ML20101C779
| ML20101C779 | |
| Person / Time | |
|---|---|
| Site: | North Anna |
| Issue date: | 11/30/1984 |
| From: | Ford C, Snow C, Stewart W VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.) |
| To: | Harold Denton, John Miller Office of Nuclear Reactor Regulation |
| References | |
| 730, VEP-NOS-14, NUDOCS 8412210194 | |
| Download: ML20101C779 (63) | |
Text
,
Vepco NORTH ANNA UNIT 2, CYCLE 4 STARTUP PHYSICS TEST REPORT
~
OC
-NUCLEAR OPERATIONS DEPARTMENT Y Virginia Electric anc Power Company J
~
VEP-NOS-14 i
NORTH ANNA UNIT 2, CYCLE 4 STARTUP PHYSICS TEST REPORT by B. D. Mann Reviewed By:
Approved By:
dQL/
- c. W C. A. Ford, Senior Engineer C. T. Snow, Supervisor Nuclear Fuel Operation Nuclear Fuel Operation Operations and Maintenance Support Subsection Nuclear Operations Department Virginia Electric and Power Company Richmond, Virginia November, 1984
CLASSIFICATION / DISCLAIMER The data, techniques, information, and conclusions in this report have been prepared solely for use by the Virginia Electric and Power Company (the Company), and they may not be appropriate for use in situations other than those for which they were specifically prepared. The Company therefore makes no claim or warranty whatsoever, express or implied,as to their accuracy, usefulness, or applicability.
In particular, THE COMPANY MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, NOR SHALL ANY WARRANTY BE DEEMED TO ARISE FROM COURSE OF DEALING OR USAGE OF TRADE, with respect to this report or any of the data, techniques, information, or conclusions in it.
By making this report available, the Company does not authorize its use by others, and any such use is expressly forbidden except with the prior written approval of the Company. Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein. In no event shall the Company be liable, under any legal theory whatsoever (whether contract, tort, warranty, or strict or absolute liability), for any property damage, mental or physical injury or death, loss of use of property, or other damage resulting from or arising out of the use, authorized or unauthorized, of this report or the data, techniques, information, or conclusions in it.
i L-
'd 8
s p
ACKNOWLEDGEMENTS
~
The author would like to acknowledge the cooperation of the North Anna Power Station staff in performing the tests documented in this report.
4 O
e
'a f
4 1 '
J i
I i
4 t
I f
I f
11 o
L
TABLE @F CONTENTS
~
SECTION TITLE PAGE NO.
Classification / Disclaimer.
i Acknowledgements.
.. 11 List of T$bles.......,........ iv e
List of Figures................ v Preface.................... vi i "
1 Introduction and Summary...........
1 2
Control Rod Drop Time Measurements.
9 3
Control Rod Bank Worth Measurements.
. 14 4
Boron Endpoint and Worth Measurements.
19 5
Temperature Coefficient Measurements..
. 23 6
Power Distribution Measurements...
26 7
References.
35 APPENDIX Startup Physics Tests Results and Evaluation Sheets..............36 I
1
/
111
LIST @F. TABLES
.. TABLE TITLE PAGE NO.
1.1 Chronology.of Tests..............
3 2.1 Hot Rod Drop Time ~ Summary........
11 3.1 Control Rod Bank Worth Summary...........
16 4.1 Boron Endpoints Summary..
. 21 5 '.1
' Isothermal Temperature Coefficient Summary.....
24' 6.1 Incore Flux Map Summary...............28 6.2 Comparison of Measured Power Distribution Parameters With Their Technical Specifications Limits.
. 29 I
e iv
m LIST OF' FIGURES r
FIGURE TITLE Pt.GE NO.
a;
~
r 1.1 L' ore Loading Map.
4 1.2 Beginning of Cycle Fuel Assembly Burnups.
5 1.3 Incore.Instrumention Locations.
6
' 1. 4 - Burnable Poison and Source Assembly Locations.
7 1.5 Control Rod Locations.
8 2.1 Typical Rod Drop Trace...............
12 2.2 Rod Drop Times - Hot Full Flow Conditions.
13' 3.1 Bank B Integral Rod Worth - HZP.......
17 3.2 Bank B Differential Rod Worth - HZP.
18 4.1 Boron Worth Coefficient...............
22 5.1 Isothermal Temperature Coefficient - HZP, ARO 25 6.1 Assemblywise Power Distribution - ARO, 4% Power...
30 6.2 Assemblywise Power Distribution - 50% Power.
31 6.3 Assemblywise Power Distribution - 50% Power.
32 6.4 Assemblywise Power Distribution - 70% Power.
33 6.5 Assemblywise Power Distribution - RFP, Eq. Xenon.
34 V
PREFACE i
The purpose of this report is to present the analysis and evaluation of the physics tests which were performed to verify that the North Anna 2, Cycle 4 core could be operated safely, and to make an initial evaluation of the performance of the core. It is not the intent of this report to discuss the particular methods of testing or to present the detailed data taken.
Standard test techniques and methods of data analysis were used. The test data, results, and evaluations, together with the detailed startup procedures, are on file at the North Anna Power Station. Therefore, only a cursory discussion of these items is included in this report.
The analyses presented includes a brief summary of each test, a comparison of the test results with design predictions, and an evaluation of the results.
The North Anna 2,
Cycle 4 Startup Physics Tests Results and Evaluation Sheets have been included as an appendix to provide additional information on the startup tests results.
Each data sheet provides the
~
following information: 1) test idertification, 2) test conditions (design),
- 3) test conditions (actual), 4) test results, 5) acceptance criteria, and 6) comments concerning the test. These sheets provide a ccmpact summary of the startup tests results in a consistent format. The design test conditions and design values of the measured parameters were completed prior to startup physics testing. The entries for the design values were
~
based on the calculations performed by Vepco's Nuclear Engineering ~
2 Group. During the tests, the data sheets were used as guidelines both to verify that the proper test conditions were met and to faci (itate tFie,'
preliminary comparison between measured and predicted test results, thus enabling a quick identification of possible problems occuring during _tice tests.
The Appendix to this report contains the final completed and.
approved version of the Startup Physics Tests Results and Evaluation, Sheets.
i
\\
e vi s
+,
L
4 Section 1 INTRODUCTION AND
SUMMARY
.On August 2', -1984, Unit No. 2 of the North Anna Power Station was shut down for 'its third refueling. During this shutdown, G4 of the 157
~
fuel assemblies in the core were replaced with fresh' fuel' assemblies. The core loading pattern and the design parameters for each batch are shown
.in - Figure 1.1.
Fuel assembly burnups are given in Figure 1.2.
The
. incore instrumentation locations are identified in Figure 1.3.
Figure 1.4 t
identifies the location and number of. burnable poison rods in the Cycle 4
. core. Figure -1.5 identifies the location and number of control rods in the Cycle 4 core.
-On November 2,1984, at 0820, th'e fourth cycle core achieved initial t
criticality. Following criticality, startup physics tests were performed as outlined in Table 1.1.
A summary of the results of these tests'follows:
- 1. The drop time of each control rod was confirmed to be within the' 2.2 second limit of the North Anna Technical 2
Specifications.
4
- 2. Individual control rod bank worths for all control rod banks were measured using the rod swap technique' and were found to b' within 6.3% of the design predictions. (The measured worth e
e of 383 pcm for Control Bank A'was only 43 pcm, or 11%,
- different from the predicted worth.) The sum of the individual control rod bank worths was measured to be within 1.6% of the design prediction..These results are within the
~ design tolerance of 215% for individual bank worths ( 10% for
.[
,,'the rod swap reference bank worth) and the design tolerance of
.~210% for the sum of the individual control rod bank worths.
.3. Critical boron concentrations for two cont'rol bank'
.g i
configurations were measured to be within 23 ppm of the design
<1
predictions. These results were within the design tolerances and also met the accident analysis acceptance criterion.
- 4. The boron worth coefficient was measured to be within 2.7% of the design prediction, which is well within the design tolerance of s10% and meets the accident analysis criterion.
- 5. The isothermal temperature coefficient was measured to be within 0.60 pcm/ F of design prediction. This result is within the design tolerance of s3 pcm/ F and also met the accident analysis acceptance criterion.
- 6. Core power distributions for various HZF and at-power conditions were geneirally within 8% of the predicted power distributions. For all maps, the hot channel factors were measured to be within the limits of the Technical Specifications. However, at 50% power, there were violations of the Radial Peaking Factor, Fxy(RTP), surveillance limit, and at 4% power, a quadrant power tilt ratio of 3% was measured. Generally, all measured parameters met their respective design tolerances. All measurement parameters met their respective accident analysis acceptance criteria.
In summa ry, all startup physics tests results were acceptable.
Detailed results, together with specific design tolerances and acceptance criteria for each measurement, are presented in the appropriate sections of this report.
.2
..--c
~, -
-.-we,-.n,.v~--n-
-, -, - - - - - +.
- - - ~ - -
U Table 1.1 r
o
/
NORTH ANNA 2 - CYCLE 4 STARTUP PHYSICS TESTS CHRONOLOGY OF TESTS Reference Test Date Time Power Procedure Hot Rod Drop-Hot Full Flow 11/01/84 2103 HSD 2-PT-17.2 Reactivity Computer Checkout 11/02/84 1141 HZP 2-PT-94.2 Boron Endpoint-ARO 11/02/84 1513 HZP 2-PT-94.3 Temperature Coefficient-ARO 11/02/84 1605 HZP' 2-PT-94.4 Bank B Worth 11/02/84 1827 HZP 2-PT-94.5 Boron Endpoint-B In 11/02/84 2352 HZP 2-PT-94.3 Bank D Worth - Rod Swap 11/03/84 0028 HZP 2-PT-94.7 Bank C Worth - Rod Swap 11/03/84 0158 HZP 2-PT-94.7 Bank A Worth - Rod Swap 11/03/64 0333 HZP 2-PT-94.7 Bank SB Worth - Rod Swap 11/03/84 0401 HZP 2-PT-94.7 Bank SA Worth - Rod Swap 11/03/84 0429 HZP 2-PT-94.7 Flux Map - ARO, 4% Power 11/03/84 1101 4%
2-PT-21.1 Flux Map.- 50% Power 11/10/84 1150 50%
2-PT-22.2 Flux Map - I/E Calibration 11/12/84 0022 70%
.2-PT-22.2
. Flux Map - I/E Calibration 11/12/84 0612 75%
2-PT-22.2 Flux Map - I/E Calibration 11/12/84 1044 75%
2-PT-22.2 Flux Map - HFP, Eq. Xenon 11/16/84 0918 100%
2-PT-21.1 o
[
f f
/
/
3
Figure 1.1 NORTH ANNA UNIT 2 - CYCLE 4 CORE LOADING MAP A
P N
N L
M J
H C
F E
D C
8 A
4A2 5A 4A2 R32 515 RS2 1
826 S27 T42 R09 T34 S32 SIS 2
5A 6A 64 4A2 6A 4A2 6A 6A SA 533 136 T59 ROS T61 R33 T07 T60
$19 3
1 5A 5A 3~
%~
SA 6A 5A 6A SA 5A S12 307 T54-554 T46 S21 TS1 S46 T33 S48 547 4
5A 6A 6A 4A2 6A SA SA SA 6A 4A2 6A 6A SA SSS T19 T32 R3T Tgo S31 553 S24 T25 R28 TSO TOS Sif 5
5A 6A SA 6A 4A2 6A 4A2 6A 4A2 6A SA 6A 5A S20 T44 504 Tot R47 T16 R19 753 RIO T21 Sto 756 SOS 6
6A 4A2 6A SA 6A 4A2 6A 4A2 R44 T10 ROI
,T64 SS6 T09 R12 T24 R43 T12 S06 T45 R21 T11 R46 7
5A 4A2 6A 3F SA
~ 4A2 T~
7C 6A 4A2 5A 5A 6A 4A2 SA 809 R14 T47 S45
$03 R40 T31 P39 T41 R30 S11 Sit T42 R26 513 8
W 6A 4A2 6A SA 6A 4A2 6A 4A2 6A SA 6A 4A2 6A 4A2 R38 T03 R15 T14 S34 f T29 R17 T02 R50 T13 S36 T27 R24 T17 R11 9
SA 6A SA 6A 4A2 6A 4A2 6A 4A2 6A 5A 6A SA S43 T58 S49 T35 R13 T39 R36 TSO Roe T38
$52 T55 808 10 SA 6A 6A 4A2 6A SA SA 5A 4A 4A2 6A 6A SA 523
.T52 T48 R25 T43 502
$38 541 T63 R20 T26 TOS S16-11 SA 5A 6A SA 6A 5A 6A 5A 6A 5A SA S42 S44 T28
$37 T18 S40 T40 S35 T49 501 529 12 5A 6A 6A 4#2 6A 4A2 6A 6A SA S39 137 T62 R29 701 R16 T23' T06 550 13 5A 5A 6A 4A2 6A 5A SA
$30 S28 T57 R07 T15 SSI
$25 14 4A2 SA 4A2
==> BATCH R03 S22 R02 15
==> ASSEMBLY ID e-FUEL ASSEMBLY DESIGN PARAMETERS SUB-BATCH 3A3 4A2 SA 6A INITIAL ENRICHMENT (W/0 U235) 3.10 3.41 3.59 3.60 BURNUP AT BOC 4 (MWD /MTU) 23252 19242 17121 0
ASSEMBLY TYPE 17X17 17X17 17X17 17X17 NUMBER OF ASSEMBLIES 1
36 56 64 FUEL RODS PER ASSEMBLY 264 264 264 264 a
e 4
~~,- -
L Figure 1.2 NORTH ANNA UNIT 2 - CYCLE 4 BEGINNING OF CYCLE FUEL ASSEMBLY BURNUPS R
P N
M L
K J
H 0
F E
O C
B A
R32 Sl5 RS2 17303 13403 18171 1
T6 527 T22 R09 T34 532 SIS 18906 18431 0
13808 0
18395 18691 2
W T36 T59 ROS T61 R33 T07 T60 W
18386 0
0 16049 0
15806 0
0 18282 3
W W
T54
~C W
S21 W
S46 T33 S48 W
18437 13596 0
17382 0
18576 0l17397 0
13917 17980 4
1 S$5 T19 T32 R37 T20 531 S53 524 125 R28 W
105 S17 1 18686 0
0 21892 0
14811 18178 14972 0
21973 0
0 19164l 5
$20 The Sog 704 R47 Tl6 R19 T53 Rio 121 Sto W
SOS 18119 0
17675 0
23r40 0
23565 0
23479 0 - 17466 0
18222 6
R44 710 R01 T64 556 709 R12 T24 R43 T12 506 T45 it21 Til R46 17474 0
16352 0
15321 0
23458 0
24627 0
14689 0
15964 0
17449 7
$09 R14 T47 S45 30 I R40 W
P39 T41 R30 Sit
$14 142 R26 513
~
13743 13723 0
18026 18219 23275 0
23252 0
23234 18694 18191 0
13713 13452 8
R38 W
R15 T14 S34 W
R17 T02 R50 T13 S36 T27 R24 T17 R11 17640 0
15747 0
14744 0
23280 0
23288 0
14746 0
16235 0
17087 9
W 158 S49 135 R13 W
R36 150 ROS T38 W
TSS S08 18618 0
17277 0
23656 0
23065 0
23565 0
17409 0
18490 10
$21 TS2 T48 72 I 143 502 538 S48 163.
21994 0
0 18896 11 R20
.W TOS S16 18914 0
0 22081 0
15100 17997 14899 0
S42
$44 128 S3F T18 S40 T40
$15 I49 Sol
$29 18412 13648 0
17625 0
17943 0
17367 0
14351 18262 12 539 T37 162 A29 Tot R16 123 106 S50 18138 0
0 16051 0
16240 0
0 18230 13 Sl I S28 157 R07 W
$51 S25 19177 18547 0
13559 0
18315 18825 14 W
S22 R02
'--> ASSEM8LY 10 17371 13445 17399 15
--> ASSEM8LY SURNUP i
e 5
i
Figure 1.3 NORTH ANNA UNIT 2 - CYCLE 4 INCORE INSTRUMENTATION LOCATIONS R
P N
M L
M J
H G
F E
D C
B A
MO TC 1
MO MD 1 MD I MO TC MO TC TC MO TC TC I S
S I
MO MO MO MO TC TC TC TC TC TC MO TC TC 1 Mo TC 8*
MO MO
~~
MO TC TC TC MO TC 10 MD MO TC MO TC TC TC MD 11 MO MD MO TC TC TC MO TC 12 MD MO TC TC 13 MO TC MO TC 14 MO - Movable Detector TC - Thermocouple MO TC TC 15 l
6
p' Figure 1.4
' ))
i
~
NORTH - ANNA UNIT 2 - CYCg.4
- - +
BURNABLE POISON AND SOURCE ASSEMBLY LOCATIONS R
P N
M L
K J H
G F
E D
C B
A 1
4P 4P 2
4P 16P 20P 16P 4P 3
16P 20P SS 20P 16P 4
4P 16P 20P 4P 4P 20P 16P 4P 5
16P 20P 16P 16P 20P 16P 6
4_P
- 20P 4P 16P 16P 16P 4P 20P 4P 7
20P 16F 16P SS 20P 8
4P 20P 4P 16P 16P 16P 4P 20P 4P 9
16P 20P 16P 16P 20P 16P 10 4P 16P 20P 4P 4P 20P 16P 4P 11 16P 20P SS 20P
'16P 12 4P 16P 20P 16P 4P 13 4P 4P 14 15 944 --- FRESH BURNABLE POISON h0DS SS --- SECONDARY SOURCE 7
i Figure 1.5 l
NORTH ANNA UNIT 2 - CYCLE 4 CONTROL ROD LOCATIONS R
P N
M L
K J
H G
F E D
C B
A 180' Loop C Loop B Outlet Inlet 1
A D
A 2
S S
SP N-41 N-43 3
C B
B C
$t A
B D
C D
B A
P B 6
90'-
D C
C D
-270' 8
A B
D C
D B
A 10 SB SB 11 C
B B
D A
14 Loop [A
\\ o0P 15 L
A i
l Absorber Outlet Inlet i
Material ls o
As-In-Cd l
Function Number of Clusters Control Benk D 8
Control Bank C 8
l Control Bank B 8
Centrol Bank A 8
l-Shutdown Bank SB 8
l.
Shutdown Bank SA 8
SP (Spare Rod Locations) 8 l
I 8
I r
Section 2 CONTROL ROD DROP TIME MEASUREMENTS
\\
The drop time of each control rod was measured at hot RCS conditions in order to confirm satisfactory operation and to verify that the rod drop times were less than the maximum allowed by the Technical Specifications.
The control rod drop time measurements were run with the RCS at hot, full flow conditions ( 547 F, 2235 psig) and are described below.
The rod drop time measurements were performed by first withdrawing a rod bank to its fully withdrawn position, and then removing the movable gripper coil fuse and stationary gripper coil fuse for the test rod. This allows the rod to drop into the core as it would in a normal plant trip.
The data recorded during this test are the stationary gripper coil voltage, the LVDT (Linear Variable Differential Transformer) primary coil voltage and a 60Hz timing trace which are recorded via a visicorder. The rod drop time to the dashpot entry and to the bottom of the dashpot are determined. from this data.
Figure 2.1 provides an example of the data that is recorded during a rod drop time measurement.
As shown in Figure 2.1, the initiation of the rod drop is indicated by the decay of the stationary gripper coil voltage when the stationary coil fuse is removed. A voltage is then induced in the LVDT primary coil as the rod drops.
The magnitude of 'this voltage is a function of the rod velocity. When the rod enters the dashpot section of its guide tube, the velocity slows causing a voltage decrease in the LVDT coil. -The LVDT voltage then reaches a minimum as the rod reaches the bottom of the dashpot.
Subsequent variations in the trace are caused by the rod 9
i bouncing. This procedure was repeated for each control rod.
The measured drop times for each control rod are recorded on Figure 2.2.
The slowest, fastest,. and average drop times are summarized in Table 2.1.
Technical Specification 3.1.3.4 specifies a maximum rod drop time from loss of stationary gripper coil voltage to dashpot entry of 2.2 seconds with the RCS at hot, full flow conditions. All test results met this limit.
10
Table 2.1 NORTH ANNA UNIT 2 - CYCLE 4 STARTUP PHYSICS TESTS HOT ROD DROP TIME
SUMMARY
R0D DROP TIME TO DASHPOT ENTRY SLOWEST R0D FASTEST ROD AVERAGE TIME B-6,.1.77 Sec.
M-4, 1.38 Sec.
1.60 Sec.
ROD EROP TIME TO BOTTOM OF DASHPOT SLOWEST ROD FASTEST ROD AVERAGE TIME B-6, 2.43 Sec.
M-4, 1.98 Sec.
2.23 Sec.
l 11
i 1
i.
Figure 2.1 i
i TYPICAL ROD DROP TRAC" NORTil ANNA 2, CYCLE 4 BOL PilYSICS TEST l
. sr>TeodAh 6diffelt.r Cht L - VOLTA 4E
/
..,j.]
x-
. _.a;.S*
. ~. *.
s'oTc ener ses assessmos s
l.-1
= ~ - -
soca. enum speamm A,,r.f a_
{,..
I
- y, e
r
,I5 h '. '
!,es am.mm._Jraea===
,es n,,,
.... s
. Td 31s ATio)J O@ IRDO Td6P".
"~
~
'I-
~
~
m t
\\
5, '.'.;l' i
. : '..{ ]:'.:.
.} I ." - ** ** * ** " *
- I:
ih.
n.m,
t.
.:: yr
.u..._
..a.
.m. m.,
.:s
. u.:.
2
(":': -:'5.,*
l\\
~
- -dtki tard.
Isan wnao m* -
4
. ::~pasu eor -
2_ ;
.,,,.1 ja.c.>
' i. '- {
-LV DT-t'RitiAF.Y -C9tL ;:
/
oorPuT Sl4rJAt^
M i
~..
t
-[
l q,
y ggg j
i p
1 i
p'. ji hace Tim To so on or oasa bt!
f 8.I!
I:II *f C I
- s. w ce i
asinec l
DioP TOME' To DASH pot ~
- na,<i'as abT-
=
l l.Ij Il l
. _ :)
TIMING TRACE - STATMitJ t3uS FRGQdENC.Y t
i
(
Figure 2.2 NORTH ANNA UNIT 2 - CYCLE 4 STARTUP PHYSICS TESTS ROD DROP TIMES - HOT FULL FLOW CONDITIONS R
P N
M L
M J
H C
F E
D C
B A
1 1.63 1.60 1.60 2.30 2.23 2.27 2
W 1.60 2.23 2.15 3
Ta~
1.70 1,58 1.66 1.98 2.28 2.15 2.23 4
1.58 1.63 l
2.20 2.22 5
1.56 TW 1.63 l.60 1.58 8.57 1.77 2.21 2.27 2.33 2.21 2.23 2.15 1 2.43 6
8 1.54 l 1.51 1.53 1.58 2.25 2.17 2.17 2.37 7
1.62 1.Se 1.51 1.71 2.d5 2.0h 2.17 2.32 8
1.6%
i 1.52 1,56 1.47 2.21 1
2.10 2.21 2.08 9
1.63 1.58 1.60 1.54 1.58 1.62 1.61 2.31 2.17 2.21 2.21 2.18 2.17 2.30 10
%5~
1.55 1 2.30 2.17 11 1.58 W
1.54 1.65 2.25 2.15 2.13 2.27 12 1.60 1.61 1
2.22 1 2.32 1
13 1.72 1.68 1.68 2.38 2.33 2.32 14
.** Rod Drop Time to Dashpot Entry (sec.)
- Rod Drop Ties to l
15 sottom or cashpot(sec.)
13
L Section 3 -
CONTROL ROD BANK WORTH MEASUREMENTS Control rod bank worth measurements were obtained for all control and shutdown banks using the rod swap technique'. The first step in the rod swap procedu re was to dilute the most reactive control rod bank (hereafter referred to as the reference bank) into the core and measure its reactivity worth using conventional test techniques.
The reactivity changes resulting from the reference bank movements were recorded
-continuously by the reactivity computer" and were used to determine the differential and integral worth of the reference bank (Control Bank B).
At the completion of the reference bank reactivity worth measurement, the reactor coolant system temperature and boron concentration were stabilized such that the reactor was critical with the reference bank near full insertion.
Initial statepoint data for the rod swap maneuver were obtained by moving the reference bank to its fully inserted position and recording the core reactivity and moderator temperature. At this point, a rod swap maneuver was performed by withdrawing the reference bank while one of the other control rod banks (i.e., a test bank) was inserted.
The core was kept nominally critical throughout this rod swap and the maneuver was continued until the test bank was fully inserted and the reference bank was at the position at which the core was just critical.
This measured critical position (MCP) of the reference bank with the test bank fully inserted is the major parameter of interest and was used to determine the integral reactivity worth of the test bank. Statepoint data (core reactivity, moderator temperature, and the differential worth of the reference bank) were recorded with the reference bank at the MCP. The rod swap maneuver was then performed in reverse order such that the reference bank once again was near full insertion and the test bank was 14
once again fully withdrawn from the core. The rod swap process was then iepeated for all of the other control rod banks (control and shutdown).
A summary of the results for these tests is given in Table 3.1.
As shown by this table and the Startup Physics Tests Results and Evaluation Sheets given in the Appendix, the individual measured bank worths for all of the control and shutdown banks were within the design tolerance (210% for the reference bank and 215% for the test banks). The sum of the individual rod bank worths was measured to be within 1.6% of the design prediction. This is well within the design tolerance of 210% for the sum of the individual control rod bank worths.
The integral and differential reactivity worths of the reference bank (Control Bank B) are shown in Figures 3.1 and 3.2, respectively. The design predictions and the measured data are plotted together in order to illustrate their agreement.
In summary, all measured rod worth values were satisfactory.
15
Table 3.1 NORTH ANNA UNIT 2 - CYCLE 4 STARTUP PHYSICS TESTS CONTROL ROD BANK WORTH
SUMMARY
MEASURED PREDICTED PERCEhT DIFFERENCE WORTH WORTH BANK (PCM)
(PCM)
(M-P)/P X 100 B-Reference Bank 1372 1399
-1.9 D
1036 1070
-3.2 C
801 851
-5.9 A
426 383 11.2 (43 pcm)
SB 853 910
-6.3 SA 1103 1068 3.3 Total Worth 5591 5681
-1.6
.p<
16
FIGURE 3.1 NORTH ANNA UNIT 2 - CYCLE 4 BOL PHYSICS TEST BANK B INTEGRAL R00 WORTH - HZP BANK B WITH ALL OTHER RODS OUT
-- PRECICTED E MEASURED O
O b
i i i i i i
t i i
! i i
a i i
e i
i i
i
- ' _ i i !
i i i i.
i i
i i
i i
i i
! I i i I. I i e I I
i r
i
. i i
i i !
i i i
! I!
I i
a i i ?
' i I i!
. i e i
t :
. i '
i !
!I i i i
' i,
'f 8
i 1
? 'i!
I i *
- i
! l l I ! 3
! i I
!'t I
i !.
i C3 i
i i
i i
e i i i
's i i i
. i i *
. + :
+
i ev i
- i, !
i 4 i
t i -
i i >
i i
i !
' i e t i 4 6
i i i i t
?
I i
i i
.i i i
- i ie i
i e
i ! i e i i i
i i
- a i
- i e i i i 1
i i i i i i,
i
,. i i i
i UO i
e i.
+ ' i i i
! a 6 i ! '
t QO i
, i.
i i
- i i
, i i
w i t i - i i
t" 1
1 I I
i I i
- ii i i !
i I
i i i l i
i i t i i i _
i > i.
1 i
i i i i i
1 i '
i 8
5 +
i t
i I
. i r I i 1
- W,m +.
in-c
, i i
ei 1
I i i j i i
. i i
F- -
i i N
-%i i
4 i i 6 !
i i
1.
Iii
'N.!T i
i I
t i e t !
I i
i gO a
, e i i Et
't i
! t 8 3 ' ! i i i i
! !t i!
- i 1
OO i, i i i i T i si i i
. i i 3 --
! i t 1
ML i t T
+. t 5 i
_ i a
i4 i
i i,
.x :
., i i i
> i i.
. i !
. i iM 3
.c
, i t
i i
- i i
' ? i J
. i i\\ !
N i
t i i 6 '
g
, !! ! ! s ! _ t i i t
i% ! 1 e
.. I i
1 i
m,_il Ti e i.
i i
i i.
i i
I a
3 I
f i I
i X.2 NL I
I r
Q li i
i i Mi i i-i
. e
+.
!L r
N 1 Ii e !
LLJ O
.ii i
i i i.
i g;.
s Fv i
i t !
i a
- L.
i i
3 O
i
. i i i
h-t i
g
+i !
e e
i i
N
+ 6 M
I 6
! i 8
~
m i
i i i e
i !II i ii i i t
4 a
I i l
+
!i i
i
_i t i A i
- NI i i
i i
i i ! !
3.
i i
i
's *
!s i
i g,
i I.
t
, e i
.L i
t i
i e
!i i t i i
. L i i,
i i
I O
i,
i i
i i
1 1 i i !
.4 N-a' _i I
i i i i
.w qi i
W I
i t
i
. I t
X
.Ai t I
1 T
1
- i '
IiI i
i i i 8 1 "W1 NiI i
1 4 i i
i 1
ii v
t.
4 i
! l I
i2 4
t *lk !N i
l l
e t
e i
i i
! l i
6 i
I i
tT(! N i i i
i i
i i
i i i
i i,
v.
i i
I.
i:
i!
I ii\\\\
l i!
! ! l I i i e I i
i r 11 Tht 4
i 1
i*
t t 6 i e i i i i i
e i
e i.
W[
l 0
40 80 120 160 200 228 l
BANK POSITION (STEPS)
I l
17
FIGURE 3.2 NORTH ANNR UNIT 2 - CYCLE 4 BOL PHYSICS TEST BANK B DIFFERENTIAL R00 WORTH - HZP BANK B WITH ALL OTHER RODS OUT
-- PREDICTED E 11ER50 RED O
O.
N 3
8 i
i i i
I I
I i
3 l
i i
i i
i i
t i
I i
I C3 i
i Q
t w
m -lH i
I r i"' E.
i it i
C3 3
e m-as i i !
+
i 1
l l
f M (J.J i
Pau H
3 t
in ie m
n
- Ml r
ii i 6 -
I' 1
I NO I
/1 i
I w
I 5
_' Is !
i x-e I '
J._.
I N
I E.
_. i I
4 i i
e Q
t r
6 6 i i
6 j i i
am i
1 5
i
! i t t f
f' M
i 8 1
g i
i !!
! in~
/
I I
w i i L
r
' t i i
~
l i i i
\\
i e i i 1
at [
t 1
i
.I e
i t,
I e* '
4 I
i 3
w i
1 y
i i
I i
i F
! w t I __
HQ i
i s
l 1
1 i.
I !E"MM E
ut _
h i go 1
i i i
I 6 !
I i ! ! i
. i i i
.i i
6 i
i i i i i i.
et m
i i
n 4
Oe as i
a 3
i I;
i i
l i
ii it-i/
i r
i I5 e i i'
l.
J i
! t 1
ei l
l 1
l 1
i i Q
l 3
e
.n L
i M
o i
i i
i HQ i
i I
i 1
i i
I f
i r i
Ii i
t 7
gr i
i
- i t -
t i
1
(.2.J l
i l
1 i
i E
i U.J w
i n
Li-o
/
t-Wo I
it ge
/
i I
I 1Ri N
w t t t
i i
i t
! II fA t t.t e r'e ri chu I
i f
._"T E %2%w l
s s@ne d -
1 i
3 s"2
-p f
x i w
._m m-c w
x i-e
/
r
[
o.
__p i
o
- 7.
,e i
I.
i i
0 40 80 120 160 200 2d8 BANK POSITION (STEPS) 18
[
T Section 4 BORON ENDPOINT AND WORTH MEASUREMENTS
- Boron Endpoint i
With' th'e reactor critical at hot zero power, reactor coolant system
. boron concentrations were measured at_ selected rod bank configurations
-'to enable a direct comparison of measured boron endpoints with design predictions.
For each measurement, the RCS conditions were stabilized t
i
.with the control benks at or very near a selected endpoint position. The
~
critical - boron concentration.vas then measu red.
If necessary, an
- adjustment to the measured critical boron concentration was made to
- account for off-nominal core conditions, such as rod position and moderator temperature.
t 4
-The results of these measurements are given in Table 4.1.
As shown in this table and in the Startup Physics Tests Results and Evaluation Sheets 'given in-the Appendix, all measured critical boron endpoint values were within their respective design tolerances. All measured values met the accident analysis acceptance criterion. In summary, all results were satisfactory.
1 i
~
- Boron Worth Coefficient L
The measured boron endpoint values provide stable statepoint data
- from.which the boron _ worth coefficient was determined.
A plot of the boron concentration as-a function 'of integrated reactivity can' be
. constructed by relating each endpoint concentration to the integrated rod-worth present in the core at the time of the endpoint measurement. The xvalue of ' the boron coefficient, = over the range of boron endpoint i
19 b
concentrations, is obtained directly from this plot.
The boron worth ~ plot is shown in Figure 4.1.
As indicated in this figure and in the Appendix, the boron worth coefficient of reactivity was measured to be -7.80 pcm/ ppm. The measured boron worth coefficient is within 2.7% of the predicted value of -7.60 pcm/ ppm and is well within the design tolerance of 210%.
The measurement result also met the accident analysis acceptance criterion, in summary, this result was satisfactory.
9 4
t I
k i
20 i
c-
. Table 4.1 NORTH ANNA UNIT 2 - CYCLE 4 STARTUP PHYSICS TESTS-BORON ENDPOINTS
SUMMARY
-)
Measured Predicted Difference Control Rod Endpoint Endpoint M-P Configuration (ppm)
(ppm)
(ppm)
ARO 1676 1699
-23 B Bank In 1500 1494*
6-
- The-predicted endpoint for the B Bank in configuration has been adjusted for the difference between the ',tiaasured and predicted values of the endpoint taken at the ARO configuration as shown in the boron endpoint Startup Physics Test Results and Eval'pation Sheets in the Appendix.
f';
i ai 21
FIGURE 4.1 NORTH RNNA 2 - CYCLE 4 BOL PHYSICS TEST BORON WORTH COEFFICIENT a EmoroINT nER$tNtEMENTS 2400 6p = -7.80 pcm/ ppm t
sc B
2000 1
N\\
~
1600 r
N o
A h g 4
b,1200
\\
3 N
i--
o
\\
N i
g 800 y \\
\\'
\\.
4 400
\\ \\
\\ \\
o.
-J k
e 1440 1480 1520 1560
'1600 1640 1680 1720 1760 j
BORON CONCENTRATION (PPN)
Section 5 TEMPERATURE COEFFICIENT MEASUREMENTS The isothermal temperature coefficient measurements were accomplished by controlling the RCS heat gains / losses with the steam dump valves to the condenser, establishing a constant and uniform heatup/cooldown rate, and then monit'oring the resulting reactivity changes on the reactivity computer. These measurements were performed at very low power levels in order to minimize the effects of non-uniform nuclear heating, thus, the moderator and fuel were approximately at the same temperature (between 542 and 546 F) during these measurements. To eliminate the borcn reactivity effect of outflow from the pressurizer, the pressurizer level was maintained constant or slightly increasing during these measurements.
Reactivity measurements were taken during both RCS heatup and cooldown ramps during which the RCS temperature varied approximately 3 F.
Reactivity was determined using the reactivity computer and was plotted against the RCS temperatu re on an x-y recorder.
The temperature coefficient was then determined from the slope of the plotted lines.
The X-Y recorder plot of reactivity change versus RCS temperature for the all-rods-out configuration is shown in Figure 5.1.
l The predicted and measured isothermal temperature coefficient values are compared in Table 5.1.
As can be seen from this summary and from the Startup Physics -- Test Results and Evaluation Sheet given in the l
Appendix, the measu red isothermal temperatu re coefficient value was within the design tolerance of 23 pcm/'F and met the accident analysis l
acceptance criterion. In summary, the measured result was satisfactory, i
l 23 L.
n;
~
Table 5.1
/'
NORTH ANNA UNIT 2 - CYCLE 4 STARTUP PHYSICS TESTS ISOTHERMAL TEMPERATURE COEFFICIENT
SUMMARY
ISOTHERMAL TEMPERATURE COEFFICIENT BANK TEMPERATURE BORON (PCM/*F)
POSITION RANGE CONCENTRATION
(*F)
(PPM)
COOL DIFFER HEATUP DOWN AVER.
PRED.
(M-P)
All 542.4 Rods to 1669
-2.5
-3.4
-2.95
-3.55 0.60 Out 545.6
.Og J
h g
9 W.
E 6
24
Figure 5.1 NORTH ANNA UNIT 2 - CYCLE 4 BOL PHYSICS TESTS ISOTHERMAL TEMPERATURE COEFFICIENT HZP, ARO mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmum 6 I__.__
_.._.t
.%>Q..
_h..h u
A
., w a.
N Q_
.. II p
g4
.Hu g
s M
.f ig g
U m___*ii,_ _ 4g.. _ _}
2% _g<
.._2?
g[_
__Q__. w.N_
g
_ _1.hhh*
-.N
. %gg-eq N...
s
_ __..g..
,e a
._p__.
f_
y
._ _ _7_________ _.__.
p I
VERTICAL SCALE 10.00 pcm/ inch
_ Z:
t O
HORIZONTAL SCALE 1 F/ inch mui n ummmmmmumm mmmmmmmmmm mbum num i
l TEMPERATURE ( F) i 25
F Section 6 POWER DISTRIBUTION MEASUREMENTS The core power distributions were measured using tho incore movable detector flux mapping system.
This system consists of five fission detectors which traverse fuel assembly instrumentation thimbles in 50 core locations (see Figure 1.3).
For each traverse, the detector output is continuously monitored on a strip chart recorder. The output is also scanned for 61 discrete axial points by the PRODAC P-250 process computer.
Full core, three-dimensional power distributions are then determined by analyzing this data using the Westinghouse computer
- p rog ram, I NCO R E'.
INCORE couples the measured flux map data with predetermined analytic power-to-flu x ratios in order to determine the power distribution for the whole core.
A list of all the full-core flux maps taken during the test program together with a list of the measured values of the important power distribution parameters is given in Table 6.1.
The measured power distribution parameter values are compa red with their Technical Specifications limits in Table 6.2.
Flux map 1 was taken at 3% power.
This flux map served as the base case design check. Figure 6.1 shows the resulting radial power distritiution associated with the flux map. Map i-1 indicated a quadrant power tilt value that was slightly above the established design tolerance for HZP flux maps (the measured power tilt was 1.030 compared to the 1.020 design tolerance). However, there is no Technical Specification limit for power tilt below 50% power.
All subsequent measurements of power tilt above 5% power were within the full-power limits.
26
l l
Flux maps 2 through 7 were taken over a wide range of power levels and control rod configurations. These flux maps were taken to check the at-power design predictions and hot channel factors, to establish a target delta flux for operation, and to measure core power distributions at various operating conditions.
These maps also provide incore/excore detector calibration data for the nuclear instrumentation system.
The radial power distributions for the full-core maps taken during the escalation to 100% power are given in Figures 6.2 through 6.5.
These figures show that the measu red relative assembly power values are generally within 6% of the predicted values. At 50% power, a violation of the Radial Peaking Factor, Fxy(RTP), surveillance limit was measured.
However, at higher power levels, the values of Fxy were within the limit.
In conclu sion,. all power distribution measurement results were considered to be acceptable with respect to the design tolerances and the Technical Specification limits.
It is therefore anticipated that the core will continue to operate safely throughout Cycle 4.
27
TABLE 6.1
-NORTH ANNA 2 - CYCLE 4 STARTUP PHYSICS TESTS INCORE FLUX MAP
SUMMARY
I l
F-Q(T) IlOT F-Dil(N) HOT CORE F(Z) 4 1
2 i
i BURN l
UP BANK CHANNEL FACTOR CHNL. FACTOR MAX 3
QPTR AXlAL NO.
I MAP MAP DATE MWD /
PWR D
F(XY)
OFF OF DESCRIPTION NO.
(%)
STEPS AX1ALu AXIAL MAX SET THIMI ASSY. PIN POINI F-Q(T) 'ASSY PIN F-DH(N)
POINT F(Z)
MAX LOC
(%)
BLES l
=
l _-
ARO 1
11-3-84 O
3' 211 N05 OG 18 2.499 N11 QQ 1.508 18 1.575 1.596 1.030. NW.
31.60 46' I
DELTA I TARGET 2.111-10-84'l 65 5011 162 L13. KO 29 2.001 L13 KO 1.487 30. 1.315 l1.548 1.011 NW
-4.50 47
[
l l
. QPTR VERIFICATION 3 11-11-84l 77 50, 155 N05 ' OG 31 2.027 N05 OG 1.487 36 1.334 1.556 1.019 NW
-7.91 47 l
l i
.I l
l1/E CAL.
4.11-12-847 82 1 70 1 171 NOS Oc 30 'l 1.931
- NOS OG 1.448 30 1.298 '1.517 '1.015
- NW
-4.61 47 H F P, EQ. XENON (5) 7,11-16-841 230 100[ 216 PO7 OG.
37 1.789 P07 OG 1.420,1 37
,1.203L1.493,1.015 MW
-2.47, 46 l NOTES: HOT SPOT LOCATIONS ARE SPECI Fil D BY CIVING ASSEMBLY LOCATIONS (E.C. 11 - 8 IS Tile CENTER-OF-CORE ASSEMBLY),
FOLLOWED BY THE PIN LOCAllON DFHOTED BY THE "Y" COORDINATE WITH THE SEVENTEEN ROWS OF FUEL RODS LETTERED A THROUGH R AND THE {X" COORDINATE DESIGNATED IN A SIMILAR MANNER).
IN THE "Z" DIRECTION THE CGRE IS DIVIDED INTO 61 AXlAL POIN3S STARTING FROM THE TOP OF THE CORE.
1.
F-Q(T)_ INCLUDES A 10TAL UNCERTAINTY OF I 05'X 1.03.
I I
s
. ~
a 2.
F-DH(N) INCLUDFS A MEASUREMENI UNCERT31NTY OF 1.04.
C
/
s 3.
F(XY) IS THE MAXlMUM UNRODDED F(XY) AND INCLUDES A TOTAL,0NCERTAINTW OF 1.05 X 4.032 4.
QPTR - QUADRANT POWER TILT RATIO.
g x f 4
/
5.
FLUX MAPS 5 AND 6 WERE QUARTER-CORE MAF5'TAKEN.FOR EXCORE DETECTOR CALIBRATION.
f,
s o
~
f e
.* l N'
t f,
j
- E~
,-W~, j
~j r
p
,j f
j.
)
j W
a 3
~
.~
-f p
f
,4
- hs es
/
'e
- Y
~*
^'
' ^' %
.J r
, ;,. ' e
. p.-
y i: ~, y.,,
7"
a-
.v s q-y
. c:,
31 sy.
Table 6.2 e
~
1 NORTH ANNA UNIT 2 - CYCLE 4 STARTUP PHYSICS TESTS COMPARISION OF MEASURED POWER DISTRIBUTION PARAMETERS
" ~kl[TH THEIR TECHNICAL SPECIFICATION LIMITS 41 t
as MAP F-QCT) EOT F-DH(N) HOT F(XY) MAX 8
2 8
NO.
CHANNEL FACTOR CHANNEL FACTOR I
HEA3 LIMIT MARGIN MEAS LIMIT MARGIN MEAS AXIAL LIMIT MARGIN
(%)
@,)
POINT
(%)
2
-2.00 4.37 54.2 1.49 1.78 16.6 1.73 11 1.71
-1.2 3
2.03' 4.40 53.7 1.49 1.78 16.5 1.75 11 1.71
-2.1 4
1.93 3.16 38.8 1.45 1.69 14.4 1.66 10 1.71 3.1 7
1.79
'2.20 18.7 1,42 1.55 8.4 1.49 52 1.61 7.3 3
'N 4
IlmThe ' Technical Specification's limit for the heat flux hot channel
\\'fac' tor, F-Q(T) is a function of core height. The value for F-Q(T) i listed above.is the maximum of F-Q(T) in the core. The Technical Specification's limit listed above is evaluated at the plane of maximum F-Q(T). The minimum margin values listed above are the minimum
' g'xpercent difference between the measured values of F-Q(T) and the Technical Specification's limit for each map. All measured F-Q(T) hot channel factors include 5% measurement uncertainty 'and 3% engineering
.; uncertainty.
\\pt hha measured values for the enthalpy rise hot channel factor, 2
.~1 i
~
f : 'y F-AH(N) includes 4% measurement uncertainty, i,'3 All me%asured F(XY) MAX values include 5% measurement uncertainty and 4 %t 4 "j 3*. engineering uncertainti. For maps 2, 3, and 4, the ::odded F(XY)
T; -
values and limits are shown. There were no todded F(XY) values for map 7, therefore, the unrodded value and limit are shown.
'h.
g
't s
] ' j. .,
g gl,
+
S
- s
-)
9 29 e
T C; "
N %
FIGURE 6.1 NORTH ANNA UNIT 2, CYCLE 4 ASSEMBLYWISE POWER DISTRIBUTION ARO, 4% POWER R
P W
N L
M J
N O
F E
O
.C 8
A PatosCYC0
. 0.38. 0.49. 0.38.
PREDICit0.
10EASUnto 0.41. 0.53. 0.40.
totAsunt0 1
.PC7 OlFFERilect.
10.1 9.9.
7.3.
.PC1 OlFFERENCE.
. 0.43. 0.68. 1.08. 0.99. 1.08. 0.68 0.43.
. 0.46. 0.64 1.11 1.01. l.12 0.71. 0.43 2
8.4. -S.O 2.6 2.4.
3.2.
4.4.
0.7
. 0.51 1.12. 1.18. 1.16. 1.24. 1.16. 1.18. 1.12. 0.51
. 0.53. 1.17. 1.19. 1.83. 1.21 1.15. 1.18. 1.11. 0.49.
3 4.8.
4.4.
0.5. -2.7. -2.8. -1.4.
0.0. -1.1. -3.3.
. 0.S0. 0.91 1.23. 1.26. 1.26. 1.26. 1.26. 1.26. 1.23. 0.91. 0.50.
. 0.S3. 0.96. 1.28. 1.28. 1.2S, 1.25. 1.22. 1.19 1.18. 0.84. 0.49.
4 7.2.
4.9.
4.0.
1.8. -0.6. -0.8
-3.2. -S.6. -4.2. -4.0. -1.4
. 0.42. 3.11. 1.22. 1.06. 1.19 1t20 1.20. 1.20. 1.19 1.06. 1.22 1.11 0.42.
. O.45. 1.17. 1.26. 1.08. 1.22. 1.21 1.21. 1.18 1.14. 1.02. 1.16. 1.10. 0.43.
S 6.0.
6.0.
3.3.
1.9.
2.4.
0.9.
0.7. -1.8. -4.4. -3.9
-4.3. -0.4.
1.0.
. 0.71 1.25. 1.32. 1.23. 1.03. 1.21 1.02. 1.17. 0. 9 7.. 1.19. 1.26. 1.18. 0.67 0.67. 1.18. 1.26. 1.19. 1.01 1.20. 1.03. 1.20. 1.01 1.15 1.20. 1.17. 0.69.
6 4.1.
6.1
- 4. 7.
3.4 2.3.
1.0.
0.2. -2.1. -4.1. -3.6. -4.2. -0.3.
2.2 0.38. 1.08. 1.16. 1.26. 1.20. 1.20. 0.99. 1.tS. 0.99. 1.20. 1.20. 1.26. 1.16. t.08. 0.34.
0.39. 1.11 1.20. 1.31. 1.26 1.24. 0.99. 1.13. 0.95. 1.15. 1.16. 1.20. 1.15. 1.08. 0.34.
7 3.1.
3.1.
3.0.
4.4. S.0.
3.5.
0.0. -1.3. -3.1. -3.9. -3.9
-4.4. -1.2
-0.1 1.9.
0.48. 0.99. 1.24. 1.26. 1.20. 1.03 1.86. 0.92. 1.16. 1.03. 1.20. 1.26. 1.24. 0.99. 0.48.
0.50. 1.02. 1.28. 1.33. 1.26. 1.08. 1.86. 0.1) 1.09. 0.98. 1.14. 1.21 1.22. 1.00. 0.50.
8 3.2.
3.2.
3.0. S.3.
6.6.
4.6.
0.6. -2.8
-S.4. -S.S. -S.S. -4.5. -1.4.
1.1.
3.3.
0.38. 5.08. 1.16. 1.26. 1.20. 1.20. 0.99. 1.15. 0.99. 1.20. 1.20. 1.26. 1.16. 1.08 0.38 0.3*. 1.12. 1.21 1.32. 1.28. 1.23. 0.92. 1.08. 0.93. 1.13. 1.15 1.21 1.15 1.09 0.39.
9 0.8.
2.9.
4.7.
3.8.
3.8.
S.2.
6.5.
2.1. = 6. 8. *6. 0. -S. 9.
-6. 0.
- 4. 8. - 3. 4.
-l.4
. 0.67. 1.18. 1.26. 1.19. 1.01. 1.20. 1.03. 1.20. 1.01 1.19. 1.26. 1.18. 0.67.
. 0.70. 1.23. 1.32. 1.26. 1.02. 1.14. 0.98. 1.13. 0.93. 1.14 1.23. 1.17 0.70 10 4.5.
4.5.
5.0.
S.2.
1.0. -4.S. -4.5. -S.1
-S.S. -4.4. -2.2. -0.5.
3.5.
. 0.42. 1.11 1.22. 1.06. 1.19. 1.20. 1.20. 1.20. 1.19. 1.06 1.22. 1.11 0.42.
. 0.46. 1.19. 1.30. 1.11 1.17. 1.16. 1.16. 1.1S. 1.13. 1.03. 1.19. 1.09. 0.42.
11 7.7.
7.7.
6.5.
4.2. -l.4. *3.5. -3.3. -4.2
-S.O. -3.3
-2.0. -1.1
- 0.3.
1.23. 1.26. 1.26. 1.26. 1.26. 1.26. 1.25 0.91 0.50.
. 0.30. 0.91
. 0.35. 0.98. 1.28. 1.27. 1.21 1.22. 1.19. 1.20. 1.18. 0.90. 0.49 12 11.0.
- 7. 7.
4.2.
- 0. 9. - 3. 7. - 3. 8. -S. 3. -4. 9
-4.0. -2.0. -1.7.
. 0.51 1.12. 1.18. 1.16. 1.24 1.16. 1.18. 1.12. 0.51 r
. 0.54 1.13. 1.18. 1.11 1.19. 1.11. 1.1S. 1.08. 0.50.
13 t
6.0.
1.1. -0. S. -S. O.
-3. 7.
-4. 3.
-2. 8.
-3. 4.
- 1. 7.
i
. 0.43. 0.64. 1.08. 0.99. 1.08. 0.68. 0.43
. 0.43. 0.69. 1.0F. 0.97. 1.04. 0.66. 0.40.
14 1.1
- 2. 8. - 1. 6.
-1. S. -4.0. -2. 6. -S.1 Stama4AD
. 0.38. 0.49. 0.38.
AvtRact OEVI Ailose
. O.39. 0.50. 0.38.
.PC7 DIFFERCIICE.
15
=2.139 4.2 2.0. -0.1 e
3.5 I
SUMMARY
I I
MAP NO: N2 1 DATE: 11/ 3/84 POWER:
3%
CONTROL ROD POSITIONS:
F-Q(T) = 2.499 QPTR:
1 0 BANK AT 211 STEPS F-DH(N) = 1.508 NW 1.030 NE 0.981 F(Z)
= 1.575 SW 1.020 SE 0.969 F(XY)
= 1.596 0 MWD /MTU A,.0 = 31.60(%)
BURNUP =
r l
t 1
30
t FIGURE 6.2 NORTH ANNA UNIT 2, CYCLE 4 ASSEMBLYWISE POWER DISTRIBUTION 50% POWER 4
/
r J
6 A
A P
N N
L M
J H
0 F
E O
C S
A PatosC7t0
. 0.38. 0.47. 0.38.
PatDiCit0 IIEASUREO
. 0.37. 0.46. 0.39.
SIEASURtc 1
.PC7 Ot FFEREIICE.
-2.9. =2.8.
3.8.
.PC7 OlFFEREleCE.
d.
. 0.45. 0.69. 1.06 0.92. 1.06. 0.69. 0.45
. 0.47. 0.67 1.03. 0.89. 1.07 0.72. 0.46.
2 4.6. -3.0. -2.9. -2.7.
0.5 3.8.
1.S.
. 0.54 1.15. 1.19 1.1%. 1.21. 1.15. 1.19. 1.1S 0.54
. O.SS. 1.16. 1.16. 1.13 1.19. 1.15. 1.21 1.1S. 0.54 3
1.4.
1.0. -2. 4.
- I. T.
- 1. 7. =0.2.
1.3.
0.S
~1.0.
. 0.53. 0.93. 1.24 1.26 1.25. 1.26. 1.25. 1.26. 1.24. 0.95. 0.53.
. 0.55. 0.97. 4.26. I.27. 1.24. 1.25. 1.23. 1.23. 1.22. 0.93. 0.53.
4 3.1
- 1. 7.
1.5.
0.5. *0.8. -0.8. -1.5. *t.1
- t.8
-2.2. -0.7.
. 0.45. 1.13. 1.23. 1.07. 1.17 1.19. 1.20. 1.19. 1.17. 1.07 1.23. 1.13. 0.45.
. 0.46. 1.15. 1.23. 1.06. 1.17 1.20. 1.21 1.19. 1.16. 1.0S. 1.19. 1.13. 0.46.
S 1.9.
1.9. =0.1. =0.6. -0.3.
0.3. 0.3. -0.4
-0.8. -I.6
-3.4. =0.S.
2.5.
. 0.69. 1.18. 1.26. 1.17 0.9%. 1.88. 1.04 1.18 0.95. 1.17 1.26. 1.18. 0.69.
. 0.72. 1.23. 1.28. 1.17. 0.9%. 1.19. 1.04 1.18. 0.95. 1.14. l.20 1.17. 0 11 6
4.0.
4.0.
1.9. -0.3.
0.3.
0.8 0.7. -0.0. *0.4. -2.9. -4.4
-1.1 2.1.
. 0.38. 1.06. 1.15. l.25. 1.20. 1.18 1.00. 1.16. 1.00. 1.18. 1.20. 1.25. 1.15. 1.06. 0.38.
. 0.41. 1.12. 1.19. 1.26. 1.18. 1.88. 1.00. 1.17. 0.99. 1.18. 1.17. 1.19. 1.14 1.07. 0.39.
7 10.1.
S.4.
3.1.
1.0. al.0. -0.2.
0.9.
0.7. -0.2. -0.S. *2.4. *4.5. *0.8.
0.9.
2.8.
. 0.47. 0.92. 1.20. 1.26. 1.21 1.04 1.97. 0.94 1.17. 1.04 1.21 l.26. 1.20. 0.92. 0.47.
. 0.S2. 0.97. 1.24 1.28. 1.23. 1.06. 1.19. 0.95. 1.15. 1.02. 1.16. 1.20. l.19. 0.94. 0.50.
8 9.7.
S.2.
2.6.
2.1 1.6.
l.S.
1.5.
0.6. al.6. at.7. -3.9
-4.4. -0.8.
2.6.
4.9.
. 0.38. 1.06. 1.15. 1.25. 1.20. 1.18. 1.00. 1.16. 1.00. 1.18 1.20. 1.25. 1.tS. l.06. 0.38.
. 0.45 1.09. 1.14 1.2S. 1.22. 1.18. 0.9S. 1.14. 0.97 1.13. 1.17. 1.23.'t.16. 1.09. 0.40.
9 10.1 3.1. -0.7.
0.4.
1.6
-0.5. -4.6.
2.4 2.2
-2.6
-2.4.
-1.8' O.6.
3.2.
S.6.
p
. 0.69. 1.18. 1.26. 1.17. 0.9%. 1.18. 1.04. 1.18. 0.9%. 1.17. 1.26. 1.18. 0.69.
. 0.68. 1.17 1.27. 1.20. 0.9%. 1.14 1.01. 1.14. 0.93. 1.15. 9.27, 1.20 0.73.
10
. =t.1. -l.2.
1.0.
2.1.
- 0. 5. *3. 2. -2. 0.
-3. 0 2.6. *2.2.
- 0. 5.
1.0.
S.7.
. 0.49. 1.13. 1.23. 1.07. 1.17. 1.19. 1.20. 1.19. 1.47. 1.07 1.23. l.13. 0.45.
p
. 0.46. 1.16. 1.26. 1.09. 1.85. l.85. 9.17. 1.16. 1.15. 1.06. 1.24 1.15. 0.46.
11 2.4 2.4.
2.4.
- 2. 3. -2. 0. - 3. 3.
- 3.1.
-2. 9.
- 1. 8. =0. 8.
0.9.
1.1
- 2. 5.
. 0.53. 0.95. 1.24 1.26. 1.25. 1.26. 1.25. 1.26. l.24. 0.95. 0.S3.
. 0.56. 0.99. 1.27. 1.25. 1.21. 1.22 1.21. 1.23. 1.22 0.96. 0.54 12 6.0.
4.2.
2.3. -1.0. -3.3. -3.2. -3.5. *2.4
-1.8.
1.2.
t.3
. 0.54 1.15. 1.19. 1.45. 1.21. 1.15. 1.19. 1.15. 0.54
. 0.57. 1.18. 1.18. 4.10. 1.18. 1.13. 1.17. 1.12. 0.55.
13 4.5.
3.0. -0. S. -4. 3.
-2. 3. -2.1.
-1. 3.
- 2. 3.
1.1
. 0.4%. 0.69. 1.06. 0.92. 1.06. 0.69. 0.4%.
. 0.47. 0.74 1.09. 0.94 1.04. 0.69. 0.43.
14 3.0.
6.3.
2.6.
2.0. al.8. -1.0. *4.1 OEVI A7 0011
. 0.48. 0.50. 0.38.
AvtaAct 37 Ass 0Mt0
. 0.38. 0.47. 0.34.
.PC7 OtiffRtesCE.
15
=1.851 9.
S.6.
2.1
=
2.3
......s...
SUMMARY
MAP NO: N2 2 DATE: 11/10/84 POWER:
50%
CONTROL ROD POSITIONS:
F-Q(T)
= 2.001 QPTR:
D BANK AT 162 STEPS F-DH(N) = 1.487 NV 1.011 NE 0.995 F(Z) 1.315 SW 1.005 SE 0.989
=
F(XY) 1.548
=
/'
Bl'RNU P =
65 MWD /MTU A.O = -4.50(5) e 31
FIGURE 6.3 NORTH ANNA UNIT 2, CYCLE 4 ASSEMBLYWISE POWER DISTRIBUTION 50% POWER
-s
(
R P
N M
L E
J M
C F
E D
C S
A Pat 03 Cit 0 0.37. 0.47. 0.37.
PREDIC7tp
.PC7 SIFftREsICE.
. O.39. 0.46. 0.39.
Im maht0 1
IIEA8uetto 4.5. -2.4.
3.3.
.PC7 DIFFEREIICE.
/
. 0.45. n.70. 1.u6'. 0.98. 1.06. 0.70. 0.45.
0.47 0.72 1.07. 0.92. 1.06. 0.72. 0.46.
2 4.0.
- 4. 3.
1.1.
1.0 0.S.
3.2.
1.3.
. 0. S4. 1.15. 1.19. 1.1%
1.20. l.15 1.19. 1.15. 0.S4.
. 0.5%
t.16. 1.28 9.16. 1.21. 1.15. l.21 1.16. 0.54.
3 1.2 0.9 1.1 o.8 0.4.
0.0.
1.5.
0.7. -0.9.
0.53. 0.9%
t.2%. I.26 1.2%. 1.26. 1.25. 1.26. 1.25. 0.95. 0.53.
. 0.55. 0.97 1.27. 1.29. 1.26. 1.27. 1.24. 1.26. 1.22. 0.93. 0.53.
4 3.0.
2.1 1.9.
l.9.
U. 7.
0.6. -1.0. -0.3. -1.4. -2.6. *1.2.
/
. 0.45. 1.14. 1.24 l.07 1.17. 1.19. 1.20. 1.19. 1.17. 1.07. 1.24. 1.14. 0.45.
. 0.44. 1.16. 1.24 1.07. 1.17.
- 1..*0. 1.21. 1.19 1.16. 1.05. 1.18. 1.12. 0.46.
S 2.3.
2.3.
0.S 0.1 0.2 0.S.
0.5. *0.1
-0.5
-1.8. -4.3. -1.3.
1.7.
. 0.69. 1.19. 1.26. 1.17. 0.94 1.18. 1.04. 1.18. 0.94 1.17. 1.26. 1.19. 0.69
. 0.72. 1.24. l.29 1.18. 0.95. l.19. 1.04 1.17. 0.93. 1.13. 1.20. 1.17. 0.70.
6 4.5.
4.4 2.5.
0.5.
0.7.
0.9 0.8.
0.1. *0.7.
3.4 S.O. *1.7.
l.6.
0.37. 1.0S. 1.15. 1.25 1.20. 1.88 0.99. 1.16. 0.99. 1.18. 1.20. '.25. 1.15. 1.05. 0.37.
. 0.40. 1.09. 1.19. 1.27 1.19. 1.18. 1.no. 1.17. 0.99. 1.17. 1.17. 1.19. 1.14 1.06. 0.38.
7 6.6.
3.7.
3.8 1.4
-0.9.
-0.1 a.s.
0.8. -0.3. -0.7. -2.6. -4.5. -0.9.
0.4.
2.6.
0.47. 0.91 1.20 1.26. 1.21 1.04 1.17. 0.94. 1.17. 1.04 1.21 1.26. 1.20. 0.91. 0.47.
0.47. 0.94. 1.24 1.29 1.23. 1.06 1.19. 0.95. 1.15. 1.02. 1.15. 1.20. 1.19. 0.93. 0.49.
8 O'9 3.8.
3.4.
2.5 1.S.
1.5.
1.6.
0.7
-1.9. -2.0. -4.5. -4.4. -0.9.
2.5.
4.6.
0.37. 1.0S. 1.1S. 1.2%
1.20 1.18. 0.99. 1.16 0.99. 1.18. l.20. 1.25. 1.15. 1.05. 0.37.
. 0.37. 1.05. 1.1S. 1.26. 1.22. 3.18. 0.9%. 1.14. 0.97. l.15. 1.16 1.23. 1.16. 1.09. 0.39.
9 1.6.
0.4. ~4.4 2.0. -2.6.
3.0.
3.1 2.0.
0.5.
3.2.
S.3.
-0.8. -0.1. -0.2.
0.6
. 0.69. 1.19. 1.26 1.17. 0.94 1.98. 1.04. 1.18. 0.94 1.17. 1.26. 1.19. 0.69.
. 0.64. 1.17, 1.27 1.20. 0.94 1.14 1.02. 1.14 0.91. 1.14. 1.26. 1.19. 0.73.
10
. -1.1. -1.2.
0.9 2.0. -0.4. -3.8. -1.9. -3.3. -3.0
-2.7.
0.1 0.6.
S.4.
0.45. 1.14. 1.24 1.07. 1.17 1.19. 1.20. 1.19. 1.17. 1.07 1.24. 1.14. 0.45.
. 0.46. 1.17 1.27. l.10. 1.15. 1.15 f.17. 1.15. 1.15 1.06. 1.24 1.14. 0.46.
11 2.6.
2.6.
2.5.
2.2. -2.0
-3.3. -3.1. -3.2. -2.0. -l.1 0.3. 0.S.
- 1. 7.
/
. 0.53. 0.95 1.25. 1.26. 1.2S. 1.26 1.2%. 1.26. 1.25. 0.95. 0.53.
. 0.57. 1.00. 1.27. 1.2S. 1.21 1.22. 1.20. 1.23. 1.22. 0.96. 0.54 12 6.4.
4.4.
2.2. -1.0. -3.2. -3.1. -3.7. -2.8. -2.0.
0.7.
0.3.
. 0.$4 1.1S. 1.19. 1.15. 1.23. 1.1S. 1.19. 1.15 0.54
. 0.57. 1.17 l.18 1.11 1.18. 1.13. 1.17. 1.12. 0.55.
13 4.2 2.1. -0.0. *4.0
-2.0. -2.0. -1.5. -2.6.
0.3.
. 0.4%. 0.70. 1.06. 0.91 1.06. 0.70. 0.45.
. 0.46. 0.73. 1.08. 0.93. 1.04 0.69. 0.43.
14 2.1 S.S.
2.6.
2.0. -1.7. -1.1. -4.7.
...........,...............g.
STANDAR3 0.37. 0.47. 0.37.
AvtnAut OtVIA780EI 0.48. 0.49. 0.38.
.PC7 Olf f tREIICE.
1S
=1.566 8.S.
S.4.
2.3.
= 2.9
SUMMARY
MAP NO: N2 3 DATE: 11/11/84 POWER:
50%
2.027 QPTR:
CONTROL ROD POSITIONS:
F-Q(T)
=
D BANK AT 155 STEPS F-DH(N) = 1.487 NW 1.019 NE 0.990
= 1.334 SW 1.003 SE 0.988 F(Z) 1.556 F( XY)
=
77 MWD /MTU A.O = -7.91(%)
BURNUP =
i 32
FIGURE 6.4 e
NORTH ANNA UNIT 2, CYCLE 4 ASSEMBLYWISE POWER DISTRIBUTION 701 POWER R
P g
N L
k J
N O
F E
O C
S A
P9tDIC1E0
. 0.40. 0.51. 0.40.
PREDICitD letA8uRtc
. 0.47. 0.53. 0.42.
tutamuoto 1
.FC7 OtFFEREtICE.
S.o.
4.8.
3.S.
.PC7 SIFFEREttCE.
. 0.47. 0.71 1.07. 0.94 1.07. 0.7%. 0.47
. 0.48. 0.70. 1.09. 0.96. 1.09. 0.72. 0.46.
2 1.S. -1.8 t.7.
1.5.
1.8.
l.7. -0.9.
0.56. 1.13 1.17. 1.15. l.20. 3.15. 1.17. 1.13. 0.56.
. 0.56. 1.14 1.17. 1.e4. 1.19. 1.15. 1.18. 1.13. 0.54.
3 0.6.
- 0. 5. -0. 4.
=0. 7.
-0. 8.
-0. 0.
0.7. -0.8. -3.6.
. 0.55. 0.95. 1.22. 1.24. 1.23. 1.24 1.23. 1.24 1.22. 0.95. 0.55.
. 0.56. 0.97. 1.24. 1.26 1.23. 1.24. 1.22. 1.25. 1.25. 0.94. 0.53.
4 2.1.
- 1. 7.
1.3.
1.3. -0.1. -0.1. -0.5.
0.5. -1.1. -1.5. -2.1.
. 0.47. 1.12. 1.21 1.06. 9.16. 1.18 1.20. 1.18. 1.16. 1.06. 1.21. 1.12. 0.47.
. 0.44. 1.16. 1.23. 1.07. 1.97. 1.19. 1.20. 1.19. 1.17. 1.06. 1.21. 1.11. 0.46.
S 2.8.
2.8.
1.1 0.6 0.7 0.8.
0.8.
0.3.
0.5. -0.2. -0.5. -1.4. -0.5.
. 0.71. 1.17. 1.24. 1.16. 0.97. 1.18. 1.04. 1.18. 0.97. 3.16. 1.24 1.17. 0.79
. 0.74. 1.22. 1.27. 1.17 0.97. 1.89. 1.05. 1.18. 0.96. 1.15. 1.22. 1.16. 0.7%.
6 4.4.
4.4.
2.6.
0.8.
0.6.
- 0. 7.
0.4. -0.1. -0.2. -1.5. al.6. -1.2.
0.7.
0.40. 1.07. 1.15. 9.23. 1.19. 1.18. 1.09. 1.17. 1.01 1.14. 3.19. 1.23. 1.15. 1.07. O.40.
0.43. 1.11. 1.18. 1.25. 1.19. l.89. 1.0:
1.97 1.00. 1.17. 1.15 1.19. 1.14. 1.08. 0.41 7
6.1.
3.2.' 3.2.
1.7.
0.3.
0.3.
0.6.
0.1. -0.6. -1.3. -2.7. -3.2. -0.4.
1.0.
2.4.
0.51. 0.9%. 1.20. 1.24 1.20 1.nS. 1.18. 0.96. 1.14. 1.0S. 9.20 1.24 1.20. 0.94. 0.5%.
. 0.51. 0.97. 4.23. 1.27. 1.23. 1.nf. 1.18. 0.96. 1.15. 1.03. 1.16. 1.20. 1.19. 0.96. 0.52.
8 0.3.
3.2.
2.8.
2.8.
2.8.
2.0.
0.4. -0.4. =2.0. -2.0. -3.4. -3.1. -0.4.
1.3.
2.5.
0.40. 1.07. 1.15. 1.23. 1.19. s.18. 1.01 1,17. 1.01 1.18. t.19. 1.23. 1.15. 1.07. 0.40.
1 0.40. 1.07. 1.15. 1.24 1.22 f.19. 0.97. 1.15. 0.98. 1.15. 1.16. 9.22. 1.15. 1.08. 0.48 9
-0.1
=0.0.
0.2.
1.3.
2.8.
- 0. 7. -3. S.
-2. 0.
-2. 3. -2. 6
-2.9. -0.9.
0.3.
1.1.
2.2.
. 0.71. 1.17. 1.24 1.16. 0.97 1.18 1.04 1.18. 0.97 1.16. 1.24. 1.57. 0.79
. 0.71. 1.17. 1.26. 1.19. 0.97. 1.15. 1.02. 1.15. 0.95. 1.15. 1.25. 1.17. 0.72.
10
-0.4. -0.5.
l.6.
2.7.
0.4
- 2. 3.
1.7.
2.5. -2.1 1.4.
1.0.
0.2.
1.6.
0.47. 1.12. 1.21 1.06. 1.16. 1.18. 1.20. 1.18. 1.16. 1.06. 1.21. 1.12. 0.47
. 0.47. l.14. 1.23. 1.09. 1.15 1.16. 1.17. 1.16. 1.13. 1.06. 1.22. 1.12. 0.47.
11 1.5.
1.5.
1.7.
- 2. 0. - 1. 0.
-2. 0. - t. 9. -1. 9.
-0. 9. -0.1.
0.5.
0.0. -0.2.
. 0.55. 0.95. 1.22 1.24 1.23. 9.24 1.23. 1.24 1.22. 0.9S. 0.55.
. 0.57. 0.98. 1.25. 1.24. 1.20. 1.22. 1.20. 1.22. 1.28. 0.96. 0.55.
12 3.6.
2.8.
2.0.
0.0. -1.9. -1.9. -2.4. -1.5. -0.9.
0.4. -0.2.
. 0.56 1.13. 1.17. 1.15. 1.20. 1.15. 1.17. 1.13. 0.56.
. 0.56. 1.12. 1.16. 1.12. 1.18. 1.13. 1.17. 1.12. 0.55.
13 1.1. -1.4. -1.6. -2.4. -1.1. -1.3. -0.7. =1.4. -0.1.
. 0.47. 0.7%. 8.07. 0.94 1.07. 0.71. O.47.
. 0.46. 0.72 1.04. 0.95. 1.06. 0.71. 0.46.
14
. -1.4.
1.4 0.6.
0.8
- 1.0
- 0.4. -2.9 STANDARD 0.40. 0.59. 0.40.
AvtRAct Otvl Afl0el
. 0.42. 0.52. 0.41
=t.15e 4.o.
2.9.
1.9.
. PC7.O t F FintitCE.
13 15
SUMMARY
MAP NO: N2 4 DATE: 11/12/84 POWER:
70%
CONTROL ROD POSITIONS:
F-Q(T) 1.931 QPTR:
=
D BANK AT 171 STEPS F-DH(N) = 1.448 NW 1.015 NE 0.993 1.298 S
5bbk SE bh95 F(Z)
=
F(XY) 1.517
=
82 MWD /HTU A.0 = -4.61(%)
BURNUP =
33
i FIGURE 6.5 NORTH ANNA UNIT 2, CYCLE 4 ASSEMBLYWISE POWER DISTRIBUTION HFP, EQUILlBRIUM XENON R
P 4
M L
h
.I H
0 F
[
0 C
8 A
PRfoltit0
. U.4?. 0.54. O.42.
PRt01Cito MtA$URfD O.49. 0.57. 0.44 MLAsunto
.PCI OttftMt4Ct.
S.4 S.3.
3.9..
.PCI OliftRtlect.,
t 0.47. n.71 1.f e9 1.01. 1.09 0.71 0.47.
- 0. 48. n. 74 1.17. 1.03. 1.il. 0.73. 0.47.
p 2.9.
3.4 P.n.
I.9 1.6.
2.7 0.7 "6:ssTi:i6"'i:ir "i:is".*i:56Ti:ir 'i:ir.~i:ir"6:si".
. 0.S$. 8.10 1.t6 1.15. l.Fn. 1.14
- 1. f6 S.In. 0.54 3
0.1
-0.1 n.6.
n.4
-0.0
- 0.5 0.9
-0.3
-1.9.
0.54 0.93. 1.99 1.ft l.PI 3.22 f.29 1.29 f.19 0.93. 0.54
. 0.$5. 0.94 1.19. I.23 t.21 1.73. I.19 1.F7. 1.18 0.97. 0.53 4
1.6.
0.9.
- 0. 7.
1.1 n.4
- 0. 3.
- 1. 7 0.5.
-0.9. al.2
- 1.6 O.47 1.09. 1.18. l.06. 9.16 f.18 1.19 9.18. 1.06. 1.06. 1.18. 8.09 0.4F
.. 0. 4 7. 1.18 1.18. 1.0S, 9.06 1.19 1.70 1.19. 1.17 l.05 1.17 1.OR O.47.
S 1.1 1.1
-0.3
- 0.7
-0.4 n.F 0.8.
0.S 0.8. -n.p
-0.9
-1.4 0.4
. 0.71 1.13. l.Pl 1.17 I.nl
- 1. Pit. 1.06. 1.29 1.04 1.16 1.19 1.13 0.71 6
9.0%
1.70 1.03. 1.17 1.78 1.13 0.71
. 0.73. 1.18. 1.23. 1.16 9.n3. 1.Pl 2.8.
2.7 1.2. -0.4 II. 3 n.9 n.9 0.9 1.1
-n.9
-l 8. -1.5.
0.4 "6:siTi:64Ti:ir 'i:ii' 'i:ir *i:f6' 'i:6F"i:ir:~i:6s 'i:ir"i:ir 'i:ii"*i:is"'i:60 '6:4r:
. 0.44 1.14 1.19. 1.27. 1.17 8.70. 1.n4 l.19 I.03. l.71 1.8F 3.lf 1.17. 1.08 0.42.
7 4.6 4.5 4.4.
0.8. al.1 n.3.
I.I 1.0.
0.7 0.6
-n.9. *3.6
- P.3.
1.4.
0.4
- 0. Sis. 3.03 1.20. l.27. l.19. I.n6. 1.19. 0.97 1.18 l.06 1.19. l.27 f.20 8.08 0.54.
0.S6 1.06. 1.23. 1.75 9.71 1.nF 1.?u. 0.98. 1.17. 1.0%
1.16. 8.18 1.17. 1.02. 0.56.
8 4.5.
4.4 4.4.
-2. 5 1.5.
l.4.
1.7 0.7 0.9.
- 1.0 7.8.
3.6.
2.4.
0.7.
3.0.
0.42. 1.09. 1.14 1.21 f.18 l.70 1.np 1.18 1.07 9.70 1.18 1.pl 1.14. 1.09. 0.42 0.44. 1.11 1.12 1.72. l.70. 1.?O. 0.99. I.16 1.01 9.88 1.16 1.99 3.33 1.11 0.44 9
4.6 1.4
- 1.8.
0.5 1.6. an.t 3.S I.6
-I.S
- 1. 7.
- 1.7
- 1.8
-0.9 1.2.
3.6
. 0.71 3.15. 1.21 1.17. 1.03. 1.7u, 1.0%, t.70 1.n3 1.17. 1.21 1.1%. 0.78 0.70 1.93. 1.72. I.19 8.n3. 1.17 1.04 1.17. 1.01 1.1 %. 8.??
1.1%
0.73.
10
-1.8. -1.8.
- 0. 7.
2.9 n.1
-P,7
- 1. 3
-2.2. -1.F
-I.6 0.9.
0.5 3.2.
. 0.47. 1.09 1.18 1.06 1.t6 1.18 1.19 3.18. 1.16. 1.06. 1.18 0.09. 0.4F.
. 0.47 9.10 9.70 1.08 f.13 1.95 1.16 f.tS. 1.1S. 1.05 1.19 1.10 0.47 11 0.9.
0.9 f.3 2.8 al.S. -7.i
-2.3
-F.2. -t.0
-0.3 0.6 0.3.
0.7.
. 0.54. 0.93. 1.19 f.?l 1.78. 1.2P. 1.21 1.21 1.19 0.93. 0.54 0.56 0.96. 1.21 f.?O. 1.98 9.19. 1.17 1.19. 1.97. 0.94 0.54 12 3.6 2.9.
2.1.
-0. 8. -?. 7
-2.6. +7.8
-1.6.
-1.1 0.7 0.8
. 0.55. 1.10 9.85. 1.84. t.Pn. 1.th 1.1%
t.10 0.SS 0.56 1.It I.13. l.In. 1.16 3.10 1.17. l.04 0.55 13 2.0.
0.3. -l.6. -1.F
- 3. 7
-3.5
-3.8
=1.6 0.I
. 0.47. 0.71 1.ng 1.01 1.09. 0.F8 0.47.
. 0.47. n.F3. l.88 1.02 1.06 0.69 0.4%.
14 0.3.
3.0.
9.1 0.7. -3.5. -3.0.
3.1 STANDARD 0.47. n.54. 0.47.
AvtRAct 13 D.tVI AT P0sl.
O.49 0.57. 0.4%.
.PCF OlFftRENCE.
t.iSi S.i.
S.6 S.F i.F I
P
SUMMARY
MAP NO: N2 7 DATE: 11/16/84 POWER: 100%
CONTROL ROD POSITIONS:
F-Q(T) 1.789 QPTR:
=
D BANK AT 216 STEPS F-DH(N) = 1.420 NW 1.015 NE 0.996 F(Z)
= 1.203 SW 1.001 SE 0.988 F(XY) 1.493
=
230 MWD /MTU A.0 = -2.47(%)
BURNUP
=
34
Section 7 REFERENCES
- 1. C. B. Laroe, M. E. Paul, " North Anna Unit 2, Cycle 4, Design Report,"
NE Technical Report No. 385, Vepco, September,1984.
- 2. North Anna Unit 2 Technical Specifications, Sections 3.1. 3. 4, 3/4. 2.
-3. T. K. Ross, W. C. Beck, " Control Rod Reactivity Worth Determination By The Rod Swap Technique," VEP-FRD-36A, December 1980.
- 4. " Technical Manual for Westinghouse Solid State Reactivity Computer,"
Westinghouse Electric Corporation.
- 5. W. Leggett and L. Eisenhart, "The INCORE Code," WCAP-7149, December, 1967.
J 4
1 i
i i
35
APPENDIX STARTUP PHYSICS TESTS RESULTS AND EVALUATION SHEETS O
36 i
.~. M, 9 J W
..r
~k
- e..
NORTH ANNA POWER STATION UNIT 2 CYCLE 4 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I
Test
Description:
Reactivity Computer Checkout Reference Proc No /Section: 2-PT-94.2 Sequence Step No: 3 II Bank Positions (Steps)
RCS Temperature (*F): 547 Test Power I.evel (f. F.P.): 0 Conditions SDA: 228 SDB: 228 CA: 228 Other (specify):
(Design)
CB: 228 CC: 228 CD:
- Below Nuclear Heating III Bank Positions (Steps)
RCS Temperature (*F): 54'3.f *F Test Power I.evel (*. F.P.): O Conditions SDA: 228 SD8: 2*8 CA: 228 Other (Specify):
I (Actual)
CB: 228 CC: 228 CD: is o Below Nuclear Heating Date/ Time Test Performed:
II/.*L/ del ll41 Measured, Parameter p, = Maas. Reactivty using p-computer IV (Description) p = Inferred beact free react period g
I 43.5pc~
-Co e~
p =
r l
e t
p,= 4 T. Q"
-Nf4 Measured Value Test
.D = -/.V %
- 3. 8 %
l Results r
Design Value I,
(Actual Conditions)
- D = [(p t)/8 I*
I '*U c
t 4
Design Value (Design Conditions)
- D = ((p p d,) x W s 4.3 e g Reference WCAP 7905, Rev. 1, Table 3.6 l
V FSAR/ Tech Spec Not Applicable
{
Acceptance i
j Criteria
)
Reference Not Applicable i
l l,
._!YES
_NO I
Design Tolerance is set VI Acceptance Criterit is met : Z YES N0 i
Comments
- At the just critical position Allowable Range = 2 50 pcm i
Completed By:
Evaluated By:
Test Engineer Recommended for gj Approval By :
NFO Engineer i
A.1 L
NORTH ANNA POWER STATION UNIT 2 CYCLE 4 STARTUP PHYSICS TEST RESULTS ANO EVALUATION SHEET I
Test
Description:
Critical Boron Concentration - ARO Reference Proc No /Section: 2-PT-94.3 SequenceStepNo:'/
II Bank Position.s.(fe.eps)
Test RCS Temperature (*F): 547 Power Level (% F.P.): O Conditions SDA: 228 SDB: 228 CA: 228 Other (specify):
(Design)
CB: 228 CC: 228 CD: 228 Below Nuclear Heating III Bank Posit:,ons (Steps)
RCS 'Ie'aperature (*F): 8VfF Test Power Level (% F.P.): O Conditions SDA: 228 SDB: 228 CA: 228 -
Other (Specify):
(Actual)
CB: 228 CC: 228 CD: 228 Below Nuclear Heating Date/ Time Test Performed:
st/2/sy
/s73 Meas Parameter IV (Description)
(C )A 0; Critical Boron Concentration - ARO B
(C )A 0 "
[
Measured Value B
Test Results Design Value (Actual Cond)
CB =1699 t 50 ppa Design Value (Design Cond)
CB =1699 i 50 ppm Reference NE REPORT NO. 385 V
FSAR/ Tech Spec C
B 5 N# P a
B Acceptance Criteria Reference UFSAR Section 15.2.4 Design Tolerance is met
- _JdTS NO Acceptance Criteria is met
'YES NO VI Comments aC '== -7,60 pcm/ ppm fdr preliminary analysis B
oc.c,.,. 7.go pen /gm fo-Ce*/ anal'u.
y Completed By: /
/l M Evaluated By:
Test Enginear'*>>i,.
'4~'
Recemn7aded for
[
Apptova) % :_
!E ^?
NFO Engineer
' ' ' i (\\,
lt A.2 e
e l
^
l h
NORTH ANNA POWER STATION UNIT 2 CYCLE 4 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I
Test
Description:
Isothermal Temperature Coefficient - ARO Reference Proc No /Section: 2-PT-94.4 Sequence Step No: S II lank Positions (Steps)
RCS Temperature ('F): 547 Test Power I.evel (% F.P.): O Conditions SDA: 228 503: 228 CA: 228 Other (specify):
(Design)
CB: 228 CC: 228 CD: 224 Below Nuclear Heating III Bank Positions (Steps)
RCS Temperature ('F): SVOY Test Power I,evel (% F.P.): 0 Conditions SDA: 228 503: 228 CA: 228 Other (Specify):
(Actual)
CB: 228 CC: 228 CD: 22,1 Below Nuclear Heating Date/ Time Test Performed 18 / 2 / 8 4
/4ar i
Meas Parameter i
IV (Descrip' tion)
(aII,0)ARO Isothermal Temp Coeff - ARO l
g t
i I
(ah0)ARO"*
Test Measured Value Pem/'T (Cg = Mppa)
Results Design Value (Actual Cond)
(a f0)ARO =
pcm/ F (C8 " // Ppe) l I"ISOI T ARO = -3.25 t 3.0 pcm/'T Oasian Value (Design Cond)
(C5 ".1699 ppe)
Reference NE RIPCRT NO. 385 l
V FSAR/ Tech Spec sh0 0 p = -2.12 pem/*F j
s 2.12 pcm/*r 3
Acceptance Criterta Reference TS 3.1.1.t., NE REPORT NO. 385 5
! _ NO Design Tolerance is met YES VI Acceptance Criteria is met : ZYES JO i
Consents
- A seasured value more positive than *2.12 pcm/*F requires I
implementation of control rod withdrawal limits.
Complaced By # Test Engineer
/
Evaluated By:
i e
Recommended for g
Approval By :
NTO Engineer
{
i A.3 b
% f.,;;
NORTH ANNA POWER STATION UNIT 2 CYCLE 4 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I
Test
Description:
Carl Sank 8 Worth Meas. Rod Swap Ref. Bank Reference Proc No /Section: 2-PT-94.5 Sequence Step No: 7 II Sank Positions (Steps)
RC3 Temperature ('T): 547 Test Power t.evel (% F.P.): O Conditions SDA: 228 3D8: 228 CA: 228 Other (specify):
(Design)
C8: Moving CC: 228 CD: 228 Below Nuclear Heating III Sank Positions (Steps)
RCS Teeperature ('T): E W~"F Test Power Level (% T.P.): 0 Conditions SDA: 228 SD8: 228 CA: 228 Other (Specify):
(Actual)
C8: Moving CC: 228 CD: 228 Selow Nuclear Heatint Date/ Time Test Performed:
Il/3 /84
/ RAT t
Measured Parameter I F; Integral Worth of Catt Bank 8 (Description)
All Other Rods Out IV Tese Measured Value IRET,
f 3 7 2, ge, f
Results Design Value (Actual Conditions)
- IRT,
/ 379 f /W pcm Design Value (Design Conditions)
I
= 1399 2 140 pea Reference NE REPORT NO. 335 If Design Tolerance is exceeded, SNSCC shall evaluate impact of test result FSAR/ Tech Spec on safety analysis. SNSCC may specify V
that additional testing be performed.
4 Acceptance Criteria i
Reference VEP FRD-36A Design Tolerance is met 3
N0 VI Acceptance Crite,.'.a is met :
ES J O Comments i
Completed By:
d'4 Evaluated 87:
" Test Engineer
{*
[
Recomeended for g
Approval By :
rA NTO Engineer A.4
5 D.
.e os s
NORTH ANNA POWER STATION UNIT 1 CYCLE 4 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I
Test
Description:
Critical Boron Concentration - 8 Sank In Reference Proc No /Section: 2-PT 94.3 Sequence Step No S II 8ank Positions (Steps)
ACS Temperature (*F): 547 Test Power I,evel (% F.P.): 0 Conditions SDA: 228 SDB: 228 CA: 228 Other (specify):
(Design)
C8: 0 CC: 228 CD: 228 Below Nuclear Heating III 8ank Positions (Steps)
RCS Temperature (*F):.5"Y'l*F Test Power I,evel (*. F.P. ): O Conditions SDA: 228 3D8: 228 CA: 228 Other (Specify):
(Actual)
C8: O CC: 228 CD: 228 8elow Nuclear h ating Date/ Time Test Forformed:
II/2/8 4' 2352 Meas Parameter IV (Description)
(C ) ; Critical Boron Concentration - 8 Sank In S
Measured Value (C )f =
/ f O O [M g
Test Re.aults Design Value (Actual Cond)
Cg=
['/ 7 Y I 2 8 7 Design Value (Design Cond)
C3 = 1317 + 40 t(10 + 139. 5 / l e ID 3
Cg Reference NE REPORT NO. 385 V
F3AR/ Tech Spec e
xC s 2.,000 pes C
3 3
Acceptance Criteria Reference Lfr$AR Section 15.2.4 Design Tolerance is met
[ YES N0 Acceptance Criteria is met : M T.3 _ NO i
VI Comments aC = 7.60 pea /ppe for preliminary analysis g
AC=(C)AfD g
g 1699 9,. y,go yaqyym
{pe $n el 9n *lyO'3
- ol Complaced 8 I_a f* l Evaluated Syt Test EngLneerl _
Recommended for {.
Approval By :
NTO Engineer A.5
I,f!
y
< < '.'.s,&
~
NORTH ANNA POWER STATION UNIT 2 CYCLE 4 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I
Test
Description:
NZF Baron Vorth Coefficent Measurement Reference Proc No /Section: 2-PT 94.5 Sequence Step No 8 Beak Positions (Steps)
ACS Temperature (*F): 547 Test Power I,evel (% F.P.): 0 Conditions 3DA: 228 $08: 228 CA: 224 Other (specify):
(Design)
CI Noving CC: 228 CD: 226 Below Nuclear Keating Bank Positions (Steps)
RCS Temperature (*F): 54f 8 #
Test Power t.evel (% F.P.): O Conditions 3DA: 228 508: 228 CA: 228 Other (Specify):
(Actual)
CI Moving CC: 228 CD: 228 Below Nuclear Heattag Dece/ Time Test Performed:
// BV
/T/3 Measured Parameter IV (Description) aC Baron Vorth Coefficient g
Measured Value aC
-7.80 g
/dC"'//M Test Results Design Value (Actual Conditions)
- 7'
/ 'NN o
C
~
g Design Value (Design Conditions) o
= -7.60 2 0.76 ocm/ ppm g
3 Reference NE REPORT NO. 385 FSAR/ Tech Spec 3
xC $ 2a,000 pcm C
3 3
V Ac:eptance Criteria Reference UFSAR Section 13.2.4 i IS _ NO Design Tolerance is met VI Acceptance Criteria is met : W3 N0 Consents
~
~
/* /.
Completed By Evaluated By:
Te'st Engineer #
Recommended for
- !^'d Approval By:
NFO Engineer A.6
j.
.L NORTH ANNA POWER STATION UNIT 2 CYCLE 4 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I
Test
Description:
Casi Bank D Worth Measurement-Rod Swap Reference Proc No /Section: 2 FT-94.7 Sequence Step Not /0 II Bank Positions (Steps)
RCS Temperature (*F): 347 Test Power I,evel (% F.P.): 0 Conditions SDA: 228 SDB: 228 CA: 228 Other (specify):
(Design)
CB Moving CC: 228 CD Moving Below Nuclear Heating III Bank Positions (Steps)
RCS Temperature (*F): fWJ*8 Test Power t.evel (% F.P.): 0 Conditions SDA: 228 508: 228 CA: 228 Other (Specify)t (Actual)
CB: Moving CC: 228 CD Moving Below Nuclear Heating' Date/ Time Test Performed:
II /3/89 ooze Meas Parameter (Description)
!D ;Inc Vorth of Cnc1 Bank 0-Rod Swap IV (Adj. Meas. Crit. Ref Bank
!l8= /0 3f gcm Position = /42 steps) i
' Test Measured Value Result:.
Design Value (Adj. Maas. Crit. Ref tank (Actual Cond)
!l3= /0 7Df/t/pPosition = /M step.)
Design Value
!lIa 1067 2 160 pea (Critical Raf Bank (Design Cond)
. Position = 175 steps)
Reference NE REPORT NO. 385. VEP TRD 36A. NTO TI 2.2A If Design Tolerance is exceeded. SNSOC shall evaluate impact of test result on V
FSAR/ Tech Spec safety analysis. $NSOC may specify that Acceptance additional testing be performed.
Criteria Reference VEP FRD 36A Design Tolerance is met
- .2 d ES N0 VI Acceptance Criteria is met :.A::TES NO Comments
~~
2>/<///d
/' J. W Complaced By:
Evaluated By:
Test Engineer Recommended for { j. j ^ g Approval 8y 1 Nio Engineer A.7
l1.o F-
-5,-
NORTH ANNA POWER STATION UNIT 2 CYC1.E 4 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I
Test
Description:
Cati Bank C Worth Measurement Rod Swap i
Reference Proc No /Section: 2-PT-94.7 Sequence Step No:ll j,
II Bank Positions (Steps)
RCS Temperature (*F): 547 I
Test Power I.evel (Y, F.P.): O Conditions 3DA: 228 3DE: 228 CA: 228 Other (specify):
(Design)
CB: Moving CC: Moving CD: 228, Below Nuclear Heating l
III Bank Positions (Steps)
RCS Temperature (*F): 64Y 7 *8 l
Test Power Level (?. F.P.): 0 t
Conditions SDA: 228 SDB: 228 CA: 228 Other (Specify):
(Actual)
CB Moving CC: Moving CD: 228 Below Nuclear Heating.
Date/ Time Test Performed:
Il-1-64 otte Meas Parameter R5; Int Worth of Cati Bank C Rod Swap (Description)
I IV (Adj. Meas. Crit. Ref Bank Test Measured Value II3= 80/ f*'
Position = /2'? steps)
Results Design Value (Adj. Meas. Crit. Ref Bank RS, gf7.t,2gr Position = /2~7 steps)
{
/
(Actual Cond)
I t
Design Value IRS = 852 2 123 pcm (Critical Ref Bank f
(Design Cond)
Position = II.9 steps) j Reference NE REPORT NO. 385. VEP-FRD-36A. NFO-TI-2,2A f
t If Design Tolerance is exceeded, SNSCC I
shall evaluate impact of test result on i
7 FSAR/ Tech Spec safety analysis. SNSOC may specify that Acceptance additional testing be performed.
}
Criteria Reference VEP-FRD-36A l;
Design Tolerance is met
}
] ES
__NO
{
i VI Acceptance Criteria is met : _YES JO Comments i
i l
Completed By#:[-
Evaluated Sy:
Test Engineer ApprovalByr{*j*
Recommended for NFO Engineer A.8 L
u f
lh ? ?.1 '
NORTH ANNA POWER STATION UNIT 2 CYC1.E 4 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I
Test
Description:
Catt Bank & Worth Measurement-Rod Swap /2 Reference Proc No /Section: 2-PT-94.7 Sequence Step No:
II Bank Positions (Steps)
RCS Temperature (*F): 547 Test Power I.evel (% F.P.): O Conditions SDA: 228 SDB: 228 CA: Moving Other (specify):
(Design)
C8: Moving CC: 228 CD: 228 8elow Nuclear Heating III Sank Positions (Steps)
RCS Temperature (*F): 5 W 2 *8 Test Power I.evel (% F.P.): O Conditions SDA: 228 SDB: 228 CA: Moving Other (Specify):
(Actual)
C8: Moving CC: 228 CD: 228 Below Nuclear Heating Date/ Time Test Performed:
Il '5-6 */ ~O333 Meas Parameter (Description)
I ; Int Worth of Cati Bank A - Rod Swap f
IV f
(Adj. Meas. Crit. Ref Bank Test Measured Value IN3= N S p'*
Position. 82 steps)
Results Design Value (Adj. Meas. Crit. Ref Bank RS= 383f#vre Position - At step )
(Actual Cond)
I Design Value IRS = 3912100 pcm (Critical Ref Bank (Design Cond)
. Position = 95 steps)
Reference NE REPORT No. 385. VEP-FRD-36A. NFO-TI-2.2A l
If Design Tolerance is exceeded SNSOC 1
shall evaluate impact of test result on i
V FSAR/ Tech Spec safety analysis. SNSOC may specify that
}
Acceptance additional testing be performed.
Criteria Reference VEP-FRD-36A l
Design Tolerance is met
- ._W._S _ _NO i
VI Acceptance Criteria is met : _i::TES NO
'i Comments l
Complaced By:
/
Evaluated By:
Test Engineer t
g* j- ~ -
Recommended for j
Approval By :
NFO Engineer A.9 L.
['
s) :.:I
$g,?1.3 NORTH ANNA POWER STATION UNIT 2 CYCLE 4 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I
Test
Description:
Shutdown Bank 8 Vorth Meas. - Rod Swap Reference Proc No /Section: 2-PT-94.7 Sequence Step No: f 3 II 8ank Positions (Steps)
RCS Temperature (*F): 547 Test Power I,evel (f. F.P.): O Conditions SDA: 228 3DB: Moving CA: 228 Other (specify):
(Design)
CB: Moving CC: 228 CD: 2tj Below Nuclear Heating III Bank Positions (Steps)
RCS Temperature (*F): 5W. 7 *#
Test Power I.evel (f. F.P.): 0 Conditions SDA: 228 SDB: Moving CA: 228 Other (Specify):
(Actual)
CB: Moving CC: 228 CD: 228 Below Nuclear Heating i
i Date/ Time Test Performed:
j ll-3-6'l 04'o t Maas Parameter (Description)
Ih; Int Vorth of Shutdown Bank 8-Rod Swap IV (Adj. Mess. Crit. Ref Bank
!$= O#3 8C*
Position = /3 Y steps)
Test Measured Value
/
Results t
Design Value (Adj. Meas. Crit. Ref Bank th='I/DI/37*** Position =/37 steps)
(Actual Cond)
I
/
Design Value Ih=917t138pcm(CriticalRefBank (Design Cond)
Position = 157 steps) l I
l Reference NE REPORT NO. 385. VEP-FRD-36A. NFO-TI-2.2A
[
If Design Tolerance is exceeded. SNSGC shall evaluate impact of test result on l'
V TSAR / Tech Spec safety analysis. SNSOC may specify that
[
Acceptance additional testing be performed.
f Criteria l
Reference VEP-FRD-36A Design Tolerance is met
- $ 5 NO I
VI Acceptance Criteri1s is met :.k::TES _ NO Comments
[
1 1
i
//
r Complaced 8 Evaluated By:
, Test Engineer Recommended for j
Approval 8y : g-3 i
NTO Engineer l
A.10 b
lI -o
.' h-NORTH ANNA POWER STATION UNIT 2 CYCLE 4 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I
Test
Description:
Shutdown Bank A Worth Meas. - Rod Swap Reference Proc No /Section: 2-PT-94.7 SequenceStepNotfaf II Bank Positions (Steps)
RCS Temperature (*F): 347 Test Power I,evel (% F.P.): 0 Conditions SDA: Moving SD8: 228 CA: 228 Other (specify):
(Design)
C8: Moving CC: 228 CD: 228 Below Nuclear' Heating III Bank Positions (Steps)
RCS Temperature (*F): SW..? *8 Test Power I.evel (% F.P.): 0 Conditions SDA: Moving SDB: 228 CA: 228 Other (Specify):
(Actual)
C8: Moving CC: 228 CD: 228 Below Nucisar Heating Date/ Time Test Performed:
/l-3-84 04'29 Meas Parameter (Description)
I ; Int Worth of Shutdown Bank A-Rod Swap 4
IV (Adj. Meas. Crit. Ref Bank f
Test Measured Value IR$= /103 /2" Position = /73 steps)
Results Design Value (Adj. Meas. Crit. Ref Bank (Actual Cond)
I =/d8
/"'* Position = /73 steps)
{
6 Design Value I =1067 2 160 pea (Critical Ref Bank
[
(Design Cond)
Position = 173 steps)
Reference NE REPORT NO. 383, VIP-FRD-36A, NFO.-TI-2.2A If Design Tolerance is exceeded. SNSOC shall evaluate impact of test result on i
V PSAR/ Tech Spec safety analysis. SNSOC may specify that j
Acceptance additional testing be performed.
Criteria Reference VEP-TRD-36A L
Design Tolerance is set
- 1::1(ES
_NO
~
VI Acceptance Criteria is met :.u::TES N0 Comments Completed By:
Evaluated By:
Test Engineer
[- d i
Recommended for Approval By :
NFO Engineer i
A.11 i
.. _ - _,.,., _.. _ _.., _.... _ _. _ _ _ _ _ _ _ _. _, _. - - _ _...., _, ~., _ _. _ _ _, _. _
f 6.I b.< u.C NORTH ANNA POWER STATION UNIT 2 CYCLE 4 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I
Test
Description:
Total Rod Worth - Rod Swap Reference Proc No /Section: 2-PT-94.7 Sequence Step No /Y II Bank Positions (Steps)
RCS Temperature ('T): 547 Test Power I.evel (f. F.P.): 0 Conditions SDA: Moving SD8: Moving CA: Moving Other (specify):
(Design)
C8: Moving CC: Moving CD:Movtag Below Nuclear Heating III Bank Positions (Steps)
RCS Temperature ('T): J'/C D *8 i,
Test Power I,evel (% F.P.): 0 Conditions SDA: Moving SDB: Moving CA: Moving Other (Specify):
(Actual)
C8: Moving CC: Moving CD: Moving Below Nuclear Heating Date/ Time Test Performed:
II 8'l
/827 Meas Paraaster (Description)
ITotal; Int Worth of All Banks - Rod Swap IV Test Measured Value Ig=
687/
jac^
Results l
Design Value F
1 (Actual Cond)
ITotal
- Design Value ITotal = 5693 2 569 pcm (Design Cond)
I Reference NE REPORT NO. 385, 0EP-TRD-36A. ST0 TI 2.2A l
r
!f Design Tolerance is exceeded. SNSOC f
shall evaluate impact of test result on V
73AR/ Tech Spec safety analysis. SN30C may specify that Acceptance additional testing be performed.
Criteria Reference VEP-FRD-36A l'
Design Tolerance is met
- M ES _ NO I
VI Acceptance Criteria is set :.33'IS _ NO f
i Comments e
i
- y l
Completed Evaluated By:
Test Engineer Recoramended for Approval By : C.
- -d NFO Engineer l
1 A.12 e
[
j.
.*!?;f;b NORTH ANNA POWER STATION UNIT 2 CYCLE 4 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I
Test Description : N/D Flux Map - HZP. ARO Reference Proc No / Section: 2-PT-21.1 Sequence Step No: NA II Bank Positions (Steps)
RCS Temperature (*F):T II RET Test Power Level (% F.P.): -3 Conditions SDA: 228 SD8: 228 CA: 228 Scher (specify)
(Design)
CB : 228 CC : 228 CD: 228 Must have 2 38 thimbles III Bank Positions (Steps)
RCS Temperature ('F): TY 7 *#
Test Power Level (% F.P.): W.
Conditions SDA: 228 SD8: 228 CA: 228 Other (Specify):
(Actual)
CB : 228 CC 228 CD: 2ll 4/ f fl,/m h/as i
Date/ Time Test: il/1/M Performed:
ijo i MAX. REL NUC ENUAL TOTAL HEAT QUADRANT RADIAL IV Maas Parameter ASSY PVR RISE HOT FLUX HOT POVER TILT PEAKING (Description)
% DIFT CHAN FACT CHAN FACT RATIO FACTOR (M P)/P F dH(N)
F-Q(T)
Q?TR F XY 7% lee
}N " ' '* I I
/. 5C 6
".2.471
/. 0 3
/. 5'7 6 Measured Value Test g/2.a.sr Results
'~
'~ ""
( sign Co s)
- a-e 1 1.02
!VCAP-790$
I VCAP-7905 Reference l REY.1 NONE NONE l
REY.1 NONE V
FSAR/ Tech Spec NONE NA NA NA NA Acceptance!
Criteria I
i Reference NONE TS 3.2.3 iTS3.2.2jTS3.2.4 TS 4.2.2 l
I YES 6 0 Design Tolerance is met Acceptance Criteria is met Z YES N0 VI Comments M De t "' f '*1"Ib. a te a ce of o 4/e as l,);c a te.I b
t y
Aloe h Anna fe,w e $ b sb'on Devia 6*es t\\e, sos No. 81'- //or, a
Completed 8y #
Evaluated Sys /
MM Test Engineer /
j
- j.- rJ Recommended for Approval Sy:
NTO Engineer
- The finsi limit for unrodded Fxy was 1.61.
A.13 c
NORTH ANNA POWER STATION UNIT 2 CYCLE 4 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I
Test Description : N/D Flax Map-At Power, NI Calibration Reference Proc No / Section: 2-PT-22.2 Sequence Step No: 4/3 II Bank Positions (Steps)
RCS Temperature ('F):T AI REF Test Power Level (% F.P.): ~ 50 r
Conditions SDA: 228 SDB: 228 CA: 228 Other (specify)
(Design)
CB : 228 CC : 228 CD:
- III lank Positions (Steps)
RCS Temperature ('F): Tire Test' Power Level (% F.P.): So./ %
Conditions SDA: 228 SDB: 228 CA: 228 Other (Specify):
(Actual)
CB : 228 CC : 228 CD: IdA q 7 fA,% 6/u Date/ Time Test: il /'*/8V Performed:
t/SO i
MAX. RIL NUC ENTHAL TOTAL HEAT QUADRANT RADIAL IV Meas Parameter ASSY PWR RISE HOT FLUX HOT POWER TILT PEAKING (Description)
% DIFF CHAN FACT CHAN TACT RATIO FACTOR (M-P)/P F-dH(N)
F-Q(T)
QPTR F-XY C si 4G for-
,fg[s'
/, '/8 7 2.OO/
[, O /O~/
/, 73 c)#
Measured Value Test 9, of Results l Z l 'll Design Value n...-,l:=,
NA NA 5 1.02 NA (Design Conds)
WCAP-7905 WCAP-7905 f
Reference REV.1 NONE NOST REV.1 NOSI V
FSAR/ Tech Spec NONE 8
8 NA Acceptance Criteria Reference NONE TS 3.2.3 TS 3.2.2 TS 3.2.4 TS 4.2.2 Design Tolerance is set NO Acceptance Criteria is met t YES #
VI Comments
- As Required Must have at least 38 thimbles for a full-core flux sap, or i
at least 16 thimbles fgr a quarter core flux asp.
/
Evaluated By:
Completed By '
Test Engineer /
Recommended for C. g-Approval By:
STO Engineer C: A violation of the F Technical Specifications limit occured, but was deemed acceptable as por Nor h Anna Power Station Deviation Report 84-1663.
i A.14 u
p..
~
-t. h.- l-NORTH ANNA POWER STATION UAIT 2 CYCLE 4 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I
Test Description : M/D Flux Map-At Power, NI Calibratior:
Reference Proc No / Section: 2-PT-22.2 Sequence Step No: N II lank Positions (Steps)
RCS Temperature (*T):T Il RET Test Power Level (% T.P.): - 70 Conditions SDA: 228 SD8: 228 CA: 228 Other (specify)
(Design)
C3 : 228 CC : 228 CD:
- III Bank Positions (Steps)
RCS Temperature (*T): Tp* p Test Power Level (% T.P.): 67.E'4 Conditions SDA: 228 5D8: 228 CA: 228 Other (Specify):
(Actual)
C3 228 CC : 228 CD: / f /
/
Date/ Time Test: 11//2/91 Performed:
4%p 2 A MAX. REL NUC ENC'AL TOTAL HEAT QUADRANT RADIAL IV Mess Parameter ASSY PVR RISE HOT TIL'X H O T POWER TILT PEAKING (Description)
% DITT CHAN TACT CHAN TACT RATIO TACTDR (M-P)/P T-dH(N)
T-q(T)
QPTR T-XY St. 4 %
- f*;Q[l* *
/, '/ '/ $
/,$3/
f, Of S C
/, f/ 7 Measured Value Results Design Value (Design Conds)
'. ' " ~ ' '. *. ', '
NA NA s 1.02 NA i
WCAP-7905 WCAP-7905 Reference REV.1 NCNE NCNE REV.1 NCNE E
NA V
TSAR / Tech Spec NCNE Acceptance Criteria Reference NCNE T3 3.2.3 T33.2.2!T33.2.4 T5 4.2.2 I
I i
i i
s M ES
_NO Destgn Tolerance is set Acceptance Criteria is met :.,6C?ES NO VI Coments Must have at least 38 thimbles for a full core flux e4p or, at least 16 thimbles for a quarter core flux sap.
- As Required s
Evaluated Sys Coopleted 8
~ Test Engineer L. -_j-Recommended for p
Approval Iy:
NFC L:ganeer A.15
C'
- i :* '
.t NORTH ANNA PCWER STATION UNIT 2 CYCLE 4 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET-I Test Description : N/D Flux Map-At Power. NI Calibration Reference Proc No / 5ection: 2 PT-22.2 SequenceStepNo:'/S II Sank Positions (Steps)
RCS Temperature ('T):TRET *1 Test Power Level (% T.P.): - 70 Conditions SDA: 228 308: 228 CA: 228 Other (specify)
(Design)
C5 : 228 CC : 228 CD:
- III Sank Positions (Steps)
RC5 Temperature ('T): tat
- Test Power Level (% T.P.): 74/,3 %
Conditions SDA: 228 $DS: 228 CA: 228 Other (Specify):
(Actual)
C5 : 228 CC : 228 CD:fg4 y g g,*m 4/c ht,,t.s r b r-co rd F/.or efe r
r's 1:
MAX. REL NUC ENTHAL TOTAL HEAT QUADRANT RADIAL IV Meas Parameter AS3Y PVR RI5E HOT TLUX HOT PCVER TILT PEAKING (Description)
% DITT CHAN TACT CHAN TACT RATIO TACTOR (M-P)/P T-dH(N)
T-Q(T)
QPTR T-XY 1.I% for
,fg* #
g/
gA gA' gA Measured Value R
ts Design Value
, 'n,E*'.",*,'
NA NA s 1.02 NA (Design Conds)
WCAP-7905 VCAP-7905 Reference REV.1 NCNE NCNE REV.1 NONE l
, *,....,, l 4n...... l
'a
- .1,':
l l
NA
- .~ :' " '"'
V TSAR /TechSpecj NCNE
"~='
Acceptance C r:,t e ria j
g Reference NONE T3 3.2.3 e TS 3.2.2 i T3 3.2.I.
T3 !. 2.2 l
l l
l I
Destan Tolerance is set 1ES NO Acceptance Criteria is set Z YES
_.NO VI Comments Must have at least 38 thimbles for a full core flux map or.
at least 16 thimbles for a quar er core flu sao.
- As Required s
Evaluated Byr M
Completed By Test Engineer Recommended for g*
Approval By:
Y 'f"/ jefe f erant sl*r2 gre ad s/er**$ed s4so'ory a f erkel. cora m op o 4 is.,,d fo, NZ c sl.*bep%.
A.16
j!.i
- ,,.97/S NORTH ANNA POWER STATION UNIT 2 CYCLE 4 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I
Test Description : N/D Flux Map-At Power. NI Calibration Reference Proc No / Section: 2-PT-22.2 Sequence Step No: 48 II Bank Positions (Steps)
RCS Temperature ('T): TREF *1 Test Power Level (*. T.P.): - 70 Conditions SDA: 228 SDB: 228 CA: 228 Other (specify)
(Design)
C3 228 CC : 228 CD:
- III Bank Positions (Steps)
RCS Temperature (*F): 7jsp Test Powe r Leve l (*. F. P. ) : 74..r*4 Conditions SDA: 228 508: 228 CA: 228 Other (Specify):
(Actual)
C3 : 228 CC : 228 CD: /72, f cf ff,*,, & /es Date/ Time Tesit:
il /l* / 8Y ggg, me pf,., #1ep Performed:
to */4 MAX. REL NUC ENTHAL TOTAL HEAT QUADRA.Yr RADIAL IV Maas Parameter ASSY PVR RISE NOT FLUX HOT POWER TILT PEAKING (Description)
- DIFF CHAN FACT CHAN TACT RATIO FACTOR (M-P)/P T-dH(N)
T-Q(T)
QPTR F-XY 4 3 % f**-
g Measured Value
)\\/A g
gg Results Design Value
- = ' - *.
,.'e,Z** ",*,'
(Design Conds)
NA NA
$ 1.02 NA VCAP-7905 VCAP-7905 Haference REV.1 NONE NCht REV.1 NCST l
.*,n..n... I
- a-lll::;,* L=,,,
V FSAR/ Tech Spec NONE l, "-""
l 4 i. :-.... l l
NA
- J - *'"
Acceptance ht.tapa 9 t Astarance
!TS3.2.2!TS3.2.t-NCNE TS 3.2.3 TS.*. 2.2 l
4 l
t I
I Destgn Tolerance is set
- VY S N0 Acceptance Criteria is set :
ES NO VI Comments Must have at least 38 thimbles for a tull-core flux map or, at least 16 thimbles for a quarter core flux map.
- As Required Completed By ' Test Engineer Evaluated Sy:
Recomended for j
Approval Sy N
STO Engineer 0!.fC f Granteb' Ort B ei ne^b de n','f*** Y adf* **y e f * *' b' '* l* ***
- t-m s,.
o Ha,% J tv.- N.z-c o /.6 d, a
A.17
l(o.Il h,e M r,7, NORTH ANNA POWER STATION UNIT 2 CYCLE 4-STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I
Test Descriptica : M/D T1ux Map - HTP, ARO, Eq. Xe Reference Proc No / Seccion: 2-PT-21.1 SequenceStepNo:4f7 II Bank Positions (Steps)
RCS Temperature (*T):T II RET Test Power Level (* T.P.): 95 2 5 Conditions SDA: 225 SDB: 228 CA: 228 Other (specify)
(Design)
CB : 228 CC : 228 CD:
- Must have 2 38 thimbles III Bank Positions (Steps)
RCS Temperature (*T): 'I~sttp Test Power Level (* T.P.): / u -4 Conditions SDA: 228 SD8: 228 CA: 228 Other (Specify):
(Actual)
CB : 22$ CC : 225 CD: 2,16 4 6 sk,* bles Data / Time Test:
il////M Perfareed:
g,fg g MAX. REL NUC E.VI'HAL' TOTAL HEAT QUADRANT RADIAL IV Meas Parameter ASSY PVR RISE HOT FLUX HOT PCVER TILT PEAKING (Description)
- DITT CHAN TACT CHAN FACT RATIO FACTOR l (M P)/P T-dH(N)
T-Q(T)
QPTR T-XY 4.c% W
{Q f,I-[2C '/,76'7
/,C/f
/, W]
I Measured Value Results Design Value (Des ign Conds),...a-*
NA NA
$ 1.02 NA WCAP-7905 WCAP-7905 Reference REV.1 NONE NCNE REV.1 NONE V
FSAR/ Tech Spec NCNE EI NA Acceptance Cetteria Reference NONT.
! TS 3.2.2 ! TS 3.2.4 l TS A.2.2 l
l l
l l
t(.iES N0 Design Tolerance is mac Acceptance Criteria is met :.A:::YES NC VI Comments
- As Required
~
b Completed B s
Evaluated Sy:s
' Test Engineer Recommended for-M Approval Sy:
5_W m WbC,#
NiiO Ingineer v
A.18