ML20077B834: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot insert)
 
(StriderTol Bot change)
 
Line 2: Line 2:
| number = ML20077B834
| number = ML20077B834
| issue date = 06/30/1983
| issue date = 06/30/1983
| title = Cycle 3 Startup Physics Test Rept.
| title = Cycle 3 Startup Physics Test Rept
| author name = Mann B, Rufty S, Stewart W
| author name = Mann B, Rufty S, Stewart W
| author affiliation = VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
| author affiliation = VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)

Latest revision as of 06:53, 20 May 2020

Cycle 3 Startup Physics Test Rept
ML20077B834
Person / Time
Site: North Anna Dominion icon.png
Issue date: 06/30/1983
From: Mann B, Rufty S, Stewart W
VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
To: Clark R, Harold Denton
Office of Nuclear Reactor Regulation
References
410, VEP-NOS-4, NUDOCS 8307250451
Download: ML20077B834 (64)


Text

-

-Mg VEP-NOS-4 r'

Vepco NORTH ANNA UNIT 2, CYCLE 3 STARTUP PHYSICS TEST REPORT:

T NUCLEAR OPERATIONS DEPARTMENTg I

__z _.

firginia Electric and Power Company lff  ;

VEP-NOS-4 NORTH ANNA UNIT 2, CYCLE 3 STARTUP PHYSICS TEST REPORT by Brian D. Mann and Sabrina J. Rufty Reviewed By: Approved By:

(

C. T. Snow, Supervisor .

Y

. J. Lo [2Lo, Director Nuclear Fuel Operation ear FuelWperation Nuclear Fuel Operation Subsection Nuclear Operations Department Virginia Eloctric and Power Company Richmond, Virginia June, 1983 8307250451 830630 PDR ADOCK 05000339 P pop

.. o CLASSIFICATION / DISCLAIMER The data, techniques, information, and conclusions in this report have been prepared solely for use by the Virginia Electric and Power Company (the Company), and they may not be appropriate for use in situations other than those for which they were specifically prepared. The Company therefore makes no claim or warranty whatsoever, express or implied,as to their accuracy, usefulness, or applicability. In particular, THE COMPANY MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, NOR SHALL ANY WARRANTY BE DEEMED TO ARISE FROM COURSE OF DEALING OR USAGE OF TRADE , with respect to this report or any of the data, techniques, information, or conclusions in it. By making this report available, the Company does not authorize its use by others, and any such use is expressly forbidden except with the prior written approval of the Company. Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein. In no event shall the Company be liable, under any legal theory whatsoever (whether contract, tort, warranty, or strict or absolute liability), for any property damage, mental or physical injury or death, loss of use of property, or other damage resulting from or arising out of the use, authorized or unauthorized, of this report or the data, techniques, information, or conclusions in it.

i i

. _ _ - _ . _ - _ _ _ _ _ I

ACKNOWLEDGEMENTS The authors would like to acknowledge the cooperation of the North Anna Power Station personnel in performing the tests documented in this report.

Also, the authors would like to express their gratitude to Mr. C. T. Snow and Dr. E. J. Lozito for their aid and guidance in preparing this report.

+

ii

P TABLE OF CONTENTS SECTION TITLE PAGE NO.

Classification / Disclaimer. . .. . . . . . . . i Acknowledgements . . . . . . .. . . .. . . . 11 List of Tables . . . . . . . . . . . .. . . . iv List of Figures. . . . . . . .. . . . .. . . v Preface. ........ . . .. . . . . . . . vi 1 Introduction and Summary . . . . . . . . . . . 1 2 Control Rod Drop Time Measurements . . . . . . 9 3 Control Rod Bank Worth Measurements. . . . . . 14 4 Boron Endpoint and Worth Measurements. . . . . 19 5 Temperature Coefficient Measurements . . . . . 23 6 Power Distribution Measurements. . . . . . . . 25 7 References . . . . . . . . . . . . . . . . . . 37 APPENDIX Startup Physics Test Results and Evaluation Sheets. . . . . . . . . . . . . . . 38 9

iii

LIST OF TABLES TABLE TITLE PAGE NO.

1.1 Chronology of Tests. ................. 3 2.1 Hot Rod Drop Time Summary. .. . . . . . . . . . . . 11 3.1 Control Rod Bank Worth Summary . . . . . . . . . . . . 16 4.1 Boron Endpoints Summary. . . . . . . . . . . . . . . 21 5.1 Isothermal Temperature Coefficient Summary . . . . . . 24 6.1 Incore Flux Map Summary. . . . . . . . . . . . . . . . 27 6.2 Comparison of Measured Power Distribution Parameters With Their Technical Specifications Limits . . . . . . 28 I

iv

LIST OF FIGURES FIGURE TITLE PAGE NO.

1.1 Core Loading Map . . ................. 4 1.2 Beginning of Cycle Fuel Assembly Burnups . . . . . . . 5 1.3 Incore Instrumention Locations . . . . . . . . . . . . 6

?

1.4 Burnable Poison and Source Assembly Locations. . . . . 7 1.5 Control Rod Locations. ................ 8 2.1 Typical Rod Drop Trace . . . . . . . . . . . . . . . 12 2.2 Rod Drop Times - Hot Full Flow Conditions. . . . . . . 13 3.1 Bank B Integral Rod Worth - HZP. . . . . . . . . . . . 17 3.2 Bank B Differential Rod Worth - HZP. . . . . . . . . . 18 4.1 Boron Worth Coefficient. . . . . . . . . . . . . . . . 22 6.1 Assemblywise Power Distribution - ARD, 4% Power. . . . 29 6.2 Assemblywise Power Distribution - 31% Power. . . . . . 30 6.3 Assemblywise Power Distribution - 50% Power. . . . . . 31 6.4 Assemblywise Power Distribution - 79% Power. . . . . . 32 6.5 Assemblywise Power Distribution - 97% Power. . . . . . 33 6.6 Assemblywise Power Distribution - 99% Power. . . . . . 34 6.7 Assemblywise Power Distribution - 100% Power . . . . . 35 6.8 Assemblywise Power Distribution - HFP, Eq. Xenon . . . 36 l

1 V

PREFACE The purpose of this report is to present the analysis and evaluation of the physics tests which were performed to verify that the North Anna 2, Cycle 3 core could be operated safely, and to make an initial evaluation of the performance of the core. It is not the intent of this report to discuss the particular methods of testing or to present the detailed data j taken. Standard test techniques and methods of data ar -1_ysis were used.

The test data, results, and evaluations, together i,. ; the datailed startup procedures, are on file at the North Anna Power Station.

Therefore, only a cursory discussion of these items is included in this report. The analyses presented includes a brief summary of each test, a comparison of the test results with design predictions, and an evaluation of the results.

The North Anna 2, Cycle 3 Startup Physics Tests Results and Evaluation Sheets have been included as an appendix to provide additions 1 information on the startup test results. Each data sheet provides the following information: 1) test identification, 2) test conditions (design), 3) test conditions (actual), 4) test results, 5) acceptance criteria, and 6) comments concerning the test. These sheets provide a compact summary of the startup test results in a consistent format. The design test conditions and design values of the measured parameters were completed prior to startup physics testing. The entries for the design values were based on the calculations performed by Vepco's Nuclear Fuel Engineering Group1 . During the tests, the data sheets were used as guidelines both to verify that the proper test conditions were met and to facilitate the preliminary comparison between measured and predicted test results, thus enabling a quick identification of possible problems occuring during the tests. The Appendix to this report contains the final completed and approved version of the Startup Physics Tests Results and Evaluation Sheets.

vi t

m

Section 1 INTRODUCTION AND

SUMMARY

On April 2,1983, Unit No. 2 of the North Anna Power Station was shut down for its second refueling. During t:ais shutdown, 56 of the 157 fuel assemblies in the core were replaced with fresh fuel assemblies. The core

)

loading pattern and the design parameters for each batch are shown in Figure 1.1. Fuel assembly burnups are given in Figure 1.2. The incore instrumentation locations are identified in Figure 1.3. Figure 1.4 identifies the the location and number of burnable poison rods in the Cycle 3 core. Figure 1.5 identifies the location and number of control rods in the Cycle 3 core.

On May 27, 1983, at 0629, the third cycle core achieved initial criticality. Following criticality, startup physics tests were performed as outlined in Table 1.1. A summary of the results of these tests follows:

1. The drop time of each control rod was confirmed to be within the 2.2 second limit of the North Anna Technical Specifications 8.
2. Individual control rod bank worths for all control rod banks were measured using the rod swap technique8 and were found to be within 13.6% of the design predictions. The sum of the individual control rod bank worths was measured to be within 2.6% of the design prediction. These results are within the design tolerance of 115% for individual bank worths (i10% for the rod swap reference bank worth) and the design tolerance of i10% for the sum of the individual control rod bank worths.
3. Critical boron concentrations for two control bank configurations were measured to be within 29 ppm of the 1

design predictions. These results were within the design tolerances and also met the accident analysis acceptance criterion.

4. The boron worth coefficient was measured to be within 1.1*.

of the design prediction, which is well within the design tolerance of 110% and met the accident analysis criterion.

5. The isothermal temperature coefficient was measured to be within 0.05 pcm/*F of design prediction. This result is within the design tolerance of'13 pcm/'F and also met the accident analysis acceptance criterion.
6. Core power distributions for various HZP and at power conditions were generally within 5*. of the predicted power distributions. For all maps, the hot channel factors were measured to be within the limits of the Technical Specifications. However, at power levels less than 79*., there were violations of the Radial Peaking Factor, Fxy(RTP),

surveillance limit, and at 4*. power, a quadrant power tilt ratio of 2.76*. was measured. Generally, all measurement parameters met their respective design value tolerances. All measurement parameters met their respective accident analysis acceptance criteria.

In summary, all startup physics test results were acceptable. Detailed results, together with specific design tolerances and acceptance criteria for each measurement, are presented in the appropriate sections of this report.

2

Table 1.1 NORTH ANNA 2 - BOL CYCLE 3 PHYSICS TESTS i

CHRONOLOGY OF TESTS Reference

$ Test Date Time Power Procedure Hot Rod Drop-Hot Full Flow 5/26/83 1243 HSD 2-PT-17.2 Reactivity Computer Checkout 5/27/83 1338 HZP- 2-PT-94.2 Boron Endpoint-ARO 5/28/83 0640 HZP 2-PT-94.3 Temperature Coefficient-ARO 5/28/83 0746 HZP 2-PT-94.4 Bank B Worth 5/28/83 1139 HZP 2-PT-94.5 Boron Endpoint-B In 5/28/83 1655 HZP 2-PT-94.3 Bank D Worth - Rod Swap 5/28/83 1737 HZP 2-PT-94.7 Bank C Worth - Rod Swap 5/28/83 1837 HZP 2-PT-94.7 Bank A Worth - Rod Swap 5/28/83 1927 HZP 2-PT-94.7 Bank SB Worth - Rod Swap 5/28/83 2011 HZP 2-PT-94.7 Bank SA Worth - Rod Swap 5/28/83 2056 HZP 2-PT-94.7 Flux Map - ARO 5/29/83 0512 4% 2-PT-21.1 Flux Map - Verify Fxy 5/29/83 1840 31% 2-PT-21.1 Flux Map - I/E Calibration 6/06/83 0823 50% 2-PT-21.1 Flux Map - I/E Calibration 6/07/83 0606 79% 2-PT-21.1 Flux Map - Delta I Target 6/08/83 0806 97% 2-PT-21.1 Flux Map - Delt a I Target 6/08/83 1632 99% 2-PT-21,1 Flux Map - I/E Calibration 6/09/83 1057 100% 2-PT-21.1 Flux Map - HZP, Eq. Xenon 6/10/83 0749 100% 2-PT-21.1 l

3

Figure 1.1 NORTH ANNA UNIT 2 - CYCLE 3 CORE LOADING MAP a P . . . . , a . , . . . . .

I pa i 44 4 34a i I P16 I ser i Ph I 1 I I i I i ** I sa i sa i na i sa i sa i 44 i i met i sat Isn 6 Pse Ish i se? I ses I e 1 I I I I I I i 1 *a I na i sa i saa i *a i saa i sa L *a 1 i ets ese i 354 I Pt7 I sto i p*s I see i's*a l .17 l'at6 3 3 I I I I I I I I I I I ** l 44 I sa i *a i sa saa i sa, l *a i sa *a i *a l I e n I m37 I s27 I ass I su Pt3 I st I sta i s3  ; see I ses 1 4 I I I I I I I I I '

I I

  • I *a i *a i sa i ut i sa i ua i *a i ua i sa i na i sa i *a i *a I 1 ett I n*7 i ste i Pee I sts l Pst I att i Pa7 I s3e l P33 I ses I ete I m3e 1 5 I I I I i 1 1 I I I I I I i 1 sa i sa i *a i sa i saa i sa i saa i sa i saa i sa i *a i sa i sa i I s** I se* I ses I s16 i P3t I ssa l Pos I sat l Pte I st3 l al9 I sie I se9 l 6 I I I I I I I I I I I I I I l 3aa l sa i 3aa i 54 4 3aa i sa 1 3aa l ta i 3aa i sa 1 34a I sa 1 3a2 i sa 4 3aa l l P47 I sas I Pee i sit i P** I ses i Ps 1 ett i Pts I sta i Pst I s*7 i P19 I 331 i Pts 1 7 1 1 I I I I i 1 1 1 1 I I I I I i *a i na i *a i saa i ta I na i *a 1 3aa i *a 4 3aa i sa 1 344 i *a i na i *a i 1 at6 I par i est i Pte I st3 i P43 I a*e i pse i m3e l Poe i sas l Pts i ne* l P3s I st* I e i I I I I I I i I I I I I I I I l 3a I sa 1 3aa i && I 3aa i sa 1 3aa l ta i 34 I sa 4 3a I sa 1 342 I sa i 3a2 l l Pet I set I pu i 544 i Pt3 I ses i Pt* lnu I Pts I sto i Poe i sas I pe7 I set i P3s 1 9 1 I I I I I I I I I I I I I I 1 l sa i sa i *a 1 54 1 3aa i sa 4 3a2 1 54 1 3&a l 54 1 44 I sa 1 5a I I sts 1 549 i R3s I $17 i P41 I see i por I s3e 1 Pts I sss I noe I ssa l see I le 1 I I I I I I I I I I I I I l *a i** l sa i ut i sa i ut 1 *a i saa i sa i ua i sa i *a I na i i s*6 I a*e 1 s43 i Poe I sie i Pts I sta i pet I st6 i Pt6 I see I see i n** 1 11 1 I I I I I I I I I i l l I i *a i ** I sa I *a i sa i sa i *a i sa i *a i ** 1 1 st6 I ses I ste 1 asa i ss, i saa, i Pa I sse I set I sst I are I sa, I la i I I I I I I I I I I I I *a i *a I sa i saa i *a 1 342 I sa i ** l 44 1 1 not I a*3 1 337 i Pos I est i P21 1 S3s I att I sat I ts l I I I I I I I I I i *a i sa i sa i sat i sa i sa i ** I I est i Set I ss6 i Pat I see I sts I R3a 1 to l 1 1 I I I I I l 343 1 *a i 3aa i I I 1..a SaftM l peg l seg l Pts 1 15

( l l=.a asstetLT 10 l l I i l I FUEL ASSEMBLY DESIGN PARAMETERS 3A2 4A SA Initial Enrichment (w/o U235) 3.10 3.41 3.59 Burnup at BOC-3 (MWD /MTU) 20,319 7,763 0 Assembly Type 17x17 17x17 17x17 Number of Assemblies 49 52 56 Fuel Rods Per Assembly 264 264 264 4

Figure 1.2 NORTH ANNA UNIT 2 - CYCLE 3 BEGINNING OF CYCLE FUEL ASSEMBLY BURNUPS e P N M L K J M e F t e C e A l 716 4 se? P 34 1 1 23s041 60e41 236291 1 I I I l I set i 322 1 S34 1 P3e 1 536 1 3e7 i se3 l l 92341 e i e 1 183561 e I e 1 91901 t I I I i 1 1 I I l als I ase 1 354 i P17 4 a** 1 P45 I s+e I al? I m26 i I 65171 e5361 e 1 2196t1 7s491 217421 0 1 45201 67051 3 I I I I I I I I I i 1 a33 I m37 I s27 1 ass i s33 i P23 I s19 i ett I s3t I ate I ass i I 64571 62551 e 1 96751 e i 185278 e 1 99771 e 1 62011 64251 6 I i 1 I I I I 1 1 I I I 1 att I a*7 I s2e i Poe i s25 i PSL l a27 i P27 I s3e i Pas I ses I als I als 1 I 9e191 64tel e 1 232771 e 1 1e7891 61848 183191 e i 232101 e i e6031 93641 5 l i I I I I I I I I I I I i 1 s** I see I an5 8 516 i P31 I ssa i Pe5 i sat 1 Pie i sta 1 als I sie I set i 1 e I e 1 96941 e 1 202s51 e i 179101 e i 145461 e 1 96421 e i e 1 4

_t i I I I I I I l__t I 1 I I l_P= 7 l sto 1 Pee i sit i P64 I s*5 i P32 i ett i Pte i s.1 i P52 1 547 i P19 8 331 1 P15 l l 234541 e 1 220031 e i 185441 e i 170001 64121 166641 e 1 200961 e 1 217921 e 1 234031 7 1 I I I I I I I I l i I I I I I I ett i P37 I e51 1 P2e 1 a13 i Ps3 i e6e i P5e i a3e l P49 1 sta i P24 i est i P3s I si4 1 I titel 164471 7P911 18t 771 5904l 17e991 62641 236141 61341 179201 62148 1645e1 75031 164978 60548 e i I I I I I I I i 1 1 I I I I i 1 Pen i s*1 i P36 I set i Pts I ses I Pl* 1 m36 i P2s I s14 i P64 I s29 i Pe 7 i set i P3s i I 234411 e i 216631 e i 185441 e i 16e63I 6esel 169621 0 1 184441 e I t17161 e 1 236e48 9 l I I I I I I I I I I I I I I I i 313 i s49 1 a35 4 317 i Pen i see I Pet 1 534 i P22 1 555 I not 1 352 1 364 i I e i e 1 97531 e i 199311 e i 181271 e I 201131 e 1 99261 e i e I to 1 I I I I 1 I I I I I I l i I e 44 l a44 1 343 i Poe 1 518 i P12 l ate 1 P42 1 526 i P26 i see i see I see i 1 93321 66341 e 1 2332sl e 1 186378 64111 tes431 e 1 234768 e i setti 91961 11 l l t i I I I l i I I I I I I al6 I als I sto i att i 339 i P29 I 55e i nel l 351 I are i ett i 1 66391 61981 e 1 95691 e i 185496 e 1 97208 e i 41638 666tl la l i I I I 1 I I I I I I l nel I a*3 i s37 i Pe3 I m31 i P21 1 335 I a12 i a21 l l 672e1 90848 e 1 219768 74501 217701 e 1 47258 66251 13 1 1 l l l I I I I l i e52 I set l $5e 1 P11 i set i s15 1 alt I l 97111 e I e i 166151 e l 0 1 934e1 16 l l l l 1 l I l l Pe9 1 ao9 i Pte l l 1..> asSEF5L7 10 l 231641 6831t 237821 15 I l a asstPsL7 eUPNUS l  ! l l l l 5

Figure 1.3 NORTH ANNA UNIT 2 - CYCLE 3 INCORE INSTRUMENTATION LOCATIONS A P N H L E J M S F S S C S A I l I i re Tc 1 1 1 I I I I l 4 6 6 1 I l l Tc I I Tc I es i I e i I I I I I I I I re i i i i re i I .I l re i Tc I I Tc l re l Tc I I Tc 1 1 Tc 1 3 I I I I I I I I i l I i i i l i i i i i i i Tc 1 I re I i i se I I re 1 Tc 1 I l 4 I I I I I I I I I I I I I I I I I I i i i i re i re 1 I I re I re i Tc l re i Tc I I Tc I re l' Tc I Tc 1 s 1 I I I I I I I I I i 1 l I i i m i I I I I I i 1 I l 1 Tc '

1 Tc I I I re Tc I re i I I I 6 1 1 I I I I I I I I I i 1 I I I '

l I l l l 1 1 1 1 I Tc I Tc I re i I I re I re 1 I Tc I re I re i I 7 I I I I I I I I I I I I I I 11 i i re 1 i re i I i i i I i re a i i 11 re l Tc l Tc 1 1 TC 1 Tc 1 1 TC 1 Tc te l TC 1 1 Tc l re i TC l 8 I I I I I I I I I I I I I I I I i 1 I i l i i i m I i i i i i l 1 1 I tc l re i l l Tc I re i Tc 1 1 1 I I re 1 9 l 1 1 I I I I I I I I I I I I I i i re 1 i i i re I i l i i i i re i l l Tc I i i i Tc I I I I Tc l re l I Tc I le i I I I I I I I I I I I I I 1 1 I I I I re I i re I 1 i 1 i I l TC l re i Tc I I Tc I I Tc I re I I I i 11 l I I I I _I I I I I I I I i 1 I i i m I I i i i i m I i re i I Tc I I Tc I i 1 1 Tc 6 re i TC i 12 1 I I I I I I 1 1 I I I i ,

I i m I i m I i 1 1 1 1 Tc I I Tc I I 1 13 i I I I I I I I i m I i i l 1 I Tc 1 1 1 to I l Tc 1 14 1 1 1 .

1 I l re - rovaste otitcton l l ll l Tc - intertoccuPLE I re l Tc '

Tc 1 15 I I I 6

Figure 1.4 NORTH ANNA UNIT 2 - CYCLE 3 BURNABLE POISON AND SOURCE ASSEMBLY LOCATIONS e P N M L M J M S P E O C 5 A I i e I I i l 1 1 I I I I I I i ** I i ** I i l I i i I I I I I I I I I I I I I I

, I I I zon i I ssta li i asp i .

1 I I I I l *1 1 3 I I I I I I I f I I I top 1 i top i i top i i top i i 1 I I 1 i I I i l 1 1 4 I I I I I f I I i i i too l Ii ,op i i er i Ii ,op i I ,op i i i i i i i 1 I I i 1 ,

I I s

! I,op ! itop ! i,op l--i tor i lion ; , top i i I i i l I I i I i i l I 6 1 I I I I I 1 I I I f I I I i ** 1 I top I I top 1 i op i i top I I top i i ** 1 1 1 1 I i 1 1 1 1 1 1 I I I I I I 7 I I I I .I I i 1 I I I I I I I I I I I I i er i I op i i er i I er I I I i i i l i i l I I i 1 1 1 1 1 1 I I e i I I I I I I I I I I I I I I l I i ** 1 1 asp I i top i 1 en I i top I i top i i *p i i I I i I I I I i i I i 1 1 I i 1 9 I I I I I I I I I I I I I I I I I I top i i top 1 I top i 1 aop i i top i i top i i l l I 1 1 I i l l 1 I I i 1 le i I I I i 1 I I i 1 1 1 I i 1 1 1 top i 1 ace I i er I i top i i top i l i i I I I I I I I I I i l I i 11 1 I I, 1 1 I I I I I i 1 I I I I i top 1 i ter i I top i i top i l I I I I I i i i l 1 1 I I at 1 I I I I I I I I I I I l 1 I top 1 i ssia 1 1 top 1 i i i l I i i l I i 1 1 13 1 I I I I I I I I i 1 1 1 *p i i ** 1 1 1 1 1 I I I I I i 14 I I I I I I I i 1 1 I I e96 retsH eusHAstt poisoH poos i I I I 15 ss - sacenoaer sousce i I I I 7

Figure 1.5 NORTH ANNA UNIT 2 - CYCLE 3 CONTROL ROD LOCATIONS R P N M L K J H 8 F E O C B A 1800 l

Loop c I i i I Loop a 1 OUTLET I I I I INLET N-41 N l l i^ !l SA 1l" ll SA ll^!l SP l' l dl N-43 3

I I I I I i 1 1 I I i ic I Ia l I I Ie i ic I I 4 I I I I I I I I I I I I l l l l sa I i SP l l l l 58 l l l l 5 l l_I I l I l' l I I I I I I

, 1A I Ia l Io l Ic I Io l Ie I iA I 6 LOOP C l l l I l l l l l l 1 l l l LoCP B INLET (I l l SA l l l l 55 l l SB l l $P l l SA l l l OUTLET 7 g i I i l I I I II I I I I I s te*- 1 Io I l i Ic l l l lc I I I Io i 1 - 270' 8 I I I I l l_l l I I I I I I I I I I I SA I I sP 1 I sa l I sa l I I I sA 1 I I 9 I I I I I I I I I I I I I I I I lA l l8 I Io l lC l l0 l l8 l lA l 10 I I I l I I I I I I l i I I I I i l 58 I I I I sp i i se I i sp i i 11 I I I I I I I l_I I I I I I I Ic I Ie i i i Ia i ic 1 1 12

. 1 I I I I I I I I I I I I I SP l l SA 1 l SA l l I i 13 N-44 l l l 1 l l l l l l N-42 I IA l 1o l iA i l 14 I I I I I I L LCop i

i I

I I

i I

I KLOOP A 15 ABSCRBER CUTLET INLET NATERIAL lO AG-IN-CD O

.'.Sc'.I. "

. f"55" '.CtusuRs ,

CC:ITPOL BAtlK o 8 CC?tT70L BAttX C 8 CC?tTPOL BA!.'K 8 8 l CCitT20L BatX A 8 l

SHUTDCal bat * $8 8 SHUTOCRI BA!M SA 8 SP (SPARE RCO LCCATICNSI 8 l

Section 2 CONTROL ROD DROP TIME MEASUREMENTS

)

The drop time of each control rod was measured at hot RCS conditions in /

order to confirm satisfactory operation and to verify that the rod drop times were less than the maximum allowed by the Technical Specifications.

The hot control rod drop time measurements were run with the RCS at hot, full flow conditions ( 547 'F, 2235 psig) and are described below.

The rod drop time measurements were performed by first withdrawing a rod bank to its fully withdrawn position, and then removing the movable gripper coil fuse and stationary gripper coil fuse for the test rod. This allows the rod to drop into the core as it would in a normal plant trip.

The data recorded during this test are, the stationary gripper coil voltage, the LVDT (Linear Variable Differential Transformer) primary coil voltage and a 60Hz timing trace which are recorded via a visicorder. The rod drop time to the dashpot entry and to the bottom of the dashpot are determined from this data. Figure 2.1 provides an example of the data that is recorded during a rod drop time measurement.

As shown in Figure 2.1, the initiation of the rod drop is indicated by the decay of the stationary gripper coil voltage when the stationary coil fuse is removed. A voltage is then induced in the LVDT primary coil as the rod drops. The magnitude of this voltage is a function of the rod velocity. When the rod enters the dashpot section of its guide tube, the velocity slows causing a voltage decrease in the LVDT coil. The LVDT voltage then reaches a minimum as the rod reaches the bottom of the dashpot. Subsequent variations in the trace are caused by the rod 9

9 bouncing. This procedure was repeated for each control rod.

/

The measured drop times for each control rod are recorded on Figure' f

2.2. The slowest, fastest, and average drop times are summarized in Table 2.1. Technical Specification 3.1.3.4 specifics a maximum rod drop time .

from loss of stationary gripper coil voltage to dash' pot entry of 2.2

)

seconds with the RCS at hot, full flow conditions. All test results met this limit.

N

+"

M

/*

I l

d f

s

\

+

2 10 ~[ .

  • ~

' ~

. ,, ~ ,

" t

' 'f Table 2.1 NORTH ANNA UNIT 2 - CYCLE 3 BOL PHYSICS TEST

, / .

HOT. RCD DROP TIME

SUMMARY

V v-ROD DROP TIME TO DASHPOT ENTRY 5

SLOWEST ROD FASTEST R0D AVERAGE TIME

-B-10, 1.82 Sec. M-4, 1.43 Sec. 1.61 Sec.

+

f RCD DROP TIME TO BOTTOM OF DASHPOT SLOWEST ROD FASTEST ROD .} AVERAGE TIME B-6, 2.49 Sec. M-4',' 2.06,Sec. 2.29 Sec.

Y 11 8

--y-- , -,- -. r, y

-- - - - -- - ,. . ., m,., _ . . ,-m, . . - - .

._ f _

W '

m. .

. ~ .

~

, ifDRTil Ailli A U ll I T 2 - CYCLE 3 BOL PilYSICS TEST _

TYPICAL ROD DROP TRACE u.

. ' .4. i.ccaneoesmacistasusturnt g;.

~ STATS 04 A&( 6 GIPPER~~ Col L . \/0LTA4E

! .#. .. .s ,.

-f

.-_-  % '. , . . . . . .  : si.mw.... e = .w : , -- . Le ; -i & tw l.c est' A  : .

I O O l TdlTl ATION O P- ,

acs .

ses u . . i , c.

.2 s f7 :-

u 1

~ - ':;.

' '. ';i

I":'*.V '* "'*- .

C . iI i.s - l

[: .

t, f .- . - m, s..y.n l(lpI

a i

, ;N I'. .'

i l lJLI

.':a'T. * =,. .nune._yy

=.,su t: ,i 6.. 4 c ,a c a. ,so i

\i- .. ..

l j . . . ...

7 , ,l - - c.

aa. . c4m

cNr4Y l trJnc  : "a""= e>A . .; .  :

!SdbRNt5iE0 )

. . ~

1

':: lE'E_'$f U'A.C.V oljE

?

: .' : . .% % POT y , ,

I,-

-Lv DT Pitiriaf Y -Colt j .

}- l-

.-  ; -l oorPoT StQtJAtr - --

l -

l ,

i j.g Ih',ll

.'
: j.  :  :  : l h

i . . . . . .

,fl l ll W l,l,}1 tl-l >

' l rop TIME To 'Boirot4 of:' 06sd hi-

" ~

'l' l

..I,j 4 ;!).--- -

g,p A n =rc  :  : .,n ti jjj,;g p

~ # -

BOTT1H OF

_ 4if.) sec _ _ _
___,.

t DdoP ToMir To onsH pot- I 5,om pg

.  ! ., li . u l

f! .'

r r. . . . . . _ ._ .J TIMING TRACE - STATION BUS FRGQdENC.Y

Figure 2.2 NORTH ANNA UNIT 2 - CYCLE 3 BOL PHYSICS TEST ROD DROP TIMES - HOT FULL FLOW CONDITIONS t

A P N N L K J N s r a o c a A i

1 1 I

i 1.66 I i 1.64 1 1 1.6e i 1 1 2.ss l I a.31 1 I 2.26 I l -t 1 I I I I i i 1 1.59 l l 1.se 1 i I I I .

I 2.23 1. 2.2s i 1- 1 3 I I I l l_ l l l l 1.* s i 1 1,64 i '

I i 1.ss i 1.6e I i 1 2.e4 I 1 a.42 I I I 2.24 I i t.ss i I 4 11 1 1 1 I I I I 'l I I I i 1.56 I I i 1.se i i i l i 2.37 '

I I I t.t* I I I I s

) i I I '

I I i 1.6e I i 1.63 1 1.6* I i 1.se l l 1.6* I i 1.se 1. I 1.se I a.2e 1 1 2.33 I I t.31 1 I a.as i I a.29 i 1 2.2s l, I t.49 I 6 I I I I I I I I I I I l l l l 1.52 I i i 1.52 I i 1.se i I i 1.59 I i 1 I . 2.19 I I I a.le 1 I t.ts I l 1 2.32 1 1 I 7 1 1 I I I I I I I I I I I I i 1.64 i i i 1 1.6e 1 I I i 1.57 I 11 1 1.71 1 I I a.35 I i 1 1 2.31 1 I I I a.t* l ll l a.36 1 1 6 1 I I I I I I I I I I I I I l i 1.60 1 1 1 1 1.s* I i 1.6e t i 1, i 1.** 1 1 1 1 1 2.27 I I I I t.te 1 I 2.25 1 1 'I . I 2.le i I I 9 I I I i 1 I I I I I i l i i l i1671 1 1.ss I i 1.63 i i 1.59 I i 1.63 1 1 1.se I i 1.e2 I I a.31 I I t.to 1 I 2.te I i 2.31 1 I a.30 1 I 2.24 1 1 2.32 1 le i I I I I I I I I I I I I i 1 1 I i 1.61 l 1 i 1 1.se i i i i i 1 i 2.30 1 1 ,

i I a.27 .

I I i 11 I l I I I I I I I I I I i 1 1 1.63 I i 1.55 1 1 I i 1.54 i i 1.67 i 1 i I t.35 l 1 2.25 1 I l i 2.19 I I 2.3s I i 12 I I I I i 1 I l 1 I i 1 1 i i i 1.57 8 1.64 i i i e i I l l 2.3e 1 2.3e I l l l 13 I I I I I I I I I I i 1.77 1 1 1.7e I i 1.71 I l 1 2.44 l l 2.42 l I t.36 3 14 l 1.--800 Opop TIME TO I I I I I I I l '

OAsHPOT ENTRYtstC.) l I i l --800 DROP TINE TO 1 1 I l 15 80ffCr1 0F DasHP0ftSEC.3 1 I l l 13

Section 3 CONTROL ROD BANK WORTH MEASUREMENTS Control rod bank worth measurements were obtained for all control and

+

shutdown banks usina the rod swap technique. The first step in the rod swap procedure was to dilute the most reactive control rod bank (hereafter referred to as the reference bank) into the core and measure its reactivity worth using conventional test techniques. The reactivity changes resulting from the reference bank moveaents were recorded continuously by the reactivity computer' and were used to determine the differential and integral worth of the reference bank (Control Bank B).

At the completion of the reference bank reactivity worth measurement, the reactor coolant system temperature and boron concentration were stabilized such that the reactor was critical with the reference bank near full insertion. Initial statepoint data for the rod swap maneuver were obtained by moving the reference bank to its fully inserted position and recording the core reactivity and moderator temperature. At this point, a rod swap maneuver was performed by withdrawing the reference bank while one of the other control rod banks (i.e. , a test bank) was inserted. The core was kept nominally critical throughout this rod swap and the maneuver was continued until the test bank was fully inserted and the reference bank was at the position at which the core was just critical. This measured critical position (MCP) of the reference bank with the test bank fully inserted is the major parameter of interest and was used to determine the integral reactivity worth of the test bank. Statepoint data l

l (core reactivity, moderator temperature, and the differential worth of 1

the reference bank) were recorded with the reference bank at the MCP. The rod swap maneuver was then performed in reverse order such that the reference bank once again was near full insertion and the test bank was 14

once again fully withdrawn from the core. The ro'd swap process was then repeated for all of the other control rod banks (control and shutdown).

A summary of the results for these tests is given in Table 3.1. As shown by this table and the Startup Physics Test- Results and Evaluation Sheets given in the Appendix, the individual measured bank worths for all of the control and shutdown banks were within the design tolerance (t10*.

for the reference bank and 15*, for the test banks). The sum of the individual rod bank worths was measured to be within 2.6*. of the design prediction. This is well within the design tolerance of i10*. for the sum of the individual control rod bank worths.

The integral and differential reactivity worths of the reference bank (Control Bank B) are shown in Figures 3.1 and 3.2, respectively. The design predictions and the measured data are plotted together in order to illustrate their agreement. In summary, all measured rod worth values were satisfactory.

t 15

Table 3.1 NORTH ANNA UNIT 2 - CYCLE 3 BOL PHYSICS TEST CONTROL ROD BANK WORTH

SUMMARY

MEASURED PREDICTED PERCENT DIFFERENCE WORTH WORTH BANK (PCM) (PCM) (M-P)/P X 100 B-Reference Bank 1569 1544 1.6 D 859 850 1.1 C 896 903 -0.8 A 758 667 13.6 SB 806 827 -2.5 SA 995 945 5.3 Total Worth 5883 5736 2.6 16

Figure 3.1 NORTH ANNA UNIT 2 - CYCLE 3 BOL PHYSICS TEST BANK B INTEGRRL R00 WORTH - HZP -

BANK B WITH ALL OTHER RODS OUT

-- PRE 0!CTED E 11ERSURED i

I i

O O

b l 5

i O

O i M

1 m

Ee UC LI _

1_ 'A-i '

w n

2 su {

H i  % i i Mo '4'n '

CO ZI

  • m d  %\

T ,,

M N._

c) m UC rm Z"

f \

l t NM i t .11 O , I m G , , i a m

Y Om I i t '

)k

- 4 K

I , ~'

NL t i e l' % %_ '

  • f '

3

L 0 40 80 120 160 200 228 BANK POSITION (STEPS)

. 17

Figure 3.2 NORTH RNNR UNIT 2 - CYCLE 3 BOL PHYSICS TEST BANK B DIFFERENTIRL ROD WORTH - HZP BANK B WITH RLL OTHER RODS OUT

-- PREDICTED M ttER5URED 4

e

, , , , , , 4 , ,

e o.

-5 c_

w We No E

u$

g t

s -

m .

% sal F ' 's

  • , Ed ,

b 0 ._ <

w

c. a a;,

m.

m. g.  ;

3 , .

i x ,

4 2 R JR CC * 'g,- ,

MQ m ) 7L *

,[ s .m Z e 2 -

w - .... =

g '

JE <g w , -

-_ m

= '

Y m.[ _,,

( -o  ; <

^

o,; (_ '-

-.e ea i 'trar ew; d '- -= >YTk  : ',

-- / ,i x x -~~ ~-

-- , s x -~

~. -~ ~~.

! \

o w t. ,

M Q A t \

. ii.! 1 . -

0 4O 80 l20 160 200 2kB BANK POSITION (STEPS) 18

I Section 4 BORON ENDPOINT AND WORTH MEASUREMENTS r

\

Boron Endpoint With the reactor critical at hot zero power, reactor coolant system boron concentrations were measured at selected rod bank configurations to enable a direct comparison of measured boron endpoints with design predictions. For each measurement, the RCS conditions were stabilized with the control banks at or very near a selected endpoint position. The critical baron concentration was then measured. If necessary, an adjustment to the measurel critical boron concentration was made to account for off-nominal core conditions, such as rod position and moderator temperature.

The results of these measurements are given in Table 4.1. As shown in this table and in the Startup Physics Test Results and Evaluation Sheets given in the Appendix, all measured critical boron endpoint values were within their respective design tolerances. All measured values met the accident analysis acceptance criterion. In summary, all results were satisfactory.

Boron Worth Coefficient The measured boron endpoint values provide stable statepoint data from which the boron worth coefficient was determined. A plot of the boron concentration as a function of integrated reactivity can be constructed by relating each endpoint concentration to the integrated rod worth present in the core at the time of the endpoint measurement. The ~value of the boron coefficient, over the range of boron endpoint concentrations, is 19

o obtained directly from this plot.

The boron worth plot is shown in Figure 4.1. As indicated in this figure and in the Appendix, the boron worth coefficient of reactivity was measured to be -7.85 pcm/ppe. The measured boron worth coefficient is within -1.1% of the predicted value of -7.94 pcm/ppe and is well within the design tolerance of 10*.. The measurement result also met the accident analysis acceptance criterion. In summary, this result was satisfactory.

20

Table 4.1 NORTH ANNA UNIT 2 - CYCLE 3 BOL PHYSICS TEST BORON ENDPOINTS

SUMMARY

.i Measured Predicted Difference i Control Rod Endpoint Endpoint M-P Configuration (ppm) (ppm) (ppm)

ARO 1575 1546 29 B Bank In 1375 1387* -12

  • The predicted endpoint for the B Bank in configuration has been adjusted for the difference between the measured and predicted values of the endpoint taken at the ARO configuration as shown in the boron endpoint Startup Physics Test Results and Evaluation Sheets in the Appendix.

f 21

i Figuro 4.1 I

NORTH ANNA 2 - CYCLE 3 BOL PHYSICS TEST BORON WORTH COEFFICIENT -

clEmorolNT MER$UREMENIS 4

l 2400 P = -7.85 pcm/ppe 6C B

l 2000 I

i

{ 1600 g' i w U N L  %

g s

\

i C \

- 1200 ys i

U

\

\

i

$ N e 800 - N

\ . .

x'N 400 \A 4

i

\

l N.

N

! O 5

! 1320 1360 1400 1440 1480 1520 1560 1600 1640 l BORON CONCENTRAT10N IPPM1

Section 5 TEMPERATURE COEFFICIENT MEASUREMENTS t

The isothermal temperature coefficient measurements were accomplished by i

controlling the RCS heat gains / losses with the steam dump valves to the condenser, establishing a constant and uniform heatup/cooldown rate, and then monitoring the resulting reactivity changes on the reactivity computer. These measurements were performed at very low power levels in order to minimize the effects of non-uniform nuclear heating, thus, the moderator and fuel were approximately at the same temperature (between 544 and 548 *F) during these measurements. To eliminate the boron reactivity effect of outflow from the pressurizer, the pressurizer level was maintained constant or slightly increasing during these measurements.

Reactivity measurements were taken during both RCS heatup and cooldown ramps during which the RCS temperature varied approximately 4*F.

Reactivity was determined using the reactivity stripchart recorder and temperature was recorded on the average RCS temperature stripchart. The temperature coefficient was then determined from the change in these parameters. The change in reactivity divided by the change in l

temperature yields the isothermal temperature coefficent.

l The predicted and measured isothermal temperature coefficient values are compared in Table 5.1. As can be seen from this summary and from the Startup Physics Test Results and Evaluation Sheet given in the Appendix, the measured isothermal temperature coefficient value was within the design tolerance of 13 pcm/*F and met the accident analysis acceptance criterion. In summary, the measured result was satisfactory.

23

l Table 5.1 NORTH ANNA UNIT 2 - CYCLE 3 BOL PHYSICS TESTS ISOTHERMAL TEMPERATURE COEFFICIENT

SUMMARY

i ISOTHERMAL TEMPERATURE COEFFICIENT

) BANK TEMPERATURE BORON (PCM/'F)

POSITION RANGE CONCENTRATION

(*F) (PPM) COOL DIFFER HEATUP DOWN AVER. PRED. (M-P)

All 544.3 Rods to 1575 -3.73 -3.56 -3.65 -3.70 0.05 Out 548.1 e

l l

24

Section 6 POWER DISTRIBUTION MEASUREMENTS h

The core power distributions were measured using the incore movable detector flu'x mapping system. This system consists of five fission detectors which traverse fuel assembly instrumentation thimbles in 50 core locations (see Figure 1.3). For each traverse, the detector output is continuously monitored on a strip chart recorder. The output is also scanned for 61 discrete axial points by the PRODAC P-250 process computer.

Full core, three-dimensional power ~ distributions are then determined by analyzing this data using the Westinghouse computer program, INCORE*.

INCORE couples the measured flux map data with predetermined analytic power-to-flux ratios in order to determine the power distribution for the whole core.

A list of all the flux maps taken during the test program together with a list of the measured values of the important power distribution parameters is given in Table 6.1. The measured power distribution parameter values are compared with their Technical Specifications limits in Table 6.2. Flux map 1 was taken at 4*. power. This flux map served as the. base case design check. Figure 6.1 shows the resulting radial power

distribution associated with the flux map. Map 1 indicated the presence of a small quadrant power tilt violation (measured 2.76*.) and violations of the rated thermal power limit for the radial peaking factor (Fxy(RTP)).

25

Several additional flux maps were taken during power escalation for Fxy monitoring. A typical power distribution for one of these maps is shown in Figure 6.2. The measured values for Fxy continued to exceed Fxy(RTP) during the power escalation, until a map was taken at 79*. power. No i

further violations of Fxy(RTP) were measured at higher power levels, and '

at no time was Fxy(L) exceeded.

Flux maps 3 through 10 were taken over a wide range of power levels and control rod configurations. These flux maps were taken to check the at power design predictions and hot channel factors, establish a target delta flux for operation, and to measure core power distributions at various operating conditions. These maps also provide incore/excore detector calibration data for the nuclear instrumentation system. The radial power distributions for these maps are given in Figures 6.3 through 6.8. These figures show that the measured relative assembly power values are generally within 5* of the predicted values. Although the assemblywise relative power for Map 3, taken at 50*. power, was slightly higher than the design prediction, the measured F-Q(T) snd F-AH(N) peaking factor values for the at-power flux maps were within the Technical Specifications limits.

In conclusion, all power distribution measurement results were considered to be acceptable with respect to the design tolerances, the i accident analysis acceptance criteria, and the Technical Specification limits. It is therefore anticipated that the core will continue to operate safely throughout Cycle 3.

26

Table 6.1 ,

NORTH A604A Laiti 2 - CTCLE 3 BOL PHYSICS TESTS IHCORE FLUX HAP SurftARY e i l i l I I I I i l i i i 1 I l 4I I l l SURHI l l F-QtT) HOT l F-DHtHI HOT l CORE FlZ) l I I l l NAX l 31 GPTR I AXIAtl NO.I l UP l 18AtaC l CHAT 04EL FACTOR l CHHL.F ACTOR l l l l l IFtXYll 1 0FF l OF l I MAP lNAPI DATE I MWD /IPWRl 0 l l lAXIAtt i MAX l I l SET lTHIttl lilo. l l HTU ltXilSTEPSI l lAXIAll l l l DESCRIPTION l ASSVlPINIPOINTl F-4(Til ASSYlPIHlF-DHtHilPOINT! FtZij l MAX lLOCl (XI 18LESI I i l l l l I I lI I I l_ _I I I l! l I 1 1 _I I I l_ I i i i i i i i 1 i  ! l i I I i l I i i I I 1ARO I 11 5-29-831 el 41 til i M101 EDI 20 1 2.479 i H101 E01 1.574 1 21 11.51411.66211.0288 I I i 1 D84l 1

22.961 I 41 I 1 I I I I I I I I I I I I I I IVERIFY FXY 153 l al 5-29-831 el 311 1771 K1411941 29 l 2.279 l K141 tell 1.570 I l 29 I 11.386tl.64611.016l I I I SW1 I 0.601 I 41 I I I I l I l i I I I I I I I

y IvERIFY FxY I 31 6- 6-831 851501 179 i K1419941 29 I t.139 i K1418941 1.5451 I 29I 11.32011.62011.0151 I I I I Sul -1.821 I I 45 I u I I I I I I I I I I I I I

IVERIFY FXY (6) l 61 6- 7-831 1I21 791 192 l K141 i f9il l

28 l I1.980i l K141 l teil i 1.480 l l 29i 11.17011.55511.0111 1 1 I I SWI I -0.301 50 I I i i i l I I I loELTA I TARGET l 71 6- 6-831 1401 971 228 il K141i t#al 37i l 1.915 l i i K141I 8941i 1.474 i 1 37 l 11.24111.55711.0081 1 I i 1 Sul -3.851 46 I I I I i i l I i loELTA I TARGET I 81 6- 8-831 1551 991 tra i Kiel tvilI 37 l 1.940 I iI K141 I

89:t 1.47s i l t 37 11.25s11.55811.0091 l 1 1 1 1 SWIi -5.941 50 1 I I l i I I I I I II/E CAL. I 91 6- 8-831 18511001 210 l K141 9981 38 l 1.976 l K141 i i tell 1.476I l 37I 11.275l1.55511.0101 I I i 1 Sul -7.361 1 l 49 l 8 I I I I I I I I I i lHFPe EQ. XEH0H l 101 6-10-631 21511001228 l K141 tvil 29 l 1.906 i K1419141 1.4731 37 11.22911.55811.0091 SW1 -2.101 49 l HOTES8 HOT SPOT LOCATIONS ARE SPECIFIED BY GIVING ASSEl18LY LOCATIONS (E.G. H-8 IS THE CENTER-OF-CORE ASSEleLYle FOLLO:JE0 BY THE PIH LOCA1IDH (OEHOTED BY THE "Y" C00ROIllATE WITH THE SEVEt4 TEEN ROWS OF FUEL ROOS LETTERED A THROUGH R AHO THE "X" C0020IllATE DESIGHATED IN A SIti!LAR MAHHERI.

IN THE "Z" DIRECTION THE CORE IS DIVIDED INTO 61 AXIALPOINTS STARTING FROM THE TOP OF THE CORE.

1. F-QlT) IHCLUDES A TOTAL IAEERTAINTY OF 1.05 X 1.03
2. F-DH(H) INCLUDES A HEASUREMENT t#4 CERTAINTY OF 1.04
3. F(XVI INCLUDES A TOTAL LRICERTAINTY OF 1.05 X 1.03.
4. GPTR - QUADRANT POWER TILT RATIO.
5. FLUX ttAPS te 3 AND 6 WERE TAKEN TO EXAttIHE F-XY WITH RESPECT TO THE F-XY(RTP) SURVEILLANCE LIMIT.
6. FLUX HAPS 4 Ale 5 WERE QUARTER-CORE HAPS TAKEN FOR PRELIMINARY EXCORE DETECTOR CALIBRATION.

Table 6.2 NORTH ANNA UNIT 2 - CYCLE 3 BOL PHYSICS TESTS COMPARISION OF MEASURED POWER DISTRIBUTION PARAMETERS WITH THEIR TECHNICAL SPECIFICATION LIMITS 8

MAP F-Q(T) HOT 1 F-DH(N) HOT 2 F(XY) MAX NO. CHANNEL FACTOR CHANNEL FACTOR MEAS LIMIT MARGIN MEAS LIMIT MARGIN MEAS AXIAL LIMIT MARGIN

(%) (%) POINT (%)

2 2.28 4.38 47.9 1.57 1.87 16.0 1.65 35 1.82 9.3 3 2.14 4.38 51.1 1.55 1.78 12.9 1.62 29 1.76 8.0 6 1.98 2.77 28.5 1.48 1.65 10.3 1.56 29 1.67 6.6 7 1.92 2.27 15.4 1.47 1.56 5.8 1.56 29 1,61 3.1 8 1.94 2.22 12.6 1.48 1.55 4.5 1.56 29 1.60 2.5 9 1.98 2.20 10.0 1.48 1.55 4.5 1.56 29 1.60 2.5 10 1.91 2.19 12.8 1.47 1.55 5.2 1.56 29 1.60 2.5 1 The Technical Specification's limit for the heat flux hot channel factor, F-Q(T) is a function of core height. The value for F-Q(T) listed above is the maximum of F-Q(T) in the core. The Technical Specification's limit listed above is evaluated at the plane of maximum F-Q(T). The minimum margin values listed above are the minimum percent difference between the measured values of F-Q(T) and the Technical Specification's limit for each map. All measured F-Q(T) hot channel factors include 5% measurement uncertainty and 3*.' engineering uncertainty.

2 The measured values for the enthalpy rise hot channel factor, F-AH(N) includes 4% measurement uncertainty.

3 All measured F(XY) MAX values include 5*. measurement uncertainty and 3* engineering uncertainty.

28

l.I D O B 3 9*L NOB 1H YNNV ONll Z OAOl 3 E VSS3WGlrMIS3 DOM 3B G'IS1B19nilON VBO' #% DOM 3B a e u u 1 z r a e d a e s v u301311a 6 tt e*94 0 ti - d03at211a - -

  • Wvstfs3a *
  • 8*tt
  • 0*51
  • 0'tt *
  • NV5nula
  • 1
  • d31 : tid 303H32*
  • 4**
  • 4*t * **A * *d31 otAA3W3H32* *
  • 0*59
  • 1*01
  • 1*tt
  • 8*tS
  • t*tt
  • t*01
  • e*59 *
  • 0*91
  • t*09
  • t*tt
  • 0*03
  • t*t9
  • t*05
  • 0*51
  • 3
  • t*C
  • t*0
  • 3*6
  • t*l
  • 3*5
  • 1.g . g.g .
  • 0*99
  • t* 06 ' 1*25
  • 0 *69
  • 1*t4
  • 0*69
  • 1*25
  • 1*06
  • 0*99 *
  • 0*96
  • t*tS
  • t*t6
  • 0*66
  • 1*34 ' e*60
  • t*24
  • t 11 rO'91
  • 1
  • t**
  • t*t
  • t*0
  • 0** * *S*t
  • 0**
  • t*4 * .#t*t * *t*2 *
  • 8*94
  • 1*t9
  • 1*26
  • t*t4
  • 1*39
  • t*0$
  • t*39
  • t*tt
  • t*26
  • t*t9
  • 8'99 *
  • 8*96
  • t 21
  • 1*tt
  • 1*t6
  • t*2$
  • t*09
  • t*tt
  • t*tS
  • t*tA
  • t*tt
  • 0*9$ * $
  • t**
  • 9*t
  • 9*t
  • t*t
  • 0*t * *S*6
  • t** * -t*S * *t*g . .t.g . 0.g .
  • 0*59
  • t*06
  • 1*tS
  • t*00
  • 1*32
  • t*G1
  • t*t9
  • 1*01
  • 1*22
  • t*OD
  • t*ES
  • t*06
  • 0*t9 *
  • 8*t6
  • 1*tS
  • t*tt
  • t*02
  • t*II
  • 0*69
  • 1*tt
  • 8*69
  • 1*t6
  • 0*69
  • t*t9
  • t*06
  • 8'51
  • S *
  • 9**
  • 9**
  • t*6 * **t
  • 8
  • t * =1* 0 * -3
  • 4 * .3 *5 * -3
  • 2
  • a1* 9 * -t *5
  • 0*9
  • 3*L *
  • t*02
  • 1*25 1*t4
  • t*II
  • e*62
  • 1*06
  • 8*62
  • t*06
  • O*62
  • t*22
  • t*t4
  • t*2$
  • 1*03 *
  • t*tO
  • 1*tt '* t*91
  • 1*39
  • 0*61
  • t*0$
  • 0*86
  • 1*05
  • 0*60
  • t*tS
  • t*tS
  • t*25
  • t*04
  • 9
  • t*B
  • 4*0 * ***
  • t
  • 1 * *1
  • 0
  • t
  • 6 *
  • t * * *
  • t * * * -t
  • 1 * -t
  • 9 * -t e g . g.g . g.g .
  • 4* tI
  • 1*tt
  • 8 *69
  • 1*t9
  • 1*01
  • t*tS
  • 8
  • 62
  • 1*01
  • 0*62
  • t*tO
  • t*01
  • 1*39
  • 0* 69
  • t*tt
  • 0* tt *
  • 0*tt*t*tS*1*#t
  • t* 26
  • 1* 00
  • 1*01
  • 0*99
  • 0*66
  • s'tS
  • 1*0$
  • 0 *64
  • t*tS
  • 0
  • 69
  • t* 09
  • G*tO
  • 1
  • 4*t
  • 9**
  • 9*$
  • t't * = t
  • t * -t
  • t *
  • t
  • 6 * *1* t * = t
  • 6 * *t* 6 * ***t *
  • S
  • A . 3 g * .g a t . .g.g .
  • G **t
  • 0
  • tO
  • t *tt
  • t* 05
  • t *t A
  • e* 62
  • t* 01
  • 0* 02
  • 1*01
  • 8* 62
  • 1*t4
  • t
  • 05
  • t* 2C
  • O'90
  • 0 *42
  • 0 *t6
  • 0*t5
  • 1* tt
  • 1*09
  • 1* t9
  • C *61
  • 8 *66
  • 0 *16
  • 8'69
  • G*tS
  • t*06
  • 8* 66
  • t*20
  • O *16
  • 0*94
  • 9
  • t*6
  • 9*t
  • 9*(
  • t* 0 * -t' S * *1* 9 * -t* 6 * -t
  • t * *5 e*t *

.........................................................s...'O**S*t**9****S*4*at*$**S*6*

  • 0
  • tI
  • t
  • t t
  • 4
  • 69
  • t
  • t9
  • t
  • 01
  • 1'10
  • 0
  • 62
  • t
  • 01
  • e
  • 6 2
  • t'10
  • t
  • 01
  • 1* 39
  • e
  • 69
  • t
  • tt * $ 'tt *
  • 4
  • tt
  • 1* t9
  • 1* 01
  • t'29
  • t
  • 00
  • 1* 09
  • 8'60
  • 1* 00
  • 0 *t1
  • t* 0 E
  • 0* 69
  • 1* tS
  • 8 *64
  • t*tS
  • 0* tt
  • 6 9*9 * **6 **6
  • 8
  • 2 * *S
  • t *
  • S
  • 4 *
  • 3
  • 0
  • t
  • t *
  • S * $ *
  • 5
  • 9 * -9 * * * -9
  • t * =t ' 9 * *S
  • 6
  • t

.......................................................................................................'q.

06

  • O* 62
  • t
  • 06
  • e* 62
  • 1*22
  • 1* tt
  • 1*25
  • 1*02 *
  • t1*02
  • 0 2 ** t*25 1*tt * *t **1 t*tA**t*1*22
  • 5 * *8*61 O*62* 1** t'09
  • 8*06
  • 1 04
  • 0*tS
  • t*tS
  • t*tS
  • t*t9
  • t*09
  • 1$
  • **t
  • t*t
  • t
  • 3*6
  • t
  • 3 *
  • t
  • 2 *
  • t
  • 2 * **
  • t * =t
  • 6
  • a S
  • g . .g t . 9. g . g.g .

...................'5.........................................................................

  • 0*59
  • t*06
  • I'20
  • 1*00
  • 1*23
  • t*01
  • t*t9
  • t*01
  • t*22
  • t* 00
  • 1*39
  • t*04
  • 0*59 *
  • 8
  • 90
  • 1*14
  • t*t9
  • t* 0$
  • t *!t ' $*66
  • t*1$
  • 8 *62
  • t'13
  • e*69
  • t* 24
  • t *09
  • 0
  • 52
  • 11
  • 4*t
  • 4*t
  • 9*$
  • 5*t
  • t ' 9 * *1
  • t *
  • t * *
  • t
  • 5 *
  • t* 0
  • at * * * - t
  • 0
  • t
  • t
  • 3*0 *
  • 0*9+
  • t*t9
  • t*26
  • 1*tA
  • 1*29
  • t'05
  • t *t9
  • t*tl
  • 1*86
  • t*t9
  • 8*99 *
  • 0*t0
  • t*!t
  • 1*tS
  • t*tt
  • 1*t9
  • t'0$
  • t*!!
  • t*tI
  • t*tt
  • t*tt
  • 0*99
  • 13
  • 6*6
  • 1t* $'t
  • 1*t * *S*1 * -0*2 * .3*1
  • t** * *t*5 * *teg . .g.g .
  • e*99
  • t*06
  • 1* 35
  • 8* 60
  • t *!t
  • 8 69
  • 1* 35
  • t* 06
  • 8 *94 *
  • 8*10
  • 1* tt
  • t*!l
  • t* 00
  • t*t9
  • 8'* 60
  • t'!!
  • t*0$
  • 8 *91
  • 11
  • 6*6
  • S
  • taS . t** . 3.9 . . gag . .t.t * .t*g.. .t*0 *

............'O....................................................

  • 0*59
  • t*OC
  • t*tt
  • 1*tt
  • 1*01
  • 0*59
  • tt
  • 0*92
  • t'09
  • t*12
  • 0'tt
  • t
  • tt
  • t* 02
  • 8 *54 *
  • 6*6
  • t*t
  • 1*t
  • t** * *S*t * *1*0 * *t*6
  • tatN0vaC * ' 0*tt
  • 0*02
  • n*CI *
  • VA3sT03 *
  • d31 0tdd3a3N33' 15
  • 03AIT433H * * $*tt
  • 8'09
  • 0*tt
  • t*t
  • 3*0 * **0
  • e t** *
  • at*ttA * *
  • SQM&kA uYd H0: H2*t- I OY133 5/26/91 d0M351 DX 3QH1401* 50C d0SIIIOiiSI d-0311 s 2*946 DdiM 0 GY4c) YA 211 513dE daQH)H( m 1*544 NM I*029 l H3 0*690

...... ...l........

d32( a I* SIS SM I*02S l 53 0*694 d)X1( s 1*992 gnuNfd a 0 4MQWuf Y*O a 22 69)%(

76

l l

l dlOnB3 90 NOB 1H YNNV nN11 I 3A373 E VSS3W97 AMIS 3 DOM 3B O'IS1B19nilON l EM DOM 3B l

l a e n u 1 ni r a e a a e a e v

  • se3013nO *
  • e*te
  • 0 99 e te -
  • s53atsus * ,
  • M3TSns30 *
  • 4*tR
  • 0*96 * $*13 *
  • NEVS1W30
  • t
  • 9*1
  • 9*$ $*9 * *e31 01dd351N3R*
  • d34 eldd3u3N33'.............................'......................

t9

  • t*tO
  • 1*04
  • 8*SL
  • 3
    • . 8,*91 0*lA.g .** 1*09 1*89 g.g *1*tt

.* g.g 1*tS g

.* 8'.g . g.g *. 1*tE .g .* t .g,*09

.

  • 0 ,*56 *
  • t 9$
  • 1*tt
  • t*39
  • 0*60
  • t*31
  • 8'60
  • 1*39
  • t*II ' s'95 *
  • G'*tS
  • t*tS
  • t*26
  • 0*62
  • t**1
  • 0*69
  • t*tt
  • t*1S
  • t'91
  • S
  • t'S
  • 9*$
  • 3*t * .t**
  • t*S * .s*l
  • 9** * @*t * .t** *
  • t9
  • 1*ES
  • 1*tS
  • 8*9$ *
    • O'9$

e*96 * *1*** t*t9 ** 1*ESt*tt * *t*t9t*tS* *t*tt t*39* *t*et t* 0$

  • t*t9
  • t*32
  • t'tS
  • t*tt
  • t*t5
  • 0*99 *
  • t* 9
  • $*t
  • t'9
  • t
  • t * *t * * * -t
  • 9 * -t
  • 2 * *t
  • t * .t * * * .g. g . 3. g
  • g.g .
  • e*51
  • t*t8
  • t*tS
  • 1* 03
  • 1**t
  • t* 09
  • t*19
  • t*09
  • t*tt
  • t*08
  • t*ES
  • t*tS
  • 0*54 *
  • 0*** *56* * **2 t*tS** e*9 1*tt** -t*t 8*66* **t'9 t*t6 ** ****

O'69**-t*t t*14** -t** 8 *66* **9*4 t**t ** at*S S *66* *.3.g t*t9.

  • t*tt 3.9 *. 8,*t6

.g *.

99

  • 1*t1
  • t*tS
  • t*t9
  • t*OC *
  • t*01
  • 1* 39
  • 1*CS
  • t*tt
  • 0
  • 89
  • t*09
  • 8*63
  • t*89
  • P'92
  • t*t6
  • t*t*
  • 1*22 * **02
  • 9
    • **09

$*0 ** t*42**6 ** 1*9 t*te* **t*t t*ts ** *t*6 s'99 ** -3*2 t*eS**=t'9 e*69* *.t*4 t'ed* **t*

s' t * *t*4 * *3*t

  • 1*t
  • t** *
  • 0* tS
  • t*tS
  • 8* 69
  • 1*39
  • t*SO
  • t*09
  • 0*61
  • t *8E
  • 0*61
  • 1*89
  • 1* 09
  • 1*t9
  • 8 *69 * !*tS
  • 0*te *
  • 0 *tI
  • t*19
  • t*02
  • t*iL
  • 8 *66
  • t'89 ' 8 *96
  • t*01
  • 8 *6e
  • t*02
  • t*00
  • 1*32
  • 0*69
  • t'86
  • 8*tt
  • 1
  • S*t
  • E*S
  • C*t
  • t* 0 * *t
  • 4 * -t* 6 * *3
  • t * =1* 9 * *t* 8 * -t ' 9 * *0 *$ * *3
  • 6 * -0 *S * -t **
  • 3*t *
  • e*t9
  • 8*&9
  • tfI
  • t*05
  • t*tt
  • e*62
  • 1*02
  • 0 92
  • t 82
  • e*62
  • t*t4
  • t*0$
  • t*32
  • 8*19
  • 8'09
  • 9
  • 8 *t9
  • s'tS
  • t*29
  • t*81
  • t*t9
  • 8 *61
  • t'60
  • S'99
  • 1'*t1
  • 0*69
  • 1*tt
  • t'02
  • t*21
  • t'lS
  • 8 *t9 *
  • t*t
  • C*t
  • t*** t'9 * -t
  • t * -t
  • 6
  • at
  • t * *t*$ * *1* t * *t' 9 * -3
  • t * *3
  • 6 * *S
  • A * ' **C
  • S*t *
  • S'CO
  • t* tS
  • 8 *69
  • t*t9
  • t*89
  • 1*B9
  • 8*61
  • t*01
  • O 61
  • 1* 09
  • 1* 00
  • 1* t9
  • 8* 69
  • t*tO
  • 0 *tS
  • 6 8*tS
  • t*tt
  • 0 *66
  • t *31
  • t *se
  • 1* 01
  • 8 *6$-t**
  • 1*01
  • 0'*96
  • t*09
  • 0 *64
  • t,*tS
  • 8,*6+
  • 1*tt
  • 0*tt *
  • -t*1
  • 3** * *t*$ * . t . . .g . 3.9 . 4.g .
  • e*2
  • e*6
  • t*8
  • 0**
  • b** * *D*1 * *t*$ *
  • t* tt
  • 1* t9
  • t'19
  • t *tt
  • 8*99
  • 1* 09
  • 8'62
  • 1* 09
  • 0*99
  • t**1
  • 1*t9
  • 1* t9
  • t* 0E *
  • t*89
  • t*22
  • t*t6
  • t'tI
  • 8* 99
  • t*85
  • 8 *69
  • t*05
  • 8 *9$
  • 1*tl
  • t*CT
  • t *t9
  • t*tt
  • tS
  • 0*9
  • 0*9
  • 8*9
  • 8
  • 6
  • e
  • t * *3 ** * *3* t * =t'9 * .t' 9 * -E
  • 6 * -t t*4 *

...........................................................................'9*-S*9* .................

  • 0
  • t4
  • t*tO
  • t*tS
  • t'09
  • 1*tt
  • 1*00
  • t*t9
  • 1 08
  • 1**1
  • t* 09
  • t *te
  • t* te
  • 8*$L *
  • e*t6
  • t *tS
  • t*tS
  • t*02
  • t'21
  • 0*69
  • t*tt
  • 8 *61
  • 1*tS
  • O *&&
  • t*39
  • t*09
  • 8*59
  • 11
  • **s * **t
  • t*t
  • t*t * .0 9 * *3*t
  • 3** * .t** * *t*1 * *t*6 . 3.9 . 3.t
  • t*S .

t9

  • 0*95 *
  • 8*95
  • 1*tS
  • T't*
  • 1*tS
  • 1*ts a10
  • 1*tS
  • t*t9
  • t*ts
  • t*t9
  • 1*ES
  • t*EO
  • t'19
  • 8*9$
  • s'tS
  • 1*tt
  • t* t*et
  • t*3t
  • 1*t*
  • t**t
  • t* tS *
  • 4** * **S
  • t
  • C * -6 * * * -t * * * -t
  • t * - 3 ' 9 * -t
  • 6 *
  • 3
  • 6 * .t
  • 9 = .g a S .

29

  • 1*tt
  • 0*9$
  • tg
    • 0s'tt*9$**t*ts 1*tt ** 1*39 t*tt ** s'ot 0
  • 69
  • 1*tE
  • t***
  • e *69
  • e*69
  • 1** t't9
  • t*02
  • 8*9s *
  • 4*4
  • 8**
  • E** * =1*9 * -t*$ * *S*t -0** * *t * *6.g .

..........................................'............'S..........

3

  • 8*54
  • t*09
  • 1*tS
  • 9*t9
  • t*tS
  • 1*04
  • e*64
  • 19

{

  • 0*92
  • 1*12
  • t'89
  • 0*19
  • t*tS
  • t*a t
  • 8 *55
  • 8*S * -3 9
  • 6 3 . .g.g . .oot * .3.g =
  • 8** *

................ VA3svoa

  • S MrctsO *
  • 0
  • tg
  • g *t9
  • 0
  • tO *
  • ts
  • 0*tE
  • s'91
  • s'tt * 'd31 01ddlB3N33'
  • 03AtfA23N *
  • e *9 -

=1*660 . . 9.9

  • t*9
  • 3*$
  • S1fWWYNA WVd ttO N2 2 0713: 5/26/91 don 3N: tI%

3011501* sDC DOS 111 cts J-b11( m 2'216 DdlE 0 SYW Y1 111 S13dS daQH)H( s 1*S10 MM t*010 I NE 0*669

........g.... .

J32( a I't99 SM 1*019 l 53 0*690 JIX1( s t*999 et*nUfo s 0 MCW11T Y*0 s 8*90)%(

CO

diDnB3 S'E NOB 1H YNNV GNIL. I 3A313 E VSS3W91* AMIS 3 DOM 3B G'IS1B18nilON 90% DOM 3B a d a u 1 z e a e a a e a e v

  • sa3ot3tas -
  • ert e 44 0ct *
  • smaa 3tto -
  • METsns30 *
  • 0*tt
  • 4**5
  • 8*tt *
  • M3vstrac
  • t
  • d31 O!dd35323* * **t * =t
  • t*2 * *d32 etdd303N33*

..........................'9 ........................ ................

  • 4*55
  • t*06
  • t*06
  • 0*49 * !*06
  • 1*09
  • 8*55 *
  • 0*9D
  • T* 01
  • 1*09
  • 8*LL
  • 1* 06
  • t*04
  • 8*59
  • 3
  • 1*6
  • 3**
  • e s
  • g.g
  • g.f .

..........................'9* b *6 *..............'t ........................ ,

  • 0*91 * !* 09
  • 1*82
  • O*M
  • t*tI
  • 0*H
  • 1*33
  • t*09
  • 0*91 *
    • t'99 t**
  • t*tS**0
  • t*tt
  • e* H
  • t*tt
  • 8'H
  • 1* 32
  • 1*06 "it'91
  • t
  • t " t * -0 * * * *6
  • 6
  • b a g . gag
  • g.g . gp .
  • 4*91
  • t*tt
  • t*tS
  • 1*tt
  • t*39
  • t* 09
  • t*t9
  • t*t*
  • t*ES
  • t*tI
  • 8 *91 *
  • s'99
  • t*t9
  • t*39
  • t*tt
  • t*tt
  • t* 02
  • t*tI
  • t*tt
  • t*39
  • t'tt
  • 0*99 *
  • 9
  • t**
  • I 9
  • s'0 * =t 9
  • at*1 * ***6
  • a1*t
  • e*4
  • t*9
  • t*t *

..........................'t *.............'.....................................................

  • 0
  • 55
  • t
  • 0$
  • t
  • 25
  • t* et
  • t
  • 31
  • t
  • 0$
  • t* ID
  • t
  • 05
  • t *IT
  • t
  • 01
  • t
  • 2$
  • t
  • 05
  • 4
  • 55 *
  • 0*51t9*
  • t*06
  • t*tS
  • t*00
  • t*tS
  • t*01
  • t*tS
  • t*02
  • t*26
  • t*00
  • t*tS
  • t'09
  • 8*56
  • 5
  • t9* e* * * -9 9
  • at *5
  • a t* L * *t* 4 * ***(
  • at
  • t * =1* t . .g
  • g
  • g*e . g.e .
  • t* 4S
  • t**t
  • t* tt
  • t*t1
  • C*61
  • t*tt
  • 8
  • 66
  • t*tt
  • 4*61
  • t**1
  • t*tE
  • t*tt
  • t*t't 09*
  • t*39 9
  • **1 ** t*9 t*tS* *att*tO ** * **38 **60 4 * *.tt*09
  • 0 .*.t0*6$
  • 9 **.tt*tS *g .*.te*61 *g * *.t t*t6
  • g . *.tt*tO
  • g .*gagt*II ** t,*00
  • g **

0*tt

  • t*09
  • 8'66
  • t'39
  • t*05
  • t*tt
  • 8'66
  • t*tS
  • 4*66
  • t*tt
  • t*05
  • t*t9
  • e*66
  • t'ot
  • e'tt
  • 4*ES
  • 1*tE
  • t*et
  • t*35
  • t*01
  • t*06
  • 8*6$
  • t'09
  • 4*69
  • t*tt
  • t'ot
  • t*tt
  • 8'H
  • t*06
  • e'tI
  • 4
  • , tt*t
  • t*t * *
  • 2
  • b
  • 4
  • a t
  • 9
  • at
  • 4 * -t * * * *t '9 * * *
  • 1 * = t * * * *t
  • t * **
  • t * .g
  • g . t.g . I.g .

0 *t4

  • 8*LS
  • t*tI
  • 1*09
  • t*28
  • 8*66
  • t*tO
  • e*66
  • 1*tO
  • 8* 66
  • 1*28
  • 1* 09
  • t *II
  • O *49
  • 8*91
  • 4*51
  • 0
  • 91
  • t***
  • t* 09
  • t*t9
  • 8*69
  • t*05
  • 0*91
  • t* 09
  • e* 65
  • t*t4
  • t* 09
  • t**T
  • O*16 * $*t9
  • 9 tt*t
  • t'l
  • 1*9 * -t *s * *8
  • 6
  • at* * * -t*5
  • a t*5
  • at* Z * .t*1 * =t'9 * -t
  • 0 * -0
  • L
  • t*t * **t .

0

  • tt
  • 1*09
  • e* 66
  • t*t9 * ** 0$
  • t* tS
  • e*66
  • 1*tS
  • e*66
  • 1*tE
  • 1*0$
  • t*29
  • 0*66
  • t*09
  • 8 *!t *
  • 8* t5
  • t*tI
  • 1* 00
  • 1***
  • t* 02
  • 1*06
  • 0* 64
  • t* 05
  • 0* 4$
  • 1*00
  • 1*00
  • 1*22
  • t*tS
  • 0 *E*
  • 6
  • tt*t
  • t*t
  • 4 * $
  • at
  • 2
  • h
  • 9 *
  • t '9 * =S
  • 0 * =* * * * *t' t * **
  • t * *t
  • 5 * -t
  • 6
  • t*0
  • t**
  • t** *
  • t*08
  • t*IT
  • t*tt
  • 61
  • t*tt
  • t*tt
  • t*tt
  • t*09 *
  • 1*03 1*31
  • 8*61
  • t*tE
  • e*66
  • t*tE
  • 8'96
  • t*t4
  • t*tt
  • t*25
  • t*oC
  • t*tt
  • t*tt
  • t*tt
  • 0*61
  • 1*01
  • 8*6$
  • t*01
  • 8* ts
  • t'9
  • t'9
  • 8 * % * *S
  • f
  • b
  • 0 * .S
  • 1 * **
  • 2
  • at
  • 6 * -t
  • 0 * = t' 9
  • e
  • S . tp . g*g =
  • O'5$
  • t* 0$
  • t
  • 35
  • 1* 01
  • 1*tt
  • t* 05
  • t*20
  • t* 0$
  • t*tt
  • 1*01
  • t*2$ * !* 05
  • 8*5$ *
    • s'tS
  • t*tt
  • 1 36
  • t'ot
  • t*t6
  • t*00
  • t*tS
  • e* H
  • t*tl
  • 8' H
  • t*24
  • t*09
  • 8'52
  • tt s s*t
  • t*6
  • 1*$ * *t' 8 *
  • t* 4 * *t* 6 * -5 * -t*t * *t*4
  • t'9 * **6* C* 6 *

.....'t *.................................................'l......................................

91

  • 1*tI
  • t*tS
  • 1*t*
  • t*39
  • t* 09
  • 1* t9
  • t*t9
  • 1* tS
  • t* tI
  • 0*91 *
      • 0*

s'96

  • t*te
  • t*t A
  • t*tt
  • t*tE
  • t*09
  • t*22
  • 1*tt * !**t
  • t*t*
  • 4*95
  • 13 e*2
  • 5**
  • t*5 * *0 * **** * ****
  • b **
  • b **
  • at*5
  • 1** * **6
  • j

..........................'l....................................................

  • O'91
  • 1* 09
  • t*II
  • 4*M
  • t*II
  • 8'H
  • t'22
  • t
  • 09
  • 0*91
  • i 9 t ts O*66 t tI t eS
  • 0 95 - tt
  • . e 6.9 ,6 *. t 16.,9 . 1t-2, . .e u l 2.4 . .t.3 . .e.5 - e.t .e r . t.: .
  • m" ****.**.......................................

! * ***" * "0"*

  • 55
  • 1"* 0 9
  • t
  • 06
  • 8
  • 49
  • t'86
  • 1* 04
  • 8
  • 5$
  • 1
  • s'91
  • 1 11
  • t* tt
  • 4* 01 *

! . 6.9 . n v . 5.0 t. ..c.t.' ot

  • t,*09
  • 8*5$
  • v . . .t .

tt

  • EATNOTeO *
  • 8*tt*8**t*0'tt*

03A!t110N

  • TA3sT03 *
  • S*tS
  • 4*56
  • s'tt * *d31 O!dd303N3I* tS
  • st* tit *
  • tt**
  • L**
  • t'9 *

................

  • e t*t
  • S1#&EBA diVd ttO: H2-E- t QY132 9/ 9/91 dott3M 50X 3C31u01* 500 d0SIII CS: dablit m 2*IE6 DdiB*

0 ens) YA 116 S13dE 4-QHlit( E I'595 499 I*009 l N3 0*6%

..........g..........

J)2( a I*t20 SM I*015 l S3 0*691 J)X1( a I'920 ettattrd s 95 4;MQW1tf V*0 -I'922%(

CI f,

-- . - ~ . . _ . - . . . . . - . ~ . . - - -- .- - - - -- _ . - __. - - .___ - .___ - - __.--

  • l I:IDOM3 9V NOML.H YNNV ON11 I OA313 E VSS3W91 AMIS.3 DOM 38 G'IS1MIEnilON 16% DOM 3B t

t I

a u a m 1 e a e a a e a e v dn30 tats

  • tetS 0 s1 8 tS - d030tata
  • M3vstra30 *
  • G*CS
  • 0*52
  • 0*tS *
  • M3fE10a3a
  • 1
  • dal eldd353>t*
  • 3*S
  • 3*t
  • t*9 *

................ .................................................. '.dal etdd303Mt*

  • 0*59
  • 0*M
  • t*tS
  • O 91
  • 1*tS
  • O"H
  • 8*f9 *
  • 8*90
  • t*01
  • t*06
  • 0'*92
  • t*tt
  • t*09
  • 0*t6
  • 3
  • 1*t
  • t*f
  • 0*2 * -0*9
  • 1*0
  • s*O
  • S*4 .
  • 0*91
  • 1*09
  • t*tS
  • t*00
  • t*tt
  • t*00
  • t*tS * **09
  • t*91 *
  • 0 99
  • 1*06
  • 1*13
  • 0*64
  • t*tS
  • e* H
  • t*21 * '- t*49 ? 0'99
  • t
  • t*6 * * *1
  • t*t
  • t*0
  • t*t * =1*0
  • 3*t * .t*t
  • 9*6 *
  • 0*91
  • t*tS
  • t**t
  • t*tS
  • t***
  • t* 06
  • t*tt
  • t*tS
  • 1* tt
  • t*tS
  • 0*9E *
  • 0*91
  • t*tS
  • t*tf
  • t*tO
  • t*tS
  • t*09
  • 1*tS
  • t*!S
  • t*tE
  • t*tt
  • 4 99
  • t
  • S*f
  • t*$
  • C*t
  • 8***.t*f*=t * .t*6
  • 0*2
  • 1*&
  • t*4 * **E

...............................................'9.............................................

  • H
  • 1.31
  • t*eD
  • s'59 *
      • 8*59 4 59 *
  • t t*09
  • t* *ttt*00 09
  • t***

t'9

  • t*A
  • t*t
  • 8*g . p*g
  • 8'H
  • 1*t4
  • t*t6
  • t*01
  • t** 05 t*t9**t*tS t*0E**t*t*t6 OE* t** 1*t6
  • 8'00
  • t 22
  • t* 04
  • 0*563*

.g*g * .g.4 * .teG . p *0 . 0*t

  • O*t
  • g.g . g*s .
  • 8'H
  • t*tS
  • 1*tS
  • t*t6
  • 0*%
  • t*tt
  • t* 02
  • t*tt
  • 0*69
  • te t6
  • t*tO
  • t*tS
  • 8 H *
  • t* 01
  • t*tt
  • t*tI
  • t*t6
  • 0* 6E
  • t*06
  • 0*61
  • t*tt
  • O*M
  • t*t6
  • t*t6
  • t*tS
  • t'* 4E
  • g
  • C*6
  • t'9
  • t
  • t * -0
  • 5
  • b' 9 * * * * * =*
  • t
  • a t
  • f *
  • t
  • t
  • b
  • t * >
  • 9 . t.g - gat .

0*tt

  • 1*tO
  • t*09
  • 1*24
  • t*05
  • t*tS
  • t*02
  • t*tS
  • t*03
  • t*tE
  • t*05
  • t*tt
  • t*00
  • t*tS
  • 0*t*
  • e'tS 1
  • **6** 1*tI t*f **tt*01
  • * * *b t*!E
  • t * *b*t*03
  • t*tO 4
  • at* t * .* .S 0,*64

. .t.g* *t*06 p

  • g* *t*00 p a *t .t*tt

.t e* gt*.01

.t **gt*t6

.0=

  • O'H g .
  • t*tO
  • 8*tt
  • 0** . 3.g .

tt

  • O*st
  • e*fI O*E1 t*t
  • 3**
    • O*02 0*09 * *t*tt t**1
  • t*00* t*06
  • t*tt
  • 0t*20 60 **t*02 t*01
  • t*tE
  • 0*61
  • 8*65
  • t*06
  • G*61
  • t*tE
  • 1.19* *t*01t*OS**1*tS
  • t*06
  • t*!E
  • s'tI t*tI
  • 0* 3
  • O'52 *
  • t*0 * .s*t * .t*1 * .t*f * .S*2 * -t*3 * =t*6 * *t*6
  • at*4 * *t*t * *S*t
  • t**
  • t*6 .

0*tt

  • t*tS
  • t*00
  • t*tt
  • t*05
  • t*tS
  • 1*02
  • t*tt
  • t*02
  • T*tS
  • t*05
  • T*!t
  • t*09
  • t*tS
  • 0*tt
  • 0*tS
  • teit
  • t*01
  • t tI
  • t*01
  • 1*tt
  • 4*66
  • t*06
  • 0*69
  • t*tS
  • t*01
  • t*tO
  • t*00
  • t*tt
  • 0*ES
  • 6
  • t*6 * ***
  • 0
  • A
  • h
  • 6
  • b + 5 * = t
  • 6 * .t * * *
  • t
  • 4 * -*
  • 2 * -t * * * . t'9
  • t * *
  • b * *
  • t*t . g.g .

H*

    • t*0*H02 * *t***

1*tS

  • 1*tS
  • 1*tt
  • 1*t6* *t*t4 0*69
  • 0*69
  • t* 06 ** t*tt 4* 61* t*02
  • t*06** T*TS g.g
  • t*6
  • t*0
  • 0.4 . .t.g * .6 9 . .g
  • g * .** g * .g*( . .t *t * .t a g
  • 0*62 * *t*t9 0*69* t *tt* *1*t6 t* t4 ** tetS t*
  • t*t9
  • 8'0E 18
  • 0** . **0 .
  • s'59
  • 1*09
  • t*tt
  • e*46
  • t*t6
  • t*05
  • t*tS
  • 1*05
  • t*t6
  • e*46
  • t*tt
  • t*09
  • 0*59 *
    • s't4
  • t*06
  • t*25
  • t*01
  • t*16
  • t*02
  • t*t9
  • t*00
  • t*tA
  • 0*60
  • t*tt
  • t*05
  • e*fe
  • tt 5*0
  • S*0
  • t*4
  • t*C
  • 0
  • t
  • t* C * .t*f * *S
  • 0 . .t e R .. .t e g . 4*g
  • taS . 6.2 .
  • 0 *91
  • 1* tS
  • 1.21
  • 1*tS
  • t*36
  • 1*06
  • t***
  • t*tO
  • t* tt
  • t*tS
  • 0 *91 *
    • 4*99
  • t*tS
  • t*tt
  • tett
  • 120
  • t*05
  • 120
  • t*26
  • t*tS
  • t*12
  • s'95
  • tt 4*t * **t
  • t**
  • 0*f
  • t*2
  • at** * *t*2
  • at*t * -0*9
  • t*t
  • C*t *
  • 4*91
  • 1* 09
  • t* tS
  • t
  • 00
  • t*E E
  • 1*00
  • t*tS
  • t*09
  • 0*91 *
  • 0*99
  • t*tt
  • t*22
  • 8'H
  • 1*!!
  • t*eD
  • t*tS
  • t*0$
  • 0*9$
  • tS
  • 4*0
  • t*0
  • C** * *t*4
  • at*0
  • b **
  • 1**
  • 4*4
  • t*6
  • I
  • 0*59
  • 8'H
  • t*tS
  • 8*tI
  • 1*tS
  • 0*66
  • 8*f9 *
    • 4*90
  • 1* 00
  • 1*!E
  • s'09
  • 1* 06
  • 1* 00
  • 0* 59
  • 1$

4*0

  • 0*t
  • C*t
  • 2*2 * > **
  • 1.3 . g. g .
  • sanovac *
  • s'tt
  • 8*51
  • s'tt * ................
  • 03A vasaw
  • vA3atsE *
  • st* tot
  • e
  • tL
  • 0 59
  • 0* tt * 'dnA 02dissaH:3- tS
  • 6*s
  • E9* t 9,
  • e 3*t snWMYftA Wvd HD: 4t2-t- 9 OY133 9/ L/91 dom 35: 46%

03:tl:201 50C d0511 c!S: d-D)1( s t*690 bd15:

0 eviC) Y1 162 $13dS d-3H)41( s 1*990 497 1*009 I N3 0*669

........g.........

d32( s 1*24C SM 1*011 l 53 0*694

  • JIXAI a 1*555 snaivtd s 112 4.itCW1n V*0 a -0*t03XE CZ -

e .

t I

diDOB3 9 G NOB 1H YNNV nN11'I 3A313 E VSS3WGl AMIS 3 DOM 3B G'ISIBIGnilON 61% dom 3M l

u e :0 u 1 ni r is e a a e o e v

  • emaS!sua - 4 ts t st e tS * - s 3otsna -
  • M375nm30 *
  • 0*t9
  • 8*st
  • s'tS *
  • M3vsnaas
  • t
  • d31 0 tid 353N23'
  • 1*t
  • C*t
  • 1 * *d31 O!dd353N33*

............. 6. .................................'l................. ................

  • S*55
  • 8 H
  • t*tt
  • 8*99
  • t*tt
  • e*H
  • 0*55 *
  • 8'51
  • t'*09
  • t*tt
  • 0'09
  • t*tS
  • G*66
  • 8*51
  • 3
  • 3*9
  • t*3 * *S*1 . .g.g . .g.g . g.g . g.g .
  • e*91
  • t*03
  • 1 11
  • t'09
  • t*34
  • t*09
  • 1*tA
  • t*02
  • s'91 *
  • 0*99
  • t* 09
  • t*tS
  • s'4S
  • t*31
  • 0 *6D
  • t*t9
  • t* 09
  • t'91
  • t
  • 3*8
  • t*6
  • t* 3 * =1* 6 * =3 *3 * *3 ** * =t
  • t . t*g . gat *
  • 8*91
  • t*09
  • t* t6
  • t*36
  • t*3E
  • t* 06
  • t'31
  • t*36
  • t*t6
  • t* 09
  • 8 *91
  • 9
    • s'95 C*f ** t*tS**1 ** t*20 t***
  • t*tS e*6* *t*IO *3*0** t*=3**

09 **1*16

  • t** ** t*31

=t*3* *1*31 t'9 ** 1*tt C*0 *.0,*99 %1 **

55 *

    • e0*59 *$$* *1 1*0301
  • t*20
  • t*16* 8*66* 8*66
  • 1** 1't6
  • t* 02
  • t*t9
  • 1*0916
  • t*t6 ** t0*66*05 ** t*30 1*ES* *t*09 1* 05
  • e** 1*t6
  • O* 66
  • t*t6 S
  • t* 02
  • t*t
  • t*C
  • e
  • 4 * -t * * * *S
  • t *
  • t * * * =t
  • t
  • a t
  • S * -t
  • 3
  • 8*t
  • 8*6
  • t*s
  • 5*t *
  • O*66
  • t*tt
  • 1*39
  • T*t6
  • e*66
  • t*t9
  • t* 03
  • t*t9
  • 0* 66
  • t*t6
  • t*3S
  • 1 t1
  • 8*66 *
  • t*01
  • t II
  • t*26
  • t fO
  • 8*64
  • t*tS
  • 0 68
  • t tt
  • 0 66
  • t*t6
  • t*IL
  • t*tS
  • t 02
  • 9
  • **C
  • t*t
  • 4
  • 9 * -t * * *
  • 3
  • 5 * =*
  • e * -t' 9 * = 3
  • t * .0 *1 * *6
  • t * *6
  • t
  • t*1 . g*t *
  • s'tt
  • t*tt
  • t*09
  • 1*3E
  • t*09
  • 1*t9
  • 1*04
  • t*tS
  • t 04
  • t*t9
  • t*09
  • t*3E
  • t*00
  • t*tt
  • 8*tS *
  • 0*t9
  • t*tt
  • 8*68
  • t'30
  • t*01
  • l't3
  • O'H
  • t* 06
  • t'*01
  • t*tt
  • t*S*
  • t*t6
  • 8'H
  • t*tt
  • 8*t5
  • 4
  • t'9
  • t* 3 * .3
  • t * .3 *9 * -3
  • t * = t
  • 4 * *** e
  • 6 9 * .3
  • 4
  • 3
  • 0 * =1* 6 * =3
  • S * *t *t
  • G*t . gg.
  • 0*53
  • 0*t9 ..................................................................................................
  • t*34
  • t*06
  • t*20
  • t*03
  • t*tt
  • 8'H
  • t*tt
  • t*03
  • t*ES
  • 1*06
  • t*34
  • 0*t9
  • 8*53 *
  • 0*55
  • 0*tA
  • t**1
  • t*09
  • t*tS
  • 8'H
  • t*09
  • e*61
  • t*tS
  • 0 *68
  • t*t9
  • t* 09
  • t*32
  • 0*t9
  • 0*55
  • 9
  • t
  • t* 2 * .3 *t * -3* t * .3
  • t * =t
  • t * .5* * * -t
  • 5 * =t*1 * -t*1 * =t*S * *3
  • L * -t* C
  • 3*t * **3 *

.....'9.....................................................................................................

  • 0
  • tt
  • t *tt
  • 1* GD
  • t* 31
  • t*09
  • t*t9
  • t* 09
  • t*tS
  • t *09
  • t*t9
  • t'09
  • t*IE
  • 1* 00
  • t*tt
  • s'tt
  • 6
    • 0*t*9t9* *t*5 t*tI* =t
  • t** 00
  • t*31 t
  • a1*
  • 1*

t

  • at
  • 609 * *3
  • t*tt
    • * *=t*t*00 t * *=tt*tS ** =t'9 1* 00* *-t*S t*tI ** =t'9 t* 02* *=3*6 t *t6* *=1*t e*H** t*tt teg *.8,*t9

.g * .

......................................................'9....................................................

H

  • t*t9
  • t*03
  • t*t9
  • 8'H
  • t*16
  • t*ES
  • t*tt
  • 8'H *
      • t*6*

0*M *t*6 1*14

  • 1*30
  • t*16
  • 8'69
  • t'13 t*81
  • t*16
  • t*36
  • 1*t6
  • e*
  • O*3 * -t*1 * *t*9 * .t*t * =t
  • O'H
  • t*tt
  • 8 69
  • t*t9 * .g
  • .t*$ * =t*0 * *t*0 * =3*6 * .g.g .

t*ES .

  • t*19 *tS t,*0E *

...............................................'9.............................................

  • t
  • 03
  • t*t6
  • e
  • 66
  • t*16
  • 1* 05
  • t*ES
  • 1*05
  • t*t6
  • e*66
  • 1*t6
  • 1*03
  • 8*55 *
  • t*44
  • 1*32
  • 4 68
  • 1*tS
  • t*01
  • t*tS
  • t* 02
  • T *t9
  • e*61
  • 1* t6
  • t*00 s,'59
  • 11
  • *** * ***
  • 8'l * -t 4*t
  • t*5 . .g .

. . . . . . .' 9 * = 1 * * * . t

  • 6 * = 1
  • 6 * = t * * * - 3 * $ *
  • 3
  • 0 *
  • s'91
  • t*09
  • t*t6
  • t*26
  • t*IE
  • t*06
  • t*31
  • t*36
  • t*t6
  • 1*09
  • 8*9E *
  • t'91
  • 1*tI
  • 1*tS
  • t*20
  • 1*20
  • t*09
  • t*II
  • 1 36
  • t*t6
  • t*tS
  • 8*95
  • tS
  • 9*S
  • C*t * -t .0. g . 0.3
  • 3*0
  • g*g .

. . . . .' 9

  • a t
  • 5
  • 3
  • 3 * = 3 * *
  • a t
  • 0
  • 91
  • t'03
  • 1*tt
  • t*03
  • t*It
  • t* 09
  • t *tt
  • t* 03
  • 0*9E *
  • O'91
  • 1* tS
  • t*31
  • 0 69
  • 1*32
  • t*eS
  • t*30
  • t'0$
  • 6 *95
  • tE
    • S'4*0
  • 4*C
  • C** * -2** * *t'9
  • t*t
  • 3*9
  • 3*9
  • t*g *
  • 0 55
  • 0 H tt 0 H t ts e*H e 55 -

8*9 * *s'ttt' f ** s'tS 3.g .* g.gt* tt. *g.g t* 01 *.g0,*59

  • l tS
  • 0t*t
  • 5e** 1'04 C* . .
  • $lTNOTeo *
  • 0 tS
  • 0*53 a 0*tS *
  • vA3at03 *
  • e3A1v41oM
  • 6*tS
  • 0 55
  • 0*tS * 'dnA oiddae M 3*

tE

  • st*teS *
  • 10*1
  • s
  • e*t
  • m 3**

................ ............'s..........

  • tnJ.WYNA WVd N0: H2=t* L DV133 9/ 9/91 dom 3ut 64%

3ON1501 m00 d05I1IDNS: d-b11( a I*61S OdiB:

0 GviX 71 229 513dS 4-QHlH( z I'919 497 I*009 l HE O*669

..........g..........

J}2( a I*241 stf I*009 I S3 0*t60 J)XAt s I*SSL I

i 9MN1fd a I90 W C W 11( v*0 .t'9S)%(

EC

diDnB3 9*9 NOMiH YNNV ON11 I DADl 3 E VSS3W81 AMIS 3 DOM 3B 0'1S1Bl9niloN 66% dom 3M t ~

a d n m 1 r u e d a e a e v

, - daaotomo * *0ts 0s!*0ts-

  • detotuao *
  • dn3Tsna3c *
  • 0*t9
  • G*st
  • 0*t9 *
  • ttevsnu30
  • t
  • C*$
  • t*$
  • t*4 * *d3102d A u032*
  • d31 02d d auG33".
  • G*ES
  • 0* 66
  • 1*tt
  • 0*t9
  • t*IT
  • O*66
  • 0*tE *
  • 0*56
  • 8*46
  • 1*tt
  • 8*t9
  • t*tI
  • t *02
  • 0*56
  • 3
  • E*t
  • G*9 * -0* t * =0*1
  • 1*1 * **3
  • 6.9 .
  • 0*9E
  • 1*03
  • t*tL
  • t*00
  • t*tt
  • t*eD
  • t*t A
  • t*02
  • 0*91 *
  • 0*95n*e
  • t*09 ts
  • 1*tS
  • 0*60
  • t*tI
  • 0*46
  • t*tS
  • t*09 #0*91
  • t0 =s 0 -3 t -t t t ttPt2: t*t -
    • 0*91
  • t*09
  • t*t6
  • t*36 * !*tt
  • t*06
  • t*tt
  • 1*t6
  • t*t6
  • t*09
  • 0*9E
  • 0*99
  • t*tt
  • t***
  • t*t6
  • 1*tS
  • t* 09
  • t*t6
  • t*22
  • t*tt
  • 1*tt
  • 0*99 *
    • 1* **4
  • 3*f
  • 8*t * *3 *C * *3 * *
  • at* t * =1*2
  • t*5
  • 3*4
  • 9*t . 9
  • 0*$5
  • t 03
  • t*16
  • 0*66
  • t*t6
  • 1*05
  • 1*tS
  • 1*8$
  • t*t6
  • 0*66
  • t*t6
  • 1*02
  • 0*tE *
  • 0*sA
  • t'09
  • t*tS
  • 0*66
  • t*16
  • t*02
  • t*tl
  • t*0E
  • t ts
  • 8*66
  • 1 10 ' t*09
  • 0*se
  • t'9
  • t*9
  • 1*0
  • 0 *1 * *0
  • 9 *
  • t
  • 0 *
  • t* 0 * *3
  • 0 * =0 *9 * -0 *t
  • 8*g . g*g
  • g.g .

g

  • O*66
  • t* tL
  • 1*39
  • t*t6
  • 8* 66
  • 1* t9
  • t*02
  • 1*t9 0*66
  • t*t6
  • 1*tS
  • t*tL
  • 0*66 *
    • 1*0E
    • t * * **1*t*tI
  • t*ED t *t * *0t't6* 2**8*61
  • t*II t*t
  • at* 9 ** e*46 at * $**t*tt
  • 3 ** 0*69
  • at** tt*tS
  • .g**tt*t4

. .t*t* t*tS

  • tot*. t* 02
  • 9

..............................................................................................g............ g .

  • 0*tt
  • t*tt
  • t
  • 00
  • 1*tt
  • t* 09
  • t*f 9
  • 1* 09
  • t*tS
  • t*09
  • 1*t9
  • t* 09
  • t*lC
  • t* eD
  • t*tI
  • 0*tt *
    • 0*** *t9*
  • 1*tt3**
  • 1*01
  • t*tt
  • t*02
  • t*tt
  • 0* 66
  • t*tS
  • t*01
  • t*tt
  • t* 01
  • t*tS
  • 0*66
  • t*tt
  • 0*tS
  • 4
  • t
  • t * *S
  • 6 * = t
  • 0 * = t ' 9 * -t
  • t * = 1* t * .3
  • 2 * ** * * * = 3
  • 4 *
  • t
  • 6 * *S
  • t
  • 0* 3*t *

............................................................................................... 9.......... *

' 20

  • 1*06
  • t*tt
  • 0*t9
  • 0*52 *
    • 0*$$

0****SI* 3*t** e 0*t9

  • t*tt
  • L *** 1*3 * *06
  • t **t *1'!O

=t 't *

  • t't*02
  • t*tt
  • 8'69
  • t*tt
  • 1*03
  • t'tS
  • t*0$5
  • t'tt
  • 0*t9 *
  • e *98
  • 1*!E
  • 1*09
  • t'12
  • 0*66
  • 1*06
  • 0*63
  • t*tS
  • 0* 66
  • 1*
  • L * *S 9 * *E
  • S * =t'9 * ** * * * = t* 4
  • 0
  • 4 * ,.e .

............................................................................................. 3.t .

  • 0* tt
  • t*tt
  • t* 00
  • t *!!
  • t* 09
  • 1*t9
  • t*09
  • t*tS
  • 1* 09
  • t*t9
  • 1*09
  • t*tt
  • t*09
  • t*tt
  • 0*tO *
    • 8****t9* *1 t*12
  • 0* 66
  • t*tt
  • t* 01
  • t*tt
  • t*eD
  • t* tt
  • 1* 00
  • 1*tE
  • t* 02
  • 1*t6
  • 1* 00
  • 1*tt
  • 8*t9 *
  • 1 * *0
  • 9 * .t * * * = *
  • t * .*
  • t * =(
  • t
  • t
  • t * = t $
  • =t*( * .t* f * -t
  • t * .0
  • 2 * ***
  • t*t .

.............................................................'9.............................................

  • 0*66
  • 1* t1
  • t* tS
  • 1*t6
  • 0 *66
  • t't9
  • t*02
  • t*t9
  • 0
  • 66
  • 1* t6
  • t*ID
  • t*tt
  • 8* 46 *
  • 1*t*t0 0
  • *
  • f * *tSe*6 t't
  • t*26
  • e *
  • tq*ES.g.*g0*66
  • t* tt
  • 8* 46
  • t*tt
  • 4*62
  • t*t9
  • 1 39
  • t*tL
  • t'tt *

.g.g . .g.g . .g *2 * .3*2 . 3.4 . 1.9 * .0*3

  • 0.9
  • tS
  • 0* 55
  • t* 03
  • t* t6
  • e* 66
  • t*16
  • t* 05
  • 1*tS
  • t* 0$
  • t*16
  • 0* 66
  • t*t4
  • 1* 03
  • t'$$ *
    • 0*tL t*2 ** t*09 C* t ** C*0 t'22** t*01
  • t*t6 t'9 * *0
  • 9 ** *3*

t*et2 ** t*tl

  • t'01
  • t*tA
  • 0*69
  • t*20
  • t 09
  • 8*58
  • tf
  • 3* 6 * -D
  • 0 * =1* 6 * =1 *t
  • 8*6
  • 1*S * *

.......................................................................................t*6 91

  • 1*09
  • 1*t6
  • t*t6
  • t*!E
  • 1*06 .....

t*!E

  • t*36
  • t*t6
  • t*09
  • s 91 *
  • s,'.g s'91* *teg t*tt. *tegt**t . g.g* t*26
  • t*t6

.g*g

  • t*0$ '* t*t6 * **24
  • t*tS
  • t*tS
  • 0'*95
  • t3

.g.g . . gag * .teg . .p.g . g.g . g

..........................................................................ag.... *

  • 0 *91
  • t *03
  • 1*t A
  • t* 00
  • 1*t9
  • 1* 00
  • t*t A
  • t* 02
  • 0*91 *
    • 0 *91
  • t*tS
  • t*tI
  • 0*69
  • 1*22
  • e*66
  • 1*tt
  • t*et ' S'8$
  • tt 9*9
  • 2*$
  • 1*f * .3*2 * .t*t * -t's * =e 8*t
  • g.t .

...............................................'t................. *

    • 0*ss
  • 8* 66
  • t*tt
  • s'09
  • t*tt
  • 0 66
  • 0*ts
  • 0*90 4*s ** t*eL
  • t*ts
  • s'09 * ** 06
  • taes
  • 0*ss
  • 19
  • t*t
  • t*t
  • 1*t * *t** * *S*t * .0** *
  • struoveD *
  • 0*t5*0*52*0*ts* ................
  • e3A v43cs * *e
  • TA3sros *
  • 1*t04 *
  • 10'*t-tS
  • s*t 0 55* *S*t
  • 0 * *ts ' 'daA etedna3H:3* tS

,.....,,,.......

  • e s *

...................... ..........'9......

SWh51 WVd 410: lt2 9 OY131 9/ 9/gg d0M3B* 66%

33: tim 01 sDC d05I1I0fS: J-DD( a t*640 bdiHI O GTIX VI ZIS 513dS d*OHlif( m t*%1S HM 0*661 I H3 1*001

..........g..........

d32( m 1*255 SM t*006 l S3 0*661 dlug a 1 559 gnenre a 155 iMcw1n y'c a -5

1:100M3 9*L NOB 1H YNNY nN114* 3 E VSS3W91 AMIS 3 dom 3BBIGn O'IS.I.A313.I. ION LO0% DOM 3B e d it u 1 z r a e a a e 3 e v naatnua

  • eat
  • 0 ss 0 te - u3atotsa -
  • Wvsnm30 *
  • 0
  • t9
  • 8
  • tt
  • S
  • C9 *
  • Wvsnm30
  • 1
  • d31 otJJ353N33
  • E*A
  • t'9
  • E'9 * *d31 0 tid 353d33*
  • 0*59
  • 0* 46
  • t*tS
  • 0*05
  • 1*tS
  • 0*M
  • 8*59 *
  • 8*56
  • t*00
  • t*tS
  • 0*95
  • t*tt
  • 1*03
  • 4*59 *
  • 3
  • 9*t
  • 0*4
  • e*4 * *S*t
  • e*6
  • t**
  • 8*1 *
  • 0*91
  • t*01
  • t*14
  • t* 00
  • t*39
  • t *00
  • t*tA
  • t*ts ' '0*91 *
  • 0*95
  • t*31
  • t*tS
  • e*69
  • t*tt
  • 8'H
  • t*t9
  • 1* 09
  • 0*91
  • 1
  • **0
  • t*2
  • t* 0 * -3* 0 * -3* t
  • at*f
  • 0*l
  • 3*6
  • t*0 *
  • 0* 91
  • t*09
  • 1*t4
  • t*36
  • t *31
  • 1*06
  • 1*31
  • t*26
  • t*t6
  • t*09
  • O'9$
  • 9
    • 0*99 g*0 . *gt. t*tI3.g
  • t*tI
  • t*26

. 0.3 * .3* *t*20 t * *.3t*09

  • 3 *
  • t*16

.g.t ** t*38

.t. 8* .t*21 t*** *1*tI 3.g* .O,'99 *

.g .

  • 8 *59
  • 1*01
  • 1*t6
  • 8*66
  • t*t6
  • t *05
  • t*20
  • 1*05
  • t*t6
  • 0* 66
  • 1*t6
  • t*et
  • 0*59 *
  • 4*t9
  • t*09
  • 1*38
  • 8*66
  • t*t6 * !*02
  • t*12
  • 1*01
  • t*t6
  • e*66
  • t*t6
  • t*09
  • 0*t6 * $
  • t*2
  • t*4
  • t*0
  • e* 1
  • b *t
  • h
  • 4
  • b*6
  • b *t * -0
  • 9 * -0 * *
  • 0**
  • t*t
  • S*6 *
  • s*M
  • t*tt
  • t*36
  • 1*t6
  • 0*60
  • t*tS
  • t*03
  • t*tS
  • 0* 69
  • t*16
  • 1*26
  • t*t A
  • O'H *
  • t*02
  • t*tt
  • t* tS
  • 1*t6
  • 0*69
  • t* tt
  • 8'H
  • 1*tE
  • 8*61
  • t*tS
  • t*tt
  • t* tS
  • 1*02
  • 9
  • t*$
  • t*$
  • t*f
  • H*S
  • b*0 * =t'9 * *t*t
  • b*t
  • b*6
  • b'9 * *t*t
  • S'O
  • g*g .
  • 0*tt
  • t*tS
  • t*00
  • t*tt
  • t*09
  • t*t9
  • t*09
  • t*tS
  • t*09
  • t*t9
  • t*09
  • 1*!E
  • t*eS
  • t*tS
  • e'tt *
  • 0*t9
  • t*tt
  • t*00
  • t*21
  • t* 02
  • t*tt
  • 8* 46
  • t*tt
  • t*01
  • t*tE
  • t*01
  • t*t6
  • 0*66
  • 1*tS
  • 0*tE
  • 4
  • $'t
  • t*4
  • 8 *$ * =1* t
  • at* 1 * -t'9 * -** C
  • a t* 9
  • b *$
  • b
  • 0 * -3* 9 ** at *f
  • at
  • t
  • e*t
  • t** *
  • 0 *53
  • 8 *95
  • 1*24
  • t* 04
  • 1*30
  • t*02
  • t*tS
  • 0* 69
  • 1*tS
  • 1* 02
  • t*30
  • 1* 06
  • t* 26
  • 6*8$
  • 0 *52 *
  • 0 *65
  • 0'09
  • t*26
  • 1* 01
  • 1*t2
  • 8*46
  • 1*06
  • 8 *62
  • t*tt
  • 8'H
  • t*t9
  • t*05
  • t*32
  • s'tl
  • 8*55
  • 9
  • 5*0
  • t'9
  • 0
  • 1 * -t * *
  • a t
  • 0
  • a t
  • S * -t
  • 9 *
  • t * * * =1
  • t *
  • t * * *
  • t
  • 6 *
  • t * * * .t
  • t
  • 3*t * **4 *
  • s'tS
  • t*tS
  • t* 00
  • t*tt
  • 1*09
  • 1*t9
  • 1*09
  • t *tS
  • t*09
  • t*t9
  • t*09
  • t *!E
  • t* 00
  • 1*tS
  • 0*tt *
  • 0*t9
  • t*12
  • 0*M
  • t*21
  • t* 0 E
  • t*tI
  • 1* 00
  • t* tt
  • t*00
  • t*tt
  • 1* 02
  • 1*tO
  • t* 00
  • t*T*
  • 0* t9
  • 6
  • s*t
  • t** * .0 * * * .t* 2 * -t
  • 6
  • at *T * .ga t * .g* t * .s a g * .ga g * .g** * .3*0 . .t e g
  • g.g . g*g *
  • e*66
  • t*tt
  • 1*36
  • t*t6
  • 0* 60
  • t*TS
  • 1*03
  • 1*tS
  • 0*60
  • 1*14
  • 1*36
  • 1*12
  • e*66 *
  • 1*00
  • t *t6
  • t*26
  • t*t6
  • 8*64
  • t*tS
  • 0*69
  • t*tS
  • 0*69
  • t*t4
  • t*t A
  • t*12
  • t* 05
  • tS
  • t*2
  • 1*A
  • 8*S *
  • S
  • t * =1* t * -t* t * -** 0 * -t*t * -2
  • 9
  • b *1
  • a1*t * -0
  • t
  • 9*5
  • H
  • t *16
  • 1* 01
  • 0*59
  • 0 *59* *T*02
  • 0*59 t* 01* t*!E* 1*16
  • O**H
  • 1*01 1*t9
  • t*t6
  • t*
  • t*02 05
  • t*09
  • t*t9 1*!0 **t*20 1*0$* 0** !*16
  • s'M
  • t*20
  • 1*04
  • 8*$9
  • tt
  • **t * **t
  • t*t
  • 1*9 * -0*6 * .t** * *t** * =S*t
  • 0** * -0**
  • t*t
  • t*2 * **t *
  • 0*91
  • 1*00
  • 1*t6
  • 1*26
  • 1*06
  • t*3E
  • 1*26
  • t*16
  • t*09
  • 8 *91 *
  • 0*92
  • t*tt
  • t*tt
  • 1*t6
  • T*16
  • t'aS
  • t*t6
  • 1*t6
  • t*t6
  • t*tt
  • 0*9$
  • 13
  • 9*6
  • g.g a teg
  • 0 *g . .g.g . .g** * .ga g * .0
  • g
  • 0*t
  • 3.g . g*g
  • 1
  • 0*91 *
      • 0*91 8*91
  • 1*tt
  • t*tt ** 81*t4
  • 1*01 *68 **t**t1*00* 0*66
  • tetttd**t*08
  • 1* t *
  • t*t4
  • 1* 0.t
  • 0 *9,$
  • 1*t
  • 4* e
  • t** * .3 * $ * =1
  • 9 * *t *f * -0
  • t
  • e*t
  • g* .

tE

  • 0*st
  • 8'H
  • 1*tS
  • 0*95
  • t*tS
  • 8 H
  • 0*59 *
  • 0*90
  • 1*02
  • 1*1,
  • s'04
  • t* 06
  • e'*M
  • 0*55
  • y,

. g*g

  • 0*g
  • t*t
  • 1*9 * .t** * .s * *S*$ *

................ .,.......................................'t .......... ................

  • stemrac * *0*tS*0*52*8*t**
  • vAaevoa *
  • 03A!vilQN *
  • 0
  • t9
  • t's s
  • 0
  • t* * *d31 stidas3N22* tS
  • et*stt *
  • 6*e
  • s
  • 0*t *
  • e *4 *

................ ............'t.......... ................

SOHWvfti WVd N0: H2-t- 6 QY13: 9/ 9/91 dom 3!l: 1004' 33H1h0150C DOS 11IDNS: d-bli t a I*649 Bd15:

0 ev4c) Y1 210 513d5 d-QH)H( a t'949 NM 1*001 l H3 0*669

..........g........

J)2( a I*ZIS SM 1*010 l S3 0*661 dixit a 1*SSS 93aNAd m 195 4*." CW11f V*0 .L* t9 3 % (

CS

FIGURE 6.8

' NORTH ANNA UNIT 2, CYCLE 3 ASSEMBLYWISE POWER DISTRIBUTION HFP, EQUILlBRIUM XENON R P N N L E J N S F 5 5 C B &

. PatetC1tB . . 0.34 . 0.52 . 0.34 . PRt01CTt0 .

. MEASURtB . . 0.36 . 0.54 . 0.36 . MEASWED . 3

.FC7 OtFFERENCE. . 3.3 . 3.3 . 3.3 . . PCT BtFFERD CE.

. 0.55 0.99 . 1.l t . 0.86 .1.11 . 0.99 . 0.55 .

. 0.59 . 1.00 . 1.11 . 0.46 . 1.11 . l.03 . 0.54 . t

. 6.6 . l.9 . 0.1 . 0.8 . 0.8 . 3.4 . 5.0 .

. 0.63 . l.08 . l.17 . 1.00 . l.14 . l.00 . 1.17 . 1.02 . 0.63 .

. 0.65 ..l.06 . 1.19 . 0.90 . l.21 . 0.90 1 14 . 1.05 . 0.67 . 3 4.8 . 3.9 . 1.5 . -1.8 . -4.8 . al.7 . 0.6 . -8.7 . 6.7 .

. 0.63 . 1.00 . 3.19 . 1.29 . 1.23 . l.09 . l.23 . l.29 . 1.89 . 1.04 . 0.63 .

. 0.66 . 1.11 . l.22 . l.30 . 1.20 . 1.06 . 1.19 . l.27 . 1.30 . 1.11 . 0.65 . 4

. 4.9 3.0 . tot . l.2 . .$.0 . -2.2 . -1.4 . -1.4 1.2 . 3.5 . 4.5 .

. 0.55 .1.02 . l .8 9 . 0.99 .1.te . t.05 . l.20 .1.05 .1.20 . 0.99 .1.l9 .1.02 . 0.55 .

. 0.57 . 1.06 . 1.20 . 0.95 . 1.20 . 1.02 . l.16 . 1.03 1.19 . 0.99 . 3.19 . 1.06 . 0.59 . 5

. 3.4 3.4 0. 9 . 0.1 . 0.0 . = 3. 7 . -3. 7 . -2.3 . -0. 7 . =0.3 . 0.3 . 3.4 . 6.0 .

. 0.94 . 1.17 . 1.28 . l.30 . 0.99 . l.16 . 1.03 . 3.16 . 0.99 . 1.20 . 1.20 . I.17 . 0.94 .

.. l.02 . 1.21 . l.34 . 1.19 . 0.97 . 1.18 . 0.99 . 1.13 . 0.99 . 3.19 . 1.27 . l.14 . 1.02 .

3.3 . 3.3 . 1. 3 . =0.7 . -1. 9 . -4.3 . -3.4 . *t. l . -0. 8 . -0.8 . -l .3 . 0.9 . 3.5 .

6

. 0.34 . 1.10 . 1.00 . l.23 . 1.06 . l.16 . 1.04 . 3.15 . 1.04 3.16 . 1.06 . l.23 . l.00 . l.10 . 0.34 0.34 . l .I t . 1.00 . l .Il . 1.0 3 . 1. 8 2 . 0.99 . 1.10 . 1.01 . 3.14 . l .0 3 . 1.14 . 0.99 . 1.11 . 0.35 . F

. 5.0 . l.9 . 0.5 . al . 3 .

  • t .6 . = 3.3 . -4. 3 . 3.4 . *2.4 . al .a . -8.4 . -3.6 . *0. 9 . 0.4 . l.8 .

0.52 . 0.44 . 1.24 . 1.09 . 1.20 . 1.02 . l.14 . 0.96 . 1.14 . 1.02 . 1.20 . l.09 . l.24 . 0.06 . 0.52 .

0.55 . 0.04 . 1.24 . 1.07 . l.l? . 0.99 . 1.09 . 0.92 . 1.15 . 0.99 . l.16 . 1.05 . 1.23 . 0.88 . 0.54 4

. 5.0 . 1.4 . 3.1 . al .1 . =t.4 . -3.1 . -4.6 . 3.6 . = 3.4 . =1.4 . -3.8 . =3.5 . -0. 9 . l.9 . 3.6 .

0.34 . 1.10 . 1.00 . 1.23 . l.04 . 1.16 . l.04 . 1.15 . 1.04 . 1.16 . l.06 . l.23 . 1.00 . l.10 . 0.34

0. 36 . 1.12 . 0.99 . 1.2 5 . 1.0 3 . 3.13 . l . 01 . 1.18 . 1.00 . l .13 . l .0 t . 1.19 . 1.00 . 1. 8 3 . 0. 36 . 9 5.0 . l .4 . *0.4 . -I .4 . -t.2 . *t.4 . *t.4 . -3. l . -3.6 . -3.6 . -3.3 . *t.7 . =0.2 . 2.2 . 4.8 .

. 0.94 . 3.17 . 1.20 . 1.20 . 0.99 l.16 . 1.01 . l.16 . 0.99 . l.20 . 1.24 . 1.17 . 0.9e .

.1.00

. 3.19 l.8 . 1.8 .. 1.29 . 1.30 . 0.9e . 1.11 . 0.9e . 1.11 . 0.96 . l .16 . l .26 . 1.16 . l .03 .

0. 7 . 0. 3 . -0. 9 . -4. 0 . 4. 0 . -4.2 . -4. 9 . *t.6 . -1.4 . =0. 3 . 4.2 .

le

. 0.55 . 1.02 . 3.19 . 0.99 1.20 . 1.05 . 1.20 . 1.05 . 1.20 . 0.99

  • 1.19 . 1.02 . 0.35 .

.. 0.54 . l.06 . 1.22 . l.00 . l.19 . l.02 . l.16 . l.01 . 1.17 . 0.94 . l.20 . 1.04 . 0.57 .

4.1 . 4.8 . 3.8 . l.4 . -0.9 . -3.3 .

II 3.4 . -4.7 . t.0 . al.4 l.0 . l.6 . 3.9 .

. 0.63 . l.04 . 3.19 . l.29 . 1.23 . 1.09 . 1.23 . 1.29 . 3.39 . 1.04 . 0.63 .

.. 0.67 . 1.12 . l.21 . 1.29 . l.le . 1.05 . 1.19 . 1.27 . l.14 . 1.10 . 0.65 . It 6.5 . 4.1 . 1.4 . -0. 0 . -3.5 . 3.7 . -3.3 . *l .1 . *0.6 . 8.8 . 3.6 .

. 0.43 . 1.03 . 1.17 . l.00 . l.14 . l.00 . 1.17 . l.St . 0.63 .

. 0.67

. 1.10 . l.Il . 0.97 . 1.21 . 0.99 . 1.17 . 1.03 . 0.45 .

7.2 . 7.9 . 3.3 . *t.7 . .t.0 . al .3 . 4.1 33 0.5 . 3.3 .

. 0.55 . 0.99 . 1.31 . 0.46 . 1.11 . 0.99 . 0.55 .

. 0.40 . l.07 . 1.14 . 9.23 . 1.09 . 0.99 . 0.56 . 14

. 7.9 . 4.4 . 3.1 . l.7 . =1.2 . 9.1 . 0.4 .

. STANOABO . . 0.34 . 0.52 . 0.34 . Avtrast .

. OtytATICH . . 0.34 . 0.55 . 0.34 .PC7 OtFFtWEPCE. 15

. e t .011 . . 9.7 . 4.9 . -0. 3 . . e 2.6 .

SlJt21ARY f1AP t40: H2-3-10 DATE: 6/10/83 PCWER: 100%

CCHTRol. RCO POSITICHS: .F-QlT)

  • 1.906 QPTR:

0 BANK AT 228 STEPS F-CHlH) a 1.473 MJ 1.007 l NE 0.999

........l..........

Flz) = 1.229 Sid 1.009 l SE 0.985 .

FlXYI a 1.558 BlJHNUP.

  • 215 ftDnfTU A.0 m 2.10l%)

36

Section 7 REFERENCES

1. A. Abbasi, R. A. Hall, " North Anna U, nit 2, Cycle 3, Design Report,"

NFE Technical Report No. 288, Vepco, April,1983.

2. North Anna Unit 2 Technical Specifications, Sections 3.1.3.4, 3/4.2.

i

3. T. K. Ross, W. C. Beck, " Control Rod Reactivity Worth Determination By The Rod Swap Technique," VEP-FRD-36A, December 1980.
4. T. J. Kunsitis, "RXFLOW, A Computer Program to Calculate Reactor Flow and Thermal Output," NFO-CCR-8, Vepco, March,1983.
5. " Technical Manual for Westinghouse Solid State Reactivity Computer,"

Westinghouse Electric Corporation.

6. W. Leggett and L. Eisenhart, "The INCORE Code," WCAP-7149, December, 1967 37

4 APPENDIX STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEETS s

38

m. .

2-PT-94.0 Attachment 6.9 Page 1 of 34 cNORTH ANNA' POWER STATION UNIT 2 CYCLE 3 05-05-83 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test

Description:

Reactivity Computer Checkout Reference Proc No /Section: 2-PT-94.2 Sequence Step No: 3 II Bank Positions (Steps) RCS Temperature.(*F): 547 Test Power Level (% F.P.): O Conditions SDA: 228 SDB: 228 CA: 228 Other (specify):

g (Design) CB: 228 CC: 22a CD:

  • Below Nuclear Heating .

. *At the just crit. position III Bank Positions (Steps) RCS Temperature (*F): 648.1 sTest

~

Conditions Power-Level (* F.P.): O SDA: 228 SDB: 228 CA: 228 Other (Specify):

(Actual) CB: 228- CC: 228 CD: 108 Below Nuclear Heating

. Date/ Time Test Performed:

s S/A 7/83 1336 Measured Parameter p, = Meas. Reactivty using p-computer IV (Description) pg =7I nferred React from react period

. p = + 2 7pe- - IB. S + 4 *t -27 Maasured Value p, = dLW 43 M -W Test' *D=

. 2.7% /./% o.on - /./ %

, Results 1 Design Value .

(Actual Conditions) *D

. = [(pc t~P )/P ] x N 5 4.0%

t Design Value~~

(Design Conditions) g = [(pc'P )/Pg] x 10% 14.0%

t i

Reference WCAP 7905, Rev. 1, Table 3.6

- V TSAR /Tuh Spec Not Applicable Acceptan:e ,

Criteria Reference Not Applicable

. Design Tolerance is met  : _X.YES NO VI Acceptance Criteria is met : _f.YES NO

- Comments --

~

Allowable Rc: ge = 2.2 7 ppm Ccmpleted By: - ed -

Evaluated By: -

Test IIn~gineer rova  : C.

STO Engineer A.1

- -_. - - . - - . - . . - . _ L ._ . ~ . . - . _ . . . - - . --- -

, 2-PT-94.0 Attachment 6.9 Page 2 of 34 P

. 05-05-83 NORTH ANNA POWER STATION UNIT 2 CYCLE 3 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test

Description:

Critical Boron Concentration - ARO Reference Proc No /Section: 2-PT-94.3 Sequence Step No: 4 II Bank Positions (Steps) RCS Temperature ('F): 547 Test ,.

Power Level (% F.P.): 0 Conditions SDA: 228 SDB: 228 CA: 228 Other (specify):

(Design) CB: 228 CC: 228 CD: 228 Belev Nuclear Heating III Bank Positions (Steps) RCS Temperature (*F): Sd/7.. I Test Power Level (% FfP.): O Conditions SDA: 228 SDB: 228 CA: 228 Other (Specify):

(Actual) CB: 228 CC: 22S CD: 228 Below Nuclear Heating Date/ Time Test Performed:

F/28/83 064o Meas Parameter IV (Description) (CB )A 0; Critical Boron Cone - ARO Measured Value Test (C )A 0 " /b7E &*

B Results Design Value (Actual Cond) CB" W /O Design Value (Design Cond) CB =1346 2 50 ppm Reference VEP-PSE-NFE-288 o

, V FSAR/ Tech Spec a xC B5 24,000 pcm l

C B

Acceptance Criteria Reference L t. TSAR Section 15.2.t.

Design Tolerance is met  : 7.__YES NO Acceptance Criteria is met : _iciES NO VI Comment's a C " ~I*94 P**/PP* I # P#*II*i"*#Y ""*IY*I8 B -

. ~j, 6 Sp/ ppa, fo r- final anolyn.

i Completed By: Evaluated By: E Test Engineer Recommended for Approval By : Cj O

. hTO Engineer A.2

2-PT-94.0 Attachment 6.9 Page 3 of 34 05-05-83 NORTH ANNA POWER STATION UNIT 2 CYCLE 3 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I

Reference Test

Description:

Isothermal Temperature Coefficient - ARO Proc No /Section: 2-PT-94.4 , ,Scquence Step No: 5 d

II Bank Positions (Steps) RCS Temperature (*F): 547 Test ,. Power Level (*. F.P.): 0

. Conditions SDA: 228 SDB: 228 CA: 228 Other (specify):

(Design) CB: 228 CC: 228 CD: 228 Below Nuclear Heating III Bank Positions (Steps) l RCS Temperature (*F).:.ff/3. 6 Test Power Level (*. F.F.): O Conditions SDA: 228 SDB: 228 CA: 228 Other (Specify):

(Actual) CB: 228 CC: 228 CD: 211 Below Nuclear Heating Date/ Time Test Performed:

5/28/83 07'f6 Meas Parameter IV (Description) (a 0)ARO Isothermal Temp Coeff - ARO Test Measured Value I Results (mf0)ARO* Pem/*F (C3 = lMppm)

Design Value f

(Actual Cond) (a f0)ARO =- pcm/ F (CB"#5TPPm)

~

(* ISO)ARO T = -4.04 t 3.0 pcm/'F Design Value (Design Cond) (CB = 1549 ppm)

Reference VEP-PSE-NFE-288 V FSAR/ Tech Spec I mf0 5-2.11 pcm/*F eD p = -2.11 pcm/'T l Acceptance Criteria Reference TS 3.1.1.4, VEP-PSE-NTE-288 Design Tolerance is met  : S NO VI Acceptance Criteria is met : T/.,5 NO Comments Completed By: M Evaluated By: -

Test Engineer .

Recemmended for 4 #

Approval By : C d M hTO Engineer A.3

' ~

2-PT-94.0 Attachment 6.9 Page 5 of 34 05-05-83 NORTH ANNA POWER STATION UNIT 2 CYCLE 3 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I

Test

Description:

Cnti Bank B Vorth Meas. , Rod Swap Ref. Bank -

Reference Proc No /Section: 2-PT-94.5 Sequence Step No: 7 II Bank Positions (Steps) RCS Temperature (*F): 547 Test

, Conditions Power Level (% F.P.): 0 SDA: 228 SDB: 22& CA: 228 Other (specify):

(Design) CB: Moving CC: 228 CD: 228 Below Nuclear Heating III Bank Positions (Steps) RCS Temperature (*F): .54'3 9 Test Power Level (% F.P-):, 0 Conditions SDA: 228 SDB: 228 CA: 228 Other (Specify):

(Actual) CB: Moving CC: 228 CD: 228 Below Nuclear Heating Date/ Time Test Performed:

5/20/83 /13 9 Measured Parameter I P F; Integral Vorth of Catl Bank B, (Description) All Other Rods Out IV Test Measured Value hF, / m pc,n Results Design Value (Actual Conditions) I I= /6 W 1/8YPC" Design Value (Design Conditions) I F = 1544 t 154 pcm Reference VEP-PSE-STE-288 If Design Tolerance is exceeded, SSSOC shall evaluate i= pact of test result FSAR/ Tech Spec on safety analysis. SNSOC may specify V

Acceptance that additional testing be performed.

Criteria Reference VEP-FRD-36A Design Tolerance is met  : 'ES NO VI Comments Acceptance Criteria is met  : [YES

_. NO Completed'By: D Evaluated By: MM Test Engineer Recommended for Approval By : gj NFO Engineer A.4

2-PT-94.0 Attachment 6.9 Page 7 of 34 05-05-83 NORTH ANNA POWER STATION UNIT 2 CYCLE 3 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test

Description:

Critical Boron Concentration - B Bank In Reference Proc No /Section: 2-PT-94.3 Sequence Step No: 8 II Bank Positions (Steps) RCS Temperature (*F): 547 Test Power Level (% F.P.): O Conditions SDA: 228 SDB: 228 CA: 228 Other (specify):

(Design) CB: O CC: 228 CD: 228 Below Nuclear Heating III Bank Positions (Steps) RCS Temperature (*F): 543.8 Test Power Level (% F.P.); O Conditions SDA: 228 SDB: 228 CA: 228 Other (Specify): ,-

-(Actual) CB: O CC: 228 CD: 228 Below Nuclear Heating Date/ Time Test Performed:

5/28/83 1655 Meas Parameter IV (Description) (CB )M; Critical Boron Cone - B Bank In Measured Value (C3 ) - / 3 7F pr Test Results Design Value (Actual Cond) CB"  ! 7 Design Value (Design Cond) C B=1358+ACf#'V t(10 + 134.4/lo C 3 !D Reference VEP-PS,E-NFE-288 V FSAR/ Tech Spec a C I B

Acceptance Criteria Reference LTSAR Section 13.2.4 Design Tolerance is met  : _k:"?ES NO Acceptance Criteria is met : WS ____ NO VI Comments a C

NF M*

3 AC #*# = (C)AfD3

-1546

, o%g -7 85 pe,,.jppe foe f,'nal anal ysis.

Completed By: M Test Engineer Evaluated By: N O NMM Recommended for Approval By : b- -

NFO Engineer A.5

' 2-M-94.0 Attachment 6.9 Page 6 of 34

. 05-05-83 j NORTH ANNA POWER STATION UNIT 2 CYCLE 3 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test

Description:

NZP Boron Worth Coefficent Measurement Reference Proc No /Section: 2-PT-94.S Sequence Step No: 7 II Bank Positions (Steps) RCS Temperature (*F): 547 Test Power Level (* F.P.): 0 Conditions SDA: 225 SDB.: 228 CA: 228 Other (specify):

(Design) CB: Moving CC: 22tr CD: 228 Below Nuclear Heating III Bank Positions (Steps) RCS Temperature (*F): 5 42 I Test Power Level (*. F.P.);. O Conditions SDA: 228 SDB: 228 CA: 228 Other (Specify): ,.

(Actual) CB: Moving CC: 228 CD: 228 Below Nuclear Heating Date/ Time Test Performed:

5/2e/a3 osvo Measured Parameter IV (Description) a , Bor n Vorth Coefficient C

B -

^

Measured Value a

- Zg5 pcmpppm C

B Test Results Design Value (Actual Conditions) a C

  • B 8*Y Design Value *

(Design Conditions) a "

3 Reference VJP-PSE-NFE-288 FSAR/ Tech Spec a P C B B

V Acceptance Criteria Reference LTSAR Section 15.2.4 Design Tolerance is met  : YES NO VI Acceptance Criteria is met : __V._YE S NO Commer.--

Completed By: W Evaluated By: - M Test Engineer Recommended for j-Approval By:

NFO Engineer A,6

2-PT-94.0 Attachment 6.9 Page 9 of 34 05-05-83 l

NORTH ANNA POWER STATICN UNIT 2 CYCLE 3 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I

Reference Test

Description:

Carl Bank D Vorth Measurement-Rod Swap Proc No /Section: 2-PT-94.7 Sequenca Step No: 10 II Bank Positions (Steps) RCS Temperature (*F): 547 Test Conditions Power Level (% F.P.): 0 SDA: 228 SDB: 228 CA: 228 Other (specify):

. (Design) CB: Moving CC: 228 CD: Moving Below Nuclear Heating III Bank Positions (Steps) j RCS Temperature (*F); S'/3.7 Test Conditions Power Level (% F.f..)': O SDA: 228 SDB: 228 CA: 228 Other (Specify):

(Actual) CB: Moving CC: 228 CD: Moving Belew Nuclear' Heating

~

Date/ Time Test Performed:

S/28/53 /737 Meas Parameter (Description) If3;IntWorthofCatlBankD-RedSwap IV (Adj. Meas. Crit. Ref Bank Test Measured Value IRS, gg9 pc= Position = /06 steps)

Results Design Value (Adj. Meas. Crit. Ref Bank (Actual Cond) If8= 060I/20 P Position = /04 steps)

Design Value IRS = 851 2 128 pcm (Critical Ref Bank (Design Cond) Position = 106 steps)

Reference VEP-PSE-NFE-288, VEP-FRD-36A, SFO-TI-2.2A If Design Tolerance is exceeded, SNSOC V

shall evaluate i= pact of test result on.

FSAR/ Tech Spec safety analysis. SNSOC may specify that Acceptance additional testing be performed.

Criterie Reference VEP-FRD-36A VI Design Tolerance is met Acceptance Criteria is met

MS NO

_d_. f S NO Comments Completed'By: Evaluated By:

Test Engineer 7 # '7 / P OC7' Recommended for 1 Approval By : C- -hJ 570 Engineer A.7

2-PT-94.0 Attachment 6.9 Page 10 of 34 05-05-83 NORTH ANNA POWER STATION UNIT 2 CYCLE 3 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I

Test

Description:

Cnti Bank C Vorth Measurement-Rod Swap Reference Proc No /Section: 2-PT-94.7 Sequence Step No: 11 II Bank Positions (Steps) RCS Temperature (*F): S47 Test Power Level (*. F.P.): 0

. Conditions SDA: 228 SDB: 228'-CA: 228 Other (specify):

(Design) CB: Moving CC: Moving CD: 228 Below Nuclear Heating Bank Positions (Steps)

III RCS Temperature (*F). S W V Test Power Level (% F.P..): O Conditions SDA: 228 SDB: 228 CA: 228 Other (Specify):

(Actual) CB: Moving CC: Moving CD: 228- Below Nuclear Heating Date/ Time Test Performed:

5/26/83 /S37 Meas Parameter (Description) I RS; Int Worth of Cnti Bank C-Rod Swap IV (Adj. Maas. Crit. Ref BarJr.

Test Measured Value IRS, g9g g e, p,,ggg,, ,fjo ,,,p,)

Results Design Value (Adj. Meas. Crit. Ref Bank (Actual Cond) I RS= M f /3fpce' Position = /to steps)

Design Value IRS = 900 2 135 pcm (Critical Ref Bank (Design Cond) Position = 111 steps)

Reference VEP-psf-NFE-288, VEP-FRD-36A, STO-TI-2.2A

, If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result on V FSAR/ Tech Spec safety analysis. SNSOC may specify that Acceptance ' additional testing be performed.

Criteria Reference VIP-FRD-36A Design Tolerance is met  : [YES NO VI -

Acceptance Criteria is met : WS NO Comments Completed By: Evaluatec' 'y: FJM M Test Engineer /

Recommended for Approval By : C-f A h

<f NFO Engineer O

A.8

2-PT-94.0 Attachment 6.9 Page 11 of 34 05-05-83 i

NORTH ANNA POWER STATION UNIT 2 CYCLE 3 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test

Description:

Cnti Bank A Worth Measurement-Rod Swap Reference Proc No /Section: 2-PT-94.7 Sequence Step No: 12 II Bank Positions (Steps) RCS Temperature ('F): 547 Test

. Conditions Power Level (% F.P.): 0 SDA: 228 SDB: 228 CA: Moving .Other (specify):

(Design) CB: Moving CC: 228 CD: 228 Below Nuclear Heating III Bank Positions (Steps) RCS Temperature (*F) -SVY ,

Test Conditions Power Level (% F.F* ): O SDA: 228 SDB: 228 CA: Moving Other (Specify):

, (Actual) CB: Moving CC: 228 CD: 228 Below Nuclear Heating Date/ Time Test Performed:

s/2s/a3 /927 Meas Parameter (Description) I RS; Int Vorth of Cnti Bank A - Rod Swap IV (Adj. Meas. Crit. Ref Bank Test Measured Value IRS, 7ggjum p,,ggg,, , 9g ,g,p,)

Results Design Value (Adj. Meas. Crit. Ref Bank

~

(Actual Cond) I I= M'71/MF* Position = 78 steps)

Design Value I RS= 66S t 100 pcm (Critical Ref Bank (Design Cond) Position = 89 steps)

Reference VEP-PSE-STE-288, VEP-FRD-36A, NFO-TI-2.2A If Desi'gn Tolerance is exceeded SNSOC shall evaluate impact of test result on V FSAR/ Tech Spec safety analysis. SSSOC may specify that Acceptance additional testing be performed.

, Criteria Reference VEP-FRD-36A Design Tolerance is met  : /YES NO VI Acceptanca Criteria is met : 2YES NO Comments Completed By: M Evaluated By: 2 #M >F 8 Test' Engineer 7 ~

Recommended for Approval By : j NFO Engineer I

A.9

' 2-PT-94.0

~ Attachment 6.9 Page 12 of 34

. 05-05-83 NORTH ANNA POWER STATION UNIT 2 CYCLE 3 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I

Test

Description:

Shutdown Bank B Vorth Meas. - Rod Swap Reference Proc No /Section: 2-PT-94.7 Sequence Step No: 13 II Bank Positions (Steps) RCS Temperature (*F): 547 Test Power Level (% F.P.): O Conditions SDA: 228 SDB: Moving CA: 228 other (specify):

(Design) CB: Moving CC: 228 CD: 228 Below Nuclear Heating III Bank Positions (Steps)  : SVJ.7 Test RCS Temperature (*F)i 0 Conditions SDA: 228 SDB: Moving CA: 228 Power Level (% F.J.J Other (Specify):

(Actual) CB: Moving CC: 228 CD: 228 Below Nuclear' Heating Date/ Time Test Performed:

5/2e/83 2Oll Meas Parameter (Description) I  ; Int Worth of Shutdown Bank B-Rod Swap IV (Adj. Meas. Crit. Ref Bank Test Measured Value Ih=OS8pc* Position = /0/ steps)

Results Design Value (Adj. Meas. Crit. Ref Bank R

(Actual Cond) I g]7f f 2,e/f Position = /0/ steps)

Design Value I = 831 1 125 pcm (Critical Ref Bank (Design Cond) Pesition = 104 steps)

Reference VIP-PS$-NTE-288, VEP-FRD-36A, hTO-TI-2.2A

' If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result on V FSAR/ Tech Spec safety ana1> sis. SNSOC may specify that Acceptance ' additional testing be performed.

, Criteria Reference VEP-FRD-36A Design Tolerance is met  : __ YES NO VI -

Acceptance Criteria is met : tdES NO Comments Coopleted By: b Evaluated By: PAIM Test Engineer ' 7 Recommended for Approval By : C. .L NFO Engineer A,10

' ~

2-PT-94.0 Attachment 6.9 Page 13 of 34 05-05-83 NORTH ANNA POWER STATION UNIT 2 CYCLE 3

.STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test

Description:

Shutdown Bank A Worth Meas. - Rod Swap Reference Proc No /Section: 2-PT-94.7 Sequence Step No: 14 3 II Bank Positions (Steps) RCS Temperature (*F): 347 Test Power Level (% F.P.): 0

. Conditions SDA: Moving SDB: 128 CA: 228 Other (specify):

(Design) CB: Moving CC: 228 CD: 228 Below Nuclear Heating III Bank Positions (Steps) o RCS Temperature (*F);.5'/2. 7 Test Power Level (% F.B.): 0 Conditions SDA: Moving SDB: 228 CA: 228 Other (Specify):

, (Actual) CB: Moving CC: 228 CD: 228 Below Nuclear Heating Date/ Time Te'st Performed:

5/29/65 2056 Meas Parameter (Description) I  ; Int Vorth of Shutdown Bank A-Rod Swap IV (Adj. Meas. Crit. Ref Bank Test Measured Value Ih= T N /#^ Position = 12.1 steps)

Results Design Value (Adj. Meas. Crit. Ref Bank (Actual Cond) I = N8I/M pcm Position = /1/ steps)

Design Value I = 947 t 142 pcm (Critical Ref Bank (Design Cond) Position = 116 steps)

Reference VEP-psf-NFE-288, VEP-FRD-36A, NFO-TI-2.2A If Design Tolerince is exceeded SNSOC shall evaluate impact of test result on V FSAR/ Tech Spec safety analysis. SNSOC may specify that Acceptance additional testing be performed.

Criteria Reference VEP-TRD-36A Design Tolerance is met  : 'YES __NO VI Acceptance Criteria is met . lcYES NO Comments A

Completed By: Evaluated By: #dd -

_ Test Engineer /

Recommended for Approval By df  : bJh NFO Engineer A.ll

2-PT-9.4.0 Attachment 6.9 Page 14 of 34 05-05-83 I I

NORTH ANNA POWER STATION UNIT 2 CYCL.E 3 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Tess unscription: Total Rod Vorth - Rod Swap Reference Proc No /Section: 2-PT-94.7 Sequence Step No:16

) II Bank Positions (Steps) RCS Temperature (*F): 547 Test '

  • Conditions SDA: Moving SDB: Moving CA: Moving Power Level (% F.P.): 0 (Design) Other (specify):

CB: Moving CC: Moving CD: Moving Below Nuclear Heating III Bank Positions (Steps) RCS Temperature (*J) C5'd.7 Test Conditions Power Level (% F.P.): 0 (Actual) SDA: Moving SDB: Moving CA: Moving l Other (Specify):

CB: Moving CC: Moving CD: Moving Below Nuclear Heating Date/ Time Test Performed:

5/26/83 1737 Meas Parameter (Description) ITotal; Int Worth of All Banks - Rod Swap IV Test Measured Value I 7 g,g = g83 y Results Design Value (Actual Cond) I Total "

Design Value ITotal = 5738 1 574 pcm (Design Cond)

- Reference VEP-PSE-STE-288, VEP-FRD-36 A, hTO-TI-2.2A If Design Tolerance is exceeded, SNSOC V

shall evaluate impact of test result on FSAR/ Tech Spec safety analysis. SNSOC may specify that Acceptance additional testing be performed.

Criteria Reference VIP-FRD-36A Design Tolerance is met :MS NO VI Acceptance Criteria is met : .4::::TES NO Com=ents Completed By: M Evaluated By: E /#M Test Engineer /

Recommended for Approval By : [ j-STO Engineer A.12

2-PT-94.0 Attachment 6.9 Page 4 of 34 05-05-83 NORTH ANNA POWER STATION UNIT 2 CYCLE 3 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test Description : M/D Flux Map - HZP, ARO Reference Proc No / Section: 2-PT-21.1 Sequence. Step No: 6 II Bank Positions (Steps) RCS Temperature (*F): TREF *1

)

Test Power Level (*. F.P.): -3

. Conditions SDA: 228 SDB: 226 ' CA: 228 Other (specify)

(Design) CB : 228 CC : 228 CD: 228 Must have 2 38 thimbles III Bank Positions (Steps) RCS Temperatura('F):. Tit er Test '

Conditions SDA: 228 SDB: 228 CA: 228 Power Level (*.'F.P.)i ef Othe.r (Specify):

(Actual) CB : 228 CC : 228 CD: all yf gl,,,bles Date/ Time Test:

Performed: 5/29/33 05/2.

MAX. REL ' NUC Eh'IHAL' TOTAL EEAT QUADRANT IV Meas Parameter ASSY PWR ! RISE HOT FLUX HOT POVER TILT (Description) *. DIFF CHAN FACT Cv"' FACT RATIO (M-P)/P F-dH(N) 'Q(T)

QPTR e.37,r-f,l.n Measured Value I 8 7/ 2* Y73 /.O26 #

Test Results f IM ' uv .

Design Value * [ [ 'a m v'si.uis. us**i (Design Conds) ,,,.,[*,,,, *

8 " "" .

,,,,, . .. . man

$ 1.02 VCAP-7905 Reference REV.1 NONP lWCAP-7905 g

NOSE REV.1 V FSAR/ Tech Spec. NONE NA NA NA Acceptance '

Criteria Reference NOSI TS 3.2.3 TS 3.2.2 TS 3.2.4 Design Tolerance is met  : _YES 40 Acceptance Criteria is met : d'ES NO VI Comments 4' O es.y to/are.ne na,t met M l ea + res. Hs a,, seaf.au , oar.

Nor(4 Anes 1%we Sh h O* ~'* h**' R*Wt 8 3- 4/77.

Completed By: M Evaluated By: eXl O

  • Test Engineer Recommended for Approval By :- C - >-fr hTO Engineer i .

A.13

2-PT-94.0 Attachment 6.9-Page 15 of 34 05-05-83

}

NORTH ANNA POWER STATION UNIT 2 CYCLE 3 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test Description :M/D Flux Map-At Power,NI Calibration Reference Proc No / Section: 2-PT-22.2 Sequence Step No: 43 II Bank Positions.(Steps) RCS Temperature (*F): TREF *1

. Test Power Level (*. F.P.): - AR Conditions SDA: 228 SDB: 228 CA: 228 Other (specify)

(Design) CB : 228 CC : 228 CD:

  • Must have 1 38 thimbles III Bank Positions (Sthps) RCS Temperature (*F): T,,p Test Power Level (*. F.P. ): e./ 7. 7 %

Conditions SDA: 228 SDB: 228 CA: 228 Other (Specify):

(Actual) CB : 228 CC : 228 CD:g p g ggg Date/ Time Test:

Performed: 6/06/63 0823 MAX. REL NUCENTHAL'TOTALHEATlQUADRAST IV Meas Parameter ASSY Pk'R RISE HOT FLUX HOT POkTR TILT (Description) *. DIFF CHAN FACT CHAN FACT RATIO (M-P)/P F-dH(N) F-Q(T) QPTR ot.s %.k. fj; L eo' Measured Value aa- l6M 2./31 / Olf Results .

Design Value ****"n' * '

(De s ign Conds ) l *,,'". '",,'*,',"i' NA NA 5 1.02 WCAP-7905 WCAP-7905 Reference REV.1 NONE NONE REV.1

~

f.a n .au.m Ir;<si

,8 e- e s ..aa . :::

V FSAR/ Tech Spec NONE n==

[rbs:*===am NA Acceptance '

Criteria Reference NOSI TS 3.2.3- TS 3.2.2 TS 3.2.4 Design Tolerance is met  : YES 40 Acceptance Criteria is met : .a(TES NO VI Comments

  • As Required A violeW f ihr &

w as deemoal sue /alb *7e'cluaal s pe- .s ouCerft e I:~4 occa ed !>s.fAlo lh A

. Completed By:

Test Engineer

, Evaluated By: M Recommended for Approval By : j hTO Engineer 1 7'his devisL - a clee-ed accepht/e ar p. Ahdh Ama Powe. % L . De at:e Ray + r 8.3 - S51.

A,14

2-PT-94.0 Attachment 6.9 Page 16 of 34 05-05-83 NORTH ANNA POWER STATION UNIT 2 CYCLE 3 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test Description :M/D Flux Map-At Power,NI Calibration Reference Proc No / Section: 2-PT-22.2 Sequence Step No: 44 II Bank Positions (Steps) RCS Temperature (*F):T II REF Test Conditions Power Level (% F.P.): - AR SDA: 228 SDB: 22&.CA: 228 Other (specify)

(Design) CB : 228 CC : 228 CD:

  • III Bank Pesitions (Steps) RCS Temperature ('F-): 'T dsF Test Conditions SDA: 228 SDB: 228 CA: 228 Power Level (% F.P.): y7,3*f

.0ther (Specify):

(Actual) CB : 228 CC : 226, CD: 86/ 7 g g g.

Date/ Time Test: pg,,fer - Co,. / b /77aja Performed: 4/0//SJ /4Cb MAX. REL NUC ESTdAL TOTAL HEAT ' QUADRANT IV Meas Parameter ASSY PWR RISE HOT FLUX HOT POWER TILT (Description)  % DIFF CHAN FACT CHAN FACT RATIO (M-P)/P F-dH(N) F-Q(T) QPTR 57thf,s t.n R ts /z.i3 Mf, Design Value l$ U l.'l:

(Design Conds) c's-

  • w NA NA 5 1.02 WCAP-7905 VCAP-7905 Reference REV.1 NONE NONE REV.1 V

9.un. sn n 0 @"'*""

FSAR/ Tech Spec NONE p*""

NA Acceptance Criteria I .I {

)

Reference NONE . TS 3.2.3 TS 3.2.2 TS 3.2.4 Design Tolerance is met  : _. NO Acceptance Criteria is met : _ .S NO VI Comments Must have at least 38 thimbles for a full-core flux map or, at least 16 thimbles for a quarter-core flux map.

  • As Required Completed'By:

Test Engineer Evaluated By: NNONA-r a y: CI T hTO Engineer

1. Th .. p a <a,,, ale << en ad uc<:M w:,,y a ps,lst-coa n.,,

4 ia.heJ 6 A l E c a I. % lo'oe .

A 15

2-PT-94.0 Attachment 6.9 Page 17 of 34 05-05-83 NORTH ANNA POWER STATION UNIT 2 CYCLE 3 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET f I Test Description :M/D Flux Map-At Power,NI Calibration Reference Proc No / Section: 2-PT-22.2 Sequence Step No: 45 II Bank Positions (Steps) RCS Temperature (*F):T #1 REF Test Power Level (*. F.P.): - AR Conditions SDA: 228 SDB: 228CA: 228 Other (specify)

(Design) CB : 228 CC : 228 CD:

  • III Bank Positions (Steps) RCS Temperature (*F): .Tu, Test Power Level (*. F.F'): 77.2 '&

Conditions SDA: 228 SDB: 228 CA: 228 Other (Specify-):

(Actual) CB : 228 CC : 228 CD: 192-50 H.' Ales Date/ Time Test:

Performed: 6/or/s3 odos MAX. REL STC ESTHAL TOTAL HEAT QUADRAST IV Meas Parameter ASSY PWR RISE HOT FLUX HOT POWER TILT (Description) *. DIFF CHAN FACT CHAN FACT RATIO (M-P)/P F-dH(N) ,

F-Q(T) QPTR e.sr.4.g;t*e' Measured Value j g f . '/80 l.780 /. O//

i Test e.r Results Design Value ,' [ [ l8 ' [,'

(Design Conds) a. . . = . ,

NA NA 5 1.02

~

WCAP-790S WCAP-7905 Reference REV.1 NONE NOSE REV.1 9.un..m.m ""

  • V FSAR/ Tech Spec. NONE " * " "

NA Acceptance Criteria

. Reference NOST TS 3.2.3 TS 3.2.2 TS 3.2.4 Design Tolerance is met  : 4S NO Acceptance Criteria is met : MTS NO VI Comments .Must have at least 38 thimbles for a full-core flux map, or at least 16 thimbles for a quarter-core flux map.

  • As Required

\

Completed By:

Test Engineer Evaluated By: AM Recommended for Approval By : C-

, NFO Engineer A.16 l

~

f 2-PT-94.0 Attachment 6.9

( Page 18 of 34 05-05-83 NORTH ANNA POWER STATION UNIT 2 CYCLE 3 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I

Test Description : M/D Flux Map - HFP, ARO, Eq. Xe i Reference Proc No / Section: 2-PT-21.1 Sequenca Step No: 46 1

l II Bank Positions (Steps) RCS Temperature ('F):T #1 REF Test

. Conditions Power Level (* F.P.):95 5 SDA: 228 SDB: 228 CA: 228 Other (specify): Eq. Xe.

(Design) CB : 228 CC : 228 CD:

  • Must have 2: 38 thimbles III Bank Positions (Steps) RCS Temperature (*F):. Tggg Test '

Conditions Power Level (% F.P.)':/ 2 .f, SDA: 228 SDB: 228 CA: 228 Other (Specify):

(Actual) CB : 228 CC : 228 CD: 218 q q g ,.g f Date/ Time Test:

Performed: 4//o/93 07'/7 MAX. REL NUC ENTHAL TOTAL HEAT QUADRANT IV Meas Parameter ASSY PWR RISE HOT FLUX HOT PokT.R TILT (Description) *. DIFF CHAN FACT CHAN FACT RATIO (M-P)/P F-dH(N) F-Q(T) QPTR e.n. w g r-n Test Measured Value .

[.773 *,706

/ /. O/

Results 7.n L. Qf lo Design Value * '" s

,[,,,l,',,

(Design Conds) ce, . ,. 3 NA NA 5 1.02 WCAP-7905 WCAP-7905 l Reference REV.1 NONE NONE REV.1

' Tad 28"*8"*"I rps s .nei, am V FSAR/ Tech Spec NONE n*= i NA Acceotance Criteria l Reference NONT. TS 3.2.3 TS 3.2.2 TS 3.2.4 Design Tolerance is met  : S NO Acceptance Criteria is met  : V YES NO VI Comments

  • As Required Completed By: Evaluated By: 'D#4 Test Engineer Recommended for Approval By : g.g NFO Engineer A.17

6 ',

VINGINIA ELzcTunc ann POwr.n COMPANY HIcnwoxn,VINGINIA 2 0 2031 w,I.,senw m July 19, 1983 Vace Posesomwr Nect.mam Ormaanons Mr. Harold R. Denton, Director Serial No. 410 Office of Nuclear Reactor Regulation N0D:BDM:hca ATTN: Mr. Robert A. Clark, Chief Operating Reactors Branch No. 3 Docket No. 50-339 U. S. Nuclear Regulatory Comission License No. NPF-7 Washington, D.C. 20555 Gentlemen:

NORTH ANNA POWER STATION UNIT 2, CYCLE 3 STARTUP PHYSICS TEST REPORT For your information, enclosed are five copies of the Vepco Topical Report VEP-NOS-4, " North Anna Unit 2, Cycle 3 Startup Physics Test Report".

Should you have any questions, please contact us.

r Very truly yours Q.C- p s 9dMvl W. L. Stewart Enclosures cc: Mr. James P. O'Reilly Regional Administrator Region II Mr. M. B. Shymlock NRC Resident Inspector North Anna Power Station 9u .

/L a