ML20062L928

From kanterella
Jump to navigation Jump to search
Cycle 2 Startup Physics Test Rept
ML20062L928
Person / Time
Site: North Anna Dominion icon.png
Issue date: 07/31/1982
From: Lozito E, Mann B, Snow C
VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
To:
Shared Package
ML20062L923 List:
References
VEP-FRD-49, NUDOCS 8208190298
Download: ML20062L928 (68)


Text

, _ ,___________ _ _ _ ______ __

b i*

t <

VEPsFRD 49 -

N  ;

1 A

-+

,. ~

I 'U-m_= 3 C m

~

9, '/ 31 E-

i. .,

g $$

I

  • p .,!  %

.,f - .

s}

} ', ,, _

"', ll Y'i:

.. . :l ~.

p y i

m i

NOR,TH ANNA: UNIT 126CYCLEi2_v.1c,Lh -

I'

~$, -

c _i t '

p,. . .:.

, . 2,;

>; . _  ;. > 4, s_; ww w

E

JSTARTRPHYSICS .

L:"

g

pp TEST! ,

e REPORT

z

,s m %3,, .  : l  ;.

~  ;% . +

ot4 4:t g .

- >n- ,

_ - ag(c/

Ql/ _

m.

E .

g.

n's,ry 4j &+ t i[  : % ., s v' 'v~4m'f w

v a

g

(; p p. ,g q<. 3r,

. , -='- ,

'&-6 ;

,1,-.. .g.

,- .; s ; y ,

(,g y i, , ,

E $' #

g y+ l EN5 -~.j';. ;;  ;

L . c , $ S. *

- 9 's ,

['.9I]i .\

. , 'I[ di' "I y **" ;v ;

?-

" ( ).' .

, 0l

  • W~-Aa - ~*

}![)!' ) ' p;'f '

O , ~L3

3 aOff) 7 gh
3. m -

y J!?q g

~.

4 +

w ,' . &, 4 -

's '

. \ ~7

. ' $ [ , . s f 5 t '. $ (. , .- $ .' ,$ , .

g

r. sz i- <

' * ? ff ri q a 90 .' ef?? , s dW . ,

[ h< ]!?., [g ;?&l:yf Q_, w jw)ll]{$a r;. y - -

my ~

~b. ?>: ww,;2 p)w{ ng .n: -- vy pD,yn ,

w_- , ,'ajev g-r . n2 s.

'm c -s

,; m. '<[

f

~

,L

w.?, q m

Q,R, Q, i oc j ie , Vi! p}fM,W;!

.<u ,

e :C Vi,y ...k.

j . .

~w m, .

hI

  • S

+

,.  ?

r
,, t

.ls g3 -

(, '!

a , , ;l_

g.s:

r o - $. . kw

.$u [A ? g.gh
  • n ,

~y %.. .. ggy, f {g

- - -g94g, g# .

nu re; y x, y  ;:x y . . .x ; r, yw;w K * ', ,

.ns '

[

]_ ,4

')'.

,1*1,

,a

  • ' ' 'f; 4 mi

-f t WGJ n.

5, ~E ( ,, ,4/. I k f[" ' #

-N A h C J T M k.

yWKl[k '".

j r{1 s

g <<

~

, ,' M; -}

{ kt f;'~

a u@ Mly "

1--

~

p. n.,. . ,- .u.- , .

- wr.

1- <qg:(4!. ta p . "(pG

.; g,01 1  ; u_ 53;

c. )+ . . . .

. .x+,

a

?;] j@ h , lnm#L'.

, ;., y d '.n '..

~ .

l ,'

+ .t L

/. 3 {f4 ;.n.

Pi f. ..

.g ' W l.1' g' ; i s - & a;i_:

n r W.m ma%

se m if lm el.. ',4l <,yn~ &. y; f)'q

. s -

E ' , ' .

\ ' .'

% , y 4/'; ."

' i .

u ;f, f,.

y,-

v c y;,;

= -

y c '

3 .p+ , ;-j f x" wv .,x7 -

i,.

.;p ,- . ~ ., 'mnYfy ~ ; .;,

s,m.

- - ~ ._' m ,- ; .;. , . -

e m .g .s w= .

=-

S C

.. ~

J!*

S3

  • r

~ , . [wTj ;[ J 3: *

,2 ,; ..

' $ 's s n

C}

E _ ,

,1 1 a *

] ' ,

i

," .v .,,'.

,. /3 ,D? n -s.)/ r$.a/ M. y -

y a

y g

i @-,$ ,

f,'

.n n , ; Q ~, * ; g ,_ ,

l

' .e Q -Q/f{p t,.a.:,.,.e9 x

' lJ,R ~ Q$- J.

,1 1 , . .

c n.. ..r. n, a ty-ca. .3

m i.

.k. , , , ,

i+ ;v.y n n%m ,. ,

.1 A .gg~ ,

m .

- q: .tw W: l_ d 3,-

at >

^- y,w ,s,u g ?.

, 1 3 . + .-.

a . . .,

. .4 4 ., .';sA9,J, .,

, V - .

e.

FUELRESOURCES?BEPARTilENfWN. MNn,@#y, n ,

1 y

lE 1-Mi~VIRGI,NIA! -

ELECT.RICf.AN. D;POWERl.CollPANI E, .~ . ~- - f ," ' ,

VEP-FRD-49 i

NORTH ANNA UNIT 2, CYCLE 2 STARTUP PHYSICS TEST REPORT BY Brian D. Mann Reviewed by: Approved by:

[. .

C. T. Snow, Supervisor Nuclear' Fuel Operation Subsection E. . osit g Director Nu at Fuel Operation Subsection Nuclear Fual Operation Subsection Fuel Resources Department Virginia Electric and Power Co.

Richmond, Va.

July, 1982

CLASSIFICATION / DISCLAIMER The data, techniques, information, and conclusions in this report have been prepared solely for use by the Virginia Electric and power Company (the Company), and they may not be appropriate for use in situations other than those for which they were specifically prepared. The company therefore makes no claim or warranty whatsoever, express or implied,as to their accuracy, usefulness, or applicability. In particular, THE COMPANY MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, NOR SHALL ANY WARRANTY BE DEEMED TO ARISE FROM COURSE OF DEALING OR USAGE OF TRADE, with respect to this report or any of the data, techniques, information, or conclusions in it. By making this report available, the Company does not authorize its use by others, and any- such use is expressly forbidden except with the prior written approval of the Company. Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein. In no event shall the Company be liable,

[ under any legal theory whatsoever (whether contract, tort, Warranty, or strict or absolute liability), for any property damage, mental or l physical injury or death, loss of use of property, or other damage 1

resulting from or arising out of the use, authorized or unauthorized, of this report or the data, techniques, information, or conclusions in it.

l l

t i

4 ACKNOWLEDGEMENTS The author would like to acknowledge the cooperation of the North Anna Power Station personnel in performing the tests documented in this report. Also, the author would like to express his gratitude to Dr. E.

J. .Lozito and Mr. C. T. Snow for their aid and guidance in preparing this report.

e 9

s 6

6 9

0 11

-, - - , my

' TABLE OF CONTENTS j l

SE,CTION TITLE PAGE NO. l l

l Classification / Disclaimer...................... i Acknowledgements............................... ii List of Tab 1es................................. iv List of Figures................................ v Praiace........................................ vi 1 Introduction and Summary....................... 1 2 Control Rod Drop Time Measurements............. 10 3 Reactor Coolant System Flow Measurement........ 15 4 Control Rod Bank Worth Measurements............ 17 5 Boron Endpoint and Worth Measurements.......... 22 6 Temperature coefficient Measurement............ 26 7 Power Distribution Measurements................ 29 8 References..................................... 40

APPENDIX StartuP Physics Test Results and 1

Evaluation Sheets.............................. 41 1

l 1

l l

111

I 1

~

LIST OF TABLES TABLE TITLE PAGE NO.

1.1 Chronology of Tests.................................... 4 2.1 Hot Rod Drop Time Summary.............................. 12 3.1 Reactor Coolant System Flow Measurement Summary........ 16 4.1 Control Rod Bank Worth Summary......................... 19 5.1 Boron Endpoints Summary................................ 24 6.1 Isothermal Temperature Coefficient Summary............. 27 7.1 Incore Flux Map Summary................................ 31 7.2 Comparison of Measured Power Distribution Param-eters With Their. Technical Specifications Limits....... 32 i

l iv

LIST OF FIGURES FIGURE TITLE PAGE MO.

1.1 Core Loading Map....................................... 5 1.2 Beginning of Cycle Tual Assembly BurnuPs............... 6 1.3 Incore Instrumentation Locations....................... 7 1.4 Burnable Poison and Source Assembly Locations.......... 8 1.5 Control Rod Locations.................................. 9 2.1 Typical Rod Drop Trace................................. 13 2.2 Rod Drop Time - Hot Full Flow Conditions............... 14 4.1 Bank 3 Integral Rod Worth - HZP........................ 20 4.2 _ Bank B Differential Rod Worth - HZP.................... 21 5.1 Boron Worth Coefficient................................ 25 t

6.1 Isothermal Temperature Coefficient - HZP, AR0.......... 28 7.1 Assembly Power Distribution - HZP, AR0................. 33 7.2 Assembly Power Distribution - Rod Insertion Limits..... 34 l 7.3 Assembly Power Distribution - 30X Power................ 35 7.4 Assembly Power Distribution - 50X Power................ 36 7.5 Assembly Power Distribution - 69X Power................ 37 7.6 Assembly Power Distribution - 86X Power................ 38 7.7 Assembly Power Distribution - HFP, Eq. Xenon........... 39 t

V

i

\

i PREFACE The purpose of this report is to present the analysis and

. evaluation of the physics tests which were performed to verify that the North Anna 2. Cycle 2 core could be operated safely, and to make an initial evaluation of the performance of the core. It is not the intent of this report to discuss the particular methods of testing or to present the detailed data taken. Standard test techiques and methods of data analysis were used. The test data, results and evaluations, togetaer with the detailed startup procedures, are on file at the North Anna Power Station. Therefore, only a cursory discussion of these items is included in this report. The analyses presented include a brief summary of each test, a comparision of the test results with design predictions, and an evaluation of the results.

The North Anna 2, Cycle 2 Startup Physics Tests Results and Evaluation Sheets have been included as an appendix to provide

, additional information on the startup test results. Each data sheet

! provides the following inforartion 1) test identification, 2) test conditions (design), 3) test conditions (actual), 4) test results, 5) l acceptance criteria, and 6) comments concerning the test. These sheets provide a compact summary of the startup test results in a consistent l

format. The design test conditions and design values of the measured Parameters uera completed prior to startup physics testing. The entries for the design values were based on the calculations performed by Vepco's Nuclear Fuel Engineering Group 1 During the tests, the data sheets were used as guidelines both to verify that the proper test vi

i conditions were met and to facilitate the preliminary comparisca between measured and predicted test results, thus enabling a quick identification of possible problems occuring during the tests. The Appendix to this report contains the final completed and approved version of the Startup physics Tests Results and Evaluation Sheets.

i I

i f

I 1

vii

1 i

i l

)

Section 1 1

INTRODUCTION AND

SUMMARY

l On March 7, 1982, Unit No. 2 of the North Anna Power Station was shut down for its first refueling. During this shutdown, 52 of the 157 fuel assemblies in the core were replaced with fresh fuel assemblies.

Two assemblies that were scheduled for reloading were found to be damaged and were replaced with assemblies discharged from North Anna Unit 1. The core loading pattern and the design parameters for each batch are shown in Figure 1.1. Fuel assembly burnups are given in Figure 1.2. The incore instrumentation locations are identified in Figure 1.3. Figure 1.4 identifies the location and number of burnable poison rods and source assemblies in the Cycle 2 core. Figure 1.5 identifies the location and number of control rods'in the cycle 2 core.

On June 2, 1982, at 5:36 a.m., the second cycle core achieved initial criticality. Following criticality, startup physics tests were Performed as outlined in Table 1.1. A summary of the results of these tests follows:

1 1. The drop time of each control rod.uas confirmed to be I within the 2.2 second limit of the North Anna Technical l

I specifications 2 l

l 2. The reactor coolant system flow rate was confirmed to be .

greater than the minimum limit specified in the Technical Specifications.

i 3. Individual control rod bank worths for all control rod. banks i

l L were measured using the rod sway technique 8 and were found l

1 P

e r-,, - -w -* -

e wev. - -- -e_- - -= -- -mi- y- - +<-r---+ r

l l

i E

to be within 10.6X of the design predictions except for shutdown' Bank B, which showed a reactivity difference of 115 pcm from design predictions compared with a 100 pcm review criterion. This deviation is discussed further in Section

4. The sum of the individual control rod bank worths was measured to be within 1.2X of the design prediction. With the exception of Shutdown Bank B, these results are within i

the design tolerance of 215X for individual bank worths (110X for the rod sump reference bank worth) and the design tolerance of 210X for the sum of the individual control rod bank worths.

4. critical boron concentrations for two control bank configurations were measured to be within 13 ppm of the design predictions. These results were within the design tolerances and also met the accident analysis acceptance criterion.
5. The boron worth coefficient was measured to be within 5.3X l

l of the design predication, which is within the design l tolerance of 210X and met the accident analysis criterion.

6. The ARO isothermal temperature coefficient was measured to r

l be within 0.9 pcm/'F of design prediction. The result 1

was within the design tolerance of 23 pcm/*F and also met l

the accident analysis acceptance criterion.

7. Core power distributions for various HZP and at power conditions indicated measured assemblyuise power values to be somewhat larger than the established design 2

- , - , . , - , . , - . . - , ,.--e - - . . , , , - - ~ - . - - , - - - . - - ,n- - ,, , , , - - - - , , . - - - . , - - - - - - -

,.----e

l 1

tolerance. These higher-that-expected relative assembly l

Power values were accompanied by a quadrant power tilt ratio (SPTR) that at hot-zero-power was measured to be approximately 6X and at hot-full-power was measured to be approximately IX. Additionally, several of the measured Radial Peaking Factor (Fxy) values exceeded the operational limits. Despite these deviations, all measured F-9(T) and F-DH(M) hot channel factor values were within the Technical Specifications limits. Further discussion of these conditions appears in Section 7.

In summary, all startup physics test results were acceptable Detailed results, together with specific design tolerances and acceptance criteria for each measurement, are presented in the appropriate sections of this report.

f i

l l

3

Table 1.1 NORTH ANNA 2 - BOL CYCLE 2 PHYSICS TESTS CHRONOLOGY OF TESTS I l l l l Referencel l Test l Date l Time l Power l Procedurel I I I I l i I I I I I I l Hot Rod Drops-Hot Full Flow 15/31/82. 2300 l HSD 12-PT-17.2 l l Reactivity Computer Checkout 16/02/821 1133 i HZP 12-PT-94(B)l l Boron Endpoint-ARO 16/02/821 1440 l HZP l2-PT-94(C)l l Temperature Coefficient-ARO 16/02/821 1553 l HZP 12-PT-94(D)l l Boron Endpoint-B In 16/03/821 0918'l HZP 12-PT-94(C)I l Bank D Worth - Rod Swap 16/03/821 1116 l HZP l2-PT-94(0)I l Bank C Worth - Rod Swap 16/03/821 1208 l HZP l2-PT-94(G){

l Bank A Worth - Rod Swap 16/03/821 1337 I HZP l2-PT-94(G)I l Bank SB Worth - Rod Swap 16/03/821 1440 l HZP l2-PT-94(G)l l Bank SA Worth - Rod Swap 16/03/821 1511 1 HZP l2-PT-94(G)l

( l Bank B Worth 16/03/821 1806 i HZP l2-PT-94(E)l l Flux Map-ARO ,

16/03/821 2347 i HZP l2-PT-21.1 l l Flux Map - Rod Insertion Limit 16/04/821 1400 1 4X 12-PT-21.1 l l Flux Map - Power Distribution 16/14/821 1222 l 30X 12-PT-21.1 l l Flux Map - Power Distribution 16/17/821 0907.1 50X 12-PT-21.1 l l Flux Map - Power Distribution 16/17/821 2331 1 69X 12-PT-21.1 l~

l Flux Map - Power Distribution 16/19/821 1057 l 86X 12-PT-21.1 I l' Flux Map - HTP, Eq. Xenon 16/21/821 2343 l 100X 12-PT-21.1 l l RCS. Flow Measurement 17/02/821 1100 1 100X 12-PT-27 l 1 I I I I I l

l l

4

Tigure 1.1 NORTH ANNA UNIT 2 - CYCLE 2 CORE LOADING MAP R P N N L E J N O P S 0 C B A

, 44 44 44 11 i R$7 Eli R 34 1 4A 44 i 44 tal 44 44 44 l

. Sie Roe alt ' H34 845 R17 317 1 2 l

4A 4A tat SAS SAS SAS SAS 44 i 4A l 31S $, 848 - M61 N34 N37 N11 N19 RG) l R14 l 3 g

44 34 il sat 3A SA 3A $4 . 3A l 212 ll 34 1 44 I R33 Pts Ne6 P13 . P16 P31 P34 l P44 i N13 ll P14 5 RSS l 4 I i

. 4A i 44 tat , R AS 34 l la SAS , la la IAt tat i 44 1 4A $

l R13 I R11 N32 , Nit Pl? I Pte N64 . PG4 P45 N46 N34 ) R34 5 RIS l 5 1

1 1 I I i 44 SAS 34 34 tat 6 3A SAS BA rat IA I 3A 6 tat i 4A I R47 N64 Pt7 Pte N64 l P34 N34 Pt3 Mt? P19 l P91 l NSI l 810 l e i I I i I

( 44 44 i 148 34 34 1 34 i SA 3A i SAR l 3A l la i 3A 1 2 A4 0 4A 1 44 R$e R42 l M49 l M7 P44 l pig I N19 P65 i Ntt i P34 1 P33 1 P15 1 N21 1 341 l R14 7 I l i I I I I i 1 1 4A ,

SAS tat la i tat IN1/ 3A31 3A 1A2 34 lHl/3431 2At 1 34 1 R A! l 2A2 l 44 ,

Re4 H N14 . H41 P41 li m5 l Cit l P43 L31 P49 I C31 l Ntt l PSI i N41 8 N35 1 R51 4

'l I i i I I l i I i 44 44 tat 34 la 4 34 8 tat i 34 tat 34 IA i 34 l 212 l 44 8 4A Rae  : 334 N47 P01 P40 1 P37 i Not i P98 . M17 P24 P39 i P35 i N06 l R22 I R44 9 1 I I I I I I 44 tat 3A ,1 3A j tat 1 3A l (At la l Sat 3A 3A 6 tal 8 4A l See NE3 P42 .l P36 l HOS l Pit i H2S P11 l N4t PP7 P12 1 N28 8 808 I le i i  ! I 1 l 1 l 44 4 4A SAS SAR 8 34 8 3A n SAS 3A I la i 2At I 242 8 44 8 44 1 Sta 1 R46 N14 N39 .l POS l P50 11 N64  : Pf 6 . 8 P21 l HIS S NOS 1 R44 1 223 8 11 l i I I I I '1 I 4A 3A , 141 3A i 34 '

3A 3A j 34 l tat 1 3A 8 4A R16 Pts M13 P44 P99 Pit l Pte i Plc l N51 1 PS2 i Ste  !!

I I 1 1 44 4A 248 &&t SAS i tot 1 248 14A 4A l R41 RSS Nit H31 l N64 l Ntt 1 M16 - l R32 ett j- 13 1 1 l_ l 1 44 4A $ 44 i SAs 44 l 44 14A 1 Rio R43 i Ree i m3 336 i Alt i P37 14 1 l '

i I 1 44 4 4A i 4A I I l--> SA7CN l Al9 i R49 i R$9 l 15 l

j i 1--> AsstreL7 re 1 I I I t

i I i

i l

l l

t FUEL ASSEMBLY DESIGN PARAMETERS l

f i

1A2 2A2 3A N1/3 A 3 4A 1

Initial Enrichment (u/o 3235) 2.110 2.600 3.100 3.102 3.414 Burnup at BOC-2 ( MIJD/ MTU ) 12,782 16,474 11,056 23,021 .0 Assembly Type 17x17 17x17 17x17 17x17 17x17 Humber of Assemblies 1 50 52 2 52 I

Tual Rods per Assembly 264 264 264 264 264 l

5

i i

Figure 1.2 NORTH ANNA UNIT ~2 - CYCLE 2 BEGINNING OF CYCLE TUEL ASSEMBLY BURNUPS a P N M L K J N s F t a C s A 1 mer i a31 i a36 I 1 I el el el 1 I I I ate I ase i m39 l pse i e4s I aly i sty I el el el 1729e1 el el el t l I I i I I I I I als I act 1 Nel i N34 1 M37 l 4411 i Mle I se3 i stm l 3 l

el e 170941 174101 1s39e1 172411 17e171 el el I I I i 1 1 l I 1 ass l Pts i Nf6 i P13 i P16 i P31 i P34 i P4s l N13 i P14 l aosell 4 I el assst 167sti estet 14esel 185971 tottal as474 166e71 41731 I I I I I i 1 1 I I I I I all all i H3 I nz9 i P17 i Pe6 i N5e i Pe4 l P4s i Nos l N36 I alsel I atsell s l e el 167931 153s:1 124211 13e941 15e001 141131 12 251 184361 164231 1 l 1 I I I I I i I I I I Il a47 I ac4 i Pt7 i Pos l H44 i P3e i H3s l Pz3 i Htt l P19 .l *st i N5: I ale 81l 6 l of 17e351 431st its7sl 161911 93111 17eest 94321 165521 12:111 47711 17ta31 I I I I I i 1 I I I I I I I I m3e i att i not i P47 i P46 i Pte i N19 i Pos l Nte l P3s l P33 l Pts i Hal I a41ell a14ell 7 l el el 175171 14e611 141stl 92351 14s441 41611 1449st 95351 134731 usst! 174111 I I i i l I I I I I I I i 1 1 l l not N14 l N41 l P41 1 M4s l Cat 1 P43 i Ls1 1 P49 i C31 1 Nas l Pst i N'+1 i N3s I asl l el a I e ' 173e31 1696tl 1c3751 14s761 23:241 s1731 at7sti st7sl tas191 1s13s1 te3411 1sst41 173s11 i U i I I i l i i I f I I I I I I ett I a34 1 M47 l Pet l P4e l P37 i Not i Pr,2 1. NET l P84 i P39 l P3s l Not I att i a4e i 1 el el 176sel 14e901 14e441 95211 149421 este 144671 95s21 139971 141141 174001 el el 9 I I I I I l l I i I I I I I I i 1 aos i Nt3 i Pet. I P36 I Nos i Pt* 1. n:s i P11 l ust l Pe7 i Pat l Mat I sesell 10 l el 17s97 45631 latsel 163371 94911l 167871 99571 163461 188641 e64el 174761 i F I I I L i i I I I I 1 l sta e44 n Mit i N39 i Pos . Pse I, H46 i Pts i Pat i N1s l Nos see i a23 I I e el 1673t1 1stest lasse : 141s3: 14sesi 14essi latest 1ste71 16797. el el 11 1 I I I I L 9 I I I I l_t I a16 i Pts i N33 l P44 i Pe9 l Pat i Pts 1 Pie i Ms1 i P33 .I att I i - el se448 16eMt as971 13664 l 1e3971 1414al eas71 164761 42431 el at i I I I I 1 I I I i

l l Rea i est i N1s ! N31 t:4e L ._,,I i Ne9 1

M16 I m32 I att I i e ,

el Intel 17634 1sese 176e41 171e41 el el 13 1 1 l 11 1 I I l

I als I att I a96 IWI ass I alt I est i I el el el 17329 el el el 14 l i I I '

I I I j l alt I a49 I as, 1

! I l-> Asses 1Y zo I el .el el is I l-> AssesLY aumsJP I I I I t i I l

l I

l l

s 6

Figure 1.3 MORTH AMMA UNIT 2 - CYCLE 2 INCORE INSTRUMENTATION LOCATIOM5 A P N M L K J N 6 F O c & A i i i 1

te i Tc 1 1 I 1 I i i i i i i I 2

l l 1 Tc I I Tc l te I i i i l l ll I I re i i i re 1 I ll 1 re i I Tc i l Tc I 3 I Tc I I Tc I te 1 Tc I I I I I I I I I I i I i i I I I I I I 1 te i Tc I i 1 4 I Tc I I le l l l te I I I I I I l I l i I i l 1 I i i 1 i ra i i m i L Tc I te i Tc I I Tc 5 I I te i I to i Tc I re i Tc I I J l l I I I I I I I I I m I i i l i i i i i i i I e i Tc I I Tc I I I re i Tc I to I I I I I I I I I I I I I I i i i i i I i i I a l I i 1 1 l Tc I re i I re i I 7 I te i Tc te i .I I re I i te l I I I I I I l i 1 I I I l__ I l' i re 1 I I I I I I I re 1 i i I I re i a i re i TC - Tc I I Tc Tc I I Tc ! Tc I re i Tc I I Tc 1 te i Tc i i i I I I I I I l i I I I i i I I I I I i 1 i l i i re i ,,

9 i l Tc to I i 1 Tc 1 te i Tc 1 1 1 I I te 1 I I I I I

.I I I I I I l I i '

I I I I re i I I re 1. 1 I re i I I I I I Tc te i Tc 1 10 I I Tc . I I Tc I 1 I I I I I i .

L i I 1

I I I I I i re I i re i i i 1 1 I 'l Tc I to i Tc I Tc I I Tc I re i i i i 11 i l i I i I I I I l 1 l_ _ I a to i l I 1 i i re I to Tc I Tc l l l 1 TC i MO l Tc - l 18 i  !  ! I I I I I i i i m I m i I Tc I Tc I .

13 I I '

l l l 1 I I ll I m I i 1 i I Tc ' l l l re i TC l 14

(

l I I I l re - tevasts orTecton 1 I l l l

to i Tc 1 Tc I IS l Tc - THterecourte ,

' H I I I l

t l

l l

7 t

i l

' ' Figure 1.4 NORTH ANNA UNIT 2 - CYCLE 2 EURNABLE POISON AND SOURCE ASSEMBLY LOCATIONS a p u n L st J w s r a o e s A i i i 1 i i 1 I I I I I I I I i i 1  :

t 1 I I e 1 4 I I .

8 I I I I I I I I i i i i i i l i la 1 I i sa 1 i i la i 3 I I I I I I I I f f I I I I i 1 I I i i i  !

I I I I I I i i i i i i

  • I I I I I I I I I I I I

I i 1 I I i i i i i i i l i I I I la i 1 5 i 1 13. I I I I I I I I I I I I I I I I I I i 1 I i

I I i i 1 1 I I I I I i I i e I i i i e i e I I I I 1 l 1 I I I I I I I I i I I I I i

I I I I i i i i i l i i i I I I e i I 7 i I a l i I I e i i i 1 e i I I

  • I I I I I I I I I I I I I I I I i i i i I I J l 1 i n i ,

1 I I I I e i l i I I I I I I I I I I I I I I l 1 I I I I i i i i i i i l i 1 1 1 I 1 i i i e I 9 l i e i I I I e I I I i a I i i i-I I I I I I I I I I I I I I I I i i I i i i i i i i i i l I i i i a I I a l i I I I I le i i I I f I l

! I I L I I I I I I i i l i l i l i l

'I I 1 11 I i 18 l' ,

1 I I I -

1 I i 18 1 1 I I 1 I I I I I i i i  ! I I I i u I I I I I I I I I I I I I I I la I I I l l u u '--l  !  ! l l ss l I i la I i 13 I I la l l I I I ll i I I I I I I I I i i i 1 i 14

! l I 4 I I e l' I I

I I I I I I I i I I i l

I l l 1s

! att retsM sutuasts possou anos l

( ss - sacomanf sca ct i I I I I

l l

8

I Figura 1.5 l

l MORTH ANNA UNIT 2 - CYCLE 2 CONTROL RCD LOCATIONS e P W n L E J n a r a e e s A 144' I

1 loo

  • c i i i I LOOP a OUTLET i_ _i_i ' '

N 41 hl!_I'__li_L_l!'._!2l INLET 1, l i SA SA SP l N.43 5

-lrl-Iv'-l-i_l_l_ _i

-iri-lri I_i l i .

l_ _p i ui Sp l i 1al -i_I i 5

-i,r!,--l- -i-!

lr -h- -L vi r , , u,0. .

._ _ l_i_ _

.I SA l SS i S8 l l 17 4 _i_i_i 4 SA l G.lTLET 7 INLET l l

i

,,9-N-l-L-'r l

-l-ir!-l-l-jv!-!<,- .

R ' n- iv ir'-br!-!-i-br!-!-!' ,

'-l-L-N-!- O c l-! r-l-h-i-l r-l 1.

L- '

-br

_ll_

i-br!-brl-br!-!

_i_: _i__i_i__i._.i_i u

l _ I__i cl. I e Ia I ic 1 1 12 V l .A l._i_i_

SAi-l-!-l o

~A _ __i a

__l__i.__1 A i 0 1 1A l i 14

, _ i__ _ r_l_ _i.__ , . ,,

u. _ _i_ .

AS8089tt OUTL87 1MLET MattetAL l AS.IN.CD $*

l l

l FU4CTION 848655 0F ClustfRS CSITSOL BApel 0 8 CONTROL BA&E C 8 CONT 90L taael a a C04T90L Batet & 8 SHuf00hSd SA4GL $$ $

l

' SMUTD0let SA* SA 4 SP 4SPAst ace LOCATImeBI 4 l

9 l

l

Section 2 CONTROL ROD DR0p TIME MEASUREMENTS The drop time of each control rod was measured at hot RCS conditions in order to confirm satisfactory operation and to verify that the rod drop times were less than the maximum allowed by,the Technical Specifications. The hot c or.tr ol rod drop time measurements were run with the RCS at hot, full flow conditions ( 547 'F, 2235 psig) and are described below.

The rod drop time measurements were performed by first withdrawing a rod bank to its fully withdrawn position, and then removing the movable gripp=; oui! fuge and stationary gripper coil fuse for the test rod. This nilour the rod to drop into the-core as it would in a normal plant trip. The data recorded during this test are, the stationary gripper coil voltage, the LVDT (Linear Variable Diffarential Transformer) primary coil voltage and a 60Hz. timing trace which are recorded using a visicorder. The rod drop time to dashpot entry and to the bottom of the dashpot are determined from this data. Figure 2.1

! provides an example of the data that is recorded during a rod drop time measurement.

l As shown in Figure 2.1, the initiation of the rod drop-is indicated i by the decay of the stationary gripper coil voltage when the stationary coil fuse is removed. A voltage is-then induced in the LVDT primary ~

! coil as the rod drops. The magnitude of this voltage is a function of l

l the rod velocity. When the rod enters the dashpot section of its guide l-l 10 l

t

tube, the velocity slows causing a voltage decrease in the LVDT coil.

The LVDT voltage then reaches a minimum as the rod reaches the bottom of the dashpot. Subsequent variations in the trace are caused by the rod bouncing. This procedure was repeated for each control rod.

The measured drop times for each control rod are recorded on Figure 2.2. The slowest, fastest, and average drop times are summarized in Table 2.1. Technical Specification 3.1.3.4 specifies a maximum rod drop time from loss of stationary gripper coil voltage to dashpot entry of 2.2 seconds with the RCS at hot, full flow conditions. All test results met this limit.

1 l

l l

l l

I l

11 l

l l

l Table 2.1 4

NORTH ANNA UNIT 2 - CYCLE 2 BOL PHYSICS TEST HOT ROD DROP TIME

SUMMARY

ROD DROP TIME TO DASHPOT ENTRY 1 SLOWEST ROD I FASTEST ROD I AVERAGE TIME I I l i I I I I I l B-06, 1.88 sec. I M-04, 1.47 sec. I 1.67 sec. I I I I I I I I I ROD DROP TIME TO BOTTOM OF DASHPOT l SLOWEST ROD l FASTEST ROD l AVERAGE TIME l 1 I I I I I I I l K-14, 2.50 sec. I M-04, 2.08 sec. I 2.30 sec. l-1 I I I I I I I I

i 12

rigure 2.1 HORTH AHHA UNIT 2- CYCLE 2 BOL PHYSICS TEST TYPICAL ROD DROP TRACE w- '3 f .' . srATeod A#v cdiersg c5 t . yoL.TA4E . .. 4 . . fcca w van m.p.,=aar N'  : 1-1 _..,m _ .. ;i _ _'y _

,,,,,, m ; .,,y [f,_ N r - - - . .; . .- . .

., L .

.y; . .

.. n,5_-:  :  ;& .,. _.

.
m c m p. . a z. .  ;

,",C5 L""'","*j] j .. :]

TM IT a ATIokl op i Rott!DR6p" .~.

~

!. !l  ;

t -

='-.:..- ses m., -

. , . . . s .:

g .:;

/ . .

M u ,

I <

,q.: :.. . ; . ,.}wmaj. n u u

[.'

f . j r ea 4> .[E:)

~

j[ - [ .;[.I . ,. == a-P - -

t

' i = =. 4 -a-,co .t .. , ,

- -- . .T. =IE AM Mit_ //2o Mf ,

la

  • w

.  ; m,, _g .,,, , ,

j .7 nu ,I iSdGR3AftLED .' .

EtkQ . INro.'

== ':

'A.C.b df~ ~

,, ..[  ! :'l" ";"D'" ~

.1

-Lv Dh PRisinf Y -Cott_~':- .-.DhsH Por 3

i.

i' '. 3

.f

.' ~ ' ~ ' ' '

- '-- I - .  ;

v

. , _00TPOT S tC3 NAtu . .

\ 1 .

RDP TIME To 'Bo oM OF of%d eT

,h' [!

4 2s sec. :

i -

g j lllljllj lI- . . . _ _ , _ _ , _

w[jd$P l Ddoe r.d9[$nsd por fb . - . . . . :.

i. .

r c.. .

N.

. . . _ . ,_j Tit'llW6 TRACE - STATlot) BUS FRGQOcNC.Y

i

' rigura 2.2 HORTH AMMA UMIT 2 - CYCLE 2 BOL PHYSICS TEST ROD DROP TIME - HOT TULL TLOW CONDITIONS J N 8 P E O C B &

E P N M L K 5

1 1

1 a.7s t.6s 6 a.6,1 1 i 3.34 8.87 l 2.34 ' l 2 i i 1.66 1 4.64 8 8.M .

t.49 8 3

'I I I 1.47 i 1.79 i 1.6s I l 4.69 ' l I a.04 ' t.47 1 2.34 8 l 1.33 'i 1. 4 I i i l il

' &.6a i i i 1.64 i i I 1 8.32 1 I s t.34 4 1 1 1 I I l I l 1.66 i 1.78 1 I a.6s 1 I a.6= 1 1 4.63 i i 1.6* I i 1.se i 8.84 I a.37 8 1 42611 a.t? I I a.86 8 1 2.28 I i 2.49 1 6 1 1 1. 'l i 1 1 1 1 I I l 1.62 ;I I ll 1.64 1 1 1.66 I I I i 1.7e i I I t.86 ll l ll t.84 8 1 8.84 1 1 I l't.36 1 1 1 7 1

i 1 l l I I 1 1 1 1.6e . 1 66 I I i l 1.s9 4 i l i 1.78 i 1 3.33 I t.17 l 1 1 I t.16 I I i 1 2.34 I I 6 I I i i l i i i l 4.69 1.61 1 1.66 I i 1.51 1 I I t.M t.at I t.ts i I t.14 I 1 l 9 i i l I I i 1.74 i 1.64 ll 1.64 1 8 a.61 n.63 i a.re i 1 1.74 i

. t.36 3.47 I t.se i i 1.33 3.33 1 a.34 i i 2.37 I le l i l I I i I i 1,71 ,'l I i

l a.67 i .l i l i t.38 'l I a.34 i ;l l 1 11 l 1 1 1 l l 1.64 l 1.64 1.63 1 1.71 l 3.33 I 8.89 8.25 I t.33 ' l 11 1

l l l 1 67 1.64 l l l 3 30 8. D4 1 1 13 1 1 l les ace Deep TIM 70 1 66 1.74 i 1 1.74 i i l Samep0T ENfWT 19tC.) 2.54 8.38 I I S.44 l 1 14 les aos Deep TIME 70 1 I l

DOTTim 0F Bagnp5T ISSC.) I .

.! 15

(

i l

l l

I l

l 14

Section 3 REACTOR COOLANT SYSTEM FLOW MEASUREMENT The reactor coolant flow rate is measured in order to verify that the minimum flow rate requirement is satisfied. The RCS flow rate is determined using the calorimetric measurement technique. Precision calorimetric data (i.e., feedwater temperature, steam flow, and steam Pressure). are obtained in order to accurately determine the secondary-side heat rate. The primary-side enthalpy rise is determined from the RCS pressure and the temperature increase associated with each RCS loop. The flow for each RCS loop is determined by establishing a primary-side to secondary-side heat balance. Steam generator blowdown heat loss, system heat losses, and the power produced by the reactor coolant pumps are taken into account in the heat balance. A reactor coolant flow measurement was performed at 100% power. A summary of the.results for this tapt is given in Table 3.1. As shown by this table, the results demonstrated that the RCS flow limit was met.

l t

l l

t 1

l l

l 15 l

Table 3.1 MORTH AMMA 2 - CYCLE 2 BOL PHYSICS TEST ,

REACTOR C00LLAT SYSTEM FLOW MEASUREMENT

SUMMARY

l Percent l Loop A I toop B l Loop C l Total Flow l Minimum Flowl l Power IFlou (gym)l Flow (gym)lFlow (gpm)l (gpm) l Limit * (gpm)l l l l l l 1 1 I I I I l i I l 100 l 102,720 l 99,475 l 101,905 1 304,500 l 278,400 l l l l l l l l l

1 i

l .

l l

t 16

l Section 4 CONTROL ROD BANK WORTH MEASUREMENTS Control' rod bank worth measurements were obtained for all control and shutdown banks using the rod sway technique. The first step in the rod swap procedure was to dilute the most reactive control rod bank (hereafter referred to as the reference bank) into the core and measure its reactivity worth using conventional test techniques. The reactivity changes resulting from the reference bank movements were recorded continuously by the reactivity computer

  • and were used to determine the differential and integral worth of the reference bank (Control Bank B).

l At the completion of the reference bank reactivity worth measurement, the reactor coolant system temperature and boron concentration were stabilized such that the reactor was critical with the reference bank near full insertion. Initial statopoint data for the rod swap maneuver were obtained by moving the reference bank to its fully inserted position and recording the core reactivity and moderator temperature.

At this point, a rod swap maneuver was performed by withdrawing the reference bank while one of the other control rod banks (i.e., a test 1

bank) was inserted. The core was kept nominally critical throughout this rod sway and the maneuver was continued until the test bank was 1

~. .

fully inserted and the reference bank was at the position at which the l core was just critical. This measured critical position (MCP) of the I

l reference bank with the test bank fully inserted is the major parameter of interest and was used to determine the integral reactivity worth of l

l the test bank. Statapoint data (core reactivity, moderator temperature, 17 i

l l

t and the differential worth of the reference bank) were recorded with the reference bank at the MCp. The rod sump maneuver was then performed in reverse order such that the reference bank once again was near full insertion and the test bank was once again fully withdrawn from the core. The rod sway process was then repeated for all of the other control rod banks (control and shutdown).

A summary of the results for these tests is given in Table 4.1. As shown by this table and the Startup Physics Tests Results and Evaluation Sheets giver. in the Appendix, the individual measured bank worths for all of the control and shutdown banks were within the design tolerance l (110% for the reference bank and 115X for the test banks) except for Shutdown Bank B. This deviation was reviewed with respect to the licensing bases. As a result of this review it was concluded that the deviation did not exceed the bounds of the licensing bases nor did it represent an unreviewed safety issue. The sum of the individual rod bank worths was measured to be within 1.2X of the design prediction.

. This- is well withi. the design tolerance of 110% for the sum of the individual control rod bank worths.

l l .The integral and differential reactivity worths of the reference bank (Control ' Bank B) are shown in Figures 4.1 and 4.2, respectively.

The design predictions and the measured data are plotted together in l

l order to illustrate their agreement. In summary, all measured rod worth values were satisfactory.

i 18 l .

- - - - - - , - , , . -- ,e - ,, ...n . . - - - - . - , . - . -

i Tabla 4.1 MORTH ANNA UNIT 2 - CYCLE 2 BOL PHYSICS TEST CONTROL ROD BANK WORTH

SUMMARY

, l l MEASURED l PREDICTED l PERCENT DIFFERENCE I l l l WORTH l WORTH I l l BANN l (PCM) 1 (PCM) l (M-P)/P X 100 l l 1 I i l i B-Rafarance Bank i 1295 l 1302 l -0.5 l I D 1 1015 l 1008 1 0.7 I lC l 757 1 692 1 9.4 l l A l 812 1 908 l -10.6i l l 'SB l 664 1 549 l 20.9 (115 pcm)I l SA l 948 l 966 1 -1.9 I l Total Worth l 5491 1 5423 1 1.2 1 I I I I I

'h C /

4 g

~

\

I 1

,a 4

- 1

' , I o ,

I.

\

FIGURE 4.1 NORTH ANNA UNIT 2 - CYCLE 2 00L PHYSICS TEST l BANK B INTEGRRL R00 WORTH - HZP 1

i B BARM WITH ALL OTHER ROD 8 00f l

~~

PRE'OlCTEQ M MEA 40 RED o

O h '

o O

l 1

m b

UC QI l- ,,

Mo

^

T ,,,, _,

OQ  %,  % .

s i I .s. s J ut) ,

E C \.

E ,t s I o wei s 1

tu o A '

H g w@ R. '

l . lL  %

i

  • 5: $

'w: .

  1. \.2%

, N (

l R h O ,

a l ma h

~ R 1

1 L

t

%,o \

l 0 40 80 120 160 200 228 l BANK B POSITION (STEPS) i 20

FIGURE 4.2 NORTH RNNR UNIT 2 - CYCLE 2 BOL PHYSICS TEST l BANK B DIFFERENTIRL R00 WORTH - HZP 5 BANM WITH ALL OTHER R006 OUT PREDIC1ED M MER8URED j I

e Q

N O

O. ,

o  !

w i a.

tu l

wa No -

u; r u l a.

re s

l- o.

e" o

w 2 /

'I ._

L m ur " 7 P =

g _i w --

in =

o - . i T

HC * /

l/

R f"

l I g /~

l Ld / unwim x - , , .  ; w l LU _

_ _ e -- -

- r-u_

bQ ms / I '

-o E g ,* .

/

r l V datit i gf eri nuit

^~

/ I T .

.. . ._-=- "

, x -c--_-

i

.F A*" ,,nn }  % '% ,,,- .

- e s - - ---- i_

. .. i 1

O _

/ I O M -

s l l I.,

\

,.#.' f .r t .L

,0 40 80 120 160 200 228 BANK B POSITION (STEP) 21

l l

Section 5 BORON ENDPOINT AND WORTH MEASUREMENTS Boron Endpoint With the reactor critical at hot zero power, reactor coolant system boron concentrations were measured at selected rod bank configurations to enable a direct comparison of measured boron endpoints with design predictions. For each measurement, the RCS conditions were stabilized with the control banks at or very naar a selected endpoint position. The critical boron concentration was then measured. If necessary, an adjustment to the measured critical boron concentration was made to account for off-nominal core conditions, i.e., for rod position and moderator temperature.

The results of these measurements are given in Table 5.1. As'shown in this table and in the Startup physics Test Results and Evaluation Sheets given in the Appendix, all measured critical boron endpoint values were within their respective design tolerances. All measured values met the accident analysis acceptance criterion. In summary, all-results were satisfactory, i

l l Boron Worth coefficient t

The measured boron endpoint values provide stable statepoint data-from which the boron Worth coefficient was determined. A plot of the-boron concentration as a function of integrated reactivity can be co.nstructed' by relating each endpoint concentration to-the integrated

-22

t l

l l

r l

l rod worth present in the core at the time of the endpoint measurement.

(

The value of the boron coefficient, over the range of boron endpoint concentrations, is obtained directly from this plot.

The boron worth plot is shown in Figure 5.1. As indicated in this figure and in the Appendix, the boron worth coefficient of reactivity 1

l l

was measured to be -8.46 pcm/ ppm. The measured boron worth coefficient l

is within -5.3% of the predicted value of -8.93 pcm/ ppm and is well within the design tolerance of 110%. The measurement result also met the accident analysis acceptance criterion. In summary, this result was satisfactory.

i 1

l l

23

l Table 5.1 NORTH ANNA UNIT 2 - CYCLE 2 BOL PHYSICS TEST BORON ENDPOINTS

SUMMARY

l l Measured l Predicted l Difference l l Control Rod i Endpoint i Endpoint i M-P l l Configuration 1 (ppm) l (ppm) l (ppm) l I  ! I I I i

I I I I l l ARO I 1374 1 1369 I 5 I I I I I I l B. Bank In l 1220 l 1233 l -13 I I I I i i 1

  • The predicted endpoint for the B Bank in configuration has been adjusted for the difference between the measured and predicted values of the endpoint taken at the ARO configuration as shown in the boron endpoint Startup Physics Test Results and Evaluation Sheets in the Appendix.

0 J

24 i

FIGURE 5.1 l

NORTH RNNA UNIT 2 - CYCLE 2 BOL PHYSICS TEST BORON WORTH COEFFICIENT ee ...: ununw is 1

2400 a

E -8.46 pen / ppa 3-B 2000 t , i S'

{ l600 o _ - - -

a-

w. N

_, t200 s

> N N ___ _ _ __ _._ _ _ _ = - -

.-. N g N _ _._ _ _

O g h  % -

w N s g 800 -

x -

N _ _

N N

_ ___ N _ ._ - - - - -

400 s N

N _ .

_ _h _._ __ __ __

_ - _ h m. _ .. _ _ _._

N m 0 -

1220- 1240 1260 1280 1300 1320 1340 1360 1380' BORON CONCENTRATION (PPM)

l sectior. 6 l

TTMPERATURE COEFFICIENT MEASUREMENT The isothermal temperature coefficient measurement was accomplished by controlling the RCS heat gain / loss with the steam dump valves to the condenser, establishing a constant and uniform heatup/cooldown rate, and then monitoring the resulting reactivity change on the reactivity

! computer. This measurement was performed at very low power levels in order to minimize the effects of r.on-uniform nuclear heating, thus, the moderator and fuel were approximately at the same temperature (between 542-549'T) during this measurement. To eliminate the boron reactivity effect of outflow from the pressurizer, the pressurizer level was maintained constant or slightly increasing during tne measurement.

Reactivity measurements- were taken at the all-rods-out configuration for both RCS heatup and cooldown ramps during which the RCS temperature varied approximately 6*T. Reactivity was determined using the reactivity computer and was plotted against the RCS temperature on an x-y recorder. The temperature coefficient was then determined from the slope of the plotted line. The x-y recorder plot;of l reactivity changes versus RCS temperature for the measurement is shown

(

in Figures 6.1.

l The predicted and measured isothermal temperature coefficient value is compared in Table 6.1. As can be seen from this summary and from the Startup Physics Test Results and Evaluation Sheets given in the l Appendix, the measured ARO isothermal temperature coefficient value was within the design tolerance of 23 pcm/*T and met the accident analysis acceptance criterion. In summary, the measured result was satisfactory.

26

l I

t Table 6.1 NORTH ANNA UNIT 2 - CYCLE 2 BOL PHYSICS TESTS ISOTHERMAL TEMPERATURE COEFFICIENT

SUMMARY

l I l lIS0 THERMAL TEMPERATURE COETFICIENTl i I I I (PCM/*F) l l l BANK ITEMPERATUREl BORON I i l POSITION I RANGE lCONCENTRATICNl l COOL l l l DIFFER. l I I (*r) 1 (PPM) lHEATUPl DOWN LAVER.lPRED.l (M-P) l I I I I I I I I I I I I I I I I I i i ALL l 542.5 l l l l l l l l RODS l to l 1379 I -2.241 -2.301-2.271-3.131 0.86 I I OUT I 548.75 I I I i i l I i l l l I I I I I l l

l h

l l

l l

1 27

Tigure 6.1 MORTH AdliA UNIT 2 - CYCLE 2 BOL PHYSICS. TESTS ISOTHET. MAL TEMPERATURE COETFICIENT HZP, ARO 4

!$ . . 'd I.I fII dh k !!. .}

10.0 pc::r/ inch

'll lll !!! ..! l! l

' VERTICAL SCALE

,';l 10! llll Ill lu! I 11

!I

.h

}

ii !!lIl!I, HORIZONTAL SCALE l' F/ inch iii !Oj

((l !dl 0 .'j" .i . I.. -

ii iin .n ,

hi .i ..f.

i ,

u  ! f.i I I i i Il V fij I"

' " ~

i l  %

2 gum a npqno ..

p. .

in annst , , .g.. , a qjjj n

h. p h" Qq i

. e .m lL

>. l n E U. .j.M.IN !!,$.$.$..n.nR.,e.f.

- . .. . . 7 b O!

l it ii[ ulll!

! l l! !I Ih ii  ! il 5 iii l 5"

= p mI

! r '

.. 'y  ;;u

~

Z 1 ii i HH i! in; mi r"o n l*Ik'"=ikIll '

% 7 "NZ~"

9i u . ' .:w

~

'}

f,' fil !bl @Ih INf.I' 1

~ ~

! I!!! $! l i fl 'I ,

h.'5E.  ::l- t-SO$

. is ll ll. l ann!Iui .

l

' ll! f I 1 I

% l

..' E if ,ifM-47.  !

lc -: g,

, ;n .m .;

un li d HW

-t ,-

1.. t i!:; .!!! n. ;y , ;i i li n'!

ill. l. i i  : .!

iHri.:e, 4 i jjj ! l: l ..i I;il !lll _ ..!.fI  ! li ,, ]

..I.., il , l TEMPERATURE (*F) 28

Section 7 POWER DISTRIBUTION MEASUREMENTS The core power distributions were measured using the incore movable-detector flux mapping system. This system consists of five fission detectors which traverse fuel assembly instrumentation thimbles in 50 core locations (see Figure 1.3). For each traverse, the detector output is continuously monitored on a strip chart recorder. The output is also scanned for 61 discrete axial points by the PRODAC p-250 process-computer. Full core, three-dimensional power distributions are then determined by analyzing this data using the Westinghouse computer l' program. INCORES. INCORE couples .the measured flux- map data with predetermined analytic power-to-flux ratios in order to determine the power distribution for the whole core.

A list of all the flux maps taken during the test program together with a list of the measured 1 values of the important power distribution parameters is given in Table 7.1. The measured power distribution

! -parameter. values are compared.with their Technical Specifications limits

(

in Table 7.2.

l Flux May 2 was'taken at zero power. (Flux map 1-was'not analyzed

[ due to an insufficent number of- thimbles). This flux map userves-l l as the base case design check.- Figure'7.1 shows the resulting radial l

power distribution- associated with the flux. map. 'May 2 indicated the presence of a significant quadrant- power . tilt- ( approximately 6X)

~

and some assemblyuise relative power ' values in excess ofLthe design prediction. Because of the possibiltiy of a violation of the F-DH(M) 29.

L

i l

l l

i l Technical specification limit at the control rod insertion limits, Map 3  ;

was taken at approximately 4X power and was analyzed to verify the presence of an acceptable F-DHtN) value with control Bank D at 6 steps (Bank C at 134 steps). The radial power distribution for this Map.is shown in Figure 7.2.

Flux Maps 4 through 10 were taken over a wide range of power levels and control rod configurations. (Flux maps 7 and 8 were not analyzed due to an insufficent number of thimbles). These flux maps were taken to verify compliance with at-power design predictions and Technical

Specifications peaking factor limits, and to measure core power i distributions at various operating conditions. The radial power distributions for these maps are given in Figures 7.3 through 7.7. These figures show that the measured relative assembly power values are higher than the design predictions and the continuing presence of a quadrant power tilt (approximately IX at full power). There were also violations of the radial peaking factor ,F-XY, limits; but, following an I evaluation of the heat flux hot channel factor as per Technical l

Specification 4.2.2.2g, it was determined that sufficent margin existed j in the design to allow full power operation without restriction.

i In conclusion, all power distribution measurement results were considered to be acceptable with respect to the accident analysis acceptance criteria, and the Technical Specification limits. It is therefore anticipated that the core will continue to operate safely throughout cycle 2.

I l

30 1

L

TA6LL 1.1 Il0 Rill AISIA tal1T 2 - CTCLE 2 i40L PilISICS TESTS It' CORE F LUX tlAP SUlstARY I I I i l i l' 1 I 2 I I i 1 I I

.I I I I almill i I F -et il HO T I F-Dalilli IBOT l CORE FtZI l l 4I i l l l 1 I UP I lealec l- CHAls:EL FACTOR I . Callat.r ACIOR I alAx l 31 QPIR I AxlAtt No.1 l tmp . ItiAPI oATE I te:D/lewel o .1 I I trixvil I off I of I l DESCRIPTIINI lHO.l I tilu ltXilSIEPSl 1 lAXIAli l i l lAXIAtt i flax l l l SET liH1H1 l l 1 l l l l ASSYlPil4lP0lllil F-Qtill ASSYlPIlllF-DilillllP0ll4fl Ff Zil i flax lt0Cl IX) lBLESI I l_1 I l_I 1 l __ I i 1 l_l- 1 I I i 1.____ I I I I .1 .1 - 1 I 1 1 I i I i 1 1 1 1 1 1 I I I I IAno (5811.21 6- 3-821- 01 41 228 1 J14l IJi 10 1 3.551 l J141 IJl 1.614 l 10 12.13011.79511.0431 SEl 57.461 44 l 1- I l l I i 1 l- 1 I I I I i i I i i i i i 10/6 C/25- ' a6il 31 6- 4-821 el 41 6-1 Kl41 (H1 29 l 2.507 l K141 itil I .820 l 36 11.2361 IIA 11.0621 SEl -2.001 46 i I i l I I I i I I i i l i I l i l I I i  !

M IPO:lER DIST. Vta.1 41 6-14-821 i i 361 301 177 i K141 t'.lli 28 1 1.976 i K141 taal 1.505 1 20 11.24611.6%I1.0101 SLI 7.031 47 I I i I I I i 1. 1 I I i i i 1 1 I i 1 1 IP0tfrR DIST. VER.! SI 6-17-821 651 Sol 185 i K141 tall . 20 1 1.968 l K141 tall 1.4% l 19 11.2E881.60611.015l SLI 8.651 48 1 1 I .I I I I I i l i I I I i i i i i l i i IPoutR DISr. vtu.I 61 6-17-e21 811691 1951 K141 leal 20 1 1.935 i K141 111 1 1.509 l 14 11.22961.72011.0161 SE1 7.001 42 l l l 1 1 1 1 I I i l i l i l i i 1 1 1 1 1 Il Ol!ER DIST. VER. I 91 6-19-821 1341861 205 l K141 tall 20 1 1.846 i K141 tell 1.469 l 13 11.22011.68111.015l SEl 6.591 42 l 1 I I .I I I I I I I i 1 I I I I i i l I I liff P. EQ. XEtloll l 101 6-21-82l 25111001 228 l H121 1801 12 l 1.742 l K141 tell 1.409 l 12 11.19711.60511.0131 SCl 5.291 45 l HOTES* listi SPUI LOCAIT9 tis ARE SPECIFl[0 SY GIVillG ASSEttil.Y LOCATIolls (E.G. H-8 IS Tile CLillER-OF-Cur?E ASSitt0LYl.

' FOLLO'IfD BY THE PIl4 LOCATI0ll (DFIIGIED DT 1HE "V" COORDillATE llills Tite SEVElllE*ll'F0HS of IUEL ROUS LEif fil[0 A IHP0tt'H R AllD THE "X" C00')(illiAIE DESIGilATIO Ill A Sit 1IL AR tlAINILH l.

1H THE "Z" DIRECTIO:4 1HE CCRE IS DIVIDED 18410 61 AX1 AL Pult4IS ST ARIlllG IRull illE TOP OF 1HE CORE.

1. F-QL TI IllCLUDES A TOTAL UllCERI Allif f of 1.05 X 1.03
2. F-Dalltil IllCLUOLS A fl[EUPltillli UllCLRIAlltiY OF 1.04
3. F(Xfl IllCLUDES A TOTAL Ul!CLHI Altlif UF 1.05 X 1.03.
4. Gl'IR - QUADPAlli Puller tit.T I?All0.

s

5. IIAPS 1 7.' Als) 8 WERE fl0T AllALYZED DUE 10 All IllSuff1CLill IlullB[R OF- 111111b105 14L EDLD IU VERIF T 1ECilllICAL SPECIf ICA110lls LittIls CollPL1tJICE.
6. IMPS 3. 4. S. 6. Alu) 9 WERE 1 At;til 10 VERIFY 1103 CllAlstEL F ACIOR Col 1PLIAllCE VIlit TEClaillCAl.

SfEC1f1 CAT 10:15 Lit 1 tis.

Table 7.2 NORTH ANNA UNIT 2 - CYCLE 2 BOL PHYSICS TESTS COMPARISION OF MEASURED POWER DISTRIBUTION PARAMETERS WITH THEIR TECHNICAL SPECIFICATION LIMITS i i l i I I l l F-9(T) HOT l F-DH(N) HOT l F(XY) MAX 3 l l l CHANNEL FACTOR 1 l CHANNEL FACTOR 2 [ l l MAPL l l l lHO.l MEAS! LIMITlMARGINI MEASl LIMITIMARGINI MEASIAXIALI LIMITIMARGINI I I I I (%) l l l (%) l IPOINT! l (%) l i I I I I I I I I I I I I 4 l 1.981 4.25 1 53.4 l 1.511 1.77 l 14.7 l 1.701 37 l 1.83 1 7.0 l l 5 l 1.971 4.16 1 52.6 1 1.50! 1.71 1 12.3 l 1.691 38 1 1.76 1 4.3 1 1 1 6 l 1.941 3.02 l 35.8 l 1.511 1.65 1 8.5 l 1.731 40 1 1.70 1 -1.6 l l 9 1. 1.851 2.42 l 23.,6 l 1.471 1.59 1 7.5 l 1.681 36 l 1.65 l -2.2 l 110.1 1.741 2.14 l 18.7 1 1.411 1.55 i 9.0 l 1.611 38 l 1.60 1 -0.3 l l- 1 I I I I I I I I I i 1 The technical specification limit for the heat flux hot channel factor, F-9(T) is a function of core height. The value for F-9(T) listed above is the maximum of F-9(T) in the core. The technical specification limit listed above is evaluated at the plane of maximum F-SCT). The minimum margin values listed above are the minimum percent difference between the measured values of F-9(T) and the technical specifications limit for each map. All measured F-9(T) hot channel factors include 5X measurement uncertainty and 3% engineering uncertainty.

2 The measured values for the enthalpy rise hot channel factor, F-dH(N) includes 4X measurement uncertainty.

3 All measured F(XY) MAX values include 5X measurement uncertainty and 3% engineering uncertainty.

h 32

CC

(%29t*25 a O*V A1W/OnW 0 m dnNdnB E6L'I (Axid Ebo*I 3S l 100*I NE CCI*2 m (21d

..........i..........

S66*0 3N I 196*0 MN bl9'I (NIHQ-d Sd315 G22 1Y M4VQ 0

Midb IES*C a (1)D-d :GNDI1ISCJ COM 1031NO3

%9 :d3 Mod 29/t /9 231VQ 2 2-2N :0N dvW

....... 4 AbVWWOS 4*t e *

  • **s * **5 * **st *
  • 269 3
  • 51 *23N353dd!0 43d' 0t*0
  • 88*1
  • 9f*0 N014TIA33 **

. 391. d. 3. A. T. . . . ...............94*9...56.*0..*.94.*.8..*.............

  • . . . . . . . .O.. sT. Cert. 48. . .

91

  • 3*5
  • t*5
  • 6*9
  • 4*4 * **81 * **41
  • 8*S *
  • 64*0
  • 9t*t
  • tt*1 St*1
  • 4t*1
  • 33 1
  • 14*4 *

. . . . . . . 14.* 0. . . 81.

  • t. . *. 9 t.
  • 1... ..*..16. .* 8. . .* .*. ! .*. 1. . * . 8. t. .* 1. . * .54. .* 8. . * . .
    • 5 * *** * **5
  • 0 *4
  • 3*t ***01***01*4*6 *9'f**

!!

  • 19*t 9t*1
  • TC*1
  • Ca*!
  • CO*t El'1
  • 9:*1
  • tt*t
  • 14*C *

. .

  • M.*8 . t. t
  • t .. * . 96 .*. C. .
  • 16
  • C . *. 16. 16...**. 8.
0. * . 96...*. 0. . . * .t. t.
  • t. . * .M. ..* 0. . . . .
    • $ t*$ * **$ '9**
  • 8't
  • f*6
  • f*6
  • 4*0
  • 4*0
  • 6*t
  • 0*S
  • It it** 4t*1
  • 96*C
  • t!*1 9t*1
  • 97't
  • E!*t t!*t 26*O
  • 96*0
  • 14't

.. . . . . .M.

  • C . 1. t. .* 1. *. 16.
  • 0. . *. .!!.* t. . *. . tt .* 1.. .. *. 4 t. .* 1. . *. tt
  • 1 * !. !.
  • t. .. ..16. .* e. . *. .t. t
  • t. . *. .M.
  • 8. * . . . . .

t** t**

  • 0*5
    • 5
  • 9*4
  • t*8 *
    • $ *** t*C '4*0 8*t- ***=
  • f**-

it 94*C 9t*1 to*C 96*C

  • 12*1  !!*1 * $3*1
  • ST*1
  • tt*1
  • 16*C
  • 06*8
  • 9t*t 34*C

. 54

  • C . . tt.
  • t. . . 16. .* t. . ' .16
  • C 2t
  • t.. E t. .* 1. .. 0 0
  • t . *. .t t.
  • 1.

. . .. *. 2 t.

  • 1. . * .16
  • 0.. * .16.* S. . *. .t. t.
  • 1. . *. . E4
  • C .
  • 2*1
  • E*9 * **1
  • 9*9 6*t (*t *4**
  • t** '
    • 1*
  • 9't
  • 6 3
  • 9't '
    • t 31 ft*1
  • Ce*1 t?*t ' 4t*1
  • 56*C $* I 36** 5:*t et*C 6t*t t!*t
  • 16*e
  • 4t*t 96*e

. . .S t.

  • t 3 3.* 1. . *. 21.. 1. .
  • 2 6
  • e. . * . C 8. .* t. .
  • 6. t
  • 8. . 8 8.
  • 1. . 3 6 .* 8. .
  • t. t .* t . . . II.
  • 1. . . 96
  • t . . s t *1. . * . . . . . .
  • 9t 31
  • t*t
  • t*t t*e
  • 4*0- t 9*0.
  • t t a g*1
  • t*I
  • 9*9-
  • t*t- '
    • t
  • t*S*
  • f*t
  • 6 ' 64*C 42*1 9e*C 9t*t ' It*1
  • C: I C6*C tt*1
  • 16't 96*C SC*t St*t CS*C 4t*1 C4*C 94*C 9 2
  • 1. 16.
  • C. . . . f. t. .it.*1..
  • t Ca.*1. 06.*8.*. 6t*1.. 06*8.* . t.t*1.
  • tt.*1.. Et.*1.' 56*C.

. . 93.*1 .'.94*0 .

rat 6** 9*! * $*2 t*t

  • 9*0- 9'0* f
  • D
  • 4
  • I
  • S
  • t *
  • 6
  • 1 ' t
  • 9-
  • 9'*- *
    • 9-
  • 2*t-t
  • 96*t es*t * $6*C C7't 6t t St*C tt*1
  • 19't 9:*1 9t* C
  • 96* C tt*1 ' 69't it*C ' 49*t 16*C

..$6.*C. 16*C.'.41 1 8 8

  • 1. 69
  • 8. . . 6. 9.
  • 1. .
  • 19.' t . .*..6 8.1. . * .6 9.' S . *. 8 3. 16*C. 1 ' 41 ** 16*0 t. ' 56*C
  • 4*2 *
    • ! 9*3 9*2
  • t*t t*** **t- t't.
  • 9*1.
  • 2*t
  • 6 1
  • t*t.
  • 9*9- t** ' 1*t-4 84*C 4t*t 9s*C 4t*t it*t 96*C
  • 6t*C 9:*1
  • 6t*C 16*C tt*t
  • It*t st*C 9t*t 04*C 94*C.' 97*t. 16*C. st*t. it*1...CS*t.*.06*4 6t*1 86 0 68*1 -11*1 94
  • C *

. II

  • t . *. 16
  • C . ' .9. t
  • 1.

f*t 4*1 s*1 s*C * $*0- 4'0

  • 5't*
  • 9't* ' 4*t
  • 8*2* ' 6*t ' 4*S* ' 4*S-9 ft*t 66*& t *t It*t 16*C C *1
  • 4t*C 96*C 6t*C Cl*t ' 4t*1 16*C 93*1
  • CI*t 96*C. .!!*t. 96*8 21
  • 1 . 3 6.* C . . C C
  • t. . .' 6 t
  • C . 8 t
  • t. . 3 6
  • C . .* I T
  • 1 .* . !. !.
  • 8t*t t "

$*1 5*0 4*O f*0

  • 9*0- 1*1*
  • C*t
  • f*t ' 4*!*
  • t*t
  • 9*t **9-
  • t*9-5 94*C tt*1 16*C 16*C tt*t it*T 96** St*t
  • 60*1 16*C 06*0 tC*t 84*C 54*C It*t 54*8 t t.
  • t . * .16
  • C .
  • 6 6
  • C. . .II*t. 1t*1. 88*1 ' tt*1..

--- .*.16*8.* 16*0.. .t.!*t . .

  • gag 9'c * **c 't*C ' 9't
  • 6*t
  • 8*1- S't t**
  • 0*S*
  • 0*4-9
  • 44* C 2C 1 ' 16*C  !!*1
  • tt*1 - (t*t
  • tt*1 f!*1 69*0 96*C
  • 24*C

.' 44*4 1C*t. ' 16*C . .

  • 23.*1.. 51.*t..' 41*1.. . ff..*1 .!!.*1..* 16*C
  • 18't..* 44*C..
    • C * **1- ' 4*3* * **I
  • 4*t*
  • t'!*
  • 1*t*
  • 9***
  • 8*S*

1 44*C

  • 60*t 96*C 16*8
  • C6*8 14*8
  • 16*O
  • 9t*1
  • LL*8
  • 44
  • t . . it
  • t . *. 96.
  • C . . 16
  • 8. .' .it ' C . . 16. * .C. . .* . 96.
  • C. .
  • t t .* 1. .* M. .
  • B. .
  • g.g.
  • t
  • t
  • 8 * * ' f*t* 9't
  • 4*t* * **4a 2 14*8
  • 9:*t
  • 6t*t C6* C
  • 6t*!
  • 90*t " 69*8 *

.. . . $4.* C. .St.*1.*. . 9t*1 ' .16.

  • 8 . 9 3.* 1. . . . S. t *. t. . * $4.* 9. ..... * ... ..... .
  • 23N3M3dd!C 43d*

t**=

  • f*** * **** * '3343534d10 43d
  • 1 C26 sT3a 14*C
  • 16*8 14*8
  • Ca tasTI.s *

.. C24:!C364 . 94 *. C. .. * . $. 6

  • C. .. . 94.
  • 8. . . . . .C.143. t C. 3 ss. . . . .

9 9 3 C i d e a r = 1 w n e e OHY'd2H NOIInEIUISIG H3!10 d 3 SIMI'IEW3 C SV Z 3' IDIO 'E YNNY HIHON L*L 3HDDIl

FIGURE 7.2 MORTH AHMA 2, CYCLE 2 ASSEMBLYNISE POWER DISTRIBUTION HZP, ROD INSERTION LIMITS S P N M L K J N O P t 3 8 A

. PetDICTIS . 0.64 . 8.76 0.64 . P9t3107t3

. PIASU2t3 . 4.6 7 . 0.75 0.64 . . Pt A t'.'813 . 1

. PCT SIPPt*tNCt. 1.0 . -1.2 . -0.4 . .Pc7 317PtatNCt.

0.49 . 1.26 . 1.16 . 0.36 1.16 1.26 3.49 0.47 , 1.19 . 1.13 3. 9 , 1.13 1.25 3.92 2

. -4.3 3.9 2.7 . -2. 9 . 1.2 3.4 . 3.2 4.46 . 1.19 . 1.11 . 4.94 3.90 . 0.*9 1.11 1.29 0.46

. 0.46 . 1.26 1.37 . 0.95 . 0.47 3.97 1.11 . 1.32 3.91 3 4.2 -2.5 3.6 3. 7 . 3. 7 . -1.9 0.0 . 2.1 6.1 3.44 . 0.94 1.82 . 1.34 1.13 1.26 1.25 1.36 . 1.02 0.93 3.36 3.86 , 0. 95 .- 3.99 . 1.33 1.23 . 21 . 1.22 . 1.36 1.:6 1.01 3.49 . 6 2.5 . =2.9 . 3.3 -4.6 . -4.3 **.3 2.7 . 0.6 1.4 2. 9 . 6.2 0.49 - 1.29 . 1.02 . 0.97 . 1.04 . 1.12 1.00 1.12 1.04 0.97 , 1.02 1.29 0.39 3.46 . 1.26 . 0.94 , 0.93 , 1.03 . 1.06 0.96 1.07 1.06 3.97 . 1.36 . 1.33 4.93 . 5

-4.1 . 3. 9 . 4. 6 4. 8 - -S.1 . .l.5 -5.6 . -3.9 . -1.4 +0.7 . 1.3 . 2.5 4.1 1.26 , 1.11 1.36 1.04 3.69 0.43 . 0.73 3.43 0.69 1.34 . 1.36 1.11 . 1.26 1.19 , 1.06 1.29 1.02 0.46 . 0.77 , 0.4* 8.74 0..? , 1.34 1.39 1.1* 1.*9 6 6.4 4.5 -S.0 6.7 . 4. 3 . 7.2 -4.5 . -5.9 3.3 3.1 1.3 1.1 3.4 3.44 . 1.16 0.94 1.25 . 1.12 9.43 , 8.77 . 8.99 . 3.77 . 3.43 1.12 1.23 S.96 1.16 . 2.44 0.65 1.11 0.96 . 1.17 . 1.06 . 3.76 0.71 0.47 . 4.72 . 3.74 . 1.09 , 1.29 . 1.03 1.22 0.72 7 4.0 =*.6 .

.+.9. 4.3, 7.3.-7.9 4.0 -7.7 -4.3 . 9.7 . .t.2 1.3 6.7 . 3.1 S.5 1.*6  ?.54 0.90 . 1.26 . 1.30 0.70 . 0.99 . 0.75 0.95 9.73 . 1.00 1.26 3.*1 2.33 0.74 3.78 0.64 0.44 . 1.17 . e.9% s.43 0.46 . 0.69. 0.90 . 0.65 0.94 1.31 3.96 . 3.56 4.41 . 4

    • 2 . -4.4 .*.9 . 7.2 4.7 . 19.3 . -9.2 4.9 . 5.3 . 4.4 . 1.6 3.6 6. 7 . 6.3 . 7.3 .

0.64 - 1.14 0.98 . 1.23 . 1.12 0.43 . 0.77 , 0.95 . 0.77 . 8.43 1.12 1.25 . 0.84 1.16 0.64 0.63 . 1.1. 3.95 1.17 . 1.42 . 3.*6 3. 73 9.49 0.76 8.83 1.12 1.33 1.*6 1.26 3.75 9

==.0 3.9 -*.0 . 4.9 4.6 . -7.9 -6.4 . -0.3 . 4. 5 3.9 0.6 6.3 7.6 6.3 9.5 1.26 . 1.11 . 1.36 . 1.04 . 0.69 3.43 0.79 . 0.43 . 0.69 1.04 1.36 1.11 . 1.24 ,

1.19 , 1.07 . 1.33 . 1.83 . 3.67 . 8.41 . 0.47 . 0.32 . 3.33 . 1.13 . 1.44 1.21 1.33 13

-4.0 - 3. 9 . -4. 3 -4. 9 . -4. 4 .t.7 . 4.7 . 0.4 . 1.3 6.3 7.1 . 4.4 . 10.6 .

8.49 1.29 . 1.01 0.97 . 1.04 , 1.12 . 1.38 . 1.12 . 1.CS 0.97 - 1.32 . 1.29 3.49 3.44 1.27 . 1.31 0.94 1.06 . 1.10 . 3.94 . 1.16 1.*3 . 1.33 . 1.11 . 1.62 . 3.99 'll

.t.4 . 1.9 . 1.3 . 4.4 . .t.3 . 1.4 . 1.6 . 2.1 . 6.7 . 6.5 4.4 9.9 11.1 3.46 . 0.94 . 1.33 . 1.36 . 1.25 1.26 1.23 1.34 1.32 . 0.98 . 0.46 0.44 . 8.97 . 1.31 1.33 . 1.29 1.33 3.31 1. 5 1.10 - 1.37 . 0.e5 13 0.1 . 0.6 . 1. 8 . 4 ,7 . 3.3 . 3.3 . 4.4 6.3 . 6.9 9.8 . 11.8 .

3.46 . 1.29 . 1.11 . 0.90 0.90 9.99 . 1.11 1.29 8.46 3.44 1.28 1.17 . 1.04 . 8.96 . 1.:4 . 1.21 , 1.61 3.95 . 13

. 0.1 . 0.4 . 5.2 . 5.2 . 6.9 7.9 9.3 . 9.3 10.7 .

. 0.49. 1.26 . 1.16 . 0.50 .1.14 1.te . 3.49 . r

. 1.38 . 1.39 . 1.26 . f.35 , 1.23 1.36 . 8.94 . 16

. 12.6 11.4 . 4.4 f.9 7.4 . 9.2 . 9.3 .

. 17ANDA80 . 0.64 . 9.74 . 8.64 . . tytfAGE .

. StVTAT3N . 0.76 . 4.43 . 0.76 7CT S! ppt 9tMCt. 13 st.913 . . 11.s . 9.7 . 4.7 . . e 6.9 .

SUMMARY

MAP NO: H2-2 3 DATE: 6/ 4/82 POWER: 4%

CONTROL ROD POSITICHS: F.QtT) 2.507 QPTR:

D BAtM AT 6 STEPS F-DHIN) = 1.820 NW 0.945 i HE 1.000

..........l..........

FtZ) = 1.236 SW 0.993 i SE 1.CS2 FtXY) = 0.0 BU'?trJP = 0 t%'D/NTU A.0 = 2.00!%)

34

JIDnH3 4*E l H0HIH YHHY t' DID72 Z YSS3WE7IMIS2 dom 3H GISIHIEDIION E0% dom 3H a e n m 1 i r a e 4 3 o e y utalcse - e 9s

  • e'et 4 94
  • dalatsua
  • d.3781W3B
  • 0*49
  • 8*61
  • 8*41 *
  • w3vsnm3G
  • t
  • d34 034d8 sam 3* tt*9
  • 18*0
  • 6*S * *.34 etidaa3H*8'

,8*t,1

  • 1*03
  • 1*tO
  • 8 96
  • t*tS
  • 1*03
  • G*41 48 *

,.g

. , .. g.gg

,.4 .. g.gg 1.6

  • 4,*fo 0** f*t9 e*9* T*8#
  • 9c- ' 8 yt* . t

- 0*49

  • 1*t4
  • G*69
  • 8*6$
  • 0*68
  • e*61
  • 0*69
  • 1 04
  • 8*49 *

' 4*49

  • 1*tS 9*64 ' 0*68
  • 0*61 9
  • 61
  • 0
  • H ' t*t1 4*90 * (

3*t* 3*t

  • 6*6 * -t*0 * -t*t
  • t*1
  • t'9
  • t**
  • 46*

4*49

  • 1*81
  • 6*69 ' 1*2*
  • 1*tt
  • 1*21
  • 1*tS
  • 1*tt
  • 6*69
  • 8*49 *
  • 8 46 " t*09
  • t
  • n
  • 1*tt
  • t
  • ff 1*t9
  • t*t9
  • t*!! ' t* n
  • t*99 1*01 " 0*SO
  • 9 i t*S
  • 1**
  • 0*$ * ***8 * *t 9 * -t*t * +3*1
  • t** 8*4* 1** ** 4e 0*41
  • 1*81
  • 8*69 ' e W
  • 1*t9 ' t
  • t6
  • 1* 84
  • t
  • t6
  • 1*t9
  • 8' H
  • 4*69 1*04
  • 4*41
  • G
  • 41 ' 1
  • t S
  • O
  • 6$
  • e
  • 6* t*ta t*tt
  • 1*st t*tt > t*tI
  • t*69
  • S W
  • t*tt
  • 0*44
  • 5 t t*8 * *1*t * -t*t * -**0 * -9** * -9*1 * .s*s * -t*$ * +t*t * -0** * **t
  • 9*t *

.. .'9.. ...... ............................................................................

  • 1*83 4*69
  • 1*tt
  • 1*t9
  • 8*43 1*94 ' 9* M
  • 1*01
  • 8*62
  • 1*t9
  • 1*t9
  • 8*69 - 1*82
  • 1*S* ' 8*69
  • 1*t( ' t* t e*69
  • 8*68
  • 4*6e
  • 8*9$
  • 1*tt
  • 1*31
  • e*66
  • t'86
  • 9 tg* 3*,. .t*g * .,t,i * .g'98
  • g * .s * .p*g
  • t*g
  • 4

................................'9...............g'...*..g*g

............. * .8*4 * .g*6 *..............................."..........

0

  • 9 4
  • t
  • 19 S
  • 1*t6 ' 1* 94
  • 1* 01
  • 1* t1
  • 1* ti t* 04
  • 1 16
  • 1*t9
  • G*61
  • 1*te $
  • 91 *

\ 4vt* 1*t9 8*

G*6 61

  • 1*t
  • 1
  • f.
  • 1 11 ' 8 H ew
  • 1 te e*63 t*n
  • t*te t*t6 - 0 u
  • 1 xe
  • e eS
  • 4 i

6*9 f*S

  • 1* 4 * - t
  • 4 * =9
  • A * -t
  • t *
  • 6
  • 2 * *6 * * *
  • 6
  • 5 . 13. 3 . .g
  • t
  • gag
  • 49 . g*g . g. g .

O*t1 ' 0 90 8*62 1*!! t*94 ' G*M' 1*!t 0*69 H

  • 1*81
  • t*tt
  • 8*62
  • 8*90
  • 0*ti s'96
  • 0*05 0*69
  • 1*tS ' 8*46
  • G
  • 66
  • 1
  • 86 9*t9
  • t*tt 1 06
  • 0** O't6t*66*
  • 1*tI 8*69
  • 0***
  • t*99 ' 9 6*6
  • 41 t*4 * -e'9 * *A*4 * *9*9 *-tt*3 * *6*5 **tS*0 **10*t * =t t
  • 44* 4*9
  • 6*3 i .............................................................. ...........'9 *.......'9........................

l 8.94

  • t
  • 16 ' 1*04
  • 1*01
  • 1*21
  • 1*81 1* f O
  • 8
  • 91
  • 0*41 ' 1*tS 1*t9 ** e*69 t*6E ** 1*st 1*te *' 1*06
  • O* H
  • 9*61
  • t*tt
  • 9*61
  • 8* t*04 M ** 1*t6 1*tS
  • 1*tS t*!S ** G*61 0*46 * ' t*t6
  • 0*t9
  • 6

' t *# * * * *8** * *6*8 **tO'8 * *4*f

  • 1* 9
  • 9*t
  • 8*t
  • 10*6 .

...........'.....'.'..'.......'....'.'..'I.....*'..'8 .................. .... .............................. ....

^ t*02 4*6+

  • 1*** " t*t9
  • e*62
  • 1*84
  • 0* H ' 1*04
  • e*68
  • 1*t9
  • 1*86
  • 4 69
  • t*82
  • 1*01
  • 8*61
  • t*31
  • t'10 ' 8*99
  • t'88
  • 0*61
  • 1 80
  • 6*f9 t*T(
  • t*tt
  • t*OI
  • t',*t
  • fO t*3
  • 1** * ***6 * -$** * -t*f * ***9 * *A*f * =9*4 * -9'F.* at*3
  • 8*1
  • S*1 * 't*1
  • 8*41
  • t*04
  • 6*6e
  • e*66
  • t
  • t9
  • t 14 ' 1*04
  • t*t4
  • 1*t9
  • 8*66 ' 91
  • 4*41
  • 8*41
  • t*tS
  • 0* u
  • e*69
  • 1*tS
  • 1'*tt
  • 1*01 t* t*tt
  • e*66 ' 1*88 e*69'* t* t'te
  • 8*46
  • 11 3*6 ' 3*6* 1*8 * .t*4 * .g*9 * .9*e 9*3 * .,t9 *
  • 3 * .t * ( > 3**
  • t*4
  • 9*t
  • tsag
  • 4*t9
  • t'tt
  • 8*69
  • t*tt
  • t*t9
  • 1*!!
  • t*tS
  • t*t9
  • 8*69
  • t'st
  • t*t9 *

' 0*99

  • 1*t9
  • 8*69
  • 1*t1 * !*t6 * !*tt
  • t*tS
  • t* 39 ' 9
  • 69
  • t
  • te ' s 't t
  • tt
  • ws* t*t * .t
  • e**
  • O**
  • t**
  • t*t
  • 3*t
  • 46* 4

..................'9.t** *....................................................... S * ...

  • e*49
  • t*04
  • 4*69
  • 0*61
  • 0*48
  • 0*41
  • e*69 19 *
  • 0*98
  • 1*tS
  • 1*09
  • 8* H
  • 1*00
  • 1*08
  • 1*3$
  • 1*t9 t*04*
  • s'93 G* 11
  • 4*t
  • 6*9 10*0
  • s*t * $*3
  • e*t
  • 6*9
  • 9**
  • 4*t *
  • s'41
  • t*48
  • t*18
  • s'90
  • t*tO
  • t*83 ' e*41 *
  • 0*t9
  • 1*t9 *1*tt*0*48*t*t6*t'13*O*44* 19
  • 6*6
  • 13*9
  • 18*$
  • 11*$
  • t* 4
  • 6*9 4*6
  • 1 1 ........... . ................

stihCvaS *

  • 4*91
  • 8*91 8*91 *
  • YA8af03
  • 1
  • amsuon - o u e 61
  • ees - cal awteam:t' ts i

at*519 *

  • 1$*6
  • tt*$
  • tt** *
  • e $*9
  • l SOWVdI

' WVyN0: H2 4 OV13: 9/t9/92 d0M381 10%

1 i

l 30H1d01 d00 d0SIIIOHS: 3 011( I*619 bdiB:

l

) 0 GVNM Y1 I44 S13dS 3-3HIN( a I* SOS HM 0*699 l H3 0*669

..........g..........

l J)2( = I*2b9 SM I*000 l S3 I*0TS l

l J)XA( = I'969 3ABNad a E9 WMO W1n V*0 m 4* 0t) % (

l l

1 I

1 EG l

1

l l

JIDnH3 L*h NOVIH YRNY t' DXD73 Z YSS3WE7XMIS3 dom 3H CISIFIEDIION 90% d0M3E a e n w 1 i r w a d a a a e v

  • usstasna - tri*ert*ert uact:stc
  • 43vsns3G *
  • 0
  • 9 6 ' 8 C3 *
  • WtTtod3G
  • 1
  • d3A elddasaM;8'
  • e*t 9*t
  • 4*t * *d3A elddasiN32*
  • ert
  • t*01
  • t*tS
  • 0 93
  • t't4 t*01
  • e rt
  • 0 01
  • t*03
  • 1*tt
  • 8*t9 1* tS
  • t
  • 0 4 ' 0C9
  • 3
  • t*t 8*f
  • 3*$
  • 2*E
  • 9*S
  • f*t* 5*t
  • 8
  • 49
  • t
  • 01
  • 8
  • 49
  • O C E
  • 0 02
  • 0 01
  • 0 09
  • 1*94
  • 0*49 *
  • s 't4
  • t
  • 0 6
  • 4
  • 69
  • 0 01
  • 8
  • 61
  • 0
  • 63
  • 0
  • 61
  • t
  • 06 ' 1
  • 1*f
  • 1* 4
  • 8*9 * *t*f t
  • L ' -e ' l
  • 1C
  • t*g
  • 0,*46 *g **
  • 1*t9 0* 69 1*03 8*49 *
  • 4*49 ** 1*82 0*44 t*01 **8*69 8*69* *1*tt*t*tS*1*t4*1*tf*

1*39

  • t*t9
  • 1*31
  • 1*ts ' t*tt 0*69
  • t*09
  • 0*46 * *
  • 8*t
  • 8** * *!*9 ' -t'9 -t*6 * -t*6
  • t
  • eC ' t'9 9*0 *

.............................................................'t s aA

  • 0*69 '

t 16

  • 1*04
  • 1*t6  !*t1
  • 0*69
  • 8 C* t'84
  • 8*41
  • $ r'itt t1*' 0 6
  • t ' 6$
  • 0 *'t*tt' 690 C9
  • t*ti ' t'*tI
  • t'81
  • 1*tt
  • 1*tt e*69'
  • O'69 t*tt ' 0*4$ 5 2*8
  • 1*6 * *t -t*t 0*f t* 4
  • 9 *

. . . . .' l.... ....'g

  • 3 * ( ' . . .t * * ' . . f
  • 6 * - s ' t * - s
  • t
  • t
  • f..............................................

4'69

  • 1*39
  • 0*61
  • t*89
  • e*66
  • t*tL ' t r *
  • C*69
  • t*01
  • 1*91' t*01
  • 001
  • 1*2(' t *1*tf t 4. ** 8
  • 9 4 " t 0 C2
  • t*00
  • 8*t9
  • 1*t9
  • 1**t
  • 4*eD
  • t*09
  • 9 tC
  • 1 C ~ -t V * -t e * -**t
  • L'88 V * *-t*t *9 C * -s C - t~t -e*6
  • s*t
  • 9C
  • 0 94
  • t*tS 0*61
  • 1*t9
  • 1*16
  • 1*09
  • 1*91
  • t*tt T*81
  • t*09
  • 1*te
  • 1*t9
  • 0 01 1*tS 8*94
  • 8*L1
  • 1*t9
  • O*61
  • t*t9
  • t*ta t*08
  • 8*ot t*tt
  • 0*61
  • 0*66 t 9* 4

.g 4 C * .g*g * .g*g

  • T*t, .** * .1*tS
  • 0*69 g*g
  • t*t, g*
  • 0,*41

..........................................'....'g...........................................................

9*9

  • t*f
  • 0*9
  • at*$ ' *$*f ' -9*6 gat a *g
  • O ef 8* 3
  • 003 t**t
  • t 04 e*66
  • irt 8C9 trt e*64 ' t*st
  • t*tt
  • 0 02 O er
  • 8* 3
  • 009
  • 0*9$
  • O* et 1*tf
  • 1*00
  • 8

.C1 1*tt

  • 0*t9 ' t*tf 8 CO
  • 1*08 t*!t
  • 0*49 8*59
  • 6*96
  • 9 4*0
  • t*6
  • 8*$ * ***t * -9*L * *6*f * -4*f * -0*t -t*( * -t*t
  • 8** t** 4C
  • 6*t *

......................................."9...'..........................................'...... ..............

8*91

  • t*tS
  • 8*61
  • t*!t
  • t*t6
  • t*09 ' t6 ' 0*61 ' t
  • 18 8
  • 91
  • i j

t*41 ' t*tS ' 8*69

  • t*t(
  • t*tt
  • t*00
  • t*69 1
  • 81 ' t
  • tt *0C(
  • 1*tt 1* "010 *C6t ** 01*9 .* t ' tt
  • t
  • t 6 't *1*t6 t s '*00'tt 01 ** 6
  • 9*9 * **8 * !** =**t * -+'t * =4*t * *4*9 * +4*1 ' -D*f * -t*$ * -9*9 t 9*F
  • 4*t 6*4 *

......................'........................................................'....'8*.............. ..'.......

  • 1*81
  • 8*69
  • 1*39
  • 1*t4
  • 0*61
  • 1*09
  • 9 C6 ' t* 89 S CE
  • t*14
  • t*29
  • 8*69 ' 1*81
  • 1*81
  • 0 64
  • 1**t
  • 1*tt
  • 8*94 t*st
  • 9 C (
  • 1*81
  • 80 6
  • t*!t
  • t*t9 - e re ' t*tt
  • 18
  • t*t
  • t*t
  • t*$ * -9*9 -9*t -s*9 a$*4 * -f** * -9*t
  • t*4 -0*g
  • g*t = e9 *
  • e w ' t O L
  • 0 69
  • e*6e
  • t*tL
  • t't6 ' t
  • 01 - t t6 - 1 ti s'se ^ o
  • e rt ' 1'~ 10
  • 8C4
  • S W
  • t ' tt
  • t 13
  • t 03
  • t'*ts t
  • tt
  • 0
  • se
  • e er' *69 t*
  • 1* 0 4 e rt tt

. Ie. 2 . 13. 38 .e .s z 9.6 1.1 . .t.9 . 0.1 - te. ,tt*ew C 4v

............e............................................................................. ..

- 8W

  • t 42 e
  • 69
  • t
  • 39
  • t
  • ts
  • 1 21 t
  • te
  • t* t9 e*69 - t'ot
  • e c9
  • e'L6
  • t*09 - 0*69
  • 1*ts
  • t*t6
  • 1*tt
  • t*t6
  • t*t9 -' 8'6e
  • t*ot
  • 4*eS
  • 13
  • **s
  • t**
  • t C * .t*s
  • 0*s
  • 8C t**
  • t**
  • t*6 ' t*6
  • sr >
  • 0* 49
  • 1* 84
  • 0
  • 69
  • O W 0
  • 63 0*69
  • t*SL
  • 0*49

\ ert t*ts

  • te9 ee9 eve eC6 8 CE - ' t r t
  • 1 12 ert
  • 11
  • 4*t
  • 10*t
  • 10**
  • t**
  • s** * ***
  • 4C - s3- sr
  • e rt
  • t
  • s t
  • ts
  • s sI
  • t tO
  • t 81
  • e rt *

,y, .1.g,t t*e6 " t e 19 l

10*t

  • ts o * . t 6t*

ra . e6.g es. t ,teg. 4*s ' 44

  • 81YNOTsc
  • 0*94
  • 0'tI
  • 0*94 * ' rpaTca -
  • 03AtT1tQM *SW *6*62*001* C36 0 tid 333N33* tf
  • st*649 * ' t9r
  • ttC es e 9v
  • l ................ ...................... ................

SOWWvdA WVd NO: N2 G OY132 9/11/92 dom 34: 50%

3011501* doc 4OSIIICtSI J-D)1( a I*699 0d181 l

l 1

O EWc' '11 %95 S13dS J-OHIN( a I'b69 NM 0*699 l N3 0*669 SM I*001 l S3 I*OIS i J)2( a I*259 JIXA( m I 999 l V*0 m 9*9S)%(

93dNnd m 95 WMOW10 1

1 l

l 4

C9 l .

lIDnH3 4'E NOHIH YNNV t' 3A373 3 YSS3WHTIMIS3 DOM 3H CIS.!HIEDIION l 96% dom 3H e , = u. , w e u e 4 e a e ,

maatasa

  • ew ert ew - - usatatac '

wavsisne *

  • ert
  • e*es ora * - warsnaac - t

-ssA ot44eseza*

  • e*t - e* *
  • ssA ot44aeaMos-e re
  • t ot
  • t*tt o e*
  • t*tt
  • t ot
  • s re *
  • ert

- tv *t ot t*t*-t t*t ts *eratt-t t9+t.

  • t os gc '.e,w c.*

ot

  • e st ert e*es t
  • et e es *
  • ew s es tre t e9
  • ees s'es *s'se
  • o sa e sa e w
  • t'ee e.s . ee' y . y e . pr . e.g . g.g . e,ee t
  • se' ts* .g.-
  • ocs t ot ass irt* 1 ts
  • tro t ts
  • irt s'ss t ot ees *
  • era t'es
  • e w
  • trt ' t ts a ,
  • tt* ee* e r * =1 c * >*t t ts
  • t ts trt
  • ewe4.
  • V*t ~ > *t * .g.g .
  • t ot sr > . e,ra .g - -

t t4 ' t*ts ' 1* e4

  • 1 ts
  • t*t4 ~ e* ee
  • ees
  • t~e+ e re
  • e ro = t ee e ss
  • e ee ' t tt
  • t*tt *-er t e*
  • e st
  • e r+
  • t ot* -,tEt
  • t*tt ew
  • ses
  • t*es ' ew
  • s ert tt*' b*t -t'e * -t* a
  • tr
  • s t C
  • te d*t
  • er
  • sC
  • s.g .

1*et e es ' t rt ' t*t4 ' e w s'ee e se

  • s'ee
  • ew
  • 1 14 ' trt ees ot t er t*t ew trt t*t * -t c * -t P t*tt
  • o es ' teot
  • s'ot
  • t ot
  • a,st
  • t te ' ter
  • er4 > t'se

-s*s - C

  • e r * -er * - v .* -r r -e e
  • s't - t,- c.

- e tt e st t te

  • 1*te t'ee
  • 1*et 1rt t ot
  • t'ee
  • t*ts t*te
  • e'st
  • 1*tt
  • ere
  • ere
  • s'ts ' e'ss
  • t*ts
  • t ts
  • t'es ' e es ees t- tre e es 1* ee ' 1 13
  • t re
  • e'se ' 1*te ert A
  • oe t v
  • e r
  • p r
  • s t * -+ e * -+ r * -+ s * * *A * .ar -s e e's - te- +e- se*

e st

  • t se t e4
  • e os
  • trt o os
  • irt
  • o os
  • t*e4
  • tre e ot ew > o et -

o ewoto* oeee* ' e ss

  • t'te
  • s'es
  • e ss
  • 1*tt
  • e'se
  • 1 ts ' e s1 tre
  • trt
  • eve
  • ew
  • e**o - e et tv * -t e * -tV * -4 t -4*t * *4*e * -+ er
  • s't
  • 4*t er -

.......'............................'..................'t*-4*t*-4v*-+'t* ....................................................

  • ere ' lrt o ot t*ts
  • t*ts t*se t*et t*ts
  • t*te ees
  • irt
  • ere
  • era t*tt e se t tt t ts
  • t ot
  • o es trt
  • t'et
  • t*es" t*tt t te
  • s's*
  • tre ew '

tr*

  • s'++
  • t se - s

\

+e* t v * -tv - s r * -4V * -+ er ' -4v * -4v

  • e sc . 4c . sr -

..................................'e*=+r..............g....................'t

  • e.t
  • t*et o os
  • irt t 14 ew
  • t se es ' t oc e s*
  • t*t4
  • trt
  • o os t ot >

t e4

  • s'at
  • t t4
  • t ti
  • e ve
  • t*es
  • s'ot te

- sr

  • p s * -s e -s e -e r * -* t * -s e
  • s o o-t ot .*-eo reo * -e
  • tr ts* pirtr ** et sA t
  • s*s t tt -*

era tw

  • s'es
  • e se
  • t*t4
  • t ts
  • t'e4 t'ts ' t*t4
  • s ere
  • t* es
  • s'++
  • e * **
  • t*ts t
  • tt
  • t'et
  • t* ts s'ee o rt ts- tv
  • e s
  • b t * -e * -+ e **e * .t*e .1 11 ew'eo
  • t.e . .e r - te .* t,*ti er-osew4e-
  • t- w tt

.... . .........................'t...........................................................

  • e es t'ot o os t*ts es t ot
  • e w *
  • ert t'ot
  • e st trt *t te trat rtes e t 'r etrt
  • l 'r ttw* s's4
  • t tt
  • o es
  • ta t*t
  • e r * >* t * .s't
  • te* s'e
  • tv
  • t'e
  • 1- s' e
  • st* s *

... .......................................................................'t ...

e*61 as t'ot ees*

  • s'ta ' t*et
  • e*se ' o ++4s
  • t*e9
  • s'ss es'ot st e rt
  • t ts o et
  • tt
  • s' t* t -8 t te- t4- ee'4 64 ** e*.9 sn " et' t * *o s't l

ere

  • 1*et
  • t*ti o eo
  • t*tt t 01 era -

e 4s

  • t e st ' 1 14 ' 1 04 4s 1+
  • ts' t
  • tt'ts *t-* t*ti oe- e*t - s's a tr
  • e,' e *'
  • savmeso - e 9e s'et ' e*te *
  • rasevsa -
  • era *os w t ot44aeaN32*

o.sAtr,aton

  • 43 tt*e te t
  • s,er *r - e ,* -

ts l

SOWWt51 WVd NC3 H2 9 OV131 9/I4/92 doH3ds 96%

l 1

l 30m d01 d0C d0SIIIOHS 4-031( a I*6fS Ddida o EV4M VJ I65 S13dS J-OH)NI z I 506 4m 0*694 l N3 C*666

..........g..........

J)2(  : I*226 SM 0 66S l 53 I 019 -

JIXA( I*429 l GOdNOd m 91 WMCW1n Y'O 4'00)%(

1 l

1 l

I l

\

l EL

FIGURE 7.6

[ NORTH ANNA 2, CYCLE 2 ASSEMBLYWISE POWER DISTRIBUTION 86% POWER R p u R L E J N O P t 0 C e A

. WWE9137tB . . 0.64 . 0.86 0.64 . . PWISI:Tts .

. MEAaSte . . 0.78.0.64.8.71. . PtA0VRt3 . 1

. PCT 01FF53848. . 8.4 . S.9 . 6.9 . . PCT O!PFlatNtt.

. 0.69 . 1.00 . 1.11 . 0.46 . 1.11 . 1.89 . 0.69 .

. 8.?t . 1.01 . 1.13 . 0.44 . 1.16 . 1.83 . 0.75 . t

. 6.6 9.9 19 1.9 3.0 . 3.6 . 4.5 .-

. 0.74 . 1.86 S.96 . 6.93 . 0.96 0.93 . 0.95 . 1.06 . t.76 .

. 9.74 . 1.47 . 0.94 . 0.98 . 0.93 . 8.93 . 0.96 . 1.07 . 8.74 . 3

. 4.4 . 8.7 . 8.9 . *1.2 . *1.6 . -4.6 . 1.2 . 8.7 . 5.6 .

. . 0.76 . 1.49 . 9. 96 . 1.It . 1.17 , 1.2 9 . 1.17 . 1.21 . 0. 99 1.00 0.76 .

. 8.76 . 1.88 . 8.96 . 1.81 1.14 . 1.17 . 1.13 . 1.11 0.96 . 1.82 . 8.77 . 6

. I.6 . 1. 3 . 1.6 . *1.8 . .t.3 . .t.6 . .t.4 . .t.4 . 1.3 . 2.3 6.5 .

. 8.69 . 1.66 . 0.99 . 0.99 . 1.17 . 1.19 . 1.87 . 1.19 . 1.17 . 0.99 0.95 1.06 8.69

. 0.79 . 1.88 . 0.99 . 8.99 . 1.18 . 1.13 . 1.83 . 1.16 . 1.18 . 8.94 . 0.95 . 1.04 . 0.76 5

. 8.7 . 0. 7 . 4. 3 . s . 4 . 1.4 . 6. 6 . 6. 6 . 3. 7 . .t . 2 . -1. 2 . 0.6 3.9 . 6.5 .

............................................................................................ ' ~

. 1.80 . 9.96 . 1.22 . 1.17 . 0.99 1.10 . 1.40 1.18 . 8.99 1.17 . 1.22 3.95 . 1.00

. 1.49 . 0.99 . 1.88 . 1.16 . 0.96 . 1.06 . 0.99 . 1.84 0.96 . 1.16 . 1.22 0.97 . 1.05 . 6

. 4.6 . 4.6 0.1 . 4.9 **.8 . =8.5 . 5.5 .S.3 . 6.3 . 1.3 . 0.0 . 2.7 . 5.3 .

0.66 . 1.11 . 0.93 . 1.17 . 1.19 . 1.18 . 1.03 . 1.23 . 1.83 . 1.19 1.19 . 1.17 0.93 . 1.11 . 0.64 .

. a.72 . 1.11 . 0.98 . 1.16 .1.12 . 1.9 3 . 0. 97 , 1.16 . 8.97 . 1.48 . 1.13 1.14 . 3. 4 . 1.13 , 0.71 . 7 5.6 . 0.7 . 1.5 -1.8 6.0 . -6.6 . . l . 6 . 5. 7 .. -6. 2 . -6. 9 . S . 0 8. 7 , 2.9 6.3 . 5.0 4.46 0.46 . 0.96 1.30 . 1.07 . 1.98 . 1.33 . 8.9e . 1.23 . 1.00 , 1.07 , 1.23 8.96 . 0.46 0.46 .

4.44 . 0.87 . 0.98 . 1.13 . 1.01 . 0.96 . 1 13 . 0.91 . 1.16 1 0.93 . 1.81 . 1.41 . 0.97 . 0.98 . 0.94 4 6.5 . +7.2 . -F.3 . -S.7 4. 9 , 3.8 . 6.1 7. 3 ,

8.7 . 4.7 . 1.4 . .I.9 . 6.2 . -6.6 . -6.6 0.64 . 1.11 . 0.91 , 1.17 . 1.19 . 1.18 . 1.43 . 1.23 . 1.03 . 1.18 . 1.19 . 1.17 . e . 9 3 . 1.11 . s.64

. 9.71 . 1.12 . 0.94 . 1.11 . 1.11 . 1.83 . 0.97 . 1.13 . 6.95 . 1.81 . 1.12 . 1.18 6.97 1.16 , 0.76 , 9 5.6 . 1.9 . 3.5 . =l.6 . 6. 3 . 6.8 -6.0 . -6.4 *7.5 . =7.6 .$.4 . 0.7 . 3.4 , 7.8 0.6 .

. 1. 00 . 0. 99 . 1. It . 1.17 . 0. 99 . 1.10 , 1.84 . 1.10 0.99 . 1.17 . 1.21 . 0.99 . 1.80 .

. 1.85 . 0.91 . 1.1? . 1.13 . 8.96 . 1.83 . 0.96 . 1.86 . 9.93 . 1.13 . 1.21 . 8.98 . 1.09 le 5.3 . 3.3 . 6.0 3.9 =* . 4 . 6.1 . -6. 6 .S . 6 . 5.e . . I . 7 , 1. 8 . 3.1 . 9.2 .

0.69 1.86 . 0.99 . 8.99 . 1.17 . 1.19 . 1.87 . 1.19 . 1.17 . 0.99 . 0.95 . 1.06 0.69

. 0.64 . 1.08 . 0.96 . 0.97 . 1.13 . 1.11 1.01 1.13 . 1.16 . t. 97 . 0.94 . 1.89 0.75 . 11

. =1.6 . 1.6 . .L.6 -1.3 . 3.6 . 6.4 -6.6 1.1 . .I.1 . .t.2 . 3.3 6.4 7.7

. t.76 . 1.89 . 8.99 . 1.11 . 1.17 , 1.20 1.17 . 1.21 0.95 . 1.08 . 0.76

. 8.73 . 0.99 . 8.96 . 1.21 . 1.21 . 1.24 . 1.It . 1.25 . 0.97 . 1.04 . 4.00 . 12

. -1.6 . +1.6 . 1.6 . *1.3 3.6 . 1.6 2.3 1.4 1.4 4.8 . 7. 9 .

. 0.76 1.06 . 9.99 . 0.93 . 8.96 . 8.*3 . 0.95 1.06 . 8.76

. 9.73 . 1.88 . 0.94 . 0.96 . 8.94 . 0.94 . 1.01 . 1.11 , 8.89 13

. 1.6 . *1.6 . 3.6 . 3.6 , 6.8 . 5.3 . 6.3 . 6.7 . 7.9 0.69 . 1.ft . 1.11 . 8.66 1.11 . 1.00 . 9.69

. e.78 . 1.13 . 1.19 . e.92 . 1.16 . 1.C6 . 0.76 . 14

. 12.4 . 12.0 . 7.4 . 71. 5.6 . 6. 3 . 6. 7 .

87&4 &80 . 0.64 . 0.86 , 0.44 . . avstact

. OfvtA770M . 0.76 . 0.91 . 4.71 . . PCT O!PFlet*t.. 13

. et.594 . . 13.1 . 9.2 . 6.s . a 6.o .

SUMMARY

m P Not H2 9 DATE: 6/19/82 PCHER: 86%

CCNTRCt. RCD POSITIC'4St F-QtTl s 1.046 CPTR:

D BANK AT 205 STEPS F-DH(til a 1.469 N14 0.990 l HE 1.00

..........l..........

F(Z) a 1.220 $;4 0.993 l SE 1.015 F(XY) = 1.631 BU'iHUP : 134 MWO/t1TU A.0 s 6.59tXI i

l J

38

JIDDH3 4*L

! NOHIH YNNY E' 31373 3 l YSS3WE7XMIS3 DOM 3H CISIHIEnIION HJd* 35nITIEHInM X3NON 8 d I! W i M P N 9 d 3 0 3 e Y

  • U302343C * ' S'99
  • 8*99
  • 8 99
  • ds3 1341C d3vE.ra3C
  • 8*42 8'96
  • 8'*41 '
  • d3f 4elC
  • t
    • d34 O!dd343N33' *
  • s 5*f t v t G!ddis3H 3*

. . . .. .. ...................'t .. ...... ....'t.. .............

  • 8*96
  • 0*66
  • t*!!
  • S'99
  • 1*ff 8*46 ' s'96 0*48
  • 1*01
  • t*tt
  • 8*64 " t
  • t t
  • t
  • 02
  • e
  • 41 ' 3 3*t
  • t*(
  • t t'e ' *** * ***
  • t*3

..........................'e '............. .....................

t*et

  • 8*69 69
  • 0*et 8*6+
  • 01
  • 8*41 *
  • 0*4E't*0$*0*65

0*4$

  • 0*61 8 8'61 0* ' 0'6I
  • 8*6+ " 1*t'35 ' 4*49 1 1** 1*f
  • t*t e'*963' .t's * -t's
  • 8*t ' t*S - v*3 j
  • 8*45 ' 8 66
  • 0*69
  • 1'22
  • t* t4
  • t*ts " t*14 ' 1*32 0 6*
  • 66 dE

' e*49

  • t'04 ' O
  • 65
  • t'ti f*tS
  • 1*t4
  • 1*t* t*tS 0*65 ' s'81 t' g .' s'49e* '
  • t*8
  • 6*9
  • e*g - .g*g .t*g * . tag * .g*g " .t*g + g4* te g, 96
  • 1*9E
  • O'6+
  • 0*66
  • t*t4
  • 1*t6 1*04
  • t*16 t*t4* t*66 O* 69 t'81* e*96
  • ' 8'96 t'
  • t'81
  • 8*69 0*49
  • t'!s
  • t*te ' t*01
  • t*tS ' t*1$
  • 8'68 '* 0*6$
  • t'04
  • O*41 '

5

-t** * -e l * -t*6 .t*1 16' -t -t*$ * *t*0 -t

  • f * -t*$ 0~$ 1*( $5

. . . . . . . . . . . ' . . . . ..................'9.

t't4

  • 1*!! 9*6* " 0*46
  • e*64 t*04 ' O*6$ " t*31 ' t*1$ O*64 ' t'85 ' 1*30

' 8*69

  • 1*22
  • t*t4
  • T*81
  • t*t9 ' O'69 ' t
  • 1t O 09 ** t e*69
  • 01 t
  • t9 t*22 O'69 t
  • 01 9 0**
  • 8** * *0*6 * *t t ' -t*f =**t * ***S ' -t*6 * ***f * -0*6 * -0*t 1*t ' tg*
  • 0*90 ' t*tt
  • 0*61 t'14
  • t*t6
  • 1*tS t*t6 ' 1*14 ' 8*6E
  • 1 11 ' 0*99 0*41
  • t*tt e*et t*t*
  • t*tt
  • t*0$
  • 0*66 t*01'* t*t4 t*tt ** 18*694$ *t*09 t*t8* ' t't9 t*14 ' 0*65
  • t*15 ' 0,*41 g- '

4

  • t**
  • 8*( - t
  • t *
  • 3
  • 4 * -*
  • t * =e -

=**4 * -f*1 "* *E*9 * ** t 8*5 t*(

  • C*$

..............".........................'4* -*'9. . . . . . . . . . ' . . . . . . . . . . . . . . . .t't8 . . . . . . . . . ' . . . . . . . . . ............."......

0*9#

  • 0 04 ' 0*64 ' t* 38
  • 1*04 ' 1* 84 ' t*2( 0*69
  • s'te ' O'99
  • 0 't4 ' 0
  • 96 " s t*t9 8'64
  • f!'tS

' 8*62 *tt *" 1*08 0*6+ '

  • t*

t*3304 ' t*20 - 0*64

  • 0*61
  • 0*t6 ' 6
  • t'ot**
  • t*t4

=t's ** t'02

-**9

  • 0*6$ -f** * **** * -**$ 3*$ S

. . . .*.. 0 4 *................'8 '. 5*6....

  • t**
  • 4*(

. . . . . . . . . . . . . ' . . . . . . . . . . . . . . ...... . . . .............. ' . .=s I * "..S*f

. . . . . . . ....... -$*S ...

0*et

  • t*t4 ' t*16
  • t*tS 1*O(
  • 1*t1
  • t'01 1*t8
  • 1*t6 t*14 ' 0*61 " t*tt
  • 8*99

' 8'99 8

  • 41** 1*tt t '13 0*62 t t'tt
  • 1 4$ ' O'69
  • t*t9 ' 0*69
  • t t*tt "' t'10 ' 0 * ** " t
  • f A ' 0*41 ' e 6't
  • t ' *t*t -t" t e * -9'*l9 *( '-**6
  • 06* t't ' $*4
  • 9*6 *

.. . ....'*..............'9'.*.*..t'..S*t**S**"..$***-9*6............'.............

O'66 8*69 t*08

  • t*te t'91
  • t*t4
  • t*32
  • 0*6+
  • 0*66
  • t'01 '^ 0*e9
  • 1
  • 32
  • t
  • 14
  • 1
  • 01 ' t ' 2 9t't8* 1*39 " 8*69* 0
  • 66
  • t*t9 - t*tt s'e9
  • t,'09 .g>*

18

  • 1*3 t*2 ' 1*32 e*3 *' 1*t9 t*6 *
  • 8'64

-t*3 ' -**t ' -t*6 * -t t*g . gg t.g

.....................................................'S*-t*6'.*...........................

  • 8*96
  • 1*01
  • 8*6+
  • 8*66 ' t'1 t*t4
  • 8*66 6*
  • t*et
  • 8'96 *
  • s'40 t*09 - 8
  • 65
  • 8
  • 6 8'9* *t *.1*t9 4 **t t*01* 16** t*tS t
  • 0 4t*t4 6 ' '* s'64 " t'04
  • O*4C
  • t ** t4*64 ' 11 t t** e*1 * -8*6 *t t -t*6 * -t*9 * =t -0*( -0
  • 8'l' t
  • t*$ ' $*g -

.. .'l ......................'......'...................'9.........'....'l .. ...... .......

O'41

  • 0
  • 41 ' 8
  • 6e
  • 8
  • 6* " t
  • 42 ~ 1*t4
  • t*88
  • t*14
  • 1*32
  • 8 69
  • 0*4+ ' 0*66
  • 8*6+ ' 1
  • 31
  • 1 14
  • 1 16
  • t
  • t S " t
  • 2+ O'69 0*66 ' O*40 '

' ti t,*0+

+4 . g*g

  • t*2 * -0*6
  • 0*6 * *0'6 * =e*t * *6*1
  • 8*4
  • 1*4 t

.. ....................................................'9'* O'6t 1

8*4t

  • 1*at
  • e'ot " 8* 4t - 0*69
  • e*60 is 1

I

  • 0*49
  • t*tS t'se
  • 8*6s
  • 0 64
  • 0 64
  • s*66 t*0t t 06 *
  • 0'49 e* ' tt 9*t
  • et* 9*1
  • 3*t
  • t*t * **t i*1 ie 9 1 *

...........'................................................9 ..

l s 94

  • s*66
  • t tI
  • 8'ts
  • t tt
  • o *66
  • 8 *96
  • 19 1
    • o9*t*

' 41 t *4*4 0 4 *t *s6* t s ' s*ts ' 61*

  • 1**t* t *9 *t0* t a* s.
  • s ' 4,E -.
  • savu:vaC *899*899
  • 0*99
  • vraavnI -

33A!vaiM

  • 8*4$
  • 0*60
  • 8*41
  • v a 0!dd3NIN33* ts
  • et*tet
  • s't - 40* *** * = t0 SGWWVHA Wvd hot N2-2-10 OV131 9/21/92 dom 3d: 100%

i I 3OH1 dol

  • d00 dOGIIIONG3 d-081( I*162 ediM:

1 G G W VI 22G S13dE d-GNIN( a I'b06 NM 0*696 l H3 0*666

..........l..........

412( a I*I61 SH D*666 l 53 I*OIE J)XA( = I'90S j QndNnd m 251 WMOW10 V

  • 0 :r S*26)%(

i l

l 4

1 1 E6

t t

I l

Section 8  ;

1 REFERENCES

1. A. Abbasi, R. T. Robins, " North Anna Unit 2, Cycle 2, Design Report,"

NTE Technical Report No. 227. Vapco, April, 1982.

2. North Anna Unit 2 Technical Specifications.
3. T. K. Ross, W. C. Beck, " Control Rod Reactivity Worth Determination By The Rod Sway Technique," VEp-TRD-36A, May 1980.
4. " Technical Manual for Westinghouse Solid State Reactivity Computer,"

Westinghouse Electric Corporation.

5. W. Leggett and L. Eisenhart, "The INCORE Code," WCAP-7149, December, 1967 l

1 l

I l

l l

l l

l 40 l ,

i

)

i i

APPENDIX STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEETS l

e l

r 4

84 1

l 2-PT-94 l Attachnent 6.11, Page 23 of 37 i

. 05-11-82 NORTH ANNA , POWER STATION UNIT.2 CTCLE 2 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I l Test Descriptions- Reactivity Computer Checkout - Rod Worth l Roference l Proc Mo /Section 2-PT-94/ APP.5 Sequence Step No: 6 9

IT l ~ 3ank Positions ( S t e p s') l RCS Temperature ('T)r 547 Test 1 I Power Level (% T.P.): 0 -

Conditions l SDA: 228 S D B.: 228 CA: 228 i Other (specify):

(Design) l CB 228 CC: 228 CD:

  • l Belou lluclear Heating l l *At the just crit. position

__ l 1 III I Bank Positions (Steps) l RCS Temperature ('T): i'N L #

Test l l Power Level (% T.P.): 00 Conditionsi SD A: 228 SDB : 21% CA: ZL1 1 Other (Specify): Be /w A4deuAN (Actual) I CB: 22t CC:2// CD: F3

  • I l I l Date/ Tim Test Performed: I b-7-77. / // 3'$ - / 257 1 Measured parameter I fe. = Maas. Re activity using f -computer IV I (Description) I f, = Inferred React from react period i l l cs l l j . 3 0p- v z. - z.9 - 42.o l Measured Value l f4 = 3o # / *= U F C' -29.7 d 3. o .

Test i I MD = - /. 9. e.s >r. oA -z. M - T.3F.

Results  ! I I Design value i I (Actual Conditions) l %D = l (fc - fe ) /f# 1 x 100% $ 4.0%

I l l Design Value  !

l (Design Conditions) I XD =

l ( ft .-fe ) / f e- l x 100% $ 4.0%

i I l l 1 Reference l WCAP 7905, Rev. 1, Table 3.6 l l l l 1 I l

V l TSAR / Tech Spec l Not Applicable l Acceptancel 1 -

l Criteria l i I Reference l Mot Applicable l l 1

l Design Tolerance is met N ESY No l VI I Acceptance Criteria is met i 1 YES No l Comments l I

I Allowable Rang's S #2pe.m l

Complated By: Evaluated By: -

/' Test Engineer Recommended for Approval By : r. .

MT0 Engineer A.1 l

2-FI-94 l

Attachnent 6.11' Page 4.of 37 I 05-11-82 l

HORTH ANNA folJER STATIOX UNIT 2 CYCLE 2 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I l Test

Description:

Critical Boron Concentration - ARO Reference l Proc Mo /Section: 2-PT-94/ APP.C Saquence Step No: 7' II l ~ Bank Positions (Steps') l RCS Temperature ('T): 547 Test I l Power.Laval (% T.P.): 0 Conditions! SDA: 228 SDB: 228 CA: 228 l Other (specify):

(Design) l CB 228 CC: 228 CD 228 l Below Nuclear Heating I l III I Bank Positions (Steps) l RCS Temperature ('T)? S M 3 Test l l Power Level (% T.P.): O Conditions! SD A: 227 5p3: 11 7 CA 119 l Other (Specify):

(Actual) I CB 229 '

CC 227 CD 217 l Below A4.c/w #taHg I I I Data / Time Tast.Parformed: *I

', (o-2-72 /WO 1 Maas, Parameter I n l IV l (Description) I (C3 )j,, ; Critical Boron Cone - ARC l l I I g i

i Measured Value I (Cg )j,, = 13 7 4 ppm .

Test 1 l Results l l l Design Valus l I (Actual Cond) l C 3= l3M f Torrm I l i Design Value l' '

l (Design Cond) I. Ca= 1369 2 50 ppm l l l Reference l VEP-FRD-Hrt-227, April, 1982 I l I . I i ,

V i F5AR/ Tech Spec l"Cg x Cg i 24,000 pcm Acceptancel I r

Criteria l Reference l T5AR Section 15.2.4

. l

, 1 Design Tolerance is met / YES N0 '

l '

l Acceptance criteria is met  : # YES Ho l

I i VI lg l

Comments l C3 = -8.93 pcm/ ppm for preliminary analysis 1

I Mcg = - 8.16 pcm//P* Ar A=l *** W s i_ _

Completed By*, - Evaluated By: 8I est Engineer Recommended for C-g Approval By : -

MT0 Engineer A.2

. . 2-FI-94 '

. ' Att=A = nt 6.11 Tage 5.of 37 i 05-11-82 MORTH AHMA , POWER STATION UNIT 2 CYCLE 2 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I l Test

Description:

Isothermal Temperature Coefficient - ARO Reference l Proc Ho /Section: 2-PT-9 84 / A P P . D Sequence Step Ho: 8 II l Bank positions (Steps) l RCS Temperature ('T): 547 Test l_. I Power Level (% T.P.): 0 ,

Conditional SDA: 228 SDB: 228 CA: 228 I Other (specify):

(Design) l CB 228 CC: 228 CD: 228 l Belou Muelear Heating I I III I Bank Positions (Steps) l RCS Temperature ('T): 64 ~h 't Test I l Power Level (% T.P.): O Conditions l SDA: 7-M S D B : 2.2. r CA: 2,2 Y l Other (Specify):

(Actual) I C B :2.2 W CC : 2.2.8' CD : 2,2-Y I Belou Huclear Heating i I 1 Date/ Time Test Performed: I h ' 2. - /I6 l l l Mens Parameter i .r re IV i (Description) 1 (" r )jg, Iso Temp Coeff - ARO I I I I r.r.

I Test i Measured Value 1 (dr )jg , = -2.2 h p(C6 'f 5 I Results l l I Design value I fs, I (Actual Cond) I ( ' 7- 3pa = --j, / .3 2 3.0 8 (C g =l3 D )

I i y,.

I Design Value, I ( 4 7- )jggy = - 3.27 2 3.0 pcm/*T .

~

1 (Design cond) I (C6 = 1369 ppm) l I l Reference l VEP-TRD-HTE-227, April, 1982 ,

I t I I r.to p 7 = -2.17 pcm/'T V l TSAR / Tech Spec I mL 7

5-2.17 pcm/*T e4 l i l

Acceptancel Criteria l I l l Reference i TS 3.1.1.4, VIP-TRD-HTE 227 1 1 I

i i Design Tolerance is met  : /YES N0 VI I Acceptance Criteria is met t/ YES MO f

l Comments l I '

1

! I

~ ^

Completed By: . M Evaluated By: -

Test Ens /ineer Recommended for

' ' Approval By  : C-

  • HTO Engineer A.3

2-FI-94 Atfachnent 6.11 Page 8 of 37

. 05-11-82 NORTH AHMA. POWER STATICH UNIT 2 CYCLE 2 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I I Test.Desc 1ption: C=itical Bo:on Concentration - B 3ank In Reference l Proc Ho /Section: 2-PT-94/ APP.C Sequence Step No: //

II l Bank Positions (Steps) l RCS Temperature ('T): 547 Test l l Poue: Level (% T.P.): 0 Conditionsi SDA: 228 SDB: 228 CA: 228 I Other (specify):

(Design) 1 C3: 0 CC: 228 CD: 228 i Belou Nuclea: Heating I I Bank Positions (Steps) l RCS Temperature ('T) SYd '

l III I I Poue: Level (% T.P.) O Test  !

Conditionsl SDA: 228 SDE: 226 C A t %% 8 I Othe: (Specify)'

(Actual) l C3: O C C : 2 7. 6' CD: 226 l 8,/ow /N c /,3, #c an'/e9 I I I Data / Time Test Pe: formed: 1 I I

_ 6 92 09/8 l I Maas Paramete I g IV l (Description) l (C3)g ; Critical Boron Cone - 3 Banh In i I I I n l I Measured Value I (C3)g = / Z M ppm Test l l Results i I i Design Value i I (Actual Cond) li Cd* [ 23 3 f 2' S I? '

I l Design Value ,1 av 1 (Design Cond) ,1 Cd = 1228 + ACg 2 (10 + 130.2/I" QI) ppm 1 l I Refe:e'nce i VEP-TRD-HTE-227, Ap:il, 1982 l I l

?

, I .

i V I TSAR / Tech Spec l " C'S x C3 $ 24,000 pcm l

Acceptancel I l Criteria l Reference i TSAR Section 15.2.4 I I 1 Design Tolerance is met  : ' YES No l Acceptance C:iteria is met  : V YES No l

I VI I comments I " Cg = -3.93 pcm/ ppm for preliminary analysis ^

I /Aty M 1 ACg = (Cg )p - 1369 ,

, l *C Sz - 6. 96 pcm/ ppm 6 Sal analy:s l

Completed By: -

Evaluated By: N

/est"Ingineer Recommended for s Approval By : C.

NTO Enginte:

A.4

2-FI-94 Attedunnt 6.11 Page 10 of 37 05-11-82 MORTH ANNA POWER STATION UNIT 2 CYCLE 2 STARTUP PHYSICS TEST RESULTS AMD EVALUATION SHEET I I Test Description Cnti Bank D Worth Measurement-Rod Swap Reference l Proc Mo /Section: 2-PT-94/ APP.G Sequence Step Mo:/3 II I Bank Positions ( S t e p s') i RCS Temperature ('T): 547 Test  ! I Pouer Level (Z T.P.): 0 Conditions! SDA: 228 SDB: 228 CA: 228 l Othe: (specify):

(Design) I C3 Moving CC: 228 CD:Movingl Belou Huclear Heating 1 I I III I Bank Positions (Steps) l RCS Temperature ('T): 54G.5 Test l l Power Level (% T.P.): 's o -

Conditiens! SDA: 236 SDE: 325 CA: 22% 1 Other (Specify):

(Actual) I CB:Mayw$ CC: 226 CD :/4 min $ l Belou Huclear Heating i I l Date/ Time Test Perfo:med: 1

$f S{$3 [IlG _

l Meas Parameter l gf I (Description) l I,  ; Int Worth of Cnti Bank D-Rod Swap I i IV  ! I gf (Ad3. Maas. C=it. Red Bank Test 1 Measured Value i I, = lO IS ' pcm Position = 19 5 steps)

Results I l l (Adj. Maas. Crit. Red Bank I Design Value I gf I(Actual Cond) l I, = 1008 .t.15fdesition = l'f I ste p s )

i I I l y I Design Value i I = 1012 : 152 pcm (Critical Ret Bank

  1. Position = 195 steps) l(Design Cond) 'l l l l I l

! I Reference l VEP-TRD-MTE-227, VIP-TRD-36A, MTO-TI-2.2A I I I

1 I If Design Tolerance is exceeded.-SMSOC I

I shall" evaluate impact of test result on

, V l TSAR / Tech Spec l safety analysis. SMSOC may specify that

! Acceptancel I. additional testing be performed.

Criteria l l l Refe:ence  ! VEP-TRD-36A " ~

I I l Design Tolerance.is met  : / YES Mo VI l' Acceptance Criteria is met  : I YES NO l Comments l I .

I I

Completed Sy:

Evaluated,Bys'  !-

ff est Engineer i

Recommended for I.g/M W P l . t4 Approval Sy .

'HTO Engines:

l f

! A.5

, , _ - . . , - - . . , _ , , + -

~ . . .- .. -

_ -e

f ~, .

y

~

2-Pr-94

', Attachment 6. E .~ i l Page H of 37 1

GS-11-82 ',

( . NORTH ANNA POWER, STATION UNIT 2" CYCLE 2 o w STARTUP P:1YSICS TEST RESULTS AND EVALUATION SHEIT I I . Test

Description:

Cnti Bank C Worth Measurement-Rod SUnp Reference i Proc Mo /Section: 2-PT,94/ APP.G Sequence Step Ho:l'f

. 1 II i Bank Positions (Steps) i RCs Temperatured('r): 5%7 1 Test i I Power Level D.'T.P.): ' \g o

l Conditions l SDA: 228 SDB: 228 CA: 228 i Other f,s p e ci f y s ,

4 (Design) l CB: Moving CC:MovingCD: 228 l Below Auclear hu, tin g .,

, 1.

l l I III l Bank Positions (Steps) i SC5 Iarperdture ('T): 546.3 l Test I __

l r e'Ne'r ,'Je vei Ut T.P.): 'O ,

l Conditions l SDA2226 SDBd 228

  • CJ. : d2 0 1 OdNer.(Speci$y): '

f AJls!p (Actual) ( ,,CB /%: $ Cf,6,M.3 C.Zl s 3 28, 5

ucle a] Wq tin;;* 4 l -i ,"g "j -~.

-l Date/ Time Test Performed: I.,(

^

(q j , g ', y,,; 1

' is Cf stea :IJoe l_ ,

l 1 Mens Paramete;:; I y I (Description) l Ic  ; Int Worth of Cnti Bank C-Rod Swap ,

I I IV i I (Adj. Meas. Crit. Red Bank Test I Measured Value i I = ]Qgi Position =jde steps)

Results l_ l I Design Value i y (Adj. Me.as . Crit; Red Bank -

. l(Actual Cond) l Ic a($2,f.icype% Position' = l68 stepd I l

' I - I 1 -

g i Design Value = 6'43 2 102 pcm (Critical Rei Bank l(Design Cond) 'liI' i ,

Positied = 164 steps) l ll

-l 9 .-

l Reference ', 4'VEP-PRD E NTI-227, VIPiTREU6A, NFO-TI-2.21t'

~

) 'I

-l \. l . .J I l If Design Tolerance i's ewetaded, SH50C '

I .

11'shall'Nvaluate impact of tiesi resul.t on, V l TSAR} Tech;5pec I safety anal'ysis. SNgCC may#specify that AcceptanceI ,

I addi~tional testing be p e rfo s.-Ja d .

' "# m '

Criteria l I i Refegrance i VIP-TRD-36A N '.

l l

N ht l VI i~ Design" Tolerance is met I Acceptance Criteria is Inst

  1. YES VYE5 Mo NO

-a

[

l Comments i i ,,'

l -

)- . a_

4 I s <

m.

l q 1 ~].

, .c Completed By
I' valuated By: -

j .[e'stEngineer 1 - QtM i lReco' wended'for _Oj p ,

ApproVdJgBy  : f- (W%) ,p-

! M700Engineerr l

A.6 1

f fsf

- ._ . ...~ _

'~

'* W , .h

2-PT-94

~ '

[

Attachment 6.11.

- Page 12 -of 37 05-11-82

! MORTH ANNA POWER STATION UNIT 2 CYCLE'2 l STAP. TUP PHYSICS TEST RESULTS AND EVALUATION SHEET I l Test

Description:

Cntl Bank A Worth Measurement-Rod Suap Reference l Proc Ho / Sections 2-PT-94/ APP.G Sequence Step Ho: /f f

II I Bank Positions (Steps) l RCS Temperature ('T)' 547 Test 1 -- l Pouer Level (% T.P.): 0 Conditions! SDA: 228 SDB: 228 CA:Movingl Other (specify): ,

f. (Design)<l CB Moving CC: 228 CD: 228 i Below Muclear Heating

( _, _ :- l l

, III I Bank Positions (Steps) l RCS Temperature ('T): $ 4/ 4, /

Test  ! l P ow ee r Level (% T.P.): ~ o l ,Cenditionsi SDA 238 SD3: 236 C A Mew;*3 i Other (Specify):

I Belou Muclear Heating l (Actual? I C3 M.,; ) CC: 132, CD: 322, l I

T I Date/ Tina Test Performed: 1 I I l G/3/02 l'537 i

! Maas Parameter 1 g I (Description) i Ij  ; Int Worth of Cntl Bank A 4 i l IV l l y (Adj. Meas. Crit. Ref Bank Test 1 Measured value i I j = 8/ 2 pm Position = 175 steps)

Results, ! __ l

' l Design Value 1 (Adj. Maas. Crit. Red Bank l

I(Actual Cond) l Ij = 708 1 Ger." P o sition ' = 175 steps )

l I

I I ,f l Design Value .1 I j = 878 2 132 pcm (Critical Red Bank l

l

' l(Design cond) ,1 Position = 184 steps)

~.

I - l l I I I Reference l VIP-TRD-MTE-227. VEP-TRD-36A. -NT0-TI-2.2A

. .I I .

1 I If Design Tolerance is exceeded, SMSOC i I shall evaluate impact-of test result on V - I TSAR / Tech Spec l- safety analysis . SMSOC may specify that Receptancel I additional testing be-performed. -

Criteria I 'l I . Reference l VIP-TRD-36A i l

' '__  : V YES Ho I Design Tolerance is met i .. VI l Acceptance Criteria is met  : e YES N0 l Ccmments l l .

l  !

l Completed By:

~

Evaluated By:

7test Engineer Recommended for .

Approval By I. -

NTO Engineer A.7 '

l

2-FI-94 Attachaent 6.11 l ,

Page 13 of 37 l

' 05-11-82 NORTH ANNA. POWER STATION UNIT 2 CYCLE 2 STARTUP PHYSICS TEST RESULTS AMD EVALUATIOM SHEIT Test Description Shutdown Bank 3 Worth Maas. - Red Susp I I Reference l Proc No /section: 2-PT-94/ APP.G 5equence Step Ho: 16 II I Bank Positions (Steps) l RCS Temperature ('T): 547 Test  ! l Power Level (% T.P.): 0 Conditionsl SDA: 228 SDB: Moving CA: 228 i Other (specify): *

(Design) 1 CB Moving CC: 228 CDs 228 l Belou Huclear Heating i

I l III I Bank Positions (Steps) l RCS Temperature ('T): SV6 V Test l l Power Level (% T.P.): -O Conditionsi SDA: 326 S D 3 8 Mod!"$ CA: 328 I Other (Specify):

CC: 326 CD: M8 1 3elow Muclear Heating (Actual) l CB: N:3 i i

! l Data / Time Test Performed: I l l'iYo (ds/ 82 l l Meas Parameter i y I (Description) l Igg  ; Int Worth of Shutdoun Bank B-Rod Swap I l IV l l y (Adj. Meas. Crit. Red Bank Test i Measured Value l I,, 3

(,6 8/ p Position = IS S steps)

Results l I I Design Value I (Adj. Meas. Crit. Ref Bank l(Actual Cond) 1 I,y, = $8/3 1 loop ** Position a f$$ steps) i l I i y I Design value ,1 I,,

= 535 2 100 pcm (Critical Ref Bank l(Design Cond) 'l Position = 144 steps) l

! l l 1 I I Reference l VEP-TRD-NTE-127, VEP-TRD-36A, MT0-!!-2.2A -

1 I 1 I If Design Tolerance is exceeded, SMSOC i l shall evaluate impact of test result on V l TSAR / Tech Spec l safety analysis. SM50C may specify that Acceptancel I additional testing be performed.

Criteria l I I Reference  ! VEP-TRD-36A f.

I l I Design Tolcrance is met YES / HO I VI I Acceptance Criteria is met /YES HO Comments i

%ta was m A.L. Aep e/.wim u.us 4. TL +st ns tr m

- i .h g .w I N-65 ~. - i. A w . w e. -s e ,. o r. A p4.vz-3f/

I l Completed By: Evaluated By: M

/i'e s t Engineer -

Recommended ior- ff p Approval By : 'C l h

. MTO Ingineer A.8 ,

2-FI-94 .

- . AtCadnenc 6.11. '

Page 14 of 37 j

  • 05-11-82 MORTH AMRA POWER STATIOM'UMIT 2 CYCLE 2 STARTUP PHYSICS TEST RESULT 5 AMD EVALUATION SHEET I I Test

Description:

Shutdown Bank A Worth Maas. - Rod Suay Reference l Proc Mo /Section: 2-PT-94/ APP.G 5equence Step Mo : / 7 II I Bank Positions (Steps) l RCS Temperature ('T): 547 Test l l Pouer Level (% T.P.): 0 Conditionsl SDA: Moving SDB: 228 CA: 223 l Other (specify):

(Design) l CB Moving CC: 228 CD: 228 i Below Muclear Heating l 1 I III I Bank. Positions (Steps) l RCS Temperature ('T): SVd Y l

l Test I l Power Level (% T.P.): '* O CA: 328 l Other (5pecify):

l Conditions! SDA:MovW3 SD3: 226 i Below Muclear Heating (Actual) 1 CB:M ;-) CC: 736 CD: 22g I I I

l l Date/ Time Test Performed: 1 I

I l

C (3/64 i S !! l l Maas Parameter i gy

Int Worth of Shutdoun Bank A-Rod swap 1 (Description) l I,g i I l

(Adj. Maas. Crit. Red Bank IV I Test i Measured Value i I f = TV6 Ace Position =jg3 steps)

Results l l l Design Value I (Adj. Maas. Crit. Ref Ennk steps)

ICActual'Cond) 1 I f = T64 f /VSg.?osition = lgg i I l Design Value I = 961 2 144 pcm (Critical Red Banh l(Design Cond)" l

  1. Position =-191 steps) l I I l I Reference l VEP-TRD-MTE-227, VEP-TRD-36A, MTO-TI-2.2A I I l

I If Design Tolerance is exceeded, SN50C l

1 shall evaluate impact of test result on l V l TSAR / Tech Spec I safety analysis. 5H50C may specify that '

Acceptancel I additional testing be performed.

Criteria l I I Reference i VEP-TED-36A l~ _I f l Design Tolerance is met  : V YES Ho l

l VI I Acceptance Criteria is met b'YES NO Comments l I .

I i  !

Completed By: Evaluated By: { M-l / Test ' Engineer Recommended for '

l Approval.Dy : CII .

) '

MTO Engineer l

A.9

l i

2-Pr-94 )

Actachnent 6.11 l l Page 7 of 37 05-11-82 l .

HORTH AHMA. POWER STATI0H UNIT 2 CYCLE 2 l STARTUP PHYSICS TEST RESULTS AND EV ALU ATICH S!!EET I l Test

Description:

Cntl Bank B Worth Maas. Rod Suap Ref. Bank '

Reference l Proc Ho / sections 2-PT-94/ APP.E Sequence Step Hot /C II i Bank Positions (Steps) i RCS Temperature (*T). 547 Test 1 -_ l Power Level (% T.P.): 0 Conditions! SDA: 228 SDB: 228 CA: 228 l Other (specify):

(Design) l CB Moving CC: 228 CD 228 i Belou Huclear Heating i I

[ III i Bank positions (Steps) l RCS Temperature ('T): SVC i Test l I Power Level (% T.P.): ^o Conditions! SDA2228 SDB: 218 CA 228 l Other (Specify):

(Actual) l CB: 4;g CC:2gg CD:216 i Belou Huclear Heating i I l l Date/ Time Test Performed: l l Cf5/82 1800 l 1 I per i Measured parameter i I 3

Integral Worth of Cnti Bank 3, I (Description) l All Other Rods out IV l l
I l g,,

Measured Value =

.est i l Ig j 2q$ pcm Results i l I Design value I g,,

=

I (Actual Conditions) l I 4 /301 f /$o pcm I l ,

~

1 Design Valu.e I per l (Design Conditions) 1 I, = 1302 : 130 pcm

! I I i Reference l VEP-TRD-HTE-227, April, 1982 <

i 1 I I l ,

1 If Design Tolerance is exceeded, SMSOC 1 i shall evaluate impact of test result j l TSAR / Tech Spec l on safety analysis. SMSOC may specify i V l l that additional testing he performed.

Acceptancel I Criteria l l I Reference l VEP-TP.D-36A I I l

l Design Tolerance is met  : ' YES NO j

VI l Acceptance Criteria is met FYES HO i Comments 1

-l l l Completed By: b N Evaluated By: A b

T'est Eng'ineer

~

l Recommended for

  • Approval By : C. .

HTO Engineer A.10

2-PT-94 At"cht 6.11 Page 16 of 37 l 05-11-82 NORTH ANNA . POWER STATION UNIT 2 CYCLE 2 STARTUP PHYSICS TEST RESUlTS AND EVALUATION SHEET I -l Test

Description:

-Total Rod Worth - Rod Suap Reference l Proc No '/Section: 2-PT-94/ APP.G Sequence Step Ho: /7 II I Bank Positions (Steps) i RC5 Temperature (*T): 547 Test  ! l Power Level (% T.P.): O Conditionsl5DA: Moving SDB Moving CA* Moving! Other (specify):

(Design) 1 CB: Moving CC: Moving CD:Movinyl Belou Nuclear Heating I

I I III l Bank Positions (Stars) i RCS Temperature ('T): SV6.y I Test l l power Level (% T.p.)- mo Conditions! 5 D A : #l :a3 SD5: M ,vig C A : M..;a y l Other (5pecify):

(Actual) l C 3 e m,,;,) CC: Mwta) CDiry;.7 l 3alou Muclear Heating l l Date/ Time Test Performed: l I i l i 6/3/81 lil/, -

I S il i l Maas Parameter I I (Description) l I ,,,; Int Worth of All Banks - Rod Swap

! l IV I I Test i Measured Value i I,,,, = S y j f p,,

l Results l l

' l Design Value l

. l(Actual Cond) l I,,, = 5425 t $43 pcen i I I I '

I Design value ,- l I,,, = 5371 2 537 pcm -

l(Design Cond)  :(

l I 'l i I l Reference l VE;-TRD-NTE-227, VIP-TRD-36A, NTO-TI-2.2A l 1 l l l If Design Tolerance is eF.ceeded, SN50C l

l I shall evaluate impact of test result on

[

l V l T5AR/ Tech Spec ! safety analysis. SN50C may specify that Acceptancel I additi'onal testing be performed.

Criteria l 1 1 Reference .I VEP-TRD-36A I I I Design Tolerance is met  : " YE5 NO VI I Acceptance Criteria is met  : YE5 NO Comments l I .

l l

Completed 3y: h ,

Evaluated By: d j [fest Engineer j

Recommended for f l .

Approval Dy 8 - -

MTO Engineer A.11 l

l

~

l 2-PI-94 Atta ht 6.11 Page 17 of 37 -

05-11-82 MORTH AMMA POWER STATION UNIT 2 CYCLE 2 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHIET

)

I I Test

Description:

HZP Boron Worth Coefficent Measurement Reference l Proc Mo /Section 2-PT-94/ APP.E Sequence Step Mo:/C '

II I Bank Positions (Steps) l RCS Temperature (*T): 547 Test I -- l Pouer Level (% T.P.): O Conditionsi SDA: 228 SDB: 228 CA: 228 l Other (specify):

(Design) l CB Moving CC: 223 CD: 228 i Belou Muclear Heating i i III I Bank Positions (Steps) l RCS Temperature ('T): SYS I

Test l I Power. Level (% T.P.):m o Conditions! SDA: 22 S SDB:228 CA 228 i Other (Specify):

(Actual) i CB: M oving CC :22 # CD: 228 I 4

I Date/ Time Test Performed: I I g/3/e 2 229s  !

I I I Measured Parameter I IV l (Description) l "e s, Boron Worth Coefficant i I I I I Measured Value l "c g =

- 8, V 6 g e m / pp a Test l l Results l l l(Aet 1

a n "'t"*ns) l ~9 . -s.n ro 81 e +

I l Design Value 1 (Design Conditions) l1 "cg = -8.93 2 0.89 pcm / ppm I l

. I Reference i VEP-TRD-NTE-227. April, 1982 l I l

l l

l TSAR / Tech Spec ll "Cg x Cg 5 24,000 .

pcm I V I l__

Acceptancel l '

Criteria l Reference l TSAR Section 15.2.4 l l l

1 Design Tolerance is met YES No VI l Acceptance Criteria is met YES NO l

j Comments l l l l .

l l l

Completed By: Evaluated By:

[ Test Engineer Recommended for .

's Approval By: b- -

A.12 MTO Ingineer

2-PI-94 Attachnent 6.11 Page 6 of 37 05-11-82 l HORTH AHMA POWER STATION UNIT 2 CYCLE 2 STARTUP PHYSICS TEST RESULTS AND-EVALUATION SHEET I I Test Description M/D Tlux Map - HZP, ARO Reference l Proc Ho / Section 2-PT-21.1 Sequence Step Ho: 9 II l' Bank Positions (Steps) l RCS Temperature ('T):T yg 11 Test l l Pouer Level (% T.P.):~ 1 Conditions! SDA: 228 S D B's~228 CA: 228 l Other (specify)

(Design) I CB : 228 CC 228 CD: 228 l Must have 2 38 thimbles l I III l Bank Positions (Steps) l RCS Temperature ('T): f'/ T Test l l Power Level (% T.P.):~g l

Conditionsl SDA: 227 sDB: 22 s CA 2%r l Other (Specify):

(Actual) l CB : 12f CC : 22F CD : 22f l I l l Date/ Time Test -

l Mas YY Yd b S/c5 i Performed: 6,[ 7/ 72 23f/ 4u. I l I I

l l MAX. REL I HUC EHTHALITOTAL HEATI SUADRANT IV l Maas Parameter! ASSY PWR l RISE HOT l TLUX HOT IPOWER TILT l (Description) l  % DITT l CHAM TACT ICHAM TACT l RATIO I I (M-P)/P l T-dHCH) l T-S(T)  ! 9PTR I I I I I I V*AtheP,,}l.06l l l p 4 6/M l J. .rJ R /, oVJ Test Results i Measured Value1 l l g N,yl l I

l l Design Value I *te: ter et * .9 lp" " ' ' '#

I I l

1 hD".2s : un g s j,c3:

1 (DesignConds)Ih!*.'l,,,[(',jlI I I I -

l 'lWCAP-7905 l l IWCAP-7905 l Reference Il REV.1 1 HOME l HOME I REY.1 l l I I I l

l l l 1 I l

i V l TSAR / Tech Specl NOME I HA l HA l HA Acceptancel l l l l Criteria l l l l l l Reference 1 MOME I TS 3.2.3 i TS 3.2.2 l TS 3.2.4 I I I I I ,

I I I I I I

l Design Tolerance is met YES I HO l Acceptance criteria is met a g YES HQ VI I  !

I Comments I *The design value for SPTR is the sum of the 1.01 design I

l I prediction tilt and the 1.02 uncertainty identified in I WCAP-7905.

I s* %;u sL . cas

/w ik k a+ L + r + <a w l+>

'assaa % . t.y r do,s2 .144

- n e . A Lla- 'wMM t

Completed By: . //h Evaluated By: MD i

/ Test.'Eng'ineer .

Recommended for Approval By : C. I J HTO Engineer l

A.13

2-PI-94 Attachmenc 6.11. f Page 37'of 37 j

. 05-11-82 .

NORTH ANNA. POWER STATION UNIT 2 CYCLE 2 l STARTUP' PHYSICS TEST RESULTS AND EVALUATION SHEET I I Test Description *M/D T1ux map-Banks D,C at Insert. Limits Reference l Proc No / Section: 2-PT-21.1 Sequence Step Ho 42 II I Bank Positions (Step's) l RCS Temperature (

  • T ) T gy, 21 Test i I Power Level (% T.P.):~1 Conditional SDA: 228 SDB: 228 CA: 228 I Other (specify)

(Design) l CB : 228 CC : # CDs 4 l Must have 2 38 thimbles l I III I Bank' Positions (Steps) l RCS Temperature ('T): 747 Test l l Power Level (% T.P.): ~4 Conditions! SDA 227 SDB 21F CA:22f l-Other (Specify):

(Actual) l CB :22f CC : 13f CD: 6 l Nas 46 n.=bles l I I Date/ Time Testa l i Performed (,/4/FI 1730 1 1 l 1 l MAX. REL l NUC ENTHALITOTAL HEATl SUADRANT IV l Maas Parameterl ASSY PWR l RISE HOT l TLUX HOT l POWER TILT I (Description) I % DITT l CHAN TACT lCHAN TACT l RATIO l l (M-P)/P l T-dHCH) l T-S(T) l 2PTR

' I I *I I I I I82 4%k %=l ** I g,yzo I 2, Soy I j, og,g*

Test l M e a s u r e d V a l u e l,f y ,,p,, , = o,73 1 l l Results l l 1 l l l Design Value 1:iotr. ret *.5 l l' .  !

l C Design Conds ) l (et #152 f*r ti * ' I /t.sstt+o.2(1-r))l rgcz)*4. s stz)l $ 1.03*

Assy. rwr)  ; .

g  ;

g I IWCAP-7905 l I lWCAP-7905 l Reference l REV.1 1 NOME I NONE I REV.1 1 I I I I I .

I I I I V l TSAR / Tech SPacl NOME I HA l NA l NA AccePtancel l l l l Criteria i l i l l l

l l Reference i NOME I TS 3.2.3 i TS 3.2.2 1 TS 3.2.4 l I l 1 -

l 1 I I I I l f

l Design Tolerance is met YES X N0 l Acceptance Criteria is met .: 2 LYES NO VI l i Comments I *The design value for SPTR is the sum of the 1.01 design l

i Predic.?on tilt and the 1.02 uncertainty identifiad in I WCAP-7905.

I 9 Near contro'l rod insertion limits i W Des 4 folermines not met be+ te5+ resul+s are acceptal>le per Morn Mn., Powev-et No.T4.- 3 96 St ip ti i Completed By: /- Evaluated By2 .

/Tes'tEngineer ,

t Recommended for Approval By -

f NTO pineer A.14

~

2-PT-94 AtEachnent 6.11 Page 18 of 37

. 05-11-82 NORTH ANNA POWER STATION UNIT 2 CYCLE 2 STARTUP PHYSICS TEST RESULTS AHD. EVALUATION SHEET I l Test Description :n/D Tlu >c Map-At Pouer,HI Calibration Reference ! Proc Ho / Section8 2-PT-22.2 Sequence Step Hot

, II I Bank Positions (Steps) l RCS Temperature ('T):T gy at Test l I Pouer Level (% T.P.): ~50 Conditionsl SDA 228 SDB: 228 CA: 228 l Other (specify)

(Design) l CB : 228 CC 228 CDs

  • I Must have 1 38 thimbles I i l III I Bank' Positions (Steps)  ! RCS Temperature ('T): Tu l Test l I Pouer Level (% T.P.): '/ 7. 9 l Conditionsl SDA 2&O SDB: ASO CA 22@ l Other (Specify):

(Actual) i CB 8228 CC 28.28 CD * / 87 l g g, 1 Date/ Time Testi l '

l Performed: Obg I I l l MAX. REL i HUC ENTHALITOTAL HEATI SUADRANT r IV i Maas Parameter! ASSY PWR l RISE HOT I TLUX HOT l POWER TILT l l (Description) I  % DITT l CHAN TACT ICHAM TACT I RATIO l

l l (M-P)/P l T-dH(H) l T-S(T) I SPTR l l l 1 I I I lie. s t, h h,'* "I I . l Test i Measured valueI r iIN I 1. M i /. O /E Results l l g,g fg~ l l l l Design Value I *not t.,ti = ,, i 1 1 I (Design Conds)1 h*,'L'y

  • j l NA l HA I 5 1.02 l l 1 1 I -

1 IWCAP-7905.I I IWCAP-7905 I Reference l REY.1 1 NOME l HOME I REV.1 1 I I I I I I I I I V l TSAR / Tech Specl HOME l n

  • 8 85 ' 3 * ' 8 *

( 33 31' '*# * * *'## ' "*'l NA

.Acceptancel l I l l Criteria 1 i l I I l Reference l HOME I TS 3 . 2 '. 3 i TS 3.2.2.I TS 3 . 2 . 14 l 1 l l l 1 I I I I I

I Design Tolerance is met t YES do l Acceptance Criteria is met n [YES HC VI I Comments 1 -

I

  • Above insertion limits IM 0 Al%% nd m.-k b a ty d r e.wi+

Me 't s.a 21-5 M k y :

I 00En st  % M -han -

M% na +

Completed By 1 Evaluated By* MMM^-

[ Test Engineer Recommended for D Approval By : C* . *drM3 '

HTO En g .L ne e r A.15

2,PI -

. . A'ttachment 6'.11.

Page 20 of 37 05-11-82 HORTH AHMA POWER STATION' UNIT 2 CYCLE 2 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I I Test Description tM/D T1ux Map-At Pouer,HI Calibration Reference 1 -Proc Ho / Section: 2-PT-22.2 Sequence Step Hos II I Bank Positions (Steps) l RCS Temperature ( ' T ) t Tg r1 Test l l Pouer Level (% T.P.): +70 Conditionsi SDA: 228 SDB: 228 CA: 228 l Other (specify) *

(Design) l CB 228 CC 228 CDs a l l I III l Bank Positions (Steps)  ! RCS Temperature ('T): Tecr l

Test l l Pouer Level (% T.P.): 49.9 Conditions! S D A *'2 0 SDB A N CA P, A O l Other (Specify):

(Actual) I CB t 2 2.8 CC *E76 CD8 /7f I l l l Y2 [h M M' '

I D a te /Titae Test  !

l Performed: 6-/7-62 / 2332-  !

l l l l MAX. REL 1 HUC ENTHALITOTAL HEATI SUADRANT IV I Mens Parameteri ASSY PWR l RISE HOT I TLUX HOT l POWER TILT I (Description) l  % DITT l CHAH TACT lCHAH TACT l RATIO l 1 (M-P)/P l T-dH(H) l T-9(T) I 2PTR I I I i 1 l ll3fX* W/}d""l I f, o/4 i Test l Measured value 1, gy g -/.iy I f.So? I( /. 734 g I Results l l l l l ,_

l Design Value 1 2 o: r.,rt * ., l l l l

' HA I HA I 5 1.02 I

( De sign Conds I ) l [,8*'y, (,j ll -

I L 1 lWCAP-7905 I i lWCAP-7905 I Reference l REV.1 1 NOME I NOME I REV.1 I I I I I I I I I f V I TSAR / Tech Spec l HOME I n* 8 3H8 *8 2(1-6 3 8 lN(*** 1 MA ** * "'*)I l - Acceptancel 1 l l _l Criteria I ,1 l l l l

1 Reference i NOME I TS 3.2.3 i TS 3.2.2 l TS 3 . 2 . 84 I I I I I I I I I I Design Tolerange is met t YES 0 l Acceptance criteria is met a d ES HQ -

VI i Comments l*ttust have at least 38 thimbles for a' full-core flux map, or i I at least 16 thimbles for a quarter : ore flux map, isAbove insertion limits Ib Do ann 4 % - e& 4 kak 4'h O O k ~ }.$ m ticAL k l Completed By Evaluated By: M br #A-

! [ Test E'ngineer Recommended for Approval By  : C- - W .i HTO Engineer A.16

2-Pr-94 Attachment 6.11 Pags 21 of 37

~

HORTH AHHA PCWER STATICH UNIT 2 CYCLE 2 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET I l Test Description : M/D Flux Map - HTP, ARO. Eq. Xe Reference ! Proc Ho / Section: 2-PT-21.1 Sequence Step Ho l II I Bank Positions (Steps)  ! RCS Temperature (*P)*Tpy r1 Test l I Pouer Level (% T.P.):95r5 Conditionsl SDA: 228 SDB: 228 CA: 228 l Other (specify)

(Design) l CB : 228 CC

  • 228 CD # l Must have 2 38 thimbles 1 I III I Bank Positions (Steps) l RCS Temperature (*T): Lt t l Test I l Pouer Level (% T.P.): 'F/. ')

Conditions l SDA: 223 SDB: 2 2.S CA: 22S l Other (Specify):

(Actual) l CB : 22g CC 22S CD: 229 I

' t l 4 7 t h.m b l Date/ Time Tests -

l l Performed (dzh2_ f.943 I .

1 I I l MAX. REL l HUC ENTHALITOTAL HEATI SUADRANT f IV l Mens Parameter! ASSY PWR l RISE HOT I TLUX-HOT l POWER TILT l (Description) l  % DITT I CHAM TACT ICHAH TACT l RATIO I l l (M-P)/P l T-dH(H) i T-2(T) 1 SPTR

! I I I I I I (7.7 7, fw P,J 857I I i Test l Measured Value1 I* I ' .I ' '

  • Results I l9.17 4 9M *c')b l l t Design Value 1 :ies r.,et 6 ,, I l l l ( De s i g n C on d s ) l y:j,', *, j l HA I .HA l 5 1.02 I I I l_ l-1 IWCAP-7905 I I IWCAP-7905 l Reference l REV.1 1 HOME I H0HE I REV.1 I I I I I I I I I I V I TSAR / Tech Spec l H0HE I u si.ms.o.tuongQtW.psung gg ,

Acceptance l l l 1- l Criteria l l I l l l Reference i HOME I TS 3.2.3 l TS 3.2.2 l TS 3.2.4 I I I I I I I I I I l

I Design Tolerance is met /YES Ho l Acceptance Criteria is met /Y ES HO ,

VI l Comments l l t Above insertion limits j 4AMgg&F -t. M d e $ .d.m lieWt ** W M M *"d l

I a,o,ML u do M h fo ~ b . Os at.i+- C tm No . h - 469.

Completed By: >

Evaluated By: / WWM

[ TestE'ngineet ,

Recommended for Approval By : C. -

HTO Engineer I

A.17 .

  • ' v. .

\

. a a.w g c:t-  :.  ;: .. ,

' i * ?' T ' -d*?!dt.??lW,?$bm:.;.$gy?.. 2Ti94 n ~ *?. . -

('a 1 J.':f.c Page 22.of 37

' '~

At+=d==nt 6.11 '

05-11-82 l

HORTH A.MMA POWER STATION UNIT 2 CYCLE 2 STARTUP PHYSICS TEST RESULTS AMD EVALUATION SHEET I

I l' T,est Description RCS Tlou Measurement Reference I. Proc Mo /section 2-PT-27 Sequence Step Mo:

II I Bank posi~tions (Steps) 1 RCS Temperature (

  • T ) T gf, 21 Test l l Power Level (% T.p.):95 +5/-0 conditionsl SDA: 228 SDB 228 CA: 228 I Other (specify):

(Design) l CB: 228 CC: 228 CDs AR l i I i III l Bank Positions (Steps) l RCS Temperature ('T): 67#/. [

l Test i I power Level (% T.p.): /Od %

Conditions! SDA MS SDB :fldf C A : c2d8 l Other (Specify):

(Actual) l CBa y CC:,1.y CD:g i I

I I Date/ Time Test Performed: l l7oT-57 //.v). - //:57 l l Meas Parameter l IV l (Description) l T m , Total RCS Tlou Rate l 1

~

1 1 Test Results l Measured Value l Ty .,74 l

=

ddfJ <N /14.

l l Design value i I (Actual Cond) l Mot Applicable -

g  ;

I Design Value 1 -

1 (Design Cond) l Mot Applicable .

I I

, u-

', I Reference l Mot Applicable -

g  ; s..n. - :p g-2 rr .- c v;.e . .

~ ~

u:.:QRM4$$: M:'ry.71 y.~r;~%Q / 1.02(mens uncerty) 2 278. 84 00 gym I .

2 '-; . , (.:, .l . , TS AR/Te ch - Spe c22"OD .1 ' Tuff *- $%,;;:% t"

. V l'*5*~C W dtMN: - ~ . .*

Acceptance l- .'*;.'.4 173) y g g j f 5.f .qf:- g % ,., .> i .

s criteria-l' Ref erenceh E.; 1 Technical- Specification 3.2.5

, . , -' 'I b, . 5.'y $' - g ' h hhY. Y?' - ~t

, ;i:

,.y' r: .i. '.':.Y

l Design%:%.'T* h*T$N #f*RtQ'J..

Tolerance is met .

il>'-?'^

"* N YE5 MO

j *.. VI' 2.,l"A c ce ptance  ;~~ . .y . .;, ,<r --e 3.y -c "

".crite.i:ia is" met ' YES NO '

, . - _: .. _' . l 2.

' ~

h

, y. .y;

.. ;f.c**"*"**ll"'p.~1;g;ns.seqiM.nf.:y

_ ' - g. t y v.;; q. ',qv g . ;3 / -

p _, , ,~ .

Com eted y M> Evaluated By O Mo -. O-Test' Engineer  ; t '-

/4' V s ' Recommended for A , ,

Approval By : V.

  • h

/ Engineer A.18 .

.