ML17326A953
| ML17326A953 | |
| Person / Time | |
|---|---|
| Site: | Cook |
| Issue date: | 08/02/1982 |
| From: | INDIANA MICHIGAN POWER CO. (FORMERLY INDIANA & MICHIG |
| To: | |
| Shared Package | |
| ML17326A954 | List: |
| References | |
| AEP:NRC:0720, AEP:NRC:720, NUDOCS 8208060179 | |
| Download: ML17326A953 (87) | |
Text
D. C.
COOK PLANT UNIT NO.
1 REACTOR CONTAINMENT BUILDING INTEGRATED LEAK RATE TEST JULY 13 - JULY 30, 1981 INDIANA 5 MICHIGAN ELECTRIC COMPANY NGTICE THE ATTACHED FILES ARE OFFICIAL RECORDS OF THE DIVISION OF DOCUMENT CONTROL.
THEY HAVE BEEN CHARGED TO YOU FOR A LIMITED TIME PERIOD AND MUST BE RETURNED TO THE RECORDS FACILITY BRANCH 016.
PLEASE DO NOT SEND DOCUMENTS CHARGED OUT THROUGH THE MAIL. REMOVAI.OF ANY "PAGE(S) FROM DOCUMENT FOR REPRODUCTION,JYIUST BE REFERRED TO FILE PERSONNEL.~ ~g/+/Q/g Za~Zod ZX~~
DEADLINE RETURN DATE 82080b0179 820802 PDR ADOCK 05000315 P
PDR RECORDS FACILITYBRANCH
D.C.
COOK PLANT UNIT NO.
2 CONTAINMENT INTEGRATED LEAK RATE TEST JULY 13 - JULY 30, 1981 TABLE OF CONTENTS Section 1.0 Introduction Paae Number 2.0 ILRT Acceptance Criteria 3.0 ILRT Results 4.0 Conduct of Test
- 4. 1 Orgainzation of Test 4.2 Log of Time and Events 4.3 Resolution of 'Failed'LRT 5
8 11 5.0 Test Instrumentation and Equipment 5.1 Table of Instruments 5.2 Instrument Specifications 5.3 Sensor'Locations 5.4 Instrument Error Analysis 5.5 Pressurization Apparatus 12 12 13 14 15 27 I
6.0 Containment Model and Leak Rate Calculations
- 6. 1 Volume Hei ghing Factors 6.2 Containment Pressure and Vapor Pressure 6.3 Containment Temperatures 6.4 Statistical Determination of the Leak Rate 6.5 Upper Confidence Limit 6.6 Leak Rate Computer Pr'ogram, 'LRTEST'7 28 30 30 31 32 35 7.0
'LRT'rogram Printout 37
Table of Contents Continued Section 8.0 Data Analysis and Summaries 8.1 Graphical Analysis 8.2 Program Summaries Paae Number
'5 48 9.0 Local Leak Test Program 9.1 Past Test Results Summary 9.2 July 1981 Local Leak Test Results 56 58 10.0 References 66
1.0 Introduction The second periodic Integrated Leak Rate Test C
Cook N cl a
Plant -
U t 1
a to c
1 td J
1 30 1981b 1
y personnel of Indiana 8 hiichigan Electric The ILRT was performed as s ecified i p
ied sn surveillance test procedure
>n comp<<ance w>th Amer>can National tures for Nuclear Reactors'nd Code of Feder Appendix J - 'Primary Reactor Containment Leaka Cool d
Po R
to 'h b
partment containment model developed for both the Unit Preoperational Integrated Leak Rate Tests.
Data was collected at half ho hour interval s over a 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> test
>s ata was used to calculate the normalized weight of the
'a ry a>r mass remaining in the containment at each half hour yp kage rate, Lam, is the slope of a normalized weight vs. time.
ig ine etermined for a linear least-s-squares fit of the calculated 2.0 ILRT Acceptance Criteria The Unit 1 Technical Specification's and Sectio Safety Analysis Report (FSAR) define the co L
0 25 t b w
ht of th nment air per 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />sat a
CFR 50 Appendix J.
In additio, t y of the leakage measurement, t bl
'd d th d'ff etween the supplemental test an e
ype A resul ts is wi thin 0.25 La (0.0625> wt/day).
As specified in Section 5.0 of D. C.
o P
o d
12 THP 4030 STP 2Q2 d i nd in accordance with 10 CFR 50 Appendix considered acceptable when the f 11 ea age Test Requirements T
e I
en e
o owing criteria had been met:
2.1 The leak rate, as dete 1
t rmined by the 95> upper confidence L m/955 co g
imi ov the least squares line Lam/95" (0.75 La - Type C Leakage Penalty) 2.2 The duration of the the ILRT has exceeded the minimum of 12 ours and the difference between the 95~
u leakage limit and the lea e
~ upper confidence an e leakage rate itself does not exceed wt/ ay in the most recent data set.
T
2.3 The upper confidence level leakage and the measured leakage do not show a negative trend over the last four data runs.
The Supplemental Test was considered acceptable when the following criteria were met:'.4
. The duration of the Supplemental Test meets or exceeds the minimum of 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />.
2.5 The sum of the imposed leak, L, and the leakage measured during the Type A test, L
, i3 within + 0.25 L
of the composite
- leakage, L, meHured in the supplemental test.
( Lo Lam 0 25 La )
Lc
( Lo Lam 0 25 La )
The criteria used for this Integrated Leak Rate Test is more stringent than that specified in 10 CFR 50 Appendix J.
These criteria incorporate additional test commitments made by D.
C.
Cook to the Nuclear Regulatory Commission.
These additional commitments are embodied in a response to Question 22.14 of Appendix Q of the D. C. Cook Nuclear Plant FSAR.
3.0 ILRT Results 3.1 Leakage Rate Summary:
Duration of Type A Test:
24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> Duration of Supplemental Test:
6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> A.
ILRT 'Type A'eak
- Rate, Lam Measured Leaka e*
(~ wt/24 hours
-0.04862 Al 1 owabl e Leakage*
L wt/24 hours)
-0.1875**
B.
ILRT 'Type A'5Ã Upper Confidence Limit Leak Rate, Lam/95~~
0.23276 La
-0.05819 0.75 La - Type C Leakage Penal ty ++
= -0.1875 - (-0.02994)
= -0.15756 C.
Type C Leakage Penalty
-0.02994 N/A D.
Imposed Leak Rate, Lo
-0.19268 0.5 La
< Lo < La
-0. 125
< Lo < -0. 25 E.
Supplemental Test Composite
- Leakage, Lc
-0.27151 N/A F.
Supplemental Test Correlation
-am - (Lc - Lo) 0.03027 Lam - (Lc - "o) 25 La Lam - (Lc Lo)
I
The slope of the linear regression line computed for weight remaining in the containment as a function of time is negative since weight remaining in the containment decreases as a function of time.
Hence leakage out of the containment is shown as negative in the table.
10 CFR 50 Appendix J criterion
++
Test criterion specified by plant procedure 12 THP 4030 STP.202
+
Guideline proposed by ANS 274 Draft halo.
1.
. Item A, L, is the measured containment leakage after 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> of tÃing data in one-half hour intervals.
It was calculated using the 'Absolute t1ethod'n a 'total time'asis as described in American. National Standard N45.4 - 1972.
Item 8, L /95", is the 95">> upper confidence limit of the leak rate.
I'P'is calculated from the variance of the slope of the least-squares line and the value of the t-distribution for a 95~>
"confidence that-t
/95K is the upper limit of the actual leak rate.
Item C, The type C penalty leakage is calculatd from the local.leakage test program conducted per plant procedure 12 THP 4030 STP.203,
'Type B and C Leak Rate Test'.
The Type C penalty leakage represents the leakage of systems penetrating the containment pressure boundary that is required to be drained and vented for the Type A test, that due to existing piping, configurations or plant conditions could not be drained or vented.
The leakage of isolation valves associated with these systems appears in Table 3.2.
The total on Table 3.2, expressed in weight percent per day, is subtracted from the allowable leakage specified for Item B in Section 3.1.
The use of the Type C penalty in lieu of draining the affected system was part of commitments made to the NRC and appears formally in Appendix Q, Question
- 22. 1'4 of the Unit 1
FSAR.
Item 0, L, is the imposed leak used in the supplemental test to verify t3e accuracy of the Type A test In a.ccordance with guidelines of'NS 274 Draft No. -1 and the Unit 1 Technical Specifications the rate of the air bleed, in weight "/day, was established at
.19268 wt ~/day.
Page 3
Table 3.2 T
e C Penalt Leakaoe For Undra i n S
s tems Oescri tion RCOT to RCDT pps CPM' 40 Isolation Valves OCR-205 OCR-206 Leakage
~SCCH 47.7 RC System accumulator fill lines 68, ICH-256 0.0 Refueling <@ter line to Refueling Cavity 36 SF-151 SF-153 502.5 Cont.
Sump Line to Waste Hold up Tanks OCR-600 OCR-601 0.0 HESll to and from Containment 12630.4 RCP Seal Hater Lines 11 12 13 14 CS-442-1 CS-44Z-2 CS-442-3 CS-442-4 0.0 CVCS Letdown and Excess Letdown Lines 34 37 QCR-300
- 19. 8 QCH-250
& -350 Sample Lines from Accumulators 81 ICR-5 ICR-6 0.0 Sample Lines rom Pressurizer 66 faCR-i09
& 110 0.0 NCR-107
& 108 CVCS Cha rg ing Line CS-321 0.0 Glycol Lines to and From Ice Condenser AHU's 86 56 VCR-10
& 11 VCR-20
& 21 0.0 0.0 Total Type C Leakage Penalty (SCCH)
= 13Z00.4 Expressed in
> La
=
0.12 Expressed in 5 wt/day
=
0.02994 Does d
1 Item 5, the composite
- leakage, L
, is the slope of the least squares line determined from the data taken during the supplemental test.
- Ideally, L
would be equal to the sum of L and L
c am o'tem F, Supplemental Test Correl ation.
10 CFR 50 Appendix J requires that the agreement between L'nd (L
+
L ) is within.25 L
The
~ -
table shows that th5 correlHion between L
and (L a + L ) is
.03027 wt/day or Q.12 L
.c am o
a'.0 Conduct of Test 4.1 Organization of Test The D. C.
Cook Plant Performance Engineering Section was responsibile for the Integrated Leak Rate Test.
Functions performed by persons'involved in the test could be subdivided between pre-test and test activities. 'igure 4.1.1 and 4.1.2 illustrate the organization of pre-test and test activities, respectively.
Pre-Test Res onsibilities Test Supervisor - Organized efforts required to ensure the readiness of Unit 1 Containment Systems and test instrumentation for the conduct of this test.
This included arranging for instrument calibration, installation, and system channel verification, and completing test prerequisites.
Instrument Technicians - Performed installation and channel verification of test instrument system.
Containment Inspection Group - Organized and conducted an inspection of all accessible containment interior and exterior surfaces, penetrations and associated systems.
Evaluated and reported inspection results and was responsible for initiating any corrective action required.
Local Leak Test Program Group - Performed Type.
B and C Leak Rate Test as per plant procedure 12 THP 4Q30 STP.203.
Responsible for initiation corrective action as indicated by test results.
Reported results to Test Supervisor
Department Interfaces - Contacted as required to help safisfy test prerequisites.
Test Res onsibilities I
Test Supervisor - (1 per 12 hour1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> shift) Responsible for maintenance of test documentation, data inspection, and the general conduct of the test.
Paae 5
't 7
I f
f I
Timekeeper/Data Coordinator - (I per 1'2 hour2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> shift) Maintained control over data collection intervals and transferred data to the computer input format.
Data Dispatcher - (1 per 12 hour1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> shift) Checked the transfer of data from data acquisition system tapes and data takers'heets to the computer input format.
Shuttled coding forms from test area to computer terminal, loaded punched cards into card reader, and checked transfer of data from coding forms to computer printout.
Data Takers - (3 per 12 hour1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> shift) Responsible for the recording of specific test instrument readings.
Keypunch Operator - (1 per 8 hour9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> shift) Responsible for punching data onto cards from coding sheet.
Assisted data dispatcher in checking transfer of data from coding forms to computer printout.
Pae6
FIGURE 4.1.1 - PRE-TEST ORGAINZATION" TEST SUPERVISOR INSTRUMENT TECHNICIANS CONTAINMENT
'NSPECTION LOCAL LEAK TEST PROGRAM TEST GROUP DEPARTMENT INTERFACES w/OPERATIONS, CAI, MAINT.
F IGURE 4.1. 2 - TEST ORGANIZATION TEST SUP ERY ISQR KEYPUNCH OPERATOR INSTRUMENT TIME KEEPFR DATA COLLEC-TION COOR.
AEPSC COMPUTER TECHNICAL SUPPORT CANTON DEPARTMENT INTERFACES w/OPERATIONS, CKI, tQINT.,
RAD PROTECTIO DATA DISPATCHERS DATA TAKERS Page 7
AEPSC Computer Technical Support - Canton -
On call in case of a failure of either the data analysis program or the computer system.
Instrument Technicians
- (2'er 12 hour1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> shift) Responsible for maintaining all test instrumentation in a proper operating condi tion.
Oepartment Interfaces - Contacted as required to complete test requirements.
4.2 Lop of Times and Events Having satisfactorily completed the installation and checkout of all test instrumentation, a successful Containment inspection, the valve lineup, initial conditions, and all other test pre-requisi tes, pressurization of the Containment was initiated.
Pressurization of the Unit 1 Reactor Containment began at 2033 hours0.0235 days <br />0.565 hours <br />0.00336 weeks <br />7.735565e-4 months <br /> on July 15, 1981.
Containment temperatures, pressures, vapor pressures, ambient temperatures, and barometric pressure were logged on an hourly basis.
Each data set collected was assigned a
'Run Number'tarting with Run
<1 at 2000 hours0.0231 days <br />0.556 hours <br />0.00331 weeks <br />7.61e-4 months <br /> on July 15, 1981.
At 1300 hours0.015 days <br />0.361 hours <br />0.00215 weeks <br />4.9465e-4 months <br /> a tour outside of containment was made in a search to find leaks.
Three valves were found to be leaking.
ECR-33, an isolation valve to the containment radiation monitors was found leaking at the flange connecting the valve to the pipe, the flange was then tightened down.
GCR-314 noticed to have a small packing leak, this was tightened down.
CA-181N was noticed as having air blowing out the vent.
It was isolated and repaired under Supple-mental Job Order >21.
By 1630 the above was completed.
At approximately 1800 hours0.0208 days <br />0.5 hours <br />0.00298 weeks <br />6.849e-4 months <br /> the Containment was entered to change a 992 Hygrometer with a 660 spare.
Also a sample valve to the hygrometer for the Ice Condenser was found closed.
The valve was opened.
At 1900 the Containment was then pressurized to nullify the effects caused by the Containment entrances and exits.
Pressurization was ended at 1920 hours0.0222 days <br />0.533 hours <br />0.00317 weeks <br />7.3056e-4 months <br /> wi th Containment pressure at 12.47 psig.
The stabilization period was initiated at 1930 hours0.0223 days <br />0.536 hours <br />0.00319 weeks <br />7.34365e-4 months <br /> on July 16.
After a minimum period of 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />, Containment temperatures were monitored closely to determine when the stabilization criteria had been met.
Stabilization criteria defined by procedure 12 THP 4030 STP.202 are:
Pa e
8
a.
The stabilization period has exceeded the minimum 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />.
b.
C.
The Containment has been maintained at a pressure of 12
(+ 0.5, -0.0) psig for a minimum of 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />.
The weighed average temperature in the upper, lower, and Ice Condenser compartments has not varied more than 0.1'F/hr over the last four hour period.
d.
No single upper, lower, or Ice Condenser compartment temperature reading has changed more than 0.5'F during the last hour of the stabilization period.
At 1930 a check was made of all valves outside of Containment in prescribed ILRT valve lineup list.
This was completed after discovering lineups on other. primary systems could have effected the ILRT lineup.
All subsequent lineups on primary systems were stopped during the remaining duration of the ILRT.
At 2000 the Containment was then entered again to check on the abnormally high Ice Condenser dew point of approximately 31'F.
The local inspection and measurement verified the high dew point was correct.
Exit from the Containment was at 2345 hours0.0271 days <br />0.651 hours <br />0.00388 weeks <br />8.922725e-4 months <br />.
At 0000 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> on 7-17-81, the stabilization period was re-initiated to nullify the effects of the Containment entry and exits.
Therefore, Run flumber 10 starts the beginning of the stabilization period.
At 1720 hours0.0199 days <br />0.478 hours <br />0.00284 weeks <br />6.5446e-4 months <br /> on 7-17-81 the Techncial Department was notified of being cited due to repairing the 3 valves mentioned earlier without measuring their leakrates first.
The NRC inspectors stated the test, would be considered a failure.
After being informed of the citation the NRC inspectors were asked and gave the permission to continue the current test.
At 2000 hours0.0231 days <br />0.556 hours <br />0.00331 weeks <br />7.61e-4 months <br /> on 7-17-81 all stabilization criteria had been met and the Type 'A'LRT was started.
Preliminary calculations indicated that the Type 'A'est criterion has been satisfied.
After 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> of data collection the Type 'A'est was declared success-fully complete.
After Radiation Protection drew a sample of the Containment air for analysis, air was bled from the Containment through a calibrated rotameter.
This leak rate was established, at 3.00 scfm, which is in accordance with the Unit One Technical Specifications (quantity greater than 25~ of total measured leakage at Pa) and the guidelines of AHS Z74 Draft 1
(.5 L
L L ).
a o
a'"
At 2200 on 7-18-8i, the first supplemental test run was conducted.
At 0230 on 7-19-81 Operations inadvertently put approximately 210 gallons into the PCS thru the charging line when testing the Centrifugal Charging Pump.
This required restart of the supplemental test at 0230 on 7-19-81.
paae 9
A
,I J
At 0900 hours0.0104 days <br />0.25 hours <br />0.00149 weeks <br />3.4245e-4 months <br /> on 7-19-81, the supplemental test and the ILRT was declared successfully complete.
The supplemental test showed a correlation between the measured leak and the imposed leak within the requirement of less than
.25 L
The Containment was subsequently depressurized and systems we5e restored to normal by plant operations.
4.3 Resolution of 'Failed'LRT Following pressurization, routine inspection of the valve lineups outside the containment building was performed.
During this in-
- spection, three leakage paths were identified and repaired as noted in Section 4.2.
There was no attempt to measure the leakage on these three leakage paths as the engineers responsible for the ILRT believed that the requirement noted in 10 CFR 50, Appendix J, Section III.A.1 (a) did not apply during this period.
It was be-lieved that this requirement applied only after the start of the stabilization period and prior to the actual overall leak rate measure-ments.
The interpretation of the appropriate sections of Appendix J at the time of the test and its specification in the testing pro-cedure was that the 'official'tart of the test was the beginning of the stabilization period rather than after containment inspection.
This interpretation is supported by the fact that in the test pro-cedure all valve lineups, instrument and tank venting operations, system draining, test. instrument setup; etc.
as well as the contain-ment inspection and containment pressurization were listed as part of the 'nitial Conditions'hat had to be completed prior to carrying out the procedure.
As the test procedure had been utilized and approved in four previous ILRTs at the Cook Plant site, it was con-sidered acceptable by the engineers responsible for the test.
As such, it was believed by these test personnel that it was acceptable to make
'equipment repairs or adjustments'rior to beginning the Type A test while completing.the required 'nitial Conditions'.
This understanding was partly based on the interpretation of Appendix J,Section III.A.1 (b) which reads in part that 'Repairs of mal-operating or leaking valves shall be made as necessary' In the future, to avoid confusion in the interpretation of 10 CFR 50, Appendix J, the ILRT procedure has been revised to specify that no repairs or adjustments are to be made once the containment in-spection has commenced.
The procedure also indicates that if during the period between the initiation of the containment inspection, through and including the performance of a Type A test, potentially excessive leakage paths are identified as stipulated in Appendix J, that the test shall be terminated and the leakage through these paths will be measured utilizing local leakage testing methods.
Indiana 8 Michigan Electric Company proposes to schedule subsequent Type A tests at the existing 40 + 10 month intervals specified in Appendix J.
We do not feel that a more frequent test schedule is warranted for the following reasons.
First, this was the only single periodic test of the three ILRTs performed on Unit 1 which could possibly be considered a failure; second, there is some possibility that the acceptance criteria would have been met if the adjustments Wad not been made; and, third, the final measured leakage rate was less than the maximum allowable by 10 CFR 50, Appendix J.
We therefore propose to conduct the fourth ILRT on Unit 1 during the 1985 Refueling 'Outage within the 10 year Plant Inservice Inspection Program.
5.0 Test Instrumentation 5
E ui ment Table 5.1 Test Instrumentation Item Pressure Measurement Manufacturer Mensor Quar tz Model
~Ran e
QM10100-01 0-100 ps ia 75 psia"
~Accurac
.a 0.015 reading
.0001 psi resolution Test ID PU-1, PL-1, P
PI-1, PI-2 PU-2*
Texas Instr.
Manometer 145 50 psia
- a.034 reading Patm
.0001 psi resolution Temperature Sensors/
Bridge flycal Engineering
'00A Platinum
. RTD'/Ha tched Modular Lin-earizing Bridges RTS-4233-B Upper Cont.,
ESD-9050-A Ice Cond.
(0-100'F)
'0.5'F Lower Cont.
(0-120'F)
ETR-101 thru ETR-146, Ambient Dew Point Temperature EGEG Mirror Surface 992 (B) 660 (4
0-100'F
-50 to +100'C
- 10. 5'F KO. 3'C VPL-1, YPL-2 VPI-1, VPI-2 VPU-1, VPU-2 Temperature Fluke Recorder Data Logger 22408 0 - 40 mY 0 - 4 v a0.01K reading i0.005K span ETR' Dew Points Supplemental Brooks Test Flowmeter Rotameter 1110-08,'.2 to 5.6 SCFH 11K FS N/A Supplemental tleise Test Pressure Gage Bourdon CCM 0-3 psig 0.1X FS N/A
- 0 - 75 psia Quartz manometer used at test connection PU-2.
5.2 Instrument S eci fications The instrumentation used during the ILRT is shown in Table 5.1.
Each o'f the instruments shown here was supplied with calibration performed within 6 months of the test and traceable to the National 8ureau of Standards.
Calibration conversion formulas and corrections were preprogrammed into the ILRT computer program to allow direct input of all pressure, temperature and dew point instrument readings.
Two precision hensor quartz manometers were used for redundant measurement of the pressure in each of the upper, lower, and ice condenser compartments of the containment.
A seventh was used to monitor atmospheric pressure during the test.
The three containment compartments were instrumented with a total of forty-six (46) 10 platinum RTD sensors.
The upper, lower, and ice condenser compartments contained 16, 23 and 7
sensors respectively.
Each sensor is located to represent the temperature of a unique sub-volume within its compartment.
The sub-volumes collectively represent the total volume of their respective compartment.
Each RTD reading is converted. in the leak rate computer program to temperature in degrees Fahrenheit.
Each temperature is weighed by the fraction of the total compartment volume contained in the sub-volume the RTD represents.
The sum of the weighed temperatures in each compartment is the weighed average temperature of that compartment.
Six Cambridge Dew Point Hygrometers were used for monitoring compartment dew point temperatures for the determination of vapor pressure in the leak'ate computer program.
They provided redundant measurement of dew point in each of the lower containment, upper containment and ice condenser.
The Unit 1 and Unit 2 preoperational tests used only 4 hygrcmeters, 2 in the lower volume and one in both the upper and ice condenser volumes.
For this test, two hygrometers were added for the upper and ice condenser volumes.
The original 4 hygrometers are the v1odel
~992 dew point hygrcmeters used in the Unit 1 and Unit 2 preoperational tests.
The new t1odel
- -"660 hygrometers are improved and more compact than the ttodel 8992.
They all operate on the same principle.
The air sample is drawn through instrument lines across a mirrored surface of which the temperature is controlled by an optical feedback circuit to precisely the point at which a dew (or frost} appears.
The mirror temperature is measured by a platinum RTD imbedded in the body of the mirror.
The sensor and control units were located inside the lower containment volume so that the samples would be maintained at the containment
'ressure.
The error associated with each individual dew point measurement is + 0.5 F.
The addi tion of redundant measurements did not significantly affect the error of the overall dew point temperature measurement system.
A Brooks rotameter was used in the supplemental test to measure and maintain a constant flow rate for the imposed leak.
It was calibrated in the range of 0.6 to 6 scfm at 14.7 psia and 70?F with an accuracy of / 1.0! of Full Scale.
The actual inlet temperature and pressure for the supplemental test started at 80.4 F and 8.51 psig.
The final temperature and pressure for the supplemental test was 80. 1 F, and 8.55 psig.
The temperature was obtained from the lower volume temperature
- the volume where the rotameter inlet line originates.
Pressure was measured at the inlet to the rotamteer itself using a 0-30 psia Heise gage.
The temperature and pressure readings were used to correct the indicated rotameter readings to standard conditions using the following relationship:
530 MCORR Mind X
460 + TLOWER p
+ p X
Gage atm
- 14. 7 CORR Wind LOWER atm Corr ected rotameter flow in path Indicated rotameter flow in cfm Rotameter inlet temperature,
?F Atmospheric pressure, psia 5.3 Sensor Locations The locations of the sensors used for this test were identical to the locations originally specified for the Unit 1 and Unit 2 preoperational ILRT's, Figure 5.2. 1 (MSK-78C) shows the location in section views of the containment.
Page 14
SUBJECT:
ILRT INSTRUMENT ERROR ANALYSIS 1.0 ILRT INSTRUMENTATION SPECIFICATIONS AND ASSOCIATED ERROR 1.1 Containment Pressure Manufacturer:
Mensor Type:
quartz Manometer Model 10100-001 Maximum Reading 26.8 psia Accuracy:
~ 0.015/. of reading Thus error for pressure
=
Ep
= + 0.004 PSI 1.2 Containment Temperature Manufacturer:
Hy-Cal Engineering Type:
1000 Platinum RTD w/Linearized Bridge Model RTS-4233-8 ESD-9050-A Range:
0 - 100'F Accuracy:
+ 0.1'F Manufacturer:
Fluke Type:
Linear Readout/Printer; Model 2240 Range:
0 - 400 mV Calibrated Span:.
0 - 50 mV Accuracy:
0.01~ reading
+ 0.005~< span*
Worst Case
= ~ 0.025 mV = ~ 0.05'F
- Full range used for worst case calculation Overall Temperature Monitoring System Error (0.1 )'
(0.05)'T
=
0.11'F or 0.11'R Page 15
1.3 CONTAINMENT VAPOR PRESSURE DBl POINT Manufacturer:
Cambridge (EGKG)
Type:
Mirror Surface; Model 992 Range:
-100 to +100'F Dew Point Accuracy:
+0.5'F Manufacturer:
Fluke Type:
Linear Readout/Printer; Model 2240 Accuracy:
+0.05'F Overall Dew Point System Error Error =
(0.5)~ + (0.05)~
Error =
10.50'F (In Dew Point)
Overall error in dew point to vapor pressure conve'rsion;.'.
=
UPPER VOLUME
- Experienced dew points between 44 to 51'F VPU-1 44 to 50'F VPU-2 For VPU-1; Average a Vapor Press/'F
= 0.0061 Thus error in lower Vol 81 is VPU-1
= (0.50'F)(0.0061 psia/'F)
VPU-1 =
0.0030 psia For VPU-2; Average a Vapor Press/'F
=
0.0060 YPU-2
= (0,50'F)(0.0060 psia/
F)
VPU-2
=
0.0030 psia An average value for4pper Volume*Vapor Pressure is used in the leak rate calculations; thus:
E VPU
=
(E VPU-1)
+ (E VPU-2) 2 EVPU
=.
0.003 PSIA
LOWER VOLUME
- Experienced dew points between:
46 to 50'F 48 to 53'F YPL-1 VPL-2
- See Appendix 'A'f this calculation.
For VPL-1; Average a Yapor Press./
F = 0.0062 PSIA/'F Thus error in Lower Yolume 81 js:
VPL-1 = (0.50'F) (0.0062 PSIA/'F)
VPL-1 = +0.0031: PSIA For VPL-2; Average a Vapor Press./'F
= 0.0067 PSIA/'F Thus error in Lower Volume ~2 is:
VPL-2 = (+0.50'F) (0.0067 PSIA/'F)
VPL-2 = i0.0034 PSIA But an average value for Lower Volume Vapor Pressure is used in the leak rate claculation; thus:
EYPL =
+0. 003 PS IA ICE CONDENSER VOLUME
- Experienced dew points between:
18 to 28'F VPI-1 20 to 27'F YPI-2 For YPI-1 Average a Yapor Pr ess. /'F i s 0. 0032 Thus error in Ice Condenser Yol Yapor Pressure is:
VPI-1 = (0.50 F) (0.0032 PSIA/'F)
YIP-1 =
0.0016'F For VPI-2 Average a Vapor Press./'F is 0.0032 YPI-2 = (0. 50) (0. 0032 PS IA/'F)
YIP-2 = ~0.0016'F EYPI - 0.002'F
- See Appendix 'A'f this calculation.
2.0 AFFECT OF INSTRUMENT ERROR ON ILRT CALCULATIONS 2.1 ERROR FOR P-Vp If:
A =BC Then:
EA'- EB EC Where:
EA = Error ir A E
= Error in 8 B
E
= Error in C C
Subs tituting:
E P
EP EYP Where:
E
~
= Error in Pressure Measurement P
EV~P ='rror in Vapor Pressure Measurement 2
1 1
E p yp for Upper Volume E p yp (0 o 004)
+'0 ~ 003)
P-VP)UPPER 2.1.2 E
P Vp for Lower Volume E p Yp
= (0.004)
+ (0.003)
(
P-VP)LOWER 2
1 3 E p yp fol Ice Condens er Vol ume E~
= {0.004)~ + (0.002)~
(E 'P VP ICE 2 0 x 10
2.2 ERROR FOR If:
A =8/C Then:
EA2 EB2
+
Ecz or Mhere:
EA = Error in A EB = Error in 8 EC
= Error in C
Substi tuting:
E 2
E
~G A2 2
E P-VP
=
T E2 P-'VP P-YP
'E
~
T2 P-VP T
Where:
E P
= Error for V-YP calculated in Section 2.1 ET
= Error in Temperature
('R) Measurement NOTE:
The following error analysis shall use actual values from the Unit No.
2 Pre-operational ILRT for Pressure
{P), Vapor Pressure (VP), and Temperature (T).
Run 40 has been used with associated data listed in Appendix '8'.
2 2
1 Ep VB for Upper Volume T
2 E P-VP T
2.5 x 10
'.11 26.5193 26.5193 2
539 90) 539 90 E P-VP
=
3,86.x 10
=
E UPPER Page 19
P-VP for Lower Volume T
E2 PVP 25x10~
+.
011~
T 26.4814
~
539.82)~
26.4814
~
539.82 E
1.86 x 10-xo E
P-VP T
LOWER 2.2.3 EP-YP for Ice. Condenser Volume T
E2 P-VP 2.0 x 10"
+
0.11 (26.5958 T
26 5958 480 ~ 09) l 480 09 E2 2 47 x 10-10 E2 P-VP T
'CE 2.2.4 Calculation Summary. for Section 2.2 Containment Com artment Upper Volume Lower Volume Ice Condenser Error E~).
1.86 x 10 xo 1.86 x 10-xo 2.47 x 10
~o Page 20
2.3 ERROR FOR M
If:
A =
B +
C + 0 And:
B = k>b C = k>c,
0 = k~d 2 - k 2b2 E
2 k lc2 E 2-k 2d2 B
x
2 s
Thus:
E
~ = k >b~ y k >c~ + k >d Where:
EA = Error 'for W.l M. is the total fractional weight of air ih the Containment at Run "i".
k~ = Volume Weighting Factor - Upper Volume (YWFU) b
= Error E UppER from Section 2.2.4 k~
= Volume Weighting Factor - Lower Volume (VWFL) c El rot E
LOWER fr om Secti on 2. 2. 4 ko
= Volume Weighting Factor - Ice Condenser (VMFI) d' Error E'ICE from Section 2.2.4 Subs tituting:
E Wi E~
1 (V""") (E UppER)
+
(V"F") (E LOWER)
+ [
(YMf >) ~ (E~(c~I (2.0144)
(1.86 x 10-xo)
+
(1.0000)~(I.B6 x 10-io)
+
(0.3671)~(2.47 x 1Q"~o)
E2 W;
= 1.03 x 10
'age 21
2.4 ERROR FOR Mn If:
A = B/C Then:
E
~
A E
+
E Ba gz x
A'here:
EA = Error in A; A = the normalized weight of, containment air; W
EB = Error in B; B = the weight of air within the containment ar Run "i"; Wi EC = Error in C; C
= the original weight of air within the containment; M0 Substi tuting:
Mn = Mi/Mo E'Wn E~
E~
~W'
~W W.2 W
~
i 0
It can be assumed that W;/Mo is essentially
= / thus:
E'W n
1 N.>
1
+
W.>
1 n
2 M)2.
The ILRT Leak Rate Computer Program calculates Wi from:
W
=
(VHFU)(~)(VMFL)(~)L
+ (VMFI)(~)1 Wi = (2 0144) 26 6717 0 1524
~
(1 000) 26.6481 0 1667 539.90 539.82
+ (0.3671) 26.6513 - 0.0555 480.09 W
= 0.1683 and M
~
= 0.0283
= 2.83 x 10
~
E2 M
=. 1.03 x 10 's j.r Section 2.3
I
Then:
2
=
2 n
1.03 x 10
~
2.83 x 10" E2 M
=
7.28 x 10-'
>>k Paae 23
2.5 ERROR IN LEAKAGE RATE If the leakage rate is given by:
LR~ l -W 2400 t
n Where:
LR = Leakage Rate;
% wt./24 hrs.
t = Test Ouration; hrs.
Wn
= Nomalized weight of containment air at time t.
If t = 24 hrs.
then:
LR = 100 - 100 Wn The error in LR may be expressed as:
E LR 100.
E Wn ELR 100 E'W n
Where:
ELR = Error in leakage rate;
% wt./24 hrs.
E~W Error~ in normalized weight of containment n
air from Section 2.4 Substituting:
ELR = 100 7.28 x 10
'LR
= +0.027% wt./24 hrs.
Since lLA = 0.25% wt./24 hrs.
ELR 0.108 LA 7
a I Page 24
APPENDIX A UPPER VOLUME - a DEW POINT TO a, PSIA VPU-1 High Low DEW POINT 51 44 PRESSURE PSIA
- 0. 18473 0.14194 PSIA/'F 0.0061 VPU-2 High Low 50 44
- 0. 17799
- 0. 14194 a PSIA/'F 0.0060 LOWER YOLUME - a OEW POINT TO d PSIA VPL-1 High Low OEW POINT 50 46 a PSIA/'F PRESSURE PSIA 0.
17799'.
15317 0.0062 YPL-2 High Low 53 48 a PSIA/'F
- 0. 19880
- 0. 16517 0.0067 ICE CONDENSER - a DEW POINT TO b, PSIA VPI-1 8( VPI-2 OEM POINT PRESSURE PSIA High
. Low 30 18 z PSIA/'F 0.08168 0.04363 0.0032 Page 25
APPENDIX B Data From Pre-Operational ILRT - Unit No.
2 Run Containment Pressure*
UPPER VOLUME LOl<ER VOLUME ICE CONDENSER PSIA 26.6717 26.6481 26.6513
- Values are averages of redundant pressure sensors/volume Containment Temoerature~
UPPER VOLUME LOWER VOLUME ICE CONDENSER 539.90 539. 82 480. 09
- Values are weighted averages/volume Containment Vaoor Pressure UPPER VOLUME LOWER VOLUME ICE CONDENSER PSIA 0.1524 0.1667 0.0555 Containment Volume Weiahtina Factors UPPER VOLUME LOWER VOLUME ICE CONDENSER 2.0144 1.0000 0.3671 Page 26
5,5 Containment Pressurization Ao aratus As in the Unit I and Unit 2 Preoperational
- tests, the plant air system, in conjunction with test pressurization filters and
- driers, were used for pressurizing the containment.
The air enters the containment at approximately ambient temperature and a dew point of approximately -20 F.
The air enters the containment through a spare penetration in the upper volume.
A valve is providea outside the containment where the air line can be isolated and vented.
6.0 Containment Hodel and Leak Rate Calculation The containment leak calculations are performed by the
'absolute'ethod on a 'total time's described in AHS-H45.4-1972.
The con-tainment design pressure is 12.0 psig and allowable leakage (0.75 La) is 0.1875~ wt/day.
The containment, model and leakage calculations used to perform this test are essentially the same as the ones used in the Unit I and Unit 2 preoperational tests.
A 3-compartment model is employed for the calculation of the containment leak rate.
It was developed to accommodate the distinct and widely varied environmental conditions existing in each of the
- Upper, Lower and Ice Condenser Volumes.
The normalized fraction of the initial containment dry air mass, W
, is calculated on a
compartmental basis by ratioing the sum ofnthe product of each compartment's dry air density and compartment volume fractions as determined from data collected at time t, to the same value deter-mined from the initial data collected at"time t.
0 Expressed in equation form:
R VWFu 1
un Un Ln Ln
- NF~
'II un Ln In In In 1
R U
Uo Uo
+ VWFL Lo Lo
+ VWFI Io Io TUo Lo Io Paae 27
Where:
W normalized weight remaining in containment at time t
(dimensionless) n ft -ibs R
=
gas constant for dry air = 53.34 ibm-R (Tba taros cancel )
VWF Volume Weighing Factor (Each compartment volume is ratioed to the Lower Compartment Volume)
(dimensionless)
P
=
Compartment Total Pressure (psia)
=
Compartment Vapor Pressure (psi)
T
=
Compartment Weighed Average Temperature (degrees Rankine)
Subscriots:
U L
I 0'n Upper Compartment Lower Compartment Ice Condenser Initial Time time at nth data collection 6.1 Volume Weiahina Factors Table 6.1.1 shows the compartment free volume distribution f'r normal operation:
Table 6.1.1*
Containment Free Volume Compa rtment Free Volume (ft3 Upper Lower Ice Condenser Total 687,819 365,614 210,723 1,264,156 The volume distribution existing at the time of the test may differ from the values indicated in Table 6.1.1 in two ways:
- Ref. AEPSC I8C Calculation 12-PI-05
'Volume Weighing Factors'
I I.
The total volume of the ice condenser in Table 6.1.1 does not include the volume of ice resident in the ice basket.
2.
The location of the moveable sections of the reactor missile shield do not necessarily have to be in place during the test.
The Ice Condenser volume was adjusted for the presence of the volume of ice in the Ice Condenser as deternined by the Ice Hasket Weighing Program and the ice loading procedure between June 1,
1981 and July 8, 1981.
The total ice weight was 2.612 x 10'ounds, The standard density of ice, 56 lbs/ft's assumed to calculate the volume displaced, 46,620 ft.
This reduces the net free volume in the Ice Condenser to 128,285.5 ft~.
The location of the movable sections of the reactor missile shield affects the volume distribution between the upper and lower volumes.
When the shield is removed from its normal operating position it provides open access to the contgol rod drives, and reactor head from the upper volume.
The 16,147 ft of free volume above the head no@rally isolated from the upper volume by the shields, is then in direct p
~
lth Lh hi ld l
p1 the volume is vented only to the lower containment and is therefore considered part of the lower volume.
Table 6.1 shows the volume distribution of the containment wi th a missile shield
- removed, which is 'the posi ion the shields were in for )he performance of this test.
Had the shields been in place, 16,147 ft would have been subtracted from the upper volume total and added to the lower volume.
The containment volumes used in the calculations of the leak rate in this test are shown in Table 6.1.2.
Table 6.1.2 Containment Volume Ad iusted For Conditions Existin Ourina Unit 1 ILRT Compartment Free Volume ft Upper Lower Ice Condenser Total 703,966 349,467 128,285.5 1,181,718.5 Volume weighing factors were determined frcm the values in Table 6.1.P..
The volume weighing factors express compartment volumes in per-unit using the lower volume as 'base'.
Table 6.1.3 shows the volume weighing factors used for the calculation of the leak rate in this test.
Page 29
Table 6.1.3 Containment Volume Lleiahin Factors derived from Table 6.1.2 Conpa rtment Upper u
VL Lower L
VL Ice Condenser I
VL Volume llei hing Factor 2.0144 1.0000 0.3671 6.2 Containment Pressure and Va or Pressure 6.3 Equation 6-1 shows that th compartment pressures are compen-sated for vapor pressure in the calculation of weight remain-ing in the containment volume.
The evaporation of water from the exposed surfaces of water volumes in the containment would result in an increase in containment vapor pressure as well as total pressure.
The condensation of water vapor onto containment surfaces cooler than the dew point of the vapor would cause a decrease in both the vapor pressure and total pressure.
If the total pressure were not compensated for vapor
- pressure, vapor pressure increases due to evaporation would reflect an apparent increase of the containment air mass, which when superimposed over a mass loss due to containment leakage would result in a measured leak rate of a less magnitude than the actual leak rate.
Condensation would result in a measured leakage greater than the actual leak rate if the corresponding vapor pressure change were not accounted for.
The sensitivity of the leak rate calculations to vapor pressure changes is especially great in an Ice Condenser Containment since the energy absorbing ice bed reduces the design accident pressure from 60-60 psig, typical of conventional containments, to 12 psig.
The vapor pressure therefore represents a large fraction of the total pressure in the ice condenser containment.
Containment Temperatures
~ Containment temperatures are used to ccmpensate the weight remaining calcula'tion for total pressure changes caused by the thermal expansion or contraction of the containment atmosphere.
It is recognized that temperature gradients exist in the containment and temperature changes will not necessarily be uniform throughout the containment.
Therefore the containment
is instrumented with 46 temperature
- probes, located such that each monitors a fraction of the total containment volume.
In the establishment of temperature sub-volume boundaries and temperature probe location, consideration was given to the location of physical thermal barriers and heat sources and sinks.
The sub-volumes are generally different in size as well as
- shape, thus, in determining average containment temp-
- erature, temperature readings are weighed as a function of the volume fraction they represent.
The weighing of temperature readings occurs on a compartmental basis.
The weighted average temperature in a compartment is given by the following expression.
Nc T
=
E T
cn i=1 cni ci T
=
Weighed average compartment temperature
('F) cn for compartment c at time tn Kcn
\\
Temperature at sensor i in compartment c at time tn ci Temperature weighing factor associated with sensor i in compartment c.
Total number of sensors in compartment c.
Temperature weighing factors, like the volume weighing factors discussed in Section 6.1 vary as a function of both ice condenser load and reactor missile shield placement.
.6.4 The Statistical Oetermination of the Leak Rate There is inevitably a certian amount of random error associated with the leak rate measurements and the containment leakage itself that cause a variance in the calculated remaining weight, Wn, and the leak rate, Lam.
In order to deternine the leak rate from Wn after a test period of t, a first order (linear) least-squares fit of W
vs t is perf8rmed.
n n
This method selects a function, W(t)=bt+a, in which slope,
'< and intercept, a, are detewined by minimizing the variance g, of W
with respect to W(t).
The variance of W
relative to W(t) ts:
n
'i Page 31
n o2 z
(W. - W(t.))
=
z (M. - (bt.
+ a))
i=1 i~1 (6.4-1)
The values of a and b that establish the minimum variance o
are given bg the homogeneous simultaneous solution of the partial derivatives of a
with respect to a and b:
0 and =
0 3'Cf 3a 3b (6.4-2)
The solution of the above yield:
n W.t.
i=1 n
E W.
i=1 n
E t
i=1 (6.4-3) n z
t,.
( z t,.)
n n
2 i=1 i=1 n
n E
t.
E W. -
E t.
E W.
i 1
i 1
i 1
i 1
(6.4-4) n n
i=1 The slope of w(t),
containment weight
- thus, L
is given am n
t-2
- (
z t.)2 b, is the leak rate expressed as the change in normalized per unit time.
The unit of time used is hours, and by am 2400 (b)
("wt/day) 6.5 The Upper Confidence Limit The 955 Upper Confidence Limit of the leak rate is determined from the variance of the slope of the least-squares
- line,
~
W(t), and the value, of the t-distribution for n-2 degrees of freedom based on.a one-sided 955 confidence interval.
The use of the one-sided interval in this test has replaced the two-sided interval used in the Unit 1 and Unit 2 Preoperational tests.
The two-sided limit placed upper and lower bounds about the measured leak rate within which there was a 95> certainty of the 'actual 'eak rate existing.
Since the interval determined by this method is symmetrical, the 95> two-sided-interval was actually imposing a 97.5' confidence on the upper bound of the leak rate.
The imposition of a 95" confidence on the upper limit of the leak rate is equivalent to taking the upper bound of a 90 two-sided interval.
Paae 32
The t-distribution is used to estimate the interval about the mean value of a finite set of (nu) independent normally distributed measurements within which the mean of the popu-lation of infinite measurements from which the finite set was taken, exists to a stated level. of confidence.
Referring to Table 6.5..1, the value K of the t-distribution, as determined from the point at which the cumulative dis-tribution of the t-distribution has the normalized value u/2, defines a two sided interval about the mean of v(nu) independent measurements the entire population of measurements exist to a confidence of 1~.
The t-distribution is normalized such that its mean is zero and the standard deviation is one.
This allows K(v,a) to be applied directly to the mean, x,
and standard deviation s, of any sample u independent.
measure-ments representing a normally distributed population.
The confidence limits are expressed as x + K(~,<)
S.
In the application of this statistical method to the leak rate
- test, the slope of the least-squares line, b, is the
'mean'afue of the 1eak rate and the variance of the 'mean',
Sb
, is given by:
Sb
=
z (W. - (bt
+ a})
2 2
i n
(n-2) z (t. - t}2 i=I n
where, t =
E t.
Paoe 33.
- \\>>1>>
~ e CS ~
se a>><>>v Q ~ )
~
D4 L'eC 0CC OC< e
~C 7
C.;0 geese<7<ii<v e O.i<$
1 C.CJ C.arCI 1
Z 4
6 7
6 9
10
~
11
]X 13
]4
~
16 17 W
J&
23 25 60
]M W]4 e&3 15
].&3 95
]460
]233
]A]~
L %$
liiQ
].r t 1 LT6]
]~~&
'<6
]r~
l.i~9.
]
1 2T LiNT LT14 a ill
].rivy l,rrv6 1 i03
].ivl
]r699 1 $97
],$64
]e671 J.&45
~\\
s.03 3.iIZ r76 U71 2
65 e e+e A~e 1
e ]79
~ 2 ]60 2.]sS ee! eO 2 J]O
>>e ]01 093 e 544 2@0 eM52 eW5 LNO l.9 0 1.960 63%$7 9.FQ 4A0s 3.r 07 3.499 3 N w ec0 3 ]69
- 3. ]06 X055 3.OL" 977 eM9IJ W5 M]
eM]9 e r77
>>r rrc v63 TeA
>>c 4 e
3.540Ji
$36.$ ]9 3] <9$
't" 94]
F10 4459
$.959 1.405
$m]
4v X]
4~
4,4Ã 421$
>>re ir4 0 iQ73 4A]8 3.963 3.Z50 3219 3.767 e $90 3.674 e $59 3.&6 383]
3.4<70 3e3 73 91
< taas~ 1<<ec ccrc rsrtaes as' cccreeceeracirag
<e ~ 77>>e as aves o(ctae eraaaaa a]ice e ale<<C ea'<9araescaee J
4(k Frat<et<Wc rsrassle
<1<Jitaf art<lee <se 5~ Jeess
<Iac<ae 6+tee M 'a ca<<rca tear<<set ef cefcees ea
<<at<a ries<<scare(<ra..e esca<casa<tata 4~. 7<<'
ae<<rerts aece <seewciee7<eeairreas sre tao<sar<etc be e/
>as<stale<sexes<'terra air<re illsl Pa<tace Ca Ysacsc
<ear<<i< iiiv~ I<<c~,<~'re~
Nr<<r<<grat<<ae sacs<lace<a sv Ciivce Ca 3t<vac ~ ~~ca m ~<<acta et<caesar<stan
<tars pa<<<<ac~
rao greQ~O I
>>eV>> el Mo. '<<>>
c
~ e reev>> i
\\
en/
re>>
<<>><S<r 1
C <<>>
ev vv>>r P>>
ver re
~errv vvree re'e
<<v<<>>
re r>>
rrC ee <<>>e << ts o>> e
-vaA
<<w e ca>>+
4 e>>
>>e v e 5 ~ >> >>V>>
e>>'v>>vvea
~
o veev oog t7>><<>>vaeeee e
p
<<<er Ve VVe <<2, V
+eeO Ore tera re v>>v<<e e
<<e>>e>>
j vr ar C>>
P ac~4
Of the total of n measurements (W.t.) only n-2 are independent since a and b, the slope and inteFc3pt of the least-squares line, having been derived from n (ll.t.), can predict any two (W.t.) with the other n-2 measuremeht).
Hence,v =n-2.
1 1
The value of a used is that which corresponds to a 90>
two-sided confidence interval which is equivalent to a
I -a/2 or 95" one-sided interval.
The value of e is therefore 0.1.
Now, the upper confidence limit of the leak rate, b,
is expressed as:
b-K(n-2, 0.1)
Sb The negative sign defines the upper limit since the value of b is negative.
6.6 The Leak Rate Computer
- Prooram,
'ILRTEST'he leak rate computer
- program,
'ILRTEST', has replaced earlier versions of the two programs used in the Unit 1 and Unit 2 preoperational
- test, know as
'CCVDREP'nd
'CCYREPT'
'LRTEST'ncorporates the revised statistical analysis discussed in Section 6.5 and an added degree of flexibility that its predecessors lacked.
'LRTEST'ccommodates the operator input of certain 'fixed-data':
the calibration conversion and correction coefficients of the present instrumentation
- system, and the volume and temperature weighing factors.
The fixed data represents that which is fixed for the duration of one ILRT, but will vary from one ILRT to the next.
'LRTEST'eceives test data from a card reader.
The raw test data collected for each test interval is coded onto input data coding sheets and punched on to computer cards.
The data includes the data run number, the elapsed decimal time from run Pl in hours, the 46 containment temperatures in millivolts, seven pressures (6 containment, I barometric) in
- psia, and dew point temperatures in millivolts.
The data cards are accumulated in a deck in the order of the run numbers.
The program establishes a file for the raw data and computes values expressed in the proper engineering units.
The program computes the average compartment and containment pressures, the containment pressure relative to atmospheric, the weighed average compartment temperatures, and the average compartment dew point temperatures.
From the average dew point, the vapor pressure is calculated using the Goff-Gratch formulas for saturation vapor-pressure over water or over ice.
Page 35
For each run of the computer program, the raw input data and the above computed values are summarized for the most recent data run.
This is a valuable aid to input data error checking and analysis.
Also, at the option of the program operator this summary may be printed for an operator-specified range of runs ending with the last data run.
A separate summary of average compartment pressures, temperatures and vapor pressures is also printed for either all the runs entered into the program, or for all the runs in a range specified by the operator.
The elapsed time printed for both the individual run summaries and the overall summary is controlled by the starting point of the range.
After three data runs have been made or three runs are available in the user specified
- range, (a minimum of three runs is required to perform the least-squares and statistical analysis) the program calculates the leak rate and 955 upper confidence limit of the leak rate.
In addition, the program calculates the remaining weight of the containment, and of each compartment.
The remaining weights in a comoartment
'c', is given by the following:
p-pY Mcn cn co The individual compartment remaining weights are used only as an aid to data interpretation.
A copy of 'LRTEST'ppears as Section 7.0 of this report.
The program outputs for this test can be found in Section 8.0 of this report.
~.t'age 36
7.0 D.
C.
COOK NUCLEAR PLANT CONTAINENT IttTEGRATED LEAK RATE TEST PROGRAM
'LRTEST'unno Q7
1,1BRA1< Yi FED 5 19J1 liKCl.IVI,l 000100 ooaioo oao300 000>IOO 000500 oao/oo 000100 oooooo 000900 001000 001)00 00)a200 001300 00 tciaa aolsao 00)600 001700 001000 001900 ooa.oao 002100 N
N N
N II N
N N
N II N
N N
N N
N N
N N
Ii II N
N k
002200 002300 002>aoo aoi<<500 002600 aazloo 002800 002900 003000 003100 00)"Oo 003300 oa3auo 003iioo 003>ooo 003700 003000 oa)9ao aoaooo 00'I) 00 aoaa200 oaii 300 00'>:I 00 00>IS>00 ooadoo 00>>700 00'>000 00II900 005000 005100 005200 005300 005<>00 005500 ttoA=ILAfEsT 0)/I>'I/25 LID=>><<NNN>>
AtIEAICAIIELECTRIC POIIEII SEPVICE COAI'OAATIOI(
COIIPUIEA APPLICATIOIIS DIVISTOII 01/28/Ol 11.23.27 SOURCE LIDAAAVOUTPUT 111PLICI1 REAL<<0(A-It~ P"2)
REAL<<8 K ~ LVP 0 IIIEIISIOI( TEIIPUC( 16 ) o TEIII'LC(Ze> ) IIf((PIC(l)
D(IIEIISIOII TEttf'U(16)
TEIIPL( 2<>) I TEIIPI(7)
DATA LUCiLLC>L)C/16>2'i>7/
OIIIEIISIOII R)OL1( )6 ) IRTOL2( Zai ) ATOL3(07)
DATA RTOLl/'ET(I-101 'I'Efft-102 'e'ETA-103 'I'ETA-)0/I 'i>EIA-105'I
'ETA-)od ' 'Elft-107 ','E(A-10S ','KTR-109
'E(A-llo'IR 111
~ E)ft 112
~
ETA I) ~
~
E1A 120
~
KTA 133
~ fIft '113 DATA ATOLZ/ ETA 122
~
ETA 123
~
ETA la. I I E'IA 1245
~
K)It li.d
'ET(I"lil 'I'ETR-129 'o'E)A-130 '
'ETA-131 'e'KIA-1$2 'o
'ETA-13>i ' 'Efft-135.'Elf)-)36 'ETA-137 'f'Itt-13S E)R 139
~ fTA laio
~
E)R I il
~ Eltt 1 IZ
~
KTA I/>3
'ETR-I~>>'I ETR-)>IS ' 'EIA-la>b 'EIA-113 '/
DATA RTOL3/'ETA-IIS ~,
~ EIR-'116
~, aKTA-117
~.
~ ETA-118 ~, ~ ETA-119 ~,
'ETR-,120 '
'ETR 121 '/
Dltl[IISIDII)IUC( 99) olILC(99) ~IIIC(99) o)t( 99) oTIIIEt99) ~ ItRA(99) ~
- ATUC(99) eAPUC( 99) >AVPUC( 99) IATLC(99) oAPLC(99) oAVPLC(99) ~
ATIC(99) ~ APIC( 99) ~ AVPIC( 99)
DIIIEIISIOIIKt 10) SR(70),DP(6)
LVP(6) ~ PIIES(7),PAESCt 1),VPR( 6)
DIIIEIISIOII)IIVI'(lb) ottfLOII(2>I) itf(ICE(7)e TADLE(97)
DATA TADLK /6.3)II,2.920,2.353,2
~ 132 2.015 l.9>>3 1.S95 1.860 1.833 1 812 ~ 1,796 el 78 1
771 ~ I 761 ~ 1 753 ~ 1 7>lb ~ 1 idio 1 739 ~ 1 729> 1 725 ~
1 721
~ 1 7)7> 1 71/> ~ 1 '1 1 ~ I 700 o 1 706 ~ 1 703 ~ 1 701 o 1 699 ~ 1 697 ~ 1 695 ~
),69>> o I 692 ~ 1 691 I 1 609> 1 688 ~ 1 607> 1 ~ 606 I 1 605 ~ 1 ~ 60 I ~ 1 60S> 1 68i o
-1.601
~ 1.600
~ ).679
~ 1.679 ~ 1.6/8
~ 1.677 ~ 1.676
~ 1.616 ~ 1.675
~ 1.675>o).67
~ ~
-1. 673 ~ 1. 673, 1.672, 1.622, I.671, I.6 /1, 1. 611 ~ 1. 6 /0, 1. 670, 1. 66'), 1. 669,
-1.669 3<<1.668 3<<1.667 3<<1.666>/I>>1.665,/><<1.66>>
5>>1.663 5<<1.662
-5<<1.661/
DATA hOUPehOI.Oo)IOIC/
UPPER
~
~ ICf
/
5TART OF PROCIIAII I =1 ULCIoo = DLoc)of lo13.2</Da)
DLGO
= OLDC10(6.1071DO)
I:OEII = 0.0 RE/D (5 300 EIIR=22 ~ Et(0=12) CI C2 C3 C/I C5 C6 IXS ~ IXE~ IPH PACE 0002 NN NN NN
<<N Ia N NN ii>>
<<N 0)ra<<7/18 02/02/70 01/27/78 olrZlrls 0 1/il/70 o)/2lrlS 01/27/78 01/2 lrlS 0 )/27/70 01/2 7/70 01/2 7/78 0)/27/70 01/27/78 01/27/10 01/27/70 ol/27/70 01/27/78 01/27/78 01/27/70 01/27/70 05/23/70 05/i<<3/70 05/23/78 05/i<<3/70 o5rZsrls 05/a. 3//S 05/23/70 05/23//8 05/i"3/10 01/47/70 01/i<< 7/10 01/2 7/78 01/2 7/78 olrflrla 02/22/7S 01/27/70 02/22/70 01/27/70
- 0) /a".7/10 0)/2 1/78 01/27/70 01/2 2/70 10/28/77 01/27/70 01/27/78 10/) 0/77 01/i<< 7/70 02/ai/10 lOllS/21 ol/a.7/78 01/27/78 01/27/7i)
) 0/18/77 10/10/27 I0/III/77
<<al NN
<<N NN iiIi lik
<<N iIN Nil KK
<<li Nk K<<
K II
<<II Nil Ii>>
Io k IiN NN
<<>a N
30 30 N
<<302
<<303
<<30%
k N
>>305 N
02/i42/70"N K il Ni N WN FOR((AT( 6F6
~ 3 ~ />X ~ 13 ~ 7X ~ I3 ~ 7XI 13)
Iial
<<k Il<<
Iik
<<li NK
<<N
<<N
<<N I
RCAO (5 ~ 301
~ FIIA<<a.2 ~ El(0=12) K 1 FORiIATI6F11.6/6F)l.brbF11.6)
I READ I 5 o 302 o ERA =22 o Et(0=12 ) SR FORI IATI 10F 0. 5/1 0f8.5/10F8. 5/10FS. 5/I OF 8. 5/IOF8. 5/1 0 F8. 5 )
I ACAD 15,303,0(A=22 Et(0=)21 tf(UP I'TLOII.)(TICE FOP((III(Iaf6.5/IF6.5/11F6.5/13F6.5/7F6.5)
= 5 RCAO (5 30<I,EAA<<22 ~ EIII)=I ) VIIFL VIIFZ VI(F3 FOIIIIAT(3F7.5) toff)E (6 ~ 305) Cl >C2 IC3oC IIC5>C6>K( 1 ) IK(2) >K(3)IK(7) >K(8) IK(9)~
- K(131,K(1>II,K(15),K(/e),K(5),K(6),Ktla),K(ll),Kt12),
Kf 16) ~ Ktll)~ Kt 18) oSA FORIIATI 1111 ~ >>aiX ~
<<<<>> II(IS 1 S A CIIECK OF TIIE IIIIUT DATA <<N << ////llf ~
'R(O IIILLI-VOLTTO F/IfftftIIIEITCOttVERSIOII COEFFJCILIITS'/)ll 6X Uf'PC(I
~ )ZX~
LOI(CA I 1 3X ~
ICE /111 o F 5 ~ 2 ~ 3X e I'5 ~ 2 ~ IX> F5 2 ~ 3X e
e w>>
IOIA= 1illlK ST 01/14/75 L)D=<<<<<<e< <<<<<<e<
ooSeoo 005700
'05600 0059QQ 006000 006100 006200 00630Q 006<100 006500 00( 600 006700 006800 006900 oo?aoo 007100 007200
~ 007300 00?400 007500 007600 007700 oa?aoo 007900 008000 006100 oaoRaa ooa300 ooa4oo 000500 QQ0600 oos?00 ooaaoo ooo9oo 009000 009100 0094.00 009300 009->>00 0095QQ 009600 00'I700 009000 009900 010000 010)00 O la;Qo 0)0300 0)0<<00 ola5o0 0)0600
- 0) 0700 010000 010900 011000
- 0) 1100 0)1200 011300
'ol/26/a~
11.23.27 souncE Lll~>>AAT DUTPUT PAGE 0005 10/18/? 7 01/27/78 01/2?/76 01/27/?0 02/02/'?6 10/24/77 10/24>>/77 10/2<e/77 1ol24/77 01/2 7/76 0 1/27/76 10/18/77 1all 6/77 10/16/77 10/16/77 01/27/78 02/22/78 01/27/76 01/e". 7/78 al/27/76 ol/27/76 02/Oe./76 all>>".7/76 0 1/27/76 01/>>27/76 01/27/76 01/27/76 O1 /27/76 02/22/76 01/27/78 02/09/76 01/27/76 02/":</76 01/27/76 ol/27/?6 01/2 7/76 01/2 7/78 01/27/78 0 1/2 7/76 0 l/22/76 01/2 7/78 01/2 7/76 01/27/'76 02/02/78 0)/"7/76 01/27/?6 02/22/76 10/)8/7?
1 0/2 4/7?
10/16/77 10/18/77 01/27l76 10/18/77 01/27/76 10/2<e/77 01/27/26 10/la/7?
01/e.?/76
<< I<
el el II<<
M<<
<I e<
Ie <<
>>I le
<< I<
<< i<
<<I<
ie e<
ee I<
<<ee H>><
02/24/78<<
<<le e< <<
<<el
<< I<
<<1
<<i II <<
<<le
<<0 101 fO'tt)Alllo(f5 ~ 2 ~ 1X)/6(F5 ~ 2 ~ 1X) I AKAO (5>>102,EPI(=42,EIS)=62) 1'OIPI.C 102 font(A1(11(l'5.2 ~ 1X)/13(f5.2 ~ 1X) I REAI) (5.103<KAI)=42 EIID=62) 1CIIPIC 103 FDAIIATI?(F5.,1X)l IF (lOYP.EQ.ll GO 1O 45 FS.R 4X>>F5.2 3X>>fS.R////lll
'llYGAOt(ETEA lllLLT-VOLT10
'FAIIAEINIETT COIIVEASIDII CDEfflCIKI(fS'i)lt ~ T15>> 'UP('ER-1'14>>8
~
LD:IKR-)', T62,
~ ICE-1'/)ll,9(f10.5,1X I//ill,T15. '(IP( CA-2 ~, T4a,
'LOI!KA-R>> >>102, '1CE-2'/III
~ 9(F10.5 ~1X)////ill,'IIAIIOIIE1EA l>>ltKSS>>UA E COA(IECT)otl COEFFIC)KI()S'/Tria 'I'U-1'/10(1X F?.4)//)lt 30X PU-2 /1(l
~ '9(F7 e ~ 1> )>>f7 ~4//)Il
~ 30X ~
PL 1 lilt
~ 9( F?
<>> )X I e F7.4//lll >>30X>>'PL-2'/lll >>9(F?
~ 4>>1X) >>F7.4//lll
~ 30X>> 'Pl-1'/
ill
~')(f?.4 ~ 1XI>>F? 4//lit >>36X ~ 'Pl 2'/lll
~ 9(F7.4
~ 1X) ~F7.4//
ltl
~ 30X>>
P AT(l /1tt
~ 9(F?
4 ~ 1XI ~ F7 e)
I<RITE (6 ~ 306) ltllJP>>ll(LOII~IIT)CE ~ VI(F1 ~ VWF2>>VI(F3 306 FOPIIATtltl-.'RTD IIEIGI)11(IG FACT((.S'/ltt >>R?X,'UP(eEA'/)ll >>9(f5.4>>1X)>>
F5-4/lll >>5(f 5.4 ~ 1XI>>F5.4//ill >>22X>> 'LOUCR'/ltl >>)0(F5.4>>lX) e F5.4/ltl >>12(f5.4>>lX) >>F5.4//lll
~ e OX ~
ICE /lit eb(FS 4 ~ 1X) ~ I'5 ~4//
//ltl
'VOLUIIE )IEIGIITIIIGFACTORS'/ill 1X 'UPPER' RX 'LDIILk'X
~
'1CE '/ill >>ZIf6.4>>)X)>>fb.4)
IF (IXS.LE.Q) IXS "-1 IF (TXE.LE.Q) IXE = 999 02/22/78<<>>
if (lt)UP(16).LE.O.Q) 60 10 701 I LC = 23 GO 10
?QZ 701 LUC = 15 70R IIA
<<- 0 LICP1 -"LIC t LUCP1
"- LUC t l
<<C IIR TS STO.'(AGE ll(DEX>>PROGRA)t DATA ACCESS LOOP STARTS'I(ERE ~
DO 20 IR = l>>99 IDYP = 0 READ (5,100 ERR=42 K(ID=32) l(AO ~ TIIIKA 100 fot?IIA1(13,1X,F5.2) 02/22/76 <<<<
<<C 1IIPIIT SEQUKIICE CIIECK IF (I<A.ER.Q.O(t.tl(IO.GT.IIAO) 60 TO 703 ltnl (E I 10 ~ 901 l IA~ Ilko 901 fOIIIIAT (illa~ RX >>ILRQOST D It(COIIAECT DATA SERUEIICE'X IR ~ 2X 53)
GO 10 23 32 lF (IPA.t(E>>0)
GO TO 40 Ie IPA = 99 GO 10 55 e<
703 INO = INO IF (IL90.GT.IXEI GO 10 32 IF
( INO. GE. IXS ) 60 TO 705 N
1DYP =
1 GO 1D 707 705 IF (ltf<O.EQ.TXSI Tlt(EST = TltIKA IN = Itft i 1
<<il
'll(IKIIIA)= Tli)EA - 1'1)IEST IL I<PA( IIA)
= IBI) 200 FDAIIAY(lttl ~ 'ltutl IIUIIOKR'4X 13llll
~ 'KLAPSKO TItlE' ZX ~f5.2///ill
~
OR/"2/76<<>
'COII(AII4IEIITTK(tf'EAATUAES DATA CIIKCK'//lll ?X 'UPI'CR VOLUIIE'
- 21X,
~ LOIIEA VOLUIIE~,19X, 'ICE COIH)Et)GER'/)ll
~ 3X, 'R'ID',ZX,
'II(LLI-VOLTS'X
~ 'DCG. F.'X 'A)D' 2X 'tllLLI-VOL15'k
~
DKG F ~
~ 7X>> k1o
~ >>.X ~ lllLLIVOL'lS
~ RX>>
OEG ~
F
)
?07 RCAD t5 101 EAR=42 El(A=62) TCIIPUC
I+It= (LAIEST Ol/1<</75 I.IG=NNNNNKNN SOURCE LI4AAAT OUfl'UT 01/28/61 1 1 >> 23. 2 7 PAGE b>io<<
011<<00 oll500 0)1600 011200 011000 011900 012000 012100 OIRROO ola2300 0)2<<ao 012500 012600 012700 o12aoo 01R900 013000 013100 013?00 013300 013<<00 0)$500 013500 013700 013800 013900 01<<000 Ol<<laa 01<<200 ol<<300 01<<<<i 00 ol<<500 0)<<<<oo 01<<700 Ol<<ioaa 01'>900 015000 0)5100 OI5200 015300 015<<00 015500 015600 015700 015800 015900 oleoao 016100 016200 016300 016 ioo 016500 OI6600 0l 6 700 016000 OI6900 017000 012100 N
TIISIIUC = 0.0 VI(AC
= 1.0 OO <<Oa Jhlll=I, LUC N
h
< lEIII>>UCIJAIIL)
IF tA.tE ~ O.O)
GO TO 801 N
A =Cl<<A> C2 lt)SIIUC = TIISIIIIC t A<<t(TUP(JAI(1)
GO TO <<00 801 VI(AC = VIIAC - lt(UP( JAlll)
IIPI1E (10,902)
IIAO.IIOUP,JAI(1 N
902 FQI:(tilt I ll)0,5X,'lftlPEAAlUAEIIISSIIIG' 2X,I3,2X,A8,IR)
N
<<00 TEIII'UtJhiill)
=
A
<<C AOJUS(IIEI(f FOA (IISSIIIG TCIIPEAATUAE IF (VIIAC~ EO.I.O)
GO TO 709
'IIISIIUC "- lliSttUC/VIIAC VI(AC
- 1.0 709 1(ISIILC = 0.0 PO <<01 JAII2=1>LLC N
A - TEIIPLC( JAII?, I IF (A.LE.O.O) GO TO 803 N
A = C3vh C<<i l(ISIILC = TIISIILC t A<<IITLO'.llJA)IZ)
GO 1Q <<01 803 VI(AC = VIIAC " llfLOlltJhi(2)
AAITE I )o.9oR) IIAO.IIOLO,JAI(2
<<01 1CI'it Lt JAIIR )
A If. t VI(AC~ EO.I.O)
GO TO 711 ltlSIILC = lilSIILC/VI(AC VI(AC
= 1.0 711 1(ISIIIC = 0.0 N
OO <<OZ JAI(3=1>LIC N
A = TEIIPIC( JAI(3)
IF lb.LE.0.0)
GO 10 605 N
A = C5<<A
> C6 l(ISIIIC = l(ISIIIC > A<<((TICE(JAI(3)
N Gt) 10 c>02 005 VIIAC = VI(AC - i(TICEIJAI!31 I(RITE t )o,902) INO,IS)IC,JAI)3
<<iaa. TEtIPItJAIIIl -" A IF (VI(AC.I>>E.l.a) lt)St)IC = lliStllC/VIIAC
<<C COIIVERT 10 AOSOLUIE N
TIISIIL'n = 1IISIIUC i <<59.7 lllSIIIR = lllSIILC > <<59.7 l(IS(lln = 1IISIIIC i <<59.7
<<C Pitlllf COIIIAOI. IPA 0=LAST OIILY> )(=II TIIRU LAST IF t lrn.E().o.on.l(A.GT ~ING) Go To <<5 55 IOIITE I6>a.aal Ilno>TIIIFA 00 500 III:t f=1 a LIC 500 )IIIIIE (6 501) AIOL1(IINT)~ TEIII'UC(1(Nfl TEIIPU(IltnT)>
Alt)LZ(It(ItT) 1 El(I'LC(lltnl' lEIIPL(llinfl Alt)L3tIMT
) 10IPICt Ilinf) 1CIIPIIIi:tlf )
501 FOPIIAT lilt AG RX 2(F6.Z 5X) A0.2X 2(F6.2 SX)
AG RX F6.2>5X F6.2)
OO 502 IINT=LICI'1>LUC 50
'llnllE l6 503) A)OLI(lttnT) TEIIPUCt lltnfI ~ TEIIPU(IIS)Tl A1(ILR( II(ttI I a TEtiPLC( II:AIl >TFIIVLIIIEIT )
503 FOPIIAT ()II
~ AG>i".:>ZIF6~ 2>5X)>AG>>2X>l>6 Z>5X>F6.2)
OO 50<< I(SIT=LUCPI,LLC 50<< I(AIlE t 6>505 l RTOLZI IIIAT)~ TEIIPICI IliRT)~ 1CIIPLIIIQT) pa()(. <O NN
<<II
<<N ll 1 I>> N N ll N l4
<<N NN
<< II 02/22/78<<N NW NN N II AN
<<N NN
<<N
<<>>I
<< ll KN AN il<<
<<N AN
<<N
<<A'N AN NN A<<
Ii >>I AN AN NN iiN Ak I>>N AN A<<
<<N
<<>>I NN NN ilil li >>I Il v N<<
~I Ni
~I II il >>I NN N>>I 01/R?/76 0 1/2 7/70 OI/27/?8 01/27/70 01/2'l/'lo 01/2 7/76 0 1i27/78 01/27/76 al/27/?6 01/>>.7/70 O:/22/28 01/27/78 0 1 /2 I/76 0 1 /a. 7/28 01/27/70 O1/22/20 Ol/27/76 01/27/76 01/27/76 01/>>vl/26 01/a. 7/26 01/l.7/78 01/?7/76 01/a. 7/76 01/27/?S 01/27/70 01/a.?/26 01/2 7/76 0 I/27/70 0 1/27/ lS 0)/27/76 01/>>.7/78 Ol/27/76 01/R?!la 01/2 7/76 01/2 2/76 0)/27/76 01!27! 26 01/2 2/70 01/2 7/76 01/27/?8 Ol/27/78 Ol/27/78 o)/."7/78 Ol/27/78 oI/"7/?a 0 I/2 7/76 Ol/27/26 01!27/76 Ol/>>.7/?G 01/27/76 01/22/76 01/27/76 01/27/76 al/>>.7/76 0 Ir'a.?/76 01/27!?S 01/a".2 'lo
to)A-"IIR1EST 01/14/75 LID=>>www<<<<>><<
5GUACE l.lDItAAY OUTPUT Ol/28/el 11.23.27 PACE 0005 017200 w
017300 0 1lii0 0 017500 w
0 1 7&00 Ql?700 w
017800 w
017900>>
010000>>
018IQO 010200 w
018300 w
010'ipp 018500 010600 w
018?QQ 010800 o)8900 019000 019100 019200 019300 0)9aipo 019":0 0)9400 Qli)?00 Ii 019000 019900 020000 w
020100 020200 020300 020'ipp 0"0500 020400
<<C ozQIQQ w
Oazopoo w
029900 021PPP w
021100 Qzlzpp w
021300 QZ)&ipo 02)500 Pa.)400 021700 w
02)400 w
021900 w
022000 02"loo Qa. ~.a.pp 022300 022iipp>>
oa.2500 022500 022700 w
oa".2000 022900 505 Cot(I(AT I ill
~ 32XaAOai.XiF&-2i5Xaf6.2)
IIRITf I&,507) 1IIStNIC,1IISIILC,TIISIIIC,TtlSIIUR
~ 'l(ISIIIP,1(ISIIIA 507 f(Oat)AT t lll
~ 17X ~ SUIIIIAIIY OF ItfICIIIED AVEAAGC Tl(tl EPA1UPCS //ltl
~
-'Ul'I'C'AiVOLUII'E (DEG.
F ~ ) 'f5.2 4X LOllER VOLUIIE IDL'G. f. I f&.za4Xa'ICK COIIDEIISEA (DEG. F.)
~,fS.R/lit, uPPEP Vol.uttf (OCO. R.)
',Fo.2,4X,
~ LDIICA VDLuttf (DKG. A.)
~,
Fl ~ 2 4X ICE CDIIOL'IISEA (DE(i ~
A ~ )
~Fl 2 I If (IPA.ER.99)
GO 10 35 45 READ l5 509 ERA>>42 KIID=62) VI'R1 VPA2 VPR3 VPA4 VPR5 Vlt(6 ~ I'ACS SO9 foRIIAT (&f6.3/7FO.5)
IF (IOYP.EQ.l) CO 10 20 DPll)
-" K(1)<<Vrnl<<VPAI t.Klz)wvf'Al t K(3)
Dl'l2) = K(4I<<VII(2<<VII(2 i KISI<<VIPZ t K(6)
Dl't3)
"- K(7)<<vfa13<<VI'A3 y
Klo)>>VI'A3 y K(9l Dl'I4l =K(lol<<VI'A4>>VI'A4 e K(11)<<VI'P4 t Kllz)
DP(5) =KI13)<<VPI(5<<VPA5 y K(14)>>VI'AS y K(15)
DP(6)
=Kt 16) <<VPA6wVPI(6
+ Kill)<<VPI(6 i K(10)
DO 403 J=l ~ 4 IF IDPIJ).LE ~0.0)
GO TO 403 CIOOC
= 373.1&/I ID('lJ)-32.)/1.8 t 273.16l LVP(J)
-" -7.90298" (CIODC - 1.0) i 5.02800>>DLOMIO(CI(IDC) t DLGIOR
-1. 3816<<i )0<<>>I -7.0) )<<(10>><<t 11. '44>>I 1.0-1.0/CII)DC) ) - 1. I t8.1320>>(lo<<<<(-3.0) l>>lip<<<<l-3.49149>>(CIOOC - 1.0) ) - 1.)
403 COIITII(UK 00 50 J-Sa6 If (DP(J).LE.O.O)
GO 10 50 COC <<273.16/((DP( J I-32.0)/1.8 i 273.16)
IVP(J)
-" -9.097)0<<(COC-1
~ 0) - 3.5665&i<<DLDGIO(COC) to.o?6793>>(1.0 - 1.0/CDC) i DLGO 50 CotallltuL'0 40ii KAY =I a5 IF IDPI KAYI. LK.Q.O I GO TO Ii04 VI'PIKAY) "- O.olii5038>>10<<<<LVPI)lAY) 404 colt) lltuf CIIECK fOA IIISSlt(G VAPOA PIIESSUAE AllO CAtCULATE AVERAGE.
If (DI'(1).LE.O.O) GO 10 713 IF IDPI2).GT-O.O) 00 10 715 VPAUC = VPAI 1)
Vt'A(R) - 0 0 Go TO 71?
713 VPAUC = VPAIRI Vl'Iit1 ) -"0.0 GO 10 717 715 VPAUC = 0.5>>IVPAt1) t VPAIZ))
?17 IF IDP(3).Lf.o.pl GO 10 719 If (DI'(4).GT.Q.Q)
GO 10 ?21 VPAI.C = VPI(I3)
Vt'II(4) = 0.0 I
GO 10 ?Z3 719 VPALC = VPR(4)
VI'A( 3 ) = 0. 0 GO 10 723 721 VPAIC
= 0. <<IVI'll(3) i VPRI4) )
?R3 IF Itll'(5 ). I.f. 0. 0 )
GO '10 725 Il'DI'(6I.G(.0.0)
GO TQ;727
'PAIC = VPA(b)
VPA(6 )
= O.O GO 10 72')
<<<<01/ZI/?8
<<v 02/02/70 02/02/70
<<<< 02/02/70 w>> 02/02/78
<<<< OR/02/70
<<w 02/0 /73 01/27/70
<<>> Ol/27/70
<<>> 01/27/70 w<< O\\rz?rlo IIII Ot/27/70
<<w Ol/27/70 01/2 7/70
>>w Ol/2?/78 0 1/Rl/70
<<>> ol/Zlr?8 01/27/70
<<>> OlrZ?r?8 ol/27/?0
)I/"iris 01/2 7/73 01/27/78 01/2 7/70
" o)rzl/ls I
>><< 01/27/78
'1/27/?0 02/QZ/78 Ql/27/78 Ol/27/70 01/27/78
<<<<ol/Z?/78 0 I/27/78 01/2 7/7S 01/a". 7/70
<<<< Pl/27/?3 0 1/27/78 01/2 7/78 w>> Ol/27/7S 0 1/a<<7/70 01/27/70
<<w Qlr"7/78
<<w 0)/27/78 Ol/27/70 0)/27/70 01/27/70 01/27/70 01/2 7/70 ol/27/70
>><< Pl/a,lrlo 01/a.7/70 w<< 01/azi/78
<<w Ol/27/73 iiii 01/a.7/78 0 1/a". 7/70
<< 01/a.7/?S
<<<< ol/a.7/78 01/a". ~ '70 (i~ aa~
ilI
IIOR= I(A(LST Qt/1/i/75 LID=NNN<<xilxll SOURCE Ll(lRAAY OUTPUT 01/28/61 11.23. R7 PAGl "606 ls K KN NN
,is ac VK II<<
KK ii N ICN KN IC si KN N si is N
-3)-SR(H-I) I/(SAtll-2)-SR(lll)
IIIi
'K se K el 02/s".iK/78 K se ALIDRATIOI(NKN ~ 2X<<I3 ~ a Xi Oa./22/?PKK QR/22/7QKsi NN KN 0 EIITRYa KK is N Ii N
- 0) I AESCU = R.OKPAESCU
- 0) PAESCL = 2.0KPIIESf't.
- 0) PAESCI
= 2.0<<PAESCI KK N al
<<s II Oa23500 023600 N
Qi3?00 N
023800 Pa".3900 N
02/iQQP K
02/clnp K
026200 N
Oi2/<<300 N
02/c/<<00 N
02c<<500 N
02/a600 N
02/ipop 02/c900 025000 025)00 N
025 00 N
025300 N
0255OQ NC 025600 Q25700 025800 025900 N
Q26QQQ il 026100 N
026200 N
Oi6300 N
026/ipp N
0265QQ N
026600 N
026700 02(000 N
Q269QQ N
027000 027100 N
027200 N
021300 N
Pc.?'ipp 022500 Qc".7600 027/PP N
02?600 P27')PQ N
020000 pa.8100 N
Qs.piPQ N
028100 N
028/<<QP Ps QSPP N
020/rpp N
020/PO K
KN K el Is sl K sa KN KK K sl VK ia K ia N i<<N K Sl KN si sl isN KN
<<K asN l>A(tf.'2 023000 N
725 VPAIC "- VPA(6) 023100 N
VPA(5) = 0.0 02$ 200 K
GO 'fO 229 0
$ 300 N
72/ VPAIC = 0.5<<(VPA(5 I <<VPR(6 II 023/ipp KC LIIIEAA IllfEf(POLATIOIIfOR PAESSUHES ~
729 DO /<<05 tl=1,70,10 Ill=II~ 1 I(i=lie9 Ilf=((II-1I/10 )lI PAOG "-f'RESt (if )
IF IPPOG.EQ.O.Q)
GO 70 400 OO /<<06 It=ill II2 R IF (FIIOG.LT.SII((Ill GO 70 406 IF (Pf(OG.EAaSA(ll) I GO TO 731 IF (t(.EA.(ll) GO 70
<c6c'c PAESCIIIT)NSA(ll-I)t (PADG-SA(tll)N(SRlll G010 /i05 02/c?pp K/cpb CO!Ifl(IUE 4/I/e I'IllTE
( 10 ~ scp?)
tlf(D~ IIT~ PPDG
/e07 FOPIIATI12 ~ 'xxxtfhl(OIIETER AEADIIIG OFF C
- IR<<F9.c<<)
Spa PAESCtll'fl = 0 0 GO 10 /<<05 731 I'AESC((IY) = SR(lt-I I 025cepp Nc<<05 COIlflllUE AVEAAGIIIG PRESSURES ALLOIIIIIGFOA ZEA I'PESCU
= 0.5KIPAESCI1) ( PAESC(2))
Pl?ESCL
= 0.5<<(l'I?ESCI 3) ( I<<AESCl/<<) I PAESCI "-0.5<<ll'f(ESC(5) l PAESC(6) I IF IPAESCt 1 l.LE.Q.O.OA.I'RESCI 2).LE.O.
IF I('AESCI 3I.LE.P.Q.OA.I'i(ESC(/c).LE.O.
If I PAESCI 5). LE.O.Q.OA.PAESC(6). LE.O.
ACI'A=(PAESCUiPAESCL<<PAESCI
)/3 ACPG=ACf'A-I'AaESCI 7)
If IIIA.EO.O.DA.IPA.GT.I:DO) GO 10 7(7 35 I(RITE t6.500) VPAI,Dist)l,vlRl ll,PRES(1),PAESC(li, Vl'AR DP(2) 'Vl'AIR) PAESI2)
PAE~SC(2)
Vl'A3<<OI'I3) <<VPA( 3) il'f(ES(3) il'AESC(3) ~
VPiA/c DPI/<<) <<Vl'At/i) I'llESI c'<<) <<PALSC(/c I i Vl'A5<<DP(5 I <<VfA(5I il'IIESI5) <<PAECC( 5) ~
Vf'R6 Ol'(6) Vl'A(6) PPES(6)
PAESC(6 I PRES(1l PAESC(7le
- VPAUCiVI'ALC~ I'(ESCII << V Phl Ca I<<ACSCLi tsAESCI iACPAiACPG 508 FDAIIAT I lll-~ 11X ~ 'COttfhl(IIIL<<I(f V/P(>A I'AE5 UAE t)ATA CIIECK
~ 703 ~
'COIIIAllll'IEllfPRESSURES DA'fA CIIECK'l/lll 19X ~ 'IIILLI-'X
~
'DCII I'Oil(I'AX<<'VAl'Oi( FIIESSUAE'30X ~ 'UIICOA(EJECTED' 7X<<
'CO(lf(ECIFO'/Ill 2X 'IITGI(0:ILTEA'X'VOLTS'X '(DEC. f. )'X
'll'SIA)' 23X ~ 'IIAIIOIIEIEA' a.X<<'REAOIIIG (I'SIAI'<<2X~ 'f(CADIIII<< '
'IPSIA)'/lll 5X 'VPU 1'PX F5.2 IQX F5.2 9X F?./c 25X 'I'l-1'
- 2(6X,F 7./c I/f7, 'VPU-2',2t 10>'.,F5.21,9X,F7./e, 783 ~ 'tsU-2',2(OX,F7./<<)l
- I7 i 'l'L-1' 2 ( 10XiI5. 2 ) e 9X af2. <c a 18 3 e 'L-I' 2 ( OX.F?. i I/
- T? 'Vl'L-2'(IOXF5.2) 9X F?./c f83 'PL-2'(OX,F?./i)/
- 17 'Vl'I-1',Rl)OX,F5. ),9X,(s?.sc,763
'I'I-I',2(OX I7./el/
77 ~ 'VVI-2' it IQX<<F5.2) ~ 9X <<F?.ic e 763 ~ 'PI-i"' a.(OX<<F7.
~ )I
- 703 'AI(OIfllf'95F7.<c 8X f?./e/III
'f20
'A1'(RAGE VAPOR PRESSURES'/
186
'SUIMIARY OF C(IPf(CCTEO AVEIIAGE f'AES"UAE5'l
- ll(,TI?,'Uf'PFII COIIIAIIIIICI(f(I'SIA)',7/<<7,F?./c/
- )II 117
'LOIILA CL'IITAIIQIE(lf I I'SIA)'/i7 F?.4 T81
'AVEIIACF. Ul'PEA I".5"tiPF. IISIA)')"0 ~F7./<</ttl 717 01/2 7/76 Ol/27/78 Ql/s.7/?6 Ol/R?l?6 0 I/21/?8 Ol/27/76 10/20/77 10/20/77 10/20/77 0 I/27/78 02/09/78 10/20/77 01/27/70 Olr2?r?a 01/27/76 01/27/76 1 0/20/'77 10/a20/27 02/22/76 02/Ri/76 02r22/?a 02/0')/76 Q 1/2?l?6 01/2 7/78 10/ip/77 Ol/27/76 01/22/78 01/2 7/?6 Ql/27/78 01/27/78 Ql/27/78 01/27/76
)0/ip/77 10/20/7'/
pl/2?r?a 0 1/a2 7/ ia 01/2?/?8 01/2 7/76 Ql/27/76 Ql/27/76 01/2?l?0 02/02r?a Qlr."7/28 10/21/77 10/21/77 10/21//7 10/21/17 I0/2/c/77 Pl/27/76 01/a. 7//6 Ql/27/?6 0 l/27/76 pl/27/76 0"/02/78 02/02/70 Oa./Oil?6 01/a".7/76 Olla"e '?6
i!tiff=)I AIESf 01/1ri/75 LID<<>>>>>><<iiw<<v SOURCE LIOAAAY OUTPUT ol/28/61 11.23.27 PAGC 0007 020000 026900 029000 029)00 029200 a293ao 0<<9:ioa 029500 029600 O29?OO 029000 ai29900 030000 030100 0$0200 030300 030rioo 030500 o3ooao 030700 o$ oeoo 030900 031000 031100 031200 031300 03)iioo 0$ l500 0 $ 1600 031700 0)1800 031900 032000 032100 032200 03i".300 0$ zr,ao 032500 032600 o)2?oa Q)2000 032900 033000 0 $ $ 100 0$ 3"00 0$ $ $00 O3)riaa 033500 033600 033700 033000 033900 0)riooa 0 $ri 1 00 0 )rizoa 0$ri300 03)iioo 03ii500 (P
vw 01/27/76 ww 01/27/76 ww Ol/27/78 ww 01/27/76 01/27/76 01/27/76 iiw Ol/R?/78 0 1/22/76 iw 01/27/?6 01/27/?S i'>> 02/22/7s 01/2 7/?6 0)i 27/?6 i w 01/27/7S ww 01/22/76 aw 01/22/?8 ii>>
ii w>> OZ/OZ/78 aw 02/02/78
<<>> OR/02/76 02/02/?Q 02/02/78 ww 02/02/76 ww Ozrozr?8
<<>> 02/QZ/76 02/0"/78 01/2?r?6 01/z?/76 02/Zri/78>>
0 /RO/?6 al/27/76 01/27/?6 01/27/78 02/zii/78<<< 02/Rri/?8 OZ/"iir?6<w O"rZrir?6 01r'27/76 02/24/78<<>> 02/zri/76 01/27/76 Ql/27/78 02/zii/78<< 02/Zri/76 02/zir?0>>w 0."rkr?6 01/27/?S
<<w 01/2?/?6 Iozrzrir?8<<w ozrzri/76 01/27/76 01/27/78
)02/Rii/76<>> 02/Zri/?S 01/27/?6
<<w 01/27/76 Q1/" 7/?6 01/27/76 f02/Zri/78><<02/Zri/?6 02/Zri/78<<>> O."r."ri/76 01/27/76 Ql/27/?O 01/27/76
>>w Ql/2?/2S
-'ICE CGIIDEIISEA (PSIA)' Tri7 F7.ri 181
'AVERAGE LOWEA ('RCSSUPE "SIAI pI)20 ~ F7 ri/TOI ~
AVER/Gf ICE CUIIDEIISEA I AfSSUIIE
( PSIA I
~ 1 120
-F?.ri/IO(, 'AVEAAGf CD!I(AIllllfIITI'AE55URf (PSIA)'lza ~ I'7.ri/TO1 ~
'AVL'RAGE CDIITAIIQIEIITPACSSURE I PSIGI' ?120
~ F? ~ii)
IF II)A.E().99) GD 10 riO
<<C CALCULATE IIDAIIALIZEDHEIGIIT FAACTIOIIS) STOAE I(IT)t PAESSUAES.
?ri? HUCIIUII ""(FAESCU VPAUC)tl(ISIIUR HLCIINI = (PAESCL - VPALC)/lllSIILft IIICltUII = (I'PESiCI - VPAICI/lll5tl(A HIIUII = VIIF1<<IIIICINtli VI!FR<<HLCI!UIIt VHF3<<HICIN!(
w IF f)NEII.GT.O.Q) GD TO 269 ll(ICDEII = HUCIIUil HLCDOI << IILCIIUII l(ICOEII -" HIC(OAI HOEII
"-HIIUII 7ri9 ltUC(INI = IIUCIIUII/HUCDftl ii HLC(IIII)=IILCINII/HLCOEII HIC t IIR )=IIICINII/IllCDEII WIIIAl<<IQIUII/HDEII w
A)UC(IN) = TIISINC ATLCt(IA) = TIISIILC w
ATICIIN)
= lll5tllC w
Af'UCI(!RI = PAESCU APLC(lml = PRfSCL Al'IC(llll) = Pf!ESCI AVPUCIIIAI = VPAUC AVPLC((IAI = V('ALC AVl' C t IIR I = VPAIC 20 CO!I) II(DE HRITE lla 903) 903 FORIIAT t)llQ.RX 'ILR006I 0 ww<<DATA 5PACE EXCEEDED<<w')
w GD 'IO 23
<<C EIID OF FILE AIID Dill'EA ERROR llfSSAGES 12 INITE (lai90ii) I 90ii FDRIIAT (Illa 2X 'ILRQQZI 0 w<<Etto OF DATA Itl STSTEI( GROUP '
IziZXs'<<'
23 IIPIT E I 10 i905 )
905 FORIIAT ( lll" 2X 'ILRQQSI 0 ww<<ADIIOAIIALRUII TEAIIIIIATIDltwww')
w GD 10 Zli 2 2 I!A11E I ) 0 o 906 )
906 FOI!IIAT (illa ~ ZX 'ILA001I 0 <<>>AEAD ERAOA III SIST'Ell DATA GROUI'ziRX)
'<w' GD 10 23 42 lff!I'lE (10,907) t(AD 907 FOAIIAT I lifo ZX 'ILR00$I D <<<<READ EAROA III TEST GROUP ' I3 2X ~
'ww'O 10 2$
t 6Z I!AI t E
( 10 i906)
IIAO
'90S FO",IIAT (Illa ~ ZXi'ILAaariI 0 a<<EIID OF DATA Ill TEST GROUP 'l3 ~
'O 10 23
<<C ACSULT I'DiATIOII OF PAOGRAII iio IF (till.GE.3l GO TO ril ii Hf?11E I 10 i 909) 909 FDPI'IAT Ill)0 ZX 'ILAQQ?I D w<<LESS TIIAI( 3 TEST PDIt(TS - IIOIIE DATA II w
-EDEO>>>>'
GO TO 23 w
riI'SS ltllf(1)<<TIIIE(1)i TItlE(ZI<<lit!E(R) w
)S
=
TIIIE(lI J Ttllf(zl li TZSH = TIIIE(1l<<litI i t l?tlf(2)<<HIE I
IIIIII=IIt) IEST 01/14/75 LIO=>>w>>ww<<>>w 50UACE Lit)I(AAT OUTPUT 61/26/61 11.23. Zl PAGE 0006 034600 034700 w
0'$'ioaa>>
034900 035000 w
035lao w
035200 w
035300 w
035400 P)55PP 035600 0)5700 w
a)sooo P)5900 il 036000 036lpa O)6ZOO <<c 036300 w
036riOO w
036500 w
036600 w
O)67Oa w
03600O w
0369oa o)looo>>
037100 w
037200 o3730o w
037rioa w
037500>>
037600
>>C 037700 037800 0)7900 w
038000 038100 w
030200 030300 036'ipa w
030500 w
030600 030700 038800 w
030900 039000 039100 039200 039300 039400
<<C 039500 039600 039700 039000 Q$ 9900 04iaapa 040100 WS
= IWll i WI2)
WRITE l9a201)
Ral fOAWAfllul 4GX 'SUIOIAIIV OF AVEPAGES'///ill RN 'Ault 0' 2X,'EIAP5EO RX ')l)4'WAVG TEIIP AVG FRESS AVG V PRESS
)/ill laX 'T)IIC'X 'U
-PPEII',6X ~ 'UPPER' 7X 'UPPER',6Xi'LOWER'i6X 'IOWCR'X 'LOWER'X 'I
-CE ' 8x I 'CE '
9%0 'CE '/)
OO 43 I=la(IA 43 )AITE (9ozaz) IIAAII)xTBIE(I)i ATUC(I)~ AFUC(I)iAVPUC(I)iATLCII)
~
-hi'LCI( Ii AVPLClI I iATIC(I I iAPICII ) ~ AVPICII l ZOZ FOOWAT (lit.ZX. I3,4X,F6.2.ZX,3IF9.4i2X.F9.4i,3X,F9.4izxi)
WfilTE I 9,205) 205 FOAIIAT(ll(1,34X, 'RESULTS OF Ttlf LIIIEAR REGAESSIOII AWALYSIS //r
-lu
~ ZX ~ 'AUII 0' ONe 'W' 1'1X ~ 'L'EAKAGE RATE
~ 9X ~ 'LEAKAGE
~ 9N ~
II UPPEII
~ 7X ~
W LOWER
~ 9N ~
W ICf /lll iloxi CXPEA(l'ICWTAL
~
6X ~ Ul Pftt LIIIIT ~ llXi AATf
~ QX ~
'COIITAIlllli.llf' 3Xi
-'cotlrAltotEIII'.5x, cot(Oft (SEA'r )
AEGAESiSIOil LOOP OO 44 I 3 ~tot TSS
= TSS t Tlttf(I)>>TI)tf(I)
'(S
= TS t T)WE(I)
WS
= WS t 'WtI)
TZSW " T2S)i y TIRE(I ) << WIIl
'AIIUW -" TSS<<WS - TS>>T2SI(
XWAA = I AOEII = XWAA>>TSS - TS>>TS A
Aliuil/AOEII eliuti = XWAR>>T2SW - TS<<WS O
= Ottuit/AOEtl 11
= I WSuil
"- 0.0 su<<OF siiuAr.co oIFFEAEltcES nn 46 L>>l II WLA = A i OwflllEILl IF (OAeslwtL)-wLA).LE.1~ on-39l Go To 46 WSUII = IISull + lWIL)-WLR)>>(WIL)-WLA) 46 COIITIWUE AT
= TS/XWIIA 10f
= AT>>AT OO rio W=z 48 Tnf = lnf i (TIWE(tll-AT)w(TItiE(tll-ATI 6
= 2400.0<<6 EKK "-TAOLE(II-2)
SIGIIAO = DS'WT(ttsutl/(TOT>>(XI(RA-Z.OI) )
OCL = EKK<SIGWAO. 2400.0 eu
= 0 - UEL I:A11E I 9,206) i(AA(Ir),W(IIlieu,o,ltuc(II),WLC(II).WIC(IT)
ZO6 FOPIIAT ITI>,I3.5X.F9.5,2t 9X.F9.r).7X,F9.5,5X.F9.5.6X,F9.5) 44 COWTIltUE EWO Of REGAESSIOII LOOP IIA(ff I 9e203)
OxA 203 FOAIIAT(lilo 21X 'FIWAL (EAKAGf AATf l% PER OAT) wi F9.5,5X 'IllfERCE
-PT='F9.5) lÃtlff (9i204 I (Iu 204 FnlltlAT I illa 21X 'UPPER COIIFInftlCE LIIIIT FOA Tllf RATf IS '9.5l R4 CALL EXIT
. Et)0
'w 01/27/78
<<>> 01/27/78
<<>> ol/27/76 ww 0)/27/78
>>< 02/02/76
>>>> QZ/QZ/76 ww Ol/27/78 01/Z7/78 01/27/78 01/iz7/78
<<<> 01/27/76 05/23/78 ors/23/76 05/23/78
>> 0)/27/78
<<w 01/Zl/76 01/"7/78 Kw Ol/27/76 0 1 /2 7/7S 01/27/76 01/27/78
<<>> ol/27/78 0 1/2 7/78 0 1/2 7/76
<<>> olrzlrlo 01/27/76 x>> Olrzlrlo w<<pl/27/70 K>> 0)/27/76 01/27/70 w>> Ql/R7/78 0lr27/76
<<>> Ol/27/76
<<>> Ol/27/76 w w 01/2 7/76 01/27/'?6 w>> Ol/27/76 o 1/27/76 02/02/76
<<>> Ql/Zl/76
<<>> 01/27/76
~ >> 01/27/76
>>>> ol/"7/78 w>> 05/2'3/78
<<w 05/2)/76 Qsr/23/7S
<<>> Ol/27/70 01/2 7/78
<<>> Ol/27/78 0 I/2 7/7S
<<w 01/27/76 i >> 05/23/76 x>> 05/23/78 x>> 01/27/76 IIli
8.0 Data Anal sis and Summaries This section of the report contains graphical analysis of data obtained during the conduct of the ILRT..The 'LRTEST'rogram summaries of average containment temperatures, pressures, and vapor pressures, and leak rate calculations appear in Section 8.2 of this report.
Past test experience has shown that the instrumentation package used for this test is quite capable of measuring the leak rate accurately, as evidenced by the rapid convergence of the 95~ upper confidence limit of the leak rate and the excellent correlation of results between the
'Type A'nd the Supplemental Test.
The error analysis for the instrument system predicted an error of + 0.027%
wt/day which agreed well with the Supplemental Test correTation of 0.030274 wt/day.
8.1 Graphical Anal sis Figure 8.1.1 is a plot of containment weight remaining vs.
time for the Type A test, the slope of the least-squares line is the calculated leak rate.
A second line is drawn using the vertical intercept of the least-squares line and a slope corre-sponding to the 95/ upper confidence limit leakage.
A line corresponding to the allowable leak rate (0.75 L ) is also shown to illustrate the relatively wide margin by whic3 the leakage criterion was met.
Figure 8. 1.2 is a plot of the containment weight remaining vs.
time for the Supplemental Test.
The slope of the least-squares line is the composite leakage rate (L ).
Using the vertical intercept of this least-squares line, two additional lines are drawn corresponding to the Supplemental Test correlation limits.
Pa no.dR
r.
L
1
~
~
s
(.0005 1.00000 l
II
.99950 0
I s
I I
s I;!
I b
is si
'1 1
I 11st':ll I'11 51
-t Fl it.
."'I ]l.::
Ill i~!
')T:
II!i
'Ii iti;
- j;
.1 j'11.
. l.
!4
'sr I'.:
- i 1I s'L.
.I:
sl
.il
- f;: !! llj
'ti( I)
- .!:. is,j/
.::::!i'fP
.:,;:!r!P~'.
'l'll!:
,'-".'.:::."I Sjs;jj'jls
'1!::sj 1:'"
1
-.:.:j,ss.
I..'Ij
- .j'1;.
(i.
I):,
j H
'i
. l.
11',1 1
~'i I",
ill.
i-'jss lt.
li:;
jjl ss
's s ~
ssHHst l'j ss I
.t,i 1'ti:
- lg'si!
'i':
i its Sl iss;
'I'.1 ij is
.!I Iii!
I 1
I
,(i
'LL ills:
'li!
~L!
1 1
I 1':
1 (1
- is II':i It,
!iiI:1
'-I:
"~j':jj::
di.'
l!
jj:.:
is(
I.i';l:
Sf:
11
- ~i
.'11;'.
- 1" -.:
i!il -!
':I.
~ 1
.11.
1;:t,
!L I i
I--.
tj; ji!.
11':
!s"!
~s's s)s i)-'.
jij.:'i".
s'il st.
1
- I
,lr
~,
ij tt,
'D. C.
COCK
'TYPE 'A'EST si
.I ill
- lj it. I 1'ii',
il 1'
1 1
sit ts s.
11 s)T.
~~
~
I!~I
~
1 I~!
itj jir;.Jti sj I
!l!I sit!
, ls!I' s iii
.11
.11:
~~!
(deal lit!
j~
'its
- 1 Hii i))s jj:j;
)I'I.I
'ili
';i!i 1ri 1
'1 1"
s 1
it
- lt.
1:I'ii)
I!;j il.
'1
's.i
.ij:
st II
'1",
sl sl:
il,'
i!
1:
Iq
'I'i
~ ~
'1 lisi l js
',;j; ijs
', 1'.
'!ii it'1 ljjs sl i'i!
- )i
'I!i
!i'I st J) lt
- ij, st ill!
- 11 i
- j i::I
':L
- j)j i
- li 1 9 1
11,
~ 1 is
!I.'i (Is.
- ss,
!I:.'i-.
'si.
'1
'1's itslli s
T:
'.js
'ji jt(
1jl s
jt!
iji 11
- 11 jjj.
1'Ir'll
.Is:ti 1
s,r sl
'jli
! It j!'iis
- llj i:i
': I.
'II 1
'V:
- r st!(
ilj'e!
I slf)
- 1s',
I)';.'stl jl!:
,)Ii js)t
'Ii
'1' ss
~ 1 11 s
sl 1'"':IIt't!':.':
.'ll s 1.
I
'I:...'
, ~
Ljs:i
',fi s
si'Ii 1':,
'.j','sj
'j.'I:!1
- I'
- r, Sl!: '-'
t)js js "I:, 'ti:
"': Jl.
- 11 TAIIKt I ItIG CQj 1
- il'.il sl
.'I
~j'i
.<<) ':,
ls
".li '".
~r s
.I,'!:,
1 "is
. l.
s
",s.
1 1
I.
l.~ I
'1ts:
s '.
L
's js Il'.l',
.Iit.:.
11
'Ir. I" 1j:i li; s ~ I st'1 j
~
1 js I
.,I:
1'1't'I
'jsl
- 1'1
~ 's sj
~.1 i.i!
,1)l jr)
)fs
'.ts
!':i.
I" I!I I;).
'!L
,is, i;I'.j 11 (ij:
qs:
~i "s
- I"
- I;
I'..,'l::
rt j I
.1
- ,'I
~s}s
- iJ 1'
- s Ts
.jt' It
,'i!
I:1 ss,
'I::.
- j,l 1I I!,I:
'L sl; 11'"
11 I
.nill:
i!1:
I'.
- li'j.!
..I
- I 1
11,
- tj
~,
~.:
l.
1'
'rj.
.' l ill')
I.
si
- I.':
~
'L'.
!r
'sg
- s'1 is ~.
- I" ii:I "j1 i'!ji
,'li',
Ls
~ 1 ill:.
!j
- I iis il'1:
l"
~
~
.)1
.sg
'1;:
'19
- sli 1's
~ g 11 s::
- sj'east Squares
.jsl
)il;:
ill(
'ils L I est
'pe II~~
~
~
~
~~~~j
~
~
~~
~~ I~ I ~~~
I
- ii i.'14 li
- :I I"i::i;
-: 't',
s is':1 1
s' j
~.I
):.1.1 itis 1
t
~
I 1
'L.
,1
- s. t.:
4
~
95K Upper nfjd ate:
Co n e:,
'I.'
- '." 1st!
ss'l i
.It:
1'
~
I
.I s
I 1 ~
'ss I'1 I
'1:
..1
.jl:
- I:
'1
'ill I:It j-,s
~i! "
!lt 1':1
.Ii
- . II'
~
,)I::
- jil
,ss s
I 11, SL ss"
.g s.'1 li!s
's s
~
I'1 s'
'. '1:
tii.'i 1'll:
s
- I I
~
~
1
- ji!1;
- s.
'i -I:li
- ';L 1 ~
':I l,l ls.
!"~::i.
il s
- l! 'I,
'i'1':
s;
'\\ ~
~ l.
.I
- 1 (L
ls
.:1' sl
'1
- I!I
" si:
ls !(s..
1" 'j 1ii
"" ':I 1.
. ~
's'
~ '1
~ 1 s
Si I ).
.l.
"'i:
'll 1'
ll;1.
i;.:;
- I:,'!j.
.1:1 1'1
- 1 'll':
".I:I ~
s ~
1 ~
Is.
4(':I t.
ii.
1'.
'1"
~
~
1 ~
1 sl i: (i
't I
.ts IH Is" sil
.1::l.
1 1'1 tl
~'
iii 1
"1 I:.
li s) li':j s
ji, 1',
. ~.
1 1" il 1'l.
1' js I
0 4682 day w
s...
.'I:!
".1':
l.
ts'i"
'1'in
- r 1'
1" sis I)
.11 1
1
~ 1 Rate ea
~ s ~
i
- tj sl
- Ii I
- ~
14
.1(
~1 s,
s;I'tt
- I si I';1 s
i(I
~
s s
si
, ~
1 s ~'ll I;;
1 4
it I
)s 1
si, '-'.
r,'.;;.
s lt Sf" sl) tl'ss
- ,'I::,:::
5819
.0 jj day I~
li;i"
~
i'jl:
i!
il:i i,".
l.
V!'
ls "."
sti jl':!i:.:
.!L.1(
- !!ii.i 11
- si."
il
'l.
sl:I
-1 1'I
'1
- ii
,'1'!
"I, 1!si)';
1st 1
.It 1.1'i'j:.).:
)s: di: ';:
1
.'H 14'..'".,
11).'Ijt',
l.
1
~ 1I I: s 1'
'l ss1" 1!'ll
.1:
- It u
1
".I
- I'1 I',
it(. '.)ls s),;j
."j:" ':
,',.j pt'.
- tj Il.
~s'+
'.tL
- 1:
's.'s
~
' sl s;
st.
.'I il '
's 1
~s, 1 ss'.":
11.
~ l I
- I'
}'.:
1; s
~Lis
,"1
'sr s
1"i'1'.
- 11 i'
1
.)l. 11
~.
Ij'H
'll'I"
~ 1)
"1-I lit sa 1
Iji't
\\
1 ~
'I
'1.
I 1
s's.
i+i. i.t
'"I:lt:
1:
ss
'Iii iji)s
'jsI
~
~ '
1 ~
,s ~
'tL is
'jl
. ~
~
~ss 1
~"
i;st I)1
!I; I
sil sis I'l:-
- 1.
- s,s 10.
- -"
15
.. Elapsed Tjmes jjrs.
20 ss
~
~
~
T.'":.::0 )"1'.qi '.;",<<~':""-I+--f"':
. ~']P: jlJ'AX( "P l.".lIt>'".':","<-,.Pt'<Sty""Lf;;:-.A'5':!';yn<r, ':" %t:.~"...P tl~:"~c>+~md>~;<<sj,.',patri,t~r~~)
+O
~
~
s 1.00000 I
I I
I I
.99950 I
I I
I S. s
.99900 1,
l.
1!'.l s
5 I
I-I'"
I I-t I
I-I Lo+
I s'
ls I'a)a I
+.25 ti
.iL 'i ts
,s La
- 5 s
s!
I:
~...5 I
l
~: ".'
. -I 1
- ,il 11'L!
- I"i
- I;
't
'1 s
'1
- 5 1
~j s.
~'
~i P
t".
s'l l'!i 1
l
<.I
- li'1 sl
,.Ii if:-:
lil51.
'ili
-.!I I<.
~ I it I ~
I tt' 1
-.t 1
t,.
- '~i::
'.:ll tlj.
tii isj
'll:
.'j.'::
I'l iif;I" 1 I 5'
- .I
)L 1
fs lg st I~
I 5, ",
I 1'.
I!'.
.0.3 l,'s
'll
- jj i ~,I 1 I
~ 1
]
f t>>I.
tr, 4
~ ss ir.
.jts itj:
"'.r'.
.I
'I Is'I
.ij
<1 1'l sj; iul ill!
'l l LL:
'ill I ~ ls sl.
1<
5; li Iji!!l
!jj,f'ltl
)I sli j.i
)1
@ 'ii "I!
Ii,'f.
i;i It<
.- il gs
- -I i'!I:
~
~. III
~.
<ji
~ i:
s..l
'.I
<5
- I tsji
~ s Least Squares L 1 n 1emen t
I ta es
~
',I
~,
I 0
La s<li'.
i'.'
~L
~.
!sl ijs s
- 1<
~ I
- i
'<P I:
I ~
I';
isi 1, ~
I'
~
s
.i l.: '.!j Il
~ 'l s<'I}
,:I'.
I t
s 1's Lts!. S da wt i/
3401
- i: 'll.
'I":: '!
- i<"
- I"
!i; I.',
i.s
~. 1<:.i
~Li ljg li}l:I)
~j il I
!l'qi.'!'I j
'1 t.,!
'I".
st)
I
<<is iI
.Is.ls
'I'::
t
~ '
~
I' '9'f 7
)rs.
5 Elaps 6
ed T>me I
TTfs
,:'I
','Ihli,'ljf jj1!
j ~ i]i:
'!Lhf jl)j I;:ji, 1
,ljl;:li'I:i
.t jiiI
- t I
,II;Ij,:
- f.-"
I,'i..i
. "1
~1,<-I
,5'25
.i)l.!j'.
i llu ".
- ill:.':::
"g0 sli; it(:
} s
'!T:
sl
<< i
- il:
- li I
II.. l1l i'j".i
.Ii: Ti j.'l "tl il'1 i)I:i Tt ~
- I.:jli
)~1
'I:::
.lt'I
'5'.
- si: '."
- I
~'-'ll s':.
. si
'I.
1.
'!'<i':.ll
.1!,'I! ':jl
.i
'I 1 iis'll
':...ll:.ili i<1~ :t llj 1<'
~
't<
'i 5
Li~
ay -:. ';;
. I
,: 'I:
I.
~ll 1
sl' L
11; sn.t.
Lg
- 1'.'
t.
~I,
~ji j)rli
'I; ILi.
ill
- ft.ii 5 's';
.'ll
', ~
,ij i!I
'il':
I
'h<
1 jt<
t('i
'I:
,I;.
j.l j)i lil gsi
- i!
1< i fl I'g'i
, tt
'I':
'iL
~il
-t:
tl
. ~ 1 5I
- ll g<i I';;
'ii) ts.
.:I!
'I'5:
.)P
'il't.
".'I I
~,j.
s l:i Isi',wt X
0 I:
/dj.
~
g 51 xj I/day j'I SUPPLE))E ORRELAT AL TEST
'-.):
c f.'L IP
.,I. I;;
'l fi hi':,
'iil )P
,'It s!j<
j'f g
ujli ri Ii
- l.'.'
<<<i '.
il::"."
sit)
- I..
.Iiiirlii i!'::I
!I
'll.
15::'::I 1
- <L
~," 1"I'
. I
.:V.
"I
>~g%'s js sr'!I'(1 0
1
~
9 (V
~
f.'s, <s'<.'t Pagf'/l7:
)I""j
- il'
- I rl, I,
1
- 5'".
rt ii!
- t. ~
'js
't'l'i'.
ii.
<I'
~
.'I
~
I 1
':I":
jl;.
i'm!;
Iill I
5 ti i'I'r
- <I'!i 3"'i j't.
1<
1 it,i
.1<L'r.tl:ij.
'I ttji:
- l
'l:
1 <j
'I
. ~ 1 ll
~ 1
':I'j
".5
- I
)!I gl',
'ill j!)l il'1
~f
!Ij'".I 1:f.
ill
'll:
,ii Ii if':
"is
,ill
'l.l
!!):
'I','I
'!ll
":j; ss!l
- I:
,t lg "1
- Ij.
'll:
il,'li':
I:
"I t ~:
1L 1, ii
<)<I
'!Is s
jh
<'lI
'I:;;
5:IIi
.l
- i I i
~li',
I:,
i.'I fif:i
))!.'jf it
')l.
- i!
si:
f'I
~
'e i)'i
- jl
'Jt 1
~ 1<
f)I sl:1 1!ir jl j'<11 Ij iiL
'l
'1, 1,
- I:1
~;i:
6 s
>>f.
1 1'5
~ I
- tll
<I'j t
i4
<is
~l Igs
'I" 1< I:I
- tij
- .'!I il
- t:
,Ii
- li:1 Ill
<I:
'.'I
- f;
- I
'll.
't.
- ij:
I jl.
s D
COOK PLAN UNIT:. ONE IL)T '-::
JULY lo81'! "." "I SUPPLEMENTAL TEST I',l jjl)
!il!
1
- s I
'CONTAINMEN. HE GHT
.5fi, 1! ~I" I:s i!r I
I.
ls L:.
- I '
~
- 1 <
I'is IL li:
I;,
'I'.
.5 s
5' (IE'r L-
)'...)
sj I
';I
- gst
!1 ~
!i'. j'fi
~ '. 1 1 ~
I jt.
- I
',I Ii, I; ~
". 1 j)iil.
I 5
I 1
I" s
is<
1't:
1
~
1 i
1
, i.
~ 'i Ii 1'!ij
+f';i:I",'.!
- it<i i' I!I I:~
iiiI:'ll 1
s s
I
'li';
- i';
.<L
- I:
tjj!
'i tI.
ti I;', ~
..5 IJ
- L" i 'il;
- < s".i'
~
.;. 1<i!
.<j't,i
,i:ljj
~j':
IIi.
.ll,t..
'I it
.I lj..
':::l!
'. ~
'".';I
~
)
~
ill
. I;I.:,
sl, Il.i
- <i
'll
- I.I'1
. ~
1
<i.
'1"
'i".
t ~
.'I.
ii
!Ii.
.)l
- I:
. I:il.
sj",
1 sa i"j
,II'l
- is ts',
'i'j:i;
.:I
- b.
lf
,it, tg lid) isl
.Ii.
sl
>> ~
':1 5'I
- t.
':I
- s) sl
.Ii
';l ii s ~
~ s 1 r sj t
s 4~,
~
. ~(s.
~'
<st/
~ '.Psg a t ii)
];s it)i
- I-'i 5's "l
- il I,
1
'5:"j ii
~'.I sI Ii I':
='l Ir I: '
is
'1 Iu".
i!
'".<1 sss':
1l'<i 1'
ii
(
~
I.;..)::
~)1 Llj
!Li
')<'jjj Tj
- iii. ~
l;: '.;
Jii li;:i
,ili ii '
i:
11:
I:
.i,t.
5
~
,Ii st sl l
G ri tst s
rr
,'li sh:.
Il
'tt
"'.h s
~i 1"
~ l ill':
- I'
~
'I
.11.
,ii.
I'ts 1:t jt
'I:
- t.
j.l..Il'I
.I i
- l
'1"i
<1',
i~'I, if<
.I
.tg',l r
,'t i
.i'<'.
I
'it.
Ii~
sill lil
~1~T
>>I rL'il!
- i':<J.
- 1;rt II
.<t : tl
".I;1).
- i~
~ %r
~s<>>
gs'
~
~,
~ 5is
/i
<~
.1.<
.I.:!;-.
~,
ii'j:
s
~ i
~ 5
.I "1
ir 1
1'>>
~
~
~
~
- .'.:il;.:-
"',: iL<
.:I..'L':
~I
!;!.:Ilj i!
f::
..1 J
- i; )fi
':;j:; I!I
I 8.2
'LRTEST'rogram Summaries D. C.
Cook Unit 1, Integrated Leak Rate Test July 15 - July 19,.1981 8.4.1 Fixed Prooram Information Paae 8.4.2 Pressurization Runs 1P-21P Summary of Averages 8.4.3 Stabilization Runs 1S-50S Summary of Averages Preliminary Leak Rate Analysis 8.4.4
'Type A'est Runs 1T-50T Summary of Averages Type A Leak Rate Analysis 8.4.5 Supplemental Test Runs 12Su - 25Su Summary of Averages Supplemental Leak Rate Analysis gl Page 48
(
I 4
I Y,'.
',5.'*
'4*'
4A 2 7
e
' 7<< 4 0,
~'> 6
~ I
~ 4 ~
J
~
~
2 ':~ a '.,' 'RESULTS 0
THE LINEAR.REGRESSION ANALY IS 3'(" 5' 4
. "'Pi'6 ""i 4>>"'
" '"'"-": oa>'"t"
~
'F50' I.>>;::((j(('."'5pk 47<~>>(<<ja<<": I""" '."'~"
.-'5'~::*j:;:: ":t".5I., 2;>>5(5 1"
~
5 5
~
5 5
~
~
OMER. '
~g."
~ M ICE r<qi'5.y> (g,f!..>,, '-
Ã~<<"g qCi INHEN@~S)-fyCONOENSEp'p."55'f<('of'-.s'<'-'+4'~~'5."'e)5!'RUN 55 15
".!~.,
LEAKAGE RATE':;))~,ltd '5QEAKAGEf~ g ' '
'H UPPER j0~P~,'"
M L EXPERIHENTAL':j'6$:UPPER.,LIHlT '>.'),f<)!.p!<p, RATE':.",p$ '~a,'.CONTAlNME T~gj)COQTA 14 0 ~ 99989
" '0 ~ 56859 0 ~ 269 3 ';,
"('-'.",. 1 00004'5."..ji" 1,00005,jg<<<<"-')7(.
0 9877'," ",.iF'5',!:
ls I,OODOO
.. -0,!r>>69
- '0,02052.;.!'":I'1,000061(..."',i',00032:","'!'jj:(:0F 9909(I",'a."'":
I':
j'6 1.00000
-QelI 425
~ 9390
~DO003' 'D002
~ 99929
'll
~
( 099993 ";!.,'P!5 II;-0,(3966~('ll i lig(~el!000299~>>j((4'Phe9099996(
",.;, ',0002('/!I'll'ill 0 999(0;;<<9'5"'.g7'f (>>'557 JJI', Il)!2(45 vl 18
'. 0 99992 4!.'.'Ird i'-0 11313
"'>>I'!I,'(!:
i:.,'0 01974 fol'!(ll( I! I 0 99992I 45(!>>I 00016'2(!I!I '(ii 0 99935 45::.", (- l(1'JI I( (7'(<<r!2!I t'\\'!Ijo("
19' 0000(~0
~ 06430."
I '
"O,D(134" "'orr"MI 00001:
'0039".'
9991 20 I.ooo32
-o.olla6 2:3;o.l239ll::,4.:.I" 1.00064 "";((*; (.00042 i>> i:-,.:I'i 0 ~ 99057-".:..'.,:'"":
(."; ",7<<>>i;;;. '.'I ( ';:"j;.,7,,
21 1 ~ 00012
~ 01457 "0 ~ 12091
. " "'"""1 00016 ',.,'.5 1 00072
',~'..'".40,-".-'
99849). 7.,1:
'i-'1',
! ~
22 0..99999
-0.00693 0.006(9 I 00001 O0036 0.9990 2 3
<<1
<<5 5
5 2
5 26 0.99902.. 0,06137
-0.09043.':
.; "0,999921'..;;:"7 1,00037!'-I!'i"."10 ~99000.!
27
~ 00003 0 ~ 04965
~ 00349
~ 000 1 1 f.i"'.
1 ~ 00063
> 0 ~
99816'0 0,99990
-0.05334
-0,00576
.99990 " "
00050 0 99844 ii:;
5ALJ EA!IAG~~~KJQY)~Ml6~~5IE
- -:,UPPER CONF IOENCE~:L1H1T.'OR 4 T55E. RATE.. IS
- T>>-'0 ~ 00213 0
~ >,.I "..'
.>.5-,.: "
> t 29 0 ~ 99993
~.. ( >>2<<5 <
0 ~ 05219 54!.,>.-.>,2 :
0 ~ 00988
~ >> lg, -(j (2 0 ~ 99996>$ (ap(:jhas 1 ~ 000534.';,,>>-;'
~ 99834..
- >p y.'.4..ergo.-,
5.;!45~.-. 0<ed(O:2'>4'.pe~ Dp..o 30, I ~ 00011
.".'::;:('0.03019;;I'-j..'-,':"
- 0. Dill(0 (!NII <<';-:rl>> 1.00019 j(<<I,:1,:..'00061 j; "4>>'i3!20 ~ 99050 (""!':.":: ",':.."f
'P<<:;.:: <<'! 2>(',"'.(
32
!I 00022
-0 00020:'
~ 02039:I!'>I.> I 000>>si!<<1"."
'. I 00062.<<"..(I".i. 0,99820.
33 1.00O11
'O.OO318 0.03012'!,;g."
1.OOO27 g,"
1.00O71 ':
0.9979O "
.'.."'4 9,99990
-D,.00610 0,02467 1,00006'"
I 0005 0.99016 38 1.00000
-0.01172 0.01115
.:': (.000(6+; '.DD003 "':,";:"""0 ~ 9972I ':
39 0 ~ 99988
-0 '167S 0 '0524
~ 99992 1 00088 0 ~ 99729
>ll 0 99999
-0,01630 0,004(6~
~ 00009'.
I 00097
~997(4 41 '
I 00004 ""-"'-0,01433 I ("I;I:,", 0,00475;;,.;!i, I" I 000(7TT!;IU', (.001.06 >'I'i;I'(3 0I99694'"," I>.'.,',".,'.",I;
',.'-'::,,':::. ',:".; ".,.,I.I, 4 2 1 ~ 0 0 0 2 7 j 0 ~ 0 0 7 1 9 3
5 2
0 ~ 0 1 2 0 0 5
2(
1 ~ 0 0 0 4 1 )
1 ~ 0 0 1 0 4 0 ~ 99 7 7 8 3
01 0
~!
43.
'I 00039.. 0,00 1 I I 0,02123~!"" '
~ 00071 '
~ 00105""( '""'.99729 I ~ 00013 0.00311
'.II2200
-.; ( 1.00027!I: "..
! 1.00101
';::::: ';".0 ~ 99737
5 le00015 0 ~ 00521 0 ~ 02300
.3'-
1 00021'<:-
1 ~ 00135
~.-'"..
0 99699 46 1,00015
',00707 0,02305~,00032, ',oolla 0,99605
- .';" I.OO i(O'>-;,'.;","..,;,">.
07 00(' 7j,:.j">'.,'r.;;... 12Z03O55;(,;.""Z.',>,',I.oaoaoj I":P::,.; (.00((3,'J,(>>',0.9969(;..,4.-(I::,,!I;;.,-(-..':::".";.",",.',4,.,(, j':.,'.i I 0 ":: "". (.00002,
.'.("-;I!2(0.00609: -'!i'i.'..I'0.02(23 - "jj:'!'4!1.00015( 'r!'i'
~ 00((0:,.5(rh'Dr,.o ~ 99677
.i":.';."."'7: ":
6! i:.
7 r;:..I:; 'I
. I ':!j'I-,'::;"
50 0,99997
." ~ ',00213 0!6(4
.,I,OD005ll.
00106 ':
". 0,99692 1
J I
EBL~ ~9 r
4
~ >
~ ~
4
~ ~
~
~
~ ~ J >I 40 of+55($4 4 ~ 8 I>
5
~
(pry ~
0 I
Ir H
.gl 7
7 SUHHAR'f OF AVERASE5
'1,', I+'> ~')
....,,,, I:3.,i,t,lt.,,t,....,
~ ". RDH 0" ELAPSED!I;",',AVG TEHHPAH)VG PRESSE<<AVG "I! PRESS'i',AVG IEHPPI:AVG PRES
""AvG'v PRES'53 AVG".TEHP +VG.PRESS/,AVG(v pspas
&!i
." "";7IHE'."i",.'- UPPERS',f< jt';,'."UPPEt) 6)j'3 <"'UPPER P$ '(l'ii LO'NER-'.'& {':<LOWER&'.",', "LOMEglli)t& 1',3)'Ejf t'4+(XICE gP'i 4-FACE
". l.'4g'$'.:
)P'2 0 ~ 0 82 ~ 3985 44 26 ~ 8123
'-'. ""0~ 2115:3".-'3 ~ 3963 ';:45 26$ 7862 pANV'60 ~ 2239";$
".$320&853)3++Dj~26$ 7947$')i'4'>0 ~ 0810 13 0.50 82,3530 26 8093 0 2094 '3 3384:
26 ~ 7831/'3&~!I"0,2223 ffIg420 9431:~g'26 7902 j
0 0973 I& ',OQ '2,3191 26 005~
2081 S3 315~6&80
0 2208~8&907 26 7021
~0,0936
~.,',,'15 1 ~ 50.'i~ 82 28)9:f.26,8042..Q:,;:,~.'.0 2074; ),383 2310').",126 ~ 7781..&>3."0 2)54~+>~".2) 02)2~5,"'26 ~ 7821 P;g)~>..':0 ~ 0883 16, 2 00
.. '2 2453 ~'26 ~ 7994.,;'... 0 2053 71, 183 1270 i's 26 7731' Jg~g~(0 2) 731$H3I)(k'20 9488'( )f26 7783'.,:j::P'0 0781 2,50
.02,2020~1'6 'TDAT~D 2047~831,143~26 769&
'0 2ISSIE&A'20..9206~26 77&s~r'.0 0034
~ )8 3 00 82 1753::
26 7904 0 2026
!7 ! 83 0657 ':.. 26 ~ 7641 P)',.".I 0 2)36@@20 8209 Qq.26 77)8;>P%"..~; 0 ~ 0772 19 F 50
~
82 1960 26 '926 0 ~ 2013 83 '036:.- 26'666
. "&3 0 ~2)3)'j';g 20 '522 - ".<;26'733 '.'
0 0834
. 2D 4.00 02..1&14
. 26.1099~.104$
'2.967~26.163
- 0.211
'.9542~26.7703.,
D.OS?5 21 4 50 82 0750 ii'f 26 7539 "i 0 1940;-'!'I"02 932lr 7 26 7506 ff ':0 2000 1'V 121 ~ 0447 &ITI<<.'26 7659 jap 3; D 001
~ <0[
\\".'3173-'gftl, 3<<t?j.f 31 5
I'-:t':.T':':'&'4:".:3!%b jP3gl'(~9'54)1 l.'::. ~ ~ '
8 22 5.00
. 82.0422...26.7797
~ 0.1960
..... 82 ~ 8690 7.),. 26.7545 i.,!,.f-, 0 ~ 2084 t, 20 ~ 8658~.. 26 ~ 7629 -
.::, 0 ~ 0749 23 5,5Q
~
02,0136
"'26 7792':
1961 8250,6.&~)"'2615,35~0 20734&L20,042~<<. 26 7614 ,0048 2
6.00 01.9480
'.26.7740,
. 0.1948, 02.7936",fl;: 26.7400 0<<,'fi'
~ 2060iI'f. 20 ~817S.'6.7565....
0.0702 25 6 50 01 9522
-.'26,7740:;.
0 1941 'f:2 02,7326 <<$ 26,74754'3",--'
2054::go 20 9601 "'". 26,7565'..:I 0 090i 26 7.00 DI 920.0~6 760.8~
1920 02'69&.8." 26.1420 0 2041'0
~9719" "26.7495 0.0026 27 7 50:
81,8917 26 7705;.-I::: 0, I9 I~&I; 82,6224Qir,,'26 74<<0 fr!" jo; 0 2029 +/ 20 9920;I'7.",'26,7500':ll'::
f.. 0,0777 20 0
00 'l 0655 'fl'6 7637
0 1916 H'2 6021'fovff 26 7380/ j'9: 0 2011 '4'0 9!190'. 26 7446 '(
~ j" 0 0650
'. 29 0.50 GI.II550
" 26.7633
. ':'.1903 '2.5765'f'7'26
~1365@
': 0'002~20 '93926.7436
.0.0719 30 9.050&
81.7402 26.7624 0
1004 02,5312 '". 26 7355 r'.".
D 1993!i'"'0 0322
-":!.26,7411 "
0,0605 31 9,50 '1 7274 26 7509 ':".'
1817 02 4702 "
~ 26 7324 A'. '
1983'.':'0 0302.q,-. 26 7401 0640 72 10,00
$ 1. 212~26.755K '. I?69 l!2 0276
26.?204
'..1971 20.9183
'" 26 7367 0.0675 33.';
Io,so~i,! Bl 6979~~'126,7545'frr<<'0,1810
.I!2,36 09 ~TR2672 69,.;:'i E 0, Io&ligj)!'2 09 I&2 0"526,735$ $4',0740 34',';: I l,oor I::Bl 6600@('26 7409 i.'r,; ',0,1022 r !&02 3476 I, 26."7'219
','. f,-, 0 1954 AI,"20 80<< IE)26,7272 a<< 'fr3<< 0,0'609
-11.50 '
DI,635II~A" 26 ?'$59'-'-'.ll ~ 1022
'.02 ~3160.'"'6 ~ 7214 I"" 0 ~ 1943 '20 ~ 7"8-9&~!"26 7272~~0.0?IS 3b 1 2 ~ 00 '1 6226 '6 ~ 7433, '
0 e 1 8 1 0 82 ~ 2824 '6 ~ 7 159
'3)&33I 0 ~ ) 933 j 20 ~ 7877
.'. 26 ~ 7233 0 ~ 0543 H
3 4
P 20 '281 2<$ 7088 0'613
- 3(+jtE 0 1767& t')"'20 ~ 9823 '
- o. 24 ~ 7083
":. ~ j( 0 ~ Q679
'HJj3'5 "":
7."4"
'3',
j0
)842,)'3~))Ht 20,9848 3'>):26 7093 '::".::, 0 ~ 0716 'i"-:".':.'-'-.-"."'.>'.'",'~)":.
4".'
~ ) 849~r" '0'98/~~26
~ 7054 '
.0 ~ 0646
'.-'g&oi'
~ )832
.o<<
21 ~ 0315-14r 26 ~ 7019
~
0 ~ 0645 0 1833:"'1 ~ 0067
>'") 26 ~ 7019
~ 0693 4S.','.
16,6$0;,.Bl 307041 p'1.26,7291~7:.;"."'",&,'.,0 1727~!
,; Bl';92.80 p :26.,7-'020 46 " " 17 ~ 00
":,. ~ 81 ~ 3573 L ftt 26e l304;.,j 9 Pgl 0 ~ 1721 Il' Sl ~ 8839"'.j>:.26 ~ 7038
~
47 17.5o
=
81.3o74 " ~":?6.7269~,).727.'
81.837,1 '.'6..l003 48
~
)8 00 Bl 3004 26 7230.'if~"'.'-3' 1721 81 8)33,..: 26 6973 49 18'0 Sly 2674 26 '218:.'-'.I'-. 0 '721 81 '869 "..,:i 26'953 37 12,50 8'842,: 26 l403 0 1798'2 '137 26 F 7)29);, " 0 1927
. " 20 '754
. 26'187 -..'
'536 30 13,0il 01.51764 26,742~0,1770 82 ~ 1611 '6 7149.'
191Q 20 0464
'6,7192 ',0790 39
-.. '3 ~ 50 E.'1 ~ 5470 "2607360:q'"
.7!7.0 1792 ",".- 82 ))97~()'-', 26 7099 py':;
0
)9868~pj~ 20 ~ 9)32 t'."26 ~ 7)63:g.'." '
~ 07)6.::"..'f,, ]t:'"g'-".gL/l':..';,
40
=
14 ~ 00 ';
81 ~ 5312 6 ~ 7399
" '.'0 0 e 1 792 "l'"82 ~ 0835 Erg 26 ~ 7129 ((3.jt 0 ~ 18'90 I'j+I'0~ 9917 I( ~.'6 ~ 7187 3"::" 1 '
~
0737')
14 ~ 50 81 4958 26,')39Q 0 '780.
82 '50Q
'6.1)29~<""
0 1883 21 '178 =". 26 '187 "'.,0'775
'2 15 F 00 8'612 26 '356 0
1700 Sly 9989 ".;-. 26 '094
!', 5 0 '879 20 '949
. 26 '142 Q 0574
~ ~.
43 15,50 Bl 4273 26 73?3 0 )602 81 9534 26 '063 p.'
1869.'"
20 '399 26 '118 0 ~ 0657 ST w+/4 4
o
~
5 I
~
~
2&',I" .,',
~ Ar,
~ '. 'Io',
~
~ -
~
~,
~
~'"
4
'C
~
4 r~
g
~ P
)<<
~ 4)/Dt's(4 'p P 3 PA CIIO &'5 IsfFE&
]'2 3
4 5
6 8
9 lpll'2 13
]4 15 16ll la 19 20 2'1 22 23 24 25 26 27
.-,'<~ e 28
]of 3O 32 33 34 35 36 37 38 39 4Q 41 42 43 44 45 46 47 48 49 50 0 ~ 0 0 F 50 1 ~ 00 1.50 F 00 2 50 F 00 F 50 F 00 F 50 F 00 5'0 F 00 6'0 F 00 7 50 8 F 00 8.50 F 00 F 50 10.00 10 F 50 11 ~ 00 1] 50 12 F 00
]2'0 13 00 14 F 50 15 F 00 15 ~ 50 16 F 00 lb.5o
~
17 F 00 17 F 50 18 ~ 00
]8 F 50 19 F 00 19 ~ 50 20 F 00 20'0 21 ~ 00 21.5O 22 F 00 22 F 50 23 F 00 23'0 24 F 00 RUN jj ELAPSED T]HE
~ I C ~ / Yj :
AVG TEHP AVG PRESS AVG V PRESS AVG TEHP
.AVG PRE5S AyG V PRESS:.'I.AVG TKHP<
AVG PRESS
- AyG y PRESS UPPER '
UPPER UPPER LONER
'-:~
LONER I,
i,.<,< LONER,'.'99". ]CEI':Pjo.",
JCE
]CE
'I"
~ '-:.J:l.:.?,.'..
Bl ~ 2480 26 ~ 7149.
0 ]7]0>
81 ~ 7247+Ij, 26 ~6888",.I". 0 ~ ]alp,'b P20 ~9629+; 26 ~ 6949 >~'f 0 ~ 0508 ';..<<"P+g I'$'0 81 ~ 2268
- 26 ~ 7 161 0 ~ 17]0 81 ~ 71]5,]'<" 26 ~ 6898 j'~~);"i 0 ~ 1806 ~~<f'20 ~ 9608 I,'
26 ~ 6954
'Q ~ 0534 '~t j~.. II'0. f f<<r r:
8 1 1806 26 ~ 7 140 1536 8 1 6883 '
I 26 ~ 6878'<<t<'("0 ~ 1804l'~+I I'20 ~ 9623 ~'>I 26 ~ 6940 '!I!j~
0 ~ 0643,'I I~!I"<~ '~}j)~, '
I}744 <<"
Bl ~ 1732 '6 ~ 7119 09166 t 8166717 424, 26 ~ 6888
}tl'gj'". Oo]80]-~>'I", 20 ~ 9933')I}j'f'2666930 g'~
0 ~ 0590
)4
.p
)<<'Q~~
81 ~ 1936 26 ~ 7145 0 ~ 1578 81 6504,.,']<<26 6883." i 0 ] 797!gg.
21 0247'l
.'I 26 ~ 6940 r 0 ~ 0683:
') ',-'<... fg 7'].
81 ~ 1489 26 ~ 7 1 06 0 ~ 1636 '1 ~ 6192 4<<" 26 ~ 6848
~" r 0
1 793. ',I':; 21 ~ 0958 I."" 26 ~ 6925, 0 ~ 06 1 3 Bl l]95 26 ~ 7184
<<0,1653 81 6146: g'6,6923.; t'- 0 ]79];~ '2] 3800 I"','." 26 6959 "..; 0,0738.,';;.;-;:.-g"t;]~':';..g 81 1064 26 7154 4
l 0 1659:.:.'l 5617 6'f, 26 ~ 6938"ai',>a 0,]783'g}) ] 21 3689'5'i'q 26 ~ 6944 -.~.:6,'
~ 0690 '.jj:,,,7j"6'~14"j 'if~ifI Bl ~ 1001 26 ~ 7119; '.'
~ 1659
-.-. Bl ~ S416 otp'; 26 ~ 6863;.]7>2<<.
0 ~ ]779 g). 2193919 I:.;=,26 ~ 6925 '.)!<<9:='I 0 ~ 0770 i('6.'."'!It<I])4~9 <</~40'Q Bl 0772 26 ~ 7101 0 ~ 16S9 '
81 oSS05 94f] 9,'. 26 ~ 6832'>:.4
. 0 ~ 1770 3})j.: 21 ~ 363b <~".g 26 ~ 6885 5
~ 0685 I, y;'8 ! ~~).'"'I",'P <92.."Tt.
8'698 26 '071 0,1647.'-'l 5](e '.",). 26 6843..',,",: 0 '773
!g,2],3978.6'! 26,6870.::.
. 0 '797 ~:.
': 7!,>g"f o" Bl. 517 26.7o33 0.1642 '].sooaj."-I 26.6777'-.,0:.")
0.1766 tg."2].2642.5<) 2e.6a35
,:; 0.0738
- -'l
~ 0711 26 '050 0 ~ 16 t7 Bl ~ 4965 I
26 '787 '"'o]720
- 21 '502 "q 26'835 '
='
'721
)
~
Bl ~ 0521 26'046 0
1631 81 4622 26,6787 '
17sl 21 '942 :i'6'830.!
0 ~ 0570 81,0457 26 '995 1587 81 4587
,.< 26 '772.,
- 0 1748 21 2041
" 26'816 0 ~ 0542 81 0088 26 ~ 6965 0
1598 81 92358
'.~~P 26 ~ 67 t7 '.<< '
~ ]748
<<~1 21 ~ 0675 '}'" 26 ~ 677]
4 0 ~ OS]4
~"
'1 0179 2606977 0 ~ 1551 81 ~ 4451 '.'6 ~ 6717-.
0 ~ 1743 >'1 ~ 0222
'~ 2.'6 ~ 6776 '
0 ~ 0567 +'I'I~ ~
'"%~j Bl.OO48 2e.6947 0.1587 81.3477,
< 2e.6e97 0.1737 ;
20.9957.-
26.6771 ". '.0503 I
80 ~ 9779 26 '956 0 ]603 81 3626 26 6702.', 2-0 ]666.j'.r 21 0769
- - '6'I66 :
0 0636 80 ~ 8778 '6 '913 0 '598 Bl ~ 3063 2'.r. 26'667 ~
0 F 1724 j'" 2180104 "58'6 '722
'.4" 0'476 <<I' I
"- ~ I).
80 '647 26 '900
~
0 1598 81 2719 ':] 26 6657 1722.'0
'9852
- 26 6712
~ '
0603 8'982
~. 26,6896 0 1592 81 2871 '
26 6652...
0 1720 20 9197 26 '697 0 0472 8'598
..,> 26'878 0 '587 Bl ~ 2476
'j7< 26 '632..'- 'I Oo]716 0<<.'I 21 '306
~ 26 '692 0 '700 8'055%:.
26 '848
- 0. 1587 Bl ~ 2499;:.,'6.6597 ".,'", 0. 1715
.':.: 20.9498 ",if"'26.6662.,j 0.0639 ';
- ,; I.g 80 '502 " j 26 '887 0,1582 Bt 2088.';, 26 6632$,,'
1706 ", 20 953]
!~,>. 26,667]:i'-'.",;<
OS O64O '<I'-"'",.f,4:~'J'I 8'223
. 26'845 0 '534 Bl 1441 ".'," 26 6597
-. <i.; 0 1708
>I 21 0228 '" 26 ee52,jul ",Z 0 0539 ~P I.',"".,]'-'"
00,9426.'6 6040
. 0 l545
-0l )654
.26 65975." "4-. I,litt" 20;9737 26;6642 0,0 l2 80 ~ 92I)3 26,08]0
~
0 1419 Bl 1165 '
26 6561 ".'
1700 20 940]
26 6632
.'. =-
0,0486 80.8952 26 6818 0
1509 al 0783 "'r'e 6566.-<"
0.1690 ';-
20 9716
~. 26-6622 ':.':
0:0522 80 ~ 056 26 '802 0 F 1524 8'568
< ~'6 '556,'.)
0'697, "
20 9288
. 2e.cela
.-". " p.pi,76
~ i 80 F 8890 '6 6776 0
1524 81 0855
'-' 26 '531
+:."- 0 1689 "....20 '575..
26 6583
~
0 '439 80 186 26 '802 0
1519 8'934
".. 26 6556 Iy'.';
0 ]683.j'.'I 20 9638
.",,'6 6587 0'524 80 F 7922
. 26 '806 0 '524 80 '672.;.:, 26 6556;'2'".
1689
"'"- 21 '056 '.:0 26 6567 '
0677 80 ~8027, 26 ~ 6758,4'
~ 1SSO 80 ~ 9616
",.'. 26 ~ 65] ll'.I<~
0 '
8 1684
'7',I '1 ~ 1490.;:-': 2b ~ 6543 0 ~ 0477
...0."
~ ':
~
~
80 ~ 8609 26 '776 '..
0'555 80.9456
'6.6526 ",,
- 0 1677.;.- 2'327 26 'S47 0 ~ 0693 Bp ~ 847]
'1 26 '789:.: '
1550 I 80 ~ 9170 '"t' 26 '536
'4 2'0 0 '675,~
21 '766'.<"-" 26 '552 0'682 '
'.II
~. f. ~
8'296
"'26'763:,j',"',1519 80 '782 -, 4. 26'5]6:]jf:
0,163S,;.'1,2505 l
. 2).6542 PE P540 80 ~ 8104 26 ~ 6712 ~4'.""."..I'
~ ]S34 80 ~ 8746,-'!~- 26 ~ 6466<:>5<<'g!
0,1672
".-.-': 2190878
>.':w. 2606508
~
0 ~ 0485 80 ~ 8324 26 ~ 671 7 '1 I-0 ~ 1 524 I
80 ~ 8206 4 g, 26 ~ 6 Ia] >
. I<<0 ~ 1 667 21 ~ 0866 26 ~ 651 3 Q ~ 0555 8'097..; 26 6694
".". 0 1524 8'386:.'";. 26 '451';.':;'.
0 '663
".I'.-" 21 F 0191
26 '482 0 ~ 0497 80 ~ 7805 '6 '712 I,~;
0 1524 8'990
-',,'+( 26 '466 <7-'.".
0 '664 3.." 21 '717:, '.
26'497 0 '577 I*..
80 '684:"." '26 '672
~..7' 1524 80 '768:.:. 26 '436:;jl);9~ 0 1662:.'<
21 '910
". 26 6473 0 0488 g]
8'751 "'6'659
". 0,]524 80 ~ 750]:",>I'6'426'>'"';-;
0 '913 21 0337."
26,6478 Q Qe]5 80 ~ 8012 26 '681 0 '518 80 ~ 7730 I~
) 26 '441""::".,'0 1654.'! 20 9263 ".. 26 6473 0 ~ 0688 8'486
"; 26 '642 0
1524 80 '206'fQ~.: 26 '406.k.".';,'..
0 '653,.'i::,20 '062 -.'6 '453
~
0 '630 80 '416
'< 26 '608 4
0 '529 80 '17 9'E< 26 '366 ].".I<<:I 0'653:.
20 'Q48;.;
26 '429 4,-"< ':"
p p539 '
', ",:';~
7.
~
BOER 7435 2606573
~.',]S]8 '0 ~ 7]84 qj.: 2696330
]: P!,;<< 0'637
<<" 20 '812 V ', 26 '404
>'-:," 090544
~ ',.- "j'4)'.'g..'"
~
80 ~ 7340
~ - 26 ~ 6548 0 ~ 1447 80 ~ 6398'<4~., 26 ~ 6300:~~IT. -
Oo]64]:ji; 20 ~4662: il 2696379
~ 0537
.I..Ip 80 ~ 7277<
26 ~ 6518
",'0 1519 80 ~6567.5).'6 ~ 6260<<:,~j3i.,o 1633."::. 20 3275 -'i;'426 ~ 6364
', ". p p4gg "'..:".-'.:.I-."-.:-"
~
~
'I "I" ".,'j.]<<I'.-'.
- I!'>'"'.".I"-,'HI<
~
'"'g)'IP'0~'<< '.: ':;
.h5II ~pl<<)<<L~" '. P.. ";I'~>g.. )I
"..o y.).'Alv~55~Ps<<7 "}IIjl<t"<4 </gj 6
RUN tt 3
4 5
6 7
8 9
]0ll 12 13 15 16, 17
]0
]9 20 21 22 23 24 25 26 27 28 30 31 32 33 34 35 36 37 38 39 40 41 42.
43 44 r<<5 46 47 48 r.9 50 EXPERIHEN I ~ 00039 I ~ 00010 I ~ 00029
] F 00012 I ~ 00026 I ~ 00026 I ~ 00007 I ~ 00006 0 ~ 99999 0 ~ 99992 Ioooooo I ~ 00009 I ~ 00010
]oooo]7 I ~ 00014 I ~ 00008 I ~ 00008 I ~ 00010 0 ~ 99993
] F 00018 I ~ 00006 F 0 '9903 0<<99995 I ~ 00001 0 ~ 99999 le00020 I ~ 00007 I ~ 00001 0 ~ 99993 I ~ 00012 I ~ 00004 0 ~ 99989 0 ~ 99980 0 ~ 99985 0 ~ 99999 0 ~ 99902 0 ~ 99985 0 ~ 99982 0 ~ 99988 0 ~ 99981 0 ~ 99946 0 ~ 99978 0 ~ 99977 0 '9911 0 ~ 99965 0 ~ 99979 0 '9957
~ -0 ~ Or.662
-0 ~ 04739
~ -
-O,or 689
- -0 ~ 04746 e
-o.o54ee I
?
-0 ~ 0548]
':.t'.,y I
Or
~
.. -0 ~ 05479
":-.'I"-.,".':,
-0 ~ 05620
-0 ~ 05819 1
'LEAKAGE RATE TAL:. UPPER LIH]l'..
t'~.';. -I. 32053 " ".'.]..> -'-"
'".'.'. "0 ~ 86147 ""., '<<
-0 ~ 24441
-0 '4599 0 ~ 12033
-0 ~ OS742
-o. Ioepe
<<:I:.;.'0 ~ 12422
-0'6673 ',
-0 ~ 15618
~
-0 '3361 "0 F 11482 "0 ~ 09389 0 ~ 07942
. -o.072es
-0 ~ 06632
-0 ~ OS924
-Oe'06475
-0 '546]
-0 '5142
-o.oel39
-0 '6158 "0 ~ 05886
-0 ~ 05696.--.;...
~
"0'4893
-0 ~ 04526
-0 ~ 04394
-0 ~ 04503
~ '. "0'4073 "0 ~ 03871
-0 ~ 0<< OSS
-0 ~ 04447
-0 ~ Ou599
-0 ~ 04414
-0'4584 LEAKAGE RATE 0 ~ 92972 0 ~ 29909 0,29556 0<<13219 pe ]024]
o.12445 0 ~ 05185 0 ~ 00840
-0 ~ 03175 06572
-0 ~
-0 '1136
-0 ~ 06012
-0 F 05136
-0 ~ 03674
-0 '2057
-0 ~ 02767
-o.o2el7
-0 '2311
-0 '3118
-0<<02313
-0 '2275
-0 ~ 03320
-0 ~ 03550
-0 '3490
-0 ~ 03482
-0,02700
-0,02485
-0 '2r<<90
-0 ~ 02711
-0 02359
-0 ~ 02259
-0 '2510
-0.029<<<<1
-0 '3161
-0 ~ 03051
-0 '3215
-0 '3395
-0.03546
-0 ~ 03555
-0 ~ 03661 0 '4273
-0,04341
-0 '4389
-0 ~ 04508
-0<<04677
-0 '<<1646
-0 ~ 04862 CO
~
~
w f l / et<.<
~ I.!j>><<<<"j.j
~
~"I'
'q!
~o<<
~
~
~
r
~
r<<'
I
~ '
<<.,:.I
'I.:I,I f 'lj r'p
~
'i I QL It UPPER
.',i M
I ONER
~~<<(y~ 'f' ICE
~ j
't $k'V!i'~'g..
'.Io NTAINHENT,-". CONTAINHENT".Itt'.)<<",CONOENSER 1 e00074 $ I
. I ~ 00005.)IipNt ) 0 ~ 999 <<6 rgb<<X '"<<<<S...g
>I {-'4' '))- ! 'Peg I ~ 00035
~ .'~:-.I ~ 00036 '>>trj~e... 0 '9803
~,',.
~
, -.,.I I 00033;j"r'j, I 00027I)j~)'t'j,-.tlap
~ 99826 I:,.')' (.'(:: S. ',
.'. ",'I;.: t~'...
"%; T <<Ij]
] ~ ppp27 tp~]rrj ] 00035'$',fr tp 99772o<<I
<<ji 'I'<< t<<<<hi'wg'>g;;gt<<<<
II 4,4'l.ir-,)
~ 00016
.""';. I ~ 00033
~ 00029 f;"~ '
e00061
'r,: '
~ 00013 I ~ 00025
!:".~)!'>>l. ooo5 I l<<00026 I ~ 00030 I ~ 00026 I ~ 00027
'>,'-,. I ~ 00014 i "~>>I;.I ~ 00038
.r.'j: le00036
- )'<<~'! I ~ 00035 I ~ 00031
.,';.'.;"' I.OOO44 I ~ 00041 I ~ 00029 I ~ 00058 I ~ 00061 I ~ 00047 I ~ 00058 le0006S 1 ~ OOOS2 I ~ 00050 I ~ 0001S I ~ 00019 '
~ 00027' I ~ 00026
~
I ~ 00017 I ~ 00038 I ~ 00015 l '
~ 00017 '
~ 00022 I ~ 00001 I ~ 00032: ~I 1 ~ 00035 <<;.
0 ~ 99996
.j I ~ 00005 +
] OOO12'I
].00005.)
].0004]:.$
leooo]6 g 1 ~ 00003i'{
0 '9996<<t]
I ~ 00021 I ~ 00025 0 '9995 0 ~ 99989 0 ~ 99999 I ~ 00004 '
'9982.
0 ~ 99984 f""~J',.]"":.:X
)) y
~I" tJ'I<<'/g<<P I <<> o
~
o J!.'
99917-..!
"."g'. j, "
.:. ';<rP,'::
0 '9870
~
~
,- " o 0 '9927. "I
. ~
0 99870 =':P!~i+
0 ~ 99144 0 ~ 99720 0 ~ 99775 0 ~ 99817 o ~
~
-.'.'-'II<<,~~<<rr..
0 ~ 9979tj
':":" 0 ~ 99782
- -.:.',-l I; 0 ~ 99S02
~ 99168
.:..'~.
~ 0 ~ 99761 0 ~ 99800
., <<'-0 ~ 99846
'l,.l': " 0 '9861 0 ~ 99878
.-':" ] 0 ~ 99916
<<I
~
~
I ~ 0006S I ~ OOOS4 I ~ 00067 I ~ 00061 Oe99967 I ~ 00066 I ~ 00063
].ooo40 I ~ 00041 I ~ 00043 1 00027 0 ~ 99980 0 ~ 99992 I
0 ~ 99979 0 ~ 99973 0 ~ 99918 0 ~ 9997]:+q 0 ~ 99958 j 0 '99rIS.
0 '9967.
0 ~ 99930<<
e
~
~r
~. ~ '
r
- jiq-
~ !
~X'e
>> <<<<rt rr
<<,r<<
-:i:et>>
FINAL: LEAKAGE RATE I% PER OAY) 0 ~ 04862:'.
INTERCEPT>
'-1 000/2 g'<<'<<'r i'-'! t".
.-. =: Q
".f.',
IJPPER CONFIDENCE I ]HIT'.FOR Tt!E RATE!IS,.0 ~ 05819
~ '/~~:.
~<<
. ".: ~ ".
r
~
~
qr
~
t...I,.
"'~t{'age
~ \\
RUN
}t ELAPSED TLHE 12 13 15le 17
.18 19 0 ~ 0 0'0 00 1 ISO F 00 2.50 F 00 3.50 20
~go 21 ~4.75.
22 Mo 23, 5 ~ 50 24 e.oo 25 6%50 AVG TEHP UPPER 80 '625 80 ~ 6537 80 '441 Qo.cela 80 '152 8'754 8o.eso4 80 '504 80 '428 80.667O 80.6559 80 '437 8o.e435 80 '338
~vg"r c c nc wy'lit c
l ':" i}"
AVG PRESS AVG V PRESS AVG TEHP
,AVG PRES5 AVG V PRESS-:,AVG TEHP.<.AVG PRESS
,AVG y PRESS <<""..'-.-'4'j:"-~
UPPER
,i'.'.
UPPER LOER :L,'OXER d.';: LO'HER'. " ICE '!
- 'CE..L
- ~
ICE } y ~ g }') 26 F 6328 ~ 1452 80 '830 ",, 26 '099 k4..; 0 1588 '.> '0 '135 4'"} 26 '151 " 0 '606 26 ~ 6272 0 1452 80 ~3930;!: 26 ~ 6049 CJ;", 0 ~ 1588'j~p.<20 ~ 0716,%'P'6 ~ 6112 '- 0 0397 ~ ')>;;:44 ~w 'eo 277 ~ 1452 80 ~ 3446 '-'6 ~ 6049 )'~'il';1 0,1594 }'$. 19 9987-'<<<i 26 ~ 6102 "" 0 ~ 0584 ~ r << 'W LT -;p< r} < ) <ff}L'L !I 0 ~ 051 1 o,oell O.OSS7 0 '647 0 ~ 0524 0'472 0 '735 0 '741 o.oee8 0 ~ 0632 0 ~ Q574 26 '039 26 '019 26 '984 26 '979 26+5929 26'894 26 5924 ae.s904 26+5}}43 26'879 26+5818 y. 0 1592 "~: 19 9337 'c(I~ ~ 0 ~ 1589 "!.<::19 ~ 9158 i'"~.'-1580.g,}:" 19.8897 '...: I. 0 ~ 1567 i~.!< rl9 ~ 8961 0 1568 I:Y'19 9553 'jq: 0 ~ 1567 ",<' L 9+ 8528
- ~.
0 ~ 1569 '.r;< 19 ~ 9475 I ~ ~.0 ~ 1560. r 19o8796 I 2& ~ &Q&7 '"- 26,6047 26 '032 26,5988 26 953 26 '947 26,5943 26 '903 26'913 '6,5884 0 ~ 1452 0 ~ 1452 0 ~ 1452 0 1452 0 '452 0 1394 0 ~ 1413 0 ~ 1423 0 '423 0 '432 26 '234 26.6200 ae.eao4 ~ 26 ~ 6139 26 ~ 6105 26.6144 ae.el14 26 '049 26 '091 26~6027 80 '950 80 '443 80 '818 80 '352 80 '944 80 '642 80 ~ 1530 80 F 1390 80 ~ LQLS 8O.O6S8 r 34~ t ~ ~ i. r g JgII$ (t<g 0 2 /r 'f+/2 - r r ~ ~ g~e lop c ~ ~ ~ v U l<.'$ (g .< i. 4J "i' rt ~ <.ir -.'i ~ ~ h t. Lt ~ r <<'!i ~ r. ~ ~ ~ i' i ~ '>i:*':
< ~
.I ~ ~ ~ I r}',~
RUN 0 14 15 ]6 17 ]8 19 20 21 22 23 24 25 w ':~
- . LEa~~GE RaTE..
EXPERIMENTAL' UPPER LIHIT 0 '9991 0 '9990 0 '9984 0 '9982 0 '9971 0 '9950 0 '9947 0 '9959 0 '9946 0 '9929 0 '9944 0'9928 "0'2047'.'. I, "." -0 ~ 28281 -0'3693 0 '0298 ~ - -0 '4636 0 '7763 -0 '8950 ~ '0 ~ 34013 .0 ~ 32801 -0 '4391 0 '2031 -0 '1458 ~ ~ ".. -: '.. LEAKAGE"f.>>.':iA W UPPER RATE ";",~,'4'-.']c CONTAINMEN -0 16388 " "'r'. 0 99968 0+19842'i 4 > "jq<'. 0 ~ 9995S "0 ~ 27993 ~~i: 'r e '." 0 9993] 0 r 30909 "' 4':l$. Q ~999]9 -0 ~ 26564 ':, '.. l,'" 0 ~ 99952 0'6749 ')4 0 ~ 99935 . -0 28883 '. ~.',.~. Q ~ 999Q9 -0 26981.,~ -'~T' 99925 0'7]5]. ';0 '9899 J ~. e d' e ly,;~ I'r el e. 4 .r P ~L, ~ ~ ~ ~ ~ FINaL LEAKAGE RATE ]% PER DAY) < "0 ~ 2'7]S] INTERC UPPER CONFIDENCE LIHIT FOR THE RATE 15.-0.31458 ] ~ ~ . "-'COeNTAINHEt)T<",5'],'.CONDENSER,,'. ':" . '.""."L"~ '~'~giTP+~e. ~ .~j.
- 4",rr, 0+99963 "i~.seiI4+>>~] ~ 00045::
~. ~ ~ ' e "r' ~ ~ 4 '4 ~. ~" I g r d ~ g ~ ~ ' ' 4 ~ ~ e4', ~ 4, ~ ~ 4 ':., ~ .',...:.-:: ~:...:.::.:: r' ~
- *'C
~ ~ r. .~ ~ ~-"'::: '. ",:.: "..-~ ""'.:,':,....'...'.:.'....:.:...,,i '.;: h"'-. 1~]",- '",];]'=-."'-.,:.:;:; ::::..'-,:,.:::; ., 'i.;.,l:.. 4'>> Tl<~l+'P'>>'e " ~ p>> ~ ']4 " '" 'I '4'l r>>r+W>>>>I '+'r>> ~ sg~jy ~ ~ 4
9.0 Local Leak Test Program 9.1 Past Test Resul ts Summar Local le'ak tests were conducted periodically on Unit 1 in accordance with guidelines specified in 10 CFR 50 Appendix J, the
- FSAR, and the Plant Technical Specifications.
Testing was performed under plant procedure 12 THP 4030 STP.203, 'Type 8 and C Leak Rate Test'. The program consists of 'Type 8'ests designed to determine leakage through the containment electrical and pipe penetrations, air lock door seals and overall air lock leakage, and 'Type C'ests designed to determine leakage through containment isolation valves. Table 1 lists all the valves that exhibited a high leak rate during testing as well as the leak rate of the valves after they were repaired prior to the most recent Type A test. The leakage detection instrumentation used in the conduct of the 'Type 8 and C'ests was certified, traceable to HBS, and calibrated prior to the tests. The instruments consist of 4 calibrated flow meters of different ranges, connected in parallel. A test is performed by isolating a test volume bound'y the con-tainment isolation barriers under examination. The test volume is pressurized to 12.0 psig A regulator in the air supply line to the leak rat monitor maintains the test volume pressure at 12.0 psig while the flowmeters measure the air flow required to main-tain this pressure. This flow is equivalent to the leakage out of the test volume. Exact test pressure and temperature is recorded and used to convert the measured leakage to standard conditions. The volumes where as found leakage exceeded the guideline leakage is shown in Table 2, a copy of our computer output program. Table 3, also a computer output, shows volumes where as left leakage has exceeded the guideline leakage. It should be noted that the 'guideline leakage's not defined as an acceptance criteria, but as a status figure. If all the valves tested were to have a leakage equal to the guideline leakage, the total leakage would be 0.6 La, the maximum leakage allowable. The corrective action taken on the valves prior'o this Type A test are shown in Table 4. Typical corrective action performed included cleaning, lapping and replacing gaskets along with replace-ment of worn parts and some machining. Strokes were reset on all air operated valves after repairs. Table 1 shows the main source of leakage to be from non-essential service water valves. The NESTS containment isolation check valves in particular have shown a high rate of failure and in this year' test 13 of 14 check valves failed. The reason for failure in one or a combination of the following: 1) hard sandy deposi ts had collected on the sealing surfaces on valve flapper and/or the
- seats, preventing comp'tete closure, 2) pitted seats and/or flappers.
The NESll System uses lake water after it is filtered through strainers, however the strainers are not capable of removing fine particles of sand from the water and it is this sand that embeds itself in the sealing surfaces of the valves or causes excessive erosion of the sealing parts. The 'MCR'alves in the NESW System were also prone to leak test failures. Twenty of the 42 HCR valves have failed in the last B 5 C Program. Eight of the 20 have failed 2 consecutive times and one of 20 has failed six consecutive times (WCR-922). The reason for the llCR-922 repeated fail'ure is not known. The existing carbon steel bodied NESW valves will be replaced wi th valves wi th 304 stainless steel bodies and elastomer dia-phragms. This should prevent corrosion and assure tight closure on shutoff. Page 57 P "~ 0, -a t ~ ~ +a ~ ~ ~ = VIV)~q '"
I 1
Table 1 Unit P1 - Leak Rate Test Fai1ures VaIve 4-76 1-77 4-78 4-79 6-81 8-80 As Found As Left NSW-415-1 NSM-415-2 HSM-415-3 NSW-415-4 HSW-417-3 NSW-417-4 NSW-419-1 NSW-419-2 NSM-419-3 N9l-419-4 HSM-244-1 NSM-Z44-Z NSW-244-3 NSM-244-4 MCR-902 WCR-905 MCR-906 WCR-907 WCR-909 MCR-910 MCR-911 MCR-913 WCR-914 WCR-915 MCR-9Z1 MCR-922 MCR-923 MCR-9Z5 MCR-926 MCR-9Z9 WCR-930 WCR-'931 MICR-933 WCR-934 WCR-935 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X ~ X X X X 25349.1 27145.2 29933.8 29524.1 796. 0 11928. 9 11431. 9 1394.3 1242.5 2603.7 0.0 0.0 0.0 2188.1 29989. 4 2993.4 30049. 8 4194.2 29933.8 19938.0 0.0 0.0
- 75. 0 0.0 30.0 0.0 Tested Against NSM-415-2 11962.8 1486.8 Tested Against MCR-909 Tested Against NSM-415-3 23383.4 309,0 Tested Against
'MCR-914 Tested Against HSM-415-4 134Z0.1 994.1 Tested Against. NSM-419-1 Tested Against MCR-921 8980.1 0.0 Tested Against 'WCR-929 2993. 6 521. 9 Tes ted Again s HSM-419-4 Tested Against WCR-.933 Page 58
Va'I ve 4-76 1-77 4-78 4-79 6-81 8-80 As Found As Left s MCR-945 MCR-946 MCR-947 MCR-958 MCR-965 MCR-966 VCR-103 VCR-103 . VCR-104 YCR-204 VCR-105 VCR-205 VCR-106 VCR-206 ECR-15 SH-1 N-102 N-159 'W-275 CS-321 VCR-10 VCR-11 VCR-20 VCR-21 iN-160 SI-189 'CR-620 OCR-621 DCR-205 OCR-206 NCR-105 NCR-106 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 47272.6 545.2 47Z27.2 744.1 Tested Against OCR-620 Tested Against NSW-244-2 Tested Against NSW-244-3 24105.7 0.0 696. 5 0.0 Tested Against MCR-965 27648.4 0.0 Tested Against YCR-103 ECR-33 ASCII-260 ECN-265 ECR-31 ECR-32 X X X X 1189. 5 0.0 Page 59 I
Valve 4-76 1-77 Q 4'~l av ..A'h '0'llano"au,4',',.'.s',.ALE'.." s~ ~" "deA P'. i 6-81 4-78 4-79 8-80 As Found As Left XCR-100 XCR-101 SH-2 XCR-102 GCR-314 GCR-301 NCR-252 CCR-460 CCR-462 CCW-135 CCR-440 CCR-441 CCW-243-72 CCW-244-72 CA-181-N R-156 R-159 R-157 R-158 CTS-131-W CTS-131-E X X X X X X X X X X X X X X X 28580.9 0.0 55.5
- 19. 0 2.3 0,4 1785. 9 0.0 1694.8 0.0 6168. 9 0.0 Tested Against CCR-460
,, Panes,gg,. t e
'I I' I ' f 1
lhiilf riti. rt VALVFS St<0<~)I>G I.EAPA< f. )tl FxCFSS of ) t<>. lit)nF.L ) ttt: I.F n<(AGE V<'I <H'I lit SC> II I ) iiti LF ht(AC>F. lilt)HLL i<IF. I Sr.r.>i) I.LA<(A4t. AS f (>(trill (sect<) l F:AhAGF. A5 LCF7 ISCCII) i<i<i'fii Is('Plif I X>i~ V( I<<<) t>6o?ots CP>t Aii ">-<.'i>i) vt:>>I ><t)H I Oit P(.lil >il < li ~IIC>>-7<<l CI V ht<O (<<V t>tth ll> I'DV I>CI 62U 62l CI'I "'.ll Wf.t<<IL)W tir(i CX i.AV Sf lS) ll ?I ~ )S3(l5<I h lii I'h<>I/<>Al> C<A5 >"iitllToit f Cli-13 Ci'll-3) ~5'l I'I lilSCI< ~ I(ii"/AS Lktl-h><(43l Af>t I>hi<i/i<hi< GA5 t'<it< f (.Ii-3)eJr CVI<-Ji.'ist< h ) P I<< C>iitl, Xch-l <<2 ~ ii<3 t.l'it-29 I ~ r Iii I'I I <Ich I<<) I >> 1i.l t I P-?Sr (Pts-7<< (.Pi >- 3 J I i<hi< Hhl<i~I f. 5<<-4 ~ I l.i'-9? ~ i<i<if ri(SS r..s< )S(I. i Vis-Ir>7. Li<>-<i) .LL<> r>>hr<><I I. P'PLSS rn-) <I< Cist<-I 3 '.f Lit C>>hi<<U I PVI:5 s (,h lil)r< Lt>r:-ss.t ceo lo (I:ti (<ill.5 i"5 (,CP-)4.<-rS cl <I-rs rC IO LP>> ((sl(.5 r. ~':C:(-?4 -7~ (ih<t-r~ (il TC(>I, 5(>< ~ $'I Y f XP ~ <>- ) S6 ~ ) s9 (.i' I->its (L VC<>I t.f II>V<. I Xl~. I -)hl. I ~ W Ci.ii-'t: (l>> I t<h I h<;LS5 I.li t<X CC<t-4h<< ~ 467. CI ~I>-7's ? Hnn ~ ii0 3 i'<I ~ I<0 )?U.on 3nn.<<o 6o.no 24n.nn )2n.on )2n.no 45+00 l<<o.nu 3hn ~ i<Q (n.<<0 n ~ I> 3<t ~ 0 0
- IO ~ i>Q hn>>on I Q.on t.ii ~ <so hi> ~ iin JQ'S2 ~ 38 4 7272>>6) 4 1227.22 S<>2 46 272+SH
))(<9.46 lb9.) I 707.50 ) 7<IS fftt ) 694 ~ f<4 blAH~ 87 60.0S 39'4 hrs ~ i>b 2&St<<t ~ ffi' )29 ~ i>29 7<'. ) 'I Iff.<>)7 744>> l.) SU2 ~ 46 272't) 0 ~ 0 )6 I. le 707.SQ 0 ~ 0 Q.n 0 ~ Q bo.o5 39 ~ t<4 64 ~ QA 0 ~ o l 29 ~ Hit 2JH ~ 29 72 ~ l7 79.o7 Page 61
Ia<>l.(, Ill> Ct VALVF5 5<Ill>41<<6 I f:aKA<)F ltl L)>C(>55 (If
- 1) 1.
(ill)
(>F I. l t<F LFAKA(>F V(>l I>s>>.
I>f 'iCI tl>11(>>l Lfaha(>F:
lill1l'>EL 1 >>F.
(crr. 4)
Lf, AhAlit Ab f >>Il>>1>
(SCCI>)
LF. AKa(if AS LE.F1 (SCC><)
I I V
) t>5s.'-<<15-1 at>l> >sr<>-9(>.I Lpt>-) 7 > 21
<,I.V <<<Sr.-<<)~-4 a<>>> ~r<<->s)S LPI<-2<>>2>
(LV 4'C<.-9)3 at>O rCIS-9)4 5 Cp<4?0>74
<.I>V I >>S>>-<< I'>-1 A<sb ><C<<-977 Lp>l-i.'6 Cl<V 1
>s(4-ss?
1 nN>) hC<<-s>71 LPI<-2S>
(>>V 4 <>>-4'1'>-4 S><>(S ur>>->S.><<LPt'-h<<
(.Itv 4 P(.<< ')3 ) a<If>><Cu-9.)5 Ct It-Hs>
l>l'.p 1
t>H>s-744 1 at>l>>>CII-445 Cf><l
?<>
I.LP 4 s ur)<-44>> Cpt>-l<4
<<C<
<<<<Cls- >S<<asn>
"r<s-s>5>>
LI t:-I 4 Cl.v ?>>Sss-4) 4-7 Al>ll <<C<<-'>nl L'I>N-?i>
0 I'.IV 2 wL<-s>>S a<O>>C<l-Qn7 C<t-?2 rl v 3>>S>s-4)!>-3 4< ~>>
MC>>-' l l Ll>t>-7..)
(.I V 3
M(.>~-9>ssv All<> rCI>-91<>
L>'<>-s>.)
(>sv 7
HI.<s- >74 a>>i>
-C>>-s>71 Cu<>-71
(:I>V 3 t>S><-4 ) ')
3 AI>l> '>>C<<-')10
(.f
~<I-h')
(L>V 3 I.'L>>-'>7'> D>>I>>-r~->S Il L>'I>-rb
<<C<< ?>>Sh-r<<>>-?
Al.l; NCI>-s>4>.
I I P 3 <>.>>
~ 44:I as:I) ss(.<<
~ >4 I l.l s'r>sl<.
I.H. cas)
<>5.-<<) I-<<.-LI<-443 r>><>-I >
ll>SI<< ~ >> > ~
~ I Sl <>'>~-s>17-3 ~ > ~Cs.-s>4'I Cl'<
I I l<<S'Is> ~
I >s ~ ri Kl
>s<.<
ss>a>> ~ r<
vs s.
(,I's ~ I 720 F 00 7?n.nn 720 arm 48n.nn 4HO F 00 4 Hn ~ l<0 480 ~ l>0 3s n>nn
- ls n.nn 3<>n ~ nn 720.00 72n.nn 720 ~ 0<>
12<>.00 4H<<. I>n 40n ~ <>0
<<Hn.lsn
)6>> ~ (>0 3>>0
>'. (>
?40.< n
?4<> ~ vn
>>>~ >> ~ >sn 253>>9 ~ 00 29'b?4+12 233>>3.3I
))43) ~ 90 13420.05
>>993'8 2993 ~ 5 )
30049 '4 ls>937.9H i'4 10.> ~ 9.2>>
i'9933 F 83 ll9<>7.74 h<<9 11 29 9(.9.>>8 69><n. 15
~> 1 s>4 1 H i's)9.< 3 ~ ><.1 1192H.'>>s 14>> ~ >>.I
<rs>> ~ s I 1394 ~.'ll 0 ~ 0 309'2 21HH ~ 83 994 'R 0 ~ 0 521
~ 86 74 ~ 97 0 ~ 0 0 ~ 0 1242 F 46 1039'8
?603 68 lht>s> ~ 83 649 ~ 7 7 0 ~ 0 0~0 0 ~ 0 30'2 0 ~ 0 0 ~ 0 Page 62
(
II II
)
Table, 3 I) ~
C ~
CIII>l; th>LI.I Af) P).4))f ~ (Ill)7 t)O ~
1 eeeeeeeeee
)rt E
>Isis htut s ('" L) rt. un)). ))51 OF Cnt>) A)H>>ftf) )5OLAf )<lrl VhtvtS )Il)u)hr> Jutlf lvhl OU)hr>E 1 YVF "C'th th
) t)F OH >A1lutl VOLII>>)5 t>t 1st
(>If)i>Lll>F Lfht(a( f HaS Iltthl LXCLLbtll IFc)
S llI'
>I Sct< ) u 7 I VI>
6II))lL)tlf. Ll.'hl>Alit COHPECTF.O LEAYAOE s
)
~S 1'I 1>s
)5
)w 3:s h'I
)I>
)>I I: I4l ss >s lo7
) I>S I 0>s I I'>
11>i 119 rf V 1 t>5)'-4)s>-)
a)Ill r!Ct -9>I3 (V>f-)7i?)
( IIV 1 tlCY-41 1 htllt YC>> s>22 C\\'t<-2h
( tlv 1 vcu-v2) hs>I) wcl>-42.)
CPH-2!.
(.\\'V 4 Nck 9'3.)
As>lt HC>>-435 CPH
>>a r( v i.'lstl-4)b-i'tilt I>Lts-9>It> (:t>tt-22 rl V 2 uris-ssu'>
hHII >ICP-4(>7 CPtl-22 rl V 3 llcI!-4)i-3 n!III HL> -9) I rll>-/)
(.I V 3 )ICII-40') )t<)(:I~-'>Iu Cl>ls-23 Ct>V s.'sc
-')2'I ht'Il HV>-9? )
CP)I-27
'lu'f'f,ls VIIIII>) t )>H ~
VCII I us> ~ 2uh CVW-hn
- t. i i>lilt V) tt) III)>> F III> IIIltl ">1hu ~ IICI>-201 rl v A)ill~ CI>v I)l h)II III>>s l>CII t i'.li 621 Cutj-))
l>F) ULLi!lb H?II tsa CDV bt 15) I lbi'I ~ )53l)b s) D)P Vhl>l/t>hlt ( 4'i ">>)II))UI. LCI)-3:I CPIJ-3) h)u I>hl>)/l>All liAN lint) LLI>-3) ~ 3i (.f II 32-Ct>>l 4 ll I O ( I>lI I >> Cu 1 >F2 ~ 1 I>3 CVh: 24 I>> AII Sht>PL) 5tl-4 ~ t CHo-42 ~ (>Ill) Pl F..s s 4 >I f,'inl. PPV II>2 Ct'I> >I).>> (Hhh>>t.l. V> t~S CD-IH)b CC'>4-r I (I M 1l> CI<<l (Oll C ?sb CLts 2>>3 c'5 CI >I i 5 ( C'st III rl II CI>)L'i 7>b CLi>>'4>> ? > Lutt ?5 (I.YL(L Sl>f I'LY I >I ~ I<-)!>t. IS') Cut -!st. I I YCUL I'I.)lll"If et ~ I'-15) ~ 15!I Cul>-s h isCC)l>(lt) ih>> L)ts(> H ) I/)2 Cut> 32 770 an 4)IU ~ 0 4HU ~ U 4HU an )70 ~ 0 720 au 720.0 ')7.0 ~ 0 4HU ~ 0 280U au 1 i'0 ~ 0 ) i'U. 0 3nu.u hu ~ 0 1i3)>u I i. >I ~ 0 hll ~ 0 II ~ 0 30 au (>0 ~ 0 ht> ~ U ts II ~ 0 hu ~ 0' U.n 1')94.3 2)BIIs 8 994) 1 571 9 1242 ' 1039 ' 2f 03 ~ 7 ) 4H)> ~ II (>49 ~ H 30S2 ~ 3 5<>5 ~ 2 744 ~ 1 502 ' 1)>9 2 7(I7 ~ 5 hn.o 39 ah >>4 ~ ) 12'). 8 23>3 ~ 3 )?.2 )9 ~ 1 545+) COHPLE)te ~ e ~ CO!)Vlfltee ~ e COIIPLE ft ~ ~ ~ ~ COtIPLE fl.'e ~ r COHPLf. Itr ~ e ~ C(ttlu) f. )).'tre ~ COHP) f )) r ~ e ~ COtsf>Lf f) e ~ ~ e COHPLf. IL""e C(>HV) f. I) re ~ e COHPLEI)."" COHPLf 1)."re r COHI'LfI ) ~ ~ e ~ COHPLE It cree COIIPLf It re rr COI>P).f Iteer" CutLf. I). e ~ ~ ~ COHPLE lt. ~ ~ ~ ~ COHf'1 t I) "re ~ COHV1 f I) er ~ ~ COHPLE ftre ~ ~ C(II!I>L[It r r ~ r ('OHf>L) lt~ e e ~ COHI Le 1). ~ ~ ~ e Page 63
1 C
Table a Valves Showin Excess Leakaqe and Corrective Action Taken Valve HSW-415-1 NSW-415-2 NSW-415-3 NSM-415-4 NSW-417-3 NSM-417-4 NSW-419-1 'SW-419-3 HSM-419-4 NSM-244-1 NSW-244-2 NSW-244-3 NSM-244-4 WCR-906 'CR-909 WCR-910 WCR-911 MCR-913 MCR-914 Supplemental Job Order 4'4847-1 54847-56 54847-14 54847-71 54847-16 54847-48 54847-61 54847-73 54847-75 54847-27 54847-26 54847-47 54847-03 54847-69 54847-2 54847-07 54847-11 54847-22 54847-24 54847-12 54847-15 54847-18 54847-68 54847-76 54847-?7 54847-78 54847-19 54847-67 54847-17 54847-66 54847-51 54847-50 54847-62 '4847-74 Corrective Action Cleaned valve and replaced flappers Installed new S.S. check flapper Installed new flapper Hew valve and new S.S. flapper Cleaned valve and replaced Replaced flappers Replaced flappers Cleaned and lapped Installed new valve and new flappers Cl caned valve Cleaned
- seats, body.
Installed new bonnet gasket Lapped disc to seat Cleaned valve Cleaned valve Cleaned and lapped, new gaskets
- Cleaned, lapped, new spring, new gaksets Cl caned valve Cleaned valve Cleaned valve
- Cleaned, lapped, new gaskets Cleaned and lapped, set stroke
- Cleaned, lapped, new gaskets, set stroke
- Cleaned, lapped, set stroke Replaced plug seat ring, set stroke New plug and cage,
- stem, stem pin, seal Ring and gaksets, remachined seat on plug Cleaned and lapped, new gaskets, set stoke Lapped seat, set stroke Lapped and cleaned, set stroke Lapped seat, set stroke
- Cleaned, new gaskets and seal ring, set stroke Clean d, new gaskets and seal ring, set stroke Lapped, set stroke Adjusted packing, set stroke Page 64
Jl P
10.0 REFERENCES
10.1 Donald C. Cook Nuclear Plant Final Safety Analysis Report
- 10. 1. 1 Initial Leakage Rate Testing of Containment Section 5.2. 1
- 10. 1.2 Containment Leakage Test Program Question 5.93, Appendix Q
- 10. 1.3 Containment Integrated Leak Rate (Type A) Testing Question 022. 14, Appendix Q (Unit 1)
- 10. 1.4 Local Leak Rate (Type B and C) Testing Question 022. 15, AppendQ (Unit 1) 10.2 Donald C.
Cook Nuclear Plant Unit No. 1 Technical Specifications 10.2. 1 Containment Systems - Containment Leakage Specifications: 3.6. 1.2 Sut veillance Requirements: 4.6. 1.2 10.2.2 Containment Systems - Containment Air Locks Specifications; 3.6. 1. 3 Survei1 1 ance Requirements: 4.6. 1. 3 10.3 American National Standards Institute (ANSI) 10.3. 1 ANS N 45.4-1972 'Leakage Rate Testing of Containment Structures for Nuclear Reactors'0.3.2 ANS N 274 Draft No. 1, 'Containment System Leakage Testing Requirements'0.4 Code of Federal Regulations, 10 CFR 50 Appendix J, 'Primary Reactor Containment Leakage Testing for Mater-Cooled Power Reactors. 10.5 Donald C. Cook Plant, Unit 1 'Reactor Containment Building Integrated Leak Rate Test (Preoperational) Test Report'. 10.6 Donald C. Cook Plant Surveillance Test Procedures 10.6. 1 12 THP 4030 STP.202, 'ntegrated Leak Rate Test' 10.6.2 12 THP 4030 STP.203, 'Type 8 and C Leak Rate Test'0.6.3 12 THP 4030 STP.204, 'Personnel Air Lock Leakage Test'0.7 NRC Correspondence
- 10. 7. 1 AEP: NRC: 0615 Dp no
t 1I l,
A7 "<I'I ~ ev Tabl e 4 Valves Showing Excess Leakage and Corrective Action Taken Yalve MCR-915 MCR-921 MCR-922 MCR-923 MCR-929 MCR-931 MCR-933 MCR-934 MCR-935 MCR-946 MCR-947 MCR-958 MCR-965 MCR-966 YCR-103 VCR-203 N-160 OCR-620 OCR-621 ICist-265 GCR-301 NCR-252 CCR-460 CCR-462 CA-181-N CCM-243-25 CCM-244-25 CTS-131-M CTS-131-E Supplemental Job Order 8 54847-49 54847-5 54847-4 54847-70 54847-6 54847-55 54847-20 54847-21 54847-9 54847-8 54847-10 54847-23 54847-25 54847-13 54847-28 54847-29 54847-37 54847-38 54847-32 54847-45 54847-57 54847-33 54847-34 54847-44 54847-30 54847-31 54847-40 54847-41" '4847-39 54847-35 54847-36 54847-53 54847-54 Corrective Action Lapped seat, set stroke Cleaned and replaced gaskets Cleaned and replaced gaskets Replaced
- gaskets, cage, plug, set stroke Remachined plug, repacked new gaskets, set stroke New plug, stem,'age,
- gaskets, set stroke Cleaned and lapped, set stroke Cleaned and lapped, set stroke
- Cleaned, replaced
- gaskets, set stroke
- Cleaned, remachined
- seat, new gaskets, set stroke relanded cables Cleaned and replaced
- gaskets, set stroke
- Cleaned, new gaskets
- Cleaned, lapped Remachined seat surface, new gaskets,
- cleaned, set stroke
- Cleaned, lapped, new gasket, set stroke Cleaned and lapped Greased rubber sest Looked good to Maintenance lapped lapped Duplicate of 54847-45
- Cleaned, set stroke Cleaned valve Ho work done Replaced
- diaphram, pin, and compressor Replaced
- diaphram, set stroke SV-64 was replaced on the volume SV-64 was replaced on the volume Cleaned valve Cleaned valve Cleaned 'valve Lapped Lapped Paae 65 H
P
IJ 7}}