ML20126K896
| ML20126K896 | |
| Person / Time | |
|---|---|
| Site: | North Anna |
| Issue date: | 05/31/1981 |
| From: | Kapuschinsky D, Lozito E, Rotella T VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.) |
| To: | |
| Shared Package | |
| ML20126K894 | List: |
| References | |
| VEP-FRD-43, NUDOCS 8105220382 | |
| Download: ML20126K896 (79) | |
Text
{{#Wiki_filter:_ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ l l O VEP-FRD-43 MORTH AHMA UNIT 1, CYCLE 3 STARTUP PHYSICS TEST REPORT BY I l T. S. Rotella D. M. Kapuschinsky Reviewed By: Approved By: b, , Rf C. T. Snou, Nuclear Fuel Engineer E. J
- Lolito, irector Nuclear Fuel Operation Subsection NL ear Fuel eration Subsection Nuclear Fuel Operation Subsection Fuel Resources Department Virginia Electric and Power Co.
Richmond, Va. I May, 1981 l 8 /053637a.
i i { CLASSITICATION/ DISCLAIMER The- 'd a t a, techniques, information, and conclusions in this report have baan prepared solely for use by the Virginia Electric and power Company (the. Company), and they may not be appropriate for use in situations other'than those for which they were specifically prepared. The Company, therefore, makes no claim or uarranty whatsoever, express or implied,as
- to their. accuracy, usefulness, or applicability. In particular, THE L
COMP ANY; MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
- PURp0SE, NOR SHALL ANY WARRANTY BE DEEMED TO ARISE FROM COURSE OF DEALING OR USAGE OF TRADE, with respect to this report or any of the
- data, techniques, information, or conclusions in it. By making this report available, the company doe's not authorire its use by others, and any' such use' is.
expressly forbidden except with the prior written I approval of the company. Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein. In no event shall the Company be liable, under any legal theory whatsoever (whether contract, tort, warranty, or I strict or absolute liability), for any property damage, mental or physical injury or
- death, loss of use of property, or other damage resulting from or arising out of the use, authori=ed or unauthorized, of this report or the dcta, techniques, informa' tion, or. conclusions in it.
_,_,,_...__,,._.,..,_-,.._._._.._.,__a.-_._,,__._.._._..__.-..-_
ii ACKNOWLEDGEMENTS The authors would like to acknowledge the cooperation of the North Anna power Station personnel in performing the tests documented in this report. Special thanks are due to Messrs. J. p.
- Smith, A.
K. White, and G. L. Amodeo. The authors would like to express gratitude to Mr. C. T. Snow, and Dr. E. J. Lo ito for their aid and guidance in preparing this report. l l l l l t l l l l ~ w M w
- ,4-,
iii TABLE OT. CONTENTS -SECTION TITLE PAGE NO. Classification / Disclaimer.................. -i Acknowledgements........................... ii List of Tables............................. iv List'of Figures............................ V Preface.................................... vi i 1 Introduction and Summary................... 1 1 2 Control Rod Drop Time Measurements......... 10 t. '3 Reactor Coolant System Flow Measurement.... 15 r 4 Control Rod Bank Worth Measurements........ 17 l e 5 Boron Endpoint and Worth Measurements...... 22 l' 6 Temperature Coefficient Measurements....... 26 l 7 Power Distribution Measurements............ 31 l 8 References................................. 46 APPENDIX Startup Physics. Test Results and Evaluation Sheets.......................... 47 O ? . + -. -.... - -,,.. - -. m.-,-. ..,v,.....~-r, .._,m.,,,_.,,.._-- ,,-,...m.e,--,. ._.-m,-4~_,,..,n,y,,,__,.,,....,.......,#, -v._
a iv J LIST ~OF-TABLES TABLE TITLE PAGE No. 1.1 Chronology of Tests................................ 4 L2.1 Hot Rod Drop Time Summary.......................... 12 i i 3.1-j Reactor Coolant Syst'em Flou Measurement Summary.... 16 4.1 Control Rod Bank Worth Summa'ry..................... 19 5.1 Boron Endpoints Summary............................ 24 i 6.1 Isothermal Temperature Coefficient Summary......... 28 1 1 [ . 7.1 Incore Flux Map Summary............................ 33 .7.2 Comparison of Measured pouer Distribution param-leters With Their Technical Specifications Limits... 34 e r L I l- -w, e,m--,,.m,,.-,,w- --,n.-w-r e-,,- -s,w.m..,-,,,,mmy-,,~.w w-ww n w w-w, W-. s s, ,,,- w.e,~ v w m,-- nv u v - , wer m m r e + n-wm t-* r w-w<~-ev e n s-~ ~ tv W
k v i LIST OF FIGURES. FIGURE: TITLE PAGE NO 1,1 Core Loading Map......,................................... 5 l 1.2 Beginning of cycle Fuel Assembly Burnups.................. 6 ] '1.3 Incore Instrumentation Locations.......................... 7 1.4 Burnable Poison and Source Assembly. Locations............. 8 1.5 Control Rod Locations..................................... 9 2.1 . Typical' Rod Drop Trace.................................... 13 2.2 Rod Drop Time - Hot Full Flow conditions.................. 14 4.1 Bank B Integral Rod Worth - HZP........................... 20 l, 4.2 ' Bank B Differential Rod Worth - HZP....................... 21 e -5.1 Boron Worth coefficient................................... 25 6.1 ' Isothermal Temperature Coefficient - HZP, ARo............. 29 6 '. 2 Isothermal Temperature Coefficient - HZP,'B-Bank In....... 30 7.1 Assembly Power. Distribution - HZP, AR0.................... 35 7.2 Assembly Power Distribution - HZP, D/2, C/130 Steps....... 36 7.3 Assembly Power Distribution - Prelim. I/E Cal.- Flux Map.. 37 7.4 Assembly Power Distribution - Prelim. I/E Cal.- Flux Map., 38 7.5 Assembly Power Distribution - APDMS - Flux Map............ 39 7.6 Assembly Power Distribution - APDMS - Flux Map......... 40 Flux Map............ 41 7.7 Assembly ~ Power Distribution - AFDMS 17.8 Assembly Power Distribution - APDMS, I/E Cal - Flux Map... 42 7.9 Assembly Power Distribution - APDMS, I/E Cal - Flux Map... 43 7.10 Assembly Power Distribution - APDMS, I/E Cal - Flux Map... 44 7.11 Assembly Power Distribution - HFP, Eq. Xenon - Flux Map... 45 l 1 I
l vi l PREFACE The purpose of this roport is to present the analysis and evaluation of the physics tests which were performed to verify that the i North Anna 1, Cycle 3 core could be operated safely, and to make an initial evaluation of the performance of the core. It is not the intent of this report to discuss the particular methods of testing or to present the detailed data taken. Standard test techiques and methods of data analysis were used. The test
- data, results and evaluations, together with the detailed startup procedures, are on file at the North Anna power Station; therefore, only a cursory discussion of there items is included in this report.
The analyses presented include a brief sumdary of each
- test, a
comparision of the test results with design predictions, and an evaluation of the results. The North Anna 1. Cycle 3 Startup physics Tests Results and Evaluation Sheets have been included as an appendix to provide additional information on the startup test results. Each data sheet provides the following information 1) test identification, 2) test conditions (design), 3) test conditions (actual), 4) test results, 5) acceptance criteria, and 6) comments concerning the test. These sheets provide a compact summary of the startup test results in a consistent format. The design test conditions and design values of the measured parameters were completed prior to startup physics testing. The entries for the design values were based on the calculations performed by Vepco's Muclear Fuel Engineering Group'. During the tests, the data sheets were used as guidelines both to verify that the proper test
vii conditions were met and to facilitate the preliminary comparison between measured and predicted test
- results, thus enabling a
quick identification of possible problems occuring during the tests. The Appendix to this report contains the final completed and approved version of the Startup physics Tests Results and Evaluation Sheets. i 4 I
i 1 i j Section 1' 1 INTRODUCTION AND
SUMMARY
On December 28, 1980, Unit No. 1 of the North Anna power Station 'l uns shut downLfor its second refueling. During'this shutdown, 64 of the -157 fuel assemblies in the core were replaced with fresh fuel - assemblies. The cycle three core consists of four batches of fuel: two once burned batches (1A3 and 3A2), one twice burned batch (4), and one fresh batch (5). The core loading pattern and the design parameters l for each batch are shoun in Figure 1.1. Fuel assembly burnups are given in Figure-1.2. The incore instrumentation locations are identified in i Figure 1.3. -Figure 1.4 identifies the location and number of burnable poison rods and source assemblies for Cycle 3; and Figure 1.5 identifies the location and number of control rods in the Cycle 3 core. t on-April 6, 1981, at 0140, the third cycle core achieved initial \\ l criticality. Following criticality, startup physics tests were performed as outlined in Table 1.1. A summary of the results of these tests follous 1. The drop time of each control and shutdown zod was confirmed to be within the 2.2 second limit of the North Anna Technical Specifications 2, 2. The reactor coolant system flou rate was confirmed to be greater than the minimum limit specified in the Technical Specifications:. 3. Individual reactivity worths for all control and shutdown rod banks were measured using the rod swap technique 3 and were ev.n=,-=- --,---.-,n--+wu +w--,,-- wr -,,, r w n w. c i v -,-e w e m e w.-- -,,-
- , e
,,,,-e....s--c-rmm.-m---,---,---~..,-w. r. rom-----w-~ +
l 2 found to be within 12.31% of the design predictions with the exception of Shutdown Bank A which showed a percent difference of 19.54% from design predictions. Except for Shutdown Bank A, these results are within the design tolerance of 115% for individual bank worths ( 10% for the rod swap reference bank. worth). This deviation is discussed further in section 4. The sum of the individual control and shutdown lod bank worths was measured to be within 4.78% of the design prediction which is within the design tolerance of 210%.
- 4. Critical boron concentrations for two control bank configurations were measured to be within 26 ppm of the design. predictions.
These results were within the design tolerances and also mot the accident analysis acceptance criterion.
- 5. The boron worth coefficient was measured to be within 4.7%
of the design predication, which is within the design tolerance of 210% and meets the accident analysis criterion.
- 6. Isothermal temperature coefficients for two control bank configurations were measured to be within 0.74 pcm/'T of design predictions.
Thes e results are within the design tolerance of 13 pcm/or and also met the accident analysis acceptance criterion.
- 7. Core power distributiens for various HZp and at power conditions indicated reasured assemblyuise power values to be somewhat larger than the established design tolerance.
i' l-3 These higher-than-expected power values were accompanied by a quadrant power tilt ratio (2pTR), which at hot-sero-Power,.was measured to be approximately 4%. The SpTR decreased to 1.3% at full power. These deviations of power . distribution had no adverse consequences since, for all flux maps, the hot channel factors were measured to be within the limits of the Technical Specifications. All measurement parameters met their respective accident analysis acceptance criteria. In
- summary, all startup physics test results were acceptable.
Detailed
- results, together with 'apecific design tolerances and acceptance criteria for each measurement, are presented in the appropriate sections of this report.
b
4 Table 1.1 NORTH ANNA 1 - BOL C CLE 3 PHYSICS TESTS CHRONOLOGY OF TESTS l l 1 1 I Referencel l Test i Date l Time ! Power ! Procedurel l I I I I I I I i l l I i Hot Rod Drop-Hot Full Flow 104/05/811 1205 l HSD 11-PT-17.2 l l Reactivity Computer Checkout 104/07/811 0518 I HZP 11-PT-94(B)I l Boron Endpoint-ARO 104/07/811 1040 i HZP 11-PT-94(C)] l Temperature Coefficient-ARO l04/07/811 1113 l HZP 11-PT-94(D)l i Bank B Worth 104/07/811 1224 i HZP 11-PT-94(E)l l Boron Endpoint-B In 104/07/811 1840 i HZP 11-PT-9u(C)1 1 Temperature Coefficient-B In 104/07/811 2300 l HZP ll-PT-94(D)I l Bank D Worth - Rod Swap 104/08/811 0026 l HZP 11-PT-94(G)l l Bank C Worth - Rod Suap 104/08/811 0138 l HZP 11-PT-94(G)! l Bank A Worth - Rod Swap 104/08/811 0244 i HZP ll-PT-94(G)l l Bank SB Worth - Rod Swap 104/08/811 0334 l HZP 11-PT-94(G){ l Bank SA Worth - Rod Swap 104/08/811 0421 i HZP ll-PT-94(G)l 1 Flux' Map-ARO l04/08/811 2141 1 HZP 11-PT-21.1 l 1 Flux Map-Insertion Limits 104/09/811 0455 l HZP 11-PT-21.1 l l Flux Map 104/11/811 0407 l 26.5 11-PT-21.1 I l Flux Map - APDMS 104/14/811 1623 1 49.7 11-PT-21.1 l l 1 Flux Map - APDMS 104/14/811 2258 l 49.2 11-PT-21.1 1 I Flux Map - APDMS 104/15/811 0445 l 60.6 11-PT-21.1 1 1 Flux Map - APDMS, I/E Calibration 104/15/811 1024 l 74.2 11-PT-21.1 l l Flux Map - APDMS, I/E Calibration 104/15/811 1410 1 79.4 11-PT-21.1 i l Flux Map - APDMS, I/E Calibration 104/16/811 0227 l 84.8 il-PT-21.1 1 1 RCS Flou Measurement 104/27/811 1018 1 99.9 11-PT-27 I HZP, Eq. Xenon 104/27/811 1402 1 100.0 11-PT-21.1 I l Flux Map I i l i I \\ - - - _ _ _ _ - -. _ - _ _. _ _ _.. _ - - ~. - - _ _ - _ - _ _. _ _ - -. - _ _ _ -. _. _ _ _ _ - _ _ _ 2_-.__
5 FIGURE 1.1 NDRTH ANNA UNIT 1 - CYCLE 3 CDRE LDADING MAP R P N N L K J H G F E D C B A I 3A2 15 1 3A2 l l C33 l E59 I C46 l 1 1 I I I I 3At i5 15 14 15 i5 1 3A2 l l C11 1 E53 1 E21 l D51 l E41 l E51 1 C29 l I I I I l-1 -I l i 3A2 15 l5 l4 1 3A2 14 l5 l5 1 3A2 l I C17 I E64 1 EIS I D32 i C05 l D08 l E06 I E56 i C45 l 3 I I I I I I I I I I l 3A2 14 15 14 15 14 15 14 l5 14 1 3A2 l l C08 I D44 1 E04 1 006 I E29 I D18 I E61 l D30 l E14 1 D35 l C19 l 4 1 1 1 I I I I I I I I I l 3A2 15 15 14 15 1 3A2 14 1 3A2 I5 14 l5 l5 1 3A2 l l C24 1 E40 l E13 l DOS i E19 i C13 1 D34 i C48 I E50 1 047 l E02 l E60 l C37 1 5 I I I I I I I I l l l 1 I l I5 I5 14 15 1 3A2 14 14 14 1 3A2 15 14 15 15 l l E08 l E24 1 017 l E30 l C32 i D45 1 D03 1 D14 i C28 l E47 l D02 1 E16 l E57 1 6 I I I I I I I I I I I I I i 1 3A2 15 14 15 1 3A2 14 14 15 14 14 1 3A2 15 l4 15 l 3A2 l i C50 l E01 1 D39 l E54 i C27 1 022 l 007 I E45 l D37 1 D20 l C51 1 E39 l D40 I E07 i C26 1 7 I I I I I I I I 1____l 1 1 I I I i l5 14 1 3A2 l4 14 14 15 l 1A3 l5 l4 14 14 1 3A2 14 15 l l E33 1 041 1 C43 1 023 l D09 l 031 1 EIS l All l E35 l D27 1 015 l D49 i C49 1 042 1 E20 1 8 i l I I I i i i I i I I I l l i 3A2 15 14 15 1 3A2 l4 l4 15 14 14 1 3A2 15 14 l5 l 3A2 l 1 C06 i E44 1 050 l E17 l C42 i D10 1 D29 l E10 l D21 l D48 i C12 l E52 l 046 I E27 l C04 i g i i i i l I I I I I I I I I I I l5 15 l4 15 1 3A2 l4 14 14 1 3A2 15 14 15 15 l l E09 l E63 1 013 1 E46 l C14 1 026 1 004 l D25 i C25 l E22 1 019 l E31 l E38 I lo i I I I I i l i I I I I I I i 342 15 15 14 i5 l 3A2 14 1 3A2 l5 l4 l5 15 1 3A2 l I C38 l E32 1 E23 l D11 1 E26 i C44 1 028 l C10 l E49 I D33 l E58 I E36 l C20 1 11 1 I I I I I I I I I I I I I I 3A2 14 l5 14 l5 14 l5 l4 l5 14 1 3A2 I I C36 1 D16 l E55 l D12 l E42 l D38 l E25 1 043 I Ell l D52 l C07 l 12 I I I I I I I I I I I I l'3A2 15 l5 14 1 3A2 14 l5 l5 l 3A2 l l C03 i E12 1 E03 l D01 i CO2 1 024 l E37 i EOS l C21 1 13 l t I l l I I I I I l 3A2 15 l5 14 l5 l 5, l 3A2 l l C23 i E34 1 E62 i D36 i E28 l E48 i C30 l 14 I I I I I 1 1 I I 3A2 15 l 3A2 l l l--> BATCH I C39 I E43 i C40 l 15 l l--> ASSEMBLY I.D I l l l 1 l Fl'EL ASSEMBLY DESTC'i PARMTTERS Batch 1A3 3A2 4 5 Initial Enrichment (w/o U235) 2.11 3.10 3.21 3.40 Burnup At BOC-3 (P.!D/KrU) 14,054 23,273 9,941 0.0 Msc:nbly Type 17x17 17x17 17x17 17x17 Number of Assemblies 1 40 52 64 Fuel Rods per Assembly 264 264 264 264
i I e ' FIGURE 1.2 HDRTH AM4A UNIT 1 - CYCLE 3. BEG 1HNING DF CYCLE FUEL ASSEMBLY BURNUPS l t_ R P H H L K' J H G F E D C B A J l C33 l-E59 i C46 l I 261181 .o i 263981 1 I I I I 1 C11 l ES3 1 E21 l D51-I E41 l E51 i C29 l l t 225231 o 'I o I 8048 1. o -1 o i 223591 2 I I I I I I I I I CIT l E64 1 EIS l D32 l C05 1 D08 l E06 I E56 l C45 1 l 247651 o 1 o l 124131 207441 125201 o 1 o l 246721 3 3 i i l i I I l l I I I 1 Ces l D44 i E04 i D06 l E29 l D18 l E61 1 D30 I E14 'l D35-1 C19 l I 246821 7819 I o l 124241 o -l 8335 I o-l 125791 0-I 7865 1 244521 4 I i l I i l i i I I i 1-r l C24 1 E40 l E13 1 005 l E19 l C13 1 D34 l C48 l E50 l D47 I Eo2 1 E60 l C37 l i l 225311 o I o i 111551 o i 218221 8209 l 218391 o i 111071 o I o 1 225451 5 I I I I I I I I I I I I I I i l EoS l E24 i D17 l E30 1 C32 1 D45 l Do3 1 014 l C28 l E47 1 002 l E16 l E57 l I o l' o i 125561 o l 214861 7926 I 9644 1 7939 l 212341 o i 123811 o!. o 1 .6 1 1 I I I I I I I I I I I I I l l C50 1 Eo1 l D39 l E54 I C27 1 D22 1 Do7 l E45 l D37 1 D20 1 C51 l E39 l D40 l Eo7 1 C26 l I I 267341 o i 121061 o i 214971 7772 1 107031 o i 110741 7644 1 220441 o i 126681 o i 264081 7 l I I I I I I I I I I I I I I i I l E33 1 D41 l C43 l D23 l 009 l D31 l E15 l All I E35 l D27 1 015 l D49 l C49 l D42 l E20 l-I o 1 7627 1 209881 7989 1 8223 I 9177 I o I 140541 o I 9676 I 8062 1 8209 l 207981 7948 I o I a t i I I I I I i 1 I i l i i l i I i i C06 I E44 i D50 1 E17 l C42 I Dlo l D29 I E10 l D21 l D48 l C12 i E52 l D46 l E27 l Co4 l j i 263721 o i 124831 o i 218761 7794 1 109161 o 1 107101 8005 1 216941 o i 124671 o 1 263111 9 i i i l i I I l i I I I I I i 1 1 l E09 l E63 1 013 1 E46 l C14 1 D26 l D04 1 D25 l C25 l E22 i D19 l E31 1 E38 l i i o I o I 125121 o 1 211931 7983 1 9502 1 7532 1 210591 o l 126741 o I o I 10. I I I I I I I I I I I I I l l C33 I E32 1 E23 l D11 l E26 l C44 1 028 l Clo l E49 l 033 ' l E58 l E36 l C2o l I 224571 o I o I 110631 o i 217281 8021 1 216201 o 1 107481 o I o 1 222341 11 l I I I I I I I I I I I I I e I C36 i D16 I E55 I D12 1 E42 l D38 l E25 i D43 l Ell l D52 i Co7 l l 246241 8227 I o 1 128591 o l 8089 I o l 125951 o l 8005 1 246261 12 i l l I I I l i I I l I i I Co3 i E12 l E03 l D01 l CO2 l D24 1 E37 l EOS l C21 l l l 248471 o 1 o 1 125941 206731 124091 o 1 0 1 245991 13 i i l i I I I I I I I } l C23 i E34 1 E62 l 036 i E28 l E48 I C30 1 -l 224701 o I o I 7935 I o I o i 223741 14 I I i 1 I 'I i 1 l 1 C39 1 E43 l C40 l I l--> AssEnsLY ID i 266671 -o i 266791 15 i I l--> ASSEMBLY BURHUP l l l l t i I en t i
7 l M N M 4 e b O M N
- M d
m M M M M M M U O 4 W E Q >U QU E EO m or QU OU U EH EH E E k O I l U O U U O U U W E W U C H W
e-----------
O Eu Eu EU O u E 6 m E r r E E r U m M r M w q J U U O d U U U Q U O O O U . C W H L E E H i 8 m. M M M H< O 00 O U O U U QU OU U W k Z E EH E H E e H EN EM M n - M* W RU b E M L 4 2 H E o U E E E EU EU E r r 4 =, r M Zp w u u 9 0U U U U U Z t W W M O 90 E g 90 OU O O or Er E r ur s QU U U C LH H O U g OU OU E U E r u Er Er r z U ww pa WA OD U U O E e H Wu JO QE <g>w o= U O EH 2 H E 1 1
=
OU CH
8 i i l, M 4 m e.J e.e N M 4 m 4 5 O M ss M M M M M Q C' W D 4 N W N 4 U O O O O N N O N (J C O O N O O ~ 4 N N M N N 4 6', W Mp .===.-.-.-----m..-== 4 b O N O O M .J O N N M fJ N 4 N M W ,J ,,=J -.m..-.-------.-----..-.----.- U. ) a. u W O tJ O N O M 00 N e=0 N M N CO I d O 4 4 g - -. = - -. - -. - - M W H U W N M N O O N W Q M N N N M z o m e6 4 a=.=.====================i===.=====*a='=ai-==.=.====---.===============.a=a-====-.=e===*==.==.===.= b b Q Q O N .N. O O N N e e N "a Z. 5, s o g M g O O eJ N O O tJ N M M CJ N W M .J m 4Zn O O N O O D 4 N N M RJ tJ 4 (Q .J O O O O M tJ N N CJ c E o cm O O O M 4 N tJ 4 MOW C Z u W tr .J D EO O O
- ( W Cl.
Zm >. = =. -
D gr CD =(P rz OO WU tt: Cr W wm i NPM @M
FIGURE 1.5 ..dkti. AtttA UNIT 1 - CYCLE 3 '.0:tTROL ROD LOCATIOtlS R P tl N L K J H G F E D C B A 180 1 LOOP C l l l l LOOP B 1 OUTLET _ _l l l I ItiLET N l*l !" l l*l V H-41 1 l l l SA I I SA I I SP l l H-43 3 I I I I I I I I I I I lC i IB l l i iB l 1C I i 4 I I I I I I I I I I I I I I SP l l SB I l SP l l l l SB l l l I 5 I I I I I I I I I I I I l_ _I LOOP C IA l lB l l0 l lC l lD l l B l IA l LOOP B 6 IllLET I I I l l l l l l l l l l l OUTLET \\ l I i SA I I I I SB 1 i SB l I SP l l SA 1 l l / 7 90 - 1 ID I I l-I I I I I I I I I I I/ hl i I I I 1C I l l lC i l i ID 1 1 - 270' 8 1 I I I l __ _ I I l._ _ I I I I I I I I I I I SA I I SP l t Ud l l SB l l l l SA i l l 9 I I I I I I I I I I I I I I I I IA i 13 l l D l lC l lD l lB l lA l 10 I I I I I I I I I I I I I I I I I I SB I I I I SP l l SB I I SP l l 11 1 I I I I I I I I I I I I I I i: l lB 1 1 I Ie i IC I l 12 I i 1__ _ I I I I I I I i l I I Sp i i SA 1 l SA I i 1 1 13 H-44 I I I I I I I I I I H-42 I l A l lD l l A l l 14 4 1 l l l l l l 1 / I I I I \\ 15 LOOP A l l I l LOOP A OUTLET ( IHLET 0 j ABSOPBER MATERIAL AG-Itt-CD i FUt4CTION ttUi1SER 0: CLUSTERS COttTROL BAttK D 3 CO!1 TROL bat!K C 8 COttTROL BAttK B 8 COttTROL BAttK A 8 CCitTROL CAttK SB 8 COltTROL BAttK SA 8 SP iSPARE ROD LOCATIOttSI 8 m
l l: 10 Section 2 CONTROL ROD DROP TIME MEASUREMENTS The drop-time of each control rod was measured at hot RCS conditions in order to confirm satisfactory operation and to verify that the rod drop times were less'than the maximum allowed by the Technical Specifications. The control rod drop time measurements were run with the RCS at
- hot, full flow conditions
( 547
- F, 2235 psig) and are
' described below. The rod drop time measurements were performed by first withdrawing a rod bank to its fully withdrawn position, and then removing the movable gripper. coil fuse and stationary gripper coil fuse for the test rod. This allows the rod to drop into the core as it would in a normal plant trip. The data recorded during this test are the stationary gripper coil
- voltage, the LVDT (Linear Variable Differential Transformer) primary coil voltage and a 60H= timing trace which are recorded via a visicorder.
The rod drop time to the dashpot entry and to the bottom of the dashpot are determined from this data. Figure 2.1 provides an example of the data that is recorded during a rod drop time measurement. As shown in Figure 2.1, the initiation of the rod drop is indicated by -the decay of the stationary gripper coil voltage when the stationary . coil fuse is removed. A voltage is then induced in the LVDT primary coil as the rod drops. The magnitude of this voltage is a function of -the-rod velocity. When the rod enters the dashpot section of its guide i
11
- tube, the velocity slous, causing a voltage decrease in the LVDT coil.
The LVDT voltage then reaches a minimum as the rod reaches the bottom of the dashpot. Subsequent variations in the trace are caused by the rod bouncing. 'This procedure was repeated for each control rod. The measured drop times for each control rod are recorded on Figure 2.2. The
- slowest, fastest, and average drop times are summari=ed in Table 2.1.
Technical Specification 3.1.3.4 specifies a maximum rod drop time from loss of stationary gripper coil voltage to dashpot entry of 2.2 seconds with the RCS at hot, full flow conditions. All test results met this limit. r - - ~
12 Table 2.1 NORTH ANNA UNIT 1 - CYCLE 3 BOL PHYSICS TEST HOT ROD DROP TIME
SUMMARY
ROD DROP TIME TO DASHPOT ENTRY l SLOWEST ROD l FASTEST ROD l AVERAGE TIME I 1 l l I I I I I I B-6, 1.77 sec. C-9, 1.45 sec. I 1.58 sec. I I I I I I I I I ROD DROP TIME TO BOTTOM OF DASHPOT l SLOWEST ROD l FASTEST ROD l AVERAGE TIME I I I I i i l i l l B-6, 2.47 sec. I C-9, 2.10 sec. I 2.25 sec. I I I I I I I I i
t. Figure 2.1 5 MORTH ANNA UNIT 1 - CYCLE 3 BOL PHYSICS TEST TYPJCAL ROD DROP TRACE or n. -r y -T-riaat ideat*catisa '</R A 1 ECCO@P W.iE MOSURWWI !? srATitM AW GRiFPeR.. coi L VOLTA 6E m. P N '- c.t
- m.;;
i_ j.. _ [. j.$t; eg. _ y["y*j""/d.,
- -]
'r,% l D - j t - IM IT: ArioW OR,%CPIDRoe,, _7 : - t y ~..>j _.:. _ _ sc3 % _ _2 z i'. osis . '. y -esnem t . y.. ,,m 7 I f. !. _C l k;, h l l'! ~ M _ I: M~LG. -:P*'9=EF) "'* " ## i ':! h $=$[$[a--w k,- h) h g [ I J . L:' ~,I_" FS$/$$T[_#' _ .] i I ..: ~ r; - ..q p. )I l J. ~- i i _' O"Jti" '. T.. - ENk o ' S' ^.Mh)L INFO: .Sd M3W26 ..I jl[j.5 !A.CJ ol5E ' I
- 'n:
4 Por% F;ll -LV-DT-PRIMAC(-CotC -f_ f u;.: 2 5 '! 4 1 34 S qg .I
- oorPoT $tG NAl;'t i
c ) ' [ ',~7 C
- . ['
I lf l (higgihi"T"i!lfi"i("i"Nf [:_:.hkhlhh j '(( i ~ nece rdd90" sa Por- ^ I n i o i I I I l h) ilIl i i .. a F u TIMtWG TRACE - STATl09 BUS FREQ0 ENC.Y
FIGURE 2.2 NORTH At2tA UNIT 1 - CYCLE 3 BOL FHYSICS TEST RO3 DROP TIME - HOT FULL FLO14 CONDITIONS R P H H L K J H G F E D C B A 1 1 I I i 1 1 I 1 1 I I I I i 1.57 l l 1.4a I i 1.ss i l i 1 2.18 I I 2.12 I I 2.22 I I 2 I I I I I I I I i l l l 1.57 I l 1.53 l l l l l 1 I I 2.23 I I 2.18 I I I I 3 I I i 1 1 I I I I I I i 1.60 I i 1.55 I I I i 1.60 l l 1.sa 1 I i i 2.28 1 1 2.22 I I I I 2.27 I I 2.25 I i 4 I I I I I I I i l i l I I I I i 1.63 1 I I I I i 1.55 I I I I i 1 1 I 2.33 I I I I i 1 2.22 I I I I 5 I I I i 1 I I I I I I I I I ! 1.52 I i 1.ss I i 1.57 I i 1.57 1 1 1.62 I i 1.62 I i 1.77 I I 2.15 I I 2.32 i i 2.27 1 1 2.25 I I 2.30 l I 2.30 l I 2.47 I 6 1 1 1 I I I I I I l l I I I i l l 1.58 I I I i 1.52 I i 1.57 I i i i 1.60 I I I I I I 2.25 I I I I 2.17 I I 2.22 I I I I 2.27 I I l-7 I I I I I I I I I I I I I I I I I i 1.58 l l l 1 1.58 I I I i 1.60 t i i 1 1.68 I I I I 2.28 1 I I I 2.25 1 I I I 2.26 I I I I 2.42 I I a I I I I i I i i I I i I I i I i i l l 1.ss I i I i 1.52 I i 1.55 1 1 I i 1.45 I l l 1 1 I 2.23 I i I i 2.17 I I 2.22 I I I I 2.10 1 I I 9 I I I I I I I I I I I I I I I I i 1.ss i i 1.ss i i 1.55 I i 1.58 I l 1.63 I i 1.s7 l 1 1.58 1 1 2.22 1 1 2.25 I I 2.22 I I 2.25 I I 2.32 I I 2.22 I I 2.25 l 10 I I I I I I I I I I i 1 1 I I I I I 1.63 I I I I I i 1.55 I I i I i i i I 2.33 I I I I l l 2.20 l I I i 11 1 I I I I i i -I I I I I I I i 1.55 I i 1.63 I I I I 1.55 l l 1.sa ! l I I 2.23 I I 2.33 I I I I 2.20 l I 2.27 I i 12 I I I I I I I I I I I I i I I i 1.57 I i 1.53 l l l l 1 1 I I 2.23 i i 2.20 I i l l 13 I I I i l i I l l l l 1 1.72 I i 1.58 I I 1.62 I I I I 2.38 I I 2.27 I I 2.27 1 1 14 I l--> ROD DROP TIME I l l l l l l l l l TO D ASHPOT ENTRYt SEC. ) l l l l l l--> ROD OROP TIME l l 1 l 15 TO BOTTOM OF DASHPOT (SEC. ) l l l l
15 Section 3 REACTOR = COOLANT SYSTEM FLOW MEASUREMENT The. reactor coolant flow rate is measured in order to verify.that the minimum flow rate requirement is satisfied. The RCS flow rate is determined using the enlorimetric measurement technique. precision calorimetric-data (i.e.,- ~feeduater temperature,.feeduater flow, steam =f l o w,- and steam pressure) are obtained in order to accurately determine L s the - secondary-side. heat rate. The primary-side enthalpy rise is determinedLfrom the RCS pressure and the temperature increase associated with each RCS loop. The. flow for each RCS loop is determined by establishing a primary-side to secondary-side heat balance. Steam generator blowdown heat loss, system heat losses, and the power produced by the reactor coolant pumps are taken into account in the heat balance. A reactor coolant flow measurement was performed at 100% power. This f data was analy=ed using the RXFLOW4 computer c o d e", and manually adjusted oto incorporate steam flow data. A summary of the results for this test is given in-Table 3.1. As shown by this table, the results demonstrated - that the RCS flow limit was met. 5 5 O 1 ,,w.- ...,e- ,c*w. .,e--w.,,,,-e-.,-,, -w w e, ,4%.n,-,-ev,,.-e~ ,--,,,,.--4,,-mr-,v-,,--..,-..,, c=. -,r,,,,,, m e,-.v r e=r. .---r i
16 Table 3.1 CYCLE 3 BOL PHYSICS TEST HORTH ANNA 1 REACTOR COOLANT SYSTEM FLOW MEASUREMENT
SUMMARY
I Percent I Loop A l Loop B i Loop C l Total Flow l Minimum Floul l Power IFlow (gpm)lFlow (gpm)l Flow (gpm)l (gpm) l Limit * (gpm)l I l I l i l l I I I I I I l l 99.9% i 99,385 l 102,053 1 101,347 1 302,785 1 278,400 l i I I I i i i t North Anna Unit 1 Technical Specification 3.2.5
1 17 Section 4 COHTROL ROD BANK WORTH MEASUREMENTS Control rod bank worth measurements were obtained for all control and shutdown banks using the rod suap technique. The first step in the zod swap procedure was to dilute the most reactive control rod bank (hereafter referred to as the reference bank) into the core and measure its reactivity worth using conventional test techniques. The reactivity changes resulting from the reference bank movements were recorded s and were used to determine the continuously by the reactivity computer differential and integral worth of the reference bank (Control Bank B). At the completion of the reference bank reactivity worth measurement, the reactor coolant system temperature and boron concentration were stabili=ed such that the reactor was critical with the reference bank near full insertion. Initial statepoint data for the rod swap maneuver were obtained by moving the reference bank to its fully inserted position and recording the core reactivity and moderator temperature. At this
- point, a
rod swap maneuver was performed by withdrawing the reference bank while one of the other control rod banks (i.e., a test bank) was inserted. The core was kept nominally critical throughout this rod swap and the maneuver uns continued until the test bank was fully inserted and the reference bank was at the position at which the core was just critical. This measured critical position (MCp) of the zeference bank with the test bank fully inserted is the major parameter of interest and was used to determine the integral reactivity worth of the test bank. Statepoint data (core reactivity, moderator temperature,
18 and the differential worth of the reference bank) were recorded with the geference . bank at the MCp. The rod swap maneuver was then performed in l reverse order such that the-reference bank once again was near full insertion and the -test bank uns once again fully withdrawn from the coze. The rod swap process was then repeated for all of the other control and shutdown rod banks. A summary of the results for these tests is given in Table 4.1. As shown by this table and the Startup physics Tests Results and Evaluation Sheets given in the Appendix, the individual measured bank worths for all of the control and shutdown banks were within the design tolerance '15% for the test banks), except for (210% for the reference bank and 1 Shutdown Bank A. This deviation uns reviewed uith respect to the o licensing bases. As a result of this review it was concluded 6-7 that -the deviation did not exceed the bounds of the licensing bases nor did it represent an unreviewed safety issue. The sum of the individual rod bank-uorths was measured to be within 4.78% of the design prediction. This is well within the design tolerance of 110% for the sum of the individual control rod bank uorths. The integral and differential reactivity worths of the reference bank (Control Bank B) are shown in Figures 4.1 and 4.2, respectively. The design' predictions and the measured data are plotted together in ozder to illustrate their agreement. In summary, all measured rod worth values were acceptable. t ^ ~
'19 -Table 4.1 MORTH ANNA UNIT l'- CYCLE 3.BOL PHYSICS TEST CONTROL ROD BANK WORTH
SUMMARY
i 1 MEASURED l PREDICTED l PERCENT DIFFEREHCE l l l WORTH I WORTH I I l BANK l (PCM) l (PCM) l (M-P)/P X 100 I I I i 1 1 ' l I l. I I - l B-Re:Ee r ence. B ank i 1419 i 1311 I +8.26 1 1, l' I I I I iD .I 1089 1 1038 1 +4.83 1 1 I i 1 I IC 1-777 I 850 l -8,59 I l-1 I I I IA I 722 1 643 1 +12.31 I l i I I I I SB 1. 919 1 1005 l -8.54 I . I I I I I I.SA i 1238 1 1036 i +19.54 i i l I i l i Total Worth I 6164 l 5883 1 +4.78 I I I I I I I I I I I m___m.____.____--.__-m_-_________._m__ ___m .__.-_-____._m._- .m__.__ 'l
20 FJGURE 4.1 NORTH RNNA UNIT 1 - CYCLE 3 BOL PHYSICS TEST ROD SWAP REFERENCE BANK BANK B INTEGRAL ROD NORTH - HZP PREDJCTED R MEASURED oo y N I i i h l l 1 I I I 6 i i i i 6 4 C2 v i i e i i t t l l l 1 I I i J j i
- i i
1 1 i I i Eo i s i yo
- a. i
%c I ii H ii , i s -Mi R i i i yo i, i, ,-.(w [ r i i i. oo i i i, a t. i
- o.,
i 5 go i cii i i 6 AN _J r. br N 1 6 i g V, 6 i i i M m s i O R r i l b) o ! *(I'. w i i i i, H "o 7"' A i ', Z v i i i M '( I, ' N I iI i i i l Ni i i i 6 E K , i i i w s
- my. ' t i
I 6, l t i i i 6 * ' i, " K L S Is. i i 4 iw c i i V 9 f f i Adt! 9 i . i f 8 5 Y l t ! I i i AI. '..! I l ! l I ! I I M' i i i i i i icsi.. I i MNi i I l 3 I i i i N i 4, i I i i i ! i i iiITmL i i i i e i i i i + I i 7 b 80 120 160 200 228 0 40 BANK POSITION (STEPS) a
d. i.. .h 4A.s. 44-Ain 2m-a d 3et-L- - > - 4 d +'a 44t.A k 21 FIGURE 4.2 NORTH RNNR UNIT 1 - CYCLE 3 BOL PHYSICS TEST ROD SWAP REFERENCE BANK BANK B DJFFERENTIAL ROD WORTH - HZP -- PREDJCTED M MERSURED-O O' 4 04 i i t i ! # i t i t r i l I ? i i i i l i t I l i e e 6 l l i t i 1 1 I i i e I i e i i 1 i i e i i O 6 t t i i O i t I i s e i l l 9 I i i ! I l. ! t I i i I t Q i i i i i 3 $~ l i 6 i e e { J t t ' +ii i i i 1 ^N ._,_,.4! I i I i f I i I I I i ! e i i I e i I 1 I 8 i I t 6 1 ! l? s' b. 1 i e e I I I I 6 i i i - p_ i i i e o i 1 l 1 i O i I t t i NO i 8 E i 1 g* -i i i i i t i e I i g i i r i 6 i 4 i i M i l t 8 , l ! i t e 9
- ~
i i l i 6 i i e 6 i e i 6 i i t t i i i e i e i l l l l i i I i i i l_ i i i i i s e F i i e i C o i i i, r_ O. g M gi l i m 6 e i i i I w. y C- ~ N m ! t ii ' i i t i . e I ( I"' I I .C i e i i 6 i ] d%m l F ln L - 4 i i, x6 i g ~' i of., i IA i 4 i a 6 4, i. I i ? 6 ~
- N' i
a 0 ~"~ i i i r I mI t t t 6 i
- -8 i
i i i mi bi + '" t y...N F-O. i i i fi i i Z e mat, t i e i i t_ t g i d 5 I I 6 i .C! Ni i I ( P r L i l i i 8 _8_ _ !.1 N I 3 i i g u / i i i i i i o m. i.. I% i e t i NM g%' !' l I / f 8 f s ?. s i + i i i i, u i g t 7 ' + i w ,Ni_ /, i 1 't ut g i i i, O 2 .. I i i r i i t I E M W...'. - f,, Y /l ! ! f I t W O, , 4 i i i
- -m A
i ,r ma f. g y i I w I ! I i f 1 i ! i 1 i e ! !W \\' I
- I '
i I 09. l C 't CUifIOh4 i
- I
\\! ! I 4 .'..W /
- t t
l b' i i \\ w e _mi v xi i i i ip -i 1 M.i , i z I Ne N ip p i 6 %. 1 ;ri. %d ~ i 9! ! 4 i t i I t ! 8\\ p 6 i C ~~l. 36 ii i i I i I 8 1 4 , i,_ I i e i a i 4 e i i g _. 4 i i s i
- .. i., i
, i i i .T i o 0 40 60 120 160 200 228 BANK POSITION (STEPS)
i 22 Section'5-BOROH ENDp0 INT AND WORTH MEASUREMENTS -Boron Endpoint With the reactor critical at hot =ero power, reactor coolant system-boron concentrations were measured at selected rod bank configurations l direct comparison of measured boron endpoints with design to' enable a predictions. For each measurement, the RCS conditions were stabili=ed with the control banks at or.very near a selected endpoint position. The critical-boron concentration was then measured. If necessary, an adjustment to the measured critical boron concentration was made to account for off-nominal core conditions, i.e., for rod position and moderator temperature. The.results of these measurements are given in Table 5.1. As shown in this. table and in the Startup physics Test Results and Evaluation Sheets given in the
- Appendix, all measured critical boron endpoint values were within their respective design tolerances.
All measured t values met the accident analysis acceptance criterion. In summary, all results were satisfactory. Boron Worth coefficient The measured boron endpoint values provide stable statepoint data from ~ uhich the boron worth coefficient was determined. A plot of the boron concentration as a function of integrated reactivity can be constructed by relating each endpoint concentration to the integrated .-._.. _...-......_ ~... -,. _. _.... _...... -.... _. _ _ _ _ _ _ _ _, -... -. _ _.. ~ _ _,. _, _. - - _
23 sod-worth-present in the core at the time of the endpoint measurement. The value of the boron coefficient, over the range of boron endpoint concentrations, is obtained directly from this plot. .The-boron worth plot is shown in Figure 5.1. As indicated in this figure-and in' the Appendix, the. boron. worth coefficient of reactivity was measured to be -8,54 pcm/ ppm. The measured boron worth coefficient is within 4.7% of the predicted value of -8.16 pcm/ ppm and is-well within the design' tolerance'of 110%. The measurement result also met the accident analysis' acceptance criterion. In summary, this result was satisfactory.
24 ) Table 5.1 'MORTH ANNA' UNIT 1 - CYCLE 3 BOL PHYSICS TEST BORON ENDPOINTS
SUMMARY
l l Measured I predicted l Difference l l Control Rod 1 Endpoint l Endpoint M-p 1 I configuration I (ppm) l (ppm) 1 (ppm) i l l I l I I i i l l 25.3 1 l R RO - 1 1466.7 1 1492 l 1 I I I l l B ~ Bank In i 1300.7 1 1304 1 -3.3 1 l I I I I s The predicted endpoint for the B Bank in configuration has been adjusted for the difference between the measured and predicted values of the endpoint taken at the'ARO configuration as shown in the boron endpoint Startup physics Test Results and Evaluation Sheets in the Appendix. ( 1 I E e -wnw- .e-e-www-aemi,.-en-, -eveu--..mwma-
,l1 O 0 6 5 1 0 2 5 T 1 S E m T pp / S m 0 c C p 8 4 I S 5 4 1 Y 8 i \\ M H T \\ P._ P = N P -_ B 0 E C L b6 \\ 4I I O 4 N C 1 N B I O FS 3 T T F N T _ E N EM O E E OR 0 CS \\ U 0R L A 4T C E 1 Y M N HT C F T N \\ C l 1 R0 P N OD x 5 N n WE ~ R \\ 0r 1 E O 6 3 U N N 1N T G O O I I R N F N R O U O B \\ R 0 A \\ _ 2 N 3 N 1 A N N N H T R 0 8 O 2 N \\ 1 \\ \\ 0 \\ 4 2 1 0 0 0 0 0 0 0 0 0 0 4 0 6 2 0 0 2 2 1 1 8 4 0 7o'~ $ Ocug s li-'
26 Section 6 TEMPERATURE COETTICIENT MEASUREMENTS The isothermal temperature coefficient measurements were accomplished by controlling the RCS heat gains / losses with the steam dump valves to the condenser and/or steam generator
- blowdoun, establishing a
constant and uniform heatup/cooldoun rate, and then monitoring the resulting reactivity changes on the reactivity computer. These measurements were performed at very low power levels in order to minimire the effects of non-uniform nuclear heating, thus, the moderator and fuel were approximately at the same temperature (between 543 - 549 'F) during these measurements. To eliminate the boron reactivity effect of outflow' from the pressuri=er,'the pressurirer level was maintained constant or slightly increasing during these measurements. Isothermal temperature coefficient measurements were performed at various control rod configurations. For each rod configuration, reactivity measurements were taken during both RCS heatup and cooldown ramps during which the RCS temperature varied approximately 6*T. Reactivity was determined using the reactivity computer and was plotted against the RCS temperature on an x-y recorder. The isothermal temperature coefficient was then determined from the slope of the plotted lines. The x-y recorder
- p. lots of reactivity changes versus RCS temperature for each measurement are shown in Figures 6.1 and 6.2.
The predicted and measured isothermal temperature coefficient values are compared in Table 6.1. As can be seen from this summary and from the Startup physics Test Results and Evaluation Sheets given in the
27
- Appendix, all measured isothermal temperature coefficient values were within the design tolerance of 3 pcm/'F and met the accident analysis acceptance criterion.
In
- summary, all measured results were satisfactory.
I 1 1
28 Table 6.1 NORTH ANNA UNIT '1 - CYCLE 3 BOL PHYSICS TESTS ISOTHERMAL TEMPERATURE COEFFICIENT
SUMMARY
l BANK l I lISOTHERMAL TEMPERATURE COEFFICIENTl IPOSITION l l I (PCM/'F) I i (steps) ITEMPERATUREl BORON l l l l RANGE lCONCENTRATIONI l COOL l l IDIFFER. 1 I B l D l ('F) i (PPM) lHEATUPI DOWN LAVER.lPRED.I (M-P) l I I I I I I I I _I I I I I l I 1 1 I I I I I 2281 2281542.9-548.51 1487 l -4.521 -4.201-4.361-3.991 -0.37 I I I I I I I I i l l I 91 2281543.1-546.21 1311 1 -7.301 -7.501-7.401-6.661 -0.74 I I l _. I I I I l l l I ( l
29 Tigure 6.1 NORTH AHMA UNIT 1 - CYCLE 3 BOL PHYSICS TESTS ISOTHERMAL TEMPERATURE COETTICIENT HZF, ARO l l 1 1 t ..iii! i, ,,,,,i.ii ,4 i i, 4 6 ii,,i , j,,,', j i;,, i ? ?. t i I i ' t t ' t I i I, i ! r i !,,,, i, i OD h i,,, 3, i _; ;, ,,i;,;i;, ,j j 'O i' ! i + t i i i i i I eiiiii i x N . i i i i i i i i, i i, a.i i., i,,6 , i,, j I I I I '; L' 'M) j I J i, j t e, i
- iiii, e
i i i i t,Qa T. i, l'!I j i N %g. i'a i f! i ,.r7;ii,i, i i i i i i, 4 i _.). ) - g . -v W j-L._ i i i iii i i h;.. _.-.. j - a i r , -{ _l h q q l-l L}_ q_ ,.p 4, { ll; j. j i ii g !. i i.L. .l.p3" !11 ..q _ iL_.L i ,_n i i, ,i ,,i<- ^ I l~ l- ~~ ~ f l I 'I i 6 u l-l- q_l _h,. g I - 6 7,, ,i l D ~_l T 1i i .{ i 1 i F- ~ !T T: ~[ -~ 'c'op[c(,%==% N3 'y--* 7--h, .. q ' ..~ ii2
- a., ;
3 i s p _' _ _4_ ,,i ,!i h.. 7. _7' _y .l. ~ .}. i. l. ~ ~ 2 .i ._. r..'--_ 4'-I t - ----+ -h.7, ' i, ' ( i CdalMdanj 'l s_ ~1 lMi X a2_ i i. H._p Cp._,.____ !( li M i I VERTICAL SCALE 10.0 pcm/ inch-f HORIZONTAL SCALE 1 'F/ inch [! i i i i i i i i i i i i i i i i i i i i i t-tttf j j TEMPERATURE (*F)
30 1 Figure 6.2 NORTH ANNA UNIT 1 - CYCLE 3 BOL PHYSICS TESTS ISOTHERMAL TEMPERATURE COEFFICIENT HZP, E-BANK IN . j p g, 7 .... 4 ft._... .t 3..,.,.p L .. I 'p_, .,.,, L. ., J-I L .. j. ~ ~ ~. 1 ~{.[y~ 2 3,._ i. ; J..,. . {.1. q i .t. _p 3 ..3 7_ _3 ~-' "" 't~_'- _:::. ~ R_.._ --"~' '.J. O 1 0 1 m ..}. _._% ';'db~ NT-- i h__5L'G g g4A-_.N I i i, H ~' k? 4 I i -r,.[.-Mc75 l rT-Pfi, -kyI i m 16 '.) ' ' f' [/ e i 2.. i ,i I _2s5'll ~ ' -'. VERTICAL SCALE 10.0 pcm/ inch.- 7' 1 *F/ inch MHORIZONTALSCALE ,i i i i i i. i iii 'jT e i6 I i1 e i t ! I t. ~i l } } I t i ) i6 6 ( l t i l TEMPERATURE (*F) i 0
I 31 l Section 7 POWER' DISTRIBUTION MEASUREMENTS The' core power distributions were measured using the incore movable detector iflux mapping system. This system consists of five fission detectors which l traverse fuel assembly instrumentation thimbles in 50 core locations-(see Figure 1.3). For each traverse, the detector output ~is continuously monitored on a strip chart recorder. The output is also 1 scanned for-61 discrete axial points by the PRODAC p-250 process computer. Full
- core, three-dimensional power distributions are then determined-by-analyzing this data using the Westinghouse computer
.l i
- program, INCORE8
,INCORE couples the measured flux map data with predetermined analytic power-to-flux ratios in order to determine the power distribution for the whole core. 1 A. list of all the flux maps taken during the test program together with a list of the measured values of the important power distribution parameters is given in Table 7.1. The measured power distribution parameter values are compared with their Technical Specifications limits in Table 7.2. Flux Maps 2 and 3 were taken at zero power (Map 1 was aborted due to low incore detector signals). These flux maps serve as base ~ case design checks. Figures 7.1 and 7.2 show the resulting radial power -distributions. associated with these flux maps. These maps indicat'ed the presence. of a significant quadrant power tilt (-4%) and some-assemblywise relative power values in excess of the design f tolerances, but all measured hot channel factor values were within the Technical Specifications limits. L
? 32 Flux maps 4 through 14 were taken over a wide range of power levels and control-rod configurations. These flux maps were taken to check 7 the at-power design predictions and to measure core power distributions at various operating conditions. These maps also provide incore/excore calibration data for the nuclear instrumentation system as well as base data for axial power distribution curveillance. The radial power ' distributions for these maps are given in Figures 7.3 through 7.11. These figures show that the measured relative assembly power values are generally within 8% of the predicted values. Some relative assembly l power values were in excess of design tolerances, but all measured hot } 1 channel factor values were acceptable. These figures also shou that the { value of the quadrant power tilt ratio decreased significantly during e power ascension. In conclusion, all power distribution measurement results were considered to be acceptable with respect to the accident analysis acceptance criteria and the Technical specifications limits. It is therefore anticipated that the core will continue to operate safely l throughout cycle 3. i e
TABLE 7.1 HORTH AtatA Ut4IT 1 - CYCLE 3 BOL PHYSICS TESTS It1 CORE FLUX HAP SUtt1ARY I i i i i i i 1 1 2 l l t i l i I I I I BURHI l l F-QtT) HOT I F-OH(Hs HOT l CORE F(Z) l i 4 l 1 1 1 l l l UP 1 lBAttK l CHAtRIEL FACTOR l Chill.F ACTOR l MAX l 31 QPTR I AXIAll t:0.1 i MAP IMAPI DATE I MMD/IPWRl D I l l IF(XYll i OFF 1 OF l l DESCRIPTIOt4 l t40.1 l MTU l(%)lSTEPSl l lAXIALI l l l lAXIAll l MAX i i l SET ITHIMI I i l I l I lASSYlPIHlFOINTI F-Q(TilASSYlPIlllF-DH(H)l POINT! F(Z)1 1 MAX lLOCl (X) 10LESI I l__ t i l _,_ I I l __ I I I I __ l l l 1 I l___l l l 1 5 I I I I I i l i I I I I I I I I I I I I lARO l 21 4-8-811 01 41 220 l J14l JLI 21 1 2.520 l J14l JL1 1.678 1 21 11.44911.796l1.044l Sul 16.961 46 I I I I I I I I I I I I i 1 1 I I I I I I I ID AT 2.C AT 1301 31 4-9-811 01 41 2 i L131 OKl 38 1 3.114 l L131 OK! 1.843 l 38 11.61911.96011.0291 SEl-26.501 45 I I I I I I I I I I l t i I I I i l 1 I I 1 l FLUX HAP l 41 4-10-811 01 271 58 l L131 OKl 47 1 2.824 i L13l OKl 1.673 1 48 11.68711.84611.0131 SEl-34.561 45 I I I I I I i 1 1 I I I I I I l i I I I I I IFLUX HAP l 51 4-11-811 101 271 138 l J14l JLI 37 1 2.444 l K14l NOl 1.570 1 37 11.483tl.73111.015l Sul-18.601 45 l 61 1 I I I I I I I I I I I I I I I I I I IAPDMS FLUX MAP l 81 4-14-811 531 Sol 200 l K141 MOl 36 1 2.116 i K141 MOl 1.544 1 37 11.30711.63111.0181 SMl -6.801 45 l 1 1 I I i 1 I I I I I I I I I I I I I I I l APDMS F LUX MAP l 91 4-15-811 631 491 206 i K14l MOl 36 l 2.064 i K14l NOl 1.545 1 30 11.27811.62911.015l Sul -1.811 46 l 1 1 I I I I I I I I I I I I I I I I I I I IAPDMS FLUX MAP l 101 4-15-811 671 611 205 l K14l MOl 36 l 2.040 l K14l MOl 1.528 1 30 11.27611.60611.0141 Sul -2.841 46 l 1 1 I I I I I i 1 1 1 1 1 I I I I I I I I lAPDMS. I/E CAL.l 111 4-15-811 731 741 190 l K141 Mill 36 l 2.124 l K14l Mtil 1.509 1 38 11.34311.59111.016l SWl-12.151 46 I I I I I I I I I I I I I I I I I I I I I I lAPDMS. I/E CAL.I 121 4-15-811 781 791 180 l K14l Mtil 38 l 2.200 i K14l Mill 1.505 1 39 11.39711.62911.015l Sul-18.958 46 I I I I I I I l l I l I I I i 1 1 I I I I I lAPDMS. I/E CAL.1 131 4-16-811 881 851 210 i K14l Mtil 28 l 1.983 l K14l Mill 1.493 l 28 11.275l1.57411.0131 Sul 2.881 46 I I I I I I I I I I I I I I I I I I I l l 1 lHFP., EQ.XEt!OH l 141 4-27-811 48711001 224 l K141 MHl 37 1 1.953 l K141 Mtti 1.474 1 38 11.264l1.55311.0131 Sul -7.881 42 l IOTES: HOT SPOT LOCATIONS ARE SPECIFIED BY GIVING ASSEMBLY LOCATIOtis (E.G. H-8 IS THE CEllTER-OF-CORE ASSEMBLY LOCATIO!4) FOLLOMED BY THE "Y" COORDIt! ATE WITH THE SEVENTEEH ROWS OF FUEL RODS LETTEPED A THROUGH Q At0 THE "X" COORDINATE DESIGilATED Ill A SIttILAR MAtalER ). IN THE "Z" DIRECTIOta THE CORE IS DIVIDED ItiTO 61 AXIAL POIt4TS STARTIttG FROM THE TOP OF THE CORE.
- 1. F-Q(Tl It4CLUDES A TOTAL UNCERTAlHTY OF 1.05 X 1.03
- 2. F-DHtH) IllCLUDES A MEASUREMEllT UtlCERTAINTY OF 1.04
- 3. F(XY) MAX. IttCLUDES A TOTAL UttCERTAINTY OF 1.05 X 1.03.
- 4. OPTR - QUADRAtlT POWER TILT RATIO.
b$
- P 1 WAS ADORTED CUE TO LOW DETECTOR SIGt1AL.
- 6. MAPS 6 ANS 7 MERE QUARTER CORE M/D FLUX MAPS.
.. - ~, _. . - - - =.
34 Table 7.2 f NORTH ANNA UNIT 1 - CYCLE 3 BOL PHYSICS TESTS 1 l COMPARISION OF MEASURED POWER DISTRIBUTION PARAMETERS \\ WITH THEIR TECHNICAL SPECIFICATIONS LIMITS i I i l I i i F-9(T) HOT I F-DH(N) HOT l F(XY) MAX 3 l 1 1 CHANNEL FACTOR 2 l l 1 l CHAHHEL TACTOR l lMAPI l l l lHO.I MEASl LIMITlMARGINI MEASI LIMITIMARGIN! MEASlAXIALI LIMITIMARGINI l 1 l l (%) i i I (%) l lPOINTl I (%) I l l 1 l l l l l l l l l l 4 l 2.821 4.20 1+32.8 1 1.671 1.78 i +6.2 l 1.851 10 l 1.96 1 +5.8 1 1 5 1 2.44l 4.20 i+41.8 l 1.571 1.78 l+11.8 l 1.731 22 1 1.96 l+11.7 l 1 8 1 2.121 4.20 l+49.6 1 1.541 1.71 i +9.9 l 1.631 44 l 1.73 1 +5.6 I l 9 1 2.061 4.20 l+50.9 l 1.551 1.71 l +9.4 1 1.631 44 1 1.73 1 +5.8 l 110 1 2.041 3.47 1+41.2 1 1.531 1.67 l +8.4 1 1.611 44 1 1.69 l +5.2 l l 111 1 2.121 2.83 (+25.0 l 1.511 1.63 1 +7.4 l 1.591 36 l 1.65 l +3.6 l 112 1 2.201 2.65 l+16.8 1 1.511 1.61 l +6.2 1 1.631 10 1 1.78 1 +8.4 1 113 1 1.981 2.46 l+19.3 1 1.501 1.60 1 +6.3 l 1.571 44 1 1.62 l +3.1 1 114 1 1.951 2.10 l +6.8 l 1.471 1.55 i +5.2 1 1.551 35 l 1,57 l +1.3 I I I I I I I I I I I I I I l 1 The Technical Specifications limit for the heat flux hot channel factor, F-9(T) is a function of core height. The value for F-9(T) listed above is the maximum of F-9(T) in the core. The Technical Specifications limit listed above is evaluated at the plane of maximum F-9(T). The minimum margin values listed above are the minimum percent differences betueen the measured values of F-9(T) and the Technical Specifications limit for each map. All measured F-9(T) hot channel factors include 5% measurement uncertainty and 3% engineering uncertainty. 2 The measured values for the enthalpy rise hot channel factor, F-dH(N). includes 4% measurement uncertainty. 3 All measured F(XY) MAX values include 5% measurement uncertainty and 3% engineering uncertainty.
35 Figure 7.1 NORTH ANNA UNIT 1 - CYCLE 3 BOL PHYSICS TEST ASSEMBLYWISE POWER DISTRIBUTION i HZP, ARO a P N ft L K J H G F 'k D C 6 A 1 PREDICTED . 0.36. 0.71. 0.36. PRt0!C750 . 0.36. 0.70. 3.36. MEASURED 1 MEASURED . PCT DIFFERENCE. . -1.4. -1.4. -1.7. .PC7 O!PFERENCE. . 0.39. 0.98. 1.18. 1.16. 1.18. 0.98. 0.39. . 0.39. 0.93. 1.13. 1.11. 1.14. 0.96. 0.39. 2 0.1. -5. 3. -4.1. -4.1. - 2. 9. -2. 0. -0. 3. . 0.38. 1.11. 1.23. 1.23. 1.03. 1.13. 1.23. 1.11. 0.3S. . 0.37. 1.08. 1.17. 1.15. 0.97. 1.16. 1.1S. 1.06. 0.39 3 . -1. 9. -2.1. -4. 9. -6. 2. -6. 3. -5. 4. -3. 9. -1. 0. 1.6 . 0.38. 0.94. 1.21. 1.25. 1.21. 1.13. 1.21. 1.25. 1.21. 0.94 0.38. 4 . 0.38. 0.92. 1.17. 1.16. 1.13. 1.05. 1.14. 1.19. 1.18. 0.92. 0.36. 0.5. -2.3. -3.4. -5. 7. -6.6. -6. 7. -6.5. -5. 0. - 3.1. -2.1 0.5. 0.39. 1.11. 1.21. 1.28. 1.21. 0.94 1.02. 0.94. 1.21. 1.19. 1.21. 1.11. 0.39. . 0.40. 1.12. 1.17. 1.22. 1.14. 0.86. 0.93. 0.87. 3.14. 1.22. 1.16. 1.10. 0.41. 5 0.8.
- 0. 6. -3.3. -4.7. -5.4. -6.5. -8.6. -7.4. -5. 2.
-4. s. -4. 0. 0.1. 3.8. ..............................................e.............................................. 0.98. 1.23. 1.25. 1.21. 0.94. 1.02. 1.15. 1.02. 0.94. 1.21. 1.25. 1.23. 0.98. . 1.01. 1.26. 1.24. 1.15. 0.68. 0.94. 1.06. 0.94. 0.88. 1.15. 1.20. 1.21. 1.00. 6
- 2. 7. 2.7. -1.1.
-4. 7. -5. 7. -7. 6. =7. 9. -7. 8. -5.6. -4. 5. -4.1. -1.3. 1.5. 0.36. 1.18. 1.23. 1.11. 0.94 1.02. 1.13. 1.14. 3.13. *.02. 0.94. 1.21. 1.23. 1.16. 0.36. . 8.38. 1.23. 1.29. 1.20. 0.90. 0.97. 1.04. 1.05. 1.05. 0.96. 0.89. 1.19. 1.21. 1.17, 0.36. 7 4.6. 4.6. 4.6. *1. 3. -4. 4. -4. 9.
- 7. 6. -7. 9.
7.4. -6. 5. -5. 2 -2. 4. -1.7. -0.6. -0.8. . 0.71. 1.16. 1.03.'1.13. 1.02. 1.15. 1.14. 0,84. 1.14. 1.15. 1.02. 1.13. 1.03 1.16. 0.71. . 0.74. 1.21. 1.08. 1.13. 0.99. 1.11. 1.07. 0.80. 1.06 1.09. 0.97. 1.10. 1.01 1.19. 0.75. 8 4.6. 4.6. 4.6. -0.4. -2. 9. - 3. 6. -5. 9. -5.1. -5.1. -5.1. -b. 0. t. 2. -1. 6, 3.2 5.3. . 0.36. 1.18. 1.23. 1.21. 0.94 1.02. 1.13. 1.14. 1.13. 1.02. 0.94 - 1.21. 1.23. 1.16. 4.36. 9 , 0.37. 1.20. 1.25. 1.20. 0.92. 1.00. 1.12. 1.13. 1.08. 0.98. 0.90. 1.21. 1.24. 1.23. 0.39 1.6. 1.8.
- 1. 8. -1. 2
-2. 5. - 2. 0. -0. 7. -1. 3. -4.1. -4. 3. -4. 0.
- 0. 6.
0.8. 5.0 7.8, 0.96. 1.23. 1.25. 1.21. 0.94. 1.02. 1.15. 1.02. 0.94. 1.21. 1.23. 1.23. 0.98. . 1.00. 1.25. 1.25. 1.20. 0.93. 1.03. 1.15. 1.02. 0.93. 1.20. 1.24. 1.25 1.05. 10 i f 1.8 1.8 0.4. -0.4. -0.5. 0.2. -0. 3. -0. 8. -1.1. -0. 9. -0.4 1.4.
- 7. 0.
l I 0.39. 1.11. 1.21. 1.28. 1.21. 0.94. 1.01. 0.94. 1.21. 1.28. 1.21. 1.11. 0.39. 0.41. 1.15. 1.24. 1.28. 1.23. 0.97. 1.05. 0.96. 1.22. 1.28 1.23. 1.14. 0.41. 11 3.9 3.9. 2.5. -0.3. 2.0 2.6. 2.5 1.7, 1.2 0.5. 1.6. t.9.
- 4. 7.
0.36. 0. 94. 1.21. 1.25. 1.21. 1.13. 1.21. 1.25. 1.21. 0.94 0.38. . 0.40. 0.97. 1.21. 1.29. 1.30. 1.21. 1.29. 1.29. 1.26. 0.97. 0.40. 12 6.0.
- 3. 0. -0. 3.
3.5. 7.1. 7.1. 6.1. 3.6, 3.5. 3.1. 5.7. . 0.38. 1.11. 1.23. 1.23. 1.03. 1.23. 1.23. 1.11. 0.38. 0.42. 1.27. 1.36. 1.35. 1.14. 1.36. 1.35. 1.29. 0.40. 13 . 10.3. 14.6. 10.9 9.9. 10.7. 11.0. 10.0 8.3. 5.7. 0.39. 0.98. 1.18. 1.16, 1.16. 0.96. 0.39. . 4.45 1.15. 1.36. 1.32. 1.31. 1.08. 0.43. 14 . 14.7. 16.7. 15.8. 14.3. 11.1. 10.2.
- 6. 3,
STANDARD . 0.36. 0.71. 0.36 AVERAGE OtVIATICH . 0.41. Q.82. 0.41. .PC7 DIFFERENCE. 15 83.i11 . 18.8. 15.5. 12.1. s 4.5 MAP NO2 N1 2 DATE: 4/ 8/81 POWER 4% CONTROL ROD POSITIONSt F.Q( T ) = 2.520 QPTRt D BANK AT 220 STEPS F-OH(N) s 1.678 N'.4 0.%7 l NE 0.960 1.......... F(Z) s 1.449 D 1.Clu l SE 1.029 F(XY) s 1.796 i i BURNUP =. O MWD /MTU A.0 2 16.96(%)
C9 dTSnta L*g 3Od'1H fmNV nN11 1 - DADI'3 C E01* dHASIDS 13SI VSS3HH1KMIS3 d0M311 GIS1d'IHn1I0lI R2d' G - HVNM VI Z S13dS 3 - 8fmX VI 1C0 S13dS 1 P H 6 d I 0 3 9 V rJ d H W us01onO t
- 0 s6 O'91 0*t6
- W315nE10
- s' tS ' 0 *99
- 0
- tO *
- d31 0 tid 183HJ3 usotaizO C*f
- t*$
- t*f
- W1vsna10
- d31 G!d A1giHJ3'.
s [
- 0 99
- T
- 09
- t
- 01
- 0 95
- t
- 01
- 1
- 09
- O'9,9
- t*09 * !*tO
- e* 6 "
8 **
- at *0 * -t' es
- 0 *s*
- 0*99 1*09
- t ** * *!*(
- 0*9.
34>
- g 0*99 "
1
- t*tI
- 1*90
- t *#&
- 0
- 69
- f *34
- t'90
- t *tt
- t
- t9
- t ' 91
- 1
- t9
- 6*94
- I
- 0*99
- 0 *9E
- 1*86
- 1* t5
- t
- 31
- 0
- 61
- l I**
09* t*5 ' 9.9. I l
- -O L * =t t * -t
- L * -9 't * -9 9 * -
f t *t9
- 0 *69
- O '99 9
- O
- 69
- 1
- t9
- t *91
- t *tI
- t
- fT
- 1*12
- t ' 91 *t
- CS
- t
- ff ' t
- 2 9
- t *tS
- t'3 t 'C6
- 1 00
- 0 *99 09 t*g
- 9*t -
- 0*99 f
- 0 *
- t ' g * -3
- 9 * -9 '9..*
- 4 =.9 ' 9 *.9 g * -t a g *......................................t9
- t*CT
- 0*99
- 5 0*99
- 0*64
- t tt
- t t9
- t *t9
- t*tO
- 0 *6$
- t *OC
- 4 *65
- t*fO
- t *E9
- t
- t
- t4
- t
- tS
- 0 *S0 '
L ( * -t *$ * -S' 60
- t 't9
- t *t9 **3 * -1*f
- t'9 * -t*0
- O t'T
- 9*0 *
- 0 *99
- ttO ' t'* tt
- t'CT
- f *ff
- O'99
- 0
- 69 *
- s'99
- -0
- 9 * -0 '9 '...t
- 9 * -S
- 0 * -f
- t *
- t *01
- 0 *96
- O *f f
- t 'KO
- 1 9T
- t *90
- t'09 *O '92
- O '91
- t
- 9
- 1* 09
- t 90
- 1*91
- 1*rO
- 0 *ff
- 0 *96
- f*-f*$*-t*t-f*4 *
$'O *
- 1* 09
- t'*91
- t 'fO
- f *tt
- 0 *$0
- O '92
- 0
- 61 *-3 * ( * -f
- t * -s *1 * -9
- t * -6 ' t * -4 * * * -C *.....................
96
- 1
- 01
- t
- 09
- t *01
- O '96
- s '6$
- t
- f E
- t
- 3 4 *0 *64
- 0
- 65 0*9
- 0*9
- 4 J
- e
- 36
- t
- OC
- t*24
- t 'tt
- 0
- 65
- 0 ** 0*16
- 1'0$
- t*86
- t'29
- s '96 ' 0 *91
- O'6C
- 0*9
- t'3
- 1*g.
- -e'l * -6
- 0 ' -4
- 9 * -9 '.9
- t
- 4 * -0
- 9 *..............................................
t t 6
- at*2 * -9't *
-9** ' O SS
- 0*94
- 1*01
- f**t
- 0*69O '69
- 0'* f#
- 0 *fO
- t*6
- t4*
.......... '....... '.........................................)*21
- t 01
- t OT
- t *09
- 0 *91
- 1 09 9
J ' s'94
- 0 *f$
- O '69
- 7* t9
- O 66
- sef
- 0
- 66
- 0
- t9
- 0'* 66
- 0
- et
- 0 *69
- t
- tS *t
- 6 * - f
- f * ** * * * - $
- 9 * -L * $
- 0**
SO* 19, 69
- l
- O'99 ' 0
- f9 9*
1*01
- 0*26
- I 96
- 1
- 01
- t
- 09
- t
- 0T
- 0
- 96
- 0
- 65
- t * !!
- f
- 3 4 ' t *tO
- C
- tt
- 6 I
1*6
- t*6
- 0 99
- 0*60
- 1* 12 ' t *39 *
- 0 *36
- 1* 0 $
- f *2 4
- t
- t*
- 0 6$
- 0
- O'O
- t*C
- 9*0
- 6* f
- t'32 ' t
- 24
- 0
- 61
- 0
- 95
- O *65
- t*st
- 0
- 64 *
- t* 6 * -9 * * * - t ' t * - t 0 * -f '.9
- -f
- 4 * -*
- f *
- 0 *26
- t'09 e*t
- 0*t
- 0
- 9 * -t ' 9
- t
- 2 0 ' t '91
- 1*90
- t
- 00 '
fO
- t
- 09
- t '91
- t '90
- t
- t9
- 0
- 52
- 0
- 99
- 0'* 69
- 0 *91 *90
- t *91
- t *30
- O
- f f
- 0
- 96
- t 01
- 0 *96
- 0
- 51 *O '$R
- t
- tS
- t
- 91
- t '91 t' t9 0*C
- t'6
- 9.3.
l ' - 2 * ( '...t
- f * - t
- f *................................
- t
- 0 9
- t ' 5 * -0
- 4
-t * * * -t * $ * -0
- 5 * +3 '9 t 0E
- 0
- 65
- t
- 3 0
- t
- t9
- t
- t9
- t
- EI
- O '99O '96 '*
t' l O'9
- 0*
- 0 *99
- t
- tt
- t *ED
- 1 *.9
- t *f O
- 0 * $ ** t9$
- 0 *65
- t
- tt
- t
- t6
- t
- 92
- t
- E9
- 6 1*9
- 3*0 * -1 #
- t*C
- t'L
- 1*f
- 4*F
- O'9
- 0*$ '
t*0 9*t 9*t-
- t'91
- f 19
- t
- tt
- 0
- 69
- 0 *99
- t *t9
.....................,..................................t * *f
- 1* f#
- 0
- 69
- O **t tf C*f *
- 0 *94 ' 0
- 49
- 1*E9
- t '91
- t *tI
- t
- 21
- t
- i3
- I*9$
- t'92
- t 'ot
- 0 *94 '
- O '91
- t'01
- f
- t4
- t'91
- t *tL
- 1 25
- t ' t9 *
. '8..... 't
- S 9
9**
- 2*A * -t*#
- f*t
- t'9
- t' 6 *
- '0' t*0
- C*0 *
................................................................* r'90 ' O'94
- tI
- 0*99 tS
- t*24
- 0 *69
- 1*24
- t **0
- s'99
- t *tf
- t 90 t*
- O '91
- t ***
- 1'*96
- t *t9
- t
- 02
- 1 *t4
- t'tt
- eC*
6*9
- 9'9
- 9*f
- 9*9
- 9*0
- t'O
- 4*t
- 9*f
- 14
- f
- 09
- t
- 0$
- 0 *55
- t' 01
- 1
- 09
- 0 *99C
- f O '-
- 0 *51
- t*tt
- t
- t9
- s'tI
- t 'tt
- t*t9 *
- 0*99 6 'l
- 13
- 6
- tE
- E
- 10
- 6
- 9*0 90 d 'I
- ts VA3aV02
- s'26
- 0 *91
- 0 *t6
- v A 01Adna2H32*
- 0 'tt
- 0 st
- 0
- tt
- a 90 sivH0vuQ 0sAtvitow
- t9 9 ' tt'L -
9*6* et*t9t n - m.. dom 3Ht 9% OV131 9/ 6/91 WVd NOI HT E Ddid: 3-011 ( s C'tI9 3ON1d01500 d0SIIIOHS NM O 691 l N3 0*60G d-QH)H( = I'991 ......'....g.......... Q GVHM V1 2 513dS SM I*030 l SI 1*0:6 J)2( zLW6 3 GVHM VI IEO 513dS J)X1( a t*690 0 WMC/W10 Y *0 = -39
- S0) % (
GnoNnd s
37 4 i Figure 7.3 NORTH ANNA UNIT 1 - CYCLE 3 BOL PHYSICS TEST I 1 I ASSEMBLWISE POWER DISTRIBUTION PRELIM I/E CAL FLUX MAP l 1 W P N n L A J M S F t p C 6 A PptDIC7tD , 0.31. 0.55. 0.31. PptDIC7t0 MEASURED . 0.33, 0.57. 0.33. HEA3URED 1 .PC7 01FFtWINCE. 5.1, 4.6 5.5. ..PC7 01FFERENCE. . 0.43. 0.97. 1.03. 0.78. 1.03. 0.97. 0.43. t . 0.45. 0.99 1.06. 0.79. 1.07. 1.03. 0.46. 5.1. 1.4, 2.3. 1.4. 3.9. 5.7. 6.6. . 0.43. 1.17. 1.25. 1.20. 0.97. 1.20. 1.15. 1.17. 0.43. 0.44.1.to.1.25.1 19. 0.96. 1.21. 1.30. 1.23. 0.47. 3 f 2.2 1.9. 0.1. -0. 6. -0.9 0.6. 3.6. 5.1 - 7.9. . 0.43. 1.03. 1.26. 1.30. 1.25. 1.17. 1.25. 1.30. 1.26. 1.03. 0.43. 4 . 0.45. 1.04 1.16. 1.26. 1 22. 1.15. 1.23. 1.32. 1,32 1 07. 0.46. 3.9.
- 0. 6. -0.1. -1.6.
-1. 7. -1. 6. -0. 9. 1.5. 3.0. 3.6. 6.7. . 0.4 3.1.17. 1.to.1.32. 1.19. 0.99. 1.09. 0.99. 1.19. 1.32. 1. 26. 1.17. 0.43. . 0.44. 1.21. 1.26. 1.20. 1.15. 0.92. 1.01. 0.94. 1.19,1,32. 1.30. 1.25. 0.46. 5 8.9. t. 9. -1. 7. -3. 2. - 3. 3. -7. 0. - 7. 3. -5. 0. -0. 2. 0.3. 1.3. 6.2. 11.0. ......................................................................................d.97. . 0.97. 1.25. 1.30. 1.19. 0.74. 1 04. 1.23. 1.04 0.74. 1.19 1.30. 1.25. 1.00. 1.29. 1.30. 1.14 0.70. 0.95. 3.12. 0.95. 0.71. 1.19. 1 32 1.30. 1.05. 4 1.1. 3.1. -0. 6. -4. 3. -5.1. -6. 6. -9. 3. -9. 0. -4. 0.
- 0. 2.
1.0.
- 4. 2.
7.5. . 0.31. 1.03. 1.20. 1.15. 0.99 1.04 1.20. 1.23. 1.20. 1.04. 0.99. 1.25. 1.20. 1.03. 0.31. . 0.32.1.06.1.t*.1.21. 0.93. 0.94. 1.07, 1.10. 1.09. 0.96. 0.95. 1.26. 1.23. 1.06. 0.32. 7 3.0 3.1. 3.1. -3. 2. -4. 6 -7. 3. -10. 6. -10. 6. -9. 3. -7. 6. -4. 3. 1.0 2.0. 2.7. 3.1 . 0.55. 0.76. 0.97. 1.17. 1.09. 1.23. 1.13. 0.94. 1.23. 1.23. 1.09 1.17. 0.97. 0.76. 0.55. 8 0.57. 0.60. 1.00. 1.13. 1.02. 1.14. 1.12. 0.06. 1.12. 1.12. 1.02. 1.18. 0.99. 0.82. 0.60. 2.6. 2.5, 3.1. - 3. 2. -6. 5. - 7.1. -6. 6. -6. 5. -9.1. -9. 2. -6. 5. 1.1. 1.9. 5.2. 4.4. 0.31. 1,03. 1.20. 1.25. 0.99. 1.04 1.20. 1.23. 1.20. 1.04. 0.99 1.25. 1.20. 1.03. 0.31. I - 0.32.1.05. 1.It.1.20. 0.93. 0.97. 1.10. 3.15. 1.10. 0.95. 0.93. 1.26. 1.24. 1.11. 0.35. 9 i 1.9 1.6.
- 1. 6. -3. 7. -6. 2.
-6. 2. -6. 6. -6.6. -6. 6. -6. 7. -4. 2. 1.5. 3.2. 7.9. 11.0. 0.97. 1.25. 1.30. 1.19. 0.74 1.04, 1.23. 1.04. 0.74 3.19 1.30. 1.25. 0.97 . 0.99. 1.57. 1.29. 1.16. 0.72. 0.97. 2.15. 0.98. 0.71. 1.16. 1.31. 1.30. 1.06. 10 1.6.
- 1. 6. -1. 3. -3,6.
- 2. 6. -e.1. -4.3. -6.1.
-4. 4. -2.6. 0.4 4.0. 10.6. . 0.43. 1.17. 1.26. 1.32. 1.19. 0.99. 1.09. 0.99. 1.19. 1.32. 1.26. 1.17. 0.43. 11 1.21. 1. 30.1. 30. 1.19. 0.96. 1.06. 0.95. 1.1d. 1. 31. 1. 31. 1.23. 0.46 . 0.44 2.9. 2.6.
- 1. 4. -1.4. -0. 5. -2. 9. - 3. 2. - 3. 9. -1.1. -0.4.
2.4. 5.0. 6.6. . 0. 4 3. 1. 0 3. 1. t o. 1.30. 1. 25. 1.17. 1. 25. 1. 30. 1.16. 1. 0 3 0. 4 3. l . 0.45. 1.04 1.26. 1.30. 1.25. 1.17. 1.26. 1,32. 1.30. 1.06. 0.46. It I 3.6.
- 1. 3. -1. 4.
-0. 5. col. 0.1. 1.1. 1.4. 1.3. 3.2. 6.6. . 0.43. 1.17. 1.25. 1.20. 0.97. 1.20. 1.25. 1.17. 0.43 13 . 0.47, 1.33. 1.34 1.34 1.92. 1.26. 1.34. 1.25. 0.46 6.4. 13.0 6.7. 3.1. 4.7. 6.6. 7.0. 6.3. 6.6. . 0.43. 0.97. 1.03. 0.76. 1.03. 0,97. 0.43 . 0.46. 1.11. 1.14. 0.64. 1.10. 1.04 0.4.. 14 . 13.0. 14.0. 10.1. 6.1. 6.5. 7.0. 6.3, 57ANDARD . 0.31. 0.55. 0.31. Avt# AGE Dtv1A71DH . 0.36. 0.61. 0.34 .PC7 DIFFERENCE. 15 =3.253 . 14.1. 10.5. 7.4. 4.6 MAP Not N1 4 DATE1 4/10/81 PCWERI 27% CONTROL RCD POSITIONSt F-Qt T ) = 2.824 QPTRt D BANK AT 58 STEPS F-DH(N) = 1.673 NW 0.982 i NE 1.007 ..........l.......... F(Z) = 1.687 SW 0.999 i SE 1.013 F(XY) = 1.846 BURNUP z 0 MWD /MTU A.0 34.56(%)
38 Figure 7.4 MORTH ANNA UNIT 1 - CYCLE 3 BOL PHYSICSJEST ASSEMBLWISE POWER DISTRIBUTION PPELIM I/E CAL FLUX MAP li ea H ri 6 n J H G F 6 0 G 8 A h0hbib I03$E05$'.05 Sibibib MEASURED 0.34. 0.6 3. 0.36. ME ASUR ED 1 JC7 D1FFERENC2. . -0.4. -1.1. 3.6. . PCT D1FFERENC2. 0.41. 0.06. 1.10. 0.99. 1.10. 0.96. 0.41. 0.42 0.16. 1.09. 0.98. 1.11. 1.00. 0.<.3 2 2.6. -0. 3. -0. 7. -0. 9.
- 1. 3.
3.3. 5.2. 0.41. 1.12. 1.22. 1.21. 1.01. 1.21. 1.22. 1.12. 0.41. ( . 0.41. 1.13. 1.21. 1.18. 0.99. 1.20. 1.23. 1.15. 0.44 3 0.9 0.7. 0.6. 1.9 2.1. 0.9 1.2. 3.3. 7.3. . 0.41. 0.97. 1.22. 1.26. 1.22. 1.15. 1.22. 1.26. 1.22. 0.97. 0.41. 0.42. 0.94. 1.22. 1.24. 1.19. 1.12. 1.19. 1.26. 1.24. 0.99. 0.43. 4 3.2. 0.6. -0.5. -2. 2. -2.8. -2. 9.
- 2. 3. -0.6.
1.4. 2.3. 4.8 . 0.41. 1.12. 1.22. 1.29 1.20. 0.98. 1.07. 0.98. 1.20. 1.29. 1.22. 1.12.,0.41. . 4.43. 1.16. 1.21. 1.26, 1.16. 0.92. 1.00. 0.93. 1.18. 1.27. 1.22. 1.16. 0.44 5 3.8. 3.8. -0.8. 2.4. - 3. 0. -4.5. -6. 6. -5. 0. -1.8. -1. 3. -0. 3. 3.6. 7.6. . 0.96. 1.22. 1.26. 1.20. 0.87. 1.06. 1.21. 1.06. 0.87. 1.20. 1.26. 1.22. 0.96, . 1.00. 1.27. 1.27. 1.16. 0.84 0.98. l.12. 0.98. 0.83. 1.18. 1.25. 1.24. 1.01. 6 4.1, 4.1.
- 0. 4. - 3. 3.
-4. 4. -7.1. -7.5. -7. 5. -4. 7, -1. 9 -1.1.
- 1. 9. 5.3.
l . 0.34. 1.10. 1.21. 1.22. 0.93. 1.06. 1.19. 1.21. 1.19. 1.06. 0.98. 1.22. 1.21. 1.10. 0.34, . 0.36. 1.14. 1.26. 1.20. 0.93. 1.00. 1.09. 1.11. 1.10. 0.98. 0.94 1.20. 1.21. 1.11. 0.36. 7 ( 4.2. 4.'3.
- 4. 3. -1. 9. - 5. 2. -5. 7. -4. 0. -8.1
- 7. 4 -6. 7. -4. 7. 1.4 0.1. 1.6. 3.0. . 0.64. 0.99. 1.01. 1.15. 1.07. 1.21. 1.21. 0.92. 1.21. 1.21. 1.07. 1.15. 1.01. 0.99. 0.64. . 0.67. 1.03. 1.05. 1.14. 1403. 1.15. 1.13. 0.86. 1.13. 1.11. 1.01. 1.14. 1.01. 1.04 0.69 8 4.2. 4.2.
- 4. 3.
- 1. 3. -4. 2.
-4. 9. -6. 5. -6. 0. -6. 6. -6. 7. -5. 9. - 1. 3. 0.1. 5.2. 8.4. . 8.34. 1.10. 1.21. 1.22. 0.98. 1.06. 1.19. 1.21. 1.19. 1.06. 0.98. 1.22. 1.21. 1.10. 0.34 . 0.35. 1.12. 1.23. 1.20. 0.95. 1.01. 1.13. 1.15. 1.12. 0.99. 0.93. 1.21. 1.22. 1.17. 0.38 9 2.2. 2.2. 2.1. -1. 9. - 3. 8. -4. 4. -5. 4. -4.5. -6.1. -6. 4. - 5. 7. -1. 0. 1.0. 6.4 9.9. 0.96. 1.22. 1.26. 1.20. 0.87. 1.06. 1.21. 1.06. 0.87. 1.20. 1.26. 1.22. 0.96. i 0.98. 1.24. 1.26. 1.18. 0.85. 1.00. 1.16. 1.01. 0.84 1.16. 1.25. 1.23. 1.05. 10 2.1. 2.1. = 0. 4. -1. 6. -3.1. *4. 9. -4. 4. -4.4. - 3. 7.
- 3. 0. -1. 4 1.5.
9.0. 0.41. 1.12. 1.22. 1.29. 1.20. 0.98. 1.07. 0.98. 1.20. 1.29. 1.22. 1.12. 0.41. . 0.43. 1.16. 1.24 1.26. 1.18. 0.96. 1.05. 0.95. 1.18. 1.27. 1.24. 1.15. 0.44. 11 3.8. 3.8.
- 1. 7. -2. 2. -1. 5. -2. 2. -2. 3. -2. 9. -1. 2.
-1. 4
- 1. 3.
3.3. 5.8. . 0.41. 0.97. 1.22. 1.26. 1.22. 1.15. 1.22. 1.26. 1.22. 0.97. 0.41. . 0.43. 0.91. 1.20. 1.27. 1.25. 1.18. 1.24. 1.27. 1.23. 1.00. 0.43. 12 5.5. 1.7. -2.2. 0.5. 2.2. 2.1. 1.6. 0.7. 0.6 3.1. 6.8. . 0.41. 1.12. 1.22. 1.21. 1.01. 1.21. 1.22 s 1.12. 0.41. 0.44 1.23. 1.30. 1.27. 1.08. 1.29. 1.30. 1.17. 0.43. 13 7.9. 10.4 4.8 5.3. 6.7 '. 7.1. 6.7. 4.5. 6.8. . 0.41. 0.96. 1.10. 0.99. 1.10. 0.96. 0.41. . 0.45. 1.09. 1.22. 1.09. 1.18. 1.03. 0.43. 14 . 10.5. 13.1. 11.6. 10.4 7.4
- 7. 0.
4.5. STANDARD . 0.34 0.64. 0.34. AVERAG2 15 . 0.40. 0.72. 0.38. .PC7 DIFFIliENCE. DEVIA71DN s2.927 . 15.4. 12.4. 9.4, s 4.0 MAP N01 N1 5 DATE: 4/11/81 PCWEP: 27% CCHTROL RCD POSITIONS: F-Q(T) = 2.444 QPTP2 D BANK AT 138 STIPS F-DH(N) = 1.570 HW 0.984 l NE 0.989 ..........l.......... F(2) = 1.483 SW 1.015 l EE 1.013 F(XY)
1.731 BURNUP
10 MWD /MTU A.0 3 -13.60(%)
C6 M nu L*g B NOB 1H VNNV nN11 1 - DA31'3 E 80I' dHASIDS 13SI VSS3HCIEMIS3 d0M3H QISIHI8n1 ION VdGHS - dI'nX WVd a d H W 1 X r H 9 J 3 0 3 9 V 9 443ar31iC
- 0 19. 0,...........9 sW
- da3013nO
( W3vsns30 ' 0* t6
- 0* LE
- er9
- W3vsn530 t
- d31 OIdJ3 sin 33 9*$
- 9r
- 9*9
.'d31 0!dd353N33' y
- 0*90
- OW ' t'tI
- 1*TO
- t*TE ' O
- 69
- O 90 *
- 0
- 92
- 0
- et
- f
- t9
- 1* t8
- f
- ff
- O' 69
- 0'*92 '
,l ............'9 '..0'I *................'t *.......'3'. 9*l
- 3 S
3*S
- 3 t
5*4* '.0
- t6
- 1* 0 2
- t
- tS
- t '!!
- t ' 01
- t
- 4T
- t
- t9
- t ' oL
- 0
- t6 *
" 0*90 ' T'06
- t *iL
- 1*t9
- t* 01
- t't6
- t'70 ' t'tO
- O'91
- t~
3*3 ' t T*(
- C*2
- 9.g.
...................' 9 * -0
- 6 * - 3
- t *. t ' C
- a t ' O
- 0*t6
- 0*61 * !*t9
- t*39 t
- 2T
- T
- tS
- t 31 * !
- 39
- T
- t 9
- 0
- 61
- 0
- t6
- f
- O '90
- 8
- 69
- t 't9
- t
- 31 '* t *tL
- t
- tf
- t'* tS
- t !t
- t 't 6
- O ' 69
- O'91
- 9
.............................'....'9*-t*f'.at't*-t*0*-2t*.....................................'....'E*.......,.......... 9*f
- 0
- 6 * -0
- f
-3 O*t t S. a 0 *90
- t* 04
- t*t9
- t* 34
- t*#t
- OW
- 1'09
- O W
- t et
- t *24
- t
- t9
- t*0 2
- O'90 *
- O '91 * *f '!O
- T ' t9
- t ' 21 ' !
- t A
- O
- 61
- T
- 00
- O W
- t
- tA
- t *t9
- t
- t9
- t
- t8
- 0
- 91
- t*4
- C
- 0
- at *$
- at
- t * -t t
9*9
- 6g*
.................................'9*-9*9*-4*0*-5'9'....*0'..3'9*at*5* 8'
- B W
- t *tS
- t
- 39
- t'21
- 0 rt
- t *06
- t *3f
- t'06
- C
- 61
- t*2t
- T 39
- t't9 ' O' 69 *
- O'6L
- t
- ZE
- t * **
- t 't9
- O
- 61 ' t ' OT
- f
- t9
- t
- 01
- O ' 61
- t' t 9
- t 21
- T
- 21
- t ' 00
- 1 t
- f * -0
- 2 * -t 9
i< ............'l *.....................' 9 * -f ' O
- a L
- t * -4
- t * - 4
- f '. 9 4. 3 g
.3 g - gat +.9 g >
- 0
- t9
- 1'13 ' T
- 21
- t '21
- 0
- 66
- 1
- 0*t1
- t*t9
- t* ff
- t *tS
- e rt
- t *02
- t'!!
- t*tt
- T*tt
- t* 02
- S W *t
- 06
- t*31
- t r3
- t'31
- t
- 06
- O'66 3T
- t ' 31 * !
- tt
- 0
- C9
- t 1
t*9
- t*6
- E
- 6 * -t
- E * =$
- 9 * -9
- 0
-9*0 4 g..g 3. 9.9..g g..g'.g. g.g - 3.3 - g*
- 0*99
- t *tO
- t
- OC
- t*15
- t* 09
- f *3E
- t'32
- a'61
- 1*72 ' 1*21
- t'09
- t'IS
- t
- OC
- T *f O
- 0 *99 *
- O*40
- t *t9
- t '01
- t *tt
- t *02
- l't9
- T't9 ' O'91
- t*t9
- t
- t9
- t* 0T
- t* tE
- t 'CE ' t* t9
- 0* 49 '
9 t*9
- t'9
- t
- 6 * -3
- O * -9 r * -f * * * -9 9 * -9
- f ' -9
- 9 * -9 r " -9 * * ' -t
- L
- O'T-f*6*
6.g.
- s'tL
- 1 19
- t***
- T *t9
- 0 *6$
- t'ot
- t'tt
- t* t9 ' t'tt
- T'OT
- O'61
- t *f O
- t *38
- t
- t9
- 0*
6 .....'l* 2 3*9
- 2*f ' -I*t
-9 ........................'....' 9 * -t
- L * -9 ' 9 * -9
- 9 * -9 ' 9 * -9
- 6 * -9
- T * - t ' t
- T'9
- 4*$
- I
' O'69 * ' O'69 * !*ti " t'3$
- 1*t9
- e'65 ' 1* 09 *t ' t9
- t
- t9
- t
- 3T ' 0
- 64
- t
- 06
- T ' t L
- t' 09
- IC
- t 06
- 0
- 64 ' t' tt
- t *2T
- T *2T ' t
- 01
- t*31
- t'39
- t*t9
- 0*69 t'
4*6E ' fO 8*$
- 8*S * -0
...................' L * -t ' 9 '.. t ' t '..t ' 9 * =9
- 9 '..-t r * -9 ' T * - t ' 9 * - t ' 9 *..............................
- 10*f '
t
- 0
- 90
- t
- 01
- t
- t9
- t
- 3 4
- T
- 21
- 0
- 66
- t
- 09
- O ' 66
- t
- t t
- t *t4
- t
- t9
- T
- 04
- O '90 *
- O '91
- t
- tI
- t * *t
- t
- 39
- t *20 ' 0
- 69
- t ' 09
- 0
- 69 ' t *te ' T *35
- t
- 30 ' t
- tt
- O'93 '
11 ; 9*9 *
- 3*t * =2 t*3
- t*9
- 1
............'9 *..............' t
- 0
- 9 * - t ' 9 * - t
- 6 *
- t * * * - t ' S '.. t ' 9 *.......................'O i
- 0
- t6
- 0
- 61
- t *t 9
- t
- 39
- t
- 21
- t
- ff
- T *IT
- t
- 39
- t
- t9 ' O'69
- 0 * **
- 61
- 0
- t6 *
- 8'92
- 0*69
- 1* tS
- T
- 31
- t *II
- 1* t9
- t
- 32 ' t
- 31
- t
- 16
- 0
- 13 1
tt-ss 3*t * -0*9 - 10 te - 10* 0 0 t ......................................................'s....s'....s*.... 1. r l ore irt tre trt ret ter
- te9 trt 0r6 "
- 6'91
- 1* 20
- f
- 29
- T
- 3$
- t
- 0 6
- t
- 29
- t
- 29 " t
- tt
- O'93
- i
- O TC '
l
- 4
- 12'8
- 9*9 t
5*9
- 9*S
- 9*9
- 4't g
.................'....'9*...................................... ' ,m i
- O'90
- e r9
- t*tI
- t't c
- t
- tI
- 0
- 69 *O ew tri tv* ' irT
- tro trO
- ew'90
- 1* !
j 12 * * '.tt * *
- tt
- t
- 10
- 0 *.......................'9*.....
....'...'s 9 9 *9 9 ......v......... [ 81TNOF50
- O ' t9
- O '99
- O
- C9
- YA35V91
- 0 7
GIAIV110N 0*49 ' 0*t6 *
- 19'92 ' 13 * $ '.9
- 9
'd31 O.Idd353N33* tS ' st*0tt
- t
- 9'9 n=.=w....
m WVd NC3 NI 9 OV13r 9/19/91 dom 2d: 50% 30H1501 d00 d0SIIIONS d-011( = 3 'IM OdiM 0 0vHM VI 300 S13dS d-OH)H( a I'599 NM 0 69( l N3 0*66I .__...'..__g__ J)2( a I*E01 SM I*OIG l 53 I*009 dIXA(
- I'9EI GNd
- SE MMCW1A v*O 2
-9*90)%(
40 Figure 7.6 NORTH ANNA UNIT 1 - CYCLE 3 BOL PHYSICS TEST ASSEMBLYWISE POWER DISTRIBUTIOM f APDMS - FLUX MAP i 1 1 I R P N M L K J H 8 F E O C 8 A 0.36. 0.64. 0.36. PREDICTED PREDIC7ED l MEASURED . 0.39. 0.74. 0.39 MEASURED 1 .PC7 01FFERENCE. 4.3. 4.2 7.4 .PC7 01FFERENCE. . 0.39. 0.94. 1.12. 1.11. 1 I t. 0. 94 0.39 . 0.41. 0.93. 1.15. 1.13. 1.17. 1.00. 0.48 8 4.2. -0.4 2.5. 2.4 4.9. 6.4. 7.8. 0.39 1.06'. 1.16. 1.21. 1.03. 1.21. 1.16. 1.06 0.39, . 0.39. 1.07. 1.16. 1.19. 1.02. 1.21. 1.11. 1.11. 0.48 3 1.0.
- 0. 7.
-1. 4. -1. 5. -1,6 0.0. 2.3. 4.4 4.2. . 0.39. 0.93. 1.18. 1.24. 1.11. 1.15. 1.31. 1.24. 1.16. 0.93. 0.39. . 0.40. 0.93. 1.17. 1.20. 1.18. 1.12. 1.19. 1.81. 1.19. 0.95. 0.41. 4 3.5.
- 0. 8. -0. 9. - 2. 9
-2. 5.
- 2. 6. -2.1. *1. 9 1.1.
1.2. 5.7, . 0.39. 1.06. 1.16. 1.27. 1.21. 0.99 1.06. 0.99. 1.11. 1.27. 1.18. 1.06 0.39 . 0.41. 1.10. 1.16. 1.23. 1.16. 0.93. 1.01. 0.94. 1.17. 1.24 1.17. 3.11. 0.43. 5
- 3. 0.
- 3. 0. -1. 8.
-3. 5. - 3. 9. -4. 5. -6. 6. - 5. 5. -3.1. -2. 2. -0. 8, 4.5. 8.7. 0.94. 1.18. 1.24. 1.81. 0.96. 1.09. 1.23. 1.09. 0.98. 1.21. 1.24. 1,16. 0.94 . 0.97. 1.23. 1.24. 1.17. 0.93. 1.01. 1.13. 1.00. 0.93. 1.16. 1.21. 1.21. 1.00 6
- 3. 6.
- 3. 8. -0.1.
- 3. 6.
-4. 8.
- 7. 5.
-7. 7. -7. 9. -5. 2 -2. 9. - 2.1. 2.4. 6.8. . 0. 36. 1.12. 1.11. 1.11. 0.99. 1.09. 1.21. 1.22. 1.21. 1.09. 0.99 1.21. 1.21 1.12. 0.36, 7 . c.18.1.17. 1.26 1 19. 0.94. 1.03. 1.11. 1.12. 1.12. 1.01. 0.93. 1.16. 1.11. 1.15. 0.38.
- 4. 5.
4.5. 4.5. -t. 0. -5.5. -G. 9. -4.4. -4. 3. -0. 0. - 7. 2. -6. 0. -3. 3. 0.3. 2.6. 4.9 . 0.68 1.11. 1.03. 1.15. 1.08. 1.43. 1.2 t. 0.93. 1.22. 1.23. 1.08. 1.15. 1.03. 1.11. 0.66. . 0.71. 1.15. 1. ca. 1.13. b. 02. 1.16. 1.13. 0.87. 1.13. 1.14 1."00. 1.13. 1.04. 1.16. 0.75. 4 4.4. 4.4
- 4. 5
-1. 7. -4. 6. -5. 4 -6. 8. -4. 5, - 7.1. -7.1. -4. 6. -t. 0, 0.3. 6.7. 10.5. . 4. 36 1.12 1.11. 1.21. 0.99 1.09 1.21. 1.22. 1.21. 1.09. 0.99. 1.11. 1.21. 1.12. 0.36 0.37. 1.14 1.43. 1.14. 0.95. 1.04. 1.14. 1.15. 1.13. 1.01 0.93. 1.19. 1.22, 1 20. 0.40. 9 1.9 1.9
- 1. 9. = 2. 5.
-4. 4. -5. 0 -6. 0. -5. 5. -6. 8. - F. 0. -6. 3. -1. 4 1.1. 7.5. 11.5. . 0.94 1.18. 1.24 1.21. 0.98. 1.09 1.23. 1.09 0.96. 1.21. 1.24. 1.18. 0.94 0.95. 1.20. 1.22. 1.18. 0.94. 1.04. 1.17. 1.04. 0.94 1.17. 1.21. 1.20. 1.03. 10 1.9.
- 1. 6. -1.1.
- 2. 6. -3. 9.
-4. 7. -4. 7. -4. 6. -4.1. - 3.4. 2.1. 1.4. 10.4. 0.39. 1.06. 1.14. 1.17. 1.21. 0.99. 1.06. 0.99 1.21. 1.27. 1.18. 1.06. 0.39 .. 0.41. 1.11. 1.80. 1.23. 1.18. 0.97. 1.05. 0.97. 1.19 1.24 1.19. 1.10. 0.42. 11 4.1. 4.1.
- 1. 7. -2. 8.
-4. 3. -1. 4, -8.4. -2.6. -1. 8. -4.1. 1.0, 3.5. 6.6 0.39. 0.93. 1.14. 1.34. 1.31. 1.15. 1.21. 1.24. 1.18. 0.93. 0.39 .. 0.41. 0.95. 1.15. 1.23. 1.23. 1.17. 1.22. 1.24 1.14. 0.96, 0.42. 12 6.3. 1.9. -2.6. =0.4 1.6 1.6. 1.0. 0.1. 0.0. 3.3, 7.5. 1.06. 1.18. 1.21. 1.03. 1.21. 1.18. 1.06. 0.39. . 8.39. . 0.42. 1.19. 1.86. 1.15. 1.09. 1.26. 1.26 1.10. 4.42, 13 8.9. 11.5. 6.7. 3.9 5.8 6.4,
- 6. 3.
3.6 7.5. l . 0.39. 0.94. 1.12. 1.11, 1.11. 0.94 0.39 0.44. 1.07. 1.25. 1.12. 1.19. 1.00. 0.41. 14 . 11.5. 14.3. 11.6. 10.4. 6.6. 6.6 3.6. AVERAGE STANDADD . 0.36. 0.68. 6.36. ..PC7 DIF8tRENCE. 15 DEVIATION . 0.42. 0.77. 0.39. 83.111 16.9. 13.2 9.5. s 4.5 MAP HO! N1 9 DATE: 4/15/81 POWER: 49% CONTPOL POD POSITIONS: F-Q(T) = 2.064 QPTR; D BANK AT 206 STEPS F-DH(N) = 1.545 HW 0.982 l NE 0.994 ..........i.......... F(Z)
- 1.278 SW 1.015 l SE 1.010 F(XY)
= 1.629 BURNUP z 63 MWO/MTU A.0 t 1.81(%)
l l 1 VI 313n2a L*[ NOH1H VNNV GNII I - DADI'3 E 801' dHASIDS 13S1 VSS3HHIEMIS3 dom 3H GISIBIHn1 ION VdGHS - I.I'nX HVd a d H W 1 M f N o d 1 0 3 e Y d.act3 tic e t9 - o6ot - de net 3na NvSM82C 6
- t6
- s ' tt
- o
- TG '
W3YSANIC 1
- d31 o144281N33
9*o* s s*o *
- d31 Q!ddlejH33'
...............'...........'e* ' o *o o ' 6*
- t
- t*
- t
- t t * !
- t9
- o
- 6e
- o '*t o * *t
- o ' 2 '- 1 12
- t tt t*tt
- o*6+
o**o ++ t
- -c*
1*e !*t' C*2* t6* st-s't6
- t'o9
- t"te
- 1*to
- t'o*
- t*20
- t 'is
- T c9 " o ' C6 '
o**o
- t*os
- t'tt
- t *te
- t'ot
- t'to
- t*t6
- t'tc
- o'*t -
t t*e
- 1*s
-e 6 1 99 > ..........................'t'.*.t'e*t'...*..o*4*.........'t '..t*1 o
- t6
- o
- 4t
- t 11
- t
- tt ' t tt
- t
- ts
- t
- te
- t'tt
- t
- te
- o
- 65
- o **t t*st
- t *ts ' t'tt
- t*tt
- t *tt
- o'et
- s't6 o *o
- o 6*
1 t1
- t*to *
......................'....'t*-2*t*-t9**t'l....3*(............'.......'............'e'....... t9 o*4
- o
-t'9 s'e t*4" s l s'vo
- t 09 - t*ts ' tt *t9 ' t
- 31
- o *66
- t'oe
- o
- 66
- t*tt
- t*29 t 'tt
- t '09
- o *o
- 1
- ***1
- t os
- t t9
-t
- 3
-s' t t
- t
- t 4
- s ' at
- t o t
- o ' 6s t
- te t * ** 1 1,9
- t,* tt
- o *
- t -
s t - t
- t * *9 t ' -9
-t'o -o-
- 3
- gg.
t*6
- s6
............'...'...........'..'...................'t*-*'6*-t's at
- t'at
- o*6e
- 106
- t* 8E
- t'o6
- o ' 6e
- t ' 21
- t
- 31 ' s ' te
- o
- 6+ '
- o
- 6e
- t
- te
- t 't t
- t tt ' s ' 6+
- o
- 6e ' s ' t t
- t ' f * -t
- t * **
- t '-9' ot
- t 'ts 1'ot
- o ' 6+9 * -9
- 9 * -9
- s * -* ' t
- a t' 1s
- t 't t
- t ' 30 ' o
- 66 '
t t 9 t**- t t *
- o*
.t g. gag g.g +
- e't9 - t
- ts t *to
- t
- tt
- o' 6*
t ot
- t t*
- t'tt ' t'tt
- t ot
- o as
- t te t aso
- t*tt
- o* te
- t 66
- t'oe
- t*tt
- s tt
- t*tt 1'ot
- o *66
- t
- st
- t to ~ 1 13
- o't9
' e te
- t t9 -
t **
- t te ' o
- tt*
st t t * -s t -s t * -s * ' - t
- t
-s t -9 s -s 4 -*
- s * -1 6 * -e 's
- tt to
' 0 96
- t 11 t o*
- t *ts t'oe ** t'zt
- t ts
- o 6t t'tt t*tt t 09
- t* ts 1*09
- t'tt o 96 *
- o
- tt
- t *ts ' t'ot t ts t 'ot t
- tt
- t 't*
o 99 ' t* t*
- t
- ts
- t ot
- t tt
- t 'o t ' t,t, > e,ts 9
e I t*t - t*t' t t * -t
- t * -t e * -s t
-9 o * -s 9 * -9 t * -9 2 -s
- s * -t e *.o. f. -.
t. - s't9
- t tt
- t to t ti o 66
- t 06
- t'tt t ti t'tt ' t'os o* 66 ' t
- 31 ' t n o
- t ts s ' t9 l
t t*
- t
- te e * *s
- t e*
- t t9 t t9
- t
- t*
- t 02
- o
- 6+
- t*te t at ' t*t6 o *o -
6 i - e
- te t ' t9 tt-t*t-tt - *t
-****-+s'...*..*s'..*..s*-+o*-*t.......................'............'9.............'6- -s s -t e - o
- t
- 6 I
' o6
- t te a t tt t*tt
- s'as ' t 06 ' t t t
- 1 06
- o
- 6e t 21
- t
- t E
- t
- to
- o ' o+ >
6 ' o 6d
- t tt
- t'tt ' t'ts ' o * *s
- t ow
- t tI
- t'ot
- o**s
- t t4 > t tt t t6 ' t-tc to s c * - c
- s * - * * - t t ~ -* t -*
- t * -* s - t 9 > -t o t9*
t*t > 6 i ........'....'.....................'......................................'..................'t 6 ot o *o
- o'vo " t*ot ' 1 11 t *t9 ' t
- 1 o 66
- 109*066* t tI t't9
- t'tt ' t'fo
- e ta *
- o **t
- t tt
- t'to
- t'tt
- t
- te
- o 61
- t
- os
- o
- 69 ' t*t6
- t'2*
- t t6
- t*
tt
- t-
- t'
- o
-t -t
- 6 - -t
-t s * -t o > -t t -t t fo> s ........................s...........+............................'s'....o........4-e t6
- o
- 61
- t
- t t
- t6 '
- ' o vt o as ' t ts t*tt
- t t t*t9t'at
- t*tt
- t'ts
- t *tt
- t ts t tt ' 0 69s'et ~ e'vt *
- t*ts
- t t*
- t te *
"o-ta s9> t*4 -t o*e
- o *e ' o e
tt* 91 .........'....'s*-o's'..................e'....t'..o'L-o t6
- 1 09
- t *te
- t to t o*
- t tc
- t'zs
- t tt ' o'*t -
te 109 o t6 *
- o vt > t
- t 6
- t
- t s t t*
- t,0 6
- t 21
- t
- te s s..tt** -...................'...........'e*
9** r** 'e - s 9o'
- t 9't o 90 o'09 6+
- t *tt
- t
- t t ' t ta ' o 60 t-
- t
- o *o '
- s'** ' ts z to'tt
- t tt
- t T6 t
- oc
- o **t t*
11
- o 6o-eo 9t
- t*
slrucrec ' o
- t9 o*96
- e t9
' o'ot
- s'tI
- e't6
valseca - s.lAtenoH
- d31 otid3HN3a' ts t 969
- t*9
- tt'* > er-
= *o WVd HCI NI-E-10 OV13: 9/1S/91 40M3d: 91% OCN1d01 800 d051110NS: J-011( 2'0tC DdiM Q Gm> VI 205 513dS J-OH ) H ( I'52G NM 0*660 l N3 0*666 ..........g.......... 412( = t*249 3M t*019 l 33 I*004 d)XA(
I'909 3ndNnd
91 WMC/W1A V*C 2 -2
- 9t) % (
42 Figure 7.8 i NORTH ANNA UNIT 1; CYCLE 3 BOL PHYSICS TEST \\ l j l ASSEMBLYWISE POWER DISTRIBUTION APDMS, I/E CALIBRATION - FLUX MAP 1 l N P N N 4 K J H G F 2 D C 8 A .s............. j PREDICTED O.37. 0.70. 0.37, PREDICTED NEASURED . 0.39. 0.73. 0.38. ..PC7 01FFERENCE. NE ASUR ED 1 .PC7 DIFFERtNCE. 4-3. 4.2.
- 4. 0.
. 0.40. 0.94 1.12. 1.10. 1.12. 0.94 0.40. 0.42. 0.93. 1.13. 1.11. 1.14. 0.98. 0.42. t 4.8. -1. 0 0.6. 0.6 2.2. 3.5. 4.6. . 0.40. 1.07. 1.17. 1.20. 1.04. 1.20. 1.17. 1.07. 0.40. . 0. 41. 1. 0 9. 1.16. 1.17. 1. 01. 1.19. 1.18. 1. 0 9. 0.4 L. 3 2.3.
- 2. 0.
-0. 9, -2. 5. -2.6. -1. 3. 0.8, 2.5. 5.9. 0.40
- 0. 94 1.17. 1.23. 1.20, 1.15. 1.20. 1.23. 1.17. 0.94. 0.40.
0.41. 0.94 1.17, 1.20. 1.17. 1.11. 1.17. 1.21. 1.18. 0.95. 0.42. 4
- 3. 7.
1.0,
- 0. 2. - 2.1. - 3. 0. - 3. 0. -2. 9. -1.6,
0.6, 1.6. 4.6 0.40. 1.07. 1.17. 1.26. 1.20. 1.00. 1.08. 1.00. 1.20, 1.26. 1.17. 1.07. 0.40. 0.42. 1.10, 1.16. 1.23. 1.17. 0.94. 1.01. 0.95. 1.17. 1.24. 1.16. 1.11. 0.44 5 2.6. 2.8 -1. 0. -2.4. -2. 7. -5.4. -6. 0. -4. 9.. -2.2. - 1. 6. -0. 5. 4.3. 4.4. . 0.94. 1.17. 1.23. 1.20. 0.98. 1.09 1.23. 1.09. 0.98. 1.20. 1.23. 1.17. 0.94. . 0.97. 1.21. 1.23. 1.16. 0.94 1.03. 1.15. 1.02. 0.94. 1.18. 1.21. 1.20. 0.99. o 3.2. 3.2, -0. 0
- 3. 2. - 3. 9
-5.9 -4. 0. -6.1.
- 3. 8.,- 1. 8. -1. 2 2.1.
- 5. 3,
. 0.37. 1.12. 1 20. 1.20. 1.00. 1.09. 1.21. 1.22. 1.21. 1.09. 1.00. 1.20. 1.20, 1.12. 0.37 . 0.36. 1.16. 1.25. 1.18. 0.95. 1.04 1.13. 1.14. 1.14. 1.03. 0.96. 1.18. 1.30. 1.13. 0.38. 7 3.6 1.6, 3.6, -1. 5. -4. 2. -4.6, -e. 8. -6.6 -4.0. -5.8 -4. 0. -1.6, -0.3. 0.9. 2.2. \\ . 0.70 1.10, 1.04 1.15. 1.04. 1.23. 1.22. 0.44. 1.22. 1.23. 1.08. 1.15. 1.04 1.10. 0.70, . 0.72. 1.14. 1.08 1.13. 1.04.. 1.14. 1.15. 0.89. 1.15. 1.14. 1.03. 1.13. 1.04. 1.15. 0.74. 8 3.6 3.6. 3.6 - 1.1. - 3. 5, -4. 0 - 5. 3. -4. 8. - 5. 3. -5.4. 4.9 -1. 5. 0.3. 3.4, 6.4 . 0.37 1.12. 1.20. 1.20. 1.00. 1.09. 1.81. 1.22. 1.21. 1.09. 1.00. 1.20. 1.20. 1.12 0.37 - 0.38. 1.15. 1.24. 1.19. 0.96. 1.05. 1.16. 1.17. 1.15, 1.03. 0.95. 1.19. 1.21. 1.18. 0.40. 9 l
- 2. 9.
2.9,
- 2. 8. -1. 3. - 3. 2. - 3. 6
-4.1. - 3. 7. - 5.1,. e. 3.
- 4. 8, - 1. 3.
0.9, 5.3. 6.3. ) . 0.94. 1.17. 1.2 3. 1.2 0. 0. 98. 1. 09. 1. 23. 1. 09
- 0. 9e. 1. 20. 1. 2 3. 1.17. 0. 94.
10 . 0.97. 1.21. 1.23. 1.18. 0.95. 1.04. 1.10. 1.05. 0.94. 1.17. 1.21. 1.19. 1.02. 2.8. 2.8. -0.8. -1.8. - 2. 6. -4.4. -4. 0. -4. 0. - 3. 2 -2. 7 1.7.
- 1. 7.
- 7. 7.
...........................................................4. . 0.40. 1.07. 1.17. 1.26. 1.20. 1.00. 1.08. 1.00. 1.23. 1.26. 1.17. 1.07. 0.40 . 0.42. 1.11. 1.19 1.23. 1.10. 0.97. 1.05. 0.94. 1.18. 1.24. 1.14. 1.10. 0.43. 11 4.1 4.1
- 1. 9. - 2. 2. -1.4. =2.2, -2. 3. - 3.2. - 1. 4.
-1. 6. 1.1 - 3,5. 6.1 . 0.40. 0.94 1.17. 1.23. 1.20. 1.15. 1.20. 1.23. 1.17. 0.94. 0.40. . 0.42. 0.95. 1.14 1.33. 1.21. 1.15. 1.21. 1.23. 1.17. 0.96. 0.42 - 12 5.3.
- 1. 7. -2,2.
0.1. 0.4.
- 0. 7.
0.5. 0.4 0.3,
- 3. 0,
6.9. . 0.40. 1.07. 1.17. 1.20. 1.04. 1.20. 1.17. 1.07. 0.40 . 0.43. 1.18. 1.25. 1.24. 1.08 - 1.26. 1 23. 1.11. 0.42. 13 7.9. 10.5. 6.3.
- 3. 3.
4.4 5.0. 3.1.
- 3. 9.
6.9 l l . 0.40. 0.94. 1.12. 1.10 - 1.12. 0.94. 0.40. 0.45. 1.05. 1.22. 1.19. 1.18. 0.99. 0.44. 14 l 10.5. 11.9.
- 8. 9.
- 7. 7.
5.1. 5.2 3.9. STANDARD 0.37. 0.70, 0.37. AVERAGE DIVIA73CN . 0.42. 0.77. 0.39 .PC7 OIFFERENCE. 15 82.411 . 13.0. 9.8 6.5. 3.6 MAP HO: Hl.3-11 DATE: 4/15/81 POWER: 74% CONTROL POD FOSITIDHS: F-Q(T1 = 2.124 QPTR: D BANK AT 190 STEPS F-DHtH) = 1.509 HW 0.989 1 NE 0.990 _.........l.._____.-- F(Z) = 1.343 SW 1.016 l SE 1.004 F(XY) = 1.591 BURNUP
- 73 MW3/MTU A.0 = -10.15t%)
VC dT2nt.a 4 y NOH1H VNNV DN11 1 - DADI'3 E 801' dHASIDS 13S1 VSS3HHIXMIS3 dom 3H GISIBIH0110N l' l l VdGWS ' I/3 DVI'I8HV1 ION - dI'GX WVd 1 t a d H W 1 M f M 0 d 3 0 3 9 V ds301342C ' O'14 ' 0*96
- 0 14 "
da3013430 1 d3TS3s30 ' 0't6 ' 0*42
- 0t9 '
W3vtnd30 1 1 -2 4 4!dd383N33' $9* 9*0 'd34 0!ddisIN33' l ' 0**1 ' O'69 O'6$
- t 11 t'06
- t 11 0*65
- 0*91 '
O'93 '
- T'T! ' t*0e ' tt9
- O ' 6 4
- e ' 91
- 3
..................'9'..O'9".0'l*................'2 t*4 * -0 2*t
- t 99 I
' O ' 91
- t ' 0 6 *. T ' i L
- 1
- t 4 1
- 01 t ' t 6 *0*t*fO't'10*O'91' O ' 90
- t ' 04
- t
- 19 ' 1" 0 1*09 1*:
t
- 04 ' 0 *90 '
I t*t9
- t
.....................'....'9'..t't'..I*(..... '.................'9......... '........ 20' t'9 -0 t*2
- 0*9
- t 9*2 O'90 ' O'69 ' t ' t t
- 1
- 21 '... 1* tO
- t 'IS " t
- 20
!" 31
- t ' t9
- 0
- 69 14 ' 0*69 O'90 '
0 *92 ' 0
- 65
- 1* t4 " t *23 ' t
- t4
- i'tt ~ t ' t t " i' 3t ' 1*
- O'92 '
E'9
- t0' 0*f " -3 0 ' -3*6
-t*0 -# t -t*t O ......'.....'...'......'.....'6'...t'9'..t'9. 0 *91 ' t
- 04
- 1* t4
- t'29
- t
- 20
- T'00 t 39
- T*00 t*30
- t*29..
t*tA
- t'12
- 0*99
- 6 04 ' O'91
' 0
- 92 ' t ' tI ' t
- t4
- 1 * !!
- t ' t 4
- O
- 69
- t01
- O'65 ' t'tt ' 1*39 '
1*t4
- t*
-t'9
- 9*0
-9't
- '9
-t
- 6 ' at 9t t
.....'9 *.......'9 ' -0
- 9 * -t
- 0......'......'..........................'t'.'.0'9.....'...'........'6*
t t t*ts
- t*IE t'20 ' 0*69 ' t*06 t'21 t'06 ' O*69 ' t*20 ' t*25 t*t9
- O'6$ *
- O " 65 ' t
- tI
- T
- 21 '* t
- t 9 ' 0
- 6 2
- t ' 02 t
- tf '* t
- 02
- 0
- 61 ' t
- t9
- t ' 22 ' t
- 2 0 ' O ' 66 *
' 0'69
- 9 t'9 1*f " 0
- t
- t
- 9 ' - t 9 ' -9 I
-9*( -9 t -t*4 ' -t'9 -t t t*6 f*0' 0'tt ' t
- tt ' t'20 ' 1'f o ' t
- 00
- t
- 06
- t*21 ' t':2 t*21 t*06
- t*00 ' 1*20 t*!O t ' t t ' 0 ' 14 '
-**O ' T'01
- O'69
- t*fO*' t ' 20 '* t * !!
- 0
- f 9 '
4 t*f9 ' i 0
- t9 ' t' t6
- t *!*
" t
- t9
- 0' 6$ ' f
- 09
- t*tt
- 1*t9 *
-$*t -t 9 -t 9 ' -0*S ' O9' 2I t*9' t** t**'-t9 -* ' t ' -9 9 -9*9 -9 t t*09
- 1*t5
- t*09 ' !*06 - 0*96 '
' O'96
- 1*06
- t'09
- 1 15
- t*09
- t*!E
- t't9 ' 0*60 > t*32
- f*!! ' t*0t
- t*tt 22 O'69 '
' t ' 01 ' !
- t t
- 0,' t9.g '>
t *1$
- t *t9 9
' c ' 42 ' t
- II
- t ' e d
- t
- t t
- t ' 09 t t9
- t' t
1*** t -1**'-t -*'9"-f -f ' S " -S*0 * *1 ....'*.............'9..............'6*-9't'..$*1................'9...'..................'l'..0'l................... t*6' t
- t t ' 0
- t4 '
0
- t9
- 1
- tS ' t
- t t '* t
- t9
- O ' 69T'20
- t'oc ' t*0$
- t
- t9 '
0'tL
- t *!t ' T*20 t*06 t*21 t*:3
- 1*2T ' t *06 ' T'00
- t*rC
- t':0 ' t 14
- O ' 9 0 '
6 -t'11
- t*tS ' t ' 01
- O
- 65 ' t
- t9
- t'!T ' sg>
gg> t i .......'9"..t'9.........'9.......'9................."....'9.........'.....'9..".....'t....... '.............. '... q -$*1 -9 at 9 ' 0g -t '-t - t
- 6 ' -* *
- t'9*
3 a 19 ' t '21
- 1'30
- O'69 ' t*06 l
' O ' 6$
- t ' 21
- t '!t
- t
- t t
- O ' 61 ' t
- 09 T*21 ' 1*t6
- f*03 '
1*t9
- 0*45
- t't9
- t'0$
- O*6(
- t't9 '
2 f
- 1
- 0 6
- 0 ' 69 20 t**t '
fO ) ' t' 't* i 'O'64' t' L ........'......."........................'t'...t*6'.....'6"..t'3.........'9'...t'9'...t*f t* -0' t ' -t ' 6 * -2
- 6 ' 9 t
-t s' g - l 8'l i 1*04 ~O'*1' ' 0 **1
- t
- 0 4 ' t'11
- t 79 ' t 'ZC
- 1'00..* 1
- 09
- 1*00 *t*0" t'79 " t'*t6 "t 14 ' t*IO
- 0**(
O'92
- t
- tt
- t
- t6
- T!t
- t
- f S
- 0 * *9
- T
- 09 *O*44*T*t9" 1*t9 C*6*
t*4 * -t*( -t'$ -2*f'-2** -t*4 ' -t'0
- t t*t tg g g '>
......................'......'..............'.............'.....'s t*6* t'tt ' t '!t ' t
- 20 " t
- t9t*tS
- T'2T
- t'79t 31
- t '14
- 0 ' 64 O'91
- 12 30 69 O'90 "
' O'90 ' 0 69
- t*
' 1*t9
- C*
- t*tf
- t**(
- t"22
- 0**t ' O'69
$'l t*f * -t t O0 1*t t*0 OL* O$* 09* t*2 9
- 6 '.
O'90
- t
- 04 ' t
- te
- t *to ' t
- 09
- t
- 39 *t '20
- t 'st ~ t
- tt
- 0 *9 t
- t'09
- t 9 t
- 0t
- 0 * *0 '
t* ti O'9t
- s't9
- t'ts ' t *29
- t'9 tO "! '.. 9
- t '.. t t *.........'s
'...........'0 '..t'9.... 9 s*t s 9'6 - ....es ' t* 2T ... 0 91 t*tt t 06... t'tt
- 0'ts ' 0 9a -
' O'91 0'05 ' t
- t 4 '* t t 4 c ' 66 '
t9 - O'9s ' tt's ' 9*9 ' 46 " s s2 t9 ' t- .' tO't stvsa vac 0 t4 0 96 ' 0't6 ' vA3secI 0 ' t4 - 03A!vL!0N O'9t 0 49 'd3A sidd3s3M33' ti sa'9ct 12 9 6'9 *
- '6-t**
WVd N0: NI-E-13 OV13: 9/IS/91 dom 3M: 46% 3ON1d01 d00 d0SIIIONS: J-D)1( : 3'300 udid: 0 9VHM V1 190 S13dS J-OHIN( = I* SOS NM O*694 l N3 0*661 J)7(
- 1 164 3M I*015 l SI t*004 J)XA(
- I'936 GnitNOd =
49 WMCW10 V
- 0 = -19
- 6f) % (
44 Figure 7.10 NORTH ANNA UNIT 2 - CYCLE 5 BOL PHYSICS TEST ASSEMBLYWISE POWER DISTRIBUTION APDMS, I/E CALIBRATION - FLUX MAP i l l I E P H M L K J M G F 2 0 C 6 4 1 ( P8201CTED 0.38. 0.71. 0.38. PREDICTED I . 0.40. 0.75. 0.39 M2ASURF0 1 ME ASUR ED . PCT DIFF262NC2. 5.1, 5.0. 4.4. . PCT CIFFEPENC2. . 0.41. 0.94. 1.13. 1.12. 1.13. 0.94 0.41. 0.42. 0.94. 3.14. 1.14 1.16 0.98. 0.43. 2
- 3. 9. -0.6 1.2,
1.0.
- 2. 7.
- 3. 7,
4.6, . 0.40. 1.06. 1.17. 1.20. 1.04 4 1.20. 1.17. 1.06. 0.4 0, 0.40. 1.06. 1.16. 1.18. 1.02. 1.19. 1.16. 1.09. 0.42. 3 l 1.6.
- 1. 3
-0. 9. - 1. 9. -2.0, -0.9. 1.1 2.6, 5.9. 0.40. 0.93. 1.16. 1.22. 1.20, 1.14. 1.20. 1.22. 1.16. 0.93. 0.40 . 0.41. 0.94 1.16 1.20. 1.17. 1.11. 1.17, 1.20. 1.17, 0.95. 0.42. 2.9. 0.5. =0.2 -2.1 -2. 5. -2. 6 2.4 -1.4, 0.8. 1.7 e.6 0.41. 1.06*. 1.16. 1.25. 1.20. 1.00. 1.06, 1.00. 1.20 1.25. 1.16. 1.06 0.41. 0.41 1.06. 1.15. 1.22. 1.16, 0.94 1.02. 0.95. 1.17. 1.24. 1.16. 1.10. 0.44. 5 2.0.
- 2. 0. -1. 2. -2. 2. -2. 6. - 5.4. - 5. 5.
-4. 2. -1. 8. - 1. 2 -0.4. 4.0.
- 7. 6.
. 0.94 1.17. 1.22. 1.20. 0.99 A.09 1.23. 1.09. 0.99 1.20. 1.22. 1.17. 0.94. 0.97. 1.20. 1.22. 1.16. 0.95. 1.03. 1.16, 1.03. 0.95. 1.18, 1.21. 1.19. 0.99 6 2.6.
- 2. 5. -0.1
-2.7, 3.6 -5.6 -5.6. -5.5. - 3.4. -1.4. - 1. 0. 2.0
- 5. 0.
\\ 0.38. 1.13. 1.20. 1.20. 1.00. 1.09. 1.21. 1.21. 1.21. 1.09. 1.00. 1.20. 1.20, 1.13. 0.36. I . 0.39. 1.16 1.24. 1.16. 0.96. 1.04 - 1.14. 1.14. 1.15. 1.04 0.96. 1.16. 1.20, 1.14 0.39 7 l' 3.1. 3.1 3.1. -1. 5. -4. 0. **. 4. -6.4 ~6. 3, -5. 6. -4.8. -3.5, -1.1, 0.1
- 1. 3.
- 2. 3.
t. 1 . 0.71. 1.12. 1.04. 1.14 1.06. 1.23. 1.21. 0.94, 1.21. 1.23. 1.08. 1.14. 1.04 1.12. 0.71 . 0.73. 1.16. 1.08. 1.13. 1.04. 1.16. 1.15. 0.90. 1.15. 1.16. 1.03 1.13. 1.04. 1.17. 0.76 e 3.1. 3.2. 3.1 -1. 4. - 3. 6. -4.1. -5.1. -4. 7. -5.1. -5. 2. -4. 6, -1. 0. 0.1
- 4. 4.
- 7. 0,
. 0.38. 1.13. 1.20. 1.20. 1.00. 1.09, 1.21. 1.21. 1.21. 1.09. 1.00, 1.20. 1.20 1.13. 0.38. . 0.38. 1.15. 1.23. 1.18. 0.96. 1.05. 1.16. 1.17. 1.15. 1.04 0.95, 1.19, 1.21. 1.19. 0.41. 9 2.2, 2.1.
- 2. 0. - 1. 7. - 3. 3. - 3. 6
-4. 0 - 3. 5. -4. 6. - 5. 0. -4.5. -0.9. 0.9 5.6 6.6. . 0.94. 1.17. 1.22. 1.20. 0.99 1.09. 1.23, 1.09. 0.99. 1.20. 1.22. 1.17. 0.44 . 0.96. 1.19. 1.21. 1.17. 0.96. 1.05. 1.18, 1.05. 0.96. 1.17. 1.20. 1.16. 1.02. 10 2.0. 2.0 -0.6. -1.9. - 2. 7. -4.1, = 1. 7. - 3. 6, 2.9 -2.5 -1.6 1.4
- 7. 9.
......0.41. 1.06 1.16. 1.25. 1.20. 1.00. 1.08. 1.00. 1.20. 1.25. 1.16. 1.06. 0.41. 0.42. 1.10, 1.18. 1.22. 1.18. 0.97. 1.05 0.97 1.16. 1.23. 1.17 1.09 0.43. 11
- 3. 4,
3.4.
- 1. 4. -2. 2.
-1. 6, ~2.2. -2.3 -2.6. - 1. 2 - -1.4. 0.7. 2.8 5.1. . 0.42. 0.95. 1.14 1.22. 1.21. 1.11. 1,29. 1.22. 1.16. 0.93. 0.40 . 0.40. 0.93. 1.16. 1. 2 2, 1. 2f. 1.18 1.21, 1.23. 1.17. 0.95, 0.42, 12 4.8, 1.4. -2.2, =0.3. 0.4. 0.7 0.4. 0.5. 0.4 2.3.
- 5. 5 *.
0. 4 0. 1. 0 6. 1.17. 1. 2C 1.0' 1.*3. 1.17. 1.06. 0.40, 13 0.43. 1.16. 1.23. 1.24. 1. s '. 1. to. 1. 2 2. 1.10. 0. 4 2. 4.1
- 4. 9.
- 4. 9.
3.6, 5.5. 7.1
- 9. 3.
5.4. 3.1 . 0.41 0.94. 1.12, 1.12. 1.13. 0.94. 0.41 . 0.44. 1.05. 1.23. 1.21. 1.18. 0.99 0.42 14 9.4. 11.1 8.9, 7.7. 5.0. 5.0. 3.6 STANDARD 0.32. 0.71. 0.38. AVER 42 15 Oty!ATICH . 12.8. 9.6 6.4 a 3.4 0.42, 0.76. 0.40, . PCT O!FFERENCE. m2.321 MAP N01 N1-3-13 DATE 4/16/81 PC 4 F. 65% CONTROL RCD POSITIONS F-Q(T) = 1.983 QP' O D BANK AT 210 STEPS F-CH(H) = 1.498 PN 0.991 1 NE 0.990 ....l_.._______ F(Z)
1.275 SW 1.013 l SE 1.007 F(XY) z 1.574 BURNUP
88 i%'3/MTU A.0 = 2.88(%)
45 i Figure 7.11 QRTH ANNA UNIT 1 - CYCLE 3 BOL PHYSICS TEST ASSEMBLYWISE POWER DISTRIBUTION HFP, EQ. XENON - FLUX MAP R P N M L K J H S F 2 0 C B A j PRE 01CTED . 6.38. 0.72. 0.3a. PREDICTED .FCT 01FFEAENCE. 3.5. 3.5. 2.9. .PC7 01FFERENCE.. 1 ., MEASU2ED . 0.40. 0.75. 0.39 MEASURED 0.41. 0.94. 1.12. 1.13. 1.12. 0.94. 0.41. . 0.41. 0.93. 1.13. 1.14 1.14. 0.96. 0.43. 2 . -1. 0. 0.5. 0.7. 0.7 - 1.6. 2.2. 4.3. . 0.40. 1.05. 1.16. 1.19. 1.04. 1.19. 1.16. 1.05. 0.40. 0.40. 1.04. 1.15. 1.17. 1.02. 1.16. 1.16. 1.06. 0.43. 3 . -1. 0. -1. 0. -0. 6. -1. 9. -2. 0 -1.1 0.5. 2.6 6.6. . 0.40. 0.93. 1.15. 1.21. 1.19. 1.14. 1.19. 1.21. 1.15. 0.93. 0.40 . 0.41. 0.9). 1.14. 1.19. 1.17. 1.11. 1.17. 1.20. 1.17. 0.95. 0.42. 4
- 1. 5.
-0. 6. -1.6. -1. 4. -2. 4. -2.5. -2. 3. -1.1 1.1 2.1 3.6. . 0.41. 1.05. 1.15. 1.24. 1.20. 1.00. 1.04. 1.00. 1.20. 1.24. 1.15. 1.05. 0.41. . 0.42. 1.07. 1.14. 1.22. 1.17. 0.95. 1.03. 0.97. 1.18. L.23. 1.15. 1.06. 0.41. 5 1.5. 1.5. -1.1. -2. 0. -2. 5. -4. 9. -5. 0. -3. 7. -1. 4. 0.9. -0.2. 0.6, 1.2. . 0. 94. 1.16, 1.21. 1.20. 1. 01. 1.10. 1.2 3. 1.10. 1. 01. 1. 2 0. 1.21. 1.le. 0. 94 . 0.96. 1.16. 1.21. 1.17. 0.96. 1.05. 1.17. 1.05. 0.99. 1.18. 1.20. 1.16. 0.95. 6 2.0.
- 2. 0.
-0. 2. - 2.4. 3.1. -4. 8. -5. 0. -4. 5. -1. 6. -1.1 -0.6. -0.0. 1.2. 0.38. 1.12. 1.19. 1.59. 1.00. 1.10, 1.22. 1.22. 1.22. 1.10. 1.00. 1.19. 1.19. 1.12. 0.38. ) . 0.39. 1.15. 1.22. 1.17. 0.96. 1.06. 1.15. 1.15. 1.16. 1.06. 0.97. 1.18. 1.19. 1.13. 0.39 7 2.6. 2.6.
- 2. 6. -1. 8.
-4. 2. -4.1.
- 5. 3. -5. 5. -4. 7. - 3. 5. - 3. 0. -1. 3.
-0. 4. 0.5. 1.2, 0.72. 1.13. 1.04. 1.14. 1.08. 1.23. 1.22. 0.95. 1.22. 1.23. 1.08. 1.14 1.04. 1.13. 0.72. . 0.74. 1.16. 1.07. 1.13. 1.04. 1.19. 1.17. 0.92. 1.17. 1.18. 1.04. 1.13. 1.04. 1.10. 0.77. 8 2.6. 2.6.
- 2. 6. -1. 4. -3. 5. -3. 6. -4. 0 3.1. -4.2. -4 3. -4.1. -1.2. -0.4 3.9.
6.4. 0.38. 1.12. 1.19. 1.19. 1.00. 1.10, 1.22. 1.22. 1.22. 1.10. 1.00. 1.19. 1.19. 1.12. 0.36. . 0.39. 1.14. 1.21. 1.17. 0.97. 1 07.* 1.17. 1.18. 1.17. 1.06. 0.96. 1.18. 1.18. 1.19. 0.43. 9
- 1. 3.
1.3.
- 1. 3. - 1.0. -3.1
-3.5.
- 3. 9. -3.0. -4.1.
-4. 3. -4.2. -1. 3
- 1. 3.
5.6. 11.3. . 0.94. 1.16. 1.21. 1.20. 1.01. 1.10. 1.23. 1.10. 1.01. 1.20. 1.21. 1.16. 0.94 . 0.95. 1.17. 1.20. 1.18. 0.98. 1.06. 1.19. 1.07. 0.98. 1.17. 1.19. 1.13. 1.04 10 1.3. 1.3. -0.5. -1.4. -2.3. -3.6.
- 3. 3. -3.1. -2. 3. -2. 2. -1.4. -2.1. 11.3.
. 0.41. 1. 05. 1. L5. 1.24. 1.20. 1. 0 0. 1. 06. 1. 00. 1. 2 0. 1.24. 1.15. 1. 0 5. 0.41. . 0. 4 3. J. 0 9. 1.16. 1. 2 2. 1.18. 0. 98. 1. 0 6. 0. 96. 1.19. 1. 2 3. 1.17. 1. 08. 0. 44 11
- 3. 9.
3.9.
- 1. 9. -1. 9. -1. 7. - 2. 3.. t.4.
-2. 4. 0.8. -1.2 1.2. 2.3. 6.5. . 0.40. 0.93. 1.15. 1.21. 1.19. 1.14. 1.19. 1.21. 1.15. 0.93. 0.40. . 0.43. 0.95. 1.13. 1.20. 1.20. 1.14. 1.20. 1.21. 1.16. 0.96. 0.43. 12 6.5.
- 2. 4. -1. 9. -0. 5.
0.2. 0.1. 0.3. 0.4 0.4 3.1. 6.5, . 0.40. 1.05. 1.16. 1.19. 1.04. 1.19. 1.16, 1.05. 0.40. 0.44. 1.16.1.22. 1.22. 1.07. 1.23. 1.20. 1.0a. 0.4 3. 13 8.1. 9.8. 5.3.
- 2. 0.
- 3. 0.
3.6. 3.6. 2.7. 6.5. . 0.41. 0.94. 1.12. 1.13. 1.12. 0.94. 0.41 . 0.45. 1.04. 1.21. 1.21. 1.16. 0.97. 0.42. 14 9.8. 10.6. 7.7. 6.5. 3.7. 3.7. 2.7. STANDARD . 0.38. 0.72. 0.34, AVERACE Oly!AT10H . 0.43. 0.78. 0.40. . PCT 01FFERENC2. 15 s2. 16 3 . 11. 9. 6.5. 4.8. s 2.9 MAP HO: N1-3-14 DATE: 4/07/81 N... . 3% CCNTROL RCD FOSITICHS-F-QtTI = 1.953 GFIE' d7 tJE 0.903 D BANK AT 024 STEF3 F-CHIN) = 1.474 U'.. v F(Z) = 1. M4 SN 1.013 l SE 1.C07 ] FtXY)
- 1.553 1
i BUPNUP
- 487 t'W3/MTU A.0 :
-7. cst % )
46 Section 8 REFERENCES 1, S. A.
- Ahmed, M.
C. C h e o k, - T '. W. Schleicher, " North Anna Unit 1, Cycle'3, Design Report,"'HFE Technical Report'No. 161, Vepco, December, 1980. 2. North Anna Unit 1 Technical Specifications. 3.'T. M. Ross,2 W. C. Beck, " Control. Rod Reactivity Worth' Determination By The Rod Swap Technique," -VEp-TRD-36A,-December, 1980. 4 l.. T. J. Kunsitis, "RXFLOW, A Computer program to Calculate Reactor l Flou and Thermal Output," KFO-CCR-8, Vepco, December, 1979. ] 5. " Technical. Manual for Westinghouse Solid State Reactivity Computer," Westinghouse Electric Corporation. Evaluation of 6. Memorandum from R. M. Berryman to E. J.
- Lorito, l
North Anna 1 Cycle 3 Rod Swap Test Deviation," April 8,
- 1L31, 7.' Memorandum from R.
M. Berryman to E. J. Lo=ito. " Evaluation of North Anna 1 Cycle 3 Rod Suap Test. Deviation," April 10, 1981. 8. W. Leggett and L. Eisenh' art, "The INCORE Code," WCAp-7149, December, 1967. i It
47 r APPENDIX STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEETS 1 O
1 ATTACEDENT 6.11 j PT-94 1 .s:
- V I
i Page 3 of 4I f c. 02-11-81 A.1 flerth ' A.ms l'over ' S ta tion Unit [ Cycle 3,, Startup thysics Tests Resulto and Evaluation Sheet .i. e I' Test Descripcion: Reactivity Cor::puter Checkout 1-PT-94/ App. B equence step Sumber: g s Procedurc 1:ur.t,cr/Section: Heterence. to RCS Tet.porsture ('r): 547 -5 ?.sak Positions (stepc) Fo'.ect Level (%F.P.): 0 II Conditions St/.: 228 S'.'B : 228 'CA: 228 other (specify): Test (Design) CB 728-CC: 228 CD: .Below Nuclear Heating RCCA: NA
- At the just critical position Bsak Fo:icions (steps)
ECS Temperature (*F): SV4/1.Y Power Level (::F.P.): 0 '7, III. SDA: l'2.% SDB: 2l2.7. CA: "r2 7 Other (specify): Tesc gg SM Q,h) Condicions (l.ctual) CB: O CC: %'1A CD: 2.'t.%. RCCA: AJA Date/TimeTest.9l"Jf%) O S~d .Perfcread: Measured reactivity using the reactivity Ao = P.casured Fara:cter c computer Inferred reactivity freta reacter period (description) Ap = r C ~- IV \\ bQ& - hqL 0. O '1.5' l. !!easured Valua 69e Nc. ~ Desir,nValbe t o,0 4 Tcsc ~~ Kasults' (Actus1' Conditions) 69, w Ao" - do" < 0.04 a Desir.n Value 00 ~ O (Design Conditions) r ~.; - WCAP-7905, Rev.1. Table 3.6 J 7,c Reference r E. .y ' TSAR / Tech Spec NA Acceptance Criteris NA Reference er W Lee teal % k uak/n Tke. re.lio.lalig a 6= roe-Nh co vr
- yo pc.4, Acuphe cibA. W M*..
cc.xnce bufuL ab_ _ Evaluated By Completed Uy _0 0 Test !:ngineer 7 Recore.mnded 'For,, C. g 1 M Approv.11 Ity l' NFO 1:r.gi neer i g / 's ) 4 4-, 4.-, 'p., ,..e ee ...4,,,..,c.
at. l-PT-94 ATTACF_ MENT 6.11 Page 4 of 41 02-11-81 1 Cycle 1 ilorth A. ins l'owcr ScacNu Uait Startup Physics Tests Results and Evalustien Sheet I Test Descripcion: Critical Boron Concentration - ARO 1-FT-94/ App. C cquence scep xumber: 7 S Procedure Nudor/Scetion: ncierence. 40 f.sak Positions (ccce ) RCS Temper:t : (*F): '347 _$ II Powcr Level (:F.P.): 0 Tenc condiciu:us : SDA: 223 SDD: 228 CA:228 other (specify): Below Nuclear Heating CD:223 (Design) CB: 228 CC: 228 RCCA: NA
- i
!ank ros.itions (s: cps)~ RCS Temperature (*T): Th4.?*f Power Level (%r.p.): o"7, III Test Conditions SDA: 't.O SDB:'J.2 7 CA: h % Other (specify): (Actual) CB :'1fl.S CD: 2/1I g g gg* Date/Ti=a Tes: s.// 3 /gl. fot/o rerformed: (C ) *M
- Critical Borou Concentratics - ARD 3
Hessured Parscacer MO (description) t IV k }!aasured V 1ca l$ 60 [pm Test DesiCn Value 3 .s-' Results (Ac:us! Condi:icns) = 1492 + 50 pra C3 ~ Design value (Design Condi:1cas) , Yepco NTT Technical Report *!o. 161. Deeceter 1980: prsada f rom T.5. Race 11a to c.:. sm, deced Referenco Jenuary :0. 1981. 46 ( ao )xC3 < 24,000 pcm i V TSAR / Tech Spec 3C3 Accept:nce Criccria FSAR section 1.5.2.4 Reference -8.16 pcm/ ppm for prel binary analysis VI se, 3o = Concents "3 -%.N p/pf:m Usd be f.M wh5 5. Aetyt* ce.c.Atenind; o...w - a 3 br,M N.[ ,.M " Evalut.ted By comp 1w:cd ty b / Tese enc neer i P Recor: mended For C 1M App wv.31 cr llFO L:gi::ec.: ne e 9 4 e ~.m,ye...._ p,ignpym ogg%++am-%y-4.--ge ,.#w-mm-p -,.gre.--,.- y,e-q.=pmaeysggw.gy. gen-.y- --*y.eg-gg3---hw-.mymyy-p gi .--+mg---.g sw.p--g ( wf =Ey-' ww evy w -4 p-
l.- 9 I-PT-94 ATTACHMENT 6.11. PAGE 6 of 4E .a 02-11-81 A.3 !! orth A.ma Po.cr Staciosi (fatt,,,1. Cycre,1 Startup thysics Testa Itasults and E*[aluation Theat -I-Test
Description:
Isothermal Teenerature Coefficient - ARO Kcfcrence-Procedure Nuder /Section: 1.pT-94/ App,p Sc'luence Step Numsce: 3 ) Bank Post:fons (:cep ) RCS Teeper:ture (*T): 547*'3 II Yower :.evel ( F.P.): 0 ~ Test' Conditions. SEA: 228 SDB: 228 CA:228 other (cpecify): CD:228 Below Nuclear Heating (Desisa) C38 228 C g8 III' Bank Po itions (stops) RCS Tc=pcts:ure (*F) tSTL.b$M.T Power Lovel (%T.P.): 07o Tesc - Condicions SDA:11% SDS 11% CA 'Li% Other (specify): (Ac:ual) - C3:11% CC:111 CD 1'L3 y SM M;,,) RCCA: AJA Date/ Time Tes y/g giJ3 Perfor=:d ISO Neasured Para.ccer ao
- Isothermal Temperature Coefficient-ARO (Tf) ARO (descripcion)
~ IV --4 3(. pcm / F !!casured value ( ) = A *J O Results (Actual Condi:1:n:) BT j/#f" ((_g g yppm) DesignValle (,3c.) ISO, _ 3,33 + 3,o Tesc ARO (3o) ISO = -3.66 : 3.0 pcm/oF Design value (Design condistent.) ARO (D/228,1492 ppm, 547.0 F) Vepco 3M Technical Report ?to. 161. Decacher !?tti: !!ctorandum f rom T.S. Rats 11a to c.T. Snow, dated ' ' ~.' Reference January 20, 1J61. ($) iso < -2.00 pcm/ F (Doppler ($) - -2.00pcm/*F v rsAa/ Tech spec Acceptance Criteria-able 4. 3-2, Vepco UTE Technical Raper Au.eptece c.c' tera me,t. e vI cosa:its D n tole.recA,* me,,i" ~~ b Evaluated By _ b, Completed By [ Test Engineer Recoramnded for f .h) Appwval 1;y HF0 Engineer 6 ,,.,....._r,,... .,,_,_.,.,.,,,-.....,r._?._,,... .~
1-PT-94 ATIAC1DIENT 6.11 Page 8 of 4k 02-11-81 {A A.4 !! orth A.ina Power Station tlnit Cycle 1 Startup Fhysics Tests Kesults and' Evaluatien Sheet Control Sank. 3 llortn haasurement, All Otner i I Test Der:cription: Rods Out ~ l Ecference Proccdurc Nunter/Section: 1-PT-94/ APP.E Sequcnce Step Nuciace: 70 40 II Bank Positions (etepc) RCS Tei.eperature (*F): 547-5 Powcr I.evel (%F.1'.): 0 Test Conditions. SOA: 228 SLD: 228 CA: 22g Other (cpecify): (Design) Cs Moving CC: 228 CD: 228 Below Nuclear Heating RCCA: NA III Bank Positions (stops) RCS Temperature ('r): gtN.1*F Power 1.cvel ( F.P.): 07, Test SDA: 1.lL% SDB: 1.tt CA:"1.17 Other (specify): Conditions (Actus1) C3:Mee3 CC: n% CD:LL% gCW gVgW y ^] RCCA: MA l Dstc/Tiec Test hg qq Perforr.ed: 1:easured Pers=eter (description) 11 ggg Worth of Centrol Bank 3, All Other 3 }Ql3,3 pc.m ?!casured Value I= 3 Test Design Value 7. ggll i j] kg Results (Actual Conditien:) 3 I = 1311 131pcm n on itions) S Vepco N7E Technical Report Mo.161, Dece=ber, Reference 19_8_0 If the Des:gn Toleranca is escoeded, the SNs0c : Pall evaluate the L=satt et th te s ro 1: on che utny m17see, td. susoc may spu u, trat V FSAR/ Tech Spec add:tional sassing be perf ormed. Acceptsncc l Critcria VEP-TED--3 6 A Rcfcrencc VI .ke.LgYec.t C.r'sbik WUL Md. Coments g Evaluated By Completed cy [ Test Engineer Nh C g. %) Reconemtided For p Approval by HF0 nr.gine e r e D g -><o-ww-e. o.. e e m, _
c 1-PT-94 l I . ATTACHMENT 6.11 Page 15 of 41 02-11-81 A.5 1 Cyclo 3 13 orth A. ins Pv.ce Sention Unit l Startup Physics Tests rasults and Evaluatien Shoot Test Deceription: Boron Worth Measure =egt 10 I Procedurc Nudcr/Succions i.p7 94/gpp, g cwence step uncer: Kcterence 347+0 RCS Ter pr. ::ure (*7): 3 Back Poe.1:icns (: tape) __ Power f.evel ("T.P.) : O II Test 220 533: 228 CA: 228 other (specify): Conditions SCA: (Dc 1gn) CB Moving CC: 228 CD: 228 3elow Nuclear Heating RCCA: NA i 5W.1 *f III Bank Position: (scops) RCS Te=pera:ure (*F): Power Level (*.F.P.): O lo Conditions SDA: 2.~47, SDS:'L1Tr CA:'LN Cther (cpecify): Tes:. '11 CD: 2."17 g g (Actual) C3:MoVmj Date/Timo Tese af[dj
- 2,qg.
Perfor ed: iteasured P.tec=ecer ( lo, ), Differential Boron Worth (descripcion) SC 3 IV !!aasured V:lue J 8)DM l ~"~ A ( 12. ) - --%,1 L 0,%pqpp , Test Design Value Results (Actual Condiciens) 3C3 ( J2,) = -8.16 1 0.82 pes / ppm Design Valu* 3C3 (Desica Con.ii: ions) Vesco NTE Technical Report No. 161, D ec e=b er, H :-- Referenca yggg (Qg):cC3 "" 24,000 pcm Bo V TSAR / Tech Spec Acceptance FSAR Section 15.2.4 Reference Acc.e.pteet ciW 'cl L.Jeft mLi. VI conraants bC.$ yc p N e Completed Ly . b F. valuated 3y i u1I Nh Tcat Engineer Recer.euf ed Tor b. Appwval Dy NFO r..gineer 1
i: 1-PT-94 ATTACHXENT 6.11 Page 5 of 41 w. 02-11-81 A.6 North A.ms Power Statiois !! nit,,1.,, Cycle 1 Startup Physics Tescs Results and E'inlustien Sheet -I. Test Dcheription: Critical Boron Concentration - Bank 3 IN l Referencu Procedure h*um!,cr/Section:1-PT-94/ APP.C 8"4"**** "C*P """I'*' H l' i -II Bank Positions (scene) RCS Tur perr.curc ('T): 547 ' Test Power Level (~F.P.): 0 ~ Conditionn SrAt 228 Sts: 228 CA: 228 other (upecify): (Design) - cs: 0. CC: 228 CD:228 Below Nuclear Heatins gCCA: NA 0% l f Ml, ~III Bank Positions (steps) RC3 Tc=persture (*F): l' Test Power Level (:;?.P.): l~ Conditiscs . SDA:"L*1%. SDB: 2,*2.% CA: "1.'2-t Other (specify):
- (Actua1)
CB: *23
- 2. 1r
' CD: 2 *2.,) g gg l Date/Tisa Test 4/*//%l l%40 I' Perferned: Haasured Peraceter M - (descripcion) (C T I
- ~
3B IV C= Meassured Vr.lue 3 GOO,7 ppS r l Tesc Desicn Valu'e C" GON M.9 [.. 3 bbm Results (Actual Con:iitions) .c b Cg 32 itiens) 3 3 ARO ib Vepco rT! Technical P.c;'of t : o. 161, Dece.ber 1?*0; ' D,,","# k $gf* * * " I ' ** [ Referenes 7 a (Ao }
- b I 1
h E" I V FIAR/ Tech Spec BCa l-Acceptance i_ Criteria Reference TSAR Section 15.2.4 dsefC = -8.16 pc=/pp:: for preli$1 nary analysis e, e,. 3 -%.54 vsg) &or 9*s\\ oN 56. bc'Lf o^% C N'N N] ^1*bb^*$ Y f Evaluated 3y .+ o a i Completed 1:y / Test Ingineer 00 Recom:emted Por Appcoval Dy C-NPO cnqincer e 4@ 6 t
l t l-PT-94 ATTACIDDT 6. l'1 Page 7 of 4E s 02-11-81 A.7 !! orth Aana Pruer Otation Unit,1_, Cycle,3 Sta: tup thy =ics Tests Fesults and Evaluation Sheet I Test De::cription: Isothernal Temperature coefficient';'P :icm;> Sank 3 In 5*9"'nc: ct; Kcierence Procedurc Narber/Section: 1-PT-94/ App. D q 547 +3 II Eank Positiens (etepe) RCS Tceper::ure (*T): -5 Powcr Level (IF.P.): O Test Conditions SOA: 228 St3: 228 CA: 228 Other (spc:ify): (Design) CB' o CC: 228 CD: 228 Selow Nuclear Eeating P.CCA: NA III. . Bank Poci: ices (steps) RCS Te=perature (*F):5931 iW #. ? owc: Lcyc1 (*:T. ?. ) : o */, Tca t '- Conditions 50A:116 SDS: 22.8 CA: 2.1B other (cpecify): (Actus1) C3: 'L1 CC: 21g CD: 22 8 13Etow NuC:,gM # EAT /AfG ROCA: pA Date/Tietc Test af/r[ei 23oc, Perfor ed: 1 150 Measured Paraneter ( 3o T
- Isother=al Te=perature Ceefficieny (description)
BT 3 3ank 3 In l IV. ( 3e ) ISO pcrt ~ 7' 9o I .!!aasured value aI 3 (," ) " -0 4 t3'O Test Design Value ((g. /3 Jt ppd Results (Ac:usi Cor.di: ions) 3T B
- i. '
resign V.:1ue ( % $5 - - 6.42 2 3.0 pc:/ ? (Design condi: ions) BT 3 (3/0,C/220,D/228,1323 pp., 547.c F) Vepco NT7. Technical Report No. 161. :ecester 191t; . Memo r andus f r c:s *.S. Ro s al t a t o t.T. S now, dated Reference 2,,,,,7 :n, 1931, [ ISO V TSAR / Tech Spec ) < -2.00 pe:a/ 7 (Deppler( ) --2.00pc=/ F) Acceptance ' FSAR Table 4.3-2, Vepco NFI Technical 2.apor: cri:c ia Reference No. 161. AccGPT*hMCg cRrTEA)h dfW W VI DECic,fo ToLGA9CE" T167 0AC,#~ r.va2ustedavTh # ei V<.n,#e@ w l Completed ty [ Tes: Ingi: cur Recommen. led For Approval ' y C. J NFO 1:'etree:
'4 1-PT-94 + ATTACHMENT 6.11 Page 9 of 41 02-11-81 A.8 florth A.ina l'over Statioit t' nit _1, Cycle 3_, Start.up thysics Tests Eccults and Evalastion Sheet I Test neucription: Control Bank D Worth Measure =egt Stod Seap 1-pT-94/ App.c Sectuunce up surJacr: 74 Referencu Procedurc Nudcr/Section: .II Bank Positions (etcpc) 'RCS T ernr ure (*F): 54 Test Power Level (%F.P.): O Conditions SOA: 2.23 228 CA: 228 Other (specify): SUB: (Des 1Gn) CB Moving CC - 228 CD: Moving Delow Nuclear Heac k P.CCA: NA ~IIL _ Bank Pocicions (stops) RCS Tc perature ('J'): $~M Y ' Tesc < v Power Level (%7.P.): o e/# Conditions SDA: 2, M. SDE: & E 8 CA.2 E,8 Ocher (specify): (Actual) C3: Movm3 CC: 3.2,3 CD:)V.awmg 84.l6W MMlde Maash: [,,. RCCA: g 3 Date/ Time Test f/F[Il [ Perferrid: po t.(e Measured Pc ct:ccer .(descriptica) I I Intettral U reh of Control Bank D - Red Swap D IV c.ri&.f. Re.M. A.k. f Q g y P e. m (Posisene193ssps) 1:casured Value o \\ D (C.NdcaQ, b8[CrtMCM . Test Desica.Value I - fo3g r/fg e, p,,;,;m = j,,3,, W ) Ruutta (Ac:uat C=uittons) n p i I = 1028 154 pc-(Critieni P.ef erence ::ent -[ Desir.n Value' D 't J (Design Condi: ions) Position = 157 steps) - - c a,., m~.'H %f vepco MTI Technical Report No. 161: vepco Rod set; Topical Report.t?-71t. -36As Me=orandum f rom J. A. Ju p g,g,, to c.T. soev, dat ed 's. comber 4.1980. ( It in. p sa ret.eanse te.w..e.4. sne sxsce swa:1 eva:ance 2. tmoset n.eur o.s .44 tes '."1.. sins " **. s een.4."**1' '. p * **' "7
- ^*17 *... n. smc 3..
D'8 V FSAR/ Tech Spec ..7 Acceptance C:lteria E -W.D-36A Referenes f f.C.tpbo.%,C,a C.T"[bfJ"t A. OdA4 MS D. YI Concen:s Dest Y Wcunc.n-k } .~ ,{ $:,L ~~ Completed Ef O. Evaluated By
- d..
. kR_~.t.A / Test L gineer Recomem.ited For ~ 'y AppNyal tty / NTO rnqincer
l I a 1-PT-94 ATTACHXCIT 6.11 PAGE 10 of 4I 02-11-81 A.9 !! orth A.uyt l'o.ec t Sta tiest t! nit J Cycle a startup thysic: Tests Results and Peninstien thcet I Test Deceriptioo: Control !1ank C Worth !!c:.isure::cgt - Rod Nep 1:cierence Procedurc i;ur.!,cr/Section: 1-pT-94/ APP.C
- "*"C" CCP N"*" : /:5"'
II Eack Positions (:tr*p=) RCS Tc:gersture (*F): 547 Fover Level (%T.P.):0 -5 Tect Condition: SOA: 223 SD3: 22 S CA: 223 Other (specify): (Design) C3: Moving CC. ing CD 228 Below Nuclear F. eating III. " Esnk Posicions (stc:ps) ECS Te=perature (*7): Sff 'F Poseer Level (%T.P.): o% Test Cnditions SDA: 22 8 SDS: 2,Z8 CA: Z28 Other (specify): (Actn!) C3: Madri CC: Modetj CD: 22.8 Bedow kuc]ew keabln Dutc/T.1::a Test Y/f/f/ / Perfor=:d: o /3g C ; Integral Worth of Centrol 3ank C-nod Swap Measured Pere:ecer I (description) 1' (Crikcal Re-ferenea Bank /03 efers) C gcm 8os'1%n Measured Value I" a (Cr.hc l Reference Bark Test Design Vslue I = 850 '+ / 28F fosMoo /03 48,s) Resul:s (Actus1 Conditions) C = .m. Design Value I =843t125cedCritical Reference Bank Positien = ~ (Design Conditions) C 131 steps) Vepco N7E Technical Report No. 161; Vepcs And swap
- cpical Report VIP-F?>-36At W.ecorandum (f on J.R. Ju Refarcnce to c.T. Snow, dated ::. center 4,1980.
- .t.h Castgu Taleranse is esteeded. the sNsec seali evataasa the tavac s t th test e m is en t.
- 5. :::::: 3.y
,.etty :::.at V TT.AR/ Tech Spec ,,43,3,,,3,,,,,, 3 ,,,,.ac.sy 173... ,,,,4, Acceptance Criteria l Reference lVEP-FF.D-36Ae c'Ce bnc.e C.hbrict W cts rn e on[y Cone.ts w_w hfh ~ T. valuated 3y t/ sl, fh81[A Cer.pleted cy [ / Test Incineer ucem=cmted for yy Apptw.11 Ly / f( { NFO tagincar
e* .e A.10 llurth A.tna l'v.scr Statlen Unlt i Cyclu 1 Startup Thysics Testr. Results snd Evaluation Sheet Control Bank N Worth 1:easurement-Rod Susp [, Test D :.cription: Sequence nep non;>cr: f I Procedure Nutr.!,cr/Section: 1-PT-94/ APP.C ., ' Ecference 40 Esnh Positions (etcp )' RCS Tersper:ture (*T): 547-5 Power 1.cvel (%F.P.): 0 II f Canditions 50/.: 228 Son: 228 CA: 1!oving other (specify): ( Tyst (Design) CB: Moving CC: 228 CD* 228 Belo,w Nuclear Heating RCCA: N/A RCS Tc=perature (*T): MP *F Bank Positions (steps) Fover I.cyc1 (%T.P.): o3 ~ III Conditions SDA: 228 SDB: EEB CA:6.n other (specify): Test CC: rr.S CD: (Actual)
C3: M.Ang RCCA:.e/A Behu> dc]
9 / NN/. ~ Date/ Time Test-Perforced: O 2.9/- .~~. I ; Integral Ucrth of Control Bank'A 1!easured Pere:eter (description) C G.'t cal Rderenie Bak IV I= 77_2.,, e j3 y 1:capured value E'#/ 'S' b *' " 3 " '.: 97 dp) Test De it,n Ya'.m b 'em Oo58/o',2 Results (Actus1 conditicas) A" / l 645i97,pem' (Critical Reference Bank 4 I = Design..sive A . Position = 108 steps) 1 (De'siCn conditionr) Vepco ME Technical Report.No.161; Vepco Rod Swap Tepte' 1 Itaport VIMRA MA; Nasorandum f rom ff.L. 5.1:h to c.T. Sa:w. datedN morand C.*. Saow, dated r Nrch 18,1961; Reference Nrsh 20. 1981. o !! the Design Tolerance is earceced the SN30C sh.all.wslu.te the impact ot the cut ruutt en u...tny an.irn. The sssoc or spuur V TSAR / Tech Spec .u ltson.t se.stna b. perior=,d. Acceptance Criteria VEP-FRIF-36A Reference 'f "' ( ~' Y && neY ' Coon: ts os. w_ J p Mkb8[ 1:valuateJ By w/ /D /k / Cocspletea ry ./ Test Engineer 7 E /SAb. l'.ccom scuded for V' emw.,1 or 1100 Ungineer a o 1-PT-94 ATTACR!ENT 6.11 Page 12 of 41 02-11-81 ^* !! orth A.ina Power Station Unit Cycle,3_ Startup Thysics, Tests Eacults and Evalustion Shoet Shutdown Bank B Unrth }:easurmacut - Rod Swnp I Test Deceription: Referencu Procedure mvrter/Section: l-PT-94/ APP.C Sequunce Step hbcr: j7 II Bank Penitions (ctep:) RCS Ter per: cure (*7):547+5 Power 1.cvei (TT.P.): 0 Tect Conditions SLA: 223 SM: Moving CA: 223 Other (specify): (ocsign) CB: Moving CC: 228 CD: 228 Below Nuclear Heating P.CCA: J/A Bank Positions (steps) RCS Te=perature (*F): 5# #F III,- Po*>cr Levci (*JF.P.) : o7 Test Conditions SDA: 22.6 SDB: PoV.] CA: 2.26 Other (specify): CC: 22_B CD: 22E3 (Actual) CB: Mgg Oe.le u) Yac.lca.y he 'rt Date/Tiric Test f/6/8/ I Perfor:.:d C33i - SU3 ; Integral Ucrth of Shutdewn Bank 3 ".od Svap Heasured Para:cter I (description) 1V (g,;9g,g gg4ug,,_ $_g '~* pf f g p, gf;,, fj 9 g,g c 1:2acured v:1ue (Crifical Rehrwe % k. lFl)'*" Os5 ion " //9.5b 5) Re s c 1 o dicionJ) SDS" O f - -L. ~ 7 (Critical P.eference Bank m Design value I = 1022 153 pc:1 CDE (Design Conditions) Positi:n = 156 stees) .. -... a ; ' Vepco NTc Technicat Report No. 16L: '.*epco Rod Swap I "^I ,j" e. Re f erenc*' 'T'P *". Snow, dated Deember 4.1940. to C.T 4 I.t the Destsn tolerance is as edad, the $NSCC shall evaluate tne Lzpact
- 1t ** th'
- '**7 ***17***- 'h* T850C **7 "**d7 **
V FSAR/ Tech Spec
- f * * * * ** * '..**t is t 3. p. te r3.d.
.4d1:1.3 1 : Acceptance Criteria Reference VIP-FRD-36A dec.epbge e,n-fM A A s piu* VI I Des y +o A 'G &
- c re.te n t s
[ Test Incineer Recommended For .y Approval ny / NTO Enginee r i a 4: 1-PT-94 ATTACHMENT 6.11 Page 13 of 41 02-11-'81 A.12 North A.ina Po*.sce n$tation Unit 1 Cyclo,,3, Startup thysics Tests Results and Evalu.atica Shoot I Test Deccription:3hutdom "ank A Worth Measurement-Rod Swap Refccericu Procedure Nunkr/Section:.1-PT-94/A?P. G cecnce Step Kuuscr: jg> ' S ~/, II -- Bank Positions (ccepc)' ' RCS Tc: per: cure (*T): 547+0 -5 Fover Level (T.F.P.): O Tece Coaditions stA: Moving 5 0: 228 CA: 228 other (specify): '(Desigu). CB: Moving CC: 228 CD: 228 Below Nuclear Heating '.'. } ECCA: N/A i I Bank Focicions -(s:c;:s) RCS Tc=persture ('7): 944, */:' ,,J III:.' Power Level (IT.P.): og Tcsc Conditions SDA: Movi% SDB2 2.Z8 ~. CA: 226 Other (speci'y): ' CC: 7,LS CD: 2.2 $ Mevin[ECCA' (Actua1) CB: ,e A//A yj, Qj_ Q.,d W c/ pace / Time rese f/8/8/ /' Perfor==d: N2-/ t SDAII [3("p f ^~ sc: t a TV (Cr,'+rcal l<sterence Samk IMasured V:1ue., I = '/ 2 38 pc.m, gyg.,,, f g fg, gg ( Gnhcal Kefcrence ca L. I /76 M4) Re u s" ..c 1 C. iciens) SDA - P 5 / 'j'f -?. Design.Value .I. 'UA=-1034 153 pc.m (Critical Ref erence "ank te, 1 (Design Conditions) Position = 158 steps) , g "' Vepco NF% *echnical Report No. 161; Vepco Red Swap T"b, - "I A I "" # *" # '"
- A' 5'
-Refercnce to c".T. Snow, dated December 4, 1980. f /,.> < 't ise oestaa toleranas is auseded, cae sasec or 11..1use ese 5.3 44: Y 'd . TEAR / Tech Spec " **7 '* * #7 * * addis tenai t ee tta g be pef f ermed. '"'1 ' * "# '#'"'****'"******#**7 7 V M Accepcance D 0A Reference c.cef a.nce cro'lere'et w& S m eb. t ~ VI . Desi n folerarsce wo.S exceeclecf. Mk @ mea.s - c TLa.-+ ectr re.sul+ is a.cc7 '.e s.J. Lo-Efo, }. ' 1.Ftwo l fre R. M. <y % +o / < f J. /M/ c~ nf'sL,d ' r.vniuated ny Cem,tecca ey ) / T..e ensuaer
- " U M ' E - 7 f b 4,u r, pt.
m c.e..=
- 2. NW he bM.brmm E ',j, l._os's h
boriI ' 10,19 fI. ( b% fo W "Shi'. e n. OadicC(Ee n. ort-fdo. 8'l-244-O h Mw
- y*
J ar-9
- 4
-g,-qwg
- ewin',g.idg gr g g-+v yy-- p y-g 9 w
a,g-y++iy gg7-ww gi w-g +- r-rgw ey.-t-gag & N N ammrM-st ere iw at Wu ier rwm wm*1-'u rvw F* w a vT-' 4p A.13 a llorth A.tna Ptr, ice Statlen tinit,_I, Cycle 1 Startup thysics *:'ests Pasultu and Evalu.2 tion Cheet Test
Description:
Total Rod Vorth-Rod Susp 'I"""* ' F " /9 I Procedurc 2:uir!,cr/Section: 1-PT-94/ APP.C F.efer ence 547+0 Zach Positions (steps) RCS Tetsper:ture (*F): 5 II Tover Level (*r."F.P.): 0 Conditions SDA: Moving SDD: Moving CA: Moving other (specify): Tcot (Design) CB: Moving CC: Moving CD: MovinE Below Nuc1 car Heating RCCA: NA Bank Positions (steps) RCS Tc:nperature (*F): S M 'r Power Level (%F.P.): o f-III Mo*3 otact (spccity): Test SDS: Me.vi CA: Conditions SDA:Niny CC: M. q CD: Moe (Actual) CB:Me,v;. Bele choyYeaIin] f/MW Datc/Tietc Test Perforr.cd: g26 g2j Measured Para =eter I Integral Uorth of All Banks-Rod Swap (description) gg IV f /fef MeacGred value I = Test Design Value "i o $883 # 23[cm Results .(Actual Conditions) I = Total Design Value 5883 588 pe: = 3 (De' sign conditions) Total ~. let: Vepco Rod Swap Topical Report l ,Vepco NFE Technical Kerort No. TEF-TRf> MA8 N:mrandum f rco M.L.. Smith to C.T. Sa rv, dated ss 28,1981; !!c-or ndu a f rom T.S. Kotella en c.7. Snow. datedN-ora tiarch ReferencQ Harch 20. 19511 l( the DE&gn Tolerance la cacreced, assure adequate sautdown margsn cy l sessuring the reactivsty worth of control banks O through A (and a so the remainder of the r.,d banas to the N-1 configurst'en.sf required) by
- ekat ue _
r ~~*** ,Y ISAR/TCCh Spec the boren dtivateg# addition succesolve ved le*ettien veist Acceptance h P-FRD-M. i Criteria Reference . me{ Cfm Cet rict Ms Cont ts whn a dM /S M /I. (,7 Evaluated Dy Completed by [ Test Engineer 1:c.conciended For . Apptw.11 1;y ) Nr0 1:ngineer O. g 8 g.
- 4,1 j 1-PT-94 l ATTACICtENT 6.11 Page 16 of 41 02-11-81 A.14 I: orth Auns Tower Station ifnit _1, Cycle,,1_ $c.irrup startup Physics Testa Ker.ults and Ev41uction Shcot I Tese nescriptic.n: :un rt.ur. Par-ARO et.rnca} 2*9""*
- 8";' 2"'"I'" ' 8 43 l
, Proerdure :tumcor/r~ction: 1-PT-21.1'. n II kank Positions (stepu) itCS Terriersture (8F) ' TYBf i 1 Po.4'r 1.t vcl (T.F.P.) : N1 Test Conditlens -228.sDs: 228 ca: 228 Oth*r (8 eecif 3 3 7 . g3, (ucst:.) '228 CC: 223 cD: 228-cs: .Must have 1 38 chimbles RCCA: NA. l Bank Povisions (steps) RC5 Ter:peratur.' (OF): 5'L1"l.O F III- / Teat - Powe r I.. vel (*.;7.P.): wy'/o Cond!:l' ens' 3DA "12.? SDat t1% CA: 1'1.$ Och u (spczify); (Actual) C3 : t*2.j ' CC111% CD.'1"LQ . RCca: /J A 4(, 'Tb,f} s gfgl 1[q l I Data /T1=a Test Perfor ed r.AX. R 3. !!EASURYD PA tA r4TYP. ASSY. ?WF.. F'g*g, 27JC:.7AR ff, TOT,tLHEAT QUA;;ra.;T l g- } 1 (descripciun) f. p g7, cua:c:= rreca re.C a uT:.. c:er e 1 Ir .i any?P,yt.if 3 L
- l. LM-
~2. 5'2 4 1.0937 g l Wasured value eg,g P is'0** a 1 6 1.%41 6 4.09f. 6 1.02 Tes't - Design Value - 'I Results (Actual condit!nxt;- e 4
- 10
- ; for P 10.7 g
~ Desitu Valve ! 157. for P <0.9 NA r.A f,1.02 ([* r ' f < Q i .(Design Candictor.c' -(F Assy par) I 5;CA.M 9C3 ; ^ ' WCAP-7905 NCNT gcyg. R2/.1 Reference get.1;f i ?. TSAR / Tech Spec NA X^ N *- yA y' Acceptance TS 3.2.J Ts L2.2 TSL1' criteria Koiecence gA
- 0 sdn+.ime.u' ne md,b t +.M ruvIks ve.o.ccetdled. r SAw.e.:
i.rth Anw Powu ht,A bwid,a Rapt rJo, b 2. v1 c==~"" i. n pae ff p / oo .st wn.. ""Z"rd.O' ' C 3,<dv4s Nr 0 r.w,p r. uter 't a v. 5 k I
1 A.15 llorth lauta Power Stat ion l' ult 1 Cycle 1 Star:np startup rhynten Ter.tu nm:ultn and I;valu,ition she.it 'i Tcat Descriptions :t/p F1.cx ttw Control ganks At The Insertion Limits reference -Psocwdure I;uuber/Section: 1-PT-21.1 ?c#<iuNe#o st@0u5bN:stig A 8. *2. 11 tack Pocitjona (stepn) RCD Tenpernture ("r): T il Tect power Level (*P.P.): 3-5 Conditiona SDA: 228 sDc: 228 CA: 228 orber (r.peef fy): (1981c") Cai 228 Cc: AR - CD. AR FCCA: NA Must have > 38 thimbles III Bank Positlons (stt:rn) RCS Tew.icenture (OF)1 stn.o* F Test Power Level (' P.P.): w t}*T, J Con.tn ions SDA11) SDn:11t CA 12.? Other (specify); .(Actual) CB:11%' CC: l'lO CD: '2,. RCCA: Mk 45, TL,'dles Date/Ti.r.c Test 9 hl 095[ Per forr.ed : ItAX. REL. ~ ltEASURF.D PARM;LTER ASSY. WR. F I NUCtrAn F, TOTAL llEAT Qt;ADRA;iT I g (description) % Diff. gg CliANACL FACToit FACTO:t RAT;0 (QPT!O l p IV tll.Nh*'l.ll t1 t ).%43 'S'i 14 1.01W +}Lll7e* %)g 0Y Nensured Valuc ' dio7,'E., P;2.o.i ~ 1 %4% ~ 4,100 6l07-l- /.- Test Decitn Value licsults (Actual Conditions)
- b bs' M f 20% for P M.9 g
Deaf.n Value i 15% for P <0.9 NA NA f.1.02 f g (Design Conditions) (P - Assy pur) L'CU-7905 Reference WCAP-7905 N0!!E NONE REV.1 RLV.1 + 1 = NA NA .V TSA1:/ Tech Spec NA NA Acceptance Criteria pA TS 3.2.3 TS 3.2.7 TS 3.2.4 Referenco i n toivec$.s a J M M ph w u dt. Dada h P.mu s.ts:,A 6Nn% hp rt tJt,. t -wr,pv Muwt; Core en i, i [ Coa.pleted Ity Evalusted By _ Id t / TcIntEnt,incer Recorsarndod for p Approval liy C-
- .WA.)
HF0 f.ngineer
1-PT-94 ATTAC10EMT 6.11 l PAGE 18 of 41 ) 02-11-81 l A.16 1:ortti Annia ruwer.ct atten, Unit 1 Cyrf u L sentrup % cec Cr.sttup Physics Tcut s te".uf ta and !!v.if usttou. Test !)c*.t ription: :t/3 fl.!'". !'.t!'- A C ? :.jer, } I)aCa."q f 1 reference Fruct dut e 1:au!mr/:;ce.tf un: 1_py,33,7 Sequersce Ottp " inlier:,jg 21 lack Ponitlant (et e; :) ttC:' *i. uprenture ("T) : T ef I l
- 'o cr 1.cvel. ( r.r.): s36 4
Tcat I 0"I'* f (SPIf738 Cunatti""' c.\\ 228 SDs: 228 CA: 228 (pesten) e,. Ce: 228 AR M:.:s: have > 38 thi:tbics C3:228 AcCA: NA III 3sak Position * (steps) 2CS Ter.g.cratur: (07): 554.O Y rower 1.evel (':r.I'.): w2,fo,5*7, Test Cond nion' 3 DA: '2.'2.% SDB: *l.2.7 CA 'l.2,& cther (i.pecity): (AC8"31} ca1M
- 0: Q CDsGS RCCA: Q W R,*dk, Datc/ Time Test gfgg gqq Perfcreed:
2:AX. Ri*.1.. T[#, !C:C.rar. T, TOTA:.117.1T Qt:A:n/.. - HEA5tlRD PA.V.::LTDt A S.'i*f. 1"..';. 3 l (duerininn) ogf. . a.....! u.c im; r'.a x. a'. = t
- . - - e_T.
.unoe:r:q C:a::.:a. re.=: rAc :: n.M4 Ql.o't Iv ). 5'70 '2,4 'F{ l.0143 e P. car,ured Value 3y,4 b Py0.4t .' tit >*To b 8 2.4 % dk ),)k / l,Q I? ens;n value 4 g, g (Actual Con.if tirn:0,gg g8 Test P sults ! 13" for P :0.9 g T,ccica Vclue ! 137. for P <0." 3:A !g f,,1.02 (Design Conditions (y. 333y pyr)
- ~ Y
?.cfarence VCAP-7905 Nene None 3.%Y.. RLY.1 r"AM1.55:(12(1-Fb'.I'*"*"*'#^ .a V TSAt/ Tech Spec !(A =0.-ur =], 'i : ' "2 " ' :'" I reeeitantc l Criteria s 2.2.3 Ts 3.2.2 Ts 3.:.' taerence >:A
- Das'y Ma<-a vsek 4;, bd kW ve 5 lis o<o qd-1 (<-
y, Cor*.-u t n Qdte.rw *. $e N$ 0% 00ts.4f &cbEcwC Mtc$tts 0:{mP'i' 00. 9 l ~ 2'((,, A ~ n.%, -.. e utv/e n m+4.. i Completed r.y 8 realu.ety,I y a dh ) Ic s t T..et. int e t Reent su..! -I r..s Arri e.v.it ny M u...r. i ni i r I d h 9 .C % bY> u /7L ~wk tM rak.eL s-4.z.G.t b % J s 4 Ace J, A hl lud wLi<L 'isn din % Lib b.&. 6d,e AL 4. g"' ti, a,we.2. ydl. -.wa m wu
1-PT-94 ATTACIL"CT 6. I1 Page 19 of !.L 02-11-81 ^' north As.n.2 r.~er rear.on uutt 1 _ Cyr!u.3__. sentrur d startup Ptayates :wts !!csults and Ev1]ustion thcet l
- sst ta,.. rt;.tsoni ::/p rmr. :ur. At P osic:, MI Calib., i 2ata np 1
refer,nce Frucuanc 1:.md~r/r et:un: 1-?T-22.2 sequence scer :: aier:g Tref
- 1 11 r:ok tor.itsan: (s i et..:)
- s ;,,i; v ra t ur e c>r) :
rewur 1.s: vel CY.P.) :, c, g fe.* C Conditiom 37,3, 773 $3 2;g cA: 22g Other (r.rve i f y) : CU8 AR }t:st have.>. 38 Thi=bles C:8228 C: 223 III
- 3. k rositions (steps)
Rr.5 :enperst ;re (OT): 54 2 (f"
- ' owe r t..svel (!:*.P.):
fo p,, 7est Canditico $7,,y 2 gg $c3: g2g cA: 2g$ Cthc; 6.pc:ify): (Actual) c3: cc: C3: 2m RC A: g 4 5 ~ O b.o Y//y/g, Datc/:!=e Tesc r rcr!a ed: ,g g 3 _, g o g, 1:AX. ra. rzu a m r e : :x Am.ra. r!.i. ::::::Au. r' :cT3:. ;re..: un-(Je5::im=) ~ yf. J u.c. m.. a n,;..c.; c.u....,t ,c..;,. -... Cacra re.ce: n=: c::a (e.q y if.2 7."Sw {.; i.s} zy 14.1 On t'oSor
- f. 5 %
- 2. l(C
/. 0 /8t. rn sur.s v :ue J T 0 I /*r b C 7 / s ts t 1e i t ied / T'/. A M 0.7 MA + 10: fcr ? 1'J.9 L De ics Valve 2 157. !or P *0.7 34 33 y,1.02 g (DesJgn Conditions; g. 3 ry 3.r) L'C.'J'* 7 3 0 5 Ecference VCAP-7c05 NCH g::::: i'E '.1 Riv.1 _.i m 33, h..:11-, j / :' a ":"" ' ' > w r u* rse. /.us sg..e n ~ v x [1-73 Pit'* f 'i :*.:n s::n r :e.s Acceptsnec
- s 3.:.,
- s 3.2.:
- s 2.: a j Criterl.1 m.-
x9 s .upeac.awc4a,n t-UvetL % % sbne agu% g.1ye.;9 ts,, s g-zy, co~..u e :. 1 -ete.m,.(s 4 T'Md Cy& h N w a d
- d a -f v I:
7 O fC.2Tl' 4?' >d. /ML >:..a......, c 1 eo.v1e t..:., / / ,.c r.
- t. r..e
.. ?.-l r..e w / AA a.... a.:, n 12 b F 9 L oc.,J j4, 7,g,'] >g-'g Aen 4,2,2,7,c],,, a w Lx % - a,w & f_c use &, f';cu%r ~fc~ hJ <e: p. ik F "F Q q@, x1 u, w -. a. ^----~- -*--------------m___.
I-PT-94 ATTACF.XENT ' 6.11 Page 19 of 41 02-11-81 1 A.18 { North Apu:s T..wer Fratton %:It b Cyr!s b Starrtm Startup Playaics Tsuts itesults and Cva!ustion Sheet
- !/a rr.m: :*.w At P ower. MI calib., R ::sta ".sp 2
Test ne,.crtrunn: reference
- Pruct:dute !:undwr/L.r.:!wn: 1-?T-22,2 Sequence Step : ui.diert g Iref 1 1 11 F4nk Por.ittan: (st et.n) ra:C. tire ra t u r e ("T) :
re er.evel (nr.1.): s50 Teac snA 228 sca 228 CA: 228 cther-(neccuy): C* *d l L 1"'"' ' ' U"' CCs cot AR XusC have > 3B Thi=' ales C3! 228 ECCA., 2 2 8 NA III Sec.k Positjons (steps) ?.C5 Terpers:ure (oT): 67,2 *F Tower Level ("T.P.): A f,2 7, Te1t condnico 333 7zB $0?.: 2167 CA: ?t$ Cther (a.pecifyJ: (Acttaal) C3 Iz6 CC: 2.Mt CDs ges-A,g, RCCAs d ~
- g. ate / Time Test fattornedt 77.58 cop 1:AX. RIL.
P.EAS'JRY.D PA3.'."CQt ASSY. 1" 'R. T'*.3, IrJCL".,V. T,*), ;tT.* L : Ti? ct:;.;;r/.. ; (Jescription) D f. ."gg, C11:tJ:.. Y.*.CIC:t TAC 0t; it.A;10 (y!":.; y /ffl.r P =+ l.07 gy s-n .'.cacured 'Value B,,f [a,-/)6* CAL l* 5 $ A*D l* O 3 TioY.lrrf'909 q g g g f,op Test Desicn value 7e G 7 P.rsults (Actual Canditteta.' + ICC for P 10.9 g De.cica Value ! 157. for P <0.9 x4 3A ,1.02 g (Design Conditions; (i. 3 sy pr) L k'C.W-7') 0 5 Ecfsrer.ce k' CAP-7?C5 NcNC g;;,g MV.1 gCV.1 AH
- "9 h.,; t 1.P @ ') 1 *18 *
I d2 # **"* W 8 4e 7 yA y TSA!!/ Tech Spec NA x (1-P *P 19*"If ' **
- I' ' ' #I 8 ' *
- Acceptaner t
Ts 3.2,3 is J.2.2 TS J.2.% Cri:cria Esference g3 g u ~+
- y w usa +s - p y Con. ut:s y%un,. '.
I. h b M 9'i.Ik'tcm-M'd m
- ,,T k.SI~237.
w.s .k t Cameleted T.y Ev.atuate.1 siy _ 5 [ Tc a t T igir.ce t 7M/ Rec.te. f.- I r.. r a Ar,...... i.:, hy"d *lc O %y w.dc & T.J1".f"'"7 ;dem lidt (c,- %y L e l ~ c2. aLTdad p44m 4.2.2.2.rQ alad Y-e-<v t & ry ws. ci,+4 c) <& pc#,- Idd 4 tk 22% ddc y ,, uJ, 64 <* (Aict &. g e j;,,ig ~
e. 1-PT-94 ATTACEMDIT 6.11 S Page 20 of 4I 02-1t-81 A.19 North Annas ruwer Station Unit 1 Cyr.!g 1 starrup Startup Physics Tuuts Results ant' 'valuacion sheet
- t/D rivr. tur. At Fever, NI Calib., R' DaCa Map
- Tent uc,.ertetino: Proceduse !!amimr/suessoas 1-PT-22.2 sequence sere mi.at>cri g reference fank Ponttiens (seepti) nt:5 T.vyersture ("r): Tref + 1 II Power 1.svvl (~r.P.): s60 - Test snA: 228 son: 228 CA: 228 other.(specif y) : Conditio"d C3: 223 CC: 228 C38 AR (D"le") o. RC A8 NA Must have > 38 thichies l I31 Bank Positions (steps) RCS Tenperature (of): y p,g
- f' I
rower t.aval (:r,p.): ^I.O.C. T i Tes t. Cundt:1ons 50A n ) sD3 ".1.2.) CA: Other (specify): (Actual) C3:'2.2.3 CC:11% CD M N fa b. 4b m RCCA:A)k l Date/ Time Testtjfjg'h l 0946-Ferformed: uxx. R :.. ' ~ a us m D PAax c :a Asn. m. 19, wC:. rue. r,. tot.u. m i e:..au.:- n o m., m,, Ts,,.c m ,m _ _. (aes.ri,uon). gf. ame am3, Cax: u. re.cTC rACT:c. . t.. - Iv ~ n.cf4PgLu. I
- 1. 5~2.2,
'1.04o 1.014I t'.cssmd Value 11.s To & PjcNr. y +107 E.r @2 0.9 MA, M i 1.02. l Test Design Value..
- 4 %g
,b Itesults (Actual comittiensh 8 I . t 10 fr.
- P 20.9 g
y , = ~c, Desicn Valve ! 13% for P *O*9 ~ NA FA 1 1.02 cH ^ g (Design Canditier.s (g,L= Anzy pvr) Y. I*UI*~ IE 1.0' p ' Referenen VCA?-7905 _ tec fr-NCNE REY.1 ( ;. gri.1 y11,55sh*.2 T 1 2.1CxX(2)/F f;A T y TsAlt/ Tech Spec NA. x(t-P*P(SV1) Acceptance i Criteria TS J.2fJ Ts 3.2.2 Ts 3.2.4 soference yr Mw w rsck M hd ET 45d' 't" cL d, M s.Ls wn w ~n y,c m. m m.'J/e m g fc @f y C.-. . t., T QMegki 5 bv, A NL WGLA< 9 s A v' OfLEF L 1 6LLJZ i:..:.. i :, C..ri. a r., - f itet r.nginert $h Rcr..c . ?...! r..r Apri..wil ny C. '. p) nn e i.or....... r 12 b %y9 L cm 6 at~r h i p 4c A 4.2.z.z.4 y -s.L+a,J a u g fu sA - ~h f U-e- A Tw% 4A. p 1.<dcri AL A q erep u. a CC " " ' dtNia. m(k.
1-PT-94 ATTACIDtENT 6.11 Page 21 of 4t 02-11-81 A.20 tiorth As.na Power station Unit 1 Cycle 1 Senreup Startup Phyntes Tuuts Resultu and Evaluacion Elicet
- /a rtM HAP-At Pover, NI Calib., 5 Dats Map
/ Test De,.crt,,tran i reference truecause 1:.u.a,ur/suetiu.is 1-PT-22.2 sequence step :su ner: g 11 T,sul6 Poc.iticus (s:cen) rJ:3 7.v;'erature ("Y) : Tref + 1 ~ l re-uc Luvvi (:v.r.): N70 renc 0*h*'*(P"*8IY)* sm: 228 SUS: 228 CA: 223 C8"diti'"" C: 228 223 C AR (D"len) CC' tCC.u NA Must have > 38 thimbles III Bardc Positions (steps) ECS Ict.perature (07): St,*s
- F Tsucr leeci (27". P. ) :
N. t*7 Teat Conj 111cos s0A:'2.M SD3:1'lt CA:11 Oc!scr (a,pecif y): (Actual) C3:"1,*JJs CC: 'L1% CD: RO % D. c5 RCCA: AJ/\\ e Cate/ Time Test-lg ) lO M Performed: IIAX. R L. 7 y .u.1'ASURED ? ARA *'LTif,'t A55Y. WR. Y.3. !."JC:.r.AP. .rg. TDDL l' EAT Qrg::A:- (Jescription) ~3 f.- y7gpy gg g_ gg ; g.,. Cw:.s re.C=. uC=n una men) ll.N. h"* 1.05 IV 'l 1.503 Ltd I.Old F.casured Value 3 3.g*[,$c f t C,tn yg Nk (JA 61.0"2. Test Design valuu 4 1fS7 Or D OA Itasults (Actual coniH r.icM ! 10I for P 2.0.9 g g xA }a < 1.02 peeten valu. 3157, for P 40.? (Design Conditions: (p., A.isy pur) 1.'C.*J'-M 0 5 Y Reference VCAP-7?OS HCN! };(.gg A%Y.1 21,. 1 Y @." 4 :"->6 r;g.utm, o 1s.w 1 _, s, c 4. - 29 A..,,s.. T3 3.2.J M 3.2 2 T3 3 ' Cricerla Avfusunc* NA y w n a. s, m ->,, m e w f .d4 6 h %b Od:ctb y 4o. 21-2s7. Co ~nti f. m J,,J A 4 e,.,Js 4 r. lad y&a;r
- RLd' r..i..
4 c, L, 'R. A LA C.. 1, d c., / =,.. rm....e o6 . ar.. .a r... r . f, o.......... r Apr .v-.: 6:f ec.~ukm c4. r&.4 p nca. 4.z.2.2.4 I M-g" S .e In er i. y o^ M%~l fuM-cue.3lx cb 6 ;,) g. (.w.d J4L;,, uts
- % & 4-y (wd a h uk A F f (; h,
J. % % cx w,mt. 7
1-PT-94 ATTACHMENT 6.I1 Page 22 of 41 02-11-81 A.21 north Anna r..wer sentton unts,1__ Cyclu 3._. scarrur l startup thyntes Tuuss nesults and Cvaluation sheet Test oc,.criptions :t/a rwn v.\\r-At Power, MI Calib., 5 Data >!ap I Pcference Fruccdutu ::undeur/5a:ctf uus 1-PT-22.2 sequence seep :<ui.iiier: g II tank ronitinus (stett) PJ::: *i.s ratisce ("r) : Tref + 1 i ~~ Tue ro=ur Luvv1 (:r.r.): %80 snA: 228 SDS: 223 CA: 228 other (npeelfy): co nditioni,i CD"1C") C3: 228 CC8 223 cui gg EC ^8 Must have > 38 thir.bles NA III Ban's Fositions (steps) RCS Temperature (SF): N 3 # f Test rouer t : vel (:r.r.): ~ g,q 2.? g 3:33 216 CA: LZ.8 Other (specify): C'aLEl'"' d A* '"'(
- st.A
C33 'l28 CO3 Z Z.6 CU8 /80 RCCA* g Date/i'ime Test Ferformed: /HD - /55'f-N 't.. MEAsURY.D PAR 4*E*DL MTM / r T*JCIE\\r. T, Tont, Ur.A; g A;mA.:T (Jescription) g ,y uno(yet;q b.7 cr.::.:1.:. ric:ct rActon .n //.S Iw(,*[5 TV /2.4'/[brP = 0.47. /.5 2, a M /. oi# ressured Value \\ .T.u s tic % Fw f 10.9 Results (Actual conditions'. g g gg Test Destcn valua a 6 ! 10 for P 10.9 g Decicn Value !15%forPgo.9 xA ra 1 1!c2 (Desig: Cooditions) (r = /si:y pur) L vCAP-nor xes: x::,. ec.u -nos mereceu. a:.v.1 xxv.1 I N" $" V TSA1:/ Tech Spec -NA M r 3, ;.le xx(:) j
- 3
+ meg u c e, t..,,, Criteria Kufetence g3
- s 3.3.3 TS 3.2.2 Ts L2.4
- 4 w-up a ca+ > ~n W%,
cu-..u: - ( t\\] A Arww. Pw STM m (bii:Elem No. El-257 MCd~~ J. >s'. M'a/4 r... i u.. C.,., i, u.a., / 7,.c r e.,.c 7K a R.*r,.r* . l.-l 1*. r s.,......, m, Q y*g g ~ b a~l-Je+L%kl &%. 4.z..z.f A%,.J Id w % 2d% & t h < U\\- 41u y as c,Lu,,.J zh a p f ' 64 & th.A +L. 5 " (;,,-i .s umb). A eqh M%,3 /
~ n 1-PT-94 ATTACF2ENT 6.11 Page 23 of 4I 02-11-81 North Aons Power Station Udt,1,,,, Cyclu l Startup Startup Phynits Tuuts Resulta and Cvaluation shcut Ten uc,.criptions :t/u errr..sP-At Potter. NI Calib., R* Data Map r Feference Prucudute !!.mubur/kettuu: 1 p7 22,2 Cquenec Stre haber: O II f.1ck Pocitions (stern) r.c3 T.ups.rnture ("r) : T;eg 4 1 Power t.uvel (27.P.) : 40 Tese Cona nio"' ser: 228 sDs: 228 CA: 223 oct.c r. (neue s ty) : (! 'C" ) CC8 228 C38 AR Cs: 223 "#C^* NA Must have > 38 thi=bles l l ~ III 2.sak Positions (steps) RCS Temperature (OT): 574. 2. F reuer Level (:y.p.): g,g 7* - Tes t g Condnionc SDA 2.18 SC3: EZ8 CA: 228 Ctlict (upccify): CC: 7,gg CD: 2 to U8t"31) C3 gg g RCCA: g Y 4lt6!f/ Date/ Time Test Ferformeda ogly c3fo l'.AX. RCI.. Tfyg,!?JCLY.M: 7, inTA[. [tgAT qr:/ggy,.; j 12*.ASURYD PARN*ETEX A$3Y. Pir.L. ) (description)
- Oiff.
..:CllAL1'Y 118C h0T FLL% bCY CILA:::U. PC' ~ 7:LT c g p3 C'dtJ.~.*LI. YACC: yACOn n;10 (y?;;;
- g,
/I.I%%F.= r.or ty !* O ! /2. 8T h.e=s.42 0 Picasured Valuo l 3'
- /of, iw tl t o.9
+ M M S L O2-I'st DestCn Value N d3 Results (Actuni Coneit tiena n c f 10% for P 10.9 g De:1Cn value
- 15% for P 50.*
NA NA 1 1.02 \\. - (Design Conditions.1 (p. g gy g ) 5 k' cal'- 7'30 $ LtAP-790$ posg ge;;g rev.1 Refereace u.v. t r542 "a [1 2'2-'O ' < :.1Ca(:>/r u "y rsav i.e.s : uc u r ' x (1 P2P (B'*If } Acceptance ~ l l-Criteria Ts 3.2.3 T5 3.:.2 Ts 2.2a zwfuence u A -W% ML I LOn n*,4 ktt 6.e c.,sg+ m y T P
- 0#s y
Co ~o t a t.r M A h sh<h ow A e a A, a-2s 7. m .u w el r. c m,LJ d. C eJ_s y g;_, J2 / h //x [b, tv.i t u.a...i :y Co.pteted r.y _ /' Test T.ngineer / 7R Rcr..ew...' 1 r..r arr,.... i er ..,o.........< s V\\ O Cf M CQ,. (t G. k f' 3p > 3 , A w a a.. w a. aMwdLL % y Lgg 2a 7. & -th. p %d g h. a _g c ro i ,7 Acupw.m m,m,.w..
e 1-PT-94 ATTACWINT 6.11 + Page 24 of 41 02-11-81 A.23 North Anna Power Station Unit b Cye.3u,3,_,, scarrui, Startup Physics Tsuts Resulta and Evaluation Sheet l t Test uencriccian :ua rwr. P.sr-HTP, AkO, Eq. Xe reference Proceduta t:wahurlsuets=2 1_p;_21,1 sequence sce? Nwalier: g l II fank Por.itlens (st epn) ncs *.v.s.esture ("T) : ref I1 rower i.svet C:v.P.): 95 + 5 i Tec ~ l conditicua 33,228 sca: 228 c.u 228 ottier. (::recify): Equilibrium :cenon (pesten) m 228 cc 228 CD2 AK hast Have y,38 Thimbles gC::,u NA III St.nk Positions (steps) RCS Temperature (OT): 67% *f " Test - Towcr Level (21*.P.): too*7, Can.Irticas 50A:119 sCO 217 CAs ti? Other (2.pecify): (Actual)' C3:2lt.t CO: '1.7.5 CD: 12.9 ggfQ RecA:tJA d17bl l'lO3 Date/Tims Test Performed: PAC. RC.. REA5' RrD PARMS.T%R AsSY. M.'A. T, N*JC* L\\R F, TOT.S.L *4AT Qt%g,-l W J j (description) ~*!. ,y CWJ.*#d. FACTon FAC On itA120 (y?T:: y I' 31.'57/ for PQ l.04 I Iy I'9 N I' IN fl.N be E*5 43 0 .Maasured Valua. 71 l. 2107s Fac P 20.s 7 " g', g MA MA i 1.01 Test Design Value III
- Resul:s (Actual Conditim s'4 s
+ IC: for P 20.9 g ,A NA 1 1.02 Dc:1cn Yalve ! 137. f 0f I 40.9 M g _._,_g.. '(Design Conditions; (P An y pvr) b-VCAP-N 5 l: Rafarence WCAP-m 3 arv.1 None None N.1 l -' !~ '54155"b2'*d r' 1 2 ic=4:)/7 q u l y rsmarch sr.c n = [t-it.t r (ac1} Acceptance Cticctta T3 3.2. 3 75 3.2.2 TS 3.2 A Kofurcnce y3 n*
- %: ~ +=Iom n*+ md, ht M+ tcwk is w'@dle tv Rduwe
- l. boa Am (kw Ssh thA% fk d IJo, Td-32s ca-a r:'
p he A n e A%w 4. MNFA k,3 d),M cus.i a :,y C,.gic ua ny / :..t r s.r oo N.;. $.s' ?, [ $ Y m J 9 e .__.-_m-___-
1-PT-94 ATTACErr 6.11 Page 25 of 4I 02-11-81 A.24 11 orth A.irn l'over Station Unit i Cyclu 3 Startup Physics Tests Pasu.lts a.nd Ivsluatien chect I Test Des:cription: RCS Flow Measurement Kcterence Procedure Kurier/ Scc:lon:1_PT.27 Sevience Step Sum >ce: g ) I T II Dank For.Leions (scepc) RCS T n per:ture (*F): Ref+,1 5, Powcr Level (%F.P.): 93+0 Test conditions SDA: 228 503: 22S CA: 228 other (specify): (Design) CB: 228 cc: 228 CD: AR RCCA: l l III ' - ' Bank reci:fons (stops) KCS Temocrature (*F): 57'/ *F j Power Level (*;F.P.): foo g Test l Condi:1ons SDA: 218 SDB: 2.2.8 CA: 726 Other (specify): j (Ac:ual) C3: 22.9 CC: 12.8 CD: 2.2.4-KCCA: Date/ Time Te:c f/2F/f/ Perfor=:d: fo f g _ fogg TOTAL Measured 7:.ra:eter y , Total RCS Flow Rate (descripcion) RCS IV T E 302.,7(4 fx,. F Heasured Value a Tes: Desica V Jun Not Applicable Kosults (Acta d Condi:icas) NoC Applicable Desigu Value. (Design Conditions) NoC Applicable Reference - uncer a n y)1 0 ;pr n V FSAR/ Tech Spec Ac:cptance Cricerid Technical Specification 3. 2.5 Mef ance Cr;teria HeI. f VI Co m. :. i. c. r 0 N 4 e e aw f du Geus: Recome.aunted Ter -CJ W Approv.il Dy NFO ;nginner. + l j' w ,}}