ML20133E515

From kanterella
Jump to navigation Jump to search
Rev 0 to NAPS Unit 2,Cycle 12 Startup Physics Test Rept
ML20133E515
Person / Time
Site: North Anna Dominion icon.png
Issue date: 12/12/1996
From: Anderson G, Banning P, Main A
VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
To:
Shared Package
ML20133E509 List:
References
NE-1102, NE-1102-R, NE-1102-R00, NUDOCS 9701130059
Download: ML20133E515 (60)


Text

{{#Wiki_filter:. 9.. . w,... 3.... _.,.:,~,.. i.'. l.-,. v.. ..g {..: 7,.. * *

,....e i,.,'...;-_..

u.?.n% A.. -....,. ;.b .. ?..,'; :.;, ;. ;., K., (. ;.

c. + ;...(-
.n

,y . ;s e ... r* g

e..+

s.- -.'.".: ? '. ..:v...n . 4

Ny.t; f ^ :{*l y,;,:r.), $.':'. '.,,.j.:.. v ;. j. Q *:;,.['_,l.;.h...'.c..
    • ?.:. '. : ;:l..') * : ';;..

....An r'.. U &. ' ',,,.. h. ..,,. >..fI: ~ l j,' s '! ' : ?._ l l.-b )*,, . :-l, ;j.. ,s. .].,... f. l.- Y: .,I : j : ,s,. ,', t :..'-.,,. 1;.. ','. - .,.:.~..... 9.~I"-}.- . ^. &. %..,..- n. ~ ~. g : M.,. v. 'e...*. .. ~..:;..: ;...,. < '. ' -. .a s 1,5.*

  • i '.,,, '.

.'l'. . [ . d., . [",..i.., r.. . ',. $.v}. .*...s...t.,;.., p

  • .r r

w.. ,.:..g.... w.,.. .e

r *

.. e, . ~,....-*:; -.' 1' .t. e p. ..>...u',- ...b.........<,s.,.1,:. -a, ...v..* 1

  • .:t
.._ u^

'.,<i. 5 *.,. ~ ' i :. T.*. l~ 4 ^,:.'l....' c . l :., :'. :'.' -<a -, o& ~,. :.. ';'..:...,q".'.:h...,,,. : 'e ;-

  • ~- *,

%*..?k- .$..,... L : ,,y. ', '> q.;.'.",.'.'.,.. s.. .:..- -.. * ^ -. v .-.y.. 1 F .? , -.~ s ..4..u...,.- N,. ;;....a.. '% ' S ?. ^

y..

.....,,. e . t k '.". ;~, ;..?. .,i. a."t ??. ,ai....h. ?.? '.,,

r.. s

. y: ? 'h '.h: ^2 ~. ? l l ? 5. :.?.N t.: ?. '.~'s.g..'s.'...? Y. Y.. '. $.'. k.. ?..... e, ,f,;' ' *N'.' ..I. : . E' ' '~ * *I *:... -.

  • Y J.,,.f.y,'.......-)'.,,;..;..'..-i ;;. C..r.. - - *;Q

.\\.n,. 5' g ;r.n <l~- v,

o..

.'.:F+* ? : ' :-,1,. f. -.*ys..n'........ s ....cs' /:,. ;.. .s. A h.

. a
%,::. : ^,.,.* ", -

,,.,..'s

: ~,'..

(.., ...,7...1 s f:

w...

~ 'n q~, v, c. -:. . x, > ::

r,..

s .:s. ~......./,... ..m... :< v..p.e ;,, .i..y... u i. :*,.. z ;.... :.

. : e.
k. ' '. '.4' w%

>..'.6 - a . : f. .:.;u...; A.. ~.d.i%. 'q?..6.. '::.:: . - 'IE.;..L :. g.b. cf.L:l e 4 :. l. - p+.. t,..- ; ;.,... :... :.,..... ,. f;.,. h..f. :. :. '. ' O::" ' ; * ; %' W '. .~..... +.., c.. :...y...f. ; '.:a.'; ^:;:::;. :::. : ; ; b:: N

.y. 4

.z .s .,.c-c- e... A .:..v. :.....I ...J. s. ......v .~.

. . p.u

?.. < <. ~.**'* .y , e

S

.?.$g e, ...,.? P. -. - >l',.p '.

  • J gu,_

....-:.....'.:r .y r .e u- ~ s.sts :.....,.-.f........a. ,~.., ..,y..-i.....

t.

..s .: i -.. s-:,....,.. .s . * ~ -.... s ,..M...,;.,,..~....::.> e on :.,,.4 ,c..

...... *., _ ~... :....;
4...r.

'4

  • l

.,.~;.;,,.,,,. : .f... 4:. .. ~. g.

  • s..-

.'%. :,,~.'. -.' '.'.. -e ..), j '. * ',.4 ;. . **%'.s* '.s :A.

..
'.,.'....s.*

,',,....*,..,..';,,.~.*'..,...'*,; ;. _,..., q...- ... ~ -,,. .t, y. p. v. e

  • ~'

^#+. '.. /g ;. '., : < : t'u..,; ....~.s...,.,,~._.,_._.,..f.t.',s,. . ~.., '.<- - .s ..,a., a..,.~...,'.-lJ*,.,.\\--*..;. ..., 4,4.i ..'.a..,,.,. L... . y ..g...q...> ... *-,.;*e, .;, -.. m '... *...j.:....- :. a.. s;,.. .s__e,. l 6 . r., : .::.. 9. ;,. - ~ t...:.,... =%.y. ,- y ... 9,. :,.. -.~':....~, ,v[. y c. .W; z.r. (. -:~., '.?.......,q ..Q,.. ;'r, j,,,;,, .7., v ,..:. :.;..V. ...v., ..e,......- . '. :.a...- .

  • 4 ;,,,.-'_
,,.;. T,.,.,...

...,. -.,i..~,. c.< '.... ~,..,,,,.,-{,,, .. c, f:..-

\\ ;.;.....,._..,..

.- p, / - j,..j w .., q ~ ., s ;.. .f g. ..,.2 p.y........:. ?,:%. 1 .. a. u. r. y.;%..... n.:.; ; .9 '. 9........;;...-. . ; :,_ ~-.. . y .... -. -..... ~ .s.. ~. t.. s. c. .y .v> ~,.,. l. t. ~... ,,q.. . :.*.. -......., -.....9... =..., ? .*:,,3 s ...,....(. cc,; ;. j. c. ;,~..,.7 3 c.7.. : ; -.... -: ,3 . c. .., g, .cq,y;.,,':p r., y.,,... y. ;. ;, ;;q. ; e , '.. g..,;. s ..n .J .-.;...... ;, 3; -..... _.,,L......n.. .;4.... .p.7.,.,,_.,,:,.*.:.,.....,-;... q,. . y..,. ......:#,~a.... . ~.. < i. e. .u s. .. : L.......,*,.,.... t v,.;.. ..'..;'.*.a- - -.....,.,.....,.e..,* .,n ,s ,n. .=

  • v,. g,r..

c.. > y* -.*e. h...*l,,*..,..s. ..=k,.,,

  • s

.k,,q. ..:.., *'*g.*.t.. ,= e ,.s.,.. .s 2. .,-s. se.- ...<[.'.,s .s ~,,.,,... = *, '.,, ._s.... * .a

  • .o-
.,,.. p

.. :...; = y :. +. *. ...,n. ?* r

4.,-

. _,. ~.. -.. -e.. *.. e .e ',. *....:,, g, .,e'....'.

e 4.; --,.,,

n.a,. r.e.,.... ,.v. ... 1... :. - -

  • l, '.,,* ' '. *,
s. * -

...e

. *', A 4

g-- c,.". ...,y e,.._ % $:% ' *,,: s v, y- .,,Mg 1 s 4, ;.._,;.;. l m._ ,, 7.,. :

  • . ' ',., : m l. [. !

c \\',;. r .. ',.[.. '},- n. y.,.>. -,..'..s,- .s.. :.,

.;...c
3... c. s : "...*. ::.t...v..

.,a.,,.e... .. :." 9.. - : ,-..; t ...,u O.I. .t... c.,a.., :. '; i,N :. ; : ' ? '*;..".s),*.;T* ' * "... ?.'. ',s.. % .,7 :s. l :', <. ".,.....l '. A

  • L. ;
  • M ' i ' ' ?.N, *. 0 '.. ^ ' ;,. 4.
  • i... k '. > ^ !.?., '. _ y X Y,:..*. " 6 :.

T, ' ' t c,^. ~Le, e v w" :. h.:. }; l :..,,.3,.. h ;,,-,':.. .s .j.,.m:..,., ^

g
.::' :, ;.':.y). ;. ; _,'.= s l5vc c. '.,. -.-.. -

.1 ., n...:..t r.,,. .2 y -. =s e. -: -.W, <..-l ':.'5.

,j* y
; ',c."t -(. -..,

..,. 4. 1 - .h. c. l. W. .y, n..:. .ef.'.. _ ? 6., '. _ - .;,','..,,....-... ~.,. '.. ..s,.'- s s P

q;ly. .., [,.

g', - -r ..~.;.'..:, .v. r n,.,, ': "..<);.,.......,y.-. - ll ';., %* v. J.. - p .r .;V..- v, ..y.. ,l. - > ;.. ~l .:..:.*'l + r , '.. z,. _ s,.,,.y.,- -Q,... *..... '. '.i. :. *.:.. ' ' ' :.'<*.,, .f: 2,~. > *. .*G.,. s ' ; * ':.%.' ', ?

l. '. f^,'. '.Y.....$ ?.'. ' -'

.). \\' f. '

  • s l.l,:

. ? * .? f &.~..f ?lN.. :l n. :b,', b. v.f.. l {". *l.:.~l ? '. ; _ '",.[ ~. t. f, a*,f! a f',_. *1 . i~.- . <. q, ,~t*

.. :. ,, : :,..r*

. e ..'.,....,'.. g ?.c. g< ;... Q '

  • Y e* ;.,', i;J,....,..':

....:;. -. -.a.... _ :..,. ;.b. - -.:., .;.W : .. ;4 ; '. ..,.s5, - ;;^ i,s -.... : '.:: /

. -.. : s J. -

. 3...la.:%,...?,2.;.,.,:...* :, ,,+ t p,'., :q.,..., ~... w.... p. ........:.. s. ,,N n, Q. 'C :

?, : ;. ::, :.c

.. a; r ' ^ *, ' pN.*. . f ?,^ ..'1 "e. s.', .. ;. y y., h,,.:,,. ef, %.;.... ;;.. ' 4j7l,p.. :, :'.,.,. ' .y ..+ ,ec,' a. .* *.,., 'y : * ; ...,.a.',.?, .f f; '; . t. ;. r.. " - .,",r ..y.~,. ..,p[;:nj. ; N..,. /, -... .',s }.,.,.;'.;,;.~._.*..)*.,;'.'..'s'.u,~.'..,g. %,e. '. -** *., '. :en... - :,.,g$ ;c;s ;;,._,, ; r - ...:.... ' -..'g.. ?_., y. - l,, Q,.. s-n,... ' Q* py.. ;.. ',. s. . :r.; r). A.. ';;1...'.. *:.. n. A.,J:.. ,.__.r.:.,,: ~.:.... i..,. _, ...,s..e s. m ...... y.;;.; -. : ..y.:.. v : ;...s. ,o .:....y n - .\\f %J. ', ?..f.n s. u.- if. *... .,AG...,., *.. k.Wlf'.. i.. -" j ' l.,- 1, Y ~ h '..* '. ;.% ':..'., '. ,l.,.;v,..,' i I ~.. ' ' )* /.', 'l h. ., ?..,'.... ' ?. l * ',. j,..'.., ;., ' % '., '.e,& h Ll j...f{.. * ' {. .-l~.,f :. ' .?. z) ' ' _ l,'.. s a -.

  • l.*; 4 s

2

  • s.
  • +. *

,:, :.'. p.. m' e V;f.. L..,-.. ) 3,. :,';..... < 2 < ~,,-: ; *'..: '. * :. y.. .n a.

.g
  • .., *. :~.*....,;.
, f..
y. '
  • V. f.. ~,s'i.;.jy. ';. '. _ :t,{.;,$.e;;.

s.::s ;'. '. 3;,A. j i t.;l's ;:*t - ~; ': :,.n

  • q. '.,'.: ?. p. :,y...,~.;...

i.'.f.. ?.4.#Ap, 9,p>. *:l:, ',k '.,,s.: f. 1 k,, .),\\ a, .s .l, l, l - l+?,... 7.;:. .e J.g.,, : 9 - ' ~,. ",..,.,.. . -l. ),

.'.., '. "..;..,;.; . K.. : y ;:..,;- l. '.

',l,, >? s.,'.. , : ;.*.e_s.3.,..,. '..%...,.;. ', C..,.'.h! W'.j.. j: ne ; h. r.. ;,,,..., r, t ..t-..p, - /

  • 6 '.;:'. l,:q;'. ;.'.3 e. ;.', :q 1,.. - -

ju <- A..*,: ..r- ,t,

  • ll.

s r>

p 3
~-;

u. ,.n:. .sa~..... ....~. u s.r. L. y, e; -.....e .r t. : .r .v p. -y. 1, .....,,,. 4 .,.._.,,..y.?; .s,: 4 (. : y ss ', tl 3 **.g % .v. =.e.; z e. ^

p. k. p,.,.,s.s

,r_g..*.......a;, r sp..t.1 s.,. . _ g-p .e .o ,~ s 1 a .:r e 3.- e. , % r,s 'lRes?,. : f.:. 'K; hl 1s". '-. ',,.. -. y m.' ; : s..> .',*....,..:,,- -. f " ?.+.

  • a '? _* v ' i. f. ':~^.,. e. _. '....

j,.$. f'f,fy7 ';c .y V '.:.* :.;. ;. l, "'. e.. e.;,.O...;M,:'1 <.. =.~ ' l., ij..*:' '..'; : " .- s Y 'w,.s.?,3}:*I,:.%':.'}*s:&; ;' y %.V e 'e.^.'s.r.,!;"l. .q a

c..

<. %..c.>( :... p' '. -:E ' $....l;'t.,.:.'sf ~h O,l.b'n);,.f..f. w. 5.. ::.V..:. :*; b.c '.6' . '..- ~,.

. ' m' D '.

.h. ". % - : ~. er .. h. %',.,

s.
..:_....,e,y,...'.*h.,r^

r;: + y N.: o - * :.;., '. ?. '<' 'pl 'l: hl.'.i'. ' l., * ': '.'.&, *'f,. *;,. %.,. l G.',.y ;5.., ? 13 '.** ; J,: : :',f.. r_'. *; ;' *;' C. -])j_ (,...$ 'c'.,* ? >. UN. i: p. 0 s

. ; %...ae.

y - .n. ~_

.<#~

y, .t., . ~,;............._:.-..-,... -.... r. v...... .q. + ., ;.. y a. .- j - ~ ' k..h. h h, . ^ $; . :?- - -l.. . T, "; ::. *T:. h;M, l ^ V?l)'. ,N.' K.;h,de.h. ~ ~. t, - Q* ; t o!..:,I.' I U 'N 'f, *.6[; [' % 4 '..f,.':.;n....s),y $^"- l.l * * ((kl,* i 'I.... :.. - ',. .l 5 'Y,.f '.., T i. :. j l. Cs ': ieh; ;ey. ' e : -;.: a M. : d;u'. ~ -'

  • M

. a. :. "' u.. %g b u :.' '.'. n:.: c.*v.:p -.>.:. 9 *A-3)'. h.-,, %:,. ~? y.:'.~..,. N

  • 0c

%n k"e. +<lt%%,, )k::,p$',',.J.m,:y!;' l.h'M;3 'M[. ..:*s- -h 5 h.] [.D. -l 9,..lf; '. f " .{ 8 Q,,... s.g .L.-

  • v'~h 'Y s..e w * ::.,; ;,%:ws..s ' y.1. ~,..

e. ,.,,.;v,- e. % f; '. [s % '. '.q f.;!. C i., s ~. t V :,.. ..,:/..- a s e. u av 1:H :,Q,;' $y.d,' T.h v, M;;...:..' %. D. ' 6:. i:.q'?* ? ;j'. f: hfl.k :.L. :.hl_':" 'v>U.. n' :h :".'.V.. ',:t:

  • y; '

t. .V . ' '. ? V ' :' ~.

  • :. 'z.* ' g:, * '.. sC:.. ;, M.:

3'...- ~.* s w;.w' .3 :- &* ".:..' + .a '. : * .-;:. y,. :: ; s.- 9.{ M)+vy.'C'.. . c * : *; '. * (, ~. % .2.- h.a... \\;,;%.. 6. ?.:,:..r 't 7 :;;. '. '. ';$. :& ? 0" % :.. c O*' ~Q3: &.l≪?::l,\\:0z.t.V U ifl : ' * ' :d7 ~ i: '::A n :.- D :: "*: :L: *:. 9 %."&a: P.2 ' V'.r** hy *i:5. :W .v- ~ -F' .,) C '$ : lf::3.. *4. M...Q. X:s.:.s%'s',,,f.g.'T; ey'D NN,.U' ( '. W:'.J s .o

r. i:-

- ik.:Q?. kE.[ BWW.,.i>' a. :'.4.* l.i;nW:%Y. V. M,%,,.r N&$$: .E : :'y..?:..P J.,?.%;.h.j.'./.nl,Qi}s% .I .U.. .. 6.&b.:.') ' MK., r"<::.. ;. I ^

i
f@MfW.

M2 ;%.su$ ;

.. - ~ :.W.*. :.A :

.,.W.2;.':.4 ., n s.. v, .. %.. f...'. +2...'.z'.' l ? -lf.9_g4. o,'..r :. '.....C.,

f?...,.w.n,.,2. %.f..w..: -M)s e.

L

..,;,,.g.. r.. y.. ?. : '.~ ;y +

", :;a:. af,. t g n.w*,y.p:. c: ...y.r%.,..*,...,* - i.M. x: n 8*

h. : :~:a..n. y.,..;.

p

,, ?,,, ;.

1. .~ g. v: f... ..n s a s . 1 a - e ..y f' f?. k. b.'.M.... g.s., .'.? ^ s .-s*- .... ff.f.",".9: , -r,... q.'1,4,,) ".@>s:<. :. ;f.s:,' 5' k.h.?..h; 'f 'h,f*Y5. h:'::.Y.h;: N, hr.'l:b$ k ' Q.~," Q.2.',.f.'f.',;. b*f f.**:;I t, .4... J: , +., e :... a. f'i;'t 5,N ;..: $ y ~.. ......)s..gn, :4.t.v .'.:$e"..- 6 p.. L

. -.,w a

..::...,n..," y Af.& h Y $$ h: Q j.,;';g,.h Y;f....,..L.',...s. , p y.... .{.*': Y,'f.%... ..e . g*- SN,^. c h, ^ Elf

1

. y, g :.-* ;*.. ^. ;. -* ?, N ~ h.n,;E; gs'Y, 'Y:. :'. 4{.; Y W' \\.. ..# p* *4 *,,..h..'.N. fg t,.,.f', -:.,.f&.q 7 f, /' ' Y*' .;h ?* Tyy-&^ -{..f.'.'.. '.U. /.ftp^ 5 ,. 'l-h>' ~; ' i ' ': I 'l b . '. ~. . U. 1: ' y;.f' ', ~ - : *.. '.'. i'* 48

  • ?

.* f;!'4..., .> 5 ', (, '. '} ( ':f ' r, .? 's 's.%;-g'.*^.. a.<v.

  • s *L 'y p -

.;b *, .-..a.w10.,v . s ".,.5;. sy t,,*- '~,*..~"4 .1.,p. % $.., ~ '...,a.- %... *f. *.,..:....,.. .%. ;. r :.,i. N.,.*!.. :p.- *.- ..'...:w'**-*-t.. p

  • p.s *** t. ; ;.,** -'

s *; .s. .... o 4. y b '.yls,.c :.' ~ p-

3L f';14.,... ? %.,,lll: ^*; %, 7. J r p

.es ..,s & r..s

. 4'? d.-

. " %' 4. :I. A.,*Q.p .... y p 3... s, r ..s .:t E::'.L ' g 5..[.c.. :'. k;; e:V:'.'.%..t..*: 1

  • .:.:.%:-' l., :';,..*.- ~. I '. ' I ' :.'., 'l",

n. .,a e v.. -a

s

.f , ~ * ", s:. *... T %. !.. , 4.,y :.. .; ';Q', c :: ', A w. 5 ',.... ; '.. +..'; ; %.x?.*.

  • b r.. 'a
f.
... ;.h., :~ ": '7; s

f.' f ?.Y...n.g. e'. 'z:. }, h* - $ he*' %. L.

_' M.,. <-
.

.l- ' ~..S . *. ?' if;?' - ": c- - * '...':4 .: :.. :.?,..:,. R.,,,'*.-r 4;Q

  • 3: y.. g f..P' q s :..

e;- a ,'h$ N.'f. y : %j;Y

  • Y

,.o. + . -z. e, - . 'Nyb. :.lY; Y Y A*.h.'.;,$. <.... '. f u, f. s.':l..d.;"

e..l.ll b.. A. :5. Il. *..'-

. l. - l. ;....... n.l: . "; *..?,?*Dh.. } ., f.p h4f );h.w $l* k

  • N

~* z.d ' ..y -

  • c 4

..:i.,4l. t{ . $t. ei

4...., _ y p.g

.w.- ^U s /. .r y *.1. ', f,.:* Q W : ^; ' ' ;. k.'* ;. y.d. h(f y.r.....:.$.)+."..+y.'.. q :..l?l: f.

32..;*.
  • O ?';.J.:..v.>.

, f,R.r;.h. ? q;.Q..;. : ...^ y,Y ?.- 1 b a. 'r..'t. :* .: l -,.. '>:. .e

^ i.

)j,., ' '.;;;;>,s _ o % *&p.

.. _
* ' :-, f,

? ?. T :cw, J,C. ].L.,..,:...l : 'a.r' t.... s-t .s; -;'.u. *;t.;p =; ' : ::v . ' p.9 w -;h9* "'M. .. s s ; e >g, f',

  • s :;.

.c fi:f*a Y '.^ - t.t.,:r *.~.)..;', s [.d.. . @:1 ' : '.*V.' '..s.t,).f. v. .....'... Q as.; s.,,.. ',al.&.?.~. *

.'s'Q.

> (J 1 e,.Ir.1:~~ ; a.1,. ~ %,.'..: * :.... s. s'. .,y.., ' * '. *. '.'. 6 4.:. :t:. L". e r.'.-;.>.,.,- .O W s.,.- y...;n.'e;o' o.. n.%.' &~y.. >%:':qq..;j;::u ll. j )'k.% r:. -' a

g.. '.2

.v t,...?:f;. e .,, :,;. a. '. H ~. =~- e 4.,: *;.

c. ;,' han e. y <.:.a,-

,.. ; ; y. -.; 2'. 4 9 .ut a ..,:-,.. a.. Q,., : a. *,....;... .i - ..,.r.. s ~... s. '. ;.,L. ;a*r. ',.. ',,,. :, l. c a.-p. a

.'t.;;;.

e-v

>.v

., ~ n,.... ; 9.- c..

.~-,. r y.1 e..,.,. :. (; g. '. ( * :. '.5. w.

i g: g : :,4.,..... q:..,> y c.,a.s.y:j'.,. n.

... g ;;

,4 :..: ; %*. %...s h : . c. ;.y:.y,. : n

  • v c.-; <.. t. *.;L,'..

. -;p a, ^

  • y 7;. p..

. g. :. n y t >. :: n., 3.., e: r..::te >,, ~ n......y:e..

n.. e

,; i~ <... ~... /a: c f. ;:n . y,. h s..,.,.: w, t

m.. w..... L..r.

.... v: y x ".

n.u.....

.'v.;...s.....,- . [ ,8%. a [ *'t

    • *)(ld.. +*,

aIv. ;...-. .-r..r.., .u w r a...:.: : r g* ' * ]' (( .!^ ., b ._l*y.'^ '[,* ". 't .[. l E. ,s '\\

  • [',

p . - r. s n. a.k .;. g \\ s. :.,a. e m.$,3.. m. ; W.p. h.a s. . % a Q ct,.a. 6. (.~ k .y?.,:...;.v. h. V&- .h.,s b m .s ~< . ;r.t.:<.;,. 9,.#!

v"m.,<1.n.;f.6?. n y..< ~.m v. 4.-

%:U.'..i.\\* eN'..Y..... ~. a?.b, a::Tn; e%z;.,s v y..,'...,a. 'g*.b.Ts.k,...h.., y. ~r{ . i...b;h...,lb.., m'. ?.h-.f... ~ p., y..eN. ^b.. {.ah..i : e< r. n... y- ..c. r pw u. .L lhW$.~3lh~.f..a, ;g,

  • ' %,^ h*k..::h.., w.. n.,..:

w; x....e.... a w .n- ,wp. y y,f...'N.n. '?.5,..s., A:4 4. .h.r..q!.$..u r A:*:b k y.<

s..i;..

.'): ".] k s s + A!g :. g x n,:. e - t . *{.. p g g g g y -- pM)MwhW@@b2W hWMg&@gg. ; gyg@gg@w%xfagl i a.a s.xw~?',*'. fr;&.s n,N,,. j.,,.5:f.~4. :s. mnr:g.a.r.;. m.s.. n B i t. - wq ?lrM f q%'yg: y V.su g"&. / XlG-w:.-l

.,. t L.

b, :4. &'..\\y d W ;m -< u of.1 y .9 4x, e i.r . p;&.

e....

S. p + ; s" 4

4..r ;$.f o ~

r e.g n y, v.s w. J V i

t. :r;@u,: *-

i

. e n

. p. h... >,.e w. m:.- ,.,.f+.......v...: os p.~- s a e ..v.-

r. p.~.." g.

p. a...s. .e r . h . i'

  • R_.

\\,4;veh,b,g,Me$Q%g%y&d q QQ&:g g y n ;> ., x75 7f ~ ~ ~ - Mmp p W ~ y e h y4 'g' kf j w m &a n &,yn a w y ^ y [' .+ ., v a w s+a g 4 Qf t p g s p%g. n.. s w - m..4g ,9 ..W,$ed.E.M%w pp.3 ya *,o,NW9 i $n. %,p* ',% ' 7/d A,' x s r e d ',.-,u m e p%- 9, m.p4,. 1 -l,.hD,,A + u, ,,. jf lW{yN&L (y

  • n m~,, f l% p u

g.. .. 6M g'y'. ,4 hs.vt3 y ? u, W4 j@d N h C[i Q N E W %)5-h;@Yi"%g v,'s e4y' 4 4 qk i'g. iki ,,L_.

  • l 3

t ',"ny' -5 m - qginp%a,n pgw%y/,Je n a%,3 jyn W.. ' 9.y).; gL 6 - u v pf, v :.. >>:m. <tn ff%a y 4. m;if W: S& y& f.N. w. v Q ;A %} &g(&g #@, $ v @ @y y; " M W.n q rf f: %Y$ w = v m . y ;a, ,a sp ~ ' f c.MM+n.g -ty _ ww; -R. m'vi 3 c M6,, ~,.m, 1 w7 ' y3 j -

me, y.M A,d.gm pm.

4,. 4 h.-- ,c.w .f.l%.3 9 p gvg f $. A m, o p a,...y'-g#g' y G#'rM ,) . f., ..qh. - l,. } pXN.% hf Wtif.#m~ n v ~$.j@w o :,g.jM; p[y.g' M"(5' ,g y. m. hk - ;7% -e'fy m a. - B'A'YS g e-f 's, / -q A -) + sL c4g T f vam m W+:a u. ~yc w gM,9 M w'MW%i$$q$m%m n wA, w'f fWWM.M, Th ' c w c m. 7 NJ sy W >M j=s_ M3 hM '. Je n J Q@uw.e)M $'s a. + ?M ? Q. phT,,[ c $mmyd&S i ,.i f M.qp dgy yyyfw. df$@w nQ n &wp~?"y7 empM"mm n .&n&a%~.1r M7 r f-y jwgni Yhh:h,.g. w bv 4 -7 yagp::.Ap %:# wy, ,t hY h h . M m e. h k k k h h h i h k Y, f nme mmmmm. . W w w + g4'pg ygw :m, y ;(c, $w$,y%mQ-v_ A. xy 4 (M. t ww c m Q 3 gg g R,gsm y; p.:,4 m, M 4p Q g ;h .m Amy S g ga v Ap %p y mn ? Mhe l IN. y n,,- A 4 MM;gm A Pp' n . MT .'sMM@h.M%eys@sMMddbw m s - s gQ g Qt,,CQvg4g

  • Q.

., y#+ q%.g..#.gyyg.g gg,iq 9 Q w.3,4,. g e gw %g g&p-jy % e w.~ yy m g g w$ p w@ g g a ~ w $m m$ Q Q M c M N G b, W h,g %g t y g '

gg. Q $

. yp TWhf"$Ql%;&gy&'f C %DQ %pg%. % y}g9 %w$,n$m w 7,6~WQMJ.w@ 7 ' *~. DW ~ W QMe&wMw$,gx]y CMGiG .a Y, u P 9MMW. n'Qld M M , gj40.pn,$@swQn..w,iM.w - a. o w-3+,

n%s

v.l M.ar. %p un.-@- g m y m,. g. pg ~ .g m ny-n y'a mM g %;g '.'q:+,e., J., %g. rq %N, ? - .s, N h %g z p, o g g, g,gmm br w m wn y. a >n ew%w /% w n e <? y % ry:yQ Vi%es A g~w> n,g%g~ i l~g.gggj ggz eggfy v n ,? 1: zy o w w. m g.J + ..p i jg.a. n r.m. p spn,9mm g w p u.Om; p4 cy v s ~ w:- ;,- c M,.fw. z a.a w L:vk,[:>n:. '..o~w q;.a + ,c, 1 o < ,u v .Y f'f $'Y-i h hj -,e.W b,fM)' f;,4g f Wh'bA, 'n. xzy [ n ?

  • i-J ti i

'^N. /f j >,h ! q a, m' &'d -, p r ^ s.- w),dh '2' a l$'f' < W'~h_ p&fQ$[ M',(+$1 Mf.f.w((v.h' g4 INTwnw', s ; ) j r - - s ;o - .e( g a sM Q.4&Q fic, f f MR @ ^&y,n,:+n,[a o. i m Yg : y yQ& gS ' v - x e n n.s %.m ~m fe ,( Q r m yQ c f Qff C J< 4%ff s y@dh,)@yq[;}[C

y$t+ig p 5% A % &W}N T W M TP M W K; %

4 c ...A N I 4 awe f Q. 'f (A* '+ y,

e. [,'

~,} '_ [D f[!' p y*$' $h '[hQ }.,.g.( $p %, .,4 \\ }: y ^: f .c l:y b. 'Q-M, [ * ['.4 t }f,-[*Np..~ef/ p' y1 k"/2 .b i E ,,.t Ebh-y'Q.) tj)f A ' 8'.h i5

  • -9 b

.M, r'. wg' ' 't )'y. W}_&g%g.gg ; mg p y-nyp g j g e g g g.; g, g g y,., kypyp';; " g h M' a i k.'g ,t>I g ; O, - fa i. LL y y .;'. $ ^ .f,'_ s 4 f if 4 g%;g44g4 m 0 gp s g I m.y g p % y \\( m:.. : m, z, w n,3,gt mm w

b g_

,a g v 3, 3, yg e n y,w q9we,, y e u zf:y w m, . y;3 s ...+ x., g ow:p+ 3 %y> nw.,3 g, m, m

x..=m 1

.c~.s. w:QQ q 9w. f., M,q,ya,:,3 e g

ggm m4

^u .n .ns w; m w w-- ogby p t i ~ s r i.n. n.w,, n e. c - ,- !v e t n i, gt g W .i,, n. -n ., h ya. a rv

q' I g

M 'N 'g,.g 4., g %f d'y 7 a :~ t a q' Q#+- 4- 'l b$ O .' h m. a s - g.m t w at. 4

u..

-. m '", g;g,q % y. ? < r... y'm.,.ry,, s.mja-.Q3 os w 4 g; ;; g 4 g# w. .. a f 7 jq 3: 9 y p s , W y,9 -i,,

g. A.. c m,n m gg y;, -;,

.y < m,: > 4 a 4 p +.

73 i p &g.<

p +. p. x < "7 ( ., -gm ,is..,s,y q-33 w Ae w w. y .w%, ,e L r 9-nyvyp q ..,n.',;- p m 'p~ g %,d %li&gW

  • w m.m, a1 f

'p Q' q' f R^-Q's 't, j g&:>p, L < a > g -... c,. 4.n. r s t e c . i $ c,1 ym s q y q. 4 ;, uf '.3.,.,4. 3 %,,, .x. 1 an -+, 4 g t c. y e j yq, .Y ^N A f,,s ' Y

w

,,...p. ^* v., -{ .a.< ,s va :. %a.s, v >r. c ~. n m.rx ,r, s q~- ^ } -W[]%l~ Q., M3.w .4, ; I^P Q,; Qk e g;p J.. R, sq r r 1 gy yff;s.: 1,_

  • '. Q 9r,

_s xw w,g r yy_ ,i w a ,. - Q 4 '.,..,,n fy Nhh-y&g.5/L@a 4 ? 7.&' y, e'yP. s o e F :,, i #' T u 5; t s -44 cf - - r%q 3, s ' .rq* g 3; .'s J h: g.p;f s b + yg!%,_ h&b(P A f t " ) l:.3 g ?., _h y Mg

.Q.,3 m.

.. [>}Qv,.,b!&.$w,$ 8Mhhh-W ?m w.. .J o w-ny,u m,.., lwa, , '; w,,)'," p'$ f f ^, ~v_ q,~TP'k c j)'~ r A - m g,, n mp' V fl^'.+h ,t 4.w3 -% %v,._n[ .. mn a< ~p .. g i _if. 4 .5 ,,( 7 t e w,. m, / "j ). 6 % h-J un -lp}~ n' ' "a, sn,.,,.m fMf r wl., - w. 9,f~' k'. +w*4 E'.., '^* ' ~...l*. w_{ { -j, f ) -lgI }d ---w (l@g's - fwl 'Qy v Q &l.Nf l ~ 6 J, y3 %~;% ip i,3@q _.: n,,,. y yfp gpi '~ p g,aQ e ..m.m.4 h.:y-g,~4,,,1 v : r + + > wm p gg-vp4 - e r , ~. ',ph 5 y Mmp., <q+, sp,6 + N;.. p ,eg ,3 vrm s e g ~ ..' c.s A z_, V f,- ny, g f.Qh 5?g'q@' y;7 *g, qq y ' up r v w w w +.. mn69 m. Q yg v - / ar y._m4- %.r+p > y

p,i,,

... a q. e t g$M, . 4i .g s 5 +q" sv ,g y y p g %m g &m, &p [;y9w,g[r,7$M f,. h))fy%- Y ga p'n y o ~ i 4 m.4 n a 3%g. 5+,, , \\ .J - Wi M f. q h i '~ - &yW ; x n 4W.. e' r %. t mL p,. ,, m

  • ...e

,y . m%.,. g. e, ] )),. r r } }9, 3 s 1 e a n w},,, ' + yu M 1: . Mm 4G 7, m e c t, s3 '.r, a u ,,.g '4 (M ,es g

a.

u #-~.m ' ?.J, H - f. +k,. g,,,&p. 'e s _.,

h. :, ?

s.' t 9 f,k } (( ?, ^ f qp 'y) r eq t .fQ. q ( s ' ' 'e m. ..g .j

Wg;^.h

. t.. q, u_ A , - r Q'. -1y r

t. >,

s. W / k 4% s y.- .wn m.e s .f, - ' W;*; y, 4 y n :, 5.1..,. - - r

.?

1 L I w%, r..l9. i () * t' ' ^ ? A :' w s

, y e

<.,Q.4 ' ' % L g y-,' t v .,{ _ 4 s} ;;, (

}_6

.t- ~y- +'ye n.N.$ 7 a o d 79 a av + > W c J \\ >.gf @3.- t , r g,m 4 g,r,WyA,g, 9. e-rc y pq s m n $. i,%. mt. w y,. 7, ( 2 3 v< w r .,,G e. M r) i >4,i, %.Q n, s ,3 v

y. ar (-

a by !,'+n, Q' i t r v.ax .s v 4 .y t hb/Nh/Ah,M8hg Nh.O ' A i; 's O 6 - 9 s-2n - ~ f v3 ..j >.~- 3:a Y np%,, M;?mm, h %n 2 g 4.g.- i.r.,,e..,.-,.s s * (- a.,' r. j t, j.,,. / '9 / ,'[- {- y r,". c, yg' x zgp ' , [ 1 ? .L.p p,., i ,t a sy

.-.-----7_-----s, [ *: +; . K-Q ' ^ "^~? '+~ g y?.. y. w. \\w. \\n,. - g... .y g s sg c. y , y.v.. / 4 s

m-c g g

\\a-g; - 1 _a,.,. 3 .s. - m. .p v;< 1. .cg

c-

,s s.. + t 3 c p. y s i' ih _,g; h I[ ) L_ ^ L-N 4 i , -. ~- ,s. s 4 =ri

([d X ' 5,

, \\" (\\ '.. \\ /q.

s. 3, w.

w ..,.i s. (i ? \\ : \\,,,_ _. .,^ i \\I l- \\. 1S* \\. .--' \\; _ ( O. \\i r i4\\ x. \\m\\e.,\\.. v...X4, 1 \\. _ Q, 3 g

% yN s a.

E d., -s.- \\p.,, ' %_ g e e. \\.. ~ - o\\,- - {N,g

.....a, (7

...,4-a .b. y %...,K,.. ' \\ y, O, m; g 4\\ l 5' y>; ~ s . g s ;;g, c . a ; v"%.. - v., A 7 ;; s p.. a-,Q. \\ -. .3 a i eei ...g m,, u'- ,x gJ.. .c g ,3 m,r g .g s4

  • <4-s 4,*,+

n g e, 3 u S+a Q f %z o s pe4 J f, p 4 A + 4 s n ,a .s w w ;. n. A y.w.. m u 5

f. l y.

e, f. ._ f: 'X t ! l;. > ^ ~ Y, 'vo m Yh :m m. a -. h." '"" ' N ,TN ._k i ' 9 p k. O'i 3

h...\\ [y.QfbNW 4. % i. ',_/ W.. Q 7

'2 . y m m ~L.>a... m m } + w. e b; W.Nsth,Mhhd b ~ ~ n + n fy w V N F ~. (< Uni &..<,,./%Cy6.,leH, 2 w i l r 5 ',.7., ( ( -

s.

~ j e , 5 ..r, ,3< ],,, D '..Q " Q) j. l-f Ngf}fhySiC W ~ f [ 7 + m n u www l rl f# f E. 3 -. D' ) s. t. , v- { '* a ~';- r a s a_ , ;g < ; ' .3 - s z.&- E _.f ' .y,:/ h: b 1 e f i 1-w e e ~ o E' i 4 'h-m {. + , J 'NublearAnalysis and Fuele ~ ~... ... w y, $ Nuclear: Engineering &? Services? ~ - s y A 6 4 3 r x Et i t CDecern,ber;1996= } e 1z I~ a i 1 Yj s F 4 i a t r [ P. n i i 0 l ,1 Y ' ' 'i' VIRGINIA POWER m a m o F !W i 4 4 --e.--# 1

TECHNICAL REPORT NE-1102 - REV. 0 NORTH ANNA UNIT 2, CYCLE 12 STARTUP PHYSICS TESTS REPORT NUCLEAR ANALYSIS AND FUEL NUCLEAR ENGINEERING SERVICES VIRGINIA POWER DECEMBER 1996 PREPARED BY: / o/> c /i c N G. P. Anderson Date REVIEWED BY uM wwh I'/.2 7hc P. D. Banning d Date REVIEWED BY: <21 f(o 'A. P'. Main Date

  1. // 6 APPROVED BY:

1 D. Dzi3dosz M Date QA Category: Nuclear Safety Related Keywords: N2C12, Startup ~

l l CLASSIFICATION / DISCLAIMER The data, techniques, information, and conclusions in this report have been prepared solely for use by Virginia Electric and Power Company (the Company), and they may not be appropriate for use in situations other than those for which they have been specifically prepared. The Company therefore makes no claim or warranty whatsoever,-express or implied, as to their a ccu ra cy, usefulness, or applicability. In particular, THE COMPANY MAKES NO WARRANTY OF MERCliANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, NOR SHALL ANY WARRANTY BE DEEMED TO ARISE FROM COURSE OF DEALING OR USAGE OF TRADE, with respect to this report or any of the data, techniques, information, or conclusions in it. By making this report available, the Company does not authorize its use by others, and any such use is expressly forbidden except with the prior written approval of the Company. Any such written approval shall itself be deemed to incorporate the discliimers of liability and disclaimers of warranties provided herein. In no event shall the Company be liable, un^ r any legal theory whatsoever (whether contract, tort, warranty, or at 'ct or absolute liability), for any property damage, mental or physical sjury or death, loss of use of property, or other damage resulting from or arising out of the use, authorized or unauthorized, of this report or the data, techniques, information, or conclusions in it. NE-1102 N2Cl2 Startup Physics Tests Report Page 1 of 58

l ] TABLE OF CONTENTS PAGE Classification / Disclaimer............................... 1 Table of Contents......... 2 List of Tables............... 3 L i s t o f F i gu r e s......................................... 4 Preface... 5 Section 1 Introduction and Summary.... 7 Section 2 Cont rol Rod Drop Time Measurements........ 17 Section 3 Control Rod Bank Worth Measurements........ 22 Section 4 Boron Endpoint and Worth Measurements...... 27 Section 5 Temperature Coefficient Measurement........ 31 Section 6 Power Distribution Measurements............ 33 Section

  • References....................

40 APPENDIX Startup Physics Test Results and Evaluation Sheets........ 41 NE-1102.N2Cl2 Startup Physics Tests Report Page 2 of 58

LIST OF TABLES TABLE TITLE PAGE 1.1 Chronology of Tests................................... 11 2.1 llot Rod Drop Time Summary............................. 19 3.1 Control Rod Bank Worth Summary... 24 4.1 Boron Endpoints Summary............................... 29 4.2 Boron Worth Coefficient......... 30 5.1 Isothermal Temperature Coefficient Summary............ 32 6.1 Incore Flux Map Summary...... 35 6.2 Comparison of Measured Power Distribution Parameters With Their Core Operating Limits...................... 36 NE-1102 N2C12 Startup Physics Tests Report Page 3 of 58

LIST OF FIGURES FIGURE TITLE PAGE 1.1 Core Loading Map.......... 12 1.2 Beginning of Cycle Fuel Assembly Burnups..... 13 1.3 Available Incore Moveable Detector Locations. 14 1.4 Assembly Insert Locations. 15 1.5 Control Rod Locations.. 16 2.1 Typical Rod Drop Trace.......... 20 2.2 Rod Drop Time - flot Full Flow Conditions.... 21 3.1 Control Bank B Integral Rod Worth - IlZP.... 25 3.2 Control Bank B Differential Rod Worth - IlZP.. 26 6.1 Assemblywise Power Distribution - 30% rower...... 37 6.2 Assemblywise Power Distribution - 72% Power. 38 6.3 Assemblywise Power Distribution - 100% Power.. 39 NE-Il02 N2Cl2 Startup Physics Tests Report Page 4 of 58

PREFACE This report presents the analysis and evaluation of the physics tests which were performed to verify that the North Anna 2, Cycle 12 core could be operated safely, and makes an initial evaluation of the performance of the core. It is not the intent of this report to discuss the particular methods of testing or to present the detailed data taken. Standard testing techniques and methods of data analysis were used. The test data, results and evaluations, together with the detailed startup procedures, g are on file at the North Anna Power Station. Therefore, only a cursory discussion of these items is included in this report. The analyses presented include a brief summary of each test, a comparison of the test results with oesign predictions, and an evaluation of the results. The North Anna 2, Cycle 12 startup physics tests results and evaluatior sheets are included as an appendix to provide additional information on the startup test results. Each data sheet provides the following information:

1) test identification, 2) test conditions (design), 3) test conditions (actual), 4) test results, 5) acceptance criteria, and 6) comments concerning the test.

These sheets provide a compact summary of the startup test results in a consistent format. The design test conditions and design values (at design conditions) of the measured parameters were completed prior to the startup physics testing. The entries for the design values were based on the calculations performed by Virginia Electric and Power Company's Nuclear Analysis and fuel 2 Group. During the tests, the data sheets were used as guidelines both to verify that the proper test conditions were met and to facilitate the NE-1102 N2Cl2 Startup Physics Tests Report Page 5 of 58

preliminary comparison between measured and predicted test results, thus enabling a quick identification of possible problems occurring during the tests. NE-1102 N2C12 Startup Physics Tests Report Page 6 of 58

SECTION 1 ) INTRODUCTION AND

SUMMARY

On September 8, 1996 Unit No. 2 of the North Anna Power Station shutdown for its eleventh refueling. During this shutdown, 81 of the 157 fuel assemblies in the core were replaced with 64 fresh fuel assemblies, 1 once-burned fuel assembly, and 16 twice-burned fuel assemblies. The s twelfth cycle core consists of 9 sub-batches of fuel; three once-burned batches, two from Cycle 11 (batches 13A, and 13B) and one from North Anna 1 Cycle 9 (batch N1/11B); four twice-burned batches, two from Cycles 10 and 11 (batches 12A and 12B), one from North Anna 1 Cycles 7 and 8 (batch N1/9B), and one from North Anna 2 Cycles 4 and 5 (batch 6); and two fresh batches (batches 14A and 14B). Batch N1/11 has top and bottom grids of Inconel-718 while the inner six grids are made of Zircaloy-4. Batches 13 and 14 have top and bottom grids of Inconel-718, six inner grids made of ZIRLO (ZIRLO provides improved corrosion resistance and dimensional stability under irradiation relative to Zircaloy-4 components), and one Inconel-718 protective grid placed below the fuel and above the bottom nozzle for debris resistance. Batch 12 has top and bottom grids of Incorel-718, six inner grids made of Zircaloy-4, and one Inconel-718 protective grid placed below the fuel and above the bottom nozzle for debris resistance. All other batches are composed of 8 Inconel-718 grids. Cycle 12, similar to Cycle 11, incorporated the burnable poison rod design made of B C in Alumina, which is available in various enrichments 4 l NE-1102 N2C12 Startup Physics Tests Report Page 7 of 58

of B C. There are no thimble plugging devices inserted in N2Cl2. 4 Reference 1 provides a more detailed description of the Cycle 12 core. The ccre loading pattern and the design parameters for each sub-batch are shown in Figure 1.1. Fuel assembly burnups are given in Figure 1.2. These burnups are documented in reference 6. The available incore moveable detector locations used for the BOC flux map analyses are identified in Figure 1.3. Figure 1.4 identifies the location and number of burnable poison rods and source assemblies for Cycle 12, and Figure 1.5 identifies the location and number of control rods in the Cycle 12 Core. On October 12, 1996 at 1524, the Cycle 12 core achieved initial criticality. Following criticality, startup physics tests were performed as outlined in Table 1.1. A summary of the results of these tests follows: 1. The measured drop time of each control rod was within the 2.7 second limit of Technical Specification 3.1.3.4. 2. Individual control rod bank worths were measured using the rod swap technique,s and the results were within 2.6% of the design 2 predictions. The sum of the individual measured control rod bank worths was within 1.0?. of the design prediction. These results are within the design tolerance of 215*. for individual bank worths (!107 for the rod swap reference bank worth) and the design tolerance of 10!. for the sum of the individual control rod bank worths. NE-1102 N2Cl2 Startup Faysics Tests Report Page 8 of 58

3. Measured critical boron concentrations for two control bank con figu ra t ions were within 12 ppm of the design predictions. These results were within the design tolerances and also met the Technical Specification 4.1.1.1.2 criterion that the overall core reactivity balance shall be within

17. Ak/k of the design prediction.

4. The boron worth coef ficient measurement was within 4.17. of the design prediction, which is within the design tolerance of 10%. 5. The measured isothermal temperature coefficient (ITC) for the all-rods out (ARO) configuration was within 0.63 pcm/'F of the design prediction. This result is within the design tolerance of 3 pcm/'F. The measured ITC of -1.9 pcm/'F meets the Core Operating Limits Report (COLR) 2.1.1 criterion that the moderator t mperature coefficient (MTC) be less than or equal to +6.0 pcm/'F. When the Doppler temperature coefficient and a 0.5 pcm/'F uncertainty are accounted for in the MTC limit, the MTC requirement is satisfied as long as the ITC is less thar. or equal to +3.76 pcm/'F. 6. Mode 1 (see Reference 4) core power distributions were within established design tolerances. Generally, the measured core power distribution was within

1. 4*,

of the design predictions. The heat flux hot channel factors, F-Q(Z), and enthalpy rise hot channel factors, F-DH(N), were within the limits of COLR Sections 2.5.1 and 2.6, respectively. NE-Il02 N2Cl2 Startup Physics Tests Report Page 9 of 58

In summary, all startup physics test results were acceptable. Detailed results, specific design tolerances and acceptance criteria for each measurement are presented in the following sections of this report. NE-1102 N2C12 Startup Physics Tests Report Page 10 of 58

Table 1.1 NORTH ANNA 2 - CYCLE 12 STARTUP PHYSICS TESTS CHRONOLOGY OF TESTS Reference Test Date Time Power Procedure llo t Rod Drop - Hot Full Flow 10/12/96 0205 HSD 2-PT-17.2 Zero Power Testing Range 10/12/96 1605 HZP 2-PT-94.0 Reactivity Computer Checkout 10/12/96 1634 HZP 2-PT-94.0 Temperature Coefficient - ARO 10/12/96 2041 ilZP 2-PT-94.0 Boron Endpoint - ARO 10/12/96 1730 HZP 2-PT-94.0 Bank B Worth 10/12/96 2158 HZP 2-PT-94.0 Boron Endpoint - B in 10/13/96 0132 HZP 2-PT-94.0 Bank D Worth - Rod Swap 10/13/96 0153 HZP 2-PT-94.0 Bank C Worth - Rod Swap 10/13/96 0352 HZP 2-PT-94.0 Bank A Worth - Rod Swap 10/13/96 0404 HZP 2-PT-94.0 Bank SB Worth - Rod Swap 10/13/96 0424 HZP 2-PT-94.0 Bank SA Worth - Rod Swap 10/13/96 0629 HZP 2-PT-94.0 Flux Map - 0 to 30*. Power 10/13/96 2040 3 0'. 2-PT-94.0 Peaking Factor Verification 2-PT-21.1 6 Power Range Calibration

  • 2-PT-21.2 2-PT-22.4 Flux Map - 65 to 75*. Power 10/15/96 0205 72%

2-PT-94.0 Peaking Factor Verification 2-PT-21.1 6 Powcr Range Calibration

  • 2-PT-21.2 2-PT-22.4 Flux Map - 95 to 100'. Power 11/04/96 0827 100%

2-PT-94.0 Peaking Factor Verification 2-PT-21.1 6 Power Range Calibration

  • 2-PT-21.2 2-PT-22.4
  • Power range calibration calculation was performed which verified that the existing calibration was satisfactory.

NE-1102 N2C12 Startup Physics Tests Report Page 11 of 58

Figure 1.1 NORTil ANNA UNIT 2 - CYCLE 12 CORE LOADING MAP R P N N t a J H G F E D C B a l 12a i 12s i 12a i j GN7 1 6me l FM0 l I I i l i i Ml/vsl 13a l 14e i 1 38 1 14e i 13a l MI/9si 1 J47 l IN6 1 6P4 4 3NO I $P4 l OW9 8 J39 1 2 1 1 1 1 I i l i 16 1 148 I les 1 I3s I les i Isa i les 1 148 16 I l 156 l 2P9 l 6P1 5 4N9 l 4P3 1 4N8 i 5P4 i $P 7 l 144 1 3 i I i l 1 i 1 I i 1 16 I ISA i 14s l 15s i 14a I lia l 14a i 15s i 14s 4 13a 16 I I T62 i ONS l SP9 l 6N2 l IP9 l Dh8 l SPS l 6N1 i SP2 l 2N5 1 123 1 4 l ___ ___ l l 1 i i i l i 1 1 1 1 Ml/vst its I its l 13s i 14a i Isa i 14a i 134 l 14a i 13e i les i 14e i N1/9st i J58 1 5P0 1 3PS I 3N3 1 0P3 I IN3 I IP5 I I N4 l IP8 i $NO l 4P2 1 6PO i J52 1 5 1 1 I I I I I I I I l i I i l ISA 1 les i las 1 14a l Isa i lea i 13s i 14A i 13a i Ina l 13s i 14s l lla I l 2N4 1 6P1 1 4NO l IPs l IN9 1 2P4 l $N5 l SP9 1 2M7 l 2P8 1 3N7 i $PI I 2N0 1 6 I I I I I I I I I I i l I l i 12a i !*e i 138 l 14a l ISA I lea i 138 1 138 l 138 l lea i 13a i 14A i 138 1 148 l 12A i 1 IMi i *PI 1 5N9 l Spa 1 FN3 l 2PO 1 4N6 l SN5 1 4N1 l 2P2 l ON7 1 IPI I 3N8 i SP5 l OMS l 7 I I 1 1 I I l I I I i l 1 I l i i 128 l 138 l 148 l 13a i 14a i 13e i Isa IN1/llet Isa i 13a l 14a i 13a i 14e i 13s i 12s t l bM2 1 4M2 1 5P1 1 2N! l IP0 I 4N3 I $N7 1 3a7 l $N4 1 5N1 i OP2 l ON! l 3P8 1 3N9 l 4M9 1 8 I l l l l l l l l l l 1 l l l l l 12A i 148 1 138 l tha l 13a l 14a 1 138 l 13s 1 138 1 144 l 13a l 14a i 138 1 145 l 12A i 1 2M7 1 5P7 j SN2 1 2P5 1 2No 1 0P7 1 4 M* l 5N4 l 5N6 l 2P6 i IN7 I IP6 1 4N7 l 4P6 l 2M8 l 9 I l l I I I I I I I I I I I I I i 13a i 14s i 13s 1 14a i 13a i 14a l 13a i 14a i 13a i 14a i 13e I les i 13a i l INI l 4P4 1 6N3 i OP4 I ONS I IP7 l 5N1 i SP1 1 INS i OP6 1 SN2 l 4P9 1 IN2 1 10 l 1 i i l I I i l 1 i l i l l N1/981 148 l 146 l 13s i 14a l 13a l 14a l 13a l 14A i 138 l 146 l 14s 1 Ml/988 1 J51 1 SP4 1 3P2 3 5N8 1 IP2 1 2N2 1 2P4 l O N* I 2P3 1 6MG l 5P6 1 4PO l J42 l Il i I I ( l l I i i I i l i I I6 1 13a i 1*8 1 138 1 14a i 13a 1 14a i las I tes l ISA i6 I i T59 l ING l 6P4 I 3NI l 2P1 l ON6 l IP3 1 6N4 1 3P3 1 ON2 1 107 4 12 I I I I I I I I I l i 1 16 1 148 l 14e i Isa i 14e i 13e i 14s I les I6 I i 155 l 6P2 l $P9 I 4N5 l SPO 1 $N6 I 6P3 1 4P5 l 158 l 13 i l I i i l i l i l i N1/9si 134 l 14s i 1 38 I tes 1 ISA l N1/981 l J*6 1 IN8 1 3P6 l 2N9 i SP3 l 2N8 l.)4 5 l 14 I I I I I l i I i 12a l 12s ! Ils I l l--> e4TCH l 2M6 1 4N3 l OM3 l 15 l l--> ASSEM8L Y ID l l l 4 I I Futt ASSENat Y DESICN PAPaMfif RS Sus salCH 6 N1/9s N)/lls 12a 128 13a 138 14a 148 INITlaL INPICHM(NT 3.5959 3.9899 4.1923 4.0061 4.2012 4.0052 4.2061 4.0138 4.2050 (W/0 U-235) SUPNUP af SOC 12 38*42 40589 25496 31208 3762s 23072 21128 0 0 (MWD /MTUA ASSIMatV TYPE 17a17 17 17 17al7 17 17 17a17 17a17 17n17 17:17 17a17 NUMaf P OF ASSEMst1[S 8 a I 8 4 28 36 28 36 F UE L PODS PfP ASSEMstY 264 264 264 264 264 264 l 264 264 264 NE-1102 N2Cl2 Startup Physics Tests Report Page 12 of 58

Figure 1.2 NORTil ANNA UNIT 2 - CYCLE 12 BEGINNING OF CYCLE FUEL ASSEMBLY BURNUPS R P N M L K J H G F E D C 6 8 l OM7 1 6Ms l FM0 l 1 378241 373361 377431 I l 8 I I l J47 1 !No l 6P4 l $NO l 3P4 i ON9 l J39 l l 399961 231981 el 185501 08 229591 el19*l 2 I i l I i l 1 I l 156 1 2P9 l 4P/ l 4N9 l 4P3 1 4N8 i LPS l 3P1 1 T44 l l 384471 el el 222761 01 224611 el el 390011 3 I l l l l l l l l l_ I 162 l ON3 l SP9 l 6N2 j 1P9 l ON8 l GP5 1 6N1 l SP2 l 2NS l (25 l ! 382281 242418 el 234111 01 235001 el 226741 el 2*055l 379721 e I 1 1 i l 1 1 I l i I I I J58 l SP0 1 3P5 1 $N3 i GPS l !N3 ) IPS i IN% l IPS l SM0 1 4P2 1 600 1 J52 1 1 406061 01 01 191701 el 238721 01 238451 el 189*91 el el 39611l 5 1 1 1 I i 1 l 1 I i 1 i I l l 2N4 4 69) l 4N0 l IP% l jN9 l 2P* l SNS I OP9 1 2N7 l 298 ) 3Mr l 3P1 1 2NO l 1 233491 01 233211 01 236281 el 227931 of 24217) 01 237111 el 23114l 6 l l l l l l l l l l l l l I I IM7 1 4P1 l SN9 l OP8 l 2N3 1 2PO l 4N6 l $NS l 4N1 1 2P2 l ON7 l IPl l 3Na l $Pb l OMS l l 177351 Of 22*851 el 240911 el 193551 191021 192241 01 239311 01 222621 01 367211 7 I l I l l l I l, _.. I l l l l l l l l 6M2 l 4N2 l $P1 1 2N1 1 IP0 I 4N3 l SN7 1 387 l $N4 I hMS l OP2 i ON! l 398 l 3N9 l 4M9 l l 379051 190611 of 235001 el 231061 18826l 254981 184711 230601 el 232841 el 187851 378861 8 I l l l l l l l l l l l l 1 l l l 2M7 8 597 l SN2 1 2P5 1 2No l 007 1 4N9 i $N4 i $N6 l 2P6 l IN7 1 IP6 1 4N7 l 4Pb l 2M8 l l 37153l 01 218*31 01 239171 01 192911 186601 189*91 el 236091 01 227061 el 371581 9 I I I I i 1 I l I i l i i l I i l LN) l 494 5 6N3 l 0P4 I ONS l ]P7 i $Ni l OP! l IN5 l OP6 1 3N2 1 4P9 l IN2 1 1 231741 01 233431 01 241281 el 229681 el 243811 of 227721 01 231041 10 l l l 4 l l l 1 l l t 1 I l l J51 1 SPg 1 3P2 l SN8 I IF2 l 2N2 l 2P! l ON4 l 2P3 1 6N0 l SP6 l 6PO I J%2 l l 402S41 01 el 189861 61 236531 el 291041 01 195791 of 01 415481 18 I I I I i l l l l 1 1 l __ I ( l 159 l ING l 6P6 l SN! ! 2P7 I ON6 l IP3 1 6N4 l SPS I ON2 l 107 1 1 182*71 242071 of 236621 of 234261 el 233891 o f 240981 387.%l 12 l I I l _.__ I I i l 1 I i 1 1 Ib5 l 6P2 1 399 l 4N5 j 3PO I 3Ne, l 6P3 1 4Ph i Th8 i j 188341 08 el 223081 el 222191 Ol O! 180741 13 1 1 1 I l I l i l 1 l J%6 l IN8 j 3P6 l 2N9 l SPS l 2N4 1 J45 l l 41502l 231981 el 186851 el 232451 400001 14 1 i l i I I l l l 2M6 1 4M3 l GM3 1 1 l -> SSSEMBlY ID l 365501 373851 3680 71 15 I l -> SSSE M8L Y SUPNUP (MWD /MTU) l l l 1 I / NE-1102 N2C12 Startup Physics Tests Report Page 13 of 58

I i i Figure 1.3 NORTil ANNA UNIT 2 - CYCLE 12 AVAILABLE INCORE MOVEABLE DETECTOR LOCATIONS R P M M L 5 J H G F E D C 8 A l 1 I I I i 1 MD 1 1 I I I i 1 1 1 I i 1 i i l l l 4 i i MD 1 1 2 l l l l 1 1 l i ) i i 1 I I i l i l 1 MD l 1 I MD l MD 1 1 4 1 MD 1 3 I I I I i 1 1 1 I l l l l t i I I I I I I I l l l MD 1 l l MD 1 1 MD 1 1 1 1 l l l l t 1 1 I I I I 1 1 I i 1 1 1 1 1 I I i i I I l l MD l 1 MD I I MD I I i 1 MD l MD 1 l MD l 5 I I I I I i 1 l 1 l I I I l I i i i i i i 1 1 1 l i i I I I I I MD l t i MD I I MD 1 1 1 I i 6 1 l l l l 1 1 I I I I I I l 1 I l i l 1 i

==l l

==1 1 1 I I I I I I I MD 1 1 l l MD 1 1 MD 1 1 1 MD l l MD l l 7 1 I I I I I I i 1 I l i I l l I I I l l t 1 1 I I I I I I l I I 1 MD 1 i MD l l MD 1 l l l l MD l l 1 MD I MD 1 1 ) I i l i l I I I i l i l l l I I I i i i 1 i l l

==1 I I I I I l I I I i l MD i i l l MD 1 MD 1 1 I i 1 MD 1 9 1 I i l l l 1 1 i i i i l l I l I I i l I i l i i l I l l l i MD l l l l MD i I I I I MD i l MD 1 10 1 1 I I I I I i 1 1 I I I I I I I I I I i 1 1 1 1 1 1 I I I 1 l MD l l l MD 1 1 MD 1 MD I I I I 11 l l t 1 l i I I I I I I I l 1 l l 1 1 1 1 1 1 1 I l l MD 1 l 1 1 MD 1 8 l l l MD i MD 1 12 l~ ~ l l l 1 1 I I I l 1 i l l l l 1 1 I I I I i 1 l l l MD i l MD l i I 13 I I I I I I l l I I i aa 1 i l i i i i 1 MD 1 i 1 1 MD i i I 3* I I I I I I I l MD - Moveable Detector 1 4 . locations Not available for 1 i i I no flu 4 Mapping System For Cycle 12 l NE-1102 N2C12 Startup Physics Tests Report Page 14 of 58

Figure 1.4 NORTH ANNA UNIT 2 - CYCLE 12 ASSEMBLY INSERT LOCATIONS R P M M L K J M C F E D C B A l 1 1 1 I I i 1 1 1 1 I i l l I hP 1 l SP I i 1 l l l bps 301 l SP5291 1 1 2 1 1 1 I I l l 1 i i 6P 1 19P l 1 24P 1 4 19P i 6P 1 i i 18PColll SP % 51 18PC0091 l BP5461 BP5641 l 1 l 1 1 1 1 1 1 1 i l 1 l l 21P l l 24P 1 5518 l 24p i 1 21P l 1 1 i 1 l BP5531 l SP5201 l BP5191 1 BP5561 l l 4 I I I i i l i i i I l l l 1 6p l ZIP i l 24P l l 24P j l 24P i i FlP l 6P I l l 88PColol BP5588 ) 8P%41 i EP5181 l BP5431 1 BPM 95 BP%34 l 5 l l l 1 l l I l l I l i l l i 19D l 1 24P i l 24P l l 24P 1 s 24P l 1 19P l l l l BP5521 4 $P%2l l BPS?81 1 SP5271 i BPM 11 i BP5491 1 6 1 I I I l __1 l I i l l __ __ 1 i i l 1 39 l l 24P l l 24P l l 4P l l 24P l l 24P l l 3P l l l l BP55*l 1 BP517f f BP5?61 i 6P5121 l BPS 251 1 80516l 1 BP5361 1 2 l l 1 l l l l l l l I I l l l l l l l 24P l l 2*P l l 4P l 4P l 6P 1 1 24P l l 24P l i l l l IBPC0081 l BPsl56 i BP5til $P5101 BP5091 1 BP514l I BPC 0071 l t 8 I I I l _.__ l. I 1 1 1 I I l l I I I l l 39 l l 2=P l l 249 i l 4P l l 24P l l 2*P l l 3P l l l l 8P5331 1 BP5131 1 BP5241 lBPC00ll l BP5231 IBPC005l 1 895351 l 9 I l I l l l 1 1 1 l l l I l I l 4 l 19P l l 2*P l l 24P l 1 2*P I l 24P 1 1 19P 1 l l l BP5511 1 BP%81 i BP5221 l BP5211 i BP5591 l BP5501 l 10 1 I I I I I I I I I I I I 1 l l 69 l 21P l i 24P l l 2%P l i 24P I i llP 5 6P 1 i i IBPC0131 BPM 71 i BP5381 IBPC0041 1 BP5371 1 BP%81 BP%2l l l I i 1 1 I I I i 1 1 1 l l l l l 21P l 1 24P l 5517 1 24P i l 21P l l 1 l l l BP5541 ISPC0031 lBPC0021 i BPM 51 l l 12 l l l 8 l I l l l i l l l l 6p i 199 l l 24P 1 1 19p j 6P l l l lBPC0!?l 8P%81 18PC006l i BP5471 BP%11 1 Il l l l l l l i I l l I I I ap i i SP l l l 1 l l B95321 l 8P5511 1 1 14 i l i l l l 1 3P - 3 BUPNABL E POISON ROD CI US1ER l l 1 8 4P - 4 BUPNABLE POISON POD CLUSTER l i l l 15 6p - 6 8uPNAB!E POISDN POD CLUSTER l l l l 19P - 19 $UPNABLE POISDN ROD CLUSTER flP - 21 BuPNABLE POISON 900 CLUSf f # 2*P - 2% BUPNABLI POISON POD CL US f f R SSun SiCONLAPY SOURCE l x=P or SSun 1-8 CF SP ROUS nr SECONDARY SOUPCI ID i BPess ! - SP ASSE MBL Y ID I I NE-1102 N2C12 Startup Physics Tests Report Page 15 of 58

Figure 1.5 NORTil ANNA UNIT 2 - CYCLE 12 CONTROL ROD LOCATIONS R P N N L K J H C F E D C B A 180' I i i l l 1 1 1 I I l iA I ID 1 1A 1 l 2 I I I l i I i l N-41 I I l l SA l l SA l l l l N-43 3 I I l l I I I i i i iC l l B i l I Ie i iC i I 4 I l l I I I i l I i i l I l i 1 so l I I I I I so l I I l 5 l I I I l I I I I I I i l l l A l lB l l D l lC l lD l l B l lA l 6 I I I I I I l l l l 1 l l l ~~ l l l sA I I I I se 1 i sB l i I l sa l l l 7 I l l l I I I I l l l l 1 l l o 90 - l 1D l l l lC l l l lC l 1 l lD 1 l - 270 8 I l 3 I I l l I l i I I l l l 1 I I I sa l i I I sB i i sB l l l l sa l i I 9 I I l l l l l l l l l l l 1 l l l A l l8 l lD I lC l lD l lB l lA i 10 l l l I I I I I I I I i i l I I I i sB l l l l l l sB l l l l 33 I I I I I I I I I I I I l l l lC I IB l i I IB l IC i 1 12 I I I I I I I l i I l l I i i l SA I I sA I I I I is N-44 I I l l l l l l l l N-42 1 1A l lD l lA l 1 gg i l l I I I I I l l l l 15 l I I I Absorber Naterial l Ag-In-Cd O' Function Number of Clusters Control Bank D 8 Control Bank C 8 Control Bank 8 8 Control Bank A 8 shutdown Bank SB 8 shutdown Bank SA 8 1 NE-1102 N2C12 Startup Physics Tests Report Page 16 of 58

SECTION 2 CONTROL ROD DROP TIME HEASUREMENTS The drop time of each control rod was measured at hot full-flow reactor coolant system (RCS) conditions in order to verify that the time from initiation of the rod drop to the entry of the rod into the dashpot less than or equal to the maximum allowed by Technical Specification was 3.1.3.4. The control rod drop times were measured in Mode 3" with the RCS Tavg above 500'F and all reactor coolant pumps operating. The rod drop times were measured by withdrawing a rod bank 229 steps and then removing the moveable gripper coil fuse and stationary gripper coil fuse for the particular rod of the bank to be dropped. This allowed the rod to drop into the core as it would during a plant trip. The stationary gripper coil voltage and the Individual Rod Position Indication (IRPI) primary coil voltage signals were recorded to determine the rod drop time. This procedure was repeated for each control rod. As shown on the sample rod drop trace in Figure 2.1, the initiation of the rod drop is indicated by the decay of the stationary gripper coil voltage when the stationary gripper coil fuse is removed. As the rod drops, a voltage is induced in the IRPI primary coil. The magnitude of this voltage is a function of control rod velocity. As the rod enters the dashpot region of the guide tube, its velocity slows causing a voltage decrease in the IRPI coil. This voltage reaches a minimum when the rod reaches the bottom of the dashpot. Subsequent variations in the trace are caused by rod bouncing. NE-1102 N2Cl2 Startup Physics Tests Report Page 17 of 58

The measured drop times for each control rod are recorded on Figure 2.2. The slowest, fastest, and average drop times are summarized in Table 2.1. Technical Specification 3.1.3.4 specifies a maximum rod drop time from loss of stationary gripper coil voltage to dashpot entry of 2.7 seconds with the RCS at hot, full flow conditions. These test results satisfied this limit. In addition, rod bounce was observed at the end of each trace which demonstrated that no control rod stuck in the dashpot region. NE-1102 N2Cl2 Startup Physics Tests Report Page 18 of SS

Tabic 2.1 NORTH ANNA UNIT 2 - CYCLE 12 STARTUP PilYSICS TESTS Il0T R0D DROP TIME

SUMMARY

R0D DROP TIME TO DASHPOT ENTRY SLOWEST ROD FASTEST ROD AVERAGE TIME B-06 1.95 sec. M-04 1.52 sec. 1.68 sec. n NE-1102 N2Cl2 Startup Physics Tests Report Page 19 of 58

Figure 2.1 NORTH ANNA UNIT 2 - CYCLE 12 STARTUP PHYSICS TESTS TYPICAL ROD DROP TRACE Be inning Of Dashpot Bottom Of Dashpot initiation Of Rod gintur.g Of First (Beginning Of Arst Drop Event Mark owntum In Trace) Upturn in Trace) / \\ / 'N:NNNNNN, { Stationary Gripper Coil Voltage Trace Rod Drop Time nAnAAAAAA A Variations Are Si ns VVVVVVVVV / Of Rod Recol ffy^ffy^y' f Afyh Pr ma C il Voltage Trace nnnnnnn/ tnnnnnnnnnnnnnnnnnnnn nnnnnn nnnnnnnn vvvvvvv v VVVVVVVVVVVVVVVVVVVVV VVVVVV VVVVVVV\\ 60Hz Trace Omahies No nT8238 One Cycle ROD DROP TIME MEASUREMENT NE-1102 N2C12 Startup Physics Tests Report Page 20 of 58 IF

Figure 2.2 NORTil ANNA UNIT 2 - CYCLE 12 STARTUP PilYSICS TESTS ROD DROP TIME - Il0T FULL FLOW CONDITIONS R P N M L M J H C F E D C 5 A 1 1 1 1 1 1 I I 1 i l i l 1 I i l 1 i i l I i 1.76 4 l 1.6a i i 1.66 1 1 2 i l I i i l 1 1 I I I i l i i l 1 i l I i i 1.6a 1 1 1.65 1 i i 1 5 1 1 1 I i l I i i l l I I I 1 i i l i i i i i 1.52 l l 1.78 1 4 I i 1.65 1 1 1.72 I I 4 I I I l l I I I l 1 I I i l I i i l i i i l i l I I i 1 I i 1.67 1 I i i l i 1.66 1 1 1 1 5 l I _l 1 1 1 1 1 i l i l i I I I I I I i i i I i 1 i i l i 1.65 l l 1.6a i l 1.67 1 1 1.66 i 1 1.66 I i 1.66 i 1 1.95 1 6 1 l I I I I I I I I I i 1 1 I I l i i i 1 1 1 I i 1 1 1 1 1 l l l 1.61 1 l l l 1.61 i 1 1.65 i l I i 1.69 I i 1 7 I l I I i i l I i i l i I I I I I I I i i i i l I I i i l 1 i i l i 1.7= 1 1 1 1 1.69 l l l 1 1.62 1 1 1 1 1.82 1 1 a l i 1 1 I i 1 1 1 1 I l I l 1 l i I I I I I I i l i 1 l i i l I I I i 1.69 I i l l 1.60 l l 1.65 I I i 1 1.54 1 I i 9 I I I I I l I i l i i l' I l l l I I I I I i i i l i l i l i i 1.74 I i 1.6? I i 1.67 I i 1.66 1 1 1.62 1 1 1.69 I i 1.75 i lo l i I l l 1 1 I I I I I i 1 I I I I I I i i 1 1 1 I i i l i I l 3.70 l l l 1 I i 1.64 i I i la i l l I I i 1 l l I I I I I I I I I i i i 1 i l i l I i 1.7o i I I.64 l l t i 1.61 I i 1.75 I i 12 I I 1 1 1 I I I I I I I I I i 1 I i i i I i i i i i 1.66 I i 1.70 I I I I is I i l i I I i f I I I I I i i i 1 4 ? l i 1.8 7 I i 1.75 l l 1.60 t i 14 I I I l l I I I I I I i l 1 1 i is I l___l l i i i X.XM l--> POD Dpop TIME 10 DASHPoi t NTRY I SI C ) l l NE-1102 N2C12 Startup Physics Tests Report Page 21 of 58

SECTION 3 CONTR0b ROD BANK WORTil HEASUREMENTS Control rod bank worths were measured for the control and shutdown banks using the rod swap technique **5 The initial step of the rod swap method diluted the predicted most reactive control rod bank (hereafter referred to as the reference bank) into the core and measured its reactivity worth using conventional test techniques. The reactivity changes resulting from the reference bank movements were recorded continuously by the reactivity computer and were used to determine the differential and integral worth of the reference bank. For Cycle 12, Control Bank B was used as the reference bank. After the completion of the reference bank reactivity worth measurement, the reactor coolant system temperature and boron concentra.lon were stabilized with the reactor just critical and the reference bank near full insertion. Initial statepoint data for the rod swap maneuver were obtained by moving the reference bank to its fully inserted position with all other banks fully withdrawn and recording the core reactivity and moderator temperature. From this point, a rod swap maneuver was performed by withdrawing the reference bank several steps and then inserting one of the other control rod banks (i.e., a test bank) to balance the reactivity of the ref erence bank withdrawal. This sequence was repeated until the test bank was fully inserted and the reference bank was positioned such that the core was just critical or near the initial statepoint condition. This measured critical position (MCP) of the reference bank with the test bank fully inserted was used to determine NE-1102 N2Cl2 Startup Physics Tests Report Page 22 of 58

the integral reactivity worth of the test bank. The core reactivity, moderator temperature, and the differential worth of the reference bank were recorded with the reference bank at the MCP. The rod swap maneuver then was repeated in reverse such that the reference bank again was near full insertion with the test bank fully withdrawn from the core. This rod swap process was then repeated for each of the other centrol and shutdown banks. A summary of the test results is given in Table 3.1. As shown in this table and the Startup Physics Test Results and Evaluation Sheets given in the Appendix, the individual measured bank worths for the control and shutdown banks were within the design tolerance ( 10?. for the reference bank, !15*. for test banks of worth greater than 600 pcm, and 100 pcm for test banks of worth less than or equal to 600 pcm.) The sum of the individual measured rod bank worths was within 1.07, of the design prediction. This is well within the design tolerance of i10% for the sum of the individual control rod bank worths. The integral and dif ferential reactivity worths of the reference bank (Control Bank B) are shown in Figures 3.1 and 3.2, respectively. The design predictions and the measured data are plotted together in order to illustrate their agreement. In summary, the measured rod worth values were satir. factory. NE-Il02 N2Cl2 Startup Physics Tests Report Page 23 of 58

Table 3.1 NORTil ANNA UNIT 2 - CYCLE 12 STARTUP PHYSICS TESTS CONTROL ROD BANK WORTH

SUMMARY

MEASURED PREDICTED PERCENT DIFFERENCE WORTH WORTH (7. ) BANK-(PCM) (PCM) (M-P)/P X 100 B-Reference Bank 1217.0 1249.0 -2.6 D 1046.9 1049.8 -0.3 C 793.1 790.2 0.4 A 340.0 337.5 0.7

  • SB 1080.6 1082.1

-0.1 l SA 964.8 985.1 -2.1 Total Worth 5442.4 5493.7 -0.9

  • Difference is less than 100 pcm.

i NE-1102 N2C12 Startup Physics Tests Report Page 24 of 58

l Figure 3.1 NORTH ANNA UNIT 2 - CYCLE 12 STARTUP PHYSICS TESTS CONTROL BANK B INTEGRAL ROD WORTH - HZP ALL OTHER RODS WITHDRAWN l 1400 i i i i i I l i. PREDICTED i i li i % t i i iiiiN i ii i i i i i e MEASURED 1200 " ' ' ' ' ' I \\l I t I I i is 3L!iii i i i

Niii, i

i I \\ i i\\ i 31 i i i e t i\\ It I i ! 1000 '. '\\ i, i 1. .., t, ii 1 st i i ii , i i i, si i i !t i . i i i l ! \\i i i !i! i z i ' i i i \\ i! i O i i l =Ni i i i i j\\ i. 8 i \\ !i i i i i i i i \\ i ii !t I i i i \\ l I i ! Ii !l 800 I i 1 ! I 1 \\. ! l ' i i i i i i m\\i i i ! g I i i i II 6 6\\ lI N i li l i ! !i ii i i i! ! I w i i 6 i !. ii i i\\ i I i i l! i i t i iI I Ii W\\ t ii i

  1. ! I \\-

it i ! i i i I t i i!I i ! 5 !ii! I i i If i . i I . ! i ! t l l l \\ t s C) i !iii !i i i . i i i i i i. t! i 1 . ! ! i,*x 5 600 I ' 4 \\. . ii1 a { \\i 1 i f l j } j i 9 e j i i l e e 6 t i r i ! } i I i g\\ j i i i l i i ! i l jii i { _ } i i i I '\\iii ! i i e i i ! I i i i i Ii i i g !v i i i i i i. i !. i i . i. w g\\i i I i i ! 6.- i i i ii i i I' .:\\ t 1 i i i Z I i ii i. x..i i ! ii i i i .i i . i ii iii\\'3 i i i i t i l i i! i , e 400 1: t i i i !i i ! i i i ii ,v i i ! i i ' i I mA I I i ! t Ii i i # .i

  • !)

l i i t, 6 i i !I i i (' I f i g._ 6 6 ! f t + i \\i } I l I i i e iI i 6 l e i !

- i i

e i EY _ ! I I I i ili i I i ii i i + , i < i \\! > i >! i iii, i i. ii i l i ! I i i I i i e i i ! i i i I Ii i. i 1!! '00 ', 1 4 ,, 'e ., 1 ; '\\, !\\ : ! a i i i i r i !i! A ' I ! i ! i i i it + i ii l l l ! &~ ! ! i l i i I i i e i i i { l l 4 I i i Iiik*\\i i !! ! i t, i e i. } } l i !l i I l l j i+!\\ . t , ! i ia i i i 1 i i i. i i 6 i s e i a !I i ! I i _i. 'ii i.' i bs,'! i - , i i i i ; i, i ,, i,, i i x: i ! t i ' ' I ! ' i i t L i 0 40 80 120 160 200 B-BANK POSITION (5 STEPS / DIVISION) NE-1102 N2C12 Startup Physics Tests Report Page 25 of 58

~ Figure 3.2 NORTH ANNA UNIT 2 - CYCLE 12 STARTUP PHYSICS TESTS CONTROL BANK B DIFFERENTIAL R0D WORTH - HZP ALL OTHER RODS WITHDRAWN 10 PREDICTED y s I 9 /_\\ ,i 3 m.1i e MEASURED i / l\\ I / u 1 i i iJ "\\ I'II IT I I' I 8 / I -\\ m A / "N i / \\ 2 I i li IK 9 7 59 -l i im N i E J Al 'l m N l 1 Im A 6 I I I' I e i 11 i _i i 5 6 il \\ o ii i f j \\ !ii i i u \\ 5 5 I I I i ii!If 1 \\1 gs tiii i \\' \\\\i El \\ 3: !Ii i f A i 'ii j i i l i l\\ a 4 I IIi i 14 i i \\ i !Iii li i t tlii li i w l l i ' ii i I it u. i, il I i i i g 3 .L j!,,,,!, g, i t iit i l i!iill l !i it !sti i Iiiiiii l)i l il Ii i i i ii,it i il i!I I Iii i! Ii l i. I ' ' i il 'II I' 'I 2 i i! ! / i iii! i I li l !i/ I!! I l ,i i!I/ I i! 11/ ll l g I i i m i/, I ii l l i l i i

/i!

!!!!i! l i !i I i I ! >l i /i i l i iii ll I I I I ii i i i l il ,' I '/ 1I i i i !>1 i i!i i! i Ii l i i i i t ./ it l i i!il I illl ll jililii l i !t i ll 11 7 'I'I 'IiI 5. 0 0 40 80 120 160 200 B BANK POSITION (5 STEPS /DMSION) hE-1102 N2C12 Startup Physics Tests Report Page 26 of 58

i 1 2 SECTION 4 i 4 A. BORON ENDPOINT AND WORTH MEASUREMENTS 1 1 Boron Endpoint I With the reactor critical at hot zero power, reactor coolant system j (RCS) boron concentrations were measured at selected rod bank I configurations to enable a direct comparison of measured boron endpoints f with design predictions. For each critical boron concentration f measurement, the RCS conditions were stabilized with the control banks 1 at or very near a selected endpoint position. Adjuste ' measured i I l critical boron concentration values were made to account for off-nominal ) } control rod position and moderator temperature, if necessary. 1 l { The results of these measurements are given in Table 4.1. As shown 4 i i in this table and in the Startup Physics Test Results and Evaluation Sheets given in the Appendix, the measured critical boron e.ndpoint values { were within their respective design tolerances. The ARO endpoint t i } comparison to the predicted value met the requirements of Technical i Specification 4.1.1.1.2 regarding core reactivity balance. In summary, i the boron endpoint results were satisfactory, i j_ Boron Worth Coefficient I l The measured boron endpoint values provide stable statepoint data i from which the boron worth coefficient or differential boron worth (DBW) ~ 3 was determined. By relating each endpoint concentration to the integrated 1 rod worth present in the core at the time of the endpoint measurement, NE-1102 N2Cl2 Startup Physics Tests Report Page 27 of 58

) the value of the DBW over the range of boron endpoint concentrations was obtained. A summary of the measured and predicted DBW is shown in Table 4.2. As indicated on this table and in the Appendix, the measured DBW was well within the design tolerance of 107.. In summary, the measured boron worth coefficient was satisfactory. i l NE-1102 N2C12 Startup Physics Tests Report Page 28 of 58

A Table 4.1 NORTil ANNA UNIT 2 - CYCLE 12 STARTUP PilYSICS TESTS BORON ENDPOINTS

SUMMARY

Measured Predicted Difference Control Rod Endpoint Endpoint M-P Configuration (ppm) (ppm) (ppm) ARO 2087 2079 8 B Bank In 1911 1899* 12

  • The predicted endpoint for the B Bank In configuration was adjusted for the difference between the measured and predicted values of the endpoint taken at the ARO configuration as shown in the boron endpoint Startup Physics Test Results and Evaluation Sheet in the Appendix, NE-1102 N2C12 Startup Physics Tests Report Page 29 of 58 -

Table 4.2 NORTil ANNA UNIT 2 - CYCLE 12 STARTUP PilYSICS TESTS BORON WORTil COEFFICIENT Measured Predicted Percent Boron Worth Boron Worth Difference (7.) (pcm/ ppm) (pcm/ ppm) (M-P)/P*100 l -6.91 -6.64 4.1 l 1 1 NE-1102 N2Cl2 Startup Physics Tests Report Page 30 of 58

SECTION 5 TEMPERATURE COEFFICIENT MEASUREMENT The isothermal temperature coefficient (ITC) at the all-rods-out condition is measured by controlling the reactor coolant system (RCS) temperature with the steam dump valves to the condenser, establishing a constant heatup or cooldown rate, and monitoring the resulting reactivity changes on the reactivity computer. Reactivity was measured during the RCS cooldown of 3.7'F and RCS heatup of 3.2'F. Reactivity and temperature data were taken from the reactivity computer and strip chart recorders. Using the statepoint method, the temperature coefficient was determined by dividing the change in reactivity by the change in RCS temperature. An X-Y plotter, which plotted reactivity versus Temperature, confirmed the statepoint method in calculating the measured ITC. The predicted and measured isothermal temperature coefficient values are compared in Table 5.1. As can be seen from this summary and from the Startup Physics Test Results and Evaluation Sheet given in the Appendix, the measured isothermal temperature coefficient value was within the design tolerance of 3 pcm/'F. The moderator temperature coef ficient was determined to be -0.16 pcm/'F which met the requirements of COLR Section 2.1.1. In summary, the measured result was satisfactory. NE-1102 N2Cl2 Startup Physics Tests Report Page 31 of 58

Table 5.1 NORTil ANNA UNIT 2 - CYCLE 12 STARTUP PliYSICS TESTS ISOTilERMAL TEMPERATURE COEFFICIENT

SUMMARY

ISOTHERMAL TEMPERATURE COEFFICIENT BANK TEMPERATURE BORON (PCM/'F) POSITION RANGE CONCENTRATION (STEPS) ('F) (ppm) AVE. DIFFER. C/D H/U MEAS. PRED. (M-P) 543.7 D/208 to 2082 -1.9 -1.9 -1.9 -2.53 0.63 547.7 m x NE-1102 N2C12 Startup Physics Tests Report Page 32 of 58

SECTION 6 POWER DISTR.130fiON HEASUREMENTS The core power distributions were measured using the moveable incore detector flux mapping system. This system consists of five fission chamber detectors which traverse fuel assembly instrumentation thimbles in up to 50 core locations. Figure 1.3 shows the available locations monitored by the moveable detectors for the ramp to full power flux maps for Cycle 12. For each traverse, the detector voltage output is continuously monitored on a strip chart recorder, and scanned for 61 discrete axial points by the PRODAC P-250 process computer. Full core, three-dimensional power distributions are determined from this data using a Virginia Power modified version of the Combustion Engineering computer program, CECOR' CECOR couples the measured voltages with predetermined analytic power-to-flux ratios in order to d e t e r niin e the power distribut4on for the whole core. A list of the full-core flux maps taken during the startup test program and the measured values of the important power distribution parameters are given in Table 6.1. A comparison of these measured values with their COLR limits is given in Table 6.2. Flux map 1 was taken at 30*. power to verify the radial power distribution (RPD) predictions at low power. Figure 6.1 shows the measured RPDs from this flux map. Flux maps 2 and 3 were taken at 727. and 100*. power, respectively, with dif ferent control rod configurations. These flux maps were taken to check at power design predictions and to measure core power distributions at various operating conditions. The radial power distributions for these maps are given in Figures 6.2 and 6.3. The radial power distributions NE-Il02 N2Cl2 Startup Physics Tests Report Page 33 of 58

for the maps given in Figures 6.1, 6.2, and 6.3 shc,w that the measured relative assembly power values were generally within 1.47. of the predicted values. Further, the measured F-Q(Z) and F-DH(N) peaking factor values for the at power flux maps were within the limits of COLR Sections 2.5.1 and 2.6, respectively. Flux maps 1, 2, and 3 were used to perform power range detector calibrations. (These three flux maps verified that the existing calibration was satisfactory, thus no adjustments to the power range detector calibration were required.) In conclusion, the power distribution measurement results were considered to be acceptable with respect to the design tolerances, the accident analysis acceptance criteria, and the COLR. It is therefore anticipated that the core will continue to operate safely throughout Cycle

12. Reference 7 documents the flux maps.

e TABLE 6.1 NORTH ANNA UNIT 2 - CYCLE 12 STARTUP PilYSICS TESTS INCORE FLUX MAP

SUMMARY

I I i l I l l (la l l l l I i l I i i BuRNI l l F-Qf/3 H0f i F - DH( N ) H0ll COPE F(l) 1 (2) i l l 1 MAP l MAPL i UP l 18 ANN l CHa#M L F ACTOR l CHNL.F ACl0RI MAA IC0pf illll AMIAll N0.1 l DESCRIPr!ON INU.1 DATL i MWD /IPWRI D l l 1 l l Of F l OF $ 1 l l l Mlu lt2 sl$i[PSl&L5VI Am! At t l AS$ylf -OtH Nil AX1 All f t / sl MAX lt 0C l $l i IIHIMI I l l l l l l lPo lN T IF -Ol l) l l iPOINfl I I I (Z) l$1151 I l._ l I l __.1 l _ _ l, _.1 l_1 1 l _ I _ f._ l l_t fl OW Puwt R I i 110 15 961 4 l Sol 125 l 80/1 36 l 1.3/6 1 C06l 1.455 i SS 11.41/11.0851 Ntl-10.811 46 1 lP.f.V. ISI i 2 110-14 961 t/ l //l 186 l 80/l 36 i F.009 1 80/1 1.440 l 31 11.76911.0!?! Sil 2.871 46 I lHo f F UL L POWf R 1 3 111 04 961 659 11001 ??S I Bell 56 l 1.856 ) 80/l 1.408 l 15 11.21011.0101 Sil *0.801 46 l l l_ I l l_l l_l l l_l l l l l__I l_l NC It $ : H0 f $P0 f L OC a l l0NS ARF SPfClf((D BV CIVING ASSE M81 Y local!ONS (f.G. H-8 l$ THE CE NIE R-Of -COPE A$$1 met V I AND C0pt H[l(.Hf d IN THE "/" DlRLCilON IHL CORE I$ DIV!DED INf 0 61 AX! Al P0lNIS $fARl!NG fROM THE IOP OF IHL CORE ). (11 F -Qt t) INCL UDIS A TOTAL UNC[RIAINTY OF

1. 0 5 X !. 01.

(2) Copt !!ti

  • DEF INF O A$ IHf AVE RACf QUADRANT POWt p TIL T F ROM CE COR.

436 P.F.V. Pt AN ]NG F AC TOR VIRIF ICAll0N. (4) MAPS 1, 2, AND 1 WIRf USfD f0F POWf R PANCf Di flC10R C Al lBRAll0NS. IHf C Al !$RAll0N F 0W FL UM MAPS 1, 2, AND $ vtR!f!!D IHi ACCIPIABlliff Of lie E XI5lll0 cal !6 RAIL 0N. NE-Il02 N2Cl2 Startup Physics Tests Report Page 35 of 58

Table 6.2 NORTil ANNA UNIT 2 - CYCLE 12 STARTUP PHYSICS TESTS COMPARISION OF MEASURED POWER DISTRIBUTION PARAMETERS WITil THEIR CORE OPERATING LIMITS FEAK F-Q(Z) HOT F-Q(Z) HOT F-DH(N) HOT CHANNEL FACTOR

  • CHANNEL FACTOR **

CilANNEL FACTOR (AT NODE OF MINIMUM MARGIN) MAP NO. MEAS. LIMIT NODE MEAS. LIMIT NODE MARGIN MEAS. LIMIT MARGIN ( 7. ) (1) 1 2.326 4.380 36 2.326 4.380 36 46.9 1.453 1.803 19.4 2 2.009 3.024 35 1.998 3.001 28 33.4 1.440 1.613 10.7 3 1.856 2.190 36 1.856 2.190 36 15.3 1.408 1.490 5.5

  • The Core Operating Limit for the heat flux hot channel factor, F-Q(Z), is a function of core height and power level.

The value for F-Q(Z) listed above is the maximum value of F-Q(Z) in the core. The COLR limit listed above is evaluated at the plane of maximum F-Q(Z).

  • T' e value for F-Q(Z) listed above is the value at the plane of minimum margin.

The minimum margin values listed above are the minimum percent difference between the measured values of F-Q(Z) and the COLR limit for each map. The measured F-Q(Z) hot channel factors include 8.15% total uncertainty. NE-1102 N2Cl2 Startup Physics Tests Report Page 36 of 58 1

Figure 6,1 NORTH ANNA UNIT 2 - CYCLE 12 STARTUP PHYSICS TESTS ASSEMBLYWISE POWER DISTRIBUTION 30% POWER R P M M L lt J H C F E D C B 8 PWf0!CifD 0.277 0.296 0.275. PWEDICIED ME ASURE D 9.277, 0.292 0.215. HI ASWE D 1 .PC T DIF F ER! MCf. 0.0 -1.3 -0.2 .PCI DIFFikfMCE. 0.297 0.668 1.084 0.842 1.078. 0.665 0.294 0.293 0.666. 1.087 0.843 1.079. 0.668 0.296 7 -1.2 -0.3 0.4 0.1 0.8 0.5. 0.8 .......1.225. 0.307 1.112 1.500 1.228 1.280 I.297 1.110 0.307 . 0.298 1.095 1.292 1.241 1.269 1.225. I.310 1.121 0.505 3 -2.9 -1.6 -0.7 1.1 -0.8 0.0 1.0 1.0 -0.5 0.347 0.816 1.305 1.284 1.218 4.221 1.217 3.283 1.305 0.816 9.308 0.310 0.807 1.217 1.263 1.199 1.192 1.236 1.310 1.326 - 0.827 0.313 4 1.0 -1.1 -2.2 -1.6 -1.6 -2.3 -0.1 2.2 1.6 1.3, 1.7 .......1.179 0.294 1.111 1.306 1.309 1.206 1.179 8.181 1.20e 1.309 1.308 1.114 0.297 0.299. 1.141 1.306 1.299 1.184 1.137 1.158 1.I76 1.220 1.334 1.327 1.137 0.301 5 1.6 2.7 0.0 -0.7 -1.9 -3.6 -1.9 -0.3 1.1 1.9 1.5 2.0 1.5 0.667 1.298 1.184 1.207 1.014 1.173 1.210. 3.175 1.015 1.208 1.286 1.303 0.670 0.666 1.299 1.273 1.183 0.998 1.150 1.194 1.171 1.020 1.228 1.314 1.340 0.699 6 -0.4 0.0 -0.9 2.0 -l.6 -2.0 al.3 -0.3 0.5 1.6 2.2 2.9 4.4 ......0.276 1.080 1.228 1.219 1.179 1.175 1.257 1.247 1.259 1.176 1.180 1.221 1.231 1.087 0.277 0.215 1.074. 1.212 1.202 1.155 1.154 1.238 1.235 1.258 1.186 1.200 1.255 1.275 1.164 0.296 2 -0.4 -0.6 -1.2 -1.4 -2.0 -1.8 -1.5 -0.9 -0.1 0.8 1.7 2.8 3.6. 7.1 6.8 0.296 0.845 1.282. 1.224 1.182 1.212 1.247 1.174 s.252. 1.215 1.183 1.225 1.283. 0.845 0.246 0.296 0.846 1.279 1.206 1.148 1.189 1.230 1.165 1.252 1.230 1.200 1.247 1.309 0.894 0.313. 8 0.0 0.2 -0.2 -1.5 -2.8 -1.9 al.4 -0.8 0.0 1.2 1.4 1.8 2.0 5.7 5.7. ......1.086 0.277 1.230 1.220 1.179 1.175 1.251 1.247 1.259 1.171 1.180 1.220 1.228 1.081. 0.276 0.276 1.078 1.219 1.202 1.152 1.155 1.241 1.236 1.255. 1.178 1.190 1.232 1.253. 1.121 0.288 9 -0.5 0.7 -0.9 -1.5 2.3 -1.7 1.3 -0.9 -0.3. 0.1 0.8 1.0 2.0 3.7 4.2. ......1.286 0.669 1.302 1.207 1.014. 1.174 1.211 1.174 1.015 1.208 1.285 1.299 0.667 6 A62 1.286 1.270 1.194 1.003 1.159 1.197 1.166 1.013 1.217 1.279 1.319 0.696 le d 1.1. -1.2 -1.2 -1.1 -1.0 -1.2 -1.1 - 0. 6. -0.2 0.7 -0.5 1.5

4. 3.

0.297 1.113 1.307 8.309 1.206 1.179 1.181 1.179 1.207. 1.309. 1.307 1.111 0.294 0.293 1.099 1.29o 1.309 1.195 1.161 1.1 58 1.169 1.201 1.3*4 1.325 1.128 0.302 II -1.2. -1.3 -0.9 0.1 -0.9 -1.5 -1.9 -0.9, -0.5 2.6 1.4 1.5 2.5 0.307 0.816 1.304 1.282 1.217 1.221 1.219. 1.285. 1.306 0.816 0.307 0.299 0.808 1.29, 1.267 1.19* 1.207 1.213 1.283 1.322 0.836 0.311 12 -2.6 -1.0 -0.7 -1.1 -1.9 -1.2 -0.5. -0.1 1.3 2.4 1.1 .....1.224. 0.307 1.109 1.296 1.280 1.228 1.300 1.112 0.307 0.304 1.099 1.283 1.212 1.273 1.232. 1.292 1.117 0.311 13 -1.0 -0.9 -1.0 -1.0 -0.5 0.3 -0.6 0.4 1.2 0.29% 0.665 1.078 0.842 1.084 0.668 0.297 0.291 0.660 1.073 0.850 1.119 0.675 0.299 14 -0.9 -0.8 -0.5 0.9 3.3 1.3 0.6 STANDARD 0.275 0.296 0.277 A V( PAGE DtvlAll0N 0.271 0.298 0.284 .PC T DIF FIPt NCE. 15 1.208 -1.4 0.4 2.7 1.4 =

SUMMARY

NAP NO: N2-12-01 DATE: 10/13/96 POWER: 29.99% CONTROL ROD POSITIONS: F-Q(Z) s 2.326 CORE TILT: 1 D BANK AT 125 STEPS F-DHIN) = 1.453 NW 0.989 l NE 1.013 i F(Z)

1.417 SW 0.989 l SE 1.009 BURNUP

4.2 MWD /NTU A.O. s -10.805% r NE-1102 N2C12 Startup Physics Tests Report Page 37 of 58

Figure 6.2 NORTil ANNA UNIT 2 - CYCLE 12 STARTUP PilYSICS TESTS ASSEMBLYWISE POWER DISTRIBUTION 72% POWER R P H N L E J H C F E D C 8 8 hh[Dhhhkh hhh9.hh44 h$hhh hhfhlCfkh ML A5uPt 0 . PCT DIF FERE NCE.. 0.305 0.336. 0.304 ME ASURE D -1.3. -2.3 -1.3 . PCT DIFFE RE NCE. 0.302 0.678 1.131 0.981 1.125 0.675 0.299 0.296 0.670 1.119 0.968 1.114 0.676

0. 298

-1.8 -1.3 -1.0 -3.5. -0.9 0.1 -0.1 0.309 1.013 1.257 1.223 1.792 1,220 1.25* 1.071 0.308 0.295 1.050 1.240

1..'l 7 1.265. 1.206 1.249 1.068 0.301

-4.3 -2.2 -1.3 -0.5 -2.1 1.1

  • 0.4
0. 3.

-2.3 0.308 0.795 1.246 1.242 1.188 1.202 1.187 1,240 1.245 0.796 0.309 0.309 0.183 1.215 1.225 1.176 1.173 1.176 1.240 1.250 0.795 0.310 0.2 -1.6 -2.5 -1.4 -1.0

  • 2.4

-0.9 0.0 0.4 0.0 0.3 0,299 1.072 1.246 1.275 1.205 1.175 1.161 1.175 1.205 1.275 1.248 1.074 0.302 0.301 1.090 1.242 1.266 1.197 1.177 1.153 1.173 1.215 1.294 1.251 1.081 0.299 0.7 1.6 -0.4 -0.6 -0.6 0.2 -0.7 -0.2 0.7 1.5 0.2 0.6 -1.0 0.677 1.255 1.241 1.205 1.140 1.191 1.208 1.192 1.140 1.206 1.243 1.259 0.679 0.671 1.249 1.229 1.185 1.132 1.187 1.202 1.196 1.155 1.222 1.257 1.278 0.695 0.8 -0.5 -1.0 -1.7 -0.7 -0.3 -0.5 0.3 1.3 1.3 1.1 1.5 2.3 0.308 1.l?? 1.222 1.188 1.174. 1.192 1.262 1.242 1.264 1.193 1.175............................ 1.190 1.225 1.131 0.310 0.305 1.111 1,201 1.171 1.158 1.183 1.259 1.243 1.213 1.208 1.192 1.209 1.253 1.181 0.322 -1.2 -1.6 1.7 -1.4 -1.4 -0.8 -0.3 0.1 0.7 1.3 1.5 1.6 2.3 4.2 3.9 0.3*4 0.98* 1.294 1.204 1.162 1.209 1.242 1.169 1.246 1.211 1.163 1.204 1.294 0.9A*

0. 344 0.392 0.9 71 1.268 1.184 1.143 1.200 1.241 1.173 1.257 1.231 1.182 1.225 1.320 1.016 0.355 0.5

-1.3 2.0

  • l.6

-1.7 -0.7 -0.1 0.4 0.9 1.7 I.7 1.7 2.0 3.3 3.2 0.309 1.133 1.P25 1.189 1.174 1.192.............. .....1.264

1. 1 94 1.175 1.189 1.22?

1.128....... 1.262 1.242 0.308 0.306 1.116 1.206 1.174 1.164 1.188 1.265 1.248 1.277 1.215 1.195 1.210 1.2*7 1.157 0.314 -1.2 -1.5 1,6 1,3 -0.9 -0.3 0.2 0.5 1.0 1.8 3.7 1.7 2.1 2.6 3.9 0.679 1.258 1.243 1.206 1.140 1.191 1.208 1.191 1.140 1.206 1.242 1.256 0.677 0 e69 1.2%0 1.231 1.200 1.141 1.201 1.213. 1,200 1.155 1.226 1.261 1.281 0.697 -1.5 -1.4 -1.0 -0.4 0.0 0.8 0.5 0.7 1.3 1.6 1.5 2.0 3.0 0.302........................................,............................................. 1.074 1.247 1.214 1.204 1.1 74 1.161 1.175 1.205 1.215 1.247 1.012 0.299 0.296 1.06) 1.258 1.277 1.200 1.168 1.159 1.177 1.210 1.302 1.271 1.091 0.306 -1.4 - 1. 3 - -0.7 0.2 -0.3 -0.5 0.2 0.1 0.5 2.1 1.9 1.7 2.2 0.309 0.795 1.245 1.240 1.187 1.202

1. l E8 1.242 1.246 0.796 0.308 0.301 0.788 1.237 1.227 1.162 1.190 1.187 1.245 1.262 0.886 0.308

-2.6 -0.9 -0.6

  • l.1 2.1

-0.9 -0.1 0.2 1.2 2.6 -0.1 0.308 1.071 1.254 1,220 1.292 1.223 1.257 1.073 0.309 0.305 1.061. 1.240 1.203 1.276 1.223 1.250 1.078 0.333 -0.9 -0.9. l.) -1.4 -1.3 0.0 -0.6 0.4 1.3 0.299 0.675 1.125 0.981 1.131 0.678 0.302 0.296 0.668 1.115 0.983 1.158 0.683 0.30% -1.0 -1.0. -0.9 0.2 2.4 0.8 0.5 STANDARD 0.308 0.344 0.309 AvtEAGI DfVIAf!ON 0.301 0.344 0.315 .PCI DIF F t P[NCt. 30.8%$ -2.2. 0.0 1.9 1.2 =

SUMMARY

MAP NO: N2-12-02 DATE: 10/15/96 POWER: 72.43% CONTROL ROD POSITIONS: F-Q(Z) s 2.009 CORE TILT: D BANK AT 18e STEPS F-DH(N) s 1.440 NW 0.990 l NE 1.006 I F(Z) 1.269 SW 0.992 l SE 1.012 BURNUP 26.9 NWD/NTV A.O. s -2.82% NE-1102 N2C12 Startup Physics Tests Report Page 38 of 58

Figure 6.3 NORTil ANNA UNIT 2 - CYCLE 12 STARTUP PilYSICS TESTS ASSEMBLYWISE POWER DISTRIBUTION 100% POWER R P W M L X J H C F E D C 8 Phihhhhth. h[hkh' h[hh9 h[hih ~hhhhCh[h P Nf ASUPE D 0.315 0.359 0.313 MiasuutD 1 .PCI DIFilRt NCE. -0.9 -0.1 -1.0 .PCI DIFF E ft NCl. 0.307 0.679 1.127 1.016 1.122 0.677 0.304 0.301 0.669 1.114 0.996 1.108 0.6 79 0.305 7 -2.2 -1.4 -1.2 -2.0 -1.2 0.3 0.1 0.316 1.060 1.239 1.208 1.289 1.205, 1.237 1.058 0.316 0.306 1.0 12 1.221 8.704 1.239 1.187. 1.233 1.058 0.314 3 -3.4 -F.6 -1.5 -0.4 -3.9 -1.5 0.3 0.0 0.8 .....4.??6 0.316 0.198 1.234 1.185 1.193 1.1 64 1.225 1.233 0.798 0.317 0.314 0./80 1.189 1.705 1.174 1.177 1.174 1.250 1.238 8.790 0.314 4 -0.8 -2.2 -3.7 -1.1 -0.9 -I.4 -0.5 0.3 0.4 -1.0 -0.8 ......1.216......1.176 1.165 1.176....... .....1.764 1.735 1.063 0.307 0.305 1.059 1. 2 34 1.764 1.216 0.30* 3.068 1.723 1.75/ 1.706 1.176 1.166 1.182 1.??9 1.786 1.205 1.053 0.309 5 -0.1 0.2 -0.9 0.5 -0.8 0.0 0.1 0.5 1.1 8.7 -2.4 -0.7 0.7 0.678 l.238 1.??6 1.217 1.191 1.205. 1.204 1.206 1.191 1.217 I.227 1.241 0.680 0.673 1.230 1.210 1.185 1.179 1.207 1.218 1.221 I.212 1.233 1.231 1.2*8 0.692 6 0.6 -0.1 -1.3 -2.6 -1.0 0.1 1.2 1.2 1.7 1.4 0.3 0.6 1.7 0.31/ 1.1?S 1.707 1.185 1.176 1.207 1.256 1.231 1.757 1.207 1.177 1.186 1.210 1.178 0.318 0.347 1.!!4 1.198 1.1/4 1.160 1.201 1.259 1.242 1.215 1.231 1.197 1.206 1.226 1.164 0.328 7 0.0 -0.8 0.8 -1.? 1.4 0.6 0.2 0.9 1.4 2.0 1.7 1.1 1.5 3.2 3.2 0.359 1.018 1.791 1.195 1.166 1.206 1.237 1.160 1.235 1.707 1.166 1.195 1.791 1.018 0.359 0.568 1.006 1.265 1.1/9 1.15? 1.204 1.237 1.1 71 1.255 1.24 3 1.187 1.709 1.292 1.053 0.3/1 8 2.4 -1.1 2.0 -1.5 -1.2 0.2 0.4 0.9 1.6 3.0 1.8 1.2 0.1 3.5 3.2 .....1.?O6 0.318 1.!?8 1.210 1.186 1.1/6 1.256 1.231 1.257 1.t08 1.177 1.185 1.?07 1.124 0.311 0.316 1.109 1.186 1.176 1.189 1.213 1.?65 1.240 1.2/0 1.721 1.192 1.199 1.27% 1.15* 0.324 9 -0.1 -l.1 -1.9 0.9 1.2 0.5 0.7 0.8 1.0 1.1 1.3 1.2 1.4 2.7 2.3 ......1.204 9.# A0 1.240 1,2?? 1.217 1.191 1.206 3.706 1.191 3.?!7 1.??6 1.238 0.6 78 0 63 1.201 1.211 1.217 1.195 1.221 1.209 1.213 1.201 1.231

1. 2 36 1.760 0.705 10 2.4

-3.2 -1.3 0.0 0.4 1.2 0.4 0.5 0.8 1.2 0.8 1.8 4.1 0.307 1.061 ......1.?!6 1.F35 1.76* 1.176 1.165 1.177 1.?!6 1.764 1.23* 3.059 0.305 0.300 1.039 1.721 1.260 1.21*. 1.173 1.154 1.176 4.??0 1.786 1.255 1.0// 0.313 II -2.2 -?.! -1 -0.7 -0.2 -0.2 -1.0 -0.1 0.4 1.7 1.7 1.1 ?.1 0.317.............................................. ......1.234 ......0.316 0.798 1.233 1.725 1.18* 1.193 1.185 1.226 0.798 0.313 0.791 1.227 1.219 1.172 1.184 1.142 I.225 1.247 0.8?3 0.319 !? 1.2 0.8 0.5 -0.5 -1.0 -0.8

0. 3.

-0.1 1.0 3.1 0.9 0.316 1.058 1.731 1.205 1.289 1.208 1.739 1.060 0.316 0.314 1.05? 1.750 1.197 1.211 1.207, 1.219 1.059 0.321 13 0.7 -0.5 -0.5 -0.7 -1.0 0.1 -1.6 -0.1 1.3 O.304 0.67/ 1.122 1.016 1.177 0.679 0.307 0.303 0.674 1.170 1.0?! l.1 58 0.68?

0. 308 14 0.5 0.3

-0.1 0.5 2.8 0.4 0.1 hh$khIbh h.bkh 0.hh9 h$hkh hihkbh. Dt VI A l!ON 0.318 0.362

0. 3 ?%.

.Pti Dif flkt NCE. 15

  • 0.913 0.4 0.9 2.3 1.F

SUMMARY

MAP NO: N2-12-03 DATE: 11/04/96 POWER: 99.98% CONTROL ROD POSITIONS: F-Q(Z) 1.856 CORE TILT: D BANK AT 225 STEPS F DN(N)

  • 1.608 NW 0.990 I NE 1.006 I

F(Z) 1.210 SW 0.944 l SE 1.010 BURNUP 638.6 MWD /MTU A.O. = -0.80% NE-1102 N2C12 Startup Physics Tests Report Page 39 of 58

SECTION 7 REFERENCES

1. P. D. Banning, " North Anna Unit 2, Cycle 12 Design Report",

Technical Report NE-1097, Revision 0, Virginia Power, September, 1996

2. T. K. Ross, W. C. Beck, " Control Rod Reactivity Worth Determination By The Rod Swap Technique," VEP-FRD-36A, December, 1980.
3. T. W. Schleicher, "The Virginia Power CECOR Code Package", Technical Report NE-831, Revision 3, Virginia Power, July, 1995.

4 North Anna Unit 2 Technical Specifications, Sections 1.19, 3.1.3.4, 3.2.2, 3.2.3, 3.1.1.4, 4.1.1.1.2, and 4.2.2.2 and Core Operating Limits Report (COLR) for North Anna 2, Cycle 11 Pattern UM, Revision 0 (May, 1995) Sections 2.1.1, 2.5.1, and 2.6.

5. Letter from W. L. Stewart (Virginia Power) to the U.S.N.R.C, "Surry Power Station Units 1 and 2, North Anna Power Station Units 1 and 2: Modification of Startup Physics Test Program - Inspector Followup Item 280, 281/88-29-01", Serial No. 89-541, December 8, 1989.

6 G. P. Anderson, " North Anna 2, Cycle 12 TOTE Calculations", PM-674 Revision 0, September, 1996.

7. C. B. LaRoe, et al, " North Anna 2, Cycle 12 Flux Map Analysis",

PM-67F, Revision 0, and Addenda A and B, October / November, 1996. l NE-1102 N2C12 Startup Physics Tests Report Page 40 of 58

N = APPENDIX STARTUP PilYSICS TEST RESULTS AND EVALUATION SilEETS NE-1102 N2Cl2 Startup Physics Tests Report Page 41 of 58

NORTH ANNA POWER STATION UNIT 2 CYCLE 12 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test

Description:

Zero Power Testing Range Determination Reference Proc No / Section: 2-PT-94.0 Sequence Step No: 11 BEnk Positions (Steps) RCS Temperature ( F): 547 Test Power Level (% F.P.): O Conditions SDA-225 SDB: 225 CA: 225 Other (specify): (Design) CB: 225 CC: CD: Below Nuclear Heating Ill Bank Positions (Steps) RCS Temperature ( F): $96, P/ Test Power Level (% F.P.): O Conditions SDA-225 SDB: 225 CA-225 Other (spe,cify): (Actual) CB: 225 CC: 225 CD: /3/ Below Nuclear Heating Date/ Time Test Performed: /c/)L/% /G: M Reactivity Computer initial 4 Flux Background Reading /,oe/o amps av Test Results Flux Reading At 4 Point Of Nuclear Heating ). o e/0 amps i Zero Power Testing Range /.</t to /0 r/d amps Reference Not Applicable V FSAR/ Tech Spec Not Applicable Acceptance Criteria Reference Not Applicable 2 YES NO Design Tolerance is met" : Acceptance Criteria is met" - / YES NO VI

  • At The Just Critical Position Comments

" Design Tolerance and Acceptance Criteria are met if ZPTR is below the Point of Nuclear Heating and above background. Prepared By d 8Yh Reviewed By: NE-1102 N2C12 Startup Physics Tests Report Page 42 of 58

NORTH ANNA POWER STATION UNIT 2 CYCLE 12 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test

Description:

Reactivity Computer Checkout Reference Proc No / Section: 2-PT-94.0 Seouence Step No: 11 Bank Positions (Steps) RCS Temperature ( F): 547 Power Level (% F.P.): O Test Conditions SDA-225 SDB: 225 CA-225 Other (specify): (Design) CB: 225 CC: CD: Below Nuclear Heating 111 Bank Positions (Steps) RCS Temperature ( F): g59 Test ,v,,p t Power Level (% F.P.): O Conditions SDA* 225 SDB: 225FCA: 225 Other (specify): (Actual) CB: 225 CC:,28 CD: / 3 2 -. Below Nuclear Heating Date/ Time Test Performed: /o/12/94 /b.) V Measured Pararneter pe= Measured Reactivity using p-computer (Description) p = Predicted Reactivity iv Test

    • j WA f

Results Measured Value pe= pt= W,//cy ~ 9 93 fnw %D= - o. 35, 1 77. Design Value %D= {(p - pi)/pt} x 100% s 4.0 % Reference WCAP 7905, Rev.1, Table 3.6 V FSAR/ Tech Spec Not Applicable Acceptance Criteria Reference Not Applicable Design Tolerance is met / YES NO Acceptance Criteria is met - / YES NO VI

  • At The Just Critical Position Comments The allowable range will be set based on the above results, as well as l

results from the benchmark test. Allowable Range = ~~ 5~@& -4 N#(* N M-Prepared By-Idk// Reviewed By-NE-1102 N2C12 Startup Physics Tests Report Page 43 of 58 ~

NORTH ANNA POWER STATION UNIT 2 CYCLE 12 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET l Test

Description:

Critical Boron Concentration - ARO Reference Proc No / Section: 2-PT-94.0 Sequence Step No: 11 Bank Positions (Steps) RCS~ Temperature ( F): 547 Test Power Level (% F.P.): O Conditions SDA-225 SDB: 225 CA-225 Other (specify): (Design) CB: 225 CC: 225 CD: 225 Below Nuclear Heating til Bank Positions (Steps) RCS Temperature ( F): gegy g Test Power Level (% F.P.): O Conditions S DA-225 SDB: 225 CA-225 Other (specify): (Actual) CB: 225 CC: 225 CD: 225 Below Nuclear Heating Date/ Time Test Performed: /6/n/R( /7/3o Measured Parameter (Cs)Mxno; Critical Boron Concentration - ARO (Description) Test Results Measured Value (Cs)"ARO* J OI 7 pp M (Design Conditions). Design Value Ce = 2079 50 ppm (Design Conditions) Reference Technical Report NE-1097, Rev. O V FSAR/ Tech Spec laCs x Cs j s 1000 pcm Acceptance Criteria Reference Technical Specification 4.1.1.1.2 / YES NO Design Tolerance is met Acceptance Criteria is met : / YES NO VI Comments ace = -6.61 pcm/ ppm Ce = l(Cs)"Ano-Cel; Ce is design value Prepared By f/h Reviewed By: MM NE-1102 N2C12 Startup Physics Tests Report Page 44 of 58

NORTH ANNA POWER STATION UNIT 2 CYCLE 12 l STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test

Description:

Isothermal Temperature Coefficient - ARO Reference Proc No / Section: 2-PT-94.0 Sequence Step No: 11 Bank Positions (Steps) RCS Temperature ( F): 547 Test Power Level (% F.P.): O Conditions SDA: 225 SDB: 225 CA-225 Other (specify): (Design) CB: 225 CC: 225 CD: 225 Below Nuclear Heating Ill Bank Positions (Steps) RCS Temperature ( F):,,$y y,7 Test Power Level (% F.P.): O Conditions SDA: 225 SDB: 225 CA-225 Other (specify): (Actual) CB: 225 CC: 225 CD: Jo 8 Below Nuclear Heating Date/ Time Test Performed: /6//L /9f, 20.' 4'/ / iso)ARo Isothermal Temperature Measured Parameter (ar (Description) Coefficient - ARO l iso)ARo = -/. pcm8F T st Measured Value (ar Results (Cs= .2 o 3 2_ ppm) Design Value iso)ARo = - 2,5323.0 pcm8F (Actual Conditions) (ar (Co= 2.oF~1-ppm) Design Value (Design Conditions) (a '* )ARo = -2.56 3.0 pcm8F r (Cs= 2079 ppm) Reference Technical Report NE-1097, Rev. O V FSAR/COLR a7 s 3.76 pcm8F * 'S

  • = -1.74 pcm8F Acceptance er Criteria Reference COLR 2.1.1, Technical Report NE-1097, Rev. O Design Tolerance is met

/ YES NO Acceptance Criteria is met / YES NO VI Comments

  • Uncertainty on aTuca = 0.5 pcm/ F (

Reference:

memorandum from C.T. Snow to E.J. Lc:ito dated June 27,1980.) Prepared By: INM Reviewed By: A NE-1102 N2Cl2 Startup Physics Tests Report Page 45 of 58

NORTH ANNA POWER STATION UNIT 2 CYCLE 12 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET i Test

Description:

Control Bank B Worth Measurement, Rod Swap Ref. Bank Reference Proc No / Section: 2-PT-94.0 Sequence Step No: 11 Bank Positions (Steps) RCS Temperature ( F): 547 Test Power Level (% F,P.): O Conditions SDA 225 SDB: 225 CA 225 Other (specify): (Design) CB: moving CC: 225 CD: 225 Below Nuclear Heating Ill Bank Positions (Steps) RCS Temperature ( F): S'r' 7, f Test Power Level (% F.P.): O Conditions SDA-225 SDB: 225 CA 225 Other (specify): (Actual) CB: moving CC: 225 CD: 225 Below Nuclear Heating Date/ Time Test Performed: fo/fz/96 2/:68 Measured Parameter IsREF; integral Worth Of Control Bank B, (Description) All Other Rods Out Test Measured Value IsREF= /2/ 7 pcm Results Design Value (Design Conditions) 1 REF= 1249 125 pcm 8 Reference Technical Report NE-1097, Rev. O If Design Tolerance is exceeded, SNSOC shall V FSAR/ Tech Spec evaluate impact of test result on safety analysis. Acceptance SNSOC may specify that additional testing Criteria be performed. Reference VEP-FRD-36A Design Tolerance is met / YES NO Acceptance Criteria is met / YES NO VI Comments Prepared By: WE Reviewed By: M VIJ'A l NE-1102 N2Cl2 Startup Physics Tests Report Page 46 of 58

O NORTH ANNA POWsR STATION UNIT 2 CYCLE 12 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I lTest

Description:

Critical Boron Concentration - B Bank In Reference Proc No / Sectiori: 2-PT-94.0 Sequence Step No: ll Bank Positions (Steps) RCS Temperalure ( F): 547 Test Power Level (% F.P.): O Conditions SDA-225 SDB: 225 CA-225 Other (specify): (Design) CB: O CC: 225 CD: 225 Below Nuclear Heating 111 Bank Positions (Steps) RCS Temperature ( F): 547.5 Test Power Level (% F.P.): O Conditions SDA: 225 SDB: 225 CA-225 Other (specify): (Actual) CB: O CC: 225 CD: 225 Below Nuclear Heating Date/ Time Test Performed: /O[/ 3[9(, C/.92. Measured Parameter (Ce)"s; Critical Boron Concentration, (Description) B Bank in ~ Test Results Measured Value (Cs)"s= 19// ppm (Design Conditions) Design Value Cs= 1891+ ACs "" 2 (10 + 124.9/ jacal) ppm (Design Conditions) Cs= /T'77 i 29 ppm Reference Technical Report NE-1097, Rev. O V FSAR/ Tech Spec Not Applicable Acceptance Criteria Reference Not Applicable / YES NO Design Tolerance is met Acceptance Criteria is met - / YES NO VI Comments aCs = -6.64 pcm/ ppm A C s "'" = (Cs)"ARO-2079 ppm I Prepared By: /M/C Reviewed By: _ w d NE-1102 N2C12 Startup Physics Tests Report Page 47 of 58

NORTH ANNA POWER STATION UNIT 2 CYCLE 12 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test

Description:

HZP Boron Worth Coefficient Measurement Reference Proc No / Section: 2-PT 94.0 Sequence Step No: 11 Bank Positions (Steps)- RCS Temperature ( F): 547 Test Power Level (% F.P.): O Conditions SDA: 225 SDB: 225 CA-225 Other (specify): Y (Design) CB: moving CC: 225 CD: 225 Below Nuclear Heating 111 Bank Positions (Steps) RCS Temperature ('F): SVl5 Test

  1. ,T4c Power Level (% F.P.): O Conditions S DA-225 SDB: 225 CA:

225 Other (specify): (Actual) CB: moving CC: 225 CD: 225 Below Nuclear Heating Date/ Tim Test Performed: /0// 9G 17'30 Measured Parameter aCs ; Baron Worth Coefficient (Description) Test Results Measured Value aCs= - 6. 9 / pcm/ ppm Design Value aCs= -6.64 0.66 pcm/ ppm (Dasign Conditions) Reference Technical Report NE-1097, Rev. O V FSAR/ Tech Spec Not Applicable A,cceptance Criteria Reference Not Applicable /.YES NO Design Tolerance is met Acceptance Criteria is met : / YES NO VI Comments Prepared By: [MM Reviewed By: 2 l NE-1102 N2Cl2 Startup Physics Tests Report Page 48 of 58

O J g ij i NORTH ANNA POWER STATION UNIT 2 CYCLE 12 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test

Description:

Control Bank D Worth Measurement, Rod Swap Reference Proc No / Section: 2-PT-94.0 Sequence Step No: 11 Bank Positions (Steps) RCS Temperature ( F): 547 Test Power Level (% F.P.): O Conditions SDA: 225 SDB: 225 CA-225 Other (specify): (Design) CB: moving CC: 225 CD: moving Below Nuclear Heating Ill Bank Positions (Steps) RCS Temperature ( F): 547, G, Test Power Level (% F.P.): 0 Conditions SDA: 225 SDB: 225 CA-225 Other (specify): (Actual) CB: moving CC: 225 CD: moving Below Nuclear Heating l Date/ Time Test Performed: lo l s 3l9L, Ol'G3 Measured Pararneter lons; Integral Worth of Control Bank D, (Description) Rod Swap IV Measured Value lons= /0 $ M Adjusted Measured Critical Test Reference Bank Position = l'81 steps) Results Design Value (Actual Conditions) lons= /C49.SgAdjusted Measured Critical e Reference Bank Position = l'ill steos) Design Value (Design Conditions) lons= 1050

  • 158 pcm (Critical Reference Bank Position = 179 steps)

Reference Technical Report NE-1097. Rev. O. VEP-FRD-36A FSARA'ech Spec if Design Tolerance is exceeded, SNSOC shall V evaluate impact of test result on safety analysis. Acceptance SNSOC may specify that additional testing Criteria be performed. Reference VEP-FRD-36A

  1. YES NO Design Tolerance is met Acceptance Criteria is met
  2. YES NO VI Comments Prepared By:

m)! Reviewed By: $ Mdd^ NE-1102 N2C12 Startup Physics Tests Report Page 49 of 58

NORTH ANNA POWER STATION UNIT 2 CYCLE 12 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test

Description:

Control Bank C Worth Measurement, Rod Swap Reference Proc No / Section: 2-PT-94.0 Secuence Step No: 11 Bank Positions (Steps) RCS Temperature ( F): 547 Test Power Level (% F.P.): O Conditions SDA: 225 SDB: 225 CA-225 Other (specify): (Design) CB: moving CC: moving CD: 225 Below Nuclear Heating ill Bank Positions (Steps) RCS Temperature ( F): Se /7, / r Test Power Level (% F.P.): O Conditions SDA: 225 SDB: 225 CA-225 Other (specify): (Actual) CB: moving CC: moving CD: 225 Below Nuclear Heating Date/ Time Test Performed: /0/f3/96 03: 5L Measured Parameter Ic"8; Integral Worth of Control Bank C, (Description) Rod Swap IV Measured Value IcR8= '79 3./ (Adjusted Measured Critical pe.m Test Reference Bank Position = 140 steps) Results Design Value (Actual Conditions) lens = 790,2. (Adjusted Measured Critical Reference Bank Position = l'/C steps) Design Value (Design Conditions) Ic 8= 788

  • 118 pcm (Critical Reference Bank Position = 140 steps)

Reference Technical Report NE-1097. Rev. O. VEP-FRD-36A FSAR/ Tech Spec If Design Tolerance is exceeded, SNSOC shall V evaluate impact of test result on safety analysis. Acceptance SNSOC may specify that additional testing Criteria be performed. Reference VEP-FRD-36A Design Tolerance is met V YES NO Acceptance Criteria is met - VYES NO VI Comments Prepared By: d Reviewed By: M b NE-1102 N2C12 Startup Physics Tests Report Page 50 of 58

I NORTH ANNA POWER STATION UNIT 2 CYCLE 12 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test

Description:

Control Bank A Worth Measurement, Rod Swap Reference Proc No / Section: 2-PT-94.0 Sequence Step No: Il Bank Positions (Steps) RCS Temperature ( F): 547 Test Power Level (% F.P.): O Conditions S DA-225 SDB: 225 CA moving Other (specify): (Design) CB: moving CC: 225 CD: 225 Below Nuclear Heating 111 Bank Positions (Steps) RCS Temperature ( F): 547.3 Test Power Level (% F.P.): 0 l Conditions SDA: 225 SDB: 225 CA moving Other (specify): (Actual) CB: moving CC: 225 CD: 225 Below Nuclear Heating Date/ Time Test Performed: so /is hc., 04:o 4 Measured Parameter lxas; Integral Worth of Control Bank A, (Description) Rod Swap IV Measured Value lxas, 39 (Adjusted Measured Critical Test Reference Bank Position = B4 steps) Results Design Value (Actual Conditions) l 8= 3 (Adjusted Measured Critical A Reference Bank Position = f + steps) Design Value (Design Conditions) l "8= 347 t 100 pcm A (Critical Reference Bank Position = 87 stecs) Reference Technical Report NE-1097, Rev. O. VEP-FRD-36A FSAR/ Tech Spec If Design Tolerance is exceeded, SNSOC shall V evaluate impact of test result on safety analysis. Acceptance SNSOC may specify that additional testing Criteria be performed. Reference VEP-FRD-36A Design T.olerance is met YES NO Acceptance Criteria is met - ' YES NO VI Comments Prepared By: Ad //M Reviewed By:. I V NE-1102 N2Cl2 Startup Physics Tests Report Page 51 of 58

NORTH ANNA POWER STATION UNIT 2 CYCLE 12 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test

Description:

Shutdown Bank B Worth Measurement, Rod Swap Reference Proc No / Section: 2-PT-94.0 Sequence Step No: 11 Bank Positions (Steps) RCS Temperature ( F): 547 Test Power Level (% F.P.): O Conditions SDA-225 SDB: moving CA-225 Other (specify): (Design) CB: moving CC: 225 CD: 225 Below Nuclear Heating ill Bank Positions (Steps) RCS Temperature ( F): 5F7.I Test Power Level (% F.P.): O Conditions SDA-225 SDB: moving CA-225 Other (specify): (Actual) CB: moving CC: 225 CD: 225 Below Nuclear Heating Daterrime Test Performed: lo /t3 l% 04:2& Measured Parameter issR8; Integral Worth of Shutdown Bank B, (Description) Rod Swap IV Measured Value issR8= /02@.6 (Adjusted Measured Critical Test Referen Bank Position = fpI) Results Design Value (Actual Conditions) Isa ' /#62 /r-(Adjusted Measured Critical Reference Bank Position = Yos) Design Value (Design Conditions) Iss*8= 10812162 pcm (Critical Reference Bank Position = 184 steps) Reference Technical Report NE-1097, Rev. O. VEP-FRD-36A FSAR/ Tech Spec if Design Tolerance is exceeded, SNSOC sha!! V evaluate impact of test result on safety analysis. Acceptance SNSOC may specify that additional testing Criteria be performed. Reference VEP-FRD-36A Design Tolerance is met VYES NO VYES NO Acceptance Criteria is met. VI Comments Prepared By: Md [/XM Reviewed By: o NE-1102 N2C12 Startup Physics Tests Report Page 52 of 58

o NORTH ANNA POWER STATION UNIT 2 CYCLE 12 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test

Description:

Shutdown Bank A Worth Measurement, Rod Swap Reference Proc No / Section: 2-PT-94.0 Sequence Step No: ll Bank Positions (Steps) RCS Temperature ( F): 547 Test Power Level (% F.P.): O Conditions SDA moving SDB: 225 CA-225 Other (specify): (Design) CB: moving CC: 225 CD: 225 Below Nuclear Heating ill Bank Positions (Steps) RCS Temperature ( F): 547.o Test Power Level (% F.P.): O Conditions SDA moving SDB: 225 CA-225 Other (specify): (Actual) CB: moving CC: 225 CD: 225 Below Nuclear Heating Date/ Time Test Performed: to/l3 /% oct29 Measured Parameter luRs; Integral Worth of Shutdown Bank A, (Description) Rod Swap IV Measured Value luRs= 9H-Adjusted Measured Critical Test Reference Bank Position = /G"7 steps) Results Design Value (Actual Conditions) luRs= 9f6 I (Adjusted Measu'ed Critical g Reference Bank Position = /67 steps) Design Value (Design Conditions) luRs: 9871140 PCm (Critical Reference Bank Position = 169 steps) ' Reference Technical Report NE-1097. Rev. O. VEP FRD-36A FSAR/ Tech Spec If Design Tolerance is exceeded, SNSOC shall V evaluate impact of test result on safety analysis. Acceptance SNSOC may specify that additional testing Criteria be performed. Reference VEP-FRD-35A Design Tolerance is met - YES NO < YES NO Acceptance Criteria is met - VI Comments 8 Prepared By: dd (4/4/4-Reviewed By: _. m NE-1102 N2C12 Startup Physics Tests Report Page 53 of 58

NORTH ANNA POWER STATION UNIT 2 CYCLE 12 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test description: Total Rod Worth, Rod Swap Reference Proc No / Section: 2-PT-94.0 Sequence Step No: 11 Bank Positions (Steps) RCS Temperature ( F): 547-Test Power Level (% F.P.): O Conditions SDA moving SDB: moving CA moving Other (specify): (Design) CB: moving CC: moving CD: moving Below Nuclear Heating til Bank Positions (Steps) RCS Temperature ( F): 54 7,5 Test Power Level (% F.P.): O Conditions SDA moving SDB: moving CA: moving Other (specify): (Actual) CB: moving CC: moving CD: moving Below Nuclear Heating Daterrime Test Performed: io/tt/nf 2l: 5

  • Measured Parameter Irod integral Worth of All Banks, (Description)

Rod Swap IV Measured Value l w= 5 H 2.f pc m io Test Results Design Value (Actual Conditions) frow = fM3 7 pcm Design Value (Design Conditions) frow = 5502 i 550 pcm Reference Technical Report NE-1097, Rev. O VEP-FRD-36A FSAR/ Tech Spec if Design Tolerance is exceeded, SNSOC shall V evaluate impact of test result on safety analysis. Acceptance Additional testing must be performed. Criteria Reference VEP-FRD-36A Design Tolerance is met 4 YES NO Acceptance Criteria is met - 4 YES NO VI Comments Prepared By: dw[ Md Reviewed By: b NE-1102 N2Cl2 Startup Physics Tests Report Page 54 of 58

0 NORTH ANNA POWER STATION UNIT 2 CYCLE 12 STARTUP PHYSICS TEST RESULTS. AND EVALUATION SHEET I Test

Description:

M/D Flux Map - At Power Reference Proc No / Section: 2M44.o. 2M-21.1. 2n 21.2 Sequence Step No: 11 Bank Positions (Steps) RCS Temperature (*F): Tps,i 1 Test Power Level (% F.P.): s 30 Conditions SDA: 225 SDB: 225 CA: 225 Other (specify): (Design) CB: 225 CC: CD: Must have z 38 thlmbles" 111 Bank Positions (Steps) RCS Temperature ( F): &p Test Power Level (% F.P.): 2.9.99 Conditions SDA* 225 SDB: 225 CA-225 Other (specify): Yb YSimS/'4 (Actual) CB: 225 CC: 225 CD: 125 Date/ Time Test Performed: Io/0 l9 4 to W D Maximum Relative Nuclear Enthalpy Total Heat Maximum Measured Assembly Rise Hot Flux Hot Positive Incore Parameter Power %DIFF Channel Factor Channel Quadrant IV (Description) (M-P)/P FAH(N) Factor Fo(Z) Power Tilt Test Measured 71 P; 3 o.9 f,gg3 EM l.M 3 4 Results value G.B Pi e 08 Design Value t10% for P 20.9 i (Design s15% for P <0.9 N/A N/A s 1.0202 i (P m assy power) Oonditions) i Reference WCAP 7905, Rev.1 None None WCAP 7905, Rev.1 V FSAR/COLR None FAH(N)si 49(1+0.3(1 P)) Fo(Z)s4.38'K(Z) None Acceptance Criteria Reference None COLR 2.6 COLR 2.5.1 None Design Tolerance is met / YES NO / YES NO Acceptance Criteria is met : VI

  • As required Comments

" Must have at least 16 thimbles for quarter core maps for multi-point cafibrations Prepared By: d Reviewed By: M' d~ NE-1102 N2Cl2 Startup Physics Tests Report Page 55 of 58

= e NORTH ANNA POWER STATION UNIT 2 CYCLE 12 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test

Description:

M/D Flux Map - At Power Reference Proc No / Section: 2-PT-s4.o. 2 PT 21.1. 2-PT-21.2 Secuence Step No: 11 Bank Positions (Steps) RCS Temperature ("F): Tagg 1 Test Power Level (% F.P.):65 s P s 75 Conditions SDA-225 SDB: 225 CA-225 Other (specify): (Design) CB: 225 CC: 225 CD: Must have := 38 thimbles" ll1 Bank Positions (Steps) RCS Temperature ( F): rq 3, Test Power Level (% F.P.): 72.93 % Conditions SDA: 225 SDB: 225 CA-225 Other (specify): (Actual) CB: 225 CC: 225 CD: l% Date/ Time Test Performed: 4/- W Surs tole 51% 02e7 Maximum Relative Nuclear Enthalpy Total Heat Maximum Measured Assembly Rise Hot Flux Hot Positive incore Parameter Power %DIFF Channel Factor Channel Quadrant IV (Description) (M P)/P FAH(N) Factor Fo(7-) Power Tilt t 2c 9 Test Measured 'f.W. i 1.o(21 Results value 'lA h,,a i Design Value

10% for P 20.9 i

(Design $15% for P,<0.9 N/A N/A s 1.0202 Conditions) (P = assy power) Reference WCAP 7905, Rev.1 None None WCAP-7905, Rev.1 V FSAR/COLR None F4H(N)si.49(1+0.3(1 P)) Fo(Z)s2.19/P'K(Z) None Acceptance Criteria Reference None COLR 2.6 COLR 2.5.1 None / YES NO Design Tolerance is met Acceptance Criteria is met - / YES NO Vi

  • As required Comments

" Must have at least 16 thimbles for quarter core maps for multi-point ca% cations Prepared By: Reviewed By: 8. NE-1102 N2C12 Startup Physics Tests Report Page 56 of 58

O a l I NORTH ANNA POWER STATION UNIT 2 CYCLE 12 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test

Description:

M/D Flux Map - At Power Reference Proc No / Section: 2-Pr.94.0, 2.Pr.21.1, 2n.21.2 Sequence Step No: il Bank Positions (Steps) RCS Temperature ("F): Tug i 1 l Test Power Level (% F.P.):95 s P s 100 Conditions SDA 225 SDB: 225 CA: 225 Other (specify): (Design) CB: 225 CC: 225 CD: Must have a 38 thimbles" lli Bank Positions (Steps) RCS Temperature ( F): 5'Fo. 9 Test Power Level (% F.P.): 9999*/, Conditions SDA 225 SDB: 225 CA 225 Other (specify): Ep;//6,.;% w,,g (Actual) CB: 225 CC: 225 CD: 2.2f Date/ Time Test Perfcrmed: it 9 6 al' 0827 Maximum Relative Nuclear Enthalpy Total Heat Maximum Measured Assembly Rise Hot Flux Hot Positive incore Parameter Power %DIFF ChannelFactor Channel Quadrant IV (Description) (M-P)/P FAH(N) Factor Fo(Z) Power Tilt Test Measured -3Mt b Pc204 f.4.D6 I,FS6 f.o l o.3 Results value .uiin, Pe 4 c.9 Design Value 310% for P a0.9 i (Design 215% for P <0.9 N/A N/A s 1.0202 Conditions) (P a assy power) i Reference WCAP.7905, Rev.1 None None WCAP-7905, Rev.1 V FSAR/COLR None FA H(N)s1 A9(1+0.3(1-P)) Fo(Z)s2.19/P*K(Z) None Acceptance (.49o 2,/9o Criteria Reference None COLR 2.6 COLR 2.5.1 None Design Tolerance is met Y YES NO Acceptance Criteria is met : X YES NO VI

  • As required Comments

" Must have at least 16 thimbles for quarter core maps for multi-point calibrations Prepared By:/[2fb/ Reviewed By: li b b NE-1102 N2C12 Startup Physics Tests Report Fage 57 of 58

5 i [ l l NORTH ANNA POWER STATION UNIT 2 CYCLE 12 i STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET i I Test

Description:

RCS Flow Measurement l Reference Proc No / Section: 2-PT-27 Sequence Step No: 1 11 Bank Positions (Steps) RCS Temperature (F): Tnu t 1 ) Test Power Level (% F.P.):95 s P s 100 Conditions SDA-225 SDB: 225 CA-225 Other (specify): j (Design) CB: 225 CC: 225 CD: 1 l Ill Bank Positions (Steps) RCS Temperature ( F): Fgo. p Test Power Level (% F.P.): ~tooyg Conditions SDA-225 SDB: 225 CA-225 Other(specify): sympy surs j (Actual) CB: 225 CC: 225 CD: 225

  • M^ "* d N R-u OA O, j

Date/ Time Test Performed: l 11-6 -9 6 d 0946 i Measured Parameter Froi.i; Total RCS Flow Rate j i (Description) IV i l Test Measured Value Froi.i= 313 > 2 89 GfM l Results {. Design Value Not Applicable 4 l (Actual Conditions) i Design Value Not Applicable (Design Conditions) Reference Not Applicable l V FSAR/ Tech Spec Fw a 295,000 gpm 7 l Acceptance l Criteria Reference Technical Specification 3.2.5 1 Design Tolerance is met N4hS NO l VI Acceptance Criteria is met : Y YES NO j Comments

  • As required I

i i Prepared By: h/I Reviewed By: f lN /6/d<- ,t NE-1102 N2C12 Startup Physics Tests Report Page 58 of 58 ... - _}}