ML20196K197

From kanterella
Jump to navigation Jump to search

Rev 0 to NE-1176, North Anna Unit 1,Cycle 14 Startup Physics Tests Rept, Dec 1998
ML20196K197
Person / Time
Site: North Anna Dominion icon.png
Issue date: 12/22/1998
From: Breitlow J
VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
To:
Shared Package
ML20196K195 List:
References
NE-1176, NE-1176-R, NE-1176-R00, NUDOCS 9901040185
Download: ML20196K197 (58)


Text

.

,1

., i,,

~

l' l

lp -

..,..,,, g;', p:r g [ f;.,: 7;p ' :.,, }.,Y

. ".. k,.s v -

. n.p* aq pk s

~u :.-. '..

_ f ~,. v.. '..

l : ?

a..

t",..'.

.;.g

.x +

3,

~

y

- [ $ ' '.;., 7,

'. - d' 4..

.'.l~.*'t,.'

..a ' g.g,.'. ' y../('

.,e

.3,-..M..G.x.. Y ';, \\

';l.. ',1,.

[,;;i.;-^

l

.,a.

L..,,

A.'~.:.'..

c. -;;,-..

>. <. - e,eg [

  • f..... $.. 9.__ r un

.gg,j.,c t,.;,:gy..

3

_. ;. 7, :. <

7 3..s. y

y. f. '%,; f..f l;. g..gl,y.;jg.fQ,G,,,'Q,. +,Q g

[

^

. _ : [. T[._

y{

...... J.:

v, v..

+f_f ' &

.:,.).

% Y', ; ;. _.. _,. }[. ((.l. yl. ;(.},

~

.'# ~,,.,'.,..

s..:.;,.3 m. ; c.,( 9. Sy(n y3 4,

' ~ *

.. -;,'. 2 f 'll
: ~;.? ll C "".4,':} ' *j
l...
  • .~ T.J

_.. {.,s,, ;,.,,,.} ( g6 '%Q y., * '.

..%..y,

,,..,3.; yr,f.f,.,.

.. [u.,

9 - :.

,,. '(,.

g.;. 3 y

,...,3.;L.

],

l.' Q. ?:*

. 4,
i... <

,.4 3.;w;;, L, m. j[qy. y.m n...,

.., ;*. y ::,. x, y j-

y}

e..,..

c.

.,3

..,j. ' i;Y. O Q

.s

. f ;.

'!....;, f.1.[Q'

.c.

v e,,

?;

_ ; ',. p '

.;,s

} :. f_ g(q:,." v. '. t.. ) g:,a"['

' :(;

& ~ %

. ;.,pM..,

s v.

e,[

n,. :..g

  • . ;j Q.

~

.,n,'.

.,'.q,* -. - - '.

_ y'. 7,.-3;c.

_" M Q,:l q; t.g

' ~: g,> l *

,.L.

-F l

- ; p.':

n.Y. ' T;, Nl f _...;. 'l::lT' J.lf.h ;,*W5 r

' R :.i v.

..w

~ --, '."V (.,

..~.'..y;, Q, g

~. p.

. ;;;ges*.y jffy 4

\\

i l,,, y.y. 6,...

9,.;,.

A'.. s'

.e..

."x

..::......- ' s

. ^

'(; #e;,'.,..,, '.. :y. 4..g.,

r-s

v. l,,,

?.'...

4,..

j

$. '. y

't.I.,

.w -. u
O ). ) 3,[.f w.[.e';"I f.M. x[r,y, U -

1

c N

'.:..A 9,

Q#. g'aj l,,N. [;tM.. 0:.

I"

?

f.

?

v'

}

fb,~. u -

1

e. ;

.f sg

?

^

,N_',

., p, j ' z _

' ( :.7 ',.. ? -

.4 f. *.3

, f

.' l.. ?.. _

'N

.j. Y j

'?

..,.,._ *[

,l l,'

'... l l-N, l.

'i,f f.{ '

,[:?

- l i':[' w! 'f.. p.,::'9::.. ' h Y]Q;,: ; l.'. 3 h

^

,a

- % ' s. :'

,y.

..,.,* :,.. ; :..'.4..p*

3 :,<

w 9..R.'l-h 9

,... '. ;,. ; 3. '.

n.

s.'.

77..,v

. -.7

y.*

, y...'.i,;..

o g'.4. r;p 3 f.q,y.g.

' e;;

.. * ; [.....,.... -N. ff!. j,)..

y, t a

y.y< y v A.g

.,... ; * :. 7 :..

y.

?,

,, f. !., :.

. p g m.m...,y,.. n r 4

.h]

,,j f.t l* Yi

.g.,

g.

.. IY.:

....., v..'l h,'.",.h t..#,.h. f. - {

' j., f,

e '

?,' _

g.

c_,

?

tl *

...'._'.[,...

.)

't.

s.

~ V

. %?

3.

. g ;., L *. *}

...,.....e..*:.,-....g.-,g...49...

.2 i

Q

,h'.

}.

o

.' ' - /

_., ;,y' P,.f.,,.., ;..,'.. :

l' N!J g..h., lk... "

o

.. j.

g.

g 4

.,}q s

,.... -l. [.,', * ),f}'; s; : -3 f" y]'f,? fm,4.;d))$

, j,, ;..:

,' ( i. :c'..

i,-

(-

aj -

. o ;.. o f

i=..;

,.;;f

's

,,1,,; y ".Q. _. J +>p.':.,,9

., g... _-

,,,., ', y

,3

.. '.'k\\ [,

T.,.

-. j e.;. ; -

,,.,y(

,.3-

~ _., n' o.. -

4'.',

l l Fe,ap

..)..

p 'y.i *,

~ '

~ J

.. '.. - ' ',,[,, [ ' " !

U.( (f. c.,..hef.;.,}-[,sf

. < 'I y; '.

g - ;. _.

t

,...,..N

.a.,

l4 j

. l[h. /

'd

' '[ *. ', l, ',.j ;..

7.b.

, <['.. 'p'I ' '.

. /..

5 c

r o, i

'.~.y.

- + - -.

a.'

_*'.l J'. ' ;.. q:,y k. 4,4.:::,

..,g,

'?

,.,~.:...

4.

,. ' 'l.h.*?. ' f,'. l

f.

g_'

'??,~.,*.-,.  : ^ . _., _ _ ' '

, '. '. ' ' : Le _ i (j;.

u L

e,,

.'I.. ',,,

f'

- ' b- ' - ( ~

. '. '},( 1,*,} ' f.*Q f,.

p h.

- s L

.~'. ', '.' '

y

,.... y :,q.b. j,'T,,,!

  • f ;g AAg t.

S C

,.W y-

+
e

.#.~a

.E

, j Q[,.'.' @}

.}f.ff,

-,i,.,.. 7s. -. [ Q E. f,) jy';^. ?['I' i 3,.

, %L

-l-i .,, ', '

. =. *,..

  • g. [.'

q, /.

w,

.['._

, [ _ :'_,

.; '.;,,,' ' ^~

J '.

yj i,..

', ' E 4.

..' _ l'l ~. -',_'~'.')j-

~~"...,',,.4

[.+ ~g ;, f,, 9I,,,.f 4,y, g.p,n y.

l ' -

-.+,

J, 3..,

y, t

..,. ;.f. q q,. l;

  • ' ;;,, l,
T
  • l.h.d af fs-(k,W, i ? ' ' ;)'. i' 'h {i * '. :,,l;.c.

.p'. 4 y.f'W y-

n'

, b;, '[.; '..'.'

s f.',.',

.+

,.'r',

r *; Q y, c

,[,...'l,,e"l ! ';; ;,, _,'

f.' g ; 3

,.7 V'

.,g)-

s_ ;.V 'I

.e

~

_m v

g(, y

'y. '

.f i.

s

.-. f..)..

~ *

,.. ( ?, l 9,R.W:..L., '4e

  • *^*

e,

.,, y. '

,n..

.T.0.m

'.'1..'

., M ;.'

krY '

-\\W

,s C

r 4.'.. =....... f ;,.r

. - : ' . ~.' 3 l?,, ';.':? I. '. l.'"*. i. ',f _.; '.g.f.C, w'g. ~ f,&p;g

'l J*.

t.

n..

..,; '[h r ),g~,

r.'

, g-

..> 4 '. 4

[ *.,r gs 1

.'A u.(., b l 3,.

,p 8 s ;#

..;._ ' g l ',,. g, y.

^

q..

'('

(',

.[.

y

',.. ' '. q.. - ^'-

  • 1 " ',4"-

.. ~ "

O h

y

(.

u s

,j. -

e=.

g I,,

7, yy

,;, GlY,

l.

y,;p,d f.b.

  • s l'

4.lf..

D

..;... - N l,.,t, -,,,-

3

?

- i

.:s.

. ;w. '

g.'

a

,,. q.j, -j

' {..

"m,. p

,,{, j. -

,*p.y g., 'p 7,

~

4 * -

'1 4

( ;

7

' ' ~

}

r,

,r

-- ' 4 j b,., - '.g.

s

,1; - '

..,.,,,.4; r?

[g bi{'

y-

,!',,p r '

J..,'.-

'd

.y..

i:4

,'[.,....y; ' y. 7;.) *.". E. ' ',

.. l.

y

-<.,t

? -.

.Y

.r f.'h: ;Y.

y>

l

., f,

(,,

,.. - yy.f;y

"[.

0,.

. ~

,, ' ' ', "' f.

.'.[.',,-

c

[. [..,i' '..

jg E

' f

' I

.4

.,.. ' q. k ;,,. ; ;.; y:Q ;,yyQf 3py;Qq,s

' f

. ?;,.

1 c+-

.. '}

K ;.'*-

' '. ;.., f,, j,3*. Q p; 1,

t

[

"Q'

(,_*

,E-

',,;.. + ',, I. _,,.. y, to Q

., (

) p',),.,y,,,,.,a.f,..,h;.,

s g,.,

2,,

s-

.. u.,,;

g -

.., '.,,.,-i

.....f;*-

.t'

.k '

,e

,F 7 6 ' 7' 1,-

.N g (,,

, ;.4f

')$,,

'c.7,

    • j ;

/} v [:..:..., 'f.d.Q ' }...[:[.{.c., ;yl:f,.}f ' 7 t }.} '," 4 'L y '? 7:~.. _} .p ...,; ' l '- ':;,\\ ; ;.,'J u y ;Q,,,.;:}.. ',;

.'_; ; q.

' g_ 'f ;

:s '

.1;Q. C,*. ..,, ;I,

, _ J u,,

.5 (. l,,.gg, ~.y.:p:.f x,. _,gq,;gq,. 4.i.g,g,'i, ;,., j,c, y _;;_..,;

  • g. g. ;, _,y,y

,;.,3 ;>;-

r.., ;;

'. 5 l .,a_ ' -., -. 7 n!, %:.p.:;;;L.,, 3 (:gyxi g w J,;* p o';'3; :, q. (: t e

4..

's.._.c '"o ,;.. y.i. ;, ~ 9,g_. r ;y ' S.;;ff..y,y {}Q,. ,,, f,9_ r-6 _ 7; -.;.., 'j.y. 7,Q k y 7 l ? 4 .':,,, _~ Y ^ i. .- ^ . L, f p ;.. : ; :.: g pi;. ;;.m pf;' 4:9 y n:q y 4 .,/...t..,c ,.*...F.,.. '. -.- ...-,,. -...,.. '-.,..,e ,'..4/ # c8, Et - h; M ey ;, g.f ',.,,,q.3 "g r,],,g, h. r. .c * ; '3,, . y '* A a . - c.

o. o. 7.:..)y: : ;:., s.:.l Os.,i- ; W.'
n..
y 4

Q1 C f. ~ ? .{ .9 V ' Y.s,;g;u..-, c3 ,.'. z. e. j. ;.... ;,' ,..,....,W '.: , w ..r

p 3

'.%;'j',, o,,p.,VJ.y.)qq,yf fL ,,.v_.*,.'j,. ..i..

. ; ~

( [ '}

  • .9.,-

e ,y. -._ g 3. @ yl#,g.,- W. .r..,

  • '. F, 3.

f.;,....,, 7, y, g.p ;* e t .>..g q '/- ) s. _.. -'., 4.. .... ~ < - / [,%y n g,,, _;~'..',4... ,. y *, ;..,.

  • /.

.vy ( .y_' l' + y,y .4 ..,,l q.:l f4. *. J 7.1; i.g.h q.- .y 6, q.' { : /-p ' j y.,",- ),,.?,7 kng @ % /,i 4 . l.. - .,. (,g .,. ~ .,,",,.t, j ,,.... s., n,. 9 y - ,;, :{ [.i ] m ',,.. 1, .;...~;._, ; ; ;.;, 9 ;.. %g . + '__mcu,.,, ; :. a, o y. ,y .. fg,. } [ '.... i ).,j,d 3, & ' Q,j,; ;&,}',,g' g yr.::, y .g y y... :_ '.. '..., ' :.l : !'.,:l1 N l9 h y;fy?:',QQ ; }' ' '; , ;. ':l.? f. *i. ! r* &. '.Q. :1 ~ ' ' ' " ~ (,

M@M@h hMhd@ %RWF W. %+< A . J/% bh I) [L f kmWWann mW%&as un pn MT m i s-s% 4 [ W w,e x p %w a# m & ~:Q W,u ya n v':a ~ L'u n @m%y$s%mw mW2 y u ~ m BMEMM s 'SE wi ('R mwm a m w ' s u tmmw vw w g W;;ga h M em ce s %pw+ p Ab4 w3 mm. . > ~ % M g m M@ae av %e %w~NpS %Ta p@w w"n s< %ogMy M M D i ; S,oi i % )@, n y ,s g%c j WAN 4 4 om. & y amm - an w , wdwa M,.m b wyu M $yh M @g$ M~g U m@ M m $u@e cd, d$, w$avNY 3M ~M,~ M6 N w.mmn

~

n w v s+, &p$ w@dg$y$w @$ $ p$1 M M M k M W@3$,$ l J p a/ M WMSMMyMr.Wh6..%Wht.w' %. a@ @%nhgw%% M - W n nx~ m aw v.my. wnnd J 'MR + n T Eo 9 /t va n w n % &su v l m-Af,&wk$ 0$ .. N Q ' Oh WQ h$:$YW?am %$@W@$$@$@M MMhWQMnM hl dv E f QV " C M Mil

  • M G

\\WM v_hh~hh,h_?k-m.kY ? Y.SYb b:k. $h?. _ ' _N A , _ m m c k ? $MGMM%+sMM me;jme" G ou %w . MM sumwm An M&w%n 2 me s ; % ' DW E T BS W. R 8 Ott M-, %.:' %u,v%wa@q?:]%; h%.fS4YPf W0UW- ~,M vk W q$f W

  • X n %9 7

%y e w ggs y v. A> &p 4m:d ys Z %.,b '.% pq i 1 m. Q m~ w w et e n,,' ^ j, s w$4h o e t y r a , y s, , n v: Au Q %ja&w.NQw - A ns: ...+'% > i:d : , ; m -- w& Wu ~.j~~ , 0 @,, O '&,M w < M "ps'v' i' i g( 2PW Ai NM ?, l l MpuP mw,%y g &, ",W' c;n ' w M3 s y m r ewwry%nwwu., a e ;sn.,$. m +, 8 -~ n:-- y t u .P.. u 4< p fpw f.b m,i h h-a$gf..,M ,.i p + 3 /'$v . /'M ;,,; , '4.'h; w .4 .}; .k[ / i7 ,] h g *1 FN h Y' I (' N - / ) g p i g p h ,s N - l[ 7\\1c,e" gTk -p-s s e 4g pw4m na + t + s. aMSM~kjQ[$hM W6 %.- 4 %; k .NucleaMnaly~' is, ;and[Fuell, hd Nh 9 .h c 's. [,.* Q m, ~.; s w%seg.n_W%v#:

Nuclear Engineering & Services; ;

v. ,~ &z c &a,Wh ,9 - Y- ?

. Qt-am usth Y

,+ ~ f$ l f. h 1 s n i n-> 9m. %x &pg&h&k:+[G :&.,c&

December,1998 1

h s% g#y;c &n, +n :,e *M Gpy f/k'l(*[,e 4[8R - w w A:: W~ r,; m, r 1 f[efk&pp wl; @ g.p + ' ; ,N m i lk : 4 y*f y ~ y"k&Q Q l8 ) w(%;19.mv,n sw? W W';y n + v'm& ..? 4 nM &y$d@g%pm' dWCS '

j N

- l L., 4 s hp&5N%$%%s w sGi Mi i s 4 un h u - - QM b 4, &uWMTW W '4,Juy,..i. 4' n i ftw m.w% %, gg%e.fX 4 t 1 v ~,4 1 A; f i. L.y dA&f f.W' ly e " g r-r w. 6 l% yl' n- ~ it W l a g e,~my\\(,'e. a - % m. u w@w h 8 G m w w.(w , me ~ Smggggwi s M. /*QRW M,, j UgM. ;S '- @ i '. j Q*%n o,,{ J

' yQ:

wa t 3 - 2 :y; 3 My www a fpp, e;f '#,,,,. VIRGINLA POWER . -%.1,; w:? d ;' Ap,pfdyN D "( " ' ' ' I i .s ~ a ', n > e %.#j;% %vh e ~c %~ 3,, IMh Q G Q ] )O Y [ d b C 5 R~ f' D P ADOCK OS004 3E M,WF F pp s .D, f p

.
&f 1

d"Qr$. ;,, hhu e s w [s A d ) n;r%pgheigdq> gx. k,q.m %m a 4:a.

,".,e, m

-n>, t b e w nf mr p,kn_Lf~j.,. dy rp q x,% Cy a,w 8s,3, :a (v.. a \\ .a c Q, x,qj x' W J. -+ a ~,.. n wn, ~. , s.. _-. _ _,,. =,

TECHNICAL REPORT NE-1176 - REV. O NORTH ANNA UNIT 1, CYCLE 14 STARTUP PHYSICS TESTS REPORT 4 1 NUCLEAR ANALYSIS AND FUEL NUCLEAR ENGINEERING & SERVICES VIRGINIA POWER DECEMBER 1998 I l PREPARED BY: dp-- - Ih*g . D. Breitlow Date REVIEWED BY: Ab} lab i 2/al% A. H. Nicholson Date REVIEWED BY: /2 64& ' A. P. Main Date APPROVED BY: _[ ek/de escLaRoe Bate L [ QA Category: Nuclear Safety Related b Keywords: NIC14, Startup h J

4. CLASSIFICATION / DISCLAIMER The data, techniques, information, and conclusions in this report have been prepared solely for use by Virginia Electric'and Power Company (the Company), and they may not be appropriate for use in situations other than those for which they have been specifically prepared. The Company therefore makes no claim or warranty t whatsoever, express or implied, as to their accuracy, usefulness, or applicability. -In particular, THE COMPANY MAKES NO WARRANTY OF MERCHANTABILITY OR ] f 4. FITNESS FOR A PARTICULAR PURPOSE, NOR SHALL ANY WARRANTY BE DEEMED TO ARISE FROM COURSE OF DEALING OR USAGE OF TRADE, with ), respect to this report or any of the data, techniques, information, or conclusions in it. By making this report available, the Company does not authorize its use by others, and any such use is expressly forbinden except with the prior written approval of the Company. Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein. In no event shall the Company be liable, under any legal theory whatsoever (whether contract, tort, warranty, or strict or 4 absolute liability), for any property damage, mental or physical injury or death, loss of use of property, or other damage resulting from or arising out of the use, authorized or unauthorized, of this report or the data, techniques, information, or conclusions in it. NE-1176 N1C14 Startup Physics Tests Report Page 1 of 57 I .__m.u J

A g

  1. _J
, 4

,a ei. I! TABLE OF CONTENTS 1I PAGE I 1 Classification / Disclaimer.................................................................... 2 Table o f Co nte nts........................................................................... 3 L is t o f Tabl e s...................................................................................... 4 L ist o f F i g ure s............................................................................. 5 Preface................................................................................................... 6 Section 1 Introduction and Summary............................................ g Section 2 Control Rod Drop Time Measurements.............................. 16 Section 3 Control Rod Bank Worth Measurements............................ 21 26 Section 4 Boron Endpoint and Worth Measurements......................... 30 Section 5 Temperature Coefficient Measurement........................ Section 6 Power Distribution Measurements.... 32 39 Section 7 References.......................... APPENDIX Startup Physics Test Results and Evaluation Sheets........ 40 I I l I I I NE-1176 NIC14 Startup Physics Tests Report Page 2 of 57 I

1 LIST OF TABLES TABLE TITLE PAGE 1 1 1.1 Chronol ogy o f Tests........................................................................... 10 2.1 Hot Rod Drop Time Summary........................................................... I 8 3.1 Control Rod Bank Worth Summary................................................. 23 4.1 Boron Endpoints Summary..................................................... 2 8 4.2 Boron Worth Coefficient........................................................... 29 l 5.1 Isothermal Temperature Coefficient Summary............................... 31 6.1 Incore Flux Map S ummary............................................................... 3 4 1 6.2 Comparison of Measured Power Distribution Parameters With Their Core Operating Limits.............................................. 35 i I I I i 1 1 I NE-1176 NICl4 Startup Physics Tests Report Page 3 of 57 ~

I LIST OF FIGURES FIGURE TITLE PAGE I I1 1.1 Co re Loadin g M ap.................................................................. 1 1.2 Beginning of Cycle Fuel Assembly Burnups............................. 12 l 1.3 Available Incore Moveable Detecbr Locations.......... 13 1.4 Burnable Poison and Vibration Suppression Damping Assembly Locations......... ... 14 1.5 Control Rod Locations................................................... 15 2.1 Typical Rod Drop Trace.............................................19 2.2 Rod Drop Time - Hot Full Flow Conditions....... ..........20 3.1 Control Bank B Integral Rod Worth - HZP................. 24 3.2 Control Bank B Differential Rod Worth - HZP...... 25 I 6.1 Assemblywise Power Distribution - 29% Power.... .. 36 6.2 Assemblywise Power Distribution - 71% Power...... 37 6.3 Assemblywise Power Distribution -100% Power... ........38 I I .I I NE-1176 NIC14 Startup Physics Tests Report Page 4 of 57 I

PREFACE This report presents the analysis and evaluation of the physics tests which were performed to verify that the North Anna Unit 1, Cycle 14 core could be operated safely, and makes an initial evaluation of the performance of the core, it is not the intent of this report to discuss the particular methods of testing or to present the detailed data taken. l Standard testing techniques and methods of data analysis were used. The test data, results and evaluations, together with the detailed startup procedures, are on file at the North Arma Power Station. Therefore, only a cursory discussion of these items is included in this report. The analyses presented include a brief summary of each test, a comparison of the test results with design predictions, and an evaluation of the results. The North Anna Unit 1, Cycle 14 startup physics tests results and evaluation sheets are included as an appendix to provide additional information on the startup test j results. Each data sheet provides the following information: 1) test identification,2) test conditions (design), 3) test conditions (actual),4) test reaults, 5) acceptance criteria, and 1

6) comments concerning the test. These sheets provide a compact summary of the startup test results in a consistent format. The design test conditions and design values (at design conditions) of the measured parameters were completed prior to the startup physics testing. The entries for the design values were based on the calculations performed by Virginia Electric and Power Company's Nuclear Analysis and Fuel Group' During the tests, the data sheets were used as guidelines both to verify that the proper test conditions were met and to facilitate the preliminary comparison between measured and predicted test results, thus enabling a quick identification of possible problems occuring during the I

tests. NE-1176 NIC14 Startup Physics Tests Report Page 5 of 57

1 E l SECTION 1 INTRODUCTION AND

SUMMARY

I On September 13,1998 Unit No. I of the North Anna Power Station shutdown for I its thirteenth 1-fueling. During this shutdown,65 of the 157 fuel assemblies in the core were replaced with 64 fresh assemblies and one once-burned assembly. The Cycle 14 core consists of 9 sub-batches of fuel: four once-burned batches, three batches from Cycle 13 (batches 15A,15B, and 15C) and one batch from Cycle 7 (batch 9B); three twice-bumed batches, two batches from Cycles 12 and 13 (batches 14A and 14B) and one batch from Cycles 4 and 13 (batch 6); and two fresh batches (batches 16A and 16B). The fresh batches are of a similar design to the Westinghouse batch 15 fuel (fresh fuel in Cycle 13) except for a reduction in the holddown spring force. I Special features of the NICl4 reload core include: second cycle of operation for the four lead test assemblies (LTAs) manufactured by Framatome Cogema Fuels (FCF), burnable poison inserts with a 127.2" axial absorber region, five reconstituted fuel assemblies, and the incorporation of vibration suppression damping assemblies (VSDAs) to prevent grid to rod fretting caused by assembly vibration. The four LTAs are of a similar design to the resident Westinghouse fuel assemblies with the following exceptions; use of different zirconium-based alloys for the fuel rod cladding and fuel assembly structural tubing, some grid dimensional differences, the use of three mid-spanI Page 6 cf 57 NE-1176 N1C14 Startup Physics Tests Report

mixing grids, a higher nominal fuel pellet density, a reconstitutable quick release top nozzle design and a fine mesh debris filter bottom nozzle, and the use of FCF's axially " floating" grid design. l 1 Cycle 14 marks the first use of a BPRA product with an active absorber length of 127.2 inches. The 127.2 inch design is similar to the 126 inch design used in Cycle 13 with the only exception being the location of the bottom of the absorber. The 127.2 inch design is located such that the bottom of the absorber is approximately 9 inches above the bottom of the active fuel length and the top of the absorber is approximately 7.8 inches below the top of the active fuel length relative to the NAIF /P+Z fuel design. The BP assembly and pellet design are the same for both products. Cycle 14, similar to Cycle 13, incorporated the burnable poison rod design made l of B4C in Alumina, which is available in various enrichments of B4C There are no ' thimble plugging devices or secondary sources inserted in NICl4. There are 24 vibration suppression damping assemblies inserted in peripherally loaded fuel assemblies to help prevent grid to rod fretting caused by assembly vibration. Reference 1 provides a more detailed description of the Cycle 14 core. I The core loading pattern and the design parameters for each sub-batch are shown in Figure 1.1. Beginning of cycle fuel assembly bumups are given in Figure 1.2 and documented in Reference 6. The available incore moveable detector locations Page 7 of 57 NE-1176 N1Cl4 Startup Physics Tests Report

I the flux map analyses are identified in Figure 1.3. Figure 1.4 identifies the location and number of burnable poison rods and VSDAs for Cycle 14, and Figure 1.5 identifies the location and n imber of control rods in the Cycle 14 core. l On October 7,1998 at 15:04, the Cycle 14 core achieved initial criticality. Prior to and following criticality, startup physics tests were perfonned as outlined in Table 1.1. A summary of the results of these tests follows: The measured drop time of each control rod was within the 2.7 second limit of Technical Specification 3.1.3.4, I Individual control rod bank worths were measured using the rod swap The sum of the individual measured control rod bank worths was within 25 technique 2.02% of the design prediction and the reference bank worth was within 1.02% of'its design prediction. The other control rod banks were within 7.17% or 29.3 pcm of the design predictions. These results are within the design tolerances of 215% for individual banks worth more than 600 pcm (210% for the rod swao reference bank worth), 2 l00 pcm for individual banks worth 600 pcm or less, and 210% for the sum of the individual L control rod bank worths. Measured critical boron concentrations for two control bank configurations were within 8 ppm of the design predictions. These results were within the design tolerances I Page 8 of 57 NE-1176 NIC14 Startup Physics Tests Report

1 and also met the Technical Specification 4.1.1.1.2 criterion that the overall core reactivity balance shall be within 1% Ak/k of the design prediction. 2 The boron worth coefficient measurement was within 5.4% of the design prediction, which is within the design tolerance of 210%. The measured isothermal temperature coefficient (lTC) for the all-rods-out (ARO) configuration was within 0.14 pcm/ F of the design prediction. This result is within the design tolerance of 23 pcm/*F. The measured ITC of -2.35 pcm/ F meets the Core Operating Limits Report (COLR) 2.1.1 criterion that the moderator temperature coefficient (MTC) be less than or equal to +6.0 pcm/ F. When the Doppler temperature coefficient and a 0.5 pcm/ F uncertainty are accounted for in the MTC limit, the MTC requirement is satisfied as long as the ITC is less than or equal to +3.76 pcm/ F. I Mode 1 (see Reference 4) core power distributions were within established design tolerances. Generally, the measuied core power distributions were within 2.1% of the design predictions. The heat flux hot channel factors. F-Q(Z), and enthalpy rise hot channel factors, F-DH(N), were within the limits of COLR Sections 2.5.1 and 2.6, I respectively. l r In summary, all startup physics test results were acceptable. Detailed results, specific design tolerances and acceptance criteria for each measurement are presented in the following sections of this report, i NE-1176 NIC14 Startup Physics Tests Report Page 9 of 57

I Table 1.1 "'" ^""^ """JMZ" "##S!S g Reference Test Date Time Power Procedure Hot Rod Drop-Hot Full Flow 10/7/98 0331 HSD l-PT-17.2 Zero Power Testing Range 10/7/98 1548 HZP l-PT-94.0 Reactivity Computer Checkout 10/7/98 1700 HZP l-PT-94.0 Boron Endpoint - ARO 10/7/98 1900 HZP l-PT-94.0 g Tempera'ure Coefficient - ARO 10/7/98 1951 HZP l-PT-94.0 g Bank B Worth 10/7/98 2040 HZP l-PT-94.0 Boron Endpoint - B in 10/7/98 2330 HZP l-PT-94.0 g Bank D Worth - Rod Swap 10/8/98 0020 HZP 1-PT-94.0 g Bank C Worth - Rod Swap 10/8/98 0112 HZP 1-PT-94.0 Bank A Worth - Rod Swap 10/8/98 0141 HZP l-PT-94.0 E Bank SB Worth - Rod Swap 10/8/98 0205 HZP l-PT-94.0 W Bank SA Worth - Rod Swap 10/8/98 0237 HZP l-PT-94.0 Flux Map - 29% Power 10/9/98 0102 29 % l-PT-94.0 Peaking Factor Verification 1 -PT-21.1 & Power Range Calibration 1-PT-21.2 1-PT-22.4 Flux Map - 71% Power 10/10/98 1040 71 % l-PT-94.0 Peaking Factor Verification 1-PT-21.1 g & Power Range Calibration 1-PT-21.2 5 1-PT-22.4 Flux Map - 100% Power 10/22/98 1333 100 % 1-PT-94.0 g t Peaking Factor Verification 1-PT-21.1 3 & Power Range Calibration 1-PT-21.2 1 -PT-22.4 I I I I NE-1176 NICl4 Startup Physics Tests Report Page 10 of 57 I

1 Figure 1.1 NORTH ANNA UNIT 1 - CYCLE 14 CORE LOADING MAP R P N M L K J H G F E D C B A 14B 6 14B 3D2 F55 6D3 1 14A ISA 16B 15B 16B 15A 14A OD8 OE6 SF7 3E0 3F3 2El 2DI 2 14B 16B 16B 15B 16B 15B 16B 16B 14B 3D4 4FI 4F8 3E3 4F0 SES 3F4 4F2 2D9 3 14B 15B 16B 15B 16A 14B 16A 15B 16B 15B 14B 4D0 SE2 6F0 3E5 0F9 4D4 2F4 4E0 4F7 4E2 3D7 4 14A 16B 16B 15A 16A 15A 16A 15A 16A 15A 16B 16B 14A OD4 2F9 SF2 lE6 0F6 IES IF4 IE9 2F7 OEl 4F9 3F6 2D4 5 15A 16B 15B 16A 15A 16A 15C 16A 15A 16A 15B 16B 15A 2E2 5F6 SE4 IF5 OE8 0F4 FMI 2F2 2E4 2F5 4E6 SF8 IE0 6 14B 16B ISB 16A ISA 16A ISB 15B 15B 16A 15A 16A 15B 16B 14B 4D6 3F2 4E5 2F6 OE2 0F3 3E2 3E9 4E7 0F2 2E0 0FI 3El 4F4 4D3 7 6 15B 16B 14B 16A 15C 15B 9B ISB 15C 16A 14B 16B 15 8 6 F25 4E9 4F3 SDS IF0 FM2 4El 137 3E7 FM3 0F8 3D8 SFO SE6 F54 8 14B 16B ISB 16A 15A 16A 15B 15B ISB 16A 15A 16A 15B 16B 14B 6DO 4F5 2E5 2FI IE3 IFl 2E8 4E8 3E6 IF6 OE4 IF9 3E8 6F3 3D3 9 I 15A 16B 15B 16A 15A 16A 15C 16A 15A 16A 15B 16B 15A DE9 3F0 2E9 2F3 IE2 2FO FM4 IF8 OE5 0F5 SEI 3F7 IE4 10 14A 16B 16B 15 A 16A 15A 16A 15A 16A 15A 16B 16B 14A ID3 3F9 SFl 2E3 IF2 OE7 IF7 OE3 2FS lE8 SF4 6F1 ID6 11 I 14B 15B 16B ISB 16A 14B 16A 15B 16B 15B 14B SDS 4E4 SF5 2E7 0F7 SD9 IF3 3E4 SF3 SE3 3D5 12 I4B 16B 16B 15B 16B 15D 16B 16B 14B I SD0 6F2 3FI SEO 3F8 4E3 5F9 6F4 3D9 13 14 A 15A 16B 15B 16B 15A 14 A 2D5 IE7 3F5 2E6 4F6 lEl OD7 14 I

===> Batch 14B 6 14B

===> Assembly ID 4D5 F62 SDI 15 FUEL ASSEMBLY DESIGN PARAMETERS S U B.B A'I Cil 6 9B 14A 14B 15A 15B 15C 16A 16B INITI AL ENRICHMENT 3.5931 3 9899 4 0048 4.2048 4 0031 4.2097 4 199 4 1517 4.249I (W/O U-235) BURNUP AT BOC 14 31378 20094 33826 38303 ' 23371 20175 22035 0 0 (MWD /MTU) ASSEMBLY TYPE 17xl7 17x17 17xl7 17xl7 17xl7 17xl? 17x17 17x17 17xl7 NUMBER OF ASSEMBLIES 4 I 8 20 24 32 4 28 36 FUEL RODS PER 264' 264 264 264 264 264 264 264 264 2 ASSEMBLY 'The four assembhes in this sub batch each contain from one to three dummy rods, for a total of seven dummy rods. The assembly in this sub-batch contains two dummy fuel rods. (There are a total of nine dummy rods in NICl4.) 2 l NE-1176 N1Cl Stanup Physics Tests Report Page 11 of 57

I Figure 1.2 NORTH ANNA UNIT 1 - CYCLE 14 BEGINNING OF CYCLE FUEL ASSEMBLY BURNUPS I R P N M L K J 11 G F E D C B A I 3D2 F55 6D3 40837 31742 40885 1 OD8 OE6 5F7 3E0 3F3 2El 2D1 33920 23528 0 18193 0 23799 33787 2 3D4 4F1 4F8 3E3 4F0 SE5 3F4 4F2 2D9 37264 0 0 21845 0 21995 0 0 37192 3 4DO SE2 6F0 3E5 0F9 4D4 2F4 4E0 4F7 4E2 3D7 37784 18479 0 22028 0 34063 0 21979 0 18572 37978 4 OD4 2F9 SF2 IE6 0F6 IE5 1F4 IE9 2F7 OEl 4F9 3F6 2D4 g 34062 0 0 23381 0 22933 0 23006 0 23436 0 0 33731 5 g 2E2 SF6 SE4 IF5 OE8 0F4 FMI 2F2 2E4 2F5 4E6 5F8 IE0 23803 0 22025 0 23398 0 22081 0 23423 0 22169 0 23784 6 4D6 3F2 4E5 2F6 OE2 0F3 3E2 3E9 4E7 0F2 2E0 0F1 3El 4F4 4D3 41465 0 22042 0 22732 0 18739 18255 18448 0 22898 0 21862 0 40578 7 F25 4E9 4F3 5D5 IF0 FM2 4El J37 3E7 FM3 0F8 3D8 5F0 SE6 F54 31537 18384 0 34608 0 22138 18300 20094 17992 21925 0 34269 0 18272 30773 8 6DO 4F5 2E5 2F1 lE3 IFl 2E8 4E8 3E6 IF6 OE4 IF9 3E8 6F3 3D3 40718 0 21763 0 22835 0 18472 18060 18681 0 22910 0 22075 0 41459 9 OE9 3F0 2E9 2F3 IE2 2F0 FM4 IF8 OE5 0F5 5El 3F7 IE4 23819 0 22062 0 23297 0 21995 0 23400 0 21669 0 23978 10 ID3 3F9 5Fl 2E3 IF2 OE7 IF7 OE3 2F8 IE8 SF4 6F1 ID6 33865 0 0 23482 0 22908 0 22949 0 23467 0 0 33640 11 SD8 4E4 SF5 2E7 0F7 5D9 IF3 3E4 5F3 5E3 3D5 37672 18640 0 22121 0 34104 0 22181 0 18458 38020 1-SD0 6F2 3F1 5E0 3F8 4E3 5F9 6F4 3D9 37732 0 0 21836 0 21661 0 0 37636 13 2D5 IE7 3F5 2E6 4F6 lEl OD7 34070 23913 0 18356 0 23844 33531 14 4D5 F62 SDI g 41210 31464 40632 15 g -> Assembly ID

==> Assemb.y Burnup (MWD /MTU) I I I NE-1176 NIC14 Startup Physics Tests Report Page 12 of 57 l 5 l

Figure 1.3 NORTH ANNA UNIT 1 - CYCLE 14 AVAILABLE INCORE MOVEABLE DETECTOR LOCATIONS R P N M L K J H G F E D C B A MD I MD 2 MD MD MD MD 3 MD MD MD 4 MD MD MD MD MD MD 5 MD MD MD 6 MD MD MD MD MD 7 MD MD MD MD MD MD 8 MD MD MD MD 9 MD MD MD MD 10 MD MD MD MD 11 MD MD MD MD 1: MD MD 13 MD MD 14 MD 15 MD - Moveable Detector " - Locations Not Asallable For Flux Mapping System for Cycle 14 NE-1176 N1C14 Startup Physics Tests Report Page 13 of 57 L

Figure 1.4 NORTH ANNA UNIT 1 - CYCLE 14 BURNABLE POISON AND VIBRATION SUPPRESSION DAMPING ASSEMBLY LOCATIONS I R P N M L K J H G F E D C B A VSDA VSDA 1 VSDA 3P 3P VSDA BP734 BP735 2 VSDA 6P 21P 24P 21P 6P VSDA BP758BP742 BP714 BP743 BP760 3 VSDA 22P 24P 24P 22P VSDA l BP750 BP718 BP719 BP754 4 VSDA 6P 22P 24P 24P 24P 22P 6P VSDA B BP759 BP752 BP702 BP703 BP704 BP753 BP761 5 21P 24P 24P 24P 24P 21P BP749 BP705 BP720 BP721 BP706 BP744 6 VSDA 3P 24P 24P 12P 24P 24P 3P VSDA BP740 BP722 BP723 BP698 BP724 BP725 BP736 7 24P 24P 12P 12P 74P 24P BP715 BP707 BP699 BP700 BP708 BP716 8 VSDA 3P 24P 24P 12P 24P 24P 3P VSDA g BP741 BP726 BP727 BP701 BP728 BP729 BP737 9 21P 24P 24P 24P 24P 2]P g BP748 BP709 BP730 BP731 BP710 BP745 10 VSDA 6P 22P 24P 24P 24P 22P 6P VSDA BP764BP756 BP711 BP712 BP713 BP757 BP762 11 VSDA 22P 24P 24P 22P VSDA BP751 BP732 BP733 BP755 12 VSDA 6P 21P 24P 21P 6P VSDA BP765 BP747 BP717 BP746 BP763 13 VSDA 3P 3P VSDA BP738 BP739 14 VSDA VSDA 15 l 3P - 3 Burnable Poison Rod Cluster B 6P 6 Burnable Poison Rod Cluster 12P-12 Burnable Poison Rod Cluster E 2iP-21 Burnable Poison Rod Cluster 22P-22 Burnable Poison Rod Cluster g 24P-24 Burnable Poison Rod Cluster VSDA. Vibration Suppression Damping Assembly NE-1176 N1C14 Startup Physics Tests Report Page 14 of 57 8

Figure 1.5 NORTH ANNA UNIT 1 - CYCLE 14 CONTROL ROD LOCATIONS R P N M L K J FI G F E D C B A 1 A D A 2 SA SA 3 C B B C 4 SB SB 5 A B D C D B A 6 SA SB SB SA 7 D C L D 8 SA SB SB SA 9 A B D C D B A 10 SB SB 11 C B B C 12 SA SA 13 Absorber Material A D A 14 Ag-In-Cd 15 Function Number of Clusters l Control Bank D 8 Control Bank C 8 Control Bank B 8 Connol Bank A 8 Shutdown Bank SB 8 Shutdown Bank SA 8 NE-1176 NIC14 Startup Physics Tests Report Page 15 of 57 m

SECTION 2 CONTROL ROD DROP TIME MEASUREMENTS I The drop time of each control rod was measured at hot full-flow reactor coolant I system (RCS) conditions in order to verify that the time from initiation of the rod drop to the entry of the rod into the dashpot was less than or equal to the maximum allowed by 4 Technical Specification 3.1.3.4. The control rod drop times were measured in Mode 3 with the RCS Tavg above 500 F and all reactor coolant pumps operating. I The rod drop times were measured by withdrawing a rod bank 229 steps and then removing the moveable gripper coil fuse and stationary gripper coil fuse for the particular I rod of the bank to be dropped. This allowed the rod to drop into the core as it would during a plant trip. The stationary gripper coil voltage and the Individual Rod Position Indication (IRPI) primary coil voltage signals were recorded to determine the rod drop i time. This procedure was repeated for each control rod. I l As shown on the sample rod drop trace in Figure 2.1, *he initiation of the rod drop i is indicated by the decay of the stationary gripper coil voltage when the stationary gripper coil fuse is removed. As the rod drops. a voltage is induced in the IRPI primary coil. The magnitude of this voltage is a function of control rod velocity. As the rod enters the dashpot region of the guide tube, its velocity slows causing a voltage decrease in the IRPI NE-1176 N1Cl4 Startup Physics Tests Report Page 16 of 57 l B

coil. This voltage reaches a minimum when the rod reaches the bottom of the dashpot. Subsequent variations in the trace are caused by rod bouncing. The measured drop times for each control rod are recorded on Figure 2.2. The slowest, fastest, and average drop times are summarized in Table 2.1. Technical Specification 3.1.3.4 specifies a maximum rod drop time from loss of stationary gripper coil voltage to dashpot entry of 2.7 seconds with the RCS at hot, full flow conditions. These test results satisfied this limit. In addition, rod bounce was observed at the end of each trace which demonstrated that no control rod stuck in the dashpot region. l l l l l i NE-1176 N1C14 Startup Physics Tests Report Page 17 of 57

m A -4 _A .--.*4.a4 JB m_A m 2. 3_s. 4,C.-4.JLA.A --la _he S 4#...- -.M-_aw_ E Table 2.1 i NORTH ANNA UNIT 1 - CYCLE 14 STARTUP PHYSICS TESTS HOT ROD DROP TIME

SUMMARY

I ROD DROP TIME TO DASHPOT ENTRY SLOWEST ROD FASTEST ROD AVERAGE TIME g. B-06 2.06 sec. C-09 1.53 sec. 1,71 sec. E I I I e i I I I I. I NE-1176 NIC14 Startup Physics Tests Report Page 18 of 57 I

[ Figure 2.1 NORTH ANNA UNIT 1 - CYCLE 14 STARTUP PHYSICS TESTS TYPICAL ROD DROP TRACE Beginning O'f Dashpot Bottom of Dashpot Initiation Of Rod (Beginning Of.First (Beginning Of First Drop avant Mark Downturn in Trace) Upturn in Trace) / \\ / ................ 1 stationary oripper Coil Voltage Trace Rod Drop Time AAAhAAAAAAA A F%x yyVVvVvvV { ( 60Hz IRPI AA Primary Coil v iAAAAAAJ fyv r,e A,A 49 voit ge Traos yvvvvvv4 y y, 4AAAAAA/,A44444,,4AAAA443344444 4443Ag aaga4gAA VVVVVvvvvvvvvvvvvvvvvvvvuvvvq yvvyv vvvvvvvv1 60Hz Trace (Zf use f ROD DROP TIME MEASUREMENT NE-1176 N1Cl4 Startup Physics Tests Report ' Page 19 of 57

I Figure 2.2 NORTH ANNA UNIT 1 - CYCLE 14 STARTUP PHYSICS TESTS ROD DROP TIME - HOT FULL FLOW. CONDITIONS I R P N M L K J H G F E D C B A E I 1.72 1.59 1.69 2 1.65 1.67 3 1.72 1.65 1.71 1.66 4 1.72 1.68 5 1.64 1.76 1.69 1.70 1.70 1.74 2.06 6 1.67 1.63 1.65 1.70 7 1.76 1.68 1.66 1.85 8 1.68 1.67 1.64 1.53 9 1.73 1.72 1.66 1.68 1.70 1.70 1.82 10 1.81 1.68 11 1.64 1.79 1.68 1.'69 12 1 13 1.66 1.71 1.97 1.73 1.74 14 15 x.xx

==> Rod drop time to dashpot entry (sec.) I I Il NE-1176 N1C14 Startup Physics Tests Report Page 20 of 57

SECTION 3 CONTROL ROD BANK WORTH MEASUREMENTS Control rod bank worths were measured for the control and shutdown banks using 2 the rod swap technique #, The initial step of the rod swap method diluted the predicted most reactive control rod bank (hereafter referred to as the reference bank) into the core and measured its reactivity worth using conventional test techniques. The reactivity changes resulting from the reference bank movements were recorded continuously by the reactivity computer and were used to determine the differential and integral worth of the reference bank. For Cycle 14, Control Bank B was used as the reference bank. After the completion of the reference bank reactivity worth measurement, the reactor coolant system temperature and boron concentration were stabilized with the reactor near critical and the reference bank fully inserted. Initial statepoint data for the rod swap maneuver were obtained with the reference bank at its fully inserted position and all other banks fully withdrawn, recording the core reactivity and moderator temperature. From this point, a rod swap maneuver was performed by withdrawing the reference bank several steps and then inserting one of the other control rod banks (i.e., a test bank) to balance the reactivity of the reference bank withdrawal. This sequence was repeated until the test bank was fully inserted and the reference bank was positioned such that the core was just critical or near the initial statepoint condition. This measured critical position (MCP) of the reference bank with the test bank fully inserted was used to I NE-1176 N1Cl4 Startup Physics Tests Report Page 21 of 57

I determine the integral reactivity worth of the test bank. The core reactivity, moderator temperature, and the differential worth of the reference bank were recorded with the reference bank at the MCP. The rod swap maneuver then was repeated in reverse such that the reference bank again was fully inserted with the test bank fully withdrawn from the core. This rod swap process was then repeated for each of the other control and E shutdown banks. A summary of the test results is given in Table 3.1. As shown in this table and the Startup Physics Test Results and Evaluation Sheets given in the Appendix, the individual measured bank worths for the control and shutdown banks were within the design tolerance (210% for the reference bank,215% for test banks of worth greater than 600 pcm, and 2100 pcm for test banks of worth less than or equal to 600 pcm.) The sum the individual measured rod bank worths was within 2.02% of the design prediction. I This is well within the design tolerance of 210% for the sum of the individual control rod bank worths. I' The integral and differential reactivity worths of the reference bank (Control Bank B) are shown in Figures 3.1 and 3.2. respectively. The design predictions and the measured data are plotted together in order to illustrate their agreement. In summary, the measured rod worth values were satisfactory. I I E NE-1176 NICl4 Startup Physics Tests Report Page 22 of 57 i

....... - -.... ~ ~..... ...... =..... l Table 3.I' NORTH ANNA UNIT l'- CYCLE 14 STARTUP PHYSICS TESTS CONTROL ROD BANK WORTH

SUMMARY

MEASURED PREDICTED PERCENT ~ WORTH WORTH DIFFERENCE (%) BANK (PCM)- (PCM) (M-P)/P X 100 B-Reference Bank 1282 1269 -1.02 D 1058.9 1037.4 2.07 C 884.8 883.7 0.12 A 350.7 321.4 9.12' SB 1064.5 1082.8 -1.69 SA 967.1 902.4 7.17 Total Worth 5608 5496.7 2.02-

  • Difference is less than 100 pcm.

1 i i i l 1 L 4 NE-1176 N1C14 Startup Physics Tests Report Page 23 of 57

Figure 3.1 NORTH ANNA UNIT 1 - CYCLE 14 STARTUP PHYSICS TESTS j CONTROL BANK B INTEGRAL ROD WORTH - HZP E' m ALL OTHER RODS WITHDRAWN 1400 l 1 i i i.

_ _-x N

i i i n_ i r 1200 \\ i i i i i i isi i i ~ I I t\\, i I 3 EX a f I 3 \\ 8 I \\ i i ^ L\\ s i 6 e 2 "\\l 1 i i I i \\' i ! ' i O i \\ i i. i i t , i i f:2 1000 -\\i 2 \\ l l i c) i3 B ( i.i g O O. \\ i i i o I \\ i N - i i

  • i 800 i i.

i X i i i i \\ # # , # + ! i i ii i 3: 8 > i t 1.;_ xi. H i ' I + i F i i y a

  • i

,e e i i 0". i, t + ' () i I A' i 3 i i t EN i i f i i t e t i ' ' I i 6 i i i i r Ai I i ,J i i f i '\\ 1 ' t i i I i i I ' ! ! I , a'\\ i i I i 4 i ,i e i t i i e i ,,ii v i, i < r a 600- , iii, 2; i, i g i i i 4 i i d i ! i i i i i gN 1 i\\, I t H i 1, i, is i i i, z 4 i lm'ssl ~ Predicted i i m Measured l' y

l' l

i i\\ 400 i i i i i . i i i ii i x', e i I 6 I I e \\ I r i t 6 i \\t i 1 \\! I i r I I t ' ~ i ( i.1' I I i. e i i e i =N i I ! i i, J i i r\\ j l I I i i t i i l i i r jg i i ( I e i. 200 si i o m i I f i s 1 i i i '( 8 i i 5 k i i \\ l ? \\ f ! i t\\ I I e i i O 40 80 120 160 200 B-BANK POSITION (5 STEP',lDIVISION) NE-1176 NIC14 Startup Physics Tests Report Page 24 of 57 8

Figure 3.2 NORTH ANNA UNIT 1 - CYCLE 14 STARTUP PHYSICS TESTS CONTROL BANK B DIFFERENTIAL ROD WORTH - HZP I ALL OTHER RODS WITHDRAWN l 10 ,f ! ! i, 5 I i fi I !i i i i i I' i ! i ! i i I i ! i i ! ! iii! i I L ! I i i i i ' ~ l i li j i ! i !_J i i !t i ! i! ii i! !i! ! i i ! i i i i ! I i i ;i i ,;., 4 5 i i i i t ii eil i i i i i i i i i i i i i j g ) i l l l { l i ! i .l-l 1 _l l i il l l j l I I iii /'"l l l { l i i i i l i ! l !i li I/i X ( 1 !I I I!I i i ! /! i i i i i e i ! I 1 l l i I' ! 'q/ i i i _ i iI i I i i l\\ i i i ii ! 1 I I i 1 i l i i ii i g e i ! / I i i N! i ! t i I I I I as i i i i i i i l l / i i s / i Al !i i !i I I 1% ii i ! i g \\ i o 7 G l 11-i !l i! i I ! !ast ii 1 ! l !! ! i 3; i it-Iii i !!I I N! i ! I i i ! i i i ' i iiii! hi i 6 i;i; g 11 i i ! i i i i a i 8 'l f 1 'f Ii!ii i i N. A ' i I' i N6 N, 'i !i i i si i ! ca ! i i i !!i i i i' ! i ! ! *! t I ! in I i Tiiii !I' fl. ' ! i ! lE 6 i i IIiiI i !i i !t ! ! u \\!i! I i!!>i lli ! ! ! i ' g i i i iii !\\i i i i !i Ili i i i i ii!ii'4 i I n ' ' I'I I ' ' I I I II l ' 6 5- , i t ii! l! 6 ! ! 1 1 l I f ! ! !, t I i ! l ! \\i! I h i ! !iii Iiiiiil I I!! I i i i i i i i !l } { I i! i i fi! t !l ' i 1; i i ! ii i I i ! i t i i! i 3: Iiiii l' I i i I'i i i ! Ii! i ! Iii ti i ilQL 0,- i i iiii fliiiiie i i i ii; i i i i i i>i ii i 1 a 4 i!! r l t i 5 i I ! I i !l! !iii i i i ! ' i i e i' !ii i Predicted ' ' l l dJ'iI!' ild , i y I i i i l ! I i ! !! ! 1 !i i i ' 8l i!i8 i ! iJ u Measured l - i !!ii w ii i i il I I l i i i IiI i i! ii !>l i t 1, i i i 11 i ! i 6 i i i i i >i i g i i i 3 !g, b: j ,, t,, 1 il ! O i i i !I ii l !t i !/ !ii! i ii i i 71 i ! i i !i i il i ili t i i;i i ! i i t l !( !! ! I ! /! 4lifI I! i i,i i l i I e i i ! i

i t T

' ' i i e i 1 ' 7 8 /' I ! ' ! ! f ii i ! ! i i i > i i I i! ! lI I i i i i lI !iii !! i i i i t I/ I i i i i ! ' ! i !lp i i li i i i i/ 3 i i i i i i i I/i l 1I i i i l!Ii i' I i i/i i i i i i i i i iil i i i i i i i i ili t i I i ! ' I I I ! i I I f !!l LE '/ i 12 I I I !! _ ! l I i lil i/i i !'+i i i i i i 1 I i i!IA 71I i I i !.i I i i 0'i I I ' d 0 0 40 80 120 160 200 B BANK POSITION (5 STEPS / DIVISION) l I NE-1176 NIC14 Startup Physics'lests Report Page 25 of 57

I SECTION 4 BORON ENDPOINT AND WORTH MEASUREMENTS I Boron Endpoint With the reactor critical at hot zero power, reactor coolant system (RCS) boron concentrations were measured at selected rod bank configurations to enable a direct comparison of measured boron endpoints with design predictions. For each critical boron l concentration measurement, the RCS conditions were r ilized with the control banks at E or very near a selected endpoint position. Adjustments to the measured critical boron concentration values were made to account for off-nominal control rod position and moderator temperature, if necessary. The results of these measurements are given in Table 4.1. As shown in this table and in the Startup Physics Test Results and Evaluation Sheets given in the Appendix, the measured critical boron endpoint values were within their respective design tolerances. The ARO endpoint comparison to the predicted value met the requirements of Technical 1 Specification 4.1.1.1.2 regarding core reactivity balance. In summary, the boron endpoint results were satisfactory. Boron Worth Coefficient The measured boron endpoint values provide stable statepoint data from which the boron worth coefficient or differential boron worth (DBW) was determined. By I relating each endpoint concentration to the integrated rod worth present in the core at the NE-1176 N1C14 Startup Physics Tests Report Page 26 of 57 3 i

time 'of the endpoint measurement, the value of the DBW over the range of boron .- endpoint concentrations was obtained. A summary of the measured and predicted DBW is shown in Table 4.2. As indicated in this table and in the Appendix, the measured DBW was well within the design tolerance of *10%. In summary, the measured boron worth coefficient was satisfactory. 1 i f 1 NE-1176 N1C14 Startup Physics Tests Report Page 27 of 57

I I Table 4.1 NORTH ANNA UNIT I - CYCLE 14 STARTUP PHYSICS TESTS BORON ENDPOINTS

SUMMARY

I Measured Predicted Difference Control Rod Endpoint Endpoint M-P Configuration (ppm) (ppm) (ppm) I ARO 2149 2154 -5 B Bank In 1963 1955* 8 I

  • The predicted endpoint for the B Bank In configuration was adjusted for the difference between the measured and predicted values of the endpoint taken at the ARO EW configuration as shown in the boron endpoint Startup Physics Test Results and Evaluation Sheet in the Appendix.

I I I Ei I: Ii Il iI NE-1176 NIC14 Startup Physics Tests Report Page 28 of 57 I:

I Yable 4.2 - NORTH ANNA UNIT 1 - CYCLE 14 STARTUP PHYSICS TESTS BORON WORTH COEFFICIENT Measured Predicted Percent Boron Worth Boron Worth Difference (%) (pcm/ ppm) (pcm/ ppm) (M-P)/P x 100 -6.89 -6.54 5,4 (? L, I 1 NE-1176 NIC14 Startup Physics Tests Report Page 29 of 57 L

I, SECTION 5 TEMPERATURE COEFFICIENT MEASUREMENT I The isothermal temperature coefficient (ITC) at the all-rods-out condition is measured by controlling the reactor coolant system (RCS) temperature with the steam dump valves to the condenser, establishing a constant heatup or cooldown rate, and l monitoring the resulting reactivity changes on the reactivity computer. I Reactivity was measured during the RCS cooldown of 3.7 F and RCS heatup of 3.3 F. Reactivity and temperature data were taken from the reactivity computer and strip chart recorders. Using the statepoint method, the temperature coefficient was determined by dividing the change in reactivity by the change in RCS temperature. An X-Y plotter, which plotted reactivity versus temperature, confirmed the statepoint method in calculating the measured ITC. I values are The predicted and measured isothermal temperature coefficient compared in Table 5.1. As can be seen from this summary and from the Startup Physics Test Results and Evaluation Sheet given in the Appendix, the measured isothermal temperature. coefficient value was within the design tolerance of 23 pcm/ F. The moderator temperature coefficient was determined to be -0.61 pcm/ F which met the requirements of COLR Section 2.1.1. In summary, the measured results were I satisfactory. NE-1176 N1C14 Startup Physics Tests Report Page 30 of 57 I

+ l Table 5.1 NORTH ANNA UNIT 1 - CYCLE 14 STARTUP PHYSICS TESTS ISOTHERMAL TEMPERATURE COEFFICIENT

SUMMARY

ISOTHERMAL TEMPERATURE BANK TEMPERATURE BORON COEFFICIENT (PCM/0F) POSITION RANGE CONCENTRATION AVE DIFFER (STEPS) (OF) (ppm) C/D H/U MEAS PRED (M-P) 544.4 D/211 to 2145 -2.43 -2.27 -2.35 -2.49 0.14 '548.1 NE-1176 N1Cl4 Startup Physics Tests Report Page 31 of 57

SECTION 6 POWER DISTRIBUTION MEASUREMENTS I The core power distributions were measured using the moveable incore detector flux mapping system. This system consists of five fission chamber detectors which traverse fuel assembly instrumentation thimbles in up to 50 core locations. Figure 1.3 l shows the available locations monitored by the moveable detectors for the ramp to full I power flux maps for Cycle 14. For each traverse, the detector voltage output is continuously monitored on a strip chart recorder, and scanned for 61 discrete axial points by the PRODAC P-250 process computer. Full core, three-dimensional power distubutions are determined from this data using a Virginia Power modified version of 3 the Combustion Engineering computer program, CECOR. CECOR couples the measured voltages with predetermined analytic power-to-flux ratios in order to determine l the power distribution for the whole core. E A list of the full-core flux maps taken during the startup test program and the i measured values of the important power distribution parameters are given in Table 6.1. A comparison of these measured values with their COLR limits is given in Table 6.2. Flux l l 5 l map 1 was taken at 29% power to verify the radial power distribution (RPD) predictions at low power. ' Figure 6.1 shows the measured RPDs from this flux map. Flux maps 2 and 3 were taken at 71% and 100% power, respectively, with different control rod I configurations. These flux maps were taken to check at-power design predictions and to NE-1176 NIC14 Startup Physics Tests Report Page 32 of 57 I

measure core power distributions at various operating conditions. The radial power distributions for these maps are given in Figures 6.2 and 6.3. The radial power distributions for the maps given in Figures 6.1, 6.2, and 6.3 show that the measured relative assembly power values were generally within 2.1% of the predicted values. Further, the measured F-Q(Z) and F-DH(N) peaking factor values for the at-power flux maps were within the limits of COLR Sections 2.5.1 and 2.6, respectively. Flux maps 1, 2, and 3 were also used to perform power range detector calibrations. The flux map analyses are documented in Reference 7. In conclusion, the power distribution measurement results were considered to be acceptable with respect to the design tolerances, the accident analysis acceptance criteria, and the COLR. It is therefore anticipated that the core will continue to operate safely throughout Cycle 14. i NE-1176 N1Cl4 Startup Physics Tests Report Page 33 of 57

I Table 6.1 NORTH ANNA UNIT 1 - CYCLE 14 STARTUP PHYSICS TESTS INCORE FLUX MAP

SUMMARY

I Burn Bank Peak F-Q(Z) Hot (l) F-DH(N) Hot Core F(Z) (2) Axial No. I Map Map up Pwr D Channel Factor Channel Factor Max Core Tilt off of Description No. Date MWD / Steps Assy Axial F-Q(2) Assy F-DH(N) Axial F(Z) Max Loc set Thim 3 MTU Point point (9r) bles Low Power 1 10/9/98 8 29 156 NIO 30 2.038 NIO 1.476 31 1.278 1.0209 NW -2.67 47 Int. Pwr (3) 2 10/10/98 31 71 183 N06 31 1.886 N06 1.426 31 1.211 1.0173 NW -2.23 47 Hot Full Pwr 3 10/2338 490 100 227 N06 36 1.746 N06 1.379 31 1.148 1.0129 NW -0.58 47 NOTES: Hot spot locations are specified by giving assembly locations (E.G. H-3 is the center-of-core assembly) and core height (in the "Z" direction the core is divided into 61 axial points starting from the top of the core). (1) F-Q(Z) includes a total uncertainty of 1.05 X 1.03. (2) CORE TILT - defined as the average quadrant power tilt from CECOR. (3) Int. Pwr - intermediate power flus map. (4) MAPS 1,2. and 3 were used for power range detector calibrations. I I I I I I I I NE-1176 NICl4 Startup Physics Tests Report Page 34 of 57

Table 6.2 NORTH ANNA UNIT 1 - CYCLE 14 STARTUP PHYSICS TESTS COMPARISION OF MEASURED POWER DISTRIBUTION PARAMETERS WITH THEIR CORE OPERATING LIMITS Peak F-Q(Z) Hot F-Q(Z) Hot F-DH(N) Hot Map Channel Factor

  • Channel Factor *
  • Channel Factor (At Node of Minimum Margin)

No. Meas. Limit Node Meas. Limit Node Margin Meas. Limit Mardn (%) (%) 1 2.038 4.369 30 2.034 4.347 28 53.2 1.476 1.806 18.3 2 1.886 3.086 31 1.871 3.047 26 38.6 1.426 1.620 Fa 3 1.7h j 2.190 36 1.738 2.179 29 20.2 1.379 1.490 7.4

  • The Core Operating Limit for the heat flux hot channel factor, F-Q(Z), is a function of core height and power level. The value for F-Q(7-) listed above is the maximum value of F-Q(Z) in the core. The COLR limit listed above is evaluated at the plane of maximum F-Q(Z).
    • The value for F-Q(Z) listed above is the value at the plane of minimum margin. The minimum margin values listed above are the minimum percent difference between the measured values of F-Q(Z) and the COLR limit for each map.

The measured F-Q(Z) hot channel factors include 8.15% total uncertainty, NE-1176 NIC14 Startup Physics Tests Report Page 35 of 57

a Figure 6.1 NORTH ANNA UNIT 1 - CYCLE 14 STARTUP PHYSICS TESTS ASSEHBLYWISE POWER DISTRIBUTION 29% POWER R P H H L E J H C F E D C 8 A PREDICTED PREDICTED . 0.247. 0.278. 0.247. HEASURED . 0.251. 0.282. 0.254. HEASURED 1 . PCT CIFFERENCE. 1.9. 1.6. 2.9. . PCT DIFFERENCE. . 0.348. 0.457. 1.063. 0.859. 1.061. 0.657. 0.349. 2 . 0.354. 0.670. 1.086. 0.876. 1.096. 0.701. 0.360. 1.8. 2.0. 2.1. 2.0. 3.3. 6.6. 3.0. . 0.377. 3.147. 1.309. 1.199. 1.221. 1.198. 1.309. 1.149. 0.378 3 . 0.385. 1.166. 1.333. 1.224. 1.244. 1.225. 1.338. 1.161. 0.373. 2.1. 1.7. 1.9. 2.1. 1.9. 2.3. 2.3. 1.0. -1.4. . 0.380. 0.890. 1.265. 1.290. 1.227. 1.006. 1.227. 1.290. 1.265. 0.889. 0.378. 4 0.395. 0.909. 1.281. 1.312. 1.256. 1.039. 1.250. 1.303. 1.242. 0.875. 0.370. 4.0. 2.2. 1.3. 1.7. 2.3. 3.4. 1.9. 1.1. -0.2. 1.6. -2.2. . 0.350. 1.151. 1.267. 1.208. 1.233. 1.192. 1.205. 1.192. 1.233. 1.208. 1.266. 1.148. 0.349. b . 0.367. 1.213. 1.300. 1.216. 1.249. 1.222. 1.224. 1.205. 1.237. 1.186. 1.250. 1.117. 0.332. 4.9. 5.4. 2.6. 0.7. 1.3. 2.5. 1.6. 1.1. 0.4. -1.8. -2.8. -2.7. -4.8. 1 0.658. 1.310. 1.291. 1.233. 1.886. 1.227. 1.236. 1.227. 1.085. 1.233. 1.290. 1.310. 0.658. 6 0.685. 1.362. 1.319. 1.227. 1.089. 1.241. 1.232. 1.232. 1.098. 1.216. 1.259. 1.281. 0.648. 4.1. 3.9. 2.2. -0.5. 0.5. 1.1. -0.3. 6.4. 1.2

  • 1.3.

-2.4. -2.2. -1.5. . 0.248. 1.062. 1.199. 1.228. 1.192. 1.227. 1.257. 1.178. 1.256. 1.225. 1.191. 1.228. 1.200. 1.064. 0.247. 0.248. 7 . 0.257. 1.104 1.250. 1.257. 1.233. 1.239. 1.280. 1.180. 1.252. 1.213. 1.167. 1.186. 1.177. 1.070, 3.8. 3.9. 4.3 2.4. 0.9. 0.9. 1.8. 0.2. -0.3. -1.0. -2.0. -3.4. -1.9. 0.5. 0.3. . 0.279. 0.860. 1.222. 1.006. 1.204. 1.234. 1.174. 1.135. 3.171. 1.233. 1.204. 1 006. 1.221. 0.859. 0.278. 1 . 0.288. 0.886. 1.259. 1.028. 1.212. 1.243. 1.180. 1.131. 1.156 1.202. 1.173. 0.978. 1.194. 0.860. 0.278. 8 3.3. 3.1. 3.1. 2.2. 0.6. 0.7. 0.5. -0.4. - 1.4 -2.5. -2.6 -2.7 -2.5. 0.0. -0.2. . 0.247. 1.065. 1.200. 1.228. 1.191. 1.224. 1.252 1.169. 1.251. 1.224. 1.191. 1.227. 1.198 1.061. 0.247. 0.255. 1 101. 1.240. 1.257. 1.207. 1.230. 1.250. 1.155. 1.223. 1.179. 1.155. 1.195. 1.170. 1.041. 0.242. 9 3.4 3.4. 3.3. 2.4. 1.3. 0.5. -0.2. -1.2. -2.2. -3.7. -3.0 -2.6. -2.4. -2.0 -2.0. 0.658. 1.309. 1.290. 1.232. 1.084. 1.224 1.231. 1.223. 1.083. 1.231 1.290. 1.309 0.657. 0.683 1.364 1.327. 1.255. 1.084. 1.216. 1.208. 1.188. 1.038. 1.191 1.259. 1.275. 0.650. 10 3.8. 4.2 2.9. 1.9 0.0. - 0. 7. -1.9. -2.9. -4.2. -3.3. -2.4. -2.6. -4.2. j 0.349 1.148. 1.265. 1.207. 1.231. 1.190. 1.202. 1.190. 1.231. 1.206. 1.265. 1.150 0.350. r i . 0.361. 1.186. 1.300. 1.244 1.229. 1.165. 1.166. "1.149. 1.164. 1.161. 1.237 1.122 0.339 It i 3.5. 3.3. 2.8. 3.1. -0.2. -2.1 -3.0 -3.4. 5.4 -3.8. -2.2. -2.4 -3.1. . 0.378 0.889. 1.264 1.288. 1.225 1.004. 1.226. 1.286. 1.263 0.889. 0.379 . 0.384. 0.902. 1.271. 1.269. 1.167. 0.974. 1.197. 1.259. 1.241. 0.890 - 0.372. 12 1.7. 1.5. 0.5. -1.5. -4.8. -3.0. -2.3.

  • 2.3.

-1.8. 0.2 -1.9. l L 6.378. 1.148. 1.107. 1.196. 1.220. 1.197, 1.307. 1.145. 0.377. l 0.379. 1.140. 1.285. 3.164 1.195. 1.187. 1.310. 1.138. 0.375 13 0.2. -0.7. -1.7. -2.7. -2.0. -0.8. 0.2. -0.6. -0.3. . 0.349 0.656. 1.060 0.857. 1.062. 0.656. 0.348 14 . 0.339. 0.642. 1.034. 0.844. 1.072. 0.659. 0.347. -2.8. -2.1. -2,4. -1.6. 0.9. 0.4. -0.3. STANDARD . 0.247. 0.278. 0.246. AVERACE DEV1& TION . 0.233. 9.272. 0.247. . PCT DIFFERENCE. 15 2.1 al.312 -5.5 -1.9. 0.2. = l

SUMMARY

HAP HO: N1-14-01 DA7F. 10/09/98 POWER: 29% m 2.038 CORE TILT: CONTROL ROD POSITIONS

  • D BANK AT 156 STEPS DH(H) = 1.476 NW 1.0209 l NE 0.9978 I

FtZ)

1.278 SW 1.0039 l SE 0.9774 BURNUP a 8 HWD/MTU A.O.

-2.67% E NE-11io NIC14 Startup Physics Tests Report Page 36 of 57 l

Figure 6.2 NORTH ANNA UNIT 1 - CYCLE 14 STARTUP PHYSICS TESTS-ASSEMBLYWISE POWER DISTRIBUTION 71% POWER A' .P N M' L K J 'H C F E D-C 8 PREDICTED 9.266. 0.306. 9.2M. PREDICTED MESSURED . 0.268. 0.303. 9.272. MEASURED 1 . PCT DIFFERENCE. 0.7. -0.9. 2.0. . PCT DIFFERENCE. [ 0.355. 0.668.1.089. 0.926.1.087. 0.M8. 0.356. 0.358. 0.675. 1.103. 0.938. 1.110. 0.712. 0.366. 2 0.9. 1.1. 1.3. 1.4. 2.9. 6.6. 2.9 '. 0.381. 1.124. 1.240. 1.197. 1.229. 1.196. 1.280. 1.126. 0.382. 3 .. 0.388. 1.132. 1.293. 1.212. 1.244. 1.219. 1.308. 1.135. 0.369. 7 1.9. 0.8. 1.0.

1. 2.

1.3. 2.0. 2.2. 0.8. -3.5. . 0.384. 0.881. 1.231. 1.263. 1.212. 1.010. 1.211. 1.263. 1 231. 0.860. 0.382. 4 . 0.396 4 0.894. 1.231. 1.275. 1.228. 1.033. 1.231. 1.279. 1.231. 0.045. 0.374. 3.1. 1.5. 0.0. 0.9. 1.4 2.1. 1.6. 1.3. 0.0. -1.7. -2.2. . 0.356. 1.127. 1.233. 1.192. 1.225. 1.149. 3.195. 1.189. 1.225. 1.192. 1.232. 1.125. 0.355. 5 . 0.370.' 1.178. 1.262. 1.210. 1.239. 1.205. 1.212. 1.793. 1.231. 1.181. 1.198. 1.096. 0.338. 4.0. 4.5. 2.4.

1. 5.

1.1. ,1.4. 1.5. 4 1. 0.5. -0.9. -2.8.

  • 2.6.

-4.7. . 0.668. 1. 281. 1.265. 1.226. 1.140, 1.231. 1. 233. 1.231. 1.139. 1. 225. 1.264. 1. 281. 0.M8. 6 . 0.690. 1.323. 1.290. 1.229. 1.150. 1.249. 1.244. 1.242. 1.145. 1.212. 1.237. 1.256. 0.659. 3.2. 3.2. 2.0'. 0.2. 0.9. 1.5. 0.9. 0.9. 0.5. -1.0. -2.1. -2.0. -1.4. . 0.267. 1.088. 1.197. 1.212 '. 1.190. 1.231. 1.261. 1.180. 1.260. 1.229. 1.189. 1.212. 1.198. 1.090. 9.266. . 0.274.1.120.1.236.1.236.1.203.1.250,1.298.1.197.1.276.1.225.1.171.' 3.178.1.178. 3.095. 0.2M. 7 .2.7. 2.9. 3.3. 2.0. 1.2. 1.5. 2.9. 1.4. 1.3. -0.4. -1.5. -2.4. -1.7. 0.5. 0.1. . 0.307. 0.927. 1.229. 1.010. 1.195. 1.231 1.177. 1.143. 1.175. 1.231. 1.195. 1.010. 1.229. 0.927. 0.307 . 0.314. 0.946. 5 252. 1.027. 1.203. 1.247. 4.193. 1.150. 1.171. 1.210. 1.171. 0.987. 1.200. 0.921. 0.304. 8 2.2. 2.1. 1.9 1.7. 0.6. 1.3. 1.4 0.6. -0.3.

  • 1.7.

-2.0. -2.3. -2.4. -0.6. -1.0. . 0.266. 1.090.,.198. 1.212. 1.189. 1.228. 1.257. 1.172. 1.256. 1.228. 1.188. 1.231. 3.196. 1.087. 0.267 . 0.272. 1.113. 1.222. 1.234. 1.220. 1.243. 1.265. 1.169. 1.238. 1.190. 1.160. 1.184. 1.172. 1.069. 0.256. 9 2.1. 2.1. 2.0. 2.0. 2.6, 1.2. 0.7. -0.3. -1.4 -3.1. -2.4. -2.2. -2.0. -1.7. -4.1. . 0.668, 1.241. 1.264. 1.225. 1.138. 1.229. 1.230. 1.228. 1.138. 1.225. 1.264. 1.281. 0.668. 10 0.o82. 1.306. 1.245. 1.243. 1.143. 1.230. 1.217. 1.203. 1.102. 1.193. 1.238. 1.256. 0.656. (. ~ 2.0. 2.0. 1.7.

1. 5.

0.4 8.1. -1.0.

  • 2.0.
  • 3.2.

-2.6. -2.1. -1.9. -1.8. . 0.355. '.124. 1.231. 1.191. 1.224. 1.188. 1.194. 1.180. 1.224. 3 191. 1.232. 1.127. 0.356. 0.361. 1.143. 1.247. 1.205. 1.221. 1.173. 1.167. 1.158. 1.176. 1.160. 1.213. 1.107. 0.350. 1.7.

1. 6. - 1.3.

1.2. -0.3. 1.3. -2.3. 2.5. -3.9. -2.6. -1.5. -1.7. -1.8. 0.302. 0.880. 1.231. 1.263. 1.210. 1.009. 1.211. 1.262. 1.230. 0.880. 0.384 12 0.385. 0.884. 1.227. 1.247. 1.176. 0.986. 1.187. 1.237. 1.215. 0.891. 0.375. 0.8. -0,4. -0.3. -1.2. -2.9. -2.2. 2.0. 2.0. -1.2. 1.2. -2.2. 0.382. 1.125. 1.279. 1.195. 1.228. 1.197. 1.279. 1.123. 0.381. 0.380. 1.111. 1.258. 1.169. 1.204. 1.183. 1.267. 1.113. 0.381. 13 -0.6. -1.3. -1.7. -2.2. -2.0. 1.1. -1.0. -0.9. 0.0. ~ 4.355. 0.667. 1.086. 0.925. 1.089. 0.667. 0.354 14 0.340. 0.652. 1.039. 0.910. 1.094. 0.665. 0.352. -4.4. -2.3.

  • 2.5.

-1.7. 0.5. -0.3. -0.7. -STANDARD 0.266. 0.306. 0.266. AVERACE DEVISTION 0.247. 0.299. 0.265. . PCT ORFFERENCE. 15 l.7 .!.!!6 - 7.1. -2.4. -0.2. f ' SUNNARY ' HAP NO: N1-14-02 SATE 1 10/10/98 POWER: 71% CONTROL RCD POSITIONS: F-Q(Z) a 1.886 CORE TILT D BANK AT 183 STEPS F-DHtN) 8 1.426 NW 1.0173 1 NE 0.9993 i 'F(Z) = 1.211 'SW 1.0012 l SE 0.9822 BURNUP = 31 MWD /MTU A.O. = -2.23% r NE-1176 N1C14 Startup Physics Tests Report Page 37 of 57 t 1 F-

Figure 6.3 NORTH ANNA UNIT 1 - CYCLE 14 STARTUP PHYSICS TESTS ASSEHBLYWISE POWER DISTRIBUTION 100% POWER R P H H L K J H C F g 0 C 8 A g PREDICTED PREDICTED . 0.278. 0.327. 0.278. .. PCT DIFFERENCE. HEASURED 1 HEASURED . 0.280. 0.530. 0.283. 0.7. 0.9. 1.8. . PCT DIFFERENCE. 0.354. 0.667. 1.089. 0.978. 1.087. 0.667. 0.355. 2 0.355. 0.670. 1.098. 0.988. 1.111. 0.700. 0.365. 0.3. 0.5. 0.8. 1.0. 2.2. 5.1. 2.8. . 0.380. 1.091. 1.251. 1.185. 1.231. 1.184. 1.251. 1.093. 0.381. 3 . 0.385 '.093. 1.256. 1.192. 1.234. 1.201. 1.275. 1.109. 0,385. 1.3. 0.2. 0.4. 0.6. 0.2. 1.4. 1.9. 1.4. 1.0. 0.383. 0.868. 1.205. 1.241. 1.204. 1.612. 1.204. 1.241. 1.206. 0.868. 0.381. 4 0.391. 0.875. 1.198. 1.247. 1.215. 1.035. 1.221. 1.257, 1.211. 0.460. 0.375. 2.1. 0.8. -0.6. 0.4. 0.9. 2.3. 1.4. 1.2. 0.5. -0.9. -1.6. . 0.355. 1.095. 1.207. 1.184. 1.236. 1.194. 1.199. 1.194. 1.235. 1.183 5 2.8. 3.1. 1.7. 1.5. 0.9. 0.7. 1.3. 1.1. 0.5 - 0.2. -2.6. -2.1. -2.7. . 0.365. 6 ................................................................................0.667. 1.252. 1 242. 1.236. 1.212. 1.252. 1.239. 1.252. 1.212. 1.;36. 6 0.683. 1.262. 1.259. 1.231. 1.224. 1.271. 1.254. 1.265. 1.210. 1.225. 1.218. 1.230. 0.661. 2.4. 2.4. 1.3. -0.4. 1.0. 1.6. 1.2. 1.1. -0.2. -0.9. -1.9. -1.7.

  • 1.0.

.....................................................................................................0.279. 1.088. 1.184. 1.204 0.284. 1.113. 1.218. 1.222. 1.204. 1.271. 1.316. 1.215. 1.298. 1.251. 1.180 1.174. 1.166. 1.095. 0.279. 7 2.1. 23. 2.9. 1.5. 0.8. 1.6. 3.5. 2.0. 2.2. 0.1. -1.2. 2.5. -1.7. 0.5. 0.2. 0.327. 0.979. 1.231. 1.012. 1.199. 1.238. 1.189. 1.161. 1.187. 1.237, 1.199. 1.012. 1.231. 0.979. 0.327. 8 0.332. 0.992. 1.241. 1.022. 1.201. 1.253. 1.208. 1.173. 1.191. 1.231. 1.181. 0.990. 1.193. 0.9 1.5. 1.4. 0.8.

1. 0.

0.2. 1.2. 1.6. 1.0. 0.4. 0.5. -1.5. -2.2. -2.7. 0.3. -0.2. l ......................................................................................................1.194. 1.204. 1.184. 1.088. 0.279. 1.268. 1.185. 1.267. 1.250 9 0.278. 1.090. 1.186. 1.204. 1.194. 1.250 0.281. 1.103. 1.197. 1.221. 1.226. 1.265. 1.278. 1.184. 1.253. 1.212. 1.168. 1.179. 1.163. 1.078 1.2. 1.2. 1.0. 1.4. 2.7. 1.3. 0.8. -0.1. -1.1. -3.0. -2.2

  • 2.0.

-1.8. -0.9. -2.3. ................................................................................. 0.667. 1.251. 1.242. 1.235. 1.211. 1.250. 1.236. 1.24 10 O.673. 1.259. 1.254. 1.249. 1.218. 1.252. 1.225. 1.228. 1.180. 1.208, 1.216. 1.233. 0.663. i 0.9. 0.6. 1.0. 1.1. 0.6. 0.1. -0.9. -1.7. -2.5. -2.2 -2.0. -1.5. -0.6. 0.355. . 0.354. 1.092. 1.206. 1.183. 1.235. 1.193. 3.198. 1.193. 1.235. 1.183. 1.206. 1.094352. 11 0.357. 1.103. 1.214. 1.190. 1.230. 1.179. 1.172. 1.166. 1.193. 1.162. 1.196. 1.083. 0. 0.8. 0.9. 0.7. 0.6. -0.4. 1.2. .Z.1. -2.2. -3.4 -1.8. -0.8. -1.0. -0.9. 0.867. 1.205. 1.241. 1.203. 1.011. 1.201 1.241. 1.205 0.868. 0.333. 12 . 0.181 . 0.390. 0.871. 1.200. 1.226. 1.170. 0.989. 1.180. 1.216. 1.195. 0.888. 0.381. 2.3. 0.4 -0.4 -1.2. -2.7. 2.1. -1.9. 2.0. -0.8 2.4 -0.5. 0.380. . 0.381. 1.093. 1.250. 1.183. 1.230. 1.184. 1.250. 1.091 13 0.380. 1.082. 1.233. 1.161. 1.209. 1.169. 1.227. 1.0/9. 0.382. -0.5. -1.0 -1.4 1.8. -1.8. -1,3. -1.8. -1.1. 0.4 . 0.355. 0.666. 1.087. 0.977. 1.089 0.666. 0.354 14 . 0.344. 0.655. 1.070. 0.968. 1.094. 0.661. 0.350. -2.9. -1.6. -1.5. 1.0 0.5. -0.8. - 1. 0. AVERACE STANDARD . 0.278. 0.327. 0.278. 15 . PCT DIFFERENCE. DEVIATION . 0.273. 0.324. 0.278. 1.4 = 0.844 -1.9. -0.9. 0.1.

SUMMARY

HAP H0: H1-14-03 DATE: 10/22/98 POWER: 100% CONTROL ROD POSITIONS: F-Q(Z) = 1.746 CORE TILT: D BANK AT 227 STEPS F-DH(N) = 1.379 NW 1.0129 i NE 1.0013 I F(Z) = 1.148 SW 1.0002 i SE 0.5856 = BURNVP = 490 HWD/NTU A.C. = -0.58% I NE-1176 NIC14 Startup Physics Tests Report Page 38 of 57 I L

[ SECDON 7 REFERENCES L1. P.D. Banning, " North Anna Unit 1, Cycle 14 Design Report", Technical Report NE-1172, Revision 0, Virginia Power, October,1998. f.

2. T. K. Ross, W. C. Beck, " Control Rod Reactivity Worth Determination By The Rod Swap Technique," VEP-FRD-36A, December,1980.
3. T. W. Schleicher, "The Virginia Power CECOR Code Package", Technical Report NE-831, Revision 4, Virginia Power, August,1998.

~

4. North Anna Unit 1 Technical Specifications, Sections 1.19,3.1.3.4,3.2.2,3.2.3, 3.1.1.4,4.1.1.1.2, and 4.2.2.2 and Core Operating Limits Report (COLR) for North Anna 1, Cycle 14 Pattern XY, Revision 0 (September,1998) Sections 2.1.1,2.5.1, and 2.6.
5. Letter from W. L. Stewart (Virginia Power) to the U.S.N.R.C, "Surry Power Station Units 1 and 2, North. Anna Power Station Units 1 and 2: Medification of Startup Physics Test Program - Inspector Followup Item 280,281/88-29-01", Serial No. 89-541, December 8,1989.

f

6. C. D. Clemens, " North Anna 1, Cycle 14 TOTE Calculations", PM-768, Revision 0, October,1998.

f

7. R. A. Hall, et al, " North Anna 1, Cycle 14 Flux Map Analysis", PM-772, Revision 0, and Addenda A and B, October,1998.
8. S. S. Kere, " Reload Safety Evaluation, North Anna 1 Cycle 14 Pattern XY", Technical

' Report NE-1167, Revision 1, September,1998.

9. Engineering Transmittal NAF 98-0159, Revision 0, from W. M. Oppenhimer to R. G.

McAndrew," Core Operating Limits Report, North Anna 1 Cycle 14 Pattem XY", { September 29,1998. [. NE-1176 N1C14 Startup Physics Tests Report Page 39 of 57

. _ _ _... _. _.. _ _ _ _... _. ~ _ _.. _. _. _. _ _ _.. _ _ _ _. _ _ _... _ _.... _ _ _.. Il I. APPENDIX STARTUP PHYSICS TEST RESULTS g' E AND EVALUATION SHEETS I I I I i I I I I I l I I I I NE-1176 N1Cl4 Startup Physics Tests Report Page 40 of 57 I

i I ) NORTH ANNA POWER STATION UNIT i CYCLE 14 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET l' -- Test

Description:

Zero Power Testing Range Determination Reference Proc No / Section: 1-PT-94.0 Sequence Step No: 11 Bank Positions (Steps) RCS Temperature ( F): 547 Power Level (% F.P.): O Test Conditions SDA: 227 SDB: 227 CA: 227 Other (specify): (Design) CB: 227 CC: CD: Below Nuclear Heating ill Bank Positions (Steps) RCS Temperature ( F): 59 7, y Power Level (% F.P.): O Test Conditions SDA: 227 SDB: 227 CA: 227 Other (specify): (Actual) CB: 227 CC:.2T7 CD: 834 Below Nuclear Heating Date/ Time Test Performed: oofr/n 15 % Reactivity Computer initial j* g 9 Flux Background Reading amps IV Test Results Flux Reading At 6 6V/6' amps Point Of Nuclear Heating l Yio '0 I d # ~ to amps Zero Power Testing Range Reference Not Applicable V FSARTrech Spec Not Applicable Acceptance Criteria Reference Not Applicable Design Tolerance is met" / YES NO Acceptance Criteria is met" ' ~ 7 YES NO VI

  • At The Just Critical Position Comments

" Design Tolerance and Acceptance Criteria are met if ZPTR is below the Point of Nuclear Heating and above background. l)0// .n Reviewed By: dDfx Prepared By: y I e i NE-1176 N1Cl4 Startup Physics Tests Report Page 41 of 57 r

i Il' NORTH ANNA POWER STATION UNIT 1 CYCLE 14 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEETgl T-Test

Description:

Reactivity Computer Checkout Reference Proc No / Section: 1-PT-94.0 Sequence Step No: 11 Bank Positions (Steps) RCS Temperature ( F): 547 Power Level (% F.P.): O Test Conditions SDA: 227 SDB: 227 CA: 227 Other (specify): (Design) CB: 227 CC: CD: Below Nuclear Heating 111 Bank Positions (Steps) RCS Temperature ( F): "M E Power Level (% F.P.): 0 3 Test Conditions SDA: 227 SDB: 227 CA: 227 Other (specify): (Actual) CB: 227 CC: 1%) CD: 1 ?> 'I Below Nuclear Heating Date/ Time Test Performed: I, 10h/cyy 1700 Measured Parameter pc= Measured Reactivity using p-computer (Description) pt= Predicted Reactivity IV Test Results Measureu Value pc= -'fL O fem + $3. O ge% pt= -%. 5' pc-4 63.9 pcm %D= sl.1'). - 0. 2 9, Design Value %D= {(pc-pt)/pt} x 100% s 4.0 % I WCAP 7905, Rev.1, Table 3.6 Reference V FSAR/ Tech Spec Not Applicable Acceptance Criteria Reference Not Applicable Design Tolerance is met / YES NO Acceptance Criteria is met / YES NO Vi

  • At The Just Critical Position Comments The allowable range will be set based on the above results, as wel! as results from the benchmark test.

Allowable Range = ~ '/(. pcm Y* + 3 FCm Prepared By: Reviewed By: I Page 42 of 57 l NE-1176 NIC14 Startup Physics Tests Report 5

NORTH ANNA POWER STATION UNIT 1' CYCLE 14 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET 1-Test

Description:

Critical Boron Concentration - ARO Reference Proc No / Section: 1-PT-94.0 Sequence Step No: ll Bank Positions (Steps) RCS Temperature ( F): 547 Test Power Level (% F.P ): O Conditions SDA: 227 SDB: 227 CA: 227 Other (specify): (Design) CB: 227 CC: 227 CD: '227 Below Nuclear Heating i lil Bank Positions (Steps) RCS Temperature ( F): 54 /,.1 Test Power Level (% F.P.): 0 Conditions SDA: 227 SDB: 227 CA: 227 Other (specify): (Actual) CB: 227 CC: 227 CD: 227 Below Nuclear Heating Date/ Time Test Performed: loh/n /Wo Measured Parameter (Ce)"ARO: Critical Boron Concentration - ARO (Description) IV Test Results Measured Value (CB)"ARO= 7.l O ppm (Design Conditions) Design Value CB = 2154 t 50 ppm (Design Conditions) Reference Technical Report NE-1172, Rev. O V FSAR/ Tech Spec laCBxCB l s 1000 pcm Acceptance Criteria Reference Technica! Specification 4.1.1.1.2 / YES NO Design Tolerance is met Acceptance Criteria is met : / YES NO VI Comments eCB = -6.48 pcm/ ppm CB = l(CB)"ARO - CBl; CB s design value i Prepared By: Reviewed By: NE-1176 N1Cl4 Startup Physics Tests Report Page 43 of 57 f

l NORTH ANNA POWER STATION UNIT 1 CYCLE 14 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET r-Test

Description:

Isothermal Temperature Coefficient - ARO Reference Proc No / Section: 1-PT-94.0 Sequence Step No: 11 Bank Positions. Steps) RCS Temperature ( F): 547 Power Level (% F.P.): 0 Test Conditions SDA: 227 SDB: 227 CA: 227 Other (specify): E (Design) CB: 227 CC: 227 CD: 227 Below Nuclear Heating 3 Ill Bank Positions (Steps) RCS Temperature ( F): 59 %.] Test Power Level (% F.P.): O Conditions SDA: 227 SDB: 227 CA: 227 Other (specify): (Actual) CB: 227 CC: 227 CD: 2)) Below Nuclear Heating Daterrime Test Performed: /0[?/7tr- /9.f/ Measured Parameter (aT'8 )ARO Isothermal Temperature (Description) Coefficient - ARO IV Test Measured Value (aT'8 )ARO = - l.6 pcm/ F Results (CB= 219 f ppm) E5 Design Value (Actual Conditions) (aTes )ARO =-239:3.0 pcm/ F (CB: 2/yr-ppm) Design Value (Design Conditions) (aT'S )ARO =-2.41:3.0 pcm/ F (CB= 2154 ppm) Reference Technical Report NE-1172, Rev. O V FSAR/COLR aT'8 s 3.76 pcm/ F

  • Acceptance aT " = -1.74 pcm/ F Criteria Reference COLR 2.1.1, Technical Report NE-1172, Rev. 0

/ YES NO l Design Tolerance is met Acceptance Criteria is met - p/ YES NO VI l Comments

  • Uncertainty on aTMOD = 0.5 pcm/ F (

Reference:

memorandum from l C.T. Snow to E.J. Lozito dated June 27,1980.) l NE-1176 NIC14 Startup Physics Tests Report Page 44 of 57 I

I l NORTH ANNA POWER STATION UNIT 1 CYCLE 14 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET l_ Test

Description:

Control Bank B Worth Measurement, Rod Swap Ref. Bank Reference Proc No / Section: 1-PT-94.0 Sequence Step No: il Bank Positions (Steps) RCS Temperature ( F): 547 Test Power Level (% F.P.): O Conditions SDA: 227 SDB: 227 CA: 227 Other (specify): (Design) CB: moving CC: 227 CD: 227 Below Nuclear Heating 111 Bank Positions (Steps) RCS Temperature ( F): M7./ Test Power Level (% F.P.): 0 ' Conditions SDA: 227 SDB: 227 CA: 227 Other (specify): (Actual) CB: moving CC: 227 CD: 227 Below Nuclear Heating Date/ Time Test Performed: /0 /7[7 P 20: YO I "E'; integral Worth Of Control Bank B,- Measured Parameter B (Description) All Other Rods Out IV Test Measured Value IB"E'= flfl. pcm Results Design Value I "E'= 1269 e 12.7 pcm (Design Conditions) B Reference Technical Report NE-1172, Rev. O and Eng:neering Transmittal NAF 98-0153, Rev. O If Design Tolerance is exceeded SNSOC shall V FSAR/ Tech Spec evaluate impact of test result on safety analysis. Acceptance SNSOC may specify that additional testing Criteria be performed. Reference VEP-FRD-36A Design Tolerance is met / YES NO Acceptance Criteria is met : / YES NO ( VI Comments Prepared By: Reviewed By: NE-1176 N1Cl4 Startup Physics Tests Report Page 45 of 57

I NORTH ANNA POWER STATION UNIT 1 CYCLE 14 g STARTUP PHYSICS TEST RESULTS AND EVALUATION SH Test

Description:

Critical Boron Concentration - B Bank in l T :-- Reference Proc No / Section: 1-PT-94.0 Sequence Step No: RCS Temperature ( F): 547 11 Bank Positions (Steps) Power Level (% F.P.): O Test Conditions SDA: 227 SDB: 227 CA: 227 Other (specify): (Design) CB: O CC: 227 CD: 227 Below Nuclear Heating ill Bank Positions (Steps) RCS Temperature ( F): 5W.1p75,/ 4 Power Level (% F.P.): 0 Test Conditions SDA-227 SDB: 227 CA: 227 Other (specify): (Actual) CB: 0 CC: 227 CD: 227 Below Nuclear Heating g Date/ Time Test Performed: 3 to/7[t e 2;'4e 23: 3o Measured Parameter (CB)"B; Critical Boron Concentration, B Bankin (Description) IV Test Results Measured Value (CB)"B= JH,3 ppm (Design Conditions) CB = 1960+oCB "'" e (10 + 126.9/l ace}) ppm Design Value (Design Conditions) CB= / 7ff' = 29 ppm Technical Report NE-1172, Rev. O Reference V FSAR/ Tech Spec Not Applicable Acceptance Criteria Reference Not Applicable 'YES NO Design Tolerance is met !YES NO l Acceptance Criteria is met VI Comments aCB c -6.54 pcm/ ppm ACB '" = (CB)"ARO - 2154 ppm P Sh Reviewed By:

  1. f.

l Prepared By: NE-1176 N1Cl4 Startup Physics Tests Report Page 46 of 57 I

NORTH ANNA POWER STATION UNIT 1 CYCLE 14 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET Test

Description:

HZP Boron Worth Coefficient Measurement r-Reference Proc No / Section: 1-PT-94.0 Sequence Step No: 11 Bank Positions (Steps) RCS Temperature ( F): 547 Power Level (% F.P.): O Test Conditions SDA: 227 SDB: 227 CA: 227 Other (specify): (Design) CB: moving CC: 227 CD: 227 Below Nuclear Heating ill Bank Positions (Steps) RCS Temperature ( F): 647 3 Power Level (% F.P.): O Test Conditions SDA: 227 SDB: 227 CA: 227 Other (specify): (Actual) CB: moving CC: 227 CD: 227 Below Nuclesr Heating DateTTime Test Performed: Io h b f (9c@ Measured Parameter aCB; Baron Worth Coefficient (Description) IV Test Results Measured Value aCB= -6,99 pcm/ ppm Design Valua aCB = -6.5420.65 pcm/ ppm (Design Conditions) Technical Report NE-1172. Rev. O Reference V FSAR/ Tech Spec Not Applicable Acceptance Criteria Reference Not Applicable V YES NO Design Tolerance is met Acceptance Criteria is met - YES NO VI Comments 8 fU Reviewed By: d.f b Prepared By: V Page 47 of 57 NE-1176 N1C14 Startup Physics Tests Report

NORTH ANNA POWER STATION UNIT 1 CYCLE 14 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET 'l - Test

Description:

Control Bank D Worth Measurement, Rod Swap Reference Proc No / Section: 1-PT-94.0 Sequence Step No: E' il Bank Positions (Steps) RCS Temperature ( F): 547 W Test Power Level (% F.P.): O Conditions SDA 227 SDB: 227 CA: 227 Other (specify): (Design) CB: moving CC: 227 CD: moving Below Nuclear Heating l Ill Bank Positions (Steps) RCS Temperature ( F): fv2. / Test Power Level (% F.P.): 0 Conditions SDA 227 SDB: 227' CA 227 Other (specify): (Actual) CB: moving CC: 227 CD: moving Below Nuclear Heating Date/ Time Test Performed: /0/r/97 do: 90 I ns Measured Parameter lo ; integral Worth of Control Bank D, (Description) Rod Swap ~ ss IV Measured Value lo = j,ff,9 (Adjusted Measure,dfrige41 Test Reference Bank Position =-/$& steps) Results 6esign Value as (Actual Conditions) lo = /037. z/ (Adjusted Measured Critical Reference Bank Position = /'18' steps) Design Value Rs (Design Conditions) ID = 1037 e 156 pcm (Critical Reference Bank Position = 179 steps) Reference Engineering Transmitta! NAF 98 0153. Rev. O. VEP-FRD 36A g FSAR/ Tech Spec if Design Tolerance is exceeded, SNSOC shall B V evaluate impact of test result on safety analysis. Acceptance SNSOC may specify that additional testing Criteria be performed. Reference VEP-FRD-36A g Design Tolerance is met / YES NO E Acceptance Criteria is met : ./ YES NO VI Comments / /4 W Reviewed By: O. 7 Prepared By: Page 48 of 57 NE-1176 N1C14 Startup Physics Tests Report I

NORTH ANNA POWER STATION UNIT 1 CYCLE 14 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET l' ' Test

Description:

Shutdown Bank 8 Worth Measurement, Rod Swap Reference Proc No / Section: 1-PT-94.0 Sequence Step No: 11 Bank Positions (Steps) RCS Temperature ( F): 547 Test Power Level (% F.P.): O Conditions SDA: 227 SDB: moving CA: 227 Other (specify): (Design) CB: moving CC: 227 CD: 227 Below Nuclear Heating Ill Bank Positions (Steps) RCS Temperature ( F): 597. A Test Power Level (% F.P.): O Conditions SDA-227 SDB: moving CA: 227 Other (specify): (Actual) CB: moving.CC: 227 CD: 227 Below Nuclear Heating DatefTime Test Performed: N/f/W ca.:oS Measured Parameter ISB"8; integral Worth of Shutdown Bank B, (Description) Rod Swap IV Measured Value ISB"8= /dW./ (Adjusted Measuregtgag Reference Bank Position = #* steps) Test Results Design Value (Actual Conditions) ISB"': /oFR.f' (Adjusted Measured Critical Reference Bank Position = /77 steps) Design Value R8 (Design Conditions) ISB = 1080 2162 pcm (Critical Reference Bank Position = 186 steps) Reference Engineering Transmittal NAF 98-0153. Rev. O. VEP-FRD-36A FSAR/ Tech Spec. If Design Tolerance is exceeded. SNSOC shall V evaluate impact of test result on safety analysis. Acceptance SNSOC may specify that additional testing Criteria be performed. Reference VEP-FRD-36A Design Tolerance is met /.YES NO Acceptance Criteria is met : / YES NO VI Comments Prepared By: QAA Ad-Reviewed By: e NE-1176 N1Cl4 Startup Physics Tests Report Page 51 of 57

I NORTH ANNA POWER STATION UNIT 1 CYCLE 14 STARTUP PHYSICS TEST RESULTS AND EVALUATION g Test

Description:

Shutdown Bank A Worth Measurement, Rod Swap 5 l~ - Sequence Step No: Reference Proc No / Section: 1-PT-94.0 RCS Temperature ( F): 547 11 Bank Positions (Steps) l Power Level (% F.P.): O Test Conditions SDA: moving SDB: 227 CA: 227 Other (specify): (Design) CB: moving CC: 227 CD: 227 Below Nuclear Heating E RCS Temperature ( F): 5W.3 g 111 Bank Positions (Steps) Power Level (% F.P.): O Test Conditions SDA: moving SDB: 227 CA: 227 Other (specify): (Actual) CB: moving CC: 227 CD: 227 Below Nuclear Heating Date/ Time Test Performed: j 6/f/7f* O2 *3 ? ISA ; IntegralWorth of Shutdown Bank A, R8 Measured Parameter Rod Swap (Description) IV Measured Value ISAR8= 942 / (Adjusted Measuregitg{ Reference Bank Position = W steps) Test g l Results Design Vatue 3 (Actual Conditions) ISAR8= @2.Y (Adjusted Measured Critical Reference Bank Position = /6 A steps) Design Value R8 (Design Conditions) ISA = 901 t 135 pcm (Critical Reference Bank Position " 157 steps) Enginee ing Transmittat NAF 96-0153. Rev. O. VEP-FRD-36A Reference if Design Tolerance is exceeded. SNSOC shall FSARTrech Spec evaluate impact of test result on safety analysis. V SNSOC may specify that additional test (ng Acceptance be performed. g Criteria E VEP-FRD-36A Reference / YES _ NO Design Tolerance is met NO Acceptance Criteria is rnet - / YES VI I Comments M Reviewed By: Prepared By:/ggd 4'D I Page 52 of 57 NE-1176 N1C14 Startup Physics Tests Report

NORTH ANNA POWER STATION UNIT 1 CYCLE 14 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET r -- Test

Description:

Total Rod Worth, Rod Swap Reference Proc No / Section: 1-PT-94.0 Sequence Step No: 11 Bank Positions (Steps) RCS Temperature ( F): 547 Test Power Level (% F.P.): O Conditions SDA' moving SDB: moving CA: moving Other (specify): (Design) CB: moving CC: moving CD: moving Below Nuclear Heating 111 Bank Positions (Steps) RCS Temperature ( F):,ft"7, / Test Power Level (% F.P.): O Conditions SDA: moving SDB: moving CA: moving Other (specify): (Actual) CB: moving CC: moving CD: moving Below Nuclear Heating Date/ Time Test Performed: n/?/97' 20:YO Measured Parameter ITotal; integral Worth of All Banks, (Description) Rod Swap IV Measured Value ITotal= fg or pcm Test Results Design Value (Actual Conditions) ITotal= ffE. 7 pcm Design Value (Design Conditions) ITotal= 5493 t 549 pcm Reference Enginetring Transmitta! NAF 96-0153. Rev. O. VEP fro-36A FSARrfech Spec if Design Tolerance is cxceeded. SNSOC shall V evaluate impact of test result on safety analysis. Acceptance Additional testing must be performed. Criteria Reference VEP-FRD-36A Design Tolerance is met / YES NO Acceptance Criteria is met - / YES NO VI Comments 1-Prepared By: dql J.Cs Reviewed By. NE-1176 N1Cl4 Startup Physics Tests Report Page 53 of 57

NORTH ANNA POWER STATION UNIT 1 CYCLE 14 l STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test

Description:

MID Flux Map - At Power Reference Proc No / Section: 1 PT 94.0,1 PT 21.1,1 PT-21.2 Sequence Step No: RCS Temperature ("F): TREF 21 g ll Bank Positions (Steps) E Power Level (% F.P.): s 30 Test Conditions SDA: 227 SDB: 227 CA: 227 Other (specify): (Design) CB: 227 CC: CD: Must have a 38 thimbles ** lil Bank Positions (Steps) RCS Temperature ( F): 7 Power Level (% F.P.): e 3, 7, g Test 3 Conditions SDA-227 SDB: 227 CA-227 Other (specify): (Actual) CB;,,, 227 CC: 42;z7 CD: /54 Date/ Time Test Performed: /0/flN bl$ L Madmum Relative Nuclear Enthalpy Total Heat Maximum g Measured Assembly Rise Hot Flux Hot Positive incore g Parameter Power %DIFF Channet Factor Channel Quadrant IV (Description) (M-P)/P FAH(N) Factor FO(Z) Power Tilt 4f b &F 9 /'OM y Test Measured -5 Y/, fe / ? i7 /W J,03 8 0 Results value Design Value 210% for Pi 20.9 (Design 15% for Pi<0.9 N/A N/A s 1.0205 g (P = assy power) Conditions) i Reference WCAP-7905, Rev.1 None None WCAP-7905, Rev.1 5 NE-1172, Rev. O NE-1172. Rev. O V FSAR/COLR None FaH(N)s1.49(1+0.3(1.P)) Fo(Z)s4.38'K(Z) None Acceptance Criteria Reference None COLR 2.6 COLR 2.5.1 None / NO [_YES Design Tolerance is met YES NO l Acceptance Criteria is met : l-VI

  • As required

" Must have at least 16 thimbles for quarter core maps for multi-point calibrations E l Comments Prepared By: [8 Reviewed By:9d 9. l NE-1176 N1C14 Startup Physics Tests Report Page 54 of 57 I

c NORTH ANNA POWER STATION UNIT 1 CYCLE 14 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I Test

Description:

M/D Flux Map-At Power Reference Proc No / Section: 1.PT-94.0,1-PT-21.1,1-PT-21.2 Sequence Step No: ll Bank Positions (Steps) RCS Temperature ("F): TREF

  • 1 Test Power Level (% F.P.):65 s P s 75 Conditions SDA: 227 SDB: 227 CA: 227 Other (specify):

(Design) CB: 227 CC: 227 CD: Must have 2 38 thimbles ** 111 Bank Positions (Cteps) RCS Temperature ( F): gg Test Power Level (% F.P.): N' Conditions SDA: 227 SDB: 227 CA: 227 Other (specify): (Actual) CB: 227 CC: 227 CD: /83 Date/ Time Test Performed: fo//b/?8 /890 Maximum Relative Nuclear Enthalpy Total Heat Maximum Measured Assembly Rise Hot Flux Hot Positive incore Parameter Power %DIFF Channel Factor Channel Quadrant IV (Description) (M-P)/P FAH(N) Factor Fo(Z) Power Tilt Test Measured WSh p rof /rY2S /* ?SS /s d/ 73 Results value -7,Ifr fxo,7 Design Value e10% for Pi 20.9 (Design 215% for Pi<0.9 N/A N/A s 1.0204 (P = essy power) Conditions) i Reference WCAP-7905, Rev.1 None None WCAP-7905, Rev.1 NE-1172. Rev. O NE-1172, Rev. O V FSAR/COLR None FAH(N)s1.49(1+0.3(1 P)) Fo(Z)s(2.19/P)*K(z; None Acceptance Criteria Reference None COLR 2.6 COLR 2.5.1 None Design Tolerance is met / YES NO Acceptance Criteria is met : / YES NO Vi

  • As required Comments

" Must have at least 16 thimbles for quarter core maps for multi-point calibrations Prepared B M/ Reviewed By: A f NE-1176 NIC14 Startup Physics Tests Report Page 55 of 57

NORTH ANNA POWER STATION UNIT 1 CYCLE 14 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET g l Test

Description:

M/D Flux Map - At Power Reference Proc No / Section: 1 PT 94.0.1.PT-21.1.1 PT-21.2 Sequence Step No: 11 Bank Positions (Steps) RCS Temperature ("F): TREF

  • 1 Power Level (% F.P.):95 s P s 100 Test Conditions SDA: 227 SDB: 227 CA: 227 Other (specify):

(Design) CB: 227 CC: 227 CD: Must have a 38 thimbles ** 111 Bank Positions (Steps) RCS Temperature ( F): Ta sf-Power Level (% F.P.): /C d,/ O ff Test Conditions SDA: 227 SDB: 227 CA. 227 Other (specify): (Actual) CB: 227 CC: 227 CD: 227 Date/ Time Test Perfolrmed: /O-22-97 l3 33 ~ Maximum Relative Nuclear Enthalpy Total Heat Maximum Measured Assembly Rise Hot Flux Hot Positive incore Parameter Power %DIFF Channel Factor Channel Quadrant IV (Description) (M-P)/P F6H(N) Factor Fo(Z) Power Tilt 3,5% fh#9 /,379 /.736 /,o / 2 9 g Test Measured 6,1 % F 4 0 T Results value Design Value 210% for Pi 20.9 (Design 215% for Pi<0.9 ~N/A N/A s 1.020<. Conditions) (Pi = assy power) Reference WCAP-7905, Rev.1 None None WCAP-7905, Rev.1 NE 1172, Rev. O NE-1172 Rev. O V FSAR/COLR None FAH(N)s1.49(1+0.3(1 P)) Fo(Z)s(2.19/P)*K(Z. None g Acceptance Criteria Reference None COLR 2.6 COLR 2.5.1 None B Design Tolerance is met / YES NO Acceptance Criteria is met - t/ YES NO VI

  • As required gW

" Must have at least 16 thimbles for quarter core maps for multi-point calibrations Comments Prepared By: JS, _J4 Reviewed By: NE-1176 N1C14 Startup Physics Tests Report Page 56 of 57 I

NORTH ANNA POWER STATION UNIT 1 CYCLE 14 STARTUP PHYSICS TEST RESULTS AND EVALUATION SAEET I Test

Description:

RCS Flow Measurement Reference Proc No / Section: 1-PT-27 Sequence Step No: i 11 Bank Positions (Steps) RCS Temperature ("F): TREF

  • Test Power Level (% F.P.):95 s P s 100 Conditions SDA-227 SDB: 227 CA: 227 Other (specify):

(Design) CB: 227 CC: 227 CD: ll1 Bank Positions (Steps) RCS Temperature ( F): 58o.8 r I Test Power Level (% F.P.): l o o v. Conditions SDA: 227 SDB: 227 CA: 227 Other (specify): 1 (Actual) CB: 227 CC: 227 CD: 2A7 Date/ Time Test Performed: toh:r(sg.0900 i F otal; Total RCS Flow Rate Measured Parameter T (Description) I IV F otal: 3 I7, F.Z 9 Test Measured Value T Results Design Value Not Applicable l (Actual Conditions) l Design Value Not Applicable (Design Conditions) Reference Not Applicable l F otal 2 295.000 gpm V FSAR/ Tech Spec T Acceptance Criteria Reference Technical Specification 3.2.5 Design Tolerance is met uA WYES NO I VI Acceptance Criteria is met. >( YES NO Comments

  • As required i

Prepared By: M8 W Reviewed By: l L NE-1176 N1Cl4 Startup Physics Tests Report Page 57 of 57

NORTH ANNA POWER STATION UNIT 1. CYCLE 14 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET l' -- Test

Description:

Control Bank C Worth Measurement, Rod Swap l Reference Proc No / Section: 1-PT-94.0 Sequence Step No: 11 Bank Positions (Steps) RCS Temperature ( F): 547 Power Level (% F.P.): O Test Conditions SDA-227 SDB: 227 CA* 227 Other (specify): (Design) CB: moving CC: moving CD: 227' Below Nuclear Heating y Ill Bank Positions (Steps) RCS Temperature ( F): 597. V Power Level (% F.P.): O Test Conditions SDA: ~ 227 SDB: 227 CA: 227 Other (specify): (Actual) CB: moving CC: moving CD: 227 Below Nuclear Heating Date/ Time Test Performed: M/r/Pr o/:/2 Measured Parameter IC"8; integral Worth of Control Bank C, (Description) Rod Swap ~ IV Measured Value IC"*= F#F.f (Adjusted Measured gijip Reference Bank Position = efd steps) Test Results Design Value (Actual Conditions) IC"8= FT3. 7 (Adjusted Measured Critical Reference Bank Position = ///F steps) Design Value (Design Conditions) IC"8= 883 e 132 pcm (Critical Reference Bank Position = 154 steps) Reference Engineering Transmittal NAF 98-0153. Rev. o. VEP-fro-36A FSAR/ Tech Spec If Design Tolerance is exceeded, SNSOC shall V evaluate impact of test result on safety analysis. Acceptance SNSOC may specify that additional testing Criteria be performed. Reference VEP-FRD-36A Design Tolerance is met / YES NO Acceptance Criteria is met : / YES NO VI Comments M 2 ' Prepared By:dK b Reviewed By: NE-1176 N1Cl4 Startup Physics Tests Report Page 49 of 57

NORTH ANNA POWER STATION UNIT 1 CYCLE 14 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET Ill Test

Description:

Control Bank A Worth Measurement, Rod Swap Reference Proc No / Section: 1-PT-94.0 Sequence Step No: r-Il Bank Positions (Steps) RCS Temperature ( F): 547 Power Level (% F.P.): O Test Conditions SDA-227 SDB: 227 CA: moving Other (specify): EB (Design) CB: moving CC: 227 CD: 227 Below Nuclear Heating 111 Bank Positions (Steps) RCS Temperature ( F): Sen,3 Power Level (% F.P.): O Test Conditions SDA: 227 SDB: 227 CA: moving Other (specify): (Actual) CB: moving CC: 227 CD: 227 Below Nuclear Heating Datemme Test Performed: M/r/W cn t/s I "8; integralWorth of Control Bank A, A Measured Parameter Rod Swap (Description) I "8= 3 60. ') (Adjusted Measured Cpgl A IV Measured Value Reference Bank Position = -96 steps) Test Results Design Value lA : 32 /. '/ (Adjusted Measured Critical 8 (Actual Conditions) Reference Bank Position = 78 steps) Design Value (Design Conditions) lA"8= 323 t 100 pcm (Critical Reference Bank Position = 77 steps) Reference Enginearing Transmittal NAF 98 0153 Rev. O. VEP-fro-36A FSAR/ Tech Spec if Design Tolerance is exceeded, SNSOC shall evaluate impact of test result on safety analysis. V SNSOC may specify that additional testing Acceptance Criteria be performed. Reference VEP-FRD-36A l Design Tolerance is met / YES NO Acceptance Criteria is met ./ YES NO VI Comments w O-Prepared By:/AgA.#.1/ Reviewed By: __ I NE-1176 N1Cl4 Startup Physics Tests Report Page 50 of 57 I}}