ML20042C650

From kanterella
Jump to navigation Jump to search
Cycle 1 Core Performance Rept.
ML20042C650
Person / Time
Site: North Anna Dominion icon.png
Issue date: 04/30/1981
From: Dillard F, Mann B, Snow C
VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
To:
Shared Package
ML20042C651 List:
References
VEP-FRD-48, NUDOCS 8204120183
Download: ML20042C650 (49)


Text

yyyymy . , .

._ . ~ . . . . .. . , -. . mm m-z -

VEP-FRD-48

Vepco

! NORTH ANNAL. UNIT 2, CYCLE 1 l

l l

CORE PERFORMANCE j REPORT l  !

l; l

I 9

s A K)

P:

i  !

.i.

li! E J n

1 FUBL RESOURCES DEPARTMENT ia VIRGIN!A ELECTRIC AND POWER COMPANY  !

13 i e 61

!l .

VEP-FRD-48 I NORTH ANNA UNIT 2. CYCLE 1 CORE PERFORMANCE REPORT BY Brian D. Mann F. Douglas Dillard Reviewed Approved l

c. 5 LSnow, Supervisor C. Lori , Director C. T.

Muclear Fuel Operation ear F Operation l

Nuclear Fuel Operation Subsection Fuel Resources Department Virginia Electric & Pouer Company Richmond, Virginia April, 1981 l

CLASSIFICATION / DISCLAIMER Tho data, techniques, information, and conclusions in this report have boon prepared solely for use by the Virginia Electric and Power Company (the Company), and they may not be appropriate for use in situations other than those for which they were specifically prepared. The Company therefore makes no claim or warranty whatsoever, express or implied,as to their accuracy, usefulness, or applicability. In particular, THE COMPANY MAKES NO WARRANTY OF MERCNANTABILITY OR FITNESS FOR A PARTICULAR PURp0SE, NOR SHALL ANY WARRANTY BE DEEMED TO ARISE FROM COURSE OF DEALING OR USAGE OF TRADE, with respect to this report or any of the data, techniques, information, or, conclusions in it. By making this roport available, the company does not authori=e its use by others, and any such use is expressly forbidden, except with the prior written approval of the Company. Any such written approval shall itself be deamed to incorporate the disclaimers of liability and disclaimers of ucrranties provided herein. In no event shall the Company be liable, under any legal theory whatsoever (whether contract, tort, uarranty, or strict or absolute liability), for any property damage, mental or physical injury or death, loss of use of property, or other damage - -

resulting from or arising out of the use, authori=ed or unauthorized, of this report or the data, techniques, information, or conclusions in it.

i

l l

ACKNOWLEDGEMENTS l

The authors would like to acknowledge the cooperation of the North l

Anna Power Station ,

personnel in supplying the basic data for this report. Special thanks are due Messrs. R. S. Thomas and J. P. Smith.

Also, the authors would like to express their gratitude to Dr. E. J.

Lo ito and Mr. C. T. Snow for their aid and guidance in preparing this roport.

t t

e S

l ii

0 TABLE OF CONTENTS SECTION TITLE PAGE No.

Classification / Disclaimer . . . . . . . . . . . .i Acknowledgements . . . . . . . . . . . . . . . . ii List of Tables . . . . . . . . . . . . . . . . . iv List of Tigures . . . . . . . . . . . . . . . . . v 1 Introduction and Summary. . . . . . . . . . . . . 1 2 Burnup Tollou . . . . . . . . . . . . . . . . . . 7 3 Reactivity Depletion Tollou . . . . . . . . . . . 14 4 Power Distribution To11ou . . . . . . . . . . . . 16 5 Primary Coolant Activity Tollow . . . . . . . . . 36 6 Conclusions . . . . . . . . . . . . . . . . . . . 40 7 References. . . . . . . . . . . . . . . . . . . . 41 i

l 1

l iii

, , - , , - , - - - - - . - - - - - - , . ~ . . - . - , . , - - . , ,

LIST OF TABLES TABLE TITLE PAGE NO.

f4 .1 Summary Table of Incore flux Maps for Routine Operation . . . 20 l

l l

e e

e O

iv

(

m LIST OT TIGURES l

TIGURE TITLE PAGE No.

1.1 Core Loading Map . . . . . . . . . . . . . . . . . . . . . . . 4' 1.2 Movable Detector and Thermocouple Locations. . . . . . . . . . 6 1.3 Control Rod Locations. . . . . . . . . . .". . . . . . . . . . 6 2.1 Core Burnup History . . . . . . . . . . . . . . . . . . . . . 9 2.2 Monthly Average Load Factors . . . . . . . . . . . . . . . . . 10 2.3 Assemblyuise Accumulated Burnups Measured and Predicted . . . 11 2.4 Assemblyuise Accumulated Burnupt Comparison'of Measured with predicted . . . . . . . . . . . . . . . . . .. 12 2.5 Batch Burnup Sharing . . . . . . . . . . . . . . . . . . . . 13 3.1 Critical Boron concentration versus Burnup - HTp-ARO . . . . . 15 4.1 Assemblyuise power Distribution - N2-1-26 . . . . . . . . . . 22 4.2 Assemblyuise power Distribution - N2-1-40 . . . . . . . . . . 23 4.3 Assemblyuise power Distribution - N2-1-58 . . . . . . . . . . 24 4.4 Hot Channel Factor Normali=ed operating Envelope . . . . . . . 25 4.5 Heat Flux Hot Channel Tactor, F(T)-2(Z) - N2-1-26 . . . . . . 26 4.6 Heat Flux Hot channel Factor, F(T)-9(Z) - N2-1-40 . . . . . . 27 4.7 Heat Flux Hot Channel Factor, T(T)-9(Z) - N2-1-58 . . . . . . 28 4.8 Maximum Heat Flux Hot Channel Tactor versus Burnup . . . . . . 29 4.9 Enthalpy Rise Hot Channel Factor versus Burnup . . . . . . . . 30 4.10 Target Delta Flux versus Burnup . . . . . . . . . . . . . . . 31 4.11 Core Average Axial power Distribution - N2-1-26 . . . . . . . 32 i

i

}-

V

LIST OF TIGURES COMT'D TIGURE TITLE PAGE MO.

4.12 Core Average Axial Power Distribution - M2-1-40 . . . . . . . 33 4.13 Core Average Axial Power Distribution - M2-1-58 . . . . . . . 34 4.14 Core Average Axial Peaking Factor versus Burnup . . . . . . . 35 5.1 Dose Equivalent I-131 versus Time . . . . . . . . . . . . . . 38 5.2 I-131/I-133 Activity Ratio versus Time . . . . . . . . . . . 39 i

i l

vi

d i

Soction 1 l

INTRODUCTION AND

SUMMARY

On March 7, 1982, North Anna Unit 2 completed Cycle 1. Since the initial criticality of Cycle 1 on June 6, 1980, the reactor core produced approximately 86 x 10' MBTU (14,494 Megawatt days per metric ton of contained uranium) which has resulted in the generation of approximately 7.6 x 10' MWHr gross (7.2 x 10' KWHz net) of electrical onorgy. The purpose of this report is to present an analysis of the coro performance for routine operation during Cycle 1. The physics toots that were performed during the startup of this cycle were covered in the North Anna Unit 2, cycle 1 Startup Physios Test Reporti and, thorefore, will not be included here.

The first cycle core consisted of three fresh batches of fuel. ,

The Horth Anna 2, Cycle 1 core loading map specifying the fuel batch idontification, fuel assembly locations, burnable poison locations and source assembly locations is shown in Figure 1.1. Movable detector lo.c ation s and thermocouple locations are identified in Figure 1.2.

Control rod locations,are shown in rigure 1.3.

Routine core follow involves the analysis of four principal performance indicators. These are burnup distribution, feactivity dopletion, power distribution, and primary coolant activity. The core burnup distribution is followed to verify both burnup symmetry and _,

i I

proper batch burnup sharing, thereby ensuring that the fuel held over for the next cycle will be compatible with the new fuel that is __

1

. 1

)

i i

incorted. Reactivity depletion is monitored to detect the existence of any abnormal reactivity behavior, to determine if the core is depleting designed, and to indicate at what burnup level refueling will be co Core power distribution follow includes the monitoring of required.

nuslear hot channel factors to verify that they are within the Technical Specifications 2 limits thereby ensuring that adequate margins'to linear peuar density and critical heat flux thermal limits are maintained.

Lactly, as part of normal core follow, the primary coolant activity is monitored to verify that the dose equivalent iodine-131 concentration is the limits specified by the North Anna Unit 2 Technical within Spacfications, and to assess the integrity of the fuel.

Each of the f our perf ormance" indicators is discussed i,n detail for the North Anna 2. Cycle 1 core in the body of this report. The results cro summarized below:

yollou The burnup tilt (deviation from quadrant

1. Burnup -

was no greater than 20.3% uith the burnup synmetry) on the core cccumulation in each batch deviating from design prediction by less than 2%.

2. Reactivity Depletion Follou - The critical boron concentration, reactivity depletion, was consistently within 20.4%

usod to monitor delta K/K of the design prediction which is well within the 21% delta M/K margin allowed by Section 4.1.1.1.2 of the Technical Specifications.

~'

3. power Distribution Follow - Incore flux maps taken each month indicated that the: assemblyuise radial power distributions deviated from 2

tho design predictions by an average difference of less than 2%. All hot chonnel factors met their respective Technical Specifications limits.

4. Primary Coolant Activity Follow - The average dose equivalent iodine-131 activity level in the primary coolant during Cycle 1 was approximately 2.6 x 10-2 micro-Ci/gm. This corresponds to less than 3%

of the operating limit for the concentration of radioiodine in the primary coolant.

In addition, the effects of fuel densification were monitored throughout the cycle. No densification effects were observed.

e G

S t

3

e FIGURE 1.1 ,

NORTH M44A UNIT 2 - CYCLE 1 CORE LOADING MAP R P H M L K J H G F E D C 8 A l P32 i P22 i P05 l .

I l l l 1 I I I I I P13 i P36 l P40 l L18 l P39 l P07 i P48 l l l l 16P l l 16P l l l 2

I I I J.L.,,,,,,1 l l l l l P30 i P15 l N17 l L27 i H24 l L36 l H50 l P47 l P23 l l l 12P l 16P l l 12P l l 16P l 12P I I 3 I I I I I I I I I I l P20 l L26 i HIS l LC6 i H51 l L10 l H33 i LOS l N37 l L51 1 P38 l 4 l l l 16P l l 16P l SS l 16P l l 16P l l l I I I l I l l l l I I I I P27 l P09 l N07 l L32 l N16 l LO2 l H38 l L40 l N18 l L42 l H39 l P18 i P51 1 1 1 12P l 16P l I 16P l l 20P l 1 16P l i 16P l 12P l l 5 i 1 I I I I I I I l .,__ .,_ I I I I l P45 l H45 l L24 l H22 l L44 l H09 l L21 1 H31 l L13 I H23 l L38 I HQ2 1 P17 l 6 l l 16P l l 16P I l 16P l l 16P l l 16P l l 16P l 1 1 l l l l l l l l l l 1 l l l P43 l PO4 i L50 l N05 i L19 i N06 l L48 l H43 l L14 l N47 1.L30 l N12 l LO4 l P06 l P28 1l 7 l l 16P l l 16P l l 16P I l 20P l l 16P I . I 16P l i 16P l I I I I I I I I I I I I I I I I i l P52 l L43 l N27 l L25 l H41 l LOS 1 N35 l LO1 l H14 l LEO l H03 l L49 l HC8 l L34 i P41 1 I I i 12P 1 1 20P l l 20P l l 20P l l 20P l l 12P l l l 8 I I I I I I I I I I I I I l l I l P10 l P26 i L46 l H36 l LO9 i H21 l L12 l H30 i L39 i H49 l L37 l H32 l LO3 l P50 l P49 ll l l 16P l l 16P l l 16P l l 20P I l 16P l l 16P l l 16P l 9 I I I I I I I I I I I I I I I I l P21 l N20 l L23 l N52 l L15 l H11 l L47 l H34 l L16 i H04 i L29 l N28 i P03 I 10 I i 16P l i 16P 1 1 16P l l 16P l l 16P l l 16P l l I l i I I I I I I I I I I I l P42 l P16 l H48 l L53 i H10 l L33 i H25 i L45 l N01 l LO7 l H42 l P34 l P12 l 11 l l 12P 1 16P l l 16P l l 20P l i 16P l l 16P l 12P l l 1 I I I l i I I I I I I I I l P37 l L31 i H40 l L41 1 N13 l L52 l H26 l L17 l N29 i L11 i P24 l ,

I l l 16P l l 16P l SS l 16P l .I 16P l l l 12 I I I I I I I I I I I I l P29 l P35 l H46 l L28 i H44 l L22 I H19 l Pol l P11 I l i 12P 1 16P l l 12P l l 16P l 12P l l 13

.I I I I I I I I i 1 l P44 l POS l P46 I L35 l P33 i P19 l P10 l l I 1 16P l l 16P l l l 14 I I I I I PS l l l l P02 l P31 1 P25 l l l--> ASSEMeLY Io l I I i 15 l l--> ONE CR MORE OF l l l l l l THE FOLLCWING

a. PS - Primary Source
b. SS - Secondary Source
c. MxP - Burnable Poison Assembly (xx-number of rods)

FUEL ASSEMBLY DESIGN PARAMETER Batch 1 2 3 I I I Initial Enrichment (w/o U235) I 2.110 1 2.559 1 3.102 l Assembly Type i 17x17 l 17x17 l 17x17 Humber of Assemblies 1 53 1 52 1 52 l

Tuel Rods Per Assembly 1 264 l 264 l 264 Assembly Identification l LO1-L53 l N01-H52 1 P01-PS2 l l l 4

l i

Tigure 1.2 MORTH AMMA UNIT 2 - CYCLE 1 MOVABLE DETECTOR AND -

THERMOCCUPLE LOCATIONS R P M M L K J H *6 ,F E o C 8 A

~

I i i i

. I I re i Tc 1 1 1 I I I _.

I i 1 I i l i l i l l Tc I I Tc I to i I 2 I I I I I I I I I re I l i I tio l l l l re !

I Tc 1 i Tc I Mo 1 Tc l l Tc I I Tc I 3 I I I I I I I I I I I I I I I I I, I l i I I I Tc I I te I I i re i I re i Tc I l' I 4 l i I I I I I I 't I I _ _ .

1 I I I I I I I I I I re i i re I -_.

l I re i I re l Tc l re . I Tc I I Tc I te 1 Tc I I Tc I 5 I I I I I I I I I I I I I I i 1 1 I re i I I I I I i l I i I l Tc I I Tc I I I re i Tc I te i I I I I 6 I I I I I I I I I I I I I I I l i I i

  • i l I i i i i I l i l i Tc I Tc I re i I I I ' te ! I re i I Tc I to I i te i I 7 I I I I I I I I I I I I I I 'l I 1 1 I re i I tio I i 1 1 1 1 1 I re i I I I te i Tc 1 Tc -1 1 Tc I Tc I i . Tc I Tc l No i TC l l TC I te 1 TC I 8 1 I I I I l- I I l I l.__ I I I I I i l I l I i i i i i re i i l i i I i l i I Tc l re i I I Tc 1. MD I Tc I I I I l re 1 9 I I I I I I I I I I l I I I I I .

I I Mo 1 i l i te i I I I I I I rc I i 1 Tc I I I I Tc l l l l Tc I re i I Tc I lo 1 I I I I I I I I I I I I I I i 1 I i i i re i 1 re i l i i l I I I Tc I te i Tc I I Tc I I Tc I re i I I i 11 1 I I 1 ,_ I I I I I I I I I I I i 1 1 i re I i l I I i rc 1 I te i I Tc I I Tc I I I I Tc I re i Tc 1 1:

I I I I I I I I I l l l I i l l I m i I m i I I I I I I l Tc l l Tc I I i 13 I l l I l I l I I I I m i i i i l l I

. 1 Tc 1 I I I re l l Tc 1 14 I I I I I I I I Mo - Movaatt DETEctom I i l l TC - THERM 0 COUPLE I re l TC l TC l 15 I I I i

-~

l

.- 3

o

. FIGURE 1.3 HORTH Me4A thiIT 2 - CYCLE 1 COwTRot, R0o tOCAn0ns R P H M L K J H *S P E 0 C S A 180*

I Loop c I i i i LOOP s 1*

OUTLET .

I_l l l_ IHLET . . _ __ ._

N-41 Nl_l ^ ll sA l!" ll_I l l l sA l l^l l21 SP l I H-43 3

I I l I l I I I I Ic I ia i i l Ia 1 iC l l 4

___ I I I I I I I 1._._I I I I I . sp i I se i I sp i i l i se i i i 1 5 I I I I I I I I I I I I I i 1A I Ie i Io I ic i lo 1 I a1 iA i 6

_~ ~

LOOP c I I I I I I I I !__ I I I I I . LOOP 5 DaLET I 1 i sA I I I i so i I so i I sp i l SA i l 1 OUTLET 7

,.h! lo l-l-l le l l l le l l l lo l 's,. 8 1 I I I I I I I l l_ _.I I I l.__l I l I i SA l I sP l I se I i se i I I l SA l l l 9 I i 1_ I I I l l l_I I I I I I I IA l la i l oI ac 1 1o i Ia i 1.A i . 10 1 1._ _.l_._.l._..l I I I l_I  ! I I I I I I I sa l i i 1 SP 1 1 00 l i SP i i 11 1 I l i I I I I I l_1 I I I I Ic I ia 1 i i 1.s i Ic 1 1 12 l _:1 'i 1 *1 1 1 I l_I I I l I sp 1 i sA l l sA l l l l 13 N-44 I l___l l l l l l l l H-42 I IA i 1o 1 iA I i 14

~' '

J LOOP A l

I l

l l

l_I l  % LOOP A i

A8s0RSER OUTLET DILET MATERIAL i AG-IN-Co o PtA4CT I.ON MJMBER OF CLU.STERs. .

CONTROL SA* O 8 j CCHTROL BME C 8 CtD4 TROL BME 8 8 CCHTROL BANK A 8 SHUTDCWN EAR 36 8 SHUTDOWN BME sA 8

  • SP (SPARE R00 LOCATICHs1 8 l

6

30ction 2 BURNUp FOLLOW The burnup history for the Morth Anna Unit 2, Cycle 1 core is

~

graphically depicted in rigure 2.1. The unit remained.at approximately 23ro power from June 12, 1980 until June 19, 1980 performing extensive zozo power testing. The North Anna 2 core then operated intermittently until August 25, when the first electricity was generated. On September 10, 1980, power ascension physics testing was begun. The North Anna 2, Cycle 1 core achieved a burnup of 14,494 MWDn1TU. As shown in Figure 2.2, the average load factor for Cycle 1 was 60% when referenced to rated thermal power (2775 MW(t)).

Radial (X-Y) burnup distribution maps' shou how the core burnup is j

chcred among the various fuel assemblies, and thereby allow a detailed burnup distribution analysis. The NEWTOTE3 computer code is used to cciculate these assemblywise burnups. Tigure 2.3 is a radial burnup distribution map in which the assemblyuise burnup accumulation of the coro at the and of Cycle 1 operation is given. For comparison purposes, the design values are also given. Figure 2.4 is a radial burnup distribution map in which the percentage difference comparison of asesured and predicted assemblyuise burnup accumulation at the end of Cycle 1 operation is also given. As can be seen from this fignre, the cccumulated assembly burnups were generally within 13% of the predicted

, values. In addition, deviation from quadrant symmetry in the core, as indicated by the burnup tilt factors, was less than 10.3%.

7 1

~~ - , -

,,,-,+,,----w,---,,--- ,--r.-- - - - - ----,,,,..--m --

e--,----,- - - - - - - - - - - - - - - , - - - - - - .- - - - - - - - - - , - - - - , , , - ,

~

Tha burnup sharing on a batch basis is monitored to verify that the core is operating as designed and to enable accurate end-of-cycle batch burnup predictions to be made for use in reload fuel design studies.

Botch definitions are given in rigure 1.1. As seen in Figure 2.5, the batch burnup sharing for North ' Anna Unit 2. Cycle 1 followed design prodictions very closely with each batch deviating less than 2% from doaigns this is considered excellent agreement. Therefore, symmetric burnup in conjunction with good agreement between actual and predicted escamblywise burnups and batch burnup sharing indicate that the Cycle 1 core did deplete as designed.

9 4

8

FIGURE 2.1 NORTH RNNR UNIT 2 - CYCLE 1 CORE BURNUP HISTORY 18000 -

17000 --

16000 ,,

16000 ----

14000 Y 13000 C -

/

L 12000 E

11000

/

B U 10000

[

R N 9000 /

V P 8000 , j

/

t1 7000 W

^

M

~

'0-6000 -

/

M 5000

/

  • U T

4000

/

3000

/

2000

/

/

  • p' 1000 0- -d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 J R S 0 N O J F M R M J J R S 0 N O J F M A O U E C 0 E R E R P R U U U E C 0 E R E A P L G P T V C N B R R Y N L G P T V C N 8 R R 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 TIMEtMONTHS) 9

. T MON L A R GE LO CTORS PERCENT 100 -

90 -

80 -

70 -

60 -

50 -

40 -

30 -

20 -

10 -

M dd0i88eil2a R880i88eil2a MONTH LORD FACTOR = ---- - --- - - - --- --

" " "'!! C[ ll"s kilf,Eti M u?A E F " " "

n

Figura 2.3 -

A55tfSLYW15E ACCT #5ALATED SIM4F fitA5U280 AND Pet 01CTt0 11000 MMD/NTUI e P w n L E J n s. P t. e c e A 1 l s.tel lo.4el e.161 I MEA 5unto i 1 I a.058 10.271 s.05l I PerDIc7to I

~~

a . I a.sil 12.241 14.Ost 13.6st '14.sel it. ret e.5sl t

.I 4.348 18.171 13.991 13.781 13.991 12.171 8. 361 3 l 9.311 13.881 14.870 15.401 16.33 8 15.441 15.001 14.tel 9.431 3 l 9.200 13.741 14.438 15.551 16.621 15.558 14.431 13.748 9.101 4 I 9.tel 12.668 L5.298 16.121 16.441 16.578 16.901 16.241 15.398 12.788 9.541 4 I 9.201 12.571 15.191 16.061 17.031 16.731 17.031 16. Del 15.191 11.571 9.201 5 1 4.321 13.671 15.141 16.068 17.101 16.448 17.071 16.971 17.301 14.201 15.211 14.191 8.778 5 1 4.361 13.741 15.191 16.131 17.271 17.041 17.201 17.041 17.278 16.138 15.191 13.748 4.361 4

  • 1 12.221 14.451 16.031 17.041 16.871 17.401 17.141 17.638 16.988 17.101 15.968 14.941 12.421 6 l 12.171 14.431 16.041 17.278 17.20 8 17.411 17.141 17.411 17.20l* 17.278 16.061 14.831 12.171 7 1 4.171 14.111 15.621 16.401 16.591 17.401 17.141 17.331 17.191 17.691 16.871 16.731 15.391 13.491 a.041 7 1 4.05 8 13.991,15.551 17.031 17.D4 8 17.411 17.291 17.421 17.291 17.411 17.041 17.031 15.551 13.991 8.051 8 l 10. 34 4 13.491 16.551 16.59 8 16.961 17.041 17.35 8 17.171 17.301 17.101 16.881 16.441 16.341 13.671 10.371 8 1 10.271 13.741 16.621 16.731 17.tel 17.241 17.421 17,161 17.421 17.241 17.201 16.731 16.621 13.741 It.sil 9 1 8.171 14.041 15.468 16.421 16.811 17.411 16.998 17.291 17.111 17.521 16.741 16.791 15.591 14.181 8.281 9 8 4.051 13.991 15.55 8 17.0 31 17.041 17.811 17.291 17.42l 17.291 17.811 17.041 17.031 15.551 13.991 4.051 le l 12.248 14.901 16.161 17.281 16.851 17.241 16.941 17.411 16.stl it.048 16.211 15.141 12.538 10 l 12.171 14.431 16.06 l 17.271 17.201 17.818 17.241 17.411 17.201 17.271 16.06 8 14.831 12.171 11 1 4.561 14 448 15.441 16.331 17.021 16.541 16.761 16.611 17.101 16.261 15.321 14.111 4.641
  • 11 1 4.341 13.748 15.191 16.131 17.271 17.041 17.208 17.041 17.271 16,.131.15.198 13.741 4.368 .

12 1 9.lil 12.911 15.458 16.001 16.611 16.311 16.721 16.031 15.353 12.938 9.551 It i 9.201 12.57 f 15.191 16.06 8 17.4 38 16.73 8 17.03 8 16.06 8 15.19 8 12.571 9.201

  • 13 l 9.498 14.111 14.851 15.251 16.191 15.400 14.861 14.091 9.561 13 l 9.tel 13.741 14.431 15.551 16.621 15.55 8 14.831 13.141 9.:01 14 I 8.601 12.571 14.101 13.738 13.471 12.211 8.46l 14 1 4.361 12.171 13.991 13.748 13.991 12.171 4. 16 1 .

15 1 *a.401 10.601 8.358 15

, l 4.055 10.271 8.051 e P N M L K J N S P t D C B A 1i

Figure 2.4 AS$!M5LTW15! ACCUMULATED BUPNUP CG".PA4150M OF MEA 5G ED WITH P2101CTED (1000 r:.ontius

~

R P N M L K J M S P t 0 C B A 1 I a.tel 10.401 s.161

  • I eta 5unto I 1 1 2.421 1.271 1.411 i evP x O!PP 1 1 4.511 12.261 14.058 13.631 14.001 12.261 4.551 2 3

1 1.831 0.681 0.391 -1.131 0.021 0.731 t.251

. - - . . ~ . . . . -

l 9.311 13.881 14.471 15.401 16.331 15.48 8 15.001 14.C61 9.43l 3 3

1 1.151 1.001 0.231 -1.011 -1.788 -0.458 1.121 2.301 2.571 4

4 1 9.241 12.661 15.291 16.121 16.841 16.571 16.901 16.241 15.198 12.781 9.541 1 0.421 0.681 0.661 0.411 -0.901 -0.931 -0.781 1.141 1. 3.,1 1.671 3.691 1 8.321 13.671 15.141 16.061 17.108 16.881 17.071 16.971 17.301 16.261 15.211 14.191 8.771 5 3

l .0.42 8 -0.578 -0.311 -0.441 -0.981 -0.911 -0.781 0.411 0.171 0.431 0.131 3.231 4.921 1 12.221 14.231 16.031 17.081 16.871 17.601 17.141 17.631 16.931 17.108 15.961 14.941 12.421 6 6

t 0.418 0.291 -0.151 -1.141 -1.931 -1.138 -0.59) -0.968 -1.291 -1.028 -0.601 0.741 2.021 7

7 1 4.171 14.111 15.621 16.801 16.591 17.401 17.141 17.331 17.191 17.691 16.871 16.731 15.391 13.891 4.041 l 1.551 C.4SI 0.434 -1.371 -2.641 -2.201 -0.tal .0.511 -0.571 -0.661 -0.96 8 1.75 8 -1.041 -0.711 0.051 4 1 10.141 13.698 16.551 16.591 16.961 17.041 17.351 17.171 17.301 17.101 16.851 16.441 16.341 13.671 10.371 4 1 0.721 -0.691 0.411 -0.441 -1.401 -1.191 -0.331 0 101 +0.661 -0.831 -1.851 *1.711 -1.718 -0.851 1.058 9 l 4.171 14.04l 15.461 16.421 16.811 17.411 16.901 17.291 17.111 17.521 16.741 16.798 15.591 14.181 4.281 9 l 1.551 0.301 0.621 -1. 351 -2.211 2.251 -0.74 8 1.051 -1.621 -1.731 -1. 39 8 0.211 1.361 2.461

~.. ....... ...-1.221

......... . ........a.. ... .... _ ....s .. . ..~. . ~

It i 12.241 14.901 16.161 17.28l 16.888 17.241 16.941 17.411 16.811 17.041 16.211 15.141 12.531 10-l 0.541 0.441 0.611 0.061 -1.671 -3.171 -1.731.t.221 -2.251 -1.371 0.981 2.041 2.681 11 1 8.561 14.061 15.441 16.331 17.021 16.551 16.761 16.611 17.101 16.261 15.521 14.211 8.641 11

  • I 2.431 2.271 1.648 1.241 1.481 2.698 -2.5*l -2.481 -1.011 0.791 2.221 3.401-3.341 ...' *

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~ .

12 1 9.521 12.911 15.451 16.001 16.611 16.311 16.721 16.03 8 15~.35 3 '12.931 9.558 la 1 3.54l 2.731 1.761 -0.378 -2.481 -2.471 -1.811 0.171 1.091 f.871 3.471 13 l 9.495 14.111 14.all 15.251 16.191 15.401 14.861 14.091 9.561 -- ---- 13 1 3.20l 2.691 0.081 -1.981 -2.594 1.021 0.211 2.518 3.938 i &#1THMt71C AVG I

. . . . . ~ . . . - - . - . (PCT 01FF e 0.141 14 l a.601 12.571 14.181 13.731 13.871 12.211 8.461 ~ ~ - ~ ~ - - - - 16 1 2.841 3.241 1.351 -0.401 0.e61 0.301 1.171 15 1 STANDA80 Otv i l 4.401 10.601 4.351 1 AVG A05 PC7 l 15

, I e 1.03 l l 4.311 3.211 3.791 1 01FF e 1.43 I 8 P N N L K J M S P t D C S A Burnup Sharing (103 t1M D/ t1TU ) Burnup Tilt l Batch Cycle 1 Total I HW - 0.9972 I I i 1 15.93 15.93 i HE - 1.0019 l 2 16.46 16.46 I I 3 11.06 11.06 I SW - 0.9999 I I l Core Average 14.49 14.49 l SE -

1.0010 I I

FIGURE 2.5 NORTH RNNR 2 - CYCLE 1 .

BRTCH BURNUP SHORING SYMBOLIC POINTS ARE MERSURED ORTA BRTCH . I 2 3 SYMBOL: SOURRE STAR X 20000 ,

18000

/

16000

//

f 8

R 14000

[d f M H ,[

12000 z v/

h N 10000 ,

y

/ /

8000

/ '

/

" /

6000

/

U

  1. /

/

4000 /

/ /

2000 ' / /

O f ..

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 CYCLE BURNUP t MWO/41TV )

13

Section 3 REACTIVITY DEPLETION FOLLOW The primary coolant critical boron concentration is monitored for the purposes of following core reactivit.y and to identify any anomalous reactivity behavior. The FOLLOW 9 computer code was used to normalise

" actual" critical boron concentration measurements to design conditions taking into consideration control rod position, xenon and samarium concentrations, moderator temperature, and power level. The normalized critical boron concentration versus bearnup curve for the North Anna 2.

Cycle 1 core is shown in Figure 3.1. It can be seen that the measured data typic' ally compare to within 40 ppm of the design prediction. This corresponds to less than t0.4% delta M/K uhich is well uithin the 21%

delta K/K criteria for reactivity anomalies set forth in Section 4.1.1.1.2 of the Technical Specifications. In conclusion, the trend indicated by the critical boron concentration verifien that the cycle 1 core depleted as expected without any reactivity anomalies.

14

FIGURE 3.1 NORTH ANNA UNIT 2-CYCLE 1 CRITICAL BORON CONCENTRATION VS. BURNUP HFP-ARO X MEASURED PREDICTED 1400 1200, C

R I

T I 1000 C

B 0

R 800 ^^/Q 0

" k ss 8

^Tx e N

C 600 kx E

N k 3 T \

R g A *

^

T

! 400 **

l 0 k N

iM  %

200 7N 5 n

\\

%N 0 ,-

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 CYCLE BURNUP (MHD/MTU) 5

Section 4 POWER DISTRIBUTION TOLLOW l

Analysis of core power distribution data on a routine basis is necessary to verify that the hot channel factors are within the Technical Specifications limits and to ensure that the reactor is I

operating without any abncrmal conditions which could cause an " uneven" burnup distribution. Three-dimensional core power distributions are determined from movable detector flux map measurements using the INCORE5 computer program. A summary of all full core flux maps taken since the completion of startup physics testing for North Anna 2, Cycle 1 is given in Table 4.1. pouct distribution maps were generally taken at monthly '

intervals with additional maps taken as needed.

Radial (X-Y) core power distributions for a representative series of incore flux maps are given in Figures 4.1 through 4.3. Figure 4.1 shows a power distribution map that was taken early in cycle life.

Figure 4.2 shows a power distribution map that was taken near mid-cycle burnup. Figure 4.3 shows a map that was taken late in Cycle 1 life. Most of the radial power distributions were taken under equilibrium operating conditions with the unit at approximately full power. In each case, the measured relative assembly powers were generally within 2% of the predicted values with an average percent difference of approximately 1.2% which is considered good agreement. In addition, as indicated by the INCORE tilt factors, the power distributions were essentially symmetric for all cases.

16

An important aspect of core power distribution follow is the monitoring of nuclear hot channel factors. Verification that these factors are within Technical Specifications limits ensures that linear power- density and critical heat flux limits will not be violated, thereby providing adequate thermal margins and maintaining fuel cladding integrity. The Cycle 1 Technical Specifications limit on the axially dopendent heat flux hot channel factor, F-9(Z), was 2.10 x KCZ), where KCZ) is the hot channel factor normalized operating envelope. Figure 4.4 is a.

Plot of the KfZ) curve associated with the 2.10 F-9(Z) limit. The exially dependent heat flux hot channel factors, F-S(Z), for a representative set of flux maps are given in Figures 4.5 through 4.7.

Throughout cycle 1, the measured values of F-S(Z) were within the Technical Specifications limit. The maximum values for the Heat, Flux Hot Channel Factor measured during Cycle 1 are given in Figure 4.8. As ccn be seen from the figure, there was a 6% margin to the limit at the beginning of the cycle, with the margin generally increasing throughout cycle operation.

The value of the enthalpy rise hot channel factor, F-delta H, which in the ratio of the integral of the power along the' rod with the highe's t integrated power to that of the average rod, is routinely followed. The Tochnical Specifications limit for this parameter is set such that the critical heat flux (DNB) limit will not be violated. Additio'nally, the f

F-delta H limit ensures that the value of this parameter used in the LOCA-ECCS analysis is not exceeded during normal operation. The Cycle 1 limit on the enthalpy rise hot channel factor' was set at 17

_ _J

1.55 x (1+0.2(1-P)) x (1-RBp(BU)), where p is the fractional power level, and RBP(BU) is the rod bou penalty. The burnup values for Cycle 1 did not reach the level requiring implementation of the rod bou penalty. A summary of the maximum values for the Enthalpy Rise Hot Channel Factor measured during Cycle 1 is given in Figure 4.9. As can be seen from this figure, there was a 10% margin to the limit at the beginning of the cycle, with the margin generally increasing throughout cycle operation.'

The Technical Specifications require that target delta flux

  • values be determined periodically. The target delta flux is the delta flux which would occur at conditions of full power, all rods out, and equilibrium xenon. Therefore, the delta flux is measured with the core at or near these conditions and the. target delta flux is established at this. measured point. Since the target delta flux varies as a function of burnup, the target value is updated monthly. Operational delta flux limits are then established about this target value. By maintaining the value of delta flux relatively constant, adverse axial power shapes due to xenon redistribution are avoided. The plot of the target delta flux versus burnup, given in Figure 4.10, shows the value of this parameter to have been approximately -7% at the beginning of Cycle 1. After pt-pb
  • Delta Flux = ----- X 100 where pt = power in top of core (MW(t))

2775 pb = power in bottom of core (MW(t))

18

approximately two-thirds of the cycle, delta flux values had shifte'd to

07. and then moved to -27. by the end of Cycle 1. This power shift can also be observed in the corresponding core average axial power distribution for a representative series of maps given in Figures 4.11 through 4.13. In Map H2-1-26 (rigure 4.11), taken at approximately 1300 MWD /MTU, the axial power distribution had a cosine shape with a peaking i factor of 1.37. In Map H2-1-40 (rigure 4.12), taken at approximately 8,000 MWD /MTU, the axial power distribution had flattened with an axial peaking factor of 1.19. Finally, in Map H2-1-58 (rigure 4.13), taken at approximately 13,500 MWD /MTU, the axial power distribution was concave with an axial peaking factor of 1.18. The history of T-Z during the cycle can be seen more clearly in a plot of T-Z versus burnup given in Figure 4.14.

In conclusion, the North Anna 2, Cycle 1 core performed very satisfactorily with power distribution analyses verifying that design predictions were accurate and that the values of the hot channel factors were within the limits of the Technical Specifications.

19 u

e.

TABLE O.1 HORTH AtR4A 124IT 2 - CTCLE 1 StittARY OF ItCORE FLUX ttAPS FOR ROUTINE OPERATION 1 1 i i i i 1 1 2 1 1 i i e i l l i BUptil l l F-Q(Tl HOT l F-OHtHI HOT l CORE F(Z) l l 4l l l l l 1 l UP l IBAJ5C 1 CHAttiEL F ACTOR I CH14L. FACTOR I MAX l 31 QPTR l AXIALI NO.1 I ftAP l DATE i PSO /lP68tl D l l l lFIXYll l OFF l OF l 1 HO. 1 I MTu iszilSTEPSI 1 lAXIAll l I I lAXIAll i FtAX l l i SET ITHIMI

, i 1 1 1 1 IASSTIPIHlPolitTl F-Q(TilASSYlP!Hlf-DHfHilPOIt4Tl F(Z4l l MAX ILOCl (X) 18LESl i i 1 1 1._.1 1 l_1 1 1 l_.I i 1 1 I l_I I I '

i 1 1 I I i 1 1 1 I i 1 I i 1 1 I I I i i 26' 110-31-aol 13o31 9a1 210 i K 71 QIl 37 l 1.95a i K 71 eli 1.367 1 37 11.37211.45311.0041 NEl -a.atl 47 l

  • I I i 1 1 I I I I I I I i 1 1 1 1 1 I I I 2a:53112-22-a01 teo31 991 221 i K 71 QIl 38 l 1.924 i F 78 ail 1.373 1 37 11.34511.45111.004l SWI -7.621 44 5 1 1 I I I I I I I I I i 1 1 I I I I I i l 29 1 1-11-all 244111001207 i K 71 QIl 37 l 1.aas l K 71 QIl 1.370 1 37 11.32411.46011.004l SW1 -7.001 44 l l l 1 1 1 I i l I I i 1. I I I I I I I I I 30 1 1-12-all 24691 991 196 i K 71 QIl 3a l 1.947 l K 71 QIl 1.3701 37 11.35911.44011.0041 SHI-10.471 45 l i 1 1 I I I I I I I I I I I I I i 1 1 I I 32:611 2-12-a11 356911001 to5 i K 71 QIl sa 1 1.a29 i K 71 ell 1.361 1 37 11.2a911.43oll.0031 NEl -6.a01 45 I I I I I I I I I I i 1 1 I I i 1 1 I I I I 33 1 3- 9-all 4473110o1203 i K 71 QIl 3a 1 1.790 1 K 71 QIl 1.35a i sa 11.26411.43111.003I HEl -6.371 47 l o I I i 1 I I i 1 1 I i i l 1 1 1 1 1 I I U

l 34 1 4-14-a11 576011001 201 l K 71 QIl 3a i 1.715 i F 71 All 1.347 l 3a 11.22711.42511.006l HEl -6.231 42 l l l 1 1 1 I I I I I I I I i 1 '1 1 1 I I i 35 14-22-a11 6o9011001 212 i K 71 QIl 3a i 1.660 i K 71 QIl 1.341 1

  • 3a 11.19211.41a11.0051 NEl -3.63143 I i 1 1 1 I I I i 1 I I I i 1 1 1 1 I I i 1 3 (731 5-22-all 67aol10ol 201 1 G 61 IAl 45 l 1.491 l K 71 QIl 1.335 1 46 11.22911.42011.0021 NEl -7.311 44 l l I I I I I I I I I I I I i 1 1 1 1 1 I HOTES8 HOT SPOT LOCATI0l45 ARE SPECIFIED BY GIVIIG ASSET 1BLY LOCATI0tts (E.G. H-a IS THE CEllTER-OF-CORE ASSEMBLYle FOLLOWED BY THE PIH LOCATIoli IDEf0TED BY THE "Y" C00R0!!! ATE WITH THE SEVENTEEN ROWS OF FUEL RODS LETTERED A THROUGH R AfD THE "X" C00Rolt4 ATE DESIGNATED IN A sit 1ILAR ttAttlER).

Ir4 THE "Z" OIRECTI0tl THE CORE IS DIVIDED INTO 61 AXIAL POINTS STARTIllG FRott THE TOP OF THE CORE.

1. F-Q(Tl ItCLLEES A TOTAL LRCERTAINTY OF 1.05 X 1.03
2. F-OHIH) IICLUDES A #1EASUREttENT 12 CERTAINTY OF 1.04
3. FIXVI ItCLUDES A TOTAL UICERTAlt4TV 0F 1.05 x 1.03.
4. QPTR - QUADRANT POWER TILT RATIO. ,

. 6

5. MAP 27 HAS TAKEN DURItG A POWER LEVEL TRAt451Elli Als NAS tl0T AtlALYZED.
6. itAP 31 WAS A QUARTER CORE #1AP.
7. t1APS 36 Ato 37 WERE QUARTER CORE t125.

= - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Y '

TA8LE 4.1 (CONT.I l l 1 EURill l i F-Q(il HOT l F-DHttil HOT l CORE FtZI l l 4l l l l l l UP l lB Al8( l CHAlstEL F ACTCR I CHHL. FACTOR l HAX l 31 QPTR 1 AXIAll NO.I

  • I HAP l Das" i F1WD/IPWRl D l l l lFIXYli I OFF l OF I l 640. I i MlU ltXilSIEPO l JAXIAll l l l IAXIALI I HAX l l l SET ITHIttl l l l 1 1 4 AS5YlPIHlPO!rlTl F-Q(TII A55flPlillF-oHINitPOIt4Tl F(Zil l HAX lLOCl 6%I ISLESI I I I l __ i i I__ I i 1 l__ I I I I I l ___ I I I l 4o8811 C-26-811 8o1111001 2o3 l J 61 181 47 l 1.631 l J 61 PIl 1.326 4 46 11.19211.42011.o02 8 NEl -4.981 43 l l 1 1 I i i i 1 1 1 I I I I I i 1 1 1 l l 41 l 9-14-811 846211001 212 l K 91 IQI 13 l 1.560 l K 91 IQI 1.307 l 19 11.15 11.39811.o071 HEl -1.271 44 l I I I I I i 1 I l l 1 1 I I I i i 1 I i I 4t(9111o-12-811 93611 961 211 l Clol All 13 1 1.668 i Clol AI) 1.385 l 14 11.15o11.496l1.0161 SEl -o.3ol 38 I I I i 1 1 1 I I I I I I i 1 1 I i 1 1 I i 146 1o111o-21-811 96991 971 222 1 Jo61 181 13 l 1.6o4 l Fo71 BIl 1.294 l 13 11.16911.39411.0038 NEl 1.181 44 l  !

I I I I I I I I I I I I I i 1 1. ' I I I I

  • I 47 110-23-811 97721 971 222 i Fo71 811 13 1 1.574 i Fo71 all 1.297 l 13 11.14311.39411.0051 NEl -o.471 43 l I i i l I i 1 1 i i 1 1 I i 1 1 I I i 1 1 48 110-t6-811 98831 971 to7 I Eo61 ett 481 1.55o 1 Fo71 EFI 1.291 1 47 11.16711.38sl1.co61 HEl -3.481 42 l l 1 I I i l I 1 I I i i 1 1 1 1 1 I I I I 49 11o-29-811 99911 971 tot I cool IAI 48 l 1.594 1 Jo81 JIl 1.290 1 48 11.19411.38311.co61 HEl -5.831 43 i i i i 1 1 1 1 1 1 1 I i 1 1 1 1 I i i i i so 11o-30-8111oo321 vil 19s i Forl BIl 53 l 1.623 l Fo71 EFI 1.286 1 48 11.21911.37911.o04l HEl -8.171 43 l l l l l 1 1 I I I l l l 1 1 1 1 I I I i l 51 111- 1-8111o1111 961 189 i Fo71 EFI s3 l 1.6ss I Ho71 IHI 1.288 1 48 11.23811.37411.co31 SEl -9.6o1 41 1 1 I I i 1 1 1 1 1 1 1 1 1 1 1 i i i 1 I i st 111-12-8111o4741 971 a18 i Fort EFI 13 1 1.566 i Fo71 EFI 1.289 1 13 11.15411.37911.00s1 HEl -o.ot! 43 l

" 1 I I i 1 1 'l i I I I i 1 1 1 1 1 1 I i l 53 112-12-8111163311001 219 i Fo71 EFI It i 1.s64 i ro71 EFI 1.285 1 53 11.14111.38411.0051 HEl -1.151 43 l l l 1 1 I i 1 I I i i I i i l 1 1 'l i I l 54 1 1-14-621126071 971 218 l Ho91 IJl 11 l 1.585 1 Ho91 IJl 1.278 l 12 11.16011.38111.o03l SEl -o.431 41 1 1 1 I I I I I i i I I I I I I i 1 1 I I 1571181 1-29-8211316411001 224 i Ho91 rital 11 1 1.552 I lio91 tell 1.259 I It 11.14911.36711.0071 HEl -0.411 41 l' 1 I I I I I I 1 1 I i 1 1 I I I I I i 1 '

1 50 1 82113so8l lool 221 l Llol NL1 53 l 1.542 i Ho91 tell }.261 1 53 11.17911.36111.co31 HEl -2.t'31 42 1 O. NAP 39 OID 130T HAVE THE REQUIRE 9 tAA1BER OF Tittr1BLE f AfD HAS 140T AllALYZED. 4

9. NAP 42 HAS TAKEtt USIIG A F11tiltitAt IRA 10ER OF THIt1 DEES AfD WAS ACQUIRED OVER A RELATIVELY LENGTHY PERIOD ,

0F Tit 1E DUE TO INCOHE F LUX DETECTOR Itt0PERABILITY.

10. t1APS 43 AfD 44 NERE QUARTER CORE HAPS AfD NAP 4s HAS HOT AllALVZED DUE TO DATA RECORDitG PROOLEttS.
11. NAPS ss AfD 56 WERE QUARIER CORE NAPS.

I i

\

i

e l

l Pigure A.1 NORTH ANNA UNIT 2-CYCLE 1 ASSEMBLWISE POWER DISTRIBUTION N2-1-26 A P la 19 L K J H 9 F E D C B A

. IrEASURED . . 0.58 . 9.*6 . 0.57 . . MEASUPEO . 1

.PC7 01FFINtHC2. . 3.4 . J.3 . 2.2 . .FC7 01Ff ERDC2.

. 0.57 . 0.85 . 0.97 . 0.90 . 0.97 . 0.8. 0.57 . 2

. 1.0 . 0.4 . 0.6 . 0.5 . 0.7 . 1.0 . 1.0 .

. 0.62 . 0.90 . 0.96 . 1.09 . 1.15 . 1.18 . 0.99 . 0.91 . 0.62 . 3 0.0 . -0.1 . -0.2 . =0.8 . -0. 9 . -0.4 . 0.9 0.9 . 1.0 .

. 0.C2 . 0.84 . 1.80 . 1.12 . 1.16 . 1.19 . 1.16 . 1.12 .'1.00 . 0.84 0.64 4

. -0.4 . -0.2 . 3.1 . 0.1 . -0.6 . -0.7 . -0.4 . 0.4 0.3 . -0.1 . 3.9 . /

0.54 . 0.49 . 0.99 . 1.12 . 1.17 . 1.20 . 1.16 . 1.21 . 1.18 .' 1.12 . 1.00 . 0.94 . 0.59 . 5

. -1. 7 . 1. 7 . -0. 9 . -0. 5 . -0.4 .

  • 0. 7 . -0. 7 . -0. 4 . 0.1 . 0.1 . -0.1 . 3.9 . 3.9 .

.s..........................................................................................

. 0.e5 . 0.99 . 1.12 . 1.18 .1.22 . 1.22 . 1.22 . 1.22 .1.22 . 1.17 . 1.11 . 0. 99 . 0.07 . 6

. 0.5 . 0.9 . 4.1 . -0. 4 . -0. 3 . -0. 6 . -0. 7 . -0. 8 . -0.5 . -0. 4 . -0. 6 . 3.1 . 2.2 .

. 0.5 7 . 0.97 . 1.11 . 1.16 . 1.19 . 1.11 . 1.22 . 1.16 . 1.21 . 1.22 . 1.Z1 . 1.16 . 1.11 . 0. 97 . 0.57 . 7

. 2.4 1.1 . 0.0 . -0.5 . -1.7 . -1.3 . -0.8 . -0.9 . 0.4 . -0.6 . -0.6 . -0.8 . 0.7 . 1.2 . 2.1 . '

. 0.75 . 0.14 . 1.17 . 1.19 . 1.16 . 1.22 . 1.17 . 1.20 . 1.16 . 1.22 . 1.15 . 1.10 . 1.17 . 1.00 . 0.76 . 8

. 1.9 1.0 . 0. 5 . -0. 0 . -0. 7 . -0.6 . -0. 5 . -0.4 = -0. 9 . -0. 9 . -1. 3 . -0. 0 . 0.7 . 2.1 . 3.1 .

. 0.57 . 0.96 . 1.09 . 1.16 . 1.21 . 1.12 . 1.20 . 1.16 . 1.22 . 1.02 . 1.20 . 1.16 . 1.11 . 0.94 . 4.38 . 9

. 2. 0 . 0. 3 . +0. 6 . -0. 6 . -0. 5 . -1.1 . -1. 2 . -1. 0 . -0. 9 . -1. 0 . -1. 4 . -0. 6 . 1.2 . 2.2 . 3.2 .

0.45 . 0.99 . 1-13 . 1.19 . 1.22 . 1.29 . 1 21 . 1.21 . 1.21 . 1.17 . 1.12 . 0.99 . 0.87 . 10

. 0.2 . 0.2 . 0.7 . 1.0 . 0.1 . -2.1 . -1.4 . -1.4 . -0.9 . 1.1 . 0.4 0.4 2.5 .

...................................................................e...p....................

. 0.57 . 0.92 . 1.01 . *. 14 1.17 . 1.19 . 1.14 . 1.19 . 1.17 . 1.13 . 1.01 . 0.92 . 0.57 . 1%

. 1.3 . 1.3 . 1.3 . 1. 4 . -0. 7 . 1. 9 ' . -1. 9 . - 1. 9 . - 0. 4 . 0.8 . 1.4 . 1.8 . 0.8 .

. 0.63 . 8.06 . 1.01 . 1.12 . 1.14 1.17 . 1.15 . 1.11 . 1.00 . 0.86 . 0.63 . 12

. 2.5 . 2.0 . 1.4 . -0.1 . 1. 9 . -1. 9 . -1.6 . -0.6 . 0.5 . 1.9 2.4 .

. 0.63 . 0.9? . 0.90 . 1.00 1.14 .1.09 . 0.98 . 0.9F . 0.63 . 13

. 2.0 . 1.5 . +0.0 . -1.8 . -1.6 . -1.2 . -0.6 . 1. 6 . _2.6 .

. 0.57 . 0.47 . 0.97 . 0.98 . 0.95 . 0.44 0.56 . 14

. 1.5 . 3.1 . 1.4 0.3 . -1.2 . -0.7 . -0.5 .

. 0.59 . 0.75 . 8.54 . 15

. 4.7 . 1.8 . -1.2 .

57APCAFC DEVIA7ICH e 0.845 AVERAG2 PCT. O!7FERDCT e 1.1

SUMMARY

MAP MO: M2-1-26 DATE: 10/31/30 POWER: 98%

CONTROL ROD POSITIONS: T-2(T) = 1.953 .9PTR:

D DAHK AT 210 STEPS T-Dl!(H) = 1.367 MM 0.997 1 NE 1.004

___________[__________

T(0) = 1.372 su 1.00*  ! SE 0.993 F(XY) = 1.453 3UEMUP = 1303 MWD /MTU A.0 = -3.32(%)

4. a..

.-: Igure: .r+ . 2 NORTH ANNA UNIT 2-CYCLE 1 ASSEMBLWISE POWER DISTRIBUTION N2-1-40 I

3 p N N L K J H 8 F t 0 0 S A l rtASU2t3

. r2ASURED . . 0.55 . 0.67 . 0.34 . . . 1

. PCT 01FFutHC2. . 1.6 . -1.9 . -0.9 . . PCT 31FFERENC2.

l l ................ .................................................. ................

. 0.56 . 0.85 . 0.95 . 3.91 . 0.94 . 0.83 . 0.59 2 l

. -3.9 . 1.7 . -0.1 . -0.2 . -1.4 . -1.0 . 0.6 .

. 0.63 . 0.95 . 1.05 . 1.06 . 1.13 . 1.06 . 1.04 . 0.98 . 0.66 . 3

. -2.5 . -2.3 . 0.6 . -0.0 . -0.2 . =0.3 . 0.4 1.0 . 2.2 .

4

. 0.63 . 0.87 . 1.06 . 1.12 . 1.19 . 1.14 . 1.15 . 1.12 . 1.08 . 0.89 . 0.66 .

. 3.1 . -1.3 . -0.9 1.2 . 0.5 . 0.4 . -0.0 . 1.5 . 1.1 . 0.9 . 1.5 .

. 0.57 . 0.95 . 1.07 . 1.11 . 1.20 . 1.17 . 1.21 . 1.17 . 1.20 . 1.12 . 1.07 . 0.98 . 0.60 . 5

. -2. 3 . - 2. 3 . -0.6 . 0.1 . 0.6 . 1.1 . 1.0 . 0.5 . e.8 . S.5 . 9.2 . 1.1 . 2.9 .

/ ............................................................................................

. 0.83 . 1.04 . 1.11 . 1.21 . 1.16 . 1.25 . 1.20 . 1.24 . 1.15 . 1.19 . 1.11 . 1.04 . 0.54 6

. -0. 3 . -0. 3 . -0. 0 . 0.2 . 0.9 . 1.5 . 1.5 . 0.6 . 0.5 . -0.1 . -0.0 . 0.1 . 0.7 .

1.17 . 1.15 . 1.43 . 1.20 . 1.24 . 1.19 . 1.23 . 1.16 . 1.17 . 1.05 . 0.9% . 0.54 . 7

. 0.54 . 0.95 . 1.04 .

. -0.5 . 0.4 . -0.2 . -0.5 . -1.0 . 4.2 . 1.2 . 1.3 . 0.7 . 0.5 . -0.5 . -1.2 . -1.3 . -1.6 . -1.4 .

0.68 . 1.91 . 1.13 . 1.14 . 1.21 . 1.19 . 1.26 . 1.23 . 1.23 . 1.19 . 1.19 . 1.12' . 1.12 . 0.91 . 0.69 . 8

. -0.7 . -0.6 . -0.5 . 0.1 . 1.1 . 1.2 . 1.4 1.7 . 0.9 . 0.8 . -0.8 . -1.3 . -1.3 . -0.5 . 0.4 .

9

. 0.54 . 0.95 . 1.05 . 1.17 . 1.17 . 1.23 . 1.17 . 1.23 . 1.19 . 1.23 . 1.15 . 1.16 . 1.05 0.96 . 0.!S .

. 0.5 . -1. 0 . -1. 3 . - 0.5 . 1.1 . -0.0 . -1.2 . 0.5 . 0.6 . 3.4 . -1.1 . -2.0 . -1.2 . -0.0 . 1.0 . *

. 0.8! . 1 G, . 1.11 . 1.21 . 1.15 . 1.21 . 1.18 . 1.22 . 1.15 . 1.19 . 1.12 . 1.04 . 0.44 10

. -0.4 . -0.4 G.8 . 1.4 3.5 . -1. 3 . -0. 3 . -0.4 . 0.1 . -0.3 . 1.1 . -0.3 . 0.8 .

. 0.59 . 0.97 g 1.08 . 1.13 . 1.19 . 1.15 . 1.18 . 1.15 . 1.19 1.12 . 1.09 . 0.98 . 0.5S . 11

. S.3 . 0.3 . 0.8 . 1.8 . -0.2 . -1.4 . -1.4 . -1.3 . -0.1 . 1.0 . 2.1 . 1.3 . 0.3 .

. 0.65 . 0.89 . 1.09 . 1.11 . 1.16 . 1.12 . 1.17 . 1.10 . 1.04 . 0.90 . 3.47 . 12

. 1.1 . 1.4 1.8 . 0.2 . -1.5 . -1.5 . -1.2 . -4. 2 . 0. 7 . 2.2 . 3.0 .

. 0.65 . 0.9F . 1.04 . 1.co . 1.12 . 1.05 . 1.04 . 0.98 . 0.67 . 13

.  ?. 7 . e.4 . -0.5 . -1.f . -1.5 . -1.0 . -0.4 . 1.3 . 3.0 .

. 0.59 . 0.05 . 0.96 . 0.92 . 0.95 . 0.83 . 0.58'. 14

. 0.4 . 1.8 . 0.8 . 0.4 . -1.0 . -0.4 . -0.4 0.56 . 0.73 . 0.54 . 15

. 3.0 . 2.8 . 3.0 .

STAPCMD 2!V3ATICH e 0.754 AVUAGE PCT. DIFFERE!:22 a 1.0

SUMMARY

NAP HO: H2-1-40 DATE: 8/26/81 POWE2: 1007:

CONTROL ROD POSITIONS: T-S(T) = 1.631 SPTRr D BANK AT 203 STEPS T-DH(N) = 1.326 NW 0.998 i NE 1.002

___________g__________

F( ) = 1.192' SW 1.001 1 SE 0.999 F(XY) = 1.420 BURNUP = 8011 MWD /MTU A.0 = -4.93( )

.)

Figure 4.3 ,

NORTH ANNA UNIT 2-CYCLE 1 l

l I

ASSEMBLYWISE POWER DISTRIBUTION N2-1-58 P M M L E J N O F E 3 C 8 4 0

................ 1 titAsunt3 . . 0.60 . 0.74 . 0.59 . . MEAtuata .

3.5 . 3.4 . 2.4 . . PCT 01FFERENCE.

.FCT 01FFE2tHCE. .

................ t

. 0.61 . 0.04 . 1.01 . 0.95 . 1.01 . 0.07 . 0.62 .

. 0.1 ,. -1.7 . 0.9 . 0.8 . 1.0 . 1.2 . 2.0 .

................................................................ 3

. 0.6 7 . 1. 01 . 1. 0 6 . 1.e4 . 1.11 . 1.c6 .1.09 .1.03 1.9

. 0.69 .

-0.6 . -0.7 . -1.5 . -1.7 . -1.7 . 0.4 . 14. 2.9 .

. 0.67 . 0.91 . 1.10 . 1.09 , 1.16 . 1.10 . 1.17 . 1.11 . 1.12 . 0.91 . 0.68 .

. -0.6 . -0.4 . -0.2 . 0.0 . 0.5 . -0.5 . 0.0 . 1.4 1.0 . 0.8 . 1.7 .

............................................................................................ 5

. e .61 . 1. 00 . 1. 0 9 . 1. 09 . 1.17 . 1.11 . 1.17 . 1.12 . 1.19 . 1.10 . 1.10 . 1.02 . 0.64 .

0.5 . -0.3 . 1.1 . 3.8 .

. -1.1 . -1.1 . -1.0 . -0.9 . -0.5 . 0.1 . -0.0 . 0.5 . 1.1 .

............................................................................................ 6

. 0.46 . 1.08 . 1.09 . 1.16 . 1.11 . 1.18 . 1.12 . 1.18 . 1.12 . 1.17 . 1.08 . 1.04 . 0.87 0.0 . 0. 5 . -0. 5 . -0.9 . -0.1 . 1.6 ..

0.4 0.4 . -0.2 . -0.9 . -0.2 . 3.1 . 0.1 .

7

. 0.59 . 1.02 . 1.08 . 1.15 . 1.08 . 1.16 . 1.11 . 1.18 . 1.12 . 1.18 . 1.10 . 1.14 . 1.04 . 0.99 . 0.37 .

3.9 . 2.4 1.8 . -1.4 . -1.1 . -4.0 . -0.2 . -0.0 . 0.1 . 0.4 -0.9 . -C.0 . -1.5 . -1.1 . -0.5 .

4

. 0.73 . 0.9 F . 1.15 . 1.10 . 1.15 . 1.10 . 1.18 . 1.13 . 1.17 . 1.11 . 1.15 . 1.08 . 1.11 . 0.9 5 . 0.72 .

-2. 3 . -2.1. -1.5 . 0.5 . 1.8 .

  • t.9 . 2. 3 . 1.8 . -0.6 . -1.9 . -1.2 . 3.2 . 0. 7 . -0.1 . -0.2 .

.......................................................................................................... 9

. 0.39 . 1.01 . 1.06 . 1.15 . 1.10 . 1.16 . 1.09 . 1.17 . 1.11 . 1.17 . 1.09 . 1.15 . 1.05 . 1.01 . 0.59 .

-0. 3 . -0. 3 . -0.4 . -2.5

-1.8 . -0.2 . 1.3 . 2.8 .

2.9 1.5 . 0. 0 . -1.2 . -1.6 . -2.0 . -4.4 .

10 0.45 . 1.08 . 1.10 . 1.19 . 1.11 . 1.14 . 1.10 . 1.16 . 1 11 . 1.16 . 1.11 . 1.09 . 0.88 . 1.4

. -0.0 . -0.0 . 0.6 . 0.9 . -0.3 . -2.9 . -1.5 . -1.5 . -0.4 . -1.0 . 1.4 . 2.5 .

............................................................................................ 11

. 0.62 . 1.03 . 1.12 . 1.11 . 1.16 . 1.08 . 1.14 . 1.03 '. 1.17 . 1.11 . 1.13 2.4

. 1.04 . 0.62 .

2.4 . 1.4 e

. 1.1 . 1.1 . 1.3 . 1. 6 . -1. 0 . -2. 7 .* - 2. 8 . - t . 7 . -0. 4 . 0.9 .

. 0.69 . 0.92 . 1 12 . 1.09 . 1.14 . 1.08 . 1.15 1.09 . 1.11 . 0.93 . 0.70 .

12

. 2.3 . 1.0 . 1.6 . 0.4 . -2.4 . -t.4 -1.5 . -0.0 . 0.9 . 2.5 . 3.5 .

13

. 0.69 . 1.04 . 1.08 . 1.04 . 1.11 . 1.05 . 1.08 . 1.03 . 0.70 .

. 2.5 . 2.7 . 0.2 . -1.8 . -1.8 . -0.4 . 0.6 . 2.0 . 3.5 .

14

. 0.63 . Osat . 1.03 . 0.96 . 0.99 . 0.46 . 0.62 .

. 2.7 . 3.8 . 2.0 . 1.7 . -0.4 . 0.6 . 0.6 .

. 0.61 . 0.75 . 0.61 .

15

. 5.1 . 5.1 . 5.1 .

A[tRAGEPCT.O1FFERENCEe 1.4 17DCA23 OtVIA7T0t: a 1.092

SUMMARY

MAP MO: N2-1-58 DATE: 2/ 8/82 POWER: 100%

CONTROL ROD POSITIONS: T-S(T) = 1.542 QPTR D BANK AT 221 STEPS T-DH(N) = 1.261 NW 0.997 i NE 1.003

___________l__________

T(0) = 1.179 SW 1.000 l SE 1.000 F(XY) = 1.361 BURNUP = 13508 MWD /MTU A.0 = - 2 . 2 3 ( ** )

  • 4

Figure 4.4 HOT CHANNEL FACTOR NORMALIZED OPERATING ENVELOPE .- .

(6.0 ,1.0)!

1.0

~~ - --'- ~~ "~ ~ ~ - - ~ ~ - ' ~ ~~

.a ( l1. 01 ,0. 94) --

.i 0.8 __

- r.

A s _.

._. _z -._.-m._._.

_ _g ,

\g _.. __

c W 0.6 .i __

. s 2 __

_: 4 h .

I '

-4 o

- - (12.0 .0.48)- .E- --

, 0.4 2 E_ . _;

-EZ

+

w ,

+---

-.M _ - - i-_--.s_.-- _ ..

+

. - _ _. _ _ . _ , - . . - , - r-._, . . . - . _ - . .._ . - _ -.

09 .._

~...- , _ . .~

b_,_ ,_. __ b ._ ._ .

V ~~~V _ **C XL

'r* -fb - ZC1

.____e._._._ _ _ _ . . . _ . _ _ _ _ - _ . . _ ' ^ ^ ~_ _ .

e_

e- +- -- e.e- e-- ------e.- -

6

~~

~~~~-~~~~T

^

==r------ .-- i 0

0 2 4 6 8 10 12 CORE HEIGHT (Fr. ) TOP BOTTOM eme es

-s Ft.gure 4.5

, NORTH ANNA UNIT 2-CYCLE 1 1

T HEAT FLUX HOT CHANNEL FACTOR, F_(Z)

M N2-1-26 2.5 *

. ~

s . .

v '

. m e cr 2.0 S -

v . XXXXX

. X X XXXXX

% . XXX X X O ,

x x b< . X X X X XX XX

. X b . X XX g . X W 1.5

  • E . x X Q . XX

. X XX U . X X H

x

X x E. .

X h . X .

g a

u.

1.0 *

. X X.

QLaJ

. X X

. X

X 0.5  ; X x

.X x

x

. X 0.0 .

I 1 I ...I...  ! ...I....I. . .I....I....I ...I.. I...I 61 50 40 30 20 10 1 BOTTOM AXIAL POSITION (NODES) TOP 26

Figure 4.6 NORTH ANNA UNIT 2-CYCLE 1 T

HEAT FLUX HOT CHANNEL FACTOR, F,( Z) x N2-1-40 2.5 .

g . .

Hc 20

  • v M .

C .

b

. XX 6 . yv xxx g

. XXXX XXXXXXX XXXXXX XXXXXX w 1.5 . x X X X x x xxx Z . X X N

'q . X X

- . X X X C . X

. X g

h .

- X .

X X .

w 3 1.0 .

Xx x

~

H .

y . . X

= .N 4 X 0.5 .

. xx

+

0.0

! . . I....I....I....I....!....I....I....I....I....I....I...I ol 50 40 30 20 10 1 TOP AXIAL POSITION (NODES) 27

Figure 4.7 NORTH ANNA UNIT 2-CYCLE 1 T

HEAT FLUX HOT CIRNNEL FACTOR, mF (Z) x N2-1-58 2.5 .

. ~

- 2.0 + - -

N .

v

  • H Cf A -

v .

W .

g .

- XX d 1. 5 . x x -

xxxxx

- X X XXXX

  • X 4 -

X XX XXX X X y *

,X X X

XXXX XX XXXXXXX XX X z X X XX

< - X X X XX X H -

. x 0 .X 1.0

  • x p -X X

4 - X .

A .

X H X W -

0.5 +

0.0 .I..

f ..Z....I.. I  !. . . T T T I T T T 61 50 40 30 20 10 1 BOTTOM AXIAL POSITION (NODES) TOP i

O i

FIGURE 4.8 NORTH ANNR UNIT 2 - CYCLE I MAXIMUM HERT FLUX HOT CHANNEL FRCTOR VS. BURNUP

- TECH SPEC LIMIT X MERSURED VRLUE 2.2 i

2 .1 .

M R

X 2.0 M x U

M x 1.9 x E

R y T

1.8 x L

U '

X x 17 x 0

T 3

C 1.6 H x A ,

x x x N x N

E 1.5 L

F R

C 1. 4 T

0 R

1.3

'l

1. 2 -

0 2000 4000 6000 8000 10000 12000 14000 16000 CYCLE BURNUP (MHD/MTUI 29

. FIGURE 4.9 1

l NORTH ANNA UNIT 2 - CYCLE 1 ENTHALPY RJSE HOT CHANNEL FACTOR VS. BURNUP 1.60 -

1.55 E 1.50' N -

T H -

A L 1.45 P

Y R

I 1.40 a

^

E

^ a H a 0 1.35 T  :

~

3 E

g H 3 R 1.30 N a 3 M A E

L A 1.25 F

A C

T 0 1.20 R

1.15 1.10 , ,

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 CYCLE BURNUP (MHD/MTU) 30

-i----

FIGURE 4.10 NORTH ANNA UNIT 2 - CYCLE I TARGET DELTA FLUX VS. BURNUP 10 l

8 6

T A

R G 4 E

T 0

E 2 L

T A

F 0 o a a

~

X a

1 -2, a N

P E

R -4 C

E .

~

N T

-6  :.

a L L a o a a

-6 0 2000 4000 60b0 8000 10000 12 BOO 14000 16000 18000 CYCLE BURNUP (MWO/MTU) 31

p-Figure 4.11 NORTH ANNA 2-CYCLE 1 CORE AVERAGE AXIAL POWER DISTRIBUTION N2-1-26 1.5 1 F

Z

= 1.372 J

  • xxx i A. O. = -8.8 x ,x,,

1 xxx x x "x

. a u x -

x*= x

~

1.2 . - xx i

j *

. x M xx j x x

, x

. x x

~

0.9 ,

m  ? x o  :

H 1 x x 1 x E a C .

5 n

0.6 j~

x x

N w

x 0.3 1*

'j x i w i

0.0 41..... .. .I ... ....l.........l.........l.........l.. ......I 61 50 40 30 20 10 1 BOTTOM AXIAL POSITION (NODES) TOP 30

Figure 4.12 NORTH ANNA L* NIT 2-CYCLE 1 CORE AVERACE AXIAL pot.'ER DISTRIBUTIO!: y C

N2-1-40 l

  • 1.5 -

~

F = 1.192 Z

A. O. = -5.0 4

A 1.2 4 _MMM, M M MMMMM MMMM

M M M

M M

= M MM y

M . M

. x ,

M M N 0.9 a.

_ M C "

W .

M N

e5 M M

g -

o  !

z -

M 0.6 - '

N

  • M

.N

~

.M

= M n

d e A 0.3 4 x

a

  • i 0.0 al... . ...\.. . ... t ..... . l.. . . \.... . . . t. . . . . t 61 50 40 30 20 10 1 BOTTO't AXIAL POSITION (NODES) TOP 33 I

e a _ _ _ _ _ _ _ _ _ _ _ _ _ _

Figure 6.13 NORT11 ANNA UNIT 2-CYCLE 1 CORE AVERACE AXIAL POb'ER DISTRIBUTION N2-1-58 1.5-j 'F = 1.179 ,

7 j A. O. - -2.2 1.2 3

    • x 4 xxx *
x x x* x
  • xx?
  • 4 x
  • xx x
    • x x x x
      • x x xxxx x

x* !x

  • x
  • 4 x xx x x

0.9 .:

x x -

  • x a e c 4*

taJ N  : x m .* x 2  :

4 '

x 7

x 3

7 0.6  :

m 7x" N  :

w ** x 5 j

  • i
  • 7 0.3 j a

A a

'i 0.0  :

  • l. t I t i I . J 61 50 40 30 20 ' 10 1 BOTT051 AXIAL POSITION (NODES) TOP 3h

Figure 4.14 NORTH ANNA UNIT 2 - CYCLE 1 CORE RVERAGE RXIAL PEAKING FACTOR. F-Z VS. BURNUP l .4 I

a a

b u

1.3 a

R -

X e

i R

L .

^ 6 P

E R

K 1.2.

I a N

G A F 3 A A . A C

T a

O R

11 4

1. 0-2000 4000 6000 8000 10 BOO 12000 14 00 16000 180b0 CYCLE BURNUP (MWD /MTUI w- _ . . _ . .

Section 5 PRIMARY COOLANT ACTIVITY TOLLOW Activity levels of iodine-131 and 133 in the primary coolant are important in core performance follow analysis because they are used as indicators of defective fuel. Additionally, they are also important with respect to the offsite dose calculation values associated with accident analyses. Both I-131 and I-133 can leak into the primary coolant system throught a breach in the cladding. As indicated in the North Anna 2 Technical Specifications, the dose equivalent I-131 concentration in the primary coolant uns limited to 1.0 micro-Ci/gm for normal steady state operation. Figure 5.1 shows the dose equivalent I-131 activity level history for the North Anna 2. Cycle 1 core (the demineralizer flow rate averaged 80 gym during power operation). The data demonstrates considerable scatter due to the erratic power history, however, the trend shows that during Cycle 1, the core operated substantially below the 1.0 micro-C1/gm limit during steady state operation (the spike data is associated with power transients and unit shutdoun). Specifically, the avarage dose equivalent I-131 concentration of 2.6 x 10-2 micro-Ci/gm is less than 3:: of the Technical Specifications limit.

The ratio of the specific activities.of I-131 to I-133 is used to characterire the type of fuel failure which may have occurred in the reactor core. Use of the ratio for this determination is feasible because I-133 has a short half-life (approximately 21 hours2.430556e-4 days <br />0.00583 hours <br />3.472222e-5 weeks <br />7.9905e-6 months <br />) compared to that of I-131 (approximately eight days). For pinhole defects, where 36

I 1

{

the diffusion time through the defect is on the order of days, the I-133 decays out leaving the I-131 dominant in activity, thereby causing the ratio to be 0.5 or more. In the case of large leaks, uranium particles in the coolant, and/or " tramp" uranium *, where the diffusion mechanism is negligible, the I-131/I-133 ratio will generally be less than 0.1.

Figure 5.2 shows the I-131/I-133 ratio data for the North Anna 2, Cycle 1 core. These data generally indicate there were probably pinhole defects in the fuel used during Cycle 1.

"" Tramp" uranium consists of small particles of uranium which adhere to the outside of the fuel during the manufacturing process.

37

1 F;GURt 5.1

~

NORTH ANNA UNIT 2' . CYCLE 1 1 DOSE EQUIVALENT I-131 vs. TIME g , {TECHNICaLSrtClr!CnTICNSLjrt!T 2

3 , o 8 o -

e

_: so 8. I

  • 8 e a .

og $3 P

'S e*L e* a_ s e o e

  • e ee

?g- , , ,

o F e

.e

. e o

e  %

e-g *g a 55

' e*8" . o e

$:- o gg e o EI

) o,.] e m U 6 " e i

c - e oc -

U -

g e o Et - ege e e

! e385

$$ ECD O e S  :

g, f

e
8 T-o

~

- - , - -- - -. ,. 10 0

.- 7 so 2:

'aut auo 'str 'act sov att san'rts ' nan ' ara 'nny 'aum but huo 'str 'oCT kov 'ott ;an'rts kan 1960 1981 1982 u-c e el.*

~

38 I

- FlouRg 5.2 NORTH RNNA UNIT 2 - CYCLE 1 I-131/ I-133 RCT I V I TY R AT IO vs. TIME 4

m 4

e E

A O

% ,y nu G"

E O b

>- D 8 6 3

CE

>~

o .

s I

e ,--

b o

- o &

E b c' s o 8 me o

e .

  • O o 5, w

3 o o

. e i p C C, O o i  %, , o e s

"o e

e e

O e C

,g e O a e

) e Mo g 3 3 ee O g

~

h g*

C q g '{ o

~-

f gC 3 o g e

% e

$ 8 g o q se es o a e eo n

o 4

,a sh o

fa c a

%R=LvL e e l

N hk 8 ko

- 4 q,

*. . v d o a

q_ __ - .

. 10 a_

_7 _

i'

, So e I N 3 '

o

'aut huo 'stroct kov are aAn'rtS hAn hen hav 'aus 'aut huo 'sce 'ocT hov a ' tt aANFES hAR 1980 1951 , 1982 39 t

Section 6 CONCLUSIONS The North Anna 2 core has completed Cycle 1 operation. Throughout this cycle, all core performance indicators compared favorably with the design predictions and all core related Technical Specifications limi'ts were met with significant margin. No abnormalities in reactivity, power distribution, or burnup accumulation were detected. In addition, the good mechanical integrity of the fuel has not changed significantly throughout cycle 1 as indicated by the radioiodine analysis.

9 0

11 0 1

Section 7 RETERENCES

1) T. S. Rotella and T. J. Kunsitis, " North Anna Unit 2, Cycle 1 Startup Physics Test Report,' VEP-TRD-39, December, 1980.
2) North Anna Power Station Unit 2 Technical Specifications, Sections 3/4.1 and 3/4.2.
3) T. K. Ross, "HEWTOTE Code", Vapco MTO-CCR-6, Revision 3, February, 1982.
4) R. D. Klatt, W. D. Leggett, III, and L. D. Eisenhart,

" FOLLOW Code " WCAP-7482, February, 1970.

5) W. D. Leggett, III and L. D. Eisenhart, "INCORE Code,"

WCAP-7149, December, 1967.

9 S

41 1

_ _ - _ _ _ _ _ _ _ _ _