard density of ice, 563lbs/ft , is assumed to calculate the volume displaced, 47,095 ft .3 This reduces the net free volume in the Ice Condenser to 163,628 ft . The location of the movable sections of the reactor missile shield affects the volume distribution between the upper and lower volumes. When the shield is removed from its normal operating position it provides open access to the cont~ol rod drives, and reactor head from the upper volume. The 16, 147 ft of free volume above the head normally isolated from the upper volume by the shields, is then in direct communications with the upper volume. When the shields are in place, the volume is vented only. to the lower containment and is therefore considered part of the lower volume. Table 6. 1 shows the volume distribution of the'containment with a missile shield removed, which is the position the shields were in for )he performance of this test. Had the shields been in place, 16, 147 ft would have been subtracted from the upper volume total and added to the lower volume. The containment volumes used in the calculations of the leak rate in this test are shown in Table 6. 1.,2. Table 6. 1. 2 Containment Volume Ad 'usted For Conditions Existin Durin Unit 2 ILRT. Com artment Free Volume ft Upper 703,966 Lower 349,467 Ice Condenser 163,628 Total 1,217,061 Volume weighing factors were determined from the values in Table
- 6. 1.2'. The volume weighing factors express compartment volumes in per-unit using the lower volume as 'base'. Table 6. 1.3 shows the volume weighing factors used for the calculation of the leak rate in this, test.
Page 16
Table 6.1.3 Containment Volume Hei hin Factors derived from Table 6.1.2 Com artment Volume liei hin Factor Upper Vu 2. 0144 L Lower VL 1.0000 L Ice Condenser I 0.4682 VL 6.2 Containment Pressure and Va or Pressure Equation 6-1 shows that the compartment pressures are compen-sated for vapor pressure in the calculation of weight remain-ing in the containment volume. The evaporation of water from the exposed surfaces of water volumes in the containment would result in an increase in containment vapor pressure as well as total pressure. The condensation of water vapor onto containment surfaces cooler than the dew point of the vapor would cause a decrease in both the vapor pressure and total pressure. If the total pressure were not compensated for vapor pressure, vapor pressure increases due to evaporation would reflect an apparent increase of the containment air mass, which when superimposed over a mass loss due to containment leakage would result in a measured leak rate of a less magnitude than the actual leak rate. Condensation would result in a measured leakage greater than the actual leak rate if the correspondi ng vapor pressure change were not accounted for. The sensitivity of the leak rate calculations to vapor pressure changes is especially great in an Ice Condenser Containment since the energy absorbing ice bed reduces the design accident pressure from 50-60 psig, typical of conventional containments, to 12 psig. The vapor pressure therefore represents a large fraction of the total pressure in the ice condenser containment. 6.3 Containment Tem eratures Containment temperatures are used to compensate the weight remaining calculation for total pressure changes caused by the thermal expansion or contraction of the containment atmosphere. It is recognized that temperature gradients exist in the containment and temperature changes will not necessarily be uniform throughout the containment. Therefore the containment Page 17
is instrumented with 46 temperature probes, located such that each monitors a fraction of the total containment volume. In the establishment of temperature sub-volume boundaries and temperature probe location, consideration was given to the location of physical thermal barriers and heat sources and sinks. The sub-volumes are generally different in size as well as shape, thus, in determining average containment temp-erature, temperature readings are weighed as a function of the volume fraction they represent. The weighing of temperature readings occurs on a compartmental basis. The weighted average temperature in a compartment is given by the following expression. Nc T Z T vgcn i=]. cni Kci T av l< e i g h e d a v e ra g e c o m p a r tm e n t te mpe ra t u re (
' )
cn for compartment c at time tn Temperature at sensor i in compartment c at K cn 'ime t K . Temperature weighing factor associated with sensor Ci i in compartment c. Total number of sensors ih compartment c. Temperature weighing factors, like the volume weighing factors discussed in Section 6.1 vary as a function of both ice condenser load and reactor missile shield placement. 6.4 The Statistical Determination of the Leak Rate There is inevitably a certian amount of random error associated with the leak rate measurements and the containment leakage itself that cause a variance in the calculated remaining weight, Wn, and the leak rate, Lam. In order to determine the leak rate from Wn after a test period of t , a fi rst order (linear) least-squares fit of W n vs t is performed. This method selects a function, W(t)=bt+a, in which slope, b and intercept, a, are determined by minimizing the variance g , of W wi th respect to W( t) . The variance of Wn relative to W(t) fs: Page 18
n 2
" - W(t )) = z - (bt. + a)) (6. 4-1)
(Wi (Wi 1=1 The values of a and b that establish the minimum variance ~ are given by the homogeneous simultaneous solution of the partial derivatives of a with respect to a and b: Ba aa 0 and Ba~ Bb
= 0 (6.4-2)
The solution of the above yield: n n n E Wt - E W E i=1 i=1 i=1 (6.4-3) n n n n E t .2
~ . z W ~ - z t. E W ~ (6.4-4 i=1 i=1 i=1 i=1 n n z
i=1 ti 2 -(z t) 1=1 The slope of w(t), b, is the leak rate expressed as the change in normalized containment weight per unit time. The unit of time used is hours, and thus, L is given by 2400
= (Xwt/day)
Lam tn 6.5 The U er Confidence Limit The 951 Upper Confidence Limit of the leak rate is determined from'he variance of the slope of the least-squares line, W(t), and the value of the t-distribution for n-2 degrees of freedom based on a one-sided 95% confidence interval. The use of the one-sided interval in this test has replaced the two-sided interval used in the Unit 1 and Unit 2 Preoperational tests. The two-sided limit placed upper and lower bounds about the measured leak rate within which there was a 95K certainty of the 'actual'eak rate existing. Since the interval determined by this method is symmetrical, the 954 two-sided interval was actually imposing a 97.5Ã confidence on the upper bound of the leak rate. The imposition of a 954 confidence on the upper limit of the leak rate is equivalent to taking the upper bound of a 90/ two-sided interval. Page 19
The t-distribution is used to estimate the interval about the mean value of a finite set of v (nu) independent normally distributed measurements within which the mean of the popu-lation of infinite measurements from which the finite set was taken; exists to a stated level of confidence. Referring to Table 6.5. 1, the value K of the t-distribution, as determined from the point at which the cumulative dis-tribution of the t-distribution has the normalized value ~/2, defines a two sided interval about the mean of o(nu) independent measurements the entire population of measurements exist to a confidence of 1n . The t-distribution is normalized such that its mean is zero and the standard deviation is one. This allows K(v,a) to be applied directly to the mean, x, and standard deviation s, of any sample U independent measure-ments representing a normally distributed population. The confidence limits are expressed as x + K(u,a ) S. In the application of this statistical method to the leak rate test, the slope of the least-squares line, b, is the of the leak rate and the variance of the 'mean',
'mean'a/ue S , is given by:
n S = E (W. - (bt. + a)) b i=1 n where, t = E t. l=l Page 20
t I,
Oh>> Oa>> TABL~ 6,$ , DISTR!St TIOlS OF g l
)
K o K O>>Sr>>ca of Probabilicy o freeclocn 0.10 0.0$ I 0.0l l 0.001 I 6314 12.706 &3.657 636.619 . 2 2.920 4305 9.925 31398 nM3 3.182 5.841 IÃ941 4 2.132 2.776 4.604 8.610 5 XOI5 5571 4.032 6.859 6 1.943 2.447 3.'707 $ .959 7 1 JL95 2365 3.499 5;405 8 1.860 2306 3355 5.041 9 I JU3 2262 3250 4.781 10 1.8'12 222S 5.169 4387 II 1.796 LAI 5.106 4.437 12 1.782 . 2.179 3.055 4318 13 1.771 ~ 2.160 3.012 4221 14 I 761 2.14$ 2.977 '.140 15 1.753 2.131 2,947 4.073 16 1.746 2.120 2.921 4.015 17 I 740 '.110 23198 3.965 18 1.734 2.101 2.S78 3.922 19 1.729 2.093 2.S61 ~ 3.88) 20 1.725. 2.086 2445 ~ 3.850 21 1.72l %080 X$31 3.819 22 1.717 2.074 ZSI9 3.792 23 1.714 2.069 2307 3.767 24 1.711 2.064 2.797 3.745 25 1.708 2960 5787 3.725 26 I.r06 2.056, 2.779 3.707 27 1.703 2.052 Z.r 7I 3.690 28 1.701 2.048 2.763 ~ 3.674 29 I.&99 2.045 2.756 3.659 30 1.697 2.042 L750 3.646 1.684 '.021 2.704 3851 . 60 1.671 2.000 2.&60 3.460 120 1.658 I.980'.960 2.617 )373 1.645 Zi76 3491 icua mblc Sires the >>aloes of c corresponding to>>ccsnus>>aloes o(the prooabiiicy o 0 >>eel of silnifceancel ofa random eaciablc iaUin9 cnsccte che shaded areas inthe Rlscre. for a ci>>cn number of dryrees of free dom raeaihblcforcheccticnacicm of error. For a onnudcd tcs chcennfcdcncc0rnftsareobtaincd for ocr ihistablciscahcnfromiaoic ill of Fisher fs Yaccsc Sccruoorf i>>kkc j>>r Bi>>f>>fcrcf. Byn'cafe>>r>>f. >>M .Mrec& Erst>>rnt oublashed by Qliect Bc Boyd l 'd EoinburSil by permission of the authors and publishers'he above ~~able 's used to determine the aporopriate value of'K'ased on prevai3.'cg demees of freedom. This table has be n ez"racted " om Basic Statistical Methods :or =. ~i . ers ~cd, Sci ntists. I Page 21
Of the total of n measurements (W.t.) only n-2 are independent since a and b, the slope and interchpt of the least-squares line, having been derived from n (W.t.), can predict any two (W.t.) with the other n-2 measuremeht3. Hence, v =n-2. 1 1 The value of a used is that which corresponds to a 90/ two-sided confidence interval which is equivalent to a 1 - a/2 or 95Ã one-sided interval. The value of a is therefore
- 0. 1. Now, the upper confidence limit of the leak rate, b, is expressed as:
b-K(n-2, O. 1) = Sb The negative sign defines the upper limit since the value of b is negative. 6.6 The Leak Rate Com uter Pro ram 'LRTEST'he leak rate computer program, 'LRTEST', has replaced earlier versions of the two programs used in the Unit I and Unit 2 preoperational test, know as 'CCVDREP'nd 'CCVREPT'.
'LRTEST'ncorporates the revised statistical analysis discussed in Section 6.5 and an added degree of flexibility that its predecessors lacked. 'LRTEST'ccommodates the operator input of certain 'fixed-data': the calibration conversion and correction coefficients of the present instrumentation system, and the volume and temperature weighing factors., The fixed data represents that which is fixed for the duration of one ILRT, but will vary from one ILRT to the next. 'LRTEST'eceives test data from a card reader. The raw test data collected for each test interval is coded onto input data coding sheets and punched on to computer cards. The data includes the data run number, the elapsed decimal time from run 81 in hours, the 46 containment temperatures in millivolts, seven pressures (6 containment, 1 barometric) in psia, and dew point temperatures in millivolts. The data cards are accumulated in a deck in the order of the run numbers.
The program establishes a file for the raw data and computes values expressed in the proper engineering units. The program computes the average compartment and containment pressures, the containment pressure relative to atmospheric, the weighed average compartment temperatures, and the average compartment dew point temperatures. From the average dew point, the vapor pressure is calculated using the Goff-Gratch formulas for saturation vapor pressure over water or over ice. Page 22
For each run of the computer program, the raw input data and the above computed values are summarized for the most recent data run. This is a valuable aid to input data error checking and analysis. Also, at the option of the program operator this summary may be printed for an operator-specified range of runs ending with the last data run. A separate summary of average compartment pressures, temperatures and vapor pressures is also printed for either all the runs entered into the program, or for all the runs in a range specified by the operator. The elapsed time printed for both the individual run summaries and the overall summary is controlled by the starting point of the range. After three data runs have been made or three runs are available in the user specified range, (a minimum of three runs is required to perform the least-squares and statistical analysis) the program calculates the leak rate and 95% upper confidence limit of the leak rate. In addition, the program calculates the remaining weight of the containment, and of each compartment. The remaining weights in a compartment 'c', is given by the following: . P cn
-PV cn cn cn P PV co The individual compartment remaining weights are used only as an aid to data interpretation.
A copy of 'ILRTEST'ppears as Section 7.0 of this report. The program outputs for this test can be found in Section 8.0 of this report. Page 23
7.0 D. C. COOK NUCLEAR PLANT CONTAINMENT INTEGRATED LEAK RATE TEST PROGRAM LRTEST
'age 24
e- ANERICAN ELECTRZ R COMPUTER APPLICATIONS SERVICE CORPORATION DIVISIO'.( HBR=ILRTEST ol/14/75 LIB=>>%%%%%%% SOURCE LIBRARY OUTPUT ol/28/81 11.23. 27 PAGE 0002-=- - 000100 IMPLICIT REAL>>8(A-H P-Z) %% ol/27/78 000200 REAL>>8 K>LVP %% 02/02/78 000300 DIMENSION TEHPUC( 16 ) <<TEMP LC(24) > TEHPZC(7) %% 01/27/78 ------ 000400 DIMENSION TEHPU( 16) <<TEHPL(24) > TEHPI(7) %% 01/27/78 000500 000600 000700 000800 000900 DATA ETR LUC<<LLCtLIC/16~ 24>7/ DIMENSION ill RTDLl(16) <<RTDL2(24) <<RTOL3(07) DATA RTDL1/'ETR-101 ' 'ETR-102 ' 'ETR-103 ' 'ETR-104 ETR 105'>.--
'ETR-106 ' 'ETR-107 ' 'ETR-108 ' 'ETR-109 ' 'ETR-110' ~ 'TR 112 > ETR ll t ' 'TR 128 <<ETR 133 > ETR 113 /
01/27/78 01/27/78 01/27/78 01/27/78 ol/27/78
= --
001000 DATA RTOL2/'ETR-122 'ETR-123 'ETR-124 'ETR-125 'ETR-126 %% 01/27/78 001100 'TR-127 ' 'TR-129 ' 'TR-130 ' ETR-131 ' 'TR-132 %% 01/27/78 001200 'ETP.-134 'ETR-135 '<<'ETR-136 '>'ETR-137 'ETR-138 %% 01/27/78 001300 'TR-139 ' 'TR-140 ' 'TR-141 ' 'TR-142 ' 'TR-143 t 01/27/78 001400 'ETR 144 ' 'ETR 145 ' 'ETR-146 ' 'ETR-113 '/ %%
%% Ol/27/78 001500 DATA RTDL3/'ETR-115 -'<<'ETR-116 '>'ETR-117 '>'ETR-118 '<<'ETR-119-'> = =-- %% 01/27/78 001600 'ETR-120 '>'ETR-121 '/ %% ol/27/78 001700 DIHENSION MUC(99) <<MLC(99) tWZC(99) >M(99) >TINE(99) <<NRA(99) t %% 01/27/78 001800 - ATUC(99) >APUC(99) >AVPUC(99) >ATLC(99) >APLC(99) >AVPLC(99) > %% ol/27/78 001900 ATIC( 99) >APZC(99) <<AVPIC( 99) %>> 01/27/78== -- -=
002000 DIMENSION K( 18) <<SR(70 ) >DP(6 ) <<LVP(6 ) >PRES( 7) t PRESC'( 7) <<VPR(6 ) %% 01/27/78 002100 DIMENSION WTUP(16) >WTLOM(24) >WTICE(7) >TABLE(97) %% 05/23/78 DATA TABLE /6 ~ 314<<2 ~ 920<<2 ~ 353>2 132<<2 ~ 015<<l 943>l 895<<l 860<<l 833 ~ 002200 002300 002400
-1.812>1.796>1.782>1.771>1.761>1.753>1.746>1.740>1.734<<1.729>1.725<< -1.721,1.717,1.714,1.711,1.708,1.706,1.703,1.701,1.699,1.697,1.695, 05/23/78 05/23/78=--
05/23/78 002500 -1 694>l 692>1 691>l 689tl 688>1 687<<1 686>l 685>1 684>l 683<<l 682>
~ ~ %% 05/23/78 002600 1 681>l 680<<l 679<<l 679<<l 678>l 677>l 676<<l 676>l 675>1 675<<l 674<< %% 05/23/78 002700 -1.673 >1.673 >1.672 >1.672 >1.671 >1.671 >1.671 >1.670 <<1.670 <<1.669 <<1.669 << >>>> 05/23/78=-- = ==-
002800 -1. 669 <<3%1. 668 > 3%1. 667 <<3%1. 666 > 4%1. 665 > 4%1. 664 > 5%1. 663 > 5%1. 662 > %% 05/23/78 002900 -5%1.661/ %% 05/23/g8 003000 003100 DATA MDUP<<MDLO>MDIC/ UPPER START OF PROGRAH
<<LOWER > ZCE / %% 01/27/78 %%=01/27/78 003200 I=1 = %% 01/27/78 003300 OLGIOO = DLOGZQ(1013.246DO) %% ol/27/78 003400 DLGO = OLOG10(6.107100) 01/27/78 QIBRARYj 003500 003600 . MDEH = 0.0 READ (5<<300>ERR=22<<END=12) Cl>C2>C3>C4>C5>C6<<IXS>IXE<<IPR %>> 02/22/78 %% 01/27/78 ===-= .
003?00 30 0 FORMAT(6F6 ~ 3<<4X<<13>?X>13>?X<<13) 02/22/78%% 02/22/78 003800 I-"2 %% 01/27/78 FEB 5 l98i 003900 READ (5>301>ERR=22<<END=12). K 01/27/78 004000 30 1 FORMAT(6F11.6/6F11.6/6F11.6) %% 01/27/78 I "- 3 RKCiKTVF 1 004100 004200 004300 %302 READ (5<<302<<ERR 22>END 12) SK FORHAT(ZOF8.5/10F8.5/10F8.5/loF8.5/10F8.5/10F8.5/ZOF8.5) 01/27/78 Ol/27/78
-= ==--- . %% 10/24/77 004400 Z=4 %% 01/27/78 004500 READ (5>303<<ERR 22<<END=12) MTUP<<MTLOMtMTZCE %% 01/27/78 004600 %303 FORHAT(loF6.5/6F6.5/11F6.5/13F6.5/7F6.5) %% 10/18/77 004700 I= 5 %% = 01/27/78 004800 READ (5>304>ERR 2'2>END-12) VWFltVWF2>VWF3 02/02/78 004900 %304 FORMAT(3F7.5) %% 10/18/77 005000 WRITE (6>305) Cl>C'2<<C3>C4>C5<<C6tK(l) tK(2) >K(3) >K(7) <<K(8) <<K(9) << %% 01/27/78 005100 005200 K( 13) <<K( 14) >K(15) <<K(4) ~ K(5) >K(6) <<K( 10) <<K(
K( 16) tK( 17) tK( 18) >SR ll) <<K( 12) ~ %>> Ol/27/78-- ----=--
%% ol/27/78 005300 %305 FORMAT( 1Hl << l4X> %%% THIS IS A CHECK OF THE INPUT DATA %%% ////1H %% 10/18/77 005400 'RTD )1ILLI-VOLT TO FAHRENHEIT CONVERSION COEFFICIENTS'/lH >6X> %% 10/18/77 005500 UPPER >12X> LPO'OR >13X> ICE /1H >F5 ~ 2<<3X>F5 2>4X<<F5 ~ 2 ~ 3X<< 10/1 ~77 Paae 25
R=ILRTEST 01/14/75 LIB=<)))))))))))))) SOUR ~NARY OUTPUT 01/28/81, 11.23.27 003 005600 2//Ii 1H t(ILLI VOLT 10/18/77 005700 005800 F5 ~ 2 >4X > F5 2 ~ 3X > F5 ~ > HYGROtlETER TO
'FAtlREt(HEIT COHVERSIOi( COEFFZCIEt(TS'/lH ) T15> 'UPPER-1' T48>> -=
LO)1ER 1 ) T82> ICE 1 /1H ) 9( Flo 5) 1X)//1H ) T15> UPPER 2 ) T )8)
-- =
01/27/78 01/27/78 005900 'LO'HER-2')TG2)'ICE-2'/1H )9(F10.5)1X)////1H )'t(At(Ot(ETER PRESSUR Ol/27/76 006000 E CORRECTICt( COEFFICIENTS'/T40) PU 1 /10(lX>F7 4)//1H ~ 38X> 02/D2/78 006100 PU 2 /1H )9(F7 4>>lX)>>F7 4//1H >38X>'PL 1 /1H >9(F7 4)lX)>
~ ~ 10/24/77 006200 F7.4//1H )38X) 'PL-2'/1H )9(F7.4>lX) >F7.4//1H )36X) 'PZ-1'/ 10/24/77 006300 1H )9(F7 4>lX) ~ F7 4//1H ~ 3SX> 'PI 2'/1H >9(F7 4>>lX) >F7 )// 10/24/77 006400 1H >36X>> P ATt1 llH >9(F7 4>1X) ~ F7 4) 10/24/77 006500 WRITE (6>306) WTUP>WTLOW>WTZCE>VWF1>VWF2>VWF3 Ol/27/78 =
ooeeoo 306 FORHAT(lH-> 'RTD WEIGHTItlG FACT/?5'/jH >27X> 'UPPER'/ZH >9(F5.4)lX)) 01/27/76 006700 F5 4/jH >5(F5 4>lX) >F5 4//1H" >27X> LO>iER /1H slo(F5 4 ~ 1X) > 10/18/77 ooesoo F5 4/lH >12( F5 4) 1X) >F5 4//1H ) 28X> 'CE I 1H )6(F5 4>lX) >F5 4// 10/18/77 006900 //1H > 'VOLU11E WEIGHTING FACTORS'/1H >1X> UPPER > 2X> 'OWER'3X> 10/18/77-- 007000 'ICE'/1H >2(F6.4)lX) >F6.4) 10/18/77 007100 IF (IXS.LE.O) ZXS = 1 01/27/78 007200 IF (ZXE.LE.O) IXE = 999 02/22/78<)) o2/22/7e 007300 IF (WTUP(16).LE.O.O) GO TO 701- 01/27/78= 007400 LLC = 23 01/27/78 007500 GO TO 702 01/27/78 007600 701 LUC = 15 01/27/78 007700 702 NR
"-0 02/02/78 =--- .
007800 LZCP1 = LIC + 1 01/27/78 007900 ODSDOO <C 008100 )t 008200 008300 LUCP1 = LUC DO 20 IR = 1 99 IBYP = 0 t 1 NR IS STORAGE INDEX>PROGRAtl DATA ACCESS LOOP STARTS HERE. READ (5>>100>ERR=42>END=32) NRD>TZHER 01/27/78 Ol/27/78 Ol/27/78-01/27/78 01/27/78
=-
008400 100 FOPt1AT(Z3,1X)F5.2) 02/22/78lE% 02/22/78 006500 %C INPUT SEQUEt(CE CHECK ))% 01/27/78 008600 ZF (t(R.EQ.O.OR.HRD.GT.HRO) GO TO 703 02/09/78 008700 WRITE (10)901) IR>t(RD %)f Ol/27/78 008800 901 FORilAT (1HO>2X, 'ILR005I D INCORRECT DATA SEQUENCE'2X>I2,2X,I3) 02/24/78<)) 02/24/78 006900 GO TO 23 0 1/27/78 =- == =- 009000 32 IF (IPR.HE.O) GO TO 40 ol/27/7e 009100 IPR -"99 01/27/78 009200 GO TO 55 01/27/78 009300 703 HRO = t(RO =.= .K% 01/27/78 === == -= 009400 IF (t(RO.GT.ZXE) GO TO 32 01/27/78 009500 ZF (t(RO.GE.IXS) GO TO 705 01/27/78 OD9600 IBYP = 1 01/27/78 009700 GO TO 707 01/27/78 =- 009800 705 ZF (t(RO.EQ.ZXS) TZt(EST = TZtlER 01/27/78 009900 NR = NR + 1 02/02/78 010000 TINE(ti)\ ) = TIt(ER Tlt(EST 01/27/78 010100 ttRA(t'iR) = HRD 01/27/78 010200 200 FORHAT(lHl> 'RUN t(UHBER'4XsZ3/lH s 'ELAPSED TINE'2X>F5 2///1H ~ ~ 02/22/78))> 02/22/78 010300 'COtlTAItli(EHT TEtlPERATURES DATA CHECK'//1H >7X>'UPPER VOLUHE's 10/18/77 010400 010500 010600 21X> 'LOWER VOLUHE')19X) 'ZCE CONDEt(SER'llH )3X) 'RTD'2X>
't1ILLI-VOLTS'2X)'DEG ~ F- ' 7X) 'RTD' 2X> 'HILLZ-VOLTS'2X>> 'DEG. F. '7X) 'RTD'2X>> 't)ILLI-VOLTS'2X>'DEG. F. '
10/24/77 10/16/77 -=- =- ==- 10/le/77 010700 707 READ (5ilol>ERR=42 Et?D=62) TEtlPUC
~ 01/27/78 01D600 101 FORtlAT(10(F5.2 1X)/6(F5.2 1X) ) 10/18/77 010900 READ (5)102 ERR=42 END=62) TEHPLC 01/27/76--
011000 102 FORMAT(jj(F5.2>>jX)/13(F5.2>jX)) 10/24/77 011100 READ (5>103>ERR=42>END=62) TEt1PIC 01/27/78 011200 103 FORtlAT(7(F5.2,1X) ) 10/18/77 011300 IF (ZBYP EQ 1) GO TO 45 01/2 f78 Page 26
BR=ILRTEST 01/14/75 LIB=NNNKmwxx SO BRARY OUTPUT 01/28/81 1 1. 23. 27 0005 017200 505 FORMAT (1H t32XtABt2XtF6.2t5XtF6.2) 01/27/78 017300 WRITE (6t507) TtlSMUCtTMSMLCtTMSMICtTMSMURtTt!SMLRtTMSMIR 02/02/78 017400 507 FORtlAT (1H-t17Xt'SUtl"IARY OF WEIGHTED AVERAGE TEMPERATURES'//1H 02/02/78 017500 -'UPPER VOLUtlE (DEG- F ~ ) 'F5.2t4Xt 'LOllER VOLU)1E (DEG. F ~ ) 02/02/78 017600 017700 017800 F6 ~ 2t tXt ICE CONDENSER (DEG ~ F ~ ) UPPER VOLUtlE (DEG ~ R ) tF5 2/1H tF6 ~ 2t4Xt LOWER VOLUME (DEG ~ R ~ F7 2t tXt ICE COtlDEt>SER (DEG ~ R ~ ) t F7 2)
)'= 02/02/78 02/02/78 02/02/78 017900 ZF (ZFR.EQ.99) GO TO 35 01/27/78 018000 018100 018200 45 509 READ (5t509 ~ ERR=42tEND=62) VPRltVPR2tVPR3tVPR4tVPR5tVPRbtPRES FORMAT (6F6.3/7F8.5)
IF (IBYP.EQil) GO TO 20 01/27/78 01/27/78 - -= 01/27/78 018300 DP(1) = K(l)>VPRl<VPR1 + K(2)>VFRl + K(3) 01/27/78 018400 DP(2) = K(4)NVPR2NVPR2 + K(5)>VFR2 + K(6) 01/27/78 018500 DP(3) = K(7)>VFR3<VPR3 + K(8)KVPR3 + K(9) 01/27/78 018500 DP(4) =K(10)>VPR4>VPR4 + K(ll)<VPR4 + K(12) 01/27/'78 018700 DP(5) =K(13)xVPR5xVPR5 + K(14)>VPR5 + K(15) 01/27/78 018800 018900 019000 DP(6) =K(16)<VPR6<VPR6 + K(17)<VPR6 + K(18)
. -DO 403 J=lt4 ZF (DP(J).LE.0.0) GO TO 403 01/27/78 01/27/'78 01/27/78 =
019100 CIOOC = 373.16/((DP(J)-32.)/1.8 + 273.16) 01/27/78 019200 LVP(J) = -7.90298>(CIOOC - 1.0) + 5.02808>DLOG10(CIOOC) + DLGIOO 01/27/ je 019300 -1.3816<(10M>(-7.0) )>(10<<(11.344<(1.0-1.0/CIOOC) ) - 1<<) 01/27/78-==-=-- == 019400 019500 403 COtlTZNUE t8.1328%(lOKW(-3 0) )<(10>>(-3.49149<(CIOOC - 1.0)
~ ) - l. ) 01/27/78 01/27/78 019600 DO 50 J=5t6 01/27/78 f 019700 = ZF (DP(J).LE.O.O) GO TO 50 01/27/78 019800 COC = 273.16/((DP(J)-32.0)/1.8 + 273.16) 01/27/78 019900 LVP(J) = -9.09718<(COC-1.0) - 3.56654ttDLOG10(COC) 02/02/78 020000 >0.876793%( 1.0 - 1.0/COC) + DLGO 01/27/78 020100 50 CONTI'/E 01/27/78 =- =-
020200 DO 404 KAY =lt6 01/27/78 020300 IF (DP(KAY).LE.O.O) GO TO 404 01/27/78 020400 VPR(KAY) = 0. 0145038<10>>LVP(KAY) 01/27/78 020500 020600 404 COHTIHUE 01/27/78 - CHECK FOR MISSIHG VAPOR PRESSURE AND CALCULATE AVERAGE. 01/27/78 020700 IF (DP(1).LE.0.0) GO TO 713 01/27/78 020800 IF (DP(2).GT.O.O) GO TO 715 01/27/78 020900 VPAUC = VPR(1) 01/27/78 -- = =
=
021000 VFR(2) = 0.0 01/27/78 021100 021200 021300 021400 021500 713 GO TO 717 VPAUC = VPR(2) VPR(l) GO TO 717
= 0.0 715 VPAUC = 0.5<(VPR(l) + VPR(2) )
01/'27/78 01/27/78 01/27/78 01/27/78 01/27/78 021600 717 IF (DP(3).LE.0.0) GO TO 719 01/27/78 021700 IF (DP(4).GT.0.0) GO TO 721 01/27/'78-021800 VPALC = VPR(3) 01/27/78 021900 022000 022100 022200 022300 VPR(4) = 0.0 GO TO 723 719 VPALC = VPR(4) VFR(3) = 0.0 GO TO 723 01/27/78 01/27/78 01/27/78 01/27/78 01/27/78
=
022400 721 VPALC = 0.5<(VPR(3) t VPR(4)) 01/27/78 022500 723 IF (DP(5).LE.O.O) GO TO 725 01/27/78 ---=-= 022600 IF (DP(6) GT.0.0) GO TO 727 01/27/78 022700 VPAIC = VPR(5) 01/27/78 022800 VFR(6) = 0.0 01/27/'78 022900 GO TO 729 01/27/78 == =-=- == Paae 28
I r BR=ILRTEST Ol/14/75 LIB-"wwwwwwwe SOUR QRARY OUTPUT 01/28/81 11.23.27 il006 023000 725 VPAIC = VPR(6) 01/27/78 023100 VPR(5) = 0.0 01/27/78 023200 GO TO 729 01/27/78 023300 727 VPAIC = 0.5<(VFR(5) + VPR(6)) Ol/27/78 023400 023500 023600 LXtlEAR ItlTERPOLATIOtl FOR PRESSURES. 729 DO 405 tl=l>70)10 HX=Mtl Ol/27/78 01/27/78 10/20/77
= -== -- =
023700 NR=tl>9 10/20/77 023800 tlY=( (M-1)/10)+1 10/20/77 023900 PRDG = PRES(MY) 01/27/78=-= 024000 ZF (FRDG.EQ.O.O) GO TO 408 02/09/78 024100 DO 406 tl=Hl>t(2>2 10/20/77 024200 IF (FRDG.LT.SR(tl)) GD TO 406 01/27/78 024300 IF (PRDG.EQ.SR(tl) ) GO TO 731 01/27/78 024400 IF (H.EQ.tll) GO TO 444 01/27/78 024500 PRESC(MY)"-SR(tl-1)+ (FRDG-SR(N) )w(SR(H-3)-SR(N-I) )/(SR(N-2)-SR(H) ) 01/27/78 024600 GOTO 405 10/20/77 024700 <406 COitlTINUE = 'K% 10/20/77 024800 444 V/RITE (10 ~ 407) NRD)MY>PRDG OR/22/78<> 02/22/78 024900 407 FORilAT(T2) KK))MANOMETER READItlG OFF CALIBRATZOH>>< )RX)I3)RX) 02/22/78<> 02/22/78 025000 - ZR>F9.4) 02/22/78<> 02/22/78 025100 408 PRESC(MY) " -0.0 02/09/78-=-=-=- - -* 025200 GO TO 405 01/27/78 025300 731 PRESC(MY) = SR(H-1) 01/27/78 025400 <405 025500 >C 025600 COtlTINUE AVERAGItlG PRESSURES ALLOMZtlG FOR ZERO ENTRY. PRESCU = 0.5<(PRESC(l) + PRESC(2) ) 10/20/77 01/27/78= 01/27/78 025700 FRESCL = 0.5w(PRESC(3) + PRESC(4)) 01/27/78 025800 PRESCZ "- 0.5))(PRESC(5) t FRESC(6)) 01/27/78 025900 ZF (PRESC(1).LE.O.O.OR.FRESC(2).LE.O.O) PRESCU = 2.0<PRESCU - =--= .. Ol/27/78 026000 IF (PRESC(3).LE.O.O.OR.PRESC(4) ~ LE.O.O) PRESCL = R.OKPRESCL 01/27/78 026100 IF (PRESC(5).LE.O.O.OR.PRESC(6).LE.O.O) PRESCI = 2.0>PRESCZ 01/27/78 026200 026300 0264>00 ACPA=(PRESCUOPRESCLIPRESCZ)/3 ACPG=ACPA-FRESC(7) IF (IPR.EQ.O.OR.IPR.GT.HPD) GO TO 747
==)EK 10/20/77 10/20/77 01/R7/78 026500 35 VRITE (6)508) VPRl)DP(1) >VPR(l) ) PRES(1) >PRESC(1) > 01/27/78 026600 VPRR)DP(2) )VPR(2))PRES(2) >PRESC(2) > 01/27/78 026700 VPR3>DP(3) >VPR(3) ) PRES(3) PRESC(3) > > 01/27/78=
026800 VFR4>DP(4) >VPR(4) >PRES(4) >PRESC(4) > 01/27/78 026900 VPR5 >DP(5) ) VPR(5) ) PRES(5) > PRESC'(5) ~ 01/R7/78 027000 027100 027200 VPR6)DP(6 ) ) VPR(6) )PRES(6) )PRESC(6) )PRES(7) >PRESC(7) ~ VPAUC) VPALC > FRESCU) VPAXC ) PRESCL) PRESCI ) ACPA>ACPG 508 FORMAT (1H,llX, COtlTAItlMEtlT VAPOR PRESSURE DATA CHECK',T83,
~
01/27/78 02/02/78 01/27/78
==-
027300 'COtlTAXt(MENT PRESSURES DATA CHECK'//1H >19X) t'1ZLLI- SX 10/21/77 027400 'DEN POItlT'4X) VAPOR PRESSURE'30X) 'Ut(CORRECTED'7X> 10/21/77 027500 CORRECTED /1H ~ RX> 'HYGROiMETER )SX> VOLTS ~ 8X> (DEG F ) >7X> 10/21/77= 027600 ( PSIA ) > 23X > MAtlOMETER > RX > READXNG ( PSIA ) > RX > READIHG 10/21/77 027700 (PSXA) /1H )5X) 'VPU 1 >10X>F5 2>10X)F5 ~ 2)9X>F7 ~ 4)25X> PU 1 10/24/77 027800 2(SX>F7 4)/T7> VPU 2 ~ 2'( 10X>FS 2) ~ 9X)F7 ~ 4> T83) PU 2 ) 2(8X>F7 ~ 4)/ 01/27/78 027900 T7) VPL 1 ~ 2( 10X)F5 2) >9X>F7 4) T83 ~ PL 1 ) 2(8X)F7 ~ 4)/ 01/27/78. 028000 T7> 'VPL-2'2(lOX>F5 2))9X>F7 4)T83> 'PL-2')2(SX)F7 4)/ 01/27/78 028100 T7) VPI 1 )2(lOX>F5 ~ 2) >9X>F7 4>T83> PI 1 )2(8X)F7 4)/
~ 01/27/78 028200 T7 VPI 2 )2( 10X)F5 2) ) 9X>F7 4>T83) 'PI 2 >2(8X)F7 4)/ ~ ~ ~ 01/27/78 028300 T83 ~ At(BIEtlT ) T95)F7 4) 8X>F7 4/XH ) T24> AVERAGE VAPOR PRESSURES 02/02/78= =-
028400 T86>'SUtlMARY OF CORRECTED AVERAGE PRESSURES'/ 02/02/78 028500 - 1H >T17> 'UPPER CONTAItltlEtlT (PSIA)'T47>F7.4/ 02/02/78 028600 1H > T17> 'ONER CONTAINMEtlT ( PSIA ) ' T47> F7.4) TS1 > 01/27/78 028700 -. 'AVERAGE UPPER PR SSURE (PSIA)'>T120>F7.4/lH >T17> 01/27 j78 -= Page 29
SR=ZLRTEST 01/14/75 LIB=>>>>>>>>>>Nues>> SOUR RARY OUTPUT 01/28/81 11.23.27 007 028800 028900 029000 029100 ICE COiNDEtlSER SIA)>> T120
-F7.4/T81,
( PSIA) >T47> F7 4 > T81 > AVERAGE LOWER PRESSURE ( P F7 ~ 4/T81 > AVERAGE ICE COt(DENSER PRESSURE ( PSIA ) > T120>-
'AVERAGE CONTAINMENT PRESSURE AVERAGE COslTAXtll'IENT PRESSURE (PSIA) T120,F7.4/Tel,
( PSIG) > T120 > F7 4 ) 01/27/78 01/27/78 01/27/78 01/27/78 029200 029300 029400 ZF (IPR.EQ.99) GO TO 40 CALCULATE NORNALIZED WEIGHT FRACTIONS> STORE WITH PRESSURES ~ 747 WUCt(UN = (FRESCU - VPAUC)/THStlUR
= - =
01/'27/78 01/27/78-- 01/27/78
=
029500 WLCtlUN = (PRESCL VPALC)/TNStlLR 01/27/78 029600 WXCHUN = (PRESCI - VPAIC)/THStlIR 01/27/78 029700 029800 MNUH = VWF1>>>ltUCNUN + VMF2NWLCHUN + VWF3%WICNUN IF (MDEt1.GT.O.O) GO TO 749
%>f 01/27/78==
02/22/78 029900 WUCDEN = WUCNUi1 01/27/78 030000 WLCDEN = WLCtlUN %K 01/27/78 030100 WICDEN - "WXCt(UH 01/27/78 030200 VDEN = VtiUtl K% 01/'27/78 030300 749 WUC(tlR) = WUCtlUN/VUCDEN 01/27/78 030400 WLC(NR)=WLCtiUN/WLCDEN 030500 W I IC( t(R ) = WICt(UN/M COEN 030600 W(HR)=WNUN/WDEH 030700 ATUC(HR) "- TtlStlUC 02/02/78 030800 ATLC(HR ) = THSNLC 3f% 02/02/78 030900 ATIC(NR) TH-HIC 02/02/78-= 031000 APUC(HR) = PRESCU 02/02/78 031100 APLC(HR ) = PRESCL 02/02/78 031200 APZC(tlR ) = PRESCX 02/02/78 031300 -AVPUC(hR) = VPAUC - %K 02/02/78. == 031400 AVPLC(t(R) = VPALC << OR/02/78 031500 AVPXC(tlR) = VPAIC 02/02/78 031600 031700 031800 20 Cot(TItiVE WRITE (10>903) 903 FORllAT (1HO>2X> 'ZLR006I 0 <w>>>DATA SPACE EXCEEDED>>>ww>) 02/24/78<w 01/27/78 01/27/78 o2r24/7e
=--
031900 GO TO 23 01/27/78 032000 END OF FILE AND OTHER ERROR NESSAGES 01/27/78 032100 12 WRITE (10>904) I 01/27/78 032200 904 FORHAT (1HO>2X> ILR002I 0 <>END OF DATA ZH SYSTEN GROUP > 02/24/78<< 02/24/78 032300 I2>2X>'x>>>>') 02/24/78%% 02/24/78 032400 032500 032600 23 VPITE (10>905) 905 FOPtlAT (1H >2X> 'ZLR008Z 0 tt>WABHORNAL RUH TERNIHATZON<>>Ht' GO TO 24
- 02/24/78<>
01/27/78 02/24/78 01/27/78 032700 22 WRITE ( 10 > 906 ) I ' 01/27/78 032800 906 FORHAT (1HO ~ 2X> 'ZLR001I D <>>>READ ERROR IH SYSTEN DATA GROUP 02/24/78<< 02/24/78 032900 - X2>2X>) - - -====- 02/24/78% K 02/24/78 033000 GO TO 23 %If 01/27/78 033100 42 WRITE (10>907) NRD 01/27/78 033200 907 FORMAT ( 1HO > 2X> ILR003I 0 <>>READ ERROR IH TEST GROUP > I3 > 2X > <> ) 02/24/78<> 02/24/78 033300 033400 033500 033600 GO TO 23 62 li'RITE (10>90S) NRD 908 FORNAT (1HO>>2X> 'ZLR004I D GO TO 23 f
>>>>END OF DATA ZN TEST GROUP 'I3> '>> )02/24/78ll>>l = Klf 01/27/78 = =--
01/27/78 02/24/78 01/27/78 033700 RESULT PORTIOH OF PROGRAM 01/27/'78 033800 40 IF (HR.GE.3) GO TO 41 K>>> 01/27/78 033900 VPZTE (10>909) %K 01/27/78 034000 909 FORtlAT ( 1HO >2X> ILR007Z D <l>>LESS THAN 3 TEST POINTS NORE DATA HE02/24/78ll< 02/24/78 034100 -EDED<w') 02/24/78K'O 02/24r7e 034200 TO 23 %34 01/27/78 034300 41 TSS -"TINE(1 ) xTINE( 1 ) + TINE( 2 ) NTINE( 2 ) 01/27/78 034400 TS = TINE(1) TItlE(2) 034500 T2SW = TINE(l)>>>W(1)
+ + TINE(2)NW(2) 01/'27/78 01/27/78 . =.
Page 30
R=ILRTEST 01/14/75 LIB=>><wwNwxw SOUR RARY OUTPUT 01/28/81 11.23.27 oo> 034600 WS = W(l) + W(2) %% 01/27/78 034700 WRITE ( 9 > 201 ) =-= - ==- %% 01/27/78 =--- - =- 034800 201 FORMAT(lHl>4SX> '
SUMMARY
OF AVERAGES'///1H >2X>> 'RUN It'2X> 'ELAPSED 01/27/78 034900 >2X>3(34HAVG TEtlP AVG PRESS AVG V PRESS )/lH >10X> TINE'6X> U 01/27/78 035000 PPER' 6X> 'UPPER'7X> UPPER >6X> 'LOWER'6X> 'LOWER'7X> 'LOWER'7X> Z 02/'02/78 035100 -CE'BX> 'ICE'9X> 'ICE'/) 02/02/78 035200 DO 43 I=1>HR 01/27/78 035300 43 WRITE I I I ( 9> 202) HRA( ) > TIME( ) ~ ATUC( ) ~ APUC( I ) >AVPUC( I ) >ATLC( I ) 01/27/78 035400 APLC( I) ~ AVPLC( I I I
) >ATIC( ) >APIC( ) >AVPIC( ) I 01/27/78 035500 035600 202 FOR)'IAT (1H >2X> Z3>4X>F6.2>2X>3(F9.4>2X>F9-4 ~ 3X ~ F9-4>2X) J VRITE (9,205) 01/27/78 01/27/78 =-
035700 205 FORtIAT(lH1>34X> 'RESULTS OF THE LINEAR REGRESSZOH ANALYSIS'/// 01/27/78 035800 -1H >2X>'RUH it'>SX>'W'>llX>'LEAKAGERATE'>9X>'LEAKAGE'>9X> 05/23/78 035900 W UPPER >7X> 'W LOWER >9X> W ICE /1H >10X> 'EXPERIMENTAL ~ 05/23/78 036000 -6X> 'UPPER LItfIT' llX> 'RATE 'SX> 'CONTAZHMEtiT'>3X> 05/23/78 036100 'COtiTAItitlEtiT'5X>'CONDENSER'/) 01/27/'78 036200 REGRESSZOH LOOP 01/27/78 036300 DO 44 Z=3>HR 01/'27/78 036400 TSS = TSS + TINE(I)%TINE(Z) 01/27/78 036500 TS = TS + TIt'IE(Z) 01/27/78 036600 WS = WS + M(Z) 01/27/78 036700 T2SW = T25W + TINE(I)I>M(I) 01/27/78 036800 ARUM = TSS<WS - TS<T2SW 01/27/78 036900 XHRR = I 01/27/78 037000 037100 037200 037300 ADEN = XHRR<TSS A = AtmM/ADEN Bt(UM = Xt(RRNT2SW
- TS<TS - TS>WS .3ftt 01/27/78 01/27/78==- =
01/27/78
= =
B "- SHUN/ADEtl 01/27/78 037400 037500 II=I0.0 WSUil = 01/27/78 01/27/78 ..= = . 037600 SUM OF SQUARED DIFFERENCES 01/27/78 037700 DO 46 L=l>ZI 01/27/78 037800 WLR = A i 8<TINE(L) 3f% 01/27/78 037900 IF (DABS(W(L)-MLR).LE.1.0D-39) GO TO 46- 01/27/78==- =- - - 038000 VSUtl = WSUtl + (W(L)-MLR)<(M(L)-MLR) 01/27/78 038100 COtiTItiUE 01/27/78 038200 AT = TS/Xt(RR 01/27/78 038300 TOT = AT%AT 01/27/78 . . 038400 DO 48 tl= 2 > ZI 01/27/78 038500 48 TOT = TOT + (TIME(N)-AT)I>(TINE(N)-AT) 02/02/78 038600 B = 2400.0MB 01/27/78 038700 EKK = TABLE(ZI-2) 01/27/78 = 038800 SIGMAB = DSQRT(WSUN/(TOT<(XHRR-2.0) ) ) 01/27/78 038900 DEL = EKK<SIGMAB+2400.0 01/27/78 039000 BU = B - DEL 05/23/78 039100 V>RITE (9>206) HRA( II ) >W( ZZ) >BU>B>llUC(IZ)>WLC(ZZ) >WIG(ZZ) = . = = )It( 05/23/78 039200 206 FORtIAT (T4>Z3>5X>F9.5>2(9X ~ F9.5)>7X>F9.5>SX>F9 '>6X>F9.5) 05/23/78 039300 44 COHTItIUE 01/27/78 039400 %C EHD OF REGRESSION LOOP 01/27/78 039500 WRZTE (9>203) B>A 01/27/?8 039600 203 FORMAT(IHO 21X 'FINAL LEAKAGE RATE (% PER DAY) ='9.5 5X 'INTERCE 01/27/78 039700 -PT='>F9.5) 01/27/78 039800 I'RZTE (9,204) BU 05/23/78 039900 204 FORMAT ( 1HO > 21X> 'PPER COHFIDEtiCE LIMIT FOR THE RATE IS > F9 5) 05/23/78 040000 24 CALL EXIT 01/27/78 040100 EHD Paqe 31
8.0 Data Anal sis and Summaries This section of the report contains graphical analysis of data obtained during the conduct of the ILRT. The 'ILRTEST'rogram summaries of average containment temperatures, pressures, and vapor pressures, and leak rate calculations appear in Section 8.2 of this report. Past test experience has shown that the instrumentation package used for this'est is quite capable of measuring the leak rate accurately, as evidenced by the rapid convergence of the 95Ã upper confidence limit of the leak rate and the excellent correlation of results between the 'Type A'nd the Supplemental Test. The error analysis for the instrumentation system predicts + 0.0195 wt/day, and this test correlates well within that interval. 8.1 Gra hical Anal sis Figure '8. 1.1 is a plot of containment weight remaining vs. time for the Type A Test, the slope of the least-squares line is the calculated leak rate. A second line is drawn using the vertical intercept of the least-squares line and a slope corresponding to the 955 upper confidence limit leakage . A line corresponding to the allowable leak rate (0.75 L ) is also shown to illustrate the relatively wide margin 5y which the leakage criterion was met. Figure 8. 1.2 is a plot of the containment weight remaining vs. time for the Supplemental Test. The slope of the least-squares line is the composite leakage rate (L ). Using the vertical intercept of this least-squares line, two additional lines are drawn corresponding to the Supplemental Test correlation limits [(L + L + .25 L ) > L > (L + L - .25 L 0]. Page 32
4 I. f> ik
I 4
4 t-J ~ Itooooo I D.CICooK Pcrrur
~ << Vivre 2'/RT, /Ay /'78/
k. Tr<E 8'@sr Cavrwurrzur Wester Re~we vs. 7i~r' 8 0
-k-! I JO! O 1 0
8 8 i 0 0 '-I 0499/ 00 I ~00 0 Lrwsr Sovt9zrs 4'J're PMEJ9 Co/vrrortacs';', . Twas R'rsr lrAKRArr
. 78' 0 99)DO /0 IE ECSWun 7ine h'49'o Page 33
1I 4 4 1 li)O O.C. CoOA PSAAIr.
~ 1 UkIT c Z'I,RT, .
PAT I'IBI!
+ Surr Zenana>P. riSI 4
COPITAIAlnEP7 LVEIGk 4 QEftAIIJIIIJI'4 VS. 7IIIII 4 4 4
~
t l 1 JJJ
! 4, i g 4 4 0 ~o (MIISS E/MIITA 4j. [- >==PP J
4 x~ -. '41 0 V 4 PL EnEA(Th CoZASJ! 4 4,'
' 4 -, 4 4
I IO
/8'ZuerwcaXuia's ., Page 34
'f I y
8.2 'LRTEST'ro ram Summaries D. C. Cook Unit 2, Integrated Leak Rate Test April 30 - May 4, 1981 8.4.1 Fixed Pro ram Information ~Pa e 8.4.2 Pressurization Runs 1P-25P Summary of Averages 8.4.3 Stabilization Runs 1S - 31A Summary of Averages Preliminary Leak Rate Analysis 8.4.4 'Type A'est Runs 1T - 49T Summary of Averages Type A Leak Rate Analysis 8.4.5 Supplemental Test Runs 1Su - 13Su Summary of'verages Supplemental Leak Rate Analysis Page 35
THIS IS A CHLCV, OF T>(j IHOIJT l)ATA PTn HILLI-vOLI I(> I'Af<<F<>><f. IT Cn)!vhvslow COFf F tel j)IIS
<J>.PF.>> LO'4F I' CF. ?.nn . <).<> 2.oo n.o ?.ou n.u
>>Yor O>>f IF>>>>ILI.I-VOLT TO Fn><<IF~HE,IT COWVI:><SIO < COf:Ff IcftNTS
>> I>>i>> P-I LOWt>(-I ICL-I n,r! 1<.unnOO 32.(>OAnn n.nOO>)5 1.9bhol 0.04nl? I>I.AOAOA l?.unnOO pi<>r r. >~- 7 I.O<>I'.>r 2 I <:F.-2 n.n I ~, n r> n 0 u 32 . 0 n 0 n o 0~n 0~0 0~0 r> ~ 0 If>ooouou 37 normo
~ >!'hr>PI; Tf. <( )><>t S<(I>'f COH>>LCT I(>>< toFFF IC IF.NTS I V-I ln.Ann<> 3<>.l lan 77.0000 27.IS60 2>>.soon ?6.64< 0 26 Vnnn ?6.1530 ?S.nn<>n 7> .1490 I >I I-7 3(. ~ Anno 3'9 ~ 4<>60 ?1 ~ norm 35 ~ 5430 2(> ~ Rnnu 34 ~ >:>?10 26 ~ OOA(> 34 ~ 2350 75 ~ Anno l? ~ <)7.'jo Pl.- I ln.Anno 29.>'r>I<'7.noun 76.82( n 2<..anno 26.3300 26.norm 25.>>3;In 75.Anon 74.)>420 PI -2 lo.onno ?9. ><.24 27.noun ?6.97on 2<,.sono 76.4 rno 26.unnu ?s.974n 2s.Anno 74.9750 P 1-1 ln ~ Anno 3(> Shl <I 7/ 000('7 ~ < '>?0 2( ~ Snou 76>>lbu 26 ~ OOOO 76 ~ 4700 ?5 ~ On<>n ?5 4490 P 1-2 79 (><30 79 ~ T 9 ln ? I Oo I ) ?7 ~ <>03A ?r ~ 4850 7> ~ 4>'bn 26 0030 ?6 ~ 0020 ?5 ~ <>A ln 7N ~ AO30 P-ATM ??.30<>n 44.656A 19.<>?n<> 3<>.r>040 14.66()u 20.7140 I?.49no 74.9390 9.<>><on I>>.f>>I>(o PTO >'f 16HT l><O r ACT<>AS UI>I I'<>
~ r>67>< I ) < I ~ u>>31 A831 A<>r 0 0960 ~ 0960 ~ A>>60 ~ 0296 ~ I'?'96 .A?nr .0296 .AI< r) .OIO> .nl67 .0>I3 I O>>/ I ~ 0415 ~ 0415 ~ <>41'> I>41~ nl ni ~ 02d4 ~ ASH6 ~ <>>>><(> ~ A26h U'&<6 I<>31 .Inaf .1037 . IA3I .Osor> .On>)2 .n24< .(>1<>5 .nl r<<; .>2>9 .<)719 .(>7r.r> .<<4?l ICF . r 730 . 0 73n . u 7<>6 . 0 70< .?23 I . 779<. ~ ? 094
>rnl,(I'~F ><I; 1n<>T l<>v f >>CT<)> ~ IIPPI <> I.<>I>F I' CI 7 ~ 014> ~ I ~ (>Ann >> ~ 46> 7 Page 36
SUNF(ANY 0 .HAG/5 f(UN f'APSF 0 hV(j TFHV AVG Pf)F.SS AVG V PAF.SS AVG TF.'t)P AVG PAF SS hvG v f)(F.SS AVG TF.F)P AVG I HF.SS AVG V P))FSS 7 I HL ~ 'PPI: R ()PPF:R ()ppE)r LOWE)( LOMF.)0 LOWE)( ICF; I Cf. I CF. I O~U e8.9045 26+9463 n.)osr /0 '930 26 9162 0.08OY 1/.3049 ze.946? 0 '35/ 2 O.bo 60 F007 26.944e Oo)049 7'492 26 9152 Q.nTYT I I 3<a(( I 26 '452 0 '354 3 I VO 60.0289 Zb.94)2 0 )042 IU ~ Hlol 26 '122 0 0/YV I I 3'ji? 9 26 '417 0 0349 4 ).Sn 60.7654 26.9306 0 '034 rv. rr44 26 '071 0 F 07))b 49( 7 26 94)h 0 ~ 0348 VU 60 SV77 26.92ro Oe)0?3 rl ~ 2822 26 '981 0 ~ OUZY I I ~ 4032 26,92f(4 0 '343 6 Z.bo 60. eral 1160 2'239 Oe 1023 r) 369) 26 ~ 0<4) 0 '030 I /.4002 26~9?44 0.0329
')er ~
I F 00 60.1199 26 n. Io)z I I o4 /25 26 HHYI 0 '039 17.3129 26~91'94 0 ~ 0 33') 3.bn 67.7060 Zb Ylls 0 F 1005 7) ~ 49)3 26.0((4) 0 '840 I I ~ 2440 26.9124 0 0337 4 ~ OV 67.0249 2'016 0 ~ IUOY 7'052 ?6 ~ 874Q o.OUlb I / ~ 2103 26.9030 0 ~ 0 '333 ln 4.50 6/ 8274 zboU956 Oe)OQY TU ~ 0401 Ze.f(675 n.oHos I 'I ~ )687 26 '961 0. 0.32 7 11 5.00 67 '/154 26 'Y05 0 ~ Ioob ro ~ 7940 Ze.f)640 0+0792 I r. 1263 26 'Y67 0 '320 12 'j.bo 6623 26.UUb9 0 '994 TO;eH)4 26 '574 0,07H4 I 'I ~ V980 ze.UHse 0 '325
)3 6 ~ 00 67 F 598/ 26 '832 0 ~ 090/ Toe6384 26 US34 0 '775 1/ 0752 26 '011 0 '330 14 6.bo 67.5606 '6ze.U/e9 26 0035 0 ~ 0'980 7'913 26 F 85?4 o.oTeS I/ ~ 1103 26 0002 0 0348 lb 7 QU 67.4056 '703 0F 09/3 70 '408 26 '464 0.0761 I/ 1047 26 '732 0 '330 Ib 7 bn e7.44o3 0 '963 IU ~ 5102 26 '449 Q 07b4 I / ~ 1307 26.8'/1/ 0.0337 l/ 8+Un 67 4099 26 '/40 0 '956 'ro.4ezY 26.13419 0+0729 I I ~ 2209 zero/03 0 F 03?1 10 0.50 b/.3510 26 '/39 0 '946 70 '342 26 '4)4 0 F 0728 I I ~ 2171 26 '680 0 '321 19 9 ~ Uo er.?783 26 '696 0 '932 70 '104 26 '394 0 '727 )7 ~ )049 26.0643 0 0:319 ZU 9 bn 6/o?562 26 '679 0+0922 Ivy 3/91 TUBE 26 '369 0 '725 I/ 2020 26 '620 0 0317 ?I )oooo 67 ?321 26 '657 0 '91'Y '/0 '50'9 26 '559 0 F 0724 I? ~ 1930 26 '593 0 0310 ?2 lo ~ bo 67.1276 26.H635 0 '912 70 '286 26 '534 U.O719 )7+2)40 Zeo857Y 0 '310 23 11 ~ VV 67.)053 ?6+0509 0 '90'9 /VS 3300 26 '404 O.oTZI I 'I ~ 1731 26.0519 0 0315 ?4 Il-bn 67.0400 ?ee0575 0 '099 70 '?/34 26.8459 0 '717 I I ~ 1361 26 '509 0 '322 ?b 12.00 67.0235 26.0b41 0 '892 /0 '5?4 26 '4)9 O.OTIS )7 '700 26 '479 0 0'342 ~ ,jn 66 'YH02 26 Ub31 O.0806 TV ~ 2190 zbe0429 0 0711 I/o 1431 26 '469 0 '336 l/
F 2/ 13 F 00 66 F 9404 i?6 ~ US05 0+0800 70 '169 26+03((9 0 F 0710 170'5 26 '430 0 0304 20 )3. b(( 66.'9130 2'sns 0 ~ 0873 /0 ~ 2131 26 '384 0 '708 II 3090
~ 26 '984 0 ~ 0'.307 ?Y 14. UU ee.UHs0 Zb.U4ee 0 F 08/3 70 ~ )762 26 '363 0 '710 1/ 1936 26 '395 0 '332 3() )4 'bo 66.8549 26 '470 0 ~ VH51 1403 26 '343 0 0706 I I .263'5 26 '30'5 0. 031'I.
31 IS. on 66.8321 ?6 ~ 044 0 0 'H73 /0 '5)2 26 '320 0 '707 I /. Z359 ?6 '371 0 0320 Page 37
HF.SULTS OF IHE LINEAR H ION ANALYSIS HVN W LEAKAGE. HATE. ( CAKAOC W I)PPFH W LOWER W ICC F.XPCHI tiCNTAL ()PPCH LIMIT Ha'(C CONTAINMENT CONTAINMFNT C0NOF I IS 8 R J I 00008 -0 '07?6 0 ~ 18/12 I.OOOle 1.00008 0 ~ 99976 4 l.nnuOJ -0 26726 0 '4V91 I.noo21 0 '9997 0 '9946 5 0 '99hs -0 '2300 -0 'b991 I ~ 000J4 0 99852
~ 0 '9919 0 99988 -0 ~ 62003 -0 'bb98 I 00093 0 '9817 0 '9908 / 0 ~ 94963 -0 57978 ~ -0 ~ J3200 I.nnovo 0 ~ 99779 0 99906 ~
0 '99'91 -O.438e8 -Oe22206 I 00132 0 ~ 99756 0 '9895 0 '99/1 -0 '8287 -0 '1919 Ioooovl 0 ~ 99823 0.99869 IU 0 ~ 99958 -0 '/062 -0 '4045 I ~ 00048 0 ~ 99830 0 99854 II 0.99961 -0 'J833 -O.ZJ33c I 00051 0~99830 0 ~ 998b4 12 (1+99954 -0 '1941 -0 2J303 I.ono48 0 '9830 0 ~ 99830 IJ U.99954 -0.29810 -OoZZ530 I ~ 00053 0 99827 0.99817 14 0 ~ 99940 -0.27152 -0 ~ cubRV I.nnoe2 0 ~ 99836 '0.99799 15 0.99951 -o.Z!~e52 -VS 20044 I.nOOel 0 '9824 0.9976~ 16 0 '9956 -n 23vlv -0 e 18634 1.00069 0 '9827 0 99766 I/ 0 99955
~ ~0 21993 -0 ~ I/34J 1,00069 0 99834 0.99747 Id 0 '9963 -0 '0026 -0 Ibb19 ~ I.nonni 0 '9838 0 99/44 19 0.9996Z -0 18296 F -0 ~ I J99/ I ~ 00084 0.99835 VS 9973'5 Zo 0 ')9961 "0 16815 -O I@770 U 1.00085 0 ~ 99832 u.99727 21 0+99980 -0 14814 -0 I IV&39 I ~ 00083 0 ~ 99909 0 '9715 22 0 '9985 -0 12826 F -o.u84oe 1.00097 0 ~ 99906 0 ~ 99705 23 0 99971 -n.llS9o -0 '/455 1.00085 0 ~ 99885 0 ~ 99693 24 0 '99/8 -o.lozes >>0 '6320 I ~ 00095 0 '9889 0 ~ 99694 25 Oe99968 -0 '9474 -O.ob818 I.oon89 0 '9879 0 ~ 99669 26 0 ~ 999/5 -Oi0853? -0 ~ 0>08/ I.oon94 0+99890 0 '9673 2/ 0.99970 -0 '7845 -0 04629 F I 00096 0 '9876 0 '9664 ZH 0 ~ 99946 -0.08120 -0.05102 I.ooln4 0 99875 ~ 0 '9469 29 0 '9965 -0 07639 ~ -Oou4820 1.00094 0 '9874 0 ~ 99636 30 0 '99/Z -0 07005 ~ -0 F 04334 Iooollo 0 ~ 9987'5 0.99624 31 O.99961 -o.oevzv -0 '4230 I ~ 00095 0 ~ 99867 0.99623 FINaL LEAKAGE PaTE (% PLH OAY) = -0 ~ 04230 INTERCFPT= 0 ~ 99984 UPPER CONFIOCNCE LIMIT FOR THC HATE IS -0 '67?7 Page 38
SUMMARY
0 GES RUN ll ELAN SEU AVG TEMP AVG PRESS AVG V PRESS AVG TEMP AVG PRESS AVG V PRESS AVG TEHP AVG PRESS AVG V PRESS I I HE UPPER . UPPER, .. . =. UPPER ,.LONER . .. LOWER ... LOHER .. . ]CK . ICE . ICE I 0~0 69.]4]7 0~0 601 '130 7'935 0~0 o.]2]e ]6<<8504 0 ~ 0 0<<5266 2 1.00 69 6250 0~0 590 '125 72 '897 . 0~0 o.12eS 16.8627<< 0 ~ 0 0 ~ 5330 3 2 F 00 69.7087 69 '494 0~0 523.0715 72.1841 0.0 0 ~ 1294 1'522 0 ~ 0 468 ~ 3?41 2.50 577 '485 5))<<]095 5 6 F 00 F 00 69,7495 69 '869 0~0 0 ' 0~0
. = 610.7735 590 '403 72 1833 ..72+]569 72 '169 . 0 ~ 0 0~0 .
0~0 0<<]303 0 ~ 1310 0<<]320
]6+8584 1'793 17 0197 =
0 0 0
~ ~ ~
0 0 0 537 '050 505.7419 7 5.00 69 A]68 0~0 603 'Z79 72 '790 0~0 0 '344 1'073 0~0 542 '652 8 6 F 00 69 '557 0~0 609 '247 , 72+]753 0~0 0 1334 16 ~ 9747 . - 0~0 516 '?28 9 7+00 69 '588 0~0 670.8578 72 '192 0~0 0 ~ ]304 17 ~ 0934 0~0 420 0445 10 8 00 69 '956 0~0 659 '614 72 '877 0~0 0<<]264 17 ~ 0955 0<<0 372 '063 11 9.00 69 '198 0~0 636 1914 71 '969 . . 0 0 0 ~ 1216 16 9156 0~0 364 2604 12 10.00 69<<9078 0~0 608 '686 7]<<9208 0~0 0 ~ 1170 ]6 8032 0~0 3]4<<8742 13 11.00 69 '333 0<<0 1]1.9387 7l.eso6 o.o 0<<))29 1'725 0~0 244.0879 14 12 00 69.9612 0 ' 0<<]335 . 7]<<8?8] . .0 ~ 0 0<<]090 16.7524 0~0 0 ~ 0321 15 ]3<<00 69 '?78 0<<0 0<<]580 7]<<7335 0~0 o.lo4e 16 '894 0,0 0 '600
]6 14.00 69 '736 ~
0 0 0<<]530 71 F 6629 0~0 0 F 1010 16 '264 0~0 0 ~ 1549
]7 15.00 69 '950 0~0 0<<]020 .. 7] ~ 59]3 0 0 = 0 ~ 0967 =- 16 ~ 9594 . 0 ~ 0= , .-0 1508 ]8 16.00 70.0228 25 '803 0<<))22 71 4495 25 ~ 1663 0 ~ 0944 ]7+]786 25 '932 0 '345 19 17 F 00 70 '340 26 '857 0 1103 71 '489 26 1586 0 ~ 0898 1'7S2 26<<]833 0.0345 20 ]7<<50 To.oe58 26 '290 0<<]095 = . 7] ~ 3925 Zb<<5045 0 ~ 0887 17 2175<< ~ 26<<532] 0 ~ 0321 21 18.00 69 '084 26<<79]8 0.1072 71 2694 26.'7611 0 ~ 0874 17 '705 26 '914 0 ~ 0334 22 18 ~ So 69.2748 26 '733 0.1072 71.1176 26 '435 0 ~ 0857 17 '442 26.7741 0 ~ 0345 23 19 F 00 69.2124 26.8254 ==0 1072 71 0603 26 7962 0 0847. 17 2955 . 26 8271 0 ~ 0342 24 1'0 69 '284 2e.8]e7 26 '550 0 1068 70 9698 '595 26 7862 0 ~ 0827 ]7 ~ 2903 26 '152 0 ~ 0336 25 20.00 69.1597 0 1064 70 26 9257 0 ~ 0819 1'240 26 '556 0 '348 Page 39
q<1>15'h<IY <s). 5 Vt.e>h('t aa ~ r< i ~ ~ ~ I I 5) <ai i> c>V6 Il /apc >.I I 4<< AV<> sc Ie>pl- c>$ A V< ~ (< rile h V(i s>sr) ha< i,o<> V 85.1 '~h hV< ~ I< Ie)P />V(~ I Ie).64 hV( V I>4]:.<8>h I)" I 5 i "r'<<pa. Is< > h<a < <as<a) IP ) Ii<<5 u ( I ><ch <r I < ~ >at >a )CI )(:), ) Cf.
) (' <> f >s, ps-'.<a> r C> ~ r< ie le h <>i'rsb I s )r. ~ 5<'3) < i'I. 07('6 ) / ~ .)(s i ~
i ts.l6 I n.n 3)n l es, hes <<t>. / </rs pis ~ tace ) ce <I s<.3'I I,>. ) 0) .I ri 0 <) h i.'+ n.O.3) ii a ).< ~ >> i>i, I])! r'i., >>i, Ah <> ~ <>> I'19 i I <' ) 03 I
~
r'C ~ I'sr'I' 0 O I l>ci 1/ 43)J 2<
~ ~
IS.S .<Cs H 3)) 0.03) I ee ) <> ~ a Ice/a )is l7 I
~ <5 0~ s>>> lis 1 ae) lh ~ >i)ca<< 0 7(see ) I.<<o<i) Ii) I>i 0.A )ln <le> <<ii r; ~ I, ital <I,<,5>.<i<,) ~ r is ~ >> )isla <I 0 7(l<< I ~ 17<>.s )6 ~ t)C>a<i 0 ~ 0 l<<6 r,
1
~ aii 5 h ra sin >>.C>&c> I I>> 0 IC> I r'.> ~ 0 ~ 0 I <ice ) / ~ c>i> 0!p Cs> 8)i>fp 0.0 354 l, <eh'> rf. ~ Ia,)pia I>i e (~ 11M ~
itr,'l'r. H) sl; 0 ~ 0703 )t .Csp/< A~ 0 35h ia(p 's,eilr pis tt Jef. 0 <>> l) 8 I<1 ~ 04)c? r'4 I')r'3
~ 0, A7(eap ) / ~ eases e i',5> 8 i? I ~ f> A.n 1)1 ie ~ < ~ c> iar> ~ ~ 37 ) i'i b'<) i, 0 oit) i ci ~ cc>5>5) 2h. I') 'l.l 4. <i'Io< ) I.!>4) 0 i? F 8 i'I ~ 1 n.nla I i'6 6277 '331 e'> ).6 ~
a
~ <>>s) r I u 0!i'30 c'< ~ >a 1 c>3 O ~ Atsh'I ) I ~ i>C Zi, ~ 55)ie P 0 1) bi'sa> .') i 5 cs ~ +e><<e> ?.C r) lee 0 ~ 'I >> 0 II 'I 0 ~ )!;ct< P(s ~ ><1'>3 s 14 ) / ~ 4i-><IS 'I ri.lr'i c.'<- 0.0.3?ep C ~ fsh,>-e>7>< <a)Fh 0 ~ 0 1><e< Io ~ 0425 pf .>a) 73 0 Ots /(5 )
ts).l)'<-.t<Z]7. 0.03? 7 1<
) i f,< '> ~ i (>
i fs
~ ' '>0,3 e ~ as<>9 7>> b)%(s )ei ~ h)i> 3 0 ~ <> I '> 1 (i ~ 07') )
7!1 C>4
~ ~
- 0) / 1 C>a>(sf>
P (a a lt ) re 53 Zh Sa) a>1 0 ~ (1 ti 0 0 0 ~ 0(aj ai
]I 46)J ) ~
I,<<902 i6 ta ~ t)i'.)c.' 8191 0 ~ 03'31 0 ~ 0334
)9 I <I <> I ts . " 1 .3 ) pfi.<s)) I 0 ~ 0 /91 h9 ~ 99i!4 AH))H A.P619 1 / <<7i>4 2<p. IS) 7'I 0 ~ <1334 ) ii 7 p>E 66eee ]%IS P('ie I< ) Qh A, <I? e35s C s> ~ 99ea) i!Ci 8 o o'I A. 06)to ) I c<<]6 25' 8) 4 / 0 '339 ) I It ~ (e <s ,'l <ah P i'fi bc'.) 7 0 ~ 0 /Hb IO ~ 0162 76 ~ H)(>7 0. Af>81 11 ~ !3861 ?ti ~ 8) 'pl 0 0 l.'l9 lH >e ~ >4 I 6 ra Iei<< ~ 7(i. b 1 c>] 0. 0182 (a9 ~ Vt. 01 26 AH]07 n.06P) 11 h7/>0 2( .81iil 0 ~ nia ) n. 0<> f 6. )'pc?<I ps4. <'Si? 0'e 0 ~ 0 /7'9 C>9 '514 ?6 ~ Hn+I 0.0679 ] I.t 15/ Zf. ~ 8)h? n.n3c 0 )e> ne csea faf>, '<ee ] .> r f>ihi 04 0.0777 69.9601 2/paHn47 0 0 (stab ] I ~ C>hr..p 2(i. 814 I 0 ~ UJ41
- 7) ) A~ <es> cscp ~,)hie I< 7+.ts) 753 0 ~ 0/7/ 69.<ihn9 ?Cp ~ Ho<a?. o.n684 1 /.842<< 26.8171 o.n.354
) 0 ~ ~s> Fii, 3473 Pc -815) n 0768 69.9<<h<< P6 ~ H f)'P 0. (>686 ) I a<<hi<9 Zii ~ 8098 n.n33(i 7 < ] ) .isn ia(>, l lgo ph t<1'IA 0 ~ 0 76.> ip'9 9:<6'r? i?f.'o+a C> ~ Hot<6 11.<<.181 2(' H 1 0R n.n3:lo )) who C (> ~ 79'If> 76 ~ 8 1 t'0 0.07hI c>9 ~ 919's ? fa 5<e)4P 0 06H6 11 <<1'/9 2i <5108 0 0337.
Ph ) ) ~ (io f.!5 ~ I ) Hcl i'f ~ 0143 n. 075/ 69 '0H3 ?6,4077 n.06Ht, ) /.:3( )e ZC .8045< 0 '331
)ia )7.5n 3 iel 76 F 8)39 o,07%1 C>9 ~ (<942 P6 HA27 0.0692 1 / ~ 'i831 2f i8084 O.o33n r" I ) 'l ~ (}n C I,)'ebu ?Ca ~ 8176 0.07<>1 69 ~ HHBC> )f Hno'I 0,06H8 1 I ~ J97.1 Z(i 8 0653 o.n32i pea ) l,h<1 Ca6 ~ jPr<75< Pis ~ 8c>c 6 0. A /cp I 69 '496 Ph 79<<7 na069( ) I.J(.0 J Zf 8023 0 '310 )4 ~ O9 2f. 7997 0.0688 1/.2'?Ca( if> ~ 802H 0 '3155 <<s )4 ~ pcl 6(s ~ r 106 76 ~ <10P3 0.6754 69.>5535 76. 79/7 <) ~ 06H9 1/ J431 Zc ~ 8003 0 '340 31 (a(p ~ )314 ?c>.805>3 0. o 7<><< 6'/ 8570 Pf .7977 n.0693 1 'I ~ 31(i(i 2fi ~ 8004 0 ~ 03i>2 nr ) h ~ 5<> 66 ~ c <si>4 ?i .<)0( 1 0 ~ 015) 69.8i?92 76i /912 0 ~ nt>92 ) I ..I))5 ih. 7919 n.nJZ)
C i) ~ pi<94 ?hi <5074 0 ~ 0 131 6'9 ~ >53ti / jj?i. ~ 7947 n. eh'> I 1 / ~ 3916 Z6 ~ 79H4 0 a 03'3'5
)ca ) Ca fa(i, )nh7 Pri 8045 f> ~ 0740 69.8299 Zf 7'977 <3. 064 ] ] I.27hb 2fs. 7959 0.0331 lh 17.00 tsf> r" s?95 PCi ~ 8>oh7 0 ~ 0 Iran i>9 8?cs 0 26.7942 0.06<<J 11.3]58 ?6.'1969 A.na?7 $6 11 ~ >>> t cp ~ ))HA )Cs. an? 7 0 '732 69. 8)9>< 26 7>>]7F 0.064/ 1/.3o]1 Zf ~ 7964 n.n331 s ~ <io F(i ~ ) <<5'p 76 ~ 8<)46 0 ~ 0735 69 '95h Zf ~ 7947, <1 ~ 064(> 1/.3)>35 (f ~ 7914 0 0.3? I e ) Ie C>n i'ci ~ ) a>foal 76 ~ <><1 I h 0 '735 69 ~ /90<> Ph, 7ali.'?. 0 ~ At>r>5 1 I ~ JS<<<4 Zt . r964 0 ~ 0308 ) aV . <. n Csfp ~ ) e>91 ph. )s(iPA 0 ~ oIJ5 69 ~ 7880 2f> ~ 7937 0 '647 1 I . <<ce)5 2 .7964 0 '311 ie rs ) '1. 5>I C 6, )h76 pc .8onp o. <1135 69 9i'9 26 ~ 785<7 n. 06>a<< ] I ..I> ~ >cs (ie ~ 79i>4 o.n3) (3 <<r 70 ~ s><1 i(i,).<a< < pc ~ 79'13 0 ~ 0 /35 ii9i 1715 Pr, ~ 7877 0.06<<o 1 / ~ 47<pZ C.'6 7934 0 '3i'7 r ~
I Fh ~ ) e>'.3>t 76 ~ /94<> 0 ~ <I /32 is Y ~ I I i.'4 pt . 751<<6 <1 ~ Ah<a 3 1 I 4?ca 6
~ c?fa ~ 7'r04 A.n33J 4 > 71 ~ (io Ftpe ) ) 1'I ?ha 794/ 0 4. lhi:J ph,7al77 n. n(.ii<< ] 1 ~ 4<<68 ?.i- ~ 7904 0 '333 ie<< P),h< ~ f <'>, I '>) 0 7 I'i ~ 7 as cia> I)9 e>9 ~ 746>> pF ~ 7>< I) <1 ~ (i 64 cp 11.ei7 )C 26./u)n oioJ?r".
reh pr ~ Ce > ri
] Pie ~ /9ho A.o/)>t i9 /J19 pt> 7>sr ) A.AC 4) ] I e'>9ca / (6 '<<45 n.0.3C.O Ca e, ei (> i ip ~ s arr>9 )ha 79r" <1. lc) <> 5 4./J/9 I'3)6 A.nt.ri<< 11.<<o]h )h.'I /0 >a 0 ~ 03i'9 ie I 7<.on r6.( /0) 7/s ~ Ia?46 A.o/) 1 6'i 'I 3 /4 ~ Ph ~ 75)cac> <1 ~ (i(>.)'9 1/ <<r 11: Zi . I >'u(I 0 0327 ce> )g ~ hes iefp I')I> ~ pfi /a<ps< (i 0/) cs ~ aay, 7) <] ?i ~ I>', jia 0 ~ ni 4) ] I . 3i'5< J 2h.lht h n.nl)1 ca ie )ia ~ <>>1 C6 "173 pi> ~ I'>74 0. <>'I ) ~ 7 ) ]es Zh, I <36 ~ 0 ~ (>Cire( ) 7 cap<<I'. 26. Ic<f>5 0 ~ 0J)1 Page 40
kF '>tlt. TS OF IHF. L]ILhw kFG)>FSS)ON h:IALYR)r. I.F AYI<GL la A I f, Lt.hhDGF. I)I>>>r.t> ts'(><<F.I- ]C]; I x)-I ~ 't.l Nl ht. I)I'PFk l. )!4) I kn 11. W C(iNI A)N> F)4T CON)A)N>>LN) C{>NI)F t)SF I> 3 (1 ~ <) YU'),1 I')ll 0 bors/4
- tl. 2< {>68 -Va ] 163) ].r nor I 0 ~ 9>>992 0 ~ 999t> 1 (a ~ 19 ~ -0 ~ 08>>7'I n.>>>> ><i7 l.uooai u ~ 99'>44 l> (1, 'j>>>>'>7 n ~ ) 7<><j4 -U ~ 04563 1 . norm.'I n.9<</9U 0 '9950 ci 'I 0 ~ G>>9 /<> -n.?7>>]f, -rl,) I?H9 0.9>>>>G? 0 99'?HO 0 '9>>i?3
- n. > )9><2 -r..23c 60 -o. ] 62<jH,. n.>>>>>>c>c, Os9>>981 0.99929
>1 ri 99<>><ca 0 ~ I 9f>Ca 4 -0 1 J I'.jb ].nr>non 0.999H) 1? ~ 99929 >> n. <>99'>n c> ~ )>>7/a -I) ~ 09$ 6)3 ].nnnn>> O>><>9>>c 0 ~ 9991? ] rl 0 ~ -n 1'3<> -0. 09i? H.I >><)c)>>7 cl 9>>l/84 os 999]f ll '>>>9'c'.<>9'>>
O
~ -n. 130<in -U.U909'I 1. nunc>h ~
- n. 999(. (i U ~ 99917 r..ail/9i 4 0 1 1406 -0.(I /vt)b ) .Onr>p7 0 s9>>912 U ~ 99916
) ) {1 ~ >>l><>usa -O.O'97>>?. -Q.ueb?] ].r<nn)3 n. 99913 0.999U9 )4 0 ~ <>c)<? ><
1 -O.nb?hi -O.oh]ie ).(>nnnk ~ 0. 9<>91? 0.99896
] Cs ct ~ 9<>911 0 ~ t)8691 -0 ~ r? bi?74 1 .nouns 0 ~ 99<If>c> U ~ ]6 0 ~ >>us>fsC> -(1. 0969C. -Qao/332 n.9>>9>>c, 0.9995? 998'9c'.9988/- )7 (> ~ <>9 <> / c) -n.0970? -o ~ u/6)) ) arm(i)3 O.9>>94n u.99R59 I >< r'. >>91 n -n.]04m -U ~ 0>3459 0 ~ <>>>l>c><j V. 9'? 9hli u.99828 )9 (1, <isj>>'/5 -n.(l~l?H -0. 01'1>>v ].Onn)~ n.99961 0 '9851 7(i (1 ~ C>9>> /rp 0 ~ 0'90?R -0.07)9V ].nnr)l>> 0.9>>956 0 ~ 99HC<?
i>] li<jl)>s<> -0 '87?5 -U ~ U 1062 ].non>>1 0.99953 U.99852
?? 11 ~ >>c)<>cs ( 0 ~ Q8h20 -0.07112 ].norm? 0 ~ 999<>2 0 '9864 73 n.'>9<>10 -n ~ 08?3? -u.06829 1. 1) nrlnc Q ~ 99 jc>H r).9>>815 ? I4 (< ~ c>9<> I1 -n.o76?H -U ~ 06203 ).nno]p 0 99943 U~ 99H78 ? ra (l ~ >>9>>10 -n ~ U72n > -0 F 06929 1 e nein()P 0 0 '98H3 ra Ca (> ~ >>>>>>1 R -h 06<?>>3 -0 ~ V5749 ).nnnn>> o.9994n 0 '?9865 ?.7 (1 ~ '>>><16 -n.nb7>>O -U ~ Ub635 ].nnnoh 0 9"935 U. 9981? . c c< O.<>9>>55 -O.O7O33 -0.059?4 n ~ <<997 0.99915 0 '9868 ?s> 0 ~ <><j>>(ar> -n.of>806 -U ~ Ob7c>4 ].nnnol 0 '9'937 0 '9880 I <) 0 ~ >><>a/5(a -n. (){<Hhr! -0 ~ Ubol<9 0 ~ 9>>li>>6 0 )>>9? R 0 ~ 998'52
- n. <>9<>4n -O.nt Ic 3 -u.obt<?e . ).nOnr? 0,9>>92>3 0 '9R59 32 (1 ~ G>>94 1 -n.ne987 -0 ~ Vt>0<9) 1) <>>>s)<>O n.999()9 0 ~ 9<j><55
- 3) (a >>s)9l>I> -n.0683o -0 V'.>9>>2 ) ~ onnln 0 ~ 99'j]9 0 '9H35
>I ~ ci ~ <>9<) >>> -n.0665H -O ~ UHH5(> n ~ 9>>9>>9 9>>9'IC< 0.99>353 '35 <) ~ <>9<>63 -r..0642? -0 ube3) ~ I . Otic>(>3 0.99940 0 '9HSO
';3/> Q ~ >>>><<54 0 ~ 06'.(%6 -O.ubh]u n.9<>>> >3 n ~ 999< '> 0 '9H50
;31 {1 ">99h? -Q ~ (16] l3 -0 '5398 onnn4 0 ~ 9'9944 U ~ 9983); 'I >1 11 ~ >>Ct<>s j4 -{> Qenr>4 -0 '53<3/
1 0 ')>>99] n. 999.'ll > O. 9c?8<, 1 I~ > (1 ~ >>>>9 > ) -n.n58>>c -U ~ ub2?1> ).()nnn3 0.9>>943 0 ~ '99817 Ca (1 V.>>>>960 n ~ 0'>867 -0 ~ u bc> 2'I n.9<)G>>4 0 '>>92'5 0 ~ 99H29 c.) n 9994 I Oa>>>76 -Q ~ 06261 o ~ G>><>Gr> 0.9992' u ~ 99805 Ca s> (s ~ '>9<>>>lin>> ~ 9<>914 0 '9HU)
Ca t (> ~ c) 9 l 1 ca ca -n.neon) 0 ~ U64 14 n. >>>><><> ) n ~ 9>>9?5 0 ~ >>9197 Cs Ca 0 ~ c>99cs > -n.0~9< 4 -Q ~ nb44.< n ~ <)C>9<>) n. >>>9?1 u ~ 99/'?7 Ii ~ c)9<>ca I -n.n,<>>69 0 ~ ttb4<jl {1 ~ i<cia) ~ >ca n ~ 9'99?>s u ~ 9>>18(i Ca (i {'>>9>> <C> -O.uf 04? 0 u >54) 0 ~ < > Ca s
)> 4 s 1> ~ c?>>9].l u,>>9794 Ca / n ~ <><a<>< sl <1 ~ n5>>40 -u ~ l>645 3 n ~ >><><><<9 rl. 9'?9?2 U. '>9'199 ca sl Ci ~ >>9't's I -n. Oct><4:1 -u. ub.l7(a 11 ~ 9<> ~ >l>)s (1 ~ 99 /2{1 0.99><V3 Ca '> (1 ~ <>I lj>! -u ~ bees>< / C) ~ <> <> l> ra <> U '>>>97? u ~ 991'94 I'.;/I I I n~nr>F kn)F I< >>&<a . c)'>c.'~1 ~ >>99<>3 <is ~ tsr la C;>>>f II;I 1>r'I IP I I f {?1 ~ lait." < n(F IR (1 ~ nas'/Cl> ~
Page 41
SUMMARY
OF ES RUN 0 ELAPSE Q AVG TEMP AVG PRFS5 AVG V PRESS AVG TEMP AVG PRFSS AVG V PRESS AVG TEMP AVC>> PRES5 AVG V PRF:SS ~ TIME UPPER UPPF.R UPPER .. LOWER. . LOWFR --== LOWFH---= ICE ICE ICE I 1 0~0 6549482 26 ~ 7813 0 '705 69.6664 26 '726 0 ~ 0639 17 '456 26 '781 0 '327 2 0 F 50 65 9211 26 '817 0>>0708 69 '478 ze.vvee 0 ~ 0641 17 5942 26 '781 0.0331 3 I ~ 00 65 '956 26>>7778 0 ~ 0708 69.esl8 26 '691 o.Oele 1744517 26 '746 0 '335 1.50 65.9656 ?6 '783 n.nvoo 69 6357 ze.veoe 0 ~ 0623 17 454e 26 '751 040303 65 '304 ..0 69 '392 '623 26 '721 0 '306 4 F 00 26 7757 0703= 26.7671 = 0 17 3863. 0 '624 '786 4>> 6 2 50 65 8933 26 I753 0 0705
~ 69.e41e ze.veee 17 26.7716 0.0318 7 F 00 65.P828 26. f723 0.0705 69 6091 26 '631 0.0622 17 3872 26 ~ 7681 0.0321 8 3.50 65.9042 26.7714 0 '708 69 '121 26 76?I 0.0624 1744723 26 '676 0.0322 9 F 00 65.9025 26 '688 0.0705 6'9.5984 26 '616 o.nezs 17 '711 26 '661 0.0317 10 F 50 65 '304 26 7667 0 ~ 0705 69 5950 26 '590 0 '627 17.4224 26.7637 0 '324 11 5.00 65.9242 26 '667 0 0705 6945948 26 '590 0 '62S 17 4143 26 '622 0 '322 lz S.bn 65.~zee ?64 I654 0 '703 69.5842 ?647570 o.nbzs 17.2215 26 '622 0 ~ 0327 13 6.00 65 '557 26 '624 0 ~ 0695 69 '940 26 '540 0 '626 1744470 26 7607 0 ~ 0329 l X 1'(
It C>> 4 Page 42
I' RESULTS OF THE LINEAP RE. ON ANALYSIS I RUN LEAKAGE RATE LEAKAGE w UPPER W LOwER w ICE EXPE.RIMENTAL UPPER LIMIT, .. .RATE = CONTAINMENT =CONTAINMENT .CONOENSER t 3 0.99998 -I ~ 39701 -0 '5509 0 '9996 0 '9998 I ~ 00003 4 0 '9995 -0 '0246 -0 '0993 0 '9987 I F 00000 I ~ 00017 5 0 '9991 -0 '8909 -0 14493
~ 0 '9983 0 99991 I ~ 00019 6 0 '9992 -0.21488 -0.12636 0 '9988 0 '9988 lo00014 7 0 '9982 -0.22165 =Oe 15421 0 '9979 0+99982= ... 0 '9998 8 0 '9973 -0+25223 -0 '8959 0 '9970 0.99976 0 '9978 0.99968 -0 '6284 -0 21035 F 0 '9962 0 '9977 0 '9975 ~1 ~
10 0 '9957 -0 '8690 -0 '3688 0 99949 0 '9967 0 '9973 ll 0 '9958 -0 '8017 -0.23981 0 '9950 0 99968 0 '9970 12 0 '9959 0 '6445 -0 '2956 0 '9946 0 '9961 1.00008 13 0 '9940 -0 '8030 -0 '4631 0.99932 0 '9949 0 '99SS.. FINAL LEAKAGE. RATE l% PFR OAY) = -0 ~ 24631 INTERCFPT= I ~ 00009 UPPER CONFIOENCE LIMIT FOR THE RATE IS -0 28030
~
Pane 43
9.0 Local Leak Test Pro ram 9.1 Past Test Results Summar Local leak tests have been conducted periodically on Unit 2 in accordance with guidelines specified in 10 CFR 50 Appendix J, the FSAR, and the Plant Technical Specifications. Testing is performed under plant procedure 12 THP 4030 STP.203,
'Type B and C Leak Rate Test'. The program consists of 'Type B'ests designed to determine leakage through the containment electrical and pipe penetrations, air lock door seals and overall air lock leakage, and 'ype C'ests designed to determine leakage through containment isolation valves. Table 9.1.1 summarizes the test results for Type B and C testing performed since the Unit 2 Preoperational test.
The leakage detection instrumentation used in the conduct of the 'Type B and C'ests is certified, traceable to NBS, and calibrated pr ior'to the tests. The instruments consist of 4 cali brated flow meters, of different ranges, connected in parallel. A test is performed by isolating a test volume bound by the containment isolation barriers under examination. The test volume is pressurized to 12.0 psig. A regulator in the air supply line to the leak rate monitor maintains the test volume pressure at 12.0 psig while the flowmeters measure the air flow required to maintain this pressure. This flow is equivalent to the leakage out of the test volume. Exact test pressure and temperature is recorded and used to convert the measured leakage to standard conditions. Table 9.1.1 T e B and C Test Results Summar Leakage Expresse as Fraction of L ) Test Date Type B Type C Type B8 C Allowable 0.147 0.443 0.6 May 1979 0.0033 0.1261 0.129 Dec. 1979 0.0041 0.2090 0.213 May 1981 0.0116 0.1633 0.175 Table 9.1.2 shows the valves which were found to leak in excess of the guideline leakage during the two previous surveillance tests, May - June 1979 and October - December 1979. The valves marked with an asterisk (*) were also found to exhibit excessive leakage during the most recent surveillance, May 1981. (See, also Table 9.1.3). Table 9..1.4 lists those valves which were repaired, during the May 1981 surveillance, and also gives a short synopsis of the repair. Page 44
It should be noted that the guideline leakage is not an acceptance cri teria. It is strictly a guide for the Test Engineer to use in determining whether repairs should be made. Seventeen of the thirty-eight valves which failed the Type C test were found in the Non-Essential Service Water System (NSW). Three of these valves (check valves NSW-415-1, NSW-417-1, NSW-244-1) have failed the two previous surveillance tests, while 9 other check valves failed the last test. Three of the seven air operated valve failures were repeats from the previous test. The check valves were repaired by cleaning the seating surfaces and replacing the gaskets. If the check valve had a neoprene seat, the enti re valve was replaced. The air operated valves were repaired by cleaning and lapping the seating surfaces. The other group of valves found leaking above guideline values the Containment Purge valves. The valves in this group which failed were: VCR-101 8 VCR-201 Instr. Rm. Supply VCR-102 8 VCR-202 Instr. Rm. Exhaust VCR-104 5 VCR-204 Lower Cont. Exhaust I The Instrument Room Supply and the Lower Containment Exhaust Purge Valves have failed the previous two tests while the Instrument Room Exhaust Purge Valves failed for the first time in 1981. All of these valves were repaired by cleaning the neoprene seal, and then lubricating with Dow-Corning Silicone III. When VCR-104 and VCR-204 were tested after the above mentioned repair, the leakage was still excessive (27,000 SCCt1). A bead was then welded to the edge of the valve flapper to increase the tightness of the neoprene seal when the valve was closed . This repair reduced the leakage in VCR-104 and VCR-204 to 50 SCCH. Page 45
Table 9.1.2 Valves May-June 1979 Leakage Oct.-Dec. 1979 Leakage As Found As Left As Found As Left sccm ~sccm ~sccm ~sccm NSW-415-1 5000 39,900 NSW-415-3 Passed 14,000 NSW-415-4 5000 681 46,000 718 NSW-419-2 Passed 24,000 NS 3 Teste A asnst WCR-930 47,000 62 NSW-419-4 Tested A ainst WCR-934 47,000 150 NSW-244-1 5000 .0 5,000 764 NSW-244-2 Passed 37,000 220 NS -244-3 Passed 14,000 NS 4 5000 37,000 219 Passed 8,000 100 NS -417-4 2000 40,000 1000 CR-930 5000 Passed CR-934 5000 Tested A ainst NSW-419-4 CR-967 2000 Passed WCR-901 Passed 7 400
- WCR-909 Passed 8,000 5618 (CR-921 5000 17 000 WCR-933 Passed 5 000 125 CR-951 Passed 24 000 137
- WCR-952 Passed 14 000 WCR-954 Passed 24 000 400
- WCR-958 Passed Tested A ainst WCR-954 WCR-961 Passed 10 000
- VCR-101 Passed Tested A ainst VCR-201 VCR-201 2000 25,000 325 VCR-103 Tested A ainst VCR-203 Passed VCR-203 6000 44 Passed VCR-104 Tested A ainst VCR-204 Tested A ainst VCR-204
~ VCR-204 6000 301 41 000 3000 VCR-105 Tested A ainst VCR-205 Passed CR- 05 2000 2472 Passed ECR-18 Passed Tested ainst ECR-28 ECR-28 asse CS-442-1 5000 105 SI-189 Passed 38 SM-1 5000 360 Passed N-102 Passed 500 500 VCR-10 Tested A ainst VCR-11 Passed VCR-11 4959 975 Passed VCR-20 Tested Against VCR-21 Passed VCR-21 29 0 asse N-160 .Passed 1300 520 Page 46
~
~
~ ~ ~ ~
I ~ ~ I ' I ~ e
~ ~ I ' I I ' III I ' 'e I
I I I
'l ' II I
III III
~ '. ~ I ~ ~
I
- ~ '. ~ e ~ ~ ~ - ~ 'I ~ ~ ~ ~ ~ - ~ ' . ~ ~
I III III
~ I ~ I I e el ~ 'e ~ ~
4 Table 9.1.3 ~ ~
- Type C Failures - May 1981 IAULL Nu dt VALVt.b I.fA<<AGL IN f.XCfSS ------------ OI till. .. ~)t<f L f AKAGf VOL UtIL LfA<tAGf LLAI nrif. LfAICAbf DfSC>> IP) ION Gut uf I. I r<F. AS fQU<<D AS Lf.t I I SCCHI ISCCHI tSCCHI CI.V I IISW-415" I At<D Melt-903 CVN-I'I <2l 720.00 29')43.55 0~0 CUV I NSM".<<lo-I AND Melt-.922 CI'II-.2b . . <<uu.ao ... .. )502.uh . 35.la cuv 4 NSW-,I)-4 AND MCtt-')34 CIN-eh 4<la, UU 2000+00 2u')0 ~ I6 ltCI' NSM-24<<- I At<0 'MCI<-945 CVtt-26 360.00 i 2ooo,uo 0~u IICP I MCII-95I AND Melt.-.955.,CI!tt:26 360 ~ 00 .............t.. 2000 ~ 00 )0.05 ltcl' Nsw-244 4 AND wet<-')hll cPN-uh 360.UO 2000 ~ UU 0~0 IICV 4 WCR-954 ANI) MCII-95u CI'N-uh 360 F 00 2000 F 00 239,32 CLV.2 NSM-.<<l5"2 At<D.MCA=9OD. CPN=i.'2 ../20.00......... >..2000,0U, 0~0 CLV 3 NSW-hl5-3 AND MCII-9l I CPtt-23 I20,00 2000.00 0+0 CLV 3 MCN-')U') Attu ASCII-') I 0 CI'N-23 720.00 , + 2000 F 00 I Sl.23 CUV 2.r<SM-hl9-.2 AND MCI<=926. Cl'N=27.... 400.00: .... .t 2000 00, F I.996. 2<<
CUV 3 NSW-4 I9-3 ANU MCI<-')30 CI'N-u5 400 F 00 i 2000.0U 6<<, rlu CUV 3 WCI'I-929 At<0 Wert-93) CVN-45 400,00 > 2000.uo 0 ' IICI' NSM-2!<9-2 AND MCII-.')46 CI'tt-.27 3bo F 00 ..... C,2000 F 00 Ooo NCI' WCI<-952 AND WCII-')56 CON-27 360 F 00 2000.UU 0 ~ U INSII<~ i<Ha t.A'SI tlSM-4l7-h<MCN-963 CPN-73 240 qua + 20UU ~ Uo a.o Ittsllto I'IM. MLSI t<SW-.OI7;3<MCII-967 CPtt=73 . 240.00 . . .. }. 20UO.UU. 0+0 fA>>AUST'CII-I02,iu2 Ir<STII. I<H. Iul<Gf SUPI<LY Vert-tut,aal l6UU F 00 4470 bl 24 tl<< INSIII. I<H. IIUIIGfl leuU.UO i<<0000.00 20<<o6) Lowflt Put<<if tl<tl VCll..lao 204 ~ CPN.63 ........3600 ~ 00 ... >r<oooa.ou. 49.77 Itft.lff vl.vt:. <loo. Io vltr sl-luu cl'lt-I5 I i'.0 ~ 00 <<UI ~67 hut,e7 All< I AIII/I<AU GAS HO>>l Jul< St<" I CVN-3l 60.00 2340 ~ Uu 2340 ou . N-.Z At<D vt.rtl IIDII Ful< IICD1 NIDU<DCII=2UI,.......,-'......... I20 00 ......v 2000.0U. AU Page 48
(, Table 9.1.3 Continued IAt)Lt. NU 4t VALVES SIIOMlttG LEAKAGE IN UI I)It, GUIUEL INf. I.EAKAIif. Cxcfss VOLUHC , . LCAKAGt...,....,. LEAKAGt: I.faKnGE..... OCSCH )PI IOII GIIIOEL It)E AS FOUND AS LEFI ISCCHI I SCCH) I SCCH) CLV ANO CUV OIIAIN )ID)I OCII-62U 162) Cf'N-3l l20 00 F l290 ~ 70 0 ' EUNI sut)P Io IIUI ~ 5 oct)-600e60l cl'N-4I 360+00 ..., ..., 740 ~ 59 ..., . 740.5') . )<litt Ilf.C INC IL t ICH 305 CPN 45 I UIIU ~ 00 l390 F 00 l390 F 00
)
I)CI UFL IN)i CAVe OIIAltt SF-l59 l60 CPN-42
~ 360 F 00 > 2000 F 00 0~0 ItCU I SAHI'Lt'. NCII- I 00 e I0 I CI'N"0 I ..:60 ~ 00.......... I I9'9..... I I9 ~ 8$
altt I'nul/Itnu Gas Hut)lion Ectl-33 cPN-3l 60 F 00 l40l ~ 32 I 401 o 32 AIH I'nttl/Ital) GAS Hutt tC)l-Jl)32 CPN-32 I20IOO, 3303 ~ I2 3303 '2 CUN A III lu Cut)1 ~ AC)I )02 t I 03 CPN=29 l20 ~ 00 ... = ...399 ~ 25 ... .399 '5 tt"2 IO I'Al IiCft-30 I CPN-74 45.0n l)9.71 I)9+77 UOltON INJ ~ ICH-250 CPN"44 2t n.oo >40000.00 99.62 LC)t IO CI'N COII.S 2e5 CC)t-243-25 CPN-25 60.00 . I 009 ~ 57 0.0 CC>t 10 Cl'tI COILS 2 s5 CC)I-244-25 CPN-25 60 00 007 ~ 66 Own CC)t 'IO CI'N COILS 3 ~ 4 CCII-244-72 CPII-72 60+00 IOO)o70 250 '7 CCM FIIOH CEI)-I CCH-43l CPI~-25 90,00 ...>.?000.00 Oen CCw IO Ctt)-2 CCI~-n32 CPN-12 90 F 00 l24.76 0,0 CC)t FAOH CEO-2 CCII-433 CPtt-12 90,00 I 19 ~ 66 0~0 Page 49
Table 9.1.4 Leak Rates of Containment Isolation Valves, and Corrective Actions Taken As Found As Left Val ve ~SCCM ~SCCM Corrective Action NSW-415-1 30,000.0 0.0 Replaced disc, replaced gaskets (SJO - 07592-4) NSW-419-1 1,500. 0 35. 0 Cleaned seating surface (SJO - 07592-1) NSW-419-4 2,000. 0 2100. 0 Cleaned valve, replaced gaskets (SJO - 07592-12) NSW-244-1 2,000. 0 0.0 Clean seat, replace gaskets (SJO - 07592-13) WCR-951 2,000.0 10. 0 Lap seats. replaced gaskets (SJO - 07592-14) WCR-948 2,000.0 0.0 Lapped seat, replaced gaskets (SJO - 07592-16) WCR-958 2,000.0 240.0 Lapped seat (SJO - 07592-17, 39) NSW-415-2 2,000. 0 0.0 Lapped seats, replaced gaskets, disc (SJO - 07592-9, 45) NSW-415-3 2,000. 0 0.0 Replaced valve (SJO - 07592-3, 40) WCR-909 2,000.0 650. 0 Cleaned 5 replaced gaskets (SJO - 07592-2) NSW-419-2 2,000. 0 2000.0 Replaced valve (SJO - 07592-5, 41) NSW-419-3 2,000. 0 65. 0 Replaced valve (SJO - 07592-6) WCR-929 2;000.0 0.0 Lap seats, replaced gaskets (SJO - 07592-7) NSW-244-2 2,000.0 0.0 Replaced valve (SJO - 07592-10) WCR-952 2,000. 0 0.0 Cleaned valve (SJO - 07592-11) NSW-417-4 2,000.0 0.0 Lapped, replaced gaskets (SJO - 07592-33, 48) NSW-417-3 2,000.0 0.0 Lapped seat, replaced gaskets (SJO - 07592-32) Page 50
Table 9.1.4 Continued As Found As Left Valve ~SCCM ~SCCM Corrective Action VCR-101, 201 4,500. 0 25. 0 Cleaned internals, tubed with Silicone 111 (SJO - 07592-42) VCR-102, 202 40,000. 0 205. 0 Cleaned, lubed seal with Silicone 11 (SJO - 07592-49) VCR-104, 204 40,000. 0 50. 0 Wel ded S.S. to val ve so i t would seat against the neoprene seal (SJO - 07592-43) SM-1 2,340.1 2340.0 Cancelled (SJO - 07592-31) N-160 2,000. 0 0.0 Lapped seat and cleaned (SJO - 07592-46 DCR-620 ~ 1,300. 0 Tested Against Cleaned, blued seat DCR-621 (SJO - 07592-24) DCR-621 1,300. 0 0.0 Cleaned and blued seat (SJO - 07592-25, 50) SF-159 2,000.0 0.0 Replaced diaphragm (SJO - 07592-27) ECR-33 1,400. 0 1400.0 Cancelled (SJO - 07592-28) ECR-31, 33 3,300.0 3300.0 Cancelled (SJO - 07592-29) CCW-243-25 1,000.0 0.0 Replaced seats (SJO - 07592-22) CCW-244-25 800.0 0.0 Replaced seats (SJO - 08592-23) CCW-244-72 1,800. 0 250.0 Installed new disc, lapped seat (SJO - 08592-21) CCM-431 2,000. 0 0.0 Lapped seat, cleaned (SJO - 08592-18) CCM-432 125. 0 0.0 Lapped seat, cleaned (SJO - 08592-19) CCM-433 180. 0 0.0 Lapped seat, cleaned (SJO - 07592-20) NSW-244-4 2,000.0 0.0 Replaced valve (SJO - 08592-15) Page 51
Table 9.1.4 Continued As Found As Left Valve ~SCCM ~SCCM Corrective Action CTS-131-W 15. 491 CCM 0.0 CCM Cleaned, blued seat (SJO - 07592-34) CTS-131-E 3.853 CCM 0.861 CCN Cleaned, blued seat (SJO - 07592-36) I CN-250 40,000.0 0.0 Lapped seat (SJO - 07592-51) Page 52
9.2 Hay 1981 L eak Test Results 0, C~ COOK NUC AR PLANT UNIT NO ~ 2 TYPE "8" AND "C" LEAK RA)E TFST OF CONTAINMENT ISOLATION VALVES DURING APRL 1981 OUTAGE TY) E. "8" DATA INFORMATION COHPLtTED TEST VOLUHFS TtST VOLUHE OESCR IP T ION GUIDELINE CORRECTEO TRIAL NO WHEN LEAKAGE LEAKAGE VOLUHE PASSED 1 PERSONNEL AIRLOCKS 612'L ~ CPN-N/A 5511 0 58~0 I 2 PERSONNEL AIRLOCKS 650'L ~ CPN-N/A 5511 ' I~0 I 3 4 ZONE 3 PENETRATIONSltttCTf?ICAL) CPN-N/A ZONE 4 PENETRATIONS(HECHANICAI ) CPN-N/A 1173.0 0 ' I CPN-BOER
)173+0 171.7 I 5 BLIND FLANGE-FUEL TRANS)'tR CPN-I 1200 0 850.0 I BLIND FLANGE-PLANT AIR TO CONT CPN-29 1200.0 0 ' I 7 BLIND FLANGE-ICE, LOADING . CPN-57 480 ' 0 ' I BL'IND FLANGE-ICE LOADING 720 ' 120+I 1 BLIND FLANGE;-FLUX THHBLt HANDLE CPN 76 960 ' 74 ' I 10 BLIND FLANGE-SPARE(UNIT 2 ONLY) CPN-67 240 ' 0 ' I Page 53
o~+"4~~o~" D ~ I: ~ COOK NUCLEAR PLANTe UNIT NO TYPE "8" AND "C" LEAK RAIE TEST OF CONTAINMENT ISOLATION VALVES DURING APRL 1981 OUTAGE TYI'F. "C" DATA INFORMATION COMPLETED TEST VOLUMES TEST VOLUME, OESCR lP I ION GUI OEL INE CORRECTEO TR I AL NO 'WHEN 1.EAKAGE LEAKAGF. VOLUME PASSED 1 CLV 1 NSW-415-1 AND WCH-903 CPN-17 ~ 21 7?0 ~ 0 0 ~ 0. 2 2 CLV I WCR901 AND WCR-'902 CPN-17 UZI 720 ' 350+3 I 3 CLV 4 NSW-415-4 ANO WCH-915 CPN-s Oi24 720 ' 149+4 1 4 CLV 4 WCR-913 AND WCH-914 5 CPN-ZQ)24. 720 ' 0~0 I 5 CUV 1 NSW-419-1 ANO WCH-9?Z CPN-26 480 ' 35 ' 2 e CUQ I WCR-921 ANU WCH-923 CPN-Z6 480 ' 99 ' I 7 CUV 4 NSW-419-4 AND WCH-934 CPN-84 480 ' 2090 ' 2 8 CUV 4 WCR-933 ANI) WCR-935 CPN 84 480 ' 99 ' I 9 RCP I NSW-244-1 ANO WCH-945 CPN-26 360 ' 0 ' 2 10 RCP 1 WCR-951 ANO WCH-'955 CPN-26 . 360 ' .10 ~ 0 2 11 Rcp 4 Nsw-244-4 AND wcH-94H cpN-84 360 ' 0~0 2 12 RCP 4 WCR-954 AMI) WCH-958 CPN-84 360 ' 239 ' 3 13 CLV 2 NSW-415-2 AND WCH-906 CPN-22 , 7?0 ' ..0 0.
~ 3 14 CLV 2 WCR-905 AND WCH-907 CPN 2? 720.0 185. 2 1 15 CLV 3 NSW-415-3 AND WCH"911 CPN-23 720+0 0+0 3 16 CLV 3 WCR-909 ANI) WCH-910 CPN-23 720 ' 651+2 2 17 CUV 2 NSW 419-2 ANO WCH-926 CPN-27 480 ' 1996.2 3 18 CUV 2 WCR-925 ANI) WCH-927 CPN-27 480 ' 0~0 I 19 CUV 3 NSW-419-3 AND WCH 930 CPN-85 480 ' 64 ~ 9 = 3 20 CUV 3 WCR-929 AND WCH-931 CPN-85 480 ' 0~0 2 ?I Hcp 2 Nsw-244-z AND wcH-946 cpN-27 360 ' 0 '
22 RcP 2 'wcR-952 AND wcH-956 cPN-27 360 ' Oio 2 23 Rcp 3 Nsw-z44-3 AND wcH-947 cpN-Bs 36Q ~ 0 0~0 1 24 RCP 3 WCR-953 ANO WCH-957 CPN-85 360 ' 0.0 25 INSTR ~ RH ~ EAST NSW-411-4 WCR-963 CPN-73 . . 240 ' 0 ' 3 26 INSTR'M ~ lent EAST wcR-961~WCH-962 CPN-73 240 ' Oeo I 27 INSTR'H, WFST NSW-417-3iWCH-967 CPN-73 240 ' 0 ' 2 28 INSTR. RH. WEST WCR-965~WCH-966 CPN-73 240 ' 90 ' I
- 29. .INSTR'H PURGE SUPPLY VCH-101 F 201 leBO.O 24 ' 2 30 INSTR'H EXHAUST VCH-102 ~ ?02 IPUHGE) leoo.o 204 F 6 31 LOWER PURGE SUPPLY VCH-103 '03 CPN 64 2880io 79 5 32 LOWER PIIRGE EX'CR-104t204 CPN-63 3600.0 49 '
33 UPPER PURGE SUPPLY VCH )05ti05 CPN 59 3600oo 124.2 34 UPPER PIIRGE EXH VCH-lob 206 CPN 60 2880 ' 794 ' 35 PRESS ~ RELIEF PU>eE VCH-10 I ~ 207 CPN-65 1440 ' 0 ' 36 HYn~ RETURN LINE tCH-lotZO CPN 95 eo.o 0 ' 37 HYDE SAMPLE ECR-11 F 21 CPN-95 eo.o 48 ' 38 MY'AMPLE ECf)-IZ ~ ZZ CPM 95 eo.o Qio 39 HYD. SA~~LE ECR-I3.23 CPN-95 60 ' 0~0 40 HYn. saMpLE ECR-14.24 cpN-93 eo.o 39 ' 41 HYD ~ SAMPI E ECR 25 CPN 95 60 ' 0 ' Hvo. 5AMpLE EcR-le.26 cpN-93 eo ~ 0 0~0 43 HYO ~ SAMPLE ECR )7+27 CPN 93 eo.o 0~0 Page 54
4 o"~" D CD COOK NUCLEAR PLANT ~ UNIT NP 2 ~o<<>>~ooo TYPE "8" ANO "C" LEAK Rn(E TES) Or CONTAINMENT ISOLATION VALVES DURING APRL 1981 OUTAGE TYPE'C" DATA INFORMATION COMPLETED TEST VOLUMES TEST VOLUHE OFSCRIP'(ION GUIOEL I NE CORRECTEO TRIAL NO WHEN LEAKAGE LEAKAGE VOLUHF. PASSED ECH-IVAN 44 HYO ~ SAMPLE ECR-Jr) ~ 28 CPN-93 60 ' 26.7 45 HYO ~ SAMPLE 29 CPN"93 60 ' 19 F 8 4e HCP-I SEAL WATER CS-442-1 CPN-11 120 ' 0 0 47 RCP-4 SEAL WATFH CS-442-4 CPN-14 120 ' 25.4 48 RCP-2 SEAL WATFP CS-442-2 CPN-12 120.0 20 ' 49 RCP-3 SEAL WATFP. CS-442-3 CPN-13 120 ' 30+5 50 RELIEF VLVE. HDR. To PHT .S1-189 CPN-IS 120.0 401 ~ 9 -.=-- 51 AIR PART/RAD GAS HONITOH SH"I CPN-31 eo.o 2340.1 52 N-2 TO ACCUHULATOHS N102 CPN-32 60 ' 0~0 53 N-? TO PRT N159 CPN-74 45 ' 0~0 54 PRIMARY 'WATER TO PHT PW"275 CPN-33 180 0 Ioo2 55 CHG TO REGEN HEAT EX's-321 CPN-35 180 ' eo.e sory se DEAD WEIGHT CnLI8. Nlx-151-Vl CPN-30 30 ' 0~0 sr GLYCOL SUPP( Y VCH-10 ~ ll CPN-86 480 ' 0~0 58 GLYCOL RETURN VCH-20y2i CPN-56 480 ' 0~0 59 N-2 AND VENT HDR l'OR HCUT UCR-203e207 120 ' 25 ' 60 N-2 AND VENT HOR FOR HCUT N160 ~ OCH-201 120 ' 0~0 el ICF. COND AHU DRAIN HUH UCR-610 '11 300 ' 10.0 e2 CLV ANU CUV DRAIN HOH U(H-620 '21 CPN-31 120 ' 0~ 0..... 63 64 RCDT ORAI)l HDH OCH-205rcve CPN-40 480 ' 0~0 CONT SUMP TO HUT'S OCH-600 bol CPN-41 360 0 '748 ~ 6 es RCS LETDOWN OCR-300 CPN-34 120 ' 0 ~ 0 ee HCP SFAL WATER RElURN OCH-250 350 CPN-37 RHR HECIRC ~ E'CM-305 480 ' 0 67 CPN-45 1080.0 1390 ' e8 RH(r RECIRC >W'CM-306 CPN-46 1080 ' 105 ~ 0 =-.-- 69 pw FDH Rx cnv scH ow209(212) .2lo(21 ll 120.0 0'
' 0' 70 REFUELING H20 RX CAV SFISI (152) rl53(154) 300 71 72 REFUFLING CAV ~ DRAIN 5)'-159eleo CPN 42 HOT LEG sAMPLES NCH-Iobiloe CPN-ee 360 ' 0 0 73 PHFSS Llo SAMPLE. NCR-107.108 CPN-ee eo.o 0 '
60 0 0~0 74 STEAH SAHPLE NCR-109 ~ llv CPN-ee 60 ' 0 ' 75 RcoT snMpLE RGR-)vo.loi cpN-81 60 ' 119+9 76 PHT sAMP(E DcR-202i204 cPN-81 60 ' 0~0 77 ACCUH SAHPLES ICP-5 ~ 6 CPN-81 eo.o 0~0 78 AIH PAHT/HAO GAS MONITOH ECH-33 CPN-31 eo.o 1401 '
'N ~ SI PP OISCHe ICM"26V 79 80 'S'I PP OISCH ICM-265 CPN-43(68)
CPN-68(43) 240 240 0 49 ' 81 AIR PAHT/HAO GAS MON tcH-31 ~ 32 CPN-32 120 ' 3303.1 82 CON AIR TO CONT ~ XCR-100 ~ 101 CPN-74 120 ' 0' 83 84 CON AIH TO CONT ~ XCH-IOZe)OJ CPN-29 N-2 TO PRT GCH-301 120 ' 399 ' 85 N-2 TO ACCUMULATORS SV-101 'CR-314 CPN-74 45 F 0 119 ' 60.0 0~0 8e ll SI TEST LINE SI I ~ I /2t 194 CPN 32 270 ' 0 ' Page 55
DE CD COOK NUCLFAR PLANTe UNIT No+ 2 >>O4ooooo TYPE "8" ANO "C" LEAK RATE TEST OF CONTAINMENT ISOLATION VALVES OUHING APHL 1981 OUTAGE TYPE "C" OATA INFORMATION COMPLETED TEST VOLUMFS TEST VOLUME OESCRIPT ION GUIOEL INE CORRECTEO TRIAI NO WHEN LFAKAGE LEAKAGE VOLUME PASSEO 87 PW TO PRT NCR-252 CPN-33 180 0 139 ~ 7 88 CCW FOR HCP OIL CLHS CCM-452 '54t458 1200 ' 79 ~ 6 89 CCW FOH RCP OIL CLHS CCM-4bli453t459 1200 ' 99 ' 90 CCW FOR EXCESS LU MX CCH-460 46Z CPN-75 360 ' 119 7 91 92 CCW FOH RX SUPPOHIS CCH 457 ~ CCW-135 240 ' 159 ~ 7 CCW FOR HX SUPPORTS CCH-4bb~456 CPN-82 240 0 109 ' 93 94 GRAB SAMr LE SM-4~6 CPN-92 ' 60 ' 74 ' . CONT PRESS AD 8 ISOL PPP-300 CPN-94 ooo 0' 95 CONT PRESS AiB ISOL PPP 301 "6N-92 0' 0 0
~
96 CONT PRFSS AiB ISOL PPP-302 CPN-91 0' 0' 0' 97 CONT PHFSS A 8 ISOL PPP-30J CPN-96 0 0 0' 98 CONT PFFSS ALARM PPA-310 311 CPN-97 0~0 99 CONT VHFSS ALARM PPA-312 '1J CPN-98 .0 ~ 0- .49 ~ 8-.. 100 BORON INJe ICM-?50 CPN"44 240 ~ 0 99 ~ 6 101 BORON IN'CM-?51 CPN-44 240 ' 0~0 102 WELO CHANtlEL PRESS CA-181S CPN-83 30 ' 0 ' 103 wELO CHANNEL PRESS CA-181N CPN-83 30 ' 0~0 104 GRAB SAMPLE SM-8+ 10 CPN-89 eo.o 5' 105 CCW TO CPN COII.S Ze5 CCw-243-25 CPN-25 60 ' 0' . 106 107 CCW TO CPN COILS 2 ' CCW TO CPN COILS 3 ' CCW-244-25 CPN-25 60 ' 0~0 CCW-243-72 CPN-72 eo.o 0 ' 108 CCw TO CPN COILS 3e4 CCW-244-72 CPN-72 60 ' 250.5 109 CCW TO CEO-I CCM-430 CPN-25 90 F 0 0' 110 FROM CFO-I CCM-431 CPN-25 90 ' lll ll? CCW CCW FHOM CPN COILS 2 ~ 5 CCH-440 CPN-25 90 0 0 0 0~0 CCW TO CEO-2 CC<-432 CPN"72 90 ' 0 ' 113 CCW FHOM CEO-2 CCM-433 CPN-72 90 ' 0~0 114 CC'W FROM CPN COILS 3e4 CCH-441 CPN-72 90 ' 35.0 115 GLYCOL SUPPLY EXP'-Ibetl'~9 CPN-86 eo.o 0~0 116 GLYCOL RETURN EXP'-Ibl)158 CPN-56 eo.o 0~0 117 POST ACCIOENT SAMPLING RETUHN CPN-67 30 ' 24 ' 118 POST ACCIOFNT SAMPLING SUPPLY CPN-67 30 ' 90 ' 119 POST ACCIOENT SAMPLING H-II/IZ CPN-32 eo.o 0 ' Page 56
0 ~ C ~ COOK NUCLEA PI ANT ~ UNIT NP ~ 2 ++++++++4+ TYPE "8" ANO "C" LEAK PAlE TEST Ot CONTAINHENT ISOLATION VALVES OURING APRL 1981 OUTAGE CONTAINMENT SPRAY CHECK VALVFS CHECK START F INISH START FINISH LEAK RATE LEAK RATE DATE SUPPLEMtNTAL VALVE, TIME I IHF ELEVAT ION ELEVATION TO PASS ACTUAL TESTEO JOB VROUW,R CTS-127E. 12-' 12:ll l 16:I) 634 F 000 634 F 000 21 '10 -0 ~ 0- 3-?7 CTS-127W 16'- ll 634 ~ OOV 633 '90 22 '50 i 0 237 3-27 CTS" 131E CTS-1318 12:11 9: 16:11 640.000 639 '06 F 000 3 '53 3-27 36 12:ll 0 13: 0 640 ~ OOV 640 F 000 F 000 0 ' 4-20 CTS-131W 16:11 640 F 000 639 '22 3 '30 15 '91 3-27 34 CTS-131W 9: 0 IO: 0 640 ~ OOU 639 '79 3 '30 0 861 4-20 Page 57
D C~ COOK NUCLE.AR PLANT ~ UNI T NO TYPE "8" ANO "C" LEAK RATF. TEST OF CONTAINMENT ISOLATION VALVES DURING APRL 1981 OUTAGE LEAK R AT F.SUHHARV SCCH LA I YPE s>8n 1275.6S 0 '116 . TYPF. "C" 19423.07 0+1762 TOTAL 20698 F 71 0 1878 COHPLLT I ON RATE,SUHHARY TOTAL TESTED INITIALLY- 129 TOTAL RETESTEO- 30 F AILEO" 30 FA ILEO- 0 PASSED- 99 PASSED- 30 OUT OF 129 VOLUHES TO TFST ~ 0 STILL HAVE TO 8E 'TESTED OVERALL COHPLET ION RATE. IS 100 F 00'5 Page 58
10.0 REFERENCES
- 10. 1 Donald C. Cook Nuclear Plant Final Safety Analysis Report
- 10. 1. 1 Initial Leakage Rate Testing of Containment Section 5.2. 1 10.1.2 Containment Leakage Test Program Question 5.93, Appendix Q Containment Integrated Leak Rate (Type A) Testing Question 022. 14, Appendix Q (Unit 2)
- 10. 1.4 Local Leak Rate (Type B and C) Testing Question 022. 15, Appendix Q (Unit 2) 10.2 Donald C. Cook Nuclear Plant Unit No. 1 Technical Specifications 10.2. 1 Containment Systems - Containment Leakage Specifications: 3.6. 1.2 Surveillance Requirements: 4.6. 1.2 10.2.2 Containment Systems - Containment Air Locks Specifications: 3.6. 1.3 Surveillance Requirements: 4.6. 1.3 10.3 American National Standards Institute (ANSI) 10.3. 1 ANS N 45.4-1972 'Leakage Rate Testing of Containment Structures for Nuclear Reactors'0.3.2 ANS N 274 Draft No. 1, 'Containment System Leakage Testing Requirements'0.4 Code of Federal Regulations, 10 CFR 50 Appendix J, 'Primary Reactor Containment Leakage Testing for Water-Cooled Power Reactors.
10.5 Donald C. Cook Plant, Unit 2 'Reactor Containment Building Integrated Leak Rate Test (Preoperational) Test Report'. 10.6 Donald C.- Cook Plant Surveillance Test Procedures 10.6. 1 12 THP 4030 STP.202, 'ntegrated Leak Rate Test'0.6.2 12 THP 4030 STP.203, 'Type B and C Leak Rate Test'0.6.3 12 THP 4030 STP.204, 'Personnel Air Lock Leakage Test'age 59
g, . t I 0
Attachment No. 1 to AEP:NRC:00500E Additional Ini'ormation on Hydrogen Mitigation and Control Donald C. Cook Nuclear Plant Unit Nos.' and 2
. Supplement to AEP:NRC:00500C
1.0 Distributed I nition S stem DI S Instrument Room Isolation Our review of the communication paths between the instrument room and the lower volume subcompartments has revealed that limited communication exists through several small openings and a number of pipe sleeves which are not sealed. Therefore, the DIS design described in Attachment No. 2'o our AEP:NRC:00500A letter has been modified to include two 'additional igniters (one per train) in the instrument room. These two additional igniters will be installed
~ ,}n Unit 1 during the current refueling outage and in Unit 2 during the next ice weighing surveillance shutdown (late 1981) (See Section 3.0 below for a discussion of Clasix results). Thus, the Cook Plant DIS will employ a total of seventy (70) igniters per Unit.
1.2 DIS Technical S ecifications, Proposed Technical Specification Table 3.6-1A, submitted by our AEP:NRC:00500C letter dated May 29, 1981, has been modified to reflect the addition of two igniters (one per train) in the instrument room. Revised pages reflecting this change for each Unit of the Cook Plant are contained in Attachment No. 4. 2.0 Ice Condenser Insulation s The ice condensers in Cook Units 1 and 2 are very similar to those in McGuire and Sequoyah-. ,However,, instead of polyurethane foam, fiber-glass encapsulated in polyethylene bags is'mployed in the Cook Units for insulation purposes. The insulation is'ocated between the con-tainment wall and the crane wall and the air handling ducts, and is covered by galvanized steel sheets with joints between panels sealed to prevent vapor penetration. Fiberglass exhibits very stable material characteristics even at high temperatures. Existing data indicate that fiberglass begins to
'soften(1) at about 1350oF, and that significant decomposition is not expected except at much higher temperatures.
The other component which makes up the insulation assemblies is polyethylene sheets. The thickness of these sheets is about 6 mi ls. Review of existing literature on the thermophysical properties of polyethylene shows that. significant degradation (greater than a few percept per hour) has been observed at temperatures in excess of 700oF< ). The energy content of polyethylene is reported to be about 1.3x104 BTU (3f
P
~ J ~ A t
1 I 0
Recent analysis performed for the Cook Units using the modified CLASIX code predicts upper plenum temperatures of approximately 1100oF for short durations (see Attachment No. 2). Burns in the upper plenum exist for no more than 10 seconds. The shortest interval between burns is approximately 60 seconds. The Cook temperature profile of the upper plenum generated by CLASIX is similar to that of Sequoyah. Using the CLASIX results at the upper plenum as temperature inputs, TVA has calculated the heat-up rate of equipment, such as igniter assembly box and cable within condui ts, in the region and found that the inside surface temperature of the metal casing does not exceed 270oF. Therefore, it is reasonable to believe that, due to the similarity between th'e transient temperature input data for Cook and Sequoyah, the results obtained by TVA can be used as a good approximation for the inside surface temperature of the galvanized steel cover on the insulation. Given these conditions at the upper plenum, the insulation behind the steel covers is not expected to be exposed to temperatures which might lead to sub-stantial amount of polyethylene degradation. Calculation of the energy content for all the polyethylene in the upper plenum reveals that there would be about 7x106 BTU re-leased into the containment even in the unlikely event of its complete decomposition. This amount of energy is. less than forty percent of the energy calculated by Duke Power for the'ntermediate deck doors and is less than ten percent of the energy generated from hydrogen combustion for a typical CLASIX analysis . Moreover, based on the heat transfer calculations performed on insulation heat-up in the ice-bed region by Duke Power for the McGuire Plant, the temperature of the surface adjacent to the insulation is estimated to be about 370oF. Due to the similar configuration of the Cook and McGuire ice condensers, the heat transfer results reported by Duke are applicable to Cook. Hence, the polyethylene in the ice-bed region of the ice condenser is not likely to experience substantial degradation under these predicted conditions. Therefore, despite the fact that a different type of insulation is used at the Cook ice condensers, it appears that the potential impact of insulation degradation on the containment is similar to that of McGuire and Sequoyah. 3.0 CLASIX Code Results Attachment No. 2 to this submittal contains the preliminary results of a Cook-specific CLASIX analysis utilizing passive heat sinks, a fan flow/head curve and a separate nodal volume representation
~ I V@I
(p~ I . of the ice condenser upper plenum. This analysis indicates that the peak pressure due to hydrogen combustion remains below the containment design pressure. As expected, no combustion occurred, in the upper volume, the fan/accumula'tor rooms, or'he dead-ended volume. A total of thirty seven (37) burns are predicted; seven i.n the lower volume and thirty in the upper plenum. Slightly less than one million pounds of ice remain at the completion of the transient. 4.0 Containment Air Recir culation/ dro en Skimmer (HYS) Fans V The results of the CLASIX analysis mentioned in Section 3.0 indicate that maximum differential pressure between the fan/ accumulator room and upper volume'of 2.5 psi; with the higher pressure existing in the upper volume. In the cours'e of our investigation of the fan survivabi li identified a potential failure'echanism due to the possible ty,'e have development of a differential pressure across the 'fan housing when the upper compartment pressure is greater than the fan/accumulator room pressure. In such case the fan housing could collapse. l<e are investigating various modifications to the HYS fans which would eliminate this concern and will report to you on the schedule for the completion of the selected modifications in a later submittal.
References:
(1) Baumeister,.T., et al, 'Standard Handbook for Mechanical Engineers,'cGraw-Hill (2) Madorsky, S., 'Thermal Degradation of Organic 1964 Polymers,'nterscience, (3) Tewarson, A., et al, 'Categorization of Cable Flammability,'PRI Report NP-1200, Part 1, 1979 (4) 'Resolution of Equipment Survivability Issues for the Sequoyah Nuclear Plant,'VA, May 1981
I
~o <g 4
I
Attachment No. 2 to AEP:NRC:00500E Additional Information on Hydrogen Mitigation and Control Donald C. Cook Nuclear Plant Unit Nos. I and 2 CLASIX Code Analysis
~ l%,~ i
TABLE 1 Cook CLASIX Input MARCH Reactor Coolant Mass and Energy Release Rates S2D S uence Time .,H20 Mass Release Rate H20 Energy Release Rate (seconds) (1bn/sec) (B tu/sec) 0.0 197.2 1.167 x 10 2172 190.5 1.097 x 10 2478 44.85 5.230 x 10 3180 53.53 6.547 x 10 3804 34.82 4.262 x 10 4428 21.40 2.842 x 10 4752 48.42 5.558 x 10 4 5700 19.42 2.182 x 10 6012 14.07 1.583 x 10 6960 5.253 5.989 x 10 7062 4.718 5.388 x 10 7206 4.060 4.693 x 10
I l
TABLE 2
. Cook CLASIX Input MARCH Hydrogen Generation Rates and Temperatures S2D S uence Time H Mass Release Rate H2 Temperature (seconds) (1hn/sec) (F) 0.0 0.0 61 3480 0.0 61 3804 0.0413 67 4116 0.260 1582 4428 0.740 795 4752 1.07 771 5700 0.430 612 6330 0.223 555 6648 0.160 535 6960 0.117 519 8070 0.0367 519
I
'k V
e
TABLE 3 Cook CIASIX Input MARCH Fission Product Energy Release Rates S2D Se uence Time Energy Release Rate (seconds) (Btu/sec) 0.0 0.0 3810 0.0 4116 1803 4428 4800 4752 6708 5376 7000 7080 7135
I l, I 0
TABLE 4 Cook CLASIX Input Burn Parameters Lower Ice Condenser Ice Condenser Upper Dead Ended FAN/ACC Compar tment Lower Plenum Upper Plenum Compartment Region Rooms Hydrogen 7F for Ignition 0.08 0.08 0.08 0.08 0.08 0.08 V Hydrogen /F for Propagation 0.08 0.08 0.08 0.08 0.08 0.08 Hydrogen Fraction Burned 0.85 0.85 0.85 0.85 0.85 0.85 Minimum Oxygen PF for Ignition 0.05 0.05 0.05 0.05 0.05 0.05 Minima Oxygen PF to Support Combustion 0.0 0.0 0.0 0.0 0.0 0.0 Burn Time (sec)* 13
- Based on a flame speed of 6 ft/sec.
TABLE 5 Cook CLASIX Input Com rtment Initial Conditions Lower Ice Condenser Ice Condenser Upper Dead Ended FAN/ACC Compar tment Lower Plenum Upper Plenum Compartment Region Rooms Volume (ft3 ) 249/681 24700 47010 681283 61105 54828 Temperature (F) 110 32 32 75 98 110 02 pressure (psia) 3.14 3.18 3.18 3.17 3.16 3.14 N2 pressure (psia) 11.67 11.81 11.81 11.77 11.71 11.67 H20 pressure (psia) 0.19 0. OQ 0. 0.06 0.13 0.19
TABLE 6 Cook CLASIX Input Flow Path Parameters LC-LP LP-UP UP-UP UC-LC DE-LC F/A-LC Minimum Flow Area (ft ) ** ** ** 2 2 40 30'low Loss Coefficient 2.05 3.04 1.45 1.5 4.2 4.2 Burn Propagation Delay Time (sec)
- 0 *Based on a flame speed of
**Function of door opening.
6 ft/sec.
TABLE 7 Cook CLASIX Input Ice Bed Parameters Parameter Value Initial Ice Mass 2.37 x 10 ibm Initial Ice Heat Transfer Area 2.93 x 10 ft Heat of Fusion of Ice 248 Btu/ibm~ Flow Loss Coefficient 0.42 Initial Net Free Gas Volume 86780 ft
- Includes 150 Btu/ibm actual heat of fusion plus 98 Btu/ibm to raise ice condenser drain temperature from 32 F to 130 F.
TABLE 8 Cook CLASIX Input Ice Condenser Door Parameters Lower Inlet Doors Maximun Opening Angle 55 Minimum Differential Pressure for Maximum Opening 0.0069 psi Maximum Flow Area 990 ft Bypass Flow Area Intermediate Deck Coors Maximum Opening Angle 89 Ninimum Differential Pressure for Maximum Opening 5.5 psi Maximum Flow Area 1326 ft Bypass Flow Area 20 ft Top Deck Doors Maximum Opening Angle 89 Minimum Differential Pressure for Maximum Opening 1.15 psi Maximum Flow area 2040 ft Bypass Flow Area 20 ft Minimum Differential Pressure to Initiate Door Opening 0.005 psi
TABLE 9 Cook CIASIX Input Air Return Fan/H dr en Skimmer S stem Parameters Parameter Value Number of Trains Initiation Time Flow Fractions per Train UC-F/A 0.9569 LC-F/A 0.0359 DE-F/A 0.0024 Flow Rate Head Flow Rate Per Train (in H20) (cfm) 0.0 5.30 x 104 1.0 5.05 x 104 2.0 4.75 x 104 3.0 4.45 x 10 4.0 4.15 x 104 4.5 3.97 x 104 5.0 3.80 x 104 6.0 3.42 x 1044 6.5 3.10 x 10 4 6.8 2.50 x 104 6.9 1.60 x 10 6.9 0.0
- Initiated 10 minutes after the containment reaches 3.0 psig pressure.
TABEZ 10 Cook CIASIX Input S ra S stem Parameters Parameter F/A Drop Diameter (in) 0.0276 0.0276 0.0276 Drop Fall Time 10.66 5.75 1.68 Flow Rate gpn 4000 1800 528 Temperature (F) 125 125 125 Drop Film Coefficient (Btu/hr ft F) 20 20 20 Initiation Time sec
- Initiated 30 seconds after the containment reaches 3.0 psig pressure.
P ~ 0
TABLE ll Cook CLASIX Input Com rtment De ndent Passive Heat Sink Parameters Parameter Value Temperature Lower Compar tment 110 F Ice Condenser Lower Plenum Ice Condenser Upper Plenum 15 F Upper Compartment 75 F Dead Ended Region 98 F Fan/Accumulator Rooms 110 F Radiant Heat Transfer Lower Compartment 25.0 ft Beam Leng& Ice Condenser Lower Plenum 8.5 ft Ice Condenser .Upper Plenum 8.5 ft Upper Compartment 59.0 ft Dead Ended Region 8.5 ft Fan/Accumulator Rooms 8.5 ft
- See Table 15.
TABLE 12 Cook CIASIX Input Material De ndent Passive Heat Sink Parameters Parameter Material Value Emmissivity* Concrete 0.9 Carbon Steel 0.9 Paint 0.9 Stainless Steel 0.4 Thermal Conductivit+ Paint on Steel (UC" 0. 21 (Btu/hr ft F) Paint on Steel (LC, DE, F/A$ gP) 0.22 Paint on Concrete 0.087 Concrete 0.84 Carbon Steel 27.3 Stainless Steel 9.87
~~ nt on ~oAc.<Q&< g.8+
Volumetric Heat Capacity* Paint on Steel (UC) 29.8 (Btu/ft F) Paint on Steel (LC, DE< F/AQVf) 14.7 Paint on Concrete 29.8 Concrete 30.2 Carbon Steel 59. 2 Stainless Steel 59.2 er Exit Heat Transfer Coefficient* Paint to Steel or Concrete 10 (Btu/hr ft 2 F) Concrete to Concrete 10 Conor~tc Qe Steel IO Steel to Concrete 10
'teel to Steel 10 Last Layer Adiabatic Wall 0
- See individual lower plenum wall data in Table 15.
~6 lQ ) tlpug ~pp~~ een~ider M i~ipwi S'<<~+> ~" +
cozz~c~cz en ~i.&~ed vs~p guava
r ~ TABLE 13 Cook CLASIX Input U r Com rtment Passive Heat Sinks CLASIX Initial Wall Wall Temperature Surface Layer Number Layer Layer Number 'escription (F) Area (ft2 ) Number of Nodes Material Thickness (ft) 75 26086 2 Paint 0.001 15 Carbon steel 0.03 12 Concrete 1 10 Concrete 1.89 75 2 Paint 0.001 15 Carbon steel 0.03 75 5284 2 Paint 0.001 25 Carbon steel 0.05 12 Concrete 1 6 Concrete 1 3 Concrete 1.5 75 595 2 Paint 0.001 30 Carbon steel 0.06 10 Concrete 0.83 75 350 3 Concrete 0.15 15 Carbon steel 0.03
~
8 Concrete 0.63 75 25433 12 Concrete 3 Concrete 75 4381 12 Concrete 1 8 Concrete 1.53
0 TABLE 14 Cook CIASIX Input Lower Com rtment Passive Heat Sinks CLASIX Initial Wall Wall Temperature Surface Layer Number Layer Layer Number Description (F) Area (ft2 ) Number of Nodes Material Thickness (ft) 110 540 1 2 Paint 0.001 2 15 S. steel 0.03 110 595 1 2 Paint 0.001 2 30 S. steel 0.06 3 It) CD~~$ g a. Rp 10 110 3224 1 2 Paint 0.001 2 15 S. steel 0.03 3 12 Concrete 1 4 6 Concrete 1 5 Concrete 2.05 gR304 110 k7972 2 Paint 0.001 12 Concrete 3 Concrete GVV 12 110 2 Paint 0.001 12 Concrete 1 6 Concrete 1 3 Concrete 1.61
lp TABLE 15 Cook CIASIX Input Ice Condenser Lower Plenum Passive Heat Sinks C[ASIX Initial Wall Layer Layer Layer Heat Layer Heat Wall Temperature Surface Layer Number Layer Thickness Conductivity Capacity Heat Transfer Number (F) Area (ft2 ) Number of Nodes Material (ft) (Btu/hr ft F) (Btq/ft F) (Btu/hr ft F) 13 80 19100 5 insulation 1 0.15 2.75 0.7 31 steel 0.0625 26.0 56.4 0.0 14 80 13055 5 insulation 1 0.2 3.663 0.7 12 concrete 1 0.8 28.8 0.0 15 15 paint .000833 0.0833 28.4 10 concrete .33 0.8 28.8 0.0
'I l
't e I
TABLE 16 Cook CIASIX Input Ice Condenser U r Plenum Passive Heat Sinks CLASIX Initial Wall Wall Temperature Surface 2 Layer Number Layer Layer Number Description (F) Area (ft ) Number of Nodes Material Thickness (ft) 16 15 9453 1 2 paint 0.001 2 ~/5 carbon steel %-.66- 0-OQ I 3 lG Q-Of 3 ln s~) o 4 o4
I TABLE 17 Cook CLASIX Input Dead Ended R ion Passive Heat Sinks CLASIX Initial Wall Wall Temperature Surface 2 Layer Number Layer Layer Number Description (F) Area (ft ) Number of Nodes Material Thickness (ft) 17 98 6590 2 paint 0.001 25 carbon steel 0.05 12 concrete 1 6 concrete 1 3 concrete 1.5 18 98 16789 2 paint 0.001 12 concrete 1 3 concrete
TABLE 18 Cook CLASIX Input Fan/Accumulator Rooms Passive Heat Sinks CLASIX Initial Wall Wall Temperature Surface 2 Layer Number Layer Layer Number Description (F) Area (ft ) Number of Nodes Material Thickness (ft) 19 110 5640 1 2 paint 0.001 2 25 carbon steel 0.05 3 12 concrete 1 4 6 concrete 1 5 3 concrete 1.5 20 110 10134 2 paint 0.001 12 concrete 1 3 concrete 0.54
r TABLE 19 Cook CLASIX Analysis Summar of Results Lower Ice Condenser Ice Condenser Upper Dead Ended Fan/Acc Compartment Lower Plenum Upper Plenum Compartment Region Rooms Number of Burns 30 Magnitude of Burns (ibm) 62-73 15-40 Total H2 Burned (ibm) 481 595 H2 Remaining (ibm) 88 47 26 256 24 21 Peak Temperature (F) 828 383 1155 168 216 205* Peak Pressure (psig) 10.9 10.8 10.8 10. 5 10.9 10.8 Ice Remaining in Ice Bed at 7080 sec. 9.9 x 10 ibm.
- Occurs before burn period.
~ Stt Chttl OOOOOCFII Fh)I 030$ 0PII SPAIY ~ OSPCT hT OWO OFPO Ilh)il)%II TSIIPKRATLÃC r Tllit IOOIIIOH PIKSOISIE r Tlllt NA)IIISNI POSOONC / T1IK IF) IOKC) IPSlh) CSKC) IPSLO) I SEC) r / M$t / $051 Ott 0 30toO llMot / NOO
/ Nit NT1 tSo0 tSoS tS S / ~ / MI 10oO 10.0 14+0 r ~ / $034 1St+i r $03$ OS.t r $03$ 10.$ r Sea tltof / $40$ tSo0 r MS4 10.0 r %034 Fh t4$ ot r 707 tS,S r SM4 10ot / SCH IIOXlRH tlFFERS)ITlhL PRES%Ã% / TllKISKC) %TO LC Fh LC ~ oO / ~ ~ 0 / NOO loi / NOO 1 0/$ 0$ t ~ 0 / $00$ ~ t / $400 LP t.O r Nae ~. ~ r ~ i+i / 4710 1.$ / $030 tel / NO to< / SttO toS / Nlt tel r N1$ ~ eO r ~ i+4 / $ 030 toS / Stlt t.S r NI~
I)C toS r Nlt t.t r N1$ ~ 3 / 4044 ~ oO / ~ teS r'tlt t.S r Nlt o3 / $03$ ~ 0/N10 lot r NOO loS r 4TN ~ oO / ~ ~ t r $03$ FA el / NIS ~ 0 / $ 000 lot / NOO iA / SOSt ~ 4 / SOtt Oat / ~
il )l
~AEP SZ CASEI 80oOOCF~ FKN 6328GPV< SP RAY OURN 05 AT HV/0 6FPS
~~~=< S~>ORT OUTPUT T IHE PRESSURE(P 5 IA) /TE.'tP ERATURE( F)
(SEC) LC LP UP UC DE PR 5 200E+03 2L ~ 5/ 101. 7 2). 5/ 160 ' 2I. 5/ 012 5 21- 5/ 140- I 21.4/ 173. 3 21 5/ 129 2 5 201 E+03 21 2/ LBO. I. 21. 2/ 162 ~ 4 21 I / 463 0 21 2/ l 38 4 21.3/ 173.8 21.21 LZB 7 5.202E+03 Zl I/ 178 9 20 ~ 9/ 170 2 21 I/ l 64 I 21 0/ 316 9/
~
7 21-0/ 137 2
'3 21-1/
21 0/ 173.4 21 I/ 128 5 5.203E+03 5 204E+03 5.205E+03 5 206E+03 5 ZOTE+03 20 '/
- 20. 8/ 177 6 L77 3 20 7/ 17r I 21 9/ 282 5 20 ~
20 8/ 20 0/ 20 71 9/ 21 ~ 9/ 165 5 166 ~ 8 167 9 169 0 187 3 20 ZO.B/ 184 2 2o.r/ I43 ~ 4 20 7/ 138 2 21 I/ 235 8 I. 36 ~ 2 20 91 20 8/ 20 7/ 20 7/ 21 0/
~
136 135 134 133 134 5 0 20.8/ 20 20
~
173. I 171 9 7/ I 71 7 0/ l 72 6 21 0/ 178 6 20 20 9/ 20 8/ 20 7/ 21 9/ 9/ 128 2 128 1 1ZB 0 127 9 136 0 5 208E+03 22 9/ 409 3 22 0/ 216 0 21 5/ 134 ' 21 5/ 135 7 22. 8/ 106.7 22 9/ 148 I 209E+03 23 3/ 523 8 23. 0/ 22 ~ 4/ 133 ' 22 0/ 23.3/ 23 3/ 5 5 5 5 210E+03 ZLLE+03 212E+03
- 5. ZINE+03 23 7/ 629 8 23.7/ 716 ~ 4 23 0/ 791 3 Z3.0/ 764. 0 22 9/
23 I/ 23 6/
- 22. 8/
264 ~ 7 301 3 346 302 9 379 I 22-8/ 22 ~ 0/ Z3 I/ 23 2/ 131. 9 130 LZB F 7 IZT 4 l. 22 4/ 22 8/ 23 0/ 23 2/ 136 137 138 130 130 7 5 3 6 5 23.7/ 23 7/ 23 0/ 23 2/ 193 2 198 4 199 8 201 198 8 4 23 '/ 23 0/ 23 2/ 7/ 155 164 5 168 173 3 172 9 5'3 5 214E+03 21 4/ 614 1 21 3/ 252 I 22 9/ 126 7 23 0/ 137 2 21 5/ 100 ~ I 21 5/ 163 9 5 215E+03 20 5/ 519 0 20 5/ 176 ~ 7 22 6/ )26 I 22 7/ 135 7 20 6/ 181 20 6/ 158 I. 5 ZioE+03 20 1/ 19 7/ 453 2 21 l/ 170 8 22 4/ 22.1/ 126 0 22 4/ 22 2/ 134 4 20 1/ 7/ 177 2 20 I/ 19 7/ l.53 ' 5 ZLTE~03 5 ~ 218E+03 5 ~ 219E+03 5 220E 4 03 5 221E+03
- 19. 5/
19 3/ 1-9 2/
~
19 2/ 403 ~ 8 365 9 336 4 312 8 293-0 21 ~ 21 21 7/ 21 6/ 21 51 5/ 7/ 160 167 0 165 0 163 I 161. 2 22.0/ 21 0/ 21 7/ 21.6/ 125 0 124 6 124. 3
)23 123 9 9
22 0/ 21 8/ 21 ~ TI 21 ~ 6/ 133 132 131 130.5 129.7 2 2 3 19 19
).9 1.9.2/
5/ 3/
- 1. 74~ 0 171 ~ 0 170 2 170 2 19 2/ 169. I 19 '/
19 5/ 19 2/ 19 2/ 150 4 147 6 145 143 141
'3 7
5 ~ 222E+03 19 2/ 270 1 21 4/ 159 3 21 41 123 6 21 4/ 129 I 19 I/ 169 I 19 2/ 140 3 i.)3 19.7/ 264 ~ 9 21 3/ 15l 5 21, 3/ 123 0 21 3/ 120 4 19 2/ 170 19 2/ 139 I raceme>03 19 3/ 255 3 2l. 2/ 155. 8 21 2/ 172 7 21 2/ LZT 8- 19 2/ 169 ~ 3 19 3/ 138 2 5.225E+03 19 3/ 247 ~ 3 21 1/ 154 I 2 1. ~ I/ 122 6 2 1. 1./ 127 2 19 3/ 169 6 ~ 19 3/ 137 3 5.226E+03 19 41 240- 5 21 0/ 152 2I. 0/ 122 I 21 0/ 126 T 19-4/ 169 ~ 9 19 4/ 136 6 5'27E+03 19.5/ 234 7 20 9/ 150 8 ?. 0 9/
~ IZL.U c'. 0 9/ ~ 126 1 19 5/ 170. I 19.5/ 135.9 '28E+03 19 7/ 8/ )49 2 20 8/ 20. 8/ 19 7/ 19 7/
5 5.229E+03 5.230E+03 5 5 23LE+03 232E+03 19 0/ 19 9/ 20 0/ 20 2/ 229 225 221 9 7 5 Zie ~ 6 215 9 20 20 20 20 20 7/ 147~ 6 6/ 146 I 5/ 144 6 4/ L43 2 20 7/ 20 6/ 20 5/ 20 4/ LZ1 5 121 2 120 9 120.7
)20 4 20 7/
20 6/ 20 5/ 20 4/ 125 ~ 7 125 2 IZ4 ~ 8 IZ4 ~ 4 124 0 19 20 20
'/I/
19 F 81 0/ 171 4 171 0 172 L71 ~ 4 I 71 0 I. 19 0/ 19.9/ 20 0/ 20 2/ 135 134 134 133 133 3
' 92 8
5.233E+03 20 3/ 213-6 20 3/ 141 0 20 4/ 120- 5 20 41 123 6 20 3/ 172 20 3/ 133 5.234E+03 20 3/ 211 I 20 3/ 142 8 20 3/ 119 ~ 0 20 3/ 123 3 20 3/ 172 3 20 3/ 132 6 20.4/ 5 235E+03 5.236E+03 5.237E+03 5 238E+03
'39E+03 20 3/
20 3/ 20.3/ 20 ~ 3/ 20.3/ 208 6 206 3 204 3 202 5 20 20 20 20 3/ 146 1 3/ 149 3 3/ 152 3 3/ 155 2
~ 20 3/
20 3/ 20 20 3/ 20 3/
'/ 117 2 115 4 113 6 ILL 8 110 I ?0 3/
20 3/
- 20. 3/
20 3/ 20 3/ 123 123 122 8 122 6 I 0 20. 3/ 20 3/ 20 3/ 20 3/ 173 3 I. T2 ~ 173 ~ 3 173 3 3 20 3/ 20 3/ 20 3/ 20 3/ 20 3/ 131 131 130 130 I 2 6 9
'/'/3/
5 200~9 20 ~ 3/ 157 9 122 4 ITZ 2 129 5 5.24OE+03 Zu.3/ 199 5 20 3/ 160 4 20 3/ 100.4 20 3/ )22 2 20 31 173 ~ 2 20 3/ 129 0 5 24 LE+03 20 3/ 190. ~ 20 '3/ L62 8 20 3/ l. 06 ~ 8 20. 3/ 12' 20 3/ l73.Z 20 12' 5.242E+03 20 ~ 3/ L97 0 20 3/ 165 1 20 3/ 105 I 20 3/ 121 0 20 ~ 3/ Lrz 2 20 IZB ~ 4
- 5. 243E I 03 23 3/ 196 0 20 3/ 1.67 1 7.0 3/ 103 5 20.3/ l. 2 I ~ 5 20 ~ 3/ 173 ~ ?. 20 128 3 5 ~ 244F.+03 20.3/ 195 0 20 3/ 169 0 20 3/ 102 0 20 3/ I~4 20 3/ I r3 2 20 3/ 128 2 5 ~ 245E +03 Zu 3/ 194 I 20 ~ 3/ I TO. 8 20 3/ ~ 100 5 20- 2/ 121-2, 20 3/ 173 20-3/ ).20 0 20~ 3/ 20 3/ 172 ~ 4 20. 2/ 70 2/ 23 3/ 20 3/ 12' 5 ~ 24oE+ C3 5.247E+03 5
5
'40E+03 ~ 249E+03 20 ~ 3/
20 ~ 31 20.3/ 193 19? 192 191 3 6 0 20.3/ 173 9 20 3/ l.75 3 20 3/ I r~> 5 20 2/ 20
?O.Z/
2/ 98 9 97.5 96 ~ I
- 94. r 20 '/
20 21 120 7 20 2/ LZO ~ 8 120 9 120 6 20 3/ 20 3/ ZO.J/ IT3 2 172- I IT2 2 1.72. 2 20 3/ 127 20 3/ 1.27 20 3/ 127 8 7 9
'i I i r I I
'I c E
I 4 L ver sm cern ooecium ~ amseTI%eww ~ aver ar ~ one lSXOQS)
KKF SSD CASH MOOQCFR SWI TII% CKCOOO)
~578 %WIV M%I ~ AT Sit@ %PS
(s SOP SOS CIISEi ~ TSK (NXOOS) MNSRI FW OJeÃtll %%IV SECT AT SAO IFFY t
ii ~~a+ 'I I" l~ I
<<CF SRO ~ SOCOSCAI FWI TQC lSBX8$01 tÃSOPII %%IV RHS KPCT Cf 8%% %Pl
0 I
I I~ ~ I ' I "" ~
S TQK (SKOQQS) SCP'R CASH NONCPll RN t'ai"XWt SANER SION SSPCf NT 8&0 OR%
I j5 ~ C ~"
( TBK (RCO$ $ 1 SCt SSQ CNEf CNNVII FWI CNiÃRI $ %hV LHI IWCT NT SWO OVO
%~@ .) ~ ~-
~ $ ., ~
J
%F I w l~ ~
) < ~ ~ ' A
i e J
>ir--
7 . ~ ~ S . - ~
0 I I~ ~ ~ 7'
~
I'
~
lI
~ ~
F
~ SR@ ~ INCtll TBK tSEOOO)
FSI NQRPII %%AY RHI SECT AT 04% %SO t
l J'R I
'Y 'c I j l e I
r t n L I I I I i l jl I I ~I l ' tW
I tl L W I" ~l ~ ~
) A ~ .>$ ~ ~
~ \ I I~ ~
1 hm cmeeei SCF SRD OCQ NSNVII AW Cl~Rl SPWIV WW SECT ¹T SA% OPPl 1 ~ t 4 V4
~ ~ Attachment No.. 3 to AEP:NRC:00500E Additional Information on Hydrogen Mitigation and Control Donald C. Cook Nuclear Plant Unit Nos. 1 and 2 SMA Report on Containment Ultimate Strength}}