ML17059A341: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
(4 intermediate revisions by the same user not shown)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:P>1MPR ASSOCIATES INC.ENGINEERS MPR-1485 Revision 0 April 1994 Nine Mile Point Unit 1 Control Rod Drive Return Nozzle Fatigue Evaluation Preyared for Niagara Mohawk Power Coryoration 301 Plainfield Road Syracuse, NY 13212 9407010168 940M3 PDR.ADOCK 05000220 P'DR 0
{{#Wiki_filter:P>1MPR ASSOCIATES INC.
Pi9MPR ASSOCIATES INC.E N&I N E ERS Nine Mile Point Unit 1 Control Rod Drive Return Nozzle Fatigue Evaluation MPR-1485 Revision 0 April 1994 Principal Contributors E.B.Bird J.E.Nestell R.S.Paul A.B.Russell Prepared for Niagara Mohawk Power Corporation 301 Plainfield Road Syracuse, NY 13212 J.Gawler NMPC Engineer 320 KING STREET ALEXANDRIA.
ENGINEERS MPR-1485 Revision 0 April 1994 Nine Mile Point Unit 1 Control Rod Drive Return Nozzle Fatigue Evaluation Preyared for Niagara Mohawk Power Coryoration 301 Plainfield Road Syracuse, NY 13212 P'DR 9407010168 940M3 PDR .ADOCK 05000220
VA 22314-3238 703-519-0200 FAX: 703.519-0224


Pa1MPR ASSOCIATES INC.E N G I N E E 0 S CONTENTS Section 1 INTRODUCTION
0 Pi9MPR ASSOCIATES    INC.
E N &  I N  E ERS Nine Mile Point Unit 1 Control Rod Drive Return Nozzle Fatigue Evaluation MPR-1485 Revision 0 April 1994 Principal Contributors E. B. Bird J. E. Nestell R. S. Paul A. B. Russell Prepared for Niagara Mohawk Power Corporation 301 Plainfield Road Syracuse, NY 13212 J. Gawler NMPC Engineer 320 KING  STREET    ALEXANDRIA. VA 22314-3238            703-519-0200 FAX: 703.519-0224
 
Pa1MPR ASSOCIATES INC.
E N G I N E E 0 S CONTENTS Section                                                               ~Pa  e 1   INTRODUCTION


===1.1 Background===
===1.1 Background===
2  
2  


==SUMMARY==
==SUMMARY==
3 DISCUSSION
2-1 3   DISCUSSION                                                         3-1 3.1 Design and Operation                                     3-1.
 
3.2 Load Cycle Definition                                     3-1 3.3 Structural Analysis                                       3-2 3.4 Fatigue Evaluation                                       3-3 3.5 Fracture Mechanics - Crack Growth Rate                    3-4 3.6 Experience Survey                                        3-5 4    REFERENCES                                                          4-1 5    APPENDICES                                                          5-1 APPENDIX A Calculation of CRDR Nozzle Thermal and Pressure Cycles  A-1 APPENDIX B CRDR Nozzle Finite Element Model, Geometry              B-1 APPENDIX C CRDR Nozzle Finite Element Model, Material Properties    C-1 APPENDIX D Calculation of Heat Transfer CoefGcients                D-1 APPENDIX E CRDR Nozzle Finite Element Model, Boundary Conditions and Results                                        E-1 APPENDIX F Low Cycle Fatigue Usage                                  F-1 APPENDIX G Crack Growth Rate Computer Program Verification          G-1 APPENDIX H Crack Growth Rate Analysis      Cases                    H-1 APPENDIX I Implementation Plan
===3.1 Design===
and Operation 3.2 Load Cycle Definition
 
===3.3 Structural===
Analysis 3.4 Fatigue Evaluation


===3.5 Fracture===
PA1MPR ASS 0 C I ATES IN C.
Mechanics-Crack Growth Rate 3.6 Experience Survey 4 REFERENCES 5 APPENDICES
ENGINEERS LIST OF FIGURES F~Fi ore      ~Detcri tioo 3-1         CRDR Nozzle Dimensions 3-2         Finite Element Model 3-3         Finite Element Model Details 3-4         Calculated Temperature Distribution 3-5         Calculated Stress Intensity Distribution 3-6          Fatigue Crack Growth
~Pa e 2-1 3-1 3-1.3-1 3-2 3-3 3-4 3-5 4-1 5-1 APPENDIX A APPENDIX B APPENDIX C APPENDIX D APPENDIX E APPENDIX F APPENDIX G APPENDIX H APPENDIX I Calculation of CRDR Nozzle Thermal and Pressure Cycles CRDR Nozzle Finite Element Model, Geometry CRDR Nozzle Finite Element Model, Material Properties Calculation of Heat Transfer CoefGcients CRDR Nozzle Finite Element Model, Boundary Conditions and Results Low Cycle Fatigue Usage Crack Growth Rate Computer Program Verification Crack Growth Rate Analysis Cases Implementation Plan A-1 B-1 C-1 D-1 E-1 F-1 G-1 H-1


PA1MPR ASS 0 C I ATES IN C.ENGINEERS LIST OF FIGURES F~Fi ore 3-1 3-2 3-3 3-4 3-5 3-6~Detcri tioo CRDR Nozzle Dimensions Finite Element Model Finite Element Model Details Calculated Temperature Distribution Calculated Stress Intensity Distribution Fatigue Crack Growth
Pa1MPR ASSOCIATES INC.
ENG'INEERS Section 1 INTRODUCTION The purpose of this report is to document a fatigue evaluation of the Control Rod Drive Return (CRDR) nozzle in the Nine Mile Point Unit 1 reactor vessel. The nozzle is a four inch vessel penetration that accepts low temperature water from the control rod drive system. The objectives of the evaluation were to estimate: 1) the long-term susceptibility of the CRDR nozzle to thermal fatigue cracking, and 2) the crack growth rate of a potential flaw in the CRDR nozzle over the remaining life of the plant. This evaluation was undertaken to support Niagara Mohawk Power Corporation (NMPC) efforts to perform an ultrasonic inspection of the CRDR nozzle instead of the dye penetrant inspection specifie by NUREG-0619.
The fatigue evaluation of the CRDR nozzle considered the number of pressure and temperature cycles the nozzle has experienced to date as well as an estimate of the number of future cycles. Finite element stress analyses of the nozzle were performed to determine the stress distribution in the nozzle due to the pressure and temperature cycles. Stress analysis results were then used to calculate nozzle fatigue usage and crack growth rates.


Pa1MPR ASSOCIATES INC.ENG'INEERS Section 1 INTRODUCTION The purpose of this report is to document a fatigue evaluation of the Control Rod Drive Return (CRDR)nozzle in the Nine Mile Point Unit 1 reactor vessel.The nozzle is a four inch vessel penetration that accepts low temperature water from the control rod drive system.The objectives of the evaluation were to estimate: 1)the long-term susceptibility of the CRDR nozzle to thermal fatigue cracking, and 2)the crack growth rate of a potential flaw in the CRDR nozzle over the remaining life of the plant.This evaluation was undertaken to support Niagara Mohawk Power Corporation (NMPC)efforts to perform an ultrasonic inspection of the CRDR nozzle instead of the dye penetrant inspection specifie by NUREG-0619.
==1.1   BACKGROUND==
The fatigue evaluation of the CRDR nozzle considered the number of pressure and temperature cycles the nozzle has experienced to date as well as an estimate of the number of future cycles.Finite element stress analyses of the nozzle were performed to determine the stress distribution in the nozzle due to the pressure and temperature cycles.Stress analysis results were then used to calculate nozzle fatigue usage and crack growth rates.1.1 BACKGROUND In the 1970's, a number of BWRs detected signiTicant cracking of feedwater and CRDR nozzles.The cracks in the CRDR nozzles were caused by thermal fatigue resulting from changes in cold CRDR flow at the nozzles, The NRC issued NUREG-0619,"BWR Feedwater Nozzle and Control Rod Drive Return Line Nozzle Cracking," (Reference 1)that identified interim and long-term recommendations regarding this issue, including inspection requirements.
For Nine Mile Point Unit 1, the inspection requirements include performing a dye penetrant (PT)examination of the CRDR nozzle internal surface during the upcoming 1995 ref'ueling outage.NMPC plans to perform an ultrasonic (UT)inspection of the CRDR nozzle instead of the dye penetrant examination based on the following:
1.Automated UT inspection systems are now available for performing accurate inspections from outside the vessel.UT inspection systems at the time NUREG-0619 was issued did not provide sufficient detection or flaw sizing capabilities.
2.The CRDR nozzle thermal sleeve design (welded in place)makes the nozzle less susceptible to thermal fatigue cracking than the original designs at other BWRs.In fact, no damage to the CRDR nozzle was found during the 1977 in-vessel PT examination or in any subsequent examination.
1-1


3.Detailed analytic modeling of the CRDR nozzle shows that small surface flaws will not grow to unacceptable values within specified operating periods.This report addresses Item 3 above for the CRDR nozzle.In addition, this report documents the results of a survey of BWRs regarding CRDR nozzle inspection history and experience.
In the 1970's, a number of BWRs detected signiTicant cracking of feedwater and CRDR nozzles. The cracks in the CRDR nozzles were caused by thermal fatigue resulting from changes in cold CRDR flow at the nozzles, The NRC issued NUREG-0619, "BWR Feedwater Nozzle and Control Rod Drive Return Line Nozzle Cracking," (Reference 1) that identified interim and long-term recommendations regarding this issue, including inspection requirements. For Nine Mile Point Unit 1, the inspection requirements include performing a dye penetrant (PT) examination of the CRDR nozzle internal surface during the upcoming 1995 ref'ueling outage. NMPC plans to perform an ultrasonic (UT) inspection of the CRDR nozzle instead of the dye penetrant examination based on the following:
The implementation plan for this task is provided in Appendix I.1-2  
: 1. Automated UT inspection systems are now available for performing accurate inspections from outside the vessel. UT inspection systems at the time NUREG-0619 was issued did not provide sufficient detection or flaw sizing capabilities.
: 2. The CRDR nozzle thermal sleeve design (welded in place) makes the nozzle less susceptible to thermal fatigue cracking than the original designs at other BWRs. In fact, no damage to the CRDR nozzle was found during the 1977 in-vessel PT examination or in any subsequent examination.
1-1
: 3. Detailed analytic modeling of the CRDR nozzle shows that small surface flaws will not grow to unacceptable values within specified operating periods.
This report addresses Item 3 above for the CRDR nozzle. In addition, this report documents the results of a survey of BWRs regarding CRDR nozzle inspection history and experience. The implementation plan for this task is provided in Appendix I.
1-2


P&qMPR ASSOCIATES INC.ENGINEERS Section 2  
P&qMPR ASSOCIATES INC.
ENGINEERS Section 2


==SUMMARY==
==SUMMARY==
Three pressure and temperature cycles were identified for the CRDR nozzle: startup/shutdown, reactor scram, and hydrostatic test.These cycle are defined for the CRDR nozzle as follows: Startup/Shutdown
-a reactor vessel heatup/cooldown between power operation and shutdown or standby conditions where the shutdown is achieved manually by plant operators.
Reactor Scram-a startup/shutdown cycle where the shutdown is achieved by a reactor scram.~Hydrostatic Test-reactor vessel pressurization and depressurization to identify leaks prior to power ascension.
The number of cycles experienced to date, the number of cycles experienced since the 1977 PT inspection and the projected number of cycles in the future are listed below.Star tup/Shutdown Reactor Scram Hydrostatic Test Number of Cycles to Date 96 100 18 Number of Cycles Since 1977 PT Inspection 38 27 9 Projected Number of Cycles per Year 5 The reactor scram transient is the limiting cycle for CRDR nozzle stresses, Finite element modeling of the thermal transient shows that the peak stress intensity in the base metal occurs at the end of the transient in the bore of the nozzle just above the blend region.The peak stress intensity due to pressure and temperature was calculated to be 110 ksi.Fatigue analyses show that fatigue usage for the CRDR nozzle is very low (approximately 0.003 per operating year).For the calculated stress and the number of cycles experienced to date, a fatigue crack would not be predicted to initiate in the 2-1


CRDR nozzle at the present time.Considering the calculated stress and the number of cycles expected in the f'uture, a fatigue crack is not predicted within the life of the plant.Fracture mechanics calculations show that a postulated 1/4 inch flaw located in the highest stressed region of the nozzle would not grow to an unacceptable size within the life of the plant.The postulated 1/4 inch Qaw is calculated to grow to a depth of only 0.4 inches in 40 years.A 0.4 inch flaw does not exceed the allowable Qaw size for the analyzed section of the nozzle which is approximately
Three pressure and temperature cycles were identified for the CRDR nozzle: startup/
shutdown, reactor scram, and hydrostatic test. These cycle are defined for the CRDR nozzle as follows:
Startup/Shutdown - a reactor vessel heatup/cooldown between power operation and shutdown or standby conditions where the shutdown is achieved manually by plant operators.
Reactor Scram - a startup/shutdown cycle where the shutdown is achieved by a reactor scram.
        ~
Hydrostatic Test - reactor vessel pressurization and depressurization to identify leaks prior to power ascension.
The number of cycles experienced to date, the number of cycles experienced since the 1977 PT inspection and the projected number of cycles in the future are listed below.
Number of            Projected Number of        Cycles Since 1977  Number of Cycles Cycles to Date      PT Inspection          per Year Star tup/Shutdown                      96                38                    5 Reactor Scram                          100                27 Hydrostatic Test                        18                  9 The reactor scram transient is the limiting cycle for CRDR nozzle stresses, Finite element modeling of the thermal transient shows that the peak stress intensity in the base metal occurs at the end of the transient in the bore of the nozzle just above the blend region. The peak stress intensity due to pressure and temperature was calculated to be 110 ksi.
Fatigue analyses show that fatigue usage for the CRDR nozzle is very low (approximately 0.003 per operating year). For the calculated stress and the number of cycles experienced to date, a fatigue crack would not be predicted to initiate in the 2-1


===0.5 inches===
CRDR nozzle at the present time. Considering the calculated stress and the number of cycles expected in the f'uture, a fatigue crack is not predicted within the life of the plant.
based on criteria given in Section XI of the ASME Code.The allowable Qaw size provides signiTicant margin to ensure the nozzle does not fail by brittle f'racture.
Fracture mechanics calculations show that a postulated 1/4 inch flaw located in the highest stressed region of the nozzle would not grow to an unacceptable size within the life of the plant. The postulated 1/4 inch Qaw is calculated to grow to a depth of only 0.4 inches in 40 years. A 0.4 inch flaw does not exceed the allowable Qaw size for the analyzed section of the nozzle which is approximately 0.5 inches based on criteria given in Section XI of the ASME Code. The allowable Qaw size provides signiTicant margin to ensure the nozzle does not fail by brittle f'racture.
2-2  
2-2


PAIMPR ASSOCIATES INC.E N&INEERS Section 3 DISCUSSION
PAIMPR ASSOCIATES INC.
E N & INEERS Section 3 DISCUSSION 3.1 DESIGN AND OPERATION The NMP-1 Control Rod Drive Return (CRDR) nozzle is a 4-inch reactor vessel penetration located at the same elevation as the feedwater nozzle. Figure 3-1 is a section view of the nozzle which shows selected dimensions. The CRDR nozzle is equipped with a thermal sleeve which is welded to the CRDR nozzle at the sleeve inlet and extends into the reactor downcomer with a circular plate at the end. This design is intended to protect the bore of the nozzle and the vessel wall adjacent to the nozzle from the relatively cold CRDR flow.
The Control Rod Drive (CRD) System provides water from the condensate storage tank at a temperature of about 70'F to the control rod drive mechanisms to cool the control rod drives, to reposition rods, and to scram the rods. Under typical plant conditions, the system operates at all times when fuel is in the vessel. During normal operation, flow from the CRD pumps is maintained relatively constant with a portion of the flow recirculated to the condensate storage tank, about 30-47 gpm of the flow used for control rod drive mechanism cooling, and about 17-35 gpm (the remaining flow) returned to the vessel via the CRDR nozzle. Some accident sequences involving loss-of-offsite power may result in system shutdown for a short period of time, These accident sequences are not considered for this analysis. The flow rate does not change as a result of repositioning a control rod since the flow diverted to move the rod is compensated by the water displaced by the rod drive which is routed to the CRDR line.
A reactor  scram results in a CRDR nozzle flow transient. During a scram, the CRDR accumulators discharge to drive the control rods into the core. This results in an increase in CRDR nozzle flow to 65 gpm. When accumulator pressure drops below reactor pressure, CRDR flow rate goes to zero as the accumulators are recharged. After the accumulators have been recharged, CRDR flow rate returns to the nominal 17 to 35 gpm.
3.2 LOAD CYCLE DEFINITION Table 3-1 lists the pressure and temperature cycles which were considered in the structural evaluation. The number of cycles was determined from plant data regarding the number of plant startups/shutdowns and scrams. The cycles are defined as follows:
3-1


===3.1 DESIGN===
0
AND OPERATION The NMP-1 Control Rod Drive Return (CRDR)nozzle is a 4-inch reactor vessel penetration located at the same elevation as the feedwater nozzle.Figure 3-1 is a section view of the nozzle which shows selected dimensions.
      ~   Startup/Shutdown - a reactor vessel heatup/cooldown between power operation and shutdown or standby conditions where the shutdown is achieved manually by plant operators.
The CRDR nozzle is equipped with a thermal sleeve which is welded to the CRDR nozzle at the sleeve inlet and extends into the reactor downcomer with a circular plate at the end.This design is intended to protect the bore of the nozzle and the vessel wall adjacent to the nozzle from the relatively cold CRDR flow.The Control Rod Drive (CRD)System provides water from the condensate storage tank at a temperature of about 70'F to the control rod drive mechanisms to cool the control rod drives, to reposition rods, and to scram the rods.Under typical plant conditions, the system operates at all times when fuel is in the vessel.During normal operation, flow from the CRD pumps is maintained relatively constant with a portion of the flow recirculated to the condensate storage tank, about 30-47 gpm of the flow used for control rod drive mechanism cooling, and about 17-35 gpm (the remaining flow)returned to the vessel via the CRDR nozzle.Some accident sequences involving loss-of-offsite power may result in system shutdown for a short period of time, These accident sequences are not considered for this analysis.The flow rate does not change as a result of repositioning a control rod since the flow diverted to move the rod is compensated by the water displaced by the rod drive which is routed to the CRDR line.A reactor scram results in a CRDR nozzle flow transient.
      ~   Reactor Scram - a startup/shutdown cycle where the shutdown is achieved by a reactor scram.
During a scram, the CRDR accumulators discharge to drive the control rods into the core.This results in an increase in CRDR nozzle flow to 65 gpm.When accumulator pressure drops below reactor pressure, CRDR flow rate goes to zero as the accumulators are recharged.
      ~   Hydrostatic Test - reactor vessel pressurization and depressurization to identify leaks prior to power ascension.
After the accumulators have been recharged, CRDR flow rate returns to the nominal 17 to 35 gpm.3.2 LOAD CYCLE DEFINITION Table 3-1 lists the pressure and temperature cycles which were considered in the structural evaluation.
The number of annual cycles expected in the future is conservatively estimated to be 50% more than the average annual number of cycles that occurred over the past 10 years. A calculation of operating cycles is presented in Appendix'A.
The number of cycles was determined from plant data regarding the number of plant startups/shutdowns and scrams.The cycles are defined as follows: 3-1 0  
33 STRUCTURAL ANALYSIS Stress analyses were performed to determine the stresses for the fatigue and crack growth rate analyses described in Section 3.4 and 3.5 below. Transient thermal analyses were performed to calculate the temperature distribution in the nozzle as a function of time for the reactor scram transient. Steady state stresses due to pressure and temperature were calculated at specified time intervals throughout the transient. The sections below describe the finite element model, material properties, boundary conditions, and results.
~Startup/Shutdown
33.1 Finite Element Model The ANSYS computer program was used to develop a finite element model of the CRDR nozzle. The model includes the CRDR nozzle itself and a sufficient length of the reactor vessel shell and attached CRDR piping to eliminate interaction between the CRDR nozzle and the structural boundary conditions applied to the edges of the vessel shell and attached piping.
-a reactor vessel heatup/cooldown between power operation and shutdown or standby conditions where the shutdown is achieved manually by plant operators.
The three-dimensional nozzle-to-cylinder intersection was modeled with a two-dimensional axisymmetric model of a nozzle in a sphere. The equivalent spherical radius was chosen to be 3.2 times the radius of the reactor vessel cylinder to insure that the maximum hoop stress and stress intensity calculated by the axisymmetric model would be comparable to those in the actual three-dimensional intersection. Appendix B documents the finite element model. The finite element mesh of the CRDR nozzle is shown in Figures 3-2 and 3-3.
~Reactor Scram-a startup/shutdown cycle where the shutdown is achieved by a reactor scram.~Hydrostatic Test-reactor vessel pressurization and depressurization to identify leaks prior to power ascension.
33.2 Material Pro erties The model of the CRDR nozzle       is composed of three regions with different material properties. The reactor vessel wall is SA302 Grade B low alloy steel. The CRDR nozzle is an SA336 low alloy steel forging with ASME Code Case 1236-1 for nickel addition.
The number of annual cycles expected in the future is conservatively estimated to be 50%more than the average annual number of cycles that occurred over the past 10 years.A calculation of operating cycles is presented in Appendix'A.
The clad is assumed to be Type 308 stainless steel.
33 STRUCTURAL ANALYSIS Stress analyses were performed to determine the stresses for the fatigue and crack growth rate analyses described in Section 3.4 and 3.5 below.Transient thermal analyses were performed to calculate the temperature distribution in the nozzle as a function of time for the reactor scram transient.
3-2
Steady state stresses due to pressure and temperature were calculated at specified time intervals throughout the transient.
The sections below describe the finite element model, material properties, boundary conditions, and results.33.1 Finite Element Model The ANSYS computer program was used to develop a finite element model of the CRDR nozzle.The model includes the CRDR nozzle itself and a sufficient length of the reactor vessel shell and attached CRDR piping to eliminate interaction between the CRDR nozzle and the structural boundary conditions applied to the edges of the vessel shell and attached piping.The three-dimensional nozzle-to-cylinder intersection was modeled with a two-dimensional axisymmetric model of a nozzle in a sphere.The equivalent spherical radius was chosen to be 3.2 times the radius of the reactor vessel cylinder to insure that the maximum hoop stress and stress intensity calculated by the axisymmetric model would be comparable to those in the actual three-dimensional intersection.
Appendix B documents the finite element model.The finite element mesh of the CRDR nozzle is shown in Figures 3-2 and 3-3.33.2 Material Pro erties T he model of the CRDR nozzle is composed of three regions with different material properties.
The reactor vessel wall is SA302 Grade B low alloy steel.The CRDR nozzle is an SA336 low alloy steel forging with ASME Code Case 1236-1 for nickel addition.The clad is assumed to be Type 308 stainless steel.3-2  


Temperature dependent material properties were used in the thermal'a'nd stress analyses of the CRDR nozzle.Appendix C documents the material properties used in the analyses.399 Thermal Bounda Conditions Thermal boundary conditions for the reactor scram transient are discussed in detail in Appendices D and E and summarized below.The last portion of the reactor scram transient was modeled.Initially, the CRDR nozzle is at a uniform temperature of 525'F corresponding to zero flow through the CRDR nozzle as the accumulators are recharged.
Temperature dependent material properties were used in the thermal'a'nd stress analyses of the CRDR nozzle. Appendix C documents the material properties used in the analyses.
At the start of the transient, the CRDR flow rate is step changed to it's nominal value of 35 gpm with a fluid temperature of 70'F.Heat transfer coefficients and bulk fluid temperatures are applied to the inside surface of the reactor vessel wall and the bore of the CRDR nozzle.All other surfaces are assumed to be adiabatic (insulated).
399 Thermal       Bounda   Conditions Thermal boundary conditions for the reactor scram transient are discussed in detail in Appendices D and E and summarized below. The last portion of the reactor scram transient was modeled. Initially, the CRDR nozzle is at a uniform temperature of 525'F corresponding to zero flow through the CRDR nozzle as the accumulators are recharged.
Appendix D is a calculation of the heat transfer coefficient in th'e CRDR nozzle bore.The overall heat transfer coefficient between the CRDR fluid and the nozzle bore which includes the effects of the thermal sleeve and water annulus was calculated to be 100 BTU/hr-ft~-'F.
At the start of the transient, the CRDR flow rate is step changed to it's nominal value of 35 gpm with a fluid temperature of 70'F.
This includes the effects of the fluid film on the inside surface of the thermal sleeve, conduction through the thermal sleeve, and natural convection through the stagnant fluid layer between the thermal sleeve and the nozzle bore.A heat transfer coefficient of 1000 BTU/hr-ft2-'F was used between the bulk downcomer fluid temperature and the vessel wall.39.4 Structural Bounda Conditions The structural boundary conditions for the stress analysis include applied pressures and displacements (Appendix E).A pressure of 1250 psig was applied to the inside surface of the reactor vessel wall and the bore of the CRDR nozzle.A negative pressure was applied to the safe end to simulate the axial load in the attached piping.At the end of the reactor vessel wall, symmetry boundary conditions are applied to permit radial displacement and to prohibit rotation.At the safe end, couples are used to allow translation of the safe end but to prohibit rotation.39.5 Results The peak stress intensity in the base metal occurs at the end of the scram transient.
Heat transfer coefficients and bulk fluid temperatures are applied to the inside surface of the reactor vessel wall and the bore of the CRDR nozzle. All other surfaces are assumed to be adiabatic (insulated). Appendix D is a calculation of the heat transfer coefficient in th'e CRDR nozzle bore. The overall heat transfer coefficient between the CRDR fluid and the nozzle bore which includes the effects of the thermal sleeve and water annulus was calculated to be 100 BTU/hr-ft~-'F. This includes the effects of the fluid film on the inside surface of the thermal sleeve, conduction through the thermal sleeve, and natural convection through the stagnant fluid layer between the thermal sleeve and the nozzle bore. A heat transfer coefficient of 1000 BTU/hr-ft2-'F was used between the bulk downcomer fluid temperature and the vessel wall.
39.4 Structural Bounda         Conditions The structural boundary conditions for the stress analysis include applied pressures and displacements (Appendix E). A pressure of 1250 psig was applied to the inside surface of the reactor vessel wall and the bore of the CRDR nozzle. A negative pressure was applied to the safe end to simulate the axial load in the attached piping. At the end of the reactor vessel wall, symmetry boundary conditions are applied to permit radial displacement and to prohibit rotation. At the safe end, couples are used to allow translation of the safe end but to prohibit rotation.
39.5 Results The peak stress intensity in the base metal occurs at the end of the scram transient.
Figure 3-4 shows the calculated temperature distribution at the end of the transient.
Figure 3-4 shows the calculated temperature distribution at the end of the transient.
Figure 3-5 shows the calculated stress intensity distribution at the end of the transient.
Figure 3-5 shows the calculated stress intensity distribution at the end of the transient.
The peak stress (110 ksi)in the base metal occurs in the bore of the CRDR nozzle at the base metal to cladding interface, just above the blend into the vessel wall.The principal component of the stress intensity is hoop stress.3-3  
The peak stress (110 ksi) in the base metal occurs in the bore of the CRDR nozzle at the base metal to cladding interface, just above the blend into the vessel wall. The principal component of the stress intensity is hoop stress.
3-3


===3.4 FATIGUE===
3.4 FATIGUE EVALUATION A fatigue   evaluation of the CRDR nozzle was performed based on the load cycles defined in Section 3.2 and the results of the finite element stress analysis discussed in Section 3.3. Nozzle fatigue usage for current plant operation conditions was evaluated on a per cycle basis.
EVALUATION A fatigue evaluation of the CRDR nozzle was performed based on the load cycles defined in Section 3.2 and the results of the finite element stress analysis discussed in Section 3.3.Nozzle fatigue usage for current plant operation conditions was evaluated on a per cycle basis.As discussed in Section 3.2, the CRDR nozzle is subject to startup/shutdown cycles and startup/scram cycles.Fatigue usage was calculated for both of these cycles.The nozzle also undergoes hydrostatic testing;however, this cycle is bounded by the pressure-temperature conditions during a startup/shutdown cycle.Fatigue usage is calculated by: u=g n N where: u=fatigue usage n=number of cycles which occur N=number of allowable cycles based on the cyclic stresses A fatigue usage of 1.0 indicates that there is a potential for fatigue crack initiation in the nozzle.The allowable cycles are determined from the ASME Code Design Fatigue Curve for Carbon, Low Alloy and High Tensile Steels (Reference 2, Figure I-9.1).This curve provides a conservative number of allowable cycles for a given alternating stress range (safety factors have already been applied).Therefore, use of this curve for the usage evaluation provides a conservative estimate of fatigue usage for the nozzle.Calculation of fatigue usage for startup/shutdown and startup/scram cycles are documented in Appendix F.The calculation is performed using the peak stress intensity range on the base metal inside surface of the nozzle for each of the cycles.The fatigue usage for the nozzle was calculated to be 1.963 x 10~per startup/shutdown cycle and 3.848 x 10 per startup/scram cycle.Based on recent plant operating history, there are approximately five startup/shutdown cycles, one hydrostatic test and four startup/scram cycles per year, which corresponds to an annual fatigue usage of 0.003.3.5 FRACTURE MECHANICS-CRACK GROWTH RATE Crack growth of an assumed pre-existing fiaw in the nozzle due to the pressure and thermal cycles defined in Section 3.2 is analyzed using the Paris crack growth rate equation:=C (AK)dN 3-4  
As discussed in Section 3.2, the CRDR nozzle is subject to startup/shutdown cycles and startup/scram cycles. Fatigue usage was calculated for both of these cycles. The nozzle also undergoes hydrostatic testing; however, this cycle is bounded by the pressure-temperature conditions during a startup/shutdown cycle.
Fatigue usage is calculated by:
u=g       n N
where:
u     =     fatigue usage n     =     number of cycles which occur N     =     number of allowable cycles based on the cyclic stresses A fatigue   usage of 1.0 indicates that there is a potential for fatigue crack initiation in the nozzle. The allowable cycles are determined from the ASME Code Design Fatigue Curve for Carbon, Low Alloy and High Tensile Steels (Reference 2, Figure I-9.1). This curve provides a conservative number of allowable cycles for a given alternating stress range (safety factors have already been applied). Therefore, use of this curve for the usage evaluation provides a conservative estimate of fatigue usage for the nozzle.
Calculation of fatigue usage for startup/shutdown and startup/scram cycles are documented in Appendix F. The calculation is performed using the peak stress intensity range on the base metal inside surface of the nozzle for each of the cycles. The fatigue usage for the nozzle was calculated to be 1.963 x 10~ per startup/shutdown cycle and 3.848 x 10 per startup/scram cycle. Based on recent plant operating history, there are approximately five startup/shutdown cycles, one hydrostatic test and four startup/scram cycles per year, which corresponds to an annual fatigue usage of 0.003.
3.5 FRACTURE MECHANICS - CRACK GROWTH RATE Crack growth of an assumed pre-existing fiaw in the nozzle due to the pressure and thermal cycles defined in Section 3.2 is analyzed using the Paris crack growth rate equation:
          = C (AK) dN 3-4


\where: crack growth rate (inches/cycle) da Gn stress intensity factor range (ksiPin)C, m=constants (dependent on material, environment, and loading)C and m are taken from the ASME crack growth curve for surface Qaws in a water reactor environment (Reference 2, Figure A-4300-1).
\
The stress intensity factor range is the maximum change in stress intensity factor during the given cycle.Stress intensity factor is a function of stress and crack size.As described in Section 3.3, stresses were analyzed by Qnite element analysis, Using the Qnite element model results, a section though the nozzle wall, passing through the peak surface stresses on the inside and outside surfaces of the nozzle, was determined.
where:
This section is located in the blend region of the nozzle near to the transition to the bore region.A third order polynomial was Qit to the stresses through the section as a function of depth through the nozzle.Stress intensity factors were determined by the methods of Reference 3.Stress intensity factors are calculated as a f'unction of crack size and the polynomial coefficients from the cubic stress distribution.
da        crack growth rate (inches/cycle)
A computer program that calculates crack growth based on the method described above was developed to analyze assumed Qaws in the nozzle.The program description and veriQcation are documented in Appendix G.Inputs and results of the crack growth analysis are provided in Appendix H.The results of the crack growth analysis, assuming an initial Qaw size of 0.25 inches, are shown in Figure 3-6.As shown in Figure 3-6, the assumed 0.25 inch initial Qaw will grow to approximately 0.40 inches in 40 years of operation.
Gn stress intensity factor range (ksiPin )
The results indicate a very small crack growth rate for a crack in the CRDR nozzle.In addition, the 0.40 inch final Qaw size is less than the allowable Qaw size of 0.5 inches.The allowable flaw size for the analyzed section of the nozzle was determined from criteria given in Section XI of the ASME Code[Ref.2].Determination of the allowable Qaw size is documented in Appendix H.An allowable flaw size of 0,5 inches provides signiQcant margin to ensure the nozzle will not fail by brittle fracture.The applied stress intensity factor for a 0.5 inch flaw under the most severe stress conditions in the nozzle is approximately 81 ksiIin.The nozzle is not predicted to fail by brittle fracture until the applied stress intensity factor exceeds the critical stress intensity factor for the CRDR nozzle material.At normal operating temperatures the critical stress intensity factor is approximately 200 ksiIin, which is more than twice the applied stress intensity factor of the 0.5 inch allowable flaw.3-5  
C, m =     constants (dependent on material, environment, and loading)
C and m are taken from the ASME crack growth curve for surface Qaws in a water reactor environment (Reference 2, Figure A-4300-1).
The stress intensity factor range is the maximum change in stress intensity factor during the given cycle. Stress intensity factor is a function of stress and crack size. As described in Section 3.3, stresses were analyzed by Qnite element analysis, Using the Qnite element model results, a section though the nozzle wall, passing through the peak surface stresses on the inside and outside surfaces of the nozzle, was determined. This section is located in the blend region of the nozzle near to the transition to the bore region. A third order polynomial was Qit to the stresses through the section as a function of depth through the nozzle. Stress intensity factors were determined by the methods of Reference 3. Stress intensity factors are calculated as a f'unction of crack size and the polynomial coefficients from the cubic stress distribution.
A computer program that calculates crack growth based on the method described above was developed to analyze assumed Qaws in the nozzle. The program description and veriQcation are documented in Appendix G. Inputs and results of the crack growth analysis are provided in Appendix H.
The results of the crack growth analysis, assuming an initial Qaw size of 0.25 inches, are shown in Figure 3-6. As shown in Figure 3-6, the assumed 0.25 inch initial Qaw will grow to approximately 0.40 inches in 40 years of operation. The results indicate a very small crack growth rate for a crack in the CRDR nozzle. In addition, the 0.40 inch final Qaw size is less than the allowable Qaw size of 0.5 inches. The allowable flaw size for the analyzed section of the nozzle was determined from criteria given in Section XI of the ASME Code [Ref. 2]. Determination of the allowable Qaw size is documented in Appendix H. An allowable flaw size of 0,5 inches provides signiQcant margin to ensure the nozzle will not fail by brittle fracture. The applied stress intensity factor for a 0.5 inch flaw under the most severe stress conditions in the nozzle is approximately 81 ksiIin. The nozzle is not predicted to fail by brittle fracture until the applied stress intensity factor exceeds the critical stress intensity factor for the CRDR nozzle material.
At normal operating temperatures the critical stress intensity factor is approximately 200 ksiIin, which is more than twice the applied stress intensity factor of the 0.5 inch allowable flaw.
3-5


===3.6 EXPERIENCE===
3.6 EXPERIENCE SURVEY A survey   was performed to determine the experiences of other utilities with regard to CRDR nozzle cracking. NUREG-0619 responses to the NRC from utilities operating BWR plants were reviewed to determine how the CRDR nozzle cracking issue was resolved at each of the plants. In addition, several utilities were contacted to determine more detailed information about inspection practices for the CRDR nozzle. The results are surnrnarized below.
SURVEY A survey was performed to determine the experiences of other utilities with regard to CRDR nozzle cracking.NUREG-0619 responses to the NRC from utilities operating BWR plants were reviewed to determine how the CRDR nozzle cracking issue was resolved at each of the plants.In addition, several utilities were contacted to determine more detailed information about inspection practices for the CRDR nozzle.The results are surnrnarized below.Review of utility responses to the NRC indicated that almost all operating BWRs cut and capped the CRDR return line, either with or without flow rerouted'to another system.Plants with a capped CRDR nozzle are not required by NUREG-0619 to perform inspections of the nozzle (besides a final PT inspection required prior to capping the nozzle).However, some plants were operated for extended periods of time with the CRD return line valved out, which NUREG-0619 considers to be a temporary solution.In addition, one plant, Oyster Creek Nuclear Generating Station, has continued to operate with CRD return line flow through the CRDR nozzle.Oyster Creek is the only other plant besides NMP Unit 1 permitted to operate with the CRDR nozzle in service, Several plants, including Oyster Creek, were contacted to determine information about inspection techniques and results of nozzle inspections.
Review of utility responses to the NRC indicated that almost all operating BWRs cut and capped the CRDR return line, either with or without flow rerouted'to another system. Plants with a capped CRDR nozzle are not required by NUREG-0619 to perform inspections of the nozzle (besides a final PT inspection required prior to capping the nozzle). However, some plants were operated for extended periods of time with the CRD return line valved out, which NUREG-0619 considers to be a temporary solution. In addition, one plant, Oyster Creek Nuclear Generating Station, has continued to operate with CRD return line flow through the CRDR nozzle. Oyster Creek is the only other plant besides NMP Unit 1 permitted to operate with the CRDR nozzle in service, Several plants, including Oyster Creek, were contacted to determine information about inspection techniques and results of nozzle inspections.
T wo of the plants contacted, Duane Arnold Energy Center and Quad-Cities Station, found cracks in the CRDR nozzle during recent inspections (past Give years).At Duane Arnold, the CRD return line was valved out and capped with a blind flange in 1982.During a visual inspection of the CRDR nozzle in 1990, evidence of cracking was found and a full PT examination was performed.
Two of the   plants contacted, Duane Arnold Energy Center and Quad-Cities Station, found cracks in the CRDR nozzle during recent inspections (past Give years). At Duane Arnold, the CRD return line was valved out and capped with a blind flange in 1982.
A crack approximately 3 inches long and 0.25 inches deep, just penetrating into the base metal of the nozzle, was found and ground out.The nozzle probably had a thermal sleeve installed prior to being capped;however, the type of thermal sleeve is unknown.The plant performs a visual inspection of the nozzle every outage, but does not perform any ultrasonic inspections.
During a visual inspection of the CRDR nozzle in 1990, evidence of cracking was found and a full PT examination was performed. A crack approximately 3 inches long and 0.25 inches deep, just penetrating into the base metal of the nozzle, was found and ground out. The nozzle probably had a thermal sleeve installed prior to being capped; however, the type of thermal sleeve is unknown. The plant performs a visual inspection of the nozzle every outage, but does not perform any ultrasonic inspections. Quad Cities operated with the CRD return line in a valved-out conflguration until 1989 when cracking was found in the CRDR nozzle. During this period of operation, the CRD return line was visually inspected every outage. As a result of the cracking, the CRD return line was cut and capped in 1989. Since that time no inspections of the nozzle have been performed. In both of these cases, cracking was found after a signiflcant period of operation with the CRDR nozzle isolated from CRDR flow. Most likely, cracking initiated prior to isolation of the CRDR flow, but was not identifled until later inspections, Oyster Creek is the only other plant (besides Nile Mile Point Unit 1) allowed by NUREG-0619 to operate with flow to the CRDR nozzle. Similar to NMP Unit 1, Oyster Creek applied for an exemption of the NUREG-0619 requirements for the CRDR nozzle, including the scheduled PT examination. Based on automated ultrasonic (UT) examinations of the CRDR nozzle, which did not identify any indications, Oyster reek was given an exemption from the nozzle PT examination until the next refueling
Quad Cities operated with the CRD return line in a valved-out conflguration until 1989 when cracking was found in the CRDR nozzle.During this period of operation, the CRD return line was visually inspected every outage.As a result of the cracking, the CRD return line was cut and capped in 1989.Since that time no inspections of the nozzle have been performed.
                    ~
In both of these cases, cracking was found after a signiflcant period of operation with the CRDR nozzle isolated from CRDR flow.Most likely, cracking initiated prior to isolation of the CRDR flow, but was not identifled until later inspections, Oyster Creek is the only other plant (besides Nile Mile Point Unit 1)allowed by NUREG-0619 to operate with flow to the CRDR nozzle.Similar to NMP Unit 1, Oyster Creek applied for an exemption of the NUREG-0619 requirements for the CRDR nozzle, including the scheduled PT examination.
outage. Qualiflcation of the UT system was performed using a mock-up of the CRDR
Based on automated ultrasonic
      ~
~~~~(UT)examinations of the CRDR nozzle, which did not identify any indications, Oyster reek was given an exemption from the nozzle PT examination until the next refueling outage.Qualiflcation of the UT system was performed using a mock-up of the CRDR nozzle.Even though the UT system was designed specifically for the nozzle geometry, 3-6  
nozzle. Even though the UT system was designed specifically for the nozzle geometry, 3-6


I there were several problems encountered during setup of the system.Mounting the system took longer than typical UT systems due to space constraints around the nozzle.In addition, removal of the mirror insulation around the nozzle area was expensive and time consuming.
I there were several problems encountered during setup of the system. Mounting the system took longer than typical UT systems due to space constraints around the nozzle.
After the inspection, a new type of removable insulation was installed to provide easier access for future installations.
In addition, removal of the mirror insulation around the nozzle area was expensive and time consuming. After the inspection, a new type of removable insulation was installed to provide easier access for future installations.
3-7 0
3-7
Table 3-1 CRDR Nozzle Pressure and Temperature Cycles Description 1 Normal Startup/Shutdown 2 Reactor Scram 3 Initial Hydro 4 Refueling Hydro 5 10 year ISI Hydro Reactor Vessel Pressure (psi)0 1030-0 1030 1250 0 1875 0 0>>1030-0 0 1133 0 Downcomer Fluid Temperature
('F)70-525-70 250 250 250 CRDR Nozzle Fluid Temperature
('F)70 70<<525<<70 70 70 70 Number of Cycles to Date 96 15 Number of Cycles Expected per Year 5.0 3.9 0.0 1.0 0.1


23 e~')ASS CQ.SKQ I gCULCL I'QTLRe~I t$0 Ji Vc 4 8>~~~mt'TT I cue nor.~~tg ncuovr.l up~t I Tb~+prre<v+'.i)a eisa)~'Mi7 (Sb~T.IL)Z1 VO Vreeaa RCr.)4~~q~'-iTYTT, SYSIEII gETUTPTT uCJ LE KSQ'Y Figure 3-1.CRDR Nozzle Dimensions
0 Table 3-1 CRDR Nozzle Pressure and Temperature Cycles Reactor Vessel                    CRDR Nozzle                    Number of Description                  Downcomer Fluid                    Number of Fluid                      Cycles Expected Pressure (psi) Temperature ('F)                 Cycles to Date Temperature ('F)                  per Year 1 Normal Startup/Shutdown  0   1030  -0  70 - 525 - 70        70              96              5.0 2 Reactor Scram            1030    1250                    70 <<525  <<70                        3.9 3 Initial Hydro            0  1875  0        250              70                              0.0 4 Refueling Hydro          0>>  1030  -0        250              70              15              1.0 5 10 year ISI Hydro        0  1133  0        250              70                              0.1


il',j f llRllllIWIIIIIIIIIIEIIIIIIIIRIlllIllgggyyygIlllt
23 e~')
'J," i~l)llew%%%%%ASRSIOSIONAOOSOSk500%000iiggg
I ASS CQ.SKQ gCULCL                                  'QTLRe I
<<Will%%%IARAARIIAINIIARSARIlIOOO klan%g ggyININll<<1tIINIIlg jg II (~//Il Jllmssaskskaasaassssissaaaaisg~~gpg llkNIIILIlllggpNtII INIIgyygggy
                ~ I 0
<il)'p/(]/
Vc t$
t(gggggaaaaaaaaaaaaeaaaaaaaaag~~~~)
Ji 8>  ~  ~ ~
NNkOOOOggg~~
4            mt'TT I
)'P/)/<III jjaaaaaaaaaaaaAaaaeaaaaakiaaagaggi OOOOkOOOOkggOO OOiNkOOg'>'<>ISO JlOSRSk%+++++++++++++++++++I+INOO+lg+Ogaa OOIOOaaigk44OIOO+gg
tg ncuovr.
)<ittye ssssaas<<w>>>>>>+++i+++++++++++iasgaaeae+ig++++~isaizg++
nor.~~      l cue up~        t I                                        'Mi7 (Sb~T.IL                          4~
kkIhggg+OOI (If 4ggg ggggggiwgsakWSQOWSQOWkSOi 1%1 aaaagggg()(kkOkI 1+ggg asaesegz O4tk Xq~%+1as<<eataee+>qx eeassg p~~~~mee@>>
i)a                  )Z1  VO  Vreeaa    RCr.)
~~~~~wwm~~~~+++raeewaaq
Tb ~ +prre<v +'. ~      eisa)
+++Aaeay~wa~~+alas+~c~~  
          ~q~ '-iTYTT,          SYSIEII gETUTPTT  uCJ  LE KSQ'Y Figure 3-1. CRDR Nozzle Dimensions
 
il
  ',j
  'J,"
f llRllllIWIIIIIIIIIIEIIIIIIIIRIlllIllgggyyygIlllt i <<Will%%%IARAARIIAINIIARSARIlIOOO
          ~
II (~ //Il l)llew%%%%%ASRSIOSIONAOOSOSk500%000iiggg
  <il)'p/(]/ Jllmssaskskaasaassssissaaaaisg~~gpg klan% g           ggyININll<<1tIINIIlg
)'P/)/<III  t(gggggaaaaaaaaaaaaeaaaaaaaaag~~~~)
'>'<>ISO jjaaaaaaaaaaaaAaaaeaaaaakiaaagaggi (If4ggg ggggggiwgsakWSQOWSQOWkSOi INIIgyygggy jg llkNIIILIlllggpNtII
)<ittye      JlOSRSk%+++++++++++++++++++I+INOO+lg+Ogaa         NNkOOOOggg~~
1% 1 aaaagggg()( OOOOkOOOOkggOO qx eeassgssssaas<<w>>>>>>+++i+++++++++++iasgaaeae+ig++++~isaizg++
Xq~%+1as <<eataee+>
OOiNkOOg kkOkI OOIOOaaigk44OIOO+gg 1+ggg kkIhggg+
p~~~~mee@>>                   asaesegz          OOI O4tk
                                                              ~~~~~wwm~~~~+++raeewaaq wa ~~ +++Aaeay~
                                                                                    ~+alas+
                                                          ~ ~


Illlllllll~ls>
Illlllllll~ls>
ylllllll>gt~p llllllllll IIII~)l<)p~gy))l)~)(lpga/j illa'~'>If(l>~l//j god,'hagi~/j fbi)]4~~%Iaaaammmmmmmmmaa
ylllllll>gt~p llllllllll IIII~ )l<)p
~gy))l)~)(lpga/j illa'~'>If(l>~l//j god,'hagi~/j fbi)]4~~%Iaaaammmmmmmmmaa
~)~lykyggggRR%%%~%%%g%%%
~)~lykyggggRR%%%~%%%g%%%
WaOrsnaammmmmmmmmmmm
WaOrsnaammmmmmmmmmmm
%~~~+~~~~~~~~~~~~~~~~~~
%~~~+~~~~~~~~~~~~~~~~~~
i 0 ANSYS 5.0 APR 4 1994 16:33:47 PLOT NO.1 NODAL SOLUTION STEP=2 SUB=21 TIME=3601 TEMP TEPC=9.434 SMN=88.846 SMX=523.562 88.846 100 200 300 400 500 600 Figure 3-4.Calculated Temperature Distribution


4 h rent a w Q~7Q p:P ANSYS 5.0 MAR 31 1994 10:40:18 PLOT NO.1 NODAL SOLUTION STEP=14 SUB=1 TIME=3600 SINT (AVG)DMX=1.462 SMN=3533 SMNB=2569 SMX=96413 SMXB=105008 3533 13853 24173 34493 44813 55133 65453 75773 86093 96413'+~~Figure 3-5.Calculated Stress Intensity Distribution
i 0


0.44 0.42 0.40 0.38~0.36~0.34 (~p 0.32.0.30 0 0.28 0.26 0.24 0.22 0.20 0 50 I I I I I I I I T I I I I I 100 150 200 250 300 350 400 Cycles (10 cycles per year}Figure 3-6.Fatigue Crack Growth
ANSYS 5.0 APR 4 1994 16:33:47 PLOT NO. 1 NODAL SOLUTION STEP=2 SUB =21 TIME=3601 TEMP TEPC=9.434 SMN  =88.846 SMX  =523.562 88.846 100 200 300 400 500 600 Figure 3-4. Calculated Temperature Distribution


PD1MPR ASSOCIATES INC.EN&INEEITS Section 4 REFERENCES 1.NUREG-0619,"BWR Feedwater Nozzle and Control Rod Drive Return Line Nozzle Cracking, November 1980.2.ASME Boiler and Pressure Vessel Code, 1980 Edition with Addenda.3.Buchalet,'C.B., and Bamford,'.W.H.,"Stress Intensity Factor Solutions for Continuous Surface Flaws in Reactor Pressure Vessel," ASTM-STP-590, 1975.4-1 I'
ANSYS  5.0 MAR 31  1994 10:40:18 PLOT NO. 1 NODAL SOLUTION STEP=14 SUB =1 TIME=3600 SINT      (AVG)
rpMPR ENGINEERS Section 5 APPENDICES A.Calculation of CRDR Nozzle Thermal and Pressure Cycles B.CRDR Nozzle Finite Element Model, Geometry C.CRDR Nozzle Finite Element Model, Material Properties D.Calculation of Heat Transfer Coefficients E.CRDR Nozzle Finite Element Model, Boundary Conditions and Results F.Low Cycle Fatigue Usage G.Crack Growth Rate Computer Program Verification H.Crack Growth Rate Analysis Cases I.Implementation Plan 5-1
DMX =1.462 SMN =3533 4
SMNB=2569 h
SMX =96413 SMXB=105008 3533 13853 24173 34493 44813 55133 65453 75773 86093 96413 w
Q~7Q rent a
p:P
'+~~
Figure 3-5. Calculated Stress Intensity Distribution


FA1MPR SSOCIATES INC.ENGINEERS Appendix A CALCULATION OF CRDR NOZZLE THERMAL AND PRESSURE CYCLES
0.44                  I I
0.42 I
0.40                  I 0.38                  I I
I I
    ~ 0.36                  T I
I
  ~  0.34 I
I
(~p 0.32                  I
. 0.30 0  0.28 0.26 0.24 0.22 0.20 0 50 100      150      200      250  300 350 400 Cycles (10 cycles per year}
Figure 3-6. Fatigue Crack Growth


lLRMPQ MPR Associates, Inc.320 King Street Alexandria, VA 22314 CALCU LATION TITLE PAG E Client rv lg&ARA/YloH AWK, Pa wG R C~Rf'oRATlo Page 1 of (2 Project F'P(~LIP l T/gQA/TgoL-R~DR i v'8 g,G Tu~A<Ya/E 1 HGR~c AAD PREssua.G cygne E~Task No.c 8 S-~~a Calculation No.(PALS-23G-/SR-6 I Preparer/Date Checker/Date Reviewer/Date Rev.No.~/lo/9P s/~o Fdi~P/~o/Vg I c~+~a.(3/Sl ('i9
PD1MPR ASSOCIATES INC.
EN&INEEITS Section 4 REFERENCES
: 1. NUREG-0619, "BWR Feedwater Nozzle and Control Rod Drive Return Line Nozzle Cracking, November 1980.
: 2. ASME Boiler and Pressure Vessel Code, 1980 Edition with Addenda.
: 3. Buchalet,'C.B., and Bamford,'.W.H., "Stress Intensity Factor Solutions for Continuous Surface Flaws in Reactor Pressure Vessel," ASTM-STP-590, 1975.
4-1


lxIMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No.o8s-'Z3c>-48 P=D(Revision Prepar d By Checked By Fw[lw(c~Description Page~~+I C lMgw lSSyE;p.3 AuD).9.DELETED><5'7A V uF'/sHU7'Do~~
I' rpMPR ENGINEERS Section 5 APPENDICES A. Calculation of CRDR Nozzle Thermal and Pressure Cycles B. CRDR Nozzle Finite Element Model, Geometry C. CRDR Nozzle Finite Element Model, Material Properties D. Calculation of Heat Transfer Coefficients E. CRDR Nozzle Finite Element Model, Boundary Conditions and Results F. Low Cycle Fatigue Usage G. Crack Growth Rate Computer Program Verification H. Crack Growth Rate Analysis Cases I. Implementation Plan 5-1
C)'CLOS Rat WTeb wo SwR'Top'ES'v's A~V<Rh(u(~C C~i~i COLS Pe f'.rOX~Gr>P l965'.TH Zsr uCL.e S DELETE'D tOiQ!VOi iWVC LVE Pl A~PeATUP.  


K%MPR MPR Associates, Inc.320 King Street Aiexandria, VA 22314 Calculation No.i Prepared By C7B5-ZQO-A8R.
FA1MPR SSOCIATES INC.
Dl~gg+REV>i Checked By Page~lo5E: TH 1 gP SE oF TH 6 AT DEF(~Th'E 7flERPAC 4~b t RCS5ugC.cgCI G5 Oa TAE'co~Res-Rot DgiyE R~TuCW (cRDRD A'oKKLK/Ar TAC AINE~IL-8 F'otNT U<17/F'.E'AC7og l/ESX'G~~TC CuVuZ 7'OweE'R c F CYCLES 7u ngTE, PND~o s 557 tAA tE.gflf A/U/vl8f R.cg F FUTUP.c<y~eE.s.GumWA l2 p'REALS<l 0 E<Vc~-Clod'TC~F W CY~t E'S ToTA C 10 PRESenn.I.O~ia~r~o'7ow 52.5&7c7 70 96 g.o 2..0~i25o~o 7O+57 5 W/O 70 s-9/2 5'o 7o+5z g w7 lOo 0 W[875&0 O&IO3e~+zoo 70 D~Ilrz~0 zoo 70 CYc~z):u~a+Ac naRTvp/gHvv'oo~m lvcr.G5 2.A~D p.S~ARTcrP/Sc IZAAK cvcc.e's y 5 zn b s.'Essec HY.bR~s>AT'tc mesmer
ENGINEERS Appendix A CALCULATIONOF CRDR NOZZLE THERMALAND PRESSURE CYCLES


RMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.oes-z~o-/8 p-ol Prepared By Checked By (7-equi~Page g(hro CE E SC, TRKQAAL 5'LEKVAR PL.ATE cRD cg~R RBAcyoR SH Rou~ClzQ g/courggA4gug VW~ss.~&At L, Po~wCo~p~  
MPR Associates,   Inc.
~i lLiMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.o8+-2.3o-A8R-6/Prepared By Checked By g/,'i,~Page IN I HE'ESSG-I So Fco~-F+!Ra UC H Ttt E Cygne iso>RLC tS>)p(cAL&o RmgL FLaw 7 HRav>tf-FpC Ao KZL 4-.(5)7"3,5&PA SAC f46~DoE 5 nroT CH4k+C g S A l2ESu C.7 C7F gePo~ITIdd(N con TRoL a<D gijvCh THAN FLo~DIL/5'ATES vo~oVL-THE'~D IS GamPE'mSATe D BY TRC u 4TZR E ISf'L,AC~+
lLRMPQ                                    320 King Street Alexandria, VA 22314 CALCULATION TITLE PAG E Client rv lg&ARA /YloHAWK, Pa wG R C~Rf'oRATlo                    Page    of 1
EY q HK CR2 C ERICH>>JZ.o4'mD 8 4c k.To WH 6 CRD R, I-I we.4 R<A<Taf 54RC}Al RC SvLTS ln F<o~rR+&S(E&7$
(2 Project                                                          Task No.
7 HRo>G-H 7 I-(E.cgOR.no%7-LE, UPON A 5cRAAh SI&~QLg 7 HL CRS RccumuLAToR.s D(ScH/R@p Zo baal 1/E'HE Ccwrgcl f2'ops'A7III s RE 5ULT'5 IAJ T ffE'jz.Q cooLI>c-FLow Egl!AC-gey IP Q'$7/5 7'HK C Rg g.WOt~LE>(NC IZ<85'I]VCr A'O~yLK F LO~TO 6S G.'PPlAFTER Rcc.umUt AT'os.PRESSukK DRoPS eFLow RCAC'TO%F'RESSED'P-t)
F'P(~   LIP l T /                        c8  S-~~a gQA/TgoL- R~   DR i v'8 g,G Tu~ A<Ya/      E       Calculation No.
V IRTVILLy ALC CRb 5'/ST'8'I.a4r 6<<>RC-CHAR.6-E
1 HGR~c      AAD PREssua.G cygne E~                  (PALS-23G-/SR-6    I Preparer/Date      Checker/Date      Reviewer/Date            Rev. No.
~HE Ac<,umUt QToNS'q-HvS, CJZDR AokkiE'5 0&PA.<RbR Ato>tLE FL<<Is gE-c 5rABLI SHKb
      ~/lo/9P Fdi~                  c ~+~a.(
I s/~o              P/~o/Vg          3/Sl  ('i9


RMPR MPR Associates, inc.320 King Street Alexandria, VA 22314 Calculation No.Prepared By o85-23o gal-0)gg.Checked By T+(,~f o.u Page.HL Q~AL-ze sMRE c cL P,ISED Ch/7HZ 484''8 DISC.uS5'(cr~S C'yCI Eg 4AC COmS'<DE,P.gQ F.OR 7 r~~F'eP.HV (~~maDC 5~4'cga%L 57A+IIP j/IloiZAnAC 5H(ITboN~8~5 NO ZPlAI ST+RT'I/P/5cR/A1.
MPR Associates,   Inc.
HyDRo TEST PPessURE cycLE5 ARE ALso Co~SI E Z 8 Eb.THE RMAL C YCL+5 t9Rt=-R'E.PRESE'ATES 9'f 7 HC Fl MIQ TL=WPE R.ATVIZi PvsiDq THE 1 HERINA<SLEEK (T)A4D THE Do~uconn&R.(M~).WHE'~Cgt)fZ F:Lobed STol'~DuRimC-4 S<gAhh,,%HE't vip YS&FGQATUPE IA'HE THCRmAL 5(O'EVE IS'55k'WL=.D
lxIMPR                                        320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No.       Prepar d By            Checked By o8s-'Z3c>-48    P=D(                        Fw[ lw(   c~
+O 8F<HE SW~G'S 7 HE po4~Cu~6+c" g Clog 4C.  
Page
                                                                            ~
Revision                            Description
            ~+I C lMgw      lSSyE;
: p. 3 AuD ). 9. DELETED ><        5'7A V uF'/sHU7'Do~~ C)'CLOS Rat WTeb wo SwR'Top'ES'v's          A~V <Rh(u(~C C ~i~i COLS Pe f'.rOX~Gr >P l965'. TH Zsr uCL.e                S DELETE'D tOiQ !VOi iWVC LVE Pl        A~     PeATUP.


o RlMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.e ps'-w~>-$8P=o(Prepa ed By c7-8.Checked By 7@I;~/-.Page S~~<<C F'/~ur~Al SHvTD~u~.g Cacvoa pg e,ss uR.E, C]o sip)p=tog~ps'p~~~g;~~Pv'cg5 pv<Cp'Ro W<~e'A,AT(A/4 Q4'pg oruo H0,g<(x>/>I A rrWcneZ-dnrO V FSAIQ GTvlpg~'rut 6 C r)60O-7(&L.T>,=4%5 F<cp~"-lo F~~DC~+4~OPIA.A.fgAJC-b4 74-0/oo Hz,5 oAr Gl LP/9/P s sue vivum Tera(8 M7vRr Fo p.Rect RC vL/lac~f'v~ps)/VoT~: Mr GAPt-iER$84RZ 7HrZe was~erg EAPHAsiS Rd~P T'ggi~]v Cc)wytgloAJ5
MPR   Associates,   Inc.
~(CRT Fogy J O cyc~84~~HKAG paSSSVae'lo3~
K%MPR                                                    320 King Street Aiexandria, VA 22314 Calculation No.             Prepared  By               Checked By C7B5-ZQO-A8R. Dl REV>  i
p pic)r4WJ)Wp~(~ZS 4'cc>RP-F-D.<HE8>vE'.gc L E 15.As'svw<o 7>gdtjwD 8l-L G)CL.E;S
                              ~ gg +                                                Page
~lo5E:              TH    1    gP  SE    oF TH            6        AT DEF(~         Th'E 7flERPAC            4~b    t  RCS5ugC      . cgCI G5      Oa TAE'co~Res-            Rot DgiyE R~TuCW (cRDRD A'oKKLK /Ar TAC      AINE ~IL-8 F'otNT U<17                      /    F'.E'AC7og l/ESX'G~~
TC    CuVuZ      7'OweE'R            c F CYCLES      7u ngTE,        s PND ~o 557 tAA tE.      gflf A/U/vl8fR. cg F FUTUP.c          <y~eE.s.
GumWA l2
                    < Vc~-                                               W CY~t      E'S ToTA  C p'REALS <l 0 E                                Clod  'TC~F   10 PRESenn.
I. O~ia~r        ~o        '7ow 52.5&7c7            70          96                  g.o 2.. 0 ~ i25o ~ o            7O+57 5 W /O              70                              s-9
          /2 5'o                                7o+ 5z g w7        lOo 0 W[875&0 O & IO3e~+              zoo                    70 D~Ilrz~ 0                zoo                    70 CYc~z    ):u~a+Ac naRTvp/gHvv'oo~m              l vcr.G5 2. A~D p.      S~ARTcrP/Sc      IZAAK cvcc.e's y 5 zn b s .'Essec HY.bR~s>AT'tc mesmer


WMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.d 8'5-73o-A8 R.->l Prepared By Checked By Page g 5 78 R 7 lJ P/S~P-AM,-IZcag'cA c To/Z PRe,ssoeG I 0'3a psL 5C,PAhh, I Go<<~l>5o psig-Pr~ssur~p sip 5afef/(r s.(ur-qadi).
MPR Associates,   Inc.
Agsu~l+o c.ur or~]l Sc,r~~S,.<<~p~aATuRG PoF)+a~=5 l.a CQQR FgP c~~s glZYATI 5AA'Pagss'Ugc, i s possum 87 I%SO i sip SLIP.I QCCCr~Vg g PuP~~Wc Hcl C6-tnJC.I iih f, A cc o~ulA l aQ, PEWIIAP G.le.H VD<o 5~ATlC, q g g T Pg.C<5U pg cy(gf'.~L,~-25>F PER I Imi'Ts Irv Tgc..g SPQQ 3 Q.~(/de upTQ iS aPPy)>~<<I><H>'DR<'-.P=l875 psL'g ('Re.F.uVSga.)El~+<E'AcH pa FVGIIAIG':
RMPR                                              320 King Street Alexandria, VA 22314 Calculation No.         Prepared   By           Checked By Page oes-z~o    -/8 p-ol                              7-equi ~ (                     g(
)OZcr pa Pg (DPEMTIMC P)'>P'<2<X'I-l>X l>rCPSC~=/lZ3 PSI'g (RF<-rt/Pipi iP7 ooiP-p-ls)COMDR, FL~~lS HSSV WSQ FC R H'IPDRa ST/7'l C~PS~~, I
hro      CE    E SC, PL.ATE TRKQAAL 5'LEKVAR RBAcyoR SH  Rou~
cRD cg~R
                                                  /cour ClzQ g Po~wCo~p~
ggA4gug VW~ss.~
                                &At L,


ti~MPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.VGV-I<s's-vs~-A 8 e.-g)Prepared By Checked By Page U&ag12.DF cY<LEs/yPLPC, PEg5ouAKL yzyei.oPG'5 4w OKrggg S'uwdnARy Fog.~~['(~H if''DKA'Tl Fi K5 yH I: Pn TE TPPG(~.~.5'cd<SHVTbO1V&>
~ i MPR Associates,             Inc.
fdoT 5'TRA'D8'/)
lLiMPR                                                  320 King Street Alexandria, VA 22314 Calculation No.             Prepared By             Checked By Page o8+-2.3o -A8R-6/                                          g  /,'i,~
IZEWSOW A&5 DVRATfd&oF FC)ce cvTADE..8ASElO c~Zge 5VhfptApy, 7-pZ F'oLc.oi i~6-fS 7 HE A'O'AQG R,>F c YC,C.E5.~P ksss v P.6+Dc 4o.CP'C L,6S 0 Co io'30 Wo STAI.Tuf/F sa'g I 5 8 tn pow pl N<o 52.5 j70 F 7o F 5 TFIPTu/P ScRAM 0vo/250<o~@sip 125o pic'g qo y~5'2-5 go7O F 7'd'or~sz<<o 7a F lOG lod H ypR.op~ATiz Tt-.sTS 01@l88'~>pi'g Prr/o30 vo Opgi'~Pt~I133 to,4's'QO L5o F Z.Sc F 7o F 7o i-7<F moue i'u<AC-O'Zo HoT g7gmD 9'y 3Rw i~CLu 5Kb.mom'c Z.RO RE'ACTOR STARTS in/l942 Aa SlARTVP<6$YS TRAlA'tPc-CR,tTlCAL,S ARE h/W iNculDEb SECBVgE No I F'L]9~pgATuF W'AS IuVOL VED.<<DR.Ft o~iS AsSQWSS DtJRimC HQDpcfsf'~
IN    I HE'   ESSG-I    So  Fco~   -F+!Ra UC H   Ttt E Cygne      iso>RLC                tS
ric g8's'75
>) p(cAL &oRmgL FLaw                    7 HRav  >tf    -FpC  Ao KZL            4-.  (5 )7"3,5 &PA SAC    f46~      DoE  5 nroT  CH4k+C g S A            l2ESu  C.7  C7F            gePo~ITIdd(N con TRoL a<D gijvCh            THAN  FLo~ DIL/5'ATES vo ~oVL-                     THE'~D IS GamPE'mSATe D BY          TRC u 4TZR      E ISf'L,AC~+ EY q HK CR2                        C ERICH
  >>  JZ.o4'mD      8 4c k. To WH 6     CRD R, I-I we.
4 R<A <Taf            54RC}Al    RC SvLTS    ln    F<o~ rR+&S(E&7$
7 HRo>G-H 7     I-(E. cgOR. no%7-LE, UPON A 5cRAAh SI&~QLg                              7  HL CRS RccumuLAToR.s            D(ScH/R@p Zo        baal 1/E'   HE  Ccwrgcl f2'ops'A 7IIIs    RE 5ULT'5    IAJ T  ffE'jz.Q cooLI>c- FLow Egl !AC- gey IP Q'$7/5 7'HK    C Rg g. WOt~LE> (NC IZ<85'I ]VCr A'O~yLK F LO~                                 TO 6S G.'PPlAFTER Rcc.umUt AT'os. PRESSukK                        DRoPS                eFLow RCAC'TO% F'RESSED'P-t) V IRTVILLy ALC                CRb 5'/ST'8'                     I.a4r  6<<>
RC-CHAR.6-E        ~HE Ac<,umUt QToNS 'q-HvS, CJZDR                AokkiE'5 0 &PA . <RbR Ato>tLE FL<<                Is  gE-c 5rABLISHKb


lLWMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.~g S-~a~-Wsa.-ul Prepared By Checked By 7~I'(gc,.-Page I~AhtTic (PA t=AVM 6'g OF'C,LC5 PVlZ(ug~VTUCf+<BgAT(aAI THE AluT(cip87ED FutuaE iv'vplBER QF svA R7op/s'N vr Do@~AA/9~gglQ P SGRAjN C ycc c g pg~el.L, 4S Iiyp+O5'r~/4
MPR Associates,   inc.
~g T PRESS'Vg.i-C~~~eS/S8WSEC O~Zrl.~7iVe~y RECT~ILA~EPPES'RIEWCE':.5'i~DE 7HE HWD oF rNE lP&N IZGFCJELbV&
RMPR                                            320 King Street Alexandria, VA 22314 Calculation No.         Prepared   By         Checked By o85-23o      gal  -0) gg.                        T+(,   ~f o.u Page
(6/8Q-//99),ADJI/SYED FOR~:HG.'3m nna~TH Our'A6-t=.
  .HL Q~AL-      ze sMRE      c    cL P,ISED    Ch/ 7HZ 484''8        DISC.uS5'(cr~S      C'yCI Eg      4AC COmS'<DE,P.gQ      F.OR    7r    ~ ~F'eP.HV  (~~       maDC    5 ~
in l>87-, l.99O.2'T.Is ASStta GD 7 HHT t=VT~R,t oPR'pe(da.
4'cga%    L 57A +IIPj/IloiZAnAC 5H(ITboN~           8~5       NO ZPlAI ST+RT'I/P/5cR/A1.       HyDRo TEST PPessURE        cycLE5 ARE ALso Co~SI E Z 8 Eb.
~ii~NAV'L 50 fd&OP.4 5'NVYbomwg AND 5oRAA'rt5 (AAWV+al y)7H<u ONE A oEl/G f(+LE F+IZ(ob ZO Pace l06 SOrte grtlgL'$5l5
THE  RMAL      C YCL+5    t9Rt=- R'E. PRESE'ATES        9'7 HC    Fl  MIQ TL= WPE    R.ATVIZi PvsiDq THE 1 HERINA< SLEEK (T                    )  A4D THE Do~uconn&          R(M~ ). WHE'~ Cgt)fZ F:Lobed          STol'~
~AIR,C lA'YCLE: To%AC Av~vAL.A VC (6/8 i-ilia x J.'5 3-3 5O
DuRimC- 4 S<gAhh,,      %HE't vip      YS&FGQATUPE          IA'HE THCRmAL 5( O'EVE IS'55k'WL=.D +O            8F <HE SW~G'S 7 HE po4      ~Cu~6+          c" g    Clog      4C .


lxwMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.Qe'5-Z3D-A8&0/Prepared By Checked By T.Page Fo~rlYDk>S T~Tl C.1 6 SIT PRF SS VQG Cye L.E 5 I T l S, 4~5~~6 5 1pAT T~sTs"o 4'PE@A'Tlpd-PREssugE.(Iozops''g sviLu occup ouse PER.Yen'WHC cc~a.E~r aF~RAl'l~C C,y'CL,E-lg g.9 Pss~TH~As~u~P>l~~
MPR     Associates,   Inc.
I5 AVG@uATE~a Iccov~Y'uQA alp-4yC, ouv'A&g As~s'uv).7HE Is/7ssTPRessu<G (IIX'sst)"<<<ONCE Q Vf P.P/0 y5'4 i25 BYOIZ>5 Q TlC EST"rFAF'8'RAToCGS
o RlMPR                                                  320 King Street Alexandria, VA 22314 Calculation No.             Prepa ed By           Checked By Page e ps'-w~>-$ 8P=o( c7-8.                             7@I~/-.
/RC<SSuAG>~8E'~F 6RCATC<Fog, fv7uf, c.yet.E'HATS AT lSK<PY.)N~u~~~A Rp<Fls A~woAL c~lc~c 5 F~R Fwvtz.E)~PGp-ATt4'~
S~~<<C F'/~ur~Al            SHvTD~u     ~.
4Rc., P RESS uZC h/o.cyc~C S'/R.>SAavuP/0-I03~-0 psst 5 H o<bcJ~~7b-$25'-.70 7a F 5", 0 svAavuP/s'~CA" o IZP'-a-ps)g zo-72,5-7o F 7&F 3.9 Hyi r~ST WTic-7 ESSES I z5<pyle 0-IPPO-C7~'S's,'~0-II Z3'-o Pi goo F goo P 70-5'z5-70
g Cacvoa p=tog~    ps'p~~           ~g;~~   Pv'cg5 pv <
~7o"F CP~Z<<>~>S+SSu~GD b(r Rf JV6 MYDR~57 ATTIC, MS'.
pg e,ss uR.E,                                         Cp'Ro W    < ~e'A,AT(A/4 C]o sip)                                                Q4'pg      oruo H0,g
                                                                <(x>/>I      A rrWcneZ-dnrO V FSAIQ
                                  -7(& L.
60O                                    ~~DC    ~+4~     OPIA.A.fgAJC-T>,=4%5 F GTvlpg~'rut 6                                            b4 74 -0/oo Hz,5 oAr C  r)                                                        Gl LP/9/ P s    sue vivum Tera( 8 M7vRr Fo p.
Rect RC vL/lac~ f'v~ps)
                                  <cp~ "-  lo F
        /VoT~: Mr GAPt-iER $84RZ 7HrZe was ~erg EAPHAsiS Rd~ P T'ggi~]v Cc)wytgloAJ5 J ~(CRT Fogy cyc~84  ~~HKAG paSSSVae'lo3~                        r4WJ) Wp~(~ZS O
p pic) 4'cc> RP-F-D. <HE        8 >vE'.gc LE  15    .As'svw<o        7  >
gdtjwD 8l-L G)CL.E;S


~~>>a~'j I NIAGARA MOHAWK CORPORATION
MPR  Associates,  Inc.
~OPERATOR NINE MILE POINT NUCLEAR STATION UNIT NO.1 O r))jc pof-")E.!T/)
WMPR                                                                320 King Street Alexandria, VA 22314 Calculation No.                   Prepared      By              Checked By d 8'5-73o-A8 R.->l                                                                          Page g
I 0, O'WIk IE)<f I IH SIEAM IIOW tll)$'>ll COt.II COC.12 CO'..ll COL.12 I<a>>I O E.IEAD W.'LEAD TOTAL QRWQV ti Q ggG P'P gS~~g Q CO)E COIE 1<tf tr Mal.SVCT TENt D~~~f.r.r@EK i K~g'/=K/4V(/gG'EACTOR CIR MPS tVMt 12 tVMt SVCI Dt)CH'IEMt IEMt, SVCT.DOCH TEMt.If>>at.FLOW SVCI D>>SCH LE>>at TEMP.FI Ilies).RTR I'VC I If<at n)12 t)<O I')I)4)S vc D)14'D)IS j n)IS I D)II D)IS I'Sa Li)IF raw I CSIS Aa)I 41 S>>'e<1 Aa)0 I I Aa)1 A4)2 4)SINI Ac)~t Aa)S A~)I ILS/Nt Aa)S Ac)A440 4)SINS Acl)A44>>'ec~l)ir~I: 0()o th')3().3>>('3('0(:)4 t.c0 9"00 C>e'i(i 4,<<~~'(>>a>>6()(l 70()c".'';r'(>>I I~f>>t(cr;0 3 r'0 I c/2~}034.'l I C/cl/c/W-".()a a'!a(6!aa'4~~r a~I ar 4!Zc),')2 V.'J'i)r ar<<r>>mr>>,~r 4>>a!Cr>>I t I I r Hi~I'2'I'7.'I Jca)8..25~..8~a''Z3!i~>><<<<c r'atv<<le 1~.(>>C;4"'i'<<'%a~I,<<<'.('D T I)r),e (>>a: 0.vc i J<<>>Oi 0.)'i 0.5'=0.rZ!0.wc>>Oi." 1;0."(: e I 4.'6.!ZZbb)ll c0 74J3 i('3 I?bi?~F 7/jt)>>'/:5 I 7.2 e 730 7>>)',/atC.7<<a<<68c)ia)}/'': '.;('r VH",''I (:>>Zb I 10/()67.j26 j/r g/r>>p~541 I'54 I~}7 I c 327:ct 4:":~I'I Cj;)3<}~;I a}" I})31~~I 4~C>CI jl>>I r 365'.:: (-"-1 3/r'/r>c~ct:3'C,~/<<r~<I/'.36 I Cc>>0 r': 3C 36~(tr'..blab~'0c/~3(,c(Ca~<<>>0<r
5 78 R 7 lJ P/S ~ P- AM,-
.4:<<40 I'I c'".'I r)I b.:~(>s.,%01 j Cj'.'I 7 i.)P%>>3'.)'<<I c/S'.i0 1 Cc/tc.3 i 5 I~('ll t'o5-,11(.~r)pc,~S I~ca 1r'a(el 4'.a"4"'I=OJ 2"I)/e~w 6'<<0JCc/D:I C3rc>>03 l9/, ca r.'2>>0 cg)Fb I 3()bV<<)C)3)4S C.a z1,34)04>)c?6
I Go<<~
[30/>>05022) fb)3}a>>C.<<0Z.I/C't I/-c)r ra)a'I Zr'i},'()ea>>I: v"'!tLb i 363,<<C<<<<a\qc)~AQC":.c.(" 11'!Zb'2 I I 2:"bc'3"6'?.jl I:.ci bc).3'170.<3.: i 0366 J.4>>T/0.I;: j(CC AY.b I j'0.01!04>II(:<<>>3/0~4 3)i I i Ibb'J.I I 0.4 I'.j'a 69.6 4/(>.Z<.e>>'<<T'I'2'.076:./6::": 6E).:4<<L.c/.?r~2.: I b~).I 36'!.?C>162~-'36c/.Q9, e ir rrt I}'0''7 t>>I/a'a'!O a"aCLI."rci'c>'('7')7"''0~le r.a r~v~i, j}rlc r I>>.~r:<<'a'r 4<<21<<)s'3"'>>}
I 0'3a psL IZcag'cA c To/Z                                                                  l>5o  psig- Pr~ssur~
4 4 r r r H~')c'}c't<3 934>>/3/c)3/")I36 S:c'I 9" 7 66175;/".''I!aC>>Cglc le)n,lr)I 34>}(C')I 3'e 1 3 347<<('/: c)/i 3}NO~09~>>'U c agp 04'c>rw>>}r)'/.=-'1 ra85(:/';08: 0'74:0/30'";50c~~()".': 31')C'i:8>>0<<c:I re%4 C{an ht'e~2<~15())'".
PRe,ssoeG                                                                      p sip  5afef/
>>N,'-)3(ij 34)()c)0A.301C'7')8)
(r s. (ur-qadi).
=c 4)b;1)7:0''2, I C'I')i 7l 34)j}rj~)3'<')6S 3~3 rg g 3ct 7/~-3<}/8 3"'c rt>>D/r.3/}ci0 3<UZI>>art)")ar" ii<<3IOI I 338(!i-.,-"'I~>>>>M/44 a">>Ct<l 4/('>>4'6'I>>I a(I/:-6 I I JO~~.4<<~Jl 12 g~r rr>>!rr 0<<9.r36I 9 c/:>>2'/~~V e i I')CI ctP>>ZZ'zl'l)>I rpc!I>>I C'v~70c;'/I at'.I c.r i" a an@'/a'(:c), r~CC>>r~>>i C->'r'jt".'I 0)g<C~rDC I e~;.3/8})'4'.
5C,PAhh, Agsu~l + o c.ur or ~]l Sc,r ~~S,.
()'.C.~tc)'.I cr a.THE=Q/p/<I L.Pu a rer>>C~I g CscD/~C~Et t=-<A/6-R.rc}Ar 0 i (=WT S SO PC: T,RES c/Hov<S 0AaV(TS AT:,OVeR,:
FgP  c~~s glZYATI5AA
Re+,f/I/c:, PFR,e sv>E.em'.0 Te r Tci Tr I'i ej'r
                                            +a~ = 5 l.a
                                                                              'Pagss'Ugc,    i s possum
  <<~ p~aATuRG                                                                    87  I%SO i sip SLIP.I PoF)                                         CQQR QCCCr~Vg g PuP
                                                                                ~~Wc Hcl C6-tnJC .
I iih f,          A cc o~ulA l aQ, PEWIIAP G.le.
H VD<o 5 ~ATlC,               q g gT      Pg.C<5U      pg cy(gf '.
            ~L,~     -25>       F  PER    I Imi'Ts Irv Tgc..g      SPQQ    3 Q.~   (/de    upTQ iS aPPy)
              >~<<I><           H>'DR<'-.     P= l875 psL'g              ('Re.F. uVSga.)
El~+< E'AcH pa FVGIIAIG':                         ) OZcr pa Pg        (DPEMTIMC P)
            '> P'< 2<X'                 I-l>X l>rCPSC~ = /lZ3 PSI'g (RF<- rt/ Pipi iP7 ooiP-p-ls)
COMDR,         FL~~ lS HSSV WSQ FC R H'IPDRa ST/7'l C ~PS~~,
I


NINE MILE POINT UNIT NON-CFIITICAL HYDROTEST 1400 1200 O'I 000 800 614 eoO K 400 360 0 O 200 NCN-CRITICAL OPERATION MINllvLM TEMP I=TLRE FOR BOLTLP 100 F 100 130 0 50 100'150 200 250 800 850 REACTOR VESSEL BELTLINE DOWNCOMER NATER TEMPERATURE (F)(reactor vessel belt!inc downcomer water temperature is measured at recirculation loop suction)FIGURE 3.2.2.e MINIMUM SELTLINE DOWNCOMER WATER TEMPERATURE FOR PRESSURIZATION DURING IN-SERVICE HYDROSTATIC TFSTING AND'LEAK TESTING (REACTOR NOT.CRITICAL)
MPR Associates,  Inc.
FOR UP TO 18 EFFECTIVE FULL POWER YEARS OF OPERATION Amendment Iio.pn, p, pn l27
ti~MPR                                                        320 King Street Alexandria, VA 22314 Calculation No.                Prepared    By                Checked By VGV- I                                                              Page
<s's-vs~ -A 8 e.-g)
U&ag12. DF cY<LEs
      /yPLPC,    PEg5ouAKL yzyei.oPG'5                4w OKrggg          S'uwdnARy Fog.      ~~['(      ~H if''DKA'TlFi K5 yH I: Pn TE TPPG(~.~. 5'cd<
SHVTbO1V&> fdoT 5'TRA'D8'/)                IZEWSOW A&5 DVRATfd& oF FC)ce      cvTADE.. 8ASElO            c~    Zge 5VhfptApy, 7-pZ F'oLc.oi i~6-fS  7  HE    A'O'AQG R,      >F c YC,C.E5.    ~
P  ksss v P. 6        +Dc                          4o. CP'C L,6S 0 Co  io'30  Wo    N <o  52.5 STAI.Tuf    /      I F sa'g          j70      F  d'or~7o F 5 8 tn pow pl qo y~ 5'2-5 0vo  /250 <o ~@sip    go7O F              7'            lOG 5  TFIPTu/P ScRAM        125o    pic'g                              sz<        lod
                                                                    <o 7a F H  ypR.op~ATiz        01@  l88'~ >pi'g                            7o F Tt-. sTS Prr /o30  vo  Opgi'~  L5o      F            7o i-Pt~ I133 to,4's'QO Z.Sc      F          7< F moue i'u<AC-O' Zo HoT g7gmD 9'y 3Rw i~CLu 5Kb.
mom'c Z. RO RE'ACTOR STARTS in/ l942 Aa SlARTVP <6$ YS TRAlA'tPc- CR,tTlCAL,S ARE h/W iNculDEb SECBVgE No                              I F'L]9~ pgATuF W'AS IuVOL VED.
                  <<DR. Ft  o~ iS AsSQWSS DtJRimC HQDpcfsf'~ ric g8's'75


PDIMPR ASSOCIATES INC.ENGINEERS Appendix B CRDR NOZZLE FINITE ELEMENT MODEL GEOMETRY
MPR    Associates,  Inc.
lLWMPR                                            320 King Street Alexandria, VA 22314 Calculation No.        Prepared  By            Checked By Page
~g S-~a~ -Wsa.-ul                                  7~I'    (gc,.-
I~
AhtTic (PA    t=  AVM 6'g      OF'      C,LC5  PVlZ(ug ~VTUCf +<BgAT(aAI THE AluT(cip87ED FutuaE iv'vplBER QF svA R7op /s'N vr                Do@ ~ AA/9
  ~ggl    Q P SGRAjN C ycc c g pg ~el.L, 4S Iiyp+O5'r~/4        ~g T    PRESS'Vg.i-C~~~eS    /S8WSEC  O~ Zrl.~7iVe~y RECT~          ILA~ EPPES'RIEWCE':.5'i~DE 7HE  HWD  oF rNE lP&N IZGFCJELbV&        (6/8Q    //99),ADJI/SYED            FOR
  ~:HG .'3m nna~TH Our'A6-t=.      in l>87-, l.99O. 2'T. Is  ASStta    GD 7 HHT t=VT~R,t        oPR'pe(da. ~ii        ~  NAV'L    50      fd &OP.4 5'NVYbomwg AND 5oRAA'rt5 (AAWV+al y) 7H<u ONE                      A oEl/G    f(+LE F +  IZ(ob    ZO Pace l06 SOrte          grtlgL'$5l5      ~AIR,C      lA' To %AC        Av~vAL. AVC YCLE:                      (6/8 i-ilia      x J.'5 3-3                                      5O


y lLIMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 CALCULATION TITLE PAGE Client Nr4~g~oh'5-wW~rn/P~/gg j Or~I MWI7 Page 1 of I3 Project g~>~m neo zan.E-J'WFsS Task No.dew-2 2.f Title~<ODEC~%Md I/r-/'alculation No.~g~-+gal-dZ 8-0/Preparer/Date Checker/Date Reviewer/Date Rev.No.  
MPR   Associates,     Inc.
lxwMPR                                                    320 King Street Alexandria, VA 22314 Calculation No.              Prepared  By              Checked By Page Qe'5- Z3D -A8&0/                                          T.
Fo~    rlYDk> S T~Tl C. 1  6 SIT  PRF SS VQG Cye L.E 5          IT    l S,  4~5~~6 5 1pAT T~ sTs        "o      4'PE@A'Tlpd- PREssugE. (Iozops''g sviLu occup ouse PER. Yen'WHC        cc ~a.E~ r      aF ~ RAl'l~C      C,y'CL,E-   lg g.9      Pss~TH~
As~u~P>l~~           I5 AVG@uATE        ~a  Iccov~Y'uQA alp-4yC, ouv'A&g As ~s'uv). 7HE                Is/    7ssTPRessu<G              (IIX'sst) "<<<
ONCE    Q Vf P.P        /0 y5'4 i25  BYOIZ>5 Q TlC    EST    "rFAF'8'RAToCGS
/RC <SSuAG>        ~ 8E'~           F 6RCATC<    Fog,  fv7uf,    c.yet.E'HATS AT lSK<PY.
  )N ~u~~~ A Rp ) <Fls A~woAL c ~lc~c 5                        F~R Fwvtz.E
~PGp-ATt4'~ 4Rc.,
P RESS uZC                                            h/o. cyc~C  S '/R.
      >SAavuP/          0-I03~-0 psst        7b -$ 25'-.70      7a  F              5", 0 ESSES 5 H o<bcJ~~
svAavuP/s'~CA" o IZP'-a -ps)g zo-72,5-7o F                    7& F                3. 9 I z5<  pyle                    70-5'z5-70    ~
Hyi r ~ST WTic- 0 -IPPO- C7 ~'S's,'~        goo    F 7
0-II Z3'-o Pi            goo    P        7o "F CP~Z <<>~        >S  +SSu~GD          b(r Rf JV6      MYDR~57 ATTIC,        MS'.


lx)MPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No.Old-2zf-~jPQ-aI Revision<T.~Checked By P~fib',;Description Page
                                                                                                                                                                                                                                                                                        ~  ~    >>    a ~ '
j I                  ~
OPERATOR NIAGARA MOHAWK CORPORATION NINE MILE POINT NUCLEAR STATION UNIT NO. 1 Ilies).RTR    I O        r)) jc pof-")E.!T/)                                                                                                                                D~~~f.r.r@EK                                      i K QRWQV ti Q ggG
                                                                                                                                                                                                                    ~g'/=K/4V(/gG'EACTOR I
P'P      gS~~ g              Q MPS 0,
O' CIR                                                                          'VC tll)$'>ll                      IH SIEAM IIOW                        WIk IE)<f I        CO)E            COIE                                                            tVMt 12                                                  tVMt 1<tf tr ll
                                      }034.'l I<a>>I      CO'..        COL. 12                                                COt. II  COC. 12                      Mal.            SVCT                                    SVCI Dt)CH        FLOW                              SVCT. DOCH                      SVCI D>>SCH            FI                            I TENt O                                                  E. IEAD      W.  'LEAD        TOTAL
                                                                                                                                                                                                'IEMt IEMt,                                        TEMt. If>>at.                LE>>at    TEMP.                                If<at t)<O                      4)S    vc                                              I'Sa          raw I                                41 S>>'e<1            I    I        4)SINI                                t              ILS/Nt                              4)SINS n)12          I')I)        D)14'        D)IS j
n)IS        D)  II    D)IS        Li)IF          CSIS            Aa)I                  Aa)0              Aa)1 A4)2        Ac) ~                              Aa)S    A~ )I      Aa)S        Ac)      A440          Acl)                    A44 I
      '      ec      I c/2~
                                                                                                                                                                ':          I C/              ~ >><<<<c            I r Hi I'2' I'7. Jca)8..25          ~                'I                        ~
                                                                                                                                                                                                                                                                                                  ..8      'Z3! i                    ~ a'
            ~  l)                            I  4.'6.                                                                ~  . (>>C    ; ia)}/ '                        '.; ('r                                                                                          r'atv<<le      1                                                      e ir ~
                                        ')c'} !ZZbb Zr'i}                                  qc)    AQC":. c.("      4
                                                                                                                              "'i'            e    ir rrt VH",''
I (: >>Zb I 10                                                                      4:<<40    I' I c'".'I              327:ct 4:":
ll74J3
                                                                              ,'                ~                              %a ~
c't <3 ) c0                    ()ea>>                                                                                                  /()67.j26 j /                      66175;                                  /".''I!                                                                    ~  I 'I cl      /                                I: v"'!                                            I,< <<'            I}'0''7 t>>I /                        r g /r>>p ~541            I          aC>>Cglc                            le)n,lr)I                                              Cj;) 3<}~; I a}"
I: 0()              c/            934>>          i('3                                                                  .('D      T          a'a        '!O    a r)I b.:~(>s.,%01              j        I })31 ~ I 4      ~
o                        W -".() a      /3/                                      11'! Zb'2                                  I) r),e    "aCLI. "rci          'c>
th')3(                '! a(6!    a I    ?bi            tLb I I 2:"bc' 3 "6'?.                    jl            (>> a:      '('7') 7"''0                                                            34> } (C')                          I 3'e 1 3        Cj  '.'I 7  i .) P %>>3'.)          ~C>CI r
jl>>I r.a    r~                                                                                                              '<<I c/S'.i0
          ) .3>>                                      ?~F      i  363, I:. ci bc). 3'170. <3.:                                          ~  le              v        ~
1 Cc/tc.
                                                                    <<C<<<<a i 0366 J . 4>>T /0. I;:                                                  :<<'a r I >>. 'r~ r4                                              347<<('/: c)/i
                                '4      c)3/                                                                                                  j}rlc
('3('0(:
aa r a~  I~ ~
7/jt)                                                                              i,                                    '54          I~}7      Ic
                                        ")I36 '/:5
                                                                          \                                                                                                                                      3}NO~09~>>'U 3 i 5 I ~('ll t 'o5 365'.:: ( -"-1 ar                                                                                          0. vc              <<21<<)s'3"'>>} 4                      34) j}rj~)                I                                                            c J i<<>>Oi r          rr H    ii                                              agp 04'c>rw>>} r)'/. -,11(.~r)pc,~S I C'I 4! Zc), S:c'I I 7.2                                                                                            4 >>art)")ar"            ~
3'<')6S ') i
      ) 4 t.c0 e
9        "00                                                        3IOI j(CC AY. b I j'0. 01! 0.
3/r'/r>c~ct:3'C,
                          ')2 V.                     730                                                                      )'i      44    a 4'6'I>>    I a(      3 ~ 3 rg g                  7l                                                            ~ca 1r'a(el 4'. a C>
e'i(i 7>>) ', I    338( 04>II(: <<>>3/0 ~ 4 3)i                                            ">>Ct <l                              3ct 7/~                  I/        =-'1 ra85(:/'; 08:                                    "4"'I=OJ 2"I)/e
                                                                                                                                                                                                                                                                                                                                  /<<r I /'.
4,                                                    !
                                                                    -.,-"'I I i Ibb'J. I I 0. 4 I'. 0. 5'=                                    /('>>                            3<}/8                                                                  0'74:0/                  6 '<<0JCc/D
                                                                                                                                                                                                                                                                          ~ w
            '(>> a>>~                                  /atC.                                                                              4                                -                           :-6                                                                                                                    ~
blab~'0c/
                                                                                                                                                                                                                                                                                                                                        ~<
rr
        ~
i 6()(l                          9" 7        7<<a<<          M/ >>>> j ' a 69 . 6 4 / (> . Z<.e>> 0. rZ!
                                                                      ~                                                                  g 0<< r rr>>!
                                                                                                                                                  ~
3"' c                    I    I 70()              'J  'i      9.          68c)                                                                                                                    rt>>D      /r.            JO          30'"; 50c~ ~()".': :I C3rc >>03 l9/,
c".'                                        rpc! I >> I        an@'      '<<T' I '2'. 076: . /6          0.                                                                        >>ZZ    ~
4 <<
                                                                                                                                                                                                          ~.
                                                                                                                                                                                                              ~   31')C 'i:8>>0<<c:I ca r.'2>>0 cg )Fb I 36 I Cc>>0 r':
        ';r'              )r            r36I C'v            ~
a
                                                                        /a      '
::": 6E )    .:4 <<L.c/.? r    ~                                                          3/}ci0            'zl Jl                                                                  3()bV<<)C)3)4S              C. a 3C              36~(        tr'.
(>> I I ~        ar <<          9 c/: 70c;                    (:c),        2 .: I b~) . I 36'! .                              r CC>>r
                                                                                                                                              ~              ~ >>i 3<UZI            'l)> I 12                            re% 4 C {an                ht'e ~
z1,34)04>)c?6 [                      .                            ~
f >>t(            r>>mr>>
                            , r
                              ~
                                                      '/ I at  '.
wc>>                                                                                  2<~15())'".        4)b;1)7:0''2,
                                                                                                                                                                                                                                                                >>N,'-)    30/>>05022) fb )                    3(,c(Ca~<<>>0<r .
cr;0                4
                                        >>2 '
                                              / ~
                                                                                    ?C>162      ~ -'36c/. Q9,       Oi." 1;             C-  >'r'jt".' I 0 ~;.3/8})'4'. ()                                        3(ij 34)()                              c  )0A. 3} a>> C.<<0Z .I /C '
3 r'0                            ~
V          I c.r rer>>C      ~
                                                                                                                                            )g<C rDC I  ~              e 301C'7')8)                                                tI  /- c) r ra)a' i"                                                              0."(:                                                  '.C.~tc)'.I                cr      =c e
i                                                                                                                        a                                                                                                                    I I
I
                        >>a!Cr>>    It  ')CI c/          Hov<S 0AaV( TS AT:,OVeR,: g CscD/~                                                              C~ Et t=-        . THE= Q/p/<I L.                    Pu <A/6- R.                                rc} Ar  0      SO        PC:    T,RES            (=WT S Re+,f/I/c:, PFR,e sv>E. em'.0 Te r                                                                                                                                                                      i a
ctP                                                                                                          Tci          Tr I
I
                                                                                                                                                                                                                                                                                                                                'i  ej'r


WMPQ MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.ops-z~-685-o l'7S'Checked By Page Purpose The purpose of this calculation is to document the geometric input data for a finite element analysis of the Niagara Mohawk Power Corporation, Nine Mile Point Unit 1 (NMP-1)Control Rod Drive (CRD)Return Nozzle.A transient thermal/stress analysis simulating a reactor scram was performed.
NINE MILE POINT UNIT NON-CFIITICAL HYDROTEST 1400 1200 O
References 1 and 2 are calculations which document the finite element model material properties and boundary conditions/
    'I 000 800 NCN-CRITICAL 614                                                              OPERATION eoO K      400 360 0                                                                      MINllvLM O      200                                                          TEMP  I= TLRE FOR BOLTLP 100 F 100 130 0      50    100 '150 200 250 800 850 REACTOR VESSEL BELTLINE DOWNCOMER NATER TEMPERATURE (F)
results.The ANSYS computer program (Reference 3)was used to calculate the transient temperature distribution in an axisymmetric model of the nozzle.The program was then used to calculate stress profiles due to pressure and due to the calculated temperature distribution.
(reactor vessel belt!inc downcomer water temperature is measured at recirculation loop suction)
The results of this analysis, in the form of stress distributions through the bore/blend section of the nozzle, will be used in a fatigue and crack growth evaluation of the CRD return nozzle.Discussion Figure 1 is a drawing of the CRD return nozzle which shows pertinent dimensions (Reference 4).The dimensions used in the analysis are as follows: Vessel Radius RV Vessel Thickness TV Clad Thickness CLAD Angular Extent ANG1 106.7*3.2 inches 7.125 inches.2188 inches 8 degrees Other dimensions from Figure 1 are as follows: Nozzle Bore Nozzle OD Safe End OD Vessel Cut Out R1 R2 R3 R4 2.061 inches 4.813 inches 2A69 inches 5.563 inches 8.688 inches 4.125 inches 1.344 inches Safe End H1 Safe End H2 Safe End H3 The radial dimensions for the nozzle bore, R1, and the vessel, RV, are to the base metal-cladding interface.
FIGURE 3.2.2.e MINIMUMSELTLINE DOWNCOMER WATER TEMPERATURE FOR PRESSURIZATION DURING IN-SERVICE HYDROSTATIC TFSTING AND'LEAKTESTING (REACTOR NOT.CRITICAL) FOR UP TO 18 EFFECTIVE FULL POWER YEARS OF OPERATION Amendment Iio. pn, p, pn l27
These dimensions should be reduced by the thickness of


O lxlMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.4785-g~)t-Q,S-OI Checked By P~74u Page the cladding (7/32").This discrepancy between the finite element model and the drawing dimensions should have a negligible affect on the calculated stresses.Figures 2 and 3 show the axisymmetric finite element model of the nozzle.The'xisymrnetric model uses a radius 3.2 times the actual radius of the reactor vessel.This is to insure the maximum hoop stress and stress intensity from the model will be comparable to those in the actual three-dimensional intersection (Reference 5).The angular extent of the finite element model affects the number of elements in the model and consequently the computer running time for the model.The angular extent assumed in these analyses is 8 degrees.This extent was selected by performing pressure only load cases with models of varying extent and evaluating the stresses at the vessel cut line.The pressure analyses showed that 8 degrees is sufficiently far from the CRD return nozzle such that the stress distribution at the vessel cut line is uniform.Reference 6 is the ANSYS output file which shows the PREP7 echo of the input data.References MPR Calculation 085-229-EBB-02,"CRDR Nozzle Finite Element Model Material Properties", Revision 0.2.MPR Calculation 085-229-EBB-03,"CRDR Nozzle Finite Element Model Boundary Conditions and Results", Revision 0.3.ANSYS computer program version 5.0.4 Combustion Engineering Report CENC 1142,"Analytical Report For Niagara Mohawk Reactor Vessel", drawing number 231-567-7.
PDIMPR ASSOCIATES INC.
5.J.B.Truitt and P.P.Raju, ASME-78-PVP-6,"Three-Dimensional Versus Axisymmetric Finite Element Analysis of a Cylindrical Vessel Inlet Nozzle Subject to Internal Pressure, A Comparative Study" 6.7.MPR Calculation"Geometry", task number 85-31"Low Flow Feedwater Control System", 2/28/83.ANSYS output file NOZZLE.OUT, 87,853 bytes dated 4-04-94 3:45:28 pm.
ENGINEERS Appendix B CRDR NOZZLE FINITE ELEMENT MODEL GEOMETRY


7v hg 0'o (5 Ql O~Q~+Wz'I 0'b p~74)+2 I l~gcLkCL I Fig yQ'I 5 r j (unQ~.o 0'~e I 4 C~5 0 A Vc e ck I 0 I I~~I~l~rf I'N%X Q4C C&#xc3;NCZZ;Q C4 I.'LIW gP W>1u C CA: 5uCL j~~C~RX74 Rv ccats CFOdl(ui~l
MPR  Associates, Inc.
,)u+'~eisa~u'L I w~g.j~>>F25-~<<-gvrai'c'1.)K I21 TO 4'f SSEL QCJ:)+rW/ze/~-wYD'5YSPEII gETljgg LlQJ~g D~<'~'L e~CLI Q IQ~x O~Q 0'<0 (0 Co (~g'eI IQ~g Q o
y      lLIMPR                                          320 King Street Alexandria, VA 22314 CALCULATION TITLE PAGE Client Nr4  ~g    ~oh'5-wW
        ~rn/P ~/gg j Or~I MWI7 Page  1  of  I3 Project                                                                Task No.
g~>~m    neo zan. E  - J'WFsS dew  -2 2.f Title
                              ~<ODEC      ~%Md  I/r-/'alculation                No.
                                                                ~g~-+gal- dZ 8-0 /
Preparer/Date          Checker/Date          Reviewer/Date            Rev. No.


I I I g I e~I tll~I I 4l llNlRRHRNtNNlNRINlllllRIIgg pygmy (l AlENRISllINklllINSENlllalaappplltllOIINNNINIIQQppygmy
MPR  Associates, Inc.
((<~I NNSkSNNNkNNNIAIAASIRNINglgggglNINIIIONNISgggggNI 8 I I III ha10aaaixikaaoaaiaskakkaEiaiaaak aakiiaae i il laaaa%kSA%%ikiIAiiiSARLAWLOISaaggggkNS
lx)MPR                            320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No.                    Checked By Old -2zf-~jPQ-aI    < T.~       P~ fib',;
%000kL)ygygiO)0+)
Page Revision                  Description
r'(~<s%%%%%%%%%%RRSR%RSRRlkEAAlkOLSIIggggRNO tlOOOOOlgg 0000y ftll)iigaaoleSSOIIO%1101IOsOagagggla OQOkONONOgggNOOlkOllggg it~)e ssseaassa<<aiii~iaiii+<>sasasiaeeeaewaa++++aiaee+
OOOI1I 1g~~~t+Ot saea+w++++
+~~++~~'~++~+++e>saeaaaaesggg~
++1sasgggg+++1%ggg~
+1 lq%oe+++W~ae~~~>+eaeae~gg
+>+Ihl<ag~
-~~-


I<P llllll IIIII fill all gg l)Hy llyli (>~erg(!//
MPR  Associates,  Inc.
1/~)~~/~~/j~//
WMPQ                                                      320 King Street Alexandria, VA 22314 Calculation No.                                        Checked By ops- z~- 685-o l          '7S'                                                   Page Purpose The purpose of this calculation is to document the geometric input data for a finite element analysis of the Niagara Mohawk Power Corporation, Nine Mile Point Unit 1 (NMP-1) Control Rod Drive (CRD) Return Nozzle. A transient thermal/stress analysis simulating a reactor scram was performed. References 1 and 2 are calculations which document the finite element model material properties and boundary conditions/ results.
'~laaaaaauan lRNRREIIQ g)y>l]'k)~((//(/
The ANSYS computer program (Reference 3) was used to calculate the transient temperature distribution in an axisymmetric model of the nozzle. The program was then used to calculate stress profiles due to pressure and due to the calculated temperature distribution. The results of this analysis, in the form of stress distributions through the bore/blend section of the nozzle, will be used in a fatigue and crack growth evaluation of the CRD return nozzle.
//i~<PA/~/(l((g IR%%%%'8%%%agg g)]~i]]g(((](g
Discussion Figure 1 is a drawing of the CRD return nozzle which shows pertinent dimensions (Reference 4). The dimensions used in the analysis are as follows:
%%%5585M%I'i]titllll I aaaaaaaaaaa
Vessel Radius      RV            106.7
]<(~l<4<geuaaaaaaaaaaaaaa
* 3.2 inches Vessel Thickness    TV            7.125 inches Clad Thickness      CLAD          .2188 inches Angular Extent      ANG1          8 degrees Other dimensions from Figure    1 are as follows:
(~]py~kIlIllRa~mmmmmmmm55
Nozzle Bore        R1            2.061 inches Nozzle OD          R2            4.813 inches Safe End OD        R3            2A69 inches Vessel Cut Out      R4            5.563 inches Safe End            H1            8.688 inches Safe End            H2            4.125 inches Safe End            H3            1.344 inches The radial dimensions for the nozzle bore, R1, and the vessel, RV, are to the base metal-cladding interface. These dimensions should be reduced by the thickness of
>y4ieamaaauaaasaaeFa aNNSISRRa%%%%%%%%
AiSiiRRSRRWRRSASAR
~~Wmmmmm~~~~~~~~~~~~>>


pf Path: C:)NOZZLE File: GEOM.INP 1,511.a..3-24-94 1:30:36 pm/PREP7/TITLE, NMP Unit 1 CRD Return Nozzle Page g~!Reactor Vessel Modified Radius!Reactor Vessel Wall Thickness RV=(106.+23/32)*3.2 TV=7.125 ANG1=82 ANG2=90 CLAD=7/32 R1=4.122/2 R2=(9+5/8)/2 R3=(4+15/16)/2 R4=(11+1/8)/2 H1=8+ll/16 H2=4+1/8 H3=1+11/32 t m~4~~44 gtcilcrc~!Material Property Macro MATL CSYS,1 PCIRC~RVgRV+TVgANGlgANG2 CSYS,O RECTNGIOgRlgRV 2gRV+TV ASBA,1,2 RECTNGiRliR2IRV+TV/2iRV+TV+Hl H2 RECTNG~RlgR3gRV+TV+Hl H2gRV+TV+Hl H3 RECTNGgRlgR3~RV+TV+Hl H3IRV+TV+Hl P'<0'A'wclia//g"Jim rn J/oe~rn~py~g/,~P vrr/gu~4 W 4~~<<ckXcl~Qj~J/~2 (/XA c IC~j'//jZ, 7A J I/isa"ys P Pl=KP(R3,RV+TV+Hl-H2,0)
MPR    Associates,  Inc.
P2 KP(R2IRV+TV+Hl H2IO)P3=KP(R3,RV+TV+Hl-H3,0)
O lxlMPR 320 King Street Alexandria, VA 22314 Calculation No.                                          Checked By Page 4785- g~  )  t- Q,S-OI                                P~ 74u the cladding (7/32"). This discrepancy between the finite element model and the drawing dimensions should have a negligible affect on the calculated stresses.
A,P1,P2,P3 AADD,ALL YF=SQRT((RV+TV)**2-R2**2)
Figures 2 and 3 show the axisymmetric finite element model of the nozzle. The model uses a radius 3.2 times the actual radius of the reactor vessel.'xisymrnetric This is to insure the maximum hoop stress and stress intensity from the model will be comparable to those in the actual three-dimensional intersection (Reference 5).
RADIUSgR2JYFgO/1
The angular extent of the finite element model affects the number of elements in the model and consequently the computer running time for the model. The angular extent assumed in these analyses is 8 degrees. This extent was selected by performing pressure only load cases with models of varying extent and evaluating the stresses at the vessel cut line. The pressure analyses showed that 8 degrees is sufficiently far from the CRD return nozzle such that the stress distribution at the vessel cut line is uniform.
~5 YF=SQRT(RV**2-R2**2)
Reference 6 is the ANSYS output file which shows the PREP7 echo of the input data.
RADIUSgR2gYFgOgl
References MPR Calculation 085-229-EBB-02, "CRDR Nozzle Finite Element Model Material Properties", Revision 0.
~25 RADIUS/R2IRV+TV+Hl H2JO/1~0 RADIUS/R3gRV+TV+Hl H3gOI1~0 LSELgS~LOCgXgR1 LCOMB,ALL CSYS,1 LSELgSgLOCgXgRV 2IRV+2 Clirm~z~J'"4 v/C~S/c~/~l~l r/~p"r/v~~MPR ASSOC!ATFS, i!i,'g.Calculation No.o s-42$'-Kdd-of Pfopared By Chcc'(c<J f"y Bow~
: 2.      MPR Calculation 085-229-EBB-03, "CRDR Nozzle Finite Element Model Boundary Conditions and Results", Revision 0.
4 Path: C:)NOZZLE File: GEOM.INP CSYS,0 LSELg Ag LOC/Xg R1 LGEN~2 I ALL g g g CLADS CLAD 1,511.a..3-24-94 1:30:36 pm Page g'3 P 1 KP (R 1 g RV+TV+H 1 g 0)P2 KP (R1+CLAD g RV+TV+H 1+CLAD g 0)L,P1,P2 CSYS, 1 Pl KP(RVgANG1I 0)CSYS,O PX=KX(P1)PY=KY(P1)P2=KP(PX+CLAD,PY+CLAD,O)
: 3.      ANSYS computer program version 5.0.
L,P1,P2 AL,ALL AOVLAP,1,2 ADELE g 4~5 I 1 g 1 CUT I R4~RV 2 g 0 J R4 I RV+TV+2 g 0 KCUT KP (R2 I RV+TV+H1 H2 1~0)KCY=KY(KCUT)
4      Combustion Engineering Report CENC 1142, "Analytical Report For Niagara Mohawk Reactor Vessel", drawing number 231-567-7.
CUTg OgKCYg OgR2+2 gKCYg 0 ALLSEL NUMMRG,ALL NUMCMP,ALL LSELt S/LOCgXgRl CSYS, 1 LSELgAgLOC~XgRV 05 HARV+~05 CSYS,O KSLL,S,1 LSLK,S,1 CM,LID,LINE MSH ALLSEL FINISH SAVE!Slice Areas With Cut.Macro!ID Surface For Loads!Mesh Areas MPH ASSOCIATES, INC.Calculat!on No.>>-~~Prepared By Checked By Page i
: 5.      J.B. Truitt and P.P. Raju, ASME-78-PVP-6, "Three-Dimensional Versus Axisymmetric Finite Element Analysis of a Cylindrical Vessel Inlet Nozzle Subject to Internal Pressure, A Comparative Study"
Path: C:hNOZZLE File: RADIUS.MAC 342.a..9-18-93 12:03:56 am!Create Radius at Keypoint-Associated Area is Modified ARG1=X Location!ARG2=Y Location ARG3=Z Location ARG4=Radius POINT KP (ARG 1 g ARG2 f ARG3)KSELg S g KP g~POINT LSLK,S LSEL,R,EXT
: 6.      MPR Calculation "Geometry", task number 85-31 "Low Flow Feedwater Control System", 2/28/83.
: 7.        ANSYS output file NOZZLE.OUT, 87,853 bytes dated 4-04-94 3:45:28 pm.
 
0'o (5 Ql
                                                                                                                                                  ~
O Q
                                                                                                                                                      ~+
p Wz
                                                                                                                                                    'I 0
hg                                                                'b 7v
                                                    ~74) +2                  I (unQ Fig I
yQ'                                              5 l ~ gcLkCL I
rj
                    ~. o                                                                                                ~5      e    ck 0'                                                                                              0A
                                          ~
e I          4 Vc I
                                                                                                                                      ~l 0 II ~  ~ I C                    ~ rf I
                                                                                                  'L I
'N%X w
                                                                                                ~g.j Q4C C&#xc3; NCZZ;
                              ~~C~RX74      j Q C4 I.'LIW gP W>1u C CA:  5uCL
                                                                                  ~>>F25                ~<<-gvrai'c'1.)K
                                                ,)u
                                                  +                I21  TO  4'f SSEL QCJ:)
e  ~ IQ Q CLI xQ O~  ~
                                                '~eisa ~u CFOdl(ui~l
                                                                                                                                                            '<0 0
Rv
                                        ~
(0 ccats
                                                -wYD    '5YSPEII
                                                              'L gETljgg LlQJ~    g D~<'~                                                                (~eCo g'
IQ~gI Q
o
                                                      +rW/ze        /
 
pygmy I  I    I g
I    e
  ~ I tll~
I I
4l llNlRRHRNtNNlNRINlllllRIIgg
((<~( lI AlENRISllINklllINSENlllalaappplltllOIINNNINIIQQppygmy r'(~<
8 I    i il I III s
NNSkSNNNkNNNIAIAASIRNINglgggglNINIIIONNISgggggNI
                  %%%%%%%%%%RRSR%RSRRlkEAAlkOLSIIggggRNO laaaa%kSA%%ikiIAiiiSARLAWLOISaaggggkNS ftll) it~)e        ha10aaaixikaaoaaiaskakkaEiaiaaak iigaaoleSSOIIO%1101IOsOagagggla                          tlOOOOOlgg
                                                                    %000kL)ygygiO)0+)
aakiiaae
~~t+Ot        saea+w++++
ssseaassa<<aiii~iaiii+<>sasasiaeeeaewaa++++aiaee+                        0000y lq%oe                        +~~++~~'~++~+++e>saeaaaaesggg~ OQOkONONOgggNOOlkOllggg OOOI1I
                      - ~ ~-
                                                              ++1sasgggg+++1%ggg~
                                                        +++W~ae~  ~~>+eaeae~gg          1g~ +1
                                                                                +>+Ihl<ag~
 
I
                            <P llllllgg l IIIII )Hy fill all llyli
(>~erg(!//
1  /~
            )~~/~~/j~// '~  laaaaaauan g)y>l]'k)~((//(/
i~<PA/~/(
                    //
l((g lRNRREIIQ
                              %%%5585M%
g)]~i))g(((](g IR%%%%'8%%%agg I'i]titllll
    ]<                    I aaaaaaaaaaa
(~  ]py~kIlIllRa~mmmmmmmm55
(~l<4<geuaaaaaaaaaaaaaa aNNSISRRa%%%%%%%%
>y4ieamaaauaaasaaeFa AiSiiRRSRRWRRSASAR
~~ Wmmmmm~~~~~~~~~~~~>>
 
pf Path: C:)NOZZLE File: GEOM       .INP 1,511   .a.. 3-24-94   1:30:36     pm             Page g~
/PREP7
/TITLE,   NMP Unit 1 CRD Return Nozzle RV= (106. +23/32) *3. 2                 ! Reactor Vessel Modified Radius TV=7.125                               ! Reactor Vessel Wall Thickness ANG1=82 ANG2=90 CLAD=7/32
                                                  'A'wclia//
                                                                      ~ g/,W ~ P~<<
P'<0                        g"Jim rn J/oe ~
R1=4.122/2 R2=(9+5/8)/2                                           rn~py R3= (4+15/16) /2 R4=(11+1/8)/2                                       vrr /gu ~ 4                        4~
H1=8+ll/16 H2=4+1/8 t m~4    ~~  44          ckXcl~
H3=1+11/32 gtcilcrc ~                                             Qj~ J/~ 2 MATL                                    ! Material Property Macro                         ( /
CSYS,1 PCIRC~RVgRV+TVgANGlgANG2 CSYS,O RECTNGIOgRlgRV 2gRV+TV ASBA,1,2 XA c IC~      j'/
RECTNGiRliR2IRV+TV/2iRV+TV+HlH2                  /jZ,  7A  J  I/isa"ys          P RECTNG~RlgR3gRV+TV+Hl H2gRV+TV+Hl H3 RECTNGgRlgR3~RV+TV+Hl H3IRV+TV+Hl Pl=KP(R3,RV+TV+Hl-H2,0)
P2 KP(R2IRV+TV+Hl H2IO)
P3=KP(R3,RV+TV+Hl-H3,0)
Clirm~z~J'"4 v/C ~
A,P1,P2,P3 AADD,ALL                                                       S YF=SQRT((RV+TV)**2-R2**2)
RADIUSgR2JYFgO/1 ~ 5
                                                /  c~/~l~l r/          ~          p"r/v~~
YF=SQRT(RV**2-R2**2)
RADIUSgR2gYFgOgl ~ 25 RADIUS/R2IRV+TV+Hl H2JO/1 ~ 0 RADIUS/R3gRV+TV+Hl H3gOI1 ~ 0 LSELgS~LOCgXgR1 LCOMB,ALL                                                       MPR ASSOC!ATFS, i!i,'g.
CSYS,1                                                      Calculation No. o s-42$ '-Kdd-of LSELgSgLOCgXgRV 2IRV+2 Pfopared By Chcc'(c<J f"y       Bow ~
 
4 Path: C:)NOZZLE File: GEOM             .INP     1,511 .a.. 3-24-94 1:30:36   pm       Page g '3 CSYS,0 LSELg Ag LOC/ Xg R1 LGEN ~ 2 I ALLg g g CLADS CLAD P 1 KP (R 1 g RV+TV+H1 g 0 )
P2 KP (R1+CLAD g RV+TV+H1+CLAD g 0)
L,P1,P2 CSYS, 1 Pl KP(RVgANG1I 0)
CSYS,O PX=KX(P1)
PY=KY(P1)
P2=KP(PX+CLAD,PY+CLAD,O)
L,P1,P2 AL,ALL AOVLAP,1,2 ADELEg 4 ~ 5 I 1 g 1 CUT I R4 ~ RV 2 g 0 J R4 I RV+TV+2 g 0           ! Slice Areas With  Cut. Macro KCUT KP (R2 I RV+TV+H1 H2 1 ~ 0)
KCY=KY(KCUT)
CUTg OgKCYg OgR2+2 gKCYg 0 ALLSEL NUMMRG,ALL NUMCMP,ALL LSELt S/LOCgXgRl                               !  ID Surface For Loads CSYS, 1 LSELgAgLOC~XgRV           05 HARV+ ~ 05 CSYS,O KSLL,S,1 LSLK,S,1 CM,LID,LINE MSH                                             ! Mesh  Areas ALLSEL FINISH SAVE MPH ASSOCIATES, INC.
Calculat!on No. >> -~~
Prepared By Checked By Page
 
i Path: C:hNOZZLE File:     RADIUS .MAC   342 .a.. 9-18-93 12:03:56     am     Page LQ
! Create Radius at Keypoint     Associated Area is Modified ARG1   = X Location
!   ARG2   = Y Location ARG3   = Z Location ARG4   = Radius POINT KP (ARG 1 g ARG2 f ARG3 )
KSELg S g KP g ~ POINT LSLK,S LSEL,R,EXT
*GET,L1,LINE,,NUM,MIN
*GET,L1,LINE,,NUM,MIN
*GET,L2,LINE,,NUM,MAX ASLL,S LSLA,A ADELE,ALL LF I LLT g L 1 I L2 I ARG 4 AL,ALL KSEL,ALL LSEL,ALL ASEL,ALL Page LQ MPR ASSOClATES, i'.Calculation No~<~2~>-~<8-I Prspore~J Qy Ci1 pcs((ap Qy 0'Hc>l PQc~c~C~~'
*GET,L2,LINE,,NUM,MAX ASLL,S LSLA,A ADELE,ALL I
LF LLTg L1 I L2 I ARG 4 AL,ALL KSEL,ALL LSEL,ALL ASEL,ALL MPR ASSOClATES, i'.
Calculation No ~<~ 2~>-~<8- I Prspore~J Qy Ci1 pcs((ap Qy 0'Hc>l PQcC~~c~'
                                                              ~


Path: C:)NOZZLE File: CUT.MAC 496.a..1-17-94 2:13:14 pm Page Cut Areas ARG1=X ARG2=Y ARG3=Z ARG4=X ARG5=Y ARG6=Z by Line Location, Location, Location, Location, Location, Location, Point 1 Point 1 Point 1 Point 2 Point 2 Point 2*GET g KMAX g KP g g NUM g MAX*GET~LMAXg LINE I~NUMB MAX ASEL,ALL NUMCMP,AREA
Path: C:)NOZZLE File:   CUT         .MAC     496 .a.. 1-17-94 2:13:14     pm     Page Cut Areas by Line ARG1 = X Location,      Point 1 ARG2 = Y Location,      Point 1 ARG3 = Z Location,      Point 1 ARG4 = X Location,      Point 2 ARG5 = Y Location,      Point 2 ARG6 = Z Location,     Point 2
*GET g KMAXg KP g g NUMg MAX
*GET ~ LMAXgLINEI ~ NUMB MAX ASEL,ALL NUMCMP,AREA
*GETJNAREAgAREAIgCOUNT NUMSTR,AREA,COUNT+1
*GETJNAREAgAREAIgCOUNT NUMSTR,AREA,COUNT+1
*DO,N,1,NAREA,1 K g KMAX+1 g ARG 1~ARG2~ARG3 K g KMAX+2 I ARG4 g ARG5~ARG 6 NUMSTRg LINE I LMAX+1 L, KMAX+1, KMAX+2 ASBL,N,LMAX+1 LDELE g LMAX+1 g LMAX+1 g 1 g 1*ENDDO MPR ASSOCfATES, INC.g Cafculation No,o<"<~8 o~+Prop:.".wd By C~~i(4(i/Qy 9Q+V'4 0'
*DO,N,1,NAREA,1 K g KMAX+1 g ARG 1 ~ ARG2 ~ ARG3 K g KMAX+2I ARG4 g ARG5 ~ ARG 6 NUMSTRg LINEI LMAX+1 L, KMAX+1,KMAX+2 ASBL,N,LMAX+1 LDELEg LMAX+1 g LMAX+1 g 1 g 1
Path: C:iNOZZLE File: MSH.MAC 1,019.a..3-24-94 1:39:32 pm 1!Concatenate Lines I Page'l0.ASEL, S,AREA,,2 LSLA LSELi Ri LOCI Y I RV+TV 2 i RV+TV+2 LCCAT,ALL ASEL,S,AREA,,6 LSLA LSELiRILOCiYiRV+TVIRV+TV+81 H2 1 LCCAT,ALL ASEL,S,AREA,,6 LSLA LSEL g U i LOC i Y g RV+TVi RV+TV+H 1 H2 1 LSELI Ui LOCi XiR4 LSEL i U g LOC i Y i KCY LCCAT,ALL ASEL,S,AREAii4 CSYS,1 LS EL I S i LOC I X I RV~05 I RV+05~~CSYS,O SELi Ai LOG i Xi Rl LSLA, R KSLL,S,l LSLK,S,1 LCCAT,ALL ASEL,S,AREA,,1 LSLA LSEL i U i LOC i Y I RV+TV+H 1~05 I RV+TV+H 1+05 LSELi Ui LOCI Y i KCY 05 I KCY+05 LSEL i U i LOC I X i R 1+CLAD LCCAT,ALL I!Element Size For Lines I ASEL i S i AREA I I 3 LSLA CSYS, 1 LSELi Ri LOCi Y i ANGl CSYS,O LESZZEi ALL i i i 2 ASEL, S, AREA,, 2 LSLA CSYS,1 I~Qi~MPR ASSOCIATES, N~.~Calculattgn NO.08s-ne-cog".-%
*ENDDO MPR ASSOCfATES, INC.g Cafculation No,o< "< ~ 8 o~+
Prep red ay Checkr-~~>~%a By  
Prop:.".wd By C ~~i( 4(i/ Qy 9Q +V'       4
 
0 '
Path: C:iNOZZLE File:   MSH           .MAC     1,019 .a.. 3-24-94 1:39:32   pm         Page  'l0.
1
! Concatenate         Lines I
ASEL, S,AREA,,2 LSLA LSELi Ri LOCI Y I RV+TV       2 i RV+TV+2 LCCAT,ALL ASEL,S,AREA,,6 LSLA LSELiRILOCiYiRV+TVIRV+TV+81H2 1 LCCAT,ALL ASEL,S,AREA,,6 LSLA LSEL g U i LOC i Y g RV+TViRV+TV+H1 H2 1 LSELI Ui LOCi XiR4 LSEL i U g LOC i Y i KCY LCCAT,ALL ASEL,S,AREAii4 CSYS,1 LS EL I S i LOC I X I RV ~ 05 I RV+ ~ 05 CSYS,O SELi Ai LOG i Xi Rl LSLA, R KSLL,S,l LSLK,S,1 LCCAT,ALL ASEL,S,AREA,,1 LSLA LSEL i U i LOC i Y I RV+TV+H1 ~ 05 I RV+TV+H1+ 05 LSELi Ui LOCI Y i KCY 05 I KCY+ 05 LSEL i U i LOC I X i R 1+CLAD LCCAT,ALL I
!   Element Size For Lines I
ASEL i S i AREAI I 3 LSLA CSYS, 1 LSELi Ri LOCi Y i ANGl                                                   I CSYS,O                                                                                         ~ Qi ~
LESZZEi ALLi i i 2                                                   MPR ASSOCIATES,      N~.~
ASEL, S, AREA,, 2                                               Calculattgn NO. 08s- ne-cog".-%
LSLA CSYS,1                                                          Prep red ay Checkr-~ By  ~> ~%a
 
              '                                                        i
      ~  ~            v                    4 w i ~  ~  ~  ~ s  . ~  4. i ~  . ~ ~, ~
Path: C:)NOZZLE File:    MSH  .MAC 1,019 .a.. 3-24-94  1:39:32    pm            Page lQ LSELgR~LOCg YgANG1 CSYS,O LESIZEgALLggg12gl/4
!LESIZE~ALL,,~12~ 2 LSLA LSELg RJ LOCg X g R4 LESIZEgALLJ f g 12 f 4
!LESIZE~ALLg g g 12~ 2 ALLSEL LESIZEg 1 1 ~ g g 20 I
! Mesh  Areas I
ET,l,PLANE55 KEYOPT~ 1 ~ 3 g 1
* l=Axisymmetric TYPE,1 ESHAPE,2 ESIZE,3/4 MAT,1 AMESH,2 ESIZE,1/2 MAT,2 AMESH,6 MAT,3 AMESH,3,5,1 MAT,2 AMESH,1
                                                          >~~R    As8oclA768; ,
Ca(Culatian NO. Oez- WV-e4g~
p lsd Qy Cr~ecred gy        ~& I  act.      "4f Page
 
~&qMPR ASSOCIATES INC ENGINEERS Appendix C CRDR NOZZLE FINITE El EMENT MODEL MATERIALPROPERTIES
 
MPR  Associates, Inc.
taiMPR                                              320 King Street Alexandria, VA 22314 CALCULATION TITLE PAGE Client
          ~g fJQ<EQ  ~op/~/C                                              1  of m
                          /g//V/ MMI / /
Project 4E B AM n/o+RcE      -  J'r PEss gwdc-Pea'age Task          No.
gF- P4g Title                                                                  Calculation No.
                      /&#xc3;oPEWTi Ei y 8<- gal'-pZ/j-o 2 Preparer/Date          Checker/Date              Reviewer/Date            Rev. No.
Pe ~a~ c4 4y j/p(/
 
MPR  Associates,  Inc.
RMPR                                                  320.King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No.-                Prepare/ By             Checked By o4f - J J $ -fart'rt -oZ    Q /5.                $  0@
Page  g Revision                                      Description OW/6 r~+C. A J ob


~~'v 4 w i~~~~s.~4.i i~.~~,~Path: C:)NOZZLE File: MSH.MAC LSELgR~LOCg YgANG1 CSYS,O LESIZEgALLggg12gl/4
PRIMP'PR Calculation No.               Prepared  By Associates, 320 King Street Alexandria, VA 22314 Checked By Inc.
!LESIZE~ALL,,~12~
+g -gag- $3/f-0 Z                                                                Page    g
2 LSLA LSELg RJ LOCg X g R4 LESIZEgALLJ f g 12 f 4!LESIZE~ALLg g g 12~2 ALLSEL LESIZEg 1 1~g g 20 I!Mesh Areas I 1,019.a..3-24-94 1:39:32 pm Page lQ ET,l,PLANE55 KEYOPT~1~3 g 1 TYPE,1 ESHAPE,2 ESIZE,3/4 MAT,1 AMESH,2 ESIZE,1/2 MAT,2 AMESH,6 MAT,3 AMESH,3,5,1 MAT,2 AMESH,1*l=Axisymmetric
  ~Pur oee The purpose of this calculation is to document the material properties used in a finite element analysis of the Niagara Mohawk Power Corporation, Nine Mile Point Unit 1 (NMP-1) Control Rod Drive (CRD) Return Nozzle. The ANSYS computer program was used to calculate the transient temperature distribution in the nozzle. In addition, the program was used to calculate stress profiles due to pressure and due to the calculated temperature distribution. The material properties required in the analyses are:
>~~R As8oclA768;
Elastic Modulus Coefficient of Thermal Expansion Thermal Conductivity Specific Heat Poisson's Ratio Density Discussion Figure 1 shows a schematic of the CRDR nozzle outline. The nozzle model is composed of three regions with distinct material properties.
, Ca(Culatian NO.Oez-WV-e4g~p lsd Qy Cr~ecred gy~&I act."4f Page
        ~      Region 1 is the reactor vessel wall. The vessel wall material is SA 302 Grade B (Mn-1/2Mo), Reference 1.
        ~     Region 2 is the CRDR nozzle. The nozzle material is SA 336 with ASME Code Case 1236-1, Reference 1. Equivalent material is SA 508 Class 2 (3/4Ni-1/2Mo-1/3Cr-V) as discussed below.
        ~      Region 3 is the Clad, assumed to be type 308 Stainless Steel. Stainless Steel Type 304, 18Cr-8Ni material properties are a close match and are used in this analysis.
Previous finite element analyses of the feedwater nozzle used 1980 ASME Code material properties (Reference 2). In that calculation, a comparison of material chemical composition between the original 1964 specification and the 1980 Code was made. The comparison showed that for the vessel wall 1980 ASME Code material properties were equivalent. The calculation also showed that the equivalent material


~&qMPR ASSOCIATES INC ENGINEERS Appendix C CRDR NOZZLE FINITE El EMENT MODEL MATERIAL PROPERTIES
MPR  Associates,  Inc.
lxHMPR                                                    320 King Street Alexandria, VA 22314 Calculation No.                                            Checked By Page    y de-d4 5'+44-oz                                          S~ mt    ~~
property for the nozzle was SA 508 Class 2 (3/4Ni-1/2Mo-1/3Cr-V). The same material properties used in the previous calculation for the feedwater nozzle and vessel wall are used in this analysis for the CRD Return nozzle and vessel wall respectively.
Results Temperature dependent material properties are listed in Tables 1 through 3 for the reactor vessel wall, CRD Return nozzle and cladding respectively. Attachment A is a listing of the ANSYS macro MATL.MACwhich is the computer program input data for material properties. (The input data also lists heat transfer coefficients.) For all three materials, a density of 489 Ib/ft and Poisson's Ratio of 0.3 were used (Reference 3).
The reference temperature for the coefficient of thermal expansion (REFT in file MATL.MAC)is 70'F for the nozzle and vessel wall. For the cladding material, the average temperature between the downcomer and nozzle fluid temperatures at full power conditions was used for the reference temperature to approximate the residual stress state in the cladding.
Specific heat was calculated from thermal diffusivity by the following formula:
Cp= K/(Rho*TD)
Where:          Cp          Specific Heat (btu/Ib-'F)
K            Thermal Conductivity (btu/hr-ft-'F)
Rho          Density (Ib/ft )
TD          Thermal Diffusivity (ft /hr)
References Combustion Engineering Report CENC 1142, "Analytical Report For Niagara Mohawk Reactor Vessel", page A-78.
: 2.      MPR Calculation "Material Properties", task number 85-31 "Low Feed-water Flow Control", 2/28/93.
: 3.      Standard Handbook For Mechanical Engineers, Seventh Edition, pages 5-6 and 6-7.


taiMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 CALCULATION TITLE PAGE Client~g fJQ<EQ~op/~/C/g//V/MM I//Project 4E B AM n/o+RcE-J'r PEss gwdc-Pea'age 1 of m Task No.gF-P4g Title/&#xc3;oPEWTi Ei Calculation No.y 8<-gal'-pZ/j-o 2 Preparer/Date Checker/Date Reviewer/Date Rev.No.Pe~a~c4 4y j/p(/
MPR Associates, Inc.
K1MPR                                320 King Street Alexandria, VA 22314 Calculation No.     Prepared By      Checked By CtP~ -V25'- Z45-o Z ~a. w../        P0~: ~4'~               Page C>
lA 0


RMPR MPR Associates, Inc.320.King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No.-o4f-J J$-fart'rt-oZ Revision Prepare/By Q/5.Checked By$0@Description Page g OW/6 r~+C.A J ob
MPR             Associates,                   Inc.
wiiMPR                                                                                                                                          320 King Street Alexandria, VA 22314 Calculation No.                                                     Prepared                  By                                        Checked By gg~+g $ '-prZ8 -a z                                          w<W ./                                                                                                                             Page         g Table            1
                                                                , Material Properties - SA 302 Grade B Carbon Molybdenum (Mn-1/2Mo)
                                                                                                                                                                                        ;.,pe'ciho
                                                                            .;.,::.:: Exp'a'rision',"',';:~'l:,:::,:,:;:I,:';,Cor'iductiyity',";,!k::';
  ":"~sg! i%~:.,:,ii~iq'~~c'', "..'...i:,.',. ); ..."'(1 0a pepsi)~'.<<x .'-.:".::;::.;':.::::.:',::(ee'a'r'i.::,iafii'e)'.m.':~'::"::.'::I<(Btulhi;-:,':ft';,'',F)'4'::,: '::.;',';:(Btb1lb';.'',F).''jI 70                                      29.20                                7.02                                          23.3                                      .1047 100                                      29.04                                7.06                                          23.6                                     .1070 150                                      28.77                                7.16                                            24.1                                      .1110 200                                      28.50                                7.25                                            24.4                                    .1142 250                                      28.25                                7.34                                            24.6                                    ~ 1173 300                                      28.00                                7.43                                            24.7                                    .1203 350                                      27.70                                7.50                                            24.7                                    .1235 400                                      27.40                                7.58                                            24.6                                    .1264 450                                      27.20                                7.63                                            24.4                                    .1286 500                                      27.00                                7.70                                            24.2                                    .1313 550                                      26.70                                7.77                                          23.9                                      .1343 600                                      26.40                                7.83                                          23.5                                    .1361


PRIMP'PR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.+g-gag-$3/f-0 Z Prepared By Checked By Page g~Pur oee The purpose of this calculation is to document the material properties used in a finite element analysis of the Niagara Mohawk Power Corporation, Nine Mile Point Unit 1 (NMP-1)Control Rod Drive (CRD)Return Nozzle.The ANSYS computer program was used to calculate the transient temperature distribution in the nozzle.In addition, the program was used to calculate stress profiles due to pressure and due to the calculated temperature distribution.
~ i MPR            Associates,                   Inc.
The material properties required in the analyses are: Elastic Modulus Coefficient of Thermal Expansion Thermal Conductivity Specific Heat Poisson's Ratio Density Discussion Figure 1 shows a schematic of the CRDR nozzle outline.The nozzle model is composed of three regions with distinct material properties.
320 King Street Alexandria, VA 22314 Calculation No.                       Prepared                   By                                   Checked By
~Region 1 is the reactor vessel wall.The vessel wall material is SA 302 Grade B (Mn-1/2Mo), Reference 1.~Region 2 is the CRDR nozzle.The nozzle material is SA 336 with ASME Code Case 1236-1, Reference 1.Equivalent material is SA 508 Class 2 (3/4Ni-1/2Mo-1/3Cr-V) as discussed below.~Region 3 is the Clad, assumed to be type 308 Stainless Steel.Stainless Steel Type 304, 18Cr-8Ni material properties are a close match and are used in this analysis.Previous finite element analyses of the feedwater nozzle used 1980 ASME Code material properties (Reference 2).In that calculation, a comparison of material chemical composition between the original 1964 specification and the 1980 Code was made.The comparison showed that for the vessel wall 1980 ASME Code material properties were equivalent.
    -g2g- E.g/P-o 2-                                                                                                                                             Page p.
The calculation also showed that the equivalent material
Od~                                                                                           Pdb          /R~~
Table 2 Material Properties - SA 336 with Code Case 1236-1 Equivalent to SA 508 Class 2 (3/4&#xb9;i1/2Mo-1/3Cr-V)
                                                ''.":.:::Co'etficie'nt<of~~'.:,."'I Mo'du!.'Us~of
                  '.:,":Ela'sticity",:;:E:;'::,                                                'IG'ondiictiyity'.:k'',I,
                  '~"..=;;(10:::;:;psi):::;:"': ';:I:'::::.''j'(me'an'j~yaIue}<~''",'',-::,'.:, l'j<:(Btu/hr',-:,,',ft-."':,F(}':,-';:I:.-;, K,"m,'(Bi'u/ib;-";,,F}',;",'",:
i';:::;:I::(1;0;.:,.',;.~!n/iril,;,F)km'',:.,
70                29.70                                    6.41                                      23.6                                    ~ 1063 100                29.54                                    6.50                                      23.7                                    .1084 150                29.27                                    6.57                                      23.9                                .  ~ 1118 200                29.00                                  6.67                                      24.0                                    .1149 250                28.75                                  6.77                                      24.0                                    .1180 300              28.50                                    6.87                                      23.9                                    .1204 350              28.20                                    6.98                                      23.7                                  .1224 400              27.90                                    7.07                                      23.6                                    .1254 450              27.70                                    7.15                                      23.3                                    .1274 500              27.50                                    7.25                                      23.1                                    .1305 550              27.20                                    7.34                                      22.7                                    .1326 600              26.90                                    7.42                                      22.4                                    .1351 Modulus of Elasticity values are for 1/2-2Cr Chrome Molybdenum.


lxHMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.de-d4 5'+44-oz Checked By S~mt~~Page y property for the nozzle was SA 508 Class 2 (3/4Ni-1/2Mo-1/3Cr-V).
MPR Associates,                           Inc.
The same material properties used in the previous calculation for the feedwater nozzle and vessel wall are used in this analysis for the CRD Return nozzle and vessel wall respectively.
~      r>1MPR                                                                                                                                                      320 King Street Alexandria, VA 22314 Calculation No.                                                             Prepared                    By                                        Checked By dA - gg5'-8/-oz-                                                                                                                                        'in.~                                           Page       8 Po Table 3 Material Properties - Stainless Steel Type 308 Type 304 Properties Usted (18Cr-8Ni)
Results Temperature dependent material properties are listed in Tables 1 through 3 for the reactor vessel wall, CRD Return nozzle and cladding respectively.
Ni'''>>
Attachment A is a listing of the ANSYS macro MATL.MAC which is the computer program input data for material properties.(The input data also lists heat transfer coefficients.)
                                                                                                                                                                                                  '"<a,''-', >,'..:<,
For all three materials, a density of 489 Ib/ft and Poisson's Ratio of 0.3 were used (Reference 3).The reference temperature for the coefficient of thermal expansion (REFT in file MATL.MAC)is 70'F for the nozzle and vessel wall.For the cladding material, the average temperature between the downcomer and nozzle fluid temperatures at full power conditions was used for the reference temperature to approximate the residual stress state in the cladding.Specific heat was calculated from thermal diffusivity by the following formula: Cp=K/(Rho*TD)
    ,;:!Tem'jeratu'r'e">
Where: Cp K Rho TD Specific Heat (btu/Ib-'F)
r:.>M,odulus:,.",,of;:;:.;.                                                                                                                                         IS&#xc3;'Sp      Tl
Thermal Conductivity (btu/hr-ft-'F)
::,:I>Ela'sticjtj-::>E'',::'::.'','.<<'(<1 Q~;>,psl)i&py>. .,"'::;;;.:,:,::,"',;.'.(incan~;yafii'e)>>-",''-:.',':,'::,.':,:?(Btu'jar,;-'.:ft'-,,',.F)';:;,,''',':
Density (Ib/ft)Thermal Diffusivity (ft/hr)References Combustion Engineering Report CENC 1142,"Analytical Report For Niagara Mohawk Reactor Vessel", page A-78.2.MPR Calculation"Material Properties", task number 85-31"Low Feed-water Flow Control", 2/28/93.3.Standard Handbook For Mechanical Engineers, Seventh Edition, pages 5-6 and 6-7.  
70                                                      28.30                                  8.16                                            8.6                                  ~ 1165 100                                                      28.14,                                 8.55                                            8.7                                  .1170 150                                                      27.87                                  8.67                                              9.0                                  .1195 200                                                    27.60                                  8.79                                              9.3                                 .1219 250                                                    27.30                                  8.90                                            9.6                                   .1243 300                                                    27.00                                    9.00                                            9.8                                  .1253 350                                                    26.75                                    9.10                                            10.1                                  .1275 400                                                    26.50                                    9.19                                            10.4                                  .1289 450                                                  26.15                                    9.28                                            10.6                                 .1298 500                                                  25.80                                    9.37                                            10.9                                  .1311 550                                                  25.55                                    9.45                                                                                  .1320 600                                                  25.30                                    9.53                                            11.3                                  .1328


K1MPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.CtP~-V25'-Z45-o Z Prepared By~a.w../Checked By P0~:~4'~Page C>lA 0  
Path: C:)NOZZLE File:    MATL        .MAC      2,346  .a..     4-01-94 12:10:32        pm          Page g9 G=386. 4 F=3600*12 MPTEMP/    1/ 70/ 100/ 150/200/250/300 MPTEMP / 7  i 350/ 400/ 450/ 500 i 550/ 600
  !  &#xb9;1  Vessel    Wall Material        SA 302 Gr B  Carbon-molybdenum MPDATA/ EX / 1 / 1 / 29 20E6 / 29 ~ 04E6 i 28 77E6 / 28 50E6 / 28 ~ 25E6 / 28 OOE6 MPDATA/EX/ 1 / 7 / 27 ~ 70E6 i 27 ~ 40E6 / 27 ~ 20E6 / 27 ~ OOE6 / 26 ~ 70E6 / 26 ~ 40E6 MPDATA/KXX/1 / 1 / 23 3/F/ 23 ~ 6/F/ 24 ~ 1/F/ 24 ~ 4/F/ 24 ~ 6/F/ 24 ~ 7/F MPDATA/KXX/1 / 7 / 24 7/F / 24 ~ 6/F/ 24 ~ 4/F/ 24 ~ 2/F/ 23 ~ 9/F/ 23 ~ 5/F MPDATA/ALPX/1/ 1 / 7 ~ 02E 6/ 7 ~ 06E 6/ 7 ~ 16E 6/ 7 ~ 25E 6/ 7 ~ 34E 6/ 7 ~ 43E 6 MPDATA/ALPX/1 i 7/ 7 50E 6/ 7 ~ 58E 6/ 7 ~ 63E 6/ 7 70E 6/ 7 ~ 77E 6/ 7 ~ 83E 6 MPDATA,        C,1,1, .1047*G, .1070*G, .1110*G, .1142*G, .1173*G, .1203*G MPDATA/        C/1/7/ 1235*G/ 1264*G/ ~ 1286*G/ ~ 1313*G/ . 1343*G/ 1361*G MP / DENS/ 1 / 489/ 1728/G MP/NUXY/ 1/0 ~ 3 MP / REFT/ 1 i 70
!  &#xb9;2  CRDR    Nozzle Material        SA 336 MPDATA/ EX / 2 / 1 / 29 ~ 70E6 /  29 ~ 54E6 / 29 ~ 27E6 / 29 ~ OOE6 / 28 ~ 75E6 / 28 ~ 50E6 MPDATA/ EX/ 2 / 7 / 28 ~ 20E6/    27 ~ 90E6 / 27 ~ 70E6/ 27 ~ 50E6/ 27 ~ 20E6/ 26 ~ 90E6 MPDATA/KXX/2 / 1 / 23 ~ 6/F /      23 ~ 7/F/ 23 ~ 9/F/ 24 ~ 0/F/ 24 ~ 0/F/ 23 ~ 9/F MPDATA/KXX/2 / 7/ 23 ~ 7/F/        23 ~ 6/F/ 23 ~ 3/F/ 23 ~ 1/F/ 22 ~ 7/F/ 22 4/F MPDATA/ALPX/2/1/ 6 ~ 41E 6/ 6 ~ 50E 6/ 6 ~ 57E 6/ 6 ~ 67E 6/ 6 ~ 77E 6/ 6 ~ 87E 6 MPDATA/ALPX/2/7/ 6 ~ 98E 6/ 7 ~ 07E 6/ 7 ~ 15E 6/ 7 25E 6/ 7 ~ 34E 6/ 7 ~ 42E 6 MPDATA/        C/2/ 1 i    1063*G/    1084*G/  ~ 1 1 18*G/  ~ 1 149*G/    ~ 1 180*G/  ~ 1204*G MPDATA,        C,2,7, .1224*G, .1254*G, .1274*G, .1305*G, .1326*G,                        1351*G MP / DENS / 2 i 489/ 1728/G MP/NUXY/ 2 / 0 ~ 3 MP i REFT / 2 i 70
!  &#xb9;3  Clad    Material      308  Stainless Steel MPDATA/EX/3/1/ 28 30E6/ 28 14E6/ 27 ~ 87E6/ 27 60E6/ 27 30E6/ 27 OOE6
                        ~
                                                                            ~          ~
MPDATA/ EX/ 3 i 7 / 26 ~ 75E6 / 26 50E6 / 2 6 ~ 15E6 / 25 ~ 80E6 / 25 ~ 55E6
                                      ~
MPDATA/KXX/3 / 1 / 8 6/F/ 8 7/F/ 9 ~ 0/Fi 9 3/F/ 9 ~ 6/F/ 9 ~ 8/F
                                                                                    / 25 ~ 30E6
                        ~        ~
MPDATA/KXX/3 / 7/ 10 ~ 1/F/ 10 ~ 4/F/ 10 6/F/ 10 ~ 9/F/ 1 1 1/F/ 1 1 3/F
                                            ~                  ~        ~
MPDATA/ALPX/3/1/ 8 ~ 16E 6/ 8 55E 6/ 8 ~ 67E 6/ 8 ~ 79E 6/ 8 ~ 90E 6/ 9 ~ OOE 6
                                        ~
MPDATA/ALPX/3/7/ 9 ~ 10E 6/ 9 ~ 19E 6/ 9 28E 6/ 9 ~ 37E 6/ 9 45E 6/ 9 ~ 53E 6
                                                    ~                          ~
MPDATA,        C,3,1, .1165*G, .1170*G, .1195*G, .1219*G, .1243*G, 1253*G MPDATA,        C,3,7, .1275*G, .1289*G, .1298*G, .1311*G/ .1320*G, .1328*G MP / DENS / 3 / 489/ 1728/G MP/ NUXY/ 3 / 0 ~ 3 MP/ REFT/ 3 i (70+525)    /2                                          MPR ASSOCIATES, INC.
Calcutatfon No.        +~~ ~~~~+
Prepared By    +
Checked By Page


wiiMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.gg~+g$'-prZ8-a z Prepared By w<W./Checked By Page g Table 1 , Material Properties
                              ~ 'w-     ~   4 ii   ~   ~ .vows Path: C:(NOZZLE File:   MATL    .MAC    2,346  .a.. 4-01-94 12:10:32  pm      Page gr'0 g4  Heat  Transfer Coefficient  CRDR Nozzle ID HT=144*3600 MPDATAiHF~4i1~ 100 /HTi 100 /HT~ 100 /HTI 100 /HTi 100 /HTi 100 /HT MPDATAiHFi4i7I 100 /HTi 100 /HTi 100 /HTi 100 /HTI 100 /HTi 100 /HT
-SA 302 Grade B Carbon Molybdenum (Mn-1/2Mo)
! g5  Heat Transfer Coefficient  Vessel Annulus HT=144*3600 MP,HF,5, 1000 'HT MPR ASSOC)ATES, fNC.
":"~sg!i%~:.,:,ii~iq'~~c'',"..'...i:,.',.
Catculatton No. ~ ~~ ++~
);..."'(1 0a pepsi)~'.<<x
Prepared By Checked Bg Page        lO,   r
.;.,::.:: Exp'a'rision',"',';:~'l:,:::,:,:;:I,:';,Cor'iductiyity',";,!k::';
.'-.:".::;::.;':.::::.:',::(ee'a'r'i.::,iafii'e)'.m.':~'::"::.'::I<(Btulhi;-:,':ft';,'',F)'4'::,:
;.,pe'ciho
'::.;',';:(Btb1lb';.'',F).''jI 70 100 150 200 250 300 350 400 450 500 550 600 29.20 29.04 28.77 28.50 28.25 28.00 27.70 27.40 27.20 27.00 26.70 26.40 7.02 7.06 7.16 7.25 7.34 7.43 7.50 7.58 7.63 7.70 7.77 7.83 23.3 23.6 24.1 24.4 24.6 24.7 24.7 24.6 24.4 24.2 23.9 23.5.1047.1070.1110.1142~1173.1203.1235.1264.1286.1313.1343.1361
~i MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.Od~-g2g-E.g/P-o 2-Prepared By Checked By Pdb/R~~Page p.Table 2 Material Properties
-SA 336 with Code Case 1236-1 Equivalent to SA 508 Class 2 (3/4&#xb9;i1/2Mo-1/3Cr-V) 70 100 150 200 250 300 350 400 450 500 550 600 Mo'du!.'Us~of
'.:,":Ela'sticity",:;:E:;'::,'~"..=;;(10:::;:;psi):::;:"':
29.70 29.54 29.27 29.00 28.75 28.50 28.20 27.90 27.70 27.50 27.20 26.90''.":.:::Co'etficie'nt<of~~'.:,."'I
';:I:'::::.''j'(me'an'j~yaIue}<~''",'',-::,'.:, i';:::;:I::(1;0;.:,.',;.~!n/iril,;,F)km'',:., 6.41 6.50 6.57 6.67 6.77 6.87 6.98 7.07 7.15 7.25 7.34 7.42'IG'ondiictiyity'.:k'',I, l'j<:(Btu/hr',-:,,',ft-."':,F(}':,-';:I:.-;, 23.6 23.7 23.9 24.0 24.0 23.9 23.7 23.6 23.3 23.1 22.7 22.4 K,"m,'(Bi'u/ib;-";,,F}',;",'",:
~1063.1084.~1118.1149.1180.1204.1224.1254.1274.1305.1326.1351 Modulus of Elasticity values are for 1/2-2Cr Chrome Molybdenum.


~r>1MPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.dA-gg5'-8/-oz-Prepared By Checked By Po'in.~Page 8 Table 3 Material Properties
e ASSOCIATES INC.
-Stainless Steel Type 308 Type 304 Properties Usted (18Cr-8Ni)
ENGINEERS Appendix D CALCULATIONOF HEAT TRANSFER COEFFICIENTS
,;:!Tem'jeratu'r'e">
r:.>M,odulus:,.",,of;:;:.;.
::,:I>Ela'sticjtj-::>E'',::'::.'','.<<'(<1 Q~;>,psl)i&py>.
.,"'::;;;.:,:,::,"',;.'.(incan~;yafii'e)>>-",''-:.',':,'::,.':,:?(Btu'jar,;-'.:ft'-,,',.F)';:;,,''',':
Ni'''>>'"<a,''-',>,'..:<, IS&#xc3;'Sp Tl 70 100 150 200 250 300 350 400 450 500 550 600 28.30 28.14, 27.87 27.60 27.30 27.00 26.75 26.50 26.15 25.80 25.55 25.30 8.16 8.55 8.67 8.79 8.90 9.00 9.10 9.19 9.28 9.37 9.45 9.53 8.6 8.7 9.0 9.3 9.6 9.8 10.1 10.4 10.6 10.9 11.3~1165.1170.1195.1219.1243.1253.1275.1289.1298.1311.1320.1328


Path: C:)NOZZLE File: MATL.MAC 2,346.a..4-01-94 12:10:32 pm Page g9 G=386.4 F=3600*12 MPTEMP/1/70/100/150/200/250/300 MPTEMP/7 i 350/400/450/500 i 550/600!&#xb9;1-Vessel Wall Material-SA 302 Gr B-Carbon-molybdenum MPDATA/EX/1/1/29 20E6/29~04E6 i 28 77E6/28 50E6/28~25E6/28 OOE6 MPDATA/EX/1/7/27~70E6 i 27~40E6/27~20E6/27~OOE6/26~70E6/26~40E6 MPDATA/KXX/1/1/23 3/F/23~6/F/24~1/F/24~4/F/24~6/F/24~7/F MPDATA/KXX/1/7/24 7/F/24~6/F/24~4/F/24~2/F/23~9/F/23~5/F MPDATA/ALPX/
MPR  Associates, Inc.
1/1/7~02E 6/7~06E 6/7~16E 6/7~25E 6/7~34E 6/7~43E 6 MPDATA/ALPX/
taiMPR                                320 .King Street Alexandria, VA 22314 CALCULATION TITLE PAGE Client
1 i 7/7 50E 6/7~58E 6/7~63E 6/7 70E 6/7~77E 6/7~83E 6 MPDATA, C,1,1,.1047*G,.1070*G,.1110*G,.1142*G,.1173*G,.1203*G MPDATA/C/1/7/1235*G/1264*G/~1286*G/~1313*G/.1343*G/1361*G MP/DENS/1/489/1728/G MP/NUXY/1/0~3 MP/REFT/1 i 70!&#xb9;2-CRDR Nozzle Material-SA 336!&#xb9;3-Clad Material-308 Stainless Steel MPDATA/EX/3/
  ~IAMBf4'ldHAulk Pau Eg pe,POrA<lnAr                    Page  1 of  /Ql Project                                                      Task No.
1/28~30E6/28 14E6/27~87E6/27 60E6/27~30E6/27~OOE6 MPDATA/EX/3 i 7/26~75E6/26~50E6/2 6~15E6/25~80E6/25~55E6/25~30E6 MPDATA/KXX/3/1/8~6/F/8~7/F/9~0/Fi 9 3/F/9~6/F/9~8/F MPDATA/KXX/
/Mt'illg PotA)Y'PiV                  I Tit'le                                                    Calculation No.
3/7/10~1/F/10~4/F/10~6/F/10~9/F/1 1~1/F/1 1~3/F MPDATA/ALPX/3/
OVERALL. HCA7    <Rl>~f=KR. Cos'ACIE~   waR.
1/8~16E 6/8~55E 6/8~67E 6/8~79E 6/8~90E 6/9~OOE 6 MPDATA/ALPX/3/7/
t=R,DP %d+pI    5  AT NA1F'                        Opg-zoo-AB ~aZ Preparer/Date      Checker/Date    Reviewer/Date            Rev. No.
9~10E 6/9~19E 6/9~28E 6/9~37E 6/9~45E 6/9~53E 6 MPDATA, C,3,1,.1165*G,.1170*G,.1195*G,.1219*G,.1243*G, 1253*G MPDATA, C,3,7,.1275*G,.1289*G,.1298*G,.1311*G/.1320*G,.1328*G MP/DENS/3/489/1728/G MP/NUXY/3/0~3 MP/REFT/3 i (70+525)/2 MPR ASSOCIATES, INC.Calcutatfon No.+~~~~~~+Prepared By+Checked By Page MPDATA/EX/2/1/29~70E6/29~54E6/29~27E6/29~OOE6/28~75E6/28~50E6 MPDATA/EX/2/7/28~20E6/27~90E6/27~70E6/27~50E6/27~20E6/26~90E6 MPDATA/KXX/2/1/23~6/F/23~7/F/23~9/F/24~0/F/24~0/F/23~9/F MPDATA/KXX/2/7/23~7/F/23~6/F/23~3/F/23~1/F/22~7/F/22 4/F MPDATA/ALPX/2/
F~;      >-
1/6~41E 6/6~50E 6/6~57E 6/6~67E 6/6~77E 6/6~87E 6 MPDATA/ALPX/
  >l~s    /yq        8  />o/y(j
2/7/6~98E 6/7~07E 6/7~15E 6/7 25E 6/7~34E 6/7~42E 6 MPDATA/C/2/1 i 1063*G/1084*G/~1 1 18*G/~1 149*G/~1 180*G/~1204*G MPDATA, C,2,7,.1224*G,.1254*G,.1274*G,.1305*G,.1326*G, 1351*G MP/DENS/2 i 489/1728/G MP/NUXY/2/0~3 MP i REFT/2 i 70


~'w-~4 ii~~.vows Path: C:(NOZZLE File: MATL.MAC 2,346.a..4-01-94 12:10:32 pm Page gr'0 g4-Heat Transfer Coefficient
MPR  Associates, Inc.
-CRDR Nozzle ID HT=144*3600 MPDATAiHF~4i1~
WMPR                                        320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No      Prepared  By          Checked By DP5-23o- ggg-dz    egg                                            Page
100/HTi 100/HT~100/HTI 100/HTi 100/HTi 100/HT MPDATAiHFi4i7I 100/HTi 100/HTi 100/HTi 100/HTI 100/HTi 100/HT!g5-Heat Transfer Coefficient
                                                                        ~
-Vessel Annulus HT=144*3600 MP,HF,5, 1000'HT MPR ASSOC)ATES, fNC.Catculatton No.~~~++~Prepared By Checked Bg Page lO, r
Revision                            Description GP tb l~1t      tissu G


e ASSOCIATES INC.ENGINEERS Appendix D CALCULATION OF HEAT TRANSFER COEFFICIENTS
a~Mr u MPR  Associates,          Inc.
320 King Street Alexandria, VA 22314 Calculation No.          Prepared By          Checked By Page 085-z. Qo-ABC-yz                                                                    +
PAPosC 7HE    T  UR,F'asE'F 7 HIS'AI cCIL$ 7ldAJ ts Io            CAt  cOc>7G'HC AVERA~E VVe RI4L.L- HEAT TRA<5'FC R              COb, P'F(c        lEiVT Fok THg couTgaL RoD DRIVER'E'TUIZ/V (CR'DR) LINE REAcTo R V EASEL F'E NETR47 (O~ h/OWWLE
-roe.~~AL S~e,FVE          Aw    ~iYE Al~E ~<<NT ueiT (.
8 Es vL I          MD ce rV c c tJ 5 (o AID
    ~HE, ~vE-RAG-E c>>EQALL HEAT'-RID'Sf-GR Cue;FFlCl FAT
: 9)    F'cr Z  yH E'R'T) I2, Ad%7CC    ibad&'E, f  54/QFA t  g          l5 ~
0b      L.o& & PAn
                                                      /sou 2 6'eo    annAc)
(t'~~ ~)
Conn PARlSowS        o F TH KSE',55'uL.7      s Zo yAg08$
  <A<cV<ATYD gY            CE. APQ NPR    FoR THG FEED(                  Alga.
  ~oKMG~ IwDicd ASS'            HESG  RESUL.7~ ggG. QSC)SO~gggg,


taiMPR MPR Associates, Inc.320.King Street Alexandria, VA 22314 CALCULATION TITLE PAGE Client~IAMB f4'ldHA ulk Pau Eg pe,POrA<lnAr Page 1 of/Ql Project/Mt'ill g PotA)Y'PiV I Tit'le OVERALL.HCA7<Rl>~f=KR.
MPR Associates,   Inc.
Cos'ACIE~waR.t=R,DP%d+pI 5 AT NA1F'Task No.Calculation No.Opg-zoo-AB
r>~MPR                                        320 King Street Alexandria, VA 22314 Calculation No.
~aZ Preparer/Date Checker/Date Reviewer/Date Rev.No.>l~s/yq F~;>-8/>o/y(j
885-2~-A 6: P -O'Z Prepared  By
                                              /~i~  ~
Checked By Page F  CRQ g No&%          8 W 6 P]vlAL          L E.VE'-CE a.
                                          ~Ao~w L.s
                                                            ~ He,PA1AQ 5~EEV~
7o F              g.go~"(o~)                    (tpcSOu        55)
Z.gm "(rr)Q
                        /,                   5'z5 F VG ss KL.
wALl JHGRPlAt  5t EE.VE QtN E jvsI >As'        R>~      g)E-F.    (
      -unapt.E' WtnnFA S(OP        eR'o~    REF. 2
      ~gmeePAq-L ZrS Ae~ AS>V~K>.
VH~ AH@,~AL- Sot=-BVG i5 I E.LDF E i~To 7 HE A~Z7L4 5o TH~ T Qo 5lE, gpp pypA55' EA pp(-5 t5 8'~p+C7$ 5.


WMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No Prepared By DP5-23o-ggg-dz egg Revision Checked By Description Page~GP tb l~1t tissu G
~ (
MPR Associates,   Inc.
lLiMpR                                                      320 King Street Alexandria, VA 22314 Calculation No.                Prepared By              Checked By 085-zgcr -gg P - o>
Page
                                                                                        ~
c  ZcOLAYlUA'E~T TR'ANsFEg. /Ho>EL:
v8's's el    mal ~
Kq.~
I-s~~
TccDQ..,.
A o~g L.E lugged HE+7 TRAPS'FKR, F~ R'(oru(EMlZ't( Cgl                                        8 U  =  c ve gwi ~ Hzg7          < a~@    gr.c~
CoF F F'(C l E +Y "v      ~a~
lS  T'~TER~lN~D              F'%cate ~HI        DiTTUS-Boat pep Ecgu4-p c ~.-
h D,,
Cg,p~
                                =  ~.az.>Re    D
                                                  'r o.a      n iT    ~5  AsSuwKp        +~MT


a~Mr u MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.085-z.Qo-ABC-yz Prepared By Checked By Page+PAPosC 7HE T UR,F'asE'F 7 HIS'AI cCIL$7ldAJ ts Io CAt cOc>7G'HC AVERA~E VVe RI4L.L-HEAT TRA<5'FC R COb, P'F(c lEiVT Fok THg couTgaL RoD DRIVER'E'TUIZ/V (CR'DR)LINE REAcTo R V EASEL F'E NETR47 (O~h/OWWLE-roe.~~AL S~e,FVE Aw~iYE Al~E~<<NT ueiT (.8 Es vL I MD ce rV c c tJ 5 (o AID~HE,~vE-RAG-E c>>EQALL HEAT'-RID'Sf-GR Cue;FFlCl FAT 9)F'cr Z yH E'R'T)I2, Ad%7CC ibad&'E, f 54/QFA t g l5~/sou 0 b L.o&&PAn 2 6'eo annAc)(t'~~~)Conn PARlSowS o F TH KSE',55'uL.7 s Zo yAg08$<A<cV<ATYD gY CE.APQ NPR FoR THG FEED(Alga.~oKMG~IwDicd ASS'HESG RESUL.7~ggG.QSC)SO~gggg,
MPR Associates,   Inc.
WMPR                                                320 King Street Alexandria, VA 22314 Calculation No.             Prepared By           Checked By Page o8$-z.>~ -A8 P=o~                                                                  g
        $T    .7~~.    (IRATE      p) = 70 F-
                  'Pr = 6.>9 y  = o,    o3~89        ~i~
d.3 l>~         N~ Et ~
F z>-  z.ceo I'=        oav~     S+  ~ ii=~.)zi+i-(W s (z  6        2.go x(o B.lS            7SVxro+
Kgg      = CO/@DUCT i Vl'r~/          Oi- 5'7/IAILGS 5      ~<F4 lf'30$)
ate
(~e~. i-i) ox."
1.6Sl    "= u.ice
                =  EPPt VAC.gA T <<~PUC7t          V IT/ y E.TMG'GA'COAIC&VTg'1 C YLINPEl2 5 l5   FOuA l)    Prom      EXP~ g'imEm7A L COg        Q  6 LA 7 (am~
FR~V ibex>          l~   RGF. 5. SPECI~~clCLY, rHE.-
CoRRCLAq-<Ous            ARE 'EASING OAr pHe            PRoD OCT


r>~MPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.885-2~-A 6: P-O'Z Prepared By Checked By/~i~~Page F CRQ g No&%8 W 6 P]vlA L L E.VE'-CE a.~Ao~w L.s 7o F g.go~"(o~)
MPR Associates,         Inc.
~He,PA1AQ 5~EEV~(tpcSOu 55)Z.gm"(rr)Q/, 5'z5 F VG ss KL.wALl.JHGRPlAt 5t EE.VE QtN E jvsI>As'R>~-unapt.E'WtnnFA S(OP eR'o~REF.2~gmeePAq-L ZrS Ae~AS>V~K>.g)E-F.(VH~AH@,~AL-Sot=-BVG i5 I E.LDF E i~To 7 HE A~Z7L4 5o TH~T Qo 5lE, gpp pypA55'EA pp(-5 t5 8'~p+C7$5.
RMPR                                                320 King Street Alexandria,   VA     22314 Calculation No.
~(
Deg-23M-38 P=c Prepared   By Fd'age Checked By 7
lLiMpR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.085-zgcr-gg P-o>Prepared By Checked By Page~c ZcOLAYlUA'E~T TR'ANsFEg.
      &g~fg ~HGP 6-Q.g<  QRA5HoFI.           AIGAngEg "gh5'E,D o~ gA~tAc CAI' Bmu'~CW YSC. noa<CE'. A~b ~i SF-VG 2'.RWA'DTl- /QUAL. g t=R iT is AssvnnE> <HAT THF WT ~c.ao~s wRE AA0]4L g4P l 5 HALF WHF 7OTdw Q> f Ra& PblE' t'PP Fc~~       Tc T H E. REHcvap              vE5SGL Fc.UlD WE~Pez~~urzE: (s~s V),
/Ho>EL: Kq.~I-s~~v8's's el mal~TccDQ..,.A o~g L.EHE+7 TRAPS'FKR, F~R'(oru(EMlZ't(Cgl lugged 8 U=c ve gwi~Hzg7<a~@gr.c~CoF F F'(C l E+Y"v~a~lS T'~TER~lN~D F'%cate~HI DiTTUS-Boat pep Ecgu4-p c~.-h D,, o.a n=~.az.>Re'r Cg,p~D iT~5 AsSuwKp+~MT
I Z  i  = ~(S?.S          7o)  = z~a iv'z    Asgg~gy          ) HAT 7HG'VG'P-~4~ 7              lw i/L, a3 v'         s'-'
THE'oc m= 5?.6            ~   A > = Ezs'   -'~~ s)      "-  L// /      F
                                      -'3
                      = g 8?OxlD.
P 8    = o. <78
                      =
                                  </0      6 /l, Pa      @-8'8 k =e.svg6


WMPR Calculation No.o8$-z.>~-A8 P=o~Prepared By Checked By Page g MPR Associates, Inc.320 King Street Alexandria, VA 22314$T.7~~.(IRATE p)=70 F-'Pr=6.>9 y=o, o3~89~i~d.3 l>~N~Et~F z>-z.ceo I'=oav~S+~ii=~.)zi+i-(W s (z 6 2.go x(o B.lS 7SVxro+Kgg=CO/@DUCT i Vl'r~/Oi-5'7/IAILGS 5~<F4 lf'30$)ate (~e~.i-i)ox." 1.6Sl"=u.ice=EPPt VAC.gA T<<~PUC7t V IT/y E.TMG'GA'COAIC&VTg'1 C YLINPEl2 5 l 5 FOuA l)Prom EXP~g'imEm7A L COg Q 6 LA 7 (am~FR~V ibex>l~RGF.5.SPECI~~clCLY, rHE.-CoRRCLAq-<Ous ARE'EASING OAr pHe PRoD OCT
MPR Associates, Inc.
        @HAMI        R                              320 King Street Alexandria, VA 22314 Calculation No.         Prepared  By        Checked By g + 5~ 2.3'c3 ~A 8 l2-43~                        TAu'-                Page Qg =(3z..w  z~ (do~5'3 fj)(o820x(o < )Izz8 F) (g0g57g
                      =(G. 72. /    g~ )(>C<~ g,) = 9.3rA'(0 log    Ca P~ = la~[(9.aye(O )(D  88.) j = 6 92.


RMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.Deg-23M-38 P=c Prepared By Checked By Fd'age 7&g~fg~HGP 6-Q.g<-QRA5HoFI.AIGAngEg"gh5'E,D o~gA~tAc CAI'Bmu'~CW YSC.noa<CE'.A~b~i SF-VG 2'.RWA'DTl-
MPR Associates,   Inc.
/QUAL.g t=R iT is AssvnnE><HAT THF WT~c.ao~s wRE AA0]4L g4P l 5 HALF WHF 7OTdw Q>f Ra&PblE't'PP Fc~~Tc T H E.REHcvap vE5SGL Fc.UlD WE~Pez~~urzE: (s~s V), I Z i=~(S?.S-7o)=z~a iv'z Asgg~gy)HAT 7HG'VG'P-~4~
ra~MI R                                              320 King Street Alexandria, VA 22314 Calculation No.         Prepared By               Checked By Page gag -2.3o -gg g-QX                                  FCkl L Sc
7 lw THE'oc i/L, a3 v's'-'m=5?.6-~A>=Ezs'-'~~s)"-L///F P=g 8?OxlD.-'3 8=o.<78</0 6/l, Pa=@-8'8 k=e.svg6
        /Ht= gedsoWAtrgqmgs-5                  c F weKsE          we~ogT's
        /5'    j-IECKC Q>   p~/    CoW pAR,(A+ gGSUL-TS'                       0 cALcucAT 6 lo v"ALvEs'<P                        ~HG FFEQbrl7KR
      ~o ~<LE:
              /qsA 7
              ~lZ~~FCR gE'Q lom5
(~       Vg 5 g a L tug I- L
          ~O&QL-E, A/oEVCC'NI                  Om                    gGQ (om 33 cA<cocATEh            87/(<<
CW (6EVA<U.<)                                        JOO t-W (ALPS VALVE        I oaO                        )50
    /. F Ran/L R5 F. 6 + ~-Z <9.3S5UmGS'c                            i+fE.Retd&
5'I-E.EvE    xvfAss l E.At.4C E Fzow gGF~. clssduE~         s'f ~ ~Hze~gt          s~zzys hyPA5'5.


@HAMI R MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.g+5~2.3'c3~A 8 l2-43~Prepared By Checked By TAu'-PageQg=(3z..w z~(do~5'3 fj)(o820x(o
0 MPR Associates,                       Inc.
<)Izz8 F)(g0g57g=(G.72./g~)(>C<~g,)=9.3rA'(0 log Ca P~=la~[(9.aye(O
r>~MPR                                            320 King Street Alexandria, VA 22314 Calculation No.             Prepared  By          Checked By o6'S-2.3 o -A II 12-o L    ~+                        T<<~ lQ                                    Page    /~
)(D 88.)j=6 92.
VALUE'ALCULII EL Fak ~HE                          CR~g.       ~<+~LE Is'HE        SAWE          AS cate CuI AT E D ~ok <HC                                          FW NOZZLE HP2)                Sd    IS'oWS IDEE'GZ) F-GAIN ABLE, RzFF          bee i) ~Z DgAu (N+ (ggQ+84/                  DRIVE ~CITY@    REER~                            lA'L-GT
    ) CE:  ~R/I&(No      E  23I--5.'67, psv. 7,  /I/aW'ELK DE>"AILS I/E-S S6 L HEAT WRA&#xc3;sFER/ 9TH                EpITlo&I    CHANC    A/I//l98 I l) CRC HA//DEoo g Fo                PPL(ED EmG I'A'EEI2I//S5CI.E//c                          E'A b  eyIVIO~.
: 5)   HEAT A//l0    f11 Fl$ 5  T A/vSFEE'    ECKEZT 'Aml> DRAPE/                                  /955'P P'3<7-  33 /,
: 6) GEPGP~P'T              /I/EDE -~l IEZ I., BaILI~O IaAT+R.
LE/S PA E'@EP 'FI//Al      RE.PORT REACTOR'EEDI//ATEgAO'W~
bATF 0     en~ Rg5 l9Vg'.
  -7) /NPP REPoRT ZbIPPaVEQ Lou/ FLoloFEEloI /ITEP Ca//TRoL SV57E/I/I i&TED'RIAL /PS'9 SECT/aW /.7 .(Fo'EM/APIIE5 7o P. AnA~~AFGRR4 cV Ar~p< Ey LEMER, DARED JI/~E I,    Isev),


ra~MI R MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.gag-2.3o-gg g-QX Prepared By Checked By FCkl L Sc Page/Ht=gedsoWAtrgqmgs-5 c F weKsE we~ogT's/5'j-IECKC Q>p~/CoW pAR,(A+gGSUL-TS'0 cALcucAT 6 lo v"ALvEs'<P
ASSOCIATES INC.
~HG FFEQbrl7KR
ENGINEERS Appendix E CRDR NOZZLE FINITE ELEMENT MODEL BOUNDARY CONDITIONS AND RESULTS
~o~<LE:/qsA 7 (~Vg 5 g a L tug I-L~lZ~~FCR gE'Q lom5~O&QL-E, A/oEVCC'NI Om cA<cocATEh gGQ (om 33 87/(<<CW (6EVA<U.<)
t-W (ALPS VALVE I oaO JOO)50/.F Ran/L R5 F.6+~-Z<9.3S5UmGS'c i+fE.Retd&
5'I-E.EvE xvfAss l E.At.4C E Fzow gGF~.clssduE~s'f~~Hze~gt s~zzys hyPA5'5.
0 r>~MPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.Prepared By o6'S-2.3 o-A II 12-o L~+Checked By T<<~lQ Page/~VALUE'ALCULI I EL Fak~HE CR~g.~<+~LE Is'HE SAWE AS cate CuI AT E D~ok<HC FW NOZZLE HP2)Sd IS'oWS IDEE'GZ)F-GAIN ABLE, RzFF bee i)~Z DgAu (N+(ggQ+84/DRIVE~CITY@REER~lA'L-GT)CE:~R/I&(No E 23I--5.'67, psv.7,/I/aW'ELK DE>"AILS I/E-S S6 L HEAT WRA&#xc3;sFER/9TH EpITlo&I CHANC A/I//l98 I l)CRC HA//DEoo g Fo PPL(ED EmG I'A'EEI2I//S5CI.E//c E'A b eyIVIO~.5)HEAT A//l0 f11 Fl$5 T A/vSFEE'ECKEZT'Aml>DRAPE//955'P P'3<7-33/, 6)GEPGP~P'T/I/EDE-~l IEZ I., BaILI~O IaAT+R.REACTOR'EEDI//ATEgAO'W~
LE/S PA E'@EP'FI//Al RE.PORT bATF 0 en~Rg5 l9Vg'.-7)/NPP REPoRT ZbIPPaVEQ Lou/FLoloFEEloI
/ITEP Ca//TRoL SV57E/I/I i&TED'RIAL/PS'9 SECT/aW/.7.(Fo'EM/APIIE5 7o P.AnA~~AFGRR4 cV Ar~p<Ey LEMER, DARED JI/~E I, Isev),


ASSOCIATES INC.ENGINEERS Appendix E CRDR NOZZLE FINITE ELEMENT MODEL BOUNDARY CONDITIONS AND RESULTS
MPR  Associates,    Inc.
lLimpR                                              320 King Street Alexandria, VA 22314 CALCULATION TITLE PAGE Client
          ~    ~~      ~gp/~/g Page  1  of  gq
          +//L/g W/Qg      / 0/rv/  ~~// /
Project                                                                  Task No.
g~ / ~~~      ~o pygmy    rT /Q                      0Z~
Title                                                                Calculation No.
go~~p~pY      Anted /77 @AS  ~i>  ZF~ur- I~              ~- P29-Ct~d-o3 Preparer/Date              Checker/Date          Reviewer/Date            Rev. No.
az. 8 .'/            g <g.'7~
Z-Z/- 5'y


lLimpR MPR Associates, Inc.320 King Street Alexandria, VA 22314 CALCULATION TITLE PAGE Client~~~~gp/~/g+//L/g W/Qg/0/rv/~~///Page 1 of gq Project g~/~~~~o pygmy rT/Q Task No.0Z~Title go~~p~pY Anted/77@AS~i>ZF~ur-I~Calculation No.~-P29-Ct~d-o3 Preparer/Date az.8.'/Z-Z/-5'y Checker/Date g<g.'7~Reviewer/Date Rev.No.
MPR Associates,   Inc.
txrMPR                                      320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No..       Prepared By 080= PP 9 - Fd'rs - y3                                            Page Revision                              Description 0+1+ pv<r  rO'J vP


txrMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No..080=PP 9-Fd'rs-y3 Revision RECORD OF REVISIONS Prepared By Description Page 0+1+pv<r rO'J vP
MPR Associates,     Inc.
t>IMPR                                                    320 King Street Alexandria, VA 22314 Calculation No.               Prepared  By dd~- cVW- ggg-o J                                                                  Page   ~
Purpose The purpose of this calculation is to document the boundary conditions and results of a finite element analysis of the Niagara Mohawk Power Corporation, Nine Mile Point Unit 1 (NMP-1) Control Rod Drive (CRD) Return Nozzle. A transient thermal/stress analysis simulating a reactor scram was performed. References 1 and 2 are calculations which document the finite element model geometry and material properties.
The ANSYS computer program (Reference 3) was used to calculate the transient temperature distribution in an axisymmetric model of the nozzle. The program was then used to calculate stress profiles due to pressure and due to the calculated temperature distribution. The results of this analysis, in the form of stress distributions through the bore/blend section of the nozzle, will be used in a fatigue and crack growth evaluation of the CRD return nozzle.
Discussion The CRD system provides water from the condensate storage tank at a temperature of about 70'F to the control rod drive mechanisms to cool the control rod drives, to reposition rods and to scram the rods. The system operates at all times that fuel is in the vessel. Excess fiow from the CRD pumps is routed to the reactor vessel via the CRD return nozzle. Consequently, flow through the CRD return nozzle is typical.
Nominal CRD return flow rate is 17 to 35 gpm. The flow rate does not change as a result of repositioning a control rod since the flow diverted to move the rod is compensated by the water displaced by the rod.
A reactor scram results in a CRD return nozzle flow transient (Reference 4). During a scram, the CRD accumulators discharge to drive the control rods into the core. this results in an increase in CRD return flow to 65 gpm. When accumulator pressure drops below reactor pressure, CRD flow rate goes to zero as the accumulators are recharged. After the accumulators have been recharged, CRD flow rate returns to the nominal 17 to 35 gpm.
The last portion of the reactor scram transient is simulated in this calculation. At time zero the nozzle is at a uniform temperature of 525'F corresponding to zero flow through the CRD return nozzle as the accumulators are recharged. At 1 second into the transient, the CRD return flow rate is step changed to the nominal flow rate of 35


t>IMPR Calculation No.dd~-cVW-ggg-o J Prepared By MPR Associates, Inc.320 King Street Alexandria, VA 22314 Page~Purpose The purpose of this calculation is to document the boundary conditions and results of a finite element analysis of the Niagara Mohawk Power Corporation, Nine Mile Point Unit 1 (NMP-1)Control Rod Drive (CRD)Return Nozzle.A transient thermal/stress analysis simulating a reactor scram was performed.
MPR   Associates,     Inc.
References 1 and 2 are calculations which document the finite element model geometry and material properties.
l41MPR                                                    320 King Street Alexandria, VA 22314 Calculation No.              Prepared                  Checked By os%- >z 1 wed- o 7 By gR~                        Page     ~
The ANSYS computer program (Reference 3)was used to calculate the transient temperature distribution in an axisymmetric model of the nozzle.The program was then used to calculate stress profiles due to pressure and due to the calculated temperature distribution.
gpm with a fluid temperature of 70'F. A pressure of 1250 psig is applied to the inside surface of the reactor vessel wall and the inside of CRD return nozzle throughout the transient (nominal reactor pressure is 1030 psig, scram pressure is 1250 psig).
The results of this analysis, in the form of stress distributions through the bore/blend section of the nozzle, will be used in a fatigue and crack growth evaluation of the CRD return nozzle.Discussion The CRD system provides water from the condensate storage tank at a temperature of about 70'F to the control rod drive mechanisms to cool the control rod drives, to reposition rods and to scram the rods.The system operates at all times that fuel is in the vessel.Excess fiow from the CRD pumps is routed to the reactor vessel via the CRD return nozzle.Consequently, flow through the CRD return nozzle is typical.Nominal CRD return flow rate is 17 to 35 gpm.The flow rate does not change as a result of repositioning a control rod since the flow diverted to move the rod is compensated by the water displaced by the rod.A reactor scram results in a CRD return nozzle flow transient (Reference 4).During a scram, the CRD accumulators discharge to drive the control rods into the core.this results in an increase in CRD return flow to 65 gpm.When accumulator pressure drops below reactor pressure, CRD flow rate goes to zero as the accumulators are recharged.
Details of the thermal and structural boundary conditions are discussed below.
After the accumulators have been recharged, CRD flow rate returns to the nominal 17 to 35 gpm.The last portion of the reactor scram transient is simulated in this calculation.
Thermal Bounda Conditions for the reactor scram transient are shown on Figure 1 and discussed below. At time zero the CRD return nozzle and reactor vessel wall are at a uniform temperature of 525'F corresponding to the bulk downcomer fluid temperature. The overall heat transfer coefficient between the downcomer fluid and the vessel wall is assumed to be 1000 Btu/(hr-ft -'F). This is the value used in prior analyses for the feedwater nozzle. At 1 second into the transient, the bulk fluid temperature in the CRD return nozzle is step changed to 70'F. The overall heat transfer coefficient between the CRD return fluid and the nozzle wall is 100 Btu/(hr-ft-
At time zero the nozzle is at a uniform temperature of 525'F corresponding to zero flow through the CRD return nozzle as the accumulators are recharged.
  'F). The heat transfer coefficient in the nozzle includes the effects of the fluid film on the inside diameter of the thermal sleeve, conduction through the thermal sleeve, and natural convection through the stagnant layer between the thermal sleeve and the nozzle bore. Reference 5 is a calculation of the overall heat transfer coefficient between the CRD return fluid and the nozzle inside surface.
At 1 second into the transient, the CRD return flow rate is step changed to the nominal flow rate of 35
The outside of the vessel wall, the outside of the nozzle and the radial cut lines through the vessel wall and safe end are modeled as adiabatic (no heat flow across the surface).
Structural Bounda Conditions include applied pressure and displacement constraints. Figure 2 shows the applied pressure along the inside surface of the reactor vessel wall and the inside surface of the CRD return nozzle. The applied pressure on these surfaces is 1250 psig. A pressure is also applied to the safe end to represent the axial load in the attached piping, The value of the pressure applied to the safe end is calculated as follows (dimensions are from Reference 1):
Aint          pi*R12              13.34 in Fl            Pint"Aint          16681. Ibf Al            pi*(R3 -R1 ) =      5.803 in Pend  =      FI/AI              2875. psi Where:


l41MPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.os%->z 1 wed-o 7 Prepared By Checked By gR~Page~gpm with a fluid temperature of 70'F.A pressure of 1250 psig is applied to the inside surface of the reactor vessel wall and the inside of CRD return nozzle throughout the transient (nominal reactor pressure is 1030 psig, scram pressure is 1250 psig).Details of the thermal and structural boundary conditions are discussed below.Thermal Bounda Conditions for the reactor scram transient are shown on Figure 1 and discussed below.At time zero the CRD return nozzle and reactor vessel wall are at a uniform temperature of 525'F corresponding to the bulk downcomer fluid temperature.
0 MPR   Associates, Inc.
The overall heat transfer coefficient between the downcomer fluid and the vessel wall is assumed to be 1000 Btu/(hr-ft
RMPR                                                          320 King Street Alexandria, VA 22314 Calculation No.               Prepared   By oN- d4f - F4ss'-oZ                                       7K~                       Page Aint         Inside area of safe end (in )
-'F).This is the value used in prior analyses for the feedwater nozzle.At 1 second into the transient, the bulk fluid temperature in the CRD return nozzle is step changed to 70'F.The overall heat transfer coefficient between the CRD return fluid and the nozzle wall is 100 Btu/(hr-ft-
R1            Safe end inside diameter = 2.061 inches Pint          Internal pressure = 1250 psig Fl            Longitudinal force (Ibf)
'F).The heat transfer coefficient in the nozzle includes the effects of the fluid film on the inside diameter of the thermal sleeve, conduction through the thermal sleeve, and natural convection through the stagnant layer between the thermal sleeve and the nozzle bore.Reference 5 is a calculation of the overall heat transfer coefficient between the CRD return fluid and the nozzle inside surface.The outside of the vessel wall, the outside of the nozzle and the radial cut lines through the vessel wall and safe end are modeled as adiabatic (no heat flow across the surface).Structural Bounda Conditions include applied pressure and displacement constraints.
AI            Cross sectional area of safe end R3            Safe end outside diameter = 2A69 inches Pend  =      Pressure applied to the safe end (psi)
Figure 2 shows the applied pressure along the inside surface of the reactor vessel wall and the inside surface of the CRD return nozzle.The applied pressure on these surfaces is 1250 psig.A pressure is also applied to the safe end to represent the axial load in the attached piping, The value of the pressure applied to the safe end is calculated as follows (dimensions are from Reference 1): Aint Fl Al Pend=Where: pi*R12 Pint"Aint pi*(R3-R1)=FI/AI 13.34 in 16681.Ibf 5.803 in 2875.psi 0
Figure 3 shows the displacement boundary conditions applied to the end of the reactor vessel wall. Symmetry boundary conditions are applied to permit radial displacement along the cut line but to prohibit rotation of the cut line. Figure 4 shows the displacement boundary conditions applied to the safe end. Couples are used to allow translation of the safe end cut line but to prohibit rotation of the cut line.
RMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.oN-d4f-F4ss'-oZ Prepared By 7K~Page Aint R1 Pint Fl AI R3 Pend=Inside area of safe end (in)Safe end inside diameter=2.061 inches Internal pressure=1250 psig Longitudinal force (Ibf)Cross sectional area of safe end Safe end outside diameter=2A69 inches Pressure applied to the safe end (psi)Figure 3 shows the displacement boundary conditions applied to the end of the reactor vessel wall.Symmetry boundary conditions are applied to permit radial displacement along the cut line but to prohibit rotation of the cut line.Figure 4 shows the displacement boundary conditions applied to the safe end.Couples are used to allow translation of the safe end cut line but to prohibit rotation of the cut line.Results The peak stress intensity occurs at the end of the transient when steady state conditions have been reached.Figure 5 shows the time history of stress intensity at several nodes in the bore/blend region.The stresses shown in the time history are at the cladding to base metal interface.
Results The peak stress intensity occurs at the end of the transient when steady state conditions have been reached. Figure 5 shows the time history of stress intensity at several nodes in the bore/blend region. The stresses shown in the time history are at the cladding to base metal interface.
Figure 6 shows the calculated temperature distribution at the end of the transient.
Figure 6 shows the calculated temperature distribution at the end of the transient.
The peak stress intensity in the base metal for the transient occurs at node 806 in the bore blend region of the nozzle at the base metal to cladding interface (Attachment A).The peak stress intensity at node 806 due to temperature and pressure is 110 ksi.The stress intensity due to pressure alone at node 806 is 65 ksi.The principal component of the stress intensity is the hoop stress.Color coded contour plots of stress distribution are shown in Figures 7 through 10 for pressure only loading (time zero of the transient).
The peak stress intensity in the base metal for the transient occurs at node 806 in the bore blend region of the nozzle at the base metal to cladding interface (Attachment A).
Figures 11 through 14 show stress distributions at the end of the reactor scram transient for pressure and temperature loading.Four plots are shown for each loading: Stress intensity, ASME code or Tresca stress intensity, Hoop stress, the Z component of stress for the axisymmetric model,~X component stress, interpreted as a second hoop stress for the e 0 lLiMpR Calculation No.ogJ-g2 g-flag-cg Prepared By Z.N.N~cl MPR Associates, Inc.320 King Street Alexandria, VA 22314 Page spherical model of the vessel wall, Y component stress, interpreted as axial stress in the nozzle region.Figures 15 and 16 show the locations of nodes 806 and 14.Node 806 is the point of maximum stress intensity at the interface between the cladding and the base metal.Node 14 is the point of maximum stress intensity on the outside surface of the nozzle/vessel intersection.
The peak stress intensity at node 806 due to temperature and pressure is 110 ksi.
A straight line (path)is drawn from node 806 to node 14 and the stress intensity values are interpolated onto the path (Figure 11 shows the interpolation path).Figures 17 and 18 show stress intensity along this path for the pressure only case and the pressure and temperature case.Attachment B is a tabular listing of the stress versus path length values for Figures 17 and 18.Attachments C and D provide the ANSYS input data for the thermal and stress passes of the analysis.Reference 6 is the hard copy output file for the both the thermal and stress passes.References 1.MPR Calculation 085-229-EBB-01,"CRDR Nozzle Finite Element Model Geometry".
The stress intensity due to pressure alone at node 806 is 65 ksi. The principal component of the stress intensity is the hoop stress.
2.MPR Calculation 085-229-EBB-02,"CRDR Nozzle Finite Element Model Material Properties", Revision 0.3.ANSYS computer program version 5.0.MPR Calculation 085-230-ABR-01,"Nine Mile Point Unit 1, Control Rod Drive Return Nozzle Thermal and Pressure Cycles", Revision 1.5.MPR Calculation 085-230-ABR-02,"Over all Heat Transfer Coefficient For CRDR Nozzle at NMP-1", Revision 0.6.ANSYS output file NOZZLE.OUT, 87,853 bytes dated 4-04-94 3:45:28 pm.
Color coded contour plots of stress distribution are shown in Figures 7 through 10 for pressure only loading (time zero of the transient). Figures 11 through 14 show stress distributions at the end of the reactor scram transient for pressure and temperature loading. Four plots are shown for each loading:
Stress intensity, ASME code or Tresca stress intensity, Hoop stress, the Z component of stress for the axisymmetric model,
        ~     X component stress, interpreted as a second hoop stress for the
 
e 0


ANSYS 5.0 APR 7 1994 12:00:41 PLOT NO.2 NODES TYPE NUM CONV ZV=1 DIST=25.552 XF=25.29 YF=347.745~g-0 I=p g=/Ego Heat Transfer Boundary Conditions
MPR  Associates,  Inc.
lLiMpR                                                      320 King Street Alexandria, VA 22314 Calculationflag-cg No.            Prepared  By Page ogJ - g2 g-                Z.N. N~cl spherical model of the vessel wall, Y component stress, interpreted as axial stress in the nozzle region.
Figures 15 and 16 show the locations of nodes 806 and 14. Node 806 is the point of maximum stress intensity at the interface between the cladding and the base metal.
Node 14 is the point of maximum stress intensity on the outside surface of the nozzle/vessel intersection. A straight line (path) is drawn from node 806 to node 14 and the stress intensity values are interpolated onto the path (Figure 11 shows the interpolation path). Figures 17 and 18 show stress intensity along this path for the pressure only case and the pressure and temperature case. Attachment B is a tabular listing of the stress versus path length values for Figures 17 and 18.
Attachments C and D provide the ANSYS input data for the thermal and stress passes of the analysis.
Reference 6 is the hard copy output file for the both the thermal and stress passes.
References
: 1.      MPR Calculation 085-229-EBB-01, "CRDR Nozzle Finite Element Model Geometry".
: 2.      MPR Calculation 085-229-EBB-02, "CRDR Nozzle Finite Element Model Material Properties", Revision 0.
: 3.      ANSYS computer program version 5.0.
MPR Calculation 085-230-ABR-01, "Nine Mile Point Unit 1, Control Rod Drive Return Nozzle Thermal and Pressure Cycles", Revision 1.
: 5.     MPR Calculation 085-230-ABR-02, "Over all Heat Transfer Coefficient For CRDR Nozzle at NMP-1", Revision 0.
: 6.     ANSYS output file NOZZLE.OUT, 87,853 bytes dated 4-04-94 3:45:28 pm.


ANSYS 5.0 APR 7 1994 11:59:26 PLOT NO.1 NODES TYPE NUM PRES P8P<PZg cyylrccf~gag-g<~+~JJu~ZV=1 DIST=25.552 XF=25.29 YF=347.745~~QJIQ 4/pl]eel+~J C M Pressure Boundary Conditions r/'Cut 6
ANSYS 5.0 APR 7 1994 12:00:41 PLOT NO. 2 NODES TYPE NUM CONV ZV =1 DIST=25.552 XF =25.29 YF =347.745
      ~ g -0 I=
p g = /Ego Heat Transfer Boundary Conditions


ANSYS 5'APR 7 1994 12:03:24 PLOT NO.3 NODES TYPE NUM U ZV=1 DIST=25.552 XF=25.29 YF=347.745+r'I'/III I I I I I I I i I I I I~~~~Iiiiiii Structural Boundary Conditions
ANSYS 5.0 APR 7 1994 11:59:26 PLOT NO. 1 NODES TYPE NUM PRES ZV   =1 DIST=25.552 XF =25.29 P8P< PZg cyylrccf ~gag-g<~    +~ JJu~  YF =347.745
-Radial Symmetry ,~/Q U/Z&
                    ~~ QJIQ 4/pl] eel +~J  C M Pressure Boundary Conditions                     r /'Cut 6


ANSYS 5'APR 7 1994 12:05:05 PLOT NO.4 NODES TYPE NUM CP/OA c.+a!1~ZV=1 DIST=25.552 ZF=25.29 YF=347.745 A"~1';~,~~~~~~~~//IIIII I I I I I I I I I I I I I I I I I I I I I I I I I I I I I Structural Boundary Conditions
ANSYS 5 '
-No Rotation at Safe End g-((-ug C
APR 7 1994 12:03:24 PLOT NO. 3 NODES TYPE NUM U
ZV   =1 DIST=25.552 XF =25.29 YF =347.745
    +r'I'/III I I I I I I I i I I I I Iiiiiii
                                      ~ ~ ~ ~
Structural Boundary Conditions - Radial      Symmetry  ,~/Q U/Z &


ANSYS 5.0 (x 10442)105 SZ-806 100 90 SZ-803 SZ-806 SZ-805 SZ 807 85 800 75 70 650 60 S50 0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800 5200 Ti me (Sec)Reactor Scram Transient+/&u/Z~  
ANSYS 5 '
APR 7 1994 12:05:05 PLOT NO. 4 NODES TYPE NUM CP ZV  =1 DIST=25.552
                                          /OA        c.
ZF =25.29 YF =347.745
                              +a        !1~
A" ~
1'; ~,
    //IIIIII
          ~ ~ ~ ~ ~ ~  ~ ~
I I I I I I I I I I  I I I I I I I I I I I I I I I I I I Structural Boundary Conditions                            No    Rotation at Safe    End          g-((- ug C


ANSYS 5.0 APR 4 1994 16:33:47 PLOT NO.1 NODAL SOLUTION STEP=2 SUB=21 TIME=3601 TEMP TEPC=9.434 SMN=88.846 SMX=523.562 88.846 100 200 300 400 500 600 Reactor Scram, Temperature Profile+/5-u4C-.
ANSYS 5.0
( x 10442) 105                                                                SZ-806 100 SZ-803 SZ-806 SZ-805 SZ 807 90 85 800 75 70 650 60 S50 0    800      1600      2400      3200      4000      4800 400     1200      2000      2800      3600      4400      5200 Ti  me    (  Sec)
Reactor Scram Transient                                                        +/&u/Z~


~g tt"'~S iSQSy S fS)9 ANSYS 5.0 APR 4 1994 16:32:56 PLOT NO.1 NODAL SOLUTION STEP=1 SUB=1 TIME=1 SINT (AVG)DMX=1.501 SMN=1421 SMNB=920.904 SMZ=66400 SMKB=72225 1421 8641 15861 23081 30300 37520 44740 51960 59180 66400 Pressure Only, Stress Intensity P/6 u4 E'
ANSYS 5.0 APR 4 1994 16:33:47 PLOT NO.     1 NODAL SOLUTION STEP=2 SUB =21 TIME=3601 TEMP TEPC=9.434 SMN =88.846 SMX  =523.562 88.846 100 200 300 400 500 600 Reactor Scram, Temperature Profile  +/5-u4C-.


ANSYS 5.0 APR 4 1994 16:33:00 PLOT NO.2 NODAL SOLUTION STEP=1 SUB=1 TIME=1 SZ (AVG)RSYS=O DMX=1.501 SMN=-22178 SMNB=-30892 SMX=63262 SMXB=68966
ANSYS 5.0 APR 4 1994 16:32:56 PLOT NO. 1 NODAL SOLUTION STEP=1 SUB =1 TIME=1 SINT      (AVG)
-22178-12685-3192 6302 15795 25288 34782 44275 53769 63262 Pressure Only, Hoop Stress Erbv~g 8
DMX =1.501 SMN =1421 SMNB=920.904 SMZ =66400 SMKB=72225 1421 8641 15861 23081 30300 37520
                    ~g  tt"'~                    44740 S  iSQSy S
51960 fS                          59180 66400
                                        ) 9 Pressure Only, Stress         Intensity      P/6 u4 E'


S$.E..e C ANSYS 5.0 APR 4 1994 16:33:03 PLOT NO.3 NODAL SOLUTION STEP=1 SUB=1 TIME=1 SX (AVG)RSYS=O DMX=1.501 SMN=-3074 SMNB=-13025 SMZ=42194 SMZB=46227
ANSYS 5.0 APR 4 1994 16:33:00 PLOT NO. 2 NODAL SOLUTION STEP=1 SUB =1 TIME=1 SZ        (AVG)
-3074 1956 6986 12015 17045 22075 27104 32134 37164 42194 Pressure Only, X Component Stress P/'bu/ZC
RSYS=O DMX =1.501 SMN =-22178 SMNB=-30892 SMX =63262 SMXB=68966
                                -22178
                                -12685
                                -3192 6302 15795 25288 34782 44275 53769 63262 Pressure Only, Hoop Stress Erbv~g    8


ANSYS 5.0 APR 4 1994 16:33:06 PLOT NO.4 NODAL SOLUTION STEP=1 SUB=1 TIME=1 SY (AVG)RSYS=O DMX=1.501 SMN=-23031 SMNB=-32313 SMX=4943 SMXB=9878-23031-19923-16815-13706-10598-7490-4382-1273 1835 4943 Pressure Only, Y Component Stress.g/gu/Z&/0
ANSYS 5.0 APR 4 1994 16:33:03 PLOT NO. 3 NODAL SOLUTION STEP=1 SUB =1 TIME=1 SX        (AVG)
RSYS=O DMX =1.501 SMN =-3074 SMNB=-13025
                      .e SMZ  =42194 E.
SMZB=46227 C
                                          -3074 S
1956 6986 12015 17045 22075 27104 32134 37164 42194 Pressure Only,   X Component Stress   P/'bu/ZC


~~q~</'oc-8 77onf/~(ANSYS 5.0 APR 4 1994 16:33:25 PLOT NO.5 NODAL SOLUTION STEP=14 SUB=1 TIME=3600 SINT (AVG)DMX=1.46 SMN=3550 SMNB=2589 SMX=95834 SMXB=104406 3550 13804 24057 34311 44565 54819 65072 75326 85580~95834 X~sS W~oW Reactor Scram, Stress Intensity y4-&,c.//  
ANSYS 5.0 APR 4 1994 16:33:06 PLOT NO.     4 NODAL SOLUTION STEP=1 SUB =1 TIME=1 SY          (AVG)
RSYS=O DMX =1.501 SMN =-23031 SMNB=-32313 SMX =4943 SMXB=9878
                                        -23031
                                        -19923
                                        -16815
                                        -13706
                                        -10598
                                        -7490
                                        -4382
                                        -1273 1835 4943 Pressure Only, Y Component Stress   .g/gu/Z &  /0


ANSYS 5.0 APR 4 1994 16:33:28 PLOT NO.6 NODAL SOLUTION STEP=14 SUB=1 TIME=3600 SZ (AVG)RSYS=O mX=1.46 SMN=-44957 SMNB=-61709 Sm=98365 SMXB=106937
ANSYS 5.0 APR 4 1994 16:33:25 PLOT NO. 5 NODAL SOLUTION STEP=14 SUB =1 TIME=3600 SINT      (AVG)
-44957-29032-13108 2817 18742 34666 50591 66516 82440 98365 Reactor Scram, Hoop Stress.+J+u/C~
DMX  =1.46 SMN =3550 SMNB=2589 SMX  =95834 SMXB=104406 3550 13804 24057 34311 44565 54819
                                ~~q~< /'oc-8 77onf /~(        65072 75326 85580
                                                      ~
95834 X~sS W~oW Reactor Scram, Stress Intensity                            y4-&,c. //


4+z c:t$a.~ANSYS 5.0 APR 4 1994 16:33:31 PLOT NO.7 NODAL SOLUTION STEP=14,'UB
ANSYS 5.0 APR 4 1994 16:33:28 PLOT NO.     6 NODAL SOLUTION STEP=14 SUB =1 TIME=3600 SZ          (AVG)
=1 TIME=3600 SX (AVG)RSYS=O DMX=1.46 SMN=-5953 SMNB=-23928 SMX=65837 SMXB=70794
RSYS=O mX =1.46 SMN =-44957 SMNB=-61709 Sm =98365 SMXB=106937
-5953 2023 10000 17977 25953 33930 41907 49883 57860 65837 Reactor Scram, X Component Stress  
                                  -44957
                                  -29032
                                  -13108 2817 18742 34666 50591 66516 82440 98365 Reactor Scram, Hoop Stress   . +J+u/C~


ANSYS 5.0 APR 4 1994 16.33.35 PLOT NO.8 NODAL SOLUTION STEP=14 SUB=1 TIME=3600 SY (AVG)RSYS=O DMX=1.46 SMN=-45246 SMNB=-61830 SMX=18196 SMXB=20255
ANSYS 5.0 APR 4 1994 16:33:31 PLOT NO.           7 NODAL SOLUTION STEP=14,'UB
-45246-38197-31148-24099-17050-10001-2952 4098 11147 18196 Reactor Scram, Y Component Stress~g~d.v/Z0/'/
                                              =1 TIME=3600 SX                (AVG)
RSYS=O DMX         =1.46 SMN         =-5953 4 +z                  SMNB=-23928 c
:t$ a SMX         =65837
                    . ~          SMXB=70794
                                              -5953 2023 10000 17977 25953 33930 41907 49883 57860 65837 Reactor Scram, X Component Stress


822 831 833 83l 835$36$37 838 839$l0$41$42 843$44 845$46$47$48 849 ANSYS 5.0 APR 7 1994 12:23:22 PLOT NO.1 NODES NODE NUM ZV=1*DIST=1.386
ANSYS 5.0 APR 4 1994 16.33.35 PLOT NO.       8 NODAL SOLUTION STEP=14 SUB =1 TIME=3600 SY          (AVG)
*XF=5.994*YF=348.819 141 2140 14 82 1139 2138 1137 1136$135 2134 1133 2132 3131 2130 13 Node Numbers-OD 253 164 275+/&v/z.C/J
RSYS=O DMX  =1.46 SMN  =-45246 SMNB=-61830 SMX  =18196 SMXB=20255
                                        -45246
                                        -38197
                                        -31148
                                        -24099
                                        -17050
                                        -10001
                                        -2952 4098 11147 18196 Reactor Scram, Y Component Stress  ~ g~d.v/Z0  /'/


$03 l323 l300$04 l322 l301$05 l321 l302$65$64$63 948 920$92 947 919 946 945 ANSYS 5.0 APR 7 1994 12:27:42 PLOT NO.2 NODES NODE NUM ZV=1*DIST=2.621
ANSYS 5.0 822                                                                  APR 7 1994 831                                                                  12:23:22 PLOT NO. 1 NODES 833 NODE NUM 83l 835                                                              ZV =1
*XF=2.975*YF=344.095$62 917$06 l3$89 l303$61 916 944 943$07$88 l319 l304 915$60 942$08$87 l318 914 l305 941$59$86 l317 l306$58 913.786 1316 l283$57$85$84.789 l315 l286$56 Node Numbers-ID.788 l314 l285.787 1313 1284+/pv/CC/4
              $ 36                                                            *DIST=1.386
                                                                              *XF =5.994
                $ 37
                                                                              *YF =348.819 838 839
                      $ l0
                        $ 41
                            $ 42 843
                                  $ 44 845
                                        $ 46
                                            $ 47
                                                $ 48 849 141 2140                                                            14    82 1139 2138 1137 1136
              $ 135 2134 1133 2132 3131 2130 13 253 164 Node Numbers                 -   OD 275
                                                                                +/&v/z.C /J


(x 10I 01)652 612 ANSYS 5.0 APR 4 1994 18:06:06 PLOT NO.1 POST1 STEP=1 SUB=1 TIME=1 PATH PLOT NOD1=806 NOD2=14 CO 573 5331 C 453 C ZV=1 DIST=0.75 XF=0.5 YF=0.5 ZF=0.5 CENTROID HIDDEN 413 373 333 293 2537 0.541 1.083 1~624 2.165 3.248 2.707 3.79 4.331 4.872 5.414 Po s i 4 i o n , ID 4 o OD Pressure Only Bid ue l7
                                  $ 65 948  ANSYS 5.0 APR 7 1994
                          $ 03                  920 l323                                  12:27:42 l300                                      PLOT NO. 2
                                          $ 92        947
                                  $ 64 NODES 919        NODE NUM
                          $ 04 l322 946      =1 l301                                      ZV
                                  $ 63
                                                            *DIST=2.621
                                                            *XF =2.975
                          $ 05                      945  *YF =344.095 l321 l302
                                  $ 62          917 944
                          $ 06 l3                $ 89 l303
                                  $ 61 916 943
                          $ 07        $ 88 l319 l304                        915
                                $ 60                942
                          $ 08          $ 87 l318                    914 l305                                941
                                $ 59
                                        $ 86 913 l317 l306          $ 58
                                          $ 85
                          .786 1316 l283              $ 57
                                                  $ 84
                              .789 l315                $ 56 l286
                                        .788 l314 l285
                                                      .787 1313 1284 Node Numbers  ID
                                                              +/pv/CC /4


(x 104 I'2)110 102 ANSYS 5.0 APR 4 1994 18:06:26 PLOT NO.2 POST1 STEP=14 SUB=1 TIME=3600 PATH PLOT NOD1=806 NOD2=14 957.962 887.1+816.23 C 745.37 C ZV=1 DIST=0.75 ZF=0.5 YF=0.5 ZF=0.5 CENTROID HIDDEN 674.51 C 603.65 532.79 461.93 391.071 0 1.083 2.165 3.248 4.331 5.414 0.541 1.624 2.707 3.79 Posi ti on, ID to OD 4.872 Reactor Scram Transient-g/6.use/8
ANSYS 5.0 APR 4 1994 18:06:06 PLOT NO. 1 POST1
( x 10I 01)                                                              STEP=1 SUB =1 652                                                                    TIME=1 PATH PLOT NOD1=806 612 NOD2=14 CO                                                                            ZV =1 573 DIST=0.75 XF =0.5 5331 YF =0.5 ZF =0.5 CENTROID HIDDEN C
453 C
413 373 333 293 2537 1.083         2.165       3.248     4.331       5.414 0.541       1 ~ 624       2.707       3.79       4.872 Po s i 4 i    o n  , ID   4 o  OD Pressure Only                                                                      Bid ue  l7


Path: C:(NOZZLE File: PRINC.OUT 3,779.a..4-19-94 11:26:26 am Page 1 2 PRINT S NODAL SOLUTION PER NODE*****POST1 NODAL STRESS LISTING*****LOAD STEP=14 TIME=3600.0 SUBSTEP=LOAD 1 CASE=0 NODE 786 788 789 804 805 806 807 808 809 856 857 858 859 860 861 862 863 864 884 885 886 887 888 889 890 891 913 914 915 916 917 918 919 942 943 944 945 S1 81146~56018.67399.94075.96912.98365.98266.96331.91893.57385.68590.79143.85484.88636.89736.89338.87672.84840.59084.68866.76618.80398.82186.82524.81716.79890.68225.73604.75714.76516.76268.75133.73179.70289.71275.71356.70657.S2 10911 6038'6629.0 14592.14833.14961.14952.14815.14731.14104.14550.16890.19029.19955.20410.20538.20432.20125.20609.20742.21866.23376.24231.24660.24790.24681.25290.25862.26976.27659.27992.28080.27924.29135.29919.30402.30633.S3-319~20-6398.4 3727~2 88.197 1399.5 2531.2 3189.8 3144.3 3307.7-5699.0-2822.1-785.25 836.86 1416.9 1333.5 696.85-258.09-1283.0-4961.7-3016.3-1252.0-159.63 98.306-166.38-798.84-1622.9-2831.9-1587.6-1036.3-1036.6-1413.2-2032.6-2739.3-1999.6-1828.9-2021.0-2474.8 SINT 81465'2416'1126.93987.95513.95834.95076.93187.88585.63084.71412.79929.84647.87219'8402.88641.87930.86123.64045.71882.77870.80557'2087.82690.82515.81512.71057.75192.76750.77553.77682.77165.75918.72289.73104.73377.73132.SEQV 76471.57221.66555.87640.89555.90263.89775.87934.83462.55880.64505.72720.77176.79586.80576.80574.79627.77664.55839.63433.69267.71746.73073.73493.73158.72056.61981.65904.67271.67915.67933.67362.66151.62804.63492.63689.63429.*****POST1 NODAL STRESS LISTING*****LOAD STEP=14 TIME=3600.0 SUBSTEP=LOAD 1 CASE=0
ANSYS 5.0 APR 4 1994 18:06:26 PLOT NO. 2 POST1
( x 104 I'2)                                                              STEP=14 SUB =1 110 TIME=3600 PATH PLOT NOD1=806 102 NOD2=14 ZV  =1 957.962 DIST=0.75 ZF  =0.5 887.1 YF  =0.5
  +
ZF  =0.5 CENTROID HIDDEN 816.23 C
745.37 C
674.51 C  603.65 532.79 461.93 391.071 0         1. 083      2. 165      3.248      4.331      5.414 0.541        1.624        2.707      3.79      4.872 Posi    ti on,      ID to      OD Reactor Scram Transient                                                              -g/6. use /8


Path: C:)NOZZLE File: PRINC.OUT 3,779.a..4-19-94 11:26:26 am Page 2 2.NODE S1 S2 S3 SINT SEQV MINIMUM VALUES NODE 788 VALUE 56018.788 6038.2 788-6398.4 788 62416.884 55839.MAXIMUM VALUES NODE 806 945 809 806 806 VALUE 98365.30633.3307.7 95834.90263.*****ESTIMATED BOUNDS CONSIDERING THE EFFECT OF DISCRETIZATION ERROR*****MINIMUM VALUES NODE 788 VALUE 50335.789-1620.3 788-12082.788 56733.856 50585.MAXIMUM VALUES NODE 806 945 809 806 806 VALUE 0.10694E+06 34037.11892.0.10441E+06 98835.***************************************************************************
Path: C:(NOZZLE File: PRINC     .OUT       3,779   .a.. 4-19-94 11:26:26       am     Page 1 2 PRINT  S    NODAL SOLUTION PER NODE
*****ENTER HELP, ERROR FOR AN EXPLANATION OF ANSYS ERROR ESTIMATION
*****POST1    NODAL STRESS    LISTING    *****
**********END OF INPUT ENCOUNTERED
LOAD STEP=        14 SUBSTEP=          1 TIME=      3600.0        LOAD CASE=          0 NODE       S1           S2               S3             SINT               SEQV 786    81146  ~      10911          -319 20~        81465              76471.
*****EXIT THE ANSYS POST1 DATABASE PROCESSOR
788   56018.         6038 '          -6398.4                     '2416 57221.
789    67399.        6629.0            3727 2 ~                  '1126.
66555.
804    94075.        14592.            88.197        93987.            87640.
805    96912.        14833.            1399.5        95513.             89555.
806   98365.        14961.            2531.2        95834.            90263.
807    98266.        14952.            3189.8        95076.            89775.
808    96331.        14815.            3144.3        93187.            87934.
809   91893.         14731.           3307.7         88585.            83462.
856    57385.        14104.        -5699.0          63084.            55880.
857    68590.        14550.        -2822.1          71412.            64505.
858    79143.        16890.        -785.25          79929.            72720.
859    85484.        19029.            836.86        84647.            77176.
860    88636.        19955.            1416.9        87219              79586.
861    89736.        20410.            1333.5                  '8402.
80576.
862    89338.        20538.            696.85        88641.            80574.
863    87672.        20432.        -258.09          87930.            79627.
864    84840.        20125.        -1283.0          86123.            77664.
884    59084.        20609.        -4961.7          64045.            55839.
885    68866.        20742.        -3016.3          71882.            63433.
886    76618.        21866.        -1252.0          77870.            69267.
887    80398.        23376.        -159.63          80557              71746.
888    82186.        24231.            98.306                '2087.
73073.
889    82524.        24660.        -166.38          82690.            73493.
890    81716.        24790.        -798.84          82515.            73158.
891    79890.        24681.        -1622.9          81512.            72056.
913    68225.        25290.        -2831.9          71057.            61981.
914    73604.        25862.        -1587.6          75192.            65904.
915    75714.        26976.        -1036.3          76750.            67271.
916    76516.        27659.        -1036.6          77553.            67915.
917    76268.        27992.        -1413.2          77682.            67933.
918    75133.        28080.        -2032.6          77165.            67362.
919    73179.         27924.         -2739.3           75918.            66151.
942    70289.        29135.        -1999.6          72289.            62804.
943    71275.        29919.        -1828.9          73104.             63492.
944    71356.         30402.         -2021.0           73377.             63689.
945    70657.        30633.        -2474.8          73132.            63429.
*****POST1    NODAL STRESS    LISTING    *****
LOAD STEP=        14 SUBSTEP=          1 TIME=      3600.0        LOAD CASE=          0


Path: C:hNOZZLE Fi.le: XPATH.OUT 13,436.a..4-04-94 6:06:28 pm Arecsi~idwT' Page 1 Qd WELCOME TO THE ANSYSPROGRAM
Path: C:)NOZZLE File: PRINC    .OUT     3,779  .a.. 4-19-94 11:26:26  am      Page 2  2.
*****ANSYS COMMAND LINE ARGUMENTS*****MEMORY REQUESTED (MB)=64.0*****INPUT FROM CONFIG.ANS FILE KEYWORD INPUT VALUE VALUE USED NUM VPAG 512 512 SIZ VPAG 12288 12288 EXT FILE 0 0*****ANSYS DYNAMIC MEMORY ALLOCATION
NODE    S1          S2            S3          SINT        SEQV MINIMUM VALUES NODE        788          788          788          788          884 VALUE    56018.      6038.2      -6398.4        62416.      55839.
*****WORK SPACE REQUESTED 16777216 64.000 MB COMMAND LINE MINIMUM WORK SPACE REQUIRED 6815744 26.000 MB MINIMUM WORK SPACE RECOMMENDED
MAXIMUM VALUES NODE        806          945          809          806          806 VALUE    98365.      30633.        3307.7      95834.      90263.
=8799648 33.568 MB WORK SPACE OBTAINED 16777214 64.000 MB BYTES PER WORD 4*****NOTICE*****THIS IS THE ANSYS GENERAL PURPOSE FINITE ELEMENT COMPUTER PROGRAM.NEITHER SWANSON ANALYSIS SYSTEMS, INC.NOR THE DISTRIBUTOR SUPPLYING THIS PROGRAM ASSUME ANY RESPONSIBILITY FOR THE VALIDITYi ACCURACY'R APPLICABILITY OF ANY RESULTS OBTAINED FROM THE ANSYS SYSTEM.USERS MUST VERIFY THEIR OWN RESULTS.ANSYS (R)COPYRIGHT (C)1971 i 1978 i 1982 i 1983 i 1985 i 1987'989 i 1992 BY SWANSON ANALYSIS SYSTEMS, INC.AS AN UNPUBLISHED WORK.PROPRI ETARY DATA UNAUTHORI ZED USE i DI STRI BUTION i OR DUPLI CATION IS PROHIBITED.
*****ESTIMATED    BOUNDS CONSIDERING THE EFFECT OF    DISCRETIZATION ERROR *****
ALL RIGHTS RESERVED.SWANSON ANALYSIS SYSTEMS,INC.
MINIMUM VALUES NODE        788          789            788          788          856 VALUE    50335.      -1620.3      -12082.      56733.       50585.
IS ENDEAVORING TO MAKE THE ANSYS PROGRAM AS COMPLETE i ACCURATE i AND EASY TO USE AS POSSIBLE.SUGGESTIONS AND COMMENTS ARE WELCOMED ANY ERRORS ENCOUNTERED IN EXTHER THE DOCUMENTATION OR THE RESULTS SHOULD BE IMMEDIATELY BROUGHT TO OUR ATTENTION
MAXIMUM VALUES NODE        806          945            809          806          806 VALUE   0.10694E+06    34037.        11892.      0.10441E+06  98835.
*****ENTER HELP, ERROR FOR AN EXPLANATION OF ANSYS ERROR ESTIMATION *****
*****END OF INPUT ENCOUNTERED *****
EXIT THE ANSYS POST1 DATABASE    PROCESSOR


Path: C:)NOZZLE File: XPATH.OUT 13,436.a..4-04-94 6:06:28 pm Page 2><~ENTER/SHOW, device TO SET THE GRAPHICS DISPLAY TO device(e.g.
Arecsi~idwT' Path: C:hNOZZLE Fi.le: XPATH   .OUT   13,436   .a.. 4-04-94       6:06:28   pm         Page 1 Qd WELCOME          TO     THE         ANSYSPROGRAM
VGA, HALO,ETC.)
        ***** ANSYS    COMMAND  LINE  ARGUMENTS      *****
ENTER/MENU, ON TO START THE ANSYS MENU SYSTEM-ENTER HELP FOR GENERAL ANSYS HELP INFORMATION MPR ASSOCIATES VERSION=PC 386/486 REVISION=5.0 FOR SUPPORT CALL PHONE 703/519-0200 CURRENT JOBNAME=file 18:05:44 APR 04, 1994 CP=FAX 0.000 BEGIN: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25/FILNAM,NOZZLE RESUME/POST1/SHOW g XPATH g PLT FILETS NOZZLE'ST SET, 1/TITLE, Pressure Only/GRID,1/AXLAB,X,Position, ID to OD/AXLAB,Y,Stress Intensity (psi)LPATHg 806 g 14 PDEFg SINTER S g INT PLPATH,SINT PRPATH,SINT SET,LAST/TITLE, Reactor Scram Transient/GRID,1/AXLAB,X,Position, ID to OD/AXLAB,Y,Stress Intensity (psi)LPATH~806g14 PDEFgSINTgSgINT PLPATH,SINT PRPATH,SINT CURRENT JOBNAME REDEFINED AS NOZZLE RESUME ANSYS DATA FROM FILE NAME=NOZZLE.db
MEMORY REQUESTED    (MB) =      64.0
***ANSYS GLOBAL STATUS***TITLE=NMP Unit 1 CRD Return Nozzle ANALYSIS TYPE=STATIC (STEADY-STATE)
        ***** INPUT    FROM CONFIG.ANS FILE KEYWORD          INPUT VALUE      VALUE USED NUM VPAG                512                  512 SIZ VPAG              12288                12288 EXT FILE                  0                    0
NUMBER OF ELEMENT TYPES=1 1358 ELEMENTS CURRENTLY SELECTED.MAX ELEMENT NUMBER 1470 NODES CURRENTLY SELECTED.MAX NODE NUMBER 25 KEYPOINTS CURRENTLY SELECTED.MAX KEYPOINT NUMBER 31 LINES CURRENTLY SELECTED.MAX LINE NUMBER 6 AREAS CURRENTLY SELECTED.MAX AREA NUMBER 1 COMPONENTS CURRENTLY DEFINED 1358 1470 25 31 6
        *****  ANSYS DYNAMIC MEMORY ALLOCATION            *****
WORK SPACE REQUESTED                            16777216          64.000    MB  COMMAND LINE MINIMUM WORK SPACE REQUIRED                      6815744          26.000    MB MINIMUM WORK SPACE RECOMMENDED            =       8799648          33.568    MB WORK SPACE OBTAINED                            16777214          64.000   MB BYTES PER WORD                                            4
  ***** NOTICE ***** THIS        IS THE ANSYS GENERAL PURPOSE FINITE  ELEMENT COMPUTER PROGRAM.        NEITHER SWANSON ANALYSIS SYSTEMS, INC. NOR THE DISTRIBUTOR SUPPLYING THIS PROGRAM ASSUME ANY RESPONSIBILITY FOR THE VALIDITYi ACCURACY'R APPLICABILITY OF ANY RESULTS OBTAINED FROM THE ANSYS SYSTEM.
USERS MUST VERIFY THEIR OWN RESULTS.
ANSYS (R)  COPYRIGHT (C)   1971 i 1978 i 1982 i 1983 i 1985 i 1987 '989 i 1992 BY SWANSON ANALYSIS SYSTEMS, INC. AS AN UNPUBLISHED WORK.
PROPRI ETARY DATA    UNAUTHORIZED USE i DISTRI BUTIONi OR DUPLICATION IS PROHIBITED. ALL RIGHTS RESERVED.
SWANSON ANALYSIS SYSTEMS,INC. IS ENDEAVORING TO MAKE THE ANSYS PROGRAM AS COMPLETE i ACCURATE i AND EASY TO USE AS POSSIBLE. SUGGESTIONS AND COMMENTS ARE WELCOMED              ANY ERRORS ENCOUNTERED IN EXTHER THE DOCUMENTATION OR THE RESULTS SHOULD BE IMMEDIATELY BROUGHT TO OUR ATTENTION


Path: C:)NOZZLE File: XPATH.OUT 13,436.a..MAXIMUM LINEAR PROPERTY NUMBER ACTIVE COORDINATE SYSTEM MAXIMUM COUPLED D.O.F.SET NUMBER NUMBER OF SPECIFIED CONSTRAINTS NUMBER OF SPECIFIED SURFACE LOADS INITIAL JOBNAME=file CURRENT JOBNAME=NOZZLE 1 4-04-94 6:06:28 pm 5 0 (CARTESIAN) 1 15 208 Page 3 Qg d*****ANSYS-ENGINEERING ANALYSIS SYSTEM REVISION 5.0*****MPR ASSOCIATES VERSION PC 386/486 18 05 48 APR 04i 1994 CP FOR SUPPORT CALL PHONE 703/519-0200 FAX NMP Unit 1 CRD Return Nozzle 3.790*****ANSYS RESULTS INTERPRETATION (POST1)*****/SHOW SWITCH PLOTS TO FILE XPATH.PLT RASTER MODE.DATA FILE CHANGED TO FILE=NOZZLE.RST USE LOAD STEP 1 SUBSTEP 0 FOR LOAD CASE 0 SET COMMAND GOT LOAD STEP=TIME/FREQUENCY=
Path: C:)NOZZLE File: XPATH       .OUT   13,436 .a.. 4-04-94 6:06:28 pm         Page 2 ><~
1.0000 TITLE='ressure Only 1 SUBSTEP=1 CUMULATIVE ITERATION=
ENTER  /SHOW, device TO SET THE GRAPHICS DISPLAY TO device(e.g.          VGA, HALO,ETC.)
GRAPH PLOT KEY=1 X AXIS LABEL=Position, ID to OD Y AXIS LABEL=Stress Intensity (psi)DEFINE A PATH FOR SUBSEQUENT CALCULATIONS THROUGH NODES: 806 14 DEFINE PATH IN PATH COORDINATE SYSTEM 0 DIRECTION MAX MIN X 6.2855 2.2798 Y 348.57 344 93 Z 0.00000E+00 0.00000E+00 TOTAL PATH LENGTH=5.4136 DEFINE PATH VARIABLE SINT AS THE NODAL DATA ITEM=S COMP=INT ROTATED INTO COORDINATE SYSTEM 0 AND MOVED TO THE PATH NUMBER OF PATH VARIABLES DEFINED IS 5
ENTER  /MENU, ON          TO START THE ANSYS MENU SYSTEM
-ENTER  HELP              FOR GENERAL ANSYS HELP INFORMATION MPR ASSOCIATES           VERSION=PC 386/486       REVISION= 5.0 FOR SUPPORT CALL                           PHONE 703/519-0200         FAX CURRENT JOBNAME=file              18:05:44 APR 04, 1994 CP=          0.000 BEGIN:
1   /FILNAM,NOZZLE FILETS 2  RESUME 3   /POST1 / SHOW g XPATH g PLT 5          NOZZLE'ST 6
7  SET, 1 /TITLE,SINTER Pressure Only 9  /GRID,1 10  /AXLAB,X,Position, ID to OD 11  /AXLAB,Y,Stress Intensity (psi) 12  LPATHg 806 g 14 13  PDEFg        S g INT 14   PLPATH,SINT 15  PRPATH,SINT 16 17  SET,LAST 18  /TITLE,Reactor Scram Transient 19  /GRID,1 20  /AXLAB,X,Position, ID to OD 21  /AXLAB,Y,Stress Intensity (psi) 22  LPATH~806g14 23  PDEFgSINTgSgINT 24  PLPATH,SINT 25  PRPATH,SINT CURRENT JOBNAME REDEFINED AS NOZZLE RESUME ANSYS DATA FROM        FILE NAME=NOZZLE.db
*** ANSYS    GLOBAL STATUS      ***
TITLE =    NMP  Unit  1 CRD  Return Nozzle ANALYSIS TYPE =       STATIC (STEADY-STATE)
NUMBER OF ELEMENT TYPES =              1 1358 ELEMENTS CURRENTLY SELECTED. MAX          ELEMENT NUMBER        1358 1470 NODES CURRENTLY SELECTED.              MAX NODE NUMBER          1470 25 KEYPOINTS CURRENTLY SELECTED. MAX          KEYPOINT NUMBER          25 31 LINES CURRENTLY SELECTED.              MAX LINE NUMBER              31 6 AREAS CURRENTLY SELECTED.            MAX AREA NUMBER              6 1 COMPONENTS CURRENTLY DEFINED


Path: C:)NOZZLE File: XPATH.OUT 13,436.a..4-04-94 6:06:28 pm Page 4 ogcP***WARNING***CP=18.730 TIME=18: 06: 03 The selected element set contains mixed materials.
Path: C:)NOZZLE File:   XPATH     .OUT   13,436   .a.. 4-04-94     6:06:28 pm       Page 3 Qg d MAXIMUM LINEAR PROPERTY NUMBER                            5 ACTIVE COORDINATE SYSTEM                                  0    (CARTESIAN)
MAXIMUM COUPLED D.O.F. SET NUMBER                          1 NUMBER OF SPECIFIED CONSTRAINTS                          15 NUMBER OF SPECIFIED SURFACE LOADS                        208 INITIAL JOBNAME =
CURRENT JOBNAME = NOZZLE file 1
  *****ANSYS        ENGINEERING ANALYSIS SYSTEM REVISION 5.0                *****
MPR ASSOCIATES          VERSION PC 386/486          18 05 48 APR 04i 1994 CP          3.790 FOR SUPPORT CALL                              PHONE 703/519-0200        FAX NMP  Unit  1 CRD  Return Nozzle
                *****ANSYS    RESULTS INTERPRETATION (POST1)        *****
  /SHOW SWITCH PLOTS TO        FILE XPATH.PLT                RASTER MODE.
DATA    FILE  CHANGED TO    FILE= NOZZLE.RST USE LOAD STEP            1  SUBSTEP        0  FOR LOAD CASE 0 SET COMMAND GOT LOAD STEP=                1    SUBSTEP=      1  CUMULATIVE ITERATION=
TIME/FREQUENCY= 1.0000 TITLE='ressure Only GRAPH PLOT KEY = 1 X  AXIS LABEL =      Position, ID to    OD Y  AXIS LABEL =      Stress Intensity (psi)
DEFINE A PATH FOR SUBSEQUENT CALCULATIONS THROUGH NODES:
806    14 DEFINE PATH IN PATH COORDINATE SYSTEM                0 DIRECTION            MAX                MIN X            6.2855            2.2798 Y            348.57            344 93 Z            0.00000E+00        0.00000E+00 TOTAL PATH LENGTH =            5.4136 DEFINE PATH VARIABLE SINT                AS THE NODAL DATA ITEM=S        COMP=INT ROTATED INTO COORDINATE SYSTEM 0 AND MOVED TO THE PATH NUMBER OF PATH VARIABLES DEFINED IS 5
 
Path: C:)NOZZLE File: XPATH      .OUT  13,436  .a.. 4-04-94  6:06:28 pm        Page 4 ogcP
  *** WARNING ***                               CP=     18. 730 TIME= 18: 06: 03 The selected   element   set contains mixed materials.
This could invalidate error estimation.
This could invalidate error estimation.


==SUMMARY==
==SUMMARY==
OF VARIABLE SINT MAX=65283.MIN=25366.DISPLAY ALONG PATH DEFINED BY LPATH COMMAND.DSYS=0 CUMULATIVE DISPLAY NUMBER 1 WRITTEN TO FILE XPATH.PLT DISPLAY TITLE=Pressure Only PRINT ALONG PATH DEFINED BY LPATH COMMAND.DSYS=0 1-RASTER MODE.*****ANSYS-ENGINEERING ANALYSIS SYSTEM REVISION 5 0*****MPR ASSOCIATES VERSION PC 386/486 18 06 07 APR 04 g 1994 CP FOR SUPPORT CALL PHONE 703/519-0200 FAX Pressure Only 22.460*****PATH VARIABLE  
OF   VARIABLE SINT       MAX =     65283.       MIN =   25366.
DISPLAY ALONG PATH DEFINED BY LPATH COMMAND.         DSYS=   0 CUMULATIVE DISPLAY NUMBER       1 WRITTEN TO   FILE XPATH.PLT             RASTER MODE.
DISPLAY TITLE=
Pressure Only PRINT ALONG PATH DEFINED BY LPATH COMMAND.         DSYS=   0 1
  *****ANSYS     ENGINEERING ANALYSIS SYSTEM REVISION 5 0             *****
MPR ASSOCIATES       VERSION PC 386/486       18 06 07 APR 04 g 1994 CP         22.460 FOR SUPPORT CALL                       PHONE 703/519-0200       FAX Pressure Only
  *****PATH   VARIABLE  


==SUMMARY==
==SUMMARY==
*****S 0.00000E+00 0.11278 0.22557 0.33835 0.45114 0.56392 0.67670 0.78949 0 90227 1.0151 1.1278 1.2406 1.3534 1.4662 1.5790 1.6918 1.8045 1.9173 2.0301 2.1429 2.2557 2.3685 2.4813 2.5940 2.7068 NT 65283 56417.55542.54202.52785.51498.50264.49109.48019.46971.46001.45053.44170.43285.42462.41670.40901.40178.39460.38800.38185.37550.36926.36478.35974.I~o Cs
S               NT 0.00000E+00 0.11278 65283 56417.    ~o    Cs I
0.22557         55542.
0.33835         54202.
0.45114         52785.
0.56392         51498.
0.67670         50264.
0.78949         49109.
0 90227         48019.
1.0151         46971.
1.1278         46001.
1.2406         45053.
1.3534         44170.
1.4662         43285.
1.5790         42462.
1.6918         41670.
1.8045         40901.
1.9173         40178.
2.0301         39460.
2.1429         38800.
2.2557         38185.
2.3685         37550.
2.4813         36926.
2.5940         36478.
2.7068         35974.


Path: C:)NOZZLE File: XPATH.OUT 13,436.a..4-04-94 6:06:28 pm Xage SQ8 2.8196 2.9324 3.0452 3.1580 3.2707 3.3835 3.4963 3.6091 3.7219 3.8347 3.9474 4.0602 4.1730 4.2858 4.3986 4.5114 4.6242 35466.34944.34360.33722.32732.31830'0986.30218.29503'8831 28199.27566.26938 26171'5366.27591.29301.*****ANSYS-ENGINEERING ANALYSIS SYSTEM REVISION 5.0*****MPR ASSOCIATES VERSION PC 386/486 18 06 07 APR 04~1994 CP FOR SUPPORT CALL PHONE 703/519-0200 FAX Pressure Only 22.510,*****PATH VARIABLE  
Path: C:)NOZZLE File: XPATH     .OUT   13,436   .a.. 4-04-94   6:06:28 pm       Xage SQ8 2.8196         35466.
2.9324         34944.
3.0452         34360.
3.1580         33722.
3.2707         32732.
3.3835         31830 3.4963               '0986.
3.6091         30218.
3.7219         29503 3.8347               '8831 3.9474         28199.
4.0602         27566.
4.1730         26938 4.2858         26171 4.3986               '5366.
4.5114         27591.
4.6242         29301.
*****   ANSYS ENGINEERING ANALYSIS SYSTEM REVISION 5.0             *****
MPR ASSOCIATES       VERSION PC 386/486       18 06 07 APR 04~ 1994   CP       22.510, FOR SUPPORT CALL                         PHONE 703/519-0200       FAX Pressure Only
*****PATH   VARIABLE  


==SUMMARY==
==SUMMARY==
*****S 4.7369 4.8497 4.9625 5.0753 5.1881 5.3009 5.4136 SINT 31204.33304.35360.36726.38077.39423.40778.USE LAST SUBSTEP ON RESULT FILE FOR LOAD CASE 0 SET COMMAND GOT LOAD STEP=14 SUBSTEP=1 CUMULATIVE ITERATION=
S             SINT 4.7369         31204.
14 TIME/FREQUENCY=
4.8497         33304.
3600.0 TITLE=Reactor Scram Transient GRAPH PLOT KEY=1 X AXIS LABEL=Position, ID to OD Y AXIS LABEL=Stress Intensity (psi)  
4.9625         35360.
5.0753         36726.
5.1881         38077.
5.3009         39423.
5.4136         40778.
USE LAST SUBSTEP ON RESULT     FILE   FOR LOAD CASE 0 SET COMMAND GOT LOAD STEP=         14   SUBSTEP=     1   CUMULATIVE ITERATION=     14 TIME/FREQUENCY= 3600.0 TITLE=
Reactor Scram Transient GRAPH PLOT KEY = 1 X AXIS LABEL =   Position, ID to   OD Y AXIS LABEL =   Stress Intensity (psi)


Path: C:iNOZZLE File: XPATH.OUT 13,436.a..4-04-94 6:06:28 pm DEFINE A PATH FOR SUBSEQUENT CALCULATIONS THROUGH NODES: 806 14 Page 6 a<Z***NOTE***CP=32.130 TIME=18:06:17 Previous interpolated path data has been erased.Reissue PDEF command to interpolate desired data.DEFINE PATH IN PATH COORDINATE SYSTEM 0 DIRECTION MAX MIN X 6.2855 2.2798 Y 348.57 344.93 Z 0.00000E+00 0.00000E+00 TOTAL PATH LENGTH=5.4136 DEFINE PATH VARIABLE SINT AS THE NODAL DATA ITEM=S COMP=INT ROTATED INTO COORDINATE SYSTEM 0 AND MOVED TO THE PATH NUMBER OF PATH VARIABLES DEFINED IS 5***WARNING***CP=37.950 The selected element set contains mixed materials.
Path: C:iNOZZLE File: XPATH     .OUT   13,436   .a.. 4-04-94   6:06:28 pm       Page  6  a<Z DEFINE A PATH FOR SUBSEQUENT CALCULATIONS THROUGH NODES:
806     14
  *** NOTE ***                                     CP=     32.130   TIME= 18:06:17 Previous interpolated path data has been erased.
Reissue PDEF command to interpolate desired data.
DEFINE PATH IN PATH COORDINATE SYSTEM             0 DIRECTION           MAX               MIN X           6.2855           2.2798 Y           348.57           344.93 Z         0.00000E+00       0.00000E+00 TOTAL PATH   LENGTH =     5.4136 DEFINE PATH VARIABLE SINT           AS THE NODAL DATA ITEM=S         COMP=INT ROTATED INTO COORDINATE SYSTEM 0 AND MOVED TO THE PATH NUMBER OF PATH VARIABLES DEFINED IS           5
  *** WARNING ***                                   CP=     37.950   TIME= 18 06:22 The selected element set contains mixed materials.
This could invalidate error estimation.
This could invalidate error estimation.
TIME=18 06:22


==SUMMARY==
==SUMMARY==
OF VARIABLE SINT MAX=0.10997E+06 MIN=39107.CUMULATIVE DISPLAY NUMBER 2 WRITTEN TO FILE XPATH.PLT DISPLAY TITLE=Reactor Scram Transient RASTER MODE.PRINT ALONG PATH DEFINED BY LPATH COMMAND.DSYS=0 1*****ANSYS-ENGINEERING ANALYSIS SYSTEM REVISION 5.0*****MPR ASSOCIATES VERSION=PC 386/486 18:06:26 APR 04, 1994 CP=FOR SUPPORT CALL PHONE 703/519-0200 FAX Reactor Scram Transient 41.680*****PATH VARIABLE  
OF   VARIABLE SINT         MAX =     0.10997E+06 MIN =     39107.
CUMULATIVE DISPLAY NUMBER         2 WRITTEN TO     FILE XPATH.PLT           RASTER MODE.
DISPLAY TITLE=
Reactor Scram Transient PRINT ALONG PATH DEFINED BY LPATH COMMAND.             DSYS=   0 1
  *****ANSYS       ENGINEERING ANALYSIS SYSTEM         REVISION 5.0     *****
MPR ASSOCIATES         VERSION=PC   386/486       18:06:26 APR 04, 1994 CP=       41.680 FOR SUPPORT CALL                         PHONE   703/519-0200       FAX Reactor Scram Transient
  *****PATH     VARIABLE  


==SUMMARY==
==SUMMARY==
*****S 0.00000E+00 0.11278 0.22557 0.33835 0.45114 0.56392 0.67670 SINT 0.10997E+06 911)rru~i 88915.86153.83317.80781.78373.  
S               SINT 0.00000E+00 0.10997E+06 0.11278         911                ) rru~ i 0.22557         88915.
0.33835         86153.
0.45114         83317.
0.56392         80781.
0.67670         78373.


Patn: File: 0.78949 0.90227 1.0151 1.1278 1.2406 1.3534 1'662 1.5790 1.6918 1.8045 1.9173 2.0301 2.1429 2.2557 2.3685 2.4813 2.5940 2'068 2.8196 2.9324 3.0452 3.1580 3.2707 3.3835 3.4963 3.6091 3.7219 3.8347 3.9474 4 0602 4.1730 4.2858 4.3986 4.5114 4.6242 C:KNOZZLE XPATH.OUT 13,436.a..4-04-94 6:06:28 pm 76148.74078.72106.70305.68564.66937.65312.63805.62374.60995.59673.58388.57214.56098.54950.53857.53067.52158.51230.50269.49216.48061.46233.44546.43265.42541.41859.41175.40518.39815.39107.39160.41883.44307.46492.Page 7 Pg 8*****ANSYS-ENGINEERING ANALYSIS SYSTEM REVISION 5.0*****MPR ASSOCIATES VERSION=PC 386/486 18:06:26 APR 04, 1994 CP=FOR SUPPORT CALL PHONE 703/519-0200 FAX Reactor Scram Transient 41.740*****PATH VARIABLE  
Patn: C:KNOZZLE File: XPATH            .OUT 13,436 .a.. 4-04-94  6:06:28 pm      Page 7 Pg  8 0.78949         76148.
0.90227         74078.
1.0151         72106.
1.1278         70305.
1.2406         68564.
1.3534         66937.
1 '662         65312.
1.5790         63805.
1.6918         62374.
1.8045         60995.
1.9173         59673.
2.0301         58388.
2.1429         57214.
2.2557         56098.
2.3685         54950.
2.4813         53857.
2.5940         53067.
2 '068         52158.
2.8196         51230.
2.9324         50269.
3.0452         49216.
3.1580         48061.
3.2707         46233.
3.3835         44546.
3.4963         43265.
3.6091         42541.
3.7219         41859.
3.8347         41175.
3.9474         40518.
4 0602       39815.
4.1730         39107.
4.2858         39160.
4.3986         41883.
4.5114         44307.
4.6242         46492.
*****   ANSYS ENGINEERING ANALYSIS SYSTEM REVISION 5.0               *****
MPR ASSOCIATES         VERSION=PC 386/486         18:06:26 APR 04, 1994 CP=     41. 740 FOR SUPPORT CALL                           PHONE 703/519-0200     FAX Reactor Scram Transient
*****PATH     VARIABLE  


==SUMMARY==
==SUMMARY==
*****S 4.7369 4.8497 4.9625 5 0753 5.1881 SINT 49026'1915.54876.'57081.59280.  
S             SINT 4.7369         49026 4.8497                 '1915.
4.9625         54876.
5 0753         '57081.
5.1881         59280.


Path: C:(NOZZLE File: XPATH.OUT 13,436.a..4-04-94 6:06:28 pm Page 8~+8 5.3009 5.4136 61484.63709.*****END OF INPUT ENCOUNTERED
Path: C:(NOZZLE File: XPATH     .OUT     13,436 .a.. 4-04-94 6:06:28 pm         Page 8 ~+ 8 5.3009       61484.
*****NUMBER OF WARNING MESSAGES ENCOUNTERED=
5.4136       63709.
NUMBER OF ERROR MESSAGES ENCOUNTERED=
*****END   OF INPUT ENCOUNTERED     *****
*****PROBLEM TERMINATED BY INDICATED ERROR(S)OR BY END OF INPUT DATA*****ANSYS RUN COMPLETED REV.5.0 CP TIME (sec)ELAPSED TIME (sec)47.000 47.000 PC 386/486 TIME=18:06:26 DATE=04/04/94  
NUMBER OF WARNING MESSAGES ENCOUNTERED=
NUMBER OF ERROR     MESSAGES ENCOUNTERED=
*****PROBLEM   TERMINATED BY INDICATED ERROR(S)     OR BY END OF INPUT DATA   *****
ANSYS RUN COMPLETED REV. 5.0                             PC 386/486 CP TIME       (sec)             47.000       TIME =   18:06:26 ELAPSED TIME    (sec)              47.000      DATE =   04/04/94


4774<P~Fr~i C'ath: C:(NOZZLE File: BCT.INP/SOLUTION OUTRESgALLgALL ANTYPE,TRANS KBC, 1 TREF,70 THOT=525 TCOLD=70 570.a..3-28-94 5:13:42 pm!1=Step Change, 0=Ramp Page 1 p//TUNIF,THOT LSELI S J LOC g Xg Rl SFL g ALL g CONVg 4 g g THOT CMSEL I S g LI D LSELg U~LOC/X g R1 SFLg ALL g CONVI 5 I g THOT ALLSEL NSUBST,1 TIME,1 SOLVE SAVE LSEL~S g LOCI Xg R1 S FLDELE g ALL f CONV SFLg ALL~CONVI 4 I~TCOLD ALLSEL UTOTS,ON ELTIM,1,1 TIME,3601 SOLVE SAVE FINISH!CRDR ID!Number of Sub-Load-Steps
4774<P~Fr~i C:(NOZZLE                                                  C'ath:
!CRDR ID!Automatic Time-Stepping ON~0m AmmC~a~W IN'.CalculaUon 80.~Preparact Dy Checked By C'-)Page
File:   BCT     .INP 570 .a.. 3-28-94 5:13:42   pm       Page 1      p//
/SOLUTION OUTRESgALLgALL ANTYPE,TRANS KBC, 1                              ! 1=Step Change,   0=Ramp TREF,70 THOT=525 TCOLD=70 TUNIF,THOT LSELI S J LOC g Xg Rl               ! CRDR  ID SFL g ALLg CONVg 4 g g THOT CMSEL I S g LID LSELg U~ LOC / X g R1 SFLg ALLg CONVI 5 I g THOT ALLSEL NSUBST,1                           ! Number  of Sub-Load-Steps TIME,1 SOLVE SAVE LSEL~ S g LOCI Xg R1               ! CRDR  ID S FLDELE g ALLf CONV SFLg ALL~ CONVI 4 I ~ TCOLD ALLSEL UTOTS,ON                          ! Automatic Time-Stepping      ON ELTIM,1,1 TIME,3601 SOLVE SAVE FINISH 0m AmmC~a~W IN'.
CalculaUon 80.   ~
Preparact Dy Checked By Page        C'-)


Path: C:)NOZZLE File: STRESS.INP/PREP7 ETCHG 767.a..3-29-94 12:17:26 pm 4TrHru mgnli 7)Page 1g/CSYS, 1 LSELI SI LOCg YgANGl DL,ALL,,SYMM CSYS,O LSEL,ALL!Symmetry at, Cut NSEL I S~LOC g Y I RV+TV+H 1~05 g RV+TV+H 1+05 CP~1~UYgALL TREF, 70 PINT=1250 CMSEL g S/LID SFL g ALL f PRES I PINT PI=ACOS(-1)
4TrHru mgnli  7)
FLONG=PINT*PI*R1**2 ALONG=PI*(R3**2-R1**2)
Path: C:)NOZZLE File: STRESS .INP                 767 .a.. 3-29-94 12:17:26     pm       Page 1g/
PLONG=FLONG/ALONG LSELgSgLOCgYIRV+TV+H1
/PREP7 ETCHG CSYS, 1                                         !  Symmetry at, Cut LSELI SI LOCg YgANGl DL,ALL,,SYMM CSYS,O LSEL,ALL NSEL I S ~ LOC g Y I RV+TV+H1    ~ 05 g RV+TV+H1+ 05 CP~ 1~UYgALL TREF, 70 PINT=1250 CMSEL g S / LID SFL g ALLf PRES I PINT PI=ACOS(-1)
~05gRV+TV+H1+
FLONG=PINT*PI*R1**2                                     ! Longitudinal Force ALONG=PI*(R3**2-R1**2)
05 SFLgALLIPRESI PLONG FINISH!Longitudinal Force!End Pressure/SOLUTION ANTYPE I STATIC NSUBST,1 ALLSEL*Number of Sub-Load-Steps
PLONG=FLONG/ALONG                                       ! End Pressure LSELgSgLOCgYIRV+TV+H1           ~ 05gRV+TV+H1+ 05 SFLgALLIPRESI PLONG FINISH
*DIM,SNAP, ARRAY,14 SNAP(1)1 I 10I 20I 40 I 60J 801 100'00 SNAP (9)600 I 1200 I 1800 g 2400 g 3000 g 3600 NT=14*DO,N,1,NT T=SNAP (N)TIME,T LDREAD g TEMP g I g T I g NOZZLE g RTH SOLVE*ENDDO SAVE FINISH MpR ASSOCIATES, INC..Calculation No.Prepared By Checked By Page  
/SOLUTION ANTYPE I STATIC NSUBST,1
* Number of Sub-Load-Steps ALLSEL
*DIM,SNAP,ARRAY,14 SNAP(1) 1 I 10I 20I 40 I 60J 801 100'00 SNAP (9) 600 I 1200 I 1800 2400 3000 3600 g       g   g NT=14
*DO,N,1,NT T=SNAP (N)
TIME,T LDREAD g TEMP g I g T I g NOZZLE g RTH SOLVE
*ENDDO SAVE FINISH MpR ASSOCIATES, INC..
Calculation No.
Prepared By Checked By Page


PD~MPR ASSOCIATES INC.E N&INE ERS Appendix F LO%CYCLE FATIGUE USAGE  
PD~MPR ASSOCIATES INC.
E N & INE ERS Appendix F LO% CYCLE FATIGUE USAGE


PLIMpR MPR Associates, Inc.320 King Street Alexandria, VA 22314 CALCULAT!ON TITLE PAGE Client hJ IRGR<R 4 (ol 8>IC PUB A.Co'R~DNRTidlJ Page 1 of Project Qg,g g~~Q<ag Q>~4.7~4'~C~c~lc.~>]Task No.o&s=)50 gp.g wk,~~L.,'nz a~4 L,~P~lq F'4j<vwq~Calculation No.ugly 530 psp3 Preparer/Date Checker/Date p i q6(Reviewer/Date APL~~~](~i~as Rev.No.
MPR Associates, Inc.
PLIMpR                                                320 King Street Alexandria, VA 22314 CALCULAT!ON TITLE PAGE Client hJ IRGR<R 4 (ol 8> IC PUB A. Co'R~DNRTidlJ               Page 1 of Project                                                                     Task No.
Qg,g   g~~       Q<ag Q>~4. 7~4'~     C~c ~lc.~>]
o&s= )50 gp.g wk,~~   L.,'nz a~4       L,~ P~lq F'4j< vwq~             Calculation No.
ugly 530 psp3 Preparer/Date             Checker/Date         Reviewer/Date               Rev. No.
APL     ~~
p i q6(            ~](~i ~as


lxlMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.QSS-l-3o-P~P3 Revision RECORD OF REVISIONS Checked By Description Page O~igi~a((ss~e  
MPR Associates, Inc.
lxlMPR                                      320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No.                             Checked By
    - l-3o -P~P3                                                 Page QSS Revision                             Description O~ igi~a(   ( ss~e


t>~MPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.og<-~so-PsP9'2 S'~Checked By Page PvCpo&F  
MPR Associates,   Inc.
t>~MPR                  320 King Street Alexandria, VA 22314 Calculation No.
og<- ~so -PsP9   '2 S'~ Checked By Page PvCpo&F


RMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.OS'=53o-%gQ Checked By jl~A4~Page R esuh'G F~ks'I.e<sa)e a F+hem/.r/P un 9/'<~A/P 4 I Dnve r epu n r/inc rsvp phla.ava 7 o/p/nn/prrssnrr/S~per;Purr chic/~era/rsvp'ad&4;, 54r+/54 J.(lawn M 4~(S~ra~l-l~Ar,~<4'gg F4~0sa e (e t.%3~(o t 3,898.<<(o (,')63 w/o  
MPR Associates,   Inc.
RMPR                                                      320 King Street Alexandria, VA 22314 Calculation No.                                         Checked By Page OS'= 53o-%gQ                                         jl~     A4~
R esuh'G F~ks'I.e     <sa)e       a F +hem/.r/P         un   9/   '<~A /     P4 Dnve       r I
epu r/inc n          rsvp phla.ava       7 o   /p/nn/   prrssnrr
              /S ~per;Purr       chic/~     era   /rsvp'ad     &4;,
F4 ~        0sa e  ( e 54r+       /54 J.(lawn                     t.%3    ~(o t M 4~       ( S~ra~                       3,898. <<(o l-l~Ar,~<4'gg                             (,')63 w /o


raiMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.os'-xsg-PSIr'3 Prepared By'7s Checked By Page PPFYLoRcI-I 7 k~j~c usaq~.o4+M c.~kaI>>c J, J,r~(CP-h)I ('>>4wVw n;-~4.ic c>>(~(>>4~2 l>>~ed r/co bd vsny pi>>sgw~c ac/v gee~>>/(I f u.hie.4 or t.w ol v~q gusrakq+pens>c~zs n-4 (i 0 (>>.g~-~-., 4.g/~1,.k d.~).Riess<<n~(4~~p'valour>>/-J)c/~Q/(<02-re4~li'~>>~.~~)e.a.cc.do~~~e~keg,'~
MPR Associates,     Inc.
E>>(cree(e I, ,.4.',..4 r~id>>~4i.e,~p(4e J, g~A (.J~ar cl 4-q-ev,q 8 A~~g<.les.(>>8j imp~spy.f/A~cat ce/~,~/n~no-+w(c fg cw/c/>>-A~g dan>>p8v Ly c/g b.si'f.~Qe pc/eJ Jefi'.4,'.
raiMPR                                                          320 King Street Alexandria, VA 22314 Calculation No.             Prepared      By              Checked By os'-xsg PSIr'3               '7s                                                       Page PPFYLoRcI-I 7     k~j~c   usaq~.       o4     +M c.~kaI               >>c J,     J,r ~   (CP-h)
f<'eX'r nate, I>>s Each:<:  
I
('>> 4wVw             n;- ~4.         ic   c>> (~(>> 4~2       l>>~ed       r
      /co bd           vsny     pi>>sgw~c         ac/       v gee~>>     /
(
u.hie.4   or t.w   ol v
                                  ~q       gusrakq         +pens>c~zs I
n f
      -4             p'valour>>
(i       0 (>>. g       ~-~-., 4.g     / ~ 1,. k d.   ~   ).     Riess<<
n ~(   4~~                       / - J )c/~           Q         /(<     02-re4~       li'~>>     ~.~~)e.         a.cc. do~~~e~keg,'~                 E>>(cree(e I,
      ,.4.',..4   r~id>>~           4i.e,       ~p(4e     J,       g~A (.J~ ar       cl 4-q-ev,q           8     A~~ g<.les.                         (>>8jimp        ~spy.
f /A~         cat   ce/~,~       /n~     no-+w(c       fg     cw/c />>-A~g dan>>         p8v       Ly c /g b.si'f.     ~       Qe       pc/eJ Jefi'.4,'.         f<'eX'r nate,   I   >>s Each:<:


K~MPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.a gg-x~-Psl>Prepar d By Checked By Page lA e('c..'~Agua eSnp~$Q pC/(n inn bCn of app(si p/qg/ag 4r ii pi~en p/.rssurc-hm~~+g gg~J~tl ii nn/nn'~pllg~~ik/(:
MPR     Associates, Inc.
i/('0 4'i~ssuw-4e~perzgrg s t,4>I(, TInQ 6 l tiiw<le(~(i(u~(gei eP a7 (,((iiJ/j)lg<<<v c./u/(g/'4n i/i I'~Jm~mln~g/(~gg~/h-P 5//2 (doe)3pslyn Cwgsgvf'~r vp Pv'e('gii~
K~MPR                                                                  320 King Street Alexandria, VA 22314 Calculation No.               Prepar d By                        Checked By a gg- x~- Psl>
A/n)e.W//'y(/eve/g 5'0'/~gb Z, g),.7-~J./ttIC, a l48v n<4i(i]'a4YY 5 5 rav ge.~u Si" 0 4j (c,u(vC (g Jekrn,/(,g 44+N(i%8%Cry, z)
Page lA e('c..'~Agua eSnp           ~       $Q pC/(
n   inn bCn       of       app(si p/ qg/ag           4r   ii pi~en p/.rssurc -hm~           ~+g gg ~ J~
tl ii nn /nn'     ~
pllg~~ik/(:             i /('0 4'i~ssuw-4e~perzgrg s   t,4 >I(,
TInQ     6 l tiiw <le(~       (i(u~ (gei         eP     a7 (,((iiJ   / j) g<<<v       c./u/(   g/'4n     i/i         I'~     Jm~mln~g/
l
(~gg~     /h-P 5/ /2       (doe   )3pslyn     Cwgsgvf'~r vp                   Pv'e('gii~
A/n)       e.W       //'y(   /eve /g         5'0 '/~           gb     Z, g),   .7-~J. /
ttIC,   a l48v n<4i(i]'a4YY 5 5               rav ge.     ~         u Si" 0   4j (     c,u(vC       (g     Jekrn,/(,g 44                                     Cry,    z)
                                          +N(i%8%


ralMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.085-'P~o-ping re ared By Checked By Page (Sea kaQ)~a@(gfmaS ((~(q'~Et y~>ping O mirage'is~ze.WS, (Aa, K alkarna4i~p s*asS i'a.14Ila.J, 4 Ah v'~gib ef gag g~g e("Jig~aufvz c.(a ski<i iu 4(aS I Wr~4e%lpga elas&#xc3;i e aa's..S.P g~Wk  
MPR   Associates,   Inc.
ralMPR                                                320 King Street Alexandria, VA 22314 Calculation No.               re ared By            Checked By 085-'P~o   - ping                                                             Page
( Sea   kaQ)
            ~a@(       gfmaS
      ~(q'~Et y~>ping((
mirage'is       ~ze.WS, O
( Aa,     K       alkarna4i~p     s*asS   i'a.14Ila.J, 4         Ah v'~gib     ef   gag g~g e("Jig~ aufvz     c.(a ski< i iu 4(aS aa's    I                       Wr   ~
4e     %lpga elas&#xc3;i     e         ..S.P   g~ Wk


lLimpR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.os'-~-Pre are Checked By Page CAI Cu(Av)mJ P>>>>ssas>>.as J, News erss4sm s.t>>S',~ssssu.>><<a 1 s<<(ev 4(>>.qsj>>5 t/a<0~H>>a~~is;s s>>4.4J i-Waai~I k p (s'svkJ.~s e4-s<<-(i,)(S"aw., 4 4,.)fns.l Ii's%54 G4-4 6/C~C 8 CEC ffn~~l A~s a P ASS'~ie 4s~ps~4~>>s~~ee.IVokcp.h 8 kic ss<<4f/'sera~F'gglgVY gt54~JUL~~~4f CAew L'e,*Q$p>>gS y s/<s 4l>>s4>>k ((s~~~g~t~4I.ggg'.r~gpss>>+lQ 4rXQgs.J CstC4)5v 6f C  
MPR Associates,     Inc.
lLimpR                                                                320 King Street Alexandria, VA 22314 Calculation No.             Pre are                              Checked By os'-~-                                                                                       Page CAI Cu(   Av)mJ P>>>>ssas>>. as J,   News   erss4sm           s.t>>S   ',
              ~ssssu.>><<a         1   s<<(ev 4(>>. qsj>>5                       t/a<0   ~       H>>
a~~is;s       s>>   4.4J     i-     Waai~     I k p (s'svkJ.   ~s     e4-s<<-(i,)     (S"aw               ., 4     4,.)fns.l Ii's
      %54         G4- 4   6/C ~C   8     CEC ffn~~l       A~s a     ASS'~ ie P
4s~ps   ~ 4   ~>>     s~~ee.       IVokcp.h         8         kic       ss<<4f     /'sera~
F'gglgVY     gt54~
JUL~~~         4f CAew
                                                        $ p>>             gS y s/<s L'e,* Q 4l>> s4>>k ( (s~~~                 g~t~             4I   .     ggg'.r     ~gpss>>
                                  +lQ   4rXQgs. J               CstC4)     5v 6f C


<5 kyc4s Pry.Ql;p<~5Hgg (ps)g)7p~pera Nre~ClbR ())P3 7o-s2.s 70 7o-gQ (Mb o-io3o 70  
  < 5 kyc4s p<~5Hgg            7p~pera Nre~
Pry. Ql;       (ps) g )         ClbR ()) P3 7o- s2.s     70 7o-gQ (Mb o- io3o                 70


ti1MPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.os<-z.so-WP~'22~Checked By"" io She~eS;/4 e~l~sees es~ee~~~l~~pt Using q gin ik el(vne~4 r ader~ae~~4~l/i~e 5'Z/0~/e/oem'.4r~girr Ae.hv r-r j~vc'p n q sr>i<era eire ce r rrrrn,"rr f4'A-S LJ Ir r rib 44.PiR<(e/e'-n er.~1 n ery rf/r pe k->Crt'sv l+A~GL, 4e(C,IA[..(\~hev-/l0~0 l~~SeS'(bnckrr+e'r~4c.51.5"F CreOree Fl J%rrrprrr4.h''
MPR Associates,       Inc.
T-Ir.s-4sc, 4ens h'A'54erd.p/s k~gJer n~)e(eJ prebSrree i C f rid 0 p s c)anA ckf&rnr/4"c/'-  
ti1MPR                                                          320 King Street Alexandria, VA 22314 Calculation No.
os<-z.so -WP~               '22~                             Checked By
                                                                                            "" io She~eS;
                                                                    /
4 e~l~ sees           es       ~ee~       ~~l~~pt                     q     gin ik Using el(vne~4       r   ader           ~ae         ~~4~   l/i~e       5'Z oem'.4r~       girr     Ae.           / j~vc'p n hv r-r 0 ~
sr>
                                                                                          /    e    /
q            i<era     eire ce rrrrrn,"rr f4'A-S         LJ Ir r   rib     44. PiR <(     e /e'-n er.~1     neryrf/r pe k-   >Crt'                                                 \ ~hev-sv l +A~                         GL, 4e(   C,IA [..(
                                                                / l0   ~ 0 l~~
SeS'     (bnckrr   +e'r~4c.
51.5 "F   CreOree Fl J%rrrprrr4.h''
T- Ir. s-4sc,           4ens   h'A'54erd.p/s               k~gJer n         ~)e(eJ prebSrree       i C f rid 0   ps c)       anA       ckf&rnr/4"c/'-


WMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.o8r-2M-TL~PS Prepared By Checked By ay~~Page q 4g Csh~>>,V~)]~~s;~c4,$i~)<o,o<ss l2go pig$0.(p cz g~(~g I she'~bia/>>S~,>>ri~sA,is,-/a~u,)~~(<n~)jl(,)-s.lg As 2 ss.f'p~iisisl)
MPR Associates, Inc.
HL<l/n~Ap I va>>(1>>>>Afc'r>>>>i>>>>s y>>/id g>>+;/~pa e
WMPR                                                320 King Street Alexandria, VA 22314 Calculation No.         Prepared    By          Checked By o8r- 2M-TL~PS                                     ay   ~~               Page q
WMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.oM-tM-RS'P3 R Checked By goo VkoAs Page Au ij~g.E~ens<2 CApp,&,a~, F g>-V i)eM u s'5 own'30~JO pJc 7/a go++(a~pe//oj I S 5A-33po~k'cl)(n-~(.(g n,'Q 4ns,'h s4ron~Ag&O gsi e.(os@Wo J.(i s o W4'>bl<'8 5~ieC Qo~>>o'P PjPog cy J 7ha o o (o(v o.of HE~-ne%+(L ss 6~~a oA 3o Po o sli o4 i<<ppi wiin ooA$pea o v~~4~apooa+~t'c
4g                                                       ~c4,$ i~
Csh~       >>,V~ )                     ]~~s;
                          )< o,o   <ss                         $ 0. (p cz l2go pig g~(~g     I she   '~bia /
S~,>>     ri ~     sA,is,   -/a~u,)~
                                                                ~(<n~) jl(, )-s.lg As   2     ss.f 'p~iisisl)         HL   <l/ n~Ap I
va>> ( 1>>>> Afc'r>>>>i>>>>s     y>> /id     g>> +;/~pa


~s~sasa~~a ss~~a~SSISS~~SSSSS~~NSISS~~
e MPR Associates,  Inc.
~SNSS~~SQIISS~~SSSS~~
WMPR                                                              320 King Street Alexandria, VA 22314 Calculation No.                                            Checked By oM -tM    -RS'P3              R                          goo VkoAs Page Au ij~
~QSREr%~'NNSr~~SQAS%%~
g.E~ens<          2      CApp,&,a      ~,    F g
naaraaaaemraarm~ta)rrraaiaa Saaaraa~Saeara~rnuarRjea BRIRSR~~ER~~RIEERSS~
                                                            >-V      i)    eM u s'5 own
                              '30 ~  JO      pJc 7/a      go ++(a    ~pe//oj        I  S    5A-33po              ~k'cl)    (n-~
(. (g n,'Q    4ns,'h        s4ron~ Ag
                            &O gsi e.(os@      Wo J. (i s  o        W4'        >
bl<'8 5~ieC      Qo  ~>>o 'P        PjPog        cy J
7ha      o o  ( o(v o.of    HE~  -ne%+(L          ss        6  ~~a    oA    3o  Po
                  <<ppi o
sli o4    i          wiinooA$      pea  o  v~~            4~apooa +~t'c
 
~
~
~
s ~ sasa~~a ss~~a SSISS~~SSSSS~~NSISS~~
SNSS~~SQIISS~~SSSS~~
QSREr%~'NNSr~~SQAS%%~
naaraaaaemraarm~ta)rrraaiaa
~
Saaaraa~Saeara~rnuarRjea BRIRSR~~ER~~RIEERSS~
EBSIE~~ESE~~ESEERS~
EBSIE~~ESE~~ESEERS~
SRSER~BR~~BHBRTR~
SRSER~BR~~BHBRTR~
~EEIERSR~HER~HBHSISI~
EEIERSR~HER~HBHSISI~
IHSSRMllBRRRWNIRBSsw ramrrmmaarrmnararam IIIIIIUERmllll@RIIIIII)ilR I~&WM~~SHRER~~Ea~~ESEHELW~~
IHSSRMllBRRRWNIRBSsw
~anaaam~aaam~anntimm~
~
ramrrmmaarrmnararam IIIIIIUERmllll@RIIIIII)ilR
~&WM~~                 I SHRER~~Ea~~ESEHELW~~
~ anaaam~aaam~anntimm~
lHIIRRH~HHHRA~lUUUNEEH~
lHIIRRH~HHHRA~lUUUNEEH~
IHBIQR~IIIQ15%~lllSlSR~
IHBIQR~IIIQ15%~lllSlSR~
IIIHQLHIIIIIQRHllllRIiLH IIIIIIRRmIIIUSRIIIINSER
IIIHQLHIIIIIQRHllllRIiLH
~KSERHW~%R~~~LRm~HRRRHM~R&M~NBSES&M~
~ KSERHW
~aaaara~maara~aaeaa~
~
~
        ~
IIIIIIRRmIIIUSRIIIINSER
        ~%      ~LRm HRRRHM~R&M~NBSES&M~
aaaara~maara~aaeaa~
IBSRR~RS>RR~TBBIER~
IBSRR~RS>RR~TBBIER~
IIIISSNM~mREIWM~NIINR~~
~
!IIIQSWMIIHItSQNflllllllSRM IIIIIIRRmlRiNVlllllEER I~SEEK\M~~~T~SRRR~~
R IIIISSNM~mREIWM~NIINR~~
SEERSE~ass'~SEES~
!IIIQSWMIIHItSQNflllllllSRM IIIIIIRRmlRiNVlllllEER
~Qlssr%~56lsrN~sslss%~
~ SEEK\M~~~T~SRRR~~
I ass'~SEES~
Qlssr%~56lsrN~sslss%~
SEERSE~
IIRIRERE~EEEBEN!~BEEN%~
IIRIRERE~EEEBEN!~BEEN%~
~
E~ERW~~BHRRNNt~llRRRH~~
E~ERW~~BHRRNNt~llRRRH~~
taatrrmmiaarrmmnarm r llllllRRmllSRUllllmR
taatrrmmiaarrmmnarm llllllRRmllSRUllllmR r


mmx R MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.%p Checked By Page 7 ego/, 7o'  
MPR Associates, Inc.
mmx R                        320 King Street Alexandria, VA 22314 Calculation No.             Checked By Page
          %p 7 ego/, 7o'


WMPR MPR Associates, inc.320 King Street Alexandria, VA 22314 Calculation No.DBS-230-N5FD repared By Checked By 9>76~Page I g P(,Lc.Wy pe.Mv ev A''N~hel'.Ksi)Sq (ts,i)Allow~44, Cqc les Us,a.g~"Iw 9o.b l(7, 7/%3>/v l lO)0 gi)b 97i1  
MPR   Associates,   inc.
WMPR                                              320 King Street Alexandria, VA 22314 Calculation No.             repared By          Checked By Page DBS - 230 N5FD                                   9> 76~                         Ig Mv ev Allow~44, A''N~he P(,Lc.                                   Sq        Cqc les          Us,a.g~
Wy pe.               l'.Ksi )           (ts,i)                       "Iw 9o. b         l(7, 7                     / %3>/v l lO) 0 gi) b           97i1


lLBMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.c 8S-Sou-&Pa 7sZg Checked By Page T4e~a&5'N~S4'~$fwQ dec csea I 2.~~si sI+polnASCA8Gf 52 g Pn.ks Pb L~d Ce L Jim/s fl z 0/3 gZ;/(g, g-=//5>0 I IO 0~~ig b 255.1 e 5'7>I~e, o I I aw<LLL 6~rwIem cd c/c,lpz gn csn q/c'one/shy S4rc>>e~4 C's s 4ecp/~/~J vscn>7<4/e~-7~5~="75 jV'ZocsD IVg=5C>DP y'c ja  
MPR Associates,     Inc.
lLBMPR                                                              320 King Street Alexandria, VA 22314 Calculation No.                                                 Checked By c 8S-Sou -&Pa 7sZg                                                       Page T4e     ~a& 5'N~         S4'~           $ fwQ       dec csea I 2.~   ~si sI
                  +polnASCA8Gf               52 g Pn.ks     Pb         L ~d       Ce   L   Jim     /s flz      0
            /3 gZ;           /(g, g                     =   //5>   0 I IO 0           ~~ig b                   5'7> I 255.1  e
      ~e,       o I I aw<LLL     6 ~ rwIem           cd c/c,lpz     gn     csn   q / c'one /shy S4rc>>e ~               4         C's s   4ecp/~/~J           vscn>     7<4/e   ~-7   ~
jV'        ZocsD 5 ~   = "75                 IVg     =   5C>DP   y'c ja


ljiMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.os-L30-65PQ repared By Checked By~'Nc~Page (7 jv=9153 g,GS'tw ld 24 I 2-Fr~ws4 l~l~;<c,]or>=5''F%Ca<v'rM'fp'Nd J p o Lnncj (Jns(iV>4g Z-  
Associates,   Inc.
ljiMPR                                              MPR 320 King Street Alexandria, VA 22314 Calculation No.           repared By              Checked By os-   L30-65PQ                                     ~ 'Nc~                 Page
( 7 jv =       9153 g,GS'tw ld 24 I 2-Fr~ ws4         l
        ~l~   ;
          <c,] or>   =   5''   F
    %Ca   <v'rM'fp'NdJ  p o     Lnncj (Jns(iV>4g Z-


liiMpR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.os-~3,5-I>U Prepared By Ws Checked By Page 29 5@/N=4/SO(u u~r~eZ g.l36 g lo z-ark~(g, (c (c fe>ieiiiyg'aj4 I:  
MPR Associates,   Inc.
~.
liiMpR                                        320 King Street Alexandria, VA 22314 Calculation No.         Prepared    By        Checked By os-~3,5   - I >U       Ws                                         Page 29 5 @/
r>IMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.o Vg-zs>-&P3 gS Checked By Page I.P&E>le (5)6 S.BVsvro C I)I 943 ii<(i)Qi 002$
                =
N     4/SO(u     u~r ~eZ
: g. l36 g lo z-ark~ (g,             (
(c c
fe>ieiiiyg'aj4 I:


RMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.c 8s=z.m-R>r 9 Checked By Lv illa~Page~Rw/c122t ass~~~'<<(<>~'Ref n<~ale 7Tjer e/Aw4 Prrssan Qc/rs,'<12 C~4</arian 085-LEO'-$8g-o/~Rev/,//S/4F 8o, lee c M Pr ran r V ne/Cg Je.5~<di6 l is~FC4~.'l, AAJ.3<~
~ .
MPR Associates,   Inc.
r>IMPR                                320 King Street Alexandria, VA 22314 Calculation No.                     Checked By o Vg-zs>   -&P3      gS                                    Page I. P&E>le (5 ) 6 S. BVsvro  C I)
I 943 ii< (i)
Qi 002$


PA1MPR ASSOCIATES INC.ENGINEERS Appendix G CRACK GROWTH RATE COMPUTER PROGRAM VERIFICATION
MPR  Associates,  Inc.
RMPR                                                  320 King Street Alexandria, VA 22314 Calculation No.
c 8s= z.m R>r 9-                                        Checked By Lv illa~                Page
                                                                                    ~
Rw/c122t ass
        ~      ~'<<(    < >    ~'    Ref n <~ale 7Tjer e/        Aw4 Prrssan
                                                            '-$ 8g-o/~
      ~
Qc/rs,  '<12          C~4</arian    085- LEO                  Rev  /,
            //  S/4F  8o,  lee    c M  Pr ran r  V ne/  Cg Je. 5~<di6 l is~  FC4 ~ .'l,        AAJ .3<  ~


RMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 CALCU LATION TITLE PAG E Client Page 1 of$8 Project~-f<ol M>rive, tJ>~~le Aqalys,<Task No.o65-230 Title&nc~er$a$~eeA pen,Pica'~
PA1MPR ASSOCIATES INC.
aP~pe~Pro~r~~W CaR C K'.E,yE'alculation No.o85-4~-gsP)Preparer/Date p-2/-'gl'hecker/Date Reviewer/Date Vl~l<<Rev.No.
ENGINEERS Appendix G CRACK GROWTH RATE COMPUTER PROGRAM VERIFICATION


WMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No.c ss.->so-RSP/Revision Prepared By Z2.Checked By'8,.Ca Description Page gr jinx(I stag
Associates, Inc.
RMPR                                          MPR 320 King Street Alexandria, VA 22314 CALCULATION TITLE PAG E Client Page  1  of $8 Project  ~-f<ol M >rive,    tJ>~~le Aqalys,<                      Task No.
o65- 230 Title  &nc~er$ a$ ~
Pro~r~~  W CaR C K'.
E,yE'alculation eeA pen,Pica'~    aP  ~pe~
o85-   4~-   gsP No.
                                                                                )
Preparer/Date                              Reviewer/Date            Rev. No.
            'gl'hecker/Date p- 2/                                    Vl~l<<


'0~o p~~~
MPR  Associates, Inc.
WMPR                                          320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No.        Prepared By          Checked By Page c ss.->so -RSP/                Z2.        '8,. Ca Revision                              Description gr jinx( I stag


r~lMPR MPR Associates, inc.320 King Street Alexandria, VA 22314 Calculation No.oeS->3o-<F'QY~Checked By Page PES Ul 1 5 gCRACk.F Xg>Versm (.0 Curvecf(cA 4 taA'8 c~c c,k pow kg.of g/wc)(U)Illy flite no~>>~8-~4 (~ass~s4 4s e~(q(,Ie~, 7~e
  '0 ~ o p ~
~   ~


~W P~~e  
MPR Associates,    inc.
r~lMPR                                    320 King Street Alexandria, VA 22314 Calculation No.                          Checked By oeS- >3o - <F'        QY~                                     Page PES  Ul 1 5 gCRACk. F Xg> Versm      (. 0  Curvecf(
cA 4 taA'8  c~c c,k pow kg .of  g  /wc)(U)Illy flite no~>>~  8-~  4 (~ass~ s4      4s e~(    q(,Ie~,    7~e


a~MI R MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.ops-Mo-Rsvp l Checked By Xd Page PA+Ccq, 2.)Kw~--H~,.X4 ga LJ.~'g F..7~M;.)C)de.(.WsL t~)Q.assi.Awe cols.(Vs'~~)C~4 y~4h is app~im~]eJ
      ~   ~
&q,)ha=Cv,~k srto~$4 Fin'~Vs))J.'o~og q~(es IVo~k44 44is<<ppasfee4'a (i vnb eppb~bt~s~ll vela~~h e~'/AN re~a~g ra~ah z~sI>4.
~ W P e


lLiMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.DBS-w>0-%P I Pre ared By Checked By Page 4 4o s,re.de4r~ine/LsA m po:Ss~ee a~4 ao~+(as (6LC~eael (J CV~s~~S 4'ale,(awkio
MPR Associates,   Inc.
~aoa(l~yam is z epee,9<b)+$('li&et~4of'(aa()vl~w.l 0=ZgaSS (A,i,)o(lsAn e/Awol]l no~p/g oui (((Wchw)Pal)n~P Coef<c e HZ
a~MI R                                                320 King Street Alexandria, VA 22314 Calculation No.                                       Checked By ops- Mo -Rsvp l                                      Xd                      Page PA+                              Ccq, 2.)
Kw~   --
H~, .        X4 ga    LJ.~'g    F..7~   M;.)
C)de.    (. WsL  t~)
Q. assi.Awe cols.    (Vs  '~~)
C~   4 y~4h          is  app~im~]eJ
                                                          &q,     )
ha    =      Cv, ~k srto~$ 4        Fin'~Vs)
                        )J. 'o~      og    q~(es IVo~   k44    44is <<ppasfee4'a        (i vnb eppb~bt      ~      s~ll    vela~
            ~ h e     ~'/AN    re~a~         g ra ~ah      z~sI> 4.


t>IMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.aSS=E3o-@PI Checked By'X~Page p CF(''l).l-pe~,'jp P Q (Ws.'()L n)gf)(v'les)>>~>>>f>eeflen Refers (s>epeneter>f en ge>>&Y])swiss g,'st'Le)>en s (ad eve C/">i tz)'e>re de/er n>r>eJ.'s no~Pr>h p e(ense H eee gs s~g f,ress>rrt.
MPR Associates,   Inc.
slyness I Pwg.S-I~s 4~4'Iv,v': i 8 cq<pm~SX~C>s cL ft'.Q vwlCJ I~v~.l 1>net)u..k4~ness~.7/ir n>el~efr ss liszt>A>>f ens I>>re ct ke ne>nQ r>4o eegsnenee ne>>lee>>>W<l>er>/es>
lLiMPR                                                  320 King Street Alexandria, VA 22314 Calculation No.         Pre ared By                  Checked By Page DBS-w>0-%P     I 4  4o  s,re. de4r~ine/         LsA m          po:Ss~ee    a~4 ao~+(as      (6LC~eael      ( J CV~     s~~S    4'ale,(awkio        ~aoa(l      ~       yam is    z epee,9<        b)            $ ('li&et  ~ 4of    '(aa()vl~w.l
a<el><4 pr ge'4>sussex 4 o4L v.his''--'s-l.v~rn (>-.e~v$~Ah>~M~r~4 ek~ga
            +
0    =  ZgaSS        ( A,i,)
o(lsAn  e    /Awol]l      no~p/g      oui ((    (Wchw)
Pal)n~ P          Coef<e HZ


TLIMPR MPR Associates, Inc.320.King Street Alexandria, VA 22314 Calculation No.sos-~30-I'-sPI Pre ared By Checked By Page~f 4 Jl NIAl~l4~~br<<~,.(8AS+y (acgoY5 CgQ jive<cyc,4 p<-assure s an)e~<h'yale.,/he p<<<<<<'CS Glelk<'-~fCAj i~5 Gl<C.I j/Pi'~s~covc<&pa~<g%m>mam 6-&<st d<fc (ps<)Pi>=Pc mud.u>~r s~~k'rg 4 wn s4 s<4k Cp'j r<<~e<<k~c b'igvw<vu, cw<<: a rN ol i nq s4<ess s4)e (')W<e 4e~)~~M RAN<<ev ce~vespsvds Q/II~4<~Pn~Qc.JbR~m~defi'<.J g~Ac e'l.~~4 lQ<s.d q.-A~-.-4 A.~/S res Se S'.s4<s I 3.~,'))$<J<g~g~L<l.$<<i
MPR Associates,       Inc.
t>IMPR                                                        320 King Street Alexandria, VA 22314 Calculation No.
aSS=E3o- @PI                                          'X  ~Checked By Page p
CF(  ''l).
l-pe~,'jp    P  Q          (Ws.'(
                                                                      )
L n)gf)      (v'les)
                                  >>~>>>f>eeflen    Refers      (s>epeneter>f    en    ge>>&Y])
slyness swiss    g,'st  'Le)>en s  (ad    eve C/" >i  tz)   'e>re      de/er  n> r>eJ.'
s no~     Pr>h      e(ense  H    eee      s      g p
gs    ~         f,ress>rrt.
I i 8  cq<pm          ~SX~C>
Pwg .      S-I  ~   s  4      ~4'Iv,v':                  cL ft'.QvwlCJ        s v~.l     1>net                                                                          I
                    )    u..k4    ~ness~. I 7/ir n>el    ~efr ss    liszt>A>>f ens
                                                                                              ~
      >>re ct  ke ne>nQ r>4o            eegsnenee      ne>>lee>>>W        <l>er>/es>    a<el        >
    <  4        pr  ge  '4> sussex            4 o4L v.         his'          '--'s
  -l. v~rn      (>-.e~v$         ~Ah    >~ M~r~4                    ek~ga


a 0~l r~~~~~)~e 0 t (/t I  
MPR    Associates, Inc.
TLIMPR                                                      320. King Street Alexandria, VA 22314 Calculation No.              Pre ared By                Checked By Page sos - ~30- I'-sPI Jl
                                                              ~
f 4      NIAl~l4~        ~br<<~,.(8AS+y                (acgoY5    CgQ jive<      cyc,4 p
                                                                      <-assure s    an) e~<h    'yale.,        /he p< <<<  <<'CS  Glelk    <'-~fCAj  i~5        Gl< C.
Pi'~s~      covc<&pa~ <g % m          >mam 6-&<st d<fc I j    /
(ps<)
Pi >    =
Pc  mud. u>~r s~~k'rg    4      wn          s4    s <4k      Cp 'j r<<~e<<k~c        b'igvw<vu,    cw<<: a rN ol i nq s4<ess    s4)e    (')
W<e    4e~)~~M            RAN<<ev      ce    ~vespsvds          Q /II~
4<~Pn~Qc.          JbR~m~            defi'<.J      g~ Ac e'l.~~4        lQ      <s.d      q.    -  A~-.        -4      A.~/
S res  Se S'.      s4<s      I 3.~,'))    $<J<    g  ~ g      ~L< l.$ <<i


WMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.o Ss=~-RsP/Prepared By nz Checked By Page I~Pg-44,co~pwss~used$e 6eprvni~c
a 0  ~
l
  ~ ~ ~ ~             ~ e r~               )
0 t
(
          /
t I


txiMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calcuiation No.ago-z.so-gs, p]Prepared By 0<Za Checked By Page),//cn MIny goer Ct r.o Jc
MPR Associates,   Inc.
WMPR                                  320 King Street Alexandria, VA 22314 Calculation No. Prepared By         Checked By o Ss= ~- RsP/      nz                                        Page I~
Pg- 44,co~ pwss~      used $ 6eprvni~c e


0()vac-Qg c.~Q~RC-K.BXC;'his program calculates crack growth In~nozzle due to pressure and'hermal cycles DECLARE SUS Crackgrowth (At, Nsbl, PII, P2I, Sdist1, T11, TrII, Sdlst2, T21, Tr21)DECLARE fUNC'I!OH Klt (Al&#xb9;, L)DECLARE fUNCTIDH dadxt (dK, R)DIH NSub(5, 5), hain(5, 5), Peax(5, 5), Strdistsn(5, 5), Strdistex(5, 5), Tlein(5, 5), Tieax(5, 5), 12min(5, 5), T2eax(5, 5)DIH Nsubcyc(5), Repcyc(5), BO(5), Sl(5), 82(5), 83(5), RefStr(5)CQHHOH SNARED Pl CLS~Open Input and output flies inputfileS
MPR  Associates, Inc.
~COrp(ANDS OPEN inputflleS FOR INPUT AS tl flan~LEN(RTRINS(lnputfileS))
txiMPR                                320 King Street Alexandria, VA 22314 Calcuiation No.        Prepared  By Checked By ago-z.so-gs, p]          0<Za                              Page
outflleS~LEFIS(RIRINS(lnputflleS), flan-4)+".OUT" OPEN outfileS FOR OUtPUT AS&#xb9;2'ead input file INPUT tl, Aot, Nflnal INPUT t1, Rmin, CIRmlnt, C2Rmint, ml, e2 INPUT&#xb9;I, Reax, C1Reaxt, C2Rmaxt INPUT tie Fl, f2, F3, F4 INPUI tl, Nstrdlst foR I~0 TO Nstrdist INPUI'l, 80(l), 81(l), 82(1), 83(l), Refgtr(l)NEXT I INPUT<<I, Ncyctype fOR I~1 TO Ncyctype INpUT tl, Repcyc(1), Nsctrcyc(l) fOR J a I TO Nsubcyc(l)
                                ),           //cn    MIny goer Ct  r.o Jc
INPUT tl, NSub(l, J)~Pein(l, J), Peax(l, J), Strdistsn(I
~J)~TImin(I, J), T2min(l~J), Strdistex(l
~J), TIeax(I, J), T2eax(l, J)NEXT J NEXT I'onstants Pi~3.I 81592 Calculate crack growth Ntot~0 At~Aot PRINT t2, USING"ttO DO UNTIL Ntot>>Nfinal FOR I~1 TO Ncyctype<<.ttN'tot; At FOR K~'I TO Repcyc(l)Ntot~Hiot+1 fOR J~I TO Nsubcyc(l)
CALL Crackgrowth(AS, NSub(I, J), hain(l, J), Peax(l, J), Strdlstcn(l, J), Tlmln(l, J), T2eln(l, J), Strdlstex(l, J), Tieax(l, J), T2eax(I, J))NEXT J PRINT<<2, USING"ttO t.ttO"I Ntot;At NEXT K NEXT I LOOP END 0 QL o 1 O c 0 R p 0 V'0I)x O~Q to-cC)co CoCD to lO Cr)o  


CCF(D d(P-ACE, E,ME.(('~>SUB CrsckGrorrth (A&#xb9;, Nsb, Pl, P2, Sdlstl,'ll, Trl, Sdist2, 12, Tr2)~This subroutine calculates crack grorrth given the Initial crack length,'he member of cycles and the mlnfaara and msxfaaaa pressures and-'ecperatures.
0 0()vac-            Qg c.        ~      Q~RC-K. BXC; QL 1
dtl=Trl-Tl=dt2~tr2-12 Kl Pl i KIN(AN, 0)+dtl e KIN(AN, Sdlstl)L2 a I 2~Kit(AN, 0)+dt2 e KIN(AN, Sdlst2)IF Kl e K2 THEN Kmin~Kl Kmsx~K2 ELSE Kein 8 K2 Kmsx Kl END IF dK i Kesx-Kmin R~Kmin/Kesx dst~dscgrf(d(, R)e Nab~Af+ds&#xb9;FUNCTION dscgrf (cB:, R)'alculate dscBI given dK snd R SHARED hain, Clhainf, C2Relnf, el, e2 SHARED Rmsx, CIRmsxt, C2Rmsxt If hain~Rmsx THEN Clf~Clhalnf C2N~C2ibalnt ELSE SELECT CASE R CASE IS<<Rein Clf~CIRmlnt C2N~C2Rmlnf-CASE IS>>Rmsx Clt~CIRmaxf C2N~C2Resxf CASE ELSE Clt~Cllbalnt+(CIResxt-CIReinf)a ((R-Rmln)/(Rmsx-hain))C2N~C2lbalnt+(C2Resxt-C2Reint)e ((R-hain)/(Rmsx-Rein))END SELECT ENO IF IF Clt~C2N THEM dscgrt~Clf e dK ml ELSE cB:tran~(C2N/Clf)(1/(ml-m2))SELEC't CASE cX CASE IS e dxtrsn dsdxf~Clt a dK all CASE IS>a dKtrsn dsdMN C2N a dK END SELECT EHD IF END FUXC'tlOH FUNCTION Kit (Alt, L)'alculate Stress Intensity factor'iven crack'Length snd stress distr ibutlon SHARED Fl, f2, f3, F4, 80(), 81(), 82(), 83(), Refstr()Klf ((Pl e AIN).5)a (Fl a 80(L)+F?*81(L)a 2 a Alf/Pl+f3 e 82(L)e Alf 2/2+F4~83(L)a 4 e Alt 3/3/Pl)/Refgtr(L)EHD FUNCTION Pq o Q o>I O~0 U (D o Q (I)O.~Cr)Q x Og ID D K (o-CQ CD o.0)o (Z IO'(D~cD cD Q w (o Q (r)4 o  
o O
'his    program calculates crack growth In ~ nozzle due    to pressure  and                                                                                  c
'hermal cycles                                                                                                                                              0  R DECLARE SUS Crackgrowth (At, Nsbl, DECLARE fUNC'I!OH      Klt (Al&#xb9;, L)
PII, P2I, Sdist1, T11, TrII, Sdlst2,   T21, Tr21) pV' 0 DECLARE fUNCTIDH dadxt (dK, R)
DIH NSub(5, 5), hain(5, 5), Peax(5, 5), Strdistsn(5, 5), Strdistex(5,           5), Tlein(5, 5), Tieax(5, 5), 12min(5, 5), T2eax(5, 5)
DIH Nsubcyc(5), Repcyc(5), BO(5), Sl(5), 82(5), 83(5), RefStr(5)                                                                                                 0 CQHHOH SNARED      Pl CLS
~
Open  Input and output    flies inputfileS ~ COrp(ANDS OPEN  inputflleS FOR INPUT AS tl flan ~ LEN(RTRINS(lnputfileS))
outflleS ~ LEFIS(RIRINS(lnputflleS), flan - 4)       + ".OUT" OPEN outfileS FOR OUtPUT AS &#xb9;2
'ead      input    file INPUT  tl, Aot,    Nflnal INPUT  t1,  Rmin, CIRmlnt, C2Rmint, ml, e2 INPUT  &#xb9;I,  Reax, C1Reaxt, C2Rmaxt INPUT  tie  Fl, f2, F3, F4 INPUI  tl, Nstrdlst foR I ~ 0    TO  Nstrdist INPUI'l, 80(l), 81(l), 82(1), 83(l), Refgtr(l)
NEXT  I INPUT <<I, Ncyctype fOR I ~ 1 TO Ncyctype INpUT    tl,  Repcyc(1), Nsctrcyc(l) fOR J a I TO Nsubcyc(l)
INPUT    tl,  NSub(l, J) ~ Pein(l, J), Peax(l, J), Strdistsn(I ~ J) ~ TImin(I, J), T2min(l ~ J), Strdistex(l ~ J), TIeax(I, J), T2eax(l, J)
NEXT  J NEXT I
'onstants Pi ~ 3. I 81592 Calculate crack growth xQ O~I)
Ntot ~ 0 At ~ Aot PRINT  t2,  USING    "ttO        <<.ttN'tot;    At                                                                                                                -cC) to co DO UNTIL Ntot      >>  Nfinal                                                                                                                                          Co FOR I ~ 1 TO      Ncyctype FOR K    ~ 'I TO  Repcyc(l)                                                                                                                                          CD Ntot    ~  Hiot +  1                                                                                                                                                to fOR J ~ I TO Nsubcyc(l)                                                                                                                                      lO CALL Crackgrowth(AS, NSub(I,    J), hain(l, J), Peax(l, J), Strdlstcn(l, J), Tlmln(l, J), T2eln(l, J), Strdlstex(l, J), Tieax(l, J), T2eax(I, J))        Cr)
NEXT J PRINT    <<2, USING  "ttO        t.ttO"I Ntot;  At                                                                                                                  o NEXT K NEXT  I LOOP END


TLiMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.oSS-%3o-9-5 p/Prepared By WS'hecked By Page~~C.<ac K~~kg gv~ves: PJ~&cV-CW A.c,c,<ph CVV'VCS y$8+i<~/in pL ES~ey J($lg~GLEAM GIAck q/lA/t'g CvC~is~gg~gl~/eg~>/$g.QCLC.4 c,p'~+dig 54/s<X 8 3'8s 8&(s//go se'/5 df Q~>/+g/g
CCF(D                    d(    P-ACE, E,ME.         (('~ >                                                                        Pq o Q
SUB    CrsckGrorrth (A&#xb9;, Nsb, Pl, P2, Sdlstl, 'll, Trl, Sdist2, 12, Tr2)
  ~
This subroutine calculates crack grorrth given the Initial crack length,
  'he      member of cycles and the mlnfaara and msxfaaaa pressures and                                                                                      o >
  'ecperatures.
dtl    =  Trl - Tl                                                                                                                                          I O
=
dt2    ~  tr2 - 12 Kl      Pl  i KIN(AN, 0)    +  dtl  e KIN(AN,  Sdlstl)                                                                                                    ~ 0 L2 a I 2 ~     Kit(AN, 0)  +  dt2 e KIN(AN, Sdlst2)
IF Kl e K2      THEN Kmin ~ Kl Kmsx ~ K2 ELSE Kein 8 K2 Kmsx      Kl END IF dK  i Kesx - Kmin R ~
dst Kmin
          ~
                / Kesx      e Nab U
dscgrf(d(, R)                                                                                                                                        (D
        ~ Af + ds&#xb9;                                                                                                                                              o Q
(I)
FUNCTION      dscgrf (cB:, R)            'alculate    dscBI given dK snd R                                                                                    O.
SHARED      hain, Clhainf, C2Relnf,      el, e2 SHARED      Rmsx, CIRmsxt, C2Rmsxt If hain      ~ Rmsx THEN Clf ~ Clhalnf C2N ~ C2ibalnt ELSE SELECT CASE R CASE  IS  <<  Rein Clf ~  CIRmlnt C2N ~  C2Rmlnf
      -  CASE  IS>>    Rmsx Clt  ~ CIRmaxf C2N ~ C2Resxf CASE ELSE Clt  ~ Cllbalnt + (CIResxt - CIReinf) a ((R - Rmln)      / (Rmsx - hain))
                                                                                                                                                                      ~ Cr) Q C2N ~ C2lbalnt    + (C2Resxt - C2Reint) e ((R - hain)      / (Rmsx - Rein))
ENO END SELECT IF                                                                                                                                                          xID Og IF  Clt    ~ C2N THEM D K dscgrt ~ Clf e dK        ml (o
ELSE                                                                                                                                                                -CQ cB:tran ~ (C2N      / Clf)      (1  / (ml - m2))                                                                                                                        CD o.
SELEC't CASE cX                                                                                                                                                      0) o CASE IS e dxtrsn dsdxf  ~ Clt a dK      all (Z ~   IO'(D CASE    IS >a dKtrsn                                                                                                                                            cD cD dsdMN      C2N a dK                                                                                                                                      Qw    (o END SELECT                                                                                                                                                      Q EHD IF                                                                                                                                                              (r)
END FUXC'tlOH                                                                                                                                                      4     o FUNCTION    Kit (Alt, L)          'alculate    Stress Intensity  factor'iven  crack 'Length snd stress distr ibutlon SHARED    Fl, f2, f3,    F4,  80(), 81(), 82(), 83(), Refstr()
Klf ((Pl EHD FUNCTION e AIN)    .5)  a (Fl a 80(L) + F?
* 81(L) a 2 a Alf / Pl + f3  e 82(L) e  Alf    2 / 2+  F4 ~ 83(L) a 4 e Alt 3 /3 / Pl) / Refgtr(L)


WMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.0~g g~Q~~p5p (RQZa Checked By'K.Qu.Page[(  
MPR Associates,   Inc.
TLiMPR                                                320 King Street Alexandria, VA 22314 Calculation No.
oSS- %3o  5 p/
WS'hecked Prepared  By                      By Page
                                                                                    ~ ~
C.<ac K  ~~kg      gv~ves:
PJ~&cV- CW          A.c,c,<ph  in pL ES                  ~ey J(
lg~
CVV'VCS  y  $ 8+i<~/
GLEAM  GIAck    q/lA/t'g CvC~      is  ~gg~gl~ /eg  ~>/$    g.
QCLC.4    c,p'~      +dig 54 /s  <X    8 3'8s 8& (s        //    go    se'/5  df    Q~> /+g/g


RMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.t/55->3o-JVt 1 Checked By Page C;>/" g t'=th1,'peen~44~WP<,eee1 I4'n)elepvJi'q e 4 K.)tJeeke'<M4~~vcS~.a$~4~.e.vna LPW1q'g ISA Y~p.~ce')ne-kh c~Ie1~,"l'.~~e.'h.
MPR Associates,   Inc.
i'.4e~sec4m eC-P/)4 e cvveeS is Je/~eai~ecl; I Ci (A I', h,L g)ee/pJ Wee appeaec g Pr ace n ee1 en'~+eaee S7 Msl'e~~esag by/bc A<bfG 9 i/er seae/eeeevvc Yeesz/Cee/e..
WMPR                    320 King Street Alexandria, VA 22314 Calculation No.         Checked By Page 0 g~ Q~ ~ p5p (
~g RQZa 'K. Qu.                       [(


lxlMPQ MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calcvlation No.os'-230-g5p/Checked By Page~t Pressure and New ccrc vcccce g o P pcessvf c.ace A$'iccor crea(q clcs aced k,sk~c~c~l leg'e8 4~cnp 4 4s Mc-RRc-K'"=
MPR             Associates, Inc.
<E y P5 A('sea sseg belom.<Ice~~carr,l, 4c'~, As xebec.,l ea p~vco~sg, peers~ccrc%Rebec cccci cs*ess of'57 rclcckcinJ'crp P7 i D I ocdec" polcl crccc~'ccc(cc C Z4.ss as-Zn~k~oP c(is4ncc+roc cll v4 now+(c c.e (I J.lTee pc lqvl wcl ccc (c c!e Pl ciencS R4'c'SS cri dcnSc i cr gcc~v.c ore cC5cd,n~Ic./odin's IM~R C K.c Xg cc ccetok cri p gs/err orii;to ressccrp z 4i"esf cc SA.n~t 4 7-Ck-.I st.Zr a.s4.'b~A~s.
RMPR                                                            320 King Street Alexandria, VA 22314 Calculation No.                                               Checked By Page t/55->3o - JVt 1 C; peen      >      /"
crrce~ressvre.s~c Riser'l~~4'oui i s ri e cessewq zircccpressiccc.
                                                                  ~44~               gWP<,     t'= th1,'
c'okcescc5 ccrc (ireocY'-4 ap(Q p~ssuit.Assocrjcg',gj cricl, s4rrsZ I li lg/s re+~ez~'c,~natu.r) c.cvd;A~-
eee1 I4  'n
                                    ) elepvJi'q        e       4 K.)
tJeeke'     <M4      ~     ~vcS          ~.a$          ~                   4~. e.vna LPW1q              g ISA Y~p.~
ce'     )ne-kh      c  ~       Ie1~,
I',
                                                                      "l'.~~e.'h.
i'.4e~sec4m    eC  -P/)      4 e      cvveeS        is            Je/~eai~ecl; I
Ci
(                                     h,L g)
A ee/pJ
        ~
Wee
                  ~
appeaec g  Pr    ace n  ee1 en'~             +eaee            S7  Msl'e esag    by  /bc  A<bfG    9 i/er    seae    /eeeevvc            Yeesz/  Cee/e..


KiMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.Dg+-230-gap/
MPR Associates,       Inc.
Prepared By Ch eked By Page (II~l L ides'ee%ac.ajpIW..'locccl~M-4 c$M+Yvli~~~gee~Q iX*1 L)vcII.IVI, (ec flic''levnc(ant~c(gi cI.n','r 44 aq (I H p~zs~z ulcc(I~.a l, pa-Sc.8~cc S veS J ,~P~en~Ic~~~(c~c a k C Anna, ada, I 4'A~g$ev~~f y.u'~f R veda$/le q'ag (a"c cI/(7/)e/tiara J I a(cnenvloPJA.JeI
lxlMPQ                                                                                320 King Street Alexandria, VA 22314 Calcvlation No.                                                                 Checked By os'- 230 - g5p/                                                                                                 Page
~44Akji)>~nIvd I h',~4srsgPI 7 d 4 enIa.dpf~neJ u~+he, Pi ni4 e('m a]~ede,/,
                                                                                                                        ~ t Pressure      and        New                ccrc vcccce g        o  P          pcessvf c.       ace  A    $'iccor crea(          q clcs      aced k,sk~c~                     c ~     l        leg'e8          4~             cnp  4      4s Mc-RRc-K'"= <E                        P5      A('sea sseg          belom.
y
    <Ice~ ~carr,l, 4c'~,                                As xebec.,l ea              p~vco~sg,              peers~
I   ccrc%      Rebec ocdec" cccci cs*ess polcl        crccc~'ccc(
of'57 cc rclcckcinJ'crp C  Z4.ss            as P7
                                                                                                - Zn~k~
i D
                                                                                                              /odin's oP    c(is4ncc              +roc cll v4 now+(c                            c  .e (IJ.          lTee c
pc    lqvl wcl ccc  (        c  c!  e  Pl ciencS          ore      cC5cd,n                ~ Ic.
R4'c'SS      cri  dcnSc i        cr    gcc~v      .        IM~R C K. Xg      c             cc ccetok cri p gs      /err          orii;        to ressccrp        z 4i"esf        cc    SA. n
    ~t      4 7                      -Ck-        .I st.Zr              a.s4.'b~A~s.
crrce      ~ressvre.            s~c            Riser 'l~~4'oui          i s        ri e cessewq zircccpressiccc.                        c'okcescc5          ccrc      (ireocY'
    -4 ap(Q                    p~ssuit              .       Assocrjcg',gj                        cricl, s4rrsZ I                li re+~ez~'c,~natu.r) lg c.cvd;  A~-
                                                                                                                  / s


RMPR Calculation No.os'=z~-jcspj Prepared By MPR Associates, Inc.320 King Street Alexandria, VA 22314 PagegO(~m.j,;.;4)ms, V)4..:..k~Jr f8re~g o4 g~tcs c 4 J~W~Q aa-P l (coco cnC eccc.4 g c 6 lnrlcc'cop!
MPR   Associates,   Inc.
4 S I.g~t~ts PcAAg-CXC.g f c.)c.l~Q4ned'I acccs a<<sscncs a4 nccccoccc>>cccc s Iccss s IeSc', etorcQ 0/lc~<I II~<i.,>)Te~p I.W~6~n~~Sk<<SS~4-4 d~,p gal<.hso&slq (oc f I>>3)7 ctc>>Iejccac<<s cch cn inc occcccn)scO'&y sos.sdA l~q~)~lc.~neccccc I cc~sses ase.envssk p e.4c-ge c>>hwc-gcaAIe&nocesS~nc(RQS v ccl(C>>cb cA(a lI<nSt'I c chcccnckec" I~cd Q a Qc rccn+e.cCFe<<IIcs he~>>~bo<<.lnc)s~J.,'JIBES v~cA I')~sW D n,r o tgsM Dc~nc4c>>oP+~-c.Icsoseclc deco cckccccs~~,~, q C q~0 P genic&Wa/>>SQ ccccc S~ac QAe JA'c:5<eJ'
KiMPR                                                      320 King Street Alexandria, VA 22314 Calculation No.            Prepared    By              Ch eked By Page Dg+-230-gap/                                                                              (II
  ~l L ides'ee                  %ac. ajpIW..       'locccl    ~M -4 c$  M+ Yvli~     ~         ~gee~     Q iX*1L) vcII. IVI,      (ec    flic''
levnc(ant      ~c( gi cI.n','r    44      aq    (I H      p~zs~z          ulcc(
I~.a      l,        pa    -Sc.
8~cc          S  veS J                                          ,~P~en~
Ic~~~(c~         ca  k C Anna, ada, I   4'A~           g$ ev~~f        y.u'~f R veda $    /le  q'ag    (a "c /(
cI        7/)e      /tiara J I a(cnenvloPJA.JeI        44Akji)>~     nIvd I       h',     ~4srsgPI    7
                            ~
d  4      enIa. dpf~neJ        u~
    +he,   Pi ni4    e('m a    ] ~ede,/,


lL)MPR MPR Associates, Inc.320.King Street Aiexandria, VA 22314 Calculation No.os->pc-WP/Prepared By AS~Checked By Page g,[4~m 44 g t.~J, gC (g.4).,A~g<4<~-.a n~), l/le.<g (/~kg.Berm</$&sa u(u gr'$c.ga~.s4./~o 4 (8,/;/eJ C'+/~,///~Q s4~rs dis4r'/~giz r/, p.gai~ey((4irr, IJ~H<I'8%ce/~/ag~z ci.~l~pg>l, 4 e./, p~/,+~.,h 9/"Ae WI.~~~/M.A g./~h w/,-~4g p, Id,pl, 4i~~ulcc~w 2q 4-//nw8~~/~/ye.I ru~v h)ops glean gI~~+,P~)L>>h~(p~~k'I 4~.~Q.n>>nk, ar ca~/z+pcJw.is p~/~j h~k/anql)w QC.~W-4.('.]7().
MPR     Associates,           Inc.
RMPR                                                                              320 King Street Alexandria,     VA       22314 Calculation No.                     Prepared         By os'= z~ -jcspj                                                                                                      PagegO
(~     m.j,;.;4)ms,                  V)      4..:.. k~ Jr f8re~g o4 g~tcs              c          4     J~W~Q                                    4            PcAAg- CXC.
6 lnrlcc'cop!
eccc. 4 g    c                                                        g   f  c.)c.l~
aa-                                                      S  I.g~t~             ts    Q4ned P l( coco cnC
        'I acccs          a<<sscncs        a4    nccccoccc>>cccc    s Iccss    s  IeSc',   etorcQ      0/lc ~<
I II~ <i.,>)    Te~p     I.W~            6 ~ n~~
Sk<<SS        ~4-4 d~,p gal<.
            )scO'&y hso&slq      (oc f I >>  3)    7    ctc>>Iejccac<<s    cch    cn    incocccccn sos. sdA l~q                        ~)~lc.
                    ~neccccc I gcaAIe& nocesS
                      'I c cc~sses
                                                          ~ ase. envssk nc(RQS        v pccl( e. 4c-ge c>>hwc-C>>cb cA(a lI<nSt he~>>
chcccnckec" D
                                          ~     I~cd n,r  o bo tgsM Q
                                                          <<.lnc) a  Qc rccn+e. cCFe<<IIcs s~J.,'JIBES            v~cA I')~sW Dc~ nc4c>>         oP  +~-c.     Icsoseclc    deco        cckccccs
                                ~~,~,          q    C      q~ 0 P                genic& Wa /                     >>SQ ccccc  S~ac        QAe        JA'c:5<eJ'


%1MPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.De<-~M-gsRI'repared By C ecked By Page gg ln~k Pic., PScII 4 8 Qla.<an4.;.<a.Ll 44.QcPAc<.CXC.
MPR Associates,   Inc.
MI~a i~~~$Pile.C<<w 4a<<.Aq agr<yrna'tC' pi(8%NB>h,~.ql,~~CA."~A~eJe~g<~.Ke.(D14 WlQ f~la CL I&CA Qhl&CO(~i 4 I pl Use.5'e<ed%-4 4~c l~l 4~W v~~ia44 lJ-.,: 4s,.<.k hi.4 l<<<<av~d i~$~Qe<~a$E4eHn I<I Fige t El<4~<ewer Dlo4'$4<I Ac)<I<<Q<l P'a CovAvYla, kha l yahoo..I 44.I~(wd ala.Ape<<d~Vl~e.~-l sos.g;s4 h.H~p.d flic.II&l<Y b+IAj'<Ja, svsc(<$pl<l/e)II/&LI 0
lL)MPR                                                320. King Street Aiexandria, VA 22314 Calculation No.             Prepared                Checked By os- >pc -WP/            AS~              By Page g,[
lLIMpR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.OSS'-Z~-t2SPI Prepared By Checked By Page r2P Input Variable Definitions for MCRACK.EXE:
4~m    44  g  t.~J, gC (g.
Ao-Nf inal Rmin C1Rmin C2Rmfn m1 lll2 Rmax C1Rmax C2Rmax F1 F2 F3 FIo Nstrdist BO(-)'B1(-)B2(-)B3(-)RefStr(-)Mcyctype Repcyc(-)Nsubcyc(-)
4 ).,A~            g<4    <~-    .a n~),
Nsub(-,-)Pmin(-~-)Pmax(-e-)Strdistnn(-
l/le.    <g  (/~kg  . Berm</        $ &sa    u(u gr'$c.ga
T1min(-,-)
      ~.s4        ./~o      4      (8,  /;/eJ C'+/~, /
T2min(-,-)
                  //  ~Q s4~rs dis4r'/~giz r /,
strdistmx(-
p.gai~        ey((4irr,        IJ~H<I'8%        ce/~/ag~z ci.~l~ pg      >l,      4    e. /,    p~/,  +~      .,h    9/
71max(-,-)
    "Ae        WI  .    ~~ ~/M.                  A  g./~
72max(-e-)
h      w/,-~4g      p,  Id,pl, 4i~~
1'nitial Crack Length (inches)Total Nwber of Cycles to Analyze Hinfmm R factor corresponding to crack growth constants First Paris Crack Growth Law Coefficient for Rmin Second Paris Crack Growth Law Coefficient for Rmin First Paris Crack Growth Law Exponent for Rmin and Rmax Second Paris Crack Growth Law Exponent for Rmin and Rmax Haxigun R factor corresponding to crack growth constants First Paris Crack Growth Law Coefficient for Rmax Second Paris Crack Growth Law Coefficient for Rmax Stress Intensity Hagnification Factor Stress Intensity Hagnification Factor Stress Intensity Hagnification Factor Stress Intensity Hagnification Factor Number of Thermal Stress Distributions (Note 1)Stress Distribution Coefficient Stress Distribution Coefficient Stress Distribution Coefficient Stress Distribution Coefficient Reference Pressure or Temperature Change for Stress Distribution (Pref or dTref)Nsmter of Different Types of Cycles (Note 2)Number of Cycle Repetitions (Mote 2)Number of Different Types of Subcycles for a Given Cycle (Note 2)Number of Cycles for a Given Subcycle Pressure at HinisxIa Stress State During Cycle (psi)Pressure at Haxfaun Stress State During Cycle (psi)Thermal Stress Distribution Number for Hinirmm Temperatures First Nozzle Tegperature at Hinimm Stress State During Cycle ('F)(Note 3)Second Nozzle Temperature at Hiniaun Stress State During Cycle ('F)(Note 3)Thermal Stress Distribution Nunber for Haxiaun Temperatures First Nozzle Temperature at Haxigua Stress State During Cycle ('F)(Note 3)Second Nozzle Temperature at Haxinxm Stress State During Cycle ('F)(Note 3)A roe'ro ohio.m lira+As~lJ:~c L i p&.Ale br I lg IIV I r 0 (aeerie$h o r ro~a(err e~%)resene s4eess A st lo~4ieuo, a.merc~r.k a~a)iwnm oP 5', Pp.en)$'ps oF'ela',~<le c~l1e~r p]o 8 gigere~]gyp'l'uboolclcs s 4e~de crsnsr's+oic" p presrurc n d/uu%~pre mc-.erlc(c.rice vr'riel"gs.,Ii" n rroloei.oC'~re fo.equi oyel bo.t'cliaa$~oI Pa~o.(-')oJrMer el/iniety p ciA Vhc nor/pele.-Wc.4)er~J~ge ss Asar LJ~s ere c4cae4eri~'J 51.~+~t aI'e AAe~onc~, Ll,~hem~,
ulcc ~w  2q 4          -//      nw8      ~~/~ /ye.
0' Ao, Nfinal Rmin, C1Rmin, C2Rmin, m1, m2 Rmax, C1Rmax, C2Rmax F1, F2, F3, F4 Nstrdist 80(0), 81(0), 82(0), 83(0), RefStr(0)80(1), 81(1), 82(1), 83(1), RefStr(1)0'0 8 Z 0 80(Nstrdist), 81(Nstrdist), 82(Nstrdist), 83(Nstrdist), RefStr(Hstrdist)
I ru~v        h)ops    glean gI      ~~+,P
    ~)  L>>    h~(p~        ~k'I      4~ .~Q.      n>>nk, ar ca~    / z +pcJw .is p ~/
            ~j  h~ k / anql)w QC.~ W-4
      .('.]    7().
 
MPR Associates,    Inc.
    %1MPR                                                        320 King Street Alexandria, VA 22314 De<- ~M
          -gsRI'repared Calculation No.                          By               C ecked By Page gg ln ~k Pic.,
PScII       4 8   Qla.
      <an4.;.<       a.Ll 44.                               QcPAc<.CXC.
MI~a   i~~~$       Pile. C<<w 4a<<.         Aq     agr<yrna'tC'     pi(8 %NB>
h,~ .         ql,~~ CA."~A~ eJe~g<~.
Ke. (D14 WlQ f ~     la   CL Use      .5'e<  ed%
I
      &CA Qhl&CO(       ~   i4    I pl
                                                                        -4   4~
c   l~l 4~ W           v~~ia44 lJ-.,:       4s,.<.k hi                   .4       l
      <<<<av   ~d       i~   $ ~     Qe<~a$           E4eHn     I<I Fige     t El<4         ewer     Dlo4'$4         <I     Ac)<I<< Q<l           'a   CovAvYla,
                ~<
P kha   l   yahoo..     I 44. I~(wd ala. Ape<<d~
Vl~e.~-l       sos. g;s4 h.H~
b+                                  p. d flic. II &l<Y                 IAj'<Ja, svsc(< $ pl <l/e)II/&LI
 
0 MPR     Associates,   Inc.
lLIMpR                                                                    320 King Street Alexandria, VA 22314 Calculation No.                         Prepared      By                Checked By OSS'-     Z~- t2SPI                                                                                   Page   r2P Input Variable Definitions for   MCRACK.EXE:
Ao                               Crack Length (inches)
    -Nfinal                    Total Nwber of Cycles to Analyze Rmin                    Hinfmm R factor corresponding to crack growth constants C1Rmin                    First Paris Crack Growth Law Coefficient for Rmin C2Rmfn                  Second Paris Crack Growth Law Coefficient for Rmin 1'nitial m1                        First Paris Crack Growth Law Exponent for Rmin and Rmax lll2                    Second Paris Crack Growth Law Exponent for Rmin and Rmax Rmax                    Haxigun R factor corresponding to crack growth constants C1Rmax                    First Paris Crack Growth Law Coefficient for Rmax C2Rmax                  Second Paris Crack Growth Law Coefficient for Rmax F1                      Stress Intensity Hagnification Factor F2                      Stress Intensity Hagnification Factor F3                      Stress Intensity Hagnification Factor FIo                      Stress Intensity Hagnification Factor Nstrdist                Number of Thermal Stress Distributions (Note 1)
BO(-)                    Stress Distribution Coefficient
    'B1(-)                    Stress Distribution Coefficient B2(-)                    Stress Distribution Coefficient B3(-)                    Stress Distribution Coefficient RefStr(-)                Reference Pressure or Temperature Change for Stress Distribution (Pref or dTref)
Mcyctype                  Nsmter of Different Types of Cycles (Note 2)
Repcyc(-)                Number of Cycle Repetitions (Mote 2)
Nsubcyc(-)                Number of Different Types of Subcycles for a Given Cycle (Note 2)
Nsub(-,-)                Number of Cycles for a Given Subcycle Pmin(- ~ -)              Pressure at HinisxIa Stress State During Cycle (psi)
Pmax(-e-)                Pressure at Haxfaun Stress State During Cycle (psi)
Strdistnn(-              Thermal Stress Distribution Number for Hinirmm Temperatures T1min(-,-)                First Nozzle Tegperature at Hinimm Stress State During Cycle ('F) (Note 3)
T2min(-,-)      ohio.m  Second Nozzle Temperature at Hiniaun Stress State During Cycle ('F) (Note 3) strdistmx(-              Thermal Stress Distribution Nunber for Haxiaun Temperatures 71max(-,-)                First Nozzle Temperature at Haxigua Stress State During Cycle ('F) (Note 3) 72max(-e-)                Second Nozzle Temperature at Haxinxm Stress State During Cycle ('F) (Note 3)
A   roe'ro                                     As~       lJ:~       c     L     i p&.
lira+      Ale br I lg IIV     I r0      (aeerie$ h   o r ro~ a(err e~%)
resene       s4eess       A st     lo~4ieuo,
: a. merc ~r.                 k     a ~a) iwnm oP               5',     Pp.en)         $'ps oF'ela',
                      ~< le s 4e~de c~ l1e~ r p ]o             8     gigere~] gyp'l'uboolclcs crsnsr's+ oic" p presrurc n d/uu %~pre erlc(c. rice vr'riel "gs.,Ii" n rroloei. oC'~re                               fo.equi oyel mc-.
bo. t'cliaa$ ~oI           Pa~ o. (-') oJrMer el                   /iniety     ciA Vhc     nor/ pele                                               p
.-         Wc. 4) er~J ~ge ss Asar LJ ~s ere c4cae4eri~'J                                     51.~
          +~t         aI'e AAe~onc~, Ll, ~hem~,
 
0' 0
Ao, Nfinal Rmin, C1Rmin, C2Rmin, m1,   m2 Rmax, C1Rmax, C2Rmax F1, F2, F3, F4 Nstrdist 80(0), 81(0), 82(0), 83(0), RefStr(0)                                                                                       '0 8 80(1), 81(1), 82(1), 83(1), RefStr(1)
Z 0
80(Nstrdist), 81(Nstrdist), 82(Nstrdist), 83(Nstrdist), RefStr(Hstrdist)
Ncyctype Repcyc(1), Nsubcyc(1)
Ncyctype Repcyc(1), Nsubcyc(1)
Nsub(1, 1), Pmin(1, 1), Pmax(1,'1), Strdistan(1, 1), T1min(1, 1), T2min(1, 1), Strdistmx(1, 1), T1max(1, 1), T2max(1, 1)Nsub(1, Nsubcyc(1)), Pmin(1, Ksubcyc(1)), Pmax(1, Hsubcyc(1)), Strdistan(1, Nsubcyc(1)),..., T2max(1, Nsubcyc(1))
Nsub(1, 1), Pmin(1, 1), Pmax(1,'1), Strdistan(1,     1), T1min(1, 1), T2min(1, 1), Strdistmx(1, 1), T1max(1, 1), T2max(1, 1)
Repcyc(2), Nsubcyc(2)
Nsub(1, Nsubcyc(1)), Pmin(1, Ksubcyc(1)), Pmax(1, Hsubcyc(1)), Strdistan(1, Nsubcyc(1)),..., T2max(1, Nsubcyc(1))               (0 Repcyc(2), Nsubcyc(2)                                                                                                           lu Nsub(2, 1), Pmin(2, 1), Pmax(2, 1), Strdistan(2, 1), Tlmin(2, 1), T2min(2, 1), Strdistmx(2, 1), T1max(2, 1), T2max(2, 1)
Nsub(2, 1), Pmin(2, 1), Pmax(2, 1), Strdistan(2, 1), Tlmin(2, 1), T2min(2, 1), Strdistmx(2, 1), T1max(2, 1), T2max(2, 1)(0 lu (0 CL Hsub(2, Nsubcyc(2)), Pmin(2, Nsubcyc(2)), Pmax(2, Ksubcyc(2)), Strdistaa(2, Nsubcyc(2)),..., T2max(2, Nsubcyc(2))
(0 CL Hsub(2, Nsubcyc(2)), Pmin(2, Nsubcyc(2)), Pmax(2, Ksubcyc(2)), Strdistaa(2,     Nsubcyc(2)),...,   T2max(2, Nsubcyc(2))
Repcyc(H cyctype), Xsubcyc(H cyctype)Nsub(Kcyctype, 1), Pmin(Ncyctype, 1), Pmax(Hcyctype, 1), Strdistam(Kcyctype, 1),..., T2max(Kcyctype, 1)Nsub(Kcyctype, Nsubcyc(Ncyctype)
Repcyc(H cyctype), Xsubcyc(H cyctype)
), Pmin(Kcyctype, Nsubcyc(Ncyctype)
Nsub(Kcyctype, 1), Pmin(Ncyctype, 1), Pmax(Hcyctype, 1), Strdistam(Kcyctype,     1),...,   T2max(Kcyctype, 1)
),..., T2max(Ncyctype, Nsubcyc(Kcyctype)
Nsub(Kcyctype, Nsubcyc(Ncyctype) ), Pmin(Kcyctype, Nsubcyc(Ncyctype) ),...,   T2max(Ncyctype, Nsubcyc(Kcyctype) )
)gyve Q.l~g$7(+~4 0 fJckjIcg.(=~Q Cp~g~~$~~~~i~~(~~~~~~I~i(p J~g~,pi~i)  
gyve       Q.         l~g $       7(       +~       4   0       fJckjIcg. (=~Q Cp~g~~         $ ~ ~~~i~~             (~~~       ~       ~~I~i(p       J~g~,pi~i)
 
MPR  Associates,    Inc.
t>~MPR                                    320 King Street Alexandria, VA 22314 Calculation No.                          Checked By GBs-730-N5F'J                          X  Can, Page
                                                                        ++
                                                              ~ y
                          ~~ ~a~[,    3- k4.
A<RR["-lC gj/engr)ne. e) 4
 
MPR          Associates,  Inc.
WMPR                                                                      320 King Street Alexandria, VA 22314 Calculation No.                                                      Checked By osS-- ZSC /W/                                                                                          Page Zg Pg o6gCIM Veal 5 i CROON pJ  cgPiclc. E'icP          is      per gmnied
      %VAN )                            ca.~~a.      Qig c&vl(Algal p p( 44. opgpug 0'    4  %pc\    C  (..i(J          0    e~S    (4s.        (.(.4s              0    kh
                                                              ~c Q~ (
I-lgvf6'g 4es4                    A.f Q      $ 40'4J Q      a~                  p s~ipW    ~lb'(n      I7  P~ssetc        IVH  fe'pp~      cl/cps    epee          FIFI  8p/ns.7 f
p c                                        le Inj 9      Pb vi p.rnlaI                      0+ 1''j~6.
dE'          (IBl~ny      p      7                                              npon i            p i
in~u. s          wv        L5asew          p  p~~Jlz          a.          vm Cipa.Il~
                                                                ~CP.PC~      eXE..              AHl~>/,      .
      'peg4C SeMkn4 Ia              0  0'pe'A    I  pk<4        fko        i 4tlA/g WJo4          (      ac  e      iIiek      g(,(;carol      Q ~c.,Pip'.
      ~        -~As a-k ~s ($s                            ~ ~( .s.J                          4. 4R yvr pedC.          p 4      Vi'< i I
0i Cnk~~          e~    $ W C~(p 4e g f 0QI'<a l~    g
 
Associates, aiMpu                            MPR 320. King Street inc.
Alexandria, VA 22314 Calculation No.                  Checked By Page zPS'- 2M-pe/                                                    ~7
: 85. '109 f7 $ 2%  - 3o. I8$
 
n vl 0
1 O
C o
g 0
io3o.        (      83.      83.      J
                                                                                                        '5.
0 6  fO x
Qs a~9
                                                                                                                -10  CO CO
                                                /6o,                                                            10 Co o O
t    tTie. prtss~iz-4e~(@~ad~            vtrg anal g~ilcycks        Aiv. e hsuo        Fjvrvs 3 t (.      lO~  co
  ~
q                                            vari                    IQ CD o
IJ    HC      A'>BfCenACN    0f fltc  Eke c'I  p'g      'P>~+'Qk    )II'>4+8 Is  1 lie    ]clytrnkYc    cC ate    Pry/    ln "g'+s~aI            '~? <4    Eg~l Tg
    ++          5+ f/ I Apl ~ g'8'    I +++re  C8  pC ~e  l  ~ es'Scr ~Pi
 
MPR  Associates,  Inc.
lL)MPR                                                            320 King Street Alexandria, VA 22314 Calculation No.                Prepared    B                  Checked By oeS zoo 8 58 I Page 185 FULLPOWER z  lL                            OPERATION ill O
        <z                            g g~Ct go
        <U lf au  g:~
Ul LU g      t O  Q gZ                                ONIOFF FW FLOW IL lL,                            CYCLINQ AT 0                            LL85/  Q.
lt lo                                      TIME Ihrl S IIaS              z. HAS HP                KP HOT HOTSTANOSY            STANDBY IO HC.S
                                                                                  " LP HOTSTANOSY N
7t l O3O              ioso E                  9ss                                    ASS g
O I
V TIME OKI PD4:        T2  Is  ches+.regim            Qmpmq4acc a'h valise/ pf'5$ a<g Fi&VRG          3 CyC L
                      ~ T> R T UP /5 H 9 TD 0 M~                C '/C L E


t>~MPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.GBs-730-N5F'J Checked By X Can, Page++~y~~~a~[, 3-k4.A<RR["-lC gj/engr)ne.
MPR     Associates,     Inc.
e)4
r>~MPR                                                            320 King Street Alexandria, VA 22314 Calculation No.                   Pre    red By                  Checked By Page ogf-Mo ->SF')
FULL POWER OPE RA. OW/OF:P Sm O'Lo~                      FULL POWER TION      C.yCI.l~s AT                          OPERATION g CTCI.CC/HR z          $ 6O                                                3<o III a: 7I,
          /III    ~
ON ON gO IL Z        I78  ()o- )
                                                                            !6 (
TIME Ihrl N>(a W~ I'61)~ SQ            J',~
Q~E,ra4r~         ~4 %VMS)
STAND IY LI'OT pg g 6'C~
W.5'IS HP HOT STAN 0 5 Y IZ.54 la30                                            ld 3@7 7p 955 E
g K
O I
O C
i6o F I &uP CyCl Z.
C. 2 TIME Ihrl 5'I:EA/VI      70        LP HOT <TAA'DPP tq P/D                          II 6  I gg~
FVl- L POWER


WMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.osS--ZSC-/W/Checked By Page Zg Pg o6gCIM Veal 5 i CROON%VAN)0'4%pc\4es4 C (..i(J 0 e~S (4s.(.(.4s 0 kh A.f Q$40'4J Q a~~c Q~(p I-lgvf6'g pJ cgPiclc.E'icP is per gmnied ca.~~a.Qig c&vl (Algal p p(44.opgpug s~ipW~lb'(n I7 P~ssetc IVH fe'pp~cl/cps epee FIFI 8p/ns.7 p c dE'(IBl~ny p f 7 le Inj 9 Pb vi p.rnlaI npon 0+1''j~6.i p i in~u.s wv L5asew p p~~Jlz a.vm Cipa.Il~~CP.PC~eXE..AHl~>/,.'peg4C SeMkn4 Ia 0 0'pe'A I pk<4 fko i 4tlA/g WJo4 (ac e iIiek g(,(;carol Q~c.,Pip'.
MPR     Associates,   Inc.
~-~As a-k~s ($s~~(.s.J 4.4R I yvr pedC.p 4 Vi'<i 0i Cnk~~e~$W C~(p 4e g f 0QI'<a l~g
WMPR                                                                          320 King Street Alexandria, VA 22314 Calculation No.                     Prepared        By                    Checked By Page @t, o85-ZW- gsp/
lhpwk File                      RS1      /~ hf P      (5'<C Apl'> z-IB-s'f> Izls'Cp            j  8, 0.75, 8 0.25, 1.02E-12, 1.01E-7g 5.95, 1.95 0 '5g 1 'E 11'                  '2E 7
            ~ 706I    ~ 537I      ~ 448g      ~ 393 2
54 ~ 047'023 88 ~ 409
                                ~ 208
                                ~ 014 g   1 ~ 3 198 2  ~ 5638 s g
                                                            .79782, 1000.
                                                            .147, 450 '
                      ~                  s 47 ~ 922  g    30 ~ 189    g  8  ~  2748 I      .94733, 250.
2 1,  4 1,  O. I    1030.          1, 83 ) 83                1, 83. 83.
1,  0 '     955  '    ~
1, 83 '
                                                  ~
: 83. I 1I 485        ~  539.
16'55 '            955  kg 1I 183 '             539., 1, 161., 539.
30I    160 kg      160  kg 2g 241 '             364.) 1, 178 '           364.
3/  3 1 I 160 ~ g 1254          ~ g  1 g 161    ~ g  364  ~ s   2 g  360 ~ g  573  ~
9 I 955 ~ I 955 ~            1 J 183 ~         539 ~     1 I 161  ~ g  539 ~
44'60        ~ g    160 g
                                    ~ g   2g 241      ~
g 364., 2, 178., 364.
QclRct'.CxC            k~s         ~eel,4ej            asian~
TE57  I~P      es I
4'le        GEEST.DU7                  (l7/f~gis~           g-zI-P~g     e'3/<<)
0                0.7500 1                0.7522 2                0.7533
                              ~ 3                0.7544 4                0.7555 5                0.7577 6                0.7588
: 7.                0.7599 8                0 '610    '


aiMpu MPR Associates, inc.320.King Street Alexandria, VA 22314 Calculation No.zPS'-2M-pe/Checked By Page~7 85.'109 f7$2%-3o.I8$
0 MPR   Associates,   Inc.
r>IMPR                                                              320 King Street Alexandria, VA 22314 Calculation No.               Prepared 685=2'- /2''/            Ws~              By                    Checked By Page
                                                                                                  ~+
  ~e        rcs>>I4      Lis  f+L ii      MCVr~ OLIT            iicc    'soli PicA iij'c    5  vn~rl<i~il        iw    V<44 7                 Ail    A&lMfl(Q c~lci  'Lanai    g  ll~s        TaL la    Z.
      ~eris~          QP    +ha      rSavl'fc    t  kf 2         i  ~ci~4.
      +he. res lhs      t'kccl,      I>>      TS~ T OUT              Ymir~
4C-%AC j    ~ BYE        preyer I          c    Lc/ggey      c~. kc r~rm$  la    s  a      P~c+n          g    i
                                                        ]
c-(c  c      +    +lie i~v      inp~i s.


n O vl C 0 1 o 0 g io3o.(83.83.J'5.0/6o, t~tTie.prtss~iz-4e~(@~ad~
e O
q vtrg anal g~ilcycks Aiv.e hsuo vari Fjvrvs 3 t (.IJ HC A'>BfCenACN 0f fltc Eke c'I p&#x17d;g'P>~+'Qk)II'>4+8 Tg Is 1 lie]clytrnkYc cC ate Pry/ln"g'+s~aI'~?<4 Eg~l++5+f/I Apl~g'8'I+++re C 8 pC~e l~es'Scr~Pi fO 6 9 Qs x a~CO-10 CO 10 Co o OlO~co IQ CD o  
o l'a'I~IakeJ      Ccac,(<. <<mA'< Resv          'l>g                  R O
5VLQJQ    Kmi m                        .hX                >  /~v              A    ~b  z
~l/Pl N. 4ev    (Vs,F) (g7 )            P      &s>Q              (~/~).le)            (~)
5.7S'00 U
o                    b, ooo2GaZ.        f  g.75vZ      6
                                                                                                'o Q
e 0 00032 52
                                                                ~                   O>1So&      CL izs.ss
                                                                          -8        o.75'Ob 0-1,5I                  .sv,o              (,gkq~ (0            14 Z'fiii                  .esi4    t5 L x    g.Ssf~ro              50  o.758.
I                                                                             o.7S~
W  4l Q e  ~m xQ O~
He  lb    ]a'f, tP  . gag        5'5;9P    . oOo'l t >g             o.aS37
                                                                                                      ~ P i~).~s    l ~S.VX    ~ ')6&~                  (p,'7  7+~]D
                                                                          -8       Di 75 g7
                                                                                                      -to  CO e
0'~
                                                                                                            ~'
                      >0    lI    .1'4    'I    lo lS      ta  Vl I'f1Q          Oi7S $ S          Q~g tO C0 o
0.7553


lL)MPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.oeS-zoo-8 58 I Prepared B Checked By Page 185 z lL ill O<z go<U lf Ul au g:~g LU t O Q g Z IL lL, 0 lt lo FULLPOWER OPERATION g g~Ct ONIOFF FW FLOW CYCLINQ AT LL85/Q.TIME Ihrl S IIaS HP HOTSTANOSY z.HAS KP HOT STANDBY IO HC.S" LP HOTSTANOSY N 7t E g O I V l O3O 9ss ioso ASS TIME OKI PD4: T2 Is ches+.regim Qmpmq4acc a'h valise/pf'5$a<g Fi&V RG 3 CyC L~T>R T UP/5 H 9 TD 0 M~C'/C L E
0
                                                                  ~ o O
p A./gg                      z (vi,(~) 'g;4)                          (~f~ .te)                  0
'lS l'j    lo'I.a8  ."tQ5  Sg, oO    . ooo'%9'4        e  -7538 Oi 753$ i
~9.~5      s'l..ls    sx l  lo 'f'I  /, t ( g>l o '/        7S Y9
( O~
: o. 1$ 9$
tol~    ."lCZ5- e< o3        Cga'f4/(      o    75'!8
(:8)9 >Io          o 7X'VS W  CD g li 'Ql>I>                        x Og fO ~
o i 7sS'5'
                                                                          &#xc3; i'75~         fll Co CO o
                                                                          ~  j~'
lQ  ~ 6g lO CD o


r>~MPR Calculation No.ogf-Mo->SF')Pre red By MPR Associates, Inc.320 King Street Alexandria, VA 22314 Checked By Page FULL POWER OPE RA.TION OW/OF:P Sm O'Lo~C.yCI.l~s AT g CTCI.CC/HR FULL POWER OPERATION z III a: 7I,/III~ON ON gO IL Z$6O I78 ()o-)3<o-!6 (N>(a W~I'61)~SQ J',~Q~E,ra4r~~4%VMS)pg g 6'C~LI'OT STAND IY TIME Ihrl W.5'IS HP HOT STAN 0 5 Y 7p E g K O I O C IZ.54 la30 i6o 955 ld 3@7 TIME Ihrl F I&uP Z.CyCl C.2 5'I:EA/VI 70 LP HOT<TAA'DPP tq P/D II 6 I gg~FVl-L POWER
D J(<Idol n) o t+
g I
(~% ~b)                           o
. 0oO24$ $        . g,755 7 0
. OoO3ZQQ            o.gs (p/
            ~5 Iok~~b  p~   0 oi 7S 7.7
    . uoo t&go    o,.75'8/
                                    ~   CD Q 4 892.>)0                        e xtQ
                                        ~a Og D  K I
CO O.
                                    <Zg' oi 758/)        IQ  ~ CO Q
CD 4      O


WMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.o85-ZW-gsp/Prepared By Checked By Page@t, lhpwk File RS1/~hf P (5'<C Apl'>z-IB-s'f>Izls'Cp j 8, 0.75, 8 0.25, 1.02E-12, 1.01E-7g 0'5g 1'E 11''2E 7~706I~537I~448g~393 2 54~047'0~208 g 1~3 198 g 88~409~23~014 s 2~5638 s 47~922 g 30~189 g 8~2748 I 2 1, 4 1, O.I 1030.~1, 83~)83 1, 0'955'1, 83'83.16'55'955 kg 1I 183'30I 160 kg 160 kg 2g 241'3/3 1 I 160~g 1254~g 1 g 161~g 9 I 955~I 955~g 1 J 183~44'60~g 160~g 2g 241~5.95, 1.95-.79782, 1000.-.147, 450'.94733, 250.1, 83.I 1I 485~539., 1, 364.)1, 83.539.161., 539.178'364.364~s 2 g 360~g 573~539~g 1 I 161~g 539~364., 2, 178., 364.QclRct'.CxC k~s~eel,4ej asian~TE57 I~P es I 4'le>GEEST.DU7 (l7/f~gis~
0 f' t Jed  Ccock G owk(     Regv.Hg
g-zI-P~g e'3/<<)0 1 2~3 4 5 6 7.8 0.7500 0.7522 0.7533 0.7544 0.7555 0.7577 0.7588 0.7599 0'610' 0
                                .,'oo 9gpQ          oi 7+Z.
r>IMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.685=2'-/2''/Prepared By Ws~Checked By Page~+~e rcs>>I4 Lis f+L ii MCVr~OLIT iicc'soli PicA iij'c 5 vn~rl<i~il iw V<44 7 Ail A&lMfl (Q c~lci'Lanai g ll~s TaL la Z.~eris~QP+ha rSavl'fc t kf 2 i~ci~4.+he.res lhs t'kccl, I>>TS~T OUT Ymir~4C-%AC j~BYE preyer I c L c/ggey c~.kc r~rm$la s a P~c+n g i]c-(c c++lie i~v inp~i s.
                                  .b.glacio    4)   Oi jggg I r f 3+>>Io O~ 7+gCI Rt 37 ~os gg  - lkzC  sk, lg    .i. oao~ggo      os  7/0+
e
                                  $ i 0'foxpro
~l/Pl 5VLQ JQ Kmi m N.4ev (Vs,F)(g7).hX P&s>Q>/~v (~/~).le)l'a'I~IakeJ Ccac,(<.<<mA'<Resv'l>g A (~)O o R O~b z 0-1,5I o izs.ss.sv,o b, ooo2GaZ.f 0~00032 52 (,gkq~(0 14-8 5.7S'00 g.75vZ O>1So&o.75'Ob U 6'o Q e CL Z'fiii.esi4 t5 L x g.Ssf~ro 50 o.758.I He lb i~).~s l~S.VX~')6&~(p,'7 7+~]D-8>0 l I.1'4'I lo lS ta Vl I'f1Q]a'f, tP.gag 5'5;9P.oOo'l t>g o.7S~o.aS37 Di 75 g7 Oi7S$S 0.7553 W 4l Q e~m x O~Q~-P CO-to e 0'~~'Q~g tO C0 o
(. Y3'P>>io  gg oi>0(
o~75/g


(vi,(~)'g;4)A./gg (~f~.te)0~o O z 0 p'lS l'j lo'I.a8."tQ5 Sg, oO.ooo'%9'4 e-7538~9.~5 s'l..ls sx l lo'f'I tol~."lCZ5-e<o3/, t (g>l o'/(Cga'f4/(Oi 753$i O~7S Y9 o.1$9$o 75'!8 (:8)9>Io li'Ql>I>o 7X'VS o i 7sS'5'i'75~W CD g fO~x Og&#xc3;fll CO Co o~j~'6 lQ~g lO CD o
W
  ~ ~       ~ s T
I P      r


J(<Idol (~%~b)D o t+n)g o I.0oO24$$.g,755 7.OoO3ZQQ o.gs (p/0~5 Iok~~b p~0 oi 7S 7.7.uoo t&go 4 892.>)0 o,.75'8/oi 758/)~CD Q e~a x Og tQ D K I CO O.<Zg'IQ~CO Q CD 4 O 0
MPR Associates,                 Inc.
f't Jed Ccock G owk(Regv.Hg.,'oo 9gpQ.b.glacio 4)I r f 3+>>Io oi 7+Z.Oi jggg O~7+gCI Rt 37~os gg-lkzC sk, lg.i.oao~ggo os 7/0+$i 0'foxpro (.Y3'P>>io gg oi>4 0(o~75/g
r+~MPR                                              320 King Street Alexandria, VA 22314 Calculation No.                                     Checked By Page a8&-Z>g -WP/
Tfic DA<J      coefk~if'~72    (8() a~       PPV    p4. pAgf~
F7~/nfl'('span,g~
Cs4=s. a;st'J<<di~      P'uke      i. 7,m    I) v'hc    nicaea~      Pn sate>      P~ f .
Q(psto  )    (.70@)(5'goal/7+ (.537N-go,zclg)(zC~<~~~)
(0+ps'cg


~~W~s T I P r
MPR Associates,    Inc.
rirMPR                          320. King Street Alexandria, VA 22314 Calculation No.                Checked By Page ues=z-%6')                                                  ps/
CR ~W   {Ib {'hlD
                    + ~ h/S <</e


r+~MPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.a8&-Z>g-WP/Checked By Page Tfic DA<J coefk~if'~72 (8()a~PPV p4.pAgf~F7~/nfl'('span,g~
I
Cs4=s.a;st'J<<di~
      ~   a P            e l
P'uke i.7,m I)v'hc nicaea~Pn sate>P~f.Q(psto)(.70@)(5'goal/7)
i I
+(.537N-go,zclg)(zC~<~~~)
(0+ps'cg


rirMPR MPR Associates, Inc.320.King Street Alexandria, VA 22314 Calculation No.ues=z-%6')
MPR Associates,     Inc.
Checked By Page ps/CR~W{I b{'hlD+~h/S<</e
    <<~MX R                                                    320 King Street Alexandria, VA   22314 Calculation No.           Prepared    By              Checked .By o8IS-z~- gSP)            ~s                          7<. Aud PagB q[,
ETpg(
          = ~TC~soe-)      (7o()(ss,so))          +  (~g)c n    oiq) ~ (vs re
                                                                                    ')
(-.Ivr) ~l',1'
                                  ~
7                                  3
          ~ (;~~s)(> <<38) ~    (>sr 3 )      + ~ 3%3 61 >5      Ai J~
Wz,~i~    71n~  =    sag. '/B5;        "    O'"I,o  'p
                      )ohio.
9go.
5'/-'73 Qi'tw    ~l(Mb  yigi
                                                  +      97,2S IR,'/.
62  7f


I P l~a e i I  
MPR Associates,  Inc.
RMPR                                            320 King Street Alexandria, VA 22314 Calculation No.            Prepared  By        Checked By Page 08s=~-      j~/          VC                    XC                          oc+
I eS l':O(~)o    ( G2. 7'I) 0 OOO'3W~
                      ~                u /po/~
A; = A.-)
dpJ
                  .75e9      $  .Ooo3ssB(()    =    . ps'


<<~MX R MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.o8IS-z~-gSP)Prepared By~s Checked.By 7<.Aud PagB q[,=~TC~soe-)ETpg((7o()(ss,so))
Associates, arMI R                                                     MPR 320 King Street Alexandria, VA 22314 Inc.
+(~g)c n oiq)~(vs re')~7 3~(;~~s)(><<38)~(>sr 3)+~3%3 (-.Ivr)~l',1'61>5 Ai J~Wz,~i~7-1n~=sag.-'/B5;" O'"I,o'p)ohio.9go.5'/-'73 Qi'tw~l+97,2S IR,'/.(Mb yigi 62 7f
Calculation No.               Prepared                  Checked By os'-Ho-g5p/
By
                                                      'X  ~                     Page q~
IW(,~So(,'~)     ( aoI)(sq,og)   g  (u7)C lo,ios) ~C  anto~ ~)
(Yso)(I.3I$6)   i (>soh~)       I('Is3$-.7978E) 37I-50.7$      Vsi Io iso  4-;,9 4/a ~.l S4.~s          as~ 'd.Piw,
      ~I~g      =                  (~74X gs  Io f)  V'(s'37)C    ol'I) ~(7SOlz ~)
O        67icgl
                    ~Tf (724'i)                               z3
                  >7 >(o      rs'~


RMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.08s=~-j~/Prepared By VC I eS l':O(~)o (G2.7'I)Checked By XC Page oc+0~OOO'3W~u/po/~A;=A.-)dpJ.75e9$.Ooo3ssB(()
MPR Associates,   Inc.
=.ps'
WMPR                              320 King Street Alexandria, VA 22314 Calculation No. Prepared   By   Checked By Os~- zoo -EV/                   ~ Gu Page stst fdDp. gore


arMI R MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.os'-Ho-g5p/
MPR Associates,   Inc.
Prepared By Checked By'X~Page q~IW(,~So(,'~)
RMPR                                                  320. King Street Alexandria, VA 22314 Calculation No.                                     Checked By Og~->3g -gSPl              Q<    7~            @a.                        Page q5 I~) 4s:
(aoI)(sq,og) g (u7)C lo,ios)~C anto~~)(Yso)(I.3I$
      ~st  =  ~O s4a.b.-
6)i (>soh~)I('Is3$-.7978E)37I-50.7$Vsi I o iso 4-;,9 4/a~.l S4.~s as~'d.Piw, O~I~g=~Tf (724'i)(~74X gs Io f)V'(s'37)C z3 ol'I)~(7SOlz~)67icgl>7>(o rs'~
eyio$ u~     or~< t  (<QHj    /J '
7~os gJ.p (  =
( tF >Screw)   (7o&) s"'/ of7) + ( <37)(4 goo) ~.
(~@8)(i  slgg).(irma<;  ,)-7     (:893)(- 8782) q'>> l  '<<>>)
GY.7't    4o(Z


WMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.Os~-zoo-EV/Prepared By Checked By~Gu Page stst fdDp.gore
0 a~ME        u                                                                MPR   Associates, 320 King Street Alexandria, VA 22314 Inc.
Calculation No.                                                             Checked By Page a8s=z.m    -WF/                                                        XQ                                    q(,
Se                  J,    ah..      J      Sk  aS    d:,.hr,44~.
j) (  >Ssip'7eefg (7@&)(/7        15 7)  '0    (5 3'7)(-  8ss
                                                                                                      )
I8$ 7j  (
            + (<~8)(8                  m<8) a.(~em~)              O  (SS3g- qww33)~~(. 7S>6          )
8 l. 5('.'s'(J~
Wl/p,5~
                                                      -     3 4~      S"f I    =      i L3.      F 7ia~p      -"    3A.        178.    =
                                                                                      /8(
              )005.                          a<~        =  ~~a,  'P                        Zs-o.    'P q9  is~is          .~    I (l 0, obO  pig y    s(( 5G    VVsts.
                                                                                            )z3.
zSO" P
                                                                                                    'P Pm<
Kz,g~,
Vwg                              5%reF>
I 186.   'F (ooo, prig
                                                                +    872(    gsi&A


RMPR MPR Associates, Inc.320.King Street Alexandria, VA 22314 Calculation No.Og~->3g-gSPl Q<7~Checked By@a.Page q5 I~)4s:~st=~O s4a.b.-eyio$u~or~<t (<QHj/J'7~os gJ.p (=(tF>Screw)(7o&)s"'/of7)+(<37)(4 goo)~.(.~@8)(i slgg).(irma<;
MPH Associates,     Inc.
,)-7 (:893)(-8782)q'>>l'<<>>)GY.7't 4o(Z 0
rarMPR                                          320 King Street Aiexandria, VA 22314 Calculation No.                               Checked By Page c>8~-2M-PSP/                                                                  qg hei /P<     =     >'I + ~
a~ME u MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.a8s=z.m-WF/Checked By XQ Page q(, Se J, ah..J Sk aS d:,.hr,44~.
(qq,yp          . arly 9'/ 53 g.L(       15. 52  gSi'J
j)(>Ssip'7eefg (7@&)(/7 15 7)'0 (5 3'7)(-8ss I8$)7j (+(<~8)(8 m<8)a.(~em~)O (SS3g-qww33)~~(.
            ~ 7-u~>    a~       A,o Q/Ly g'aea grJ gk,
7S>6)8 l.5('.'s'(J~
* ZSZ>>v    6<
Wl/p,5~-3 4~S"f I=i L3.F 7ia~p-" 3A.178.=/8()005.a<~=~~a,'P Zs-o.'P (l0,)z3.'P q9 is~is.~y s((5G VVsts.I obO pig zSO" P Pm<Kz,g~, Vwg 5%reF>I (ooo, prig 186.'F+872(gsi&A
0 7SP3 wctqq


rarMPR MPH Associates, Inc.320 King Street Aiexandria, VA 22314 Calculation No.c>8~-2M-PSP/
MPR Associates,   Inc.
Checked By Page qg hei/P<=>'I+~(qq,yp 9'/53-g.L(~7-u~>a~A,V o Q/Ly.arly 15.52 gSi'J g'aea gk,*ZSZ>>v 6<grJ 0 7SP3 wctqq
t>~MPR                      320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page
~~=zoo- WPi


t>~MPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.~~=zoo-WPi Prepared By Checked By Page
FPMPR FN&INEEAS Appendix H CRACK GROWTH RATE ANALYSIS CASES


FPMPR FN&INEEAS Appendix H CRACK GROWTH RATE ANALYSIS CASES
MPR  Associates, Inc.
RIMPR                                              320 King Street Alexandria, VA 22314 CALCULATION TITLE PAGE Client giaeaafl  A>ifa<K Power. CoRPofffITiorJ                    Page f Of    rii(
Project        'Qegrw Liria Uowzle    gI'iqvi'rr c,piriII                Task No.
OS+-  'L50 Title  @~4;~~<  Cr~ct< &~ow44 gnal~sis  oF  %he,  HIMP Un'f  J Calculation No.
c.re> Rck~~ Li~e Ao++k.
o85'- 230- RsFQ Preparer/Date          Checker/Date            Reviewer/Date            Rev. No.
LS~                      27 g
    ~(~A<


RIMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 CALCULATION TITLE PAGE Client giaeaafl A>ifa<K Power.CoRPofffITiorJ Page f Of rii(Project'Qegrw Liria Uowzle gI'iqvi'rr c,piriII Task No.OS+-'L50 Title@~4;~~<Cr~ct<&~ow44 gnal~sis oF%he, HIMP Un'f J c.re>Rck~~Li~e Ao++k.Calculation No.o85'-230-RsFQ Preparer/Date LS~~(~A<Checker/Date 27 g Reviewer/Date Rev.No.
MPR Associates, Inc.
      ~i~MPR                                      320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No.                             Checked By ops-%30      p-SI 2.
3~~ 're~
Page  Z Revision                            Description O~()i~~ t Iss~<


~i~MPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.ops-%30 p-SI 2.Revision RECORD OF REVISIONS Checked By 3~~'re~Description Page Z O~()i~~t Iss~<
MPR Associates, inc.
ralMPR                                                320 King Street Alexandria, VA 22314 Calculation No.                                     Checked By
            -i2~l'~                                                        Page aug->SAN P~post=
gus.pose      o4'4is        calcu/a fsoN      is 4o GLepec~i'oc        +m+<gue      c(ac.lc      rt w' a SS~~me.Q      $  (avs    ia    3-4c. eJ 'ne  iH'~       Ai'~k
      ~NNP)        <<~k        l    cock>    I  co 8    ds"ivx      C<@>))
l ~e      aors+)e.      as    ~    g ~c.hi~
o  4    Y1urn bsv    og      pr~ssu re  /7 A8f os'/    CyC.le'J",


ralMPR MPR Associates, inc.320 King Street Alexandria, VA 22314 Calculation No.aug->SAN-i2~l'~Checked By Page P~post=gus.pose o4'4is calcu/a fsoN is 4o GLepec~i'oc
MPR Associates,   Inc.
+m+<gue c(ac.lc rt w'eJ'ne iH'~Ai'~k$(avs ia 3-4c.a SS~~me.Q~NNP)<<~k l cock>I co 8 ds"ivx C<@>))l~e aors+)e.as~g~c.hi~o 4 Y1urn bsv og pr~ssu re/7 A8f os'/CyC.le'J",
raiMPR                                                            320 King Street Alexandria, VA 22314 Calculation No.                                                 Checked By Qgg-'zM- W~l 2-                Q s~a                                                  Page Fig    cs    ~     is   cc
                                        ~(  0 og      c,rocc.k      'la~c3)g    versus
      'i~lA ~ ~I5C-     ef      ~[c.4 ~       ~       ol~,ni itlGL /lou/  I Oi 2 S      in C.45          in    fh~ JV M/ Crn'7 I CP10      p  e /IO  CVI  Liin(    +Op+/C    ~a        gy r"    qv)
Q(oCCLl IA$
g    lro d            /0    fi'Pint Vj' g/riu      grOW                o     oppra'irna g'eg
        @f4( uh    U        /ess      7 gun    1'(4~< ~k, (cc4io'aq4          $      Q      Ci S  'inoi ).


raiMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.Qgg-'zM-W~l2-Q s~a Checked By Page Fig cs~is cc~(0 og c,rocc.k'la~c3)g versus'i~lA~~I5C-ef~[c.4~~ol~,ni itlGL I/lou/Oi 2 S in C.45 in fh~JV M/Crn'7 I CP10 p e/IO CVI Liin(+Op+/C~a gy r" qv)Q(oCCLl IA$g lro d g/riu grOW/0 fi'Pint Vj'o oppra'irna g'eg/ess 7 gun 1'(4~<~k,@f4(uh U (cc4io'aq4
MPR Associates,   Inc.
$Q Ci S'inoi).
WMPR                                              320 King Street Alexandria, VA 22314 Calculation No.                                 Checked By osS=PoO- @t    K                                                      Page  5 8'c,v~a.
CRDRL Nozzle Fatigue Crack Growth OA4 0.42 0.40 0.38
      ~ 0.36
    ~   0.34 g 0.32
    ~o 030 O 0.28 0.26 0.24 0.22 0.20 0  50  100    150      200      250      300      350    400 Cycles  (1 0 cycles per year)


WMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.osS=PoO-@t K Checked By Page 5 8'c,v~a.OA4 0.42 0.40 0.38~0.36~0.34 g 0.32~o 030 O 0.28 0.26 0.24 0.22 CRDRL Nozzle Fatigue Crack Growth 0.20 0 50 100 150 200 250 300 350 400 Cycles (1 0 cycles per year)
MPR Associates,         inc.
Q~MPR                                                            320 King Street Alexandria, VA 22314 Calculation No.                                               Checked By OS <- >&0 P~P Page rr-
      %Jib      e      c.r <<r.lc      0 Cow l-In    ri4    an      <<ssa    Yir ed(    47rr ii/
in    )he        HMP          Ir~./  I    Csr'D      r e'er'n      /rrrq    rraZRI>>
is    arI<< I)+~ 0        based        r      kt ~      n ~44e    dI      gI>>zcr ibed I
We4~a c~                        Cra.k.pro~]I,s                    d~Ia~m,.>>,(
4      -+              ~ pI.-+          'l-~4.(                ~c.Ias L  kic Q      pi  ri Jiv sc.     <<<I  LDUJ    p(ass~'re          cinaI      -Hoer  rn
      ~4~s          ~~Irs.             F~g~e        pie.9        dpraginf            c,) ~As.
      <<re      a  ssa~+8            I    sad      ~      r>>cer~+      p(a~4            mfa. -sa lWS(e<t      ~
co    )~4e~          qeeaIr-awv        rJCRRCL EXE:,                    r~ zS dave.(agee'                  p( ger ~ W~ era ~lc qrgw4Q QncLlvIs'is  ~        d'or.u.eiai keg~          rrnA var i/ice (Beni QCCRCr EXw                <<re.     pr0vict+ J        in      %4erewce            2o I
      ~<5        Qrr( cviIa HiPn          ge cvi~ Rv rS I I tl'iQ        i&f'why


Q~MPR MPR Associates, inc.320 King Street Alexandria, VA 22314 Calculation No.OS<->&0 P~P rr-Checked By Page%Jib e c.r<<r.lc 0 Cow l-In ri4 an<<ssa Yir ed(47rr ii/in)he HMP Ir~./I Csr'D r e'er'n/rrrq rraZRI>>Cra.k.pro~]I,s d~Ia~m,.>>,(is arI<<I)+~0 based r kt~n~44e dI gI>>zcr ibed I We4~a c~4-+~pI.-+'l-~4.('L kic Q pi ri Jiv sc.<<<I LDUJ p(ass~'re cinaI~4~s~~Irs.F~g~e pie.9 dpraginf<<re a ssa~+8 I sad~r>>cer~+p(a~4 lWS(e<t~~c.Ias-Hoer rn c,)~As.mfa.-sa co)~4e~qeeaIr-awv rJCRRCL EXE:, r~zS dave.(agee' p(ger~W~era~lc qrgw4Q QncLlvIs'is
MPR Associates,   Inc.
~d'or.u.eiai keg~rrnA var i/ice (Beni QCCRCr EXw<<re.pr0vict+J in%4erewce 2o I I I~<5 Qrr(cviIa HiPn ge cvi~Rv rS tl'iQ i&f'why
    &#xc3;MPR                                      320 King Street Alexandria, VA 22314 Calculation No.       Prepare  By      Checked By Page o eZ- Z3'o- F~Pw
    +o      AcXQc k BX2      aug  ISVldWS    7 /IP    gno. Sil


&#xc3;MPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.o eZ-Z3'o-F~Pw Prepare By Checked By Page+o AcXQc k BX2 aug ISVldWS 7/IP gno.Sil
MPR Associates,   Inc.
14~MPR                                                                  320 King Street Alexandria, VA 22314 Calculation No.                   Prepared        y              Checked By Page gag-~g $5 F'2.                                                  /In Aif+                                  8 NQ<~    6 lS,      w PV T S Lm    pukX          ( 6)(((Y'CCI                (JCf RQC    EQ.E        ~re    a(OCumCP]eg IVefece((cc.2.                C~~L          aP      4a        l  l-kr g~P          ua,4    I      ('.F-g(      (age~       'I r(e ~elm (5      <4 c c.<(ss('.cl    +aIevJ      .
    't,4(~<          CI  ck      L, senaiins)        slkc,      g(am          $ (na't  cc(~        M    c(cc(I/&:4()
c  inc(t ac  <en(~cI        usIrJy        cc
                                                      //
IV~esmnI c    In sIIe'c /~7~      /.r c A.n ituew's Jc(.~        0/ie    (ri ('Ae    I      Qk ~    zI
                                                                      +C'l yS'cn~
(."<  Ck      q<bH4. d.afar            Cda(d u          Vs,    n(k'z)      ace      +4I(
AS(  1E@i,kI                gnJ    P~VIC            YCSSe  I C&e,          Ze PiCI      ZZ        Cii'        3 j,    7E<


14~MPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.gag-~g-$5 F'2.Prepared y Checked By/In Aif+Page 8 NQ<~6 lS, w PV T S Lm pukX (6)(((Y'CCI IVefece((cc.2.(JCf RQC EQ.E~re a(OCumCP]eg C~~L aP 4a l l-kr g~P ua,4 I ('.F-g((age~'I r(e~elm (5<4 c c.<(ss('.cl
MPR Associates, Inc.
+aIevJ.'t,4(~<CI ck L, senaiins)slkc, g(am$(na't cc(~M c(cc(I/&:4()
RMPR                          320 King Street Alexandria, VA 22314 Calculation No. repared By  Checked By
//c inc(t ac<en(~cI usIrJy cc IV~esmnI c In sIIe'c/~7~/.r c A.n ituew's Jc(.~0/ie (ri ('Ae I Qk~zI+C'l yS'cn~(."<Ck q<bH4.d.afar Cda(d u Vs, n(k'z)ace+4I(AS(1E@i,kI gnJ P~VIC YCSSe I C&e, Ze PiCI ZZ Cii'3 j, 7E<
~e.5;- Zoo -PY'Z            p~~ /4m Page


RMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.~e.5;-Zoo-PY'Z repared By Checked By p~~/4m Page
MPR Associates,   Inc.
taiMPR                              320 King Street Alexandria, VA 22314 Calculation No.         Pre are    Checked By oeS'-vo -P-Pw                                            Page
                                                                ~g Pg    =  o.7o(p
: o. 53-1
                  . Q  W8 Pz
: o. >9)
Rene& Pressure=.)%SO  psiq


taiMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.oeS'-vo-P-Pw Pre are Checked By Page~g Pg=o.7o(p o.53-1 Pz.Q W8 o.>9)Rene&Pressure=.)%SO psiq
MPR Associates,     inc.
lL31NPR                                                                        320 King Street Alexandria, VA 22314 Calculation No.                       rea            d    y              Checked By Qgg ++0 ~ ~HZ                                                                                          Page A                                    )]
(/~i'd Te~ para gviC=.5'2.C
              ~PD    2 flu, is '7~~ perp Iaie                  .5'g 5 g QQ. ICQ.I~
                    /
PIKER .          IT%~
I
                                                )"a lpga'~trig        coc f f felri<Ts      ere.
    ~sag          Q      Ae        en< siI~i's;
                                      //d S                  //S, t'9'g    /52,62.y          jy. 035 j 085'5;~s>Z
                                                            " 53.2I"t?      66. So>g          35. 9'7 l )
                !  0'h      I    0      e s    s'HIseceF,n<,zIio .a ri y
                ~ Ii+/'grcsSsirj' e
COVtalS t'I      '/9                                                SPZD                $ osg~
palp    t 0I<UXvllw.               can 6<              5<ci  Ir/ j~      di/f8idii7 Iar ssarcs)
Ld, i~4 cm(          s  ek~ag            as    ~ q~as~.c..~4.as    I E.q'J. ~.l -Aers ds"'.]i~
I
                                                                                                            ~  A
                  <.ic Z.      s  e.4~ed              . Whc                                    4's/r.@Ha..
Q~vSS>                alar'I 4~x                <a  g~ <~L'.4        p~m /year~.l            l>.Jii>g


lL31NPR MPR Associates, inc.320 King Street Alexandria, VA 22314 Calculation No.Qgg++0~~HZ rea d y Checked By A Page)](/~i'd Te~para gviC=.5'2.C'~PD 2 flu, is'7~~perp Iaie.5'g 5 g/I QQ.ICQ.I~PIKER.IT%~)"a lpga'~trig coc f f felri<Ts ere.~sag Q Ae en<siI~i's;//d S 085'5;~s>Z
MPR   Associates,               Inc.
-//S, t'9'g" 53.2I"t?/52,62.y 66.So>g-jy.035 j-35.9'7 l)!0'h I 0 e s s'HIseceF ,n<,zIio.a ri y e COVtalS t'I~'/9 0I<UXvllw.
r~iMPR                                                                  320 King Street Alexandria, VA 22314 Calculation No.                     epareJ                            Checked By Page ore-wm~-P~N-
Ii+/'grcsSsirj' SPZD palp t$osg~can 6<5<ci Ir/j~di/f8idii7 Iar ssarcs)Ld, cm(i~4<.ic Z.Q~vSS>I I s ek~ag as~q~as~.c..~4.as ds"'.]i~~A s e.4~ed.Whc E.q'J.~.l-Aers 4's/r.@Ha..
    'P(essu<C.      a~&      %orew(        Loag Press<<e.           aM        +erma(          (oao((
alar'I 4~x<a g~<~L'.4 p~m/year~.l l>.Jii>g
q v(es          ~       4'urq            CPlO
(
    <  enure hng aors~\~                     c,re    c/(oou.ynr    v  Tesj Ramsey,(e.           S.     Wab(e          1 Suvni~ari~                     -(-'4e.     (o        aors l                                        ls c  (e S        Pre-    Vnc          cu rr'rsng                  any        rrsrne/
opera                          trms'~~e p/<<P.           Tire~C        y~  a/.-i
                                                                                                                \
oread        gn .   ~L..t'/<           opiagng            /'4,J            P$,-    p/P.
(i~v<rs Z.ar          3 are S~/re~aprss    /  r      I in'p/ra          I A                              grnm                        press<<re 4n
              / ~~ 4~e        ~) ~/er    Pv      kA      gland.             /(s    W//e/.
lr(s(infer    )    +lie    /bet  J      cy r /e/A./C/uFss                5      5+sPk/o//sufi/r~>)
les          /  5g r4    /o  /5                  c/ /      a  n/      dna.           ~lyd 0  I Jr
      .(  i5k pen          g'Ca  l          IT<c (Q  s(~b  <
aug)c. 4'EA              (K Qfo is    'kk>~r rl en(    Q      a                    /
QPmr+uf +wggowA g    r (e  / Sos
    +/e        a  n/vis        u p~f~nre4 /-~                            ~    iver/p/s/-./-,/.                   w
      ~nn/          g                                                     p~r                                  /4 SW;<VS/s(Srvns, y c./ng                    yeas.


r~iMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.ore-wm~-P~N-epareJ Checked By Page'P(essu<C.
Tqwpecn ulcc>
a~&%orew(Loag Press<<e.aM+erma((oao((q v(es~4'urq CPlO (<enure hng aors~\~c,re c/(oou.ynr v Tesj Ramsey,(e.
+yp.'o p3 70
S.Wab(e 1 Suvni~ari~
-(-'4e.(o aors l ls c (e S Pre-Vnc cu rr'rsng opera any rrsrne/trms'~~e p/<<P.Tire~C y~a/.-i\oread gn.~L..t'/<opiagng/'4,J P$,-p/P./r I I (i~v<rs Z.ar A 3 are S~/re~aprss grnm in'p/ra press<<re 4n/~~4~e~)~/er Pv kA gland./(s W//e/.lr(s(infer
)+lie/bet J cy r/e/A./C/uF ss 5 5+sPk/o//sufi/r~>)
les/5g r4/o/5 c//a n/dna.~lyd 0 I Jr.(i5k pen g'Ca l IT<c (Q s(~b<aug)c.4'EA Qfo (K i s'kk>~r rl en(Q a QPmr+uf/+wggowA g r (e/Sos+/e a n/vis u p~f~nre4/-~~iver/p/s/-./-,/.
w~nn/g SW;<VS/s(Srvns, y c./ng p~r yeas./4


Tqwpecn ulcc>+yp.'o p3 70
MPH    Associates,  Inc.
l%1Mpg                                            320 King Street Alexandria, VA 22314 Calculation No.                                  Checked By Page our-zoo -PSF'~
RKRcT~C P1Zas'su<6 Cpsig>
I I
j WiMh              I F
TcMpgMT~g.g I
I
                                              =10 F TIM E.
Re~~ko.r  'Spans~~        A~iJ ~e~tsa~a4u~~
Wgg.PL    =    CLb  'Reku~r  Li~e  F  t<<cl  +capel-ulcc  r"e


l%1Mpg MPH Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.our-zoo-PSF'~Checked By Page RKRcT~C P1Zas'su<6 Cpsig>TcMpgMT~g.g I I WiMh F j I I I=10 F TIM E.Re~~ko.r'Spans~~A~i J~e~tsa~a4u~~
MPR Associates,   Inc.
Wgg.PL=CLb'Reku~r Li~e F t<<cl+capel-ulcc r"e
RMPR                                                320 King Street Alexandria, VA 22314 Calculation No.       Pre ed By                Checked By o ss=E~/Ps pz-                                        few              Page
                                                                                ]g ia50 ps, I Ogo  p5<
RzAc To%
ptze ~soQG (P~'5)
SCRAM Tc&PpRATggg C-F)                          C l2>R, lg gy~   7o
                                ) //ht-            1 C<umVlA7+A, pe~u~R.4 l&6.


RMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.o ss=E~/Ps pz-Pre ed By Checked By few Page]g RzAc To%ptze~soQG (P~'5)I Ogo p5<SCRAM ia50 ps, Tc&PpRATggg C-F)C l2>R, lg gy~7o)//ht-1 C<umVlA7+A, pe~u~R.4 l&6.  
MPR Associates,         Inc.
RMPR                                                                          320.King Street Alexandria,   VA   22314 Calculation No.                       Prepared    By                       Checked By 08K-xylo- pap~                                                                                            Page
                                                                          @oh I(    e('((((((I(>>A    $ Qw+ 3 spar        i -f  /~5  Jl ~f2      vc(/dr
(((n        $      ((>>c((r  Per    ((vo( (/
s~n(+          /sovc(m        q(.Ie>>.
                'iaaoI,      ~>>i>>. (-(~4 meQ                        ((    4iI>>      CJj~          c.nJ>> )co kh
    @~i (qs)      g                               ~    >
l~ p,          g.g~        4k+      gc.M(.g      ~
c.a4 lakes            z+es~, 4m'(
sep((r((kwP                (U(>    ii t(>>ecc((r>>
WhN.(;~P           s4~~ a,'(gr,l,((/(;n),             g/~
    "III      4    ke    e/'Ie n/(((((rv L~s(c      .(e.(      4      2c@(((ivi(      $ (rr((r(    g(v  g/(
(-(s>E        noZ~le.      e(ccevn/s  R ~g              pIessee>>        c,M        /krr((J-/((nfl.
o(>>Q>>,            +>> .((e(~Ufo<            e.re          r(((k    (n((vv+
l 4r      c(v(o AW c(i>>4n~g                c, Jes.        As      s4e3~             p~v( ~s/~,        4he      g4(e<
                                                                                                        >>Aces>>
L. a  C,s>>    2        ('(      e  4a        os            -I.l(o~
    "o+e>>s          ei(>QLukrr          >>>Je(m 44o((gL ('f arI(l(vs g(              ((  Cbv L>nv(/  (or>>no(re o      I      A((m~U          'io~A cs(neth((v(,             M(((~ <((c,((i      e(i(>>. E o('re $ ~
      ~        ~
                        ~
                              >>.~    4     sc,i~J          (~ a.i'F~~'Q                    p~ss(eS


RMPR MPR Associates, Inc.320.King Street Alexandria, VA 22314 Calculation No.08K-xylo-pap~Prepared By Checked By@oh Page I(e('((((((I(>>A
aiMr u                                                                        MPR Associates, 320 King Street Alexandria, VA 22314 Inc.
$Qw+3 spar i-f/~5 Jl~f2 (((n vc(/dr$((>>c((r Per ((vo((/s~n(+/sovc(m q(.Ie>>.'iaaoI,~>>i>>.(-(~4 meQ ((4iI>>CJj~c.nJ>>)co kh@~i (qs)g~>l~p, g.g~4k+gc.M(.g~c.a4 lakes z+es~, 4m'(sep((r((kwP (U(>ii t(>>ecc((r>>
Calculation No.                   Prepared       By                       Checked By Page 08s=z>u -P-5f'~
WhN.(;~P s4~~a,'(gr,l,((/(;n), g/~"III 4 ke e/'Ie n/(((((rv L~s(c.(e.(4 2c@(((ivi($(rr((r(g(v g/((-(s>E noZ~le.e(ccevn/s R~g pIessee>>c,M/krr((J-/((nfl.o(>>Q>>,+>>.((e(~Ufo<
ac    ~A          g  Vga<            vgde~              kQ        -leek    p (scr<<~
e.re r(((k (n((vv+4r c(v(o l AW c(i>>4n~g c, Jes.As s4e3~p~v(~s/~, 4he g4(e<L.a C,s>>2 ('(e 4a os-I.l(o~"o+e>>s ei(>QLukrr
      ~(<<lc      ~          e       ~ sn'm~~                      I s+c sZ 1
>>>Je(m 44o((gL ('f arI(l(vs g(((Cbv L>nv(/(or>>no(re o I A((m~U'io~A cs(neth((v(, M(((~<((c,((i e(i(>>.E>>Aces>>o('re$~>>.~4 sc,i~J (~a.i'F~~'Q p~ss(eS~~~~~
Se<<Sq s
                                                                                                      ~
                                                                                                  't<<sc4 ccc<c+   f~+          cteeth'4(         ass            4'sec        (schuss<<ec      <<~c         HseIIYI<<t tc~d      de<<~             b.(       Le<<eI            Ca,se      2..         5n cc      4!sc.     (-occe(
I Qs      8      sc    ss      ge'4     '8w]secc            O'lls      c v        5  <<kerr IJ (e7ce& LI7scI ers        sf      sr        sec  lac              %Ac.       C>   l~~~r~snri P        ac()            (       )srNsclsceQ (Zcn n    7[~(CS            (CSS    (Cabiri Ce/    In  Table+),
Relccessc<<3 wee(cup                  ~'g~            =      /~WC's c
                                    $ 7nspvs      cl  c  lsc<< Ilp      cpu'fc's'f>M JJ          ga gsc'<ace  ce.   < <<s  4<<el      I (     cc      Pn        lstcsncs~a          c'snsrs~e,         Pcl
          /c 5M~<rj      ~g'= IZZQ                  c,~               >>Wii =      0~         47~i~         u q-4 <               P4~*C)              ~    z o. ~.",l.a ~w'.
c (c,(<<4g ~e             (     es      pie    (cn4 Cn.se        Z.
c(recount<<4i~             ~L:8, ir w4 I                      is    Aers~ce(


aiMr u MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.08s=z>u-P-5f'~Prepared By Checked By Page ac~A g Vga<vgde~kQ-leek p (scr<<~I 1>~~(<<lc~e~sn'm~~s+c sZ Se<<Sq s't<<sc4 ccc<c+f~+cteeth'4(ass 4'sec (schuss<<ec
0 O
<<~c HseIIYI<<t tc~d de<<~b.(Le<<eI Ca,se 2..5n cc 4!sc.(-occe(I c Q s 8 sc ss ge'4'8w]secc O'lls v 5<<kerr I J (e7ce&L I7scI ers sf sr sec lac$%Ac.C>l~~~r~snri P ac()()srNsclsceQ (Zcn n 7[~(CS (CSS (Cabiri Ce/In Table+), Relccessc<<3 wee(cup~'g~=/~WC's c$7nspvs cl c lsc<<Ilp cpu'fc's'f>M JJ ga gsc'<ace ce.<<<s 4<<el I (cc Pn lstcsncs~a c'snsrs~e, Pcl/c 5M~<rj~g'=IZZQ c,~>>Wii=0~47~i~uq-4<P4~*C)~z o.~.",l.a~w'.c (c,s (<<4g~e (es pie (cn4 Cn.se Z.c(recount<<4i~
                                                                                                                                    ~i Lo&      C    lc    (
~L:8, ir w4 I is Aers~ce(  
l    ks                                                        I A
: 0)          (i)            O~         0)
                                                                                                                                    ~0 Q~Lc                                                  P~ lw        P81ircc    WcAII'n    ~gmtj) 7rrcccic    Tgcrccrr bzo f
~Pe.      'l4 CE      QS.b  C.      l4c          (lice    )    ~q~'c 3      ('I:)      ('FJ              ('p)        C'FJ
                                                                    /030 s4A ((                                                  o          )~o C~)            (z) 0          1~50                    l2.50 Qth<5 a
: 0)    ~c'cc-pier~fir's  ccrc. cist c~r/~y <<icing %~4l1crn ~( Ac@>m                      ccrc:  ~cccrvcc4)
                                                                                                                                    ~n 5
s /~ -ss -.WA-:/~4rh),             ~u/..     0  Nai..~                  s~k                > CD Q l
              +*    cc  ~crlr/'        VI    s   circe    s4~ I~ ccc/c ~rgb/scwccc /sec.                       Nev  r2).              e xQ
                                                                                                                                              ~a Og
    ) ~ ~4. s .~d, s ~l l~ -~e      l                          sl 4.(/s~r +,                                                             ~~
ta  e
                / <<c/ rccsc A a s ref.                   I/ir ref re u h~n4ccccr i.sccc/corri +w os kl    /~n'~             ~ ~ pr~n~ "< i~O ~~ig~ M~ c>>i~re~~                                                                       (~ ~
CO g'e sos/c. ccrc vYi~ y.Jpcc/r/r.         ~mrpa cls .I" ~ .I( -I &~M Cn~c Z:                                                        lQ ~ ge Q
          /Ey Cn7 ~ll)g 4/tr MlVCS'/ 7I, CD P 7g , ~/l 'l jq f "I J4 +1~%/)                                        4    o re% = ~i~.T,, = .'I~c Q c.v  MS~ N            (~W    ~~( <
g.
                                              ~ a
                                                    ~
M A.,J, s e;u.J'o +I res~~
s4~
VJ~    su'sly~/c,
                                                                    -(,.rA 4~ho 5Adud~          =I'o k~rJ~g


Q~Lc~Pe.'l4 CE QS.b C.Lo&Clc (l ks 0).(i)O~0)P~lw P81ircc WcAII'n~gmtj)7rrcccic Tgcrccrr l4c (lice)~q~'c 3 ('I:)('FJ ('p)C'FJ 0 O~i I A~0 bz f o/030 s4A ((o)~o 0 1~50 C~)(z)l2.50 Qth<5 a 0)~c'cc-pier~fir's ccrc.cist c~r/~y<<icing%~4l1crn~(Ac@>m ccrc:~cccrvcc4) s/~-ss-.WA-:/~4rh),~u/..0 Nai..~s~k l+*cc~crlr/'VI s circe s4~I~ccc/c~rgb/scwccc
MPR  Associates, Inc.
/sec.Nev r2).)~~4.s.~d, s l~l l~-~e sl 4.(/s~r+,/<<c/rccsc A a s ref.I/ir ref re u h~n4ccccr i.sccc/corri
    ~xlMPR                                                    320 King Street Alexandria, VA 22314 Calculation No.                                           Checked By Page
+w kl/~n'~~~pr~n~"<i~O~~ig~M~c>>i~re~~sos/c.ccrc vYi~y.Jpcc/r/r.
~52= l'30 -FSP 2-                                       9~   ~>
~mrpa cls.I"~.I(-I&~M Cn~c Z:/Ey Cn7~ll)g 4/tr MlVCS'/7I, P 7g,~/l'l jq f"I J4+1~%/)re%=~i~.-T,,=.'I~c Q~A.,J, s e;u.J'o+I res~~k~rJ~g c.v MS~N (~W~g.M VJ~su'sly~/c, 5Adud~=I'o~(<~a s4~-(,.rA 4~ho~n 5>CD Q e~a x Og Q~~e-ta os CO (~g'e~e lQ~g Q CD 4 o
Ka      s~gs      ~         s p ocp ann      hI GNRGIC. E. KE      I'I vzoeI c~ (~s lode.         CPSiud      I;ro vk    oJ rOW'l4    sn    &As A
nor'</,.       An        Ip.p    pile      I  as  p~pq<<J glss-.     < No YL  l~<n-lz,      7li~   go  ~no C
: 44.        Inj os      gi le C I ici/ro. 5I    Pa
                          ~ S)
Cr~D 5L-Dr.       I~P                qh.s (I./('~     oW  44,;~       4    l;I i        shown
    /II  kh        >np  pj    ose  duownosqeJ          yn'L'.(r ,/<<8.n


~xlMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.~52=l'30-FSP 2-Checked By 9~~>Page Ka s~gs~p s ocp ann hI GNRGIC.E.KE I'I vzoeI c~(~s lode.CPS iud I;ro vk oJ rOW'l4 sn&As A nor'</,.An Ip.p pile I as p~pq<<J glss-.<No YL l~<n-lz, 7li~go~no C 44.Inj os gi le C I ici/ro.5 I Pa~S)Cr~D 5L-Dr.I~P qh.s (I./('~oW 44,;~4 l;I i shown/II kh>np pj ose duownosqeJ yn'L'.(r ,/<<8.n
MPR Associates,   Inc.
RMPR                                                                            320 King Street Alexandria, VA 22314 Calculation No.                     prepared              By                  Checked By Page c ez=v~c -PSgw                                                                                                gg C-R.PPLbl, )v'F 400
                                '.25, 0 ~ 25g    1 02E 12g 1 01E 7g                      5 ~ 95,    1 95 0 ~ 65g    1 2E 1 1 g 2 ~ 52E 7
              ~ 706  g    537    g      ~ 448 g    ~ 393 1
1 10    085  g    1 15 ~ 694      g    152 ~ 624    g  -75.0351, 1250.
65 ~ 3333    g    53 ~ 2142        g    68 ~ 8029    g  -33.9911, 1250.
2 3/    1 1g    0  g  1030        ~ g  Og  0  ~ g    0  ~ g Og  O.g 0.
2g    2 1g0    ~ g  1250        ~ gOgO gO gOg ~       ~         O.g 0..
lg    0  g  1250        ~ g  1g  0  ~ g    1250  ~   Og    0., 0.
Ar<8-'ISIS      Rc. SULKS
    ~e~S,s~         ).O      oF            <<<RCV EgE                ass      users    4c  pwdlyM t' eC-k      C~<OW44              la      W<e              C ~         <e~~ f~   'l lee..
      ~ n~       Ph+      < 'p~9            PI'e          Z  /man      r,. bevg      77ie e.rrHpr P 5;/e      crr~4rJ                        pz cPR          ~K CYC 0./Z5  ecol, ev 7-                        7,  <l / II                                   q",Z8 p
c4 grI        gl e'll                          Pj/>>    ~      yr/e rrrrrrbr'm)


RMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.c ez=v~c-PSgw prepared By Checked By Page gg C-R.PPLbl,)v'F'.25, 400 0~25g 1 02E 12g 1 01E 7g 5~0~65g 1 2E 1 1 g 2~52E 7~706 g 537 g~448 g~393 1 1 10 085 g 1 15~694 g 152~624 g 65~3333 g 53~2142 g 68~8029 g 2 3/1 1g 0 g 1030~g Og 0~g 0~g Og 2g 2 1g0~g 1250~gOgO~gO~gOg lg 0 g 1250~g 1g 0~g 1250~95, 1 95-75.0351, 1250.-33.9911, 1250.O.g 0.O.g 0..Og 0., 0.Ar<8-'ISIS Rc.SULKS~e~S,s~).O oF t'eC-k C~<OW44 la~n~Ph+<'p~9 5;/e crr~4rJ 0./Z5 ecol, ev 7-c4 grI gl e'll 7,<l/II q",Z8 p Pj/>>~yr/e rrrrrrbr'm)
4 MPR   Associates,       Inc.
<<<RCV EgE ass users 4c pwdlyM W<e C~<e~~f~'l lee..PI'e Z/man r,.bevg 77ie e.rrHpr P pz cPR~K CYC 4
lL~MPR                                                               320 King Street Alexandria, VA 22314 Calculation No.                                                 Checked By Page c)BB--.Ao - P-~PQ                                                 QQ 0/J~                             g~
lL~MPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.c)BB--.Ao-P-~PQ Checked By QQ 0/J~Page g~ttmja.t.l~
ttmja.t.l~     Qi~~ .Ri     g.
Qi~~.Ri g.4a a l(ma hie./-/e~siye I I I I an o.lo, ('4c.~: c4c.~aye~~~a~pe g~lyI~Q.'L'I~a P<i<<$<J I l~Cot~~(d.f'cA po pre>v'n p~<(p/<./km(peyIod I 4 a l 1<a-wi~~m~w cn, (kl~g~a e(/r I~/e+c'.i")e (e 8 m ((ikey ((pyrygp/y(yeyqg)6a (,y 4'Icing P~Qy+q.(~e q)~Pa<j ((S'~~g/gy Pq(V/(/q)~<+e<$(e/~id'r4~A~)Tya(5$$~ggp<g(~'<<)~u(/yya(P/(((og.Z(<n~o(y/(a g 4~ga~~/, Pt'i+(~'P<<i'~.kC.s.ygygV((&#xb9;y((eg J g 2.'Q~/Cr('.i'(
4a     a l(ma hie.         /-/e ~   siye I
I II an o.lo,
( '4c.~:
Cot~~(d.f'cA c4c.   ~aye~~~ a~pe               g~         lyI~Q     .'L'I~a P<i<<$ <J I
l~                       po   pre>v'n       p     ~<(p/<./
km(       peyIod 4'IcingI 4 1 <a-     wi ~ ~m~w
                                          /r cn, (
a l
I kl~     g~a         e(
                                                                                                  /e
                        + c'.                                       /
                                                                                                ~
i")e (e 8 m ((ikey ((pyrygp               y(yeyqg) 6a     (,y               P~         Qy+q       .(~     e     q)~
                                                                    <j Pa
((   S'~~ g     /gy         Pq(       V /(   /q)~
    <+e<$       (e /~id'r4~ A~)                   Tya(5       $$ ~     ggp<g(~
      '<<)
    ~u( /yya(             P/(     ((og.Z(<
n~o(       y/(a     g       4~ga     ~~/,
Pt'i +(~'P <<i'~. kC             .s.ygygV((&#xb9;y((eg i'(
J g               2.'Q~ /Cr('       .


)XIMPR MPR Associates, Inc.320.King Street Alexandria, VA 22314 Calculation No.085-~>a-~3, Pre ared B Checked By S'~'A~Page.+~4hz Ei~pe~>P~un+/W~7+nn$g J~7Ag s 7 c~+/'l~g f~.pc)~~~dl]A C'7'AfOE c ji, 8 q (/+h(QL~y/4//gp~~k 8<</Ci f I Ear<giscc ss'r~a f<cia-@cr(~i/~</4v~&le P/~,: sir~u 4~5<nZ  
MPR Associates,   Inc.
    )XIMPR                                                    320.King Street Alexandria, VA 22314 Calculation No.           Pre ared B                    Checked By 085- ~>a-   ~3,                                         S'~   'A~               Page   .+~
4hz     Ei~     pe~>P~           un+       /W~
7+     nn
              $ g J~   7Ag         s 7   c~       +/     'l~ f~.pc)~
g
        ~~dl       ]A C '7'AfOE c   ji, 8 q (/ +h(QL~           y /   4//
gp~~k       8<<   /Ci fI    Ear   <     giscc ss'r~   a f <cia   -@cr(~i/~
                            </4v~ &le         P/~,:   sir ~   u       4~5<
nZ


t>1MPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.59~-V.b-P5,PQ Checked By Page g.$gnat a=O S~Ie'l~q', (q=/0~):.>OIo (iIo oII<)-~S'S7CliS'<'I)
MPR Associates, Inc.
+oo.y'i8(lsd,6>'l)M
t>1MPR                                                    320 King Street Alexandria, VA 22314 Calculation No.                                       Checked By 59~ - V.b-P5,PQ                                                               Page     g.$
-~'N3(>S'o"-s'l
gnat     a=   O S ~Ie'l~q',
+cop~+q ii~l~~8/M (Zo l I pa l1 iYJJ p gable Y r I]l)o~Qa+~ac,u~/ger Llu~oK Qlc plo~plo~Ie'u~(6oo 5iJ'~77~4oh'led c IllhaaLoIot Paul slee f oauikJ'~i J&IA~Io rho<g>CIAO k g&lukk q'olo1+o QEJuOC.  
(q = /0~):
                      . >OIo (iIo oII<)     S'S7CliS'<'I)
                                              ~
                          + oo.y'i8(lsd,6>'l)M           'N3(>S'o"-s'l
                                                            ~
            +cop         ~+     q ii     ~l ~~   8/M   (   Zo l I   pa   l1   iYJJ p gable Y r                                                   I
    ]l)o~     Qa +~ac,u~ /ger Llu~ oK Qlc               plo~plo~ Ie'u~(         6oo   5iJ
                                                                                            ~
77~4oh'led           c IllhaaLoIot Paul slee foauikJ'     ~i J&IA~Io       rho<g>
CIAO k   g&lukk       q'olo1   +o QEJuOC.


K~MPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.oem'-z~o-P-SPz Checked By Page@]Ps o qrseWrq her mr&Cl<<~@is.+le(<<r4," 8>>/sr'44m<
MPR Associates,               Inc.
R<<J>>-FrsJw<<*~/Sp<<eyes-Qiri<<//S'rpo pgc=DF->/Hz-l, clnz~~, H~~cA/)78~ll I I'/2~~s~rssel1+<<+lrrs sSI14 Prr)S'lr<<plsrrs ss fC'Mssf'<<'I4'r
K~MPR                                                          320 King Street Alexandria, VA 22314 Calculation No.                                                 Checked By Page oem'-z~o -P-SPz                                                                                           @]
/reps>sss Mc&#xc3;Rc4, E.xC,'Pl~Chl~/<Jim~Bc-xm-PSPJ, rev g.9.<<4E g't<<r Ans//rr s~<<rs"I/esse/C<<Je., les4vwI q8 0 P<<','$srss s.l Qg/gd<<sss/ss, f Ss<<s/<<~C~&dsrsU<<rss/rissS'h~Mf 4 C's/c/<<-/ss>>>8k->'J-EBS-Oa,~<sr (, S." C~+r'/4 J 9r~P~4~~n/Vega/~7)~sr~<</Pr c w~c'j~l'a,"'"1/4 Cele (q.Am~PS>Bd-f'I8/Z--d)>
2 9.
gev~/y  
    ~
Ps   o pgc=DF ll
          ~s
          <<4E I q8 qrseWrq
                ~rssel1 Mc&#xc3;Rc4, E.xC, rev g.
0
                          +<<+lrrs
                                '/
her mr&
                    - >/Hz-l, clnz~
I I
                                      'Pl~
sSI14 Cl<<~@is.
R<<J>>- FrsJw<<*~ /Sp<<eyes- Qiri<</
                                          ~,
Prr)S'lr<<plsrrs g't<<r Ans/ /rr s~<<rs P<<','$srss  s.l Qg /gd<<sss/ss,
                                                            +le(<<r4, H~~cA / )78 ss Chl~/<Jim ~Bc-xm -PSPJ, "I/esse/   C<<Je.,
                                                                          ~
8>>/sr'44m<
                                                                            /S'rpo fC'Mssf'<<'I4'r / reps>sss les4vw f       Ss <<s/<<   ~   C~&dsrsU <<rss/         rissS'h~       Mf4            C's/c   /<<-/ss>>
            >8k->         'J - EBS Oa,~         <sr   (,
S.         C~+r'/ 4 J             9r ~ P~4~~n             /Vega/~ 7)~sr~<< /
Pr   c w~c'j~l'a, "'"1/ 4               Cele (q.Am
            ~PS   >Bd- f'I8/Z--d)> gev       ~   /y


lLIMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.os+-13'-g-5PQ Checked By Page g~Ca'jc(logos o$C'~Q;o g$~p~I I4$.qj o AX I<~r/oo Iy thorn io/(err ss pno()a,g Vo<8ig  
MPR   Associates,     Inc.
lLIMPR                                              320 King Street Alexandria, VA 22314 Calculation No.                                   Checked By Page os+- 13'- g-5PQ                                                                     g~
Ca 'jc( logos   o$     C'~Q;o g$ ~p~
                                                            /oo Iy thorn io /
(err ss pno()a,g qj o
I  I4$ . AX I <~r Vo <     8ig


WMPR MPH Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.oss.-w~g-RSVP Checked By 8x.r"~Page Fl'd We~p~~g~'7o F's anaL~gjg Glo cQ IY10~$4 g$*q~~~'t~~~~~li<>0.055-,l5&qg C~)  
MPH     Associates,   Inc.
WMPR                                                320 King Street Alexandria, VA 22314 Calculation No.                                   Checked By oss.-w~g -RSVP                                     8x. r"~                   Page Fl 'd We~p~~g~                   '7o F's anaL~gjg Glo cQ IY10 ~$4 g
                $ *q~~
        ~'t~~~   ~~ li
                    <>0.055 -,l5 &qg C~)


lLiMPR MPR Associates, inc.320 King Street Alexandria, VA 22314 Calculation No 055-23')-K5p2 Checked By PA i+a Page++is+f1 r Ogg 7 4.Qd+2 IZ~(j ae,~su~ofep4~birr IYI)s It omni Vltr ffs r lt.i ga+4 r.iran~c.vrrrrPQ pnrV rclrrJ'"-/asr appr&rrrta sitar+llrr<akrJ$7 1<$3<5'ppnt>>ritz~i L-0 3'Prr~j'o 0 r 3 iran(.aaS+t rvi)t, hatt)4h c~iw"P'.res tI.s 6av&a r,WA 5~44~Re.ado Pr.ssu~g (zsOps)P<<<-4rv I I u.r 8 1arvap+r<AufZ.QgDC.F lund 7enprrt]aiba
MPR     Associates,   inc.
=52-Z'%trim 1't s~I$s a5+kg irk~anr$8'rz (r~n(MS''are Jrraurrren71
lLiMPR                                                              320 King Street Alexandria, VA 22314 Calculation No                                                   Checked By Page 055-23') -K5p2                                                 PA i+a                             ++
~l rn IZefe~rnCr.'  
is                                                             ae,~su~      ofep4
    +f1 r Ogg       7 4. Qd+2 IZ             ~ (j     ~birr IYI) r.iran~
ffs r lt.i       ga     +4 s It omni      Vltr          c.vrrrrPQ pnrV rclrrJ'"-/asr                 appr &rrrta sitar
            +llrr     <akrJ           $ 7 1 <$ 3<5'ppnt>>ritz~i                   L   -0 3
                                                                'Prr~       j'o   0 r3  iran(.aaS
    +t rvi)t,       hatt
                          )
4h       c~iw   "P'.     res   tI.s       6av&
a r,WA           5~44         ~
Re.ado           Pr.ssu~g               (zsOps )
P<<<-4rv       I I u.r 8   1arvap+r <AufZ.
QgDC.         F lund 7enprrt]aiba
                                                          =
52-Z     '
  %trim       1't s~I$ s       a5 +kg           irk~     anr 8'rz (r ~ n(     MS''       are       Jrraurrren71 ~l     rn     IZefe~rnCr.'


taiMPR MPR Associates, Inc.320.King Street Alexandria, VA 22314 Calculation No.095->30-@st'g Pre ar d By Checked By 9A>>g Page+8 o 14e golbwrr~stress es~LarO qeigrllrrrrlrJl rc-oS O'.I'0 Broil,$h,/rsvp no+Zle s a((gj~h'nrsi; g5,~3>'5-55, Sl~(2 g+da,5o2gg-53'79)(g ep~4r'~;r a p(lr'rr.l 4 o~~g~l~uiZI l~bl~Z l,s Is 44~S;-rr U an.lgsrs r~~, V>>r.rx gb ('s/As Locd (oSe Z.+~i rg'lo4 oP Arctic i'her.r'4q ver sm O4tchh~ro+44.ere~~(e.rc c,ll>r o~coecr'co j j/J't4 I r$'a//J+o As zb n qhe ca~~PH pn'ass opfocrral~
MPR Associates,                             Inc.
cskl ec o~ll1e arAmD$7/NJJ'rS c,le~.t,'ppro~r~leL~.o a L~l, g i~c-Ws.pno  
taiMPR                                                                  320.King Street Alexandria, VA 22314 Calculation No.               Pre ar d By                         Checked By
        - @st'g                                                                                                Page 095->30                                                          9A   >>g                                                   +8 14e     golbwrr o
                        ~
                              ~LarO           qeigrllrrrrlrJl     rc-oS     O'.I'0 stress es        Broil, $h,                 /rsvp no+Zle     s a((       gj~h'nrsi; g5,~3>'5       55, Sl~(2         g + da,5o2gg                   53                     '79)(       g ep~4r'~;r               a p(lr'rr.l 4 o ~         ~ g ~                 l~uiZI l~bl~ Z       l,s Is     44~           S;-rr U       an. lgsrs         r~~, V>>
r.rx gb           ('s     /As                 Locd     (oSe     Z.                       +~i rg'lo4 oP       Arctic           i'her.r'4q       ver sm                       O4tchh
      ~ro+       44.     ere ~~(e.           rc c,ll >
r o~coecr'co J't4     I r   $ 'a//J         j
                                                          +o j/
As   zb   n     qhe         ca~~           PH       pn     'ass opfocrral~ cskl ec       o~       ll1e       arAmD           $ 7/NJJ'rS       c,le~.t,'ppro~r~leL~
                            .o a           L~       l, g     i~c-Ws     .     pno


WMPR MPR Associates, inc.320 King Street Alexandria, VA 22314 Calculation No.g5~--~Su-f@P'2 7C Checked By 5ev fM Page p)Sgeuew So~nd 4hc ae4ucd Xgecsr~S Ya.41~5 Mess AaalgsiS P~e Cu~gt'-'0 AeS~lkS Distance Through Wall (in)0.0000 0.1'l28 0.2256 0.3384 0.451'l 0.5639 0.6767 0.7895 0.9023 1.0151 110.1 98.9 90.9 85.5 82.1 79.9 78.4 77.0 74.8 71.4 Load Case 1 Analysis Curve Fit Stress Stress (ksi)(ksi)110.0 91.2 88.9 86.2 83.3 80.8 78.4 76.1 74,1 72.1 65.3 60.2 56.4 53.9 52.2 51.1 50.3 49.5 48.4 46.7 Load Case 2 Analysis Curve Fit Stress Stress (ksi)(ksi)65.3 56.4 55.5 54.2 52.8 51.5 50.3 49.1 48.0 47.0  
MPR   Associates,   inc.
WMPR                                                320 King Street Alexandria, VA 22314 Calculation No.                                   Checked By Page g5~-- ~Su -f@P'2 7C                 5ev   fM                         p)
Sgeuew       So~nd     4hc     ae4ucd   Xgecsr~S Ya.41~   5 Mess     AaalgsiS P~e Cu~gt'-'0     AeS~lkS Load Case 1              Load Case 2 Distance     Analysis      Curve Fit  Analysis      Curve Fit Through       Stress        Stress    Stress        Stress Wall (in)    (ksi)        (ksi)      (ksi)        (ksi) 0.0000       110.0           110.1     65.3          65.3 0.1'l28      91.2            98.9      56.4          60.2 0.2256        88.9           90.9     55.5           56.4 0.3384        86.2            85.5      54.2           53.9 0.451'l      83.3           82.1     52.8          52.2 0.5639        80.8            79.9     51.5          51.1 0.6767        78.4            78.4      50.3           50.3 0.7895        76.1            77.0      49.1          49.5 0.9023        74,1            74.8     48.0          48.4 1.0151        72.1           71.4      47.0           46.7


115.0 110.0 CRDR Nozzle Stress Distribution Load Case 1 O o+i c Cf o D I 105.0~~100.0~950 90.0 C 85.0 80.0 75.0 1 I I I I I I I I I I I 70.0 65.II 0 0.10 0.20 0.30 0.40 Depth Through I J I 0.50 0.60 0.70 0.80 0.90 1.00 Nozzle Wall (inches)~Actual Stress~Curve Fit Stress>CD Q fO~x O~Q D-CI I Co (~g'I lQ~ty lO Gl o  
O CRDR Nozzle Stress Distribution Load Case 1
                                                                      +i Cf o
c o
D I
115.0 110.0 105.0
~~ 100.0
~   950                                 I I
I I
90.0 C                                                               I I
85.0           1 I
I 80.0           I                                          I I
75.0 I
70.0                                                       J
                                                                            > CD  Q I              fO x O~  ~
65.II                                                                   Q D
0 0.10 0.20   0.30 0.40 0.50 0.60 0.70 0.80     0.90 1.00 Depth Through Nozzle Wall (inches)                 -CI   I
(~ Co g'
I
                ~    Actual Stress  ~    Curve Fit Stress lQ~
lO Gl ty o


70.0 gt&URE 5 CRDR Nozzle Stress Distribution Load Case 2 I I I O Q o p 65.0 60.0 e 55.0 C~50.0 (0 45.0 I I r I I I'L I L I I I I I I'I L L I L L I I I I I'L I I I L I I L I I t~'I L L I I L I I I I'3 Q CL O 40 II.oo o.to 0.20 0.30 OAO 0.50 0.60 0.70.0.80 0.90 1.00 Depth Through Nozzle Wall (inches)~Actual Stress~Curve Fit Stress>Co g 6 U x N~f~a-tCt I Q Co o (~g'o 6lO~Ce IQ co o  
O gt&URE 5 CRDR Nozzle Stress Distribution                       Q o
p Load Case 2 70.0                                        I I
I 65.0                                                   I     I I'3 I     I 60.0                    L      L    L      L        L      L I                                 Q I           I CL I
I           I                             I I
e 55.0                    I                             I C            I I
I           I t' ~
I I     I I
I
~ 50.0      r    I'      I' I
I' I
(0 I                 I I
O 45.0            L      L      L          L          L  L I
                                                                            > Co g 6
40                                                                       x  N~U II.oo o.to 0.20   0.30 OAO 0.50 0.60 0.70. 0.80 Depth Through Nozzle Wall (inches) 0.90 1.00      f~aI Q
tCt o
(~o Co g'
6
                ~    Actual Stress  ~    Curve Fit Stress lO~
IQ co Ce o


t&#xc3;MPR ENGINEERS Appendix I IMPLEMENTATION PLAN
t&#xc3;MPR ENGINEERS Appendix I IMPLEMENTATIONPLAN


WMPR ASSOCIAT ES INC.EN GINE ERS Implementation Plan for Structural Analysis of NMP-0 CRDR Nozzle Specification No.MPR-085-223-01 Revision 0 February 1994 Prepared by: Reviewed by: Edward Bird (MPR Engineer)I 1.:, ('..'~/;, Ja es Nestell (MPR Enginedr)~~/~S~Y Date Date'pproved by: Phillip Kasik (MPR Engineer)lS-5'-Date Approved by:.QP.IK(JQ.L'Qr-A c J ne Gawler (NMPC Cognizant Engineer)c~l;-q I Date 320 KING 51REET AI,EXANDRIA, VA 22314-323 703-51'.0200 FAX 703 51r7.0224  
WMPR ASSOCIAT ES INC.
EN GINE ERS Implementation Plan for Structural Analysis of NMP-0 CRDR Nozzle Specification No. MPR-085-223-01 Revision 0 February 1994 Prepared by:                                                           ~~/~S ~ Y Edward Bird (MPR Engineer)                             Date I
Reviewed by:                      1.:, ('..'~/;,
Ja   es Nestell (MPR Enginedr)                         Date by:
Phillip Kasik (MPR Engineer) lS-5'-
Date
                                                                                'pproved Approved by:
c
                      . QP.IK(       JQ.L 'Qr-A                         c~l;-q          I J     ne Gawler (NMPC Cognizant Engineer)             Date 320 KING 51REET           AI,EXANDRIA, VA 22314-323       703-51'.0200     FAX 703 51r7.0224


r~lMPR ASSOCIATES INC.ENGINEERS CONTENTS Section BACKGROUND PURPOSE TECHNICAL APPROACH Experience Survey Thermal Load Definition Structural Analysis Fracture Mechanics/Fatigue Evaluation INFORMATION SOURCES~Pa e 1 0"11-  
r~lMPR ASSOCIATES INC.
ENGINEERS CONTENTS Section                                       ~Pa  e BACKGROUND                                       1 PURPOSE TECHNICALAPPROACH Experience Survey Thermal Load Definition Structural Analysis Fracture Mechanics/Fatigue Evaluation INFORMATIONSOURCES 0
                                          "11-


e ASSOCIATES INC.EN&INEEAS BACKGROUND NUREG-0619 requires NMPC to perform an in-vessel PT exam on one of the four feed-water nozzles and the control rod drive return (CRDR)nozzle during the next refueling outage at Nine Mile Point Unit 1.This exam is expected to result in high worker exposure, potential outage delays and associated high costs without comparable increases in safety.As a result, NMPC plans to request an exemption from this requirement, based on the following:
e ASSOCIATES INC.
Automated UT inspection systems are now available for performing accurate inspections from outside of the vessel.Modifications have been made to the feedwater nozzles, spargers and fiow control system to eliminate or lessen the feedwater nozzle cracking problems that occurred in the 1970s.~No damage was found on the CRDR nozzle during the in-vessel exam in 1977 or during visual examinations thereafter.
EN&INEEAS BACKGROUND NUREG-0619 requires NMPC to perform an in-vessel PT exam on one of the four feed-water nozzles and the control rod drive return (CRDR) nozzle during the next refueling outage at Nine Mile Point Unit 1. This exam is expected to result in high worker exposure, potential outage delays and associated high costs without comparable increases in safety. As a result, NMPC plans to request an exemption from this requirement, based on the following:
~Detailed modeling and analyses have been done to show that small Qaws will not grow to unacceptable values within specified operating periods for the feedwater nozzles.PURPOSE The purpose of this task is to evaluate the long-term susceptibility of the CRDR nozzle to thermal fatigue cracking, determine crack growth rates and critical crack sizes.NMPC will use the results of this task to support their exemption request and to evaluate the severity of any indication found during the automated UT inspection planned for the 1995 refueling outage.TECHNICAL APPROACH A four step approach will be used to accomplish this task:~Experience Survey~Thermal Load Definition
Automated UT inspection systems are now available for performing accurate inspections from outside of the vessel.
~Structural Analysis~Fracture MechanicslFatigue Evaluation  
Modifications have been made to the feedwater nozzles, spargers and fiow control system to eliminate or lessen the feedwater nozzle cracking problems that occurred in the 1970s.
      ~     No damage was found on the CRDR nozzle during the in-vessel exam in 1977 or during visual examinations thereafter.
      ~     Detailed modeling and analyses have been done to show that small Qaws will not grow to unacceptable values within specified operating periods for the feedwater nozzles.
PURPOSE The purpose of this task is to evaluate the long-term susceptibility of the CRDR nozzle to thermal fatigue cracking, determine crack growth rates and critical crack sizes. NMPC will use the results of this task to support their exemption request and to evaluate the severity of any indication found during the automated UT inspection planned for the 1995 refueling outage.
TECHNICALAPPROACH A four step   approach will be used to accomplish this task:
      ~     Experience Survey
      ~     Thermal Load Definition
      ~     Structural Analysis
      ~     Fracture MechanicslFatigue Evaluation


Each of these steps is described below.The results of all four steps will be documented in a single MPR report.This work will be performed in accordance with 10 CFR 50, Appendix B, using the latest approved version of MPR's QA Manual.Ex erience Surve A telephone survey of applicable BWRs will be performed to determine their exami-nation history/frequency and cracking experience for the CRDR nozzle.Survey information will be collected for welded thermal sleeve designs similar to NMP-1 and other non-welded designs.The telephone survey will include questions about exami-nation techniques and tools.This information is expected to be useful in evaluating the sensitivity of the cracking problem to thermal sleeve design.Thermal Load Definition The NMP1 operating flow characteristics and log records of the CRD system will be reviewed to determine flow variations and resulting temperature variations for the CRDR nozzle during different CRD operating conditions, e.g,, during movement of the control rods and scrams, and during different plant operating conditions, e.g., startup, shutdown, and standby.The magnitude and frequency of thermal and pressure changes will be used as input to the structural model and to calculate crack growth rates and fatigue usage.Structural Anal sis The ANSYS computer program will be used to develop a two-dimensional axisymmetric finite element model of the CRDR nozzle.The model will include a section of the reactor vessel wall adjacent to the CRDR nozzle.The extent of this section will be long enough to eliminate interaction between the boundary conditions applied to the vessel wall and the CRDR nozzle.The radius of the reactor vessel wall section will be modeled at 3.2 times the actual radius.This will insure that the maximum hoop stress and stress intensity calculated by the axisymmetric model will be comparable to those in the actual three-dimensional intersection.
Each of these steps is described below. The results of all four steps will be documented in a single MPR report. This work will be performed in accordance with 10 CFR 50, Appendix B, using the latest approved version of MPR's QA Manual.
Thermal boundary conditions, including heat transfer coefficients, will be calculated for the load cycle defined above.The results of the previously performed feedwater nozzle analysis will be factored into this calculation.
Ex erience Surve A telephone   survey of applicable BWRs will be performed to determine their exami-nation history/frequency and cracking experience for the CRDR nozzle. Survey information will be collected for welded thermal sleeve designs similar to NMP-1 and other non-welded designs. The telephone survey will include questions about exami-nation techniques and tools. This information is expected to be useful in evaluating the sensitivity of the cracking problem to thermal sleeve design.
The temperature distribution within the aozzle will be calculated as a function of time for these boundary conditions.
Thermal Load Definition The NMP1 operating flow characteristics and log records of the CRD system will be reviewed to determine flow variations and resulting temperature variations for the CRDR nozzle during different CRD operating conditions, e.g,, during movement of the control rods and scrams, and during different plant operating conditions, e.g., startup, shutdown, and standby. The magnitude and frequency of thermal and pressure changes will be used as input to the structural model and to calculate crack growth rates and fatigue usage.
Through-wall stresses that result from pressure and temperature will be calculated at several snap-shots in time to establish the time of peak stress.Through-wall stresses will be used in the fracture mechanics/fatigue evaluation below.The original structural evaluation for the CRDR nozzle documented in Reference 3 is an area reinforcement calculation.
Structural Anal sis The ANSYS computer program will be used to develop a two-dimensional axisymmetric finite element model of the CRDR nozzle. The model will include a section of the reactor vessel wall adjacent to the CRDR nozzle. The extent of this section will be long enough to eliminate interaction between the boundary conditions applied to the vessel wall and the CRDR nozzle. The radius of the reactor vessel wall section will be modeled at 3.2 times the actual radius. This will insure that the maximum hoop stress and stress intensity calculated by the axisymmetric model will be comparable to those in the actual three-dimensional intersection.
Because stresses were not explicitly calculated, a direct comparison to stresses obtained from this analysis is not possible.  
Thermal boundary conditions, including heat transfer coefficients, will be calculated for the load cycle defined above. The results of the previously performed feedwater nozzle analysis will be factored into this calculation. The temperature distribution within the aozzle will be calculated as a function of time for these boundary conditions. Through-wall stresses that result from pressure and temperature will be calculated at several snap-shots in time to establish the time of peak stress. Through-wall stresses will be used in the fracture mechanics/fatigue evaluation below.
The original structural evaluation for the CRDR nozzle documented in Reference 3 is an area reinforcement calculation. Because stresses were not explicitly calculated, a direct comparison to stresses obtained from this analysis is not possible.


Fracture Mechanics ati ue Evaluations Fatigue usage and crack growth rates will be calculated for the stress cycles determined in the structural analysis.Small surface flaws of various sizes will be postulated to exist on the vessel wall and nozzle bore regions.Crack growth rates due to low frequency pressure and thermal cycles will be calculated to determine how quickly these initial small flaws could grow to unacceptable sizes.A fatigue usage evaluation for the CRDR nozzles was not performed for the original structural evaluation (Reference 3)on the updated vessel usage report (Reference 4).A comparison to the current analysis is not possible.INFORMATION SOURCES Information sources for the CRDR nozzle structural analysis include: Combustion Engineering Drawing No.231-567, Revision 7,"Nozzle Details-Vessel." 2.ASME Code for Material Properties.
Fracture Mechanics     ati ue Evaluations Fatigue usage and crack growth rates will be calculated for the stress cycles determined in the structural analysis. Small surface flaws of various sizes will be postulated to exist on the vessel wall and nozzle bore regions. Crack growth rates due to low frequency pressure and thermal cycles will be calculated to determine how quickly these initial small flaws could grow to unacceptable sizes.
3.Combustion Engineering Report CENC 1142,"Analytical Report for Niagara Mohawk Reactor Vessel." 4.MPR Report 629,"Re-evaluation of Reactor Vessel Fatigue Analysis for Revised Operating Cycles, Nine Mile Point Nuclear Generating Station Unit No.1," August 13, 1979.-3-}}
A fatigue usage evaluation for the CRDR nozzles was not performed for the original structural evaluation (Reference 3) on the updated vessel usage report (Reference 4).       A comparison to the current analysis is not possible.
INFORMATION SOURCES Information sources for the CRDR nozzle structural analysis include:
Combustion Engineering Drawing No. 231-567, Revision 7, "Nozzle Details - Vessel."
: 2. ASME Code for Material Properties.
: 3. Combustion Engineering Report CENC 1142, "Analytical Report for Niagara Mohawk Reactor Vessel."
: 4. MPR Report 629, "Re-evaluation of Reactor Vessel Fatigue Analysis for Revised Operating Cycles, Nine Mile Point Nuclear Generating Station Unit No. 1," August 13, 1979.
                                            }}

Latest revision as of 19:17, 18 March 2020

Rev 0 to Nine Mile Point Unit 1 CRD Return Nozzle Fatigue Evaluation.
ML17059A341
Person / Time
Site: Nine Mile Point Constellation icon.png
Issue date: 04/30/1994
From:
MPR ASSOCIATES, INC.
To:
Shared Package
ML17059A339 List:
References
MPR-1485, MPR-1485-R, MPR-1485-R00, NUDOCS 9407010168
Download: ML17059A341 (438)


Text

P>1MPR ASSOCIATES INC.

ENGINEERS MPR-1485 Revision 0 April 1994 Nine Mile Point Unit 1 Control Rod Drive Return Nozzle Fatigue Evaluation Preyared for Niagara Mohawk Power Coryoration 301 Plainfield Road Syracuse, NY 13212 P'DR 9407010168 940M3 PDR .ADOCK 05000220

0 Pi9MPR ASSOCIATES INC.

E N & I N E ERS Nine Mile Point Unit 1 Control Rod Drive Return Nozzle Fatigue Evaluation MPR-1485 Revision 0 April 1994 Principal Contributors E. B. Bird J. E. Nestell R. S. Paul A. B. Russell Prepared for Niagara Mohawk Power Corporation 301 Plainfield Road Syracuse, NY 13212 J. Gawler NMPC Engineer 320 KING STREET ALEXANDRIA. VA 22314-3238 703-519-0200 FAX: 703.519-0224

Pa1MPR ASSOCIATES INC.

E N G I N E E 0 S CONTENTS Section ~Pa e 1 INTRODUCTION

1.1 Background

2

SUMMARY

2-1 3 DISCUSSION 3-1 3.1 Design and Operation 3-1.

3.2 Load Cycle Definition 3-1 3.3 Structural Analysis 3-2 3.4 Fatigue Evaluation 3-3 3.5 Fracture Mechanics - Crack Growth Rate 3-4 3.6 Experience Survey 3-5 4 REFERENCES 4-1 5 APPENDICES 5-1 APPENDIX A Calculation of CRDR Nozzle Thermal and Pressure Cycles A-1 APPENDIX B CRDR Nozzle Finite Element Model, Geometry B-1 APPENDIX C CRDR Nozzle Finite Element Model, Material Properties C-1 APPENDIX D Calculation of Heat Transfer CoefGcients D-1 APPENDIX E CRDR Nozzle Finite Element Model, Boundary Conditions and Results E-1 APPENDIX F Low Cycle Fatigue Usage F-1 APPENDIX G Crack Growth Rate Computer Program Verification G-1 APPENDIX H Crack Growth Rate Analysis Cases H-1 APPENDIX I Implementation Plan

PA1MPR ASS 0 C I ATES IN C.

ENGINEERS LIST OF FIGURES F~Fi ore ~Detcri tioo 3-1 CRDR Nozzle Dimensions 3-2 Finite Element Model 3-3 Finite Element Model Details 3-4 Calculated Temperature Distribution 3-5 Calculated Stress Intensity Distribution 3-6 Fatigue Crack Growth

Pa1MPR ASSOCIATES INC.

ENG'INEERS Section 1 INTRODUCTION The purpose of this report is to document a fatigue evaluation of the Control Rod Drive Return (CRDR) nozzle in the Nine Mile Point Unit 1 reactor vessel. The nozzle is a four inch vessel penetration that accepts low temperature water from the control rod drive system. The objectives of the evaluation were to estimate: 1) the long-term susceptibility of the CRDR nozzle to thermal fatigue cracking, and 2) the crack growth rate of a potential flaw in the CRDR nozzle over the remaining life of the plant. This evaluation was undertaken to support Niagara Mohawk Power Corporation (NMPC) efforts to perform an ultrasonic inspection of the CRDR nozzle instead of the dye penetrant inspection specifie by NUREG-0619.

The fatigue evaluation of the CRDR nozzle considered the number of pressure and temperature cycles the nozzle has experienced to date as well as an estimate of the number of future cycles. Finite element stress analyses of the nozzle were performed to determine the stress distribution in the nozzle due to the pressure and temperature cycles. Stress analysis results were then used to calculate nozzle fatigue usage and crack growth rates.

1.1 BACKGROUND

In the 1970's, a number of BWRs detected signiTicant cracking of feedwater and CRDR nozzles. The cracks in the CRDR nozzles were caused by thermal fatigue resulting from changes in cold CRDR flow at the nozzles, The NRC issued NUREG-0619, "BWR Feedwater Nozzle and Control Rod Drive Return Line Nozzle Cracking," (Reference 1) that identified interim and long-term recommendations regarding this issue, including inspection requirements. For Nine Mile Point Unit 1, the inspection requirements include performing a dye penetrant (PT) examination of the CRDR nozzle internal surface during the upcoming 1995 ref'ueling outage. NMPC plans to perform an ultrasonic (UT) inspection of the CRDR nozzle instead of the dye penetrant examination based on the following:

1. Automated UT inspection systems are now available for performing accurate inspections from outside the vessel. UT inspection systems at the time NUREG-0619 was issued did not provide sufficient detection or flaw sizing capabilities.
2. The CRDR nozzle thermal sleeve design (welded in place) makes the nozzle less susceptible to thermal fatigue cracking than the original designs at other BWRs. In fact, no damage to the CRDR nozzle was found during the 1977 in-vessel PT examination or in any subsequent examination.

1-1

3. Detailed analytic modeling of the CRDR nozzle shows that small surface flaws will not grow to unacceptable values within specified operating periods.

This report addresses Item 3 above for the CRDR nozzle. In addition, this report documents the results of a survey of BWRs regarding CRDR nozzle inspection history and experience. The implementation plan for this task is provided in Appendix I.

1-2

P&qMPR ASSOCIATES INC.

ENGINEERS Section 2

SUMMARY

Three pressure and temperature cycles were identified for the CRDR nozzle: startup/

shutdown, reactor scram, and hydrostatic test. These cycle are defined for the CRDR nozzle as follows:

Startup/Shutdown - a reactor vessel heatup/cooldown between power operation and shutdown or standby conditions where the shutdown is achieved manually by plant operators.

Reactor Scram - a startup/shutdown cycle where the shutdown is achieved by a reactor scram.

~

Hydrostatic Test - reactor vessel pressurization and depressurization to identify leaks prior to power ascension.

The number of cycles experienced to date, the number of cycles experienced since the 1977 PT inspection and the projected number of cycles in the future are listed below.

Number of Projected Number of Cycles Since 1977 Number of Cycles Cycles to Date PT Inspection per Year Star tup/Shutdown 96 38 5 Reactor Scram 100 27 Hydrostatic Test 18 9 The reactor scram transient is the limiting cycle for CRDR nozzle stresses, Finite element modeling of the thermal transient shows that the peak stress intensity in the base metal occurs at the end of the transient in the bore of the nozzle just above the blend region. The peak stress intensity due to pressure and temperature was calculated to be 110 ksi.

Fatigue analyses show that fatigue usage for the CRDR nozzle is very low (approximately 0.003 per operating year). For the calculated stress and the number of cycles experienced to date, a fatigue crack would not be predicted to initiate in the 2-1

CRDR nozzle at the present time. Considering the calculated stress and the number of cycles expected in the f'uture, a fatigue crack is not predicted within the life of the plant.

Fracture mechanics calculations show that a postulated 1/4 inch flaw located in the highest stressed region of the nozzle would not grow to an unacceptable size within the life of the plant. The postulated 1/4 inch Qaw is calculated to grow to a depth of only 0.4 inches in 40 years. A 0.4 inch flaw does not exceed the allowable Qaw size for the analyzed section of the nozzle which is approximately 0.5 inches based on criteria given in Section XI of the ASME Code. The allowable Qaw size provides signiTicant margin to ensure the nozzle does not fail by brittle f'racture.

2-2

PAIMPR ASSOCIATES INC.

E N & INEERS Section 3 DISCUSSION 3.1 DESIGN AND OPERATION The NMP-1 Control Rod Drive Return (CRDR) nozzle is a 4-inch reactor vessel penetration located at the same elevation as the feedwater nozzle. Figure 3-1 is a section view of the nozzle which shows selected dimensions. The CRDR nozzle is equipped with a thermal sleeve which is welded to the CRDR nozzle at the sleeve inlet and extends into the reactor downcomer with a circular plate at the end. This design is intended to protect the bore of the nozzle and the vessel wall adjacent to the nozzle from the relatively cold CRDR flow.

The Control Rod Drive (CRD) System provides water from the condensate storage tank at a temperature of about 70'F to the control rod drive mechanisms to cool the control rod drives, to reposition rods, and to scram the rods. Under typical plant conditions, the system operates at all times when fuel is in the vessel. During normal operation, flow from the CRD pumps is maintained relatively constant with a portion of the flow recirculated to the condensate storage tank, about 30-47 gpm of the flow used for control rod drive mechanism cooling, and about 17-35 gpm (the remaining flow) returned to the vessel via the CRDR nozzle. Some accident sequences involving loss-of-offsite power may result in system shutdown for a short period of time, These accident sequences are not considered for this analysis. The flow rate does not change as a result of repositioning a control rod since the flow diverted to move the rod is compensated by the water displaced by the rod drive which is routed to the CRDR line.

A reactor scram results in a CRDR nozzle flow transient. During a scram, the CRDR accumulators discharge to drive the control rods into the core. This results in an increase in CRDR nozzle flow to 65 gpm. When accumulator pressure drops below reactor pressure, CRDR flow rate goes to zero as the accumulators are recharged. After the accumulators have been recharged, CRDR flow rate returns to the nominal 17 to 35 gpm.

3.2 LOAD CYCLE DEFINITION Table 3-1 lists the pressure and temperature cycles which were considered in the structural evaluation. The number of cycles was determined from plant data regarding the number of plant startups/shutdowns and scrams. The cycles are defined as follows:

3-1

0

~ Startup/Shutdown - a reactor vessel heatup/cooldown between power operation and shutdown or standby conditions where the shutdown is achieved manually by plant operators.

~ Reactor Scram - a startup/shutdown cycle where the shutdown is achieved by a reactor scram.

~ Hydrostatic Test - reactor vessel pressurization and depressurization to identify leaks prior to power ascension.

The number of annual cycles expected in the future is conservatively estimated to be 50% more than the average annual number of cycles that occurred over the past 10 years. A calculation of operating cycles is presented in Appendix'A.

33 STRUCTURAL ANALYSIS Stress analyses were performed to determine the stresses for the fatigue and crack growth rate analyses described in Section 3.4 and 3.5 below. Transient thermal analyses were performed to calculate the temperature distribution in the nozzle as a function of time for the reactor scram transient. Steady state stresses due to pressure and temperature were calculated at specified time intervals throughout the transient. The sections below describe the finite element model, material properties, boundary conditions, and results.

33.1 Finite Element Model The ANSYS computer program was used to develop a finite element model of the CRDR nozzle. The model includes the CRDR nozzle itself and a sufficient length of the reactor vessel shell and attached CRDR piping to eliminate interaction between the CRDR nozzle and the structural boundary conditions applied to the edges of the vessel shell and attached piping.

The three-dimensional nozzle-to-cylinder intersection was modeled with a two-dimensional axisymmetric model of a nozzle in a sphere. The equivalent spherical radius was chosen to be 3.2 times the radius of the reactor vessel cylinder to insure that the maximum hoop stress and stress intensity calculated by the axisymmetric model would be comparable to those in the actual three-dimensional intersection. Appendix B documents the finite element model. The finite element mesh of the CRDR nozzle is shown in Figures 3-2 and 3-3.

33.2 Material Pro erties The model of the CRDR nozzle is composed of three regions with different material properties. The reactor vessel wall is SA302 Grade B low alloy steel. The CRDR nozzle is an SA336 low alloy steel forging with ASME Code Case 1236-1 for nickel addition.

The clad is assumed to be Type 308 stainless steel.

3-2

Temperature dependent material properties were used in the thermal'a'nd stress analyses of the CRDR nozzle. Appendix C documents the material properties used in the analyses.

399 Thermal Bounda Conditions Thermal boundary conditions for the reactor scram transient are discussed in detail in Appendices D and E and summarized below. The last portion of the reactor scram transient was modeled. Initially, the CRDR nozzle is at a uniform temperature of 525'F corresponding to zero flow through the CRDR nozzle as the accumulators are recharged.

At the start of the transient, the CRDR flow rate is step changed to it's nominal value of 35 gpm with a fluid temperature of 70'F.

Heat transfer coefficients and bulk fluid temperatures are applied to the inside surface of the reactor vessel wall and the bore of the CRDR nozzle. All other surfaces are assumed to be adiabatic (insulated). Appendix D is a calculation of the heat transfer coefficient in th'e CRDR nozzle bore. The overall heat transfer coefficient between the CRDR fluid and the nozzle bore which includes the effects of the thermal sleeve and water annulus was calculated to be 100 BTU/hr-ft~-'F. This includes the effects of the fluid film on the inside surface of the thermal sleeve, conduction through the thermal sleeve, and natural convection through the stagnant fluid layer between the thermal sleeve and the nozzle bore. A heat transfer coefficient of 1000 BTU/hr-ft2-'F was used between the bulk downcomer fluid temperature and the vessel wall.

39.4 Structural Bounda Conditions The structural boundary conditions for the stress analysis include applied pressures and displacements (Appendix E). A pressure of 1250 psig was applied to the inside surface of the reactor vessel wall and the bore of the CRDR nozzle. A negative pressure was applied to the safe end to simulate the axial load in the attached piping. At the end of the reactor vessel wall, symmetry boundary conditions are applied to permit radial displacement and to prohibit rotation. At the safe end, couples are used to allow translation of the safe end but to prohibit rotation.

39.5 Results The peak stress intensity in the base metal occurs at the end of the scram transient.

Figure 3-4 shows the calculated temperature distribution at the end of the transient.

Figure 3-5 shows the calculated stress intensity distribution at the end of the transient.

The peak stress (110 ksi) in the base metal occurs in the bore of the CRDR nozzle at the base metal to cladding interface, just above the blend into the vessel wall. The principal component of the stress intensity is hoop stress.

3-3

3.4 FATIGUE EVALUATION A fatigue evaluation of the CRDR nozzle was performed based on the load cycles defined in Section 3.2 and the results of the finite element stress analysis discussed in Section 3.3. Nozzle fatigue usage for current plant operation conditions was evaluated on a per cycle basis.

As discussed in Section 3.2, the CRDR nozzle is subject to startup/shutdown cycles and startup/scram cycles. Fatigue usage was calculated for both of these cycles. The nozzle also undergoes hydrostatic testing; however, this cycle is bounded by the pressure-temperature conditions during a startup/shutdown cycle.

Fatigue usage is calculated by:

u=g n N

where:

u = fatigue usage n = number of cycles which occur N = number of allowable cycles based on the cyclic stresses A fatigue usage of 1.0 indicates that there is a potential for fatigue crack initiation in the nozzle. The allowable cycles are determined from the ASME Code Design Fatigue Curve for Carbon, Low Alloy and High Tensile Steels (Reference 2, Figure I-9.1). This curve provides a conservative number of allowable cycles for a given alternating stress range (safety factors have already been applied). Therefore, use of this curve for the usage evaluation provides a conservative estimate of fatigue usage for the nozzle.

Calculation of fatigue usage for startup/shutdown and startup/scram cycles are documented in Appendix F. The calculation is performed using the peak stress intensity range on the base metal inside surface of the nozzle for each of the cycles. The fatigue usage for the nozzle was calculated to be 1.963 x 10~ per startup/shutdown cycle and 3.848 x 10 per startup/scram cycle. Based on recent plant operating history, there are approximately five startup/shutdown cycles, one hydrostatic test and four startup/scram cycles per year, which corresponds to an annual fatigue usage of 0.003.

3.5 FRACTURE MECHANICS - CRACK GROWTH RATE Crack growth of an assumed pre-existing fiaw in the nozzle due to the pressure and thermal cycles defined in Section 3.2 is analyzed using the Paris crack growth rate equation:

= C (AK) dN 3-4

\

where:

da crack growth rate (inches/cycle)

Gn stress intensity factor range (ksiPin )

C, m = constants (dependent on material, environment, and loading)

C and m are taken from the ASME crack growth curve for surface Qaws in a water reactor environment (Reference 2, Figure A-4300-1).

The stress intensity factor range is the maximum change in stress intensity factor during the given cycle. Stress intensity factor is a function of stress and crack size. As described in Section 3.3, stresses were analyzed by Qnite element analysis, Using the Qnite element model results, a section though the nozzle wall, passing through the peak surface stresses on the inside and outside surfaces of the nozzle, was determined. This section is located in the blend region of the nozzle near to the transition to the bore region. A third order polynomial was Qit to the stresses through the section as a function of depth through the nozzle. Stress intensity factors were determined by the methods of Reference 3. Stress intensity factors are calculated as a f'unction of crack size and the polynomial coefficients from the cubic stress distribution.

A computer program that calculates crack growth based on the method described above was developed to analyze assumed Qaws in the nozzle. The program description and veriQcation are documented in Appendix G. Inputs and results of the crack growth analysis are provided in Appendix H.

The results of the crack growth analysis, assuming an initial Qaw size of 0.25 inches, are shown in Figure 3-6. As shown in Figure 3-6, the assumed 0.25 inch initial Qaw will grow to approximately 0.40 inches in 40 years of operation. The results indicate a very small crack growth rate for a crack in the CRDR nozzle. In addition, the 0.40 inch final Qaw size is less than the allowable Qaw size of 0.5 inches. The allowable flaw size for the analyzed section of the nozzle was determined from criteria given in Section XI of the ASME Code [Ref. 2]. Determination of the allowable Qaw size is documented in Appendix H. An allowable flaw size of 0,5 inches provides signiQcant margin to ensure the nozzle will not fail by brittle fracture. The applied stress intensity factor for a 0.5 inch flaw under the most severe stress conditions in the nozzle is approximately 81 ksiIin. The nozzle is not predicted to fail by brittle fracture until the applied stress intensity factor exceeds the critical stress intensity factor for the CRDR nozzle material.

At normal operating temperatures the critical stress intensity factor is approximately 200 ksiIin, which is more than twice the applied stress intensity factor of the 0.5 inch allowable flaw.

3-5

3.6 EXPERIENCE SURVEY A survey was performed to determine the experiences of other utilities with regard to CRDR nozzle cracking. NUREG-0619 responses to the NRC from utilities operating BWR plants were reviewed to determine how the CRDR nozzle cracking issue was resolved at each of the plants. In addition, several utilities were contacted to determine more detailed information about inspection practices for the CRDR nozzle. The results are surnrnarized below.

Review of utility responses to the NRC indicated that almost all operating BWRs cut and capped the CRDR return line, either with or without flow rerouted'to another system. Plants with a capped CRDR nozzle are not required by NUREG-0619 to perform inspections of the nozzle (besides a final PT inspection required prior to capping the nozzle). However, some plants were operated for extended periods of time with the CRD return line valved out, which NUREG-0619 considers to be a temporary solution. In addition, one plant, Oyster Creek Nuclear Generating Station, has continued to operate with CRD return line flow through the CRDR nozzle. Oyster Creek is the only other plant besides NMP Unit 1 permitted to operate with the CRDR nozzle in service, Several plants, including Oyster Creek, were contacted to determine information about inspection techniques and results of nozzle inspections.

Two of the plants contacted, Duane Arnold Energy Center and Quad-Cities Station, found cracks in the CRDR nozzle during recent inspections (past Give years). At Duane Arnold, the CRD return line was valved out and capped with a blind flange in 1982.

During a visual inspection of the CRDR nozzle in 1990, evidence of cracking was found and a full PT examination was performed. A crack approximately 3 inches long and 0.25 inches deep, just penetrating into the base metal of the nozzle, was found and ground out. The nozzle probably had a thermal sleeve installed prior to being capped; however, the type of thermal sleeve is unknown. The plant performs a visual inspection of the nozzle every outage, but does not perform any ultrasonic inspections. Quad Cities operated with the CRD return line in a valved-out conflguration until 1989 when cracking was found in the CRDR nozzle. During this period of operation, the CRD return line was visually inspected every outage. As a result of the cracking, the CRD return line was cut and capped in 1989. Since that time no inspections of the nozzle have been performed. In both of these cases, cracking was found after a signiflcant period of operation with the CRDR nozzle isolated from CRDR flow. Most likely, cracking initiated prior to isolation of the CRDR flow, but was not identifled until later inspections, Oyster Creek is the only other plant (besides Nile Mile Point Unit 1) allowed by NUREG-0619 to operate with flow to the CRDR nozzle. Similar to NMP Unit 1, Oyster Creek applied for an exemption of the NUREG-0619 requirements for the CRDR nozzle, including the scheduled PT examination. Based on automated ultrasonic (UT) examinations of the CRDR nozzle, which did not identify any indications, Oyster reek was given an exemption from the nozzle PT examination until the next refueling

~

outage. Qualiflcation of the UT system was performed using a mock-up of the CRDR

~

nozzle. Even though the UT system was designed specifically for the nozzle geometry, 3-6

I there were several problems encountered during setup of the system. Mounting the system took longer than typical UT systems due to space constraints around the nozzle.

In addition, removal of the mirror insulation around the nozzle area was expensive and time consuming. After the inspection, a new type of removable insulation was installed to provide easier access for future installations.

3-7

0 Table 3-1 CRDR Nozzle Pressure and Temperature Cycles Reactor Vessel CRDR Nozzle Number of Description Downcomer Fluid Number of Fluid Cycles Expected Pressure (psi) Temperature ('F) Cycles to Date Temperature ('F) per Year 1 Normal Startup/Shutdown 0 1030 -0 70 - 525 - 70 70 96 5.0 2 Reactor Scram 1030 1250 70 <<525 <<70 3.9 3 Initial Hydro 0 1875 0 250 70 0.0 4 Refueling Hydro 0>> 1030 -0 250 70 15 1.0 5 10 year ISI Hydro 0 1133 0 250 70 0.1

23 e~')

I ASS CQ.SKQ gCULCL 'QTLRe I

~ I 0

Vc t$

Ji 8> ~ ~ ~

4 mt'TT I

tg ncuovr.

nor.~~ l cue up~ t I 'Mi7 (Sb~T.IL 4~

i)a )Z1 VO Vreeaa RCr.)

Tb ~ +prre<v +'. ~ eisa)

~q~ '-iTYTT, SYSIEII gETUTPTT uCJ LE KSQ'Y Figure 3-1. CRDR Nozzle Dimensions

il

',j

'J,"

f llRllllIWIIIIIIIIIIEIIIIIIIIRIlllIllgggyyygIlllt i <<Will%%%IARAARIIAINIIARSARIlIOOO

~

II (~ //Il l)llew%%%%%ASRSIOSIONAOOSOSk500%000iiggg

<il)'p/(]/ Jllmssaskskaasaassssissaaaaisg~~gpg klan% g ggyININll<<1tIINIIlg

)'P/)/<III t(gggggaaaaaaaaaaaaeaaaaaaaaag~~~~)

'>'<>ISO jjaaaaaaaaaaaaAaaaeaaaaakiaaagaggi (If4ggg ggggggiwgsakWSQOWSQOWkSOi INIIgyygggy jg llkNIIILIlllggpNtII

)<ittye JlOSRSk%+++++++++++++++++++I+INOO+lg+Ogaa NNkOOOOggg~~

1% 1 aaaagggg()( OOOOkOOOOkggOO qx eeassgssssaas<<w>>>>>>+++i+++++++++++iasgaaeae+ig++++~isaizg++

Xq~%+1as <<eataee+>

OOiNkOOg kkOkI OOIOOaaigk44OIOO+gg 1+ggg kkIhggg+

p~~~~mee@>> asaesegz OOI O4tk

~~~~~wwm~~~~+++raeewaaq wa ~~ +++Aaeay~

~c +alas+

~ ~

Illlllllll~ls>

ylllllll>gt~p llllllllll IIII~ )l<)p

~gy))l)~)(lpga/j illa'~'>If(l>~l//j god,'hagi~/j fbi)]4~~%Iaaaammmmmmmmmaa

~)~lykyggggRR%%%~%%%g%%%

WaOrsnaammmmmmmmmmmm

%~~~+~~~~~~~~~~~~~~~~~~

i 0

ANSYS 5.0 APR 4 1994 16:33:47 PLOT NO. 1 NODAL SOLUTION STEP=2 SUB =21 TIME=3601 TEMP TEPC=9.434 SMN =88.846 SMX =523.562 88.846 100 200 300 400 500 600 Figure 3-4. Calculated Temperature Distribution

ANSYS 5.0 MAR 31 1994 10:40:18 PLOT NO. 1 NODAL SOLUTION STEP=14 SUB =1 TIME=3600 SINT (AVG)

DMX =1.462 SMN =3533 4

SMNB=2569 h

SMX =96413 SMXB=105008 3533 13853 24173 34493 44813 55133 65453 75773 86093 96413 w

Q~7Q rent a

p:P

'+~~

Figure 3-5. Calculated Stress Intensity Distribution

0.44 I I

0.42 I

0.40 I 0.38 I I

I I

~ 0.36 T I

I

~ 0.34 I

I

(~p 0.32 I

. 0.30 0 0.28 0.26 0.24 0.22 0.20 0 50 100 150 200 250 300 350 400 Cycles (10 cycles per year}

Figure 3-6. Fatigue Crack Growth

PD1MPR ASSOCIATES INC.

EN&INEEITS Section 4 REFERENCES

1. NUREG-0619, "BWR Feedwater Nozzle and Control Rod Drive Return Line Nozzle Cracking, November 1980.
2. ASME Boiler and Pressure Vessel Code, 1980 Edition with Addenda.
3. Buchalet,'C.B., and Bamford,'.W.H., "Stress Intensity Factor Solutions for Continuous Surface Flaws in Reactor Pressure Vessel," ASTM-STP-590, 1975.

4-1

I' rpMPR ENGINEERS Section 5 APPENDICES A. Calculation of CRDR Nozzle Thermal and Pressure Cycles B. CRDR Nozzle Finite Element Model, Geometry C. CRDR Nozzle Finite Element Model, Material Properties D. Calculation of Heat Transfer Coefficients E. CRDR Nozzle Finite Element Model, Boundary Conditions and Results F. Low Cycle Fatigue Usage G. Crack Growth Rate Computer Program Verification H. Crack Growth Rate Analysis Cases I. Implementation Plan 5-1

FA1MPR SSOCIATES INC.

ENGINEERS Appendix A CALCULATIONOF CRDR NOZZLE THERMALAND PRESSURE CYCLES

MPR Associates, Inc.

lLRMPQ 320 King Street Alexandria, VA 22314 CALCULATION TITLE PAG E Client rv lg&ARA /YloHAWK, Pa wG R C~Rf'oRATlo Page of 1

(2 Project Task No.

F'P(~ LIP l T / c8 S-~~a gQA/TgoL- R~ DR i v'8 g,G Tu~ A<Ya/ E Calculation No.

1 HGR~c AAD PREssua.G cygne E~ (PALS-23G-/SR-6 I Preparer/Date Checker/Date Reviewer/Date Rev. No.

~/lo/9P Fdi~ c ~+~a.(

I s/~o P/~o/Vg 3/Sl ('i9

MPR Associates, Inc.

lxIMPR 320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No. Prepar d By Checked By o8s-'Z3c>-48 P=D( Fw[ lw( c~

Page

~

Revision Description

~+I C lMgw lSSyE;

p. 3 AuD ). 9. DELETED >< 5'7A V uF'/sHU7'Do~~ C)'CLOS Rat WTeb wo SwR'Top'ES'v's A~V <Rh(u(~C C ~i~i COLS Pe f'.rOX~Gr >P l965'. TH Zsr uCL.e S DELETE'D tOiQ !VOi iWVC LVE Pl A~ PeATUP.

MPR Associates, Inc.

K%MPR 320 King Street Aiexandria, VA 22314 Calculation No. Prepared By Checked By C7B5-ZQO-A8R. Dl REV> i

~ gg + Page

~lo5E: TH 1 gP SE oF TH 6 AT DEF(~ Th'E 7flERPAC 4~b t RCS5ugC . cgCI G5 Oa TAE'co~Res- Rot DgiyE R~TuCW (cRDRD A'oKKLK /Ar TAC AINE ~IL-8 F'otNT U<17 / F'.E'AC7og l/ESX'G~~

TC CuVuZ 7'OweE'R c F CYCLES 7u ngTE, s PND ~o 557 tAA tE. gflf A/U/vl8fR. cg F FUTUP.c <y~eE.s.

GumWA l2

< Vc~- W CY~t E'S ToTA C p'REALS <l 0 E Clod 'TC~F 10 PRESenn.

I. O~ia~r ~o '7ow 52.5&7c7 70 96 g.o 2.. 0 ~ i25o ~ o 7O+57 5 W /O 70 s-9

/2 5'o 7o+ 5z g w7 lOo 0 W[875&0 O & IO3e~+ zoo 70 D~Ilrz~ 0 zoo 70 CYc~z ):u~a+Ac naRTvp/gHvv'oo~m l vcr.G5 2. A~D p. S~ARTcrP/Sc IZAAK cvcc.e's y 5 zn b s .'Essec HY.bR~s>AT'tc mesmer

MPR Associates, Inc.

RMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page oes-z~o -/8 p-ol 7-equi ~ ( g(

hro CE E SC, PL.ATE TRKQAAL 5'LEKVAR RBAcyoR SH Rou~

cRD cg~R

/cour ClzQ g Po~wCo~p~

ggA4gug VW~ss.~

&At L,

~ i MPR Associates, Inc.

lLiMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page o8+-2.3o -A8R-6/ g /,'i,~

IN I HE' ESSG-I So Fco~ -F+!Ra UC H Ttt E Cygne iso>RLC tS

>) p(cAL &oRmgL FLaw 7 HRav >tf -FpC Ao KZL 4-. (5 )7"3,5 &PA SAC f46~ DoE 5 nroT CH4k+C g S A l2ESu C.7 C7F gePo~ITIdd(N con TRoL a<D gijvCh THAN FLo~ DIL/5'ATES vo ~oVL- THE'~D IS GamPE'mSATe D BY TRC u 4TZR E ISf'L,AC~+ EY q HK CR2 C ERICH

>> JZ.o4'mD 8 4c k. To WH 6 CRD R, I-I we.

4 R<A <Taf 54RC}Al RC SvLTS ln F<o~ rR+&S(E&7$

7 HRo>G-H 7 I-(E. cgOR. no%7-LE, UPON A 5cRAAh SI&~QLg 7 HL CRS RccumuLAToR.s D(ScH/R@p Zo baal 1/E' HE Ccwrgcl f2'ops'A 7IIIs RE 5ULT'5 IAJ T ffE'jz.Q cooLI>c- FLow Egl !AC- gey IP Q'$7/5 7'HK C Rg g. WOt~LE> (NC IZ<85'I ]VCr A'O~yLK F LO~ TO 6S G.'PPlAFTER Rcc.umUt AT'os. PRESSukK DRoPS eFLow RCAC'TO% F'RESSED'P-t) V IRTVILLy ALC CRb 5'/ST'8' I.a4r 6<<>

RC-CHAR.6-E ~HE Ac<,umUt QToNS 'q-HvS, CJZDR AokkiE'5 0 &PA . <RbR Ato>tLE FL<< Is gE-c 5rABLISHKb

MPR Associates, inc.

RMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By o85-23o gal -0) gg. T+(, ~f o.u Page

.HL Q~AL- ze sMRE c cL P,ISED Ch/ 7HZ 4848 DISC.uS5'(cr~S C'yCI Eg 4AC COmS'<DE,P.gQ F.OR 7r ~ ~F'eP.HV (~~ maDC 5 ~

4'cga% L 57A +IIPj/IloiZAnAC 5H(ITboN~ 8~5 NO ZPlAI ST+RT'I/P/5cR/A1. HyDRo TEST PPessURE cycLE5 ARE ALso Co~SI E Z 8 Eb.

THE RMAL C YCL+5 t9Rt=- R'E. PRESE'ATES 9'f 7 HC Fl MIQ TL= WPE R.ATVIZi PvsiDq THE 1 HERINA< SLEEK (T ) A4D THE Do~uconn& R. (M~ ). WHE'~ Cgt)fZ F:Lobed STol'~

DuRimC- 4 S<gAhh,, %HE't vip YS&FGQATUPE IA'HE THCRmAL 5( O'EVE IS'55k'WL=.D +O 8F <HE SW~G'S 7 HE po4 ~Cu~6+ c" g Clog 4C .

MPR Associates, Inc.

o RlMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepa ed By Checked By Page e ps'-w~>-$ 8P=o( c7-8. 7@I; ~/-.

S~~<<C F'/~ur~Al SHvTD~u ~.

g Cacvoa p=tog~ ps'p~~ ~g;~~ Pv'cg5 pv <

pg e,ss uR.E, Cp'Ro W < ~e'A,AT(A/4 C]o sip) Q4'pg oruo H0,g

<(x>/>I A rrWcneZ-dnrO V FSAIQ

-7(& L.

60O ~~DC ~+4~ OPIA.A.fgAJC-T>,=4%5 F GTvlpg~'rut 6 b4 74 -0/oo Hz,5 oAr C r) Gl LP/9/ P s sue vivum Tera( 8 M7vRr Fo p.

Rect RC vL/lac~ f'v~ps)

<cp~ "- lo F

/VoT~: Mr GAPt-iER $84RZ 7HrZe was ~erg EAPHAsiS Rd~ P T'ggi~]v Cc)wytgloAJ5 J ~(CRT Fogy cyc~84 ~~HKAG paSSSVae'lo3~ r4WJ) Wp~(~ZS O

p pic) 4'cc> RP-F-D. <HE 8 >vE'.gc LE 15 .As'svw<o 7 >

gdtjwD 8l-L G)CL.E;S

MPR Associates, Inc.

WMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By d 8'5-73o-A8 R.->l Page g

5 78 R 7 lJ P/S ~ P- AM,-

I Go<<~

I 0'3a psL IZcag'cA c To/Z l>5o psig- Pr~ssur~

PRe,ssoeG p sip 5afef/

(r s. (ur-qadi).

5C,PAhh, Agsu~l + o c.ur or ~]l Sc,r ~~S,.

FgP c~~s glZYATI5AA

+a~ = 5 l.a

'Pagss'Ugc, i s possum

<<~ p~aATuRG 87 I%SO i sip SLIP.I PoF) CQQR QCCCr~Vg g PuP

~~Wc Hcl C6-tnJC .

I iih f, A cc o~ulA l aQ, PEWIIAP G.le.

H VD<o 5 ~ATlC, q g gT Pg.C<5U pg cy(gf '.

~L,~ -25> F PER I Imi'Ts Irv Tgc..g SPQQ 3 Q.~ (/de upTQ iS aPPy)

>~<< H>'DR<'-. P= l875 psL'g ('Re.F. uVSga.)

El~+< E'AcH pa FVGIIAIG': ) OZcr pa Pg (DPEMTIMC P)

'> P'< 2<X' I-l>X l>rCPSC~ = /lZ3 PSI'g (RF<- rt/ Pipi iP7 ooiP-p-ls)

COMDR, FL~~ lS HSSV WSQ FC R H'IPDRa ST/7'l C ~PS~~,

I

MPR Associates, Inc.

ti~MPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By VGV- I Page

<s's-vs~ -A 8 e.-g)

U&ag12. DF cY<LEs

/yPLPC, PEg5ouAKL yzyei.oPG'5 4w OKrggg S'uwdnARy Fog. ~~['( ~H ifDKA'TlFi K5 yH I: Pn TE TPPG(~.~. 5'cd<

SHVTbO1V&> fdoT 5'TRA'D8'/) IZEWSOW A&5 DVRATfd& oF FC)ce cvTADE.. 8ASElO c~ Zge 5VhfptApy, 7-pZ F'oLc.oi i~6-fS 7 HE A'O'AQG R, >F c YC,C.E5. ~

P ksss v P. 6 +Dc 4o. CP'C L,6S 0 Co io'30 Wo N <o 52.5 STAI.Tuf / I F sa'g j70 F d'or~7o F 5 8 tn pow pl qo y~ 5'2-5 0vo /250 <o ~@sip go7O F 7' lOG 5 TFIPTu/P ScRAM 125o pic'g sz< lod

<o 7a F H ypR.op~ATiz 01@ l88'~ >pi'g 7o F Tt-. sTS Prr /o30 vo Opgi'~ L5o F 7o i-Pt~ I133 to,4's'QO Z.Sc F 7< F moue i'u<AC-O' Zo HoT g7gmD 9'y 3Rw i~CLu 5Kb.

mom'c Z. RO RE'ACTOR STARTS in/ l942 Aa SlARTVP <6$ YS TRAlA'tPc- CR,tTlCAL,S ARE h/W iNculDEb SECBVgE No I F'L]9~ pgATuF W'AS IuVOL VED.

<<DR. Ft o~ iS AsSQWSS DtJRimC HQDpcfsf'~ ric g8's'75

MPR Associates, Inc.

lLWMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page

~g S-~a~ -Wsa.-ul 7~I' (gc,.-

I~

AhtTic (PA t= AVM 6'g OF' C,LC5 PVlZ(ug ~VTUCf +<BgAT(aAI THE AluT(cip87ED FutuaE iv'vplBER QF svA R7op /s'N vr Do@ ~ AA/9

~ggl Q P SGRAjN C ycc c g pg ~el.L, 4S Iiyp+O5'r~/4 ~g T PRESS'Vg.i-C~~~eS /S8WSEC O~ Zrl.~7iVe~y RECT~ ILA~ EPPES'RIEWCE':.5'i~DE 7HE HWD oF rNE lP&N IZGFCJELbV& (6/8Q //99),ADJI/SYED FOR

~:HG .'3m nna~TH Our'A6-t=. in l>87-, l.99O. 2'T. Is ASStta GD 7 HHT t=VT~R,t oPR'pe(da. ~ii ~ NAV'L 50 fd &OP.4 5'NVYbomwg AND 5oRAA'rt5 (AAWV+al y) 7H S T~Tl C. 1 6 SIT PRF SS VQG Cye L.E 5 IT l S, 4~5~~6 5 1pAT T~ sTs "o 4'PE@A'Tlpd- PREssugE. (Iozopsg sviLu occup ouse PER. Yen'WHC cc ~a.E~ r aF ~ RAl'l~C C,y'CL,E- lg g.9 Pss~TH~

As~u~P>l~~ I5 AVG@uATE ~a Iccov~Y'uQA alp-4yC, ouv'A&g As ~s'uv). 7HE Is/ 7ssTPRessu<G (IIX'sst) "<<<

ONCE Q Vf P.P /0 y5'4 i25 BYOIZ>5 Q TlC EST "rFAF'8'RAToCGS

/RC <SSuAG> ~ 8E'~ F 6RCATC< Fog, fv7uf, c.yet.E'HATS AT lSK<PY.

)N ~u~~~ A Rp ) <Fls A~woAL c ~lc~c 5 F~R Fwvtz.E

~PGp-ATt4'~ 4Rc.,

P RESS uZC h/o. cyc~C S '/R.

>SAavuP/ 0-I03~-0 psst 7b -$ 25'-.70 7a F 5", 0 ESSES 5 H o<bcJ~~

svAavuP/s'~CA" o IZP'-a -ps)g zo-72,5-7o F 7& F 3. 9 I z5< pyle 70-5'z5-70 ~

Hyi r ~ST WTic- 0 -IPPO- C7 ~'S's,'~ goo F 7

0-II Z3'-o Pi goo P 7o "F CP~Z <<>~ >S +SSu~GD b(r Rf JV6 MYDR~57 ATTIC, MS'.

~ ~ >> a ~ '

j I ~

OPERATOR NIAGARA MOHAWK CORPORATION NINE MILE POINT NUCLEAR STATION UNIT NO. 1 Ilies).RTR I O r)) jc pof-")E.!T/) D~~~f.r.r@EK i K QRWQV ti Q ggG

~g'/=K/4V(/gG'EACTOR I

P'P gS~~ g Q MPS 0,

O' CIR 'VC tll)$'>ll IH SIEAM IIOW WIk IE)<f I CO)E COIE tVMt 12 tVMt 1<tf tr ll

}034.'l I<a>>I CO'.. COL. 12 COt. II COC. 12 Mal. SVCT SVCI Dt)CH FLOW SVCT. DOCH SVCI D>>SCH FI I TENt O E. IEAD W. 'LEAD TOTAL

'IEMt IEMt, TEMt. If>>at. LE>>at TEMP. If<at t)<O 4)S vc I'Sa raw I 41 S>>'e<1 I I 4)SINI t ILS/Nt 4)SINS n)12 I')I) D)14' D)IS j

n)IS D) II D)IS Li)IF CSIS Aa)I Aa)0 Aa)1 A4)2 Ac) ~ Aa)S A~ )I Aa)S Ac) A440 Acl) A44 I

' ec I c/2~

': I C/ ~ >><<<<c I r Hi I'2' I'7. Jca)8..25 ~ 'I ~

..8 'Z3! i ~ a'

~ l) I 4.'6. ~ . (>>C  ; ia)}/ ' '.; ('r r'atv<<le 1 e ir ~

')c'} !ZZbb Zr'i} qc) AQC":. c.(" 4

"'i' e ir rrt VH",

I (: >>Zb I 10 4:<<40 I' I c'".'I 327:ct 4:":

ll74J3

,' ~ %a ~

c't <3 ) c0 ()ea>> /()67.j26 j / 66175; /".I! ~ I 'I cl / I: v"'! I,< <<' I}'07 t>>I / r g /r>>p ~541 I aC>>Cglc le)n,lr)I Cj;) 3<}~; I a}"

I: 0() c/ 934>> i('3 .('D T a'a '!O a r)I b.:~(>s.,%01 j I })31 ~ I 4 ~

o W -".() a /3/ 11'! Zb'2 I) r),e "aCLI. "rci 'c>

th')3( '! a(6! a I ?bi tLb I I 2:"bc' 3 "6'?. jl (>> a: '('7') 7"0 34> } (C') I 3'e 1 3 Cj '.'I 7 i .) P %>>3'.) ~C>CI r

jl>>I r.a r~ '<>  ?~F i 363, I:. ci bc). 3'170. <3.: ~ le v ~

1 Cc/tc.

<<C<<<<a i 0366 J . 4>>T /0. I;:  :<<'a r I >>. 'r~ r4 347<<('/: c)/i

'4 c)3/ j}rlc

('3('0(:

aa r a~ I~ ~

7/jt) i, '54 I~}7 Ic

")I36 '/:5

\ 3}NO~09~>>'U 3 i 5 I ~('ll t 'o5 365'.:: ( -"-1 ar 0. vc <<21<<)s'3"'>>} 4 34) j}rj~) I c J i<<>>Oi r rr H ii agp 04'c>rw>>} r)'/. -,11(.~r)pc,~S I C'I 4! Zc), S:c'I I 7.2 4 >>art)")ar" ~

3'<')6S ') i

) 4 t.c0 e

9 "00 3IOI j(CC AY. b I j'0. 01! 0.

3/r'/r>c~ct:3'C,

')2 V. 730 )'i 44 a 4'6'I>> I a( 3 ~ 3 rg g 7l ~ca 1r'a(el 4'. a C>

e'i(i 7>>) ', I 338( 04>II(: <<>>3/0 ~ 4 3)i ">>Ct <l 3ct 7/~ I/ =-'1 ra85(:/'; 08: "4"'I=OJ 2"I)/e

/<<r I /'.

4,  !

-.,-"'I I i Ibb'J. I I 0. 4 I'. 0. 5'= /('>> 3<}/8 0'74:0/ 6 '<<0JCc/D

~ w

'(>> a>>~ /atC. 4 -  :-6 ~

blab~'0c/

~<

rr

~

i 6()(l 9" 7 7<<a<< M/ >>>> j ' a 69 . 6 4 / (> . Z<.e>> 0. rZ!

~ g 0<< r rr>>!

~

3"' c I I 70() 'J 'i 9. 68c) rt>>D /r. JO 30'"; 50c~ ~()".': :I C3rc >>03 l9/,

c".' rpc! I >> I an@' '<<T' I '2'. 076: . /6 0. >>ZZ ~

4 <<

~.

~ 31')C 'i:8>>0<<c:I ca r.'2>>0 cg )Fb I 36 I Cc>>0 r':

';r' )r r36I C'v ~

a

/a '

": 6E ) .:4 <<L.c/.? r ~ 3/}ci0 'zl Jl 3()bV<<)C)3)4S C. a 3C 36~( tr'.

(>> I I ~ ar << 9 c/: 70c; (:c), 2 .: I b~) . I 36'! . r CC>>r

~ ~ >>i 3<UZI 'l)> I 12 re% 4 C {an ht'e ~

z1,34)04>)c?6 [ . ~

f >>t( r>>mr>>

, r

~

'/ I at '.

wc>> 2<~15())'". 4)b;1)7:02,

>>N,'-) 30/>>05022) fb ) 3(,c(Ca~<<>>0<r .

cr;0 4

>>2 '

/ ~

?C>162 ~ -'36c/. Q9, Oi." 1; C- >'r'jt".' I 0 ~;.3/8})'4'. () 3(ij 34)() c )0A. 3} a>> C.<<0Z .I /C '

3 r'0 ~

V I c.r rer>>C ~

)g<C rDC I ~ e 301C'7')8) tI /- c) r ra)a' i" 0."(: '.C.~tc)'.I cr =c e

i a I I

I

>>a!Cr>> It ')CI c/ Hov<S 0AaV( TS AT:,OVeR,: g CscD/~ C~ Et t=- . THE= Q/p/<I L. Pu <A/6- R. rc} Ar 0 SO PC: T,RES (=WT S Re+,f/I/c:, PFR,e sv>E. em'.0 Te r i a

ctP Tci Tr I

I

'i ej'r

NINE MILE POINT UNIT NON-CFIITICAL HYDROTEST 1400 1200 O

'I 000 800 NCN-CRITICAL 614 OPERATION eoO K 400 360 0 MINllvLM O 200 TEMP I= TLRE FOR BOLTLP 100 F 100 130 0 50 100 '150 200 250 800 850 REACTOR VESSEL BELTLINE DOWNCOMER NATER TEMPERATURE (F)

(reactor vessel belt!inc downcomer water temperature is measured at recirculation loop suction)

FIGURE 3.2.2.e MINIMUMSELTLINE DOWNCOMER WATER TEMPERATURE FOR PRESSURIZATION DURING IN-SERVICE HYDROSTATIC TFSTING AND'LEAKTESTING (REACTOR NOT.CRITICAL) FOR UP TO 18 EFFECTIVE FULL POWER YEARS OF OPERATION Amendment Iio. pn, p, pn l27

PDIMPR ASSOCIATES INC.

ENGINEERS Appendix B CRDR NOZZLE FINITE ELEMENT MODEL GEOMETRY

MPR Associates, Inc.

y lLIMPR 320 King Street Alexandria, VA 22314 CALCULATION TITLE PAGE Client Nr4 ~g ~oh'5-wW

~rn/P ~/gg j Or~I MWI7 Page 1 of I3 Project Task No.

g~>~m neo zan. E - J'WFsS dew -2 2.f Title

~<ODEC ~%Md I/r-/'alculation No.

~g~-+gal- dZ 8-0 /

Preparer/Date Checker/Date Reviewer/Date Rev. No.

MPR Associates, Inc.

lx)MPR 320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No. Checked By Old -2zf-~jPQ-aI < T.~ P~ fib',;

Page Revision Description

MPR Associates, Inc.

WMPQ 320 King Street Alexandria, VA 22314 Calculation No. Checked By ops- z~- 685-o l '7S' Page Purpose The purpose of this calculation is to document the geometric input data for a finite element analysis of the Niagara Mohawk Power Corporation, Nine Mile Point Unit 1 (NMP-1) Control Rod Drive (CRD) Return Nozzle. A transient thermal/stress analysis simulating a reactor scram was performed. References 1 and 2 are calculations which document the finite element model material properties and boundary conditions/ results.

The ANSYS computer program (Reference 3) was used to calculate the transient temperature distribution in an axisymmetric model of the nozzle. The program was then used to calculate stress profiles due to pressure and due to the calculated temperature distribution. The results of this analysis, in the form of stress distributions through the bore/blend section of the nozzle, will be used in a fatigue and crack growth evaluation of the CRD return nozzle.

Discussion Figure 1 is a drawing of the CRD return nozzle which shows pertinent dimensions (Reference 4). The dimensions used in the analysis are as follows:

Vessel Radius RV 106.7

  • 3.2 inches Vessel Thickness TV 7.125 inches Clad Thickness CLAD .2188 inches Angular Extent ANG1 8 degrees Other dimensions from Figure 1 are as follows:

Nozzle Bore R1 2.061 inches Nozzle OD R2 4.813 inches Safe End OD R3 2A69 inches Vessel Cut Out R4 5.563 inches Safe End H1 8.688 inches Safe End H2 4.125 inches Safe End H3 1.344 inches The radial dimensions for the nozzle bore, R1, and the vessel, RV, are to the base metal-cladding interface. These dimensions should be reduced by the thickness of

MPR Associates, Inc.

O lxlMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By Page 4785- g~ ) t- Q,S-OI P~ 74u the cladding (7/32"). This discrepancy between the finite element model and the drawing dimensions should have a negligible affect on the calculated stresses.

Figures 2 and 3 show the axisymmetric finite element model of the nozzle. The model uses a radius 3.2 times the actual radius of the reactor vessel.'xisymrnetric This is to insure the maximum hoop stress and stress intensity from the model will be comparable to those in the actual three-dimensional intersection (Reference 5).

The angular extent of the finite element model affects the number of elements in the model and consequently the computer running time for the model. The angular extent assumed in these analyses is 8 degrees. This extent was selected by performing pressure only load cases with models of varying extent and evaluating the stresses at the vessel cut line. The pressure analyses showed that 8 degrees is sufficiently far from the CRD return nozzle such that the stress distribution at the vessel cut line is uniform.

Reference 6 is the ANSYS output file which shows the PREP7 echo of the input data.

References MPR Calculation 085-229-EBB-02, "CRDR Nozzle Finite Element Model Material Properties", Revision 0.

2. MPR Calculation 085-229-EBB-03, "CRDR Nozzle Finite Element Model Boundary Conditions and Results", Revision 0.
3. ANSYS computer program version 5.0.

4 Combustion Engineering Report CENC 1142, "Analytical Report For Niagara Mohawk Reactor Vessel", drawing number 231-567-7.

5. J.B. Truitt and P.P. Raju, ASME-78-PVP-6, "Three-Dimensional Versus Axisymmetric Finite Element Analysis of a Cylindrical Vessel Inlet Nozzle Subject to Internal Pressure, A Comparative Study"
6. MPR Calculation "Geometry", task number 85-31 "Low Flow Feedwater Control System", 2/28/83.
7. ANSYS output file NOZZLE.OUT, 87,853 bytes dated 4-04-94 3:45:28 pm.

0'o (5 Ql

~

O Q

~+

p Wz

'I 0

hg 'b 7v

~74) +2 I (unQ Fig I

yQ' 5 l ~ gcLkCL I

rj

~. o ~5 e ck 0' 0A

~

e I 4 Vc I

~l 0 II ~ ~ I C ~ rf I

'L I

'N%X w

~g.j Q4C CÃ NCZZ;

~~C~RX74 j Q C4 I.'LIW gP W>1u C CA: 5uCL

~>>F25 ~<<-gvrai'c'1.)K

,)u

+ I21 TO 4'f SSEL QCJ:)

e ~ IQ Q CLI xQ O~ ~

'~eisa ~u CFOdl(ui~l

'<0 0

Rv

~

(0 ccats

-wYD '5YSPEII

'L gETljgg LlQJ~ g D~<'~ (~eCo g'

IQ~gI Q

o

+rW/ze /

pygmy I I I g

I e

~ I tll~

I I

4l llNlRRHRNtNNlNRINlllllRIIgg

((<~( lI AlENRISllINklllINSENlllalaappplltllOIINNNINIIQQppygmy r'(~<

8 I i il I III s

NNSkSNNNkNNNIAIAASIRNINglgggglNINIIIONNISgggggNI

%%%%%%%%%%RRSR%RSRRlkEAAlkOLSIIggggRNO laaaa%kSA%%ikiIAiiiSARLAWLOISaaggggkNS ftll) it~)e ha10aaaixikaaoaaiaskakkaEiaiaaak iigaaoleSSOIIO%1101IOsOagagggla tlOOOOOlgg

%000kL)ygygiO)0+)

aakiiaae

~~t+Ot saea+w++++

ssseaassa<<aiii~iaiii+<>sasasiaeeeaewaa++++aiaee+ 0000y lq%oe +~~++~~'~++~+++e>saeaaaaesggg~ OQOkONONOgggNOOlkOllggg OOOI1I

- ~ ~-

++1sasgggg+++1%ggg~

+++W~ae~ ~~>+eaeae~gg 1g~ +1

+>+Ihl<ag~

I

~erg(!// 1 /~ )~~/~~/j~// '~ laaaaaauan g)y>l]'k)~((//(/ i~<PA/~/( // l((g lRNRREIIQ %%%5585M% g)]~i))g(((](g IR%%%%'8%%%agg I'i]titllll ]< I aaaaaaaaaaa (~ ]py~kIlIllRa~mmmmmmmm55 (~l<4<geuaaaaaaaaaaaaaa aNNSISRRa%%%%%%%% >y4ieamaaauaaasaaeFa AiSiiRRSRRWRRSASAR ~~ Wmmmmm~~~~~~~~~~~~>> pf Path: C:)NOZZLE File: GEOM .INP 1,511 .a.. 3-24-94 1:30:36 pm Page g~ /PREP7 /TITLE, NMP Unit 1 CRD Return Nozzle RV= (106. +23/32) *3. 2  ! Reactor Vessel Modified Radius TV=7.125  ! Reactor Vessel Wall Thickness ANG1=82 ANG2=90 CLAD=7/32 'A'wclia// ~ g/,W ~ P~<< P'<0 g"Jim rn J/oe ~ R1=4.122/2 R2=(9+5/8)/2 rn~py R3= (4+15/16) /2 R4=(11+1/8)/2 vrr /gu ~ 4 4~ H1=8+ll/16 H2=4+1/8 t m~4 ~~ 44 ckXcl~ H3=1+11/32 gtcilcrc ~ Qj~ J/~ 2 MATL  ! Material Property Macro ( / CSYS,1 PCIRC~RVgRV+TVgANGlgANG2 CSYS,O RECTNGIOgRlgRV 2gRV+TV ASBA,1,2 XA c IC~ j'/ RECTNGiRliR2IRV+TV/2iRV+TV+HlH2 /jZ, 7A J I/isa"ys P RECTNG~RlgR3gRV+TV+Hl H2gRV+TV+Hl H3 RECTNGgRlgR3~RV+TV+Hl H3IRV+TV+Hl Pl=KP(R3,RV+TV+Hl-H2,0) P2 KP(R2IRV+TV+Hl H2IO) P3=KP(R3,RV+TV+Hl-H3,0) Clirm~z~J'"4 v/C ~ A,P1,P2,P3 AADD,ALL S YF=SQRT((RV+TV)**2-R2**2) RADIUSgR2JYFgO/1 ~ 5 / c~/~l~l r/ ~ p"r/v~~ YF=SQRT(RV**2-R2**2) RADIUSgR2gYFgOgl ~ 25 RADIUS/R2IRV+TV+Hl H2JO/1 ~ 0 RADIUS/R3gRV+TV+Hl H3gOI1 ~ 0 LSELgS~LOCgXgR1 LCOMB,ALL MPR ASSOC!ATFS, i!i,'g. CSYS,1 Calculation No. o s-42$ '-Kdd-of LSELgSgLOCgXgRV 2IRV+2 Pfopared By Chcc'(c<J f"y Bow ~ 4 Path: C:)NOZZLE File: GEOM .INP 1,511 .a.. 3-24-94 1:30:36 pm Page g '3 CSYS,0 LSELg Ag LOC/ Xg R1 LGEN ~ 2 I ALLg g g CLADS CLAD P 1 KP (R 1 g RV+TV+H1 g 0 ) P2 KP (R1+CLAD g RV+TV+H1+CLAD g 0) L,P1,P2 CSYS, 1 Pl KP(RVgANG1I 0) CSYS,O PX=KX(P1) PY=KY(P1) P2=KP(PX+CLAD,PY+CLAD,O) L,P1,P2 AL,ALL AOVLAP,1,2 ADELEg 4 ~ 5 I 1 g 1 CUT I R4 ~ RV 2 g 0 J R4 I RV+TV+2 g 0  ! Slice Areas With Cut. Macro KCUT KP (R2 I RV+TV+H1 H2 1 ~ 0) KCY=KY(KCUT) CUTg OgKCYg OgR2+2 gKCYg 0 ALLSEL NUMMRG,ALL NUMCMP,ALL LSELt S/LOCgXgRl  ! ID Surface For Loads CSYS, 1 LSELgAgLOC~XgRV 05 HARV+ ~ 05 CSYS,O KSLL,S,1 LSLK,S,1 CM,LID,LINE MSH  ! Mesh Areas ALLSEL FINISH SAVE MPH ASSOCIATES, INC. Calculat!on No. >> -~~ Prepared By Checked By Page i Path: C:hNOZZLE File: RADIUS .MAC 342 .a.. 9-18-93 12:03:56 am Page LQ ! Create Radius at Keypoint Associated Area is Modified ARG1 = X Location ! ARG2 = Y Location ARG3 = Z Location ARG4 = Radius POINT KP (ARG 1 g ARG2 f ARG3 ) KSELg S g KP g ~ POINT LSLK,S LSEL,R,EXT

  • GET,L1,LINE,,NUM,MIN
  • GET,L2,LINE,,NUM,MAX ASLL,S LSLA,A ADELE,ALL I

LF LLTg L1 I L2 I ARG 4 AL,ALL KSEL,ALL LSEL,ALL ASEL,ALL MPR ASSOClATES, i'. Calculation No ~<~ 2~>-~<8- I Prspore~J Qy Ci1 pcs((ap Qy 0'Hc>l PQcC~~c~' ~ Path: C:)NOZZLE File: CUT .MAC 496 .a.. 1-17-94 2:13:14 pm Page Cut Areas by Line ARG1 = X Location, Point 1 ARG2 = Y Location, Point 1 ARG3 = Z Location, Point 1 ARG4 = X Location, Point 2 ARG5 = Y Location, Point 2 ARG6 = Z Location, Point 2

  • GET g KMAXg KP g g NUMg MAX
  • GET ~ LMAXgLINEI ~ NUMB MAX ASEL,ALL NUMCMP,AREA
  • GETJNAREAgAREAIgCOUNT NUMSTR,AREA,COUNT+1
  • DO,N,1,NAREA,1 K g KMAX+1 g ARG 1 ~ ARG2 ~ ARG3 K g KMAX+2I ARG4 g ARG5 ~ ARG 6 NUMSTRg LINEI LMAX+1 L, KMAX+1,KMAX+2 ASBL,N,LMAX+1 LDELEg LMAX+1 g LMAX+1 g 1 g 1
  • ENDDO MPR ASSOCfATES, INC.g Cafculation No,o< "< ~ 8 o~+

Prop:.".wd By C ~~i( 4(i/ Qy 9Q +V' 4 0 ' Path: C:iNOZZLE File: MSH .MAC 1,019 .a.. 3-24-94 1:39:32 pm Page 'l0. 1 ! Concatenate Lines I ASEL, S,AREA,,2 LSLA LSELi Ri LOCI Y I RV+TV 2 i RV+TV+2 LCCAT,ALL ASEL,S,AREA,,6 LSLA LSELiRILOCiYiRV+TVIRV+TV+81H2 1 LCCAT,ALL ASEL,S,AREA,,6 LSLA LSEL g U i LOC i Y g RV+TViRV+TV+H1 H2 1 LSELI Ui LOCi XiR4 LSEL i U g LOC i Y i KCY LCCAT,ALL ASEL,S,AREAii4 CSYS,1 LS EL I S i LOC I X I RV ~ 05 I RV+ ~ 05 CSYS,O SELi Ai LOG i Xi Rl LSLA, R KSLL,S,l LSLK,S,1 LCCAT,ALL ASEL,S,AREA,,1 LSLA LSEL i U i LOC i Y I RV+TV+H1 ~ 05 I RV+TV+H1+ 05 LSELi Ui LOCI Y i KCY 05 I KCY+ 05 LSEL i U i LOC I X i R 1+CLAD LCCAT,ALL I ! Element Size For Lines I ASEL i S i AREAI I 3 LSLA CSYS, 1 LSELi Ri LOCi Y i ANGl I CSYS,O ~ Qi ~ LESZZEi ALLi i i 2 MPR ASSOCIATES, N~.~ ASEL, S, AREA,, 2 Calculattgn NO. 08s- ne-cog".-% LSLA CSYS,1 Prep red ay Checkr-~ By ~> ~%a ' i ~ ~ v 4 w i ~ ~ ~ ~ s . ~ 4. i ~ . ~ ~, ~ Path: C:)NOZZLE File: MSH .MAC 1,019 .a.. 3-24-94 1:39:32 pm Page lQ LSELgR~LOCg YgANG1 CSYS,O LESIZEgALLggg12gl/4 !LESIZE~ALL,,~12~ 2 LSLA LSELg RJ LOCg X g R4 LESIZEgALLJ f g 12 f 4 !LESIZE~ALLg g g 12~ 2 ALLSEL LESIZEg 1 1 ~ g g 20 I ! Mesh Areas I ET,l,PLANE55 KEYOPT~ 1 ~ 3 g 1

  • l=Axisymmetric TYPE,1 ESHAPE,2 ESIZE,3/4 MAT,1 AMESH,2 ESIZE,1/2 MAT,2 AMESH,6 MAT,3 AMESH,3,5,1 MAT,2 AMESH,1

>~~R As8oclA768; , Ca(Culatian NO. Oez- WV-e4g~ p lsd Qy Cr~ecred gy ~& I act. "4f Page ~&qMPR ASSOCIATES INC ENGINEERS Appendix C CRDR NOZZLE FINITE El EMENT MODEL MATERIALPROPERTIES MPR Associates, Inc. taiMPR 320 King Street Alexandria, VA 22314 CALCULATION TITLE PAGE Client ~g fJQ<EQ ~op/~/C 1 of m /g//V/ MMI / / Project 4E B AM n/o+RcE - J'r PEss gwdc-Pea'age Task No. gF- P4g Title Calculation No. /ÃoPEWTi Ei y 8<- gal'-pZ/j-o 2 Preparer/Date Checker/Date Reviewer/Date Rev. No. Pe ~a~ c4 4y j/p(/ MPR Associates, Inc. RMPR 320.King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No.- Prepare/ By Checked By o4f - J J $ -fart'rt -oZ Q /5. $ 0@ Page g Revision Description OW/6 r~+C. A J ob PRIMP'PR Calculation No. Prepared By Associates, 320 King Street Alexandria, VA 22314 Checked By Inc. +g -gag- $3/f-0 Z Page g ~Pur oee The purpose of this calculation is to document the material properties used in a finite element analysis of the Niagara Mohawk Power Corporation, Nine Mile Point Unit 1 (NMP-1) Control Rod Drive (CRD) Return Nozzle. The ANSYS computer program was used to calculate the transient temperature distribution in the nozzle. In addition, the program was used to calculate stress profiles due to pressure and due to the calculated temperature distribution. The material properties required in the analyses are: Elastic Modulus Coefficient of Thermal Expansion Thermal Conductivity Specific Heat Poisson's Ratio Density Discussion Figure 1 shows a schematic of the CRDR nozzle outline. The nozzle model is composed of three regions with distinct material properties. ~ Region 1 is the reactor vessel wall. The vessel wall material is SA 302 Grade B (Mn-1/2Mo), Reference 1. ~ Region 2 is the CRDR nozzle. The nozzle material is SA 336 with ASME Code Case 1236-1, Reference 1. Equivalent material is SA 508 Class 2 (3/4Ni-1/2Mo-1/3Cr-V) as discussed below. ~ Region 3 is the Clad, assumed to be type 308 Stainless Steel. Stainless Steel Type 304, 18Cr-8Ni material properties are a close match and are used in this analysis. Previous finite element analyses of the feedwater nozzle used 1980 ASME Code material properties (Reference 2). In that calculation, a comparison of material chemical composition between the original 1964 specification and the 1980 Code was made. The comparison showed that for the vessel wall 1980 ASME Code material properties were equivalent. The calculation also showed that the equivalent material MPR Associates, Inc. lxHMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By Page y de-d4 5'+44-oz S~ mt ~~ property for the nozzle was SA 508 Class 2 (3/4Ni-1/2Mo-1/3Cr-V). The same material properties used in the previous calculation for the feedwater nozzle and vessel wall are used in this analysis for the CRD Return nozzle and vessel wall respectively. Results Temperature dependent material properties are listed in Tables 1 through 3 for the reactor vessel wall, CRD Return nozzle and cladding respectively. Attachment A is a listing of the ANSYS macro MATL.MACwhich is the computer program input data for material properties. (The input data also lists heat transfer coefficients.) For all three materials, a density of 489 Ib/ft and Poisson's Ratio of 0.3 were used (Reference 3). The reference temperature for the coefficient of thermal expansion (REFT in file MATL.MAC)is 70'F for the nozzle and vessel wall. For the cladding material, the average temperature between the downcomer and nozzle fluid temperatures at full power conditions was used for the reference temperature to approximate the residual stress state in the cladding. Specific heat was calculated from thermal diffusivity by the following formula: Cp= K/(Rho*TD) Where: Cp Specific Heat (btu/Ib-'F) K Thermal Conductivity (btu/hr-ft-'F) Rho Density (Ib/ft ) TD Thermal Diffusivity (ft /hr) References Combustion Engineering Report CENC 1142, "Analytical Report For Niagara Mohawk Reactor Vessel", page A-78.

2. MPR Calculation "Material Properties", task number 85-31 "Low Feed-water Flow Control", 2/28/93.
3. Standard Handbook For Mechanical Engineers, Seventh Edition, pages 5-6 and 6-7.

MPR Associates, Inc. K1MPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By CtP~ -V25'- Z45-o Z ~a. w../ P0~: ~4'~ Page C> lA 0 MPR Associates, Inc. wiiMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By gg~+g $ '-prZ8 -a z w<W ./ Page g Table 1 , Material Properties - SA 302 Grade B Carbon Molybdenum (Mn-1/2Mo)

.,pe'ciho

.;.,::.:: Exp'a'rision',"',';:~'l:,:::,:,:;:I,:';,Cor'iductiyity',";,!k::'; ":"~sg! i%~:.,:,ii~iq'~~c, "..'...i:,.',. ); ..."'(1 0a pepsi)~'.<<x .'-.:".::;::.;':.::::.:',::(ee'a'r'i.::,iafii'e)'.m.':~'::"::.'::I<(Btulhi;-:,':ft';,,F)'4'::,: '::.;',';:(Btb1lb';.,F).jI 70 29.20 7.02 23.3 .1047 100 29.04 7.06 23.6 .1070 150 28.77 7.16 24.1 .1110 200 28.50 7.25 24.4 .1142 250 28.25 7.34 24.6 ~ 1173 300 28.00 7.43 24.7 .1203 350 27.70 7.50 24.7 .1235 400 27.40 7.58 24.6 .1264 450 27.20 7.63 24.4 .1286 500 27.00 7.70 24.2 .1313 550 26.70 7.77 23.9 .1343 600 26.40 7.83 23.5 .1361 ~ i MPR Associates, Inc. 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By -g2g- E.g/P-o 2- Page p. Od~ Pdb /R~~ Table 2 Material Properties - SA 336 with Code Case 1236-1 Equivalent to SA 508 Class 2 (3/4¹i1/2Mo-1/3Cr-V) .":.:::Co'etficie'nt<of~~'.:,."'I Mo'du!.'Us~of '.:,":Ela'sticity",:;:E:;'::, 'IG'ondiictiyity'.:k,I, '~"..=;;(10:::;:;psi):::;:"': ';:I:'::::.j'(me'an'j~yaIue}<~",,-::,'.:, l'j<:(Btu/hr',-:,,',ft-."':,F(}':,-';:I:.-;, K,"m,'(Bi'u/ib;-";,,F}',;",'",: i';:::;:I::(1;0;.:,.',;.~!n/iril,;,F)km,:., 70 29.70 6.41 23.6 ~ 1063 100 29.54 6.50 23.7 .1084 150 29.27 6.57 23.9 . ~ 1118 200 29.00 6.67 24.0 .1149 250 28.75 6.77 24.0 .1180 300 28.50 6.87 23.9 .1204 350 28.20 6.98 23.7 .1224 400 27.90 7.07 23.6 .1254 450 27.70 7.15 23.3 .1274 500 27.50 7.25 23.1 .1305 550 27.20 7.34 22.7 .1326 600 26.90 7.42 22.4 .1351 Modulus of Elasticity values are for 1/2-2Cr Chrome Molybdenum. MPR Associates, Inc. ~ r>1MPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By dA - gg5'-8/-oz- 'in.~ Page 8 Po Table 3 Material Properties - Stainless Steel Type 308 Type 304 Properties Usted (18Cr-8Ni) Ni>> '"<a,-', >,'..:<, ,;:!Tem'jeratu'r'e"> r:.>M,odulus:,.",,of;:;:.;. ISÃ'Sp Tl

,:I>Ela'sticjtj-::>E,::'::.,'.<<'(<1 Q~;>,psl)i&py>. .,"'::;;;.:,:,::,"',;.'.(incan~;yafii'e)>>-",-:.',':,'::,.':,:?(Btu'jar,;-'.:ft'-,,',.F)';:;,,',':

70 28.30 8.16 8.6 ~ 1165 100 28.14, 8.55 8.7 .1170 150 27.87 8.67 9.0 .1195 200 27.60 8.79 9.3 .1219 250 27.30 8.90 9.6 .1243 300 27.00 9.00 9.8 .1253 350 26.75 9.10 10.1 .1275 400 26.50 9.19 10.4 .1289 450 26.15 9.28 10.6 .1298 500 25.80 9.37 10.9 .1311 550 25.55 9.45 .1320 600 25.30 9.53 11.3 .1328 Path: C:)NOZZLE File: MATL .MAC 2,346 .a.. 4-01-94 12:10:32 pm Page g9 G=386. 4 F=3600*12 MPTEMP/ 1/ 70/ 100/ 150/200/250/300 MPTEMP / 7 i 350/ 400/ 450/ 500 i 550/ 600 ! ¹1 Vessel Wall Material SA 302 Gr B Carbon-molybdenum MPDATA/ EX / 1 / 1 / 29 20E6 / 29 ~ 04E6 i 28 77E6 / 28 50E6 / 28 ~ 25E6 / 28 OOE6 MPDATA/EX/ 1 / 7 / 27 ~ 70E6 i 27 ~ 40E6 / 27 ~ 20E6 / 27 ~ OOE6 / 26 ~ 70E6 / 26 ~ 40E6 MPDATA/KXX/1 / 1 / 23 3/F/ 23 ~ 6/F/ 24 ~ 1/F/ 24 ~ 4/F/ 24 ~ 6/F/ 24 ~ 7/F MPDATA/KXX/1 / 7 / 24 7/F / 24 ~ 6/F/ 24 ~ 4/F/ 24 ~ 2/F/ 23 ~ 9/F/ 23 ~ 5/F MPDATA/ALPX/1/ 1 / 7 ~ 02E 6/ 7 ~ 06E 6/ 7 ~ 16E 6/ 7 ~ 25E 6/ 7 ~ 34E 6/ 7 ~ 43E 6 MPDATA/ALPX/1 i 7/ 7 50E 6/ 7 ~ 58E 6/ 7 ~ 63E 6/ 7 70E 6/ 7 ~ 77E 6/ 7 ~ 83E 6 MPDATA, C,1,1, .1047*G, .1070*G, .1110*G, .1142*G, .1173*G, .1203*G MPDATA/ C/1/7/ 1235*G/ 1264*G/ ~ 1286*G/ ~ 1313*G/ . 1343*G/ 1361*G MP / DENS/ 1 / 489/ 1728/G MP/NUXY/ 1/0 ~ 3 MP / REFT/ 1 i 70 ! ¹2 CRDR Nozzle Material SA 336 MPDATA/ EX / 2 / 1 / 29 ~ 70E6 / 29 ~ 54E6 / 29 ~ 27E6 / 29 ~ OOE6 / 28 ~ 75E6 / 28 ~ 50E6 MPDATA/ EX/ 2 / 7 / 28 ~ 20E6/ 27 ~ 90E6 / 27 ~ 70E6/ 27 ~ 50E6/ 27 ~ 20E6/ 26 ~ 90E6 MPDATA/KXX/2 / 1 / 23 ~ 6/F / 23 ~ 7/F/ 23 ~ 9/F/ 24 ~ 0/F/ 24 ~ 0/F/ 23 ~ 9/F MPDATA/KXX/2 / 7/ 23 ~ 7/F/ 23 ~ 6/F/ 23 ~ 3/F/ 23 ~ 1/F/ 22 ~ 7/F/ 22 4/F MPDATA/ALPX/2/1/ 6 ~ 41E 6/ 6 ~ 50E 6/ 6 ~ 57E 6/ 6 ~ 67E 6/ 6 ~ 77E 6/ 6 ~ 87E 6 MPDATA/ALPX/2/7/ 6 ~ 98E 6/ 7 ~ 07E 6/ 7 ~ 15E 6/ 7 25E 6/ 7 ~ 34E 6/ 7 ~ 42E 6 MPDATA/ C/2/ 1 i 1063*G/ 1084*G/ ~ 1 1 18*G/ ~ 1 149*G/ ~ 1 180*G/ ~ 1204*G MPDATA, C,2,7, .1224*G, .1254*G, .1274*G, .1305*G, .1326*G, 1351*G MP / DENS / 2 i 489/ 1728/G MP/NUXY/ 2 / 0 ~ 3 MP i REFT / 2 i 70 ! ¹3 Clad Material 308 Stainless Steel MPDATA/EX/3/1/ 28 30E6/ 28 14E6/ 27 ~ 87E6/ 27 60E6/ 27 30E6/ 27 OOE6 ~ ~ ~ MPDATA/ EX/ 3 i 7 / 26 ~ 75E6 / 26 50E6 / 2 6 ~ 15E6 / 25 ~ 80E6 / 25 ~ 55E6 ~ MPDATA/KXX/3 / 1 / 8 6/F/ 8 7/F/ 9 ~ 0/Fi 9 3/F/ 9 ~ 6/F/ 9 ~ 8/F / 25 ~ 30E6 ~ ~ MPDATA/KXX/3 / 7/ 10 ~ 1/F/ 10 ~ 4/F/ 10 6/F/ 10 ~ 9/F/ 1 1 1/F/ 1 1 3/F ~ ~ ~ MPDATA/ALPX/3/1/ 8 ~ 16E 6/ 8 55E 6/ 8 ~ 67E 6/ 8 ~ 79E 6/ 8 ~ 90E 6/ 9 ~ OOE 6 ~ MPDATA/ALPX/3/7/ 9 ~ 10E 6/ 9 ~ 19E 6/ 9 28E 6/ 9 ~ 37E 6/ 9 45E 6/ 9 ~ 53E 6 ~ ~ MPDATA, C,3,1, .1165*G, .1170*G, .1195*G, .1219*G, .1243*G, 1253*G MPDATA, C,3,7, .1275*G, .1289*G, .1298*G, .1311*G/ .1320*G, .1328*G MP / DENS / 3 / 489/ 1728/G MP/ NUXY/ 3 / 0 ~ 3 MP/ REFT/ 3 i (70+525) /2 MPR ASSOCIATES, INC. Calcutatfon No. +~~ ~~~~+ Prepared By + Checked By Page ~ 'w- ~ 4 ii ~ ~ .vows Path: C:(NOZZLE File: MATL .MAC 2,346 .a.. 4-01-94 12:10:32 pm Page gr'0 g4 Heat Transfer Coefficient CRDR Nozzle ID HT=144*3600 MPDATAiHF~4i1~ 100 /HTi 100 /HT~ 100 /HTI 100 /HTi 100 /HTi 100 /HT MPDATAiHFi4i7I 100 /HTi 100 /HTi 100 /HTi 100 /HTI 100 /HTi 100 /HT ! g5 Heat Transfer Coefficient Vessel Annulus HT=144*3600 MP,HF,5, 1000 'HT MPR ASSOC)ATES, fNC. Catculatton No. ~ ~~ ++~ Prepared By Checked Bg Page lO, r e ASSOCIATES INC. ENGINEERS Appendix D CALCULATIONOF HEAT TRANSFER COEFFICIENTS MPR Associates, Inc. taiMPR 320 .King Street Alexandria, VA 22314 CALCULATION TITLE PAGE Client ~IAMBf4'ldHAulk Pau Eg pe,POrA<lnAr Page 1 of /Ql Project Task No. /Mt'illg PotA)Y'PiV I Tit'le Calculation No. OVERALL. HCA7 <Rl>~f=KR. Cos'ACIE~ waR. t=R,DP %d+pI 5 AT NA1F' Opg-zoo-AB ~aZ Preparer/Date Checker/Date Reviewer/Date Rev. No. F~; >- >l~s /yq 8 />o/y(j MPR Associates, Inc. WMPR 320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No Prepared By Checked By DP5-23o- ggg-dz egg Page ~ Revision Description GP tb l~1t tissu G a~Mr u MPR Associates, Inc. 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page 085-z. Qo-ABC-yz + PAPosC 7HE T UR,F'asE'F 7 HIS'AI cCIL$ 7ldAJ ts Io CAt cOc>7G'HC AVERA~E VVe RI4L.L- HEAT TRA<5'FC R COb, P'F(c lEiVT Fok THg couTgaL RoD DRIVER'E'TUIZ/V (CR'DR) LINE REAcTo R V EASEL F'E NETR47 (O~ h/OWWLE -roe.~~AL S~e,FVE Aw ~iYE Al~E ~<<NT ueiT (. 8 Es vL I MD ce rV c c tJ 5 (o AID ~HE, ~vE-RAG-E c>>EQALL HEAT'-RID'Sf-GR Cue;FFlCl FAT

9) F'cr Z yH E'R'T) I2, Ad%7CC ibad&'E, f 54/QFA t g l5 ~

0b L.o& & PAn /sou 2 6'eo annAc) (t'~~ ~) Conn PARlSowS o F TH KSE',55'uL.7 s Zo yAg08$ <A<cV<ATYD gY CE. APQ NPR FoR THG FEED( Alga. ~oKMG~ IwDicd ASS' HESG RESUL.7~ ggG. QSC)SO~gggg, MPR Associates, Inc. r>~MPR 320 King Street Alexandria, VA 22314 Calculation No. 885-2~-A 6: P -O'Z Prepared By /~i~ ~ Checked By Page F CRQ g No&% 8 W 6 P]vlAL L E.VE'-CE a. ~Ao~w L.s ~ He,PA1AQ 5~EEV~ 7o F g.go~"(o~) (tpcSOu 55) Z.gm "(rr)Q /, 5'z5 F VG ss KL. wALl JHGRPlAt 5t EE.VE QtN E jvsI >As' R>~ g)E-F. ( -unapt.E' WtnnFA S(OP eR'o~ REF. 2 ~gmeePAq-L ZrS Ae~ AS>V~K>. VH~ AH@,~AL- Sot=-BVG i5 I E.LDF E i~To 7 HE A~Z7L4 5o TH~ T Qo 5lE, gpp pypA55' EA pp(-5 t5 8'~p+C7$ 5. ~ ( MPR Associates, Inc. lLiMpR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By 085-zgcr -gg P - o> Page ~ c ZcOLAYlUA'E~T TR'ANsFEg. /Ho>EL: v8's's el mal ~ Kq.~ I-s~~ TccDQ..,. A o~g L.E lugged HE+7 TRAPS'FKR, F~ R'(oru(EMlZ't( Cgl 8 U = c ve gwi ~ Hzg7 < a~@ gr.c~ CoF F F'(C l E +Y "v ~a~ lS T'~TER~lN~D F'%cate ~HI DiTTUS-Boat pep Ecgu4-p c ~.- h D,, Cg,p~ = ~.az.>Re D 'r o.a n iT ~5 AsSuwKp +~MT MPR Associates, Inc. WMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page o8$-z.>~ -A8 P=o~ g $T .7~~. (IRATE p) = 70 F- 'Pr = 6.>9 y = o, o3~89 ~i~ d.3 l>~ N~ Et ~ F z>- z.ceo I'= oav~ S+ ~ ii=~.)zi+i-(W s (z 6 2.go x(o B.lS 7SVxro+ Kgg = CO/@DUCT i Vl'r~/ Oi- 5'7/IAILGS 5 ~<F4 lf'30$) ate (~e~. i-i) ox." 1.6Sl "= u.ice = EPPt VAC.gA T <<~PUC7t V IT/ y E.TMG'GA'COAIC&VTg'1 C YLINPEl2 5 l5 FOuA l) Prom EXP~ g'imEm7A L COg Q 6 LA 7 (am~ FR~V ibex> l~ RGF. 5. SPECI~~clCLY, rHE.- CoRRCLAq-<Ous ARE 'EASING OAr pHe PRoD OCT MPR Associates, Inc. RMPR 320 King Street Alexandria, VA 22314 Calculation No. Deg-23M-38 P=c Prepared By Fd'age Checked By 7 &g~fg ~HGP 6-Q.g< QRA5HoFI. AIGAngEg "gh5'E,D o~ gA~tAc CAI' Bmu'~CW YSC. noa<CE'. A~b ~i SF-VG 2'.RWA'DTl- /QUAL. g t=R iT is AssvnnE> <HAT THF WT ~c.ao~s wRE AA0]4L g4P l 5 HALF WHF 7OTdw Q> f Ra& PblE' t'PP Fc~~ Tc T H E. REHcvap vE5SGL Fc.UlD WE~Pez~~urzE: (s~s V), I Z i = ~(S?.S 7o) = z~a iv'z Asgg~gy ) HAT 7HG'VG'P-~4~ 7 lw i/L, a3 v' s'-' THE'oc m= 5?.6 ~ A > = Ezs' -'~~ s) "- L// / F -'3 = g 8?OxlD. P 8 = o. <78 = </0 6 /l, Pa @-8'8 k =e.svg6 MPR Associates, Inc. @HAMI R 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By g + 5~ 2.3'c3 ~A 8 l2-43~ TAu'- Page Qg =(3z..w z~ (do~5'3 fj)(o820x(o < )Izz8 F) (g0g57g =(G. 72. / g~ )(>C<~ g,) = 9.3rA'(0 log Ca P~ = la~[(9.aye(O )(D 88.) j = 6 92. MPR Associates, Inc. ra~MI R 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page gag -2.3o -gg g-QX FCkl L Sc /Ht= gedsoWAtrgqmgs-5 c F weKsE we~ogT's /5' j-IECKC Q> p~/ CoW pAR,(A+ gGSUL-TS' 0 cALcucAT 6 lo v"ALvEs'<P ~HG FFEQbrl7KR ~o ~<LE: /qsA 7 ~lZ~~FCR gE'Q lom5 (~ Vg 5 g a L tug I- L ~O&QL-E, A/oEVCC'NI Om gGQ (om 33 cA<cocATEh 87/(<< CW (6EVA<U.<) JOO t-W (ALPS VALVE I oaO )50 /. F Ran/L R5 F. 6 + ~-Z <9.3S5UmGS'c i+fE.Retd& 5'I-E.EvE xvfAss l E.At.4C E Fzow gGF~. clssduE~ s'f ~ ~Hze~gt s~zzys hyPA5'5. 0 MPR Associates, Inc. r>~MPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By o6'S-2.3 o -A II 12-o L ~+ T<<~ lQ Page /~ VALUE'ALCULII EL Fak ~HE CR~g. ~<+~LE Is'HE SAWE AS cate CuI AT E D ~ok <HC FW NOZZLE HP2) Sd IS'oWS IDEE'GZ) F-GAIN ABLE, RzFF bee i) ~Z DgAu (N+ (ggQ+84/ DRIVE ~CITY@ REER~ lA'L-GT ) CE: ~R/I&(No E 23I--5.'67, psv. 7, /I/aW'ELK DE>"AILS I/E-S S6 L HEAT WRAÃsFER/ 9TH EpITlo&I CHANC A/I//l98 I l) CRC HA//DEoo g Fo PPL(ED EmG I'A'EEI2I//S5CI.E//c E'A b eyIVIO~.

5) HEAT A//l0 f11 Fl$ 5 T A/vSFEE' ECKEZT 'Aml> DRAPE/ /955'P P'3<7- 33 /,
6) GEPGP~P'T /I/EDE -~l IEZ I., BaILI~O IaAT+R.

LE/S PA E'@EP 'FI//Al RE.PORT REACTOR'EEDI//ATEgAO'W~ bATF 0 en~ Rg5 l9Vg'. -7) /NPP REPoRT ZbIPPaVEQ Lou/ FLoloFEEloI /ITEP Ca//TRoL SV57E/I/I i&TED'RIAL /PS'9 SECT/aW /.7 .(Fo'EM/APIIE5 7o P. AnA~~AFGRR4 cV Ar~p< Ey LEMER, DARED JI/~E I, Isev), ASSOCIATES INC. ENGINEERS Appendix E CRDR NOZZLE FINITE ELEMENT MODEL BOUNDARY CONDITIONS AND RESULTS MPR Associates, Inc. lLimpR 320 King Street Alexandria, VA 22314 CALCULATION TITLE PAGE Client ~ ~~ ~gp/~/g Page 1 of gq +//L/g W/Qg / 0/rv/ ~~// / Project Task No. g~ / ~~~ ~o pygmy rT /Q 0Z~ Title Calculation No. go~~p~pY Anted /77 @AS ~i> ZF~ur- I~ ~- P29-Ct~d-o3 Preparer/Date Checker/Date Reviewer/Date Rev. No. az. 8 .'/ g <g.'7~ Z-Z/- 5'y MPR Associates, Inc. txrMPR 320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No.. Prepared By 080= PP 9 - Fd'rs - y3 Page Revision Description 0+1+ pv<r rO'J vP MPR Associates, Inc. t>IMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By dd~- cVW- ggg-o J Page ~ Purpose The purpose of this calculation is to document the boundary conditions and results of a finite element analysis of the Niagara Mohawk Power Corporation, Nine Mile Point Unit 1 (NMP-1) Control Rod Drive (CRD) Return Nozzle. A transient thermal/stress analysis simulating a reactor scram was performed. References 1 and 2 are calculations which document the finite element model geometry and material properties. The ANSYS computer program (Reference 3) was used to calculate the transient temperature distribution in an axisymmetric model of the nozzle. The program was then used to calculate stress profiles due to pressure and due to the calculated temperature distribution. The results of this analysis, in the form of stress distributions through the bore/blend section of the nozzle, will be used in a fatigue and crack growth evaluation of the CRD return nozzle. Discussion The CRD system provides water from the condensate storage tank at a temperature of about 70'F to the control rod drive mechanisms to cool the control rod drives, to reposition rods and to scram the rods. The system operates at all times that fuel is in the vessel. Excess fiow from the CRD pumps is routed to the reactor vessel via the CRD return nozzle. Consequently, flow through the CRD return nozzle is typical. Nominal CRD return flow rate is 17 to 35 gpm. The flow rate does not change as a result of repositioning a control rod since the flow diverted to move the rod is compensated by the water displaced by the rod. A reactor scram results in a CRD return nozzle flow transient (Reference 4). During a scram, the CRD accumulators discharge to drive the control rods into the core. this results in an increase in CRD return flow to 65 gpm. When accumulator pressure drops below reactor pressure, CRD flow rate goes to zero as the accumulators are recharged. After the accumulators have been recharged, CRD flow rate returns to the nominal 17 to 35 gpm. The last portion of the reactor scram transient is simulated in this calculation. At time zero the nozzle is at a uniform temperature of 525'F corresponding to zero flow through the CRD return nozzle as the accumulators are recharged. At 1 second into the transient, the CRD return flow rate is step changed to the nominal flow rate of 35 MPR Associates, Inc. l41MPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared Checked By os%- >z 1 wed- o 7 By gR~ Page ~ gpm with a fluid temperature of 70'F. A pressure of 1250 psig is applied to the inside surface of the reactor vessel wall and the inside of CRD return nozzle throughout the transient (nominal reactor pressure is 1030 psig, scram pressure is 1250 psig). Details of the thermal and structural boundary conditions are discussed below. Thermal Bounda Conditions for the reactor scram transient are shown on Figure 1 and discussed below. At time zero the CRD return nozzle and reactor vessel wall are at a uniform temperature of 525'F corresponding to the bulk downcomer fluid temperature. The overall heat transfer coefficient between the downcomer fluid and the vessel wall is assumed to be 1000 Btu/(hr-ft -'F). This is the value used in prior analyses for the feedwater nozzle. At 1 second into the transient, the bulk fluid temperature in the CRD return nozzle is step changed to 70'F. The overall heat transfer coefficient between the CRD return fluid and the nozzle wall is 100 Btu/(hr-ft- 'F). The heat transfer coefficient in the nozzle includes the effects of the fluid film on the inside diameter of the thermal sleeve, conduction through the thermal sleeve, and natural convection through the stagnant layer between the thermal sleeve and the nozzle bore. Reference 5 is a calculation of the overall heat transfer coefficient between the CRD return fluid and the nozzle inside surface. The outside of the vessel wall, the outside of the nozzle and the radial cut lines through the vessel wall and safe end are modeled as adiabatic (no heat flow across the surface). Structural Bounda Conditions include applied pressure and displacement constraints. Figure 2 shows the applied pressure along the inside surface of the reactor vessel wall and the inside surface of the CRD return nozzle. The applied pressure on these surfaces is 1250 psig. A pressure is also applied to the safe end to represent the axial load in the attached piping, The value of the pressure applied to the safe end is calculated as follows (dimensions are from Reference 1): Aint pi*R12 13.34 in Fl Pint"Aint 16681. Ibf Al pi*(R3 -R1 ) = 5.803 in Pend = FI/AI 2875. psi Where: 0 MPR Associates, Inc. RMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By oN- d4f - F4ss'-oZ 7K~ Page Aint Inside area of safe end (in ) R1 Safe end inside diameter = 2.061 inches Pint Internal pressure = 1250 psig Fl Longitudinal force (Ibf) AI Cross sectional area of safe end R3 Safe end outside diameter = 2A69 inches Pend = Pressure applied to the safe end (psi) Figure 3 shows the displacement boundary conditions applied to the end of the reactor vessel wall. Symmetry boundary conditions are applied to permit radial displacement along the cut line but to prohibit rotation of the cut line. Figure 4 shows the displacement boundary conditions applied to the safe end. Couples are used to allow translation of the safe end cut line but to prohibit rotation of the cut line. Results The peak stress intensity occurs at the end of the transient when steady state conditions have been reached. Figure 5 shows the time history of stress intensity at several nodes in the bore/blend region. The stresses shown in the time history are at the cladding to base metal interface. Figure 6 shows the calculated temperature distribution at the end of the transient. The peak stress intensity in the base metal for the transient occurs at node 806 in the bore blend region of the nozzle at the base metal to cladding interface (Attachment A). The peak stress intensity at node 806 due to temperature and pressure is 110 ksi. The stress intensity due to pressure alone at node 806 is 65 ksi. The principal component of the stress intensity is the hoop stress. Color coded contour plots of stress distribution are shown in Figures 7 through 10 for pressure only loading (time zero of the transient). Figures 11 through 14 show stress distributions at the end of the reactor scram transient for pressure and temperature loading. Four plots are shown for each loading: Stress intensity, ASME code or Tresca stress intensity, Hoop stress, the Z component of stress for the axisymmetric model, ~ X component stress, interpreted as a second hoop stress for the e 0 MPR Associates, Inc. lLiMpR 320 King Street Alexandria, VA 22314 Calculationflag-cg No. Prepared By Page ogJ - g2 g- Z.N. N~cl spherical model of the vessel wall, Y component stress, interpreted as axial stress in the nozzle region. Figures 15 and 16 show the locations of nodes 806 and 14. Node 806 is the point of maximum stress intensity at the interface between the cladding and the base metal. Node 14 is the point of maximum stress intensity on the outside surface of the nozzle/vessel intersection. A straight line (path) is drawn from node 806 to node 14 and the stress intensity values are interpolated onto the path (Figure 11 shows the interpolation path). Figures 17 and 18 show stress intensity along this path for the pressure only case and the pressure and temperature case. Attachment B is a tabular listing of the stress versus path length values for Figures 17 and 18. Attachments C and D provide the ANSYS input data for the thermal and stress passes of the analysis. Reference 6 is the hard copy output file for the both the thermal and stress passes. References

1. MPR Calculation 085-229-EBB-01, "CRDR Nozzle Finite Element Model Geometry".
2. MPR Calculation 085-229-EBB-02, "CRDR Nozzle Finite Element Model Material Properties", Revision 0.
3. ANSYS computer program version 5.0.

MPR Calculation 085-230-ABR-01, "Nine Mile Point Unit 1, Control Rod Drive Return Nozzle Thermal and Pressure Cycles", Revision 1.

5. MPR Calculation 085-230-ABR-02, "Over all Heat Transfer Coefficient For CRDR Nozzle at NMP-1", Revision 0.
6. ANSYS output file NOZZLE.OUT, 87,853 bytes dated 4-04-94 3:45:28 pm.

ANSYS 5.0 APR 7 1994 12:00:41 PLOT NO. 2 NODES TYPE NUM CONV ZV =1 DIST=25.552 XF =25.29 YF =347.745 ~ g -0 I= p g = /Ego Heat Transfer Boundary Conditions ANSYS 5.0 APR 7 1994 11:59:26 PLOT NO. 1 NODES TYPE NUM PRES ZV =1 DIST=25.552 XF =25.29 P8P< PZg cyylrccf ~gag-g<~ +~ JJu~ YF =347.745 ~~ QJIQ 4/pl] eel +~J C M Pressure Boundary Conditions r /'Cut 6 ANSYS 5 ' APR 7 1994 12:03:24 PLOT NO. 3 NODES TYPE NUM U ZV =1 DIST=25.552 XF =25.29 YF =347.745 +r'I'/III I I I I I I I i I I I I Iiiiiii ~ ~ ~ ~ Structural Boundary Conditions - Radial Symmetry ,~/Q U/Z & ANSYS 5 ' APR 7 1994 12:05:05 PLOT NO. 4 NODES TYPE NUM CP ZV =1 DIST=25.552 /OA c. ZF =25.29 YF =347.745 +a !1~ A" ~ 1'; ~, //IIIIII ~ ~ ~ ~ ~ ~ ~ ~ I I I I I I I I I I I I I I I I I I I I I I I I I I I I Structural Boundary Conditions No Rotation at Safe End g-((- ug C ANSYS 5.0 ( x 10442) 105 SZ-806 100 SZ-803 SZ-806 SZ-805 SZ 807 90 85 800 75 70 650 60 S50 0 800 1600 2400 3200 4000 4800 400 1200 2000 2800 3600 4400 5200 Ti me ( Sec) Reactor Scram Transient +/&u/Z~ ANSYS 5.0 APR 4 1994 16:33:47 PLOT NO. 1 NODAL SOLUTION STEP=2 SUB =21 TIME=3601 TEMP TEPC=9.434 SMN =88.846 SMX =523.562 88.846 100 200 300 400 500 600 Reactor Scram, Temperature Profile +/5-u4C-. ANSYS 5.0 APR 4 1994 16:32:56 PLOT NO. 1 NODAL SOLUTION STEP=1 SUB =1 TIME=1 SINT (AVG) DMX =1.501 SMN =1421 SMNB=920.904 SMZ =66400 SMKB=72225 1421 8641 15861 23081 30300 37520 ~g tt"'~ 44740 S iSQSy S 51960 fS 59180 66400 ) 9 Pressure Only, Stress Intensity P/6 u4 E' ANSYS 5.0 APR 4 1994 16:33:00 PLOT NO. 2 NODAL SOLUTION STEP=1 SUB =1 TIME=1 SZ (AVG) RSYS=O DMX =1.501 SMN =-22178 SMNB=-30892 SMX =63262 SMXB=68966 -22178 -12685 -3192 6302 15795 25288 34782 44275 53769 63262 Pressure Only, Hoop Stress Erbv~g 8 ANSYS 5.0 APR 4 1994 16:33:03 PLOT NO. 3 NODAL SOLUTION STEP=1 SUB =1 TIME=1 SX (AVG) RSYS=O DMX =1.501 SMN =-3074 SMNB=-13025 .e SMZ =42194 E. SMZB=46227 C -3074 S 1956 6986 12015 17045 22075 27104 32134 37164 42194 Pressure Only, X Component Stress P/'bu/ZC ANSYS 5.0 APR 4 1994 16:33:06 PLOT NO. 4 NODAL SOLUTION STEP=1 SUB =1 TIME=1 SY (AVG) RSYS=O DMX =1.501 SMN =-23031 SMNB=-32313 SMX =4943 SMXB=9878 -23031 -19923 -16815 -13706 -10598 -7490 -4382 -1273 1835 4943 Pressure Only, Y Component Stress .g/gu/Z & /0 ANSYS 5.0 APR 4 1994 16:33:25 PLOT NO. 5 NODAL SOLUTION STEP=14 SUB =1 TIME=3600 SINT (AVG) DMX =1.46 SMN =3550 SMNB=2589 SMX =95834 SMXB=104406 3550 13804 24057 34311 44565 54819 ~~q~< /'oc-8 77onf /~( 65072 75326 85580 ~ 95834 X~sS W~oW Reactor Scram, Stress Intensity y4-&,c. // ANSYS 5.0 APR 4 1994 16:33:28 PLOT NO. 6 NODAL SOLUTION STEP=14 SUB =1 TIME=3600 SZ (AVG) RSYS=O mX =1.46 SMN =-44957 SMNB=-61709 Sm =98365 SMXB=106937 -44957 -29032 -13108 2817 18742 34666 50591 66516 82440 98365 Reactor Scram, Hoop Stress . +J+u/C~ ANSYS 5.0 APR 4 1994 16:33:31 PLOT NO. 7 NODAL SOLUTION STEP=14,'UB =1 TIME=3600 SX (AVG) RSYS=O DMX =1.46 SMN =-5953 4 +z SMNB=-23928 c

t$ a SMX =65837

. ~ SMXB=70794 -5953 2023 10000 17977 25953 33930 41907 49883 57860 65837 Reactor Scram, X Component Stress ANSYS 5.0 APR 4 1994 16.33.35 PLOT NO. 8 NODAL SOLUTION STEP=14 SUB =1 TIME=3600 SY (AVG) RSYS=O DMX =1.46 SMN =-45246 SMNB=-61830 SMX =18196 SMXB=20255 -45246 -38197 -31148 -24099 -17050 -10001 -2952 4098 11147 18196 Reactor Scram, Y Component Stress ~ g~d.v/Z0 /'/ ANSYS 5.0 822 APR 7 1994 831 12:23:22 PLOT NO. 1 NODES 833 NODE NUM 83l 835 ZV =1 $ 36 *DIST=1.386

  • XF =5.994

$ 37

  • YF =348.819 838 839

$ l0 $ 41 $ 42 843 $ 44 845 $ 46 $ 47 $ 48 849 141 2140 14 82 1139 2138 1137 1136 $ 135 2134 1133 2132 3131 2130 13 253 164 Node Numbers - OD 275 +/&v/z.C /J $ 65 948 ANSYS 5.0 APR 7 1994 $ 03 920 l323 12:27:42 l300 PLOT NO. 2 $ 92 947 $ 64 NODES 919 NODE NUM $ 04 l322 946 =1 l301 ZV $ 63

  • DIST=2.621
  • XF =2.975

$ 05 945 *YF =344.095 l321 l302 $ 62 917 944 $ 06 l3 $ 89 l303 $ 61 916 943 $ 07 $ 88 l319 l304 915 $ 60 942 $ 08 $ 87 l318 914 l305 941 $ 59 $ 86 913 l317 l306 $ 58 $ 85 .786 1316 l283 $ 57 $ 84 .789 l315 $ 56 l286 .788 l314 l285 .787 1313 1284 Node Numbers ID +/pv/CC /4 ANSYS 5.0 APR 4 1994 18:06:06 PLOT NO. 1 POST1 ( x 10I 01) STEP=1 SUB =1 652 TIME=1 PATH PLOT NOD1=806 612 NOD2=14 CO ZV =1 573 DIST=0.75 XF =0.5 5331 YF =0.5 ZF =0.5 CENTROID HIDDEN C 453 C 413 373 333 293 2537 1.083 2.165 3.248 4.331 5.414 0.541 1 ~ 624 2.707 3.79 4.872 Po s i 4 i o n , ID 4 o OD Pressure Only Bid ue l7 ANSYS 5.0 APR 4 1994 18:06:26 PLOT NO. 2 POST1 ( x 104 I'2) STEP=14 SUB =1 110 TIME=3600 PATH PLOT NOD1=806 102 NOD2=14 ZV =1 957.962 DIST=0.75 ZF =0.5 887.1 YF =0.5 + ZF =0.5 CENTROID HIDDEN 816.23 C 745.37 C 674.51 C 603.65 532.79 461.93 391.071 0 1. 083 2. 165 3.248 4.331 5.414 0.541 1.624 2.707 3.79 4.872 Posi ti on, ID to OD Reactor Scram Transient -g/6. use /8 Path: C:(NOZZLE File: PRINC .OUT 3,779 .a.. 4-19-94 11:26:26 am Page 1 2 PRINT S NODAL SOLUTION PER NODE

          • POST1 NODAL STRESS LISTING *****

LOAD STEP= 14 SUBSTEP= 1 TIME= 3600.0 LOAD CASE= 0 NODE S1 S2 S3 SINT SEQV 786 81146 ~ 10911 -319 20~ 81465 76471. 788 56018. 6038 ' -6398.4 '2416 57221. 789 67399. 6629.0 3727 2 ~ '1126. 66555. 804 94075. 14592. 88.197 93987. 87640. 805 96912. 14833. 1399.5 95513. 89555. 806 98365. 14961. 2531.2 95834. 90263. 807 98266. 14952. 3189.8 95076. 89775. 808 96331. 14815. 3144.3 93187. 87934. 809 91893. 14731. 3307.7 88585. 83462. 856 57385. 14104. -5699.0 63084. 55880. 857 68590. 14550. -2822.1 71412. 64505. 858 79143. 16890. -785.25 79929. 72720. 859 85484. 19029. 836.86 84647. 77176. 860 88636. 19955. 1416.9 87219 79586. 861 89736. 20410. 1333.5 '8402. 80576. 862 89338. 20538. 696.85 88641. 80574. 863 87672. 20432. -258.09 87930. 79627. 864 84840. 20125. -1283.0 86123. 77664. 884 59084. 20609. -4961.7 64045. 55839. 885 68866. 20742. -3016.3 71882. 63433. 886 76618. 21866. -1252.0 77870. 69267. 887 80398. 23376. -159.63 80557 71746. 888 82186. 24231. 98.306 '2087. 73073. 889 82524. 24660. -166.38 82690. 73493. 890 81716. 24790. -798.84 82515. 73158. 891 79890. 24681. -1622.9 81512. 72056. 913 68225. 25290. -2831.9 71057. 61981. 914 73604. 25862. -1587.6 75192. 65904. 915 75714. 26976. -1036.3 76750. 67271. 916 76516. 27659. -1036.6 77553. 67915. 917 76268. 27992. -1413.2 77682. 67933. 918 75133. 28080. -2032.6 77165. 67362. 919 73179. 27924. -2739.3 75918. 66151. 942 70289. 29135. -1999.6 72289. 62804. 943 71275. 29919. -1828.9 73104. 63492. 944 71356. 30402. -2021.0 73377. 63689. 945 70657. 30633. -2474.8 73132. 63429.

          • POST1 NODAL STRESS LISTING *****

LOAD STEP= 14 SUBSTEP= 1 TIME= 3600.0 LOAD CASE= 0 Path: C:)NOZZLE File: PRINC .OUT 3,779 .a.. 4-19-94 11:26:26 am Page 2 2. NODE S1 S2 S3 SINT SEQV MINIMUM VALUES NODE 788 788 788 788 884 VALUE 56018. 6038.2 -6398.4 62416. 55839. MAXIMUM VALUES NODE 806 945 809 806 806 VALUE 98365. 30633. 3307.7 95834. 90263.

          • ESTIMATED BOUNDS CONSIDERING THE EFFECT OF DISCRETIZATION ERROR *****

MINIMUM VALUES NODE 788 789 788 788 856 VALUE 50335. -1620.3 -12082. 56733. 50585. MAXIMUM VALUES NODE 806 945 809 806 806 VALUE 0.10694E+06 34037. 11892. 0.10441E+06 98835.

          • ENTER HELP, ERROR FOR AN EXPLANATION OF ANSYS ERROR ESTIMATION *****
          • END OF INPUT ENCOUNTERED *****

EXIT THE ANSYS POST1 DATABASE PROCESSOR Arecsi~idwT' Path: C:hNOZZLE Fi.le: XPATH .OUT 13,436 .a.. 4-04-94 6:06:28 pm Page 1 Qd WELCOME TO THE ANSYSPROGRAM

          • ANSYS COMMAND LINE ARGUMENTS *****

MEMORY REQUESTED (MB) = 64.0

          • INPUT FROM CONFIG.ANS FILE KEYWORD INPUT VALUE VALUE USED NUM VPAG 512 512 SIZ VPAG 12288 12288 EXT FILE 0 0
          • ANSYS DYNAMIC MEMORY ALLOCATION *****

WORK SPACE REQUESTED 16777216 64.000 MB COMMAND LINE MINIMUM WORK SPACE REQUIRED 6815744 26.000 MB MINIMUM WORK SPACE RECOMMENDED = 8799648 33.568 MB WORK SPACE OBTAINED 16777214 64.000 MB BYTES PER WORD 4

          • NOTICE ***** THIS IS THE ANSYS GENERAL PURPOSE FINITE ELEMENT COMPUTER PROGRAM. NEITHER SWANSON ANALYSIS SYSTEMS, INC. NOR THE DISTRIBUTOR SUPPLYING THIS PROGRAM ASSUME ANY RESPONSIBILITY FOR THE VALIDITYi ACCURACY'R APPLICABILITY OF ANY RESULTS OBTAINED FROM THE ANSYS SYSTEM.

USERS MUST VERIFY THEIR OWN RESULTS. ANSYS (R) COPYRIGHT (C) 1971 i 1978 i 1982 i 1983 i 1985 i 1987 '989 i 1992 BY SWANSON ANALYSIS SYSTEMS, INC. AS AN UNPUBLISHED WORK. PROPRI ETARY DATA UNAUTHORIZED USE i DISTRI BUTIONi OR DUPLICATION IS PROHIBITED. ALL RIGHTS RESERVED. SWANSON ANALYSIS SYSTEMS,INC. IS ENDEAVORING TO MAKE THE ANSYS PROGRAM AS COMPLETE i ACCURATE i AND EASY TO USE AS POSSIBLE. SUGGESTIONS AND COMMENTS ARE WELCOMED ANY ERRORS ENCOUNTERED IN EXTHER THE DOCUMENTATION OR THE RESULTS SHOULD BE IMMEDIATELY BROUGHT TO OUR ATTENTION Path: C:)NOZZLE File: XPATH .OUT 13,436 .a.. 4-04-94 6:06:28 pm Page 2 ><~ ENTER /SHOW, device TO SET THE GRAPHICS DISPLAY TO device(e.g. VGA, HALO,ETC.) ENTER /MENU, ON TO START THE ANSYS MENU SYSTEM -ENTER HELP FOR GENERAL ANSYS HELP INFORMATION MPR ASSOCIATES VERSION=PC 386/486 REVISION= 5.0 FOR SUPPORT CALL PHONE 703/519-0200 FAX CURRENT JOBNAME=file 18:05:44 APR 04, 1994 CP= 0.000 BEGIN: 1 /FILNAM,NOZZLE FILETS 2 RESUME 3 /POST1 4 / SHOW g XPATH g PLT 5 NOZZLE'ST 6 7 SET, 1 8 /TITLE,SINTER Pressure Only 9 /GRID,1 10 /AXLAB,X,Position, ID to OD 11 /AXLAB,Y,Stress Intensity (psi) 12 LPATHg 806 g 14 13 PDEFg S g INT 14 PLPATH,SINT 15 PRPATH,SINT 16 17 SET,LAST 18 /TITLE,Reactor Scram Transient 19 /GRID,1 20 /AXLAB,X,Position, ID to OD 21 /AXLAB,Y,Stress Intensity (psi) 22 LPATH~806g14 23 PDEFgSINTgSgINT 24 PLPATH,SINT 25 PRPATH,SINT CURRENT JOBNAME REDEFINED AS NOZZLE RESUME ANSYS DATA FROM FILE NAME=NOZZLE.db

      • ANSYS GLOBAL STATUS ***

TITLE = NMP Unit 1 CRD Return Nozzle ANALYSIS TYPE = STATIC (STEADY-STATE) NUMBER OF ELEMENT TYPES = 1 1358 ELEMENTS CURRENTLY SELECTED. MAX ELEMENT NUMBER 1358 1470 NODES CURRENTLY SELECTED. MAX NODE NUMBER 1470 25 KEYPOINTS CURRENTLY SELECTED. MAX KEYPOINT NUMBER 25 31 LINES CURRENTLY SELECTED. MAX LINE NUMBER 31 6 AREAS CURRENTLY SELECTED. MAX AREA NUMBER 6 1 COMPONENTS CURRENTLY DEFINED Path: C:)NOZZLE File: XPATH .OUT 13,436 .a.. 4-04-94 6:06:28 pm Page 3 Qg d MAXIMUM LINEAR PROPERTY NUMBER 5 ACTIVE COORDINATE SYSTEM 0 (CARTESIAN) MAXIMUM COUPLED D.O.F. SET NUMBER 1 NUMBER OF SPECIFIED CONSTRAINTS 15 NUMBER OF SPECIFIED SURFACE LOADS 208 INITIAL JOBNAME = CURRENT JOBNAME = NOZZLE file 1

          • ANSYS ENGINEERING ANALYSIS SYSTEM REVISION 5.0 *****

MPR ASSOCIATES VERSION PC 386/486 18 05 48 APR 04i 1994 CP 3.790 FOR SUPPORT CALL PHONE 703/519-0200 FAX NMP Unit 1 CRD Return Nozzle

          • ANSYS RESULTS INTERPRETATION (POST1) *****

/SHOW SWITCH PLOTS TO FILE XPATH.PLT RASTER MODE. DATA FILE CHANGED TO FILE= NOZZLE.RST USE LOAD STEP 1 SUBSTEP 0 FOR LOAD CASE 0 SET COMMAND GOT LOAD STEP= 1 SUBSTEP= 1 CUMULATIVE ITERATION= TIME/FREQUENCY= 1.0000 TITLE='ressure Only GRAPH PLOT KEY = 1 X AXIS LABEL = Position, ID to OD Y AXIS LABEL = Stress Intensity (psi) DEFINE A PATH FOR SUBSEQUENT CALCULATIONS THROUGH NODES: 806 14 DEFINE PATH IN PATH COORDINATE SYSTEM 0 DIRECTION MAX MIN X 6.2855 2.2798 Y 348.57 344 93 Z 0.00000E+00 0.00000E+00 TOTAL PATH LENGTH = 5.4136 DEFINE PATH VARIABLE SINT AS THE NODAL DATA ITEM=S COMP=INT ROTATED INTO COORDINATE SYSTEM 0 AND MOVED TO THE PATH NUMBER OF PATH VARIABLES DEFINED IS 5 Path: C:)NOZZLE File: XPATH .OUT 13,436 .a.. 4-04-94 6:06:28 pm Page 4 ogcP

      • WARNING *** CP= 18. 730 TIME= 18: 06: 03 The selected element set contains mixed materials.

This could invalidate error estimation.

SUMMARY

OF VARIABLE SINT MAX = 65283. MIN = 25366.

DISPLAY ALONG PATH DEFINED BY LPATH COMMAND. DSYS= 0 CUMULATIVE DISPLAY NUMBER 1 WRITTEN TO FILE XPATH.PLT RASTER MODE.

DISPLAY TITLE=

Pressure Only PRINT ALONG PATH DEFINED BY LPATH COMMAND. DSYS= 0 1

          • ANSYS ENGINEERING ANALYSIS SYSTEM REVISION 5 0 *****

MPR ASSOCIATES VERSION PC 386/486 18 06 07 APR 04 g 1994 CP 22.460 FOR SUPPORT CALL PHONE 703/519-0200 FAX Pressure Only

          • PATH VARIABLE

SUMMARY

S NT 0.00000E+00 0.11278 65283 56417. ~o Cs I

0.22557 55542.

0.33835 54202.

0.45114 52785.

0.56392 51498.

0.67670 50264.

0.78949 49109.

0 90227 48019.

1.0151 46971.

1.1278 46001.

1.2406 45053.

1.3534 44170.

1.4662 43285.

1.5790 42462.

1.6918 41670.

1.8045 40901.

1.9173 40178.

2.0301 39460.

2.1429 38800.

2.2557 38185.

2.3685 37550.

2.4813 36926.

2.5940 36478.

2.7068 35974.

Path: C:)NOZZLE File: XPATH .OUT 13,436 .a.. 4-04-94 6:06:28 pm Xage SQ8 2.8196 35466.

2.9324 34944.

3.0452 34360.

3.1580 33722.

3.2707 32732.

3.3835 31830 3.4963 '0986.

3.6091 30218.

3.7219 29503 3.8347 '8831 3.9474 28199.

4.0602 27566.

4.1730 26938 4.2858 26171 4.3986 '5366.

4.5114 27591.

4.6242 29301.

          • ANSYS ENGINEERING ANALYSIS SYSTEM REVISION 5.0 *****

MPR ASSOCIATES VERSION PC 386/486 18 06 07 APR 04~ 1994 CP 22.510, FOR SUPPORT CALL PHONE 703/519-0200 FAX Pressure Only

          • PATH VARIABLE

SUMMARY

S SINT 4.7369 31204.

4.8497 33304.

4.9625 35360.

5.0753 36726.

5.1881 38077.

5.3009 39423.

5.4136 40778.

USE LAST SUBSTEP ON RESULT FILE FOR LOAD CASE 0 SET COMMAND GOT LOAD STEP= 14 SUBSTEP= 1 CUMULATIVE ITERATION= 14 TIME/FREQUENCY= 3600.0 TITLE=

Reactor Scram Transient GRAPH PLOT KEY = 1 X AXIS LABEL = Position, ID to OD Y AXIS LABEL = Stress Intensity (psi)

Path: C:iNOZZLE File: XPATH .OUT 13,436 .a.. 4-04-94 6:06:28 pm Page 6 a<Z DEFINE A PATH FOR SUBSEQUENT CALCULATIONS THROUGH NODES:

806 14

      • NOTE *** CP= 32.130 TIME= 18:06:17 Previous interpolated path data has been erased.

Reissue PDEF command to interpolate desired data.

DEFINE PATH IN PATH COORDINATE SYSTEM 0 DIRECTION MAX MIN X 6.2855 2.2798 Y 348.57 344.93 Z 0.00000E+00 0.00000E+00 TOTAL PATH LENGTH = 5.4136 DEFINE PATH VARIABLE SINT AS THE NODAL DATA ITEM=S COMP=INT ROTATED INTO COORDINATE SYSTEM 0 AND MOVED TO THE PATH NUMBER OF PATH VARIABLES DEFINED IS 5

      • WARNING *** CP= 37.950 TIME= 18 06:22 The selected element set contains mixed materials.

This could invalidate error estimation.

SUMMARY

OF VARIABLE SINT MAX = 0.10997E+06 MIN = 39107.

CUMULATIVE DISPLAY NUMBER 2 WRITTEN TO FILE XPATH.PLT RASTER MODE.

DISPLAY TITLE=

Reactor Scram Transient PRINT ALONG PATH DEFINED BY LPATH COMMAND. DSYS= 0 1

          • ANSYS ENGINEERING ANALYSIS SYSTEM REVISION 5.0 *****

MPR ASSOCIATES VERSION=PC 386/486 18:06:26 APR 04, 1994 CP= 41.680 FOR SUPPORT CALL PHONE 703/519-0200 FAX Reactor Scram Transient

          • PATH VARIABLE

SUMMARY

S SINT 0.00000E+00 0.10997E+06 0.11278 911 ) rru~ i 0.22557 88915.

0.33835 86153.

0.45114 83317.

0.56392 80781.

0.67670 78373.

Patn: C:KNOZZLE File: XPATH .OUT 13,436 .a.. 4-04-94 6:06:28 pm Page 7 Pg 8 0.78949 76148.

0.90227 74078.

1.0151 72106.

1.1278 70305.

1.2406 68564.

1.3534 66937.

1 '662 65312.

1.5790 63805.

1.6918 62374.

1.8045 60995.

1.9173 59673.

2.0301 58388.

2.1429 57214.

2.2557 56098.

2.3685 54950.

2.4813 53857.

2.5940 53067.

2 '068 52158.

2.8196 51230.

2.9324 50269.

3.0452 49216.

3.1580 48061.

3.2707 46233.

3.3835 44546.

3.4963 43265.

3.6091 42541.

3.7219 41859.

3.8347 41175.

3.9474 40518.

4 0602 39815.

4.1730 39107.

4.2858 39160.

4.3986 41883.

4.5114 44307.

4.6242 46492.

          • ANSYS ENGINEERING ANALYSIS SYSTEM REVISION 5.0 *****

MPR ASSOCIATES VERSION=PC 386/486 18:06:26 APR 04, 1994 CP= 41. 740 FOR SUPPORT CALL PHONE 703/519-0200 FAX Reactor Scram Transient

          • PATH VARIABLE

SUMMARY

S SINT 4.7369 49026 4.8497 '1915.

4.9625 54876.

5 0753 '57081.

5.1881 59280.

Path: C:(NOZZLE File: XPATH .OUT 13,436 .a.. 4-04-94 6:06:28 pm Page 8 ~+ 8 5.3009 61484.

5.4136 63709.

          • END OF INPUT ENCOUNTERED *****

NUMBER OF WARNING MESSAGES ENCOUNTERED=

NUMBER OF ERROR MESSAGES ENCOUNTERED=

          • PROBLEM TERMINATED BY INDICATED ERROR(S) OR BY END OF INPUT DATA *****

ANSYS RUN COMPLETED REV. 5.0 PC 386/486 CP TIME (sec) 47.000 TIME = 18:06:26 ELAPSED TIME (sec) 47.000 DATE = 04/04/94

4774<P~Fr~i C:(NOZZLE C'ath:

File: BCT .INP 570 .a.. 3-28-94 5:13:42 pm Page 1 p//

/SOLUTION OUTRESgALLgALL ANTYPE,TRANS KBC, 1  ! 1=Step Change, 0=Ramp TREF,70 THOT=525 TCOLD=70 TUNIF,THOT LSELI S J LOC g Xg Rl  ! CRDR ID SFL g ALLg CONVg 4 g g THOT CMSEL I S g LID LSELg U~ LOC / X g R1 SFLg ALLg CONVI 5 I g THOT ALLSEL NSUBST,1  ! Number of Sub-Load-Steps TIME,1 SOLVE SAVE LSEL~ S g LOCI Xg R1  ! CRDR ID S FLDELE g ALLf CONV SFLg ALL~ CONVI 4 I ~ TCOLD ALLSEL UTOTS,ON  ! Automatic Time-Stepping ON ELTIM,1,1 TIME,3601 SOLVE SAVE FINISH 0m AmmC~a~W IN'.

CalculaUon 80. ~

Preparact Dy Checked By Page C'-)

4TrHru mgnli 7)

Path: C:)NOZZLE File: STRESS .INP 767 .a.. 3-29-94 12:17:26 pm Page 1g/

/PREP7 ETCHG CSYS, 1  ! Symmetry at, Cut LSELI SI LOCg YgANGl DL,ALL,,SYMM CSYS,O LSEL,ALL NSEL I S ~ LOC g Y I RV+TV+H1 ~ 05 g RV+TV+H1+ 05 CP~ 1~UYgALL TREF, 70 PINT=1250 CMSEL g S / LID SFL g ALLf PRES I PINT PI=ACOS(-1)

FLONG=PINT*PI*R1**2  ! Longitudinal Force ALONG=PI*(R3**2-R1**2)

PLONG=FLONG/ALONG  ! End Pressure LSELgSgLOCgYIRV+TV+H1 ~ 05gRV+TV+H1+ 05 SFLgALLIPRESI PLONG FINISH

/SOLUTION ANTYPE I STATIC NSUBST,1

  • Number of Sub-Load-Steps ALLSEL
  • DIM,SNAP,ARRAY,14 SNAP(1) 1 I 10I 20I 40 I 60J 801 100'00 SNAP (9) 600 I 1200 I 1800 2400 3000 3600 g g g NT=14
  • DO,N,1,NT T=SNAP (N)

TIME,T LDREAD g TEMP g I g T I g NOZZLE g RTH SOLVE

Calculation No.

Prepared By Checked By Page

PD~MPR ASSOCIATES INC.

E N & INE ERS Appendix F LO% CYCLE FATIGUE USAGE

MPR Associates, Inc.

PLIMpR 320 King Street Alexandria, VA 22314 CALCULAT!ON TITLE PAGE Client hJ IRGR<R 4 (ol 8> IC PUB A. Co'R~DNRTidlJ Page 1 of Project Task No.

Qg,g g~~ Q<ag Q>~4. 7~4'~ C~c ~lc.~>]

o&s= )50 gp.g wk,~~ L.,'nz a~4 L,~ P~lq F'4j< vwq~ Calculation No.

ugly 530 psp3 Preparer/Date Checker/Date Reviewer/Date Rev. No.

APL ~~

p i q6( ~](~i ~as

MPR Associates, Inc.

lxlMPR 320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No. Checked By

- l-3o -P~P3 Page QSS Revision Description O~ igi~a( ( ss~e

MPR Associates, Inc.

t>~MPR 320 King Street Alexandria, VA 22314 Calculation No.

og<- ~so -PsP9 '2 S'~ Checked By Page PvCpo&F

MPR Associates, Inc.

RMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By Page OS'= 53o-%gQ jl~ A4~

R esuh'G F~ks'I.e <sa)e a F +hem/.r/P un 9/ '<~A / P4 Dnve r I

epu r/inc n rsvp phla.ava 7 o /p/nn/ prrssnrr

/S ~per;Purr chic/~ era /rsvp'ad &4;,

F4 ~ 0sa e ( e 54r+ /54 J.(lawn t.%3 ~(o t M 4~ ( S~ra~ 3,898. <<(o l-l~Ar,~<4'gg (,')63 w /o

MPR Associates, Inc.

raiMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By os'-xsg PSIr'3 '7s Page PPFYLoRcI-I 7 k~j~c usaq~. o4 +M c.~kaI >>c J, J,r ~ (CP-h)

I

('>> 4wVw n;- ~4. ic c>> (~(>> 4~2 l>>~ed r

/co bd vsny pi>>sgw~c ac/ v gee~>> /

(

u.hie.4 or t.w ol v

~q gusrakq +pens>c~zs I

n f

-4 p'valour>>

(i 0 (>>. g ~-~-., 4.g / ~ 1,. k d. ~ ). Riess<<

n ~( 4~~ / - J )c/~ Q /(< 02-re4~ li'~>> ~.~~)e. a.cc. do~~~e~keg,'~ E>>(cree(e I,

,.4.',..4 r~id>>~ 4i.e, ~p(4e J, g~A (.J~ ar cl 4-q-ev,q 8 A~~ g<.les. (>>8jimp ~spy.

f /A~ cat ce/~,~ /n~ no-+w(c fg cw/c />>-A~g dan>> p8v Ly c /g b.si'f. ~ Qe pc/eJ Jefi'.4,'. f<'eX'r nate, I >>s Each:<:

MPR Associates, Inc.

K~MPR 320 King Street Alexandria, VA 22314 Calculation No. Prepar d By Checked By a gg- x~- Psl>

Page lA e('c..'~Agua eSnp ~ $Q pC/(

n inn bCn of app(si p/ qg/ag 4r ii pi~en p/.rssurc -hm~ ~+g gg ~ J~

tl ii nn /nn' ~

pllg~~ik/(: i /('0 4'i~ssuw-4e~perzgrg s t,4 >I(,

TInQ 6 l tiiw <le(~ (i(u~ (gei eP a7 (,((iiJ / j) g<<<v c./u/( g/'4n i/i I'~ Jm~mln~g/

l

(~gg~ /h-P 5/ /2 (doe )3pslyn Cwgsgvf'~r vp Pv'e('gii~

A/n) e.W //'y( /eve /g 5'0 '/~ gb Z, g), .7-~J. /

ttIC, a l48v n<4i(i]'a4YY 5 5 rav ge. ~ u Si" 0 4j ( c,u(vC (g Jekrn,/(,g 44 Cry, z)

+N(i%8%

MPR Associates, Inc.

ralMPR 320 King Street Alexandria, VA 22314 Calculation No. re ared By Checked By 085-'P~o - ping Page

( Sea kaQ)

~a@( gfmaS

~(q'~Et y~>ping((

mirage'is ~ze.WS, O

( Aa, K alkarna4i~p s*asS i'a.14Ila.J, 4 Ah v'~gib ef gag g~g e("Jig~ aufvz c.(a ski< i iu 4(aS aa's I Wr ~

4e %lpga elasÃi e ..S.P g~ Wk

MPR Associates, Inc.

lLimpR 320 King Street Alexandria, VA 22314 Calculation No. Pre are Checked By os'-~- Page CAI Cu( Av)mJ P>>>>ssas>>. as J, News erss4sm s.t>>S ',

~ssssu.>><<a 1 s<<(ev 4(>>. qsj>>5 t/a<0 ~ H>>

a~~is;s s>> 4.4J i- Waai~ I k p (s'svkJ. ~s e4-s<<-(i,) (S"aw ., 4 4,.)fns.l Ii's

%54 G4- 4 6/C ~C 8 CEC ffn~~l A~s a ASS'~ ie P

4s~ps ~ 4 ~>> s~~ee. IVokcp.h 8 kic ss<<4f /'sera~

F'gglgVY gt54~

JUL~~~ 4f CAew

$ p>> gS y s/> s4>>k ( (s~~~ g~t~ 4I . ggg'.r ~gpss>>

+lQ 4rXQgs. J CstC4) 5v 6f C

< 5 kyc4s p<~5Hgg 7p~pera Nre~

Pry. Ql; (ps) g ) ClbR ()) P3 7o- s2.s 70 7o-gQ (Mb o- io3o 70

MPR Associates, Inc.

ti1MPR 320 King Street Alexandria, VA 22314 Calculation No.

os<-z.so -WP~ '22~ Checked By

"" io She~eS;

/

4 e~l~ sees es ~ee~ ~~l~~pt q gin ik Using el(vne~4 r ader ~ae ~~4~ l/i~e 5'Z oem'.4r~ girr Ae. / j~vc'p n hv r-r 0 ~

sr>

/ e /

q i<era eire ce rrrrrn,"rr f4'A-S LJ Ir r rib 44. PiR <( e /e'-n er.~1 neryrf/r pe k- >Crt' \ ~hev-sv l +A~ GL, 4e( C,IA [..(

/ l0 ~ 0 l~~

SeS' (bnckrr +e'r~4c.

51.5 "F CreOree Fl J%rrrprrr4.h

T- Ir. s-4sc, 4ens h'A'54erd.p/s k~gJer n ~)e(eJ prebSrree i C f rid 0 ps c) anA ckf&rnr/4"c/'-

MPR Associates, Inc.

WMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By o8r- 2M-TL~PS ay ~~ Page q

4g ~c4,$ i~

Csh~ >>,V~ ) ]~~s;

)< o,o <ss $ 0. (p cz l2go pig g~(~g I she '~bia /

S~,>> ri ~ sA,is, -/a~u,)~

~(<n~) jl(, )-s.lg As 2 ss.f 'p~iisisl) HL <l/ n~Ap I

va>> ( 1>>>> Afc'r>>>>i>>>>s y>> /id g>> +;/~pa

e MPR Associates, Inc.

WMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By oM -tM -RS'P3 R goo VkoAs Page Au ij~

g.E~ens< 2 CApp,&,a ~, F g

>-V i) eM u s'5 own

'30 ~ JO pJc 7/a go ++(a ~pe//oj I S 5A-33po ~k'cl) (n-~

(. (g n,'Q 4ns,'h s4ron~ Ag

&O gsi e.(os@ Wo J. (i s o W4' >

bl<'8 5~ieC Qo ~>>o 'P PjPog cy J

7ha o o ( o(v o.of HE~ -ne%+(L ss 6 ~~a oA 3o Po

<<ppi o

sli o4 i wiinooA$ pea o v~~ 4~apooa +~t'c

~

~

~

s ~ sasa~~a ss~~a SSISS~~SSSSS~~NSISS~~

SNSS~~SQIISS~~SSSS~~

QSREr%~'NNSr~~SQAS%%~

naaraaaaemraarm~ta)rrraaiaa

~

Saaaraa~Saeara~rnuarRjea BRIRSR~~ER~~RIEERSS~

EBSIE~~ESE~~ESEERS~

SRSER~BR~~BHBRTR~

EEIERSR~HER~HBHSISI~

IHSSRMllBRRRWNIRBSsw

~

ramrrmmaarrmnararam IIIIIIUERmllll@RIIIIII)ilR

~&WM~~ I SHRER~~Ea~~ESEHELW~~

~ anaaam~aaam~anntimm~

lHIIRRH~HHHRA~lUUUNEEH~

IHBIQR~IIIQ15%~lllSlSR~

IIIHQLHIIIIIQRHllllRIiLH

~ KSERHW

~

~

~

IIIIIIRRmIIIUSRIIIINSER

~% ~LRm HRRRHM~R&M~NBSES&M~

aaaara~maara~aaeaa~

IBSRR~RS>RR~TBBIER~

~

R IIIISSNM~mREIWM~NIINR~~

!IIIQSWMIIHItSQNflllllllSRM IIIIIIRRmlRiNVlllllEER

~ SEEK\M~~~T~SRRR~~

I ass'~SEES~

Qlssr%~56lsrN~sslss%~

SEERSE~

IIRIRERE~EEEBEN!~BEEN%~

~

E~ERW~~BHRRNNt~llRRRH~~

taatrrmmiaarrmmnarm llllllRRmllSRUllllmR r

MPR Associates, Inc.

mmx R 320 King Street Alexandria, VA 22314 Calculation No. Checked By Page

%p 7 ego/, 7o'

MPR Associates, inc.

WMPR 320 King Street Alexandria, VA 22314 Calculation No. repared By Checked By Page DBS - 230 N5FD 9> 76~ Ig Mv ev Allow~44, AN~he P(,Lc. Sq Cqc les Us,a.g~

Wy pe. l'.Ksi ) (ts,i) "Iw 9o. b l(7, 7 / %3>/v l lO) 0 gi) b 97i1

MPR Associates, Inc.

lLBMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By c 8S-Sou -&Pa 7sZg Page T4e ~a& 5'N~ S4'~ $ fwQ dec csea I 2.~ ~si sI

+polnASCA8Gf 52 g Pn.ks Pb L ~d Ce L Jim /s flz 0

/3 gZ; /(g, g = //5> 0 I IO 0 ~~ig b 5'7> I 255.1 e

~e, o I I aw<LLL 6 ~ rwIem cd c/c,lpz gn csn q / c'one /shy S4rc>>e ~ 4 C's s 4ecp/~/~J vscn> 7<4/e ~-7 ~

jV' ZocsD 5 ~ = "75 IVg = 5C>DP y'c ja

Associates, Inc.

ljiMPR MPR 320 King Street Alexandria, VA 22314 Calculation No. repared By Checked By os- L30-65PQ ~ 'Nc~ Page

( 7 jv = 9153 g,GS'tw ld 24 I 2-Fr~ ws4 l

~l~  ;

<c,] or> = 5 F

%Ca <v'rM'fp'NdJ p o Lnncj (Jns(iV>4g Z-

MPR Associates, Inc.

liiMpR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By os-~3,5 - I >U Ws Page 29 5 @/

=

N 4/SO(u u~r ~eZ

g. l36 g lo z-ark~ (g, (

(c c

fe>ieiiiyg'aj4 I:

~ .

MPR Associates, Inc.

r>IMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By o Vg-zs> -&P3 gS Page I. P&E>le (5 ) 6 S. BVsvro C I)

I 943 ii< (i)

Qi 002$

MPR Associates, Inc.

RMPR 320 King Street Alexandria, VA 22314 Calculation No.

c 8s= z.m R>r 9- Checked By Lv illa~ Page

~

Rw/c122t ass

~ ~'<<( < > ~' Ref n <~ale 7Tjer e/ Aw4 Prrssan

'-$ 8g-o/~

~

Qc/rs, '<12 C~4</arian 085- LEO Rev /,

// S/4F 8o, lee c M Pr ran r V ne/ Cg Je. 5~<di6 l is~ FC4 ~ .'l, AAJ .3< ~

PA1MPR ASSOCIATES INC.

ENGINEERS Appendix G CRACK GROWTH RATE COMPUTER PROGRAM VERIFICATION

Associates, Inc.

RMPR MPR 320 King Street Alexandria, VA 22314 CALCULATION TITLE PAG E Client Page 1 of $8 Project ~-f

    rive, tJ>~~le Aqalys,< Task No. o65- 230 Title &nc~er$ a$ ~ Pro~r~~ W CaR C K'. E,yE'alculation eeA pen,Pica'~ aP ~pe~ o85- 4~- gsP No. ) Preparer/Date Reviewer/Date Rev. No. 'gl'hecker/Date p- 2/ Vl~l<< MPR Associates, Inc. WMPR 320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No. Prepared By Checked By Page c ss.->so -RSP/ Z2. '8,. Ca Revision Description gr jinx( I stag '0 ~ o p ~ ~ ~ MPR Associates, inc. r~lMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By oeS- >3o - <F' QY~ Page PES Ul 1 5 gCRACk. F Xg> Versm (. 0 Curvecf( cA 4 taA'8 c~c c,k pow kg .of g /wc)(U)Illy flite no~>>~ 8-~ 4 (~ass~ s4 4s e~( q(,Ie~, 7~e ~ ~ ~ W P e MPR Associates, Inc. a~MI R 320 King Street Alexandria, VA 22314 Calculation No. Checked By ops- Mo -Rsvp l Xd Page PA+ Ccq, 2.) Kw~ -- H~, . X4 ga LJ.~'g F..7~ M;.) C)de. (. WsL t~) Q. assi.Awe cols. (Vs '~~) C~ 4 y~4h is app~im~]eJ &q, ) ha = Cv, ~k srto~$ 4 Fin'~Vs) )J. 'o~ og q~(es IVo~ k44 44is <<ppasfee4'a (i vnb eppb~bt ~ s~ll vela~ ~ h e ~'/AN re~a~ g ra ~ah z~sI> 4. MPR Associates, Inc. lLiMPR 320 King Street Alexandria, VA 22314 Calculation No. Pre ared By Checked By Page DBS-w>0-%P I 4 4o s,re. de4r~ine/ LsA m po:Ss~ee a~4 ao~+(as (6LC~eael ( J CV~ s~~S 4'ale,(awkio ~aoa(l ~ yam is z epee,9< b) $ ('li&et ~ 4of '(aa()vl~w.l + 0 = ZgaSS ( A,i,) o(lsAn e /Awol]l no~p/g oui (( (Wchw) Pal)n~ P Coef<c e HZ MPR Associates, Inc. t>IMPR 320 King Street Alexandria, VA 22314 Calculation No. aSS=E3o- @PI 'X ~Checked By Page p CF( l). l-pe~,'jp P Q (Ws.'( ) L n)gf) (v'les) >>~>>>f>eeflen Refers (s>epeneter>f en ge>>&Y]) slyness swiss g,'st 'Le)>en s (ad eve C/" >i tz) 'e>re de/er n> r>eJ.' s no~ Pr>h e(ense H eee s g p gs ~ f,ress>rrt. I i 8 cq<pm ~SX~C> Pwg . S-I ~ s 4 ~4'Iv,v': cL ft'.QvwlCJ s v~.l 1>net I ) u..k4 ~ness~. I 7/ir n>el ~efr ss liszt>A>>f ens ~ >>re ct ke ne>nQ r>4o eegsnenee ne>>lee>>>W <l>er>/es> a<el > < 4 pr ge '4> sussex 4 o4L v. his' '--'s -l. v~rn (>-.e~v$ ~Ah >~ M~r~4 ek~ga MPR Associates, Inc. TLIMPR 320. King Street Alexandria, VA 22314 Calculation No. Pre ared By Checked By Page sos - ~30- I'-sPI Jl ~ f 4 NIAl~l4~ ~br<<~,.(8AS+y (acgoY5 CgQ jive< cyc,4 p <-assure s an) e~<h 'yale., /he p< <<< <<'CS Glelk <'-~fCAj i~5 Gl< C. Pi'~s~ covc<&pa~ <g % m >mam 6-&<st d<fc I j / (ps<) Pi > = Pc mud. u>~r s~~k'rg 4 wn s4 s <4k Cp 'j r<<~e<<k~c b'igvw<vu, cw<<: a rN ol i nq s4<ess s4)e (') W<e 4e~)~~M RAN<<ev ce ~vespsvds Q /II~ 4<~Pn~Qc. JbR~m~ defi'<.J g~ Ac e'l.~~4 lQ <s.d q. - A~-. -4 A.~/ S res Se S'. s4<s I 3.~,')) $<J< g ~ g ~L< l.$ <<i a 0 ~ l ~ ~ ~ ~ ~ e r~ ) 0 t ( / t I MPR Associates, Inc. WMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By o Ss= ~- RsP/ nz Page I~ Pg- 44,co~ pwss~ used $ 6eprvni~c e MPR Associates, Inc. txiMPR 320 King Street Alexandria, VA 22314 Calcuiation No. Prepared By Checked By ago-z.so-gs, p] 0<Za Page ), //cn MIny goer Ct r.o Jc 0 0()vac- Qg c. ~ Q~RC-K. BXC; QL 1 o O 'his program calculates crack growth In ~ nozzle due to pressure and c 'hermal cycles 0 R DECLARE SUS Crackgrowth (At, Nsbl, DECLARE fUNC'I!OH Klt (Al¹, L) PII, P2I, Sdist1, T11, TrII, Sdlst2, T21, Tr21) pV' 0 DECLARE fUNCTIDH dadxt (dK, R) DIH NSub(5, 5), hain(5, 5), Peax(5, 5), Strdistsn(5, 5), Strdistex(5, 5), Tlein(5, 5), Tieax(5, 5), 12min(5, 5), T2eax(5, 5) DIH Nsubcyc(5), Repcyc(5), BO(5), Sl(5), 82(5), 83(5), RefStr(5) 0 CQHHOH SNARED Pl CLS ~ Open Input and output flies inputfileS ~ COrp(ANDS OPEN inputflleS FOR INPUT AS tl flan ~ LEN(RTRINS(lnputfileS)) outflleS ~ LEFIS(RIRINS(lnputflleS), flan - 4) + ".OUT" OPEN outfileS FOR OUtPUT AS ¹2 'ead input file INPUT tl, Aot, Nflnal INPUT t1, Rmin, CIRmlnt, C2Rmint, ml, e2 INPUT ¹I, Reax, C1Reaxt, C2Rmaxt INPUT tie Fl, f2, F3, F4 INPUI tl, Nstrdlst foR I ~ 0 TO Nstrdist INPUI'l, 80(l), 81(l), 82(1), 83(l), Refgtr(l) NEXT I INPUT <<I, Ncyctype fOR I ~ 1 TO Ncyctype INpUT tl, Repcyc(1), Nsctrcyc(l) fOR J a I TO Nsubcyc(l) INPUT tl, NSub(l, J) ~ Pein(l, J), Peax(l, J), Strdistsn(I ~ J) ~ TImin(I, J), T2min(l ~ J), Strdistex(l ~ J), TIeax(I, J), T2eax(l, J) NEXT J NEXT I 'onstants Pi ~ 3. I 81592 Calculate crack growth xQ O~I) Ntot ~ 0 At ~ Aot PRINT t2, USING "ttO <<.ttN'tot; At -cC) to co DO UNTIL Ntot >> Nfinal Co FOR I ~ 1 TO Ncyctype FOR K ~ 'I TO Repcyc(l) CD Ntot ~ Hiot + 1 to fOR J ~ I TO Nsubcyc(l) lO CALL Crackgrowth(AS, NSub(I, J), hain(l, J), Peax(l, J), Strdlstcn(l, J), Tlmln(l, J), T2eln(l, J), Strdlstex(l, J), Tieax(l, J), T2eax(I, J)) Cr) NEXT J PRINT <<2, USING "ttO t.ttO"I Ntot; At o NEXT K NEXT I LOOP END CCF(D d( P-ACE, E,ME. (('~ > Pq o Q SUB CrsckGrorrth (A¹, Nsb, Pl, P2, Sdlstl, 'll, Trl, Sdist2, 12, Tr2) ~ This subroutine calculates crack grorrth given the Initial crack length, 'he member of cycles and the mlnfaara and msxfaaaa pressures and o > 'ecperatures. dtl = Trl - Tl I O = dt2 ~ tr2 - 12 Kl Pl i KIN(AN, 0) + dtl e KIN(AN, Sdlstl) ~ 0 L2 a I 2 ~ Kit(AN, 0) + dt2 e KIN(AN, Sdlst2) IF Kl e K2 THEN Kmin ~ Kl Kmsx ~ K2 ELSE Kein 8 K2 Kmsx Kl END IF dK i Kesx - Kmin R ~ dst Kmin ~ / Kesx e Nab U dscgrf(d(, R) (D ~ Af + ds¹ o Q (I) FUNCTION dscgrf (cB:, R) 'alculate dscBI given dK snd R O. SHARED hain, Clhainf, C2Relnf, el, e2 SHARED Rmsx, CIRmsxt, C2Rmsxt If hain ~ Rmsx THEN Clf ~ Clhalnf C2N ~ C2ibalnt ELSE SELECT CASE R CASE IS << Rein Clf ~ CIRmlnt C2N ~ C2Rmlnf - CASE IS>> Rmsx Clt ~ CIRmaxf C2N ~ C2Resxf CASE ELSE Clt ~ Cllbalnt + (CIResxt - CIReinf) a ((R - Rmln) / (Rmsx - hain)) ~ Cr) Q C2N ~ C2lbalnt + (C2Resxt - C2Reint) e ((R - hain) / (Rmsx - Rein)) ENO END SELECT IF xID Og IF Clt ~ C2N THEM D K dscgrt ~ Clf e dK ml (o ELSE -CQ cB:tran ~ (C2N / Clf) (1 / (ml - m2)) CD o. SELEC't CASE cX 0) o CASE IS e dxtrsn dsdxf ~ Clt a dK all (Z ~ IO'(D CASE IS >a dKtrsn cD cD dsdMN C2N a dK Qw (o END SELECT Q EHD IF (r) END FUXC'tlOH 4 o FUNCTION Kit (Alt, L) 'alculate Stress Intensity factor'iven crack 'Length snd stress distr ibutlon SHARED Fl, f2, f3, F4, 80(), 81(), 82(), 83(), Refstr() Klf ((Pl EHD FUNCTION e AIN) .5) a (Fl a 80(L) + F?
    • 81(L) a 2 a Alf / Pl + f3 e 82(L) e Alf 2 / 2+ F4 ~ 83(L) a 4 e Alt 3 /3 / Pl) / Refgtr(L)
    MPR Associates, Inc. TLiMPR 320 King Street Alexandria, VA 22314 Calculation No. oSS- %3o 5 p/ WS'hecked Prepared By By Page ~ ~ C.<ac K ~~kg gv~ves: PJ~&cV- CW A.c,c,<ph in pL ES ~ey J( lg~ CVV'VCS y $ 8+i<~/ GLEAM GIAck q/lA/t'g CvC~ is ~gg~gl~ /eg ~>/$ g. QCLC.4 c,p'~ +dig 54 /s <X 8 3'8s 8& (s // go se'/5 df Q~> /+g/g MPR Associates, Inc. WMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By Page 0 g~ Q~ ~ p5p ( ~g RQZa 'K. Qu. [( MPR Associates, Inc. RMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By Page t/55->3o - JVt 1 C; peen > /" ~44~ gWP<, t'= th1,' eee1 I4 'n ) elepvJi'q e 4 K.) tJeeke' <M4 ~ ~vcS ~.a$ ~ 4~. e.vna LPW1q g ISA Y~p.~ ce' )ne-kh c ~ Ie1~, I', "l'.~~e.'h. i'.4e~sec4m eC -P/) 4 e cvveeS is Je/~eai~ecl; I Ci ( h,L g) A ee/pJ ~ Wee ~ appeaec g Pr ace n ee1 en'~ +eaee S7 Msl'e esag by /bc A<bfG 9 i/er seae /eeeevvc Yeesz/ Cee/e.. MPR Associates, Inc. lxlMPQ 320 King Street Alexandria, VA 22314 Calcvlation No. Checked By os'- 230 - g5p/ Page ~ t Pressure and New ccrc vcccce g o P pcessvf c. ace A $'iccor crea( q clcs aced k,sk~c~ c ~ l leg'e8 4~ cnp 4 4s Mc-RRc-K'"= <E P5 A('sea sseg belom. y <Ice~ ~carr,l, 4c'~, As xebec.,l ea p~vco~sg, peers~ I ccrc% Rebec ocdec" cccci cs*ess polcl crccc~'ccc( of'57 cc rclcckcinJ'crp C Z4.ss as P7 - Zn~k~ i D /odin's oP c(is4ncc +roc cll v4 now+(c c .e (IJ. lTee c pc lqvl wcl ccc ( c c! e Pl ciencS ore cC5cd,n ~ Ic. R4'c'SS cri dcnSc i cr gcc~v . IM~R C K. Xg c cc ccetok cri p gs /err orii; to ressccrp z 4i"esf cc SA. n ~t 4 7 -Ck- .I st.Zr a.s4.'b~A~s. crrce ~ressvre. s~c Riser 'l~~4'oui i s ri e cessewq zircccpressiccc. c'okcescc5 ccrc (ireocY' -4 ap(Q p~ssuit . Assocrjcg',gj cricl, s4rrsZ I li re+~ez~'c,~natu.r) lg c.cvd; A~- / s MPR Associates, Inc. KiMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Ch eked By Page Dg+-230-gap/ (II ~l L ides'ee %ac. ajpIW.. 'locccl ~M -4 c$ M+ Yvli~ ~ ~gee~ Q iX*1L) vcII. IVI, (ec flic levnc(ant ~c( gi cI.n','r 44 aq (I H p~zs~z ulcc( I~.a l, pa -Sc. 8~cc S veS J ,~P~en~ Ic~~~(c~ ca k C Anna, ada, I 4'A~ g$ ev~~f y.u'~f R veda $ /le q'ag (a "c /( cI 7/)e /tiara J I a(cnenvloPJA.JeI 44Akji)>~ nIvd I h', ~4srsgPI 7 ~ d 4 enIa. dpf~neJ u~ +he, Pi ni4 e('m a ] ~ede,/, MPR Associates, Inc. RMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By os'= z~ -jcspj PagegO (~ m.j,;.;4)ms, V) 4..:.. k~ Jr f8re~g o4 g~tcs c 4 J~W~Q 4 PcAAg- CXC. 6 lnrlcc'cop! eccc. 4 g c g f c.)c.l~ aa- S I.g~t~ ts Q4ned P l( coco cnC 'I acccs a<<sscncs a4 nccccoccc>>cccc s Iccss s IeSc', etorcQ 0/lc ~< I II~ <i.,>) Te~p I.W~ 6 ~ n~~ Sk<<SS ~4-4 d~,p gal<. )scO'&y hso&slq (oc f I >> 3) 7 ctc>>Iejccac<>hwc-C>>cb cA(a lI<nSt he~>> chcccnckec" D ~ I~cd n,r o bo tgsM Q <<.lnc) a Qc rccn+e. cCFe<<IIcs s~J.,'JIBES v~cA I')~sW Dc~ nc4c>> oP +~-c. Icsoseclc deco cckccccs ~~,~, q C q~ 0 P genic& Wa / >>SQ ccccc S~ac QAe JA'c:5<eJ' MPR Associates, Inc. lL)MPR 320. King Street Aiexandria, VA 22314 Calculation No. Prepared Checked By os- >pc -WP/ AS~ By Page g,[ 4~m 44 g t.~J, gC (g. 4 ).,A~ g<4 <~- .a n~), l/le. <g (/~kg . Berm</ $ &sa u(u gr'$c.ga ~.s4 ./~o 4 (8, /;/eJ C'+/~, / // ~Q s4~rs dis4r'/~giz r /, p.gai~ ey((4irr, IJ~H<I'8% ce/~/ag~z ci.~l~ pg >l, 4 e. /, p~/, +~ .,h 9/ "Ae WI . ~~ ~/M. A g./~ h w/,-~4g p, Id,pl, 4i~~ ulcc ~w 2q 4 -// nw8 ~~/~ /ye. I ru~v h)ops glean gI ~~+,P ~) L>> h~(p~ ~k'I 4~ .~Q. n>>nk, ar ca~ / z +pcJw .is p ~/ ~j h~ k / anql)w QC.~ W-4 .('.] 7(). MPR Associates, Inc. %1MPR 320 King Street Alexandria, VA 22314 De<- ~M -gsRI'repared Calculation No. By C ecked By Page gg ln ~k Pic., PScII 4 8 Qla. <an4.;.< a.Ll 44. QcPAc<.CXC. MI~a i~~~$ Pile. C<<w 4a<<. Aq agr<yrna'tC' pi(8 %NB> h,~ . ql,~~ CA."~A~ eJe~g<~. Ke. (D14 WlQ f ~ la CL Use .5'e< ed% I &CA Qhl&CO( ~ i4 I pl -4 4~ c l~l 4~ W v~~ia44 lJ-.,: 4s,.<.k hi .4 l <<<<av ~d i~ $ ~ Qe<~a$ E4eHn I<I Fige t El<4 ewer Dlo4'$4 <I Ac)<I<< Q<l 'a CovAvYla, ~< P kha l yahoo.. I 44. I~(wd ala. Ape<<d~ Vl~e.~-l sos. g;s4 h.H~ b+ p. d flic. II &l<Y IAj'<Ja, svsc(< $ pl <l/e)II/&LI 0 MPR Associates, Inc. lLIMpR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By OSS'- Z~- t2SPI Page r2P Input Variable Definitions for MCRACK.EXE: Ao Crack Length (inches) -Nfinal Total Nwber of Cycles to Analyze Rmin Hinfmm R factor corresponding to crack growth constants C1Rmin First Paris Crack Growth Law Coefficient for Rmin C2Rmfn Second Paris Crack Growth Law Coefficient for Rmin 1'nitial m1 First Paris Crack Growth Law Exponent for Rmin and Rmax lll2 Second Paris Crack Growth Law Exponent for Rmin and Rmax Rmax Haxigun R factor corresponding to crack growth constants C1Rmax First Paris Crack Growth Law Coefficient for Rmax C2Rmax Second Paris Crack Growth Law Coefficient for Rmax F1 Stress Intensity Hagnification Factor F2 Stress Intensity Hagnification Factor F3 Stress Intensity Hagnification Factor FIo Stress Intensity Hagnification Factor Nstrdist Number of Thermal Stress Distributions (Note 1) BO(-) Stress Distribution Coefficient 'B1(-) Stress Distribution Coefficient B2(-) Stress Distribution Coefficient B3(-) Stress Distribution Coefficient RefStr(-) Reference Pressure or Temperature Change for Stress Distribution (Pref or dTref) Mcyctype Nsmter of Different Types of Cycles (Note 2) Repcyc(-) Number of Cycle Repetitions (Mote 2) Nsubcyc(-) Number of Different Types of Subcycles for a Given Cycle (Note 2) Nsub(-,-) Number of Cycles for a Given Subcycle Pmin(- ~ -) Pressure at HinisxIa Stress State During Cycle (psi) Pmax(-e-) Pressure at Haxfaun Stress State During Cycle (psi) Strdistnn(- Thermal Stress Distribution Number for Hinirmm Temperatures T1min(-,-) First Nozzle Tegperature at Hinimm Stress State During Cycle ('F) (Note 3) T2min(-,-) ohio.m Second Nozzle Temperature at Hiniaun Stress State During Cycle ('F) (Note 3) strdistmx(- Thermal Stress Distribution Nunber for Haxiaun Temperatures 71max(-,-) First Nozzle Temperature at Haxigua Stress State During Cycle ('F) (Note 3) 72max(-e-) Second Nozzle Temperature at Haxinxm Stress State During Cycle ('F) (Note 3) A roe'ro As~ lJ:~ c L i p&. lira+ Ale br I lg IIV I r0 (aeerie$ h o r ro~ a(err e~%) resene s4eess A st lo~4ieuo,
    a. merc ~r. k a ~a) iwnm oP 5', Pp.en) $'ps oF'ela',
    ~< le s 4e~de c~ l1e~ r p ]o 8 gigere~] gyp'l'uboolclcs crsnsr's+ oic" p presrurc n d/uu %~pre erlc(c. rice vr'riel "gs.,Ii" n rroloei. oC'~re fo.equi oyel mc-. bo. t'cliaa$ ~oI Pa~ o. (-') oJrMer el /iniety ciA Vhc nor/ pele p .- Wc. 4) er~J ~ge ss Asar LJ ~s ere c4cae4eri~'J 51.~ +~t aI'e AAe~onc~, Ll, ~hem~, 0' 0 Ao, Nfinal Rmin, C1Rmin, C2Rmin, m1, m2 Rmax, C1Rmax, C2Rmax F1, F2, F3, F4 Nstrdist 80(0), 81(0), 82(0), 83(0), RefStr(0) '0 8 80(1), 81(1), 82(1), 83(1), RefStr(1) Z 0 80(Nstrdist), 81(Nstrdist), 82(Nstrdist), 83(Nstrdist), RefStr(Hstrdist) Ncyctype Repcyc(1), Nsubcyc(1) Nsub(1, 1), Pmin(1, 1), Pmax(1,'1), Strdistan(1, 1), T1min(1, 1), T2min(1, 1), Strdistmx(1, 1), T1max(1, 1), T2max(1, 1) Nsub(1, Nsubcyc(1)), Pmin(1, Ksubcyc(1)), Pmax(1, Hsubcyc(1)), Strdistan(1, Nsubcyc(1)),..., T2max(1, Nsubcyc(1)) (0 Repcyc(2), Nsubcyc(2) lu Nsub(2, 1), Pmin(2, 1), Pmax(2, 1), Strdistan(2, 1), Tlmin(2, 1), T2min(2, 1), Strdistmx(2, 1), T1max(2, 1), T2max(2, 1) (0 CL Hsub(2, Nsubcyc(2)), Pmin(2, Nsubcyc(2)), Pmax(2, Ksubcyc(2)), Strdistaa(2, Nsubcyc(2)),..., T2max(2, Nsubcyc(2)) Repcyc(H cyctype), Xsubcyc(H cyctype) Nsub(Kcyctype, 1), Pmin(Ncyctype, 1), Pmax(Hcyctype, 1), Strdistam(Kcyctype, 1),..., T2max(Kcyctype, 1) Nsub(Kcyctype, Nsubcyc(Ncyctype) ), Pmin(Kcyctype, Nsubcyc(Ncyctype) ),..., T2max(Ncyctype, Nsubcyc(Kcyctype) ) gyve Q. l~g $ 7( +~ 4 0 fJckjIcg. (=~Q Cp~g~~ $ ~ ~~~i~~ (~~~ ~ ~~I~i(p J~g~,pi~i) MPR Associates, Inc. t>~MPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By GBs-730-N5F'J X Can, Page ++ ~ y ~~ ~a~[, 3- k4. A<RR["-lC gj/engr)ne. e) 4 MPR Associates, Inc. WMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By osS-- ZSC /W/ Page Zg Pg o6gCIM Veal 5 i CROON pJ cgPiclc. E'icP is per gmnied %VAN ) ca.~~a. Qig c&vl(Algal p p( 44. opgpug 0' 4 %pc\ C (..i(J 0 e~S (4s. (.(.4s 0 kh ~c Q~ ( I-lgvf6'g 4es4 A.f Q $ 40'4J Q a~ p s~ipW ~lb'(n I7 P~ssetc IVH fe'pp~ cl/cps epee FIFI 8p/ns.7 f p c le Inj 9 Pb vi p.rnlaI 0+ 1j~6. dE' (IBl~ny p 7 npon i p i in~u. s wv L5asew p p~~Jlz a. vm Cipa.Il~ ~CP.PC~ eXE.. AHl~>/, . 'peg4C SeMkn4 Ia 0 0'pe'A I pk<4 fko i 4tlA/g WJo4 ( ac e iIiek g(,(;carol Q ~c.,Pip'. ~ -~As a-k ~s ($s ~ ~( .s.J 4. 4R yvr pedC. p 4 Vi'< i I 0i Cnk~~ e~ $ W C~(p 4e g f 0QI'<a l~ g Associates, aiMpu MPR 320. King Street inc. Alexandria, VA 22314 Calculation No. Checked By Page zPS'- 2M-pe/ ~7
    85. '109 f7 $ 2% - 3o. I8$
    n vl 0 1 O C o g 0 io3o. ( 83. 83. J '5. 0 6 fO x Qs a~9 -10 CO CO /6o, 10 Co o O t tTie. prtss~iz-4e~(@~ad~ vtrg anal g~ilcycks Aiv. e hsuo Fjvrvs 3 t (. lO~ co ~ q vari IQ CD o IJ HC A'>BfCenACN 0f fltc Eke c'I p'g 'P>~+'Qk )II'>4+8 Is 1 lie ]clytrnkYc cC ate Pry/ ln "g'+s~aI '~? <4 Eg~l Tg ++ 5+ f/ I Apl ~ g'8' I +++re C8 pC ~e l ~ es'Scr ~Pi MPR Associates, Inc. lL)MPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared B Checked By oeS zoo 8 58 I Page 185 FULLPOWER z lL OPERATION ill O <z g g~Ct go <U lf au g:~ Ul LU g t O Q gZ ONIOFF FW FLOW IL lL, CYCLINQ AT 0 LL85/ Q. lt lo TIME Ihrl S IIaS z. HAS HP KP HOT HOTSTANOSY STANDBY IO HC.S " LP HOTSTANOSY N 7t l O3O ioso E 9ss ASS g O I V TIME OKI PD4: T2 Is ches+.regim Qmpmq4acc a'h valise/ pf'5$ a<g Fi&VRG 3 CyC L ~ T> R T UP /5 H 9 TD 0 M~ C '/C L E MPR Associates, Inc. r>~MPR 320 King Street Alexandria, VA 22314 Calculation No. Pre red By Checked By Page ogf-Mo ->SF') FULL POWER OPE RA. OW/OF:P Sm O'Lo~ FULL POWER TION C.yCI.l~s AT OPERATION g CTCI.CC/HR z $ 6O 3<o III a: 7I, /III ~ ON ON gO IL Z I78 ()o- ) !6 ( TIME Ihrl N>(a W~ I'61)~ SQ J',~ Q~E,ra4r~ ~4 %VMS) STAND IY LI'OT pg g 6'C~ W.5'IS HP HOT STAN 0 5 Y IZ.54 la30 ld 3@7 7p 955 E g K O I O C i6o F I &uP CyCl Z. C. 2 TIME Ihrl 5'I:EA/VI 70 LP HOT <TAA'DPP tq P/D II 6 I gg~ FVl- L POWER MPR Associates, Inc. WMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page @t, o85-ZW- gsp/ lhpwk File RS1 /~ hf P (5'<C Apl'> z-IB-s'f> Izls'Cp j 8, 0.75, 8 0.25, 1.02E-12, 1.01E-7g 5.95, 1.95 0 '5g 1 'E 11' '2E 7 ~ 706I ~ 537I ~ 448g ~ 393 2 54 ~ 047'023 88 ~ 409 ~ 208 ~ 014 g 1 ~ 3 198 2 ~ 5638 s g .79782, 1000. .147, 450 ' ~ s 47 ~ 922 g 30 ~ 189 g 8 ~ 2748 I .94733, 250. 2 1, 4 1, O. I 1030. 1, 83 ) 83 1, 83. 83. 1, 0 ' 955 ' ~ 1, 83 ' ~
    83. I 1I 485 ~ 539.
    16'55 ' 955 kg 1I 183 ' 539., 1, 161., 539. 30I 160 kg 160 kg 2g 241 ' 364.) 1, 178 ' 364. 3/ 3 1 I 160 ~ g 1254 ~ g 1 g 161 ~ g 364 ~ s 2 g 360 ~ g 573 ~ 9 I 955 ~ I 955 ~ 1 J 183 ~ 539 ~ 1 I 161 ~ g 539 ~ 44'60 ~ g 160 g ~ g 2g 241 ~ g 364., 2, 178., 364. QclRct'.CxC k~s ~eel,4ej asian~ TE57 I~P es I 4'le GEEST.DU7 (l7/f~gis~ g-zI-P~g e'3/<<) 0 0.7500 1 0.7522 2 0.7533 ~ 3 0.7544 4 0.7555 5 0.7577 6 0.7588
    7. 0.7599 8 0 '610 '
    0 MPR Associates, Inc. r>IMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared 685=2'- /2/ Ws~ By Checked By Page ~+ ~e rcs>>I4 Lis f+L ii MCVr~ OLIT iicc 'soli PicA iij'c 5 vn~rl<i~il iw V<44 7 Ail A&lMfl(Q c~lci 'Lanai g ll~s TaL la Z. ~eris~ QP +ha rSavl'fc t kf 2 i ~ci~4. +he. res lhs t'kccl, I>> TS~ T OUT Ymir~ 4C-%AC j ~ BYE preyer I c Lc/ggey c~. kc r~rm$ la s a P~c+n g i ] c-(c c + +lie i~v inp~i s. e O o l'a'I~IakeJ Ccac,(<. <<mA'< Resv 'l>g R O 5VLQJQ Kmi m .hX > /~v A ~b z ~l/Pl N. 4ev (Vs,F) (g7 ) P &s>Q (~/~).le) (~) 5.7S'00 U o b, ooo2GaZ. f g.75vZ 6 'o Q e 0 00032 52 ~ O>1So& CL izs.ss -8 o.75'Ob 0-1,5I .sv,o (,gkq~ (0 14 Z'fiii .esi4 t5 L x g.Ssf~ro 50 o.758. I o.7S~ W 4l Q e ~m xQ O~ He lb ]a'f, tP . gag 5'5;9P . oOo'l t >g o.aS37 ~ P i~).~s l ~S.VX ~ ')6&~ (p,'7 7+~]D -8 Di 75 g7 -to CO e 0'~ ~' >0 lI .1'4 'I lo lS ta Vl I'f1Q Oi7S $ S Q~g tO C0 o 0.7553 0 ~ o O p A./gg z (vi,(~) 'g;4) (~f~ .te) 0 'lS l'j lo'I.a8 ."tQ5 Sg, oO . ooo'%9'4 e -7538 Oi 753$ i ~9.~5 s'l..ls sx l lo 'f'I /, t ( g>l o '/ 7S Y9 ( O~
    o. 1$ 9$
    tol~ ."lCZ5- e< o3 Cga'f4/( o 75'!8 (:8)9 >Io o 7X'VS W CD g li 'Ql>I> x Og fO ~ o i 7sS'5' Ã i'75~ fll Co CO o ~ j~' lQ ~ 6g lO CD o D J(<Idol n) o t+ g I (~% ~b) o . 0oO24$ $ . g,755 7 0 . OoO3ZQQ o.gs (p/ ~5 Iok~~b p~ 0 oi 7S 7.7 . uoo t&go o,.75'8/ ~ CD Q 4 892.>)0 e xtQ ~a Og D K I CO O. <Zg' oi 758/) IQ ~ CO Q CD 4 O 0 f' t Jed Ccock G owk( Regv.Hg .,'oo 9gpQ oi 7+Z. .b.glacio 4) Oi jggg I r f 3+>>Io O~ 7+gCI Rt 37 ~os gg - lkzC sk, lg .i. oao~ggo os 7/0+ $ i 0'foxpro (. Y3'P>>io gg oi>4 0( o~75/g W ~ ~ ~ s T I P r MPR Associates, Inc. r+~MPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By Page a8&-Z>g -WP/ Tfic DA<J coefk~if'~72 (8() a~ PPV p4. pAgf~ F7~/nfl'('span,g~ Cs4=s. a;st'J<<di~ P'uke i. 7,m I) v'hc nicaea~ Pn sate> P~ f . Q(psto ) (.70@)(5'goal/7) + (.537N-go,zclg)(zC~<~~~) (0+ps'cg MPR Associates, Inc. rirMPR 320. King Street Alexandria, VA 22314 Calculation No. Checked By Page ues=z-%6') ps/ CR ~W {Ib {'hlD + ~ h/S <</e I ~ a P e l i I MPR Associates, Inc. <<~MX R 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked .By o8IS-z~- gSP) ~s 7<. Aud PagB q[, ETpg( = ~TC~soe-) (7o()(ss,so)) + (~g)c n oiq) ~ (vs re ') (-.Ivr) ~l',1' ~ 7 3 ~ (;~~s)(> <<38) ~ (>sr 3 ) + ~ 3%3 61 >5 Ai J~ Wz,~i~ 71n~ = sag. '/B5; " O'"I,o 'p )ohio. 9go. 5'/-'73 Qi'tw ~l(Mb yigi + 97,2S IR,'/. 62 7f MPR Associates, Inc. RMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page 08s=~- j~/ VC XC oc+ I eS l':O(~)o ( G2. 7'I) 0 OOO'3W~ ~ u /po/~ A; = A.-) dpJ .75e9 $ .Ooo3ssB(() = . ps' Associates, arMI R MPR 320 King Street Alexandria, VA 22314 Inc. Calculation No. Prepared Checked By os'-Ho-g5p/ By 'X ~ Page q~ IW(,~So(,'~) ( aoI)(sq,og) g (u7)C lo,ios) ~C anto~ ~) (Yso)(I.3I$6) i (>soh~) I('Is3$-.7978E) 37I-50.7$ Vsi Io iso 4-;,9 4/a ~.l S4.~s as~ 'd.Piw, ~I~g = (~74X gs Io f) V'(s'37)C ol'I) ~(7SOlz ~) O 67icgl ~Tf (724'i) z3 >7 >(o rs'~ MPR Associates, Inc. WMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Os~- zoo -EV/ ~ Gu Page stst fdDp. gore MPR Associates, Inc. RMPR 320. King Street Alexandria, VA 22314 Calculation No. Checked By Og~->3g -gSPl Q< 7~ @a. Page q5 I~) 4s: ~st = ~O s4a.b.- eyio$ u~ or~< t (<QHj /J ' 7~os gJ.p ( = ( tF >Screw) (7o&) s"'/ of7) + ( <37)(4 goo) ~. (. ~@8)(i slgg).(irma<; ,)-7 (:893)(- 8782) q'>> l '<<>>) GY.7't 4o(Z 0 a~ME u MPR Associates, 320 King Street Alexandria, VA 22314 Inc. Calculation No. Checked By Page a8s=z.m -WF/ XQ q(, Se J, ah.. J Sk aS d:,.hr,44~. j) ( >Ssip'7eefg (7@&)(/7 15 7) '0 (5 3'7)(- 8ss ) I8$ 7j ( + (<~8)(8 m<8) a.(~em~) O (SS3g- qww33)~~(. 7S>6 ) 8 l. 5('.'s'(J~ Wl/p,5~ - 3 4~ S"f I = i L3. F 7ia~p -" 3A. 178. = /8( )005. a<~ = ~~a, 'P Zs-o. 'P q9 is~is .~ I (l 0, obO pig y s(( 5G VVsts. )z3. zSO" P 'P Pm< Kz,g~, Vwg 5%reF> I 186. 'F (ooo, prig + 872( gsi&A MPH Associates, Inc. rarMPR 320 King Street Aiexandria, VA 22314 Calculation No. Checked By Page c>8~-2M-PSP/ qg hei /P< = >'I + ~ (qq,yp . arly 9'/ 53 g.L( 15. 52 gSi'J ~ 7-u~> a~ A,V o Q/Ly g'aea grJ gk,
    • ZSZ>>v 6<
    0 7SP3 wctqq MPR Associates, Inc. t>~MPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page ~~=zoo- WPi FPMPR FN&INEEAS Appendix H CRACK GROWTH RATE ANALYSIS CASES MPR Associates, Inc. RIMPR 320 King Street Alexandria, VA 22314 CALCULATION TITLE PAGE Client giaeaafl A>ifa<K Power. CoRPofffITiorJ Page f Of rii( Project 'Qegrw Liria Uowzle gI'iqvi'rr c,piriII Task No. OS+- 'L50 Title @~4;~~< Cr~ct< &~ow44 gnal~sis oF %he, HIMP Un'f J Calculation No. c.re> Rck~~ Li~e Ao++k. o85'- 230- RsFQ Preparer/Date Checker/Date Reviewer/Date Rev. No. LS~ 27 g ~(~A< MPR Associates, Inc. ~i~MPR 320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No. Checked By ops-%30 p-SI 2. 3~~ 're~ Page Z Revision Description O~()i~~ t Iss~< MPR Associates, inc. ralMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By -i2~l'~ Page aug->SAN P~post= gus.pose o4'4is calcu/a fsoN is 4o GLepec~i'oc +m+<gue c(ac.lc rt w' a SS~~me.Q $ (avs ia 3-4c. eJ 'ne iH'~ Ai'~k ~NNP) <<~k l cock> I co 8 ds"ivx C<@>)) l ~e aors+)e. as ~ g ~c.hi~ o 4 Y1urn bsv og pr~ssu re /7 A8f os'/ CyC.le'J", MPR Associates, Inc. raiMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By Qgg-'zM- W~l 2- Q s~a Page Fig cs ~ is cc ~( 0 og c,rocc.k 'la~c3)g versus 'i~lA ~ ~I5C- ef ~[c.4 ~ ~ ol~,ni itlGL /lou/ I Oi 2 S in C.45 in fh~ JV M/ Crn'7 I CP10 p e /IO CVI Liin( +Op+/C ~a gy r" qv) Q(oCCLl IA$ g lro d /0 fi'Pint Vj' g/riu grOW o oppra'irna g'eg @f4( uh U /ess 7 gun 1'(4~< ~k, (cc4io'aq4 $ Q Ci S 'inoi ). MPR Associates, Inc. WMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By osS=PoO- @t K Page 5 8'c,v~a. CRDRL Nozzle Fatigue Crack Growth OA4 0.42 0.40 0.38 ~ 0.36 ~ 0.34 g 0.32 ~o 030 O 0.28 0.26 0.24 0.22 0.20 0 50 100 150 200 250 300 350 400 Cycles (1 0 cycles per year) MPR Associates, inc. Q~MPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By OS <- >&0 P~P Page rr- %Jib e c.r <<r.lc 0 Cow l-In ri4 an <<ssa Yir ed( 47rr ii/ in )he HMP Ir~./ I Csr'D r e'er'n /rrrq rraZRI>> is arI<< I)+~ 0 based r kt ~ n ~44e dI gI>>zcr ibed I We4~a c~ Cra.k.pro~]I,s d~Ia~m,.>>,( 4 -+ ~ pI.-+ 'l-~4.( ~c.Ias L kic Q pi ri Jiv sc. <<<I LDUJ p(ass~'re cinaI -Hoer rn ~4~s ~~Irs. F~g~e pie.9 dpraginf c,) ~As. <<re a ssa~+8 I sad ~ r>>cer~+ p(a~4 mfa. -sa lWS(e<t ~ co )~4e~ qeeaIr-awv rJCRRCL EXE:, r~ zS dave.(agee' p( ger ~ W~ era ~lc qrgw4Q QncLlvIs'is ~ d'or.u.eiai keg~ rrnA var i/ice (Beni QCCRCr EXw <<re. pr0vict+ J in %4erewce 2o I ~<5 Qrr( cviIa HiPn ge cvi~ Rv rS I I tl'iQ i&f'why MPR Associates, Inc. ÃMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepare By Checked By Page o eZ- Z3'o- F~Pw +o AcXQc k BX2 aug ISVldWS 7 /IP gno. Sil MPR Associates, Inc. 14~MPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared y Checked By Page gag-~g $5 F'2. /In Aif+ 8 NQ<~ 6 lS, w PV T S Lm pukX ( 6)(((Y'CCI (JCf RQC EQ.E ~re a(OCumCP]eg IVefece((cc.2. C~~L aP 4a l l-kr g~P ua,4 I ('.F-g( (age~ 'I r(e ~elm (5 <4 c c.<(ss('.cl +aIevJ . 't,4(~< CI ck L, senaiins) slkc, g(am $ (na't cc(~ M c(cc(I/&:4() c inc(t ac <en(~cI usIrJy cc // IV~esmnI c In sIIe'c /~7~ /.r c A.n ituew's Jc(.~ 0/ie (ri ('Ae I Qk ~ zI +C'l yS'cn~ (."< Ck q<bH4. d.afar Cda(d u Vs, n(k'z) ace +4I( AS( 1E@i,kI gnJ P~VIC YCSSe I C&e, Ze PiCI ZZ Cii' 3 j, 7E< MPR Associates, Inc. RMPR 320 King Street Alexandria, VA 22314 Calculation No. repared By Checked By ~e.5;- Zoo -PY'Z p~~ /4m Page MPR Associates, Inc. taiMPR 320 King Street Alexandria, VA 22314 Calculation No. Pre are Checked By oeS'-vo -P-Pw Page ~g Pg = o.7o(p
    o. 53-1
    . Q W8 Pz
    o. >9)
    Rene& Pressure=.)%SO psiq MPR Associates, inc. lL31NPR 320 King Street Alexandria, VA 22314 Calculation No. rea d y Checked By Qgg ++0 ~ ~HZ Page A )] (/~i'd Te~ para gviC=.5'2.C ~PD 2 flu, is '7~~ perp Iaie .5'g 5 g QQ. ICQ.I~ / PIKER . IT%~ I )"a lpga'~trig coc f f felri<Ts ere. ~sag Q Ae en< siI~i's; //d S //S, t'9'g /52,62.y jy. 035 j 085'5;~s>Z " 53.2I"t? 66. So>g 35. 9'7 l ) ! 0'h I 0 e s s'HIseceF,n<,zIio .a ri y ~ Ii+/'grcsSsirj' e COVtalS t'I '/9 SPZD $ osg~ palp t 0I<UXvllw. can 6< 5<ci Ir/ j~ di/f8idii7 Iar ssarcs) Ld, i~4 cm( s ek~ag as ~ q~as~.c..~4.as I E.q'J. ~.l -Aers ds"'.]i~ I ~ A <.ic Z. s e.4~ed . Whc 4's/r.@Ha.. Q~vSS> alar'I 4~x <a g~ <~L'.4 p~m /year~.l l>.Jii>g MPR Associates, Inc. r~iMPR 320 King Street Alexandria, VA 22314 Calculation No. epareJ Checked By Page ore-wm~-P~N- 'P(essu<C. a~& %orew( Loag Press<<e. aM +erma( (oao(( q v(es ~ 4'urq CPlO ( < enure hng aors~\~ c,re c/(oou.ynr v Tesj Ramsey,(e. S. Wab(e 1 Suvni~ari~ -(-'4e. (o aors l ls c (e S Pre- Vnc cu rr'rsng any rrsrne/ opera trms'~~e p/<<P. Tire~C y~ a/.-i \ oread gn . ~L..t'/< opiagng /'4,J P$,- p/P. (i~v<rs Z.ar 3 are S~/re~aprss / r I in'p/ra I A grnm press<<re 4n / ~~ 4~e ~) ~/er Pv kA gland. /(s W//e/. lr(s(infer ) +lie /bet J cy r /e/A./C/uFss 5 5+sPk/o//sufi/r~>) les / 5g r4 /o /5 c/ / a n/ dna. ~lyd 0 I Jr .( i5k pen g'Ca l IT<c (Q s(~b < aug)c. 4'EA (K Qfo is 'kk>~r rl en( Q a / QPmr+uf +wggowA g r (e / Sos +/e a n/vis u p~f~nre4 /-~ ~ iver/p/s/-./-,/. w ~nn/ g p~r /4 SW;<VS/s(Srvns, y c./ng yeas. Tqwpecn ulcc> +yp.'o p3 70 MPH Associates, Inc. l%1Mpg 320 King Street Alexandria, VA 22314 Calculation No. Checked By Page our-zoo -PSF'~ RKRcT~C P1Zas'su<6 Cpsig> I I j WiMh I F TcMpgMT~g.g I I =10 F TIM E. Re~~ko.r 'Spans~~ A~iJ ~e~tsa~a4u~~ Wgg.PL = CLb 'Reku~r Li~e F t<<cl +capel-ulcc r"e MPR Associates, Inc. RMPR 320 King Street Alexandria, VA 22314 Calculation No. Pre ed By Checked By o ss=E~/Ps pz- few Page ]g ia50 ps, I Ogo p5< RzAc To% ptze ~soQG (P~'5) SCRAM Tc&PpRATggg C-F) C l2>R, lg gy~ 7o ) //ht- 1 C<umVlA7+A, pe~u~R.4 l&6. MPR Associates, Inc. RMPR 320.King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By 08K-xylo- pap~ Page @oh I( e('((((((I(>>A $ Qw+ 3 spar i -f /~5 Jl ~f2 vc(/dr (((n $ ((>>c((r Per ((vo( (/ s~n(+ /sovc(m q(.Ie>>. 'iaaoI, ~>>i>>. (-(~4 meQ (( 4iI>> CJj~ c.nJ>> )co kh @~i (qs) g ~ > l~ p, g.g~ 4k+ gc.M(.g ~ c.a4 lakes z+es~, 4m'( sep((r((kwP (U(> ii t(>>ecc((r>> WhN.(;~P s4~~ a,'(gr,l,((/(;n), g/~ "III 4 ke e/'Ie n/(((((rv L~s(c .(e.( 4 2c@(((ivi( $ (rr((r( g(v g/( (-(s>E noZ~le. e(ccevn/s R ~g pIessee>> c,M /krr((J-/((nfl. o(>>Q>>, +>> .((e(~Ufo< e.re r(((k (n((vv+ l 4r c(v(o AW c(i>>4n~g c, Jes. As s4e3~ p~v( ~s/~, 4he g4(e< >>Aces>> L. a C,s>> 2 ('( e 4a os -I.l(o~ "o+e>>s ei(>QLukrr >>>Je(m 44o((gL ('f arI(l(vs g( (( Cbv L>nv(/ (or>>no(re o I A((m~U 'io~A cs(neth((v(, M(((~ <((c,((i e(i(>>. E o('re $ ~ ~ ~ ~ >>.~ 4 sc,i~J (~ a.i'F~~'Q p~ss(eS aiMr u MPR Associates, 320 King Street Alexandria, VA 22314 Inc. Calculation No. Prepared By Checked By Page 08s=z>u -P-5f'~ ac ~A g Vga< vgde~ kQ -leek p (scr<<~ ~(<<lc ~ e ~ sn'm~~ I s+c sZ 1 Se<<Sq s ~ 't<<sc4 ccc<c+ f~+ cteeth'4( ass 4'sec (schuss<<ec <<~c HseIIYI<<t tc~d de<<~ b.( Le<<eI Ca,se 2.. 5n cc 4!sc. (-occe( I Qs 8 sc ss ge'4 '8w]secc O'lls c v 5 <<kerr IJ (e7ce& LI7scI ers sf sr sec lac %Ac. C> l~~~r~snri P ac() ( )srNsclsceQ (Zcn n 7[~(CS (CSS (Cabiri Ce/ In Table+), Relccessc<<3 wee(cup ~'g~ = /~WC's c $ 7nspvs cl c lsc<< Ilp cpu'fc's'f>M JJ ga gsc'<ace ce. < <<s 4<<el I ( cc Pn lstcsncs~a c'snsrs~e, Pcl /c 5M~<rj ~g'= IZZQ c,~ >>Wii = 0~ 47~i~ u q-4 < P4~*C) ~ z o. ~.",l.a ~w'. c (c,s (<<4g ~e ( es pie (cn4 Cn.se Z. c(recount<<4i~ ~L:8, ir w4 I is Aers~ce( 0 O ~i Lo& C lc ( l ks I A
    0) (i) O~ 0)
    ~0 Q~Lc P~ lw P81ircc WcAII'n ~gmtj) 7rrcccic Tgcrccrr bzo f ~Pe. 'l4 CE QS.b C. l4c (lice ) ~q~'c 3 ('I:) ('FJ ('p) C'FJ /030 s4A (( o )~o C~) (z) 0 1~50 l2.50 Qth<5 a
    0) ~c'cc-pier~fir's ccrc. cist c~r/~y <<icing %~4l1crn ~( Ac@>m ccrc: ~cccrvcc4)
    ~n 5 s /~ -ss -.WA-:/~4rh), ~u/.. 0 Nai..~ s~k > CD Q l +* cc ~crlr/' VI s circe s4~ I~ ccc/c ~rgb/scwccc /sec. Nev r2). e xQ ~a Og ) ~ ~4. s .~d, s ~l l~ -~e l sl 4.(/s~r +, ~~ ta e / <<c/ rccsc A a s ref. I/ir ref re u h~n4ccccr i.sccc/corri +w os kl /~n'~ ~ ~ pr~n~ "< i~O ~~ig~ M~ c>>i~re~~ (~ ~ CO g'e sos/c. ccrc vYi~ y.Jpcc/r/r. ~mrpa cls .I" ~ .I( -I &~M Cn~c Z: lQ ~ ge Q /Ey Cn7 ~ll)g 4/tr MlVCS'/ 7I, CD P 7g, ~/l 'l jq f "I J4 +1~%/) 4 o re% = ~i~.T,, = .'I~c Q c.v MS~ N (~W ~~( < g. ~ a ~ M A.,J, s e;u.J'o +I res~~ s4~ VJ~ su'sly~/c, -(,.rA 4~ho 5Adud~ =I'o k~rJ~g MPR Associates, Inc. ~xlMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By Page ~52= l'30 -FSP 2- 9~ ~> Ka s~gs ~ s p ocp ann hI GNRGIC. E. KE I'I vzoeI c~ (~s lode. CPSiud I;ro vk oJ rOW'l4 sn &As A nor'</,. An Ip.p pile I as p~pq<<J glss-. < No YL l~<n-lz, 7li~ go ~no C
    44. Inj os gi le C I ici/ro. 5I Pa
    ~ S) Cr~D 5L-Dr. I~P qh.s (I./('~ oW 44,;~ 4 l;I i shown /II kh >np pj ose duownosqeJ yn'L'.(r ,/<<8.n MPR Associates, Inc. RMPR 320 King Street Alexandria, VA 22314 Calculation No. prepared By Checked By Page c ez=v~c -PSgw gg C-R.PPLbl, )v'F 400 '.25, 0 ~ 25g 1 02E 12g 1 01E 7g 5 ~ 95, 1 95 0 ~ 65g 1 2E 1 1 g 2 ~ 52E 7 ~ 706 g 537 g ~ 448 g ~ 393 1 1 10 085 g 1 15 ~ 694 g 152 ~ 624 g -75.0351, 1250. 65 ~ 3333 g 53 ~ 2142 g 68 ~ 8029 g -33.9911, 1250. 2 3/ 1 1g 0 g 1030 ~ g Og 0 ~ g 0 ~ g Og O.g 0. 2g 2 1g0 ~ g 1250 ~ gOgO gO gOg ~ ~ O.g 0.. lg 0 g 1250 ~ g 1g 0 ~ g 1250 ~ Og 0., 0. Ar<8-'ISIS Rc. SULKS ~e~S,s~ ).O oF <<<RCV EgE ass users 4c pwdlyM t' eC-k C~<OW44 la W<e C ~ <e~~ f~ 'l lee.. ~ n~ Ph+ < 'p~9 PI'e Z /man r,. bevg 77ie e.rrHpr P 5;/e crr~4rJ pz cPR ~K CYC 0./Z5 ecol, ev 7- 7, <l / II q",Z8 p c4 grI gl e'll Pj/>> ~ yr/e rrrrrrbr'm) 4 MPR Associates, Inc. lL~MPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By Page c)BB--.Ao - P-~PQ QQ 0/J~ g~ ttmja.t.l~ Qi~~ .Ri g. 4a a l(ma hie. /-/e ~ siye I I II an o.lo, ( '4c.~: Cot~~(d.f'cA c4c. ~aye~~~ a~pe g~ lyI~Q .'L'I~a P<i<<$ <J I l~ po pre>v'n p ~<(p/<./ km( peyIod 4'IcingI 4 1 <a- wi ~ ~m~w /r cn, ( a l I kl~ g~a e( /e + c'. / ~ i")e (e 8 m ((ikey ((pyrygp y(yeyqg) 6a (,y P~ Qy+q .(~ e q)~ <j Pa (( S'~~ g /gy Pq( V /( /q)~ <+e<$ (e /~id'r4~ A~) Tya(5 $$ ~ ggp<g(~ '<<) ~u( /yya( P/( ((og.Z(< n~o( y/(a g 4~ga ~~/, Pt'i +(~'P <<i'~. kC .s.ygygV((¹y((eg i'( J g 2.'Q~ /Cr(' . MPR Associates, Inc. )XIMPR 320.King Street Alexandria, VA 22314 Calculation No. Pre ared B Checked By 085- ~>a- ~3, S'~ 'A~ Page .+~ 4hz Ei~ pe~>P~ un+ /W~ 7+ nn $ g J~ 7Ag s 7 c~ +/ 'l~ f~.pc)~ g ~~dl ]A C '7'AfOE c ji, 8 q (/ +h(QL~ y / 4// gp~~k 8<< /Ci fI Ear < giscc ss'r~ a f <cia -@cr(~i/~ </4v~ &le P/~,: sir ~ u 4~5< nZ MPR Associates, Inc. t>1MPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By 59~ - V.b-P5,PQ Page g.$ gnat a= O S ~Ie'l~q', (q = /0~): . >OIo (iIo oII<) S'S7CliS'<'I) ~ + oo.y'i8(lsd,6>'l)M 'N3(>S'o"-s'l ~ +cop ~+ q ii ~l ~~ 8/M ( Zo l I pa l1 iYJJ p gable Y r I ]l)o~ Qa +~ac,u~ /ger Llu~ oK Qlc plo~plo~ Ie'u~( 6oo 5iJ ~ 77~4oh'led c IllhaaLoIot Paul slee foauikJ' ~i J&IA~Io rho<g> CIAO k g&lukk q'olo1 +o QEJuOC. MPR Associates, Inc. K~MPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By Page oem'-z~o -P-SPz @] 2 9. ~ Ps o pgc=DF ll ~s <<4E I q8 qrseWrq ~rssel1 McÃRc4, E.xC, rev g. 0 +<<+lrrs '/ her mr& - >/Hz-l, clnz~ I I 'Pl~ sSI14 Cl<<~@is. R<<J>>- FrsJw<<*~ /Sp<<eyes- Qiri<</ ~, Prr)S'lr<<plsrrs g't<<r Ans/ /rr s~<<rs P<<','$srss s.l Qg /gd<<sss/ss, +le(<<r4, H~~cA / )78 ss Chl~/<Jim ~Bc-xm -PSPJ, "I/esse/ C<<Je., ~ 8>>/sr'44m< /S'rpo fC'Mssf'<<'I4'r / reps>sss les4vw f Ss <<s/<< ~ C~&dsrsU <<rss/ rissS'h~ Mf4 C's/c /<<-/ss>> >8k-> 'J - EBS Oa,~ <sr (, S. C~+r'/ 4 J 9r ~ P~4~~n /Vega/~ 7)~sr~<< / Pr c w~c'j~l'a, "'"1/ 4 Cele (q.Am ~PS >Bd- f'I8/Z--d)> gev ~ /y MPR Associates, Inc. lLIMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By Page os+- 13'- g-5PQ g~ Ca 'jc( logos o$ C'~Q;o g$ ~p~ /oo Iy thorn io / (err ss pno()a,g qj o I I4$ . AX I <~r Vo < 8ig MPH Associates, Inc. WMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By oss.-w~g -RSVP 8x. r"~ Page Fl 'd We~p~~g~ '7o F's anaL~gjg Glo cQ IY10 ~$4 g $ *q~~ ~'t~~~ ~~ li <>0.055 -,l5 &qg C~) MPR Associates, inc. lLiMPR 320 King Street Alexandria, VA 22314 Calculation No Checked By Page 055-23') -K5p2 PA i+a ++ is ae,~su~ ofep4 +f1 r Ogg 7 4. Qd+2 IZ ~ (j ~birr IYI) r.iran~ ffs r lt.i ga +4 s It omni Vltr c.vrrrrPQ pnrV rclrrJ'"-/asr appr &rrrta sitar +llrr <akrJ $ 7 1 <$ 3<5'ppnt>>ritz~i L -0 3 'Prr~ j'o 0 r3 iran(.aaS +t rvi)t, hatt ) 4h c~iw "P'. res tI.s 6av& a r,WA 5~44 ~ Re.ado Pr.ssu~g (zsOps ) P<<<-4rv I I u.r 8 1arvap+r <AufZ. QgDC. F lund 7enprrt]aiba = 52-Z ' %trim 1't s~I$ s a5 +kg irk~ anr 8'rz (r ~ n( MS are Jrraurrren71 ~l rn IZefe~rnCr.' MPR Associates, Inc. taiMPR 320.King Street Alexandria, VA 22314 Calculation No. Pre ar d By Checked By - @st'g Page 095->30 9A >>g +8 14e golbwrr o ~ ~LarO qeigrllrrrrlrJl rc-oS O'.I'0 stress es Broil, $h, /rsvp no+Zle s a(( gj~h'nrsi; g5,~3>'5 55, Sl~(2 g + da,5o2gg 53 '79)( g ep~4r'~;r a p(lr'rr.l 4 o ~ ~ g ~ l~uiZI l~bl~ Z l,s Is 44~ S;-rr U an. lgsrs r~~, V>> r.rx gb ('s /As Locd (oSe Z. +~i rg'lo4 oP Arctic i'her.r'4q ver sm O4tchh ~ro+ 44. ere ~~(e. rc c,ll > r o~coecr'co J't4 I r $ 'a//J j +o j/ As zb n qhe ca~~ PH pn 'ass opfocrral~ cskl ec o~ ll1e arAmD $ 7/NJJ'rS c,le~.t,'ppro~r~leL~ .o a L~ l, g i~c-Ws . pno MPR Associates, inc. WMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By Page g5~-- ~Su -f@P'2 7C 5ev fM p) Sgeuew So~nd 4hc ae4ucd Xgecsr~S Ya.41~ 5 Mess AaalgsiS P~e Cu~gt'-'0 AeS~lkS Load Case 1 Load Case 2 Distance Analysis Curve Fit Analysis Curve Fit Through Stress Stress Stress Stress Wall (in) (ksi) (ksi) (ksi) (ksi) 0.0000 110.0 110.1 65.3 65.3 0.1'l28 91.2 98.9 56.4 60.2 0.2256 88.9 90.9 55.5 56.4 0.3384 86.2 85.5 54.2 53.9 0.451'l 83.3 82.1 52.8 52.2 0.5639 80.8 79.9 51.5 51.1 0.6767 78.4 78.4 50.3 50.3 0.7895 76.1 77.0 49.1 49.5 0.9023 74,1 74.8 48.0 48.4 1.0151 72.1 71.4 47.0 46.7 O CRDR Nozzle Stress Distribution Load Case 1 +i Cf o c o D I 115.0 110.0 105.0 ~~ 100.0 ~ 950 I I I I 90.0 C I I 85.0 1 I I 80.0 I I I 75.0 I 70.0 J > CD Q I fO x O~ ~ 65.II Q D 0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Depth Through Nozzle Wall (inches) -CI I (~ Co g' I ~ Actual Stress ~ Curve Fit Stress lQ~ lO Gl ty o O gt&URE 5 CRDR Nozzle Stress Distribution Q o p Load Case 2 70.0 I I I 65.0 I I I'3 I I 60.0 L L L L L L I Q I I CL I I I I I e 55.0 I I C I I I I t' ~ I I I I I ~ 50.0 r I' I' I I' I (0 I I I O 45.0 L L L L L L I > Co g 6 40 x N~U II.oo o.to 0.20 0.30 OAO 0.50 0.60 0.70. 0.80 Depth Through Nozzle Wall (inches) 0.90 1.00 f~aI Q tCt o (~o Co g' 6 ~ Actual Stress ~ Curve Fit Stress lO~ IQ co Ce o tÃMPR ENGINEERS Appendix I IMPLEMENTATIONPLAN WMPR ASSOCIAT ES INC. EN GINE ERS Implementation Plan for Structural Analysis of NMP-0 CRDR Nozzle Specification No. MPR-085-223-01 Revision 0 February 1994 Prepared by: ~~/~S ~ Y Edward Bird (MPR Engineer) Date I Reviewed by: 1.:, ('..'~/;, Ja es Nestell (MPR Enginedr) Date by: Phillip Kasik (MPR Engineer) lS-5'- Date 'pproved Approved by: c . QP.IK( JQ.L 'Qr-A c~l;-q I J ne Gawler (NMPC Cognizant Engineer) Date 320 KING 51REET AI,EXANDRIA, VA 22314-323 703-51'.0200 FAX 703 51r7.0224 r~lMPR ASSOCIATES INC. ENGINEERS CONTENTS Section ~Pa e BACKGROUND 1 PURPOSE TECHNICALAPPROACH Experience Survey Thermal Load Definition Structural Analysis Fracture Mechanics/Fatigue Evaluation INFORMATIONSOURCES 0 "11- e ASSOCIATES INC. EN&INEEAS BACKGROUND NUREG-0619 requires NMPC to perform an in-vessel PT exam on one of the four feed-water nozzles and the control rod drive return (CRDR) nozzle during the next refueling outage at Nine Mile Point Unit 1. This exam is expected to result in high worker exposure, potential outage delays and associated high costs without comparable increases in safety. As a result, NMPC plans to request an exemption from this requirement, based on the following: Automated UT inspection systems are now available for performing accurate inspections from outside of the vessel. Modifications have been made to the feedwater nozzles, spargers and fiow control system to eliminate or lessen the feedwater nozzle cracking problems that occurred in the 1970s. ~ No damage was found on the CRDR nozzle during the in-vessel exam in 1977 or during visual examinations thereafter. ~ Detailed modeling and analyses have been done to show that small Qaws will not grow to unacceptable values within specified operating periods for the feedwater nozzles. PURPOSE The purpose of this task is to evaluate the long-term susceptibility of the CRDR nozzle to thermal fatigue cracking, determine crack growth rates and critical crack sizes. NMPC will use the results of this task to support their exemption request and to evaluate the severity of any indication found during the automated UT inspection planned for the 1995 refueling outage. TECHNICALAPPROACH A four step approach will be used to accomplish this task: ~ Experience Survey ~ Thermal Load Definition ~ Structural Analysis ~ Fracture MechanicslFatigue Evaluation Each of these steps is described below. The results of all four steps will be documented in a single MPR report. This work will be performed in accordance with 10 CFR 50, Appendix B, using the latest approved version of MPR's QA Manual. Ex erience Surve A telephone survey of applicable BWRs will be performed to determine their exami-nation history/frequency and cracking experience for the CRDR nozzle. Survey information will be collected for welded thermal sleeve designs similar to NMP-1 and other non-welded designs. The telephone survey will include questions about exami-nation techniques and tools. This information is expected to be useful in evaluating the sensitivity of the cracking problem to thermal sleeve design. Thermal Load Definition The NMP1 operating flow characteristics and log records of the CRD system will be reviewed to determine flow variations and resulting temperature variations for the CRDR nozzle during different CRD operating conditions, e.g,, during movement of the control rods and scrams, and during different plant operating conditions, e.g., startup, shutdown, and standby. The magnitude and frequency of thermal and pressure changes will be used as input to the structural model and to calculate crack growth rates and fatigue usage. Structural Anal sis The ANSYS computer program will be used to develop a two-dimensional axisymmetric finite element model of the CRDR nozzle. The model will include a section of the reactor vessel wall adjacent to the CRDR nozzle. The extent of this section will be long enough to eliminate interaction between the boundary conditions applied to the vessel wall and the CRDR nozzle. The radius of the reactor vessel wall section will be modeled at 3.2 times the actual radius. This will insure that the maximum hoop stress and stress intensity calculated by the axisymmetric model will be comparable to those in the actual three-dimensional intersection. Thermal boundary conditions, including heat transfer coefficients, will be calculated for the load cycle defined above. The results of the previously performed feedwater nozzle analysis will be factored into this calculation. The temperature distribution within the aozzle will be calculated as a function of time for these boundary conditions. Through-wall stresses that result from pressure and temperature will be calculated at several snap-shots in time to establish the time of peak stress. Through-wall stresses will be used in the fracture mechanics/fatigue evaluation below. The original structural evaluation for the CRDR nozzle documented in Reference 3 is an area reinforcement calculation. Because stresses were not explicitly calculated, a direct comparison to stresses obtained from this analysis is not possible. Fracture Mechanics ati ue Evaluations Fatigue usage and crack growth rates will be calculated for the stress cycles determined in the structural analysis. Small surface flaws of various sizes will be postulated to exist on the vessel wall and nozzle bore regions. Crack growth rates due to low frequency pressure and thermal cycles will be calculated to determine how quickly these initial small flaws could grow to unacceptable sizes. A fatigue usage evaluation for the CRDR nozzles was not performed for the original structural evaluation (Reference 3) on the updated vessel usage report (Reference 4). A comparison to the current analysis is not possible. INFORMATION SOURCES Information sources for the CRDR nozzle structural analysis include: Combustion Engineering Drawing No. 231-567, Revision 7, "Nozzle Details - Vessel."
    2. ASME Code for Material Properties.
    3. Combustion Engineering Report CENC 1142, "Analytical Report for Niagara Mohawk Reactor Vessel."
    4. MPR Report 629, "Re-evaluation of Reactor Vessel Fatigue Analysis for Revised Operating Cycles, Nine Mile Point Nuclear Generating Station Unit No. 1," August 13, 1979.