ML20214L001
| ML20214L001 | |
| Person / Time | |
|---|---|
| Site: | Turkey Point |
| Issue date: | 11/17/1986 |
| From: | FLORIDA POWER & LIGHT CO. |
| To: | |
| Shared Package | |
| ML20214K983 | List: |
| References | |
| NUDOCS 8612020541 | |
| Download: ML20214L001 (25) | |
Text
-_
9 e
FLORIDA POWER AND LIGHT COMPANY TURKEY POINT PLANT UNIT 4 CYCLE XI START-UP REPORT N
O 5,mam, PDR
TABLE OF CONTENTS
]
Page Acknowledgements i
Introduction il 1.0 Unit 4 Cycle XI Core 1
1.1 Loading Pattern 2
1.2 Rod Pattern 3
1.3 Rod Drop Times 4
2.0 Initial Criticality 5
2.1 ICRR Vs. Dilution 6
3.0 Summary of Tests 7
3.1 Nuclear Heating 8
3.2 Reactivity Vs. Period 9
3.3 Boron Endpoint, Most Reactive Bank 10 3.4 Rod Worth (PPM), Most Reactive Bank 11 3.5 Rod Worth (PCM) 11 3.6 Temperature Coefficient 12 3.7 Integral and Differential Rod Worths 13 4.0 Shutdown Margin 15 5.0 Power Distribution Maps,
5.1 29% Flux Map 16 5.2 50% Flux Map 17 5.3 88.5% Flux Map 18 5.4 100% Flux Map 19 6.0 Critical Boron Measurement 20
-iii-R):2
NTRODUCTION This report contains the official summary of the Startup Physics Tests performed on Turkey Point Unit 4 at the beginning of Cycle XI. The testing program was conducted in accordance with Operating Procedure 0204.3, initial Criticality After Refueling, and Operating Procedure 0204.5, Nuclear Design Check Test During' Startup Sequence After Refueling, and meets the minimum requirements of ANSI /ANS 19.6.1, Revision 0 (12-13-85), Startup Physics Tests for Pressurized Water Reactors.
Testing commenced on August 18,1986, at 0230 and was completed on August 29,1986, at 1705.
The Westinghouse Nuclear Design Unit 4 Cycle XI (WCAP-22027) is the design.
data from which deviations were measured for the purpose of verifying that acceptance criteria were met. The acceptance criteria stated are the more conservative of ANSI /ANS 19.6.1, Revision 0 or Operating Procedure 0204.5.
Additionally, Florida Power and Light Company design dato is presented for the purpose of benchmarking.
The contents of this report provide the documentation required by Technical Specification 6.9.l.a due to the addition of Hafnium Burnable Absorbers to the reoCior Core.
d RG3/010/2
~
.,_.___,-,,,,,,___......,_...,___,,___.,..,.__,-_...,__m.,,,,
c 7
y,
1.0 UNIT 4 CYCLE XI CORE This section presents the as-loaded core configuration (Figure 1); the Control and Shutdown Rod pattern (Figure 2); and the Rod Drop Times for all rods as measured in Operating Procedure 1604.8, CRDM/RPI Stepping and Drop Time Test (Figure 3).
All rods met the drop time limit of 2.4 seconds as per Technical Specification 3.2.3.
l
. RI:2
REACTOR FUEL LOCATION i
TURKEY POINT PLANT UNIT NO. 4 CYCLE NO. XI l
FIGURE 1 1
15 14 13 12 11 10 9
8 7
6 5
4 3
2 1
Z-24 Z-32 Z-21 R
HF-01 Hf-10 Hf-11 Z-56 PP-27 PP-34 Z-35 PP-37 PP-47 Z-48 P
140Z R-86 139Z 92 174Z R-56 1652 M-10 PP-48 PP-26 M-20 M-33 M-21 PP-55 PP-29 W-05
- 12 SP14 8P15
- 11 N
117Z 2WZ 7WZ S-73 171Z R-72 4WZ 7WZ 130Z M-06 M-25 PP-03 M-43 PP 08 M-17 PP-10 Z-58 PP-19 M-37 M-07 BP14 BP17 8P14 BP17 T1 141Z 167Z 3WZ R-95 3WZ H-82 6WZ R-81 DWZ 1682 126Z Z-45 PP-42 PP-20 M-14 PP-02 Z-50 Z-62 Z-64 PP-23 M-27 PP-04 PP-43 Z-61
- 12 OP1",
OP14
- 11 8P16 BP13
- 11 L
121Z 3WZ 5WZ R-70 OWZ R-87 4WZ R-76 OWZ R-85 7WZ 5WZ 1622 PP-39 PP-40 Z-63 PP-14 M-03 M-49 Z-15 M-50 W-01 PP-15 M-41 PP-33 PP-36 SP16 8P16 POR 8P16 8P15 POR 8P15 SPI 7 K
R-70 SWZ R-84 7WZ 3Z 6WZ R-79 7WZ 12 9WZ R-51 SWZ R-61 Z-22 PP-25 M-22 PP-11 2-47 Z-02 Z-30 M-28 Z-27 Z-06 Z-49 PP-12 M-18 PP-46 Z-28 SP16 OP16 OP16 8P14 j
HF-02 172Z R-68 2WZ R-62 5WZ 29 127Z 8
3WZ R-83 1WZ R-12 166Z HF-20 Z-34 Z-18 M-15 M-23 M-46 Z-29 M-39 K-08 M-40 Z-31 M-47 W-13 M-16 Z-16 Z-14
- 12
- 11 H
HF-05 85 SS-4 R-80 IWZ R-58 119Z R-65 124Z R-57 6WZ R-75
$5-5 18 HF-15 Z-20 PP-32 M-24 PP-07 Z-54 Z-08 Z-13 M-36 Z-26 Z-10 W-45 PP-09 M-38 PP-31 Z-36 BP17 BP17 SP15 SP15 G
HF-13 169Z R-53 1WZ R-77 4WZ 87 1382 64 3WZ R-59 6WZ R-52 123Z HF-07 PP-53 PP-51 M-44 PP-01 W-04 W-51 Z-25 W-52 M-02 PP-18 Z-52 PP-45 PP-56 SP13 BP14 POR OP15 SF16 POR 8P15 8P13 F
R-63 SWZ R-64 9WZ 4Z 2WZ R-74 90Z 22 OWZ R-91 6WZ R-93 Z-59 PP-44 PP-06 M-34 PP-05 Z-53 M-48 Z-60 PP-22 M-30 PP-21 PP-41 Z-46
- 11 BP14 8P16
- 11 BP13 BP14
- 12 E
118Z 9WZ 2WZ R-88 4WZ R-66 OWZ R-67 9WZ R-55 4WZ OWZ 120Z j t
M-06 W-29 PP-17 Z-55 PP-24 M-31 92-16 M-42 PP-13 W-19 M-12 l
OPIT 8P16 8P14 BP14 D
l 145?
1702 2WZ R-71 1WZ R-92 5WZ R-89 OWZ 116Z 143Z M-09 PP-50 PP-30 M-32 W-35 M-26 PP-54 PP-28 M-11
- 11 BP15 OP15
- 11 C
129Z 2WZ SWZ R-90 122Z R-60 1WZ 3WZ 128Z Z-51 PP-35 PP-49 Z-17 PP-38 PP-52 Z-57 8
164Z R-54 142Z 25 173Z R-69 1632 Z-23 Z-33 Z-19 A
HF-06 Hf-16 HF-23 Verified by:
h4 este:
I arck 7 ; /9 %
RI:2
CONTROL ROD BANK LOCATION TURKEY POINT PLANT UNIT NO. 4 CYCLE NO. XI FIGURE 2 15 14 13 12 11 10 9
8 7
6 5
4 3
2 1
l l
1 l
l i
I l
i l
I I
B B
P S
S N
A C
D C
N S
^
^
B B
B C
S C
B K
B l
S
^
^
S J
A A
l i
O S
O U
B B
i i
S A
A 8
A A
l B
C S
C B
F B
S
^
^
E B
B C
D C
D t
Absorber Material As-Ir.-Ce B
B B
FUNCTION
- 0F CLUSTERS A
Control Bank 0 5
Contrel Bank C g
Centrol Bank B e
Contr:1 Sank A 8
Control Bank S8 8
+
Centrol Bank SA O
ROD DROP TIMES TURKEY POINT PLANT UNIT NO. 4 CYCLE NO. XI FIGURE 3 15 14 13 12 11 10 9
8 7
6 5
4 3
2 1
R 1.42 1.34 P
1.95 1.97 1.35 1.32 N
1.90 1.87 1.32 1.30 1.27 N
1.80 1.88 1.75 1.32 1.33 1.32 1.32 L
1.87 1.83 1.80 1.87 1.35 1.30 1.35 1.23 1,29 1.98 1.82 1.88 1.73 1.89 1.30 1.28 1.30 1.32 J
1.90 1.78 1.78 1.90 1.32 1.32 1.32 1.33 1.37 H
1.88 1.80 1.83 1.80 1.88 1.30 1.30 1.28 1.32 G
1.87 1.90 1.77 1.88 1.30 1.27 1.32 1,27 1.33 F
1.90 1.77 1.77 1.78 1.97 l
1.33 1.33 1.29 1.32 E
l 1.88 1.87 1.83 1.87 l
1.32 1.32 1.25 0
1.80 1.90 1.75 1.30 1.28 C
l 1.88 1.83 1.30 1.37 g
l 1.92 2.00 A
LEGEND Time to Dasnpot l
Rl:2 Time to Bottom
2.0 INITIAL CRITICALITY The approach to criticality began August 18,1986, at 0300 hours0.00347 days <br />0.0833 hours <br />4.960317e-4 weeks <br />1.1415e-4 months <br /> in accordance with Operating Procedure 0204.3, Initial Criticality After Refueling. Criticality was achieved August 18,1986, at 0959 hours0.0111 days <br />0.266 hours <br />0.00159 weeks <br />3.648995e-4 months <br /> by withdrawing control rods to 160 steps on Bank D and diluting 8,800 gail'ons of water.
Upon attaining criticality, the flux level was increased to 1 x 10-8 amps on the intermediate range to obtain critical data.
Tavg = 5470F Control Bank = 212/213 Boron = 1811 ppm Flux = 1 x 10-8 amps TABLE 2.1 FLUX Picoammeter N-35 N-36 NI-6649 A2 NI-4649 B2 1 x 10-8 amps 5.3 x 10-11 amps 5.9 x 10-11 amps
< 10-8 %
9 x 10-6 %
The following graph (Figure 4) is a plot of the ICRR during the approach to criticality.
l l
l t
l i Rl:2 l
i
O
?
..,.l['...
!! !._. -.E:
b 75Ni = I'.
E b.
l l
' !E r i!:- 2-IEE I-I!!il==fh E
+
=
w
- . _t.
.. 5_.r. =.r r. _a = _m... -.. __ = _,..1..-..
-F.
-. -:. =..={=_ =_ ! =.._ = _ - - =.. p.
. p.
n t
e
. 2 ; u..
f}
=-l Id
~~jE- ~ E}h - --[}~-E h =fr EE~"~lI
-fif =EN = {[lI NE 5[::-
i
@d
.[=r = j.- - :rt =- "-[p
-[-
._g.
.y q==mpg =
=g= : =tz
---!;:=
=p-
- i - gi= =g
=.=: +.: i i l l
_ f._r..gr !
l l
9 i
- [.-...
. [.,
-.7 1
w
.= p p. = ijg =. i - --
jJ i.j H
= g-
=i;.
. g= +Fp
[
h i
st=g2;-[;_gb.
gi.;. =ig g;.-s};;
=i. N gl===pc 4
L
-p j.
z;
=
,,3 i
g f.
- i. -= i= = =hp 11..
=~p:
j
- pe =i=1 3
i i-
+ - -
.l-
-p
=:p j..
[g
[.
- r.
i j
a l
l
. j-
- 1.
h.
- [
-[- =[.
i.
-Hfx
- t-
[7-- -!
r
. g p.-. ht.
. j:.
- .p z
.=j :
i
=:4 up sp Mir:.
F
-f-
~-}.'
i
.r-nt 1
f--
M I
r.
z-x{ -
nf
- l. nEj"
-p--'?;jy1 2-l~~ -
r hi.
={'[=i? --. ;. :
- l~ ii j
o
- in 1-SIE-ddi z i= = M!ta=+h=- EsE Ji4s-sin-55:: "' h W= :=1 1
s r s_.s.. r vt==i:
L m
=.. =. _=. _.ts_.: e. s=-
==.e.. i =. =5 t =- s_.t...=.t. =__-.
m, g
t..
t t
t.
.t._.
.:f2 t
-2
- di.
hl
- 'f I
arg=trx!z=- 33_3_ _r- ;;;;s p-p g
.i-4 r;z cp:_ yte sia =-fs i=ts-=
Nb_ _. _
.,i ~
b 7-
. _.. r_.
__N51-.E=m#~~
_-ti --- :-.- t
.',E
- i.!
=h--i 5ts 3I.1 M'5 T
I~ 5E#
?P
- E}5 =-55~ iEE "E55!"5I---l '" 3'_T ZZZ.~ Zi_~
>l,!'
EEh _. NEE niER Ela
- s-5t= Elie "RE
==-
~~
=
$
a crir l= =iE MKdi!Ei E.. i= _~~w*-
- n 1
.:;i.i.
.=={=- u"._jE-E_.jE.. E.Eti =_== =R
.~n~=.E_ jz__-_-
t=_' =Ej=_= !.E i=_"_s..E. =_s e
n r ~_.MM@;. E A J'.Z
-i-O
- _Q; iit;r W:}MMM: _I E5
- f T_T Z_5g f. -
~
2.
$ h, :@1-lE Jii:--= E" E =EifiF-5
EE g MlE rE4 "==Ei i= n_ Z G-Ei-T Z _
-=a=
=t-
=
=
l S ld 5
= in =iiE- -ii== MfEE 5tEi EtE Mii=t Z.Erf5)= a
=tfH !iE EF =~ "!
==
=
=..e.
m
'- Q ris-
-~--
f
- F. = -
-s.t :. _ _ _
-tr -.,
a,
=.. :i _ r. _. =._.
=v. Ls5 m...;.._
_a._
t eg
_.h_r__.
- i...
.. i..-
7.--_
w m
r=
nrt :- -t--= t--
.. _z=n_
c:m.
- t---
-t--
-H
_i=
M 2
p
.g_:
rf--. =u g:-- =:nt-
_ i __
._.1__,._.__. n_..
o_.
__ _ _. =tr --,
g I:
r..
t._
--1
-T--
- t- -
=_!' u._.__ s__..
.. a. :
-_.g-. _. _:4_u
=
r.
- Q
- t -
t..
a t
=_-i._: _gx_
-~ __:E_-
"_ I.n.
t
- t....
_ ;. = :..r=12 =r
=-
_n f-
_ k_.. ' _ ' -
s
_. _.=.._
~-
= f =-- = = _ ___
h:
l-- - t. :
=:
_. )
'!~
- Z:
=*
N n f= ' ":?i!.=: 5EE MI" E~~
~
~
~
-- l-1
. :E- ' -- ~ i
$o
- E.!= ; = E.. r. _--
E.t.
o
='
=
3
~=";#"
7ZE~_" "j--- -= iE -- : _- E
^
~~
~ ~ ~
=
ce El: ' 4'-iiil:: -==- - -
-Q d
r.
~---
-e
._t--
h--
~~.b~~ M
-~^~~~
- h' b_Ei~ -
~
+
a x3 l' einj;_4..
-- tE._.::... -- F.
=_r
__ j-_-
j
+r
' i.:i
____t_.
r q
I
=
'_L_b
~
~
o u mZ:
_w atm- -=----
aEu =c =-u=
=;= =c--
=t-
~
- stii-- =r rv--
=m._
_r i.
- i. 2 s.p. s
._.a _
h b
_ z;
-i
- +..
2 g g-[_;
r - =g-
_ ;. gg=-
-- gamg-
- t
- - - g-a d
__u__
._._ t-r
- t. -.. -=_ l. '.-
=E.
.__u.
__=_.r
:
2 =:=
=
3:.
nt-
-t--
--I
-t--
t--
.=tn
- c p--
..?gn:'.
5 ' -~ - * : ::?[.
.'^--'.._T_.
"_~_
ri.. : =:
I
.t=- =
" - ^
^ - - - * ^ ~
' - - -~
~~
~
5
._t=-
. T5
- : :-- ;2=gy. _...
' fi. ~__;p-- ?3fZ
~ ~ "
[; Q [:
- :i it.ir iirl== ; ---
~-
~" ~ ~
' ' fin =pi]
i j
r]
E-pi~
=t-- _,_=p-gg3-M[
f i}_. M
=
- +---
S=
9!- ~ ~~ ~ s'i~ lEjEEgi-~_ _ _ _. _ _ _ _. _
j
= i= - =tig g=i- -ege s}g si==ag-s;E "ag=7E ;;m I Zggi;;J ;_;E-ei-ip.
T!? ViH4eliE9=EEEf;-
xt5=&s-L-E W4E- =62.._. J.f n--Mi
=!
I a
5 e
e aw e
en 9
n a
m M
e e
e e
e o
e e
e e
O
3.0
SUMMARY
OF TESTS This section provides a summary of the results of the low power physics tests in tabular form along with the Westinghouse and FPL design data. For each test, the acceptance criteria is listed at the bottom of the table. All of the tests in this section meet their acceptance criteria, except for the ARO and Reference Bank in boron endpoints. After careful reanalysis of the RCS samples, these endpoints were determined to be measured 50 to 60 ppm below the design. Although the measured values were beyond the acceptance criteria, Westinghouse determined that they presented no adverse safety implications and gave their concurrence to continue with power ascension (see Appendix 1) in accordance with ANS/ ANSI 19.6.1. Rl:2
3.1 NUCLEAR HEATING j
The point of adding Nuclear Heat was determined in accordance with Operating Procedure 0204.3, Initial Criticality After Refueling, Step 3.15 and Appendix A.
This is performed by establishing a small positive startup rate and measuring the point (flux level) at which Tav~ departs from its established, steadv value.
g Nuclear heating was measured to first occurred at:
TABLE 3.1.1 FLUX LEVEL (AMPS)
Picoammeter N-35 N-36 4.30 x 10-7 5.05 x 10-7 5.33 x 10-7 All physics tests were conducted at or below 1.0 x 10-7 amps on the picoammeter connected to N-44 to assure Nuclear Heating did not occur.,
R1:2
3.2 REACTIVITY Vi PERIOD Reactivity Computer checkout was done in accordance with Operating Procedure 0204.3, initial Criticality Af ter Refueling, Step 8.16 and Appendix B. This checkout is performed by inserting small (<60 pcm) positive and negative reactivities using rod motion, measuring the period generated and the indicated worth, and then comparing design worths to measured worths for the given period.
TABLE 3.2.1 Period (sec)
Reactivity (pcm)
Reactivity (design)
Diff (%)
-272.6
-30.5
-31.2
+2.3 181.8
+34.5
+34.1
-1.2
-248.1
-34.5
-34.9
+1.2 Acceptance Critieria is +4.0% Rl:2
The Boron Endpoints noted below are determined as per Operating Procedure 0204.5, Appendix A.
A just-critical condition is established as near as practicable to the required rod configuration (i.e., ARO). The RCS boron concentration is determined and then adjusted by the ppnv worth of the reactivity (measured in pcm) by which the actual critical state deviated from the design condition.
TABLE 3.3.1 BORON ENDPOINTS (PPA 4)
Measured Westinghouse Diff FPL Diff ARO 1811 1864 53
-1784 27 CBC In 1646
'1702 56 1641 5
Acceptance Criteria is +50 ppm See Appendix 1. RI:2
3.4 ROD TORTH Rod worths were performed in two different manners as per Operating Procedure 0204.5, Appendices D and E.
The Reference Bank (highest predicted worth) was diluted into the core.
The boron concentration prior to and subsequent to this evolution was determined and the difference in the two borons is defined as the
. boron (Rod) worth of the Bank (Table 3.4).
Additionally, the differential and integral worth of the bank was measured and plotted.
TABLE 3.4 ROD WORTH (PPA 0 Measured Westinshouse
% Diff FPL
% Diff CBC 165 162
-1.8 143
-13.3 3.5 ROD WORTH (PCAO The remaining rod bank worths were measured u> lng the rod swap technique,
" swapping" negative reactivity insertions on the bank being measured with positive reactivity insertions from the Reference Bank.
TABLE 3.5.1 ROD TORTH (PCAO Measured Westinshouse
% Diff FPL
% Diff CBD 725 798
+10.1 704
-2.9 CBC 1441 1427
-1.0 1299
-9.8 CBB 571 594
+4.0 492
-13.8 CBA 1092 1122
+2.7 1021
-6.5 SBB 1095 1124
+2.6 1079
-1.5 SBA 1175 1190
+1.3 1054
-10.3 Total 6099 6255
+2.5 5649
-7.4 The acceptance criteria for rod worth measurements are:
(1) Reference bank within 110% of design, and (2) Individual banks within 115% or 1100 pcm of design which ever is greater, and (3) Sum of all measured banks within110% of design.
, R1:2
- 3.6 TEMPERATURE COEFFICIENT The method used to determine the temperature coefficient in Operating Procedure 0204.5, Nuclear Design Check Tests During Startup Af ter Refueling, was modified to meet the requirements of the new ANSI /ANS standard.
The standard recommends that the average of the measured values from one heat-up and the corresponding cool-down be used as the actual measured value. Previously, the
~
value from each heat-up and each cool-down had been treated as separate measurements.
The values determined for this testing sequence (in pcm/0F) are:
l TABLE 3.6.1 ISOTHERMAL TEMPERATURE COEFFICIENT Design Rods Measured Westinzhouse Diff D/213
+2.73
+3. I 1 0.38 Acceptance Criteria is +2 pcm/0F of design.
TABLE 3.6_.2 MODERATOR TEMPERATURE COEFFICIENT Design Design Rods Measured Westinzhouse FPL D/213
+4.56
+4.94
+3.15 Acceptance Criteria is <+5 pcm/0F.
l l
l l
\\
l l
l R1:2 l
HOT ZERO PODER DIFFERENTIAL AND INTEGRAL BANK WORTH VS.
BANK POSITION I6 I"
Ut4T 4
j 4
l, i
j CYCLE XI
. L.
1
.i EXPOSt.RE 0.0 MWD /MTU I
I bat @ll CBC i
14 l
.f
.t 1400 l
j j
i BAl4< POSITIONS
.._1._..
-._ p_
OUT IN MOVING l
SBA X
[_j 3
..l 1200 in 12 S
SBB X
}'..
k Ug l
CBA X
iE zy 10 L
1 1000 g
CBB X
A l
T i
a CBC X
CBD X
i 8
800 g
N u-l$g
_i E
TEST hETHOD 6
- b--
- - - - ---1--
600 DILUTION
[ X_j
\\
BORATION Q
~;
l
~
4 l
\\
a L_
N f
2 200 a
. f._
_. \\._
7_
b I
O O
O 20 40 60 80 100 120 140 160 180 200 220 228 ROD BANK POSITION (STEPS)
~
O 3
g e
c g
e e
e o
e e
e m
u 42 yd I
I i
i' i
! l !
i l
i P
8, i
i fi e 33 i
l-i-
.i i
- i:
i
}
/
N
, g; i X 5
%D i
i I /
W.C '__Q._M i-
/.i-f i
i i
/ :
um
- r-I i
i
/
,n M
i
,g!
- 3
,e 3
/:
l
$$l
!!j il i
i
/
g i-
- i--
i--
t= :p y 7:
./:
g n
1E I t
=iq== := :_
r f
j E1 !
=m.
z g.
! /l i
l i
j_-
t-
=ig I 8 i
i Bl*=-t#= ::it'c - -:1
/5 l
i 2 <== r=_s....ie_. n r. =-
.r
- /t i
W i
y g
o i
i-
- i::
rii.
ele iP
~r
-. : 4=.
51 f:i :
g n
2 4 :..giJ.
- 45 cia i=:= :i=i Egg : "; -
t g; e
e
-i ri:: vt E!;.
.17
- ig--- i-eg i/
j.
g.
l-
.l Ti q-
~ !.
l :: - 4 +:
if 3
e i
j i.
..[.
--l.
[j ;
- j l.
-['-
j
/
e
}
i
-4 :
-p
.:j.
/;
l i
i 1-i i
i l-l
/.
i i-
~
E l
l i
i i
i l'
/
e i
l-l/
u
-r
(,
i
/-
.l D
o f-
/i-if e
r
!' /.
I 8cE Ze:
i
~
Iul
+
if i
,-E r
/
i g
i i.
~
i i
!i fi l
l [
g' I
j if i gg l
l i
i
+
g 3 ;.. -
2 y-
-i-i t i gg u
I i-
/i
+
l 1
9 <
i if j
l 2 be I
i i
i
/
E
$ {S.
/-
i l
l h!
- f-i i
7 I
l j
";I i
/!
l Y
5:
f 1
i g
/:
I
!/
i i
i i
l/
l
- /f t
i i
ei 4
- e e
S i i
i l
/
l I
i g
r i l
l
/
i j
/
i i
m
/:
h!!;:
/
I i
i i
c i
l l
/
l i
1
+z-
.f.
i i
l Ifi
-i.4a ix
. i. -
l 4
23
/
4 in e - i...
-i.:
l -.q-1 l
~
r --
.., " m w m - -...
W. e n _
c w
c e
m n
~
e s
e n
e T
(001 X) (Woo) 41J0M Pob leabeaul
4.0 SHUTDOWN MARGIN The Shutdown Margin was calculated prior to power escalation to verify adequate shutdown capability. For this calculation, design rod worths were reduced by 10%,
and the results show shutdown margin at BOC and EOC. The following is a summary of the results:
Cycle XI BOC EOC Control Rod Worth (%A p)
All Rods Inserted Less Worst Stuck Rod 6.51 7.81 (1) Less 10%
5.86 6.43 Controf Rod Requirements (% Ap)
Reactivity Defects (Doppler, Tavg, Void, Redistribution) 1.74 3.12 Rod Insertion Allowance 1.53 0.50 (2) Total Requirements 3.27 3.62 Shutdown Margin (1) - (2) %6p 3.40 2.81 Required Shutdown Margin (% A P) 1.00 1.77 Source: WCAP 11027 l
l l
I Rl:2 i
FLORIDA POWER AND LIGHT col @ANY TURKEY POINT PLANT Ub5T 4 OPERATING
SUMMARY
.R P
N M
L K
.J
_H G
F E
D C
8 A
.g.;.;.........-
2.
2.,l 8.i c.i
- o. r 2o.
s:tirs:;;; i:strs:r3 '1: sis 6:45; a:;ir i
4!! c l!!
1 !8~ 1.1 1!I
!!I t?i
'6:st1:ij12litgjr1:njjj>:giv[:govja:gfla1s:tg---
t 1:til n
3?i; 24.
.I M.-
E fu 6:tsi j:sjrj:
i?)
1.1 92! j:L!Ia N"j:
i,;i nsrj:jj 41ji j:tjrj:jjj"j:1g g:;1.4 24.4gs g:r3r s
.1 - l.t-n 33 "s:urj:lirj:sirj:sjj j:ijs-lj:63"+j:tji j:i@ ja!!!N 1.lli:;jrj:ggrg:t !21.12..! tsr sj rs" :rs"j:;jr t!i 9.1 l!1 - l.
41.l 4
.1 a 2
i
...... "..................- ! t
- 8.1 a[: n.t.4j :
's:4n j:sji [::rji jjjis j:4j; Lja...14[:
4jr 1j1j:ssvj2.jjrj:nj1j21.1 1!!
i e :tjs 6:ns 1?!
1.1 ii.t
- 4. afE
.t 4.
- -.11 4:8i' 1.:.111 1.:.181: 3 1:Ll2e.1 1.:92L1:Iti 1:8k1:118:l.it 8.:1 8:
8:8-.88.:
8:
.9 L.a
-n.:
~
!!l5II l![I5b!Il5 llI!5l![!5l![55k![NI!llIN![!N!Il! llll5N![5E!I5 kI[5!l![
- 3.. *11. j:sji j:sju"j:strj:tji-r.8
_"da; ji g:girj:1.9. j:3!j j:L.14tt *:jjj"s:ijj s:sj1 al.4 44.1121!M J jjjj; 6:isr*121 ~
r ijr i;.
ji j:Esi"8:
- t
.1- -3!i
"""~s:ssri:si; 1:iis"i: sirs:4;I 1:Ess 6:nI.!
2 6?t 2:8242:1?92:1!9 2 l?1 I?S i:ssi 8:Hi"i:iiri:iiri:si; 5:;tr"""
1!9 21?12l!!2It!2:124 %?l 28 1
4
's:tii i:Isj i:str [:su"igjJ 4j:st.gj{j:sts jgir"j:g. 4[:sst j:sfE 6:ut2t?!
r 2616 tiL2
?t4!W til 28!
21?t 122 2
isi sja
- ris":sj i"s:tir"""
" -"s:ti; 6:45 j:ssrj:l!I d[j jrj:11dj: jrj4!8 j1.N"s:sj! 11 A 4
.1 1.
t?!
- 1 !!
1 28 a
- "' 6:jj[j:8.j"j:1A djj jj'4j:ijj j:jjj' j:rljs js:itt q?[. ---
ij tji" lis6:s n.t 1
a
- a.,
" ""s:jjr8:;jj jjgjk"s:rjj 6:gjt *1.1 t.j """
rs:;jrs:;j o,.491..,.
o.
1 3
7,.q;......;;;;;,,,,,,,,,
4 3.1 61;FillR41"^ "
o ROD POSITION l
Location Bank in Steps Classification INCORE TILT l
SBA 228 Map No. FM4XII SBB 228 Power % 29.0 1.0121 1.0069 l
CBA 228 Axial Offset 2.57 1.0050 0.9760 CBB 228 Max F[H1.608 l
CBC 228 CBD 167 Max F 2.024 R1:2
FLORIDA POWER APO LIGHT COWANY TURKEY POINT PLANT UMT 4 OPERATING
SUMMARY
is P
r"
-w t-r w-
- 7 y --
c g
.3-0.q5} C.54) 0 28{
- 0. m 0.
0 24 3.o 36 J.6 0 4}{ 0.246 1 041 0 7':
1 0*6 0.94 0.9'9 0.463 0
4.. 0 921 1.C06 0 663 1 006 3 0 412
.......... 2. 1 9 C.
5..
4 3...!. 0...........
2 3.
6.*
7.
0 4;.6 1 135' 13'22.12331209 0.4 6 1 17 1.?$9 1.41} 1 180 0.456 25 1.*30
- 1. l u 1 200 1 32.
1 100 0 428
........ 0. 1 02
=0 2 2.d 7.
...................... 5 8..
- 5. 0.. 6. 5...... 2...
7 1........
8:tB 8:M 1:iB 1:1931:U21:i981:1!! 1:IM 1:H18:Ml8:tB
-1.4 01 02
-0 8
-e.9 26 58 48 45 48
............................................i 54 0 420 1.
1 306 1 319 1 3}0 0 433 1. 0 7 )-
9 1 121 1 28a 1 131 1 3g0 1 310 1..j66 1 169 9 1 329 1
0 447 1 271 10 1 310 1
2-1 130 1 299 1 130 1.3 93 1 105 c.433
-30
-30 06 07..08
-08
-0 8 0.
1..
- 1. 4... 1 5 53 54 32 0 9g9 1 326 1.233 1 174 1 1 337 1
- 1. C 3'01.C 2 1 169 0 995 1 107 1 007 1 336 1 216 1 355 0 934 0 96 170 1 249 1 179 1 020 1 179 1 030 1 149 1 178 1 2'26 0 929
=2 0 0.9 46 19 09 08 34.
60
.......................................2 3.....
2 8... 3.2......
2 05 8:lt! 1:8H 1:!8 1:tp 1:1!91:13 8:8 8:5 8:011:lR1:f!91:H81:!8I 1:888 8:!!!
=0 0 09
.............. 3.
4.6 19
-09
=0 9
-6 2
-60
-4.4
=2 7 04 05 0.4 07 O.g45 0 702 1 173 1 226 0.
.44 0 689 1 141 1 192 1..{19 1.
0 993 0 913 0 832 0 901 0.983 1 260 1 185 1 141 0 692 0.
- 0. ;4 6
15 1 01' O.953 0 901 0 939 1 01' 1 295 1 182 1 141 0 609 44 O.
19
~2.4
-4.
=
6...
1 8...
2 8.. 3 8................... 7....7. 6..=.6 0..... 2 4.....2 7....... 3....................'
0.
00 04 07 0.{42 1 021 1 28 1 3ae 1 167 1 133 0 976 'O.906 0 895 1 1C1 1 0go 1 326 1 192 1 007 0 244 46 1 004
- 1. 01 1 145 1.{27 1 169 0 936 0 969 0 918 1.g69 1 1.7 1 345 1 201 1 004 0 242 0416 17 3..
3 2.....
6
~3 1
-6 9
-6 1
-0.
8.... 9....
- 2. 4
~1 4
-0.
............ 7 C.3 07 1 34m 1.ir?g6 1 195 1 031 1 122 0.993 1 14.1 0.979 10.944 1 326 1 153 1 247 C.915 1 326 1
a 1.i44 1 0'O 1 171 1 020 119 1 030 1 349 1 178 1 32A C.921 0 929 16 16 23 14 01
-4. #.
=2 6 '
=5 7
=9 0
-1 7
=2 2
=2 2
=1 4
....................'.....~............
......,.....m....
0 439 1 113 1 311.'09 1.
1 110 1. !~5 9 1 103
- 1. 67 1.;,03 1 334 1 293 1 269 1.067 C. 41 ai t 0 433 1 10.2 1.I"16 1.0 1 130 1 91 1 L10 1 350 5
5 C.4331 1.'10 1.'98 1 10.5 14 1
.1
-0 0
-1 2 - -22
-3
-4 11 1
-2 4
=.4
-L.4
=1 2 0 434 0 963 1 299 }.176 1 346 1 157 1 322 1 164 1 277 0.923 0 412 0 430 09;2 1.??3. 178 1 344 1 179 1 344 1 179 1 293 0.C'2 0.430
.. 1. 1..
- 1. 1... 0 5.......
2
-0.
2...1 0...1 6..... 1 2.......
2
~3 1
-4 1 0.
-1.
=
0 4'1 1.
0 4*o 1.12a 1 379 130 1 32M
- 1..;00
- 1. 19 1 125 1.}00 1.'2" 1 100 1 3"9 1 049 94 0.406 1 131 1..
C.426 11
?.9 40 15
=1 2
-1 3
-50
-5 0
-46
"""6:ttr6:4;ri:656 6:69t 6:66r6:aar6:tia" ""
0 432 3.921 1 006 0 613 1 006 0.023 0 4_2
....'.R 39 14
=1 3
~1 3
~5 0
-5 0 0 246 0.
4 39 MEAjuRc0 F ngl 74 H 0 242 0.{4}, 0.I'42 0.
Evh C7 4
DIFFEe'O F 0 L7A 14
~1 3
-1
................ 3 E NC E ROD POSITION Location Bank in Steps Classification INCORE TILT SBA 228 Map No. FMAXI2 SBB 228 Power % 50 1.0045 1.0173 CBA 228 Axial Offset 6.82 1.0056 0.9726 CBB 228 Max F[H.58 1
CBC 228 N
CBD 187 Max F 2.008 Q Rl:2
FLORIDA POWER abo LIGHT COWANY TURKEY POINT PLANT UPET 4 OPERATING
SUMMARY
R P
N M
L J
H r
e n
c g
.g
.1 65 a.?'-
3 2'd
- 0. ;. 41 0 741 0.244 r.?
S.7 57 0 4'6 0.o 7 1 060 1 728 1 038 0 944 0 437 0 4*7 0 021 1.00' 1 693 1 002 0 921 0 427
-0 0 24
'.1 46 3.6 24 24 10.417 1 044 1.?q4 1 730 1 1 Al' 1 233 1 349 1 099 0.4!B 0 4;0 1 031
- 1. ' b 1.?O3 1 1'1 1 203 1 316 1 088 0 420
.......................... 2. 2... 2 5 5..
- 2. 4....
1 1
-0 4 2.
-0 0 C.0
-J.9 1'80 1e!'?9 a4 o,g4q 0 43g*
o.4
..'}.."$1l.3'"d 1. M 7 l.}.7 l ? ?4-0.."' O.93,7 172 0.940 3 455 0.i4
.n7 v7 07
-0 0
-0.0
-0 0
-2 1
- 0 11 21 30 07 04 10
-0 3 3
1 106 1 99 1.?17 l1 316 1 11t, l1 3 54 1 179 1 330
- 1. j 8 6 ' t.3'4 1 10916 4'6' 0.4gC 1.;93 1 94 1 5'99 1.'44 1 13 1 316 1 135 1 344
- 1. 99 1 254 1 093; 0 4.a O.4.
12 12 2
. 11
-2.1
-1.s 36 3.s
-1 1
-0 9 31 159-03 0 944 1 391 1 232 1 376 1 006 1 17) 1 030 1 168 1 00 1 333 1 179 1 326 0 914 0 12" 1 110 1 173 1 142 1 027 1 140 1 02r. 1 110 1 02 1 342 1 173 1 318 0 9.2 2.5 25
.25 25
-21
-01 0.5
-1 0
-2.
-0 7 0.5 06
-0 8
. " 1 373 1 161 '1 16{ 0.023 0.944 0 91' 1 144 1 10s 1 3181 1 159 1 133 1 17- 0 94 0 979 0 943 1 172 1 133 1 398 1.195 1
1 000 0.j41 44 3
1.'04 1.
1 11a i f'43 1 301
.04 1 001 0..
41 10 18 25 2 6' 25
-1 0
-13
-3 5
-3 5
-24
-24
-15
- =0 8
=0 0 15 8:itt 8:281:141:it! 1:H91:Ei 8:Hi 8:M 8:411:8P81:iil 1:N 1:1H 8:24 8:!tti 10 11 19 27 76
-42
~4 2
-39
-2 4
-1 3
-1 6
-1 2
-10 07
' 1 51
......o................................................o....................................
1.
24 1 392 1 163 1 1ES 0 90y 0.941 0 9'4 1 146 1 109 1 3331 0.979 0 945 1 172 1 133 1 3E11 1..{ 96 1
1 016 0.244 1.{04 1 15A 1 133 1 172 0 94,.
.3 1 011 0 3'41 1 301 04 1 001 0.?41 0.
-4
- -2 8
-2 2
-22
-2 1
-i.9l
-0 7 16 15 10 10 17. 25 26
-1 4 8:1!! !:lta 1:i H 1: m 1:8 9 1:l B 1:81% 1:143 f: U t 1:12 1:191 1:lli 8:U9
........... 3 2....2.......2 5...0 5...1 5
- 3 21 1...=.0 3....1 5
0.
...1 5..
- 2. 1...2 3..
- 2. 6 0 437 1.L06 1 296 1 310 1 346 1 13 1.315104913071.'671.!52 1.087 0 434 1 1'34 1 294 1 144 1 13 1 316 1 135 1 344 1.798 1. P4 1 093 0 4'9 a
0 420 1.0 13
.)
07 02
-0 4
=0 1
-3 2
-28
-2 4
-24
-0 5 1.
21 12 1.{79 1 1%{
1 357 1 249 13].O 1 145 1 249 0.918 0.419 70 1042'309.l0 O.9 6 1..
1 17. 1 157 1 229 137 1 172 1 279 0 940 0 423 0 42
........................1 7....
2 3....2 3...2.
3......1
-1.
-0 9 00 19 4...0 7
-3 4
-0.
1 17 1 24 1 245 1 0291 0 197 1.is! 1.3'03 1 316 1 089 0.420 1
1 2'1 041e1094 13)6
$1 043 1 099 1
1.
- 1. 'i.4 :
17 17
=5 5
-5 5
...................................... 5 4
-0 4 06 11 0 439 7 949 1 029 0 705 1 019 0 871 0 403 0.-27 0.421 1 002 0 691 1 00? 0 921 0 427 3.0 31 27 17 17
-5 4
-9 5
..............,. g. p g.........p pg 0.?41 0.9.44 0.4.41
~XprCTFD F 7 ELTA H 31 23
-19 DIFFERFNCE ROD POSITION Location Bank in Steps Classification INCORE TILT j
SBA 228 Map No. FM4XI3 SBB 228 Power % 88.5 1.0069 1.0030 CBA 228 Axial Offset +5.70 1.0071 0.9830 CBB 228 Max F[H.52 l
1 CBC 228 t
N CBD 211 Max F 1.96 Q R112
FLORIDA POWER AND LIGHT COhPANY TURKEY POINT PLANT UNIT 4 OPERATING
SUMMARY
d P
h M
L A
J N
w F
E D
C a
A i
0 255 0 260 0 255 "I8?! '18?3 is?l 18::1;15:;;i 1:5;;15:iiri: sirs:;6ra:;ir 10 40410 875 0 968 0 678 0 968 0 375 0 404 l 4 98 75 10 2 7 4I
+.9 22 21.
"6::Iri:iiri:iiri:sta 1:lii i:liri: sis 1:siiis:;;;"
t?*,228.2f?!2l!!;2l!!2l?f.2l?f.2ftil*t!!,
i l 238 t!8 2 !*4 2:6:tir5:iirI:strI:Ij!2 f ) j:lirj:
ri:ijr tt 1jrj:ti!l j::lj"lg:II"I g::2.9 jr 1.
.8
.c 5: iiri:3;rt:siri:ssri:33ri:iiri:s;ri:iiri: iri:lirl2 f!1 3!!
- 121i:;r"1:rrs:;5r tit 2!?!211128?!2:3!! 2:1!!21282l!! 2dts 2:1?l -
s:43ri:iaa 1:15r1:5;ri:stri:iiri:sta 1:tiri:ar"i:ss; 1:itri:sars: sis' 0 877 1305.11751.J67104d1219.10501216104411367 1.l75 i 1 305 0 8t7 66
-0 4
-0 4,
-0 4
-34
-1
-10
-20
-3.o
-24
.0i
-0 1
-0 8 5:jjja:!!!j:ti!!j:
1 53 r :.si sjj 2:n.j 2:
1:rj1: tirs:6;rs:i 1;r 191 :1?t : jr a:isr :ist j::ss" :rja rira:i;ra:
..........................................1.na:llej:ffD:h!!j:t.1j::1!1aftsa123 28..
2 66 4
02+80702g.12g:.24713390994!!! 2:d' 2:t*t 2::?, :t*1 g:3?8. g:f*tlg:l*1lg:f f g:n.t
- t 1
?8 0 95 io.93s
.975
.022
.309 24 0 7 5 0.
53 12t
!!t l 8
...g8 a:ist"s:isi"i:liri:sini:itri:lisrs:;sra:iars:iiri:liri:liri:stri:tiri:sira:itr -
- iff a It! 2 l!f 2 3?ll2:4?l2:193 *: !!l 2:
1?3. 2:1?? 2:1!!) 2:3!3*Iti;'!!!
.......;.;;.-.........;. 3;).p.3,3....;;;.. 11)
- 1!! 2:
.....;;p;.;;...........
I.03f.216l.838l.21610411.3.;9l.ll;....;};.;;p......
0.a7) 1.38 l.lIS l.16 1.30 5
0 877 18 1
03
-0.S i
-20 21 12 25 40 38 35 0.
6..
4 8
...m 040 1 08 1 292 1 297 1
4
- 1. :. 3 1
- 1. :.5. 1. 32 6 1. ;,2 1887 1 305 1.D 1.
,1 lef
- 1. 57
- 1.,;
1.
0 422 1.:
1 87 1.0 0.tt 1 07 00 J44 1..,5 4
0 0 400 O.
.4 06
-:.., -:. 41
-a.
3 1
41, 0.4 85 ff g:. 7:.
g 0.g33 g:.:.49 g:.3 4 g. 69 g. O g:.:. g:.
0.g 04g fn a!!
d2
't 1
a 0
1.
O
"""5::Bri:stri:siri:itiri:i;ri:liri:sii 1 0010106 i:31r8:;i;"" "
O.400 1061130i 1 19il 1.I4611901.l.02 05 1
1
.8 1 6, 2
1
.1.
6* i"6 413*i:53r6:;ii 5 is"6*iii'5 *26" 04040.f750468 0 678 0 968 0 875 0 404 53
- e. 2.
18 1
12 22 j
.............;.gd;.....;.33.......;;gg;,,m aa-d>,,
."........l!biti i
~
ROD POSITION Location Bank in Steps Classification INCORE TILT SBA 228 Map No. FM4XI4 SBB 228 Power % 100.0 1.0086 0.9993 CBA 228 Axial Offset 4.56 1.0003 0.9919 CBB 228 Max F[H.506 l
1 CBC 228 N
CBD 228 Max F 1.949 Q Rl:2
e-6.0 FULL POWER CRITICAL BORON MEASUREMENT The final part of the physics testing sequence is a comparison of the measured to predicted Hot Full Power, equilibrium condition boron concentration. This test is defined in the ANSI /ANS standard.
The results of this test are as follows:
TABLE 6.0.1 Predicted Measured Burn-up CB CB Difference 850 1332 ppm 1356 ppm
-24 ppm Acceptance Criteria is +50 ppm RI:2
APPENDIX 1 Westinghouse Proprietary class 2 1
August 20, 1986 Frank D Popa, x2151, 412 374-2151 Westinghouse NFO MMOB 3-05 Monroeville, Pa. 15146 MEMO TO:
Mr. R. Mende
SUBJECT:
HZP Boron Concentration We have examined the safety calculations for Turkey Point Unit 4. Cycle 11 assuming that the boron concentrations may be less than that used in the safety analysis. There are no adverse safety implications.
In some cases lower boron concentrations make the postulated accidents less severe.
In most cases there is essentially no effect. Therefore we would recommend that FPL resume the normal startup sequence and proceed to power.
In particular, there is no need to take a HZP flux map. The excellent agreement in RCC worth between measurements and predictions precludes the possibility that there are large power distribution errors. Additionally there is sufficient margin at 30% power that no safety hazard exists for even unlikely possibilities such as an enrichment error, misloaded RCC, or misloaded assembly.
We will begin examining possible causes of a misprediction of the HZP boron concentration. There is at least one explanation which we have already begun to examine which would reduce the HZP boron predictions by 30 ppm. We added 30 ppm to our HZP predictions to account for the difference between our 30 PALADON model and our 20 TURTLE model.
Perhaps we should have trusted the 3D PALADON results without adding the bias. The Turkey Point cores have many 3D features ( part length bps and part length PTS bps ) which call into question the accurry of 2D TURTLE calculations. We have, however, attempted to account for these effects in TURTLE. The question is whether or not we did it in the best way possible. The closer agreement of 3D PALA00N with measurement calls into question the details of this process.
An effect which was not modeled in our startup predictions was the decay of some of the radioactive isotopes in the burned fuel during the 6 month shutdown.
It is the isotopes with half lives in the intermediate l
range with which we are concerned. The long lived isotopes will not decay enough to matter in a 6 month shutdown. The short lived isotopes are accounted for in our standard methods. This effect is likely to be 5 to 15 ppm, also reducing the predicted BOL tlZP boron concentration. This will also be examined.
We are also pursuing any differences which we uncover between the Westinghouse models and the FPL nuclear models produced by the General Office. The FPL models gave significantly lower predictions for the HZP BOL boron concentration than did the Westinghouse models.
In conclusion, we will examine several areas to determine if there is a need to correct the predicted startup baron concentration.
c.UG.20 'S616:20 WESTINGHOUSE T1ALL CFC WIRE RCCM F.0?
Mr. R. Mende August 20, 1986 These effects may total 40 ppm or more in the direction to make the predictions and measurements closer to one another.
There are no adverse safety implications of the lower boron concentration measured. We would recomend that the normal startup procedure be followed and that the plant proceed to power as originally planned.
h%/
ff Frank D Popa, x2151 FDP:
i l
l I
I i
- ~ ~ - - ~ ~ -