ML17059A341: Difference between revisions
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
StriderTol (talk | contribs) (StriderTol Bot change) |
||
(4 intermediate revisions by the same user not shown) | |||
Line 17: | Line 17: | ||
=Text= | =Text= | ||
{{#Wiki_filter:P>1MPR ASSOCIATES INC.ENGINEERS MPR-1485 Revision 0 April 1994 Nine Mile Point Unit 1 Control Rod Drive Return Nozzle Fatigue Evaluation Preyared for Niagara Mohawk Power Coryoration 301 Plainfield Road Syracuse, NY 13212 9407010168 940M3 PDR.ADOCK 05000220 | {{#Wiki_filter:P>1MPR ASSOCIATES INC. | ||
ENGINEERS MPR-1485 Revision 0 April 1994 Nine Mile Point Unit 1 Control Rod Drive Return Nozzle Fatigue Evaluation Preyared for Niagara Mohawk Power Coryoration 301 Plainfield Road Syracuse, NY 13212 P'DR 9407010168 940M3 PDR .ADOCK 05000220 | |||
Pa1MPR ASSOCIATES INC.E N G I N E E 0 S CONTENTS Section 1 INTRODUCTION | 0 Pi9MPR ASSOCIATES INC. | ||
E N & I N E ERS Nine Mile Point Unit 1 Control Rod Drive Return Nozzle Fatigue Evaluation MPR-1485 Revision 0 April 1994 Principal Contributors E. B. Bird J. E. Nestell R. S. Paul A. B. Russell Prepared for Niagara Mohawk Power Corporation 301 Plainfield Road Syracuse, NY 13212 J. Gawler NMPC Engineer 320 KING STREET ALEXANDRIA. VA 22314-3238 703-519-0200 FAX: 703.519-0224 | |||
Pa1MPR ASSOCIATES INC. | |||
E N G I N E E 0 S CONTENTS Section ~Pa e 1 INTRODUCTION | |||
===1.1 Background=== | ===1.1 Background=== | ||
2 | 2 | ||
==SUMMARY== | ==SUMMARY== | ||
3 DISCUSSION | 2-1 3 DISCUSSION 3-1 3.1 Design and Operation 3-1. | ||
3.2 Load Cycle Definition 3-1 3.3 Structural Analysis 3-2 3.4 Fatigue Evaluation 3-3 3.5 Fracture Mechanics - Crack Growth Rate 3-4 3.6 Experience Survey 3-5 4 REFERENCES 4-1 5 APPENDICES 5-1 APPENDIX A Calculation of CRDR Nozzle Thermal and Pressure Cycles A-1 APPENDIX B CRDR Nozzle Finite Element Model, Geometry B-1 APPENDIX C CRDR Nozzle Finite Element Model, Material Properties C-1 APPENDIX D Calculation of Heat Transfer CoefGcients D-1 APPENDIX E CRDR Nozzle Finite Element Model, Boundary Conditions and Results E-1 APPENDIX F Low Cycle Fatigue Usage F-1 APPENDIX G Crack Growth Rate Computer Program Verification G-1 APPENDIX H Crack Growth Rate Analysis Cases H-1 APPENDIX I Implementation Plan | |||
and Operation 3.2 Load Cycle Definition | |||
Analysis 3.4 Fatigue Evaluation | |||
PA1MPR ASS 0 C I ATES IN C. | |||
ENGINEERS LIST OF FIGURES F~Fi ore ~Detcri tioo 3-1 CRDR Nozzle Dimensions 3-2 Finite Element Model 3-3 Finite Element Model Details 3-4 Calculated Temperature Distribution 3-5 Calculated Stress Intensity Distribution 3-6 Fatigue Crack Growth | |||
~ | |||
Pa1MPR ASSOCIATES INC. | |||
ENG'INEERS Section 1 INTRODUCTION The purpose of this report is to document a fatigue evaluation of the Control Rod Drive Return (CRDR) nozzle in the Nine Mile Point Unit 1 reactor vessel. The nozzle is a four inch vessel penetration that accepts low temperature water from the control rod drive system. The objectives of the evaluation were to estimate: 1) the long-term susceptibility of the CRDR nozzle to thermal fatigue cracking, and 2) the crack growth rate of a potential flaw in the CRDR nozzle over the remaining life of the plant. This evaluation was undertaken to support Niagara Mohawk Power Corporation (NMPC) efforts to perform an ultrasonic inspection of the CRDR nozzle instead of the dye penetrant inspection specifie by NUREG-0619. | |||
The fatigue evaluation of the CRDR nozzle considered the number of pressure and temperature cycles the nozzle has experienced to date as well as an estimate of the number of future cycles. Finite element stress analyses of the nozzle were performed to determine the stress distribution in the nozzle due to the pressure and temperature cycles. Stress analysis results were then used to calculate nozzle fatigue usage and crack growth rates. | |||
==1.1 BACKGROUND== | |||
3.Detailed analytic modeling of the CRDR nozzle shows that small surface flaws will not grow to unacceptable values within specified operating periods.This report addresses Item 3 above for the CRDR nozzle.In addition, this report documents the results of a survey of BWRs regarding CRDR nozzle inspection history and experience. | In the 1970's, a number of BWRs detected signiTicant cracking of feedwater and CRDR nozzles. The cracks in the CRDR nozzles were caused by thermal fatigue resulting from changes in cold CRDR flow at the nozzles, The NRC issued NUREG-0619, "BWR Feedwater Nozzle and Control Rod Drive Return Line Nozzle Cracking," (Reference 1) that identified interim and long-term recommendations regarding this issue, including inspection requirements. For Nine Mile Point Unit 1, the inspection requirements include performing a dye penetrant (PT) examination of the CRDR nozzle internal surface during the upcoming 1995 ref'ueling outage. NMPC plans to perform an ultrasonic (UT) inspection of the CRDR nozzle instead of the dye penetrant examination based on the following: | ||
The implementation plan for this task is provided in Appendix I.1-2 | : 1. Automated UT inspection systems are now available for performing accurate inspections from outside the vessel. UT inspection systems at the time NUREG-0619 was issued did not provide sufficient detection or flaw sizing capabilities. | ||
: 2. The CRDR nozzle thermal sleeve design (welded in place) makes the nozzle less susceptible to thermal fatigue cracking than the original designs at other BWRs. In fact, no damage to the CRDR nozzle was found during the 1977 in-vessel PT examination or in any subsequent examination. | |||
1-1 | |||
: 3. Detailed analytic modeling of the CRDR nozzle shows that small surface flaws will not grow to unacceptable values within specified operating periods. | |||
This report addresses Item 3 above for the CRDR nozzle. In addition, this report documents the results of a survey of BWRs regarding CRDR nozzle inspection history and experience. The implementation plan for this task is provided in Appendix I. | |||
1-2 | |||
P&qMPR ASSOCIATES INC.ENGINEERS Section 2 | P&qMPR ASSOCIATES INC. | ||
ENGINEERS Section 2 | |||
==SUMMARY== | ==SUMMARY== | ||
CRDR nozzle | Three pressure and temperature cycles were identified for the CRDR nozzle: startup/ | ||
shutdown, reactor scram, and hydrostatic test. These cycle are defined for the CRDR nozzle as follows: | |||
Startup/Shutdown - a reactor vessel heatup/cooldown between power operation and shutdown or standby conditions where the shutdown is achieved manually by plant operators. | |||
Reactor Scram - a startup/shutdown cycle where the shutdown is achieved by a reactor scram. | |||
~ | |||
Hydrostatic Test - reactor vessel pressurization and depressurization to identify leaks prior to power ascension. | |||
The number of cycles experienced to date, the number of cycles experienced since the 1977 PT inspection and the projected number of cycles in the future are listed below. | |||
Number of Projected Number of Cycles Since 1977 Number of Cycles Cycles to Date PT Inspection per Year Star tup/Shutdown 96 38 5 Reactor Scram 100 27 Hydrostatic Test 18 9 The reactor scram transient is the limiting cycle for CRDR nozzle stresses, Finite element modeling of the thermal transient shows that the peak stress intensity in the base metal occurs at the end of the transient in the bore of the nozzle just above the blend region. The peak stress intensity due to pressure and temperature was calculated to be 110 ksi. | |||
Fatigue analyses show that fatigue usage for the CRDR nozzle is very low (approximately 0.003 per operating year). For the calculated stress and the number of cycles experienced to date, a fatigue crack would not be predicted to initiate in the 2-1 | |||
CRDR nozzle at the present time. Considering the calculated stress and the number of cycles expected in the f'uture, a fatigue crack is not predicted within the life of the plant. | |||
based on criteria given in Section XI of the ASME Code.The allowable Qaw size provides signiTicant margin to ensure the nozzle does not fail by brittle f'racture. | Fracture mechanics calculations show that a postulated 1/4 inch flaw located in the highest stressed region of the nozzle would not grow to an unacceptable size within the life of the plant. The postulated 1/4 inch Qaw is calculated to grow to a depth of only 0.4 inches in 40 years. A 0.4 inch flaw does not exceed the allowable Qaw size for the analyzed section of the nozzle which is approximately 0.5 inches based on criteria given in Section XI of the ASME Code. The allowable Qaw size provides signiTicant margin to ensure the nozzle does not fail by brittle f'racture. | ||
2-2 | 2-2 | ||
PAIMPR ASSOCIATES INC.E N&INEERS Section 3 DISCUSSION | PAIMPR ASSOCIATES INC. | ||
E N & INEERS Section 3 DISCUSSION 3.1 DESIGN AND OPERATION The NMP-1 Control Rod Drive Return (CRDR) nozzle is a 4-inch reactor vessel penetration located at the same elevation as the feedwater nozzle. Figure 3-1 is a section view of the nozzle which shows selected dimensions. The CRDR nozzle is equipped with a thermal sleeve which is welded to the CRDR nozzle at the sleeve inlet and extends into the reactor downcomer with a circular plate at the end. This design is intended to protect the bore of the nozzle and the vessel wall adjacent to the nozzle from the relatively cold CRDR flow. | |||
The Control Rod Drive (CRD) System provides water from the condensate storage tank at a temperature of about 70'F to the control rod drive mechanisms to cool the control rod drives, to reposition rods, and to scram the rods. Under typical plant conditions, the system operates at all times when fuel is in the vessel. During normal operation, flow from the CRD pumps is maintained relatively constant with a portion of the flow recirculated to the condensate storage tank, about 30-47 gpm of the flow used for control rod drive mechanism cooling, and about 17-35 gpm (the remaining flow) returned to the vessel via the CRDR nozzle. Some accident sequences involving loss-of-offsite power may result in system shutdown for a short period of time, These accident sequences are not considered for this analysis. The flow rate does not change as a result of repositioning a control rod since the flow diverted to move the rod is compensated by the water displaced by the rod drive which is routed to the CRDR line. | |||
A reactor scram results in a CRDR nozzle flow transient. During a scram, the CRDR accumulators discharge to drive the control rods into the core. This results in an increase in CRDR nozzle flow to 65 gpm. When accumulator pressure drops below reactor pressure, CRDR flow rate goes to zero as the accumulators are recharged. After the accumulators have been recharged, CRDR flow rate returns to the nominal 17 to 35 gpm. | |||
3.2 LOAD CYCLE DEFINITION Table 3-1 lists the pressure and temperature cycles which were considered in the structural evaluation. The number of cycles was determined from plant data regarding the number of plant startups/shutdowns and scrams. The cycles are defined as follows: | |||
3-1 | |||
0 | |||
~ Startup/Shutdown - a reactor vessel heatup/cooldown between power operation and shutdown or standby conditions where the shutdown is achieved manually by plant operators. | |||
~ Reactor Scram - a startup/shutdown cycle where the shutdown is achieved by a reactor scram. | |||
~ Hydrostatic Test - reactor vessel pressurization and depressurization to identify leaks prior to power ascension. | |||
The number of annual cycles expected in the future is conservatively estimated to be 50% more than the average annual number of cycles that occurred over the past 10 years. A calculation of operating cycles is presented in Appendix'A. | |||
33 STRUCTURAL ANALYSIS Stress analyses were performed to determine the stresses for the fatigue and crack growth rate analyses described in Section 3.4 and 3.5 below. Transient thermal analyses were performed to calculate the temperature distribution in the nozzle as a function of time for the reactor scram transient. Steady state stresses due to pressure and temperature were calculated at specified time intervals throughout the transient. The sections below describe the finite element model, material properties, boundary conditions, and results. | |||
~Startup/Shutdown | 33.1 Finite Element Model The ANSYS computer program was used to develop a finite element model of the CRDR nozzle. The model includes the CRDR nozzle itself and a sufficient length of the reactor vessel shell and attached CRDR piping to eliminate interaction between the CRDR nozzle and the structural boundary conditions applied to the edges of the vessel shell and attached piping. | ||
-a reactor vessel heatup/cooldown between power operation and shutdown or standby conditions where the shutdown is achieved manually by plant operators. | The three-dimensional nozzle-to-cylinder intersection was modeled with a two-dimensional axisymmetric model of a nozzle in a sphere. The equivalent spherical radius was chosen to be 3.2 times the radius of the reactor vessel cylinder to insure that the maximum hoop stress and stress intensity calculated by the axisymmetric model would be comparable to those in the actual three-dimensional intersection. Appendix B documents the finite element model. The finite element mesh of the CRDR nozzle is shown in Figures 3-2 and 3-3. | ||
~Reactor Scram-a startup/shutdown cycle where the shutdown is achieved by a reactor scram.~Hydrostatic Test-reactor vessel pressurization and depressurization to identify leaks prior to power ascension. | 33.2 Material Pro erties The model of the CRDR nozzle is composed of three regions with different material properties. The reactor vessel wall is SA302 Grade B low alloy steel. The CRDR nozzle is an SA336 low alloy steel forging with ASME Code Case 1236-1 for nickel addition. | ||
The number of annual cycles expected in the future is conservatively estimated to be 50%more than the average annual number of cycles that occurred over the past 10 years.A calculation of operating cycles is presented in Appendix'A. | The clad is assumed to be Type 308 stainless steel. | ||
33 STRUCTURAL ANALYSIS Stress analyses were performed to determine the stresses for the fatigue and crack growth rate analyses described in Section 3.4 and 3.5 below.Transient thermal analyses were performed to calculate the temperature distribution in the nozzle as a function of time for the reactor scram transient. | 3-2 | ||
Steady state stresses due to pressure and temperature were calculated at specified time intervals throughout the transient. | |||
The sections below describe the finite element model, material properties, boundary conditions, and results.33.1 Finite Element Model The ANSYS computer program was used to develop a finite element model of the CRDR nozzle.The model includes the CRDR nozzle itself and a sufficient length of the reactor vessel shell and attached CRDR piping to eliminate interaction between the CRDR nozzle and the structural boundary conditions applied to the edges of the vessel shell and attached piping.The three-dimensional nozzle-to-cylinder intersection was modeled with a two-dimensional axisymmetric model of a nozzle in a sphere.The equivalent spherical radius was chosen to be 3.2 times the radius of the reactor vessel cylinder to insure that the maximum hoop stress and stress intensity calculated by the axisymmetric model would be comparable to those in the actual three-dimensional intersection. | |||
Appendix B documents the finite element model.The finite element mesh of the CRDR nozzle is shown in Figures 3-2 and 3-3.33.2 Material Pro erties | |||
The reactor vessel wall is SA302 Grade B low alloy steel.The CRDR nozzle is an SA336 low alloy steel forging with ASME Code Case 1236-1 for nickel addition.The clad is assumed to be Type 308 stainless steel.3-2 | |||
Temperature dependent material properties were used in the thermal'a'nd stress analyses of the CRDR nozzle.Appendix C documents the material properties used in the analyses.399 Thermal Bounda Conditions Thermal boundary conditions for the reactor scram transient are discussed in detail in Appendices D and E and summarized below.The last portion of the reactor scram transient was modeled.Initially, the CRDR nozzle is at a uniform temperature of 525'F corresponding to zero flow through the CRDR nozzle as the accumulators are recharged. | Temperature dependent material properties were used in the thermal'a'nd stress analyses of the CRDR nozzle. Appendix C documents the material properties used in the analyses. | ||
At the start of the transient, the CRDR flow rate is step changed to it's nominal value of 35 gpm with a fluid temperature of 70'F.Heat transfer coefficients and bulk fluid temperatures are applied to the inside surface of the reactor vessel wall and the bore of the CRDR nozzle.All other surfaces are assumed to be adiabatic (insulated). | 399 Thermal Bounda Conditions Thermal boundary conditions for the reactor scram transient are discussed in detail in Appendices D and E and summarized below. The last portion of the reactor scram transient was modeled. Initially, the CRDR nozzle is at a uniform temperature of 525'F corresponding to zero flow through the CRDR nozzle as the accumulators are recharged. | ||
Appendix D is a calculation of the heat transfer coefficient in th'e CRDR nozzle bore.The overall heat transfer coefficient between the CRDR fluid and the nozzle bore which includes the effects of the thermal sleeve and water annulus was calculated to be 100 BTU/hr-ft~-'F. | At the start of the transient, the CRDR flow rate is step changed to it's nominal value of 35 gpm with a fluid temperature of 70'F. | ||
This includes the effects of the fluid film on the inside surface of the thermal sleeve, conduction through the thermal sleeve, and natural convection through the stagnant fluid layer between the thermal sleeve and the nozzle bore.A heat transfer coefficient of 1000 BTU/hr-ft2-'F was used between the bulk downcomer fluid temperature and the vessel wall.39.4 Structural Bounda Conditions The structural boundary conditions for the stress analysis include applied pressures and displacements (Appendix E).A pressure of 1250 psig was applied to the inside surface of the reactor vessel wall and the bore of the CRDR nozzle.A negative pressure was applied to the safe end to simulate the axial load in the attached piping.At the end of the reactor vessel wall, symmetry boundary conditions are applied to permit radial displacement and to prohibit rotation.At the safe end, couples are used to allow translation of the safe end but to prohibit rotation.39.5 Results The peak stress intensity in the base metal occurs at the end of the scram transient. | Heat transfer coefficients and bulk fluid temperatures are applied to the inside surface of the reactor vessel wall and the bore of the CRDR nozzle. All other surfaces are assumed to be adiabatic (insulated). Appendix D is a calculation of the heat transfer coefficient in th'e CRDR nozzle bore. The overall heat transfer coefficient between the CRDR fluid and the nozzle bore which includes the effects of the thermal sleeve and water annulus was calculated to be 100 BTU/hr-ft~-'F. This includes the effects of the fluid film on the inside surface of the thermal sleeve, conduction through the thermal sleeve, and natural convection through the stagnant fluid layer between the thermal sleeve and the nozzle bore. A heat transfer coefficient of 1000 BTU/hr-ft2-'F was used between the bulk downcomer fluid temperature and the vessel wall. | ||
39.4 Structural Bounda Conditions The structural boundary conditions for the stress analysis include applied pressures and displacements (Appendix E). A pressure of 1250 psig was applied to the inside surface of the reactor vessel wall and the bore of the CRDR nozzle. A negative pressure was applied to the safe end to simulate the axial load in the attached piping. At the end of the reactor vessel wall, symmetry boundary conditions are applied to permit radial displacement and to prohibit rotation. At the safe end, couples are used to allow translation of the safe end but to prohibit rotation. | |||
39.5 Results The peak stress intensity in the base metal occurs at the end of the scram transient. | |||
Figure 3-4 shows the calculated temperature distribution at the end of the transient. | Figure 3-4 shows the calculated temperature distribution at the end of the transient. | ||
Figure 3-5 shows the calculated stress intensity distribution at the end of the transient. | Figure 3-5 shows the calculated stress intensity distribution at the end of the transient. | ||
The peak stress (110 ksi)in the base metal occurs in the bore of the CRDR nozzle at the base metal to cladding interface, just above the blend into the vessel wall.The principal component of the stress intensity is hoop stress.3-3 | The peak stress (110 ksi) in the base metal occurs in the bore of the CRDR nozzle at the base metal to cladding interface, just above the blend into the vessel wall. The principal component of the stress intensity is hoop stress. | ||
3-3 | |||
3.4 FATIGUE EVALUATION A fatigue evaluation of the CRDR nozzle was performed based on the load cycles defined in Section 3.2 and the results of the finite element stress analysis discussed in Section 3.3. Nozzle fatigue usage for current plant operation conditions was evaluated on a per cycle basis. | |||
EVALUATION A fatigue evaluation of the CRDR nozzle was performed based on the load cycles defined in Section 3.2 and the results of the finite element stress analysis discussed in Section 3.3.Nozzle fatigue usage for current plant operation conditions was evaluated on a per cycle basis.As discussed in Section 3.2, the CRDR nozzle is subject to startup/shutdown cycles and startup/scram cycles.Fatigue usage was calculated for both of these cycles.The nozzle also undergoes hydrostatic testing;however, this cycle is bounded by the pressure-temperature conditions during a startup/shutdown cycle.Fatigue usage is calculated by: u=g n N where: u=fatigue usage n=number of cycles which occur N=number of allowable cycles based on the cyclic stresses A fatigue usage of 1.0 indicates that there is a potential for fatigue crack initiation in the nozzle.The allowable cycles are determined from the ASME Code Design Fatigue Curve for Carbon, Low Alloy and High Tensile Steels (Reference 2, Figure I-9.1).This curve provides a conservative number of allowable cycles for a given alternating stress range (safety factors have already been applied).Therefore, use of this curve for the usage evaluation provides a conservative estimate of fatigue usage for the nozzle.Calculation of fatigue usage for startup/shutdown and startup/scram cycles are documented in Appendix F.The calculation is performed using the peak stress intensity range on the base metal inside surface of the nozzle for each of the cycles.The fatigue usage for the nozzle was calculated to be 1.963 x 10~per startup/shutdown cycle and 3.848 x 10 per startup/scram cycle.Based on recent plant operating history, there are approximately five startup/shutdown cycles, one hydrostatic test and four startup/scram cycles per year, which corresponds to an annual fatigue usage of 0.003.3.5 FRACTURE MECHANICS-CRACK GROWTH RATE Crack growth of an assumed pre-existing fiaw in the nozzle due to the pressure and thermal cycles defined in Section 3.2 is analyzed using the Paris crack growth rate equation:=C (AK)dN 3-4 | As discussed in Section 3.2, the CRDR nozzle is subject to startup/shutdown cycles and startup/scram cycles. Fatigue usage was calculated for both of these cycles. The nozzle also undergoes hydrostatic testing; however, this cycle is bounded by the pressure-temperature conditions during a startup/shutdown cycle. | ||
Fatigue usage is calculated by: | |||
u=g n N | |||
where: | |||
u = fatigue usage n = number of cycles which occur N = number of allowable cycles based on the cyclic stresses A fatigue usage of 1.0 indicates that there is a potential for fatigue crack initiation in the nozzle. The allowable cycles are determined from the ASME Code Design Fatigue Curve for Carbon, Low Alloy and High Tensile Steels (Reference 2, Figure I-9.1). This curve provides a conservative number of allowable cycles for a given alternating stress range (safety factors have already been applied). Therefore, use of this curve for the usage evaluation provides a conservative estimate of fatigue usage for the nozzle. | |||
Calculation of fatigue usage for startup/shutdown and startup/scram cycles are documented in Appendix F. The calculation is performed using the peak stress intensity range on the base metal inside surface of the nozzle for each of the cycles. The fatigue usage for the nozzle was calculated to be 1.963 x 10~ per startup/shutdown cycle and 3.848 x 10 per startup/scram cycle. Based on recent plant operating history, there are approximately five startup/shutdown cycles, one hydrostatic test and four startup/scram cycles per year, which corresponds to an annual fatigue usage of 0.003. | |||
3.5 FRACTURE MECHANICS - CRACK GROWTH RATE Crack growth of an assumed pre-existing fiaw in the nozzle due to the pressure and thermal cycles defined in Section 3.2 is analyzed using the Paris crack growth rate equation: | |||
= C (AK) dN 3-4 | |||
\where: crack growth rate (inches/cycle) | \ | ||
The stress intensity factor range is the maximum change in stress intensity factor during the given cycle.Stress intensity factor is a function of stress and crack size.As described in Section 3.3, stresses were analyzed by Qnite element analysis, Using the Qnite element model results, a section though the nozzle wall, passing through the peak surface stresses on the inside and outside surfaces of the nozzle, was determined. | where: | ||
This section is located in the blend region of the nozzle near to the transition to the bore region.A third order polynomial was Qit to the stresses through the section as a function of depth through the nozzle.Stress intensity factors were determined by the methods of Reference 3.Stress intensity factors are calculated as a f'unction of crack size and the polynomial coefficients from the cubic stress distribution. | da crack growth rate (inches/cycle) | ||
A computer program that calculates crack growth based on the method described above was developed to analyze assumed Qaws in the nozzle.The program description and veriQcation are documented in Appendix G.Inputs and results of the crack growth analysis are provided in Appendix H.The results of the crack growth analysis, assuming an initial Qaw size of 0.25 inches, are shown in Figure 3-6.As shown in Figure 3-6, the assumed 0.25 inch initial Qaw will grow to approximately 0.40 inches in 40 years of operation. | Gn stress intensity factor range (ksiPin ) | ||
The results indicate a very small crack growth rate for a crack in the CRDR nozzle.In addition, the 0.40 inch final Qaw size is less than the allowable Qaw size of 0.5 inches.The allowable flaw size for the analyzed section of the nozzle was determined from criteria given in Section XI of the ASME Code[Ref.2].Determination of the allowable Qaw size is documented in Appendix H.An allowable flaw size of 0,5 inches provides signiQcant margin to ensure the nozzle will not fail by brittle fracture.The applied stress intensity factor for a 0.5 inch flaw under the most severe stress conditions in the nozzle is approximately 81 ksiIin.The nozzle is not predicted to fail by brittle fracture until the applied stress intensity factor exceeds the critical stress intensity factor for the CRDR nozzle material.At normal operating temperatures the critical stress intensity factor is approximately 200 ksiIin, which is more than twice the applied stress intensity factor of the 0.5 inch allowable flaw.3-5 | C, m = constants (dependent on material, environment, and loading) | ||
C and m are taken from the ASME crack growth curve for surface Qaws in a water reactor environment (Reference 2, Figure A-4300-1). | |||
The stress intensity factor range is the maximum change in stress intensity factor during the given cycle. Stress intensity factor is a function of stress and crack size. As described in Section 3.3, stresses were analyzed by Qnite element analysis, Using the Qnite element model results, a section though the nozzle wall, passing through the peak surface stresses on the inside and outside surfaces of the nozzle, was determined. This section is located in the blend region of the nozzle near to the transition to the bore region. A third order polynomial was Qit to the stresses through the section as a function of depth through the nozzle. Stress intensity factors were determined by the methods of Reference 3. Stress intensity factors are calculated as a f'unction of crack size and the polynomial coefficients from the cubic stress distribution. | |||
A computer program that calculates crack growth based on the method described above was developed to analyze assumed Qaws in the nozzle. The program description and veriQcation are documented in Appendix G. Inputs and results of the crack growth analysis are provided in Appendix H. | |||
The results of the crack growth analysis, assuming an initial Qaw size of 0.25 inches, are shown in Figure 3-6. As shown in Figure 3-6, the assumed 0.25 inch initial Qaw will grow to approximately 0.40 inches in 40 years of operation. The results indicate a very small crack growth rate for a crack in the CRDR nozzle. In addition, the 0.40 inch final Qaw size is less than the allowable Qaw size of 0.5 inches. The allowable flaw size for the analyzed section of the nozzle was determined from criteria given in Section XI of the ASME Code [Ref. 2]. Determination of the allowable Qaw size is documented in Appendix H. An allowable flaw size of 0,5 inches provides signiQcant margin to ensure the nozzle will not fail by brittle fracture. The applied stress intensity factor for a 0.5 inch flaw under the most severe stress conditions in the nozzle is approximately 81 ksiIin. The nozzle is not predicted to fail by brittle fracture until the applied stress intensity factor exceeds the critical stress intensity factor for the CRDR nozzle material. | |||
At normal operating temperatures the critical stress intensity factor is approximately 200 ksiIin, which is more than twice the applied stress intensity factor of the 0.5 inch allowable flaw. | |||
3-5 | |||
3.6 EXPERIENCE SURVEY A survey was performed to determine the experiences of other utilities with regard to CRDR nozzle cracking. NUREG-0619 responses to the NRC from utilities operating BWR plants were reviewed to determine how the CRDR nozzle cracking issue was resolved at each of the plants. In addition, several utilities were contacted to determine more detailed information about inspection practices for the CRDR nozzle. The results are surnrnarized below. | |||
SURVEY A survey was performed to determine the experiences of other utilities with regard to CRDR nozzle cracking.NUREG-0619 responses to the NRC from utilities operating BWR plants were reviewed to determine how the CRDR nozzle cracking issue was resolved at each of the plants.In addition, several utilities were contacted to determine more detailed information about inspection practices for the CRDR nozzle.The results are surnrnarized below.Review of utility responses to the NRC indicated that almost all operating BWRs cut and capped the CRDR return line, either with or without flow rerouted'to another system.Plants with a capped CRDR nozzle are not required by NUREG-0619 to perform inspections of the nozzle (besides a final PT inspection required prior to capping the nozzle).However, some plants were operated for extended periods of time with the CRD return line valved out, which NUREG-0619 considers to be a temporary solution.In addition, one plant, Oyster Creek Nuclear Generating Station, has continued to operate with CRD return line flow through the CRDR nozzle.Oyster Creek is the only other plant besides NMP Unit 1 permitted to operate with the CRDR nozzle in service, Several plants, including Oyster Creek, were contacted to determine information about inspection techniques and results of nozzle inspections. | Review of utility responses to the NRC indicated that almost all operating BWRs cut and capped the CRDR return line, either with or without flow rerouted'to another system. Plants with a capped CRDR nozzle are not required by NUREG-0619 to perform inspections of the nozzle (besides a final PT inspection required prior to capping the nozzle). However, some plants were operated for extended periods of time with the CRD return line valved out, which NUREG-0619 considers to be a temporary solution. In addition, one plant, Oyster Creek Nuclear Generating Station, has continued to operate with CRD return line flow through the CRDR nozzle. Oyster Creek is the only other plant besides NMP Unit 1 permitted to operate with the CRDR nozzle in service, Several plants, including Oyster Creek, were contacted to determine information about inspection techniques and results of nozzle inspections. | ||
Two of the plants contacted, Duane Arnold Energy Center and Quad-Cities Station, found cracks in the CRDR nozzle during recent inspections (past Give years). At Duane Arnold, the CRD return line was valved out and capped with a blind flange in 1982. | |||
A crack approximately 3 inches long and 0.25 inches deep, just penetrating into the base metal of the nozzle, was found and ground out.The nozzle probably had a thermal sleeve installed prior to being capped;however, the type of thermal sleeve is unknown.The plant performs a visual inspection of the nozzle every outage, but does not perform any ultrasonic inspections. | During a visual inspection of the CRDR nozzle in 1990, evidence of cracking was found and a full PT examination was performed. A crack approximately 3 inches long and 0.25 inches deep, just penetrating into the base metal of the nozzle, was found and ground out. The nozzle probably had a thermal sleeve installed prior to being capped; however, the type of thermal sleeve is unknown. The plant performs a visual inspection of the nozzle every outage, but does not perform any ultrasonic inspections. Quad Cities operated with the CRD return line in a valved-out conflguration until 1989 when cracking was found in the CRDR nozzle. During this period of operation, the CRD return line was visually inspected every outage. As a result of the cracking, the CRD return line was cut and capped in 1989. Since that time no inspections of the nozzle have been performed. In both of these cases, cracking was found after a signiflcant period of operation with the CRDR nozzle isolated from CRDR flow. Most likely, cracking initiated prior to isolation of the CRDR flow, but was not identifled until later inspections, Oyster Creek is the only other plant (besides Nile Mile Point Unit 1) allowed by NUREG-0619 to operate with flow to the CRDR nozzle. Similar to NMP Unit 1, Oyster Creek applied for an exemption of the NUREG-0619 requirements for the CRDR nozzle, including the scheduled PT examination. Based on automated ultrasonic (UT) examinations of the CRDR nozzle, which did not identify any indications, Oyster reek was given an exemption from the nozzle PT examination until the next refueling | ||
Quad Cities operated with the CRD return line in a valved-out conflguration until 1989 when cracking was found in the CRDR nozzle.During this period of operation, the CRD return line was visually inspected every outage.As a result of the cracking, the CRD return line was cut and capped in 1989.Since that time no inspections of the nozzle have been performed. | ~ | ||
In both of these cases, cracking was found after a signiflcant period of operation with the CRDR nozzle isolated from CRDR flow.Most likely, cracking initiated prior to isolation of the CRDR flow, but was not identifled until later inspections, Oyster Creek is the only other plant (besides Nile Mile Point Unit 1)allowed by NUREG-0619 to operate with flow to the CRDR nozzle.Similar to NMP Unit 1, Oyster Creek applied for an exemption of the NUREG-0619 requirements for the CRDR nozzle, including the scheduled PT examination. | outage. Qualiflcation of the UT system was performed using a mock-up of the CRDR | ||
Based on automated ultrasonic | ~ | ||
nozzle. Even though the UT system was designed specifically for the nozzle geometry, 3-6 | |||
I there were several problems encountered during setup of the system.Mounting the system took longer than typical UT systems due to space constraints around the nozzle.In addition, removal of the mirror insulation around the nozzle area was expensive and time consuming. | I there were several problems encountered during setup of the system. Mounting the system took longer than typical UT systems due to space constraints around the nozzle. | ||
After the inspection, a new type of removable insulation was installed to provide easier access for future installations. | In addition, removal of the mirror insulation around the nozzle area was expensive and time consuming. After the inspection, a new type of removable insulation was installed to provide easier access for future installations. | ||
3-7 | 3-7 | ||
0 Table 3-1 CRDR Nozzle Pressure and Temperature Cycles Reactor Vessel CRDR Nozzle Number of Description Downcomer Fluid Number of Fluid Cycles Expected Pressure (psi) Temperature ('F) Cycles to Date Temperature ('F) per Year 1 Normal Startup/Shutdown 0 1030 -0 70 - 525 - 70 70 96 5.0 2 Reactor Scram 1030 1250 70 <<525 <<70 3.9 3 Initial Hydro 0 1875 0 250 70 0.0 4 Refueling Hydro 0>> 1030 -0 250 70 15 1.0 5 10 year ISI Hydro 0 1133 0 250 70 0.1 | |||
il',j | 23 e~') | ||
'J," i~l)llew%%%%%ASRSIOSIONAOOSOSk500%000iiggg | I ASS CQ.SKQ gCULCL 'QTLRe I | ||
< | ~ I 0 | ||
Vc t$ | |||
t(gggggaaaaaaaaaaaaeaaaaaaaaag~~~~) | Ji 8> ~ ~ ~ | ||
4 mt'TT I | |||
tg ncuovr. | |||
) | nor.~~ l cue up~ t I 'Mi7 (Sb~T.IL 4~ | ||
i)a )Z1 VO Vreeaa RCr.) | |||
~~~~~wwm~~~~+++raeewaaq | Tb ~ +prre<v +'. ~ eisa) | ||
+++Aaeay~ | ~q~ '-iTYTT, SYSIEII gETUTPTT uCJ LE KSQ'Y Figure 3-1. CRDR Nozzle Dimensions | ||
il | |||
',j | |||
'J," | |||
f llRllllIWIIIIIIIIIIEIIIIIIIIRIlllIllgggyyygIlllt i <<Will%%%IARAARIIAINIIARSARIlIOOO | |||
~ | |||
II (~ //Il l)llew%%%%%ASRSIOSIONAOOSOSk500%000iiggg | |||
<il)'p/(]/ Jllmssaskskaasaassssissaaaaisg~~gpg klan% g ggyININll<<1tIINIIlg | |||
)'P/)/<III t(gggggaaaaaaaaaaaaeaaaaaaaaag~~~~) | |||
'>'<>ISO jjaaaaaaaaaaaaAaaaeaaaaakiaaagaggi (If4ggg ggggggiwgsakWSQOWSQOWkSOi INIIgyygggy jg llkNIIILIlllggpNtII | |||
)<ittye JlOSRSk%+++++++++++++++++++I+INOO+lg+Ogaa NNkOOOOggg~~ | |||
1% 1 aaaagggg()( OOOOkOOOOkggOO qx eeassgssssaas<<w>>>>>>+++i+++++++++++iasgaaeae+ig++++~isaizg++ | |||
Xq~%+1as <<eataee+> | |||
OOiNkOOg kkOkI OOIOOaaigk44OIOO+gg 1+ggg kkIhggg+ | |||
p~~~~mee@>> asaesegz OOI O4tk | |||
~~~~~wwm~~~~+++raeewaaq wa ~~ +++Aaeay~ | |||
~c +alas+ | |||
~ ~ | |||
Illlllllll~ls> | Illlllllll~ls> | ||
ylllllll>gt~p llllllllll IIII~)l<)p~gy))l)~)(lpga/j illa'~'>If(l>~l//j god,'hagi~/j fbi)]4~~%Iaaaammmmmmmmmaa | ylllllll>gt~p llllllllll IIII~ )l<)p | ||
~gy))l)~)(lpga/j illa'~'>If(l>~l//j god,'hagi~/j fbi)]4~~%Iaaaammmmmmmmmaa | |||
~)~lykyggggRR%%%~%%%g%%% | ~)~lykyggggRR%%%~%%%g%%% | ||
WaOrsnaammmmmmmmmmmm | WaOrsnaammmmmmmmmmmm | ||
%~~~+~~~~~~~~~~~~~~~~~~ | %~~~+~~~~~~~~~~~~~~~~~~ | ||
i 0 | |||
ANSYS 5.0 APR 4 1994 16:33:47 PLOT NO. 1 NODAL SOLUTION STEP=2 SUB =21 TIME=3601 TEMP TEPC=9.434 SMN =88.846 SMX =523.562 88.846 100 200 300 400 500 600 Figure 3-4. Calculated Temperature Distribution | |||
ANSYS 5.0 MAR 31 1994 10:40:18 PLOT NO. 1 NODAL SOLUTION STEP=14 SUB =1 TIME=3600 SINT (AVG) | |||
DMX =1.462 SMN =3533 4 | |||
SMNB=2569 h | |||
SMX =96413 SMXB=105008 3533 13853 24173 34493 44813 55133 65453 75773 86093 96413 w | |||
Q~7Q rent a | |||
p:P | |||
'+~~ | |||
Figure 3-5. Calculated Stress Intensity Distribution | |||
0.44 I I | |||
0.42 I | |||
0.40 I 0.38 I I | |||
I I | |||
~ 0.36 T I | |||
I | |||
~ 0.34 I | |||
I | |||
(~p 0.32 I | |||
. 0.30 0 0.28 0.26 0.24 0.22 0.20 0 50 100 150 200 250 300 350 400 Cycles (10 cycles per year} | |||
Figure 3-6. Fatigue Crack Growth | |||
PD1MPR ASSOCIATES INC. | |||
EN&INEEITS Section 4 REFERENCES | |||
: 1. NUREG-0619, "BWR Feedwater Nozzle and Control Rod Drive Return Line Nozzle Cracking, November 1980. | |||
: 2. ASME Boiler and Pressure Vessel Code, 1980 Edition with Addenda. | |||
: 3. Buchalet,'C.B., and Bamford,'.W.H., "Stress Intensity Factor Solutions for Continuous Surface Flaws in Reactor Pressure Vessel," ASTM-STP-590, 1975. | |||
4-1 | |||
I' rpMPR ENGINEERS Section 5 APPENDICES A. Calculation of CRDR Nozzle Thermal and Pressure Cycles B. CRDR Nozzle Finite Element Model, Geometry C. CRDR Nozzle Finite Element Model, Material Properties D. Calculation of Heat Transfer Coefficients E. CRDR Nozzle Finite Element Model, Boundary Conditions and Results F. Low Cycle Fatigue Usage G. Crack Growth Rate Computer Program Verification H. Crack Growth Rate Analysis Cases I. Implementation Plan 5-1 | |||
FA1MPR SSOCIATES INC. | |||
ENGINEERS Appendix A CALCULATIONOF CRDR NOZZLE THERMALAND PRESSURE CYCLES | |||
MPR Associates, Inc. | |||
lLRMPQ 320 King Street Alexandria, VA 22314 CALCULATION TITLE PAG E Client rv lg&ARA /YloHAWK, Pa wG R C~Rf'oRATlo Page of 1 | |||
(2 Project Task No. | |||
F'P(~ LIP l T / c8 S-~~a gQA/TgoL- R~ DR i v'8 g,G Tu~ A<Ya/ E Calculation No. | |||
1 HGR~c AAD PREssua.G cygne E~ (PALS-23G-/SR-6 I Preparer/Date Checker/Date Reviewer/Date Rev. No. | |||
~ | ~/lo/9P Fdi~ c ~+~a.( | ||
I s/~o P/~o/Vg 3/Sl ('i9 | |||
MPR Associates, Inc. | |||
lxIMPR 320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No. Prepar d By Checked By o8s-'Z3c>-48 P=D( Fw[ lw( c~ | |||
Page | |||
~ | |||
Revision Description | |||
~+I C lMgw lSSyE; | |||
: p. 3 AuD ). 9. DELETED >< 5'7A V uF'/sHU7'Do~~ C)'CLOS Rat WTeb wo SwR'Top'ES'v's A~V <Rh(u(~C C ~i~i COLS Pe f'.rOX~Gr >P l965'. TH Zsr uCL.e S DELETE'D tOiQ !VOi iWVC LVE Pl A~ PeATUP. | |||
MPR Associates, Inc. | |||
~ | K%MPR 320 King Street Aiexandria, VA 22314 Calculation No. Prepared By Checked By C7B5-ZQO-A8R. Dl REV> i | ||
p | ~ gg + Page | ||
~lo5E: TH 1 gP SE oF TH 6 AT DEF(~ Th'E 7flERPAC 4~b t RCS5ugC . cgCI G5 Oa TAE'co~Res- Rot DgiyE R~TuCW (cRDRD A'oKKLK /Ar TAC AINE ~IL-8 F'otNT U<17 / F'.E'AC7og l/ESX'G~~ | |||
TC CuVuZ 7'OweE'R c F CYCLES 7u ngTE, s PND ~o 557 tAA tE. gflf A/U/vl8fR. cg F FUTUP.c <y~eE.s. | |||
GumWA l2 | |||
< Vc~- W CY~t E'S ToTA C p'REALS <l 0 E Clod 'TC~F 10 PRESenn. | |||
I. O~ia~r ~o '7ow 52.5&7c7 70 96 g.o 2.. 0 ~ i25o ~ o 7O+57 5 W /O 70 s-9 | |||
/2 5'o 7o+ 5z g w7 lOo 0 W[875&0 O & IO3e~+ zoo 70 D~Ilrz~ 0 zoo 70 CYc~z ):u~a+Ac naRTvp/gHvv'oo~m l vcr.G5 2. A~D p. S~ARTcrP/Sc IZAAK cvcc.e's y 5 zn b s .'Essec HY.bR~s>AT'tc mesmer | |||
MPR Associates, Inc. | |||
RMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page oes-z~o -/8 p-ol 7-equi ~ ( g( | |||
hro CE E SC, PL.ATE TRKQAAL 5'LEKVAR RBAcyoR SH Rou~ | |||
cRD cg~R | |||
/cour ClzQ g Po~wCo~p~ | |||
ggA4gug VW~ss.~ | |||
&At L, | |||
~ i MPR Associates, Inc. | |||
lLiMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page o8+-2.3o -A8R-6/ g /,'i,~ | |||
IN I HE' ESSG-I So Fco~ -F+!Ra UC H Ttt E Cygne iso>RLC tS | |||
>) p(cAL &oRmgL FLaw 7 HRav >tf -FpC Ao KZL 4-. (5 )7"3,5 &PA SAC f46~ DoE 5 nroT CH4k+C g S A l2ESu C.7 C7F gePo~ITIdd(N con TRoL a<D gijvCh THAN FLo~ DIL/5'ATES vo ~oVL- THE'~D IS GamPE'mSATe D BY TRC u 4TZR E ISf'L,AC~+ EY q HK CR2 C ERICH | |||
>> JZ.o4'mD 8 4c k. To WH 6 CRD R, I-I we. | |||
4 R<A <Taf 54RC}Al RC SvLTS ln F<o~ rR+&S(E&7$ | |||
7 HRo>G-H 7 I-(E. cgOR. no%7-LE, UPON A 5cRAAh SI&~QLg 7 HL CRS RccumuLAToR.s D(ScH/R@p Zo baal 1/E' HE Ccwrgcl f2'ops'A 7IIIs RE 5ULT'5 IAJ T ffE'jz.Q cooLI>c- FLow Egl !AC- gey IP Q'$7/5 7'HK C Rg g. WOt~LE> (NC IZ<85'I ]VCr A'O~yLK F LO~ TO 6S G.'PPlAFTER Rcc.umUt AT'os. PRESSukK DRoPS eFLow RCAC'TO% F'RESSED'P-t) V IRTVILLy ALC CRb 5'/ST'8' I.a4r 6<<> | |||
RC-CHAR.6-E ~HE Ac<,umUt QToNS 'q-HvS, CJZDR AokkiE'5 0 &PA . <RbR Ato>tLE FL<< Is gE-c 5rABLISHKb | |||
MPR Associates, inc. | |||
~ | RMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By o85-23o gal -0) gg. T+(, ~f o.u Page | ||
.HL Q~AL- ze sMRE c cL P,ISED Ch/ 7HZ 484''8 DISC.uS5'(cr~S C'yCI Eg 4AC COmS'<DE,P.gQ F.OR 7r ~ ~F'eP.HV (~~ maDC 5 ~ | |||
4'cga% L 57A +IIPj/IloiZAnAC 5H(ITboN~ 8~5 NO ZPlAI ST+RT'I/P/5cR/A1. HyDRo TEST PPessURE cycLE5 ARE ALso Co~SI E Z 8 Eb. | |||
~ | THE RMAL C YCL+5 t9Rt=- R'E. PRESE'ATES 9'f 7 HC Fl MIQ TL= WPE R.ATVIZi PvsiDq THE 1 HERINA< SLEEK (T ) A4D THE Do~uconn& R. (M~ ). WHE'~ Cgt)fZ F:Lobed STol'~ | ||
~ | DuRimC- 4 S<gAhh,, %HE't vip YS&FGQATUPE IA'HE THCRmAL 5( O'EVE IS'55k'WL=.D +O 8F <HE SW~G'S 7 HE po4 ~Cu~6+ c" g Clog 4C . | ||
MPR Associates, Inc. | |||
o RlMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepa ed By Checked By Page e ps'-w~>-$ 8P=o( c7-8. 7@I; ~/-. | |||
/ | S~~<<C F'/~ur~Al SHvTD~u ~. | ||
g Cacvoa p=tog~ ps'p~~ ~g;~~ Pv'cg5 pv < | |||
pg e,ss uR.E, Cp'Ro W < ~e'A,AT(A/4 C]o sip) Q4'pg oruo H0,g | |||
<(x>/>I A rrWcneZ-dnrO V FSAIQ | |||
-7(& L. | |||
60O ~~DC ~+4~ OPIA.A.fgAJC-T>,=4%5 F GTvlpg~'rut 6 b4 74 -0/oo Hz,5 oAr C r) Gl LP/9/ P s sue vivum Tera( 8 M7vRr Fo p. | |||
Rect RC vL/lac~ f'v~ps) | |||
<cp~ "- lo F | |||
/VoT~: Mr GAPt-iER $84RZ 7HrZe was ~erg EAPHAsiS Rd~ P T'ggi~]v Cc)wytgloAJ5 J ~(CRT Fogy cyc~84 ~~HKAG paSSSVae'lo3~ r4WJ) Wp~(~ZS O | |||
p pic) 4'cc> RP-F-D. <HE 8 >vE'.gc LE 15 .As'svw<o 7 > | |||
gdtjwD 8l-L G)CL.E;S | |||
MPR Associates, Inc. | |||
WMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By d 8'5-73o-A8 R.->l Page g | |||
5 78 R 7 lJ P/S ~ P- AM,- | |||
I Go<<~ | |||
I 0'3a psL IZcag'cA c To/Z l>5o psig- Pr~ssur~ | |||
PRe,ssoeG p sip 5afef/ | |||
(r s. (ur-qadi). | |||
5C,PAhh, Agsu~l + o c.ur or ~]l Sc,r ~~S,. | |||
FgP c~~s glZYATI5AA | |||
+a~ = 5 l.a | |||
'Pagss'Ugc, i s possum | |||
<<~ p~aATuRG 87 I%SO i sip SLIP.I PoF) CQQR QCCCr~Vg g PuP | |||
~~Wc Hcl C6-tnJC . | |||
I iih f, A cc o~ulA l aQ, PEWIIAP G.le. | |||
H VD<o 5 ~ATlC, q g gT Pg.C<5U pg cy(gf '. | |||
~L,~ -25> F PER I Imi'Ts Irv Tgc..g SPQQ 3 Q.~ (/de upTQ iS aPPy) | |||
>~<<I>< H>'DR<'-. P= l875 psL'g ('Re.F. uVSga.) | |||
El~+< E'AcH pa FVGIIAIG': ) OZcr pa Pg (DPEMTIMC P) | |||
'> P'< 2<X' I-l>X l>rCPSC~ = /lZ3 PSI'g (RF<- rt/ Pipi iP7 ooiP-p-ls) | |||
COMDR, FL~~ lS HSSV WSQ FC R H'IPDRa ST/7'l C ~PS~~, | |||
I | |||
MPR Associates, Inc. | |||
ti~MPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By VGV- I Page | |||
<s's-vs~ -A 8 e.-g) | |||
U&ag12. DF cY<LEs | |||
/yPLPC, PEg5ouAKL yzyei.oPG'5 4w OKrggg S'uwdnARy Fog. ~~['( ~H if''DKA'TlFi K5 yH I: Pn TE TPPG(~.~. 5'cd< | |||
SHVTbO1V&> fdoT 5'TRA'D8'/) IZEWSOW A&5 DVRATfd& oF FC)ce cvTADE.. 8ASElO c~ Zge 5VhfptApy, 7-pZ F'oLc.oi i~6-fS 7 HE A'O'AQG R, >F c YC,C.E5. ~ | |||
P ksss v P. 6 +Dc 4o. CP'C L,6S 0 Co io'30 Wo N <o 52.5 STAI.Tuf / I F sa'g j70 F d'or~7o F 5 8 tn pow pl qo y~ 5'2-5 0vo /250 <o ~@sip go7O F 7' lOG 5 TFIPTu/P ScRAM 125o pic'g sz< lod | |||
<o 7a F H ypR.op~ATiz 01@ l88'~ >pi'g 7o F Tt-. sTS Prr /o30 vo Opgi'~ L5o F 7o i-Pt~ I133 to,4's'QO Z.Sc F 7< F moue i'u<AC-O' Zo HoT g7gmD 9'y 3Rw i~CLu 5Kb. | |||
mom'c Z. RO RE'ACTOR STARTS in/ l942 Aa SlARTVP <6$ YS TRAlA'tPc- CR,tTlCAL,S ARE h/W iNculDEb SECBVgE No I F'L]9~ pgATuF W'AS IuVOL VED. | |||
<<DR. Ft o~ iS AsSQWSS DtJRimC HQDpcfsf'~ ric g8's'75 | |||
MPR Associates, Inc. | |||
lLWMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page | |||
~g S-~a~ -Wsa.-ul 7~I' (gc,.- | |||
I~ | |||
AhtTic (PA t= AVM 6'g OF' C,LC5 PVlZ(ug ~VTUCf +<BgAT(aAI THE AluT(cip87ED FutuaE iv'vplBER QF svA R7op /s'N vr Do@ ~ AA/9 | |||
~ggl Q P SGRAjN C ycc c g pg ~el.L, 4S Iiyp+O5'r~/4 ~g T PRESS'Vg.i-C~~~eS /S8WSEC O~ Zrl.~7iVe~y RECT~ ILA~ EPPES'RIEWCE':.5'i~DE 7HE HWD oF rNE lP&N IZGFCJELbV& (6/8Q //99),ADJI/SYED FOR | |||
~:HG .'3m nna~TH Our'A6-t=. in l>87-, l.99O. 2'T. Is ASStta GD 7 HHT t=VT~R,t oPR'pe(da. ~ii ~ NAV'L 50 fd &OP.4 5'NVYbomwg AND 5oRAA'rt5 (AAWV+al y) 7H<u ONE A oEl/G f(+LE F + IZ(ob ZO Pace l06 SOrte grtlgL'$5l5 ~AIR,C lA' To %AC Av~vAL. AVC YCLE: (6/8 i-ilia x J.'5 3-3 5O | |||
MPR Associates, Inc. | |||
lxwMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page Qe'5- Z3D -A8&0/ T. | |||
Fo~ rlYDk> S T~Tl C. 1 6 SIT PRF SS VQG Cye L.E 5 IT l S, 4~5~~6 5 1pAT T~ sTs "o 4'PE@A'Tlpd- PREssugE. (Iozops''g sviLu occup ouse PER. Yen'WHC cc ~a.E~ r aF ~ RAl'l~C C,y'CL,E- lg g.9 Pss~TH~ | |||
As~u~P>l~~ I5 AVG@uATE ~a Iccov~Y'uQA alp-4yC, ouv'A&g As ~s'uv). 7HE Is/ 7ssTPRessu<G (IIX'sst) "<<< | |||
ONCE Q Vf P.P /0 y5'4 i25 BYOIZ>5 Q TlC EST "rFAF'8'RAToCGS | |||
/RC <SSuAG> ~ 8E'~ F 6RCATC< Fog, fv7uf, c.yet.E'HATS AT lSK<PY. | |||
)N ~u~~~ A Rp ) <Fls A~woAL c ~lc~c 5 F~R Fwvtz.E | |||
~PGp-ATt4'~ 4Rc., | |||
P RESS uZC h/o. cyc~C S '/R. | |||
>SAavuP/ 0-I03~-0 psst 7b -$ 25'-.70 7a F 5", 0 ESSES 5 H o<bcJ~~ | |||
svAavuP/s'~CA" o IZP'-a -ps)g zo-72,5-7o F 7& F 3. 9 I z5< pyle 70-5'z5-70 ~ | |||
Hyi r ~ST WTic- 0 -IPPO- C7 ~'S's,'~ goo F 7 | |||
0-II Z3'-o Pi goo P 7o "F CP~Z <<>~ >S +SSu~GD b(r Rf JV6 MYDR~57 ATTIC, MS'. | |||
~ ~ >> a ~ ' | |||
j I ~ | |||
OPERATOR NIAGARA MOHAWK CORPORATION NINE MILE POINT NUCLEAR STATION UNIT NO. 1 Ilies).RTR I O r)) jc pof-")E.!T/) D~~~f.r.r@EK i K QRWQV ti Q ggG | |||
~g'/=K/4V(/gG'EACTOR I | |||
P'P gS~~ g Q MPS 0, | |||
O' CIR 'VC tll)$'>ll IH SIEAM IIOW WIk IE)<f I CO)E COIE tVMt 12 tVMt 1<tf tr ll | |||
}034.'l I<a>>I CO'.. COL. 12 COt. II COC. 12 Mal. SVCT SVCI Dt)CH FLOW SVCT. DOCH SVCI D>>SCH FI I TENt O E. IEAD W. 'LEAD TOTAL | |||
'IEMt IEMt, TEMt. If>>at. LE>>at TEMP. If<at t)<O 4)S vc I'Sa raw I 41 S>>'e<1 I I 4)SINI t ILS/Nt 4)SINS n)12 I')I) D)14' D)IS j | |||
n)IS D) II D)IS Li)IF CSIS Aa)I Aa)0 Aa)1 A4)2 Ac) ~ Aa)S A~ )I Aa)S Ac) A440 Acl) A44 I | |||
' ec I c/2~ | |||
': I C/ ~ >><<<<c I r Hi I'2' I'7. Jca)8..25 ~ 'I ~ | |||
..8 'Z3! i ~ a' | |||
~ l) I 4.'6. ~ . (>>C ; ia)}/ ' '.; ('r r'atv<<le 1 e ir ~ | |||
')c'} !ZZbb Zr'i} qc) AQC":. c.(" 4 | |||
"'i' e ir rrt VH",'' | |||
I (: >>Zb I 10 4:<<40 I' I c'".'I 327:ct 4:": | |||
ll74J3 | |||
,' ~ %a ~ | |||
c't <3 ) c0 ()ea>> /()67.j26 j / 66175; /".''I! ~ I 'I cl / I: v"'! I,< <<' I}'0''7 t>>I / r g /r>>p ~541 I aC>>Cglc le)n,lr)I Cj;) 3<}~; I a}" | |||
I: 0() c/ 934>> i('3 .('D T a'a '!O a r)I b.:~(>s.,%01 j I })31 ~ I 4 ~ | |||
o W -".() a /3/ 11'! Zb'2 I) r),e "aCLI. "rci 'c> | |||
th')3( '! a(6! a I ?bi tLb I I 2:"bc' 3 "6'?. jl (>> a: '('7') 7"''0 34> } (C') I 3'e 1 3 Cj '.'I 7 i .) P %>>3'.) ~C>CI r | |||
jl>>I r.a r~ '<<I c/S'.i0 | |||
) .3>> ?~F i 363, I:. ci bc). 3'170. <3.: ~ le v ~ | |||
1 Cc/tc. | |||
<<C<<<<a i 0366 J . 4>>T /0. I;: :<<'a r I >>. 'r~ r4 347<<('/: c)/i | |||
'4 c)3/ j}rlc | |||
('3('0(: | |||
aa r a~ I~ ~ | |||
7/jt) i, '54 I~}7 Ic | |||
")I36 '/:5 | |||
\ 3}NO~09~>>'U 3 i 5 I ~('ll t 'o5 365'.:: ( -"-1 ar 0. vc <<21<<)s'3"'>>} 4 34) j}rj~) I c J i<<>>Oi r rr H ii agp 04'c>rw>>} r)'/. -,11(.~r)pc,~S I C'I 4! Zc), S:c'I I 7.2 4 >>art)")ar" ~ | |||
3'<')6S ') i | |||
) 4 t.c0 e | |||
9 "00 3IOI j(CC AY. b I j'0. 01! 0. | |||
3/r'/r>c~ct:3'C, | |||
')2 V. 730 )'i 44 a 4'6'I>> I a( 3 ~ 3 rg g 7l ~ca 1r'a(el 4'. a C> | |||
e'i(i 7>>) ', I 338( 04>II(: <<>>3/0 ~ 4 3)i ">>Ct <l 3ct 7/~ I/ =-'1 ra85(:/'; 08: "4"'I=OJ 2"I)/e | |||
/<<r I /'. | |||
4, ! | |||
-.,-"'I I i Ibb'J. I I 0. 4 I'. 0. 5'= /('>> 3<}/8 0'74:0/ 6 '<<0JCc/D | |||
~ w | |||
'(>> a>>~ /atC. 4 - :-6 ~ | |||
blab~'0c/ | |||
~< | |||
rr | |||
~ | |||
i 6()(l 9" 7 7<<a<< M/ >>>> j ' a 69 . 6 4 / (> . Z<.e>> 0. rZ! | |||
~ g 0<< r rr>>! | |||
~ | |||
3"' c I I 70() 'J 'i 9. 68c) rt>>D /r. JO 30'"; 50c~ ~()".': :I C3rc >>03 l9/, | |||
c".' rpc! I >> I an@' '<<T' I '2'. 076: . /6 0. >>ZZ ~ | |||
4 << | |||
~. | |||
~ 31')C 'i:8>>0<<c:I ca r.'2>>0 cg )Fb I 36 I Cc>>0 r': | |||
';r' )r r36I C'v ~ | |||
a | |||
/a ' | |||
::": 6E ) .:4 <<L.c/.? r ~ 3/}ci0 'zl Jl 3()bV<<)C)3)4S C. a 3C 36~( tr'. | |||
(>> I I ~ ar << 9 c/: 70c; (:c), 2 .: I b~) . I 36'! . r CC>>r | |||
~ ~ >>i 3<UZI 'l)> I 12 re% 4 C {an ht'e ~ | |||
z1,34)04>)c?6 [ . ~ | |||
f >>t( r>>mr>> | |||
, r | |||
~ | |||
'/ I at '. | |||
wc>> 2<~15())'". 4)b;1)7:0''2, | |||
>>N,'-) 30/>>05022) fb ) 3(,c(Ca~<<>>0<r . | |||
cr;0 4 | |||
>>2 ' | |||
/ ~ | |||
?C>162 ~ -'36c/. Q9, Oi." 1; C- >'r'jt".' I 0 ~;.3/8})'4'. () 3(ij 34)() c )0A. 3} a>> C.<<0Z .I /C ' | |||
3 r'0 ~ | |||
V I c.r rer>>C ~ | |||
)g<C rDC I ~ e 301C'7')8) tI /- c) r ra)a' i" 0."(: '.C.~tc)'.I cr =c e | |||
i a I I | |||
I | |||
>>a!Cr>> It ')CI c/ Hov<S 0AaV( TS AT:,OVeR,: g CscD/~ C~ Et t=- . THE= Q/p/<I L. Pu <A/6- R. rc} Ar 0 SO PC: T,RES (=WT S Re+,f/I/c:, PFR,e sv>E. em'.0 Te r i a | |||
ctP Tci Tr I | |||
I | |||
'i ej'r | |||
NINE MILE POINT UNIT NON-CFIITICAL HYDROTEST 1400 1200 O | |||
'I 000 800 NCN-CRITICAL 614 OPERATION eoO K 400 360 0 MINllvLM O 200 TEMP I= TLRE FOR BOLTLP 100 F 100 130 0 50 100 '150 200 250 800 850 REACTOR VESSEL BELTLINE DOWNCOMER NATER TEMPERATURE (F) | |||
(reactor vessel belt!inc downcomer water temperature is measured at recirculation loop suction) | |||
FIGURE 3.2.2.e MINIMUMSELTLINE DOWNCOMER WATER TEMPERATURE FOR PRESSURIZATION DURING IN-SERVICE HYDROSTATIC TFSTING AND'LEAKTESTING (REACTOR NOT.CRITICAL) FOR UP TO 18 EFFECTIVE FULL POWER YEARS OF OPERATION Amendment Iio. pn, p, pn l27 | |||
PDIMPR ASSOCIATES INC. | |||
ENGINEERS Appendix B CRDR NOZZLE FINITE ELEMENT MODEL GEOMETRY | |||
MPR Associates, Inc. | |||
y lLIMPR 320 King Street Alexandria, VA 22314 CALCULATION TITLE PAGE Client Nr4 ~g ~oh'5-wW | |||
~rn/P ~/gg j Or~I MWI7 Page 1 of I3 Project Task No. | |||
g~>~m neo zan. E - J'WFsS dew -2 2.f Title | |||
~<ODEC ~%Md I/r-/'alculation No. | |||
~g~-+gal- dZ 8-0 / | |||
Preparer/Date Checker/Date Reviewer/Date Rev. No. | |||
MPR Associates, Inc. | |||
lx)MPR 320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No. Checked By Old -2zf-~jPQ-aI < T.~ P~ fib',; | |||
Page Revision Description | |||
MPR Associates, Inc. | |||
WMPQ 320 King Street Alexandria, VA 22314 Calculation No. Checked By ops- z~- 685-o l '7S' Page Purpose The purpose of this calculation is to document the geometric input data for a finite element analysis of the Niagara Mohawk Power Corporation, Nine Mile Point Unit 1 (NMP-1) Control Rod Drive (CRD) Return Nozzle. A transient thermal/stress analysis simulating a reactor scram was performed. References 1 and 2 are calculations which document the finite element model material properties and boundary conditions/ results. | |||
' | The ANSYS computer program (Reference 3) was used to calculate the transient temperature distribution in an axisymmetric model of the nozzle. The program was then used to calculate stress profiles due to pressure and due to the calculated temperature distribution. The results of this analysis, in the form of stress distributions through the bore/blend section of the nozzle, will be used in a fatigue and crack growth evaluation of the CRD return nozzle. | ||
Discussion Figure 1 is a drawing of the CRD return nozzle which shows pertinent dimensions (Reference 4). The dimensions used in the analysis are as follows: | |||
Vessel Radius RV 106.7 | |||
* 3.2 inches Vessel Thickness TV 7.125 inches Clad Thickness CLAD .2188 inches Angular Extent ANG1 8 degrees Other dimensions from Figure 1 are as follows: | |||
Nozzle Bore R1 2.061 inches Nozzle OD R2 4.813 inches Safe End OD R3 2A69 inches Vessel Cut Out R4 5.563 inches Safe End H1 8.688 inches Safe End H2 4.125 inches Safe End H3 1.344 inches The radial dimensions for the nozzle bore, R1, and the vessel, RV, are to the base metal-cladding interface. These dimensions should be reduced by the thickness of | |||
pf Path: C:)NOZZLE File: GEOM.INP 1,511.a..3-24-94 1:30:36 pm/PREP7/TITLE, NMP Unit 1 CRD Return Nozzle | MPR Associates, Inc. | ||
P2 KP(R2IRV+TV+Hl H2IO)P3=KP(R3,RV+TV+Hl-H3,0) | O lxlMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By Page 4785- g~ ) t- Q,S-OI P~ 74u the cladding (7/32"). This discrepancy between the finite element model and the drawing dimensions should have a negligible affect on the calculated stresses. | ||
A,P1,P2,P3 AADD,ALL YF=SQRT((RV+TV)**2-R2**2) | Figures 2 and 3 show the axisymmetric finite element model of the nozzle. The model uses a radius 3.2 times the actual radius of the reactor vessel.'xisymrnetric This is to insure the maximum hoop stress and stress intensity from the model will be comparable to those in the actual three-dimensional intersection (Reference 5). | ||
RADIUSgR2JYFgO/1 | The angular extent of the finite element model affects the number of elements in the model and consequently the computer running time for the model. The angular extent assumed in these analyses is 8 degrees. This extent was selected by performing pressure only load cases with models of varying extent and evaluating the stresses at the vessel cut line. The pressure analyses showed that 8 degrees is sufficiently far from the CRD return nozzle such that the stress distribution at the vessel cut line is uniform. | ||
~ | Reference 6 is the ANSYS output file which shows the PREP7 echo of the input data. | ||
RADIUSgR2gYFgOgl | References MPR Calculation 085-229-EBB-02, "CRDR Nozzle Finite Element Model Material Properties", Revision 0. | ||
~25 RADIUS/R2IRV+TV+Hl H2JO/1~0 RADIUS/R3gRV+TV+Hl H3gOI1~0 LSELgS~LOCgXgR1 LCOMB,ALL | : 2. MPR Calculation 085-229-EBB-03, "CRDR Nozzle Finite Element Model Boundary Conditions and Results", Revision 0. | ||
4 Path: C:)NOZZLE File: GEOM.INP | : 3. ANSYS computer program version 5.0. | ||
L,P1,P2 AL,ALL AOVLAP,1,2 | 4 Combustion Engineering Report CENC 1142, "Analytical Report For Niagara Mohawk Reactor Vessel", drawing number 231-567-7. | ||
CUTg OgKCYg OgR2+2 gKCYg 0 ALLSEL NUMMRG,ALL NUMCMP,ALL LSELt S/LOCgXgRl CSYS, 1 LSELgAgLOC~XgRV 05 HARV+~05 CSYS,O KSLL,S,1 LSLK,S,1 CM,LID,LINE MSH ALLSEL FINISH SAVE | : 5. J.B. Truitt and P.P. Raju, ASME-78-PVP-6, "Three-Dimensional Versus Axisymmetric Finite Element Analysis of a Cylindrical Vessel Inlet Nozzle Subject to Internal Pressure, A Comparative Study" | ||
Path: C:hNOZZLE File: RADIUS.MAC 342.a..9-18-93 12:03:56 am!Create Radius at Keypoint | : 6. MPR Calculation "Geometry", task number 85-31 "Low Flow Feedwater Control System", 2/28/83. | ||
: 7. ANSYS output file NOZZLE.OUT, 87,853 bytes dated 4-04-94 3:45:28 pm. | |||
0'o (5 Ql | |||
~ | |||
O Q | |||
~+ | |||
p Wz | |||
'I 0 | |||
hg 'b 7v | |||
~74) +2 I (unQ Fig I | |||
yQ' 5 l ~ gcLkCL I | |||
rj | |||
~. o ~5 e ck 0' 0A | |||
~ | |||
e I 4 Vc I | |||
~l 0 II ~ ~ I C ~ rf I | |||
'L I | |||
'N%X w | |||
~g.j Q4C CÃ NCZZ; | |||
~~C~RX74 j Q C4 I.'LIW gP W>1u C CA: 5uCL | |||
~>>F25 ~<<-gvrai'c'1.)K | |||
,)u | |||
+ I21 TO 4'f SSEL QCJ:) | |||
e ~ IQ Q CLI xQ O~ ~ | |||
'~eisa ~u CFOdl(ui~l | |||
'<0 0 | |||
Rv | |||
~ | |||
(0 ccats | |||
-wYD '5YSPEII | |||
'L gETljgg LlQJ~ g D~<'~ (~eCo g' | |||
IQ~gI Q | |||
o | |||
+rW/ze / | |||
pygmy I I I g | |||
I e | |||
~ I tll~ | |||
I I | |||
4l llNlRRHRNtNNlNRINlllllRIIgg | |||
((<~( lI AlENRISllINklllINSENlllalaappplltllOIINNNINIIQQppygmy r'(~< | |||
8 I i il I III s | |||
NNSkSNNNkNNNIAIAASIRNINglgggglNINIIIONNISgggggNI | |||
%%%%%%%%%%RRSR%RSRRlkEAAlkOLSIIggggRNO laaaa%kSA%%ikiIAiiiSARLAWLOISaaggggkNS ftll) it~)e ha10aaaixikaaoaaiaskakkaEiaiaaak iigaaoleSSOIIO%1101IOsOagagggla tlOOOOOlgg | |||
%000kL)ygygiO)0+) | |||
aakiiaae | |||
~~t+Ot saea+w++++ | |||
ssseaassa<<aiii~iaiii+<>sasasiaeeeaewaa++++aiaee+ 0000y lq%oe +~~++~~'~++~+++e>saeaaaaesggg~ OQOkONONOgggNOOlkOllggg OOOI1I | |||
- ~ ~- | |||
++1sasgggg+++1%ggg~ | |||
+++W~ae~ ~~>+eaeae~gg 1g~ +1 | |||
+>+Ihl<ag~ | |||
I | |||
<P llllllgg l IIIII )Hy fill all llyli | |||
(>~erg(!// | |||
1 /~ | |||
)~~/~~/j~// '~ laaaaaauan g)y>l]'k)~((//(/ | |||
i~<PA/~/( | |||
// | |||
l((g lRNRREIIQ | |||
%%%5585M% | |||
g)]~i))g(((](g IR%%%%'8%%%agg I'i]titllll | |||
]< I aaaaaaaaaaa | |||
(~ ]py~kIlIllRa~mmmmmmmm55 | |||
(~l<4<geuaaaaaaaaaaaaaa aNNSISRRa%%%%%%%% | |||
>y4ieamaaauaaasaaeFa AiSiiRRSRRWRRSASAR | |||
~~ Wmmmmm~~~~~~~~~~~~>> | |||
pf Path: C:)NOZZLE File: GEOM .INP 1,511 .a.. 3-24-94 1:30:36 pm Page g~ | |||
/PREP7 | |||
/TITLE, NMP Unit 1 CRD Return Nozzle RV= (106. +23/32) *3. 2 ! Reactor Vessel Modified Radius TV=7.125 ! Reactor Vessel Wall Thickness ANG1=82 ANG2=90 CLAD=7/32 | |||
'A'wclia// | |||
~ g/,W ~ P~<< | |||
P'<0 g"Jim rn J/oe ~ | |||
R1=4.122/2 R2=(9+5/8)/2 rn~py R3= (4+15/16) /2 R4=(11+1/8)/2 vrr /gu ~ 4 4~ | |||
H1=8+ll/16 H2=4+1/8 t m~4 ~~ 44 ckXcl~ | |||
H3=1+11/32 gtcilcrc ~ Qj~ J/~ 2 MATL ! Material Property Macro ( / | |||
CSYS,1 PCIRC~RVgRV+TVgANGlgANG2 CSYS,O RECTNGIOgRlgRV 2gRV+TV ASBA,1,2 XA c IC~ j'/ | |||
RECTNGiRliR2IRV+TV/2iRV+TV+HlH2 /jZ, 7A J I/isa"ys P RECTNG~RlgR3gRV+TV+Hl H2gRV+TV+Hl H3 RECTNGgRlgR3~RV+TV+Hl H3IRV+TV+Hl Pl=KP(R3,RV+TV+Hl-H2,0) | |||
P2 KP(R2IRV+TV+Hl H2IO) | |||
P3=KP(R3,RV+TV+Hl-H3,0) | |||
Clirm~z~J'"4 v/C ~ | |||
A,P1,P2,P3 AADD,ALL S YF=SQRT((RV+TV)**2-R2**2) | |||
RADIUSgR2JYFgO/1 ~ 5 | |||
/ c~/~l~l r/ ~ p"r/v~~ | |||
YF=SQRT(RV**2-R2**2) | |||
RADIUSgR2gYFgOgl ~ 25 RADIUS/R2IRV+TV+Hl H2JO/1 ~ 0 RADIUS/R3gRV+TV+Hl H3gOI1 ~ 0 LSELgS~LOCgXgR1 LCOMB,ALL MPR ASSOC!ATFS, i!i,'g. | |||
CSYS,1 Calculation No. o s-42$ '-Kdd-of LSELgSgLOCgXgRV 2IRV+2 Pfopared By Chcc'(c<J f"y Bow ~ | |||
4 Path: C:)NOZZLE File: GEOM .INP 1,511 .a.. 3-24-94 1:30:36 pm Page g '3 CSYS,0 LSELg Ag LOC/ Xg R1 LGEN ~ 2 I ALLg g g CLADS CLAD P 1 KP (R 1 g RV+TV+H1 g 0 ) | |||
P2 KP (R1+CLAD g RV+TV+H1+CLAD g 0) | |||
L,P1,P2 CSYS, 1 Pl KP(RVgANG1I 0) | |||
CSYS,O PX=KX(P1) | |||
PY=KY(P1) | |||
P2=KP(PX+CLAD,PY+CLAD,O) | |||
L,P1,P2 AL,ALL AOVLAP,1,2 ADELEg 4 ~ 5 I 1 g 1 CUT I R4 ~ RV 2 g 0 J R4 I RV+TV+2 g 0 ! Slice Areas With Cut. Macro KCUT KP (R2 I RV+TV+H1 H2 1 ~ 0) | |||
KCY=KY(KCUT) | |||
CUTg OgKCYg OgR2+2 gKCYg 0 ALLSEL NUMMRG,ALL NUMCMP,ALL LSELt S/LOCgXgRl ! ID Surface For Loads CSYS, 1 LSELgAgLOC~XgRV 05 HARV+ ~ 05 CSYS,O KSLL,S,1 LSLK,S,1 CM,LID,LINE MSH ! Mesh Areas ALLSEL FINISH SAVE MPH ASSOCIATES, INC. | |||
Calculat!on No. >> -~~ | |||
Prepared By Checked By Page | |||
i Path: C:hNOZZLE File: RADIUS .MAC 342 .a.. 9-18-93 12:03:56 am Page LQ | |||
! Create Radius at Keypoint Associated Area is Modified ARG1 = X Location | |||
! ARG2 = Y Location ARG3 = Z Location ARG4 = Radius POINT KP (ARG 1 g ARG2 f ARG3 ) | |||
KSELg S g KP g ~ POINT LSLK,S LSEL,R,EXT | |||
*GET,L1,LINE,,NUM,MIN | *GET,L1,LINE,,NUM,MIN | ||
*GET,L2,LINE,,NUM,MAX ASLL,S LSLA,A ADELE,ALL LF | *GET,L2,LINE,,NUM,MAX ASLL,S LSLA,A ADELE,ALL I | ||
LF LLTg L1 I L2 I ARG 4 AL,ALL KSEL,ALL LSEL,ALL ASEL,ALL MPR ASSOClATES, i'. | |||
Calculation No ~<~ 2~>-~<8- I Prspore~J Qy Ci1 pcs((ap Qy 0'Hc>l PQcC~~c~' | |||
~ | |||
Path: C:)NOZZLE File: CUT.MAC 496.a..1-17-94 2:13:14 pm Page Cut Areas ARG1=X ARG2=Y ARG3=Z ARG4=X ARG5=Y ARG6=Z | Path: C:)NOZZLE File: CUT .MAC 496 .a.. 1-17-94 2:13:14 pm Page Cut Areas by Line ARG1 = X Location, Point 1 ARG2 = Y Location, Point 1 ARG3 = Z Location, Point 1 ARG4 = X Location, Point 2 ARG5 = Y Location, Point 2 ARG6 = Z Location, Point 2 | ||
*GET g KMAXg KP g g NUMg MAX | |||
*GET ~ LMAXgLINEI ~ NUMB MAX ASEL,ALL NUMCMP,AREA | |||
*GETJNAREAgAREAIgCOUNT NUMSTR,AREA,COUNT+1 | *GETJNAREAgAREAIgCOUNT NUMSTR,AREA,COUNT+1 | ||
*DO,N,1,NAREA,1 K g KMAX+1 g ARG 1~ARG2~ARG3 K g KMAX+ | *DO,N,1,NAREA,1 K g KMAX+1 g ARG 1 ~ ARG2 ~ ARG3 K g KMAX+2I ARG4 g ARG5 ~ ARG 6 NUMSTRg LINEI LMAX+1 L, KMAX+1,KMAX+2 ASBL,N,LMAX+1 LDELEg LMAX+1 g LMAX+1 g 1 g 1 | ||
Path: C:iNOZZLE File: MSH.MAC 1,019.a..3-24-94 1:39:32 pm 1!Concatenate Lines I | *ENDDO MPR ASSOCfATES, INC.g Cafculation No,o< "< ~ 8 o~+ | ||
Prep red ay Checkr-~~>~%a By | Prop:.".wd By C ~~i( 4(i/ Qy 9Q +V' 4 | ||
0 ' | |||
Path: C:iNOZZLE File: MSH .MAC 1,019 .a.. 3-24-94 1:39:32 pm Page 'l0. | |||
1 | |||
! Concatenate Lines I | |||
ASEL, S,AREA,,2 LSLA LSELi Ri LOCI Y I RV+TV 2 i RV+TV+2 LCCAT,ALL ASEL,S,AREA,,6 LSLA LSELiRILOCiYiRV+TVIRV+TV+81H2 1 LCCAT,ALL ASEL,S,AREA,,6 LSLA LSEL g U i LOC i Y g RV+TViRV+TV+H1 H2 1 LSELI Ui LOCi XiR4 LSEL i U g LOC i Y i KCY LCCAT,ALL ASEL,S,AREAii4 CSYS,1 LS EL I S i LOC I X I RV ~ 05 I RV+ ~ 05 CSYS,O SELi Ai LOG i Xi Rl LSLA, R KSLL,S,l LSLK,S,1 LCCAT,ALL ASEL,S,AREA,,1 LSLA LSEL i U i LOC i Y I RV+TV+H1 ~ 05 I RV+TV+H1+ 05 LSELi Ui LOCI Y i KCY 05 I KCY+ 05 LSEL i U i LOC I X i R 1+CLAD LCCAT,ALL I | |||
! Element Size For Lines I | |||
ASEL i S i AREAI I 3 LSLA CSYS, 1 LSELi Ri LOCi Y i ANGl I CSYS,O ~ Qi ~ | |||
LESZZEi ALLi i i 2 MPR ASSOCIATES, N~.~ | |||
ASEL, S, AREA,, 2 Calculattgn NO. 08s- ne-cog".-% | |||
LSLA CSYS,1 Prep red ay Checkr-~ By ~> ~%a | |||
' i | |||
~ ~ v 4 w i ~ ~ ~ ~ s . ~ 4. i ~ . ~ ~, ~ | |||
Path: C:)NOZZLE File: MSH .MAC 1,019 .a.. 3-24-94 1:39:32 pm Page lQ LSELgR~LOCg YgANG1 CSYS,O LESIZEgALLggg12gl/4 | |||
!LESIZE~ALL,,~12~ 2 LSLA LSELg RJ LOCg X g R4 LESIZEgALLJ f g 12 f 4 | |||
!LESIZE~ALLg g g 12~ 2 ALLSEL LESIZEg 1 1 ~ g g 20 I | |||
! Mesh Areas I | |||
ET,l,PLANE55 KEYOPT~ 1 ~ 3 g 1 | |||
* l=Axisymmetric TYPE,1 ESHAPE,2 ESIZE,3/4 MAT,1 AMESH,2 ESIZE,1/2 MAT,2 AMESH,6 MAT,3 AMESH,3,5,1 MAT,2 AMESH,1 | |||
>~~R As8oclA768; , | |||
Ca(Culatian NO. Oez- WV-e4g~ | |||
p lsd Qy Cr~ecred gy ~& I act. "4f Page | |||
~&qMPR ASSOCIATES INC ENGINEERS Appendix C CRDR NOZZLE FINITE El EMENT MODEL MATERIALPROPERTIES | |||
MPR Associates, Inc. | |||
taiMPR 320 King Street Alexandria, VA 22314 CALCULATION TITLE PAGE Client | |||
~g fJQ<EQ ~op/~/C 1 of m | |||
/g//V/ MMI / / | |||
Project 4E B AM n/o+RcE - J'r PEss gwdc-Pea'age Task No. | |||
gF- P4g Title Calculation No. | |||
/ÃoPEWTi Ei y 8<- gal'-pZ/j-o 2 Preparer/Date Checker/Date Reviewer/Date Rev. No. | |||
Pe ~a~ c4 4y j/p(/ | |||
MPR Associates, Inc. | |||
RMPR 320.King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No.- Prepare/ By Checked By o4f - J J $ -fart'rt -oZ Q /5. $ 0@ | |||
Page g Revision Description OW/6 r~+C. A J ob | |||
PRIMP'PR Calculation No. Prepared By Associates, 320 King Street Alexandria, VA 22314 Checked By Inc. | |||
+g -gag- $3/f-0 Z Page g | |||
~Pur oee The purpose of this calculation is to document the material properties used in a finite element analysis of the Niagara Mohawk Power Corporation, Nine Mile Point Unit 1 (NMP-1) Control Rod Drive (CRD) Return Nozzle. The ANSYS computer program was used to calculate the transient temperature distribution in the nozzle. In addition, the program was used to calculate stress profiles due to pressure and due to the calculated temperature distribution. The material properties required in the analyses are: | |||
Elastic Modulus Coefficient of Thermal Expansion Thermal Conductivity Specific Heat Poisson's Ratio Density Discussion Figure 1 shows a schematic of the CRDR nozzle outline. The nozzle model is composed of three regions with distinct material properties. | |||
~ Region 1 is the reactor vessel wall. The vessel wall material is SA 302 Grade B (Mn-1/2Mo), Reference 1. | |||
~ Region 2 is the CRDR nozzle. The nozzle material is SA 336 with ASME Code Case 1236-1, Reference 1. Equivalent material is SA 508 Class 2 (3/4Ni-1/2Mo-1/3Cr-V) as discussed below. | |||
~ Region 3 is the Clad, assumed to be type 308 Stainless Steel. Stainless Steel Type 304, 18Cr-8Ni material properties are a close match and are used in this analysis. | |||
Previous finite element analyses of the feedwater nozzle used 1980 ASME Code material properties (Reference 2). In that calculation, a comparison of material chemical composition between the original 1964 specification and the 1980 Code was made. The comparison showed that for the vessel wall 1980 ASME Code material properties were equivalent. The calculation also showed that the equivalent material | |||
~ | MPR Associates, Inc. | ||
lxHMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By Page y de-d4 5'+44-oz S~ mt ~~ | |||
property for the nozzle was SA 508 Class 2 (3/4Ni-1/2Mo-1/3Cr-V). The same material properties used in the previous calculation for the feedwater nozzle and vessel wall are used in this analysis for the CRD Return nozzle and vessel wall respectively. | |||
Results Temperature dependent material properties are listed in Tables 1 through 3 for the reactor vessel wall, CRD Return nozzle and cladding respectively. Attachment A is a listing of the ANSYS macro MATL.MACwhich is the computer program input data for material properties. (The input data also lists heat transfer coefficients.) For all three materials, a density of 489 Ib/ft and Poisson's Ratio of 0.3 were used (Reference 3). | |||
The reference temperature for the coefficient of thermal expansion (REFT in file MATL.MAC)is 70'F for the nozzle and vessel wall. For the cladding material, the average temperature between the downcomer and nozzle fluid temperatures at full power conditions was used for the reference temperature to approximate the residual stress state in the cladding. | |||
Specific heat was calculated from thermal diffusivity by the following formula: | |||
Cp= K/(Rho*TD) | |||
Where: Cp Specific Heat (btu/Ib-'F) | |||
K Thermal Conductivity (btu/hr-ft-'F) | |||
Rho Density (Ib/ft ) | |||
TD Thermal Diffusivity (ft /hr) | |||
References Combustion Engineering Report CENC 1142, "Analytical Report For Niagara Mohawk Reactor Vessel", page A-78. | |||
: 2. MPR Calculation "Material Properties", task number 85-31 "Low Feed-water Flow Control", 2/28/93. | |||
: 3. Standard Handbook For Mechanical Engineers, Seventh Edition, pages 5-6 and 6-7. | |||
MPR Associates, Inc. | |||
K1MPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By CtP~ -V25'- Z45-o Z ~a. w../ P0~: ~4'~ Page C> | |||
lA 0 | |||
MPR Associates, Inc. | |||
wiiMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By gg~+g $ '-prZ8 -a z w<W ./ Page g Table 1 | |||
, Material Properties - SA 302 Grade B Carbon Molybdenum (Mn-1/2Mo) | |||
;.,pe'ciho | |||
.;.,::.:: Exp'a'rision',"',';:~'l:,:::,:,:;:I,:';,Cor'iductiyity',";,!k::'; | |||
":"~sg! i%~:.,:,ii~iq'~~c'', "..'...i:,.',. ); ..."'(1 0a pepsi)~'.<<x .'-.:".::;::.;':.::::.:',::(ee'a'r'i.::,iafii'e)'.m.':~'::"::.'::I<(Btulhi;-:,':ft';,'',F)'4'::,: '::.;',';:(Btb1lb';.'',F).''jI 70 29.20 7.02 23.3 .1047 100 29.04 7.06 23.6 .1070 150 28.77 7.16 24.1 .1110 200 28.50 7.25 24.4 .1142 250 28.25 7.34 24.6 ~ 1173 300 28.00 7.43 24.7 .1203 350 27.70 7.50 24.7 .1235 400 27.40 7.58 24.6 .1264 450 27.20 7.63 24.4 .1286 500 27.00 7.70 24.2 .1313 550 26.70 7.77 23.9 .1343 600 26.40 7.83 23.5 .1361 | |||
~ i MPR Associates, Inc. | |||
320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By | |||
~ | -g2g- E.g/P-o 2- Page p. | ||
Od~ Pdb /R~~ | |||
Table 2 Material Properties - SA 336 with Code Case 1236-1 Equivalent to SA 508 Class 2 (3/4¹i1/2Mo-1/3Cr-V) | |||
''.":.:::Co'etficie'nt<of~~'.:,."'I Mo'du!.'Us~of | |||
'.:,":Ela'sticity",:;:E:;'::, 'IG'ondiictiyity'.:k'',I, | |||
'~"..=;;(10:::;:;psi):::;:"': ';:I:'::::.''j'(me'an'j~yaIue}<~''",'',-::,'.:, l'j<:(Btu/hr',-:,,',ft-."':,F(}':,-';:I:.-;, K,"m,'(Bi'u/ib;-";,,F}',;",'",: | |||
i';:::;:I::(1;0;.:,.',;.~!n/iril,;,F)km'',:., | |||
70 29.70 6.41 23.6 ~ 1063 100 29.54 6.50 23.7 .1084 150 29.27 6.57 23.9 . ~ 1118 200 29.00 6.67 24.0 .1149 250 28.75 6.77 24.0 .1180 300 28.50 6.87 23.9 .1204 350 28.20 6.98 23.7 .1224 400 27.90 7.07 23.6 .1254 450 27.70 7.15 23.3 .1274 500 27.50 7.25 23.1 .1305 550 27.20 7.34 22.7 .1326 600 26.90 7.42 22.4 .1351 Modulus of Elasticity values are for 1/2-2Cr Chrome Molybdenum. | |||
MPR Associates, Inc. | |||
~ r>1MPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By dA - gg5'-8/-oz- 'in.~ Page 8 Po Table 3 Material Properties - Stainless Steel Type 308 Type 304 Properties Usted (18Cr-8Ni) | |||
Ni'''>> | |||
'"<a,''-', >,'..:<, | |||
,;:!Tem'jeratu'r'e"> | |||
r:.>M,odulus:,.",,of;:;:.;. ISÃ'Sp Tl | |||
::,:I>Ela'sticjtj-::>E'',::'::.'','.<<'(<1 Q~;>,psl)i&py>. .,"'::;;;.:,:,::,"',;.'.(incan~;yafii'e)>>-",''-:.',':,'::,.':,:?(Btu'jar,;-'.:ft'-,,',.F)';:;,,''',': | |||
70 28.30 8.16 8.6 ~ 1165 100 28.14, 8.55 8.7 .1170 150 27.87 8.67 9.0 .1195 200 27.60 8.79 9.3 .1219 250 27.30 8.90 9.6 .1243 300 27.00 9.00 9.8 .1253 350 26.75 9.10 10.1 .1275 400 26.50 9.19 10.4 .1289 450 26.15 9.28 10.6 .1298 500 25.80 9.37 10.9 .1311 550 25.55 9.45 .1320 600 25.30 9.53 11.3 .1328 | |||
Path: C:)NOZZLE File: MATL .MAC 2,346 .a.. 4-01-94 12:10:32 pm Page g9 G=386. 4 F=3600*12 MPTEMP/ 1/ 70/ 100/ 150/200/250/300 MPTEMP / 7 i 350/ 400/ 450/ 500 i 550/ 600 | |||
! ¹1 Vessel Wall Material SA 302 Gr B Carbon-molybdenum MPDATA/ EX / 1 / 1 / 29 20E6 / 29 ~ 04E6 i 28 77E6 / 28 50E6 / 28 ~ 25E6 / 28 OOE6 MPDATA/EX/ 1 / 7 / 27 ~ 70E6 i 27 ~ 40E6 / 27 ~ 20E6 / 27 ~ OOE6 / 26 ~ 70E6 / 26 ~ 40E6 MPDATA/KXX/1 / 1 / 23 3/F/ 23 ~ 6/F/ 24 ~ 1/F/ 24 ~ 4/F/ 24 ~ 6/F/ 24 ~ 7/F MPDATA/KXX/1 / 7 / 24 7/F / 24 ~ 6/F/ 24 ~ 4/F/ 24 ~ 2/F/ 23 ~ 9/F/ 23 ~ 5/F MPDATA/ALPX/1/ 1 / 7 ~ 02E 6/ 7 ~ 06E 6/ 7 ~ 16E 6/ 7 ~ 25E 6/ 7 ~ 34E 6/ 7 ~ 43E 6 MPDATA/ALPX/1 i 7/ 7 50E 6/ 7 ~ 58E 6/ 7 ~ 63E 6/ 7 70E 6/ 7 ~ 77E 6/ 7 ~ 83E 6 MPDATA, C,1,1, .1047*G, .1070*G, .1110*G, .1142*G, .1173*G, .1203*G MPDATA/ C/1/7/ 1235*G/ 1264*G/ ~ 1286*G/ ~ 1313*G/ . 1343*G/ 1361*G MP / DENS/ 1 / 489/ 1728/G MP/NUXY/ 1/0 ~ 3 MP / REFT/ 1 i 70 | |||
! ¹2 CRDR Nozzle Material SA 336 MPDATA/ EX / 2 / 1 / 29 ~ 70E6 / 29 ~ 54E6 / 29 ~ 27E6 / 29 ~ OOE6 / 28 ~ 75E6 / 28 ~ 50E6 MPDATA/ EX/ 2 / 7 / 28 ~ 20E6/ 27 ~ 90E6 / 27 ~ 70E6/ 27 ~ 50E6/ 27 ~ 20E6/ 26 ~ 90E6 MPDATA/KXX/2 / 1 / 23 ~ 6/F / 23 ~ 7/F/ 23 ~ 9/F/ 24 ~ 0/F/ 24 ~ 0/F/ 23 ~ 9/F MPDATA/KXX/2 / 7/ 23 ~ 7/F/ 23 ~ 6/F/ 23 ~ 3/F/ 23 ~ 1/F/ 22 ~ 7/F/ 22 4/F MPDATA/ALPX/2/1/ 6 ~ 41E 6/ 6 ~ 50E 6/ 6 ~ 57E 6/ 6 ~ 67E 6/ 6 ~ 77E 6/ 6 ~ 87E 6 MPDATA/ALPX/2/7/ 6 ~ 98E 6/ 7 ~ 07E 6/ 7 ~ 15E 6/ 7 25E 6/ 7 ~ 34E 6/ 7 ~ 42E 6 MPDATA/ C/2/ 1 i 1063*G/ 1084*G/ ~ 1 1 18*G/ ~ 1 149*G/ ~ 1 180*G/ ~ 1204*G MPDATA, C,2,7, .1224*G, .1254*G, .1274*G, .1305*G, .1326*G, 1351*G MP / DENS / 2 i 489/ 1728/G MP/NUXY/ 2 / 0 ~ 3 MP i REFT / 2 i 70 | |||
! ¹3 Clad Material 308 Stainless Steel MPDATA/EX/3/1/ 28 30E6/ 28 14E6/ 27 ~ 87E6/ 27 60E6/ 27 30E6/ 27 OOE6 | |||
~ | |||
~ ~ | |||
MPDATA/ EX/ 3 i 7 / 26 ~ 75E6 / 26 50E6 / 2 6 ~ 15E6 / 25 ~ 80E6 / 25 ~ 55E6 | |||
~ | |||
MPDATA/KXX/3 / 1 / 8 6/F/ 8 7/F/ 9 ~ 0/Fi 9 3/F/ 9 ~ 6/F/ 9 ~ 8/F | |||
/ 25 ~ 30E6 | |||
~ ~ | |||
MPDATA/KXX/3 / 7/ 10 ~ 1/F/ 10 ~ 4/F/ 10 6/F/ 10 ~ 9/F/ 1 1 1/F/ 1 1 3/F | |||
~ ~ ~ | |||
MPDATA/ALPX/3/1/ 8 ~ 16E 6/ 8 55E 6/ 8 ~ 67E 6/ 8 ~ 79E 6/ 8 ~ 90E 6/ 9 ~ OOE 6 | |||
~ | |||
MPDATA/ALPX/3/7/ 9 ~ 10E 6/ 9 ~ 19E 6/ 9 28E 6/ 9 ~ 37E 6/ 9 45E 6/ 9 ~ 53E 6 | |||
~ ~ | |||
MPDATA, C,3,1, .1165*G, .1170*G, .1195*G, .1219*G, .1243*G, 1253*G MPDATA, C,3,7, .1275*G, .1289*G, .1298*G, .1311*G/ .1320*G, .1328*G MP / DENS / 3 / 489/ 1728/G MP/ NUXY/ 3 / 0 ~ 3 MP/ REFT/ 3 i (70+525) /2 MPR ASSOCIATES, INC. | |||
Calcutatfon No. +~~ ~~~~+ | |||
Prepared By + | |||
Checked By Page | |||
~ 'w- ~ 4 ii ~ ~ .vows Path: C:(NOZZLE File: MATL .MAC 2,346 .a.. 4-01-94 12:10:32 pm Page gr'0 g4 Heat Transfer Coefficient CRDR Nozzle ID HT=144*3600 MPDATAiHF~4i1~ 100 /HTi 100 /HT~ 100 /HTI 100 /HTi 100 /HTi 100 /HT MPDATAiHFi4i7I 100 /HTi 100 /HTi 100 /HTi 100 /HTI 100 /HTi 100 /HT | |||
! g5 Heat Transfer Coefficient Vessel Annulus HT=144*3600 MP,HF,5, 1000 'HT MPR ASSOC)ATES, fNC. | |||
Catculatton No. ~ ~~ ++~ | |||
Prepared By Checked Bg Page lO, r | |||
~ | |||
e ASSOCIATES INC. | |||
ENGINEERS Appendix D CALCULATIONOF HEAT TRANSFER COEFFICIENTS | |||
MPR Associates, Inc. | |||
taiMPR 320 .King Street Alexandria, VA 22314 CALCULATION TITLE PAGE Client | |||
~IAMBf4'ldHAulk Pau Eg pe,POrA<lnAr Page 1 of /Ql Project Task No. | |||
/Mt'illg PotA)Y'PiV I Tit'le Calculation No. | |||
OVERALL. HCA7 <Rl>~f=KR. Cos'ACIE~ waR. | |||
t=R,DP %d+pI 5 AT NA1F' Opg-zoo-AB ~aZ Preparer/Date Checker/Date Reviewer/Date Rev. No. | |||
F~; >- | |||
>l~s /yq 8 />o/y(j | |||
MPR Associates, Inc. | |||
WMPR 320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No Prepared By Checked By DP5-23o- ggg-dz egg Page | |||
~ | |||
Revision Description GP tb l~1t tissu G | |||
e | a~Mr u MPR Associates, Inc. | ||
320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page 085-z. Qo-ABC-yz + | |||
PAPosC 7HE T UR,F'asE'F 7 HIS'AI cCIL$ 7ldAJ ts Io CAt cOc>7G'HC AVERA~E VVe RI4L.L- HEAT TRA<5'FC R COb, P'F(c lEiVT Fok THg couTgaL RoD DRIVER'E'TUIZ/V (CR'DR) LINE REAcTo R V EASEL F'E NETR47 (O~ h/OWWLE | |||
-roe.~~AL S~e,FVE Aw ~iYE Al~E ~<<NT ueiT (. | |||
8 Es vL I MD ce rV c c tJ 5 (o AID | |||
~HE, ~vE-RAG-E c>>EQALL HEAT'-RID'Sf-GR Cue;FFlCl FAT | |||
: 9) F'cr Z yH E'R'T) I2, Ad%7CC ibad&'E, f 54/QFA t g l5 ~ | |||
0b L.o& & PAn | |||
/sou 2 6'eo annAc) | |||
(t'~~ ~) | |||
Conn PARlSowS o F TH KSE',55'uL.7 s Zo yAg08$ | |||
<A<cV<ATYD gY CE. APQ NPR FoR THG FEED( Alga. | |||
~oKMG~ IwDicd ASS' HESG RESUL.7~ ggG. QSC)SO~gggg, | |||
MPR Associates, Inc. | |||
r>~MPR 320 King Street Alexandria, VA 22314 Calculation No. | |||
~ | 885-2~-A 6: P -O'Z Prepared By | ||
/~i~ ~ | |||
Checked By Page F CRQ g No&% 8 W 6 P]vlAL L E.VE'-CE a. | |||
~Ao~w L.s | |||
~ He,PA1AQ 5~EEV~ | |||
7o F g.go~"(o~) (tpcSOu 55) | |||
Z.gm "(rr)Q | |||
/, 5'z5 F VG ss KL. | |||
wALl JHGRPlAt 5t EE.VE QtN E jvsI >As' R>~ g)E-F. ( | |||
-unapt.E' WtnnFA S(OP eR'o~ REF. 2 | |||
~gmeePAq-L ZrS Ae~ AS>V~K>. | |||
VH~ AH@,~AL- Sot=-BVG i5 I E.LDF E i~To 7 HE A~Z7L4 5o TH~ T Qo 5lE, gpp pypA55' EA pp(-5 t5 8'~p+C7$ 5. | |||
~ ( | |||
MPR Associates, Inc. | |||
lLiMpR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By 085-zgcr -gg P - o> | |||
Page | |||
~ | |||
c ZcOLAYlUA'E~T TR'ANsFEg. /Ho>EL: | |||
v8's's el mal ~ | |||
Kq.~ | |||
I-s~~ | |||
TccDQ..,. | |||
A o~g L.E lugged HE+7 TRAPS'FKR, F~ R'(oru(EMlZ't( Cgl 8 U = c ve gwi ~ Hzg7 < a~@ gr.c~ | |||
CoF F F'(C l E +Y "v ~a~ | |||
lS T'~TER~lN~D F'%cate ~HI DiTTUS-Boat pep Ecgu4-p c ~.- | |||
h D,, | |||
Cg,p~ | |||
= ~.az.>Re D | |||
'r o.a n iT ~5 AsSuwKp +~MT | |||
MPR Associates, Inc. | |||
WMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page o8$-z.>~ -A8 P=o~ g | |||
$T .7~~. (IRATE p) = 70 F- | |||
'Pr = 6.>9 y = o, o3~89 ~i~ | |||
d.3 l>~ N~ Et ~ | |||
F z>- z.ceo I'= oav~ S+ ~ ii=~.)zi+i-(W s (z 6 2.go x(o B.lS 7SVxro+ | |||
Kgg = CO/@DUCT i Vl'r~/ Oi- 5'7/IAILGS 5 ~<F4 lf'30$) | |||
ate | |||
(~e~. i-i) ox." | |||
1.6Sl "= u.ice | |||
= EPPt VAC.gA T <<~PUC7t V IT/ y E.TMG'GA'COAIC&VTg'1 C YLINPEl2 5 l5 FOuA l) Prom EXP~ g'imEm7A L COg Q 6 LA 7 (am~ | |||
FR~V ibex> l~ RGF. 5. SPECI~~clCLY, rHE.- | |||
CoRRCLAq-<Ous ARE 'EASING OAr pHe PRoD OCT | |||
MPR Associates, Inc. | |||
~ | RMPR 320 King Street Alexandria, VA 22314 Calculation No. | ||
~( | Deg-23M-38 P=c Prepared By Fd'age Checked By 7 | ||
&g~fg ~HGP 6-Q.g< QRA5HoFI. AIGAngEg "gh5'E,D o~ gA~tAc CAI' Bmu'~CW YSC. noa<CE'. A~b ~i SF-VG 2'.RWA'DTl- /QUAL. g t=R iT is AssvnnE> <HAT THF WT ~c.ao~s wRE AA0]4L g4P l 5 HALF WHF 7OTdw Q> f Ra& PblE' t'PP Fc~~ Tc T H E. REHcvap vE5SGL Fc.UlD WE~Pez~~urzE: (s~s V), | |||
I Z i = ~(S?.S 7o) = z~a iv'z Asgg~gy ) HAT 7HG'VG'P-~4~ 7 lw i/L, a3 v' s'-' | |||
THE'oc m= 5?.6 ~ A > = Ezs' -'~~ s) "- L// / F | |||
-'3 | |||
= g 8?OxlD. | |||
P 8 = o. <78 | |||
= | |||
</0 6 /l, Pa @-8'8 k =e.svg6 | |||
MPR Associates, Inc. | |||
@HAMI R 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By g + 5~ 2.3'c3 ~A 8 l2-43~ TAu'- Page Qg =(3z..w z~ (do~5'3 fj)(o820x(o < )Izz8 F) (g0g57g | |||
=(G. 72. / g~ )(>C<~ g,) = 9.3rA'(0 log Ca P~ = la~[(9.aye(O )(D 88.) j = 6 92. | |||
MPR Associates, Inc. | |||
/ | ra~MI R 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page gag -2.3o -gg g-QX FCkl L Sc | ||
/Ht= gedsoWAtrgqmgs-5 c F weKsE we~ogT's | |||
/5' j-IECKC Q> p~/ CoW pAR,(A+ gGSUL-TS' 0 cALcucAT 6 lo v"ALvEs'<P ~HG FFEQbrl7KR | |||
~o ~<LE: | |||
/qsA 7 | |||
~lZ~~FCR gE'Q lom5 | |||
(~ Vg 5 g a L tug I- L | |||
~O&QL-E, A/oEVCC'NI Om gGQ (om 33 cA<cocATEh 87/(<< | |||
CW (6EVA<U.<) JOO t-W (ALPS VALVE I oaO )50 | |||
/. F Ran/L R5 F. 6 + ~-Z <9.3S5UmGS'c i+fE.Retd& | |||
5'I-E.EvE xvfAss l E.At.4C E Fzow gGF~. clssduE~ s'f ~ ~Hze~gt s~zzys hyPA5'5. | |||
0 MPR Associates, Inc. | |||
r>~MPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By o6'S-2.3 o -A II 12-o L ~+ T<<~ lQ Page /~ | |||
)( | VALUE'ALCULII EL Fak ~HE CR~g. ~<+~LE Is'HE SAWE AS cate CuI AT E D ~ok <HC FW NOZZLE HP2) Sd IS'oWS IDEE'GZ) F-GAIN ABLE, RzFF bee i) ~Z DgAu (N+ (ggQ+84/ DRIVE ~CITY@ REER~ lA'L-GT | ||
) CE: ~R/I&(No E 23I--5.'67, psv. 7, /I/aW'ELK DE>"AILS I/E-S S6 L HEAT WRAÃsFER/ 9TH EpITlo&I CHANC A/I//l98 I l) CRC HA//DEoo g Fo PPL(ED EmG I'A'EEI2I//S5CI.E//c E'A b eyIVIO~. | |||
: 5) HEAT A//l0 f11 Fl$ 5 T A/vSFEE' ECKEZT 'Aml> DRAPE/ /955'P P'3<7- 33 /, | |||
: 6) GEPGP~P'T /I/EDE -~l IEZ I., BaILI~O IaAT+R. | |||
LE/S PA E'@EP 'FI//Al RE.PORT REACTOR'EEDI//ATEgAO'W~ | |||
bATF 0 en~ Rg5 l9Vg'. | |||
-7) /NPP REPoRT ZbIPPaVEQ Lou/ FLoloFEEloI /ITEP Ca//TRoL SV57E/I/I i&TED'RIAL /PS'9 SECT/aW /.7 .(Fo'EM/APIIE5 7o P. AnA~~AFGRR4 cV Ar~p< Ey LEMER, DARED JI/~E I, Isev), | |||
ASSOCIATES INC. | |||
ENGINEERS Appendix E CRDR NOZZLE FINITE ELEMENT MODEL BOUNDARY CONDITIONS AND RESULTS | |||
MPR Associates, Inc. | |||
lLimpR 320 King Street Alexandria, VA 22314 CALCULATION TITLE PAGE Client | |||
~ ~~ ~gp/~/g Page 1 of gq | |||
+//L/g W/Qg / 0/rv/ ~~// / | |||
Project Task No. | |||
g~ / ~~~ ~o pygmy rT /Q 0Z~ | |||
Title Calculation No. | |||
go~~p~pY Anted /77 @AS ~i> ZF~ur- I~ ~- P29-Ct~d-o3 Preparer/Date Checker/Date Reviewer/Date Rev. No. | |||
az. 8 .'/ g <g.'7~ | |||
Z-Z/- 5'y | |||
MPR Associates, Inc. | |||
txrMPR 320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No.. Prepared By 080= PP 9 - Fd'rs - y3 Page Revision Description 0+1+ pv<r rO'J vP | |||
MPR Associates, Inc. | |||
t>IMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By dd~- cVW- ggg-o J Page ~ | |||
Purpose The purpose of this calculation is to document the boundary conditions and results of a finite element analysis of the Niagara Mohawk Power Corporation, Nine Mile Point Unit 1 (NMP-1) Control Rod Drive (CRD) Return Nozzle. A transient thermal/stress analysis simulating a reactor scram was performed. References 1 and 2 are calculations which document the finite element model geometry and material properties. | |||
The ANSYS computer program (Reference 3) was used to calculate the transient temperature distribution in an axisymmetric model of the nozzle. The program was then used to calculate stress profiles due to pressure and due to the calculated temperature distribution. The results of this analysis, in the form of stress distributions through the bore/blend section of the nozzle, will be used in a fatigue and crack growth evaluation of the CRD return nozzle. | |||
Discussion The CRD system provides water from the condensate storage tank at a temperature of about 70'F to the control rod drive mechanisms to cool the control rod drives, to reposition rods and to scram the rods. The system operates at all times that fuel is in the vessel. Excess fiow from the CRD pumps is routed to the reactor vessel via the CRD return nozzle. Consequently, flow through the CRD return nozzle is typical. | |||
Nominal CRD return flow rate is 17 to 35 gpm. The flow rate does not change as a result of repositioning a control rod since the flow diverted to move the rod is compensated by the water displaced by the rod. | |||
A reactor scram results in a CRD return nozzle flow transient (Reference 4). During a scram, the CRD accumulators discharge to drive the control rods into the core. this results in an increase in CRD return flow to 65 gpm. When accumulator pressure drops below reactor pressure, CRD flow rate goes to zero as the accumulators are recharged. After the accumulators have been recharged, CRD flow rate returns to the nominal 17 to 35 gpm. | |||
The last portion of the reactor scram transient is simulated in this calculation. At time zero the nozzle is at a uniform temperature of 525'F corresponding to zero flow through the CRD return nozzle as the accumulators are recharged. At 1 second into the transient, the CRD return flow rate is step changed to the nominal flow rate of 35 | |||
MPR Associates, Inc. | |||
l41MPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared Checked By os%- >z 1 wed- o 7 By gR~ Page ~ | |||
gpm with a fluid temperature of 70'F. A pressure of 1250 psig is applied to the inside surface of the reactor vessel wall and the inside of CRD return nozzle throughout the transient (nominal reactor pressure is 1030 psig, scram pressure is 1250 psig). | |||
Details of the thermal and structural boundary conditions are discussed below. | |||
Thermal Bounda Conditions for the reactor scram transient are shown on Figure 1 and discussed below. At time zero the CRD return nozzle and reactor vessel wall are at a uniform temperature of 525'F corresponding to the bulk downcomer fluid temperature. The overall heat transfer coefficient between the downcomer fluid and the vessel wall is assumed to be 1000 Btu/(hr-ft -'F). This is the value used in prior analyses for the feedwater nozzle. At 1 second into the transient, the bulk fluid temperature in the CRD return nozzle is step changed to 70'F. The overall heat transfer coefficient between the CRD return fluid and the nozzle wall is 100 Btu/(hr-ft- | |||
'F). The heat transfer coefficient in the nozzle includes the effects of the fluid film on the inside diameter of the thermal sleeve, conduction through the thermal sleeve, and natural convection through the stagnant layer between the thermal sleeve and the nozzle bore. Reference 5 is a calculation of the overall heat transfer coefficient between the CRD return fluid and the nozzle inside surface. | |||
The outside of the vessel wall, the outside of the nozzle and the radial cut lines through the vessel wall and safe end are modeled as adiabatic (no heat flow across the surface). | |||
Structural Bounda Conditions include applied pressure and displacement constraints. Figure 2 shows the applied pressure along the inside surface of the reactor vessel wall and the inside surface of the CRD return nozzle. The applied pressure on these surfaces is 1250 psig. A pressure is also applied to the safe end to represent the axial load in the attached piping, The value of the pressure applied to the safe end is calculated as follows (dimensions are from Reference 1): | |||
Aint pi*R12 13.34 in Fl Pint"Aint 16681. Ibf Al pi*(R3 -R1 ) = 5.803 in Pend = FI/AI 2875. psi Where: | |||
0 MPR Associates, Inc. | |||
RMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By oN- d4f - F4ss'-oZ 7K~ Page Aint Inside area of safe end (in ) | |||
R1 Safe end inside diameter = 2.061 inches Pint Internal pressure = 1250 psig Fl Longitudinal force (Ibf) | |||
AI Cross sectional area of safe end R3 Safe end outside diameter = 2A69 inches Pend = Pressure applied to the safe end (psi) | |||
Figure 3 shows the displacement boundary conditions applied to the end of the reactor vessel wall. Symmetry boundary conditions are applied to permit radial displacement along the cut line but to prohibit rotation of the cut line. Figure 4 shows the displacement boundary conditions applied to the safe end. Couples are used to allow translation of the safe end cut line but to prohibit rotation of the cut line. | |||
Results The peak stress intensity occurs at the end of the transient when steady state conditions have been reached. Figure 5 shows the time history of stress intensity at several nodes in the bore/blend region. The stresses shown in the time history are at the cladding to base metal interface. | |||
Figure 6 shows the calculated temperature distribution at the end of the transient. | Figure 6 shows the calculated temperature distribution at the end of the transient. | ||
The peak stress intensity in the base metal for the transient occurs at node 806 in the bore blend region of the nozzle at the base metal to cladding interface (Attachment A).The peak stress intensity at node 806 due to temperature and pressure is 110 ksi.The stress intensity due to pressure alone at node 806 is 65 ksi.The principal component of the stress intensity is the hoop stress.Color coded contour plots of stress distribution are shown in Figures 7 through 10 for pressure only loading (time zero of the transient). | The peak stress intensity in the base metal for the transient occurs at node 806 in the bore blend region of the nozzle at the base metal to cladding interface (Attachment A). | ||
Figures 11 through 14 show stress distributions at the end of the reactor scram transient for pressure and temperature loading.Four plots are shown for each loading: Stress intensity, ASME code or Tresca stress intensity, Hoop stress, the Z component of stress for the axisymmetric model,~X component stress, interpreted as a second hoop stress for the | The peak stress intensity at node 806 due to temperature and pressure is 110 ksi. | ||
The stress intensity due to pressure alone at node 806 is 65 ksi. The principal component of the stress intensity is the hoop stress. | |||
Color coded contour plots of stress distribution are shown in Figures 7 through 10 for pressure only loading (time zero of the transient). Figures 11 through 14 show stress distributions at the end of the reactor scram transient for pressure and temperature loading. Four plots are shown for each loading: | |||
Stress intensity, ASME code or Tresca stress intensity, Hoop stress, the Z component of stress for the axisymmetric model, | |||
~ X component stress, interpreted as a second hoop stress for the | |||
e 0 | |||
ANSYS 5.0 | MPR Associates, Inc. | ||
lLiMpR 320 King Street Alexandria, VA 22314 Calculationflag-cg No. Prepared By Page ogJ - g2 g- Z.N. N~cl spherical model of the vessel wall, Y component stress, interpreted as axial stress in the nozzle region. | |||
Figures 15 and 16 show the locations of nodes 806 and 14. Node 806 is the point of maximum stress intensity at the interface between the cladding and the base metal. | |||
Node 14 is the point of maximum stress intensity on the outside surface of the nozzle/vessel intersection. A straight line (path) is drawn from node 806 to node 14 and the stress intensity values are interpolated onto the path (Figure 11 shows the interpolation path). Figures 17 and 18 show stress intensity along this path for the pressure only case and the pressure and temperature case. Attachment B is a tabular listing of the stress versus path length values for Figures 17 and 18. | |||
Attachments C and D provide the ANSYS input data for the thermal and stress passes of the analysis. | |||
Reference 6 is the hard copy output file for the both the thermal and stress passes. | |||
References | |||
: 1. MPR Calculation 085-229-EBB-01, "CRDR Nozzle Finite Element Model Geometry". | |||
: 2. MPR Calculation 085-229-EBB-02, "CRDR Nozzle Finite Element Model Material Properties", Revision 0. | |||
: 3. ANSYS computer program version 5.0. | |||
MPR Calculation 085-230-ABR-01, "Nine Mile Point Unit 1, Control Rod Drive Return Nozzle Thermal and Pressure Cycles", Revision 1. | |||
: 5. MPR Calculation 085-230-ABR-02, "Over all Heat Transfer Coefficient For CRDR Nozzle at NMP-1", Revision 0. | |||
: 6. ANSYS output file NOZZLE.OUT, 87,853 bytes dated 4-04-94 3:45:28 pm. | |||
ANSYS 5.0 APR 7 1994 | ANSYS 5.0 APR 7 1994 12:00:41 PLOT NO. 2 NODES TYPE NUM CONV ZV =1 DIST=25.552 XF =25.29 YF =347.745 | ||
~ g -0 I= | |||
p g = /Ego Heat Transfer Boundary Conditions | |||
ANSYS 5 | ANSYS 5.0 APR 7 1994 11:59:26 PLOT NO. 1 NODES TYPE NUM PRES ZV =1 DIST=25.552 XF =25.29 P8P< PZg cyylrccf ~gag-g<~ +~ JJu~ YF =347.745 | ||
~~ QJIQ 4/pl] eel +~J C M Pressure Boundary Conditions r /'Cut 6 | |||
ANSYS 5'APR 7 1994 12: | ANSYS 5 ' | ||
- | APR 7 1994 12:03:24 PLOT NO. 3 NODES TYPE NUM U | ||
ZV =1 DIST=25.552 XF =25.29 YF =347.745 | |||
+r'I'/III I I I I I I I i I I I I Iiiiiii | |||
~ ~ ~ ~ | |||
Structural Boundary Conditions - Radial Symmetry ,~/Q U/Z & | |||
ANSYS 5. | ANSYS 5 ' | ||
APR 7 1994 12:05:05 PLOT NO. 4 NODES TYPE NUM CP ZV =1 DIST=25.552 | |||
/OA c. | |||
ZF =25.29 YF =347.745 | |||
+a !1~ | |||
A" ~ | |||
1'; ~, | |||
//IIIIII | |||
~ ~ ~ ~ ~ ~ ~ ~ | |||
I I I I I I I I I I I I I I I I I I I I I I I I I I I I Structural Boundary Conditions No Rotation at Safe End g-((- ug C | |||
ANSYS 5.0 | ANSYS 5.0 | ||
( x 10442) 105 SZ-806 100 SZ-803 SZ-806 SZ-805 SZ 807 90 85 800 75 70 650 60 S50 0 800 1600 2400 3200 4000 4800 400 1200 2000 2800 3600 4400 5200 Ti me ( Sec) | |||
Reactor Scram Transient +/&u/Z~ | |||
ANSYS 5.0 APR 4 1994 16:33:47 PLOT NO. 1 NODAL SOLUTION STEP=2 SUB =21 TIME=3601 TEMP TEPC=9.434 SMN =88.846 SMX =523.562 88.846 100 200 300 400 500 600 Reactor Scram, Temperature Profile +/5-u4C-. | |||
ANSYS 5.0 APR 4 1994 16: | ANSYS 5.0 APR 4 1994 16:32:56 PLOT NO. 1 NODAL SOLUTION STEP=1 SUB =1 TIME=1 SINT (AVG) | ||
DMX =1.501 SMN =1421 SMNB=920.904 SMZ =66400 SMKB=72225 1421 8641 15861 23081 30300 37520 | |||
~g tt"'~ 44740 S iSQSy S | |||
51960 fS 59180 66400 | |||
) 9 Pressure Only, Stress Intensity P/6 u4 E' | |||
ANSYS 5.0 APR 4 1994 16:33:00 PLOT NO. 2 NODAL SOLUTION STEP=1 SUB =1 TIME=1 SZ (AVG) | |||
- | RSYS=O DMX =1.501 SMN =-22178 SMNB=-30892 SMX =63262 SMXB=68966 | ||
-22178 | |||
-12685 | |||
-3192 6302 15795 25288 34782 44275 53769 63262 Pressure Only, Hoop Stress Erbv~g 8 | |||
ANSYS 5.0 APR 4 1994 16:33: | ANSYS 5.0 APR 4 1994 16:33:03 PLOT NO. 3 NODAL SOLUTION STEP=1 SUB =1 TIME=1 SX (AVG) | ||
RSYS=O DMX =1.501 SMN =-3074 SMNB=-13025 | |||
.e SMZ =42194 E. | |||
SMZB=46227 C | |||
-3074 S | |||
1956 6986 12015 17045 22075 27104 32134 37164 42194 Pressure Only, X Component Stress P/'bu/ZC | |||
ANSYS 5.0 APR 4 1994 16:33:06 PLOT NO. 4 NODAL SOLUTION STEP=1 SUB =1 TIME=1 SY (AVG) | |||
RSYS=O DMX =1.501 SMN =-23031 SMNB=-32313 SMX =4943 SMXB=9878 | |||
-23031 | |||
-19923 | |||
-16815 | |||
-13706 | |||
-10598 | |||
-7490 | |||
-4382 | |||
-1273 1835 4943 Pressure Only, Y Component Stress .g/gu/Z & /0 | |||
ANSYS 5.0 APR 4 1994 16:33: | ANSYS 5.0 APR 4 1994 16:33:25 PLOT NO. 5 NODAL SOLUTION STEP=14 SUB =1 TIME=3600 SINT (AVG) | ||
- | DMX =1.46 SMN =3550 SMNB=2589 SMX =95834 SMXB=104406 3550 13804 24057 34311 44565 54819 | ||
~~q~< /'oc-8 77onf /~( 65072 75326 85580 | |||
~ | |||
95834 X~sS W~oW Reactor Scram, Stress Intensity y4-&,c. // | |||
ANSYS 5.0 APR 4 1994 16:33:28 PLOT NO. 6 NODAL SOLUTION STEP=14 SUB =1 TIME=3600 SZ (AVG) | |||
=1 TIME=3600 | RSYS=O mX =1.46 SMN =-44957 SMNB=-61709 Sm =98365 SMXB=106937 | ||
- | -44957 | ||
-29032 | |||
-13108 2817 18742 34666 50591 66516 82440 98365 Reactor Scram, Hoop Stress . +J+u/C~ | |||
ANSYS 5.0 APR 4 1994 16 | ANSYS 5.0 APR 4 1994 16:33:31 PLOT NO. 7 NODAL SOLUTION STEP=14,'UB | ||
- | =1 TIME=3600 SX (AVG) | ||
RSYS=O DMX =1.46 SMN =-5953 4 +z SMNB=-23928 c | |||
:t$ a SMX =65837 | |||
. ~ SMXB=70794 | |||
-5953 2023 10000 17977 25953 33930 41907 49883 57860 65837 Reactor Scram, X Component Stress | |||
ANSYS 5.0 APR 4 1994 16.33.35 PLOT NO. 8 NODAL SOLUTION STEP=14 SUB =1 TIME=3600 SY (AVG) | |||
RSYS=O DMX =1.46 SMN =-45246 SMNB=-61830 SMX =18196 SMXB=20255 | |||
-45246 | |||
-38197 | |||
-31148 | |||
-24099 | |||
-17050 | |||
-10001 | |||
-2952 4098 11147 18196 Reactor Scram, Y Component Stress ~ g~d.v/Z0 /'/ | |||
ANSYS 5.0 822 APR 7 1994 831 12:23:22 PLOT NO. 1 NODES 833 NODE NUM 83l 835 ZV =1 | |||
*XF= | $ 36 *DIST=1.386 | ||
*XF =5.994 | |||
$ 37 | |||
*YF =348.819 838 839 | |||
$ l0 | |||
$ 41 | |||
$ 42 843 | |||
$ 44 845 | |||
$ 46 | |||
$ 47 | |||
$ 48 849 141 2140 14 82 1139 2138 1137 1136 | |||
$ 135 2134 1133 2132 3131 2130 13 253 164 Node Numbers - OD 275 | |||
+/&v/z.C /J | |||
$ 65 948 ANSYS 5.0 APR 7 1994 | |||
$ 03 920 l323 12:27:42 l300 PLOT NO. 2 | |||
$ 92 947 | |||
$ 64 NODES 919 NODE NUM | |||
$ 04 l322 946 =1 l301 ZV | |||
$ 63 | |||
*DIST=2.621 | |||
*XF =2.975 | |||
$ 05 945 *YF =344.095 l321 l302 | |||
$ 62 917 944 | |||
$ 06 l3 $ 89 l303 | |||
$ 61 916 943 | |||
$ 07 $ 88 l319 l304 915 | |||
$ 60 942 | |||
$ 08 $ 87 l318 914 l305 941 | |||
$ 59 | |||
$ 86 913 l317 l306 $ 58 | |||
$ 85 | |||
.786 1316 l283 $ 57 | |||
$ 84 | |||
.789 l315 $ 56 l286 | |||
.788 l314 l285 | |||
.787 1313 1284 Node Numbers ID | |||
+/pv/CC /4 | |||
ANSYS 5.0 APR 4 1994 18:06:06 PLOT NO. 1 POST1 | |||
( x 10I 01) STEP=1 SUB =1 652 TIME=1 PATH PLOT NOD1=806 612 NOD2=14 CO ZV =1 573 DIST=0.75 XF =0.5 5331 YF =0.5 ZF =0.5 CENTROID HIDDEN C | |||
453 C | |||
413 373 333 293 2537 1.083 2.165 3.248 4.331 5.414 0.541 1 ~ 624 2.707 3.79 4.872 Po s i 4 i o n , ID 4 o OD Pressure Only Bid ue l7 | |||
ANSYS 5.0 APR 4 1994 18:06:26 PLOT NO. 2 POST1 | |||
( x 104 I'2) STEP=14 SUB =1 110 TIME=3600 PATH PLOT NOD1=806 102 NOD2=14 ZV =1 957.962 DIST=0.75 ZF =0.5 887.1 YF =0.5 | |||
+ | |||
ZF =0.5 CENTROID HIDDEN 816.23 C | |||
745.37 C | |||
674.51 C 603.65 532.79 461.93 391.071 0 1. 083 2. 165 3.248 4.331 5.414 0.541 1.624 2.707 3.79 4.872 Posi ti on, ID to OD Reactor Scram Transient -g/6. use /8 | |||
Path: C: | Path: C:(NOZZLE File: PRINC .OUT 3,779 .a.. 4-19-94 11:26:26 am Page 1 2 PRINT S NODAL SOLUTION PER NODE | ||
*****POST1 NODAL STRESS LISTING ***** | |||
********** | LOAD STEP= 14 SUBSTEP= 1 TIME= 3600.0 LOAD CASE= 0 NODE S1 S2 S3 SINT SEQV 786 81146 ~ 10911 -319 20~ 81465 76471. | ||
788 56018. 6038 ' -6398.4 '2416 57221. | |||
789 67399. 6629.0 3727 2 ~ '1126. | |||
66555. | |||
804 94075. 14592. 88.197 93987. 87640. | |||
805 96912. 14833. 1399.5 95513. 89555. | |||
806 98365. 14961. 2531.2 95834. 90263. | |||
807 98266. 14952. 3189.8 95076. 89775. | |||
808 96331. 14815. 3144.3 93187. 87934. | |||
809 91893. 14731. 3307.7 88585. 83462. | |||
856 57385. 14104. -5699.0 63084. 55880. | |||
857 68590. 14550. -2822.1 71412. 64505. | |||
858 79143. 16890. -785.25 79929. 72720. | |||
859 85484. 19029. 836.86 84647. 77176. | |||
860 88636. 19955. 1416.9 87219 79586. | |||
861 89736. 20410. 1333.5 '8402. | |||
80576. | |||
862 89338. 20538. 696.85 88641. 80574. | |||
863 87672. 20432. -258.09 87930. 79627. | |||
864 84840. 20125. -1283.0 86123. 77664. | |||
884 59084. 20609. -4961.7 64045. 55839. | |||
885 68866. 20742. -3016.3 71882. 63433. | |||
886 76618. 21866. -1252.0 77870. 69267. | |||
887 80398. 23376. -159.63 80557 71746. | |||
888 82186. 24231. 98.306 '2087. | |||
73073. | |||
889 82524. 24660. -166.38 82690. 73493. | |||
890 81716. 24790. -798.84 82515. 73158. | |||
891 79890. 24681. -1622.9 81512. 72056. | |||
913 68225. 25290. -2831.9 71057. 61981. | |||
914 73604. 25862. -1587.6 75192. 65904. | |||
915 75714. 26976. -1036.3 76750. 67271. | |||
916 76516. 27659. -1036.6 77553. 67915. | |||
917 76268. 27992. -1413.2 77682. 67933. | |||
918 75133. 28080. -2032.6 77165. 67362. | |||
919 73179. 27924. -2739.3 75918. 66151. | |||
942 70289. 29135. -1999.6 72289. 62804. | |||
943 71275. 29919. -1828.9 73104. 63492. | |||
944 71356. 30402. -2021.0 73377. 63689. | |||
945 70657. 30633. -2474.8 73132. 63429. | |||
*****POST1 NODAL STRESS LISTING ***** | |||
LOAD STEP= 14 SUBSTEP= 1 TIME= 3600.0 LOAD CASE= 0 | |||
Path: C: | Path: C:)NOZZLE File: PRINC .OUT 3,779 .a.. 4-19-94 11:26:26 am Page 2 2. | ||
***** | NODE S1 S2 S3 SINT SEQV MINIMUM VALUES NODE 788 788 788 788 884 VALUE 56018. 6038.2 -6398.4 62416. 55839. | ||
***** | MAXIMUM VALUES NODE 806 945 809 806 806 VALUE 98365. 30633. 3307.7 95834. 90263. | ||
*****ESTIMATED BOUNDS CONSIDERING THE EFFECT OF DISCRETIZATION ERROR ***** | |||
MINIMUM VALUES NODE 788 789 788 788 856 VALUE 50335. -1620.3 -12082. 56733. 50585. | |||
MAXIMUM VALUES NODE 806 945 809 806 806 VALUE 0.10694E+06 34037. 11892. 0.10441E+06 98835. | |||
*****ENTER HELP, ERROR FOR AN EXPLANATION OF ANSYS ERROR ESTIMATION ***** | |||
*****END OF INPUT ENCOUNTERED ***** | |||
EXIT THE ANSYS POST1 DATABASE PROCESSOR | |||
Path: C: | Arecsi~idwT' Path: C:hNOZZLE Fi.le: XPATH .OUT 13,436 .a.. 4-04-94 6:06:28 pm Page 1 Qd WELCOME TO THE ANSYSPROGRAM | ||
***** ANSYS COMMAND LINE ARGUMENTS ***** | |||
MEMORY REQUESTED (MB) = 64.0 | |||
*** | ***** INPUT FROM CONFIG.ANS FILE KEYWORD INPUT VALUE VALUE USED NUM VPAG 512 512 SIZ VPAG 12288 12288 EXT FILE 0 0 | ||
***** ANSYS DYNAMIC MEMORY ALLOCATION ***** | |||
WORK SPACE REQUESTED 16777216 64.000 MB COMMAND LINE MINIMUM WORK SPACE REQUIRED 6815744 26.000 MB MINIMUM WORK SPACE RECOMMENDED = 8799648 33.568 MB WORK SPACE OBTAINED 16777214 64.000 MB BYTES PER WORD 4 | |||
***** NOTICE ***** THIS IS THE ANSYS GENERAL PURPOSE FINITE ELEMENT COMPUTER PROGRAM. NEITHER SWANSON ANALYSIS SYSTEMS, INC. NOR THE DISTRIBUTOR SUPPLYING THIS PROGRAM ASSUME ANY RESPONSIBILITY FOR THE VALIDITYi ACCURACY'R APPLICABILITY OF ANY RESULTS OBTAINED FROM THE ANSYS SYSTEM. | |||
USERS MUST VERIFY THEIR OWN RESULTS. | |||
ANSYS (R) COPYRIGHT (C) 1971 i 1978 i 1982 i 1983 i 1985 i 1987 '989 i 1992 BY SWANSON ANALYSIS SYSTEMS, INC. AS AN UNPUBLISHED WORK. | |||
PROPRI ETARY DATA UNAUTHORIZED USE i DISTRI BUTIONi OR DUPLICATION IS PROHIBITED. ALL RIGHTS RESERVED. | |||
SWANSON ANALYSIS SYSTEMS,INC. IS ENDEAVORING TO MAKE THE ANSYS PROGRAM AS COMPLETE i ACCURATE i AND EASY TO USE AS POSSIBLE. SUGGESTIONS AND COMMENTS ARE WELCOMED ANY ERRORS ENCOUNTERED IN EXTHER THE DOCUMENTATION OR THE RESULTS SHOULD BE IMMEDIATELY BROUGHT TO OUR ATTENTION | |||
Path: C:)NOZZLE File: XPATH.OUT 13,436.a.. | Path: C:)NOZZLE File: XPATH .OUT 13,436 .a.. 4-04-94 6:06:28 pm Page 2 ><~ | ||
ENTER /SHOW, device TO SET THE GRAPHICS DISPLAY TO device(e.g. VGA, HALO,ETC.) | |||
ENTER /MENU, ON TO START THE ANSYS MENU SYSTEM | |||
-ENTER HELP FOR GENERAL ANSYS HELP INFORMATION MPR ASSOCIATES VERSION=PC 386/486 REVISION= 5.0 FOR SUPPORT CALL PHONE 703/519-0200 FAX CURRENT JOBNAME=file 18:05:44 APR 04, 1994 CP= 0.000 BEGIN: | |||
1 /FILNAM,NOZZLE FILETS 2 RESUME 3 /POST1 4 / SHOW g XPATH g PLT 5 NOZZLE'ST 6 | |||
7 SET, 1 8 /TITLE,SINTER Pressure Only 9 /GRID,1 10 /AXLAB,X,Position, ID to OD 11 /AXLAB,Y,Stress Intensity (psi) 12 LPATHg 806 g 14 13 PDEFg S g INT 14 PLPATH,SINT 15 PRPATH,SINT 16 17 SET,LAST 18 /TITLE,Reactor Scram Transient 19 /GRID,1 20 /AXLAB,X,Position, ID to OD 21 /AXLAB,Y,Stress Intensity (psi) 22 LPATH~806g14 23 PDEFgSINTgSgINT 24 PLPATH,SINT 25 PRPATH,SINT CURRENT JOBNAME REDEFINED AS NOZZLE RESUME ANSYS DATA FROM FILE NAME=NOZZLE.db | |||
*** ANSYS GLOBAL STATUS *** | |||
TITLE = NMP Unit 1 CRD Return Nozzle ANALYSIS TYPE = STATIC (STEADY-STATE) | |||
NUMBER OF ELEMENT TYPES = 1 1358 ELEMENTS CURRENTLY SELECTED. MAX ELEMENT NUMBER 1358 1470 NODES CURRENTLY SELECTED. MAX NODE NUMBER 1470 25 KEYPOINTS CURRENTLY SELECTED. MAX KEYPOINT NUMBER 25 31 LINES CURRENTLY SELECTED. MAX LINE NUMBER 31 6 AREAS CURRENTLY SELECTED. MAX AREA NUMBER 6 1 COMPONENTS CURRENTLY DEFINED | |||
Path: C:)NOZZLE File: XPATH.OUT 13,436.a..4-04-94 6:06:28 pm Page 4 ogcP***WARNING***CP=18.730 TIME=18: 06: 03 The selected element set contains mixed materials. | Path: C:)NOZZLE File: XPATH .OUT 13,436 .a.. 4-04-94 6:06:28 pm Page 3 Qg d MAXIMUM LINEAR PROPERTY NUMBER 5 ACTIVE COORDINATE SYSTEM 0 (CARTESIAN) | ||
MAXIMUM COUPLED D.O.F. SET NUMBER 1 NUMBER OF SPECIFIED CONSTRAINTS 15 NUMBER OF SPECIFIED SURFACE LOADS 208 INITIAL JOBNAME = | |||
CURRENT JOBNAME = NOZZLE file 1 | |||
*****ANSYS ENGINEERING ANALYSIS SYSTEM REVISION 5.0 ***** | |||
MPR ASSOCIATES VERSION PC 386/486 18 05 48 APR 04i 1994 CP 3.790 FOR SUPPORT CALL PHONE 703/519-0200 FAX NMP Unit 1 CRD Return Nozzle | |||
*****ANSYS RESULTS INTERPRETATION (POST1) ***** | |||
/SHOW SWITCH PLOTS TO FILE XPATH.PLT RASTER MODE. | |||
DATA FILE CHANGED TO FILE= NOZZLE.RST USE LOAD STEP 1 SUBSTEP 0 FOR LOAD CASE 0 SET COMMAND GOT LOAD STEP= 1 SUBSTEP= 1 CUMULATIVE ITERATION= | |||
TIME/FREQUENCY= 1.0000 TITLE='ressure Only GRAPH PLOT KEY = 1 X AXIS LABEL = Position, ID to OD Y AXIS LABEL = Stress Intensity (psi) | |||
DEFINE A PATH FOR SUBSEQUENT CALCULATIONS THROUGH NODES: | |||
806 14 DEFINE PATH IN PATH COORDINATE SYSTEM 0 DIRECTION MAX MIN X 6.2855 2.2798 Y 348.57 344 93 Z 0.00000E+00 0.00000E+00 TOTAL PATH LENGTH = 5.4136 DEFINE PATH VARIABLE SINT AS THE NODAL DATA ITEM=S COMP=INT ROTATED INTO COORDINATE SYSTEM 0 AND MOVED TO THE PATH NUMBER OF PATH VARIABLES DEFINED IS 5 | |||
Path: C:)NOZZLE File: XPATH .OUT 13,436 .a.. 4-04-94 6:06:28 pm Page 4 ogcP | |||
*** WARNING *** CP= 18. 730 TIME= 18: 06: 03 The selected element set contains mixed materials. | |||
This could invalidate error estimation. | This could invalidate error estimation. | ||
==SUMMARY== | ==SUMMARY== | ||
OF VARIABLE SINT MAX=65283.MIN=25366.DISPLAY ALONG PATH DEFINED BY LPATH COMMAND.DSYS=0 CUMULATIVE DISPLAY NUMBER 1 WRITTEN TO FILE XPATH.PLT DISPLAY TITLE=Pressure Only PRINT ALONG PATH DEFINED BY LPATH COMMAND.DSYS=0 1 | OF VARIABLE SINT MAX = 65283. MIN = 25366. | ||
DISPLAY ALONG PATH DEFINED BY LPATH COMMAND. DSYS= 0 CUMULATIVE DISPLAY NUMBER 1 WRITTEN TO FILE XPATH.PLT RASTER MODE. | |||
DISPLAY TITLE= | |||
Pressure Only PRINT ALONG PATH DEFINED BY LPATH COMMAND. DSYS= 0 1 | |||
*****ANSYS ENGINEERING ANALYSIS SYSTEM REVISION 5 0 ***** | |||
MPR ASSOCIATES VERSION PC 386/486 18 06 07 APR 04 g 1994 CP 22.460 FOR SUPPORT CALL PHONE 703/519-0200 FAX Pressure Only | |||
*****PATH VARIABLE | |||
==SUMMARY== | ==SUMMARY== | ||
S NT 0.00000E+00 0.11278 65283 56417. ~o Cs I | |||
0.22557 55542. | |||
0.33835 54202. | |||
0.45114 52785. | |||
0.56392 51498. | |||
0.67670 50264. | |||
0.78949 49109. | |||
0 90227 48019. | |||
1.0151 46971. | |||
1.1278 46001. | |||
1.2406 45053. | |||
1.3534 44170. | |||
1.4662 43285. | |||
1.5790 42462. | |||
1.6918 41670. | |||
1.8045 40901. | |||
1.9173 40178. | |||
2.0301 39460. | |||
2.1429 38800. | |||
2.2557 38185. | |||
2.3685 37550. | |||
2.4813 36926. | |||
2.5940 36478. | |||
2.7068 35974. | |||
Path: C:)NOZZLE File: XPATH.OUT 13,436.a..4-04-94 6:06:28 pm Xage SQ8 2.8196 2.9324 3.0452 3.1580 3.2707 3.3835 3.4963 3.6091 3.7219 3.8347 3.9474 4.0602 4.1730 4.2858 4.3986 4.5114 4.6242 | Path: C:)NOZZLE File: XPATH .OUT 13,436 .a.. 4-04-94 6:06:28 pm Xage SQ8 2.8196 35466. | ||
2.9324 34944. | |||
3.0452 34360. | |||
3.1580 33722. | |||
3.2707 32732. | |||
3.3835 31830 3.4963 '0986. | |||
3.6091 30218. | |||
3.7219 29503 3.8347 '8831 3.9474 28199. | |||
4.0602 27566. | |||
4.1730 26938 4.2858 26171 4.3986 '5366. | |||
4.5114 27591. | |||
4.6242 29301. | |||
***** ANSYS ENGINEERING ANALYSIS SYSTEM REVISION 5.0 ***** | |||
MPR ASSOCIATES VERSION PC 386/486 18 06 07 APR 04~ 1994 CP 22.510, FOR SUPPORT CALL PHONE 703/519-0200 FAX Pressure Only | |||
*****PATH VARIABLE | |||
==SUMMARY== | ==SUMMARY== | ||
S SINT 4.7369 31204. | |||
14 TIME/FREQUENCY= | 4.8497 33304. | ||
3600.0 TITLE=Reactor Scram Transient GRAPH PLOT KEY=1 X AXIS LABEL=Position, ID to OD Y AXIS LABEL=Stress Intensity (psi) | 4.9625 35360. | ||
5.0753 36726. | |||
5.1881 38077. | |||
5.3009 39423. | |||
5.4136 40778. | |||
USE LAST SUBSTEP ON RESULT FILE FOR LOAD CASE 0 SET COMMAND GOT LOAD STEP= 14 SUBSTEP= 1 CUMULATIVE ITERATION= 14 TIME/FREQUENCY= 3600.0 TITLE= | |||
Reactor Scram Transient GRAPH PLOT KEY = 1 X AXIS LABEL = Position, ID to OD Y AXIS LABEL = Stress Intensity (psi) | |||
Path: C:iNOZZLE File: XPATH.OUT 13,436.a..4-04-94 6:06:28 pm DEFINE A PATH FOR SUBSEQUENT CALCULATIONS THROUGH NODES: 806 14 | Path: C:iNOZZLE File: XPATH .OUT 13,436 .a.. 4-04-94 6:06:28 pm Page 6 a<Z DEFINE A PATH FOR SUBSEQUENT CALCULATIONS THROUGH NODES: | ||
806 14 | |||
*** NOTE *** CP= 32.130 TIME= 18:06:17 Previous interpolated path data has been erased. | |||
Reissue PDEF command to interpolate desired data. | |||
DEFINE PATH IN PATH COORDINATE SYSTEM 0 DIRECTION MAX MIN X 6.2855 2.2798 Y 348.57 344.93 Z 0.00000E+00 0.00000E+00 TOTAL PATH LENGTH = 5.4136 DEFINE PATH VARIABLE SINT AS THE NODAL DATA ITEM=S COMP=INT ROTATED INTO COORDINATE SYSTEM 0 AND MOVED TO THE PATH NUMBER OF PATH VARIABLES DEFINED IS 5 | |||
*** WARNING *** CP= 37.950 TIME= 18 06:22 The selected element set contains mixed materials. | |||
This could invalidate error estimation. | This could invalidate error estimation. | ||
==SUMMARY== | ==SUMMARY== | ||
OF VARIABLE SINT MAX=0.10997E+06 MIN=39107.CUMULATIVE DISPLAY NUMBER 2 WRITTEN TO FILE XPATH.PLT DISPLAY TITLE=Reactor Scram Transient | OF VARIABLE SINT MAX = 0.10997E+06 MIN = 39107. | ||
CUMULATIVE DISPLAY NUMBER 2 WRITTEN TO FILE XPATH.PLT RASTER MODE. | |||
DISPLAY TITLE= | |||
Reactor Scram Transient PRINT ALONG PATH DEFINED BY LPATH COMMAND. DSYS= 0 1 | |||
*****ANSYS ENGINEERING ANALYSIS SYSTEM REVISION 5.0 ***** | |||
MPR ASSOCIATES VERSION=PC 386/486 18:06:26 APR 04, 1994 CP= 41.680 FOR SUPPORT CALL PHONE 703/519-0200 FAX Reactor Scram Transient | |||
*****PATH VARIABLE | |||
==SUMMARY== | ==SUMMARY== | ||
S SINT 0.00000E+00 0.10997E+06 0.11278 911 ) rru~ i 0.22557 88915. | |||
0.33835 86153. | |||
0.45114 83317. | |||
0.56392 80781. | |||
0.67670 78373. | |||
Patn: File: 0.78949 0.90227 1.0151 1.1278 1.2406 1.3534 1'662 1.5790 1.6918 1.8045 1.9173 2.0301 2.1429 2.2557 2.3685 2.4813 2.5940 2'068 2.8196 2.9324 3.0452 3.1580 3.2707 3.3835 3.4963 3.6091 3.7219 3.8347 3.9474 4 0602 4.1730 4.2858 4.3986 4.5114 4.6242 | Patn: C:KNOZZLE File: XPATH .OUT 13,436 .a.. 4-04-94 6:06:28 pm Page 7 Pg 8 0.78949 76148. | ||
0.90227 74078. | |||
1.0151 72106. | |||
1.1278 70305. | |||
1.2406 68564. | |||
1.3534 66937. | |||
1 '662 65312. | |||
1.5790 63805. | |||
1.6918 62374. | |||
1.8045 60995. | |||
1.9173 59673. | |||
2.0301 58388. | |||
2.1429 57214. | |||
2.2557 56098. | |||
2.3685 54950. | |||
2.4813 53857. | |||
2.5940 53067. | |||
2 '068 52158. | |||
2.8196 51230. | |||
2.9324 50269. | |||
3.0452 49216. | |||
3.1580 48061. | |||
3.2707 46233. | |||
3.3835 44546. | |||
3.4963 43265. | |||
3.6091 42541. | |||
3.7219 41859. | |||
3.8347 41175. | |||
3.9474 40518. | |||
4 0602 39815. | |||
4.1730 39107. | |||
4.2858 39160. | |||
4.3986 41883. | |||
4.5114 44307. | |||
4.6242 46492. | |||
***** ANSYS ENGINEERING ANALYSIS SYSTEM REVISION 5.0 ***** | |||
MPR ASSOCIATES VERSION=PC 386/486 18:06:26 APR 04, 1994 CP= 41. 740 FOR SUPPORT CALL PHONE 703/519-0200 FAX Reactor Scram Transient | |||
*****PATH VARIABLE | |||
==SUMMARY== | ==SUMMARY== | ||
S SINT 4.7369 49026 4.8497 '1915. | |||
4.9625 54876. | |||
5 0753 '57081. | |||
5.1881 59280. | |||
Path: C:(NOZZLE File: XPATH.OUT 13,436.a..4-04-94 6:06:28 pm Page 8~+8 5.3009 5.4136 | Path: C:(NOZZLE File: XPATH .OUT 13,436 .a.. 4-04-94 6:06:28 pm Page 8 ~+ 8 5.3009 61484. | ||
*****NUMBER OF WARNING MESSAGES ENCOUNTERED= | 5.4136 63709. | ||
NUMBER OF ERROR MESSAGES ENCOUNTERED= | *****END OF INPUT ENCOUNTERED ***** | ||
*****PROBLEM TERMINATED BY INDICATED ERROR(S)OR BY END OF INPUT DATA*****ANSYS RUN COMPLETED REV.5.0 CP TIME (sec) | NUMBER OF WARNING MESSAGES ENCOUNTERED= | ||
NUMBER OF ERROR MESSAGES ENCOUNTERED= | |||
*****PROBLEM TERMINATED BY INDICATED ERROR(S) OR BY END OF INPUT DATA ***** | |||
ANSYS RUN COMPLETED REV. 5.0 PC 386/486 CP TIME (sec) 47.000 TIME = 18:06:26 ELAPSED TIME (sec) 47.000 DATE = 04/04/94 | |||
4774<P~Fr~i C'ath: | 4774<P~Fr~i C:(NOZZLE C'ath: | ||
File: BCT .INP 570 .a.. 3-28-94 5:13:42 pm Page 1 p// | |||
/SOLUTION OUTRESgALLgALL ANTYPE,TRANS KBC, 1 ! 1=Step Change, 0=Ramp TREF,70 THOT=525 TCOLD=70 TUNIF,THOT LSELI S J LOC g Xg Rl ! CRDR ID SFL g ALLg CONVg 4 g g THOT CMSEL I S g LID LSELg U~ LOC / X g R1 SFLg ALLg CONVI 5 I g THOT ALLSEL NSUBST,1 ! Number of Sub-Load-Steps TIME,1 SOLVE SAVE LSEL~ S g LOCI Xg R1 ! CRDR ID S FLDELE g ALLf CONV SFLg ALL~ CONVI 4 I ~ TCOLD ALLSEL UTOTS,ON ! Automatic Time-Stepping ON ELTIM,1,1 TIME,3601 SOLVE SAVE FINISH 0m AmmC~a~W IN'. | |||
CalculaUon 80. ~ | |||
Preparact Dy Checked By Page C'-) | |||
Path: C:)NOZZLE File: STRESS.INP | 4TrHru mgnli 7) | ||
FLONG=PINT*PI*R1**2 ALONG=PI*(R3**2-R1**2) | Path: C:)NOZZLE File: STRESS .INP 767 .a.. 3-29-94 12:17:26 pm Page 1g/ | ||
PLONG=FLONG/ALONG LSELgSgLOCgYIRV+TV+H1 | /PREP7 ETCHG CSYS, 1 ! Symmetry at, Cut LSELI SI LOCg YgANGl DL,ALL,,SYMM CSYS,O LSEL,ALL NSEL I S ~ LOC g Y I RV+TV+H1 ~ 05 g RV+TV+H1+ 05 CP~ 1~UYgALL TREF, 70 PINT=1250 CMSEL g S / LID SFL g ALLf PRES I PINT PI=ACOS(-1) | ||
~05gRV+TV+H1+ | FLONG=PINT*PI*R1**2 ! Longitudinal Force ALONG=PI*(R3**2-R1**2) | ||
05 SFLgALLIPRESI PLONG FINISH | PLONG=FLONG/ALONG ! End Pressure LSELgSgLOCgYIRV+TV+H1 ~ 05gRV+TV+H1+ 05 SFLgALLIPRESI PLONG FINISH | ||
*DIM,SNAP, ARRAY,14 SNAP(1)1 I 10I 20I 40 I 60J 801 100'00 SNAP (9)600 I 1200 I 1800 g | /SOLUTION ANTYPE I STATIC NSUBST,1 | ||
* Number of Sub-Load-Steps ALLSEL | |||
*DIM,SNAP,ARRAY,14 SNAP(1) 1 I 10I 20I 40 I 60J 801 100'00 SNAP (9) 600 I 1200 I 1800 2400 3000 3600 g g g NT=14 | |||
*DO,N,1,NT T=SNAP (N) | |||
TIME,T LDREAD g TEMP g I g T I g NOZZLE g RTH SOLVE | |||
*ENDDO SAVE FINISH MpR ASSOCIATES, INC.. | |||
Calculation No. | |||
Prepared By Checked By Page | |||
PD~MPR ASSOCIATES INC.E N&INE ERS Appendix F LO%CYCLE FATIGUE USAGE | PD~MPR ASSOCIATES INC. | ||
E N & INE ERS Appendix F LO% CYCLE FATIGUE USAGE | |||
MPR Associates, Inc. | |||
PLIMpR 320 King Street Alexandria, VA 22314 CALCULAT!ON TITLE PAGE Client hJ IRGR<R 4 (ol 8> IC PUB A. Co'R~DNRTidlJ Page 1 of Project Task No. | |||
Qg,g g~~ Q<ag Q>~4. 7~4'~ C~c ~lc.~>] | |||
o&s= )50 gp.g wk,~~ L.,'nz a~4 L,~ P~lq F'4j< vwq~ Calculation No. | |||
ugly 530 psp3 Preparer/Date Checker/Date Reviewer/Date Rev. No. | |||
APL ~~ | |||
p i q6( ~](~i ~as | |||
MPR Associates, Inc. | |||
lxlMPR 320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No. Checked By | |||
- l-3o -P~P3 Page QSS Revision Description O~ igi~a( ( ss~e | |||
MPR Associates, Inc. | |||
t>~MPR 320 King Street Alexandria, VA 22314 Calculation No. | |||
og<- ~so -PsP9 '2 S'~ Checked By Page PvCpo&F | |||
MPR Associates, Inc. | |||
RMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By Page OS'= 53o-%gQ jl~ A4~ | |||
R esuh'G F~ks'I.e <sa)e a F +hem/.r/P un 9/ '<~A / P4 Dnve r I | |||
epu r/inc n rsvp phla.ava 7 o /p/nn/ prrssnrr | |||
/S ~per;Purr chic/~ era /rsvp'ad &4;, | |||
F4 ~ 0sa e ( e 54r+ /54 J.(lawn t.%3 ~(o t M 4~ ( S~ra~ 3,898. <<(o l-l~Ar,~<4'gg (,')63 w /o | |||
MPR Associates, Inc. | |||
E>>(cree(e I, ,.4.',..4 r~id>>~4i.e,~p(4e J, g~A (.J~ar cl 4-q-ev,q 8 A~~g<.les.(>> | raiMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By os'-xsg PSIr'3 '7s Page PPFYLoRcI-I 7 k~j~c usaq~. o4 +M c.~kaI >>c J, J,r ~ (CP-h) | ||
f<'eX'r nate, I>>s Each:<: | I | ||
('>> 4wVw n;- ~4. ic c>> (~(>> 4~2 l>>~ed r | |||
/co bd vsny pi>>sgw~c ac/ v gee~>> / | |||
( | |||
u.hie.4 or t.w ol v | |||
~q gusrakq +pens>c~zs I | |||
n f | |||
-4 p'valour>> | |||
(i 0 (>>. g ~-~-., 4.g / ~ 1,. k d. ~ ). Riess<< | |||
n ~( 4~~ / - J )c/~ Q /(< 02-re4~ li'~>> ~.~~)e. a.cc. do~~~e~keg,'~ E>>(cree(e I, | |||
,.4.',..4 r~id>>~ 4i.e, ~p(4e J, g~A (.J~ ar cl 4-q-ev,q 8 A~~ g<.les. (>>8jimp ~spy. | |||
f /A~ cat ce/~,~ /n~ no-+w(c fg cw/c />>-A~g dan>> p8v Ly c /g b.si'f. ~ Qe pc/eJ Jefi'.4,'. f<'eX'r nate, I >>s Each:<: | |||
MPR Associates, Inc. | |||
i/('0 4'i~ssuw-4e~perzgrg s t,4>I(, TInQ 6 l tiiw<le(~(i(u~(gei eP a7 (,((iiJ/j) | K~MPR 320 King Street Alexandria, VA 22314 Calculation No. Prepar d By Checked By a gg- x~- Psl> | ||
A/n)e.W//'y(/eve/g 5'0'/~gb Z, g),.7-~J./ttIC, a l48v n<4i(i]'a4YY 5 5 rav ge.~u Si" 0 4j (c,u(vC (g Jekrn,/(,g 44+N(i%8% | Page lA e('c..'~Agua eSnp ~ $Q pC/( | ||
n inn bCn of app(si p/ qg/ag 4r ii pi~en p/.rssurc -hm~ ~+g gg ~ J~ | |||
tl ii nn /nn' ~ | |||
pllg~~ik/(: i /('0 4'i~ssuw-4e~perzgrg s t,4 >I(, | |||
TInQ 6 l tiiw <le(~ (i(u~ (gei eP a7 (,((iiJ / j) g<<<v c./u/( g/'4n i/i I'~ Jm~mln~g/ | |||
l | |||
(~gg~ /h-P 5/ /2 (doe )3pslyn Cwgsgvf'~r vp Pv'e('gii~ | |||
A/n) e.W //'y( /eve /g 5'0 '/~ gb Z, g), .7-~J. / | |||
ttIC, a l48v n<4i(i]'a4YY 5 5 rav ge. ~ u Si" 0 4j ( c,u(vC (g Jekrn,/(,g 44 Cry, z) | |||
+N(i%8% | |||
MPR Associates, Inc. | |||
ralMPR 320 King Street Alexandria, VA 22314 Calculation No. re ared By Checked By 085-'P~o - ping Page | |||
( Sea kaQ) | |||
~a@( gfmaS | |||
~(q'~Et y~>ping(( | |||
mirage'is ~ze.WS, O | |||
( Aa, K alkarna4i~p s*asS i'a.14Ila.J, 4 Ah v'~gib ef gag g~g e("Jig~ aufvz c.(a ski< i iu 4(aS aa's I Wr ~ | |||
4e %lpga elasÃi e ..S.P g~ Wk | |||
MPR Associates, Inc. | |||
lLimpR 320 King Street Alexandria, VA 22314 Calculation No. Pre are Checked By os'-~- Page CAI Cu( Av)mJ P>>>>ssas>>. as J, News erss4sm s.t>>S ', | |||
~ssssu.>><<a 1 s<<(ev 4(>>. qsj>>5 t/a<0 ~ H>> | |||
a~~is;s s>> 4.4J i- Waai~ I k p (s'svkJ. ~s e4-s<<-(i,) (S"aw ., 4 4,.)fns.l Ii's | |||
%54 G4- 4 6/C ~C 8 CEC ffn~~l A~s a ASS'~ ie P | |||
4s~ps ~ 4 ~>> s~~ee. IVokcp.h 8 kic ss<<4f /'sera~ | |||
F'gglgVY gt54~ | |||
JUL~~~ 4f CAew | |||
$ p>> gS y s/<s L'e,* Q 4l>> s4>>k ( (s~~~ g~t~ 4I . ggg'.r ~gpss>> | |||
+lQ 4rXQgs. J CstC4) 5v 6f C | |||
<5 kyc4s Pry.Ql; | < 5 kyc4s p<~5Hgg 7p~pera Nre~ | ||
Pry. Ql; (ps) g ) ClbR ()) P3 7o- s2.s 70 7o-gQ (Mb o- io3o 70 | |||
MPR Associates, Inc. | |||
T-Ir.s-4sc, 4ens h'A'54erd.p/s k~gJer n~)e(eJ prebSrree i C f rid 0 | ti1MPR 320 King Street Alexandria, VA 22314 Calculation No. | ||
os<-z.so -WP~ '22~ Checked By | |||
"" io She~eS; | |||
/ | |||
4 e~l~ sees es ~ee~ ~~l~~pt q gin ik Using el(vne~4 r ader ~ae ~~4~ l/i~e 5'Z oem'.4r~ girr Ae. / j~vc'p n hv r-r 0 ~ | |||
sr> | |||
/ e / | |||
q i<era eire ce rrrrrn,"rr f4'A-S LJ Ir r rib 44. PiR <( e /e'-n er.~1 neryrf/r pe k- >Crt' \ ~hev-sv l +A~ GL, 4e( C,IA [..( | |||
/ l0 ~ 0 l~~ | |||
SeS' (bnckrr +e'r~4c. | |||
51.5 "F CreOree Fl J%rrrprrr4.h'' | |||
T- Ir. s-4sc, 4ens h'A'54erd.p/s k~gJer n ~)e(eJ prebSrree i C f rid 0 ps c) anA ckf&rnr/4"c/'- | |||
MPR Associates, Inc. | |||
HL<l/n~Ap I va>>(1>>>>Afc'r>>>>i>>>>s y>>/id g>>+;/~pa | WMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By o8r- 2M-TL~PS ay ~~ Page q | ||
4g ~c4,$ i~ | |||
Csh~ >>,V~ ) ]~~s; | |||
)< o,o <ss $ 0. (p cz l2go pig g~(~g I she '~bia / | |||
S~,>> ri ~ sA,is, -/a~u,)~ | |||
~(<n~) jl(, )-s.lg As 2 ss.f 'p~iisisl) HL <l/ n~Ap I | |||
va>> ( 1>>>> Afc'r>>>>i>>>>s y>> /id g>> +;/~pa | |||
~s~sasa~~a ss~~a | e MPR Associates, Inc. | ||
WMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By oM -tM -RS'P3 R goo VkoAs Page Au ij~ | |||
g.E~ens< 2 CApp,&,a ~, F g | |||
naaraaaaemraarm~ta)rrraaiaa Saaaraa~Saeara~rnuarRjea BRIRSR~~ER~~RIEERSS~ | >-V i) eM u s'5 own | ||
'30 ~ JO pJc 7/a go ++(a ~pe//oj I S 5A-33po ~k'cl) (n-~ | |||
(. (g n,'Q 4ns,'h s4ron~ Ag | |||
&O gsi e.(os@ Wo J. (i s o W4' > | |||
bl<'8 5~ieC Qo ~>>o 'P PjPog cy J | |||
7ha o o ( o(v o.of HE~ -ne%+(L ss 6 ~~a oA 3o Po | |||
<<ppi o | |||
sli o4 i wiinooA$ pea o v~~ 4~apooa +~t'c | |||
~ | |||
~ | |||
~ | |||
s ~ sasa~~a ss~~a SSISS~~SSSSS~~NSISS~~ | |||
SNSS~~SQIISS~~SSSS~~ | |||
QSREr%~'NNSr~~SQAS%%~ | |||
naaraaaaemraarm~ta)rrraaiaa | |||
~ | |||
Saaaraa~Saeara~rnuarRjea BRIRSR~~ER~~RIEERSS~ | |||
EBSIE~~ESE~~ESEERS~ | EBSIE~~ESE~~ESEERS~ | ||
SRSER~BR~~BHBRTR~ | SRSER~BR~~BHBRTR~ | ||
EEIERSR~HER~HBHSISI~ | |||
IHSSRMllBRRRWNIRBSsw ramrrmmaarrmnararam IIIIIIUERmllll@RIIIIII)ilR | IHSSRMllBRRRWNIRBSsw | ||
~anaaam~aaam~anntimm~ | ~ | ||
ramrrmmaarrmnararam IIIIIIUERmllll@RIIIIII)ilR | |||
~&WM~~ I SHRER~~Ea~~ESEHELW~~ | |||
~ anaaam~aaam~anntimm~ | |||
lHIIRRH~HHHRA~lUUUNEEH~ | lHIIRRH~HHHRA~lUUUNEEH~ | ||
IHBIQR~IIIQ15%~lllSlSR~ | IHBIQR~IIIQ15%~lllSlSR~ | ||
IIIHQLHIIIIIQRHllllRIiLH | IIIHQLHIIIIIQRHllllRIiLH | ||
~KSERHW~ | ~ KSERHW | ||
~ | |||
~ | |||
~ | |||
IIIIIIRRmIIIUSRIIIINSER | |||
~% ~LRm HRRRHM~R&M~NBSES&M~ | |||
aaaara~maara~aaeaa~ | |||
IBSRR~RS>RR~TBBIER~ | IBSRR~RS>RR~TBBIER~ | ||
IIIISSNM~mREIWM~NIINR~~ | ~ | ||
!IIIQSWMIIHItSQNflllllllSRM IIIIIIRRmlRiNVlllllEER | R IIIISSNM~mREIWM~NIINR~~ | ||
!IIIQSWMIIHItSQNflllllllSRM IIIIIIRRmlRiNVlllllEER | |||
~ SEEK\M~~~T~SRRR~~ | |||
I ass'~SEES~ | |||
Qlssr%~56lsrN~sslss%~ | |||
SEERSE~ | |||
IIRIRERE~EEEBEN!~BEEN%~ | IIRIRERE~EEEBEN!~BEEN%~ | ||
~ | |||
E~ERW~~BHRRNNt~llRRRH~~ | E~ERW~~BHRRNNt~llRRRH~~ | ||
taatrrmmiaarrmmnarm r | taatrrmmiaarrmmnarm llllllRRmllSRUllllmR r | ||
MPR Associates, Inc. | |||
mmx R 320 King Street Alexandria, VA 22314 Calculation No. Checked By Page | |||
%p 7 ego/, 7o' | |||
MPR Associates, inc. | |||
WMPR 320 King Street Alexandria, VA 22314 Calculation No. repared By Checked By Page DBS - 230 N5FD 9> 76~ Ig Mv ev Allow~44, A''N~he P(,Lc. Sq Cqc les Us,a.g~ | |||
Wy pe. l'.Ksi ) (ts,i) "Iw 9o. b l(7, 7 / %3>/v l lO) 0 gi) b 97i1 | |||
MPR Associates, Inc. | |||
lLBMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By c 8S-Sou -&Pa 7sZg Page T4e ~a& 5'N~ S4'~ $ fwQ dec csea I 2.~ ~si sI | |||
+polnASCA8Gf 52 g Pn.ks Pb L ~d Ce L Jim /s flz 0 | |||
/3 gZ; /(g, g = //5> 0 I IO 0 ~~ig b 5'7> I 255.1 e | |||
~e, o I I aw<LLL 6 ~ rwIem cd c/c,lpz gn csn q / c'one /shy S4rc>>e ~ 4 C's s 4ecp/~/~J vscn> 7<4/e ~-7 ~ | |||
jV' ZocsD 5 ~ = "75 IVg = 5C>DP y'c ja | |||
Associates, Inc. | |||
ljiMPR MPR 320 King Street Alexandria, VA 22314 Calculation No. repared By Checked By os- L30-65PQ ~ 'Nc~ Page | |||
( 7 jv = 9153 g,GS'tw ld 24 I 2-Fr~ ws4 l | |||
~l~ ; | |||
<c,] or> = 5'' F | |||
%Ca <v'rM'fp'NdJ p o Lnncj (Jns(iV>4g Z- | |||
MPR Associates, Inc. | |||
liiMpR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By os-~3,5 - I >U Ws Page 29 5 @/ | |||
= | |||
N 4/SO(u u~r ~eZ | |||
: g. l36 g lo z-ark~ (g, ( | |||
(c c | |||
fe>ieiiiyg'aj4 I: | |||
~ . | |||
MPR Associates, Inc. | |||
r>IMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By o Vg-zs> -&P3 gS Page I. P&E>le (5 ) 6 S. BVsvro C I) | |||
I 943 ii< (i) | |||
Qi 002$ | |||
MPR Associates, Inc. | |||
RMPR 320 King Street Alexandria, VA 22314 Calculation No. | |||
c 8s= z.m R>r 9- Checked By Lv illa~ Page | |||
~ | |||
Rw/c122t ass | |||
~ ~'<<( < > ~' Ref n <~ale 7Tjer e/ Aw4 Prrssan | |||
'-$ 8g-o/~ | |||
~ | |||
Qc/rs, '<12 C~4</arian 085- LEO Rev /, | |||
// S/4F 8o, lee c M Pr ran r V ne/ Cg Je. 5~<di6 l is~ FC4 ~ .'l, AAJ .3< ~ | |||
PA1MPR ASSOCIATES INC. | |||
ENGINEERS Appendix G CRACK GROWTH RATE COMPUTER PROGRAM VERIFICATION | |||
Associates, Inc. | |||
RMPR MPR 320 King Street Alexandria, VA 22314 CALCULATION TITLE PAG E Client Page 1 of $8 Project ~-f<ol M >rive, tJ>~~le Aqalys,< Task No. | |||
o65- 230 Title &nc~er$ a$ ~ | |||
Pro~r~~ W CaR C K'. | |||
E,yE'alculation eeA pen,Pica'~ aP ~pe~ | |||
o85- 4~- gsP No. | |||
) | |||
Preparer/Date Reviewer/Date Rev. No. | |||
'gl'hecker/Date p- 2/ Vl~l<< | |||
' | MPR Associates, Inc. | ||
WMPR 320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No. Prepared By Checked By Page c ss.->so -RSP/ Z2. '8,. Ca Revision Description gr jinx( I stag | |||
'0 ~ o p ~ | |||
~ ~ | |||
~ | MPR Associates, inc. | ||
r~lMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By oeS- >3o - <F' QY~ Page PES Ul 1 5 gCRACk. F Xg> Versm (. 0 Curvecf( | |||
cA 4 taA'8 c~c c,k pow kg .of g /wc)(U)Illy flite no~>>~ 8-~ 4 (~ass~ s4 4s e~( q(,Ie~, 7~e | |||
~ ~ | |||
~ W P e | |||
MPR Associates, Inc. | |||
~ | a~MI R 320 King Street Alexandria, VA 22314 Calculation No. Checked By ops- Mo -Rsvp l Xd Page PA+ Ccq, 2.) | ||
Kw~ -- | |||
H~, . X4 ga LJ.~'g F..7~ M;.) | |||
C)de. (. WsL t~) | |||
Q. assi.Awe cols. (Vs '~~) | |||
C~ 4 y~4h is app~im~]eJ | |||
&q, ) | |||
ha = Cv, ~k srto~$ 4 Fin'~Vs) | |||
)J. 'o~ og q~(es IVo~ k44 44is <<ppasfee4'a (i vnb eppb~bt ~ s~ll vela~ | |||
~ h e ~'/AN re~a~ g ra ~ah z~sI> 4. | |||
MPR Associates, Inc. | |||
lLiMPR 320 King Street Alexandria, VA 22314 Calculation No. Pre ared By Checked By Page DBS-w>0-%P I 4 4o s,re. de4r~ine/ LsA m po:Ss~ee a~4 ao~+(as (6LC~eael ( J CV~ s~~S 4'ale,(awkio ~aoa(l ~ yam is z epee,9< b) $ ('li&et ~ 4of '(aa()vl~w.l | |||
+ | |||
0 = ZgaSS ( A,i,) | |||
o(lsAn e /Awol]l no~p/g oui (( (Wchw) | |||
Pal)n~ P Coef<c e HZ | |||
MPR Associates, Inc. | |||
t>IMPR 320 King Street Alexandria, VA 22314 Calculation No. | |||
aSS=E3o- @PI 'X ~Checked By Page p | |||
CF( ''l). | |||
l-pe~,'jp P Q (Ws.'( | |||
) | |||
L n)gf) (v'les) | |||
>>~>>>f>eeflen Refers (s>epeneter>f en ge>>&Y]) | |||
slyness swiss g,'st 'Le)>en s (ad eve C/" >i tz) 'e>re de/er n> r>eJ.' | |||
s no~ Pr>h e(ense H eee s g p | |||
gs ~ f,ress>rrt. | |||
I i 8 cq<pm ~SX~C> | |||
Pwg . S-I ~ s 4 ~4'Iv,v': cL ft'.QvwlCJ s v~.l 1>net I | |||
) u..k4 ~ness~. I 7/ir n>el ~efr ss liszt>A>>f ens | |||
~ | |||
>>re ct ke ne>nQ r>4o eegsnenee ne>>lee>>>W <l>er>/es> a<el > | |||
< 4 pr ge '4> sussex 4 o4L v. his' '--'s | |||
-l. v~rn (>-.e~v$ ~Ah >~ M~r~4 ek~ga | |||
MPR Associates, Inc. | |||
TLIMPR 320. King Street Alexandria, VA 22314 Calculation No. Pre ared By Checked By Page sos - ~30- I'-sPI Jl | |||
~ | |||
f 4 NIAl~l4~ ~br<<~,.(8AS+y (acgoY5 CgQ jive< cyc,4 p | |||
<-assure s an) e~<h 'yale., /he p< <<< <<'CS Glelk <'-~fCAj i~5 Gl< C. | |||
Pi'~s~ covc<&pa~ <g % m >mam 6-&<st d<fc I j / | |||
(ps<) | |||
Pi > = | |||
Pc mud. u>~r s~~k'rg 4 wn s4 s <4k Cp 'j r<<~e<<k~c b'igvw<vu, cw<<: a rN ol i nq s4<ess s4)e (') | |||
W<e 4e~)~~M RAN<<ev ce ~vespsvds Q /II~ | |||
4<~Pn~Qc. JbR~m~ defi'<.J g~ Ac e'l.~~4 lQ <s.d q. - A~-. -4 A.~/ | |||
S res Se S'. s4<s I 3.~,')) $<J< g ~ g ~L< l.$ <<i | |||
a 0 ~ | |||
l | |||
~ ~ ~ ~ ~ e r~ ) | |||
0 t | |||
( | |||
/ | |||
t I | |||
MPR Associates, Inc. | |||
WMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By o Ss= ~- RsP/ nz Page I~ | |||
Pg- 44,co~ pwss~ used $ 6eprvni~c e | |||
MPR Associates, Inc. | |||
txiMPR 320 King Street Alexandria, VA 22314 Calcuiation No. Prepared By Checked By ago-z.so-gs, p] 0<Za Page | |||
), //cn MIny goer Ct r.o Jc | |||
0 0()vac- Qg c. ~ Q~RC-K. BXC; QL 1 | |||
o O | |||
'his program calculates crack growth In ~ nozzle due to pressure and c | |||
'hermal cycles 0 R DECLARE SUS Crackgrowth (At, Nsbl, DECLARE fUNC'I!OH Klt (Al¹, L) | |||
PII, P2I, Sdist1, T11, TrII, Sdlst2, T21, Tr21) pV' 0 DECLARE fUNCTIDH dadxt (dK, R) | |||
DIH NSub(5, 5), hain(5, 5), Peax(5, 5), Strdistsn(5, 5), Strdistex(5, 5), Tlein(5, 5), Tieax(5, 5), 12min(5, 5), T2eax(5, 5) | |||
DIH Nsubcyc(5), Repcyc(5), BO(5), Sl(5), 82(5), 83(5), RefStr(5) 0 CQHHOH SNARED Pl CLS | |||
~ | |||
Open Input and output flies inputfileS ~ COrp(ANDS OPEN inputflleS FOR INPUT AS tl flan ~ LEN(RTRINS(lnputfileS)) | |||
outflleS ~ LEFIS(RIRINS(lnputflleS), flan - 4) + ".OUT" OPEN outfileS FOR OUtPUT AS ¹2 | |||
'ead input file INPUT tl, Aot, Nflnal INPUT t1, Rmin, CIRmlnt, C2Rmint, ml, e2 INPUT ¹I, Reax, C1Reaxt, C2Rmaxt INPUT tie Fl, f2, F3, F4 INPUI tl, Nstrdlst foR I ~ 0 TO Nstrdist INPUI'l, 80(l), 81(l), 82(1), 83(l), Refgtr(l) | |||
NEXT I INPUT <<I, Ncyctype fOR I ~ 1 TO Ncyctype INpUT tl, Repcyc(1), Nsctrcyc(l) fOR J a I TO Nsubcyc(l) | |||
INPUT tl, NSub(l, J) ~ Pein(l, J), Peax(l, J), Strdistsn(I ~ J) ~ TImin(I, J), T2min(l ~ J), Strdistex(l ~ J), TIeax(I, J), T2eax(l, J) | |||
NEXT J NEXT I | |||
'onstants Pi ~ 3. I 81592 Calculate crack growth xQ O~I) | |||
Ntot ~ 0 At ~ Aot PRINT t2, USING "ttO <<.ttN'tot; At -cC) to co DO UNTIL Ntot >> Nfinal Co FOR I ~ 1 TO Ncyctype FOR K ~ 'I TO Repcyc(l) CD Ntot ~ Hiot + 1 to fOR J ~ I TO Nsubcyc(l) lO CALL Crackgrowth(AS, NSub(I, J), hain(l, J), Peax(l, J), Strdlstcn(l, J), Tlmln(l, J), T2eln(l, J), Strdlstex(l, J), Tieax(l, J), T2eax(I, J)) Cr) | |||
NEXT J PRINT <<2, USING "ttO t.ttO"I Ntot; At o NEXT K NEXT I LOOP END | |||
CCF(D d( P-ACE, E,ME. (('~ > Pq o Q | |||
SUB CrsckGrorrth (A¹, Nsb, Pl, P2, Sdlstl, 'll, Trl, Sdist2, 12, Tr2) | |||
~ | |||
This subroutine calculates crack grorrth given the Initial crack length, | |||
'he member of cycles and the mlnfaara and msxfaaaa pressures and o > | |||
'ecperatures. | |||
dtl = Trl - Tl I O | |||
= | |||
dt2 ~ tr2 - 12 Kl Pl i KIN(AN, 0) + dtl e KIN(AN, Sdlstl) ~ 0 L2 a I 2 ~ Kit(AN, 0) + dt2 e KIN(AN, Sdlst2) | |||
IF Kl e K2 THEN Kmin ~ Kl Kmsx ~ K2 ELSE Kein 8 K2 Kmsx Kl END IF dK i Kesx - Kmin R ~ | |||
dst Kmin | |||
~ | |||
/ Kesx e Nab U | |||
dscgrf(d(, R) (D | |||
~ Af + ds¹ o Q | |||
(I) | |||
FUNCTION dscgrf (cB:, R) 'alculate dscBI given dK snd R O. | |||
SHARED hain, Clhainf, C2Relnf, el, e2 SHARED Rmsx, CIRmsxt, C2Rmsxt If hain ~ Rmsx THEN Clf ~ Clhalnf C2N ~ C2ibalnt ELSE SELECT CASE R CASE IS << Rein Clf ~ CIRmlnt C2N ~ C2Rmlnf | |||
- CASE IS>> Rmsx Clt ~ CIRmaxf C2N ~ C2Resxf CASE ELSE Clt ~ Cllbalnt + (CIResxt - CIReinf) a ((R - Rmln) / (Rmsx - hain)) | |||
~ Cr) Q C2N ~ C2lbalnt + (C2Resxt - C2Reint) e ((R - hain) / (Rmsx - Rein)) | |||
ENO END SELECT IF xID Og IF Clt ~ C2N THEM D K dscgrt ~ Clf e dK ml (o | |||
ELSE -CQ cB:tran ~ (C2N / Clf) (1 / (ml - m2)) CD o. | |||
SELEC't CASE cX 0) o CASE IS e dxtrsn dsdxf ~ Clt a dK all (Z ~ IO'(D CASE IS >a dKtrsn cD cD dsdMN C2N a dK Qw (o END SELECT Q EHD IF (r) | |||
END FUXC'tlOH 4 o FUNCTION Kit (Alt, L) 'alculate Stress Intensity factor'iven crack 'Length snd stress distr ibutlon SHARED Fl, f2, f3, F4, 80(), 81(), 82(), 83(), Refstr() | |||
Klf ((Pl EHD FUNCTION e AIN) .5) a (Fl a 80(L) + F? | |||
* 81(L) a 2 a Alf / Pl + f3 e 82(L) e Alf 2 / 2+ F4 ~ 83(L) a 4 e Alt 3 /3 / Pl) / Refgtr(L) | |||
MPR Associates, Inc. | |||
TLiMPR 320 King Street Alexandria, VA 22314 Calculation No. | |||
oSS- %3o 5 p/ | |||
WS'hecked Prepared By By Page | |||
~ ~ | |||
C.<ac K ~~kg gv~ves: | |||
PJ~&cV- CW A.c,c,<ph in pL ES ~ey J( | |||
lg~ | |||
CVV'VCS y $ 8+i<~/ | |||
GLEAM GIAck q/lA/t'g CvC~ is ~gg~gl~ /eg ~>/$ g. | |||
QCLC.4 c,p'~ +dig 54 /s <X 8 3'8s 8& (s // go se'/5 df Q~> /+g/g | |||
MPR Associates, Inc. | |||
WMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By Page 0 g~ Q~ ~ p5p ( | |||
~g RQZa 'K. Qu. [( | |||
MPR Associates, Inc. | |||
RMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By Page t/55->3o - JVt 1 C; peen > /" | |||
~44~ gWP<, t'= th1,' | |||
eee1 I4 'n | |||
) elepvJi'q e 4 K.) | |||
tJeeke' <M4 ~ ~vcS ~.a$ ~ 4~. e.vna LPW1q g ISA Y~p.~ | |||
ce' )ne-kh c ~ Ie1~, | |||
I', | |||
"l'.~~e.'h. | |||
i'.4e~sec4m eC -P/) 4 e cvveeS is Je/~eai~ecl; I | |||
Ci | |||
( h,L g) | |||
A ee/pJ | |||
~ | |||
Wee | |||
~ | |||
appeaec g Pr ace n ee1 en'~ +eaee S7 Msl'e esag by /bc A<bfG 9 i/er seae /eeeevvc Yeesz/ Cee/e.. | |||
MPR Associates, Inc. | |||
lxlMPQ 320 King Street Alexandria, VA 22314 Calcvlation No. Checked By os'- 230 - g5p/ Page | |||
~ | ~ t Pressure and New ccrc vcccce g o P pcessvf c. ace A $'iccor crea( q clcs aced k,sk~c~ c ~ l leg'e8 4~ cnp 4 4s Mc-RRc-K'"= <E P5 A('sea sseg belom. | ||
y | |||
<Ice~ ~carr,l, 4c'~, As xebec.,l ea p~vco~sg, peers~ | |||
I ccrc% Rebec ocdec" cccci cs*ess polcl crccc~'ccc( | |||
of'57 cc rclcckcinJ'crp C Z4.ss as P7 | |||
- Zn~k~ | |||
i D | |||
/odin's oP c(is4ncc +roc cll v4 now+(c c .e (IJ. lTee c | |||
pc lqvl wcl ccc ( c c! e Pl ciencS ore cC5cd,n ~ Ic. | |||
R4'c'SS cri dcnSc i cr gcc~v . IM~R C K. Xg c cc ccetok cri p gs /err orii; to ressccrp z 4i"esf cc SA. n | |||
~t 4 7 -Ck- .I st.Zr a.s4.'b~A~s. | |||
crrce ~ressvre. s~c Riser 'l~~4'oui i s ri e cessewq zircccpressiccc. c'okcescc5 ccrc (ireocY' | |||
-4 ap(Q p~ssuit . Assocrjcg',gj cricl, s4rrsZ I li re+~ez~'c,~natu.r) lg c.cvd; A~- | |||
/ s | |||
MPR Associates, Inc. | |||
KiMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Ch eked By Page Dg+-230-gap/ (II | |||
~l L ides'ee %ac. ajpIW.. 'locccl ~M -4 c$ M+ Yvli~ ~ ~gee~ Q iX*1L) vcII. IVI, (ec flic'' | |||
levnc(ant ~c( gi cI.n','r 44 aq (I H p~zs~z ulcc( | |||
I~.a l, pa -Sc. | |||
8~cc S veS J ,~P~en~ | |||
Ic~~~(c~ ca k C Anna, ada, I 4'A~ g$ ev~~f y.u'~f R veda $ /le q'ag (a "c /( | |||
cI 7/)e /tiara J I a(cnenvloPJA.JeI 44Akji)>~ nIvd I h', ~4srsgPI 7 | |||
~ | |||
d 4 enIa. dpf~neJ u~ | |||
+he, Pi ni4 e('m a ] ~ede,/, | |||
MPR Associates, Inc. | |||
RMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By os'= z~ -jcspj PagegO | |||
(~ m.j,;.;4)ms, V) 4..:.. k~ Jr f8re~g o4 g~tcs c 4 J~W~Q 4 PcAAg- CXC. | |||
6 lnrlcc'cop! | |||
eccc. 4 g c g f c.)c.l~ | |||
aa- S I.g~t~ ts Q4ned P l( coco cnC | |||
'I acccs a<<sscncs a4 nccccoccc>>cccc s Iccss s IeSc', etorcQ 0/lc ~< | |||
I II~ <i.,>) Te~p I.W~ 6 ~ n~~ | |||
Sk<<SS ~4-4 d~,p gal<. | |||
)scO'&y hso&slq (oc f I >> 3) 7 ctc>>Iejccac<<s cch cn incocccccn sos. sdA l~q ~)~lc. | |||
~neccccc I gcaAIe& nocesS | |||
'I c cc~sses | |||
~ ase. envssk nc(RQS v pccl( e. 4c-ge c>>hwc-C>>cb cA(a lI<nSt he~>> | |||
chcccnckec" D | |||
~ I~cd n,r o bo tgsM Q | |||
<<.lnc) a Qc rccn+e. cCFe<<IIcs s~J.,'JIBES v~cA I')~sW Dc~ nc4c>> oP +~-c. Icsoseclc deco cckccccs | |||
~~,~, q C q~ 0 P genic& Wa / >>SQ ccccc S~ac QAe JA'c:5<eJ' | |||
MPR Associates, Inc. | |||
MI~a i~~~$Pile.C<<w 4a<<.Aq agr<yrna'tC' pi(8%NB>h,~.ql,~~CA."~A~eJe~g<~.Ke.(D14 WlQ f~la CL I&CA Qhl&CO(~ | lL)MPR 320. King Street Aiexandria, VA 22314 Calculation No. Prepared Checked By os- >pc -WP/ AS~ By Page g,[ | ||
4~m 44 g t.~J, gC (g. | |||
Ao | 4 ).,A~ g<4 <~- .a n~), | ||
l/le. <g (/~kg . Berm</ $ &sa u(u gr'$c.ga | |||
~.s4 ./~o 4 (8, /;/eJ C'+/~, / | |||
// ~Q s4~rs dis4r'/~giz r /, | |||
p.gai~ ey((4irr, IJ~H<I'8% ce/~/ag~z ci.~l~ pg >l, 4 e. /, p~/, +~ .,h 9/ | |||
"Ae WI . ~~ ~/M. A g./~ | |||
h w/,-~4g p, Id,pl, 4i~~ | |||
ulcc ~w 2q 4 -// nw8 ~~/~ /ye. | |||
0' Ao, Nfinal Rmin, C1Rmin, C2Rmin, m1, m2 Rmax, C1Rmax, C2Rmax F1, F2, F3, F4 Nstrdist 80(0), 81(0), 82(0), 83(0), RefStr(0)80(1), 81(1), 82(1), 83(1), RefStr(1) | I ru~v h)ops glean gI ~~+,P | ||
~) L>> h~(p~ ~k'I 4~ .~Q. n>>nk, ar ca~ / z +pcJw .is p ~/ | |||
~j h~ k / anql)w QC.~ W-4 | |||
.('.] 7(). | |||
MPR Associates, Inc. | |||
%1MPR 320 King Street Alexandria, VA 22314 De<- ~M | |||
-gsRI'repared Calculation No. By C ecked By Page gg ln ~k Pic., | |||
PScII 4 8 Qla. | |||
<an4.;.< a.Ll 44. QcPAc<.CXC. | |||
MI~a i~~~$ Pile. C<<w 4a<<. Aq agr<yrna'tC' pi(8 %NB> | |||
h,~ . ql,~~ CA."~A~ eJe~g<~. | |||
Ke. (D14 WlQ f ~ la CL Use .5'e< ed% | |||
I | |||
&CA Qhl&CO( ~ i4 I pl | |||
-4 4~ | |||
c l~l 4~ W v~~ia44 lJ-.,: 4s,.<.k hi .4 l | |||
<<<<av ~d i~ $ ~ Qe<~a$ E4eHn I<I Fige t El<4 ewer Dlo4'$4 <I Ac)<I<< Q<l 'a CovAvYla, | |||
~< | |||
P kha l yahoo.. I 44. I~(wd ala. Ape<<d~ | |||
Vl~e.~-l sos. g;s4 h.H~ | |||
b+ p. d flic. II &l<Y IAj'<Ja, svsc(< $ pl <l/e)II/&LI | |||
0 MPR Associates, Inc. | |||
lLIMpR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By OSS'- Z~- t2SPI Page r2P Input Variable Definitions for MCRACK.EXE: | |||
Ao Crack Length (inches) | |||
-Nfinal Total Nwber of Cycles to Analyze Rmin Hinfmm R factor corresponding to crack growth constants C1Rmin First Paris Crack Growth Law Coefficient for Rmin C2Rmfn Second Paris Crack Growth Law Coefficient for Rmin 1'nitial m1 First Paris Crack Growth Law Exponent for Rmin and Rmax lll2 Second Paris Crack Growth Law Exponent for Rmin and Rmax Rmax Haxigun R factor corresponding to crack growth constants C1Rmax First Paris Crack Growth Law Coefficient for Rmax C2Rmax Second Paris Crack Growth Law Coefficient for Rmax F1 Stress Intensity Hagnification Factor F2 Stress Intensity Hagnification Factor F3 Stress Intensity Hagnification Factor FIo Stress Intensity Hagnification Factor Nstrdist Number of Thermal Stress Distributions (Note 1) | |||
BO(-) Stress Distribution Coefficient | |||
'B1(-) Stress Distribution Coefficient B2(-) Stress Distribution Coefficient B3(-) Stress Distribution Coefficient RefStr(-) Reference Pressure or Temperature Change for Stress Distribution (Pref or dTref) | |||
Mcyctype Nsmter of Different Types of Cycles (Note 2) | |||
Repcyc(-) Number of Cycle Repetitions (Mote 2) | |||
Nsubcyc(-) Number of Different Types of Subcycles for a Given Cycle (Note 2) | |||
Nsub(-,-) Number of Cycles for a Given Subcycle Pmin(- ~ -) Pressure at HinisxIa Stress State During Cycle (psi) | |||
Pmax(-e-) Pressure at Haxfaun Stress State During Cycle (psi) | |||
Strdistnn(- Thermal Stress Distribution Number for Hinirmm Temperatures T1min(-,-) First Nozzle Tegperature at Hinimm Stress State During Cycle ('F) (Note 3) | |||
T2min(-,-) ohio.m Second Nozzle Temperature at Hiniaun Stress State During Cycle ('F) (Note 3) strdistmx(- Thermal Stress Distribution Nunber for Haxiaun Temperatures 71max(-,-) First Nozzle Temperature at Haxigua Stress State During Cycle ('F) (Note 3) 72max(-e-) Second Nozzle Temperature at Haxinxm Stress State During Cycle ('F) (Note 3) | |||
A roe'ro As~ lJ:~ c L i p&. | |||
lira+ Ale br I lg IIV I r0 (aeerie$ h o r ro~ a(err e~%) | |||
resene s4eess A st lo~4ieuo, | |||
: a. merc ~r. k a ~a) iwnm oP 5', Pp.en) $'ps oF'ela', | |||
~< le s 4e~de c~ l1e~ r p ]o 8 gigere~] gyp'l'uboolclcs crsnsr's+ oic" p presrurc n d/uu %~pre erlc(c. rice vr'riel "gs.,Ii" n rroloei. oC'~re fo.equi oyel mc-. | |||
bo. t'cliaa$ ~oI Pa~ o. (-') oJrMer el /iniety ciA Vhc nor/ pele p | |||
.- Wc. 4) er~J ~ge ss Asar LJ ~s ere c4cae4eri~'J 51.~ | |||
+~t aI'e AAe~onc~, Ll, ~hem~, | |||
0' 0 | |||
Ao, Nfinal Rmin, C1Rmin, C2Rmin, m1, m2 Rmax, C1Rmax, C2Rmax F1, F2, F3, F4 Nstrdist 80(0), 81(0), 82(0), 83(0), RefStr(0) '0 8 80(1), 81(1), 82(1), 83(1), RefStr(1) | |||
Z 0 | |||
80(Nstrdist), 81(Nstrdist), 82(Nstrdist), 83(Nstrdist), RefStr(Hstrdist) | |||
Ncyctype Repcyc(1), Nsubcyc(1) | Ncyctype Repcyc(1), Nsubcyc(1) | ||
Nsub(1, 1), Pmin(1, 1), Pmax(1,'1), Strdistan(1, 1), T1min(1, 1), T2min(1, 1), Strdistmx(1, 1), T1max(1, 1), T2max(1, 1)Nsub(1, Nsubcyc(1)), Pmin(1, Ksubcyc(1)), Pmax(1, Hsubcyc(1)), Strdistan(1, Nsubcyc(1)),..., T2max(1, Nsubcyc(1)) | Nsub(1, 1), Pmin(1, 1), Pmax(1,'1), Strdistan(1, 1), T1min(1, 1), T2min(1, 1), Strdistmx(1, 1), T1max(1, 1), T2max(1, 1) | ||
Repcyc(2), Nsubcyc(2) | Nsub(1, Nsubcyc(1)), Pmin(1, Ksubcyc(1)), Pmax(1, Hsubcyc(1)), Strdistan(1, Nsubcyc(1)),..., T2max(1, Nsubcyc(1)) (0 Repcyc(2), Nsubcyc(2) lu Nsub(2, 1), Pmin(2, 1), Pmax(2, 1), Strdistan(2, 1), Tlmin(2, 1), T2min(2, 1), Strdistmx(2, 1), T1max(2, 1), T2max(2, 1) | ||
Nsub(2, 1), Pmin(2, 1), Pmax(2, 1), Strdistan(2, 1), Tlmin(2, 1), T2min(2, 1), Strdistmx(2, 1), T1max(2, 1), T2max(2, 1) | (0 CL Hsub(2, Nsubcyc(2)), Pmin(2, Nsubcyc(2)), Pmax(2, Ksubcyc(2)), Strdistaa(2, Nsubcyc(2)),..., T2max(2, Nsubcyc(2)) | ||
Repcyc(H cyctype), Xsubcyc(H cyctype)Nsub(Kcyctype, 1), Pmin(Ncyctype, 1), Pmax(Hcyctype, 1), Strdistam(Kcyctype, 1),..., T2max(Kcyctype, 1)Nsub(Kcyctype, Nsubcyc(Ncyctype) | Repcyc(H cyctype), Xsubcyc(H cyctype) | ||
), Pmin(Kcyctype, Nsubcyc(Ncyctype) | Nsub(Kcyctype, 1), Pmin(Ncyctype, 1), Pmax(Hcyctype, 1), Strdistam(Kcyctype, 1),..., T2max(Kcyctype, 1) | ||
),..., T2max(Ncyctype, Nsubcyc(Kcyctype) | Nsub(Kcyctype, Nsubcyc(Ncyctype) ), Pmin(Kcyctype, Nsubcyc(Ncyctype) ),..., T2max(Ncyctype, Nsubcyc(Kcyctype) ) | ||
gyve Q. l~g $ 7( +~ 4 0 fJckjIcg. (=~Q Cp~g~~ $ ~ ~~~i~~ (~~~ ~ ~~I~i(p J~g~,pi~i) | |||
MPR Associates, Inc. | |||
t>~MPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By GBs-730-N5F'J X Can, Page | |||
++ | |||
~ y | |||
~~ ~a~[, 3- k4. | |||
A<RR["-lC gj/engr)ne. e) 4 | |||
MPR Associates, Inc. | |||
WMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By osS-- ZSC /W/ Page Zg Pg o6gCIM Veal 5 i CROON pJ cgPiclc. E'icP is per gmnied | |||
%VAN ) ca.~~a. Qig c&vl(Algal p p( 44. opgpug 0' 4 %pc\ C (..i(J 0 e~S (4s. (.(.4s 0 kh | |||
~c Q~ ( | |||
I-lgvf6'g 4es4 A.f Q $ 40'4J Q a~ p s~ipW ~lb'(n I7 P~ssetc IVH fe'pp~ cl/cps epee FIFI 8p/ns.7 f | |||
p c le Inj 9 Pb vi p.rnlaI 0+ 1''j~6. | |||
dE' (IBl~ny p 7 npon i p i | |||
in~u. s wv L5asew p p~~Jlz a. vm Cipa.Il~ | |||
~CP.PC~ eXE.. AHl~>/, . | |||
'peg4C SeMkn4 Ia 0 0'pe'A I pk<4 fko i 4tlA/g WJo4 ( ac e iIiek g(,(;carol Q ~c.,Pip'. | |||
~ -~As a-k ~s ($s ~ ~( .s.J 4. 4R yvr pedC. p 4 Vi'< i I | |||
0i Cnk~~ e~ $ W C~(p 4e g f 0QI'<a l~ g | |||
Associates, aiMpu MPR 320. King Street inc. | |||
Alexandria, VA 22314 Calculation No. Checked By Page zPS'- 2M-pe/ ~7 | |||
: 85. '109 f7 $ 2% - 3o. I8$ | |||
n vl 0 | |||
1 O | |||
C o | |||
g 0 | |||
io3o. ( 83. 83. J | |||
'5. | |||
0 6 fO x | |||
Qs a~9 | |||
-10 CO CO | |||
/6o, 10 Co o O | |||
t tTie. prtss~iz-4e~(@~ad~ vtrg anal g~ilcycks Aiv. e hsuo Fjvrvs 3 t (. lO~ co | |||
~ | |||
q vari IQ CD o | |||
IJ HC A'>BfCenACN 0f fltc Eke c'I p'g 'P>~+'Qk )II'>4+8 Is 1 lie ]clytrnkYc cC ate Pry/ ln "g'+s~aI '~? <4 Eg~l Tg | |||
++ 5+ f/ I Apl ~ g'8' I +++re C8 pC ~e l ~ es'Scr ~Pi | |||
MPR Associates, Inc. | |||
lL)MPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared B Checked By oeS zoo 8 58 I Page 185 FULLPOWER z lL OPERATION ill O | |||
<z g g~Ct go | |||
<U lf au g:~ | |||
Ul LU g t O Q gZ ONIOFF FW FLOW IL lL, CYCLINQ AT 0 LL85/ Q. | |||
lt lo TIME Ihrl S IIaS z. HAS HP KP HOT HOTSTANOSY STANDBY IO HC.S | |||
" LP HOTSTANOSY N | |||
7t l O3O ioso E 9ss ASS g | |||
O I | |||
V TIME OKI PD4: T2 Is ches+.regim Qmpmq4acc a'h valise/ pf'5$ a<g Fi&VRG 3 CyC L | |||
~ T> R T UP /5 H 9 TD 0 M~ C '/C L E | |||
MPR Associates, Inc. | |||
r>~MPR 320 King Street Alexandria, VA 22314 Calculation No. Pre red By Checked By Page ogf-Mo ->SF') | |||
FULL POWER OPE RA. OW/OF:P Sm O'Lo~ FULL POWER TION C.yCI.l~s AT OPERATION g CTCI.CC/HR z $ 6O 3<o III a: 7I, | |||
/III ~ | |||
ON ON gO IL Z I78 ()o- ) | |||
!6 ( | |||
TIME Ihrl N>(a W~ I'61)~ SQ J',~ | |||
Q~E,ra4r~ ~4 %VMS) | |||
STAND IY LI'OT pg g 6'C~ | |||
W.5'IS HP HOT STAN 0 5 Y IZ.54 la30 ld 3@7 7p 955 E | |||
g K | |||
O I | |||
O C | |||
i6o F I &uP CyCl Z. | |||
C. 2 TIME Ihrl 5'I:EA/VI 70 LP HOT <TAA'DPP tq P/D II 6 I gg~ | |||
FVl- L POWER | |||
MPR Associates, Inc. | |||
WMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page @t, o85-ZW- gsp/ | |||
lhpwk File RS1 /~ hf P (5'<C Apl'> z-IB-s'f> Izls'Cp j 8, 0.75, 8 0.25, 1.02E-12, 1.01E-7g 5.95, 1.95 0 '5g 1 'E 11' '2E 7 | |||
~ 706I ~ 537I ~ 448g ~ 393 2 | |||
54 ~ 047'023 88 ~ 409 | |||
~ 208 | |||
~ 014 g 1 ~ 3 198 2 ~ 5638 s g | |||
.79782, 1000. | |||
.147, 450 ' | |||
~ s 47 ~ 922 g 30 ~ 189 g 8 ~ 2748 I .94733, 250. | |||
2 1, 4 1, O. I 1030. 1, 83 ) 83 1, 83. 83. | |||
1, 0 ' 955 ' ~ | |||
1, 83 ' | |||
~ | |||
: 83. I 1I 485 ~ 539. | |||
16'55 ' 955 kg 1I 183 ' 539., 1, 161., 539. | |||
30I 160 kg 160 kg 2g 241 ' 364.) 1, 178 ' 364. | |||
3/ 3 1 I 160 ~ g 1254 ~ g 1 g 161 ~ g 364 ~ s 2 g 360 ~ g 573 ~ | |||
9 I 955 ~ I 955 ~ 1 J 183 ~ 539 ~ 1 I 161 ~ g 539 ~ | |||
44'60 ~ g 160 g | |||
~ g 2g 241 ~ | |||
g 364., 2, 178., 364. | |||
QclRct'.CxC k~s ~eel,4ej asian~ | |||
TE57 I~P es I | |||
4'le GEEST.DU7 (l7/f~gis~ g-zI-P~g e'3/<<) | |||
0 0.7500 1 0.7522 2 0.7533 | |||
~ 3 0.7544 4 0.7555 5 0.7577 6 0.7588 | |||
: 7. 0.7599 8 0 '610 ' | |||
0 MPR Associates, Inc. | |||
r>IMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared 685=2'- /2''/ Ws~ By Checked By Page | |||
~+ | |||
~e rcs>>I4 Lis f+L ii MCVr~ OLIT iicc 'soli PicA iij'c 5 vn~rl<i~il iw V<44 7 Ail A&lMfl(Q c~lci 'Lanai g ll~s TaL la Z. | |||
~eris~ QP +ha rSavl'fc t kf 2 i ~ci~4. | |||
+he. res lhs t'kccl, I>> TS~ T OUT Ymir~ | |||
4C-%AC j ~ BYE preyer I c Lc/ggey c~. kc r~rm$ la s a P~c+n g i | |||
] | |||
c-(c c + +lie i~v inp~i s. | |||
e O | |||
o l'a'I~IakeJ Ccac,(<. <<mA'< Resv 'l>g R O | |||
5VLQJQ Kmi m .hX > /~v A ~b z | |||
~l/Pl N. 4ev (Vs,F) (g7 ) P &s>Q (~/~).le) (~) | |||
5.7S'00 U | |||
o b, ooo2GaZ. f g.75vZ 6 | |||
'o Q | |||
e 0 00032 52 | |||
~ O>1So& CL izs.ss | |||
-8 o.75'Ob 0-1,5I .sv,o (,gkq~ (0 14 Z'fiii .esi4 t5 L x g.Ssf~ro 50 o.758. | |||
I o.7S~ | |||
W 4l Q e ~m xQ O~ | |||
He lb ]a'f, tP . gag 5'5;9P . oOo'l t >g o.aS37 | |||
~ P i~).~s l ~S.VX ~ ')6&~ (p,'7 7+~]D | |||
-8 Di 75 g7 | |||
-to CO e | |||
0'~ | |||
~' | |||
>0 lI .1'4 'I lo lS ta Vl I'f1Q Oi7S $ S Q~g tO C0 o | |||
0.7553 | |||
0 | |||
~ o O | |||
p A./gg z (vi,(~) 'g;4) (~f~ .te) 0 | |||
'lS l'j lo'I.a8 ."tQ5 Sg, oO . ooo'%9'4 e -7538 Oi 753$ i | |||
~9.~5 s'l..ls sx l lo 'f'I /, t ( g>l o '/ 7S Y9 | |||
( O~ | |||
: o. 1$ 9$ | |||
tol~ ."lCZ5- e< o3 Cga'f4/( o 75'!8 | |||
(:8)9 >Io o 7X'VS W CD g li 'Ql>I> x Og fO ~ | |||
o i 7sS'5' | |||
à i'75~ fll Co CO o | |||
~ j~' | |||
lQ ~ 6g lO CD o | |||
D J(<Idol n) o t+ | |||
g I | |||
(~% ~b) o | |||
. 0oO24$ $ . g,755 7 0 | |||
. OoO3ZQQ o.gs (p/ | |||
~5 Iok~~b p~ 0 oi 7S 7.7 | |||
. uoo t&go o,.75'8/ | |||
~ CD Q 4 892.>)0 e xtQ | |||
~a Og D K I | |||
CO O. | |||
<Zg' oi 758/) IQ ~ CO Q | |||
CD 4 O | |||
0 f' t Jed Ccock G owk( Regv.Hg | |||
.,'oo 9gpQ oi 7+Z. | |||
.b.glacio 4) Oi jggg I r f 3+>>Io O~ 7+gCI Rt 37 ~os gg - lkzC sk, lg .i. oao~ggo os 7/0+ | |||
$ i 0'foxpro | |||
(. Y3'P>>io gg oi>4 0( | |||
o~75/g | |||
W | |||
~ ~ ~ s T | |||
I P r | |||
MPR Associates, Inc. | |||
r+~MPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By Page a8&-Z>g -WP/ | |||
Tfic DA<J coefk~if'~72 (8() a~ PPV p4. pAgf~ | |||
F7~/nfl'('span,g~ | |||
Cs4=s. a;st'J<<di~ P'uke i. 7,m I) v'hc nicaea~ Pn sate> P~ f . | |||
Q(psto ) (.70@)(5'goal/7) + (.537N-go,zclg)(zC~<~~~) | |||
(0+ps'cg | |||
MPR Associates, Inc. | |||
rirMPR 320. King Street Alexandria, VA 22314 Calculation No. Checked By Page ues=z-%6') ps/ | |||
CR ~W {Ib {'hlD | |||
+ ~ h/S <</e | |||
I | |||
~ a P e l | |||
i I | |||
MPR Associates, Inc. | |||
<<~MX R 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked .By o8IS-z~- gSP) ~s 7<. Aud PagB q[, | |||
ETpg( | |||
= ~TC~soe-) (7o()(ss,so)) + (~g)c n oiq) ~ (vs re | |||
') | |||
(-.Ivr) ~l',1' | |||
~ | |||
7 3 | |||
~ (;~~s)(> <<38) ~ (>sr 3 ) + ~ 3%3 61 >5 Ai J~ | |||
Wz,~i~ 71n~ = sag. '/B5; " O'"I,o 'p | |||
)ohio. | |||
9go. | |||
5'/-'73 Qi'tw ~l(Mb yigi | |||
+ 97,2S IR,'/. | |||
62 7f | |||
I | MPR Associates, Inc. | ||
RMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page 08s=~- j~/ VC XC oc+ | |||
I eS l':O(~)o ( G2. 7'I) 0 OOO'3W~ | |||
~ u /po/~ | |||
A; = A.-) | |||
dpJ | |||
.75e9 $ .Ooo3ssB(() = . ps' | |||
Associates, arMI R MPR 320 King Street Alexandria, VA 22314 Inc. | |||
Calculation No. Prepared Checked By os'-Ho-g5p/ | |||
By | |||
'X ~ Page q~ | |||
IW(,~So(,'~) ( aoI)(sq,og) g (u7)C lo,ios) ~C anto~ ~) | |||
(Yso)(I.3I$6) i (>soh~) I('Is3$-.7978E) 37I-50.7$ Vsi Io iso 4-;,9 4/a ~.l S4.~s as~ 'd.Piw, | |||
~I~g = (~74X gs Io f) V'(s'37)C ol'I) ~(7SOlz ~) | |||
O 67icgl | |||
~Tf (724'i) z3 | |||
>7 >(o rs'~ | |||
MPR Associates, Inc. | |||
WMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Os~- zoo -EV/ ~ Gu Page stst fdDp. gore | |||
MPR Associates, Inc. | |||
RMPR 320. King Street Alexandria, VA 22314 Calculation No. Checked By Og~->3g -gSPl Q< 7~ @a. Page q5 I~) 4s: | |||
( | ~st = ~O s4a.b.- | ||
eyio$ u~ or~< t (<QHj /J ' | |||
7~os gJ.p ( = | |||
( tF >Screw) (7o&) s"'/ of7) + ( <37)(4 goo) ~. | |||
(. ~@8)(i slgg).(irma<; ,)-7 (:893)(- 8782) q'>> l '<<>>) | |||
GY.7't 4o(Z | |||
0 a~ME u MPR Associates, 320 King Street Alexandria, VA 22314 Inc. | |||
Calculation No. Checked By Page a8s=z.m -WF/ XQ q(, | |||
Se J, ah.. J Sk aS d:,.hr,44~. | |||
j) ( >Ssip'7eefg (7@&)(/7 15 7) '0 (5 3'7)(- 8ss | |||
) | |||
I8$ 7j ( | |||
+ (<~8)(8 m<8) a.(~em~) O (SS3g- qww33)~~(. 7S>6 ) | |||
8 l. 5('.'s'(J~ | |||
Wl/p,5~ | |||
- 3 4~ S"f I = i L3. F 7ia~p -" 3A. 178. = | |||
/8( | |||
)005. a<~ = ~~a, 'P Zs-o. 'P q9 is~is .~ I (l 0, obO pig y s(( 5G VVsts. | |||
)z3. | |||
zSO" P | |||
'P Pm< | |||
Kz,g~, | |||
Vwg 5%reF> | |||
I 186. 'F (ooo, prig | |||
+ 872( gsi&A | |||
MPH Associates, Inc. | |||
, | rarMPR 320 King Street Aiexandria, VA 22314 Calculation No. Checked By Page c>8~-2M-PSP/ qg hei /P< = >'I + ~ | ||
(qq,yp . arly 9'/ 53 g.L( 15. 52 gSi'J | |||
~ 7-u~> a~ A,V o Q/Ly g'aea grJ gk, | |||
* ZSZ>>v 6< | |||
0 7SP3 wctqq | |||
MPR Associates, Inc. | |||
Checked By Page | t>~MPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page | ||
~~=zoo- WPi | |||
FPMPR FN&INEEAS Appendix H CRACK GROWTH RATE ANALYSIS CASES | |||
MPR Associates, Inc. | |||
RIMPR 320 King Street Alexandria, VA 22314 CALCULATION TITLE PAGE Client giaeaafl A>ifa<K Power. CoRPofffITiorJ Page f Of rii( | |||
Project 'Qegrw Liria Uowzle gI'iqvi'rr c,piriII Task No. | |||
OS+- 'L50 Title @~4;~~< Cr~ct< &~ow44 gnal~sis oF %he, HIMP Un'f J Calculation No. | |||
c.re> Rck~~ Li~e Ao++k. | |||
o85'- 230- RsFQ Preparer/Date Checker/Date Reviewer/Date Rev. No. | |||
LS~ 27 g | |||
~(~A< | |||
MPR Associates, Inc. | |||
~i~MPR 320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No. Checked By ops-%30 p-SI 2. | |||
3~~ 're~ | |||
Page Z Revision Description O~()i~~ t Iss~< | |||
MPR Associates, inc. | |||
ralMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By | |||
-i2~l'~ Page aug->SAN P~post= | |||
gus.pose o4'4is calcu/a fsoN is 4o GLepec~i'oc +m+<gue c(ac.lc rt w' a SS~~me.Q $ (avs ia 3-4c. eJ 'ne iH'~ Ai'~k | |||
~NNP) <<~k l cock> I co 8 ds"ivx C<@>)) | |||
l ~e aors+)e. as ~ g ~c.hi~ | |||
o 4 Y1urn bsv og pr~ssu re /7 A8f os'/ CyC.le'J", | |||
MPR Associates, Inc. | |||
raiMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By Qgg-'zM- W~l 2- Q s~a Page Fig cs ~ is cc | |||
~( 0 og c,rocc.k 'la~c3)g versus | |||
'i~lA ~ ~I5C- ef ~[c.4 ~ ~ ol~,ni itlGL /lou/ I Oi 2 S in C.45 in fh~ JV M/ Crn'7 I CP10 p e /IO CVI Liin( +Op+/C ~a gy r" qv) | |||
Q(oCCLl IA$ | |||
g lro d /0 fi'Pint Vj' g/riu grOW o oppra'irna g'eg | |||
@f4( uh U /ess 7 gun 1'(4~< ~k, (cc4io'aq4 $ Q Ci S 'inoi ). | |||
MPR Associates, Inc. | |||
WMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By osS=PoO- @t K Page 5 8'c,v~a. | |||
CRDRL Nozzle Fatigue Crack Growth OA4 0.42 0.40 0.38 | |||
~ 0.36 | |||
~ 0.34 g 0.32 | |||
~o 030 O 0.28 0.26 0.24 0.22 0.20 0 50 100 150 200 250 300 350 400 Cycles (1 0 cycles per year) | |||
MPR Associates, inc. | |||
Q~MPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By OS <- >&0 P~P Page rr- | |||
%Jib e c.r <<r.lc 0 Cow l-In ri4 an <<ssa Yir ed( 47rr ii/ | |||
in )he HMP Ir~./ I Csr'D r e'er'n /rrrq rraZRI>> | |||
is arI<< I)+~ 0 based r kt ~ n ~44e dI gI>>zcr ibed I | |||
We4~a c~ Cra.k.pro~]I,s d~Ia~m,.>>,( | |||
4 -+ ~ pI.-+ 'l-~4.( ~c.Ias L kic Q pi ri Jiv sc. <<<I LDUJ p(ass~'re cinaI -Hoer rn | |||
~4~s ~~Irs. F~g~e pie.9 dpraginf c,) ~As. | |||
<<re a ssa~+8 I sad ~ r>>cer~+ p(a~4 mfa. -sa lWS(e<t ~ | |||
co )~4e~ qeeaIr-awv rJCRRCL EXE:, r~ zS dave.(agee' p( ger ~ W~ era ~lc qrgw4Q QncLlvIs'is ~ d'or.u.eiai keg~ rrnA var i/ice (Beni QCCRCr EXw <<re. pr0vict+ J in %4erewce 2o I | |||
~<5 Qrr( cviIa HiPn ge cvi~ Rv rS I I tl'iQ i&f'why | |||
MPR Associates, Inc. | |||
ÃMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepare By Checked By Page o eZ- Z3'o- F~Pw | |||
+o AcXQc k BX2 aug ISVldWS 7 /IP gno. Sil | |||
MPR Associates, Inc. | |||
14~MPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared y Checked By Page gag-~g $5 F'2. /In Aif+ 8 NQ<~ 6 lS, w PV T S Lm pukX ( 6)(((Y'CCI (JCf RQC EQ.E ~re a(OCumCP]eg IVefece((cc.2. C~~L aP 4a l l-kr g~P ua,4 I ('.F-g( (age~ 'I r(e ~elm (5 <4 c c.<(ss('.cl +aIevJ . | |||
't,4(~< CI ck L, senaiins) slkc, g(am $ (na't cc(~ M c(cc(I/&:4() | |||
c inc(t ac <en(~cI usIrJy cc | |||
// | |||
IV~esmnI c In sIIe'c /~7~ /.r c A.n ituew's Jc(.~ 0/ie (ri ('Ae I Qk ~ zI | |||
+C'l yS'cn~ | |||
(."< Ck q<bH4. d.afar Cda(d u Vs, n(k'z) ace +4I( | |||
AS( 1E@i,kI gnJ P~VIC YCSSe I C&e, Ze PiCI ZZ Cii' 3 j, 7E< | |||
MPR Associates, Inc. | |||
RMPR 320 King Street Alexandria, VA 22314 Calculation No. repared By Checked By | |||
~e.5;- Zoo -PY'Z p~~ /4m Page | |||
MPR Associates, Inc. | |||
taiMPR 320 King Street Alexandria, VA 22314 Calculation No. Pre are Checked By oeS'-vo -P-Pw Page | |||
~g Pg = o.7o(p | |||
: o. 53-1 | |||
. Q W8 Pz | |||
: o. >9) | |||
Rene& Pressure=.)%SO psiq | |||
MPR Associates, inc. | |||
lL31NPR 320 King Street Alexandria, VA 22314 Calculation No. rea d y Checked By Qgg ++0 ~ ~HZ Page A )] | |||
(/~i'd Te~ para gviC=.5'2.C | |||
~PD 2 flu, is '7~~ perp Iaie .5'g 5 g QQ. ICQ.I~ | |||
/ | |||
PIKER . IT%~ | |||
I | |||
)"a lpga'~trig coc f f felri<Ts ere. | |||
~sag Q Ae en< siI~i's; | |||
//d S //S, t'9'g /52,62.y jy. 035 j 085'5;~s>Z | |||
" 53.2I"t? 66. So>g 35. 9'7 l ) | |||
! 0'h I 0 e s s'HIseceF,n<,zIio .a ri y | |||
~ Ii+/'grcsSsirj' e | |||
COVtalS t'I '/9 SPZD $ osg~ | |||
palp t 0I<UXvllw. can 6< 5<ci Ir/ j~ di/f8idii7 Iar ssarcs) | |||
Ld, i~4 cm( s ek~ag as ~ q~as~.c..~4.as I E.q'J. ~.l -Aers ds"'.]i~ | |||
I | |||
~ A | |||
<.ic Z. s e.4~ed . Whc 4's/r.@Ha.. | |||
Q~vSS> alar'I 4~x <a g~ <~L'.4 p~m /year~.l l>.Jii>g | |||
MPR Associates, Inc. | |||
r~iMPR 320 King Street Alexandria, VA 22314 Calculation No. epareJ Checked By Page ore-wm~-P~N- | |||
'P(essu<C. a~& %orew( Loag Press<<e. aM +erma( (oao(( | |||
q v(es ~ 4'urq CPlO | |||
( | |||
< enure hng aors~\~ c,re c/(oou.ynr v Tesj Ramsey,(e. S. Wab(e 1 Suvni~ari~ -(-'4e. (o aors l ls c (e S Pre- Vnc cu rr'rsng any rrsrne/ | |||
opera trms'~~e p/<<P. Tire~C y~ a/.-i | |||
\ | |||
oread gn . ~L..t'/< opiagng /'4,J P$,- p/P. | |||
(i~v<rs Z.ar 3 are S~/re~aprss / r I in'p/ra I A grnm press<<re 4n | |||
/ ~~ 4~e ~) ~/er Pv kA gland. /(s W//e/. | |||
lr(s(infer ) +lie /bet J cy r /e/A./C/uFss 5 5+sPk/o//sufi/r~>) | |||
les / 5g r4 /o /5 c/ / a n/ dna. ~lyd 0 I Jr | |||
.( i5k pen g'Ca l IT<c (Q s(~b < | |||
aug)c. 4'EA (K Qfo is 'kk>~r rl en( Q a / | |||
QPmr+uf +wggowA g r (e / Sos | |||
+/e a n/vis u p~f~nre4 /-~ ~ iver/p/s/-./-,/. w | |||
~nn/ g p~r /4 SW;<VS/s(Srvns, y c./ng yeas. | |||
Tqwpecn ulcc> | |||
+yp.'o p3 70 | |||
MPH Associates, Inc. | |||
l%1Mpg 320 King Street Alexandria, VA 22314 Calculation No. Checked By Page our-zoo -PSF'~ | |||
RKRcT~C P1Zas'su<6 Cpsig> | |||
I I | |||
j WiMh I F | |||
TcMpgMT~g.g I | |||
I | |||
=10 F TIM E. | |||
Re~~ko.r 'Spans~~ A~iJ ~e~tsa~a4u~~ | |||
Wgg.PL = CLb 'Reku~r Li~e F t<<cl +capel-ulcc r"e | |||
MPR Associates, Inc. | |||
RMPR 320 King Street Alexandria, VA 22314 Calculation No. Pre ed By Checked By o ss=E~/Ps pz- few Page | |||
]g ia50 ps, I Ogo p5< | |||
RzAc To% | |||
ptze ~soQG (P~'5) | |||
SCRAM Tc&PpRATggg C-F) C l2>R, lg gy~ 7o | |||
) //ht- 1 C<umVlA7+A, pe~u~R.4 l&6. | |||
MPR Associates, Inc. | |||
RMPR 320.King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By 08K-xylo- pap~ Page | |||
@oh I( e('((((((I(>>A $ Qw+ 3 spar i -f /~5 Jl ~f2 vc(/dr | |||
(((n $ ((>>c((r Per ((vo( (/ | |||
s~n(+ /sovc(m q(.Ie>>. | |||
'iaaoI, ~>>i>>. (-(~4 meQ (( 4iI>> CJj~ c.nJ>> )co kh | |||
@~i (qs) g ~ > | |||
l~ p, g.g~ 4k+ gc.M(.g ~ | |||
c.a4 lakes z+es~, 4m'( | |||
sep((r((kwP (U(> ii t(>>ecc((r>> | |||
WhN.(;~P s4~~ a,'(gr,l,((/(;n), g/~ | |||
"III 4 ke e/'Ie n/(((((rv L~s(c .(e.( 4 2c@(((ivi( $ (rr((r( g(v g/( | |||
(-(s>E noZ~le. e(ccevn/s R ~g pIessee>> c,M /krr((J-/((nfl. | |||
o(>>Q>>, +>> .((e(~Ufo< e.re r(((k (n((vv+ | |||
l 4r c(v(o AW c(i>>4n~g c, Jes. As s4e3~ p~v( ~s/~, 4he g4(e< | |||
>>Aces>> | |||
L. a C,s>> 2 ('( e 4a os -I.l(o~ | |||
"o+e>>s ei(>QLukrr >>>Je(m 44o((gL ('f arI(l(vs g( (( Cbv L>nv(/ (or>>no(re o I A((m~U 'io~A cs(neth((v(, M(((~ <((c,((i e(i(>>. E o('re $ ~ | |||
~ ~ | |||
~ | |||
>>.~ 4 sc,i~J (~ a.i'F~~'Q p~ss(eS | |||
aiMr u MPR Associates, 320 King Street Alexandria, VA 22314 Inc. | |||
Calculation No. Prepared By Checked By Page 08s=z>u -P-5f'~ | |||
ac ~A g Vga< vgde~ kQ -leek p (scr<<~ | |||
~(<<lc ~ e ~ sn'm~~ I s+c sZ 1 | |||
Se<<Sq s | |||
~ | |||
't<<sc4 ccc<c+ f~+ cteeth'4( ass 4'sec (schuss<<ec <<~c HseIIYI<<t tc~d de<<~ b.( Le<<eI Ca,se 2.. 5n cc 4!sc. (-occe( | |||
I Qs 8 sc ss ge'4 '8w]secc O'lls c v 5 <<kerr IJ (e7ce& LI7scI ers sf sr sec lac %Ac. C> l~~~r~snri P ac() ( )srNsclsceQ (Zcn n 7[~(CS (CSS (Cabiri Ce/ In Table+), | |||
Relccessc<<3 wee(cup ~'g~ = /~WC's c | |||
$ 7nspvs cl c lsc<< Ilp cpu'fc's'f>M JJ ga gsc'<ace ce. < <<s 4<<el I ( cc Pn lstcsncs~a c'snsrs~e, Pcl | |||
/c 5M~<rj ~g'= IZZQ c,~ >>Wii = 0~ 47~i~ u q-4 < P4~*C) ~ z o. ~.",l.a ~w'. | |||
c (c,s (<<4g ~e ( es pie (cn4 Cn.se Z. | |||
c(recount<<4i~ ~L:8, ir w4 I is Aers~ce( | |||
0 O | |||
~i Lo& C lc ( | |||
~ | l ks I A | ||
: 0) (i) O~ 0) | |||
~0 Q~Lc P~ lw P81ircc WcAII'n ~gmtj) 7rrcccic Tgcrccrr bzo f | |||
~Pe. 'l4 CE QS.b C. l4c (lice ) ~q~'c 3 ('I:) ('FJ ('p) C'FJ | |||
/030 s4A (( o )~o C~) (z) 0 1~50 l2.50 Qth<5 a | |||
: 0) ~c'cc-pier~fir's ccrc. cist c~r/~y <<icing %~4l1crn ~( Ac@>m ccrc: ~cccrvcc4) | |||
~n 5 | |||
s /~ -ss -.WA-:/~4rh), ~u/.. 0 Nai..~ s~k > CD Q l | |||
+* cc ~crlr/' VI s circe s4~ I~ ccc/c ~rgb/scwccc /sec. Nev r2). e xQ | |||
~a Og | |||
) ~ ~4. s .~d, s ~l l~ -~e l sl 4.(/s~r +, ~~ | |||
ta e | |||
/ <<c/ rccsc A a s ref. I/ir ref re u h~n4ccccr i.sccc/corri +w os kl /~n'~ ~ ~ pr~n~ "< i~O ~~ig~ M~ c>>i~re~~ (~ ~ | |||
CO g'e sos/c. ccrc vYi~ y.Jpcc/r/r. ~mrpa cls .I" ~ .I( -I &~M Cn~c Z: lQ ~ ge Q | |||
/Ey Cn7 ~ll)g 4/tr MlVCS'/ 7I, CD P 7g , ~/l 'l jq f "I J4 +1~%/) 4 o re% = ~i~.T,, = .'I~c Q c.v MS~ N (~W ~~( < | |||
g. | |||
~ a | |||
~ | |||
M A.,J, s e;u.J'o +I res~~ | |||
s4~ | |||
VJ~ su'sly~/c, | |||
-(,.rA 4~ho 5Adud~ =I'o k~rJ~g | |||
MPR Associates, Inc. | |||
~xlMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By Page | |||
~52= l'30 -FSP 2- 9~ ~> | |||
~ | Ka s~gs ~ s p ocp ann hI GNRGIC. E. KE I'I vzoeI c~ (~s lode. CPSiud I;ro vk oJ rOW'l4 sn &As A | ||
nor'</,. An Ip.p pile I as p~pq<<J glss-. < No YL l~<n-lz, 7li~ go ~no C | |||
: 44. Inj os gi le C I ici/ro. 5I Pa | |||
~ S) | |||
Cr~D 5L-Dr. I~P qh.s (I./('~ oW 44,;~ 4 l;I i shown | |||
/II kh >np pj ose duownosqeJ yn'L'.(r ,/<<8.n | |||
MPR Associates, Inc. | |||
RMPR 320 King Street Alexandria, VA 22314 Calculation No. prepared By Checked By Page c ez=v~c -PSgw gg C-R.PPLbl, )v'F 400 | |||
'.25, 0 ~ 25g 1 02E 12g 1 01E 7g 5 ~ 95, 1 95 0 ~ 65g 1 2E 1 1 g 2 ~ 52E 7 | |||
~ 706 g 537 g ~ 448 g ~ 393 1 | |||
1 10 085 g 1 15 ~ 694 g 152 ~ 624 g -75.0351, 1250. | |||
65 ~ 3333 g 53 ~ 2142 g 68 ~ 8029 g -33.9911, 1250. | |||
2 3/ 1 1g 0 g 1030 ~ g Og 0 ~ g 0 ~ g Og O.g 0. | |||
2g 2 1g0 ~ g 1250 ~ gOgO gO gOg ~ ~ O.g 0.. | |||
lg 0 g 1250 ~ g 1g 0 ~ g 1250 ~ Og 0., 0. | |||
Ar<8-'ISIS Rc. SULKS | |||
~e~S,s~ ).O oF <<<RCV EgE ass users 4c pwdlyM t' eC-k C~<OW44 la W<e C ~ <e~~ f~ 'l lee.. | |||
~ n~ Ph+ < 'p~9 PI'e Z /man r,. bevg 77ie e.rrHpr P 5;/e crr~4rJ pz cPR ~K CYC 0./Z5 ecol, ev 7- 7, <l / II q",Z8 p | |||
c4 grI gl e'll Pj/>> ~ yr/e rrrrrrbr'm) | |||
4 MPR Associates, Inc. | |||
lL~MPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By Page c)BB--.Ao - P-~PQ QQ 0/J~ g~ | |||
lL~MPR | ttmja.t.l~ Qi~~ .Ri g. | ||
Qi~~.Ri g.4a a l(ma hie./-/e~siye I I | 4a a l(ma hie. /-/e ~ siye I | ||
I II an o.lo, | |||
( '4c.~: | |||
Cot~~(d.f'cA c4c. ~aye~~~ a~pe g~ lyI~Q .'L'I~a P<i<<$ <J I | |||
l~ po pre>v'n p ~<(p/<./ | |||
km( peyIod 4'IcingI 4 1 <a- wi ~ ~m~w | |||
/r cn, ( | |||
a l | |||
I kl~ g~a e( | |||
/e | |||
+ c'. / | |||
~ | |||
i")e (e 8 m ((ikey ((pyrygp y(yeyqg) 6a (,y P~ Qy+q .(~ e q)~ | |||
<j Pa | |||
(( S'~~ g /gy Pq( V /( /q)~ | |||
<+e<$ (e /~id'r4~ A~) Tya(5 $$ ~ ggp<g(~ | |||
'<<) | |||
~u( /yya( P/( ((og.Z(< | |||
n~o( y/(a g 4~ga ~~/, | |||
Pt'i +(~'P <<i'~. kC .s.ygygV((¹y((eg i'( | |||
J g 2.'Q~ /Cr(' . | |||
MPR Associates, Inc. | |||
)XIMPR 320.King Street Alexandria, VA 22314 Calculation No. Pre ared B Checked By 085- ~>a- ~3, S'~ 'A~ Page .+~ | |||
4hz Ei~ pe~>P~ un+ /W~ | |||
7+ nn | |||
$ g J~ 7Ag s 7 c~ +/ 'l~ f~.pc)~ | |||
g | |||
~~dl ]A C '7'AfOE c ji, 8 q (/ +h(QL~ y / 4// | |||
gp~~k 8<< /Ci fI Ear < giscc ss'r~ a f <cia -@cr(~i/~ | |||
</4v~ &le P/~,: sir ~ u 4~5< | |||
nZ | |||
MPR Associates, Inc. | |||
+oo.y'i8(lsd,6>'l)M | t>1MPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By 59~ - V.b-P5,PQ Page g.$ | ||
gnat a= O S ~Ie'l~q', | |||
+cop~+q ii~l~~8/M (Zo l I pa l1 iYJJ p gable Y r I]l)o~Qa+~ac,u~/ger Llu~oK Qlc plo~plo~Ie'u~(6oo 5iJ | (q = /0~): | ||
. >OIo (iIo oII<) S'S7CliS'<'I) | |||
~ | |||
+ oo.y'i8(lsd,6>'l)M 'N3(>S'o"-s'l | |||
~ | |||
+cop ~+ q ii ~l ~~ 8/M ( Zo l I pa l1 iYJJ p gable Y r I | |||
]l)o~ Qa +~ac,u~ /ger Llu~ oK Qlc plo~plo~ Ie'u~( 6oo 5iJ | |||
~ | |||
77~4oh'led c IllhaaLoIot Paul slee foauikJ' ~i J&IA~Io rho<g> | |||
CIAO k g&lukk q'olo1 +o QEJuOC. | |||
MPR Associates, Inc. | |||
R<<J>>-FrsJw<<*~/Sp<<eyes-Qiri<</ | K~MPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By Page oem'-z~o -P-SPz @] | ||
/ | 2 9. | ||
gev~/y | ~ | ||
Ps o pgc=DF ll | |||
~s | |||
<<4E I q8 qrseWrq | |||
~rssel1 McÃRc4, E.xC, rev g. | |||
0 | |||
+<<+lrrs | |||
'/ | |||
her mr& | |||
- >/Hz-l, clnz~ | |||
I I | |||
'Pl~ | |||
sSI14 Cl<<~@is. | |||
R<<J>>- FrsJw<<*~ /Sp<<eyes- Qiri<</ | |||
~, | |||
Prr)S'lr<<plsrrs g't<<r Ans/ /rr s~<<rs P<<','$srss s.l Qg /gd<<sss/ss, | |||
+le(<<r4, H~~cA / )78 ss Chl~/<Jim ~Bc-xm -PSPJ, "I/esse/ C<<Je., | |||
~ | |||
8>>/sr'44m< | |||
/S'rpo fC'Mssf'<<'I4'r / reps>sss les4vw f Ss <<s/<< ~ C~&dsrsU <<rss/ rissS'h~ Mf4 C's/c /<<-/ss>> | |||
>8k-> 'J - EBS Oa,~ <sr (, | |||
S. C~+r'/ 4 J 9r ~ P~4~~n /Vega/~ 7)~sr~<< / | |||
Pr c w~c'j~l'a, "'"1/ 4 Cele (q.Am | |||
~PS >Bd- f'I8/Z--d)> gev ~ /y | |||
MPR Associates, Inc. | |||
lLIMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By Page os+- 13'- g-5PQ g~ | |||
Ca 'jc( logos o$ C'~Q;o g$ ~p~ | |||
/oo Iy thorn io / | |||
(err ss pno()a,g qj o | |||
I I4$ . AX I <~r Vo < 8ig | |||
MPH Associates, Inc. | |||
WMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By oss.-w~g -RSVP 8x. r"~ Page Fl 'd We~p~~g~ '7o F's anaL~gjg Glo cQ IY10 ~$4 g | |||
$ *q~~ | |||
~'t~~~ ~~ li | |||
<>0.055 -,l5 &qg C~) | |||
MPR Associates, inc. | |||
=52-Z'%trim 1't s~I$s a5+kg irk~anr | lLiMPR 320 King Street Alexandria, VA 22314 Calculation No Checked By Page 055-23') -K5p2 PA i+a ++ | ||
~l rn IZefe~rnCr.' | is ae,~su~ ofep4 | ||
+f1 r Ogg 7 4. Qd+2 IZ ~ (j ~birr IYI) r.iran~ | |||
ffs r lt.i ga +4 s It omni Vltr c.vrrrrPQ pnrV rclrrJ'"-/asr appr &rrrta sitar | |||
+llrr <akrJ $ 7 1 <$ 3<5'ppnt>>ritz~i L -0 3 | |||
'Prr~ j'o 0 r3 iran(.aaS | |||
+t rvi)t, hatt | |||
) | |||
4h c~iw "P'. res tI.s 6av& | |||
a r,WA 5~44 ~ | |||
Re.ado Pr.ssu~g (zsOps ) | |||
P<<<-4rv I I u.r 8 1arvap+r <AufZ. | |||
QgDC. F lund 7enprrt]aiba | |||
= | |||
52-Z ' | |||
%trim 1't s~I$ s a5 +kg irk~ anr 8'rz (r ~ n( MS'' are Jrraurrren71 ~l rn IZefe~rnCr.' | |||
MPR Associates, Inc. | |||
cskl ec o~ll1e arAmD$7/NJJ'rS c,le~.t,'ppro~r~leL~.o a L~l, g i~c-Ws.pno | taiMPR 320.King Street Alexandria, VA 22314 Calculation No. Pre ar d By Checked By | ||
- @st'g Page 095->30 9A >>g +8 14e golbwrr o | |||
~ | |||
~LarO qeigrllrrrrlrJl rc-oS O'.I'0 stress es Broil, $h, /rsvp no+Zle s a(( gj~h'nrsi; g5,~3>'5 55, Sl~(2 g + da,5o2gg 53 '79)( g ep~4r'~;r a p(lr'rr.l 4 o ~ ~ g ~ l~uiZI l~bl~ Z l,s Is 44~ S;-rr U an. lgsrs r~~, V>> | |||
r.rx gb ('s /As Locd (oSe Z. +~i rg'lo4 oP Arctic i'her.r'4q ver sm O4tchh | |||
~ro+ 44. ere ~~(e. rc c,ll > | |||
r o~coecr'co J't4 I r $ 'a//J j | |||
+o j/ | |||
As zb n qhe ca~~ PH pn 'ass opfocrral~ cskl ec o~ ll1e arAmD $ 7/NJJ'rS c,le~.t,'ppro~r~leL~ | |||
.o a L~ l, g i~c-Ws . pno | |||
MPR Associates, inc. | |||
WMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By Page g5~-- ~Su -f@P'2 7C 5ev fM p) | |||
Sgeuew So~nd 4hc ae4ucd Xgecsr~S Ya.41~ 5 Mess AaalgsiS P~e Cu~gt'-'0 AeS~lkS Load Case 1 Load Case 2 Distance Analysis Curve Fit Analysis Curve Fit Through Stress Stress Stress Stress Wall (in) (ksi) (ksi) (ksi) (ksi) 0.0000 110.0 110.1 65.3 65.3 0.1'l28 91.2 98.9 56.4 60.2 0.2256 88.9 90.9 55.5 56.4 0.3384 86.2 85.5 54.2 53.9 0.451'l 83.3 82.1 52.8 52.2 0.5639 80.8 79.9 51.5 51.1 0.6767 78.4 78.4 50.3 50.3 0.7895 76.1 77.0 49.1 49.5 0.9023 74,1 74.8 48.0 48.4 1.0151 72.1 71.4 47.0 46.7 | |||
O CRDR Nozzle Stress Distribution Load Case 1 | |||
+i Cf o | |||
c o | |||
D I | |||
115.0 110.0 105.0 | |||
~~ 100.0 | |||
~ 950 I I | |||
I I | |||
90.0 C I I | |||
85.0 1 I | |||
I 80.0 I I I | |||
75.0 I | |||
70.0 J | |||
> CD Q I fO x O~ ~ | |||
65.II Q D | |||
0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Depth Through Nozzle Wall (inches) -CI I | |||
(~ Co g' | |||
I | |||
~ Actual Stress ~ Curve Fit Stress lQ~ | |||
lO Gl ty o | |||
O gt&URE 5 CRDR Nozzle Stress Distribution Q o | |||
p Load Case 2 70.0 I I | |||
I 65.0 I I I'3 I I 60.0 L L L L L L I Q I I CL I | |||
I I I I | |||
e 55.0 I I C I I | |||
I I t' ~ | |||
I I I I | |||
I | |||
~ 50.0 r I' I' I | |||
I' I | |||
(0 I I I | |||
O 45.0 L L L L L L I | |||
> Co g 6 | |||
40 x N~U II.oo o.to 0.20 0.30 OAO 0.50 0.60 0.70. 0.80 Depth Through Nozzle Wall (inches) 0.90 1.00 f~aI Q | |||
tCt o | |||
(~o Co g' | |||
6 | |||
~ Actual Stress ~ Curve Fit Stress lO~ | |||
IQ co Ce o | |||
tÃMPR ENGINEERS Appendix I | tÃMPR ENGINEERS Appendix I IMPLEMENTATIONPLAN | ||
WMPR ASSOCIAT ES INC.EN GINE ERS Implementation Plan for Structural Analysis of NMP-0 CRDR Nozzle Specification No.MPR-085-223-01 Revision 0 February 1994 Prepared by: | WMPR ASSOCIAT ES INC. | ||
EN GINE ERS Implementation Plan for Structural Analysis of NMP-0 CRDR Nozzle Specification No. MPR-085-223-01 Revision 0 February 1994 Prepared by: ~~/~S ~ Y Edward Bird (MPR Engineer) Date I | |||
Reviewed by: 1.:, ('..'~/;, | |||
Ja es Nestell (MPR Enginedr) Date by: | |||
Phillip Kasik (MPR Engineer) lS-5'- | |||
Date | |||
'pproved Approved by: | |||
c | |||
. QP.IK( JQ.L 'Qr-A c~l;-q I J ne Gawler (NMPC Cognizant Engineer) Date 320 KING 51REET AI,EXANDRIA, VA 22314-323 703-51'.0200 FAX 703 51r7.0224 | |||
r~lMPR ASSOCIATES INC.ENGINEERS CONTENTS Section BACKGROUND PURPOSE | r~lMPR ASSOCIATES INC. | ||
ENGINEERS CONTENTS Section ~Pa e BACKGROUND 1 PURPOSE TECHNICALAPPROACH Experience Survey Thermal Load Definition Structural Analysis Fracture Mechanics/Fatigue Evaluation INFORMATIONSOURCES 0 | |||
"11- | |||
e ASSOCIATES INC.EN&INEEAS BACKGROUND NUREG-0619 requires NMPC to perform an in-vessel PT exam on one of the four feed-water nozzles and the control rod drive return (CRDR)nozzle during the next refueling outage at Nine Mile Point Unit 1.This exam is expected to result in high worker exposure, potential outage delays and associated high costs without comparable increases in safety.As a result, NMPC plans to request an exemption from this requirement, based on the following: | e ASSOCIATES INC. | ||
Automated UT inspection systems are now available for performing accurate inspections from outside of the vessel.Modifications have been made to the feedwater nozzles, spargers and fiow control system to eliminate or lessen the feedwater nozzle cracking problems that occurred in the 1970s.~No damage was found on the CRDR nozzle during the in-vessel exam in 1977 or during visual examinations thereafter. | EN&INEEAS BACKGROUND NUREG-0619 requires NMPC to perform an in-vessel PT exam on one of the four feed-water nozzles and the control rod drive return (CRDR) nozzle during the next refueling outage at Nine Mile Point Unit 1. This exam is expected to result in high worker exposure, potential outage delays and associated high costs without comparable increases in safety. As a result, NMPC plans to request an exemption from this requirement, based on the following: | ||
~Detailed modeling and analyses have been done to show that small Qaws will not grow to unacceptable values within specified operating periods for the feedwater nozzles.PURPOSE The purpose of this task is to evaluate the long-term susceptibility of the CRDR nozzle to thermal fatigue cracking, determine crack growth rates and critical crack sizes.NMPC will use the results of this task to support their exemption request and to evaluate the severity of any indication found during the automated UT inspection planned for the 1995 refueling outage. | Automated UT inspection systems are now available for performing accurate inspections from outside of the vessel. | ||
~Structural Analysis~Fracture MechanicslFatigue Evaluation | Modifications have been made to the feedwater nozzles, spargers and fiow control system to eliminate or lessen the feedwater nozzle cracking problems that occurred in the 1970s. | ||
~ No damage was found on the CRDR nozzle during the in-vessel exam in 1977 or during visual examinations thereafter. | |||
~ Detailed modeling and analyses have been done to show that small Qaws will not grow to unacceptable values within specified operating periods for the feedwater nozzles. | |||
PURPOSE The purpose of this task is to evaluate the long-term susceptibility of the CRDR nozzle to thermal fatigue cracking, determine crack growth rates and critical crack sizes. NMPC will use the results of this task to support their exemption request and to evaluate the severity of any indication found during the automated UT inspection planned for the 1995 refueling outage. | |||
TECHNICALAPPROACH A four step approach will be used to accomplish this task: | |||
~ Experience Survey | |||
~ Thermal Load Definition | |||
~ Structural Analysis | |||
~ Fracture MechanicslFatigue Evaluation | |||
Each of these steps is described below.The results of all four steps will be documented in a single MPR report.This work will be performed in accordance with 10 CFR 50, Appendix B, using the latest approved version of MPR's QA Manual.Ex erience Surve A telephone survey of applicable BWRs will be performed to determine their exami-nation history/frequency and cracking experience for the CRDR nozzle.Survey information will be collected for welded thermal sleeve designs similar to NMP-1 and other non-welded designs.The telephone survey will include questions about exami-nation techniques and tools.This information is expected to be useful in evaluating the sensitivity of the cracking problem to thermal sleeve design.Thermal Load Definition The NMP1 operating flow characteristics and log records of the CRD system will be reviewed to determine flow variations and resulting temperature variations for the CRDR nozzle during different CRD operating conditions, e.g,, during movement of the control rods and scrams, and during different plant operating conditions, e.g., startup, shutdown, and standby.The magnitude and frequency of thermal and pressure changes will be used as input to the structural model and to calculate crack growth rates and fatigue usage.Structural Anal sis The ANSYS computer program will be used to develop a two-dimensional axisymmetric finite element model of the CRDR nozzle.The model will include a section of the reactor vessel wall adjacent to the CRDR nozzle.The extent of this section will be long enough to eliminate interaction between the boundary conditions applied to the vessel wall and the CRDR nozzle.The radius of the reactor vessel wall section will be modeled at 3.2 times the actual radius.This will insure that the maximum hoop stress and stress intensity calculated by the axisymmetric model will be comparable to those in the actual three-dimensional intersection. | Each of these steps is described below. The results of all four steps will be documented in a single MPR report. This work will be performed in accordance with 10 CFR 50, Appendix B, using the latest approved version of MPR's QA Manual. | ||
Thermal boundary conditions, including heat transfer coefficients, will be calculated for the load cycle defined above.The results of the previously performed feedwater nozzle analysis will be factored into this calculation. | Ex erience Surve A telephone survey of applicable BWRs will be performed to determine their exami-nation history/frequency and cracking experience for the CRDR nozzle. Survey information will be collected for welded thermal sleeve designs similar to NMP-1 and other non-welded designs. The telephone survey will include questions about exami-nation techniques and tools. This information is expected to be useful in evaluating the sensitivity of the cracking problem to thermal sleeve design. | ||
The temperature distribution within the aozzle will be calculated as a function of time for these boundary conditions. | Thermal Load Definition The NMP1 operating flow characteristics and log records of the CRD system will be reviewed to determine flow variations and resulting temperature variations for the CRDR nozzle during different CRD operating conditions, e.g,, during movement of the control rods and scrams, and during different plant operating conditions, e.g., startup, shutdown, and standby. The magnitude and frequency of thermal and pressure changes will be used as input to the structural model and to calculate crack growth rates and fatigue usage. | ||
Through-wall stresses that result from pressure and temperature will be calculated at several snap-shots in time to establish the time of peak stress.Through-wall stresses will be used in the fracture mechanics/fatigue evaluation below.The original structural evaluation for the CRDR nozzle documented in Reference 3 is an area reinforcement calculation. | Structural Anal sis The ANSYS computer program will be used to develop a two-dimensional axisymmetric finite element model of the CRDR nozzle. The model will include a section of the reactor vessel wall adjacent to the CRDR nozzle. The extent of this section will be long enough to eliminate interaction between the boundary conditions applied to the vessel wall and the CRDR nozzle. The radius of the reactor vessel wall section will be modeled at 3.2 times the actual radius. This will insure that the maximum hoop stress and stress intensity calculated by the axisymmetric model will be comparable to those in the actual three-dimensional intersection. | ||
Because stresses were not explicitly calculated, a direct comparison to stresses obtained from this analysis is not possible. | Thermal boundary conditions, including heat transfer coefficients, will be calculated for the load cycle defined above. The results of the previously performed feedwater nozzle analysis will be factored into this calculation. The temperature distribution within the aozzle will be calculated as a function of time for these boundary conditions. Through-wall stresses that result from pressure and temperature will be calculated at several snap-shots in time to establish the time of peak stress. Through-wall stresses will be used in the fracture mechanics/fatigue evaluation below. | ||
The original structural evaluation for the CRDR nozzle documented in Reference 3 is an area reinforcement calculation. Because stresses were not explicitly calculated, a direct comparison to stresses obtained from this analysis is not possible. | |||
Fracture Mechanics ati ue Evaluations Fatigue usage and crack growth rates will be calculated for the stress cycles determined in the structural analysis.Small surface flaws of various sizes will be postulated to exist on the vessel wall and nozzle bore regions.Crack growth rates due to low frequency pressure and thermal cycles will be calculated to determine how quickly these initial small flaws could grow to unacceptable sizes.A fatigue usage evaluation for the CRDR nozzles was not performed for the original structural evaluation (Reference 3)on the updated vessel usage report (Reference 4).A comparison to the current analysis is not possible.INFORMATION SOURCES Information sources for the CRDR nozzle structural analysis include: Combustion Engineering Drawing No.231-567, Revision 7,"Nozzle Details-Vessel." 2.ASME Code for Material Properties. | Fracture Mechanics ati ue Evaluations Fatigue usage and crack growth rates will be calculated for the stress cycles determined in the structural analysis. Small surface flaws of various sizes will be postulated to exist on the vessel wall and nozzle bore regions. Crack growth rates due to low frequency pressure and thermal cycles will be calculated to determine how quickly these initial small flaws could grow to unacceptable sizes. | ||
3.Combustion Engineering Report CENC 1142,"Analytical Report for Niagara Mohawk Reactor Vessel." 4.MPR Report 629,"Re-evaluation of Reactor Vessel Fatigue Analysis for Revised Operating Cycles, Nine Mile Point Nuclear Generating Station Unit No.1," August 13, 1979. | A fatigue usage evaluation for the CRDR nozzles was not performed for the original structural evaluation (Reference 3) on the updated vessel usage report (Reference 4). A comparison to the current analysis is not possible. | ||
INFORMATION SOURCES Information sources for the CRDR nozzle structural analysis include: | |||
Combustion Engineering Drawing No. 231-567, Revision 7, "Nozzle Details - Vessel." | |||
: 2. ASME Code for Material Properties. | |||
: 3. Combustion Engineering Report CENC 1142, "Analytical Report for Niagara Mohawk Reactor Vessel." | |||
: 4. MPR Report 629, "Re-evaluation of Reactor Vessel Fatigue Analysis for Revised Operating Cycles, Nine Mile Point Nuclear Generating Station Unit No. 1," August 13, 1979. | |||
}} |
Latest revision as of 19:17, 18 March 2020
ML17059A341 | |
Person / Time | |
---|---|
Site: | Nine Mile Point |
Issue date: | 04/30/1994 |
From: | MPR ASSOCIATES, INC. |
To: | |
Shared Package | |
ML17059A339 | List: |
References | |
MPR-1485, MPR-1485-R, MPR-1485-R00, NUDOCS 9407010168 | |
Download: ML17059A341 (438) | |
Text
P>1MPR ASSOCIATES INC.
ENGINEERS MPR-1485 Revision 0 April 1994 Nine Mile Point Unit 1 Control Rod Drive Return Nozzle Fatigue Evaluation Preyared for Niagara Mohawk Power Coryoration 301 Plainfield Road Syracuse, NY 13212 P'DR 9407010168 940M3 PDR .ADOCK 05000220
0 Pi9MPR ASSOCIATES INC.
E N & I N E ERS Nine Mile Point Unit 1 Control Rod Drive Return Nozzle Fatigue Evaluation MPR-1485 Revision 0 April 1994 Principal Contributors E. B. Bird J. E. Nestell R. S. Paul A. B. Russell Prepared for Niagara Mohawk Power Corporation 301 Plainfield Road Syracuse, NY 13212 J. Gawler NMPC Engineer 320 KING STREET ALEXANDRIA. VA 22314-3238 703-519-0200 FAX: 703.519-0224
Pa1MPR ASSOCIATES INC.
E N G I N E E 0 S CONTENTS Section ~Pa e 1 INTRODUCTION
1.1 Background
2
SUMMARY
2-1 3 DISCUSSION 3-1 3.1 Design and Operation 3-1.
3.2 Load Cycle Definition 3-1 3.3 Structural Analysis 3-2 3.4 Fatigue Evaluation 3-3 3.5 Fracture Mechanics - Crack Growth Rate 3-4 3.6 Experience Survey 3-5 4 REFERENCES 4-1 5 APPENDICES 5-1 APPENDIX A Calculation of CRDR Nozzle Thermal and Pressure Cycles A-1 APPENDIX B CRDR Nozzle Finite Element Model, Geometry B-1 APPENDIX C CRDR Nozzle Finite Element Model, Material Properties C-1 APPENDIX D Calculation of Heat Transfer CoefGcients D-1 APPENDIX E CRDR Nozzle Finite Element Model, Boundary Conditions and Results E-1 APPENDIX F Low Cycle Fatigue Usage F-1 APPENDIX G Crack Growth Rate Computer Program Verification G-1 APPENDIX H Crack Growth Rate Analysis Cases H-1 APPENDIX I Implementation Plan
PA1MPR ASS 0 C I ATES IN C.
ENGINEERS LIST OF FIGURES F~Fi ore ~Detcri tioo 3-1 CRDR Nozzle Dimensions 3-2 Finite Element Model 3-3 Finite Element Model Details 3-4 Calculated Temperature Distribution 3-5 Calculated Stress Intensity Distribution 3-6 Fatigue Crack Growth
Pa1MPR ASSOCIATES INC.
ENG'INEERS Section 1 INTRODUCTION The purpose of this report is to document a fatigue evaluation of the Control Rod Drive Return (CRDR) nozzle in the Nine Mile Point Unit 1 reactor vessel. The nozzle is a four inch vessel penetration that accepts low temperature water from the control rod drive system. The objectives of the evaluation were to estimate: 1) the long-term susceptibility of the CRDR nozzle to thermal fatigue cracking, and 2) the crack growth rate of a potential flaw in the CRDR nozzle over the remaining life of the plant. This evaluation was undertaken to support Niagara Mohawk Power Corporation (NMPC) efforts to perform an ultrasonic inspection of the CRDR nozzle instead of the dye penetrant inspection specifie by NUREG-0619.
The fatigue evaluation of the CRDR nozzle considered the number of pressure and temperature cycles the nozzle has experienced to date as well as an estimate of the number of future cycles. Finite element stress analyses of the nozzle were performed to determine the stress distribution in the nozzle due to the pressure and temperature cycles. Stress analysis results were then used to calculate nozzle fatigue usage and crack growth rates.
1.1 BACKGROUND
In the 1970's, a number of BWRs detected signiTicant cracking of feedwater and CRDR nozzles. The cracks in the CRDR nozzles were caused by thermal fatigue resulting from changes in cold CRDR flow at the nozzles, The NRC issued NUREG-0619, "BWR Feedwater Nozzle and Control Rod Drive Return Line Nozzle Cracking," (Reference 1) that identified interim and long-term recommendations regarding this issue, including inspection requirements. For Nine Mile Point Unit 1, the inspection requirements include performing a dye penetrant (PT) examination of the CRDR nozzle internal surface during the upcoming 1995 ref'ueling outage. NMPC plans to perform an ultrasonic (UT) inspection of the CRDR nozzle instead of the dye penetrant examination based on the following:
- 1. Automated UT inspection systems are now available for performing accurate inspections from outside the vessel. UT inspection systems at the time NUREG-0619 was issued did not provide sufficient detection or flaw sizing capabilities.
- 2. The CRDR nozzle thermal sleeve design (welded in place) makes the nozzle less susceptible to thermal fatigue cracking than the original designs at other BWRs. In fact, no damage to the CRDR nozzle was found during the 1977 in-vessel PT examination or in any subsequent examination.
1-1
- 3. Detailed analytic modeling of the CRDR nozzle shows that small surface flaws will not grow to unacceptable values within specified operating periods.
This report addresses Item 3 above for the CRDR nozzle. In addition, this report documents the results of a survey of BWRs regarding CRDR nozzle inspection history and experience. The implementation plan for this task is provided in Appendix I.
1-2
P&qMPR ASSOCIATES INC.
ENGINEERS Section 2
SUMMARY
Three pressure and temperature cycles were identified for the CRDR nozzle: startup/
shutdown, reactor scram, and hydrostatic test. These cycle are defined for the CRDR nozzle as follows:
Startup/Shutdown - a reactor vessel heatup/cooldown between power operation and shutdown or standby conditions where the shutdown is achieved manually by plant operators.
Reactor Scram - a startup/shutdown cycle where the shutdown is achieved by a reactor scram.
~
Hydrostatic Test - reactor vessel pressurization and depressurization to identify leaks prior to power ascension.
The number of cycles experienced to date, the number of cycles experienced since the 1977 PT inspection and the projected number of cycles in the future are listed below.
Number of Projected Number of Cycles Since 1977 Number of Cycles Cycles to Date PT Inspection per Year Star tup/Shutdown 96 38 5 Reactor Scram 100 27 Hydrostatic Test 18 9 The reactor scram transient is the limiting cycle for CRDR nozzle stresses, Finite element modeling of the thermal transient shows that the peak stress intensity in the base metal occurs at the end of the transient in the bore of the nozzle just above the blend region. The peak stress intensity due to pressure and temperature was calculated to be 110 ksi.
Fatigue analyses show that fatigue usage for the CRDR nozzle is very low (approximately 0.003 per operating year). For the calculated stress and the number of cycles experienced to date, a fatigue crack would not be predicted to initiate in the 2-1
CRDR nozzle at the present time. Considering the calculated stress and the number of cycles expected in the f'uture, a fatigue crack is not predicted within the life of the plant.
Fracture mechanics calculations show that a postulated 1/4 inch flaw located in the highest stressed region of the nozzle would not grow to an unacceptable size within the life of the plant. The postulated 1/4 inch Qaw is calculated to grow to a depth of only 0.4 inches in 40 years. A 0.4 inch flaw does not exceed the allowable Qaw size for the analyzed section of the nozzle which is approximately 0.5 inches based on criteria given in Section XI of the ASME Code. The allowable Qaw size provides signiTicant margin to ensure the nozzle does not fail by brittle f'racture.
2-2
PAIMPR ASSOCIATES INC.
E N & INEERS Section 3 DISCUSSION 3.1 DESIGN AND OPERATION The NMP-1 Control Rod Drive Return (CRDR) nozzle is a 4-inch reactor vessel penetration located at the same elevation as the feedwater nozzle. Figure 3-1 is a section view of the nozzle which shows selected dimensions. The CRDR nozzle is equipped with a thermal sleeve which is welded to the CRDR nozzle at the sleeve inlet and extends into the reactor downcomer with a circular plate at the end. This design is intended to protect the bore of the nozzle and the vessel wall adjacent to the nozzle from the relatively cold CRDR flow.
The Control Rod Drive (CRD) System provides water from the condensate storage tank at a temperature of about 70'F to the control rod drive mechanisms to cool the control rod drives, to reposition rods, and to scram the rods. Under typical plant conditions, the system operates at all times when fuel is in the vessel. During normal operation, flow from the CRD pumps is maintained relatively constant with a portion of the flow recirculated to the condensate storage tank, about 30-47 gpm of the flow used for control rod drive mechanism cooling, and about 17-35 gpm (the remaining flow) returned to the vessel via the CRDR nozzle. Some accident sequences involving loss-of-offsite power may result in system shutdown for a short period of time, These accident sequences are not considered for this analysis. The flow rate does not change as a result of repositioning a control rod since the flow diverted to move the rod is compensated by the water displaced by the rod drive which is routed to the CRDR line.
A reactor scram results in a CRDR nozzle flow transient. During a scram, the CRDR accumulators discharge to drive the control rods into the core. This results in an increase in CRDR nozzle flow to 65 gpm. When accumulator pressure drops below reactor pressure, CRDR flow rate goes to zero as the accumulators are recharged. After the accumulators have been recharged, CRDR flow rate returns to the nominal 17 to 35 gpm.
3.2 LOAD CYCLE DEFINITION Table 3-1 lists the pressure and temperature cycles which were considered in the structural evaluation. The number of cycles was determined from plant data regarding the number of plant startups/shutdowns and scrams. The cycles are defined as follows:
3-1
0
~ Startup/Shutdown - a reactor vessel heatup/cooldown between power operation and shutdown or standby conditions where the shutdown is achieved manually by plant operators.
~ Reactor Scram - a startup/shutdown cycle where the shutdown is achieved by a reactor scram.
~ Hydrostatic Test - reactor vessel pressurization and depressurization to identify leaks prior to power ascension.
The number of annual cycles expected in the future is conservatively estimated to be 50% more than the average annual number of cycles that occurred over the past 10 years. A calculation of operating cycles is presented in Appendix'A.
33 STRUCTURAL ANALYSIS Stress analyses were performed to determine the stresses for the fatigue and crack growth rate analyses described in Section 3.4 and 3.5 below. Transient thermal analyses were performed to calculate the temperature distribution in the nozzle as a function of time for the reactor scram transient. Steady state stresses due to pressure and temperature were calculated at specified time intervals throughout the transient. The sections below describe the finite element model, material properties, boundary conditions, and results.
33.1 Finite Element Model The ANSYS computer program was used to develop a finite element model of the CRDR nozzle. The model includes the CRDR nozzle itself and a sufficient length of the reactor vessel shell and attached CRDR piping to eliminate interaction between the CRDR nozzle and the structural boundary conditions applied to the edges of the vessel shell and attached piping.
The three-dimensional nozzle-to-cylinder intersection was modeled with a two-dimensional axisymmetric model of a nozzle in a sphere. The equivalent spherical radius was chosen to be 3.2 times the radius of the reactor vessel cylinder to insure that the maximum hoop stress and stress intensity calculated by the axisymmetric model would be comparable to those in the actual three-dimensional intersection. Appendix B documents the finite element model. The finite element mesh of the CRDR nozzle is shown in Figures 3-2 and 3-3.
33.2 Material Pro erties The model of the CRDR nozzle is composed of three regions with different material properties. The reactor vessel wall is SA302 Grade B low alloy steel. The CRDR nozzle is an SA336 low alloy steel forging with ASME Code Case 1236-1 for nickel addition.
The clad is assumed to be Type 308 stainless steel.
3-2
Temperature dependent material properties were used in the thermal'a'nd stress analyses of the CRDR nozzle. Appendix C documents the material properties used in the analyses.
399 Thermal Bounda Conditions Thermal boundary conditions for the reactor scram transient are discussed in detail in Appendices D and E and summarized below. The last portion of the reactor scram transient was modeled. Initially, the CRDR nozzle is at a uniform temperature of 525'F corresponding to zero flow through the CRDR nozzle as the accumulators are recharged.
At the start of the transient, the CRDR flow rate is step changed to it's nominal value of 35 gpm with a fluid temperature of 70'F.
Heat transfer coefficients and bulk fluid temperatures are applied to the inside surface of the reactor vessel wall and the bore of the CRDR nozzle. All other surfaces are assumed to be adiabatic (insulated). Appendix D is a calculation of the heat transfer coefficient in th'e CRDR nozzle bore. The overall heat transfer coefficient between the CRDR fluid and the nozzle bore which includes the effects of the thermal sleeve and water annulus was calculated to be 100 BTU/hr-ft~-'F. This includes the effects of the fluid film on the inside surface of the thermal sleeve, conduction through the thermal sleeve, and natural convection through the stagnant fluid layer between the thermal sleeve and the nozzle bore. A heat transfer coefficient of 1000 BTU/hr-ft2-'F was used between the bulk downcomer fluid temperature and the vessel wall.
39.4 Structural Bounda Conditions The structural boundary conditions for the stress analysis include applied pressures and displacements (Appendix E). A pressure of 1250 psig was applied to the inside surface of the reactor vessel wall and the bore of the CRDR nozzle. A negative pressure was applied to the safe end to simulate the axial load in the attached piping. At the end of the reactor vessel wall, symmetry boundary conditions are applied to permit radial displacement and to prohibit rotation. At the safe end, couples are used to allow translation of the safe end but to prohibit rotation.
39.5 Results The peak stress intensity in the base metal occurs at the end of the scram transient.
Figure 3-4 shows the calculated temperature distribution at the end of the transient.
Figure 3-5 shows the calculated stress intensity distribution at the end of the transient.
The peak stress (110 ksi) in the base metal occurs in the bore of the CRDR nozzle at the base metal to cladding interface, just above the blend into the vessel wall. The principal component of the stress intensity is hoop stress.
3-3
3.4 FATIGUE EVALUATION A fatigue evaluation of the CRDR nozzle was performed based on the load cycles defined in Section 3.2 and the results of the finite element stress analysis discussed in Section 3.3. Nozzle fatigue usage for current plant operation conditions was evaluated on a per cycle basis.
As discussed in Section 3.2, the CRDR nozzle is subject to startup/shutdown cycles and startup/scram cycles. Fatigue usage was calculated for both of these cycles. The nozzle also undergoes hydrostatic testing; however, this cycle is bounded by the pressure-temperature conditions during a startup/shutdown cycle.
Fatigue usage is calculated by:
u=g n N
where:
u = fatigue usage n = number of cycles which occur N = number of allowable cycles based on the cyclic stresses A fatigue usage of 1.0 indicates that there is a potential for fatigue crack initiation in the nozzle. The allowable cycles are determined from the ASME Code Design Fatigue Curve for Carbon, Low Alloy and High Tensile Steels (Reference 2, Figure I-9.1). This curve provides a conservative number of allowable cycles for a given alternating stress range (safety factors have already been applied). Therefore, use of this curve for the usage evaluation provides a conservative estimate of fatigue usage for the nozzle.
Calculation of fatigue usage for startup/shutdown and startup/scram cycles are documented in Appendix F. The calculation is performed using the peak stress intensity range on the base metal inside surface of the nozzle for each of the cycles. The fatigue usage for the nozzle was calculated to be 1.963 x 10~ per startup/shutdown cycle and 3.848 x 10 per startup/scram cycle. Based on recent plant operating history, there are approximately five startup/shutdown cycles, one hydrostatic test and four startup/scram cycles per year, which corresponds to an annual fatigue usage of 0.003.
3.5 FRACTURE MECHANICS - CRACK GROWTH RATE Crack growth of an assumed pre-existing fiaw in the nozzle due to the pressure and thermal cycles defined in Section 3.2 is analyzed using the Paris crack growth rate equation:
= C (AK) dN 3-4
\
where:
da crack growth rate (inches/cycle)
Gn stress intensity factor range (ksiPin )
C, m = constants (dependent on material, environment, and loading)
C and m are taken from the ASME crack growth curve for surface Qaws in a water reactor environment (Reference 2, Figure A-4300-1).
The stress intensity factor range is the maximum change in stress intensity factor during the given cycle. Stress intensity factor is a function of stress and crack size. As described in Section 3.3, stresses were analyzed by Qnite element analysis, Using the Qnite element model results, a section though the nozzle wall, passing through the peak surface stresses on the inside and outside surfaces of the nozzle, was determined. This section is located in the blend region of the nozzle near to the transition to the bore region. A third order polynomial was Qit to the stresses through the section as a function of depth through the nozzle. Stress intensity factors were determined by the methods of Reference 3. Stress intensity factors are calculated as a f'unction of crack size and the polynomial coefficients from the cubic stress distribution.
A computer program that calculates crack growth based on the method described above was developed to analyze assumed Qaws in the nozzle. The program description and veriQcation are documented in Appendix G. Inputs and results of the crack growth analysis are provided in Appendix H.
The results of the crack growth analysis, assuming an initial Qaw size of 0.25 inches, are shown in Figure 3-6. As shown in Figure 3-6, the assumed 0.25 inch initial Qaw will grow to approximately 0.40 inches in 40 years of operation. The results indicate a very small crack growth rate for a crack in the CRDR nozzle. In addition, the 0.40 inch final Qaw size is less than the allowable Qaw size of 0.5 inches. The allowable flaw size for the analyzed section of the nozzle was determined from criteria given in Section XI of the ASME Code [Ref. 2]. Determination of the allowable Qaw size is documented in Appendix H. An allowable flaw size of 0,5 inches provides signiQcant margin to ensure the nozzle will not fail by brittle fracture. The applied stress intensity factor for a 0.5 inch flaw under the most severe stress conditions in the nozzle is approximately 81 ksiIin. The nozzle is not predicted to fail by brittle fracture until the applied stress intensity factor exceeds the critical stress intensity factor for the CRDR nozzle material.
At normal operating temperatures the critical stress intensity factor is approximately 200 ksiIin, which is more than twice the applied stress intensity factor of the 0.5 inch allowable flaw.
3-5
3.6 EXPERIENCE SURVEY A survey was performed to determine the experiences of other utilities with regard to CRDR nozzle cracking. NUREG-0619 responses to the NRC from utilities operating BWR plants were reviewed to determine how the CRDR nozzle cracking issue was resolved at each of the plants. In addition, several utilities were contacted to determine more detailed information about inspection practices for the CRDR nozzle. The results are surnrnarized below.
Review of utility responses to the NRC indicated that almost all operating BWRs cut and capped the CRDR return line, either with or without flow rerouted'to another system. Plants with a capped CRDR nozzle are not required by NUREG-0619 to perform inspections of the nozzle (besides a final PT inspection required prior to capping the nozzle). However, some plants were operated for extended periods of time with the CRD return line valved out, which NUREG-0619 considers to be a temporary solution. In addition, one plant, Oyster Creek Nuclear Generating Station, has continued to operate with CRD return line flow through the CRDR nozzle. Oyster Creek is the only other plant besides NMP Unit 1 permitted to operate with the CRDR nozzle in service, Several plants, including Oyster Creek, were contacted to determine information about inspection techniques and results of nozzle inspections.
Two of the plants contacted, Duane Arnold Energy Center and Quad-Cities Station, found cracks in the CRDR nozzle during recent inspections (past Give years). At Duane Arnold, the CRD return line was valved out and capped with a blind flange in 1982.
During a visual inspection of the CRDR nozzle in 1990, evidence of cracking was found and a full PT examination was performed. A crack approximately 3 inches long and 0.25 inches deep, just penetrating into the base metal of the nozzle, was found and ground out. The nozzle probably had a thermal sleeve installed prior to being capped; however, the type of thermal sleeve is unknown. The plant performs a visual inspection of the nozzle every outage, but does not perform any ultrasonic inspections. Quad Cities operated with the CRD return line in a valved-out conflguration until 1989 when cracking was found in the CRDR nozzle. During this period of operation, the CRD return line was visually inspected every outage. As a result of the cracking, the CRD return line was cut and capped in 1989. Since that time no inspections of the nozzle have been performed. In both of these cases, cracking was found after a signiflcant period of operation with the CRDR nozzle isolated from CRDR flow. Most likely, cracking initiated prior to isolation of the CRDR flow, but was not identifled until later inspections, Oyster Creek is the only other plant (besides Nile Mile Point Unit 1) allowed by NUREG-0619 to operate with flow to the CRDR nozzle. Similar to NMP Unit 1, Oyster Creek applied for an exemption of the NUREG-0619 requirements for the CRDR nozzle, including the scheduled PT examination. Based on automated ultrasonic (UT) examinations of the CRDR nozzle, which did not identify any indications, Oyster reek was given an exemption from the nozzle PT examination until the next refueling
~
outage. Qualiflcation of the UT system was performed using a mock-up of the CRDR
~
nozzle. Even though the UT system was designed specifically for the nozzle geometry, 3-6
I there were several problems encountered during setup of the system. Mounting the system took longer than typical UT systems due to space constraints around the nozzle.
In addition, removal of the mirror insulation around the nozzle area was expensive and time consuming. After the inspection, a new type of removable insulation was installed to provide easier access for future installations.
3-7
0 Table 3-1 CRDR Nozzle Pressure and Temperature Cycles Reactor Vessel CRDR Nozzle Number of Description Downcomer Fluid Number of Fluid Cycles Expected Pressure (psi) Temperature ('F) Cycles to Date Temperature ('F) per Year 1 Normal Startup/Shutdown 0 1030 -0 70 - 525 - 70 70 96 5.0 2 Reactor Scram 1030 1250 70 <<525 <<70 3.9 3 Initial Hydro 0 1875 0 250 70 0.0 4 Refueling Hydro 0>> 1030 -0 250 70 15 1.0 5 10 year ISI Hydro 0 1133 0 250 70 0.1
23 e~')
I ASS CQ.SKQ gCULCL 'QTLRe I
~ I 0
Vc t$
Ji 8> ~ ~ ~
4 mt'TT I
tg ncuovr.
nor.~~ l cue up~ t I 'Mi7 (Sb~T.IL 4~
i)a )Z1 VO Vreeaa RCr.)
Tb ~ +prre<v +'. ~ eisa)
~q~ '-iTYTT, SYSIEII gETUTPTT uCJ LE KSQ'Y Figure 3-1. CRDR Nozzle Dimensions
il
',j
'J,"
f llRllllIWIIIIIIIIIIEIIIIIIIIRIlllIllgggyyygIlllt i <<Will%%%IARAARIIAINIIARSARIlIOOO
~
II (~ //Il l)llew%%%%%ASRSIOSIONAOOSOSk500%000iiggg
<il)'p/(]/ Jllmssaskskaasaassssissaaaaisg~~gpg klan% g ggyININll<<1tIINIIlg
)'P/)/<III t(gggggaaaaaaaaaaaaeaaaaaaaaag~~~~)
'>'<>ISO jjaaaaaaaaaaaaAaaaeaaaaakiaaagaggi (If4ggg ggggggiwgsakWSQOWSQOWkSOi INIIgyygggy jg llkNIIILIlllggpNtII
)<ittye JlOSRSk%+++++++++++++++++++I+INOO+lg+Ogaa NNkOOOOggg~~
1% 1 aaaagggg()( OOOOkOOOOkggOO qx eeassgssssaas<<w>>>>>>+++i+++++++++++iasgaaeae+ig++++~isaizg++
Xq~%+1as <<eataee+>
OOiNkOOg kkOkI OOIOOaaigk44OIOO+gg 1+ggg kkIhggg+
p~~~~mee@>> asaesegz OOI O4tk
~~~~~wwm~~~~+++raeewaaq wa ~~ +++Aaeay~
~c +alas+
~ ~
Illlllllll~ls>
ylllllll>gt~p llllllllll IIII~ )l<)p
~gy))l)~)(lpga/j illa'~'>If(l>~l//j god,'hagi~/j fbi)]4~~%Iaaaammmmmmmmmaa
~)~lykyggggRR%%%~%%%g%%%
WaOrsnaammmmmmmmmmmm
%~~~+~~~~~~~~~~~~~~~~~~
i 0
ANSYS 5.0 APR 4 1994 16:33:47 PLOT NO. 1 NODAL SOLUTION STEP=2 SUB =21 TIME=3601 TEMP TEPC=9.434 SMN =88.846 SMX =523.562 88.846 100 200 300 400 500 600 Figure 3-4. Calculated Temperature Distribution
ANSYS 5.0 MAR 31 1994 10:40:18 PLOT NO. 1 NODAL SOLUTION STEP=14 SUB =1 TIME=3600 SINT (AVG)
DMX =1.462 SMN =3533 4
SMNB=2569 h
SMX =96413 SMXB=105008 3533 13853 24173 34493 44813 55133 65453 75773 86093 96413 w
Q~7Q rent a
p:P
'+~~
Figure 3-5. Calculated Stress Intensity Distribution
0.44 I I
0.42 I
0.40 I 0.38 I I
I I
~ 0.36 T I
I
~ 0.34 I
I
(~p 0.32 I
. 0.30 0 0.28 0.26 0.24 0.22 0.20 0 50 100 150 200 250 300 350 400 Cycles (10 cycles per year}
Figure 3-6. Fatigue Crack Growth
PD1MPR ASSOCIATES INC.
EN&INEEITS Section 4 REFERENCES
- 1. NUREG-0619, "BWR Feedwater Nozzle and Control Rod Drive Return Line Nozzle Cracking, November 1980.
- 2. ASME Boiler and Pressure Vessel Code, 1980 Edition with Addenda.
- 3. Buchalet,'C.B., and Bamford,'.W.H., "Stress Intensity Factor Solutions for Continuous Surface Flaws in Reactor Pressure Vessel," ASTM-STP-590, 1975.
4-1
I' rpMPR ENGINEERS Section 5 APPENDICES A. Calculation of CRDR Nozzle Thermal and Pressure Cycles B. CRDR Nozzle Finite Element Model, Geometry C. CRDR Nozzle Finite Element Model, Material Properties D. Calculation of Heat Transfer Coefficients E. CRDR Nozzle Finite Element Model, Boundary Conditions and Results F. Low Cycle Fatigue Usage G. Crack Growth Rate Computer Program Verification H. Crack Growth Rate Analysis Cases I. Implementation Plan 5-1
FA1MPR SSOCIATES INC.
ENGINEERS Appendix A CALCULATIONOF CRDR NOZZLE THERMALAND PRESSURE CYCLES
MPR Associates, Inc.
lLRMPQ 320 King Street Alexandria, VA 22314 CALCULATION TITLE PAG E Client rv lg&ARA /YloHAWK, Pa wG R C~Rf'oRATlo Page of 1
(2 Project Task No.
F'P(~ LIP l T / c8 S-~~a gQA/TgoL- R~ DR i v'8 g,G Tu~ A<Ya/ E Calculation No.
1 HGR~c AAD PREssua.G cygne E~ (PALS-23G-/SR-6 I Preparer/Date Checker/Date Reviewer/Date Rev. No.
~/lo/9P Fdi~ c ~+~a.(
I s/~o P/~o/Vg 3/Sl ('i9
MPR Associates, Inc.
lxIMPR 320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No. Prepar d By Checked By o8s-'Z3c>-48 P=D( Fw[ lw( c~
Page
~
Revision Description
~+I C lMgw lSSyE;
- p. 3 AuD ). 9. DELETED >< 5'7A V uF'/sHU7'Do~~ C)'CLOS Rat WTeb wo SwR'Top'ES'v's A~V <Rh(u(~C C ~i~i COLS Pe f'.rOX~Gr >P l965'. TH Zsr uCL.e S DELETE'D tOiQ !VOi iWVC LVE Pl A~ PeATUP.
MPR Associates, Inc.
K%MPR 320 King Street Aiexandria, VA 22314 Calculation No. Prepared By Checked By C7B5-ZQO-A8R. Dl REV> i
~ gg + Page
~lo5E: TH 1 gP SE oF TH 6 AT DEF(~ Th'E 7flERPAC 4~b t RCS5ugC . cgCI G5 Oa TAE'co~Res- Rot DgiyE R~TuCW (cRDRD A'oKKLK /Ar TAC AINE ~IL-8 F'otNT U<17 / F'.E'AC7og l/ESX'G~~
TC CuVuZ 7'OweE'R c F CYCLES 7u ngTE, s PND ~o 557 tAA tE. gflf A/U/vl8fR. cg F FUTUP.c <y~eE.s.
GumWA l2
< Vc~- W CY~t E'S ToTA C p'REALS <l 0 E Clod 'TC~F 10 PRESenn.
I. O~ia~r ~o '7ow 52.5&7c7 70 96 g.o 2.. 0 ~ i25o ~ o 7O+57 5 W /O 70 s-9
/2 5'o 7o+ 5z g w7 lOo 0 W[875&0 O & IO3e~+ zoo 70 D~Ilrz~ 0 zoo 70 CYc~z ):u~a+Ac naRTvp/gHvv'oo~m l vcr.G5 2. A~D p. S~ARTcrP/Sc IZAAK cvcc.e's y 5 zn b s .'Essec HY.bR~s>AT'tc mesmer
MPR Associates, Inc.
RMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page oes-z~o -/8 p-ol 7-equi ~ ( g(
hro CE E SC, PL.ATE TRKQAAL 5'LEKVAR RBAcyoR SH Rou~
cRD cg~R
/cour ClzQ g Po~wCo~p~
ggA4gug VW~ss.~
&At L,
~ i MPR Associates, Inc.
lLiMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page o8+-2.3o -A8R-6/ g /,'i,~
IN I HE' ESSG-I So Fco~ -F+!Ra UC H Ttt E Cygne iso>RLC tS
>) p(cAL &oRmgL FLaw 7 HRav >tf -FpC Ao KZL 4-. (5 )7"3,5 &PA SAC f46~ DoE 5 nroT CH4k+C g S A l2ESu C.7 C7F gePo~ITIdd(N con TRoL a<D gijvCh THAN FLo~ DIL/5'ATES vo ~oVL- THE'~D IS GamPE'mSATe D BY TRC u 4TZR E ISf'L,AC~+ EY q HK CR2 C ERICH
>> JZ.o4'mD 8 4c k. To WH 6 CRD R, I-I we.
4 R<A <Taf 54RC}Al RC SvLTS ln F<o~ rR+&S(E&7$
7 HRo>G-H 7 I-(E. cgOR. no%7-LE, UPON A 5cRAAh SI&~QLg 7 HL CRS RccumuLAToR.s D(ScH/R@p Zo baal 1/E' HE Ccwrgcl f2'ops'A 7IIIs RE 5ULT'5 IAJ T ffE'jz.Q cooLI>c- FLow Egl !AC- gey IP Q'$7/5 7'HK C Rg g. WOt~LE> (NC IZ<85'I ]VCr A'O~yLK F LO~ TO 6S G.'PPlAFTER Rcc.umUt AT'os. PRESSukK DRoPS eFLow RCAC'TO% F'RESSED'P-t) V IRTVILLy ALC CRb 5'/ST'8' I.a4r 6<<>
RC-CHAR.6-E ~HE Ac<,umUt QToNS 'q-HvS, CJZDR AokkiE'5 0 &PA . <RbR Ato>tLE FL<< Is gE-c 5rABLISHKb
MPR Associates, inc.
RMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By o85-23o gal -0) gg. T+(, ~f o.u Page
.HL Q~AL- ze sMRE c cL P,ISED Ch/ 7HZ 4848 DISC.uS5'(cr~S C'yCI Eg 4AC COmS'<DE,P.gQ F.OR 7r ~ ~F'eP.HV (~~ maDC 5 ~
4'cga% L 57A +IIPj/IloiZAnAC 5H(ITboN~ 8~5 NO ZPlAI ST+RT'I/P/5cR/A1. HyDRo TEST PPessURE cycLE5 ARE ALso Co~SI E Z 8 Eb.
THE RMAL C YCL+5 t9Rt=- R'E. PRESE'ATES 9'f 7 HC Fl MIQ TL= WPE R.ATVIZi PvsiDq THE 1 HERINA< SLEEK (T ) A4D THE Do~uconn& R. (M~ ). WHE'~ Cgt)fZ F:Lobed STol'~
DuRimC- 4 S<gAhh,, %HE't vip YS&FGQATUPE IA'HE THCRmAL 5( O'EVE IS'55k'WL=.D +O 8F <HE SW~G'S 7 HE po4 ~Cu~6+ c" g Clog 4C .
MPR Associates, Inc.
o RlMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepa ed By Checked By Page e ps'-w~>-$ 8P=o( c7-8. 7@I; ~/-.
S~~<<C F'/~ur~Al SHvTD~u ~.
g Cacvoa p=tog~ ps'p~~ ~g;~~ Pv'cg5 pv <
pg e,ss uR.E, Cp'Ro W < ~e'A,AT(A/4 C]o sip) Q4'pg oruo H0,g
<(x>/>I A rrWcneZ-dnrO V FSAIQ
-7(& L.
60O ~~DC ~+4~ OPIA.A.fgAJC-T>,=4%5 F GTvlpg~'rut 6 b4 74 -0/oo Hz,5 oAr C r) Gl LP/9/ P s sue vivum Tera( 8 M7vRr Fo p.
Rect RC vL/lac~ f'v~ps)
<cp~ "- lo F
/VoT~: Mr GAPt-iER $84RZ 7HrZe was ~erg EAPHAsiS Rd~ P T'ggi~]v Cc)wytgloAJ5 J ~(CRT Fogy cyc~84 ~~HKAG paSSSVae'lo3~ r4WJ) Wp~(~ZS O
p pic) 4'cc> RP-F-D. <HE 8 >vE'.gc LE 15 .As'svw<o 7 >
gdtjwD 8l-L G)CL.E;S
MPR Associates, Inc.
WMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By d 8'5-73o-A8 R.->l Page g
5 78 R 7 lJ P/S ~ P- AM,-
I Go<<~
I 0'3a psL IZcag'cA c To/Z l>5o psig- Pr~ssur~
PRe,ssoeG p sip 5afef/
(r s. (ur-qadi).
5C,PAhh, Agsu~l + o c.ur or ~]l Sc,r ~~S,.
FgP c~~s glZYATI5AA
+a~ = 5 l.a
'Pagss'Ugc, i s possum
<<~ p~aATuRG 87 I%SO i sip SLIP.I PoF) CQQR QCCCr~Vg g PuP
~~Wc Hcl C6-tnJC .
I iih f, A cc o~ulA l aQ, PEWIIAP G.le.
H VD<o 5 ~ATlC, q g gT Pg.C<5U pg cy(gf '.
~L,~ -25> F PER I Imi'Ts Irv Tgc..g SPQQ 3 Q.~ (/de upTQ iS aPPy)
>~<< H>'DR<'-. P= l875 psL'g ('Re.F. uVSga.)
El~+< E'AcH pa FVGIIAIG': ) OZcr pa Pg (DPEMTIMC P)
'> P'< 2<X' I-l>X l>rCPSC~ = /lZ3 PSI'g (RF<- rt/ Pipi iP7 ooiP-p-ls)
COMDR, FL~~ lS HSSV WSQ FC R H'IPDRa ST/7'l C ~PS~~,
I
MPR Associates, Inc.
ti~MPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By VGV- I Page
<s's-vs~ -A 8 e.-g)
U&ag12. DF cY<LEs
/yPLPC, PEg5ouAKL yzyei.oPG'5 4w OKrggg S'uwdnARy Fog. ~~['( ~H ifDKA'TlFi K5 yH I: Pn TE TPPG(~.~. 5'cd<
SHVTbO1V&> fdoT 5'TRA'D8'/) IZEWSOW A&5 DVRATfd& oF FC)ce cvTADE.. 8ASElO c~ Zge 5VhfptApy, 7-pZ F'oLc.oi i~6-fS 7 HE A'O'AQG R, >F c YC,C.E5. ~
P ksss v P. 6 +Dc 4o. CP'C L,6S 0 Co io'30 Wo N <o 52.5 STAI.Tuf / I F sa'g j70 F d'or~7o F 5 8 tn pow pl qo y~ 5'2-5 0vo /250 <o ~@sip go7O F 7' lOG 5 TFIPTu/P ScRAM 125o pic'g sz< lod
<o 7a F H ypR.op~ATiz 01@ l88'~ >pi'g 7o F Tt-. sTS Prr /o30 vo Opgi'~ L5o F 7o i-Pt~ I133 to,4's'QO Z.Sc F 7< F moue i'u<AC-O' Zo HoT g7gmD 9'y 3Rw i~CLu 5Kb.
mom'c Z. RO RE'ACTOR STARTS in/ l942 Aa SlARTVP <6$ YS TRAlA'tPc- CR,tTlCAL,S ARE h/W iNculDEb SECBVgE No I F'L]9~ pgATuF W'AS IuVOL VED.
<<DR. Ft o~ iS AsSQWSS DtJRimC HQDpcfsf'~ ric g8's'75
MPR Associates, Inc.
lLWMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page
~g S-~a~ -Wsa.-ul 7~I' (gc,.-
I~
AhtTic (PA t= AVM 6'g OF' C,LC5 PVlZ(ug ~VTUCf +<BgAT(aAI THE AluT(cip87ED FutuaE iv'vplBER QF svA R7op /s'N vr Do@ ~ AA/9
~ggl Q P SGRAjN C ycc c g pg ~el.L, 4S Iiyp+O5'r~/4 ~g T PRESS'Vg.i-C~~~eS /S8WSEC O~ Zrl.~7iVe~y RECT~ ILA~ EPPES'RIEWCE':.5'i~DE 7HE HWD oF rNE lP&N IZGFCJELbV& (6/8Q //99),ADJI/SYED FOR
~:HG .'3m nna~TH Our'A6-t=. in l>87-, l.99O. 2'T. Is ASStta GD 7 HHT t=VT~R,t oPR'pe(da. ~ii ~ NAV'L 50 fd &OP.4 5'NVYbomwg AND 5oRAA'rt5 (AAWV+al y) 7H S T~Tl C. 1 6 SIT PRF SS VQG Cye L.E 5 IT l S, 4~5~~6 5 1pAT T~ sTs "o 4'PE@A'Tlpd- PREssugE. (Iozopsg sviLu occup ouse PER. Yen'WHC cc ~a.E~ r aF ~ RAl'l~C C,y'CL,E- lg g.9 Pss~TH~
As~u~P>l~~ I5 AVG@uATE ~a Iccov~Y'uQA alp-4yC, ouv'A&g As ~s'uv). 7HE Is/ 7ssTPRessu<G (IIX'sst) "<<<
ONCE Q Vf P.P /0 y5'4 i25 BYOIZ>5 Q TlC EST "rFAF'8'RAToCGS
/RC <SSuAG> ~ 8E'~ F 6RCATC< Fog, fv7uf, c.yet.E'HATS AT lSK<PY.
)N ~u~~~ A Rp ) <Fls A~woAL c ~lc~c 5 F~R Fwvtz.E
~PGp-ATt4'~ 4Rc.,
P RESS uZC h/o. cyc~C S '/R.
>SAavuP/ 0-I03~-0 psst 7b -$ 25'-.70 7a F 5", 0 ESSES 5 H o<bcJ~~
svAavuP/s'~CA" o IZP'-a -ps)g zo-72,5-7o F 7& F 3. 9 I z5< pyle 70-5'z5-70 ~
Hyi r ~ST WTic- 0 -IPPO- C7 ~'S's,'~ goo F 7
0-II Z3'-o Pi goo P 7o "F CP~Z <<>~ >S +SSu~GD b(r Rf JV6 MYDR~57 ATTIC, MS'.
~ ~ >> a ~ '
j I ~
OPERATOR NIAGARA MOHAWK CORPORATION NINE MILE POINT NUCLEAR STATION UNIT NO. 1 Ilies).RTR I O r)) jc pof-")E.!T/) D~~~f.r.r@EK i K QRWQV ti Q ggG
~g'/=K/4V(/gG'EACTOR I
P'P gS~~ g Q MPS 0,
O' CIR 'VC tll)$'>ll IH SIEAM IIOW WIk IE)<f I CO)E COIE tVMt 12 tVMt 1<tf tr ll
}034.'l I<a>>I CO'.. COL. 12 COt. II COC. 12 Mal. SVCT SVCI Dt)CH FLOW SVCT. DOCH SVCI D>>SCH FI I TENt O E. IEAD W. 'LEAD TOTAL
'IEMt IEMt, TEMt. If>>at. LE>>at TEMP. If<at t)<O 4)S vc I'Sa raw I 41 S>>'e<1 I I 4)SINI t ILS/Nt 4)SINS n)12 I')I) D)14' D)IS j
n)IS D) II D)IS Li)IF CSIS Aa)I Aa)0 Aa)1 A4)2 Ac) ~ Aa)S A~ )I Aa)S Ac) A440 Acl) A44 I
' ec I c/2~
': I C/ ~ >><<<<c I r Hi I'2' I'7. Jca)8..25 ~ 'I ~
..8 'Z3! i ~ a'
~ l) I 4.'6. ~ . (>>C ; ia)}/ ' '.; ('r r'atv<<le 1 e ir ~
')c'} !ZZbb Zr'i} qc) AQC":. c.(" 4
"'i' e ir rrt VH",
I (: >>Zb I 10 4:<<40 I' I c'".'I 327:ct 4:":
ll74J3
,' ~ %a ~
c't <3 ) c0 ()ea>> /()67.j26 j / 66175; /".I! ~ I 'I cl / I: v"'! I,< <<' I}'07 t>>I / r g /r>>p ~541 I aC>>Cglc le)n,lr)I Cj;) 3<}~; I a}"
I: 0() c/ 934>> i('3 .('D T a'a '!O a r)I b.:~(>s.,%01 j I })31 ~ I 4 ~
o W -".() a /3/ 11'! Zb'2 I) r),e "aCLI. "rci 'c>
th')3( '! a(6! a I ?bi tLb I I 2:"bc' 3 "6'?. jl (>> a: '('7') 7"0 34> } (C') I 3'e 1 3 Cj '.'I 7 i .) P %>>3'.) ~C>CI r
jl>>I r.a r~ '<> ?~F i 363, I:. ci bc). 3'170. <3.: ~ le v ~
1 Cc/tc.
<<C<<<<a i 0366 J . 4>>T /0. I;: :<<'a r I >>. 'r~ r4 347<<('/: c)/i
'4 c)3/ j}rlc
('3('0(:
aa r a~ I~ ~
7/jt) i, '54 I~}7 Ic
")I36 '/:5
\ 3}NO~09~>>'U 3 i 5 I ~('ll t 'o5 365'.:: ( -"-1 ar 0. vc <<21<<)s'3"'>>} 4 34) j}rj~) I c J i<<>>Oi r rr H ii agp 04'c>rw>>} r)'/. -,11(.~r)pc,~S I C'I 4! Zc), S:c'I I 7.2 4 >>art)")ar" ~
3'<')6S ') i
) 4 t.c0 e
9 "00 3IOI j(CC AY. b I j'0. 01! 0.
3/r'/r>c~ct:3'C,
')2 V. 730 )'i 44 a 4'6'I>> I a( 3 ~ 3 rg g 7l ~ca 1r'a(el 4'. a C>
e'i(i 7>>) ', I 338( 04>II(: <<>>3/0 ~ 4 3)i ">>Ct <l 3ct 7/~ I/ =-'1 ra85(:/'; 08: "4"'I=OJ 2"I)/e
/<<r I /'.
4, !
-.,-"'I I i Ibb'J. I I 0. 4 I'. 0. 5'= /('>> 3<}/8 0'74:0/ 6 '<<0JCc/D
~ w
'(>> a>>~ /atC. 4 - :-6 ~
blab~'0c/
~<
rr
~
i 6()(l 9" 7 7<<a<< M/ >>>> j ' a 69 . 6 4 / (> . Z<.e>> 0. rZ!
~ g 0<< r rr>>!
~
3"' c I I 70() 'J 'i 9. 68c) rt>>D /r. JO 30'"; 50c~ ~()".': :I C3rc >>03 l9/,
c".' rpc! I >> I an@' '<<T' I '2'. 076: . /6 0. >>ZZ ~
4 <<
~.
~ 31')C 'i:8>>0<<c:I ca r.'2>>0 cg )Fb I 36 I Cc>>0 r':
';r' )r r36I C'v ~
a
/a '
- ": 6E ) .:4 <<L.c/.? r ~ 3/}ci0 'zl Jl 3()bV<<)C)3)4S C. a 3C 36~( tr'.
(>> I I ~ ar << 9 c/: 70c; (:c), 2 .: I b~) . I 36'! . r CC>>r
~ ~ >>i 3<UZI 'l)> I 12 re% 4 C {an ht'e ~
z1,34)04>)c?6 [ . ~
f >>t( r>>mr>>
, r
~
'/ I at '.
wc>> 2<~15())'". 4)b;1)7:02,
>>N,'-) 30/>>05022) fb ) 3(,c(Ca~<<>>0<r .
cr;0 4
>>2 '
/ ~
?C>162 ~ -'36c/. Q9, Oi." 1; C- >'r'jt".' I 0 ~;.3/8})'4'. () 3(ij 34)() c )0A. 3} a>> C.<<0Z .I /C '
3 r'0 ~
V I c.r rer>>C ~
)g<C rDC I ~ e 301C'7')8) tI /- c) r ra)a' i" 0."(: '.C.~tc)'.I cr =c e
i a I I
I
>>a!Cr>> It ')CI c/ Hov<S 0AaV( TS AT:,OVeR,: g CscD/~ C~ Et t=- . THE= Q/p/<I L. Pu <A/6- R. rc} Ar 0 SO PC: T,RES (=WT S Re+,f/I/c:, PFR,e sv>E. em'.0 Te r i a
ctP Tci Tr I
I
'i ej'r
NINE MILE POINT UNIT NON-CFIITICAL HYDROTEST 1400 1200 O
'I 000 800 NCN-CRITICAL 614 OPERATION eoO K 400 360 0 MINllvLM O 200 TEMP I= TLRE FOR BOLTLP 100 F 100 130 0 50 100 '150 200 250 800 850 REACTOR VESSEL BELTLINE DOWNCOMER NATER TEMPERATURE (F)
(reactor vessel belt!inc downcomer water temperature is measured at recirculation loop suction)
FIGURE 3.2.2.e MINIMUMSELTLINE DOWNCOMER WATER TEMPERATURE FOR PRESSURIZATION DURING IN-SERVICE HYDROSTATIC TFSTING AND'LEAKTESTING (REACTOR NOT.CRITICAL) FOR UP TO 18 EFFECTIVE FULL POWER YEARS OF OPERATION Amendment Iio. pn, p, pn l27
PDIMPR ASSOCIATES INC.
ENGINEERS Appendix B CRDR NOZZLE FINITE ELEMENT MODEL GEOMETRY
MPR Associates, Inc.
y lLIMPR 320 King Street Alexandria, VA 22314 CALCULATION TITLE PAGE Client Nr4 ~g ~oh'5-wW
~rn/P ~/gg j Or~I MWI7 Page 1 of I3 Project Task No.
g~>~m neo zan. E - J'WFsS dew -2 2.f Title
~<ODEC ~%Md I/r-/'alculation No.
~g~-+gal- dZ 8-0 /
Preparer/Date Checker/Date Reviewer/Date Rev. No.
MPR Associates, Inc.
lx)MPR 320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No. Checked By Old -2zf-~jPQ-aI < T.~ P~ fib',;
Page Revision Description
MPR Associates, Inc.
WMPQ 320 King Street Alexandria, VA 22314 Calculation No. Checked By ops- z~- 685-o l '7S' Page Purpose The purpose of this calculation is to document the geometric input data for a finite element analysis of the Niagara Mohawk Power Corporation, Nine Mile Point Unit 1 (NMP-1) Control Rod Drive (CRD) Return Nozzle. A transient thermal/stress analysis simulating a reactor scram was performed. References 1 and 2 are calculations which document the finite element model material properties and boundary conditions/ results.
The ANSYS computer program (Reference 3) was used to calculate the transient temperature distribution in an axisymmetric model of the nozzle. The program was then used to calculate stress profiles due to pressure and due to the calculated temperature distribution. The results of this analysis, in the form of stress distributions through the bore/blend section of the nozzle, will be used in a fatigue and crack growth evaluation of the CRD return nozzle.
Discussion Figure 1 is a drawing of the CRD return nozzle which shows pertinent dimensions (Reference 4). The dimensions used in the analysis are as follows:
Vessel Radius RV 106.7
- 3.2 inches Vessel Thickness TV 7.125 inches Clad Thickness CLAD .2188 inches Angular Extent ANG1 8 degrees Other dimensions from Figure 1 are as follows:
Nozzle Bore R1 2.061 inches Nozzle OD R2 4.813 inches Safe End OD R3 2A69 inches Vessel Cut Out R4 5.563 inches Safe End H1 8.688 inches Safe End H2 4.125 inches Safe End H3 1.344 inches The radial dimensions for the nozzle bore, R1, and the vessel, RV, are to the base metal-cladding interface. These dimensions should be reduced by the thickness of
MPR Associates, Inc.
O lxlMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By Page 4785- g~ ) t- Q,S-OI P~ 74u the cladding (7/32"). This discrepancy between the finite element model and the drawing dimensions should have a negligible affect on the calculated stresses.
Figures 2 and 3 show the axisymmetric finite element model of the nozzle. The model uses a radius 3.2 times the actual radius of the reactor vessel.'xisymrnetric This is to insure the maximum hoop stress and stress intensity from the model will be comparable to those in the actual three-dimensional intersection (Reference 5).
The angular extent of the finite element model affects the number of elements in the model and consequently the computer running time for the model. The angular extent assumed in these analyses is 8 degrees. This extent was selected by performing pressure only load cases with models of varying extent and evaluating the stresses at the vessel cut line. The pressure analyses showed that 8 degrees is sufficiently far from the CRD return nozzle such that the stress distribution at the vessel cut line is uniform.
Reference 6 is the ANSYS output file which shows the PREP7 echo of the input data.
References MPR Calculation 085-229-EBB-02, "CRDR Nozzle Finite Element Model Material Properties", Revision 0.
- 2. MPR Calculation 085-229-EBB-03, "CRDR Nozzle Finite Element Model Boundary Conditions and Results", Revision 0.
- 3. ANSYS computer program version 5.0.
4 Combustion Engineering Report CENC 1142, "Analytical Report For Niagara Mohawk Reactor Vessel", drawing number 231-567-7.
- 5. J.B. Truitt and P.P. Raju, ASME-78-PVP-6, "Three-Dimensional Versus Axisymmetric Finite Element Analysis of a Cylindrical Vessel Inlet Nozzle Subject to Internal Pressure, A Comparative Study"
- 7. ANSYS output file NOZZLE.OUT, 87,853 bytes dated 4-04-94 3:45:28 pm.
0'o (5 Ql
~
O Q
~+
p Wz
'I 0
hg 'b 7v
~74) +2 I (unQ Fig I
yQ' 5 l ~ gcLkCL I
rj
~. o ~5 e ck 0' 0A
~
e I 4 Vc I
~l 0 II ~ ~ I C ~ rf I
'L I
'N%X w
~g.j Q4C CÃ NCZZ;
~~C~RX74 j Q C4 I.'LIW gP W>1u C CA: 5uCL
~>>F25 ~<<-gvrai'c'1.)K
,)u
+ I21 TO 4'f SSEL QCJ:)
e ~ IQ Q CLI xQ O~ ~
'~eisa ~u CFOdl(ui~l
'<0 0
Rv
~
(0 ccats
-wYD '5YSPEII
'L gETljgg LlQJ~ g D~<'~ (~eCo g'
IQ~gI Q
o
+rW/ze /
pygmy I I I g
I e
~ I tll~
I I
4l llNlRRHRNtNNlNRINlllllRIIgg
((<~( lI AlENRISllINklllINSENlllalaappplltllOIINNNINIIQQppygmy r'(~<
8 I i il I III s
NNSkSNNNkNNNIAIAASIRNINglgggglNINIIIONNISgggggNI
%%%%%%%%%%RRSR%RSRRlkEAAlkOLSIIggggRNO laaaa%kSA%%ikiIAiiiSARLAWLOISaaggggkNS ftll) it~)e ha10aaaixikaaoaaiaskakkaEiaiaaak iigaaoleSSOIIO%1101IOsOagagggla tlOOOOOlgg
%000kL)ygygiO)0+)
aakiiaae
~~t+Ot saea+w++++
ssseaassa<<aiii~iaiii+<>sasasiaeeeaewaa++++aiaee+ 0000y lq%oe +~~++~~'~++~+++e>saeaaaaesggg~ OQOkONONOgggNOOlkOllggg OOOI1I
- ~ ~-
++1sasgggg+++1%ggg~
+++W~ae~ ~~>+eaeae~gg 1g~ +1
+>+Ihl<ag~
I
~erg(!// 1 /~ )~~/~~/j~// '~ laaaaaauan g)y>l]'k)~((//(/ i~<PA/~/( // l((g lRNRREIIQ %%%5585M% g)]~i))g(((](g IR%%%%'8%%%agg I'i]titllll ]< I aaaaaaaaaaa (~ ]py~kIlIllRa~mmmmmmmm55 (~l<4<geuaaaaaaaaaaaaaa aNNSISRRa%%%%%%%% >y4ieamaaauaaasaaeFa AiSiiRRSRRWRRSASAR ~~ Wmmmmm~~~~~~~~~~~~>> pf Path: C:)NOZZLE File: GEOM .INP 1,511 .a.. 3-24-94 1:30:36 pm Page g~ /PREP7 /TITLE, NMP Unit 1 CRD Return Nozzle RV= (106. +23/32) *3. 2 ! Reactor Vessel Modified Radius TV=7.125 ! Reactor Vessel Wall Thickness ANG1=82 ANG2=90 CLAD=7/32 'A'wclia// ~ g/,W ~ P~<< P'<0 g"Jim rn J/oe ~ R1=4.122/2 R2=(9+5/8)/2 rn~py R3= (4+15/16) /2 R4=(11+1/8)/2 vrr /gu ~ 4 4~ H1=8+ll/16 H2=4+1/8 t m~4 ~~ 44 ckXcl~ H3=1+11/32 gtcilcrc ~ Qj~ J/~ 2 MATL ! Material Property Macro ( / CSYS,1 PCIRC~RVgRV+TVgANGlgANG2 CSYS,O RECTNGIOgRlgRV 2gRV+TV ASBA,1,2 XA c IC~ j'/ RECTNGiRliR2IRV+TV/2iRV+TV+HlH2 /jZ, 7A J I/isa"ys P RECTNG~RlgR3gRV+TV+Hl H2gRV+TV+Hl H3 RECTNGgRlgR3~RV+TV+Hl H3IRV+TV+Hl Pl=KP(R3,RV+TV+Hl-H2,0) P2 KP(R2IRV+TV+Hl H2IO) P3=KP(R3,RV+TV+Hl-H3,0) Clirm~z~J'"4 v/C ~ A,P1,P2,P3 AADD,ALL S YF=SQRT((RV+TV)**2-R2**2) RADIUSgR2JYFgO/1 ~ 5 / c~/~l~l r/ ~ p"r/v~~ YF=SQRT(RV**2-R2**2) RADIUSgR2gYFgOgl ~ 25 RADIUS/R2IRV+TV+Hl H2JO/1 ~ 0 RADIUS/R3gRV+TV+Hl H3gOI1 ~ 0 LSELgS~LOCgXgR1 LCOMB,ALL MPR ASSOC!ATFS, i!i,'g. CSYS,1 Calculation No. o s-42$ '-Kdd-of LSELgSgLOCgXgRV 2IRV+2 Pfopared By Chcc'(c<J f"y Bow ~ 4 Path: C:)NOZZLE File: GEOM .INP 1,511 .a.. 3-24-94 1:30:36 pm Page g '3 CSYS,0 LSELg Ag LOC/ Xg R1 LGEN ~ 2 I ALLg g g CLADS CLAD P 1 KP (R 1 g RV+TV+H1 g 0 ) P2 KP (R1+CLAD g RV+TV+H1+CLAD g 0) L,P1,P2 CSYS, 1 Pl KP(RVgANG1I 0) CSYS,O PX=KX(P1) PY=KY(P1) P2=KP(PX+CLAD,PY+CLAD,O) L,P1,P2 AL,ALL AOVLAP,1,2 ADELEg 4 ~ 5 I 1 g 1 CUT I R4 ~ RV 2 g 0 J R4 I RV+TV+2 g 0 ! Slice Areas With Cut. Macro KCUT KP (R2 I RV+TV+H1 H2 1 ~ 0) KCY=KY(KCUT) CUTg OgKCYg OgR2+2 gKCYg 0 ALLSEL NUMMRG,ALL NUMCMP,ALL LSELt S/LOCgXgRl ! ID Surface For Loads CSYS, 1 LSELgAgLOC~XgRV 05 HARV+ ~ 05 CSYS,O KSLL,S,1 LSLK,S,1 CM,LID,LINE MSH ! Mesh Areas ALLSEL FINISH SAVE MPH ASSOCIATES, INC. Calculat!on No. >> -~~ Prepared By Checked By Page i Path: C:hNOZZLE File: RADIUS .MAC 342 .a.. 9-18-93 12:03:56 am Page LQ ! Create Radius at Keypoint Associated Area is Modified ARG1 = X Location ! ARG2 = Y Location ARG3 = Z Location ARG4 = Radius POINT KP (ARG 1 g ARG2 f ARG3 ) KSELg S g KP g ~ POINT LSLK,S LSEL,R,EXT
- GET,L1,LINE,,NUM,MIN
- GET,L2,LINE,,NUM,MAX ASLL,S LSLA,A ADELE,ALL I
LF LLTg L1 I L2 I ARG 4 AL,ALL KSEL,ALL LSEL,ALL ASEL,ALL MPR ASSOClATES, i'. Calculation No ~<~ 2~>-~<8- I Prspore~J Qy Ci1 pcs((ap Qy 0'Hc>l PQcC~~c~' ~ Path: C:)NOZZLE File: CUT .MAC 496 .a.. 1-17-94 2:13:14 pm Page Cut Areas by Line ARG1 = X Location, Point 1 ARG2 = Y Location, Point 1 ARG3 = Z Location, Point 1 ARG4 = X Location, Point 2 ARG5 = Y Location, Point 2 ARG6 = Z Location, Point 2
- GET g KMAXg KP g g NUMg MAX
- GET ~ LMAXgLINEI ~ NUMB MAX ASEL,ALL NUMCMP,AREA
- GETJNAREAgAREAIgCOUNT NUMSTR,AREA,COUNT+1
- DO,N,1,NAREA,1 K g KMAX+1 g ARG 1 ~ ARG2 ~ ARG3 K g KMAX+2I ARG4 g ARG5 ~ ARG 6 NUMSTRg LINEI LMAX+1 L, KMAX+1,KMAX+2 ASBL,N,LMAX+1 LDELEg LMAX+1 g LMAX+1 g 1 g 1
- ENDDO MPR ASSOCfATES, INC.g Cafculation No,o< "< ~ 8 o~+
Prop:.".wd By C ~~i( 4(i/ Qy 9Q +V' 4 0 ' Path: C:iNOZZLE File: MSH .MAC 1,019 .a.. 3-24-94 1:39:32 pm Page 'l0. 1 ! Concatenate Lines I ASEL, S,AREA,,2 LSLA LSELi Ri LOCI Y I RV+TV 2 i RV+TV+2 LCCAT,ALL ASEL,S,AREA,,6 LSLA LSELiRILOCiYiRV+TVIRV+TV+81H2 1 LCCAT,ALL ASEL,S,AREA,,6 LSLA LSEL g U i LOC i Y g RV+TViRV+TV+H1 H2 1 LSELI Ui LOCi XiR4 LSEL i U g LOC i Y i KCY LCCAT,ALL ASEL,S,AREAii4 CSYS,1 LS EL I S i LOC I X I RV ~ 05 I RV+ ~ 05 CSYS,O SELi Ai LOG i Xi Rl LSLA, R KSLL,S,l LSLK,S,1 LCCAT,ALL ASEL,S,AREA,,1 LSLA LSEL i U i LOC i Y I RV+TV+H1 ~ 05 I RV+TV+H1+ 05 LSELi Ui LOCI Y i KCY 05 I KCY+ 05 LSEL i U i LOC I X i R 1+CLAD LCCAT,ALL I ! Element Size For Lines I ASEL i S i AREAI I 3 LSLA CSYS, 1 LSELi Ri LOCi Y i ANGl I CSYS,O ~ Qi ~ LESZZEi ALLi i i 2 MPR ASSOCIATES, N~.~ ASEL, S, AREA,, 2 Calculattgn NO. 08s- ne-cog".-% LSLA CSYS,1 Prep red ay Checkr-~ By ~> ~%a ' i ~ ~ v 4 w i ~ ~ ~ ~ s . ~ 4. i ~ . ~ ~, ~ Path: C:)NOZZLE File: MSH .MAC 1,019 .a.. 3-24-94 1:39:32 pm Page lQ LSELgR~LOCg YgANG1 CSYS,O LESIZEgALLggg12gl/4 !LESIZE~ALL,,~12~ 2 LSLA LSELg RJ LOCg X g R4 LESIZEgALLJ f g 12 f 4 !LESIZE~ALLg g g 12~ 2 ALLSEL LESIZEg 1 1 ~ g g 20 I ! Mesh Areas I ET,l,PLANE55 KEYOPT~ 1 ~ 3 g 1
- l=Axisymmetric TYPE,1 ESHAPE,2 ESIZE,3/4 MAT,1 AMESH,2 ESIZE,1/2 MAT,2 AMESH,6 MAT,3 AMESH,3,5,1 MAT,2 AMESH,1
>~~R As8oclA768; , Ca(Culatian NO. Oez- WV-e4g~ p lsd Qy Cr~ecred gy ~& I act. "4f Page ~&qMPR ASSOCIATES INC ENGINEERS Appendix C CRDR NOZZLE FINITE El EMENT MODEL MATERIALPROPERTIES MPR Associates, Inc. taiMPR 320 King Street Alexandria, VA 22314 CALCULATION TITLE PAGE Client ~g fJQ<EQ ~op/~/C 1 of m /g//V/ MMI / / Project 4E B AM n/o+RcE - J'r PEss gwdc-Pea'age Task No. gF- P4g Title Calculation No. /ÃoPEWTi Ei y 8<- gal'-pZ/j-o 2 Preparer/Date Checker/Date Reviewer/Date Rev. No. Pe ~a~ c4 4y j/p(/ MPR Associates, Inc. RMPR 320.King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No.- Prepare/ By Checked By o4f - J J $ -fart'rt -oZ Q /5. $ 0@ Page g Revision Description OW/6 r~+C. A J ob PRIMP'PR Calculation No. Prepared By Associates, 320 King Street Alexandria, VA 22314 Checked By Inc. +g -gag- $3/f-0 Z Page g ~Pur oee The purpose of this calculation is to document the material properties used in a finite element analysis of the Niagara Mohawk Power Corporation, Nine Mile Point Unit 1 (NMP-1) Control Rod Drive (CRD) Return Nozzle. The ANSYS computer program was used to calculate the transient temperature distribution in the nozzle. In addition, the program was used to calculate stress profiles due to pressure and due to the calculated temperature distribution. The material properties required in the analyses are: Elastic Modulus Coefficient of Thermal Expansion Thermal Conductivity Specific Heat Poisson's Ratio Density Discussion Figure 1 shows a schematic of the CRDR nozzle outline. The nozzle model is composed of three regions with distinct material properties. ~ Region 1 is the reactor vessel wall. The vessel wall material is SA 302 Grade B (Mn-1/2Mo), Reference 1. ~ Region 2 is the CRDR nozzle. The nozzle material is SA 336 with ASME Code Case 1236-1, Reference 1. Equivalent material is SA 508 Class 2 (3/4Ni-1/2Mo-1/3Cr-V) as discussed below. ~ Region 3 is the Clad, assumed to be type 308 Stainless Steel. Stainless Steel Type 304, 18Cr-8Ni material properties are a close match and are used in this analysis. Previous finite element analyses of the feedwater nozzle used 1980 ASME Code material properties (Reference 2). In that calculation, a comparison of material chemical composition between the original 1964 specification and the 1980 Code was made. The comparison showed that for the vessel wall 1980 ASME Code material properties were equivalent. The calculation also showed that the equivalent material MPR Associates, Inc. lxHMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By Page y de-d4 5'+44-oz S~ mt ~~ property for the nozzle was SA 508 Class 2 (3/4Ni-1/2Mo-1/3Cr-V). The same material properties used in the previous calculation for the feedwater nozzle and vessel wall are used in this analysis for the CRD Return nozzle and vessel wall respectively. Results Temperature dependent material properties are listed in Tables 1 through 3 for the reactor vessel wall, CRD Return nozzle and cladding respectively. Attachment A is a listing of the ANSYS macro MATL.MACwhich is the computer program input data for material properties. (The input data also lists heat transfer coefficients.) For all three materials, a density of 489 Ib/ft and Poisson's Ratio of 0.3 were used (Reference 3). The reference temperature for the coefficient of thermal expansion (REFT in file MATL.MAC)is 70'F for the nozzle and vessel wall. For the cladding material, the average temperature between the downcomer and nozzle fluid temperatures at full power conditions was used for the reference temperature to approximate the residual stress state in the cladding. Specific heat was calculated from thermal diffusivity by the following formula: Cp= K/(Rho*TD) Where: Cp Specific Heat (btu/Ib-'F) K Thermal Conductivity (btu/hr-ft-'F) Rho Density (Ib/ft ) TD Thermal Diffusivity (ft /hr) References Combustion Engineering Report CENC 1142, "Analytical Report For Niagara Mohawk Reactor Vessel", page A-78.
- 2. MPR Calculation "Material Properties", task number 85-31 "Low Feed-water Flow Control", 2/28/93.
- 3. Standard Handbook For Mechanical Engineers, Seventh Edition, pages 5-6 and 6-7.
MPR Associates, Inc. K1MPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By CtP~ -V25'- Z45-o Z ~a. w../ P0~: ~4'~ Page C> lA 0 MPR Associates, Inc. wiiMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By gg~+g $ '-prZ8 -a z w<W ./ Page g Table 1 , Material Properties - SA 302 Grade B Carbon Molybdenum (Mn-1/2Mo)
- .,pe'ciho
.;.,::.:: Exp'a'rision',"',';:~'l:,:::,:,:;:I,:';,Cor'iductiyity',";,!k::'; ":"~sg! i%~:.,:,ii~iq'~~c, "..'...i:,.',. ); ..."'(1 0a pepsi)~'.<<x .'-.:".::;::.;':.::::.:',::(ee'a'r'i.::,iafii'e)'.m.':~'::"::.'::I<(Btulhi;-:,':ft';,,F)'4'::,: '::.;',';:(Btb1lb';.,F).jI 70 29.20 7.02 23.3 .1047 100 29.04 7.06 23.6 .1070 150 28.77 7.16 24.1 .1110 200 28.50 7.25 24.4 .1142 250 28.25 7.34 24.6 ~ 1173 300 28.00 7.43 24.7 .1203 350 27.70 7.50 24.7 .1235 400 27.40 7.58 24.6 .1264 450 27.20 7.63 24.4 .1286 500 27.00 7.70 24.2 .1313 550 26.70 7.77 23.9 .1343 600 26.40 7.83 23.5 .1361 ~ i MPR Associates, Inc. 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By -g2g- E.g/P-o 2- Page p. Od~ Pdb /R~~ Table 2 Material Properties - SA 336 with Code Case 1236-1 Equivalent to SA 508 Class 2 (3/4¹i1/2Mo-1/3Cr-V) .":.:::Co'etficie'nt<of~~'.:,."'I Mo'du!.'Us~of '.:,":Ela'sticity",:;:E:;'::, 'IG'ondiictiyity'.:k,I, '~"..=;;(10:::;:;psi):::;:"': ';:I:'::::.j'(me'an'j~yaIue}<~",,-::,'.:, l'j<:(Btu/hr',-:,,',ft-."':,F(}':,-';:I:.-;, K,"m,'(Bi'u/ib;-";,,F}',;",'",: i';:::;:I::(1;0;.:,.',;.~!n/iril,;,F)km,:., 70 29.70 6.41 23.6 ~ 1063 100 29.54 6.50 23.7 .1084 150 29.27 6.57 23.9 . ~ 1118 200 29.00 6.67 24.0 .1149 250 28.75 6.77 24.0 .1180 300 28.50 6.87 23.9 .1204 350 28.20 6.98 23.7 .1224 400 27.90 7.07 23.6 .1254 450 27.70 7.15 23.3 .1274 500 27.50 7.25 23.1 .1305 550 27.20 7.34 22.7 .1326 600 26.90 7.42 22.4 .1351 Modulus of Elasticity values are for 1/2-2Cr Chrome Molybdenum. MPR Associates, Inc. ~ r>1MPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By dA - gg5'-8/-oz- 'in.~ Page 8 Po Table 3 Material Properties - Stainless Steel Type 308 Type 304 Properties Usted (18Cr-8Ni) Ni>> '"<a,-', >,'..:<, ,;:!Tem'jeratu'r'e"> r:.>M,odulus:,.",,of;:;:.;. ISÃ'Sp Tl
- ,:I>Ela'sticjtj-::>E,::'::.,'.<<'(<1 Q~;>,psl)i&py>. .,"'::;;;.:,:,::,"',;.'.(incan~;yafii'e)>>-",-:.',':,'::,.':,:?(Btu'jar,;-'.:ft'-,,',.F)';:;,,',':
70 28.30 8.16 8.6 ~ 1165 100 28.14, 8.55 8.7 .1170 150 27.87 8.67 9.0 .1195 200 27.60 8.79 9.3 .1219 250 27.30 8.90 9.6 .1243 300 27.00 9.00 9.8 .1253 350 26.75 9.10 10.1 .1275 400 26.50 9.19 10.4 .1289 450 26.15 9.28 10.6 .1298 500 25.80 9.37 10.9 .1311 550 25.55 9.45 .1320 600 25.30 9.53 11.3 .1328 Path: C:)NOZZLE File: MATL .MAC 2,346 .a.. 4-01-94 12:10:32 pm Page g9 G=386. 4 F=3600*12 MPTEMP/ 1/ 70/ 100/ 150/200/250/300 MPTEMP / 7 i 350/ 400/ 450/ 500 i 550/ 600 ! ¹1 Vessel Wall Material SA 302 Gr B Carbon-molybdenum MPDATA/ EX / 1 / 1 / 29 20E6 / 29 ~ 04E6 i 28 77E6 / 28 50E6 / 28 ~ 25E6 / 28 OOE6 MPDATA/EX/ 1 / 7 / 27 ~ 70E6 i 27 ~ 40E6 / 27 ~ 20E6 / 27 ~ OOE6 / 26 ~ 70E6 / 26 ~ 40E6 MPDATA/KXX/1 / 1 / 23 3/F/ 23 ~ 6/F/ 24 ~ 1/F/ 24 ~ 4/F/ 24 ~ 6/F/ 24 ~ 7/F MPDATA/KXX/1 / 7 / 24 7/F / 24 ~ 6/F/ 24 ~ 4/F/ 24 ~ 2/F/ 23 ~ 9/F/ 23 ~ 5/F MPDATA/ALPX/1/ 1 / 7 ~ 02E 6/ 7 ~ 06E 6/ 7 ~ 16E 6/ 7 ~ 25E 6/ 7 ~ 34E 6/ 7 ~ 43E 6 MPDATA/ALPX/1 i 7/ 7 50E 6/ 7 ~ 58E 6/ 7 ~ 63E 6/ 7 70E 6/ 7 ~ 77E 6/ 7 ~ 83E 6 MPDATA, C,1,1, .1047*G, .1070*G, .1110*G, .1142*G, .1173*G, .1203*G MPDATA/ C/1/7/ 1235*G/ 1264*G/ ~ 1286*G/ ~ 1313*G/ . 1343*G/ 1361*G MP / DENS/ 1 / 489/ 1728/G MP/NUXY/ 1/0 ~ 3 MP / REFT/ 1 i 70 ! ¹2 CRDR Nozzle Material SA 336 MPDATA/ EX / 2 / 1 / 29 ~ 70E6 / 29 ~ 54E6 / 29 ~ 27E6 / 29 ~ OOE6 / 28 ~ 75E6 / 28 ~ 50E6 MPDATA/ EX/ 2 / 7 / 28 ~ 20E6/ 27 ~ 90E6 / 27 ~ 70E6/ 27 ~ 50E6/ 27 ~ 20E6/ 26 ~ 90E6 MPDATA/KXX/2 / 1 / 23 ~ 6/F / 23 ~ 7/F/ 23 ~ 9/F/ 24 ~ 0/F/ 24 ~ 0/F/ 23 ~ 9/F MPDATA/KXX/2 / 7/ 23 ~ 7/F/ 23 ~ 6/F/ 23 ~ 3/F/ 23 ~ 1/F/ 22 ~ 7/F/ 22 4/F MPDATA/ALPX/2/1/ 6 ~ 41E 6/ 6 ~ 50E 6/ 6 ~ 57E 6/ 6 ~ 67E 6/ 6 ~ 77E 6/ 6 ~ 87E 6 MPDATA/ALPX/2/7/ 6 ~ 98E 6/ 7 ~ 07E 6/ 7 ~ 15E 6/ 7 25E 6/ 7 ~ 34E 6/ 7 ~ 42E 6 MPDATA/ C/2/ 1 i 1063*G/ 1084*G/ ~ 1 1 18*G/ ~ 1 149*G/ ~ 1 180*G/ ~ 1204*G MPDATA, C,2,7, .1224*G, .1254*G, .1274*G, .1305*G, .1326*G, 1351*G MP / DENS / 2 i 489/ 1728/G MP/NUXY/ 2 / 0 ~ 3 MP i REFT / 2 i 70 ! ¹3 Clad Material 308 Stainless Steel MPDATA/EX/3/1/ 28 30E6/ 28 14E6/ 27 ~ 87E6/ 27 60E6/ 27 30E6/ 27 OOE6 ~ ~ ~ MPDATA/ EX/ 3 i 7 / 26 ~ 75E6 / 26 50E6 / 2 6 ~ 15E6 / 25 ~ 80E6 / 25 ~ 55E6 ~ MPDATA/KXX/3 / 1 / 8 6/F/ 8 7/F/ 9 ~ 0/Fi 9 3/F/ 9 ~ 6/F/ 9 ~ 8/F / 25 ~ 30E6 ~ ~ MPDATA/KXX/3 / 7/ 10 ~ 1/F/ 10 ~ 4/F/ 10 6/F/ 10 ~ 9/F/ 1 1 1/F/ 1 1 3/F ~ ~ ~ MPDATA/ALPX/3/1/ 8 ~ 16E 6/ 8 55E 6/ 8 ~ 67E 6/ 8 ~ 79E 6/ 8 ~ 90E 6/ 9 ~ OOE 6 ~ MPDATA/ALPX/3/7/ 9 ~ 10E 6/ 9 ~ 19E 6/ 9 28E 6/ 9 ~ 37E 6/ 9 45E 6/ 9 ~ 53E 6 ~ ~ MPDATA, C,3,1, .1165*G, .1170*G, .1195*G, .1219*G, .1243*G, 1253*G MPDATA, C,3,7, .1275*G, .1289*G, .1298*G, .1311*G/ .1320*G, .1328*G MP / DENS / 3 / 489/ 1728/G MP/ NUXY/ 3 / 0 ~ 3 MP/ REFT/ 3 i (70+525) /2 MPR ASSOCIATES, INC. Calcutatfon No. +~~ ~~~~+ Prepared By + Checked By Page ~ 'w- ~ 4 ii ~ ~ .vows Path: C:(NOZZLE File: MATL .MAC 2,346 .a.. 4-01-94 12:10:32 pm Page gr'0 g4 Heat Transfer Coefficient CRDR Nozzle ID HT=144*3600 MPDATAiHF~4i1~ 100 /HTi 100 /HT~ 100 /HTI 100 /HTi 100 /HTi 100 /HT MPDATAiHFi4i7I 100 /HTi 100 /HTi 100 /HTi 100 /HTI 100 /HTi 100 /HT ! g5 Heat Transfer Coefficient Vessel Annulus HT=144*3600 MP,HF,5, 1000 'HT MPR ASSOC)ATES, fNC. Catculatton No. ~ ~~ ++~ Prepared By Checked Bg Page lO, r e ASSOCIATES INC. ENGINEERS Appendix D CALCULATIONOF HEAT TRANSFER COEFFICIENTS MPR Associates, Inc. taiMPR 320 .King Street Alexandria, VA 22314 CALCULATION TITLE PAGE Client ~IAMBf4'ldHAulk Pau Eg pe,POrA<lnAr Page 1 of /Ql Project Task No. /Mt'illg PotA)Y'PiV I Tit'le Calculation No. OVERALL. HCA7 <Rl>~f=KR. Cos'ACIE~ waR. t=R,DP %d+pI 5 AT NA1F' Opg-zoo-AB ~aZ Preparer/Date Checker/Date Reviewer/Date Rev. No. F~; >- >l~s /yq 8 />o/y(j MPR Associates, Inc. WMPR 320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No Prepared By Checked By DP5-23o- ggg-dz egg Page ~ Revision Description GP tb l~1t tissu G a~Mr u MPR Associates, Inc. 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page 085-z. Qo-ABC-yz + PAPosC 7HE T UR,F'asE'F 7 HIS'AI cCIL$ 7ldAJ ts Io CAt cOc>7G'HC AVERA~E VVe RI4L.L- HEAT TRA<5'FC R COb, P'F(c lEiVT Fok THg couTgaL RoD DRIVER'E'TUIZ/V (CR'DR) LINE REAcTo R V EASEL F'E NETR47 (O~ h/OWWLE -roe.~~AL S~e,FVE Aw ~iYE Al~E ~<<NT ueiT (. 8 Es vL I MD ce rV c c tJ 5 (o AID ~HE, ~vE-RAG-E c>>EQALL HEAT'-RID'Sf-GR Cue;FFlCl FAT
- 9) F'cr Z yH E'R'T) I2, Ad%7CC ibad&'E, f 54/QFA t g l5 ~
0b L.o& & PAn /sou 2 6'eo annAc) (t'~~ ~) Conn PARlSowS o F TH KSE',55'uL.7 s Zo yAg08$ <A<cV<ATYD gY CE. APQ NPR FoR THG FEED( Alga. ~oKMG~ IwDicd ASS' HESG RESUL.7~ ggG. QSC)SO~gggg, MPR Associates, Inc. r>~MPR 320 King Street Alexandria, VA 22314 Calculation No. 885-2~-A 6: P -O'Z Prepared By /~i~ ~ Checked By Page F CRQ g No&% 8 W 6 P]vlAL L E.VE'-CE a. ~Ao~w L.s ~ He,PA1AQ 5~EEV~ 7o F g.go~"(o~) (tpcSOu 55) Z.gm "(rr)Q /, 5'z5 F VG ss KL. wALl JHGRPlAt 5t EE.VE QtN E jvsI >As' R>~ g)E-F. ( -unapt.E' WtnnFA S(OP eR'o~ REF. 2 ~gmeePAq-L ZrS Ae~ AS>V~K>. VH~ AH@,~AL- Sot=-BVG i5 I E.LDF E i~To 7 HE A~Z7L4 5o TH~ T Qo 5lE, gpp pypA55' EA pp(-5 t5 8'~p+C7$ 5. ~ ( MPR Associates, Inc. lLiMpR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By 085-zgcr -gg P - o> Page ~ c ZcOLAYlUA'E~T TR'ANsFEg. /Ho>EL: v8's's el mal ~ Kq.~ I-s~~ TccDQ..,. A o~g L.E lugged HE+7 TRAPS'FKR, F~ R'(oru(EMlZ't( Cgl 8 U = c ve gwi ~ Hzg7 < a~@ gr.c~ CoF F F'(C l E +Y "v ~a~ lS T'~TER~lN~D F'%cate ~HI DiTTUS-Boat pep Ecgu4-p c ~.- h D,, Cg,p~ = ~.az.>Re D 'r o.a n iT ~5 AsSuwKp +~MT MPR Associates, Inc. WMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page o8$-z.>~ -A8 P=o~ g $T .7~~. (IRATE p) = 70 F- 'Pr = 6.>9 y = o, o3~89 ~i~ d.3 l>~ N~ Et ~ F z>- z.ceo I'= oav~ S+ ~ ii=~.)zi+i-(W s (z 6 2.go x(o B.lS 7SVxro+ Kgg = CO/@DUCT i Vl'r~/ Oi- 5'7/IAILGS 5 ~<F4 lf'30$) ate (~e~. i-i) ox." 1.6Sl "= u.ice = EPPt VAC.gA T <<~PUC7t V IT/ y E.TMG'GA'COAIC&VTg'1 C YLINPEl2 5 l5 FOuA l) Prom EXP~ g'imEm7A L COg Q 6 LA 7 (am~ FR~V ibex> l~ RGF. 5. SPECI~~clCLY, rHE.- CoRRCLAq-<Ous ARE 'EASING OAr pHe PRoD OCT MPR Associates, Inc. RMPR 320 King Street Alexandria, VA 22314 Calculation No. Deg-23M-38 P=c Prepared By Fd'age Checked By 7 &g~fg ~HGP 6-Q.g< QRA5HoFI. AIGAngEg "gh5'E,D o~ gA~tAc CAI' Bmu'~CW YSC. noa<CE'. A~b ~i SF-VG 2'.RWA'DTl- /QUAL. g t=R iT is AssvnnE> <HAT THF WT ~c.ao~s wRE AA0]4L g4P l 5 HALF WHF 7OTdw Q> f Ra& PblE' t'PP Fc~~ Tc T H E. REHcvap vE5SGL Fc.UlD WE~Pez~~urzE: (s~s V), I Z i = ~(S?.S 7o) = z~a iv'z Asgg~gy ) HAT 7HG'VG'P-~4~ 7 lw i/L, a3 v' s'-' THE'oc m= 5?.6 ~ A > = Ezs' -'~~ s) "- L// / F -'3 = g 8?OxlD. P 8 = o. <78 = </0 6 /l, Pa @-8'8 k =e.svg6 MPR Associates, Inc. @HAMI R 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By g + 5~ 2.3'c3 ~A 8 l2-43~ TAu'- Page Qg =(3z..w z~ (do~5'3 fj)(o820x(o < )Izz8 F) (g0g57g =(G. 72. / g~ )(>C<~ g,) = 9.3rA'(0 log Ca P~ = la~[(9.aye(O )(D 88.) j = 6 92. MPR Associates, Inc. ra~MI R 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page gag -2.3o -gg g-QX FCkl L Sc /Ht= gedsoWAtrgqmgs-5 c F weKsE we~ogT's /5' j-IECKC Q> p~/ CoW pAR,(A+ gGSUL-TS' 0 cALcucAT 6 lo v"ALvEs'<P ~HG FFEQbrl7KR ~o ~<LE: /qsA 7 ~lZ~~FCR gE'Q lom5 (~ Vg 5 g a L tug I- L ~O&QL-E, A/oEVCC'NI Om gGQ (om 33 cA<cocATEh 87/(<< CW (6EVA<U.<) JOO t-W (ALPS VALVE I oaO )50 /. F Ran/L R5 F. 6 + ~-Z <9.3S5UmGS'c i+fE.Retd& 5'I-E.EvE xvfAss l E.At.4C E Fzow gGF~. clssduE~ s'f ~ ~Hze~gt s~zzys hyPA5'5. 0 MPR Associates, Inc. r>~MPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By o6'S-2.3 o -A II 12-o L ~+ T<<~ lQ Page /~ VALUE'ALCULII EL Fak ~HE CR~g. ~<+~LE Is'HE SAWE AS cate CuI AT E D ~ok <HC FW NOZZLE HP2) Sd IS'oWS IDEE'GZ) F-GAIN ABLE, RzFF bee i) ~Z DgAu (N+ (ggQ+84/ DRIVE ~CITY@ REER~ lA'L-GT ) CE: ~R/I&(No E 23I--5.'67, psv. 7, /I/aW'ELK DE>"AILS I/E-S S6 L HEAT WRAÃsFER/ 9TH EpITlo&I CHANC A/I//l98 I l) CRC HA//DEoo g Fo PPL(ED EmG I'A'EEI2I//S5CI.E//c E'A b eyIVIO~.
- 5) HEAT A//l0 f11 Fl$ 5 T A/vSFEE' ECKEZT 'Aml> DRAPE/ /955'P P'3<7- 33 /,
- 6) GEPGP~P'T /I/EDE -~l IEZ I., BaILI~O IaAT+R.
LE/S PA E'@EP 'FI//Al RE.PORT REACTOR'EEDI//ATEgAO'W~ bATF 0 en~ Rg5 l9Vg'. -7) /NPP REPoRT ZbIPPaVEQ Lou/ FLoloFEEloI /ITEP Ca//TRoL SV57E/I/I i&TED'RIAL /PS'9 SECT/aW /.7 .(Fo'EM/APIIE5 7o P. AnA~~AFGRR4 cV Ar~p< Ey LEMER, DARED JI/~E I, Isev), ASSOCIATES INC. ENGINEERS Appendix E CRDR NOZZLE FINITE ELEMENT MODEL BOUNDARY CONDITIONS AND RESULTS MPR Associates, Inc. lLimpR 320 King Street Alexandria, VA 22314 CALCULATION TITLE PAGE Client ~ ~~ ~gp/~/g Page 1 of gq +//L/g W/Qg / 0/rv/ ~~// / Project Task No. g~ / ~~~ ~o pygmy rT /Q 0Z~ Title Calculation No. go~~p~pY Anted /77 @AS ~i> ZF~ur- I~ ~- P29-Ct~d-o3 Preparer/Date Checker/Date Reviewer/Date Rev. No. az. 8 .'/ g <g.'7~ Z-Z/- 5'y MPR Associates, Inc. txrMPR 320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No.. Prepared By 080= PP 9 - Fd'rs - y3 Page Revision Description 0+1+ pv<r rO'J vP MPR Associates, Inc. t>IMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By dd~- cVW- ggg-o J Page ~ Purpose The purpose of this calculation is to document the boundary conditions and results of a finite element analysis of the Niagara Mohawk Power Corporation, Nine Mile Point Unit 1 (NMP-1) Control Rod Drive (CRD) Return Nozzle. A transient thermal/stress analysis simulating a reactor scram was performed. References 1 and 2 are calculations which document the finite element model geometry and material properties. The ANSYS computer program (Reference 3) was used to calculate the transient temperature distribution in an axisymmetric model of the nozzle. The program was then used to calculate stress profiles due to pressure and due to the calculated temperature distribution. The results of this analysis, in the form of stress distributions through the bore/blend section of the nozzle, will be used in a fatigue and crack growth evaluation of the CRD return nozzle. Discussion The CRD system provides water from the condensate storage tank at a temperature of about 70'F to the control rod drive mechanisms to cool the control rod drives, to reposition rods and to scram the rods. The system operates at all times that fuel is in the vessel. Excess fiow from the CRD pumps is routed to the reactor vessel via the CRD return nozzle. Consequently, flow through the CRD return nozzle is typical. Nominal CRD return flow rate is 17 to 35 gpm. The flow rate does not change as a result of repositioning a control rod since the flow diverted to move the rod is compensated by the water displaced by the rod. A reactor scram results in a CRD return nozzle flow transient (Reference 4). During a scram, the CRD accumulators discharge to drive the control rods into the core. this results in an increase in CRD return flow to 65 gpm. When accumulator pressure drops below reactor pressure, CRD flow rate goes to zero as the accumulators are recharged. After the accumulators have been recharged, CRD flow rate returns to the nominal 17 to 35 gpm. The last portion of the reactor scram transient is simulated in this calculation. At time zero the nozzle is at a uniform temperature of 525'F corresponding to zero flow through the CRD return nozzle as the accumulators are recharged. At 1 second into the transient, the CRD return flow rate is step changed to the nominal flow rate of 35 MPR Associates, Inc. l41MPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared Checked By os%- >z 1 wed- o 7 By gR~ Page ~ gpm with a fluid temperature of 70'F. A pressure of 1250 psig is applied to the inside surface of the reactor vessel wall and the inside of CRD return nozzle throughout the transient (nominal reactor pressure is 1030 psig, scram pressure is 1250 psig). Details of the thermal and structural boundary conditions are discussed below. Thermal Bounda Conditions for the reactor scram transient are shown on Figure 1 and discussed below. At time zero the CRD return nozzle and reactor vessel wall are at a uniform temperature of 525'F corresponding to the bulk downcomer fluid temperature. The overall heat transfer coefficient between the downcomer fluid and the vessel wall is assumed to be 1000 Btu/(hr-ft -'F). This is the value used in prior analyses for the feedwater nozzle. At 1 second into the transient, the bulk fluid temperature in the CRD return nozzle is step changed to 70'F. The overall heat transfer coefficient between the CRD return fluid and the nozzle wall is 100 Btu/(hr-ft- 'F). The heat transfer coefficient in the nozzle includes the effects of the fluid film on the inside diameter of the thermal sleeve, conduction through the thermal sleeve, and natural convection through the stagnant layer between the thermal sleeve and the nozzle bore. Reference 5 is a calculation of the overall heat transfer coefficient between the CRD return fluid and the nozzle inside surface. The outside of the vessel wall, the outside of the nozzle and the radial cut lines through the vessel wall and safe end are modeled as adiabatic (no heat flow across the surface). Structural Bounda Conditions include applied pressure and displacement constraints. Figure 2 shows the applied pressure along the inside surface of the reactor vessel wall and the inside surface of the CRD return nozzle. The applied pressure on these surfaces is 1250 psig. A pressure is also applied to the safe end to represent the axial load in the attached piping, The value of the pressure applied to the safe end is calculated as follows (dimensions are from Reference 1): Aint pi*R12 13.34 in Fl Pint"Aint 16681. Ibf Al pi*(R3 -R1 ) = 5.803 in Pend = FI/AI 2875. psi Where: 0 MPR Associates, Inc. RMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By oN- d4f - F4ss'-oZ 7K~ Page Aint Inside area of safe end (in ) R1 Safe end inside diameter = 2.061 inches Pint Internal pressure = 1250 psig Fl Longitudinal force (Ibf) AI Cross sectional area of safe end R3 Safe end outside diameter = 2A69 inches Pend = Pressure applied to the safe end (psi) Figure 3 shows the displacement boundary conditions applied to the end of the reactor vessel wall. Symmetry boundary conditions are applied to permit radial displacement along the cut line but to prohibit rotation of the cut line. Figure 4 shows the displacement boundary conditions applied to the safe end. Couples are used to allow translation of the safe end cut line but to prohibit rotation of the cut line. Results The peak stress intensity occurs at the end of the transient when steady state conditions have been reached. Figure 5 shows the time history of stress intensity at several nodes in the bore/blend region. The stresses shown in the time history are at the cladding to base metal interface. Figure 6 shows the calculated temperature distribution at the end of the transient. The peak stress intensity in the base metal for the transient occurs at node 806 in the bore blend region of the nozzle at the base metal to cladding interface (Attachment A). The peak stress intensity at node 806 due to temperature and pressure is 110 ksi. The stress intensity due to pressure alone at node 806 is 65 ksi. The principal component of the stress intensity is the hoop stress. Color coded contour plots of stress distribution are shown in Figures 7 through 10 for pressure only loading (time zero of the transient). Figures 11 through 14 show stress distributions at the end of the reactor scram transient for pressure and temperature loading. Four plots are shown for each loading: Stress intensity, ASME code or Tresca stress intensity, Hoop stress, the Z component of stress for the axisymmetric model, ~ X component stress, interpreted as a second hoop stress for the e 0 MPR Associates, Inc. lLiMpR 320 King Street Alexandria, VA 22314 Calculationflag-cg No. Prepared By Page ogJ - g2 g- Z.N. N~cl spherical model of the vessel wall, Y component stress, interpreted as axial stress in the nozzle region. Figures 15 and 16 show the locations of nodes 806 and 14. Node 806 is the point of maximum stress intensity at the interface between the cladding and the base metal. Node 14 is the point of maximum stress intensity on the outside surface of the nozzle/vessel intersection. A straight line (path) is drawn from node 806 to node 14 and the stress intensity values are interpolated onto the path (Figure 11 shows the interpolation path). Figures 17 and 18 show stress intensity along this path for the pressure only case and the pressure and temperature case. Attachment B is a tabular listing of the stress versus path length values for Figures 17 and 18. Attachments C and D provide the ANSYS input data for the thermal and stress passes of the analysis. Reference 6 is the hard copy output file for the both the thermal and stress passes. References
- 1. MPR Calculation 085-229-EBB-01, "CRDR Nozzle Finite Element Model Geometry".
- 2. MPR Calculation 085-229-EBB-02, "CRDR Nozzle Finite Element Model Material Properties", Revision 0.
- 3. ANSYS computer program version 5.0.
MPR Calculation 085-230-ABR-01, "Nine Mile Point Unit 1, Control Rod Drive Return Nozzle Thermal and Pressure Cycles", Revision 1.
- 5. MPR Calculation 085-230-ABR-02, "Over all Heat Transfer Coefficient For CRDR Nozzle at NMP-1", Revision 0.
- 6. ANSYS output file NOZZLE.OUT, 87,853 bytes dated 4-04-94 3:45:28 pm.
ANSYS 5.0 APR 7 1994 12:00:41 PLOT NO. 2 NODES TYPE NUM CONV ZV =1 DIST=25.552 XF =25.29 YF =347.745 ~ g -0 I= p g = /Ego Heat Transfer Boundary Conditions ANSYS 5.0 APR 7 1994 11:59:26 PLOT NO. 1 NODES TYPE NUM PRES ZV =1 DIST=25.552 XF =25.29 P8P< PZg cyylrccf ~gag-g<~ +~ JJu~ YF =347.745 ~~ QJIQ 4/pl] eel +~J C M Pressure Boundary Conditions r /'Cut 6 ANSYS 5 ' APR 7 1994 12:03:24 PLOT NO. 3 NODES TYPE NUM U ZV =1 DIST=25.552 XF =25.29 YF =347.745 +r'I'/III I I I I I I I i I I I I Iiiiiii ~ ~ ~ ~ Structural Boundary Conditions - Radial Symmetry ,~/Q U/Z & ANSYS 5 ' APR 7 1994 12:05:05 PLOT NO. 4 NODES TYPE NUM CP ZV =1 DIST=25.552 /OA c. ZF =25.29 YF =347.745 +a !1~ A" ~ 1'; ~, //IIIIII ~ ~ ~ ~ ~ ~ ~ ~ I I I I I I I I I I I I I I I I I I I I I I I I I I I I Structural Boundary Conditions No Rotation at Safe End g-((- ug C ANSYS 5.0 ( x 10442) 105 SZ-806 100 SZ-803 SZ-806 SZ-805 SZ 807 90 85 800 75 70 650 60 S50 0 800 1600 2400 3200 4000 4800 400 1200 2000 2800 3600 4400 5200 Ti me ( Sec) Reactor Scram Transient +/&u/Z~ ANSYS 5.0 APR 4 1994 16:33:47 PLOT NO. 1 NODAL SOLUTION STEP=2 SUB =21 TIME=3601 TEMP TEPC=9.434 SMN =88.846 SMX =523.562 88.846 100 200 300 400 500 600 Reactor Scram, Temperature Profile +/5-u4C-. ANSYS 5.0 APR 4 1994 16:32:56 PLOT NO. 1 NODAL SOLUTION STEP=1 SUB =1 TIME=1 SINT (AVG) DMX =1.501 SMN =1421 SMNB=920.904 SMZ =66400 SMKB=72225 1421 8641 15861 23081 30300 37520 ~g tt"'~ 44740 S iSQSy S 51960 fS 59180 66400 ) 9 Pressure Only, Stress Intensity P/6 u4 E' ANSYS 5.0 APR 4 1994 16:33:00 PLOT NO. 2 NODAL SOLUTION STEP=1 SUB =1 TIME=1 SZ (AVG) RSYS=O DMX =1.501 SMN =-22178 SMNB=-30892 SMX =63262 SMXB=68966 -22178 -12685 -3192 6302 15795 25288 34782 44275 53769 63262 Pressure Only, Hoop Stress Erbv~g 8 ANSYS 5.0 APR 4 1994 16:33:03 PLOT NO. 3 NODAL SOLUTION STEP=1 SUB =1 TIME=1 SX (AVG) RSYS=O DMX =1.501 SMN =-3074 SMNB=-13025 .e SMZ =42194 E. SMZB=46227 C -3074 S 1956 6986 12015 17045 22075 27104 32134 37164 42194 Pressure Only, X Component Stress P/'bu/ZC ANSYS 5.0 APR 4 1994 16:33:06 PLOT NO. 4 NODAL SOLUTION STEP=1 SUB =1 TIME=1 SY (AVG) RSYS=O DMX =1.501 SMN =-23031 SMNB=-32313 SMX =4943 SMXB=9878 -23031 -19923 -16815 -13706 -10598 -7490 -4382 -1273 1835 4943 Pressure Only, Y Component Stress .g/gu/Z & /0 ANSYS 5.0 APR 4 1994 16:33:25 PLOT NO. 5 NODAL SOLUTION STEP=14 SUB =1 TIME=3600 SINT (AVG) DMX =1.46 SMN =3550 SMNB=2589 SMX =95834 SMXB=104406 3550 13804 24057 34311 44565 54819 ~~q~< /'oc-8 77onf /~( 65072 75326 85580 ~ 95834 X~sS W~oW Reactor Scram, Stress Intensity y4-&,c. // ANSYS 5.0 APR 4 1994 16:33:28 PLOT NO. 6 NODAL SOLUTION STEP=14 SUB =1 TIME=3600 SZ (AVG) RSYS=O mX =1.46 SMN =-44957 SMNB=-61709 Sm =98365 SMXB=106937 -44957 -29032 -13108 2817 18742 34666 50591 66516 82440 98365 Reactor Scram, Hoop Stress . +J+u/C~ ANSYS 5.0 APR 4 1994 16:33:31 PLOT NO. 7 NODAL SOLUTION STEP=14,'UB =1 TIME=3600 SX (AVG) RSYS=O DMX =1.46 SMN =-5953 4 +z SMNB=-23928 c
- t$ a SMX =65837
. ~ SMXB=70794 -5953 2023 10000 17977 25953 33930 41907 49883 57860 65837 Reactor Scram, X Component Stress ANSYS 5.0 APR 4 1994 16.33.35 PLOT NO. 8 NODAL SOLUTION STEP=14 SUB =1 TIME=3600 SY (AVG) RSYS=O DMX =1.46 SMN =-45246 SMNB=-61830 SMX =18196 SMXB=20255 -45246 -38197 -31148 -24099 -17050 -10001 -2952 4098 11147 18196 Reactor Scram, Y Component Stress ~ g~d.v/Z0 /'/ ANSYS 5.0 822 APR 7 1994 831 12:23:22 PLOT NO. 1 NODES 833 NODE NUM 83l 835 ZV =1 $ 36 *DIST=1.386
- XF =5.994
$ 37
- YF =348.819 838 839
$ l0 $ 41 $ 42 843 $ 44 845 $ 46 $ 47 $ 48 849 141 2140 14 82 1139 2138 1137 1136 $ 135 2134 1133 2132 3131 2130 13 253 164 Node Numbers - OD 275 +/&v/z.C /J $ 65 948 ANSYS 5.0 APR 7 1994 $ 03 920 l323 12:27:42 l300 PLOT NO. 2 $ 92 947 $ 64 NODES 919 NODE NUM $ 04 l322 946 =1 l301 ZV $ 63
- DIST=2.621
- XF =2.975
$ 05 945 *YF =344.095 l321 l302 $ 62 917 944 $ 06 l3 $ 89 l303 $ 61 916 943 $ 07 $ 88 l319 l304 915 $ 60 942 $ 08 $ 87 l318 914 l305 941 $ 59 $ 86 913 l317 l306 $ 58 $ 85 .786 1316 l283 $ 57 $ 84 .789 l315 $ 56 l286 .788 l314 l285 .787 1313 1284 Node Numbers ID +/pv/CC /4 ANSYS 5.0 APR 4 1994 18:06:06 PLOT NO. 1 POST1 ( x 10I 01) STEP=1 SUB =1 652 TIME=1 PATH PLOT NOD1=806 612 NOD2=14 CO ZV =1 573 DIST=0.75 XF =0.5 5331 YF =0.5 ZF =0.5 CENTROID HIDDEN C 453 C 413 373 333 293 2537 1.083 2.165 3.248 4.331 5.414 0.541 1 ~ 624 2.707 3.79 4.872 Po s i 4 i o n , ID 4 o OD Pressure Only Bid ue l7 ANSYS 5.0 APR 4 1994 18:06:26 PLOT NO. 2 POST1 ( x 104 I'2) STEP=14 SUB =1 110 TIME=3600 PATH PLOT NOD1=806 102 NOD2=14 ZV =1 957.962 DIST=0.75 ZF =0.5 887.1 YF =0.5 + ZF =0.5 CENTROID HIDDEN 816.23 C 745.37 C 674.51 C 603.65 532.79 461.93 391.071 0 1. 083 2. 165 3.248 4.331 5.414 0.541 1.624 2.707 3.79 4.872 Posi ti on, ID to OD Reactor Scram Transient -g/6. use /8 Path: C:(NOZZLE File: PRINC .OUT 3,779 .a.. 4-19-94 11:26:26 am Page 1 2 PRINT S NODAL SOLUTION PER NODE
- POST1 NODAL STRESS LISTING *****
LOAD STEP= 14 SUBSTEP= 1 TIME= 3600.0 LOAD CASE= 0 NODE S1 S2 S3 SINT SEQV 786 81146 ~ 10911 -319 20~ 81465 76471. 788 56018. 6038 ' -6398.4 '2416 57221. 789 67399. 6629.0 3727 2 ~ '1126. 66555. 804 94075. 14592. 88.197 93987. 87640. 805 96912. 14833. 1399.5 95513. 89555. 806 98365. 14961. 2531.2 95834. 90263. 807 98266. 14952. 3189.8 95076. 89775. 808 96331. 14815. 3144.3 93187. 87934. 809 91893. 14731. 3307.7 88585. 83462. 856 57385. 14104. -5699.0 63084. 55880. 857 68590. 14550. -2822.1 71412. 64505. 858 79143. 16890. -785.25 79929. 72720. 859 85484. 19029. 836.86 84647. 77176. 860 88636. 19955. 1416.9 87219 79586. 861 89736. 20410. 1333.5 '8402. 80576. 862 89338. 20538. 696.85 88641. 80574. 863 87672. 20432. -258.09 87930. 79627. 864 84840. 20125. -1283.0 86123. 77664. 884 59084. 20609. -4961.7 64045. 55839. 885 68866. 20742. -3016.3 71882. 63433. 886 76618. 21866. -1252.0 77870. 69267. 887 80398. 23376. -159.63 80557 71746. 888 82186. 24231. 98.306 '2087. 73073. 889 82524. 24660. -166.38 82690. 73493. 890 81716. 24790. -798.84 82515. 73158. 891 79890. 24681. -1622.9 81512. 72056. 913 68225. 25290. -2831.9 71057. 61981. 914 73604. 25862. -1587.6 75192. 65904. 915 75714. 26976. -1036.3 76750. 67271. 916 76516. 27659. -1036.6 77553. 67915. 917 76268. 27992. -1413.2 77682. 67933. 918 75133. 28080. -2032.6 77165. 67362. 919 73179. 27924. -2739.3 75918. 66151. 942 70289. 29135. -1999.6 72289. 62804. 943 71275. 29919. -1828.9 73104. 63492. 944 71356. 30402. -2021.0 73377. 63689. 945 70657. 30633. -2474.8 73132. 63429.
- POST1 NODAL STRESS LISTING *****
LOAD STEP= 14 SUBSTEP= 1 TIME= 3600.0 LOAD CASE= 0 Path: C:)NOZZLE File: PRINC .OUT 3,779 .a.. 4-19-94 11:26:26 am Page 2 2. NODE S1 S2 S3 SINT SEQV MINIMUM VALUES NODE 788 788 788 788 884 VALUE 56018. 6038.2 -6398.4 62416. 55839. MAXIMUM VALUES NODE 806 945 809 806 806 VALUE 98365. 30633. 3307.7 95834. 90263.
- ESTIMATED BOUNDS CONSIDERING THE EFFECT OF DISCRETIZATION ERROR *****
MINIMUM VALUES NODE 788 789 788 788 856 VALUE 50335. -1620.3 -12082. 56733. 50585. MAXIMUM VALUES NODE 806 945 809 806 806 VALUE 0.10694E+06 34037. 11892. 0.10441E+06 98835.
- ENTER HELP, ERROR FOR AN EXPLANATION OF ANSYS ERROR ESTIMATION *****
- END OF INPUT ENCOUNTERED *****
EXIT THE ANSYS POST1 DATABASE PROCESSOR Arecsi~idwT' Path: C:hNOZZLE Fi.le: XPATH .OUT 13,436 .a.. 4-04-94 6:06:28 pm Page 1 Qd WELCOME TO THE ANSYSPROGRAM
- ANSYS COMMAND LINE ARGUMENTS *****
MEMORY REQUESTED (MB) = 64.0
- INPUT FROM CONFIG.ANS FILE KEYWORD INPUT VALUE VALUE USED NUM VPAG 512 512 SIZ VPAG 12288 12288 EXT FILE 0 0
- ANSYS DYNAMIC MEMORY ALLOCATION *****
WORK SPACE REQUESTED 16777216 64.000 MB COMMAND LINE MINIMUM WORK SPACE REQUIRED 6815744 26.000 MB MINIMUM WORK SPACE RECOMMENDED = 8799648 33.568 MB WORK SPACE OBTAINED 16777214 64.000 MB BYTES PER WORD 4
- NOTICE ***** THIS IS THE ANSYS GENERAL PURPOSE FINITE ELEMENT COMPUTER PROGRAM. NEITHER SWANSON ANALYSIS SYSTEMS, INC. NOR THE DISTRIBUTOR SUPPLYING THIS PROGRAM ASSUME ANY RESPONSIBILITY FOR THE VALIDITYi ACCURACY'R APPLICABILITY OF ANY RESULTS OBTAINED FROM THE ANSYS SYSTEM.
USERS MUST VERIFY THEIR OWN RESULTS. ANSYS (R) COPYRIGHT (C) 1971 i 1978 i 1982 i 1983 i 1985 i 1987 '989 i 1992 BY SWANSON ANALYSIS SYSTEMS, INC. AS AN UNPUBLISHED WORK. PROPRI ETARY DATA UNAUTHORIZED USE i DISTRI BUTIONi OR DUPLICATION IS PROHIBITED. ALL RIGHTS RESERVED. SWANSON ANALYSIS SYSTEMS,INC. IS ENDEAVORING TO MAKE THE ANSYS PROGRAM AS COMPLETE i ACCURATE i AND EASY TO USE AS POSSIBLE. SUGGESTIONS AND COMMENTS ARE WELCOMED ANY ERRORS ENCOUNTERED IN EXTHER THE DOCUMENTATION OR THE RESULTS SHOULD BE IMMEDIATELY BROUGHT TO OUR ATTENTION Path: C:)NOZZLE File: XPATH .OUT 13,436 .a.. 4-04-94 6:06:28 pm Page 2 ><~ ENTER /SHOW, device TO SET THE GRAPHICS DISPLAY TO device(e.g. VGA, HALO,ETC.) ENTER /MENU, ON TO START THE ANSYS MENU SYSTEM -ENTER HELP FOR GENERAL ANSYS HELP INFORMATION MPR ASSOCIATES VERSION=PC 386/486 REVISION= 5.0 FOR SUPPORT CALL PHONE 703/519-0200 FAX CURRENT JOBNAME=file 18:05:44 APR 04, 1994 CP= 0.000 BEGIN: 1 /FILNAM,NOZZLE FILETS 2 RESUME 3 /POST1 4 / SHOW g XPATH g PLT 5 NOZZLE'ST 6 7 SET, 1 8 /TITLE,SINTER Pressure Only 9 /GRID,1 10 /AXLAB,X,Position, ID to OD 11 /AXLAB,Y,Stress Intensity (psi) 12 LPATHg 806 g 14 13 PDEFg S g INT 14 PLPATH,SINT 15 PRPATH,SINT 16 17 SET,LAST 18 /TITLE,Reactor Scram Transient 19 /GRID,1 20 /AXLAB,X,Position, ID to OD 21 /AXLAB,Y,Stress Intensity (psi) 22 LPATH~806g14 23 PDEFgSINTgSgINT 24 PLPATH,SINT 25 PRPATH,SINT CURRENT JOBNAME REDEFINED AS NOZZLE RESUME ANSYS DATA FROM FILE NAME=NOZZLE.db
- ANSYS GLOBAL STATUS ***
TITLE = NMP Unit 1 CRD Return Nozzle ANALYSIS TYPE = STATIC (STEADY-STATE) NUMBER OF ELEMENT TYPES = 1 1358 ELEMENTS CURRENTLY SELECTED. MAX ELEMENT NUMBER 1358 1470 NODES CURRENTLY SELECTED. MAX NODE NUMBER 1470 25 KEYPOINTS CURRENTLY SELECTED. MAX KEYPOINT NUMBER 25 31 LINES CURRENTLY SELECTED. MAX LINE NUMBER 31 6 AREAS CURRENTLY SELECTED. MAX AREA NUMBER 6 1 COMPONENTS CURRENTLY DEFINED Path: C:)NOZZLE File: XPATH .OUT 13,436 .a.. 4-04-94 6:06:28 pm Page 3 Qg d MAXIMUM LINEAR PROPERTY NUMBER 5 ACTIVE COORDINATE SYSTEM 0 (CARTESIAN) MAXIMUM COUPLED D.O.F. SET NUMBER 1 NUMBER OF SPECIFIED CONSTRAINTS 15 NUMBER OF SPECIFIED SURFACE LOADS 208 INITIAL JOBNAME = CURRENT JOBNAME = NOZZLE file 1
- ANSYS ENGINEERING ANALYSIS SYSTEM REVISION 5.0 *****
MPR ASSOCIATES VERSION PC 386/486 18 05 48 APR 04i 1994 CP 3.790 FOR SUPPORT CALL PHONE 703/519-0200 FAX NMP Unit 1 CRD Return Nozzle
- ANSYS RESULTS INTERPRETATION (POST1) *****
/SHOW SWITCH PLOTS TO FILE XPATH.PLT RASTER MODE. DATA FILE CHANGED TO FILE= NOZZLE.RST USE LOAD STEP 1 SUBSTEP 0 FOR LOAD CASE 0 SET COMMAND GOT LOAD STEP= 1 SUBSTEP= 1 CUMULATIVE ITERATION= TIME/FREQUENCY= 1.0000 TITLE='ressure Only GRAPH PLOT KEY = 1 X AXIS LABEL = Position, ID to OD Y AXIS LABEL = Stress Intensity (psi) DEFINE A PATH FOR SUBSEQUENT CALCULATIONS THROUGH NODES: 806 14 DEFINE PATH IN PATH COORDINATE SYSTEM 0 DIRECTION MAX MIN X 6.2855 2.2798 Y 348.57 344 93 Z 0.00000E+00 0.00000E+00 TOTAL PATH LENGTH = 5.4136 DEFINE PATH VARIABLE SINT AS THE NODAL DATA ITEM=S COMP=INT ROTATED INTO COORDINATE SYSTEM 0 AND MOVED TO THE PATH NUMBER OF PATH VARIABLES DEFINED IS 5 Path: C:)NOZZLE File: XPATH .OUT 13,436 .a.. 4-04-94 6:06:28 pm Page 4 ogcP
- WARNING *** CP= 18. 730 TIME= 18: 06: 03 The selected element set contains mixed materials.
This could invalidate error estimation.
SUMMARY
OF VARIABLE SINT MAX = 65283. MIN = 25366.
DISPLAY ALONG PATH DEFINED BY LPATH COMMAND. DSYS= 0 CUMULATIVE DISPLAY NUMBER 1 WRITTEN TO FILE XPATH.PLT RASTER MODE.
DISPLAY TITLE=
Pressure Only PRINT ALONG PATH DEFINED BY LPATH COMMAND. DSYS= 0 1
- ANSYS ENGINEERING ANALYSIS SYSTEM REVISION 5 0 *****
MPR ASSOCIATES VERSION PC 386/486 18 06 07 APR 04 g 1994 CP 22.460 FOR SUPPORT CALL PHONE 703/519-0200 FAX Pressure Only
- PATH VARIABLE
SUMMARY
S NT 0.00000E+00 0.11278 65283 56417. ~o Cs I
0.22557 55542.
0.33835 54202.
0.45114 52785.
0.56392 51498.
0.67670 50264.
0.78949 49109.
0 90227 48019.
1.0151 46971.
1.1278 46001.
1.2406 45053.
1.3534 44170.
1.4662 43285.
1.5790 42462.
1.6918 41670.
1.8045 40901.
1.9173 40178.
2.0301 39460.
2.1429 38800.
2.2557 38185.
2.3685 37550.
2.4813 36926.
2.5940 36478.
2.7068 35974.
Path: C:)NOZZLE File: XPATH .OUT 13,436 .a.. 4-04-94 6:06:28 pm Xage SQ8 2.8196 35466.
2.9324 34944.
3.0452 34360.
3.1580 33722.
3.2707 32732.
3.3835 31830 3.4963 '0986.
3.6091 30218.
3.7219 29503 3.8347 '8831 3.9474 28199.
4.0602 27566.
4.1730 26938 4.2858 26171 4.3986 '5366.
4.5114 27591.
4.6242 29301.
- ANSYS ENGINEERING ANALYSIS SYSTEM REVISION 5.0 *****
MPR ASSOCIATES VERSION PC 386/486 18 06 07 APR 04~ 1994 CP 22.510, FOR SUPPORT CALL PHONE 703/519-0200 FAX Pressure Only
- PATH VARIABLE
SUMMARY
S SINT 4.7369 31204.
4.8497 33304.
4.9625 35360.
5.0753 36726.
5.1881 38077.
5.3009 39423.
5.4136 40778.
USE LAST SUBSTEP ON RESULT FILE FOR LOAD CASE 0 SET COMMAND GOT LOAD STEP= 14 SUBSTEP= 1 CUMULATIVE ITERATION= 14 TIME/FREQUENCY= 3600.0 TITLE=
Reactor Scram Transient GRAPH PLOT KEY = 1 X AXIS LABEL = Position, ID to OD Y AXIS LABEL = Stress Intensity (psi)
Path: C:iNOZZLE File: XPATH .OUT 13,436 .a.. 4-04-94 6:06:28 pm Page 6 a<Z DEFINE A PATH FOR SUBSEQUENT CALCULATIONS THROUGH NODES:
806 14
- NOTE *** CP= 32.130 TIME= 18:06:17 Previous interpolated path data has been erased.
Reissue PDEF command to interpolate desired data.
DEFINE PATH IN PATH COORDINATE SYSTEM 0 DIRECTION MAX MIN X 6.2855 2.2798 Y 348.57 344.93 Z 0.00000E+00 0.00000E+00 TOTAL PATH LENGTH = 5.4136 DEFINE PATH VARIABLE SINT AS THE NODAL DATA ITEM=S COMP=INT ROTATED INTO COORDINATE SYSTEM 0 AND MOVED TO THE PATH NUMBER OF PATH VARIABLES DEFINED IS 5
- WARNING *** CP= 37.950 TIME= 18 06:22 The selected element set contains mixed materials.
This could invalidate error estimation.
SUMMARY
OF VARIABLE SINT MAX = 0.10997E+06 MIN = 39107.
CUMULATIVE DISPLAY NUMBER 2 WRITTEN TO FILE XPATH.PLT RASTER MODE.
DISPLAY TITLE=
Reactor Scram Transient PRINT ALONG PATH DEFINED BY LPATH COMMAND. DSYS= 0 1
- ANSYS ENGINEERING ANALYSIS SYSTEM REVISION 5.0 *****
MPR ASSOCIATES VERSION=PC 386/486 18:06:26 APR 04, 1994 CP= 41.680 FOR SUPPORT CALL PHONE 703/519-0200 FAX Reactor Scram Transient
- PATH VARIABLE
SUMMARY
S SINT 0.00000E+00 0.10997E+06 0.11278 911 ) rru~ i 0.22557 88915.
0.33835 86153.
0.45114 83317.
0.56392 80781.
0.67670 78373.
Patn: C:KNOZZLE File: XPATH .OUT 13,436 .a.. 4-04-94 6:06:28 pm Page 7 Pg 8 0.78949 76148.
0.90227 74078.
1.0151 72106.
1.1278 70305.
1.2406 68564.
1.3534 66937.
1 '662 65312.
1.5790 63805.
1.6918 62374.
1.8045 60995.
1.9173 59673.
2.0301 58388.
2.1429 57214.
2.2557 56098.
2.3685 54950.
2.4813 53857.
2.5940 53067.
2 '068 52158.
2.8196 51230.
2.9324 50269.
3.0452 49216.
3.1580 48061.
3.2707 46233.
3.3835 44546.
3.4963 43265.
3.6091 42541.
3.7219 41859.
3.8347 41175.
3.9474 40518.
4 0602 39815.
4.1730 39107.
4.2858 39160.
4.3986 41883.
4.5114 44307.
4.6242 46492.
- ANSYS ENGINEERING ANALYSIS SYSTEM REVISION 5.0 *****
MPR ASSOCIATES VERSION=PC 386/486 18:06:26 APR 04, 1994 CP= 41. 740 FOR SUPPORT CALL PHONE 703/519-0200 FAX Reactor Scram Transient
- PATH VARIABLE
SUMMARY
S SINT 4.7369 49026 4.8497 '1915.
4.9625 54876.
5 0753 '57081.
5.1881 59280.
Path: C:(NOZZLE File: XPATH .OUT 13,436 .a.. 4-04-94 6:06:28 pm Page 8 ~+ 8 5.3009 61484.
5.4136 63709.
- END OF INPUT ENCOUNTERED *****
NUMBER OF WARNING MESSAGES ENCOUNTERED=
NUMBER OF ERROR MESSAGES ENCOUNTERED=
- PROBLEM TERMINATED BY INDICATED ERROR(S) OR BY END OF INPUT DATA *****
ANSYS RUN COMPLETED REV. 5.0 PC 386/486 CP TIME (sec) 47.000 TIME = 18:06:26 ELAPSED TIME (sec) 47.000 DATE = 04/04/94
4774<P~Fr~i C:(NOZZLE C'ath:
File: BCT .INP 570 .a.. 3-28-94 5:13:42 pm Page 1 p//
/SOLUTION OUTRESgALLgALL ANTYPE,TRANS KBC, 1 ! 1=Step Change, 0=Ramp TREF,70 THOT=525 TCOLD=70 TUNIF,THOT LSELI S J LOC g Xg Rl ! CRDR ID SFL g ALLg CONVg 4 g g THOT CMSEL I S g LID LSELg U~ LOC / X g R1 SFLg ALLg CONVI 5 I g THOT ALLSEL NSUBST,1 ! Number of Sub-Load-Steps TIME,1 SOLVE SAVE LSEL~ S g LOCI Xg R1 ! CRDR ID S FLDELE g ALLf CONV SFLg ALL~ CONVI 4 I ~ TCOLD ALLSEL UTOTS,ON ! Automatic Time-Stepping ON ELTIM,1,1 TIME,3601 SOLVE SAVE FINISH 0m AmmC~a~W IN'.
CalculaUon 80. ~
Preparact Dy Checked By Page C'-)
4TrHru mgnli 7)
Path: C:)NOZZLE File: STRESS .INP 767 .a.. 3-29-94 12:17:26 pm Page 1g/
/PREP7 ETCHG CSYS, 1 ! Symmetry at, Cut LSELI SI LOCg YgANGl DL,ALL,,SYMM CSYS,O LSEL,ALL NSEL I S ~ LOC g Y I RV+TV+H1 ~ 05 g RV+TV+H1+ 05 CP~ 1~UYgALL TREF, 70 PINT=1250 CMSEL g S / LID SFL g ALLf PRES I PINT PI=ACOS(-1)
FLONG=PINT*PI*R1**2 ! Longitudinal Force ALONG=PI*(R3**2-R1**2)
PLONG=FLONG/ALONG ! End Pressure LSELgSgLOCgYIRV+TV+H1 ~ 05gRV+TV+H1+ 05 SFLgALLIPRESI PLONG FINISH
/SOLUTION ANTYPE I STATIC NSUBST,1
- Number of Sub-Load-Steps ALLSEL
- DIM,SNAP,ARRAY,14 SNAP(1) 1 I 10I 20I 40 I 60J 801 100'00 SNAP (9) 600 I 1200 I 1800 2400 3000 3600 g g g NT=14
- DO,N,1,NT T=SNAP (N)
TIME,T LDREAD g TEMP g I g T I g NOZZLE g RTH SOLVE
- ENDDO SAVE FINISH MpR ASSOCIATES, INC..
Calculation No.
Prepared By Checked By Page
PD~MPR ASSOCIATES INC.
E N & INE ERS Appendix F LO% CYCLE FATIGUE USAGE
MPR Associates, Inc.
PLIMpR 320 King Street Alexandria, VA 22314 CALCULAT!ON TITLE PAGE Client hJ IRGR<R 4 (ol 8> IC PUB A. Co'R~DNRTidlJ Page 1 of Project Task No.
Qg,g g~~ Q<ag Q>~4. 7~4'~ C~c ~lc.~>]
o&s= )50 gp.g wk,~~ L.,'nz a~4 L,~ P~lq F'4j< vwq~ Calculation No.
ugly 530 psp3 Preparer/Date Checker/Date Reviewer/Date Rev. No.
APL ~~
p i q6( ~](~i ~as
MPR Associates, Inc.
lxlMPR 320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No. Checked By
- l-3o -P~P3 Page QSS Revision Description O~ igi~a( ( ss~e
MPR Associates, Inc.
t>~MPR 320 King Street Alexandria, VA 22314 Calculation No.
og<- ~so -PsP9 '2 S'~ Checked By Page PvCpo&F
MPR Associates, Inc.
RMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By Page OS'= 53o-%gQ jl~ A4~
R esuh'G F~ks'I.e <sa)e a F +hem/.r/P un 9/ '<~A / P4 Dnve r I
epu r/inc n rsvp phla.ava 7 o /p/nn/ prrssnrr
/S ~per;Purr chic/~ era /rsvp'ad &4;,
F4 ~ 0sa e ( e 54r+ /54 J.(lawn t.%3 ~(o t M 4~ ( S~ra~ 3,898. <<(o l-l~Ar,~<4'gg (,')63 w /o
MPR Associates, Inc.
raiMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By os'-xsg PSIr'3 '7s Page PPFYLoRcI-I 7 k~j~c usaq~. o4 +M c.~kaI >>c J, J,r ~ (CP-h)
I
('>> 4wVw n;- ~4. ic c>> (~(>> 4~2 l>>~ed r
/co bd vsny pi>>sgw~c ac/ v gee~>> /
(
u.hie.4 or t.w ol v
~q gusrakq +pens>c~zs I
n f
-4 p'valour>>
(i 0 (>>. g ~-~-., 4.g / ~ 1,. k d. ~ ). Riess<<
n ~( 4~~ / - J )c/~ Q /(< 02-re4~ li'~>> ~.~~)e. a.cc. do~~~e~keg,'~ E>>(cree(e I,
,.4.',..4 r~id>>~ 4i.e, ~p(4e J, g~A (.J~ ar cl 4-q-ev,q 8 A~~ g<.les. (>>8jimp ~spy.
f /A~ cat ce/~,~ /n~ no-+w(c fg cw/c />>-A~g dan>> p8v Ly c /g b.si'f. ~ Qe pc/eJ Jefi'.4,'. f<'eX'r nate, I >>s Each:<:
MPR Associates, Inc.
K~MPR 320 King Street Alexandria, VA 22314 Calculation No. Prepar d By Checked By a gg- x~- Psl>
Page lA e('c..'~Agua eSnp ~ $Q pC/(
n inn bCn of app(si p/ qg/ag 4r ii pi~en p/.rssurc -hm~ ~+g gg ~ J~
tl ii nn /nn' ~
pllg~~ik/(: i /('0 4'i~ssuw-4e~perzgrg s t,4 >I(,
TInQ 6 l tiiw <le(~ (i(u~ (gei eP a7 (,((iiJ / j) g<<<v c./u/( g/'4n i/i I'~ Jm~mln~g/
l
(~gg~ /h-P 5/ /2 (doe )3pslyn Cwgsgvf'~r vp Pv'e('gii~
A/n) e.W //'y( /eve /g 5'0 '/~ gb Z, g), .7-~J. /
ttIC, a l48v n<4i(i]'a4YY 5 5 rav ge. ~ u Si" 0 4j ( c,u(vC (g Jekrn,/(,g 44 Cry, z)
+N(i%8%
MPR Associates, Inc.
ralMPR 320 King Street Alexandria, VA 22314 Calculation No. re ared By Checked By 085-'P~o - ping Page
( Sea kaQ)
~a@( gfmaS
~(q'~Et y~>ping((
mirage'is ~ze.WS, O
( Aa, K alkarna4i~p s*asS i'a.14Ila.J, 4 Ah v'~gib ef gag g~g e("Jig~ aufvz c.(a ski< i iu 4(aS aa's I Wr ~
4e %lpga elasÃi e ..S.P g~ Wk
MPR Associates, Inc.
lLimpR 320 King Street Alexandria, VA 22314 Calculation No. Pre are Checked By os'-~- Page CAI Cu( Av)mJ P>>>>ssas>>. as J, News erss4sm s.t>>S ',
~ssssu.>><<a 1 s<<(ev 4(>>. qsj>>5 t/a<0 ~ H>>
a~~is;s s>> 4.4J i- Waai~ I k p (s'svkJ. ~s e4-s<<-(i,) (S"aw ., 4 4,.)fns.l Ii's
%54 G4- 4 6/C ~C 8 CEC ffn~~l A~s a ASS'~ ie P
4s~ps ~ 4 ~>> s~~ee. IVokcp.h 8 kic ss<<4f /'sera~
F'gglgVY gt54~
JUL~~~ 4f CAew
$ p>> gS y s/> s4>>k ( (s~~~ g~t~ 4I . ggg'.r ~gpss>>
+lQ 4rXQgs. J CstC4) 5v 6f C
< 5 kyc4s p<~5Hgg 7p~pera Nre~
Pry. Ql; (ps) g ) ClbR ()) P3 7o- s2.s 70 7o-gQ (Mb o- io3o 70
MPR Associates, Inc.
ti1MPR 320 King Street Alexandria, VA 22314 Calculation No.
os<-z.so -WP~ '22~ Checked By
"" io She~eS;
/
4 e~l~ sees es ~ee~ ~~l~~pt q gin ik Using el(vne~4 r ader ~ae ~~4~ l/i~e 5'Z oem'.4r~ girr Ae. / j~vc'p n hv r-r 0 ~
sr>
/ e /
q i<era eire ce rrrrrn,"rr f4'A-S LJ Ir r rib 44. PiR <( e /e'-n er.~1 neryrf/r pe k- >Crt' \ ~hev-sv l +A~ GL, 4e( C,IA [..(
/ l0 ~ 0 l~~
SeS' (bnckrr +e'r~4c.
51.5 "F CreOree Fl J%rrrprrr4.h
T- Ir. s-4sc, 4ens h'A'54erd.p/s k~gJer n ~)e(eJ prebSrree i C f rid 0 ps c) anA ckf&rnr/4"c/'-
MPR Associates, Inc.
WMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By o8r- 2M-TL~PS ay ~~ Page q
4g ~c4,$ i~
Csh~ >>,V~ ) ]~~s;
)< o,o <ss $ 0. (p cz l2go pig g~(~g I she '~bia /
S~,>> ri ~ sA,is, -/a~u,)~
~(<n~) jl(, )-s.lg As 2 ss.f 'p~iisisl) HL <l/ n~Ap I
va>> ( 1>>>> Afc'r>>>>i>>>>s y>> /id g>> +;/~pa
e MPR Associates, Inc.
WMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By oM -tM -RS'P3 R goo VkoAs Page Au ij~
g.E~ens< 2 CApp,&,a ~, F g
>-V i) eM u s'5 own
'30 ~ JO pJc 7/a go ++(a ~pe//oj I S 5A-33po ~k'cl) (n-~
(. (g n,'Q 4ns,'h s4ron~ Ag
&O gsi e.(os@ Wo J. (i s o W4' >
bl<'8 5~ieC Qo ~>>o 'P PjPog cy J
7ha o o ( o(v o.of HE~ -ne%+(L ss 6 ~~a oA 3o Po
<<ppi o
sli o4 i wiinooA$ pea o v~~ 4~apooa +~t'c
~
~
~
s ~ sasa~~a ss~~a SSISS~~SSSSS~~NSISS~~
SNSS~~SQIISS~~SSSS~~
QSREr%~'NNSr~~SQAS%%~
naaraaaaemraarm~ta)rrraaiaa
~
Saaaraa~Saeara~rnuarRjea BRIRSR~~ER~~RIEERSS~
EBSIE~~ESE~~ESEERS~
SRSER~BR~~BHBRTR~
EEIERSR~HER~HBHSISI~
IHSSRMllBRRRWNIRBSsw
~
ramrrmmaarrmnararam IIIIIIUERmllll@RIIIIII)ilR
~&WM~~ I SHRER~~Ea~~ESEHELW~~
~ anaaam~aaam~anntimm~
lHIIRRH~HHHRA~lUUUNEEH~
IHBIQR~IIIQ15%~lllSlSR~
IIIHQLHIIIIIQRHllllRIiLH
~ KSERHW
~
~
~
IIIIIIRRmIIIUSRIIIINSER
~% ~LRm HRRRHM~R&M~NBSES&M~
aaaara~maara~aaeaa~
IBSRR~RS>RR~TBBIER~
~
R IIIISSNM~mREIWM~NIINR~~
!IIIQSWMIIHItSQNflllllllSRM IIIIIIRRmlRiNVlllllEER
~ SEEK\M~~~T~SRRR~~
I ass'~SEES~
Qlssr%~56lsrN~sslss%~
SEERSE~
IIRIRERE~EEEBEN!~BEEN%~
~
E~ERW~~BHRRNNt~llRRRH~~
taatrrmmiaarrmmnarm llllllRRmllSRUllllmR r
MPR Associates, Inc.
mmx R 320 King Street Alexandria, VA 22314 Calculation No. Checked By Page
%p 7 ego/, 7o'
MPR Associates, inc.
WMPR 320 King Street Alexandria, VA 22314 Calculation No. repared By Checked By Page DBS - 230 N5FD 9> 76~ Ig Mv ev Allow~44, AN~he P(,Lc. Sq Cqc les Us,a.g~
Wy pe. l'.Ksi ) (ts,i) "Iw 9o. b l(7, 7 / %3>/v l lO) 0 gi) b 97i1
MPR Associates, Inc.
lLBMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By c 8S-Sou -&Pa 7sZg Page T4e ~a& 5'N~ S4'~ $ fwQ dec csea I 2.~ ~si sI
+polnASCA8Gf 52 g Pn.ks Pb L ~d Ce L Jim /s flz 0
/3 gZ; /(g, g = //5> 0 I IO 0 ~~ig b 5'7> I 255.1 e
~e, o I I aw<LLL 6 ~ rwIem cd c/c,lpz gn csn q / c'one /shy S4rc>>e ~ 4 C's s 4ecp/~/~J vscn> 7<4/e ~-7 ~
jV' ZocsD 5 ~ = "75 IVg = 5C>DP y'c ja
Associates, Inc.
ljiMPR MPR 320 King Street Alexandria, VA 22314 Calculation No. repared By Checked By os- L30-65PQ ~ 'Nc~ Page
( 7 jv = 9153 g,GS'tw ld 24 I 2-Fr~ ws4 l
~l~ ;
<c,] or> = 5 F
%Ca <v'rM'fp'NdJ p o Lnncj (Jns(iV>4g Z-
MPR Associates, Inc.
liiMpR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By os-~3,5 - I >U Ws Page 29 5 @/
=
N 4/SO(u u~r ~eZ
- g. l36 g lo z-ark~ (g, (
(c c
fe>ieiiiyg'aj4 I:
~ .
MPR Associates, Inc.
r>IMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By o Vg-zs> -&P3 gS Page I. P&E>le (5 ) 6 S. BVsvro C I)
I 943 ii< (i)
Qi 002$
MPR Associates, Inc.
RMPR 320 King Street Alexandria, VA 22314 Calculation No.
c 8s= z.m R>r 9- Checked By Lv illa~ Page
~
Rw/c122t ass
~ ~'<<( < > ~' Ref n <~ale 7Tjer e/ Aw4 Prrssan
'-$ 8g-o/~
~
Qc/rs, '<12 C~4</arian 085- LEO Rev /,
// S/4F 8o, lee c M Pr ran r V ne/ Cg Je. 5~<di6 l is~ FC4 ~ .'l, AAJ .3< ~
PA1MPR ASSOCIATES INC.
ENGINEERS Appendix G CRACK GROWTH RATE COMPUTER PROGRAM VERIFICATION
Associates, Inc.
RMPR MPR 320 King Street Alexandria, VA 22314 CALCULATION TITLE PAG E Client Page 1 of $8 Project ~-f
- rive, tJ>~~le Aqalys,< Task No.
o65- 230 Title &nc~er$ a$ ~
Pro~r~~ W CaR C K'.
E,yE'alculation eeA pen,Pica'~ aP ~pe~
o85- 4~- gsP No.
)
Preparer/Date Reviewer/Date Rev. No.
'gl'hecker/Date p- 2/ Vl~l<<
MPR Associates, Inc.
WMPR 320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No. Prepared By Checked By Page c ss.->so -RSP/ Z2. '8,. Ca Revision Description gr jinx( I stag
'0 ~ o p ~
~ ~
MPR Associates, inc.
r~lMPR 320 King Street Alexandria, VA 22314 Calculation No. Checked By oeS- >3o - <F' QY~ Page PES Ul 1 5 gCRACk. F Xg> Versm (. 0 Curvecf(
cA 4 taA'8 c~c c,k pow kg .of g /wc)(U)Illy flite no~>>~ 8-~ 4 (~ass~ s4 4s e~( q(,Ie~, 7~e
~ ~
~ W P e
MPR Associates, Inc.
a~MI R 320 King Street Alexandria, VA 22314 Calculation No. Checked By ops- Mo -Rsvp l Xd Page PA+ Ccq, 2.)
Kw~ --
H~, . X4 ga LJ.~'g F..7~ M;.)
C)de. (. WsL t~)
Q. assi.Awe cols. (Vs '~~)
C~ 4 y~4h is app~im~]eJ
&q, )
ha = Cv, ~k srto~$ 4 Fin'~Vs)
)J. 'o~ og q~(es IVo~ k44 44is <<ppasfee4'a (i vnb eppb~bt ~ s~ll vela~
~ h e ~'/AN re~a~ g ra ~ah z~sI> 4.
MPR Associates, Inc.
lLiMPR 320 King Street Alexandria, VA 22314 Calculation No. Pre ared By Checked By Page DBS-w>0-%P I 4 4o s,re. de4r~ine/ LsA m po:Ss~ee a~4 ao~+(as (6LC~eael ( J CV~ s~~S 4'ale,(awkio ~aoa(l ~ yam is z epee,9< b) $ ('li&et ~ 4of '(aa()vl~w.l
+
0 = ZgaSS ( A,i,)
o(lsAn e /Awol]l no~p/g oui (( (Wchw)
Pal)n~ P Coef<c e HZ
MPR Associates, Inc.
t>IMPR 320 King Street Alexandria, VA 22314 Calculation No.
aSS=E3o- @PI 'X ~Checked By Page p
CF( l).
l-pe~,'jp P Q (Ws.'(
)
L n)gf) (v'les)
>>~>>>f>eeflen Refers (s>epeneter>f en ge>>&Y])
slyness swiss g,'st 'Le)>en s (ad eve C/" >i tz) 'e>re de/er n> r>eJ.'
s no~ Pr>h e(ense H eee s g p
gs ~ f,ress>rrt.
I i 8 cq<pm ~SX~C>
Pwg . S-I ~ s 4 ~4'Iv,v': cL ft'.QvwlCJ s v~.l 1>net I
) u..k4 ~ness~. I 7/ir n>el ~efr ss liszt>A>>f ens
~
>>re ct ke ne>nQ r>4o eegsnenee ne>>lee>>>W <l>er>/es> a<el >
< 4 pr ge '4> sussex 4 o4L v. his' '--'s
-l. v~rn (>-.e~v$ ~Ah >~ M~r~4 ek~ga
MPR Associates, Inc.
TLIMPR 320. King Street Alexandria, VA 22314 Calculation No. Pre ared By Checked By Page sos - ~30- I'-sPI Jl
~
f 4 NIAl~l4~ ~br<<~,.(8AS+y (acgoY5 CgQ jive< cyc,4 p
<-assure s an) e~<h 'yale., /he p< <<< <<'CS Glelk <'-~fCAj i~5 Gl< C.
Pi'~s~ covc<&pa~ <g % m >mam 6-&<st d<fc I j /
(ps<)
Pi > =
Pc mud. u>~r s~~k'rg 4 wn s4 s <4k Cp 'j r<<~e<<k~c b'igvw<vu, cw<<: a rN ol i nq s4<ess s4)e (')
W<e 4e~)~~M RAN<<ev ce ~vespsvds Q /II~
4<~Pn~Qc. JbR~m~ defi'<.J g~ Ac e'l.~~4 lQ <s.d q. - A~-. -4 A.~/
S res Se S'. s4<s I 3.~,')) $<J< g ~ g ~L< l.$ <<i
a 0 ~
l
~ ~ ~ ~ ~ e r~ )
0 t
(
/
t I
MPR Associates, Inc.
WMPR 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By o Ss= ~- RsP/ nz Page I~
Pg- 44,co~ pwss~ used $ 6eprvni~c e
MPR Associates, Inc.
txiMPR 320 King Street Alexandria, VA 22314 Calcuiation No. Prepared By Checked By ago-z.so-gs, p] 0<Za Page
), //cn MIny goer Ct r.o Jc
0 0()vac- Qg c. ~ Q~RC-K. BXC; QL 1
o O
'his program calculates crack growth In ~ nozzle due to pressure and c
'hermal cycles 0 R DECLARE SUS Crackgrowth (At, Nsbl, DECLARE fUNC'I!OH Klt (Al¹, L)
PII, P2I, Sdist1, T11, TrII, Sdlst2, T21, Tr21) pV' 0 DECLARE fUNCTIDH dadxt (dK, R)
DIH NSub(5, 5), hain(5, 5), Peax(5, 5), Strdistsn(5, 5), Strdistex(5, 5), Tlein(5, 5), Tieax(5, 5), 12min(5, 5), T2eax(5, 5)
DIH Nsubcyc(5), Repcyc(5), BO(5), Sl(5), 82(5), 83(5), RefStr(5) 0 CQHHOH SNARED Pl CLS
~
Open Input and output flies inputfileS ~ COrp(ANDS OPEN inputflleS FOR INPUT AS tl flan ~ LEN(RTRINS(lnputfileS))
outflleS ~ LEFIS(RIRINS(lnputflleS), flan - 4) + ".OUT" OPEN outfileS FOR OUtPUT AS ¹2
'ead input file INPUT tl, Aot, Nflnal INPUT t1, Rmin, CIRmlnt, C2Rmint, ml, e2 INPUT ¹I, Reax, C1Reaxt, C2Rmaxt INPUT tie Fl, f2, F3, F4 INPUI tl, Nstrdlst foR I ~ 0 TO Nstrdist INPUI'l, 80(l), 81(l), 82(1), 83(l), Refgtr(l)
NEXT I INPUT <<I, Ncyctype fOR I ~ 1 TO Ncyctype INpUT tl, Repcyc(1), Nsctrcyc(l) fOR J a I TO Nsubcyc(l)
INPUT tl, NSub(l, J) ~ Pein(l, J), Peax(l, J), Strdistsn(I ~ J) ~ TImin(I, J), T2min(l ~ J), Strdistex(l ~ J), TIeax(I, J), T2eax(l, J)
NEXT J NEXT I
'onstants Pi ~ 3. I 81592 Calculate crack growth xQ O~I)
Ntot ~ 0 At ~ Aot PRINT t2, USING "ttO <<.ttN'tot; At -cC) to co DO UNTIL Ntot >> Nfinal Co FOR I ~ 1 TO Ncyctype FOR K ~ 'I TO Repcyc(l) CD Ntot ~ Hiot + 1 to fOR J ~ I TO Nsubcyc(l) lO CALL Crackgrowth(AS, NSub(I, J), hain(l, J), Peax(l, J), Strdlstcn(l, J), Tlmln(l, J), T2eln(l, J), Strdlstex(l, J), Tieax(l, J), T2eax(I, J)) Cr)
NEXT J PRINT <<2, USING "ttO t.ttO"I Ntot; At o NEXT K NEXT I LOOP END
CCF(D d( P-ACE, E,ME. (('~ > Pq o Q
SUB CrsckGrorrth (A¹, Nsb, Pl, P2, Sdlstl, 'll, Trl, Sdist2, 12, Tr2)
~
This subroutine calculates crack grorrth given the Initial crack length,
'he member of cycles and the mlnfaara and msxfaaaa pressures and o >
'ecperatures.
dtl = Trl - Tl I O
=
dt2 ~ tr2 - 12 Kl Pl i KIN(AN, 0) + dtl e KIN(AN, Sdlstl) ~ 0 L2 a I 2 ~ Kit(AN, 0) + dt2 e KIN(AN, Sdlst2)
IF Kl e K2 THEN Kmin ~ Kl Kmsx ~ K2 ELSE Kein 8 K2 Kmsx Kl END IF dK i Kesx - Kmin R ~
dst Kmin
~
/ Kesx e Nab U
dscgrf(d(, R) (D
~ Af + ds¹ o Q
(I)
FUNCTION dscgrf (cB:, R) 'alculate dscBI given dK snd R O.
SHARED hain, Clhainf, C2Relnf, el, e2 SHARED Rmsx, CIRmsxt, C2Rmsxt If hain ~ Rmsx THEN Clf ~ Clhalnf C2N ~ C2ibalnt ELSE SELECT CASE R CASE IS << Rein Clf ~ CIRmlnt C2N ~ C2Rmlnf
- CASE IS>> Rmsx Clt ~ CIRmaxf C2N ~ C2Resxf CASE ELSE Clt ~ Cllbalnt + (CIResxt - CIReinf) a ((R - Rmln) / (Rmsx - hain))
~ Cr) Q C2N ~ C2lbalnt + (C2Resxt - C2Reint) e ((R - hain) / (Rmsx - Rein))
ENO END SELECT IF xID Og IF Clt ~ C2N THEM D K dscgrt ~ Clf e dK ml (o
ELSE -CQ cB:tran ~ (C2N / Clf) (1 / (ml - m2)) CD o.
SELEC't CASE cX 0) o CASE IS e dxtrsn dsdxf ~ Clt a dK all (Z ~ IO'(D CASE IS >a dKtrsn cD cD dsdMN C2N a dK Qw (o END SELECT Q EHD IF (r)
END FUXC'tlOH 4 o FUNCTION Kit (Alt, L) 'alculate Stress Intensity factor'iven crack 'Length snd stress distr ibutlon SHARED Fl, f2, f3, F4, 80(), 81(), 82(), 83(), Refstr()
Klf ((Pl EHD FUNCTION e AIN) .5) a (Fl a 80(L) + F?
- 81(L) a 2 a Alf / Pl + f3 e 82(L) e Alf 2 / 2+ F4 ~ 83(L) a 4 e Alt 3 /3 / Pl) / Refgtr(L)
- a. merc ~r. k a ~a) iwnm oP 5', Pp.en) $'ps oF'ela',
- 85. '109 f7 $ 2% - 3o. I8$
- 83. I 1I 485 ~ 539.
- 7. 0.7599 8 0 '610 '
- o. 1$ 9$
- ZSZ>>v 6<
- o. 53-1
- o. >9)
- 0) (i) O~ 0)
- 0) ~c'cc-pier~fir's ccrc. cist c~r/~y <<icing %~4l1crn ~( Ac@>m ccrc: ~cccrvcc4)
- 44. Inj os gi le C I ici/ro. 5I Pa
- 2. ASME Code for Material Properties.
- 3. Combustion Engineering Report CENC 1142, "Analytical Report for Niagara Mohawk Reactor Vessel."
- 4. MPR Report 629, "Re-evaluation of Reactor Vessel Fatigue Analysis for Revised Operating Cycles, Nine Mile Point Nuclear Generating Station Unit No. 1," August 13, 1979.