ML17352A206: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
 
(Created page by program invented by StriderTol)
 
(5 intermediate revisions by the same user not shown)
Line 2: Line 2:
| number = ML17352A206
| number = ML17352A206
| issue date = 08/20/1993
| issue date = 08/20/1993
| title = Turkey Point Nuclear Plant Unit 4,Cycle Xiv Startup Rept. W/930820 Ltr
| title = Cycle Xiv Startup Rept. W/930820 Ltr
| author name = PLUNKETT T F
| author name = Plunkett T
| author affiliation = FLORIDA POWER & LIGHT CO.
| author affiliation = FLORIDA POWER & LIGHT CO.
| addressee name =  
| addressee name =  
Line 16: Line 16:


=Text=
=Text=
{{#Wiki_filter:ACCEI Etui.T~D DOCUMENT DIST I UTION SYSTEM REGULA~..Y INFORMATION DISTRIBUTIO ,SYSTEM (RIDS)ACCESSION NBR:930830019l DOC.DATE: 93/08/20 NOTARiZED:
{{#Wiki_filter:ACCEI Etui.T~D DOCUMENT DIST I UTION SYSTEM REGULA ~..Y INFORMATION         DISTRIBUTIO ,SYSTEM (RIDS)
NO DOCKET¹FACIL:50-251 Turkey Point Plant, Unit 4, Florida Power and Light C 05000251 AUTH.NAME AUTHOR AFFILIATION PLUNKETT,T.F.
ACCESSION NBR:930830019l             DOC.DATE:   93/08/20     NOTARiZED: NO                 DOCKET ¹ FACIL:50-251 Turkey Point Plant, Unit 4, Florida Power and Light                   C       05000251 AUTH. NAME           AUTHOR AFFILIATION PLUNKETT,T.F.         Florida   Power & Light Co.
Florida Power&Light Co.RECIP.NAME RECIPIENT AFFILIATION
RECIP.NAME           RECIPIENT AFFILIATION


==SUBJECT:==
==SUBJECT:==
"Turkey Point Nucl'ear Plant Unit 4,Cycle XIV Startup Rept." W/930820 ltr.DISTRIBUTION CODE: IE26D COPIES RECEIVED LTR J ENCL I SIZE: I'ITLE: Startup Report/Refueling Report (per Tech Specs)NOTES: RECIPIENT lD CODE/NAME PD2-2 PD, COPIES LTTR ENCL, 1 1 RECIPIENT ID CODE/NAME RAGHAVAN,L COPIES LTTR ENCL 2 2 ZNTERNAL: AEOD/DSP/TPAB NUDOCS-ABSTRACT RGN2 FILE 01 EXTERNAL: NRC PDR 1 1 1 1 1 1 1 1 NRR/SR%3 EG IL NSIC 02 1 1 1 1 1 1 NOTE TO ALL"RIDS" RECIPIENTS:
  "Turkey Point Nucl'ear Plant Unit 4,Cycle XIV Startup Rept."
PLEASE HELP US TO REDUCE iVASTE!CONTACT THE DOCUMENT CONTROL DESK, ROOM Pl-37 (EXT.504-2065)TO ELIMINATE YOUR NAME FROM DISTRIBUTION LISTS" FOR DOCUMENTS YOU DON'T NEED!TOTAL NUMBER OF COPIES REQUIRED: LTTR 10 ENCL 10 ik gF L-93-196 10 CFR 50.36 U.S~..Nuclear Regulatory Commission Attn: Document Control Desk.Washington, D.C.20555, Gentlemen:
ltr.
Re: Turkey Point Unit 4 Docket No.50-251-Startu'Re ort In accordance with Technical Specification 6.9.1.1, the enclosed Startup Report is provided for Flori'da Power and Light Company Turkey Point Unit 4.The Unit 4 Cycle XIV Startup Report documents the first use of axial (natural uranium)blankets and snag-resistant spacer grids at the top and'ottom of the fuel assemblies.
W/930820 DISTRIBUTION CODE: IE26D         COPIES RECEIVED LTR Startup Report/Refueling Report (per Tech Specs)
If you have any questions, please contact us.Very, truly yours, T.F.Plunkett Vice President Turkey Point Nuclear TFP/RJT/rt
J  ENCL  I  SIZE:
."Attachment cc: S.D.Ebneter, Regional Administrator, Region IIUSNRC Senior Resident Inspector, USNRC, Turkey Point Nuclear 9308300191 930820 PDR ADO'500025i PDR an FPL Group company
I'ITLE:
NOTES:
RECIPIENT             COPIES              RECIPIENT        COPIES lD CODE/NAME          LTTR ENCL,        ID CODE/NAME       LTTR ENCL PD2-2 PD,                   1       1     RAGHAVAN,L             2     2 ZNTERNAL: AEOD/DSP/TPAB               1       1     NRR/SR%3               1    1 NUDOCS-ABSTRACT            1      1      EG   IL       02     1     1 RGN2    FILE 01            1       1 EXTERNAL: NRC PDR                      1      1    NSIC                    1     1 NOTE TO ALL"RIDS" RECIPIENTS:
PLEASE HELP US TO REDUCE iVASTE! CONTACT THE DOCUMENT CONTROL DESK, ROOM Pl-37 (EXT. 504-2065) TO ELIMINATEYOUR NAME FROM DISTRIBUTION LISTS" FOR DOCUMENTS YOU DON'T NEED!
TOTAL NUMBER OF COPIES REQUIRED: LTTR               10   ENCL   10


ATTACHMENT FLORIDA POWER 6 LIGHT COMPANY TUEQCEY POINT NUCLEAR PLANT UNIT O'YCLE XIV STARTUP REPORT
ik gF


L-93-196 Attachment Page 2 of 18 INTRODUCTION This report contains the official summary of the Startup Physics Tests performed on Turkey Point Unit 4 at the beginning of Cycle XIV.The testing program was conducted in accordance with Turkey Point Plant Procedures, and meets the requirements of ANSI/ANS 19.6.1, Revision 0.(12/13/85),"Startup Physics Tests for Pressurized Water Reactors".
L-93-196 10 CFR 50.36 U. S  ~ ..Nuclear Regulatory Commission Attn:        Document Control Desk
Withdrawal of Shutdown banks commenced May 23,'1992 at 0242 and initial criticality was achieved 6 hours and 24 minutes later.WCAP-13682,"The Nuclear Design and Core Management of the Turkey Point Unit 4 Nuclear Power Plant, Cycle 14", was the design source for verifying that acceptance criteria as specified in ANSI/ANS 19.6.1 were met.All tests performed for nuclear design verification meet their acceptance criteria.The contents of this report provide the documentation required by Technical Specification 6.9.1.1.H
.Washington,       D.C. 20555, Gentlemen:
'!
Re:      Turkey Point Unit 4 Docket No. 50-251-Startu    'Re  ort In accordance with Technical Specification 6.9.1.1, the enclosed Startup Report is provided for Flori'da Power and Light Company Turkey Point Unit 4. The Unit 4 Cycle XIV Startup Report documents the first use of axial (natural uranium) blankets and snag-resistant spacer grids at the top and'ottom of the fuel assemblies.
L-93-196 Attachment Page, 3 of 1'8 TABLE OF CONTENTS INTRODUCTION 1'.0, UNIT 4, CYCLE XIV CORE 1.1 Fuel Design Changes 1'Loading Pattern 1.3 Rod Pattern and Rod Drop Times 2.0 INITIAL CRITICALITY 2.1 Inverse Count Rate Ratio (ICRR)vs.Dilution.2.'2 Critical Data 3.,0 SUMMPGtY OF'TESTS 3.1 Nuclear Heating 3.'2 Reactivity vs.Period 3'Boron Endpoints 3.,4 Rod Worth (ppm), Most Reactive Bank 3.'5 Rod Worth (pcm)3.6 Temperature Coefficient 3.7 Hot Zero Power (HZP)Differential Boron Worth 4.0 SHUTDOWN.MARGIN 5.0 POWER DISTRIBUTION MAPS 6.0'CRITICAL BORON CONCENTRATION 0
If you have any questions, please contact us.
L-93-196 Attachment Page 4 of 18 1.0 UNIT 4 CYCLE XIV CORE'.1 Fuel Desi n Chan es Unit 4 Cycle, 14 fuel is essentially the same as Cycle 13 fuel with the exception that Cycle 14 fuel includes axial blankets and additional snag-resistant grids.Axial blankets, previously used in Turkey Point Unit 3 Cycle 13 core design are new to Unit 4.Axial blankets consist of a nominal 6 inches of natural VO~pellets at the top and bottom of the fuel pellet stack.Axial blankets are designed to reduce neutron leakage and therefor improve uranium utilization.
Very,   truly yours, T. F. Plunkett Vice President Turkey Point Nuclear TFP/RJT/rt
Anti-snag mid-grids were included in the Unit 4 Cycle 13 design.The Unit 4 Cycle 14 design adds top and bottom anti-snag grids to the fuel assembly design.This addition wi;11 reduce the possibility of assembly damage during fuel handling.1.2 Loadin Pattern This section presents the as-loaded core configuration (Figure 1, page 5).1'.3 Rod Pattern and Rod Dro Times This section presents the Control and Shutdown Rod pattern and the Rod Drop Times for all rods as measured per Procedure 4-PMI-028..3,"RPI, Hot Calibration, CRDM Stepping Test, and Rod Drop Test" (Figure 2, page 6).All rods.meet the drop time limit of 2.4 seconds as per Technical Specification 3.1.3.4.
."Attachment cc:       S. D. Ebneter,     Regional Administrator, Region II USNRC Senior Resident Inspector, USNRC, Turkey Point Nuclear 9308300191        930820 PDR        ADO'500025i PDR an FPL Group company
0 4l L-93-196 Attachment Page 5 af 18 FZGURE 1 TURKEY POZNT UNZT 4 CYCLE 14 CORE LOADZNG RR23 HF23 RR30 HF16 RR15 HF06 A I I NORtH I I PP26 SS35 R52 TT38 RR49 T740 SS33 R54 PP55 RR19 TT46 RR04 SS48 SS41 TT19 4M RR46 R57 SS20 R53 TT03 16M TT22 4'M RR27 R56 SS18 R51 7706 16IJ TT24 4M RR47 R55 TT48 RR07 SS29 SS47 RRO6 PP40 TT49 SS40 SS14 R61 TTOS 16M RR39 R59 TT30 8M RR33 R60 TT14 16M SS11 R58 SS39 TT50 PP33 RROS HF07 SS38 R66 TT41 TT31 4M SS24 R70 RR41 R65 TT16 16IJ T715 16M RR36 R65 RR11 SS10 SS01 TT33 SM SS17 R64 SS03 SS07 T734 SM RR10 SS09 T702 16M RR34 R69 RR51 R63 TT04 16M TT18 4M SS25 R67 SS37 R62 TT42 RR20 HF13 RR29 HF15 RR09 HF20 RR50 TT43 TT32 4M SS21 R77 TT16.TT20 16M 8M T711 RR35 16M R78 SS27 R74 SS16 TT35 SM RR25 R73 SS13 SS12 TT36 8M SS19 R72 SS15 TT27 SM RR40 RSO RR24 R71 TT12 16M TT28 4M SS26 R76 RR48 TT37 RR32 HF05 RR14 HF02 SS30 R84 T725 4M RR43 R53 TT09 16M RR26 SSOS SS28 R82 SS06 RR01 TT10 16M RR52 R81 TT26 4M SS43 R79 PP51 TT51 SS32 SS04 R89 T705 16IJ RR37 R86 TT21 SM RR38 R87 TT07 1QJ SS05 R85 SS44 TT45 PP45 RR12 8$46 SS34 RR13 TT52 RR42 R90 T723 4M TT01 16M S$23 R92 RR28 R91 TT17 4M T713 16M SS22 R95 RR44 RSS TT29 4M SS31 SS45 RR03 TT47 RR05 SS42 R101 TT44 RR45 TT39 SS36 R93 PP54 RR22 HF11 RR31 RR21 HF10 HF01 key: ASSY ASSY INS.PPxx Rxx RRxx zzM SSxx HFxx TTxx....PP Reload Cvcle 11 RR Reload Cycle 12 SS Reload Cycle 13 TT Feed CycLe',14 R Control Rod M MASA insert HF Hafniisa inserts xx Sequence amber zz Hwher of MASA fingers 4I 0 L-93-196 Attachment Page 6 of 18 FIGURE 2 TURKEY POINT UNIT 4 CYCLE 14 RCCA BANK PATTERN AND DROP TZMES A I I NORTH I I CB.B 1.39 CS 8 1.37 SB-A 1.34 SB A 1.34 CB-C 1.32 CB-D 1.35 CB.C 1.34 SB-B'.33 CB A 1.32 CB-A 1.35 SS.B 1.35 CB-8 1.37 CB-C 1.35 SS.B 1.37 CS C 1.34 CB 8 1.37 SB-A 1.36 CB A 1.37 CB.A 1.34 SS A 1.34 CB 0 1.34 SB 8 1.37'CBD 1.35 SB-B 1.35 CB.D 1.35 SB A 1.35 CB A 1.31 CS-A 1.32 SB A 1.36 CS-S 1.35 CB C 1.32 SB 8 1.35 CB C 1.34 CB-S 1.40 SB-S 1.32 CB A 1.33 CB-A 1.35 SS-S 1.30 CB.C 1.33 CB-D 1.34 CB-C 1.32 SS.A 1.33 SB A 1.35 CS~8 1.34 CB 8 1.35 keys RCCA RCCA TINE SB-x sec.CS-x SB Shutdown Bank CB Control Bank x Bank Identifier sec.Drop Time toDashpot li L-93-196 Attachment Page 7 of 18 2.0 XNITIAL CRITICALITY 2.1 INVERSE COUNT RATE RATXO (XCCR)vs DILUTXON The approach to criticality began May 23, 1993 at approximately 0242 when the stepping of shutdown banks began in accordance with Procedure 0-OSP-040.
6,"Initial Crit'icality After Refueling.'" Criticality.was achieved approximately 6 hours and 24 minutes later on May.23, 1993 at 0906 by diluting 14,460 gallons of water with control bank D at 180 steps.Figure 3 (page 8)is a plot of the ICRR during the approach to criticality.
2.2 CRITICAL DATA Upon attaining criticality, the flux level was increased'o 1 x 10 amps on the reactivity computer to obtain critical data, as follows: Tavg=547.1'F Control Bank D=178 Steps Reactor Coolant System (RCS)Boron=1689 ppm Picoammeter Flux=1 x 10'N35 Flux N36 Flux 1.1 x 10 A 1.8 x 10' 4k 1.3 1.2 FIGURE 3 Turkey Point Unit 4 (1/M)on Approach to Criticality (1/M)DURING ROD WITHDRAWAL N31 Page 8 1'.1 0.9 0.8 N32 0 0 0 0 0 0 0 0 0.7 T'I 50 100 150 228 50 100 150 228 50 100 150 228 22 100 150 228 SHUTDOWN BANK A SHUTDOWN BANK B I CBAH I CB-C-H CBB I I CBD~(1/M)DURING DILUTION 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 p 0 0 p 0 0 0 5000 10000 Gallons Water Added 15000 20000


L-93-196 Attachment Page 9 of 18 3.0  
ATTACHMENT FLORIDA POWER 6 LIGHT COMPANY TUEQCEY POINT NUCLEAR PLANT UNIT O'YCLE XIV STARTUP REPORT
 
L-93-196 Attachment Page 2  of 18 INTRODUCTION This report contains the official summary of the Startup of Physics Tests performed on Turkey Point Unit 4 at the beginningwith Cycle XIV. The testing program was conducted in accordance        of Turkey Point Plant Procedures, and meets the requirements for ANSI/ANS 19.6.1, Revision 0 .(12/13/85),  "Startup Physics Tests Pressurized Water Reactors".
Withdrawal of Shutdown banks commenced May 23, '1992 at 0242 and initial criticality was achieved 6 hours and 24 minutes later.
WCAP-13682,  "The Nuclear Design and Core Management of the Turkey  Point Unit 4 Nuclear Power Plant, Cycle 14", was the design source for verifying that acceptance criteria as specified in ANSI/ANS 19.6.1 were met. All tests performed for nuclear design verification  meet  their acceptance criteria.
The contents of this report provide the documentation required by Technical  Specification 6.9.1.1.
H
 
L-93-196 Attachment Page, 3  of 1'8 TABLE OF CONTENTS INTRODUCTION 1'.0, UNIT 4, CYCLE XIV CORE 1.1 Fuel Design Changes 1'    Loading Pattern 1.3 Rod Pattern and Rod Drop Times 2.0 INITIAL CRITICALITY 2.1 Inverse Count Rate Ratio (ICRR) vs. Dilution
      .2.'2  Critical  Data 3.,0  SUMMPGtY OF 'TESTS 3.1  Nuclear Heating 3.'2  Reactivity vs. Period 3'    Boron Endpoints 3.,4  Rod Worth (ppm), Most  Reactive Bank 3.'5  Rod Worth (pcm) 3.6  Temperature  Coefficient 3.7  Hot Zero Power (HZP)  Differential Boron Worth 4.0    SHUTDOWN. MARGIN 5.0    POWER  DISTRIBUTION MAPS 6.0 'CRITICAL BORON    CONCENTRATION
 
0 L-93-196 Attachment Page 4  of 18 1.0  UNIT 4 CYCLE XIV  CORE'.1 Fuel Desi n Chan es Unit 4 Cycle, 14 fuel is essentially the same as Cycle 13 fuel with the exception that Cycle 14 fuel includes axial blankets and additional snag-resistant grids.
Axial blankets, previously used in Turkey Point Unit 3 Cycle 13 core design are new to Unit 4. Axial blankets consist of a nominal 6 inches of natural VO~ pellets at the top and bottom of the fuel pellet stack.            Axial blankets are designed to reduce neutron leakage and therefor improve uranium utilization.
Anti-snag mid-grids were included in the Unit 4 Cycle 13 design. The Unit 4 Cycle 14 design adds top and bottom anti-snag grids to the fuel assembly design.              This addition wi;11      reduce the possibility of assembly damage during fuel handling.
1.2  Loadin  Pattern This section presents the as-loaded core configuration (Figure 1, page 5).
1'.3 Rod Pattern and Rod Dro Times This section presents the Control and Shutdown Rod pattern and the Rod Drop Times for all rods as measured per Procedure 4-PMI-028..3, "RPI, Hot Calibration, CRDM Stepping Test, and Rod Drop Test" (Figure 2, page 6).
All rods. meet the drop time limit of 2.4 seconds as per Technical Specification 3.1.3.4.
 
0 4l L-93-196 Attachment Page 5  af  18 FZGURE 1 TURKEY POZNT UNZT 4 CYCLE 14 CORE LOADZNG A
I I
NORtH I
I RR23  RR30  RR15 HF23  HF16  HF06 PP26 SS35 TT38  RR49  T740 SS33 PP55 R52                  R54 RR19    TT46 TT19 SS20  TT22  SS18 TT24 TT48 RR07 4M  R53    4'M R51  4M RR04 SS48    SS41 RR46 TT03  RR27  7706 RR47 SS29 SS47  RRO6 R57  16M  R56  16IJ R55 PP40  TT49 SS40    SS14 TTOS RR39  TT30  RR33 TT14 SS11 SS39  TT50    PP33 R61  16M  R59    8M  R60  16M  R58 SS38  TT31 RR41    T715 RR11 SS01  SS17 SS07 RR10 T702 RR51  TT18    SS37 R66    4M  R65      16M            R64            16M  R63    4M    R62 RROS TT41  SS24 TT16    RR36 SS10 TT33  SS03  T734 SS09 RR34 TT04  SS25    TT42    RR20 HF07      R70  16IJ    R65        SM          SM      R69  16M  R67              HF13 RR29 RR50  TT32 TT16  . TT20 SS27 SS16  RR25  SS12 SS19 TT27 RR24  TT28    RR48    RR32 HF15        4M  16M      8M  R74        R73        R72  SM  R71    4M              HF05 RR09 TT43  SS21 T711    RR35      TT35  SS13 TT36 SS15 RR40 TT12  SS26    TT37    RR14 HF20      R77  16M      R78        SM          8M      RSO  16M  R76              HF02 SS30  T725 RR43    TT09 RR26 SSOS  SS28 SS06 RR01 TT10 RR52  TT26    SS43 R84    4M  R53      16M              R82            16M  R81    4M    R79 PP51  TT51 SS32    SS04 T705 RR37  TT21 RR38 TT07 SS05 SS44  TT45    PP45 R89  16IJ R86    SM  R87  1QJ  R85 RR12 8 $ 46  SS34 RR42 TT01  RR28 T713 RR44 SS31 SS45  RR03 R90  16M    R91  16M  RSS RR13    TT52 T723 S$ 23  TT17 SS22 TT29 TT47 RR05 4M  R92    4M  R95  4M SS42 TT44  RR45 TT39 SS36 PP54 R101                  R93 RR22  RR31 RR21 HF11  HF10 HF01 key:          ASSY      INS.
PPxx      Rxx ASSY      RRxx      zzM SSxx      HFxx TTxx ....
PP  Reload Cvcle 11 RR  Reload Cycle 12 SS  Reload Cycle 13 TT Feed CycLe',14 R  Control  Rod M  MASA  insert HF  Hafniisa inserts xx Sequence amber zz Hwher of MASA fingers
 
4I 0 L-93-196 Attachment Page  6  of  18 FIGURE 2 TURKEY POINT UNIT 4 CYCLE 14 RCCA BANK PATTERN AND DROP TZMES A
I I
NORTH I
I CB-8                  CS-S 1.37                  1.35 SB-A        SB A 1.36        1.35 CB-C        CB  0      CB C 1.35        1.34      1.32 SB-B      CB A        CB A      SB-S
                      '.33        1.37        1.31      1.32 CB.B      CB-C                    SB 8                CB.C          CS ~ 8 1.39      1.32                    1.37                1.33          1.34 SB-A        CB A                            CB A      SS.A 1.34        1.32                            1.33      1.33 CB-D        SS.B      'CBD        SB 8      CB-D 1.35        1.37        1.35      1.35      1.34 SB A        CB-A                            CB-A      SB A 1.34        1.35                            1.35      1.35 CS 8      CB.C                    SB-B                CB-C          CB 8 1.37      1.34                      1.35                1.32          1.35 SS.B      CB.A        CS-A      SS-S 1.35      1.34        1.32      1.30 CS C        CB.D      CB C 1.34        1.35      1.34 SS A        SB A 1.34        1.36 CB 8                  CB-S 1.37                  1.40 RCCA    TINE keys SB-x    sec.
RCCA        CS-x SB      Shutdown Bank CB      Control    Bank x      Bank Identifier sec. Drop Time toDashpot
 
li L-93-196 Attachment Page 7  of 18
: 2. 0  XNITIAL CRITICALITY
: 2. 1  INVERSE COUNT RATE RATXO (XCCR)        vs DILUTXON The    approach    to  criticality      began  May  23, 1993  at approximately 0242 when the stepping of shutdown banks began in accordance with Procedure 0-OSP-040. 6, "Initial Crit'icality After Refueling.'" Criticality .was achieved approximately 6 hours and 24 minutes later on May .23, 1993 at 0906 by diluting 14,460 gallons of water with control bank D at 180 steps.
Figure 3 (page 8) is a plot of the ICRR during the approach to criticality.
2.2  CRITICAL DATA Upon attaining    criticality,    the flux level was increased'o 1 x 10 amps on the    reactivity  computer to obtain critical data, as follows:
Tavg =      547.1'F Control Bank    D =    178 Steps Reactor Coolant System      (RCS)  Boron =    1689 ppm Picoammeter Flux        =    1 x 10  '
N35  Flux        1.1 x 10    A N36  Flux        1.8 x 10  '
 
4k Page 8 FIGURE 3 Turkey Point Unit 4 (1/M) on Approach to Criticality (1/M) DURING ROD WITHDRAWAL 1.3          N31 1.2 1'. 1 0    0 0  0 0.9 N32                                                  0  0      0  0 0.8 0.7 T                      'I 50    100 150  228 SHUTDOWN BANK A 50  100 150 SHUTDOWN BANK B 228 I
50 CBAH 100 150  228 CBB I
22  100 150 CB-C I  I 228 H
CBD~
(1/M) DURING DILUTION 1  0  0 0.9                  p  0 0
0.8                              p  0 0 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
5000                        10000                  15000        20000 Gallons Water Added
 
L-93-196 Attachment Page 9 of 18
: 3. 0


==SUMMARY==
==SUMMARY==
OP TESTS This section provides a summary of the results of the low power physics tests for Unit 4, Cycle XIV along with the Nestinghouse design data.For each test, the acceptance criteria is listed at the bottom of the table.This report compares design and measured data using Difference and Percent Difference.
OP TESTS This section provides a summary of the results of the low power physics tests for Unit 4, Cycle XIV along with the Nestinghouse design data.         For each test, the acceptance criteria is listed at the bottom of the table. This         report compares design and measured data using Difference and Percent Difference.
Difference
Difference = Predicted Measured For calculating Percent Difference, the equation is:
=Predicted-Measured For calculating Percent Difference, the equation is:~PredfctedValue 11&00 2tfeaauredVal ue 3.1 Nuclear He tin The point of adding Nuclear Heat was determined in accordance with Procedure 0-OSP-040.
                            ~
6,"Initial Criticality After Refueling".
PredfctedValue 11&00 2tfeaauredVal ue 3.1 Nuclear   He tin The point of adding Nuclear Heat was determined in accordance     with Procedure       0-OSP-040.     "Initial Criticality After Refueling". This is 6,performed by establishing a small positive startup rate and measuring the flux level at which T, departs from its established steady state value.         Nuclear Heating was measured to first occur at values presented on Table 3.1.1.
This is performed by establishing a small positive startup rate and measuring the flux level at which T, departs from its established steady state value.Nuclear Heating was measured to first occur at values presented on Table 3.1.1.T?LB'~1 1C FLUX LEVEL (AMPH)Pico Oter 1 S x 10 N-35 2.1 x 10 N-36 3.4 x 10 8 All physics tests were conducted at or below 1 x 10" amps on the picoammeter connected to N-44 to assure Nuclear Heating did not occur.  
T?LB'   ~ 1 1C   FLUX LEVEL (AMPH)
~l' L-93-196 Attachment Page 10 of 18 3.2 Reactivit vs.Period Reactivity Computer checkout was done in accordance with Procedure.0-0SP-040.6,"Initial Criticality After Refueling." This checkout is performed by inserting small positive and negative reactivities using rod motion.The period of the flux change is used to calculate the design reactivity.
Pico     Oter         N-35            N-36 1 S   x 10         2.1 x 10       3.4 x 10 8 All physics tests   were conducted at or below 1 x 10 " amps on the picoammeter connected to N-44 to assure Nuclear Heating did not occur.
The measured reactivity is taken directly from the reactivity computer.The results of this test are given in Table 3.2.1.TABLE 3.2.1: MEASURED REACTIVITY VS.DESIGN PERIOD (SEC)+151.2-249.6+78.3+129.1 MEASURED REACTIVITY (PCM)+39.0-33.'0+65.0+44.0 DESIGN REACTIVITY (P CM)+38.8 33~7+65.4+44.2 DIFF*+.5 2~1-.6-5 3.3*Acceptance Criteria is 4%for positive period.Boron End ints The Boron Endpoint measurement is a way, of measuring the steady state boron concentration of an under-rodded core (positive period in effect)or an over-rodded core (negat'ive period'n effect).In FPL's testing program the first case is an unrodded core and the second case is a core with the reference bank at the bottom.The Boron Endpoint is measured using Procedure 0-OSP-040.5,"Nuclear Design Verification." In this methodology a just-critical condition is established as near as practical to the required rod configuration.
 
The rods are then moved into the desired configuration and back to equilibrium.
~l
The RCS boron concentration which was measured at equilibrium is then adjusted for the ppm worth of the rods.The results of the two boron endpoint measurements are given in Table 3.3.1.TABLE 3.3.1: BORON ENDPOINTS (ppm)MEASURED (ppm)1698 MESTINGHOUSE (ppm)1693 DIFFERENCE*(ppm)SB-B 1552 1547*Acceptance Criteria is+/-50 ppm.
 
41' L-93-196 Attachment Page 11 of 18 3.4 Rod'orth Most Reactive Bank Rod Worth was measured per Procedure O-OSP-040.5,"Nuclear Design Verification." The reference bank (highest predicted worth)was first inserted as the controlling bank was.withdrawn.
L-93-196 Attachment Page 10   of 18 3.2 Reactivit vs. Period Reactivity Computer checkout         was done in accordance with Procedure   . 0-0SP-040.6,     "Initial       Criticality After Refueling." This checkout is performed by inserting small positive and negative reactivities using rod motion.       The period of the flux change is used to calculate the design reactivity. The measured reactivity is taken directly from the reactivity computer. The results of this test are given in Table 3.2.1.
Then a dilution was used to adjust, the reference bank to approximately 30 steps from the bottom.Finally a Boron Endpoint (see section 3.3)was performed.
TABLE   3.2.1:     MEASURED   REACTIVITY VS. DESIGN MEASURED          DESIGN PERIOD                 REACTIVITY        REACTIVITY (SEC)                 (PCM)            (P CM)            DIFF*
By graphing the rod worth, measured by the reactivity computer, versus rod insertion, a differential rod worth curve is generated..
            +151.2                 +39.0            +38.8            +.5
By summing the differential worth an integral rod worth curve is generated and the bank worth determined.
            -249.6                -33.'0             33 7
The total bank worth is presented in Table 3.4.1.The Integral and differential bank worth of the reference bank is displayed in Figure 4 (page 12).TABLE 3.4.1: ROD,WORTH (pcm)MEASURED WESTINGHOUSE (pcm)(pcm)SB-B 1173 1189 DIFF*(+)1.4 3.5*Acceptance Criteria is less than 10%Remainin Banks Rod Worth cm R The remaining RCCA bank worth was measured per Procedure 0-OSP-040.5,"Nuclear Design Verification," using, the rod swap technicgxe.
                                                          ~            2 1
This technique involves swapping the negative reactivity of the bank being inserted with the positive reactivity from the bank being withdrawn.
                                                                        ~
Each bank is sequentially swapped for the reference bank.The worth of each bank can then be determined from the integral rod worth curve.The results of this measurement are given in Table 3.5.1.TABLE 3.5.1: ROD WORTH (pcm)SB-A CB-A CB-B CB-C CB-D MEASURED (pcm)1052.3 1085.6 435.3 1093.0 635.9 WESTINGHOUSE (pcm)1098 1104 484'163 664 0 DIFF*()4.3 1.7.11.2 6.4 4.4 TOTAL 5475.1 5702 4.1 NOTE: The total rod worth includes the reference bank.*The acceptance criteria for rod worth measurements are: Individual banks within+/-15%or+/-100 pcm of design, whichever is greater and Total of all measured banks within+/-10%of design.
            +78.3                  +65. 0           +65.4            .6
I 12 Q 6)~10 (0 Q~8 0 Ne C6 Q3 4 0$S~0)Cl INTEGRAL FIGURE 4 Differential and Integral Reference Bank Worth ORTH DIFFE EMTIAL WORTH Page 12 1400 1 200 1000 g)U3 Q 800~600~~U O 400 2 200 0 50 100 150 200 228 Rod Position (steps withdrawn)  
            +129.1                +44.0            +44.2           5
            *Acceptance      Criteria is      4% for positive period.
3.3  Boron End       ints The Boron Endpoint measurement         is a way, of measuring the steady state boron concentration of an under-rodded core (positive period in effect) or an over-rodded core (negat'ive period'n effect). In FPL's testing program the first case is an unrodded core and the second case is a core with the reference bank at the bottom. The Boron Endpoint is measured using Procedure                   0-OSP-040.5, "Nuclear Design Verification." In this methodology a just-critical condition is established as near as practical to the required rod configuration. The rods are then moved into the desired configuration and back to equilibrium.         The RCS boron concentration which was measured at equilibrium is then adjusted for the ppm worth of the rods. The results of the two boron endpoint measurements are given in Table 3.3.1.
TABLE   3.3. 1:   BORON ENDPOINTS     (ppm)
MEASURED           MESTINGHOUSE          DIFFERENCE*
(ppm)               (ppm)                 (ppm) 1698                1693 SB-B       1552                 1547
            *Acceptance     Criteria is +/-     50 ppm.
 
41 '
L-93-196 Attachment Page 11 of 18 3.4 Rod'orth               Most Reactive Bank Rod   Worth was measured per Procedure                 O-OSP-040.5, "Nuclear Design Verification."               The reference     bank (highest predicted worth) was           first   inserted dilution as the controlling     bank was .withdrawn. Then a             was used to adjust, the reference bank to approximately 30 steps from the bottom. Finally a Boron Endpoint (see section 3.3) was performed. By graphing the rod worth, measured by the reactivity computer, versus rod insertion, a differential rod worth curve is generated.. Bycurve          summing is the   differential     worth an   integral rod worth generated and the bank worth determined. The total bank worth is presented in Table 3.4.1.               The Integral and differential bank worth of the reference bank is displayed in Figure 4 (page 12).
TABLE   3.4.1:     ROD,WORTH (pcm)
MEASURED           WESTINGHOUSE                 DIFF*
(pcm)               (pcm)                   (+)
SB-B       1173                 1189                   1.4
          *Acceptance     Criteria is less than     10%
3.5 Rod Worth cm Remainin Banks R
The remaining RCCA bank worth was measured per Procedure 0-OSP-040.5, "Nuclear Design Verification," using, the rod swap technicgxe.       This technique involves swapping the negative reactivity of the bank being inserted with the positive reactivity from the bank being withdrawn. Each bank is sequentially swapped for the reference bank. The worth of each bank can then be determined from the integral rod worth curve.                 The results       of this measurement are given in Table 3.5.1.
TABLE 3.5.1:     ROD WORTH   (pcm)
MEASURED          WESTINGHOUSE              0  DIFF*
(pcm)                (pcm)                   ()
SB-A    1052.3                 1098                  4.3 CB-A    1085.6                 1104                  1.7 CB-B      435.3                 484'163
                                                                  .11.2 CB-C    1093.0                                       6.4 CB-D      635.9                 664                   4.4 TOTAL   5475.1                 5702                   4.1 NOTE: The   total rod worth includes the reference bank.
* The acceptance criteria for rod worth measurements are:
Individual banks within +/- 15% or +/- 100 pcm of design, whichever is greater and Total of all measured banks within
      +/- 10% of design.
 
I FIGURE 4                      Page 12 Differential and Integral Reference Bank Worth 12                                                                    1400 INTEGRAL  ORTH Q                             DIFFE EMTIALWORTH
: 6)                                                                         1 200
~10 (0
1000 g)
~8 Q
U3 Q
0                                                                            800 ~
Ne 600 ~~
C6 Q3 4
U 0$                                                                             O S~                                                                           400 2 0) 200 Cl 0
50                100            150          200 228 Rod Position (steps withdrawn)
 
L-93-196 Attachment, Page 13  of  18 3.6  Tem  erature Coefficient The isothermal and moderator temperature coefficients were determined using Procedure 0-OSP-040.5, "Nuclear Design Verification." The isothermal temperature is measured by varying the moderator temperature below the point of adding nuclear heat. The reactivity change is then simply divided by the temperature change to obtain the isothermal temperature coef ficient. The moderator temperature coefficient is calculated from the isothermal temperature coefficient by subtracting the doppler coefficient. The values determined for this testing sequence are presented on Tables 3.6.1 and 3.6.2 below:
TABLE 3.6.1: ISOTHERMAL TEMPERATURE COEFFICIENT (pcm/ F)
MEASURED        WESTINGHOUSE              DIFF*
(pc  /F)            (pcm/ F)            (pcm/ F)
                      -1.44                .43                1.01
            *Acceptance    Criteria is +/-    2  pcm/ F of design.
TABLE  3. 6. 2:  MODERATOR TEMPERATURE COEFFICIENT        (pcm/ F)
MEASURED*        WESTINGHOUSE (pcm/ F)            (pcm/ F)
                        .26                1.27
            *Acceptance    Criteria is  < 5 pcm/'F.
3.7  HZP  Differential    Boron Worth The Hot Zero Power (HZP) Differential Boron Worth was measured using Procedure O-OSP-040.5, "Nuclear Design Verification." The worth of the reference bank is divided by the boron change from ARO to the reference bank fully inserted. The value obtained for this test is presented on Table 3.7.1.
TABLE  3.7.1:    HZP DIFFERENTIAL BORON WORTH (pcm/ppm)
MEASURED        WESTINGHOUSE                DIFF*
(pcm/pr )          (pcm/pe )            (pcm/pz )
8.56                8.32                  2.8
            *Acceptance    Criteria  <  +/-  15%.
 
4i L-93-196 Attachment Page 14    of 18 4.0  SHUTDOWN MARGIN The Shutdown Margin vas    calculated prior to power escalation to verify adequate shutdown capability. For this calculation, the total of the design rod worth (minus. the most reactive stuck rod) vere reduced by 7%. The results show adequate shutdown margin at Beginning of Life (BOL) and End of Life (EOL). The following is a summary of the data used:
TABLE  4.1:  UNIT 4, CYCLE XIV SHUTDOWN DATA BOL  EOL HKP  Control Rod North Re irement All Rods Inserted Less Most Reactive Stuck Rod                6.28  6.72 (1) Less  7%                              5.84  6.25 Hot  Full Power  HFP  to HKP  Reactivit Insertion Reactivity Defects (Doppler, T,~,
Void, Redistribution)                  1.72  2.71 Rod Insertion Allowance                    0.50  0.50 (2)  Total Requirements                  2.22  3.21 Shutdown Margin (1)  (2)      '(%a@)      3.62  3.04 Required Shutdown Margin      (%wp)        1.00  1.77
      *Source:    WCAP 13682 5.0  POWER  DISTRIBUTION MAPS The  core,was mapped using incore instrumentation      for  power levels of 30%, 50%      and 100%. A summary of the results are presented- on pages 15 through      17.
 
0 FIGURE 5                                                        Page    15 SVNKARY OF 30X POUER FLUXHAP HEASURED ASSEHBLY POMER AND PERCENT                        DIFF.      TO EXPECTED PCMER          INSTR. LOC. ONLY 15      14        '13          12          11        10        9          8          7        6        5        4      3      2      1 0.222. 0.232. 0.223.
                                                                                  -1.8.
0.349. 0.824.      1 ~ 115. 0.774. 1.103. 0.808. 0.345.
0.393., 1.110        ~  1.328. 1.262. 1.315. 1.229. 1.298. 1.100. 0.366.
3.7.                  1.4.                  -0.7. .2.7.                  0.9.
0.386. 0.941. 1.272. '1.076. 1.286. 0.900. 1.284. 1. 103. 1.304.'0.933. 0.348.
                                                                                                                                -8.0.
                                                                                                                      ~    ~ ~
0.341. 1.083. 1.198. 1.196. 1.250. 1.167. 1'.331. 1.202. 1.339. 1.292. 1 '94. 0.999. 0.313.
            -0.3.                              .6.5.                  1.0.        4.0.                3.3. 1.0.
0.817. 1.337. 1'.084. 1.292. 0.988. 1.223. 1.255. 1.235. 0.996. 1.273. 1'.056. 1.261. 0.786.
0.228. 1.109.
0.5.
1' 4.5..
267. 1.330. 1.207. 1.222 ~ 1.252 2.1 ~
                                                                            '.178.        1.253. 1.169. 1.066.
1.9.          . -7.7.
1  ~ 208. 1.218. 1.110. 0.227.
                                                                                                                                -3. 1 ~
                                                                                                                                              ~    ~  ~
0.244: O.798. 1.274. 0.908. 1.352. 1.275. 1.184. 0.820. 1.181. 1.223. .1.211. 0.843. 1.326. 0.785. 0.238.
                      ~ 3.8.                    5.7.                                                  0.2.            -5.5. 0.1.          0.7.
0.240. 1.195. 1.294. 1.278. 1.164. 1.209. 1.257. 1.194. 1.285. 1.199. 1.101. 1.199. 1.217. 1. 140. 0.231.
G ~          6.8.                                                                          4.5; 0.865. 1.384. 1.122. 1.238. 1.016.. 1.224. 1.261. 1.208. 0.963. 1.243 '.996. 1.266. 0.835.
5.7.                    -4.1.                2.3.        2.9.          .  -3.6.            -9.0.          2.2.
0.361. 1. 162. 1.337. 1.368. 1.299.. 1.163. 1.310. 1.151. 1.285. 1.294. 1.246. 1.045. 0.338.
7.0.                                                          1.2.
0.411. 1.035. 1.331. 1.051. 1.213. 0.837. 1.206. 1.109. 1.304. 0.947. 0.361.
8.5.                  -4.1.                                                1.9.            -4.9.
0.411. 1.087. 1.255. 1.227. 1.258. 1.275. 1.346. 1.097. 0.376.
                                                                                .5.0.
0.327. 0. 779. 1. 125. 0.809. 1.191. 0.843. D.344.
                                                          .4.6.                  2.7.      6.4.              0.9.
0.243. 0.249. 0.236.
6.9.
POMER      TILT IN                      POUER      TILT IN                  "CORE AVERAGE UPPER HALF OF CORE                      LOUR HALF OF            CORE          AXIAL OFFSET
(-,+)        ~      (+,+)              (-,+)        .      (+,+)
0.9974 . 0.9665                        1.0087 . 1.0129                            0. 208
                                                                                ~'
                          ~  ~  ~  ~  ~    ~  ~  ~  ~              ~  ~  ~ ~    ~  ~  ~  ~
1.0486 . 0.9875                        0.98'l7 . 0.9966
(- -)        ~      (+  -)            (- -)                (+ )
TOP TEN NUCLEAR F DELTA H 245 G14NI                FDHN*1.5422 309 B 7IC                FOHN>1.5359 260 F13LC                FOHN"-1.5285 274 E12LF                FOHN<1.5262 273 E13HB                FDHK>1.5020 287 D11JD                FDHN=1.4936 185 N 5FL                FOHN>1.4909 293 D SFD                FDHHi1.4907 233 H11HL                FOHNa1'.4859 198 L 4DJ                FDHHa1.4787 LINITING 3    FO ELEVATIOHS            (  TOP  15X, BOTTOK 15X,              AND'NIDDLE 7OX OF THE CORE )
AXIAL            FO(Z)        HEAS.      PERCENT        SOURCE.
POINT            LIHIT        FO(Z)      TO.LIN. NO. ID 28          4.6052        2.2654          50'81      402 G14XX 1D          4.3964        1.7459          60.29      417 F13XX 52          4.6400        1.6294          64.88      322  P 7XX


L-93-196 Attachment, Page 13 of 18 3.6 Tem erature Coefficient The isothermal and moderator temperature coefficients were determined using Procedure 0-OSP-040.5,"Nuclear Design Verification." The isothermal temperature is measured by varying the moderator temperature below the point of adding nuclear heat.The reactivity change is then simply divided by the temperature change to obtain the isothermal temperature coef ficient.The moderator temperature coefficient is calculated from the isothermal temperature coefficient by subtracting the doppler coefficient.
FIGURE 6                                                           Page 16 QPQQRY OF 50X POWER FLUXHAP MEASURED ASSEHBLY POWER AND PERCEN'I                      DIFF,    TO EXPECTED POWER            INSTR. LOC. ONLY 15     14     13         12           11         10           9         8           7     6           5       4       3
The values determined for this testing sequence are presented on Tables 3.6.1 and 3.6.2 below: TABLE 3.6.1: ISOTHERMAL TEMPERATURE COEFFICIENT (pcm/F)MEASURED (pc/F)-1.44 WESTINGHOUSE (pcm/F)-.43 DIFF*(pcm/F)1.01*Acceptance Criteria is+/-2 pcm/F of design.TABLE 3.6.2: MODERATOR TEMPERATURE COEFFICIENT (pcm/F)MEASURED*(pcm/F).26 WESTINGHOUSE (pcm/F)1.27*Acceptance Criteria is<5 pcm/'F.3.7 HZP Differential Boron Worth The Hot Zero Power (HZP)Differential Boron Worth was measured using Procedure O-OSP-040.5,"Nuclear Design Verification." The worth of the reference bank is divided by the boron change from ARO to the reference bank fully inserted.The value obtained for this test is presented on Table 3.7.1.TABLE 3.7.1: HZP DIFFERENTIAL BORON WORTH (pcm/ppm)MEASURED (pcm/pr)8.56 WESTINGHOUSE (pcm/pe)8.32 DIFF*(pcm/pz)2.8*Acceptance Criteria<+/-15%.
                                                              . 0.225. 0.236. 0.226.
4i L-93-196 Attachment Page 14 of 18 4.0 SHUTDOWN MARGIN The Shutdown Margin vas calculated prior to power escalation to verify adequate shutdown capability.
                                                                              -0.2.
For this calculation, the total of the design rod worth (minus.the most reactive stuck rod)vere reduced by 7%.The results show adequate shutdown margin at Beginning of Life (BOL)and End of Life (EOL).The following is a summary of the data used: TABLE 4.1: UNIT 4, CYCLE XIV SHUTDOWN DATA HKP Control Rod North Re irement BOL EOL All Rods Inserted Less Most Reactive Stuck Rod (1)Less 7%6.28 6.72 5.84 6.25 Hot Full Power HFP to HKP Reactivit Insertion Reactivity Defects (Doppler, T,~, Void, Redistribution)
0.342. 0.801. 1.111. 0.774. 1.103. 0.773. 0.324.
Rod Insertion Allowance (2)Total Requirements Shutdown Margin (1)-(2)'(%a@)Required Shutdown Margin (%wp)*Source: WCAP 13682 1.72 2.71 0.50 0.50 2.22 3.21 3.62 3.04 1.00 1.77 5.0 POWER DISTRIBUTION MAPS The core,was mapped using incore instrumentation for power levels of 30%, 50%and 100%.A summary of the results are presented-on pages 15 through 17.
                                                                                                            ~      ~
0 FIGURE 5 SVNKARY OF 30X POUER FLUXHAP Page 15 HEASURED ASSEHBLY POMER AND PERCENT DIFF.TO EXPECTED PCMER INSTR.LOC.ONLY 15 14'13 12 11 10 9 8 7 6 5 4 3 2 1 0.349.0.824.0.222.0.232.-1.8.1~115.0.774.0.223.1.103.0.808.0.345.0.393., 3.7.1.110~0.386.0.941.1.272.1.328.1.4.'1.076.1.262.1.315.1.229.-0.7..2.7.1.298.1.100.0.9.0.366.1.286.0.900.1.284.1.103.1.304.'0.933.
0.386.           086. 1 '89.       1.245. 1.318. 1.195. 1.242                1.031. 0.379.
0.348.-8.0.0.341.-0.3.1.083.1.198.0.817.1.337.1'.084.1.196.1.250..6.5.1.292.0.988.1.167.1.0.1.223.1'.331.4.0.1.255.1.202.1.339.1.292.3.3.1.0.1'94.~~~0.999.0.313.1.235.0.996.1.273.1'.056.1.261.0.786.0.228.0.5.1.109.1'267.1.330.1.207.1.222~4.5..2.1~1.252'.178.1.253.1.169.1.066.1.9..-7.7.1~208.1.218.-3.1~1.110.0.227.G~0.244: O.798.0.240.1.195.6.8.0.865.1.274.~3.8.0.908.1.384.5.7.1.122.1.294.1.278.1.238.-4.1.1.016..1.352.1.275.5.7.1.164.1.209.1.184.0.820.1.257.1.194.1.181.1.223.0.2.1.285.1.199.4.5;1.224.1.261.1.208.0.963.2.3.2.9..-3.6..1.211.0.843.1.326.-5.5.0.1.1.243'.996.-9.0.1.266.1.101.1.199.1.217.0.785.1.140.0.835.2.2.~~~0.238.0.7.0.231.0.361.1.162.0.411.1.337.1.035.8.5.1.368.7.0.1.331.1.051.-4.1.1.213.0.837.1.206.1.109.1.299..1.163.1.310.1.151.1.285.1.294.1.2.1.304.1.9.0.947.0.361.-4.9.1.246.1.045.0.338.0.411.1.087.1.255.1.227.1.258..5.0.1.275.1.346.1.097.0.376.0.327.0.779..4.6.1.125.0.243.6.9.0.809.1.191.2.7.6.4.0.249.0.236.0.843.D.344.0.9.POMER TILT IN UPPER HALF OF CORE (-,+)~(+,+)0.9974.0.9665~~~~~~~~~1.0486.0.9875 (--)~(+-)POUER TILT IN LOUR HALF OF CORE (-,+).(+,+)1.0087.1.0129~'~~~~~~~~0.98'l7.0.9966 (--)(+)"CORE AVERAGE AXIAL OFFSET 0.208 TOP TEN NUCLEAR F DELTA H 245 G14NI 309 B 7IC 260 F13LC 274 E12LF 273 E13HB 287 D11JD 185 N 5FL 293 D SFD 233 H11HL 198 L 4DJ FDHN*1.5422 FOHN>1.5359 FOHN"-1.5285 FOHN<1.5262 FDHK>1.5020 FDHN=1.4936 FOHN>1.4909 FDHHi1.4907 FOHNa1'.4859 FDHHa1.4787 LINITING 3 FO ELEVATIOHS (TOP 15X, BOTTOK 15X, AND'NIDDLE 7OX OF THE CORE)AXIAL POINT 28 1D 52 FO(Z)LIHIT 4.6052 4.3964 4.6400 HEAS.PERCENT SOURCE.FO(Z)TO.LIN.NO.ID 2.2654 50'81 402 G14XX 1.7459 60.29 417 F13XX 1.6294 64.88 322 P 7XX
                                                                              -0.4.
2.0.                   -1.6.                              -5.3.
                . 0.382. 0.962. 1.282. 1.080. 1.253. 0.870. 1.253. 1.075. 1.264                                    '.937. 0.378.
                                                                                                                                .0.1 ~
0.340. 1.081. 1.280.        1    277. 1.277. 1.136. 1.264. 1.158. 1.308. 1.261. 1.236. 1.065. 0.340.
            -0.6.
                                          ~
                                          -0.2.                   .1.7.    .1.3.                0.8..1.5.           -3.5.
0.811. 1.319. 1.105. 1.307. 0.991                  ~  1.177. 1.214. 1.197. 0.995. 1.272. 1-067. 1.262. 0 810.               ~
  . 0.226. 1.133. 1.278. 1 '96.     1.182. 1.221. 1.206. 1.157. 1.232. 1.182. 1.136. 1.249. 1.240. 1.112. 0.225.
J                              1.8.                                                       0.0.               -1.7.
  ~ 0.239. 0.794. 1.332. 0.902. 1.304. 1.264. 1.206. 0.815. 1.164. 1.210. 1.259. 0.880                                        ~ 1.305. 0'. 785. 0.236.
H                    0.7.                   1.8.                                                 -1.3.                         -1.3.           0.0.
  . 0.231. 1.143. 1.276. 1.290.         1   178. 1.228          1.283. 1.194. 1.269. 1.211            ~    1.147. 1.243. 1.234. 1. 113. 0.225.
G ~                                                                  4.2.                 3.0.
                                                                                                                                                ~    ~
0.832. 1.339. 1.120. 1.323. 1.031. 1.226. 1.255. 1.221. 1.015. 1.283. 1.060. 1.277. 0. 799.
2.3.                                            2.4.                           1.5.               .3.3.           -2.1.
0.349. 1.120. 1.319. 1.313.             1 '21.       1.179. 1.299. 1.170. 1.296. 1.264. 1.253. 1.060. 0.335.
2.7.
0.393. 0.990. 1.314.           1 ~  106. 1.288. 0.899.           1 ~ 280. 1.091. 1.266. 0.942. 0.375.
3.8.                     1 ~ 0.                            0.9.               -1.2.
0.394. 1.103. 1.312 ~ 1.269. 1.345. 1.279. 1.312. 1.073. 0.376.
1.7.
0.339. 0.809. 1.150. 0.809. 1.145 ~ 0.821. 0.339.
                                                      -0.9.                               2.4.               -0 '.
0.240. 0.246. 0.231.
5.8.
POWER    TILT IN                           POWER TILT IN                        CORE AVERAGE UPPER HALF OF CORE                         LOWER HALF OF CORE                  AXIAL OFFSET
(-,+)       .      (+,+)                 (-,+)       .       (+,+)
1.0010 . 0.9787                            0.9978 . 0.9865                            -0.272
                        ~  ~  ~  ~  ~  ~   ~ ~              ~  ~ ~ ~ ~   ~   ~ ~   ~
1.0284 . 0.9920                            1.0128 . 1.0028
(-,  )      .      (+i )                  (  ,-)     .      (+,-)
TOP TEN NUCLEAR F-DELTA-H 274 E12LF               FOHN%1.5074 287 D11JD               FDHK$ 1.5016 307 8      9GC          FDHK$ 1.4814 273    E13NB            FDHN$ 1.4814 260    F13LC            FOHN%1.4800 309    8 7IC            FDHN*1.4773 245    G14NI            FOHN%1.4747 215    J14HG            FDHN%1.4671 179    H11JL            FDHN$ 1.4653 297    C11NC            FOHN%1.4650 LINITING 3   FQ    ELEVATIONS ( TOP 15X, BOTTGH 15X,                           AND HIDDLE    70X OF THE     CORE )
AXIAL           FQ(Z)             KEAS.     PERCEHT      SOURCE POINT          L INIT            FQ(Z)     TO LIN.       NO. ID 27          4.5936        '.0692            54.95      372 J14XX 52          4.6400              1.7941      61.33      384 J 2XX 10          4.3964              1.5974      63.66      431 E12XX


15 FIGURE 6 QPQQRY OF 50X POWER FLUXHAP MEASURED ASSEHBLY POWER AND PERCEN'I DIFF, TO EXPECTED POWER INSTR.LOC.ONLY 14 13 12 11 10 9 8 7 6 5 4 3 Page 16.0.225.0.236.-0.2.0.226.0.386.2.0.~~1.245.1.242'.086.1'89.-1.6.1.318.1.195.-0.4.-5.3.1.031.0.342.0.801.1.111.0.774.1.103.0.773.0.324.0.379..0.382.0.962.1.282.1.080.1.253.0.870.1.253.1.075.1.264'.937.0.378..0.1~0.340.1.081.-0.6.1.280.1~277.-0.2.1.277.1.136..1.7.1.264..1.3.1.158.1.308.1.261.1.236.0.8..1.5.-3.5.1.065.0.340.0.811.1.319.1.105.1.307.0.991~1.177.1.214.1.197.0.995.1.272.1-067.1.262.0~810..0.226.J 1.133.1.278.1'96.1.8.1.182.1.221.1.206.1.157.1.232.0.0.1.182.1.136.-1.7.1.249.1.240.1.112.0.225.~0.239.H 0.794.1.332.0.7.0.902.1.304.1.8.1.264.1.206.0.815.1.164.1.210.-1.3.1.259.0.880~1.305.-1.3.0'.785.0.236.0.0..0.231.G~1.211~1.147.1.243.1.194.1.269.3.0.1.283.4.2.1.234.1.277.1.060.1.143.1.276.1.290.1 178.1.228 1.323.1.031.1.255.1.221.1.015.1.5.1.226.2.4.1.283.1.264.0.832.1.060..3.3.1.339.1.120.2.3.0.349.1.120.1.319.1.313.2.7.1.314.1.253.0.393.0.990.3.8.1~106.1~0.1.288.0.899.1.091.1~280.0.9.1.266.-1.2.0.942.0.375.1'21.1.179.1.299.1.170.1.296.0.799.-2.1.0.335.~~1.113.0.225.0.394.1.103.1.312~1.269.1.345.1.7.1.279.1.312.1.073.0.376.0.339.0.809.-0.9.1.150.0.809.1.145~2.4.0.821.0.339.-0'.0.240.5.8.0.246.0.231.POWER TILT IN UPPER HALF OF CORE (-,+).(+,+)1.0010.0.9787~~~~~~~~1.0284.0.9920 (-,).(+i)POWER TILT IN LOWER HALF OF CORE (-,+).(+,+)0.9978.0.9865~~~~~~~~~1.0128.1.0028 (,-).(+,-)CORE AVERAGE AXIAL OFFSET-0.272 TOP TEN NUCLEAR F-DELTA-H 274 E12LF 287 D11JD 307 8 9GC 273 E13NB 260 F13LC 309 8 7IC 245 G14NI 215 J14HG 179 H11JL 297 C11NC FOHN%1.5074 FDHK$1.5016 FDHK$1.4814 FDHN$1.4814 FOHN%1.4800 FDHN*1.4773 FOHN%1.4747 FDHN%1.4671 FDHN$1.4653 FOHN%1.4650 LINITING 3 FQ ELEVATIONS (TOP 15X, BOTTGH 15X, AND HIDDLE 70X OF THE CORE)AXIAL FQ(Z)KEAS.POINT L INIT FQ(Z)27 4.5936'.0692 52 4.6400 1.7941 10 4.3964 1.5974 PERCEHT SOURCE TO LIN.NO.ID 54.95 372 J14XX 61.33 384 J 2XX 63.66 431 E12XX
FIGURE 7                                                                  Page  17 SUHHARY OF 100X FLUXNAP HEASURED ASSEHBL'Y POWER AND PERCENT                    DIFF.      TO EXPECTED POWER           - INSTR. LOC.       OWLY 15    - 14       13         12         11     10             9           8           7         6           5       4         3
                                                          . 0.269. 0.286. 0.270.
13.9.
0.359. 0.742. 1.119. 0.860. 1.184. 0.919. 0.380.
0.441. 1.081. 1.162. 1.207. 1.351. 1.269. 1.148. 1.146. 0.425.
13.6.               -7.4 ~                      2.8.
0.410. 0.970. 1.232. 1.003. 1.225. 0.986. 1.221. 0.987. 1.174. 0.976. 0.424.
9.3.
0.340. 1.026. 1.145. 1.151. 1. 174 ~ 1.095. 1.224. 1.087. 1.162. 1.226. 1.218. 1.090. 0.379.
              -2.4.                         -7.4.                               -6.8.                 -8.7.                 -1.4.
0.864. 1.226. 1.001. 1.243. 1.002. 1-206- 1.240. 1.183. 0.995. 1.216. 1.059. 1.235. 0.871.
  . 0.281. 1.203. 1.255      '.190.       1.156. 1.270. 1.324. 1.275. 1.323. 1.218.
3.1.                                   3.0.
1 ~ 150. 1.259. 1.236. 1. 163. 0.268.
                                                                                                                  -2.2 J . 18.4 ~                                                                                                              ~
                                                                                                                          ~    ~ ~  0   ~  ~
  . 0.281. 0.857. 1.335. 0.982. 1.226. 1.250. 1.256. 0.955. 1.211.                                 1 ~ 221. 1.274.       1.012. 1.319. 0.849. 0.286.
H                      1.6.                 -6.7.                                                     -3.6.                             0.3.             13.6.
  . 0.248. 1.138. 1.237. 1.242. 1.141. 1.203. 1.283. 1.226. 1.206. 1.178. 1.155. 1.281. 1.263. 1. 161. 0 '60.
G .       . 5.0.                                             -0.2.                     -6.1.
                                                ~  ~
                                          ~
0.797. 1. 189. 1.043. 1.279. 1.004. 1.200. 1.325. 1.209. 0.989. 1.267. 1.091.                                           1 '94. 0.844.
                      -5.2.                   0.7.               -2.6. 4.7.                           -3.3.                   1.0.               5.4 ~
                                                                              ~    ~  ~  ~    ~ ~  ~    ~  ~
0.330. 1.063. 1.230. 1.174. 1.251. 1.189. 1.320. 1.178. 1.238. 1.280. 1.265. 1.120; 0.380.
                                            -5.6.                                                                   2.9.
                  . 0.419. 1.012. 1.250. 1.092. 1.239. 0;971.                                       1.059. 1 ~ 145. 0.966. 0.439.
                                                                                            -0.7.                 -7.3.
1.1. 1.257'.264.                                                          ~
13.0.
                                                                                                                                        ~  ~
                            . 0.419.,1.123. 1.334.                           1.225. 'l.194. 1.259. '1.073. 0 '11.
                                                                                .6.8, 0.388. 0.892. 1.180. 0.776. 1.062. 0.837. 0.388'.
11.4.                                 -2.0.                 11.6.
0.282. 0.274. 0.231.
19.1.
POWER TILT IN                       POWER TILT IN                                CORE AVERAGE UPPER'ALF OF CORE                    LOWER HALF OF CORE                           AXIAL OFFSET
(-,+) . (+,+)                       (-,+)             .     (+,+)
0.9843 . 1.0014                      0.9939        ~  1.0010                          3.144
                        ~  ~  ~  ~  ~ ~   ~   ~ ~         ~     ~   ~ ~   ~  ~  ~  ~  ~
1.0128 . 1.0015                      '1.0005        .'.0046
(    )            (+    -)          (-,       )     ~    (+,-)
TOP TEN NUCLEAR F-DELTA-H 215 J14HG                     FOHN%I.5287 165 P      7IN'07 FDHK01 ~ 5057 8 9GC                  FOHN~1.4991 227 J 2CG                    FOHN=1.4787 257 G 2CI                    FDHN*1.4773 245 G14HI                    FDHK>1.4495 172 N 8NL                    FOHN-"1.4444 283-E 3CB                    FOHN*1.4437 282 E 4DF                    FDHN=1.4391 222 J 78C                    FDHN=1.4323 LIHITING 3 Fa ELEVATIONS (           TOP       15K, BOTTON 15X,               AND NIDDLE        70X OF THE   CORE   ')
AXIAL       FQ(Z)               HEAS.       PERCENT        SOURCE POINT       L I HI T            FQ(Z)       TO LIH.         NO. ID 20        2.2585              1.9780        12.42        372 J14XX 6      2.0692              1.7324        16.27        379 J 7XX 52        2.3223              1.9026        18.07        322 P 7XX


15 FIGURE 7 SUHHARY OF 100X FLUXNAP HEASURED ASSEHBL'Y POWER AND PERCENT DIFF.TO EXPECTED POWER-INSTR.LOC.OWLY-14 13 12 11 10 9 8 7 6 5 4 3 Page 17.0.269.0.286.13.9.0.270.0.359.0.742.1.119.0.860.1.184.0.919.0.380.0.441.13.6.1.081.1.162.-7.4~1.207.1.351.2.8.1.269.1.148.1.146.0.425.0.340.-2.4.0.864.1.026.1.145.1.151.-7.4.1.174~1.095.1.224.-6.8.1.087.1.162.-8.7.1.226.1.218.-1.4.1.226.1.001.1.243.1.002.1-206-1.240.1.183.0.995.1.216.1.059.0.410.0.970.1.232.1.003.1.225.0.986.1.221.0.987.1.174.0.976.0.424.9.3.1.090.1.235.0.379.0.871..0.281.J.18.4~.0.281.H 1.203.0.857..0.248.1.138.G..5.0.1.255'.190.1.156.1.270.3.1.1.324.1.275.1.323.3.0.1.335.1.6.0.982.1.226.-6.7.1.237.1.242.1.141.1.203.1.283.-0.2.1.226.1.206.-6.1.1.250.1.256.0.955.1.211.1.236.1.259.1.218.1~150.-2.2~1.274.~~~0~~1.012.1.319.0.3.1.263.1~221.-3.6.1.178.1.155.1.281.1.163.0.849.1.161.0.268.0.286.13.6.0'60.0.797.0.330.1.189.-5.2.1.063.1.043.1.230.~~~1.279.0.7.1.174.-5.6.1.004.1.200.1.325.-2.6.4.7.1.209.0.989.-3.3.1.251.1.189.~~~~~~~~~1.238.1.320.1.178.1.267.1.280.2.9.1.091.1.0.1.265.1'94.1.120;0.844.5.4~0.380..0.419.1.012.1.250.1.092.1.1.1.239.0;971.1.225..6.8,.0.419.,1.123.
0 0 L-93-196 Attachment Page 18     of 18
1.334.1.257'.264.
      ~
-0.7.'l.194.1.059.1~145.-7.3.0.966.1.259.'1.073.0'11.0.439.13.0.~~~0.388.0.892.11.4.1.180.0.776.1.062.-2.0.0.837.0.388'.11.6.0.282.19.1.0.274.0.231.POWER TILT IN UPPER'ALF OF CORE (-,+).(+,+)0.9843.1.0014~~~~~~~~~1.0128.1.0015 ()(+-)POWER TILT IN LOWER HALF OF CORE (-,+).(+,+)0.9939~1.0010~~~~~~~~~'1.0005.'.0046 (-,)~(+,-)CORE AVERAGE AXIAL OFFSET 3.144 TOP TEN NUCLEAR F-DELTA-H 215 J14HG 165 P 7IN'07 8 9GC 227 J 2CG 257 G 2CI 245 G14HI 172 N 8NL 283-E 3CB 282 E 4DF 222 J 78C FOHN%I.5287 FDHK01~5057 FOHN~1.4991 FOHN=1.4787 FDHN*1.4773 FDHK>1.4495 FOHN-"1.4444 FOHN*1.4437 FDHN=1.4391 FDHN=1.4323 LIHITING 3 Fa ELEVATIONS (TOP AXIAL FQ(Z)POINT L I HI T 20 2.2585 6 2.0692 52 2.3223 15K, BOTTON 15X, AND NIDDLE 70X OF THE CORE')HEAS.PERCENT SOURCE FQ(Z)TO LIH.NO.ID 1.9780 12.42 372 J14XX 1.7324 16.27 379 J 7XX 1.9026 18.07 322 P 7XX 0 0 L-93-196 Attachment Page 18 of 18~'.0 CRITICAL BORON CONCENTRATION The critical boron concentration was calculated by adjusting a measured boron concentration to the equilibrium hot full-power, all rods out condition, as per Operating Procedure 1009.6,"Critical Boron Concentration-Full Power." For Unit 4, Cycle XIV, this calculation was performed at 600 Megawatt-days/metric-ton-uranium (MWD/MTU).
0   CRITICAL BORON CONCENTRATION The   critical boron concentration was calculated by adjusting a measured     boron concentration to the equilibrium hot full
The following is a summary of the results.TABLE 6.1:  
    -power, all rods out condition, as per Operating Procedure 1009.6, "Critical Boron Concentration-Full     Power."   For Unit 4, Cycle XIV, this calculation was   performed at 600 Megawatt days/metric-ton-uranium (MWD/MTU). The following is a summary of the results.
TABLE 6.1:  


==SUMMARY==
==SUMMARY==
OF CRITICAL BORON CONCENTRATION (ppm)MEASURED (ppm)WESTINGHOUSE DIFF*(ppm)(ppm)1170 1187 17*Acceptance Criteria+/-50 ppm.
OF CRITICAL BORON CONCENTRATION (ppm)
4i'IS}}
MEASURED                   WESTINGHOUSE  DIFF*
(ppm)                       (ppm)         (ppm) 1170                         1187         17
              *Acceptance Criteria +/- 50 ppm.
 
4i
  'I S}}

Latest revision as of 22:37, 3 February 2020

Cycle Xiv Startup Rept. W/930820 Ltr
ML17352A206
Person / Time
Site: Turkey Point NextEra Energy icon.png
Issue date: 08/20/1993
From: Plunkett T
FLORIDA POWER & LIGHT CO.
To:
NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
References
L-93-196, NUDOCS 9308300191
Download: ML17352A206 (40)


Text

ACCEI Etui.T~D DOCUMENT DIST I UTION SYSTEM REGULA ~..Y INFORMATION DISTRIBUTIO ,SYSTEM (RIDS)

ACCESSION NBR:930830019l DOC.DATE: 93/08/20 NOTARiZED: NO DOCKET ¹ FACIL:50-251 Turkey Point Plant, Unit 4, Florida Power and Light C 05000251 AUTH. NAME AUTHOR AFFILIATION PLUNKETT,T.F. Florida Power & Light Co.

RECIP.NAME RECIPIENT AFFILIATION

SUBJECT:

"Turkey Point Nucl'ear Plant Unit 4,Cycle XIV Startup Rept."

ltr.

W/930820 DISTRIBUTION CODE: IE26D COPIES RECEIVED LTR Startup Report/Refueling Report (per Tech Specs)

J ENCL I SIZE:

I'ITLE:

NOTES:

RECIPIENT COPIES RECIPIENT COPIES lD CODE/NAME LTTR ENCL, ID CODE/NAME LTTR ENCL PD2-2 PD, 1 1 RAGHAVAN,L 2 2 ZNTERNAL: AEOD/DSP/TPAB 1 1 NRR/SR%3 1 1 NUDOCS-ABSTRACT 1 1 EG IL 02 1 1 RGN2 FILE 01 1 1 EXTERNAL: NRC PDR 1 1 NSIC 1 1 NOTE TO ALL"RIDS" RECIPIENTS:

PLEASE HELP US TO REDUCE iVASTE! CONTACT THE DOCUMENT CONTROL DESK, ROOM Pl-37 (EXT. 504-2065) TO ELIMINATEYOUR NAME FROM DISTRIBUTION LISTS" FOR DOCUMENTS YOU DON'T NEED!

TOTAL NUMBER OF COPIES REQUIRED: LTTR 10 ENCL 10

ik gF

L-93-196 10 CFR 50.36 U. S ~ ..Nuclear Regulatory Commission Attn: Document Control Desk

.Washington, D.C. 20555, Gentlemen:

Re: Turkey Point Unit 4 Docket No. 50-251-Startu 'Re ort In accordance with Technical Specification 6.9.1.1, the enclosed Startup Report is provided for Flori'da Power and Light Company Turkey Point Unit 4. The Unit 4 Cycle XIV Startup Report documents the first use of axial (natural uranium) blankets and snag-resistant spacer grids at the top and'ottom of the fuel assemblies.

If you have any questions, please contact us.

Very, truly yours, T. F. Plunkett Vice President Turkey Point Nuclear TFP/RJT/rt

."Attachment cc: S. D. Ebneter, Regional Administrator, Region II USNRC Senior Resident Inspector, USNRC, Turkey Point Nuclear 9308300191 930820 PDR ADO'500025i PDR an FPL Group company

ATTACHMENT FLORIDA POWER 6 LIGHT COMPANY TUEQCEY POINT NUCLEAR PLANT UNIT O'YCLE XIV STARTUP REPORT

L-93-196 Attachment Page 2 of 18 INTRODUCTION This report contains the official summary of the Startup of Physics Tests performed on Turkey Point Unit 4 at the beginningwith Cycle XIV. The testing program was conducted in accordance of Turkey Point Plant Procedures, and meets the requirements for ANSI/ANS 19.6.1, Revision 0 .(12/13/85), "Startup Physics Tests Pressurized Water Reactors".

Withdrawal of Shutdown banks commenced May 23, '1992 at 0242 and initial criticality was achieved 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and 24 minutes later.

WCAP-13682, "The Nuclear Design and Core Management of the Turkey Point Unit 4 Nuclear Power Plant, Cycle 14", was the design source for verifying that acceptance criteria as specified in ANSI/ANS 19.6.1 were met. All tests performed for nuclear design verification meet their acceptance criteria.

The contents of this report provide the documentation required by Technical Specification 6.9.1.1.

H

L-93-196 Attachment Page, 3 of 1'8 TABLE OF CONTENTS INTRODUCTION 1'.0, UNIT 4, CYCLE XIV CORE 1.1 Fuel Design Changes 1' Loading Pattern 1.3 Rod Pattern and Rod Drop Times 2.0 INITIAL CRITICALITY 2.1 Inverse Count Rate Ratio (ICRR) vs. Dilution

.2.'2 Critical Data 3.,0 SUMMPGtY OF 'TESTS 3.1 Nuclear Heating 3.'2 Reactivity vs. Period 3' Boron Endpoints 3.,4 Rod Worth (ppm), Most Reactive Bank 3.'5 Rod Worth (pcm) 3.6 Temperature Coefficient 3.7 Hot Zero Power (HZP) Differential Boron Worth 4.0 SHUTDOWN. MARGIN 5.0 POWER DISTRIBUTION MAPS 6.0 'CRITICAL BORON CONCENTRATION

0 L-93-196 Attachment Page 4 of 18 1.0 UNIT 4 CYCLE XIV CORE'.1 Fuel Desi n Chan es Unit 4 Cycle, 14 fuel is essentially the same as Cycle 13 fuel with the exception that Cycle 14 fuel includes axial blankets and additional snag-resistant grids.

Axial blankets, previously used in Turkey Point Unit 3 Cycle 13 core design are new to Unit 4. Axial blankets consist of a nominal 6 inches of natural VO~ pellets at the top and bottom of the fuel pellet stack. Axial blankets are designed to reduce neutron leakage and therefor improve uranium utilization.

Anti-snag mid-grids were included in the Unit 4 Cycle 13 design. The Unit 4 Cycle 14 design adds top and bottom anti-snag grids to the fuel assembly design. This addition wi;11 reduce the possibility of assembly damage during fuel handling.

1.2 Loadin Pattern This section presents the as-loaded core configuration (Figure 1, page 5).

1'.3 Rod Pattern and Rod Dro Times This section presents the Control and Shutdown Rod pattern and the Rod Drop Times for all rods as measured per Procedure 4-PMI-028..3, "RPI, Hot Calibration, CRDM Stepping Test, and Rod Drop Test" (Figure 2, page 6).

All rods. meet the drop time limit of 2.4 seconds as per Technical Specification 3.1.3.4.

0 4l L-93-196 Attachment Page 5 af 18 FZGURE 1 TURKEY POZNT UNZT 4 CYCLE 14 CORE LOADZNG A

I I

NORtH I

I RR23 RR30 RR15 HF23 HF16 HF06 PP26 SS35 TT38 RR49 T740 SS33 PP55 R52 R54 RR19 TT46 TT19 SS20 TT22 SS18 TT24 TT48 RR07 4M R53 4'M R51 4M RR04 SS48 SS41 RR46 TT03 RR27 7706 RR47 SS29 SS47 RRO6 R57 16M R56 16IJ R55 PP40 TT49 SS40 SS14 TTOS RR39 TT30 RR33 TT14 SS11 SS39 TT50 PP33 R61 16M R59 8M R60 16M R58 SS38 TT31 RR41 T715 RR11 SS01 SS17 SS07 RR10 T702 RR51 TT18 SS37 R66 4M R65 16M R64 16M R63 4M R62 RROS TT41 SS24 TT16 RR36 SS10 TT33 SS03 T734 SS09 RR34 TT04 SS25 TT42 RR20 HF07 R70 16IJ R65 SM SM R69 16M R67 HF13 RR29 RR50 TT32 TT16 . TT20 SS27 SS16 RR25 SS12 SS19 TT27 RR24 TT28 RR48 RR32 HF15 4M 16M 8M R74 R73 R72 SM R71 4M HF05 RR09 TT43 SS21 T711 RR35 TT35 SS13 TT36 SS15 RR40 TT12 SS26 TT37 RR14 HF20 R77 16M R78 SM 8M RSO 16M R76 HF02 SS30 T725 RR43 TT09 RR26 SSOS SS28 SS06 RR01 TT10 RR52 TT26 SS43 R84 4M R53 16M R82 16M R81 4M R79 PP51 TT51 SS32 SS04 T705 RR37 TT21 RR38 TT07 SS05 SS44 TT45 PP45 R89 16IJ R86 SM R87 1QJ R85 RR12 8 $ 46 SS34 RR42 TT01 RR28 T713 RR44 SS31 SS45 RR03 R90 16M R91 16M RSS RR13 TT52 T723 S$ 23 TT17 SS22 TT29 TT47 RR05 4M R92 4M R95 4M SS42 TT44 RR45 TT39 SS36 PP54 R101 R93 RR22 RR31 RR21 HF11 HF10 HF01 key: ASSY INS.

PPxx Rxx ASSY RRxx zzM SSxx HFxx TTxx ....

PP Reload Cvcle 11 RR Reload Cycle 12 SS Reload Cycle 13 TT Feed CycLe',14 R Control Rod M MASA insert HF Hafniisa inserts xx Sequence amber zz Hwher of MASA fingers

4I 0 L-93-196 Attachment Page 6 of 18 FIGURE 2 TURKEY POINT UNIT 4 CYCLE 14 RCCA BANK PATTERN AND DROP TZMES A

I I

NORTH I

I CB-8 CS-S 1.37 1.35 SB-A SB A 1.36 1.35 CB-C CB 0 CB C 1.35 1.34 1.32 SB-B CB A CB A SB-S

'.33 1.37 1.31 1.32 CB.B CB-C SB 8 CB.C CS ~ 8 1.39 1.32 1.37 1.33 1.34 SB-A CB A CB A SS.A 1.34 1.32 1.33 1.33 CB-D SS.B 'CBD SB 8 CB-D 1.35 1.37 1.35 1.35 1.34 SB A CB-A CB-A SB A 1.34 1.35 1.35 1.35 CS 8 CB.C SB-B CB-C CB 8 1.37 1.34 1.35 1.32 1.35 SS.B CB.A CS-A SS-S 1.35 1.34 1.32 1.30 CS C CB.D CB C 1.34 1.35 1.34 SS A SB A 1.34 1.36 CB 8 CB-S 1.37 1.40 RCCA TINE keys SB-x sec.

RCCA CS-x SB Shutdown Bank CB Control Bank x Bank Identifier sec. Drop Time toDashpot

li L-93-196 Attachment Page 7 of 18

2. 0 XNITIAL CRITICALITY
2. 1 INVERSE COUNT RATE RATXO (XCCR) vs DILUTXON The approach to criticality began May 23, 1993 at approximately 0242 when the stepping of shutdown banks began in accordance with Procedure 0-OSP-040. 6, "Initial Crit'icality After Refueling.'" Criticality .was achieved approximately 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and 24 minutes later on May .23, 1993 at 0906 by diluting 14,460 gallons of water with control bank D at 180 steps.

Figure 3 (page 8) is a plot of the ICRR during the approach to criticality.

2.2 CRITICAL DATA Upon attaining criticality, the flux level was increased'o 1 x 10 amps on the reactivity computer to obtain critical data, as follows:

Tavg = 547.1'F Control Bank D = 178 Steps Reactor Coolant System (RCS) Boron = 1689 ppm Picoammeter Flux = 1 x 10 '

N35 Flux 1.1 x 10 A N36 Flux 1.8 x 10 '

4k Page 8 FIGURE 3 Turkey Point Unit 4 (1/M) on Approach to Criticality (1/M) DURING ROD WITHDRAWAL 1.3 N31 1.2 1'. 1 0 0 0 0 0.9 N32 0 0 0 0 0.8 0.7 T 'I 50 100 150 228 SHUTDOWN BANK A 50 100 150 SHUTDOWN BANK B 228 I

50 CBAH 100 150 228 CBB I

22 100 150 CB-C I I 228 H

CBD~

(1/M) DURING DILUTION 1 0 0 0.9 p 0 0

0.8 p 0 0 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

5000 10000 15000 20000 Gallons Water Added

L-93-196 Attachment Page 9 of 18

3. 0

SUMMARY

OP TESTS This section provides a summary of the results of the low power physics tests for Unit 4, Cycle XIV along with the Nestinghouse design data. For each test, the acceptance criteria is listed at the bottom of the table. This report compares design and measured data using Difference and Percent Difference.

Difference = Predicted Measured For calculating Percent Difference, the equation is:

~

PredfctedValue 11&00 2tfeaauredVal ue 3.1 Nuclear He tin The point of adding Nuclear Heat was determined in accordance with Procedure 0-OSP-040. "Initial Criticality After Refueling". This is 6,performed by establishing a small positive startup rate and measuring the flux level at which T, departs from its established steady state value. Nuclear Heating was measured to first occur at values presented on Table 3.1.1.

T?LB' ~ 1 1C FLUX LEVEL (AMPH)

Pico Oter N-35 N-36 1 S x 10 2.1 x 10 3.4 x 10 8 All physics tests were conducted at or below 1 x 10 " amps on the picoammeter connected to N-44 to assure Nuclear Heating did not occur.

~l

L-93-196 Attachment Page 10 of 18 3.2 Reactivit vs. Period Reactivity Computer checkout was done in accordance with Procedure . 0-0SP-040.6, "Initial Criticality After Refueling." This checkout is performed by inserting small positive and negative reactivities using rod motion. The period of the flux change is used to calculate the design reactivity. The measured reactivity is taken directly from the reactivity computer. The results of this test are given in Table 3.2.1.

TABLE 3.2.1: MEASURED REACTIVITY VS. DESIGN MEASURED DESIGN PERIOD REACTIVITY REACTIVITY (SEC) (PCM) (P CM) DIFF*

+151.2 +39.0 +38.8 +.5

-249.6 -33.'0 33 7

~ 2 1

~

+78.3 +65. 0 +65.4 .6

+129.1 +44.0 +44.2 5

  • Acceptance Criteria is 4% for positive period.

3.3 Boron End ints The Boron Endpoint measurement is a way, of measuring the steady state boron concentration of an under-rodded core (positive period in effect) or an over-rodded core (negat'ive period'n effect). In FPL's testing program the first case is an unrodded core and the second case is a core with the reference bank at the bottom. The Boron Endpoint is measured using Procedure 0-OSP-040.5, "Nuclear Design Verification." In this methodology a just-critical condition is established as near as practical to the required rod configuration. The rods are then moved into the desired configuration and back to equilibrium. The RCS boron concentration which was measured at equilibrium is then adjusted for the ppm worth of the rods. The results of the two boron endpoint measurements are given in Table 3.3.1.

TABLE 3.3. 1: BORON ENDPOINTS (ppm)

MEASURED MESTINGHOUSE DIFFERENCE*

(ppm) (ppm) (ppm) 1698 1693 SB-B 1552 1547

  • Acceptance Criteria is +/- 50 ppm.

41 '

L-93-196 Attachment Page 11 of 18 3.4 Rod'orth Most Reactive Bank Rod Worth was measured per Procedure O-OSP-040.5, "Nuclear Design Verification." The reference bank (highest predicted worth) was first inserted dilution as the controlling bank was .withdrawn. Then a was used to adjust, the reference bank to approximately 30 steps from the bottom. Finally a Boron Endpoint (see section 3.3) was performed. By graphing the rod worth, measured by the reactivity computer, versus rod insertion, a differential rod worth curve is generated.. Bycurve summing is the differential worth an integral rod worth generated and the bank worth determined. The total bank worth is presented in Table 3.4.1. The Integral and differential bank worth of the reference bank is displayed in Figure 4 (page 12).

TABLE 3.4.1: ROD,WORTH (pcm)

MEASURED WESTINGHOUSE DIFF*

(pcm) (pcm) (+)

SB-B 1173 1189 1.4

  • Acceptance Criteria is less than 10%

3.5 Rod Worth cm Remainin Banks R

The remaining RCCA bank worth was measured per Procedure 0-OSP-040.5, "Nuclear Design Verification," using, the rod swap technicgxe. This technique involves swapping the negative reactivity of the bank being inserted with the positive reactivity from the bank being withdrawn. Each bank is sequentially swapped for the reference bank. The worth of each bank can then be determined from the integral rod worth curve. The results of this measurement are given in Table 3.5.1.

TABLE 3.5.1: ROD WORTH (pcm)

MEASURED WESTINGHOUSE 0 DIFF*

(pcm) (pcm) ()

SB-A 1052.3 1098 4.3 CB-A 1085.6 1104 1.7 CB-B 435.3 484'163

.11.2 CB-C 1093.0 6.4 CB-D 635.9 664 4.4 TOTAL 5475.1 5702 4.1 NOTE: The total rod worth includes the reference bank.

  • The acceptance criteria for rod worth measurements are:

Individual banks within +/- 15% or +/- 100 pcm of design, whichever is greater and Total of all measured banks within

+/- 10% of design.

I FIGURE 4 Page 12 Differential and Integral Reference Bank Worth 12 1400 INTEGRAL ORTH Q DIFFE EMTIALWORTH

6) 1 200

~10 (0

1000 g)

~8 Q

U3 Q

0 800 ~

Ne 600 ~~

C6 Q3 4

U 0$ O S~ 400 2 0) 200 Cl 0

50 100 150 200 228 Rod Position (steps withdrawn)

L-93-196 Attachment, Page 13 of 18 3.6 Tem erature Coefficient The isothermal and moderator temperature coefficients were determined using Procedure 0-OSP-040.5, "Nuclear Design Verification." The isothermal temperature is measured by varying the moderator temperature below the point of adding nuclear heat. The reactivity change is then simply divided by the temperature change to obtain the isothermal temperature coef ficient. The moderator temperature coefficient is calculated from the isothermal temperature coefficient by subtracting the doppler coefficient. The values determined for this testing sequence are presented on Tables 3.6.1 and 3.6.2 below:

TABLE 3.6.1: ISOTHERMAL TEMPERATURE COEFFICIENT (pcm/ F)

MEASURED WESTINGHOUSE DIFF*

(pc /F) (pcm/ F) (pcm/ F)

-1.44 .43 1.01

  • Acceptance Criteria is +/- 2 pcm/ F of design.

TABLE 3. 6. 2: MODERATOR TEMPERATURE COEFFICIENT (pcm/ F)

MEASURED* WESTINGHOUSE (pcm/ F) (pcm/ F)

.26 1.27

  • Acceptance Criteria is < 5 pcm/'F.

3.7 HZP Differential Boron Worth The Hot Zero Power (HZP) Differential Boron Worth was measured using Procedure O-OSP-040.5, "Nuclear Design Verification." The worth of the reference bank is divided by the boron change from ARO to the reference bank fully inserted. The value obtained for this test is presented on Table 3.7.1.

TABLE 3.7.1: HZP DIFFERENTIAL BORON WORTH (pcm/ppm)

MEASURED WESTINGHOUSE DIFF*

(pcm/pr ) (pcm/pe ) (pcm/pz )

8.56 8.32 2.8

  • Acceptance Criteria < +/- 15%.

4i L-93-196 Attachment Page 14 of 18 4.0 SHUTDOWN MARGIN The Shutdown Margin vas calculated prior to power escalation to verify adequate shutdown capability. For this calculation, the total of the design rod worth (minus. the most reactive stuck rod) vere reduced by 7%. The results show adequate shutdown margin at Beginning of Life (BOL) and End of Life (EOL). The following is a summary of the data used:

TABLE 4.1: UNIT 4, CYCLE XIV SHUTDOWN DATA BOL EOL HKP Control Rod North Re irement All Rods Inserted Less Most Reactive Stuck Rod 6.28 6.72 (1) Less 7% 5.84 6.25 Hot Full Power HFP to HKP Reactivit Insertion Reactivity Defects (Doppler, T,~,

Void, Redistribution) 1.72 2.71 Rod Insertion Allowance 0.50 0.50 (2) Total Requirements 2.22 3.21 Shutdown Margin (1) (2) '(%a@) 3.62 3.04 Required Shutdown Margin (%wp) 1.00 1.77

  • Source: WCAP 13682 5.0 POWER DISTRIBUTION MAPS The core,was mapped using incore instrumentation for power levels of 30%, 50% and 100%. A summary of the results are presented- on pages 15 through 17.

0 FIGURE 5 Page 15 SVNKARY OF 30X POUER FLUXHAP HEASURED ASSEHBLY POMER AND PERCENT DIFF. TO EXPECTED PCMER INSTR. LOC. ONLY 15 14 '13 12 11 10 9 8 7 6 5 4 3 2 1 0.222. 0.232. 0.223.

-1.8.

0.349. 0.824. 1 ~ 115. 0.774. 1.103. 0.808. 0.345.

0.393., 1.110 ~ 1.328. 1.262. 1.315. 1.229. 1.298. 1.100. 0.366.

3.7. 1.4. -0.7. .2.7. 0.9.

0.386. 0.941. 1.272. '1.076. 1.286. 0.900. 1.284. 1. 103. 1.304.'0.933. 0.348.

-8.0.

~ ~ ~

0.341. 1.083. 1.198. 1.196. 1.250. 1.167. 1'.331. 1.202. 1.339. 1.292. 1 '94. 0.999. 0.313.

-0.3. .6.5. 1.0. 4.0. 3.3. 1.0.

0.817. 1.337. 1'.084. 1.292. 0.988. 1.223. 1.255. 1.235. 0.996. 1.273. 1'.056. 1.261. 0.786.

0.228. 1.109.

0.5.

1' 4.5..

267. 1.330. 1.207. 1.222 ~ 1.252 2.1 ~

'.178. 1.253. 1.169. 1.066.

1.9. . -7.7.

1 ~ 208. 1.218. 1.110. 0.227.

-3. 1 ~

~ ~ ~

0.244: O.798. 1.274. 0.908. 1.352. 1.275. 1.184. 0.820. 1.181. 1.223. .1.211. 0.843. 1.326. 0.785. 0.238.

~ 3.8. 5.7. 0.2. -5.5. 0.1. 0.7.

0.240. 1.195. 1.294. 1.278. 1.164. 1.209. 1.257. 1.194. 1.285. 1.199. 1.101. 1.199. 1.217. 1. 140. 0.231.

G ~ 6.8. 4.5; 0.865. 1.384. 1.122. 1.238. 1.016.. 1.224. 1.261. 1.208. 0.963. 1.243 '.996. 1.266. 0.835.

5.7. -4.1. 2.3. 2.9. . -3.6. -9.0. 2.2.

0.361. 1. 162. 1.337. 1.368. 1.299.. 1.163. 1.310. 1.151. 1.285. 1.294. 1.246. 1.045. 0.338.

7.0. 1.2.

0.411. 1.035. 1.331. 1.051. 1.213. 0.837. 1.206. 1.109. 1.304. 0.947. 0.361.

8.5. -4.1. 1.9. -4.9.

0.411. 1.087. 1.255. 1.227. 1.258. 1.275. 1.346. 1.097. 0.376.

.5.0.

0.327. 0. 779. 1. 125. 0.809. 1.191. 0.843. D.344.

.4.6. 2.7. 6.4. 0.9.

0.243. 0.249. 0.236.

6.9.

POMER TILT IN POUER TILT IN "CORE AVERAGE UPPER HALF OF CORE LOUR HALF OF CORE AXIAL OFFSET

(-,+) ~ (+,+) (-,+) . (+,+)

0.9974 . 0.9665 1.0087 . 1.0129 0. 208

~'

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

1.0486 . 0.9875 0.98'l7 . 0.9966

(- -) ~ (+ -) (- -) (+ )

TOP TEN NUCLEAR F DELTA H 245 G14NI FDHN*1.5422 309 B 7IC FOHN>1.5359 260 F13LC FOHN"-1.5285 274 E12LF FOHN<1.5262 273 E13HB FDHK>1.5020 287 D11JD FDHN=1.4936 185 N 5FL FOHN>1.4909 293 D SFD FDHHi1.4907 233 H11HL FOHNa1'.4859 198 L 4DJ FDHHa1.4787 LINITING 3 FO ELEVATIOHS ( TOP 15X, BOTTOK 15X, AND'NIDDLE 7OX OF THE CORE )

AXIAL FO(Z) HEAS. PERCENT SOURCE.

POINT LIHIT FO(Z) TO.LIN. NO. ID 28 4.6052 2.2654 50'81 402 G14XX 1D 4.3964 1.7459 60.29 417 F13XX 52 4.6400 1.6294 64.88 322 P 7XX

FIGURE 6 Page 16 QPQQRY OF 50X POWER FLUXHAP MEASURED ASSEHBLY POWER AND PERCEN'I DIFF, TO EXPECTED POWER INSTR. LOC. ONLY 15 14 13 12 11 10 9 8 7 6 5 4 3

. 0.225. 0.236. 0.226.

-0.2.

0.342. 0.801. 1.111. 0.774. 1.103. 0.773. 0.324.

~ ~

0.386. 086. 1 '89. 1.245. 1.318. 1.195. 1.242 1.031. 0.379.

-0.4.

2.0. -1.6. -5.3.

. 0.382. 0.962. 1.282. 1.080. 1.253. 0.870. 1.253. 1.075. 1.264 '.937. 0.378.

.0.1 ~

0.340. 1.081. 1.280. 1 277. 1.277. 1.136. 1.264. 1.158. 1.308. 1.261. 1.236. 1.065. 0.340.

-0.6.

~

-0.2. .1.7. .1.3. 0.8..1.5. -3.5.

0.811. 1.319. 1.105. 1.307. 0.991 ~ 1.177. 1.214. 1.197. 0.995. 1.272. 1-067. 1.262. 0 810. ~

. 0.226. 1.133. 1.278. 1 '96. 1.182. 1.221. 1.206. 1.157. 1.232. 1.182. 1.136. 1.249. 1.240. 1.112. 0.225.

J 1.8. 0.0. -1.7.

~ 0.239. 0.794. 1.332. 0.902. 1.304. 1.264. 1.206. 0.815. 1.164. 1.210. 1.259. 0.880 ~ 1.305. 0'. 785. 0.236.

H 0.7. 1.8. -1.3. -1.3. 0.0.

. 0.231. 1.143. 1.276. 1.290. 1 178. 1.228 1.283. 1.194. 1.269. 1.211 ~ 1.147. 1.243. 1.234. 1. 113. 0.225.

G ~ 4.2. 3.0.

~ ~

0.832. 1.339. 1.120. 1.323. 1.031. 1.226. 1.255. 1.221. 1.015. 1.283. 1.060. 1.277. 0. 799.

2.3. 2.4. 1.5. .3.3. -2.1.

0.349. 1.120. 1.319. 1.313. 1 '21. 1.179. 1.299. 1.170. 1.296. 1.264. 1.253. 1.060. 0.335.

2.7.

0.393. 0.990. 1.314. 1 ~ 106. 1.288. 0.899. 1 ~ 280. 1.091. 1.266. 0.942. 0.375.

3.8. 1 ~ 0. 0.9. -1.2.

0.394. 1.103. 1.312 ~ 1.269. 1.345. 1.279. 1.312. 1.073. 0.376.

1.7.

0.339. 0.809. 1.150. 0.809. 1.145 ~ 0.821. 0.339.

-0.9. 2.4. -0 '.

0.240. 0.246. 0.231.

5.8.

POWER TILT IN POWER TILT IN CORE AVERAGE UPPER HALF OF CORE LOWER HALF OF CORE AXIAL OFFSET

(-,+) . (+,+) (-,+) . (+,+)

1.0010 . 0.9787 0.9978 . 0.9865 -0.272

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

1.0284 . 0.9920 1.0128 . 1.0028

(-, ) . (+i ) ( ,-) . (+,-)

TOP TEN NUCLEAR F-DELTA-H 274 E12LF FOHN%1.5074 287 D11JD FDHK$ 1.5016 307 8 9GC FDHK$ 1.4814 273 E13NB FDHN$ 1.4814 260 F13LC FOHN%1.4800 309 8 7IC FDHN*1.4773 245 G14NI FOHN%1.4747 215 J14HG FDHN%1.4671 179 H11JL FDHN$ 1.4653 297 C11NC FOHN%1.4650 LINITING 3 FQ ELEVATIONS ( TOP 15X, BOTTGH 15X, AND HIDDLE 70X OF THE CORE )

AXIAL FQ(Z) KEAS. PERCEHT SOURCE POINT L INIT FQ(Z) TO LIN. NO. ID 27 4.5936 '.0692 54.95 372 J14XX 52 4.6400 1.7941 61.33 384 J 2XX 10 4.3964 1.5974 63.66 431 E12XX

FIGURE 7 Page 17 SUHHARY OF 100X FLUXNAP HEASURED ASSEHBL'Y POWER AND PERCENT DIFF. TO EXPECTED POWER - INSTR. LOC. OWLY 15 - 14 13 12 11 10 9 8 7 6 5 4 3

. 0.269. 0.286. 0.270.

13.9.

0.359. 0.742. 1.119. 0.860. 1.184. 0.919. 0.380.

0.441. 1.081. 1.162. 1.207. 1.351. 1.269. 1.148. 1.146. 0.425.

13.6. -7.4 ~ 2.8.

0.410. 0.970. 1.232. 1.003. 1.225. 0.986. 1.221. 0.987. 1.174. 0.976. 0.424.

9.3.

0.340. 1.026. 1.145. 1.151. 1. 174 ~ 1.095. 1.224. 1.087. 1.162. 1.226. 1.218. 1.090. 0.379.

-2.4. -7.4. -6.8. -8.7. -1.4.

0.864. 1.226. 1.001. 1.243. 1.002. 1-206- 1.240. 1.183. 0.995. 1.216. 1.059. 1.235. 0.871.

. 0.281. 1.203. 1.255 '.190. 1.156. 1.270. 1.324. 1.275. 1.323. 1.218.

3.1. 3.0.

1 ~ 150. 1.259. 1.236. 1. 163. 0.268.

-2.2 J . 18.4 ~ ~

~ ~ ~ 0 ~ ~

. 0.281. 0.857. 1.335. 0.982. 1.226. 1.250. 1.256. 0.955. 1.211. 1 ~ 221. 1.274. 1.012. 1.319. 0.849. 0.286.

H 1.6. -6.7. -3.6. 0.3. 13.6.

. 0.248. 1.138. 1.237. 1.242. 1.141. 1.203. 1.283. 1.226. 1.206. 1.178. 1.155. 1.281. 1.263. 1. 161. 0 '60.

G . . 5.0. -0.2. -6.1.

~ ~

~

0.797. 1. 189. 1.043. 1.279. 1.004. 1.200. 1.325. 1.209. 0.989. 1.267. 1.091. 1 '94. 0.844.

-5.2. 0.7. -2.6. 4.7. -3.3. 1.0. 5.4 ~

~ ~ ~ ~ ~ ~ ~ ~ ~

0.330. 1.063. 1.230. 1.174. 1.251. 1.189. 1.320. 1.178. 1.238. 1.280. 1.265. 1.120; 0.380.

-5.6. 2.9.

. 0.419. 1.012. 1.250. 1.092. 1.239. 0;971. 1.059. 1 ~ 145. 0.966. 0.439.

-0.7. -7.3.

1.1. 1.257'.264. ~

13.0.

~ ~

. 0.419.,1.123. 1.334. 1.225. 'l.194. 1.259. '1.073. 0 '11.

.6.8, 0.388. 0.892. 1.180. 0.776. 1.062. 0.837. 0.388'.

11.4. -2.0. 11.6.

0.282. 0.274. 0.231.

19.1.

POWER TILT IN POWER TILT IN CORE AVERAGE UPPER'ALF OF CORE LOWER HALF OF CORE AXIAL OFFSET

(-,+) . (+,+) (-,+) . (+,+)

0.9843 . 1.0014 0.9939 ~ 1.0010 3.144

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

1.0128 . 1.0015 '1.0005 .'.0046

( ) (+ -) (-, ) ~ (+,-)

TOP TEN NUCLEAR F-DELTA-H 215 J14HG FOHN%I.5287 165 P 7IN'07 FDHK01 ~ 5057 8 9GC FOHN~1.4991 227 J 2CG FOHN=1.4787 257 G 2CI FDHN*1.4773 245 G14HI FDHK>1.4495 172 N 8NL FOHN-"1.4444 283-E 3CB FOHN*1.4437 282 E 4DF FDHN=1.4391 222 J 78C FDHN=1.4323 LIHITING 3 Fa ELEVATIONS ( TOP 15K, BOTTON 15X, AND NIDDLE 70X OF THE CORE ')

AXIAL FQ(Z) HEAS. PERCENT SOURCE POINT L I HI T FQ(Z) TO LIH. NO. ID 20 2.2585 1.9780 12.42 372 J14XX 6 2.0692 1.7324 16.27 379 J 7XX 52 2.3223 1.9026 18.07 322 P 7XX

0 0 L-93-196 Attachment Page 18 of 18

~

0 CRITICAL BORON CONCENTRATION The critical boron concentration was calculated by adjusting a measured boron concentration to the equilibrium hot full

-power, all rods out condition, as per Operating Procedure 1009.6, "Critical Boron Concentration-Full Power." For Unit 4, Cycle XIV, this calculation was performed at 600 Megawatt days/metric-ton-uranium (MWD/MTU). The following is a summary of the results.

TABLE 6.1:

SUMMARY

OF CRITICAL BORON CONCENTRATION (ppm)

MEASURED WESTINGHOUSE DIFF*

(ppm) (ppm) (ppm) 1170 1187 17

  • Acceptance Criteria +/- 50 ppm.

4i

'I S