ML17354B014: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 165: Line 165:
Photo-.,:~
Photo-.,:~
graphs on.psges 8L auk 83 shcnr the-..femY of the" oQ spray aud.the behavior.fire that deve1oped,.from it.'This fire cansetL aU.of the sprinkler heads to open (yrobabiz by 2-1/2 min)aud,~'althctugh the f1oor fire vas contro1IBC aud.the buQding itself protected'against the exposure from both fires by the 5 psi discharge, the stee3.structure continued.
graphs on.psges 8L auk 83 shcnr the-..femY of the" oQ spray aud.the behavior.fire that deve1oped,.from it.'This fire cansetL aU.of the sprinkler heads to open (yrobabiz by 2-1/2 min)aud,~'althctugh the f1oor fire vas contro1IBC aud.the buQding itself protected'against the exposure from both fires by the 5 psi discharge, the stee3.structure continued.
to register temperature 0 ll 0 8A Test 5-.Shape of oil spray from.elevated nozzle.(Not burning)<<ay (3O7-a)hanoi:ceed;es..Test 5-Oil spray fire before sprinkler discharge.(Spattering in oil on f3aor is from unburned oil falling from spray.fire.)';'Y.\s (3O7-4)~ACZORY MUZUAL RESEARCH CORPORATION Norvood, Mass.Report No.13434 September 9, 1957 0  
to register temperature 0 ll 0 8A Test 5-.Shape of oil spray from.elevated nozzle.(Not burning)<<ay (3O7-a)hanoi:ceed;es..Test 5-Oil spray fire before sprinkler discharge.(Spattering in oil on f3aor is from unburned oil falling from spray.fire.)';'Y.\s (3O7-4)~ACZORY MUZUAL RESEARCH CORPORATION Norvood, Mass.Report No.13434 September 9, 1957 0
:...:::,'::.':..-;=;--:-(iO7-5)
:...:::,'::.':..-;=;--:-(iO7-5)
N Test 5-Oi1 spray fire after sprinkler discharge began-.'-..
N Test 5-Oi1 spray fire after sprinkler discharge began-.'-..

Revision as of 04:02, 26 April 2019

Forwards Response to Request for Addl Info Re Request for Exemption from Requirements of App R Subsection III.G.2.a for Electrical Raceways in Open Turbine Bldg.Rev 1 to PTN-FPER-97-013 Rept Encl
ML17354B014
Person / Time
Site: Turkey Point  NextEra Energy icon.png
Issue date: 07/02/1998
From: HOVEY R J
FLORIDA POWER & LIGHT CO.
To:
NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
Shared Package
ML17354B015 List:
References
GL-86-10, L-98-153, NUDOCS 9807080062
Download: ML17354B014 (96)


Text

CATEGORY 1~REGULAT(Y INFORMATION DISTRIBUTION SYSTEM (RIDS)ACCESSION NBR:9807080062 DOC.DATE: 98/07/02 NOTARIZED:

NO DOCKET SCIL:50-250 Turkey Point Plant, Unit 3, Florida Power and Light C 05000250 50-251 Turkey Point Plant, Unit 4, Florida Power and Light C 05000251 AUTH.NAME AUTHOR AFFILIATION HOVEY,R.J.

Florida Power&Light Co.5~RECIP.NAME RECIPIENT AFFILIATION Records Management Branch (Document Control Desk)

SUBJECT:

Forwards response to request for addi info re request for exemption from requirements of App R Subsection III.G.2.a for electrical raceways in open turbine bldg.Rev 1 to PTN-FPER-97-013 rept encl;DISTRIBUTION CODE: A006D COPIES RECEIVED: LTR i ENCL i SIZE:~TITLE: OR/Licensing Submittal:

Fire Protection

-App R-GL-.88-12 NOTES: E RECIPIENT ID CODE/NAME PD2-3 LA JABBO K COPIES" RECIPIENT LTTR ENCL ID CODE/NAME 1 0 PD2-3 PD 1 1 COPIES LTTR ENCL 1 1 0 INTERN: FILE CE-ABSTRACT 2 2 1 1 NRR/DSSA/SPLB OGC/HDS3 1"1 1 0 1 1 NRC PDR N NOTE TO ALL"RIDS" RECIPIENTS:

PLEASE HELP US TO REDUCE WASTE.TO HAVE YOUR NAME OR ORGANIZATION REMOVED FROM DISTRIBUTION LISTS t OR REDUCE THE-NUMBER OF COPIES RECEIVED-BY YOU OR YOUR ORGANIZATION, CONTACT-THE DOCUMENT CONTROL DESK (DCD), ON EXTENSION 415-2083.h TOTAL NUMBER OF COPIES REQUIRED: LTTR 10 ENCL 8

~.f t

,'rr L JUL 02 1998 L-98-153 10 CFR 550.12 10 CFR 550.48 10 CFR Part 50 Appendix R U.S.Nuclear Regulatory Commission Attention:

Document Control Desk Washington, D.C.20555

Subject:

Turkey Point Units 3 and 4 Docket Nos.50-250 and 50-251 Response to Request for Additional Information on Request for Exemption-Fire Rating of Raceway Fire 1 By letter L-97-181, dated July 31, 1997, Florida Power&Light (FPL)submitted a request for exemption from the requirements of Appendix R subsection III.G.2.a for electrical raceways in the~~open turbine building.By letter dated March 23, 1998, the Nuclear Regulatory Commission (NRC)requested additional information (RAI)in order to complete the review.In accordance with the NRC request, Attachment 1 provides the additional information requested.

FPL's response incorporates information requested by the NRC during the May 26, 1998 public meeting between NRC and FPL.Should there be any questions, please contact us.Very truly yours, R.J.Hovey Vice President Turkey Point Plant OIH Attachment Enclosures cc: L.A.Reyes, Regional Administrator, Region II, USNRC T.P.Johnson, Senior Resident Inspector, USNRC, Turkey Point 9807080062 9'80702 PDR ADQCK-05000250'~.PDR a an FPL Group company I 0 0 I CATEGORY 1 REGULA'A RY INFORMATION DISTRIBUTION SYSTEM (RIDS)ACCESSION NBR:9807080062 DOC.DATE: 98/07/02 NOTARIZED:

NO DOCKET FACIL:50-250 Turkey Point Plant, Unit 3, Florida Power and Light C 05000250 50-251 Turkey Point Plant, Unit 4, Florida Power and Light C 05000251 AUTH.NAME AUTHOR AFFILIATION HOVEY,R.J.

Florida Power S Light Co.5~RECIP.NAME RECIPIENT AFFILIATION Records Management Branch (Document Control Desk)

SUBJECT:

Forwards response to request for addi info re request for exemption from requirements of App R Subsection III.G.2.a for electrical raceways in open turbine bldg.Rev 1 to PTN-FPER-97-013 rept encl.DISTRIBUTION CODE: A006D COPIES RECEIVED: LTR 1 ENCL 1 SIZE: TITLE: OR/Licensing Submittal:

Fire Protection

-App R-GL-88-12 NOTES: E RECXPIENT ID CODE/NAME PD2-3 LA JABBOU COPIES" RECIPIENT~COPIES LTTR ENCL ID CODE/NAME LTTR ENCL 1 0 PD2-3 PD 1 1 1 1 INTERNAL: EXTERNAL: NOAC 2 2 1 1 1 1 NRR/DSSA/SPLB OGC/HDS3 NRC PDR 1 1 1 0 1 1 D N NOTE TO ALL NRIDS" RECIPIENTS:

PLEASE HELP US TO REDUCE WASTE.TO HAVE YOUR NAME OR ORGANIZATION REMOVED FROM DISTRIBUTION LISTS OR REDUCE THE NUMBER OF COPIES RECEIVED BY YOU OR YOUR ORGANIZATION, CONTACT THE DOCUMENT CONTROL DESK (DCD)ON EXTENSION 415-2083 TOTAL NUMBER OF COPIES REQUIRED: LTTR 10 ENCL 8 r o r I 0 JUL 0 2 1998 L-98-153 10 CFR 550.12 10 CFR 550.48 10 CFR Part 50 Appendix R U.S.Nuclear Regulatory Commission Attention:

Document Control Desk Washington, D.C.20555

Subject:

Turkey Point Units 3 and 4 Docket Nos.50-250 and 50-251 Response to Request for Additional Information on Request for Exemption-Fire Rating of Raceway Fire rrl i il in By letter L-97-181, dated July 31, 1997, Florida Power 8c Light (FPL)submitted a request for exemption from the requirements of Appendix R subsection III.G.2.a for electrical raceways in the open turbine building.By letter dated March 23, 1998, the Nuclear Regulatory Commission (NRC)requested additional information (RAI)in order to complete the review.In accordance with the NRC request, Attachment 1 provides the additional information requested.

FPL's response incorporates information requested by the NRC during the May 26, 1998 public meeting between NRC and FPL.Should there be any questions, please contact us.Very truly yours, Nl, R.J.Hovey Vice President Turkey Point Plant OIH Attachment Enclosures cc: L.A.Reyes, Regional Administrator, Region II, USNRC T.P.Johnson, Senior Resident Inspector, USNRC, Turkey Point'rr807080062

'F80702 PDR ADOCK 05000250 F PDR an FPL Group company li Cf 4/fall' 2 4 d d 36 33 34!=--jj~~I ass'.a.asaaa>L=~a SS.I 33!I s.sas ,I S5IK 1IdkIf~a aj f4I J IISCV SCIOCEQ sa~'ss 2S.I 26 1/I s./w/xh CPBO Aleo Avauab~s on p tnj efd'I f O'af6~~I 5 41r//r swlloaIIII I I I I I Al I I I I I I I I I I I I I dl I I I I I I I I I I I I I c'I I I I I I I I I I I I cl I I I I I I I LEGEND ga'Ta sI iNxxixa i Ts, loco EI QO CCCt:XII3 CCCIXZD 0 0 0 GOSIOICf OSSTIS J'c I I I I I I Sl I I I I I I I I I I I I I rl I I I I I I I I I 5 aaaa aa aaa~fwf srsNQls sIssk ra I 1 s.s Il ra LJ TVRKEY PONT kICLEAR IIkTIS 3 Js d FLORIDA POWER 64 UGHT FIRE PROTECTION

GROUND FLOOR PLAN"EL 18'-0 6(BELOW FIGURE I (L-98-TS3) 8~sa.7 s~sa.-a-RFolCgee(Z-QI I I I I I I cl I I I I I I I I I I I I I I I I I

'0 II r ly 1 tp II II 4.~1'4114 e m I ri I II II II IP4PC II=-ill I I-.--Adj$14 41~49 j)'t I il'I, I'-I 2 3~'4 c 9sc I QB I c Qn-35 34 I Lm Ci smaasZ I-I ii I I li li Is ljL Is 3T.s 32 ii I I iI si I)I si gsl I I I I I I I c 3D s II ii II I II I II I 28 27 i I ii I I I i I EZZZE a.EZZSVnENZ 20.1 26~ii ii ii'l;I l,.-,(i[, 3'Lt~AV@~I-Epos u.s 25 P!!"24~~"8 I I si I I ii ii I si I Ii I I is ii si I c 3 0" I I I I I I I I I I I i A 9 I I ,I l I I Esl I!t!I I Q I I C3 C3 C3 I NIC>>>>>>>>>>>>>>

el I----~J'c LEGEND:<<>>>>>>>>>>MEES0LAC SONCNRT PLAN MEZZANINE LEVEL EL.30'-0" I 2 l!T~I'tVnae sec@z-oZ TURKEY IAONT NUCLEAR VNT$3 R 4 FLORIDA POWER dE UGHT c4 FIRE PROTECTION MEZZANINE LEVEL ELEVATION 30'-0 FIGURE 2 (L-98-153) 4 l 0>((')Q h1 1 ll lf t il I E E'I

$5 D J'c!I I I--+--I I CMRATOR I TURBINE I I REHEAT MO51URE t SEPARATOR (ITP.)I I SEse I!@pamvt~K!!A~So Apggabt())

on goerture Card 4IIII 7 I~.~.I EXSTNO I I wuv (OR&SHGOS)I HOUR 770 NORAOE BARR6!I TEEOWATER I HEATER (AP.!!!F1 4IMH III I ARE j VN 441411 I)1I.-:NIXI.;

I 1!WE-IAO I I:.I:-I;i':I:.I I~11~~',~'I 41 40 SWITCHOEAR ROOM I OL SPEL~IWIP4$4454 Q BERM I~..4 4~'A I 4'HK.BECK PIAlE EL 2'-6'OTES:

l.I HOUR RAlEO ARE BARR65 WIIH AUTOMABC SPRSXIEK BETWEEN COLWM~A%BI TK~PUMP PIT.2.25 ICNUIE RATEO!NE BARRKRS WllH AUIOMATC SPRNXLERS.

BGWIEH COWMN EM 5.25!CHUTE PATED ARE BARR65 BEIWEEH COWMN J-4'C I I I Oi.SPLL'-Oa.POOUNC I I='.."--';~50M!i;."=-.",@PL TURKEY POINT NUCLEAR UH!T 4 WWE OL INC PROKCTIW f.II FIGURE 3 (L-98-153)

I ,,))Cu)r"l Il 1I't C 3P6B I 3P6C 3 6A I 4160V SWITCHGEAR CONDENSATE PUMPS 3K1966-4" I I I I 11'-3 P,p~ye CSI 8 L.P.FEEDWATER HEATER 3E3A I CV O L.P.FEEDWATER HEATER 3E3B 3K 2020-4" 3K2021-4" 3K2022-4" 34'-(P 3A1397-1 1 2" I O O O I I O W Y)O I O 23 PB 3809 I I O cV O CD PB 7340 15'-0"@PL TURKEY POINT NUCLEAR UNIT 3 FIRE ZONE 084, 088 8(105 24 1 HR THERMO-LAG UPGRADES VARIOUS CONDUITS It'.PULL BOXES PLAN I EL.18'-0" 8(EL.30'0" DWG NO FIGURE 4 (L-98-153)sHW 5 0

~(i),'I E l 32.32 a4'1 DN TO EL 2'-8'0.30 APlEFITG CARE 8-4A1 357 4P6C 4P6A 4A1372 4A1369 P84874 18x32x44 4A1370 4A137'I 4160V SWITCHGEAR E-1-'PF.W.HTR 4DA O'-'0'-4K1411 8-4K141.4'-0'24x24x8 I.LP.B..OONOENSATE PUL'PS 8-4A1357-)K1232 4K1212 4K1421 4K1417 B-4AI357 I CV 4K1232 4K1212.4K1421 4K1417 P84875 18x32x38 4JI 776 5 3K1724-3" z O V)6'-0'ONDUITS BROW E!8f.18'-0'J1775-3'4 I 7'-9 2'-4A1 49 1 4 PB5491 PB4713 LPF.W.IITR 4E38 4J1838-1'A1417-1 I 2 4KI441-4 4JI MB-I-4 4-1.'I 4K1441 4 TURKEY POINT NUCLEAR UNIT 4 FIRE ZONE 079 8(105 1 HR THERMO-LAG UPGRAOES V'IOUS CONDUITS 8c PULL BOXES EL.30'0", 18'0" 8c BELOW DWC NO FIGURE 5 (L-98-153)IIEET 1 A REV 0 pbn004eh I A.DWG Py G Cu).(~)-f V BL'TURY MUTUAL RHSEARL'H L'URPURATIUN

'""-"'FM C ll5l BOSTON-PROVIDENCE TURNPIKE, NORWOOD, MASS.FIRE TESTS OF AUTGMATIC SPRXIGKZR PROTECTION FOR OIL SPILL FIRES September 9, 1957 I XFKOEUCZIOH AHD ABSTRACT At the request of the United.States Atcmdc Energy Commission, the Factory Rxtual Research Corporation has concLucted, a series of'ire tests at their facilities at Norwood, Massachusetts.

The purpose of the tests vas to learn if automatic sprinklers vie.protect buf3cUngs, such as the Commission's gaseous diffusion plants, against fire'in lubricating oil accidentally spi33ed on the floor.Fire tests vere made involving oil, at elevated, temperatures, covering 2100 sq Xt of'1oor, also at elevated.temperatures, and.employing various methods of'gnition.

Xn a11 of the tests the f'loor fires were cLuickly controlled ancL minimized and the test building vas satlsfactor~

protected.

by sprinkler discharge.

at relatively lov pressure.In the fifth test an oil spray dis-charging from a nozzle above floor level provided an auxiliary fire against which the building vas protected.

by lov discharge from the sprinklers.

The spray fire vas'not extinguished in this case ancL a steel structural member ac/scent to it vas not protected.

against severe local exposure.It is.concludecL that the Atomic Energy Commission's gaseous cLfffusion plants can be satisfactorily protected.

by automatic sprinklers.

In the case of.floor spill'ires alone', protection would be complete against general and indiyicLual structural failure and against involvement of insulated.

metal deck roof'onstruction.

In'he event of additional fire in oQ.spraying from.rupture'd.

equipment,'eneral structural protection voulcL be maintained and.'nvolvement of insulated metal deck roof construction vould.be prevented.;

Failure of incLLvidual structural members could.occur in this situation if such members were so located.as to be exposecL severe by the fire in the~oil spray..The principal obgectives of the test program were based.on fires in lubricating oil spilled.on a level concrete floor, with both oil and.Moor FOR BETTER PROTECTION OF INDUSTRY 0 0

~2w at temperatures which vould be expected in a typical gaseous diffusion plant.1.To determine rate of flame spread.radially from a local ignition source vith no fire protection.

2 To determine the minimUm practical water discharge density from a sprinkler system required to control and.to extinguish an oil spill fire To obtain vith our test facQ.ities informstian vhich vould.lead.to a conclusion as to the effect of ceiling height araund, the order of 50 feet in bringing about any significant

'delay in operation of autamatic sprinklers.

To determine, vith snd.vithout sprinkler protection, the effect of an oil spill fire directly exposing structural steel in bringing about excessive stee3.temperatures.snd.

in causing elevated.ceiling temperatures.

L-5.To obtain from test results information vhich, combined.with previous test experience snd.)udgment~m1ght lead to an inte23.igent estimate of the number of sprin3Q.er heads which might operate due to an oil fire, so as to assist in the design of an effective automatic sprinkler system.6.Another obgective vhich vas developed during the test program vss to determine vhether a fire in hot lubricating oil discharged at a sub-stant1al rate.in the.form of an elevated.spray could be extinguished.

or controlled, by.sprin3Q.ers vithin the range of ordinary discharge densities, and.'hqt the effect would.be af'Sire of'his type on ceiling and.exposed.steel temperatu'res.

'.'f I e III TESTS'.5 A.MethoA\All of the tests very conducted in the high ceiling area of'he fire'est building illustrated by photograph'nd, sketches an.pages 2k~23 snd 2C.This area measures 40 ft by 60 ft by$$ft high and.Cs equipped with a smooth level-concrete floor.It hss protected.

steel frame construction, 12 in.brick va'.Lls, and a vermiculite plaster'n metal lathe ceiling suspended,-.,', from steel beams vhich also support a.poured.concrete roof.The locations and.sizes of doors, windows and, roof hatches are given in the sketch on page 2B~The sprinkler system employed, in the tests is a standard.arrangement of 2~standard.spray sprinkler heads (8 in.belov the ceiling)on 10 ft by 10 ft spacing.There are 4 heads on each of 6 branch 11nes sll supplied by a single the test cross main.The cross main is fed.by a riser gust inside the vest vali of<<t area, vhich in turn is supplied,.by underground, piping from the pump In all of the tests the vater supply to the sprinklers was controlled.

<<pro<<<<a known discharge pressure at the head, incU.cated in the sketch on 0 Cl Air temperatures 8 in.below the ceiling at.the.@locations shown in.the diagram'on Appendix Sheet 1 vere measured.by thermoiouples (20 gauge, chromel-alumel), The temperature of the concrete floor+was also measured by the same type of thermocouples imbedded 1 in.below its surface at locations shown on.Appendix Sheet 1.In order to evaluate the effect of fire.exposure stncL protection on exposed.steel structural members a steel test structure%ms erected in the building.Its construction and" location:are illustrate 1n the sketches on AppencLix Sheet 2 ancL page 20, The temperatures at 24 1@ations on this structure vere measured.during, the tests by 20 gauge CA.'@hermocouples imbedded l(10 in.deep in the steel.Msgrams on AppencUx Sheet,'5 show the locations of the thermocouples.

A means of'easuring rate of flame.spread.was.provdded by placing labeled firebricks standing on end.on the floor at 5 W:intervale.

racially from the 1gnition point in the point source ignition tests;The time at vhich the flame front reachecL these markers was recorded.by observers during the tests'ince the tests.vere to sinniLste normal temperature'conditions

'at the gaseous-diffusion plants,.a means vas providecL to.heat;the..Moor, of'he test area to at least 1/0'efore each test and, to heat the.oil to at: least 165'hen spiLLed on the floor;3.Procedure The essential features of all fire tests vere.the" sama.They vere: 1.The,.floor vss heated to a specified.

temperature 2.Dxbricating oil (see Appendix Sheet 0 for properties) vas heated, to a specified.

temperature and spiU.ed.on the floor of the test area through a distribution system consisting of"..'.'.:.-!"g..~",."-.a.Perforated.

pipe (X-l/0 in.)located..along.,the east.and vest ends of'the floor and containing

>/16 in.diameter holes 1 ft on, centers.The oil was pumped.from the.heated..oil, storage tank to this piping.C~s 4 b.3rain connections (2 1n.pipe)carrying.oi3.'y gravity heacL from the heatecL oil storage tank to two points on the floor at its south side approximately 15 ft from the east and.vest ends.Three hundred, and fifty gaLlons of oil vss spiX3.ed on the floor in each test except the last.This gave'a depth of 1/4 in.over the 2100 sq ft of level floor in the test area ("EK-Sect." frame area, 2400 sq ft, less wall thickness areas, drainage trench ares and.ramp areas equals 2100 sq ft).Tjrpical total t1me to spill$50 gallons of oil was 4-1/4 minutes.

~',

~I OB/ll/97 WED OB:38 FAX B17 551 9775 HEC STANDARD DIVISION Q 002~~$Th oi1 wm ignited.(NethocL anC location for each test are describeC under"Tests".)Fol3.owing fruition the rate of flame'spread~

the burning character-'

istics of'he oi1 and the vtsib1e effect of sprixQ~r discharge vere recorda4,.by observers.

The temperatures of'he floor, of the air at the ceiliug and:,, of the steel test structuxe vere recorded.by instruments.

5, SprizQQar discharge vas either automatic (natura1)or maxnm1 (by.'.opening a valve suppXyiug open heads)depeuiiug on the individua1 test xecLuirements.

In a33.cases the discharge.pressure vas controllecL.

C..Test Conditions aucL Resu1ts (TabuXations.

of the test conditions encL.~.observations axe incZxldecL in the AppencUx of this reporh (Sheets 22 and.2g).'he foXXovtug descriptions incXude caQy'he essentia1 inf.'oxmatXon.):.:

Test 1.I The'primary puxpose of the first test vas to determine the rate at vhKch fire spreads ih the oQ., Therefore~

open spriu3Qer heads vere u'sed~/.and.the vater supply vas vithhe1C~them until~F3, observation of I fire spread:~become.'impossible so that aXI.possibXJe data.an'uninhibited,.

spreadof fire'in the oil couXK be obtained,;

The temperature of the oil vhen spiXXe'd.on the f1oor vas 165 to I.70>I and.the temperature of the'loor vas 1?g vixen the oQ.vas'%gaited.~I~A fix&vas started.in the oi1 at the-base of the stee1 sCxucturi's'." central columnby four gas'oline-vet ceXXucotton ignitors+3.ocateL one at: each corner of'he column.Because these vere'3'.mr t'o start the oi1 b a handful of excelsior vas addeC at tvo of the coruers at 15-1/2 min afterthe original ignitors vere XfghtecL.ZLame spree!.in the oi1 vas established.

at'ibont.16 min'and.conti at an acceXerating rate.This rate is.iXXustrated by the graph on Appe'.Sheet 5 vhich is a plot of the data.xecordeC by" four.observers.

I'I Mhon the radius of the burxd~area had.increasek to 15 ft the air: temperature at the ceiling vas at 1200'nd.'increasing@

rapicQgr.Therefoxe~;., vater vas supplied to the spriu3Qers at 20.min~45 see (approx.5 min after'".'he start of fixe spzeacL)at a co'ntroIXed pressure of 5 psi at the heads'>>gp/se ft).These igtdtors consist of roXXs (2-$/4 in.~quoter, 6 in.Xong).of 20 ply cellucotton vatMing each veightug 2-1/0 ounces, dxy.'."As,,";.used.in these tests they contLLned 6-$/0 ounces of gasoline each~'bsozbed in the roX1+

Cl 5I J r'Smoke prevented, a precise observation of the tMe when the fire was controlled but it was possibly as early as 1/2 min,after the'egging of sprinkler discharge ancL definitily by 1-g/4 minutes.At that time only lingering flame remained along the foot members of'he.stee3..

structure.

This fire could.have been completely extinguished by continuecL sprinkler discharge.but in orcLer to prevent heat loss from the floor to..the sprinkler water, vhich voulcL delay preparation for the following test, the sprinkler vater supply was turnecL off and.the lingering fire extinguished by a 1-1/2 in.hose spray nozzle g-g/0 min after the start of sprinkler dischirjg.

+.'emperature records on Appendix Sheets 6, 7, and.8 illustrate the intensity and.duration of fire exposure to the building and.stee3.'tructure during the'est.t*r" Test 2.~d't it a~'lj X~I l~r The object of the second: test vas to detexmine the effectiveness of'utomatic'opening of sprinklers as compared.to the delayed.manua1.control

""used, in the first test.Standard,, upright, 212'eads were used.."..\\~<~w+~~,The oil temperature when discharged.

onto the floox'as.170,,to 175'nd, the temperature of the floor itself vas 1?8't ignition.'he air temp-.erature under the ceiling was 105'.Both roof'atches (total'56 sq ft)were opened: at'the time of ignition.The ignition.source was located,.at the base of the steel'structure as in Test 1.but consisted.

of,a.cLuantity of commercial oQ.-absorbent

'".~edi-Dri.")

at each'orner of the column;the saturated..oil-'absorbent..

being ignited by 1/4'size gasoline-vet cellucotton ignitors.;This also.resulted'in a slov start ancL fire vas not established.

in the oil until about 18-1/0 minutes.However, the usual accelerating flame'spread rate folloved.'\The first automatic sprirQQer operated.17 sec after the,,burning area"acL grown to a racUus of 5 ft (19 min~57 sec after the'tart of;the test)'arid.several.additionaX heads.operated quickly thereafter'.-,.'(Spr'i'nkler.

""-'ontxo3.pressure was 5'ps'."~,lg gpm/sq, ft cU.scharge densit'y.'.).;-, The maximum observed.fire spread.racUus was 6 ft at la'sec aftex the.first heacL opened but the fire vas knocked down and.reduced.;to a lingering flame at the base'of the steel structure one minute after the fix'st-head opened..Again, in.order to preserve floor temperature, the sprinkler water supply vas turned, off ancL the lingering flame extinguished by hose stream at 25 minutes.As A total of 17 heads opened.during the fire period.The pattern of these openings is shovn on Appendix Sheet 21.

0 Ci 06/ll/97 WED 08:39 FAX 617 551 9775 HKC STANDARD DIVISION Ql 005~I\T~~rature records on AppencLLx Sheets 9, 10, and 11, ccerp~d to those of'est 1.111ustrate the rapicL contro1 of the fLre produced by the L automat1c{naturIQ.)

operation of the'printed.ers.

Test 3.l~I I~V~'4~~~Since the cei1ing height in the test brea is Iess than in some areas of the gaseous diffusion p1snts, it vas'esixecL'to phmQate Me effect of bcmed.ceiling.h'eight by provtcLing acM1tioua1 upper~aM3atiou in Test g.;the purpose being to dotexmizN if bn bpp?eciab1c delay iIL oper!LtioIL of automatic sprintQsrs voalcL xesult.Therefoxe~

5 upper iriadcnr units on the south.'and vest aces'f the<<EL~Sects vere opened before the test in excess'f'the tvO hit'ch opentngS used in Te'st 2.The teal.ventiLatkon area vas.16I.'Q r Xa@hUtion the ignition method.vas changed.in order to e1iminate the long delzLy in estabIishing burnizlg in the oi1 as exper1enced.

in the first two te'sos..'.The'n'ev'mthod consistedof poqring.one.piIIt of a 50-50,mix of gaso11ne-kerosene into thi oil.at epoch corner of the steel structure..E co1umn at'its: bssa.'his pruning f1uid vas ignited.~diately after'eering.so.the..'size.

of the ignition brea vas no greater than in the..'previous

~tests j,~~~..'~~'" Prike'chion'was'the same ar in Test 2.'hat's, 24.automatic, standard~'uyr'Lght; 212,'ijz~Qaz'.heads vith the cEscharge pres'sure contro11ed.

at 5 psi':,Ip-joe/scL ft."': ': The:::teppiiature'.of the oiI when spend on the floor.vas.180 to 155~'and"the tehipiratuxe'of

'the Moor vas 1~'hen.the o11 vas iga1ted..The.: cei1ing air'temperature was 95'.~~"A ijgeaQig fire.in the oiI vas estab1ished vithout del'Iy and.the~us of.thi bu~g axea reached.5 ft at I.min, 25 sec azLd 6 ft at I min 45 seconds The.;i~it'hixtomatic iyga)Qer operatecL at 2 min, 1;.Sec.at which tiIIL the fire area racKus"jrobabg dilL:not exceed, 7 feet.ARLY.onaI heads.ojeratecL at 2'mi@'.7,,sec..'iicL the;.fire vas ahnost compZeteXg extinlpzishecL at 2 min, 20 sea at'ILich'Qm lingua@.'smaII fXames persisted cnQg at the north side of'steel'tre~Ore foCt members~\~""9hci.'sZiriihbn'ater was turnecL off and.a 1-I/2, in.hose spaz~nozzIe uqecL to map-.~"at'>i'dn 55 sec in.Order to preserve.f1oor temperatuxe.

':~~'.7'hotographs on" page 6L shciv the behavior of'this fire before ancL gust I after the first sprinkLar discharge.

Xt shouIC be borne in mind.that the photographs contend in this xeport indicate the conditions existing on1y at the very eaxIy staees of the fire.The very nature of.a lubricating OQ.fire procLuces erat;remedy Iarge votumes of heavy, dense, b1sch smoke{sce photograph on page 2L)prectud1ng the tcQsiag of.p1ctures, stiII, or motion, I~'

0 Cl II Test 3-Before sprinkler discharge.

Time-about 1 min., 15 sec.I I (3o6-3)fidius conds'ire-

)sec', S Test 3-Just after initisl sprinkler discharge.le ust e Zy oil;on, (3O6%)"~TORY MJZUAL RESEARCH CORPORAT1ON Norwood, Mass.Report No.13434'eptember 9, 1957 0 0

'w 7 shortly after the initial spread, of fire..In fact, the smoke density became so great in from 2 to 5, min after the initial spreacL of fire that visual observation at Moor level was ususl3.y impossible.

ELeven heads opened in this test in the pattern illustrated by the diagram on AppencUx Sheet 21.It is noteworthy that the time recLuired for sprizQQ.ers to operate after fire spread wss established, in the oil vas 2 min in this test compared.with 1-.g/4 min in Test 2.Temperature records on Appendix Sheets 12, 1$, and.14 again illustrate the quick, control of the f1re produced by automatic operation of the spriuklers.

""'est'4."'" The purpose,.ofthi.s test.vas,to determine the action of sprinklers against s.fire.that might occur in a large spill of'oil't or near its flash point or'with'simiLtaneous ignition in several.locat1ons.

Under such condi-t1ons s f1ashoyer woulcL,be expected.and.a large area" of'11 would.be burning before heat could'r'esch the ceiling to actuate sprinklers.

This test also indicates'he effect of s delsyecL vater supply to the sprinklers.

, Xn order, t*o';,simQate this situation the os.'spill was ignited in six locations.'ancL".avowed to..burn freely while withholding vater from open sprinklers uiiti2: s.,1'arge.'area of o11 vas burning.',Also to simu1ate added.ceiling'eight.

al1'.8 upper vindov units and.'the".Hi<<Sect."roof hatches.were.open."Total;upperventilation area.vas 224 scL W.The.,sprhdQerheads vere, in effect,=-all open for this test.Actually the 11 he'ada'"open after Test g.vere open snd.the.remaining 1?j heacLs un-doubtedly fused before vater was supplied.to them.They were all 212', standard upright.heads,.and.

the discharge pressure'ss again controlled at 5 psi~.i$gpm/scL..'W.;, At the time'CEe,,ilail was spilled.'on the Moor it vas at 184.The Moor.vss not'heatecL'since its temperature would.not affect the test and.at test time it vas.1094;"~-'pp-gy~'$'~:~pl

'a~<"~'htC".-",'The,oil, vas ignited by tipping contaiiers of burning priming Muid into it'aW 6.'Xocati'ons,'s1multsneous3y; There vss 1 pt of$0-$0 gasoline-kerosene mix.'n:.each., container ancL they vere located.in a symmetrical pattern 20 ft on'centers.'ix

'circular burning areas of.increasing diameter resulted.Typical diameter growth was-$ft at 55 sec;7 ft at 3.min, 15 sec;10 ft at 1 min, 55 seconds.Two f1res mergecL north and.south at, 1 min~40 sec and.two more at 1 min, 45 sec at which time the signal for supplying water to the sprinklers wss given.Water actually began dischargiag from the heads at 1 min,$0 seconds.

0 0 06/11/97 WED 08:38 FAX 617 551 9775 H{RC STANDARD DIVISION gho04 I I I[i'.c'I I I~~t..~c>'I'~~~l l'.I!i I'0-8-At that time the total burning, area vas estimated to be 1lgp sq ft or.mately.2/3 of the.vhoIe Oil surface.Because observers vere for~d~'o precise observation vas made'f the ext~piiehed.

but it vas betveen 2-1/>'nd.4'mtuntes.

During.the period befo exttuguishmcnt fumes'issued.

5 to 10 ft out;from the upper s~tovs ancL from the" roof hatches to an udestimated..height.

P AIL hesds in the sprinlQer iystem were open at the.cud.Of the'West.Xt vt11 be noted.in the'tImyerature records of this test on A~adix.'".

Gheets,3,5, 16, and 17 that the:recovering:iaet~msnts" were'oM.fox a pcriocL'od ayyroxima~

3.monte.This vas eausecL by'the shorting of an actuatixqg circuit by racLiant:heat from the fire.On'the basis of other supporting observations it.is believed that the maximuIn'-temyeratureis vere recorded'efOre the.pcwer faille.l;:Ruin water vas sugp1ied to the spriiQchpm.'.the cei1ing temperature' 12tXl This'shcnrs that vater,was withheld"beyoiad'the'time noxma11y'equirecL

'or automatic sprizQcLeirs to operate".Reverseless,":

the'.fire vas broulgt'-;>'under.control qui~vithcnrt.'si~Ig:effects'.t'o'".the'i1ildtug.

~C E;,.The.'oligect of;~test vas:4o":deCeimIiu'e the'effect of an addition.::.>

.fire'uch'as might occ'ur in oil:s3jea;yea j"from'@upturn:ecgxipment.

OtheiconjKtioui-as regards.'the OQ.sZii11~'vere the'siiiie is'in Test 3.ex'..'that:aZyrhximstelg.7pO.

sq&of f1'o'or"area," at..the';east

'end of the test are'a,.vas ext:off.;from the'.spill.

area'by" curb's".to.ccuiserve oil'upp', for the sprig Actua~290 ga3.of oil.vs.spiile4.,oa:a,1lt00 sq.ft Q.oor area.The..=temperature:of the OM vhen:spiXled,vas'-.X69'to.3.70

.'ntL'the floor vas 13.7'.=4 aC igrd,Cion.,..TM oil leehage fire was'shinQati4'.bj"jempihg,ci1'*

a n'ozx1e (open','"Autcmatic"~6003~SSU.head.vfth.316..tajjyxed'orifice) located 12 ft p above.the f1'oor axe'2 W sautheait"of.the atI6e1'.structure 2-column.Pumptug.to this.overhead, nozzle,:at.a rate"of XQ'"S".gym~.vai begun'at 3.min, 23 seo ,:aft;ei.the Moor fire vas started".'""'+'""""'-""""""-':A's far as the;f1oor'iria vas conc~4"iC.

d5ve1'ope.cl in the.usual.fashi.The racK4s'of the'burniug aiea'is 5'W at~3;min'35 sec.aud.it-did not~4~6,&mcept lnenenta~.:Xt vas'.'cofrtrolZAd.by'the.sprinhXers>

the~st of'ch,.operate8.

at I: min~39 sec,'ud" it vas ndzdmised in less than p mizuxtes.The spray fixe, on the other hiud, cou1d;"uot be extinguished..

Photo-.,:~

graphs on.psges 8L auk 83 shcnr the-..femY of the" oQ spray aud.the behavior.fire that deve1oped,.from it.'This fire cansetL aU.of the sprinkler heads to open (yrobabiz by 2-1/2 min)aud,~'althctugh the f1oor fire vas contro1IBC aud.the buQding itself protected'against the exposure from both fires by the 5 psi discharge, the stee3.structure continued.

to register temperature 0 ll 0 8A Test 5-.Shape of oil spray from.elevated nozzle.(Not burning)<<ay (3O7-a)hanoi:ceed;es..Test 5-Oil spray fire before sprinkler discharge.(Spattering in oil on f3aor is from unburned oil falling from spray.fire.)';'Y.\s (3O7-4)~ACZORY MUZUAL RESEARCH CORPORATION Norvood, Mass.Report No.13434 September 9, 1957 0

...:::,'::.':..-;=;--:-(iO7-5)

N Test 5-Oi1 spray fire after sprinkler discharge began-.'-..

PACTORY MUTUAL RESEARCH CORPORATION Norwood, Mass.Report No.13434 September 9, 1957

~I!4l (0 C-9-in the range from 1400'o 1800'.Therefore, the sprizQQ.er cLischarge pressure was increased.

as follavs: At 3 min, 20 sec pressure to 10 psi=.19 gpm/scL ft density At 5 min, 0 sec pressure to 15 psi~.2?i gpm/sq ft density At 5 min, 30 sec pressure to 18 psi I.25 gpm/sq ft density At 6 min, 45 sec pressure to 28 psi-".31 gpm/sq ft density'At 8 min, 0.sec pressure to 38 psi~.36 gpm/sq ft density This increased vater cLischarge prevented.

further increase of.the'steel structure temperature but it cU.d.not reduce the temperature.

Theref'ore, at 10 min the oil supply to the overhead.nozzle was shut aff'.Al3.temperatures (See Appendix..Sheets 18, 19, and.20)decreased:

quickly and.the sprin3Q.er vster vss shut:off at,l3-1/2 min vith the usual mop-up by hose sCream.XF COKCLUSIOHS'..

~.-...ii.~erg.,~l.Once a fire has been establishecL and begins to spread, beyond.the ignition source~the rate of flsme spreacL is relatively, rapid, ancL increases as the f'ire progresses.

It requires about 1-1/2 to 3.minutes (depencLing upon strength of'...ignition source)to spread.Co a radius between 4 and.5 feet, about 1-1/2;minutes from 5 feet to 10 feet racUus, and.only about 30 seconds far 10 feet:;to.-15.

feet.racUus.(gbservstions..beyoncL about 15 to 16 feet could naC;be made, in our tests on account of loss.of'isibility due to smoke.):~<<'>I'>iV'V~, Once an oil spill has been i'gnited and.sprescLing of'lame begun, the rapicL.grovth:of fire and volume of.smoke.produced.

indoors is such that effective:manx'.fire.fightiag can only be done within a period of about 5 or possibly::.6!minutes::fram initiation af'preacL,-

2.Autamatic spriaklers vill stop the spread.and.extinguish the fire in.an oQ.spiLl.on the floor at s cEscharge density of'0.13 gpm/st fC,-vith some margin: of".safety.

'::,3.='.There vauld.be no serious delay in operation of automatic sprinlQers at an:elavatiaa;,of about 50 or 60 feet fram a floor spill fire in a.large ares.as.-camparecl"to results in the.test building-with a 33 f'oot ceiling height:.with'no upper ventilation.

The delay in, operation vou1d.be about 15 seconds'.representing:an.increase in fire radius.of.from about 6 feet to 6-2/3 feet;-=-",:

~,.: With a floor spill fire around a building column but with autamatic sprinh1er:protection, the results incU.cate no temperatures which would.result in;failure of'tructural steel.However, serious cLKstortion and.actual column failure woulcL be expectecL within a periocL less than 10 minutes without automatic spx ia3d.ers in service.Where oil msy be cU.scharged.

in the form of a spray at an elevation above floor level, vhether or not there is initially any substantial oil~I~4 Cl 06/ll/97 WED 08:40 FAX 617 551 9775 HEC STANDARD DIVISION Coos-lO-~f;l il~t j~i~~spill.on the floor, a fire under these conditions may bring about failure of exposs4 steM.in the~diate vicizdty of the fire.The 4ischarge.

fzam automatic'zllQAikrs at any JZRchicaI density may not s&tinguish the Egc'ay There is no other econond.ca3~.X0Lacticable automatic~protection means avaILlable vhich vtl1 extinguish such a spray fire at any one of'a large nLuLLber of~ssible locations;distributed.

over: a, vids area, even if it vere considere4 necessary to extinguish.

Eovever, automatic sprin3QersI even at f?e~g.pressures as 1mr as)5 psi.," vtll affor4.reliable fire cozztroI.by.:limiting dangerous.temrperatures for'both structmM steel an4 roof aeeas to a:location of reIativeIy saaQ3.radius laterally fraa the oil.@prajr.f$re..CcaisequentIy, for.as long as sprixQQer diochILrge can be maintainecL; serious damage ahau14 be vel3.localiea4.

'I 5.Our tests indicate that,<trLth an.oi3.spi13.fixe.on the floor and..a single small'igzLition source not over'2:.to"g.ft, in iRiameter,.the zzumber of.'automatic sprtulzlers vhich might be.-.expeete4 to.Operate'vhen sayplie4 at 5 psi pressure mnzl4 probably ncrt: cmcee4'5:heads..

Even uzLder scauavhat unfavorable conditions

'of tzLterference vith'SIzzizdrler distribution by piping or.BtrucQzriLL elements no mare than 20'heads voul4 be expeete4 to.cyen.Xf a Sire sholQ4 Start&ncl.spg8acL~M'81L oil.BQQ3: fire.izLVQlvi37g

'everal hLuuhe4'gallons of oil vfth'hai'.+alee".sipply to syefa1Qers

'shzLtoff,'.

large numbers.Of heads.voul4 be expee4edhC'o-OIpen so.that the-vatex~dis'charge.

48nsity follcACEg delAQ&4 rcstorzztiozL'.:.of Water.Guppy+

Right bc..reduced to'.a totally ineffective value.-..':~.'Q.+.<',i~=;.~.,'.'

"'C~'~~~, It is diffi.cult to esMmate..the zzauiber.of"sy~Qer heads.vhich zmfght be.aperate4 in the event of a cou6~aus-veil distributed.

Sino oil spasm:h t!'ll'!C'-~i', I.of previous oxperienco is that gaia:idjjzt'.".'exjeet the znnaber of heads t'0 be oyens4'eventuzk1g veLM be'in the40rCklr"of-'.frcmL 40.to.6Q heaCS: fox.an oQ.sjumgr arcnzn4'10 gpaL,'.an4 for'arger.cIMIgney"-.

4ischarge.

rat4Ls a;c'cexeipondi gxeater uLnnber of heads.Zf a.brest.diouk4 occur.releasing oil&a soli4: stream or vith pxe distribution an4"a.adiiemaua, of atomization, a smiller zzumber of heads might be apene4 even at Iarger.oi1 discharge rates..Considering the constructionsind.'ocezpancy of these jdants;.it is expected that proper~designed, autcinatic.

sprinter protection voul4~C iO 0 0 be effective despite the opening of large numbers.of..heads>

in view of the strong water supplies now being contemplated for the sprinklers.

FACTORY MUTUAL RESEARCH CORPORATION Norman Jo Thompson~Vice-President NJT:RJ-150 KPORT BY: g, J,: Thompson J'.B.Smith.E.V.Cousins PE E, Cotton TESTS BY: Test Station Staff ORIGINAL DATA!Notebook No,, 155 ATTACHED: Appendix,-23.Sheets II 0 v~~44 hVitP Ap"~c.'~"kR (3O7-lo)Viev of fire test building from southvest.(Photo taken during Test No.5).FACTORY MUZUAL RESEARCH CORPORATION Norwood, Hass~Report No.13434 September 9, 1957 0,

D/A GRAM OF Q S7 AA?EAS AN'0 OPENINGS Du//O/NG O'O./8 Vcrfioal Dimensions Are Clear Hori zontal Dimensions Are Frame Dimens/ons Sca/e E"=ZOag e/I/o.ZB 33'o'a sf Ele va ti on 40'tesf Door/0'x/0'nsfrumrnf 8'm.P'ump A'm.boiler Rm e 60 s Roof Hatches-Possible Open Area-28 Sy.Ft;per Dn Pz Qz H Worth Door Low Ceil/nj 7est Area ("Lo-Section~

')/'I/gh Cei bn/J Test Area (" Hi-Section")Plan t/ii'ndows-Possible open Area Zl Sq.Ff.per Unit Upper/ndows on Soufh Face Same as Norfh Face West Upper INndows 2 tlni fs (Ar'o Windows on Fastface)Norlh Elevation" h'i-S'ect" FMPC Norwood, blass.Wesd Eleva(/on"fbi-Sect," Epd A'o./Z4S4 9~9~57 li 4l Page No.ZC Sprinkler Heads (Control Head)Separation 8efween'Vli"and'Zo-Secf"Areas Curbed Dune'esfs.

Plan View-."Hi-Sec&on

-Bldg.Q3&posed Slee/Test Structure Prot'ected Steel Co/umn and 8eam A/of Loaded'.Drainage Trench Curbed Dunng 7esfs Section A-A FMRC Norwood.Mass.EpE.A'o.643'4 9.9 57 0 II 0 LOCA 7IONS AIIID/OZ'NTIIFIICA 7 IOUS OF FLOOR ANO CE!L//NG 7HERMOCOLl/

LES/Z4-S4 Appendix SQ&<(S-eo@zo~<<so StrNure~st/F(oor Fs f" below 5vnace of Cuncrrfe Plan'V'ewer Hugh Sect 8ldg./B Qn Qrs'Ceih'ng W 8" be/ow Ce/ling./&era/Locaflons>arne as F/oor F~Oi4 ec.<<woo+,'ass.

~O 0' Appena'i'x Shee j 2 8 j2Z io 6Z XZk 8"1 2S Plan ai ZO R.Level/0 8 1/84-8 I2Z roI 2Z 8 1'8A Nonh or Socnh Elevation Plan aC box h/he ioH F Floor Leve/s All 8"2 Grams>bofh/he/Ofy.g Floor levels are 5'long.7he Members Form/ng Phe 2O 6 Horizontal Level were cuP to mal'e a lO'x iO'guare.The Assem6ly was krmeciby Elec,Are 8'cldi'ng.

'~RC.ho<~~os, Mass.

~O iO 0 Appena'iX She&Z lOCArlON OF 7ffERNOCODPL ES ON STEEL SrvuCru~Z rzwzw (AII F~pcened r'n S&el gio"oeep>84()85 Ce)90(f)91(e)87(c)86(F)7/(b)89Ce)88&)Location oF+S on Upper Crossarm 72&')6" 92 C (~c I Ps=()28'6(cO 77(c)~78(a)79(b)80 (c')88(f)99(c)9S(e)94 (F)97(e)Sr(c)96&')Location oF.ps on Lcrwer Crvssarrn Local/on oF 75 on H-Calurrin Ug (e)Lotion oF W on Crossarm G.oss Sec&ton x (a)Locw ion oF Fs on H" Column Cross Sec+ion~X Oown (Sca/c-ls" S")(d)x(b)&2~/z"+rior+cod@lass.Ppf N<.rZOZ+9-9-57 0 0 il Appendix'Sheet 4 PROPERTIES OF LUBRICATING OIL USED'est No e of'i1 Used Viscosity 7 oF'6 oF O.C.'.C.7'lash Fire 1, 2, and 3 Gulf'."Paragon 41" 5 ad.n>.36 sec 59 sec 345 365~4 and 5>.86$Guif->>Par, 38").34$Gulf->>Par~41>>)3 min>28 sec 48 sec 345 355+Proportions are.hy,volume..

'The origina1 intent.was to use Gulf"Paragon 41" throughout Gulf"Paragon 38>>.was used in the proportions shown due to an inadequate.

supply of Gulf"Paragon 41"~pg tory Mutual Research Corporation

'<<dp Massachusetts Report No 134,34 Sept.'9, 1957

~O II APPh=nCkX Sheek S 0 RATE OF'lAME SPREAD-.7 EST f Fovr Observer~X QO 0 0/6/8 20 7am e a&er Ignthon-AAnU~em'p~No./Z484.9-9-57

~li Il ZOOO 7 ES7 A'o./0 0 V~S Ie Maxi'mum Cei'ling Temperature 0 0 f4 a'60O 0 0 rs z8/200 2K'P rO'Si Fire RaCh'kiS/7 ss f9 2O.Zf T/me from Stark-Mlnu des 22 24.n 0 II o Q 2000/600 TEST Na.1 Max/%0m H" Colvmn Temperatures-O fO/0-20 5'above+Floor%8f f200 800 KO above Floor F77 2i/g'Fire Radias ro.',fs'6 f 7 f8 20 2f 22 Tx'me from S)ai-')-Ak'nuPes 0 4l 2000 1600/200 TEST Na.i Max]'muon Crossarm Temperatures Vpper and Lower C 0~i C L Lower Crossar m gg 97 800 Upper~Crossarm g 90 400 Fire Radius to's'-0 a)Z 0 0 l6 17 1B>9..ZO 7i'me from Stark-AA'nufes 2Z 24

~Ci'0 0 200Q f600 Maxi rn um H-Column Temperatures 0-10 tO'-2O'.~f200 I 5'bove floor ip 84 800 ZO'above floor g77 Fire R'adtus 5'17 I9 20 2r 22 Time From Start-M/'nuked 0 0 2000 TEST No.2 Maximum Crossarm Temperatures 1600.Upper and Lower 4.1200 E 800 Lower Crossarm Pg s8 Firq~RaChus 5'pper Crossarm f91 6 Cs V-I 4)o tn/7 18 20 21 22 7ime From Start'Minutes

'li 0 0

~~OOOO.t600 TEST Mo.3 Maximum Ceil)'ng Tern perature 0 0'g l3 f6 0 0 ff f7 0 0 I5 18 4~f200 l}800 yC~0",S%~yO F/rq Pad)us gl~~3 Time from Sf'arf-AA'n ufes 6.

0 0 Z000 f600 TFST Mo.3 Maxi'mum 8-Column Temperatures 0-10/O'-eo'1~1200 E~QJ~r+&jr dP o r 800 5'ebov"."/oor~7-8l f0'boVe floor Q 77 400 Fire 3', 5'/me From Start-Minutes

'0 4l Q 8000 TEST No 9 Maxirnuin Crossarm 7ernperatures Upper and Loner 4.0~f200 800~4 4+'Sp Lower Crossarm Fire Radivs gl~Upper Crossarm@B7 7/'me frotn SfaH-Minutes 0 0 0<<R<n 2000 i~L TEST No.<Maximum Ceiling Temperafure 1600 Reco der OF'1.0 0$13 16 0 0 14 11 0 0 15 16 g f8 CD'b CD Z 0 Vs W'0 3 5 7ime affer Start-M]'nukes Cl ll 2000 Tzs7.No.4 kfANINUN 8" C0LvwY TENPEAATDREs

/600 0-1'0 10-20'l200 record'er 800/0 Above Floor P'7 4O0 0 0 7/2'bove Floor 480 480 Time From Star t-Minutes Cl 1'

~+~2000 Tzs7 bio.4 AAx!au~CRossaR~TE!rIPERAruREs

/600 UPPER AN0 LovvER p+/200 800 4oo/ower~Crossarm 498 Up Cr s er sarm 85 Rec rder ON98 Time From Start-Minutes

2000/6oo Tzsr No.5 Maximums Czu ms 7Ews zuAruuE.0 0%/9/6 0 0/4./7 0 0/5'8~l2QO h h L4 M CS 0'oo/0/2 T/me frorv Start-QfnL/des 0 0 0 2000/600 p l200 8oo 0~4/7/Z Abc ve Floor g 72 Gs7 A/o.5'4/AxlMUN IY-Cot, Uhlan'ENPEpAlvRE$

o'-/0'0-ZO'/2 AbOv8 Floor g80 Woo D/0 Time From Start-Minutes II 2000 O'AXlklUbl CROSSARM TEMPERATURES:

UPPER ANo LowER/600~Vpper/Crossarm 4.90'ower Cessarm...4'.97 p+/200 80O 4OO 0 0/0 7 jme From Start-bfinuPes

~O Ap endix Sheet 2f Hatch@10 0 Hatch e 2 0 0 0 T8s&Z Plan View-Hi-Sect."Showing Pattern ot" Sprinkler Heads Opened.(.6)78SS 3 0 0 Hatch e P 0 0 0 0 Hatch 0 Z 0 KMNc/Var uvood,bless:

8'pd.Alo.gg34'.9~$7 i~

Appendix Sheet 22 TABULATXON OF'gEST CONDZZXONS AND RESULTS Test No.FLoor Oil Tem-'P Tem-P rea Ft Ventilation Opened.at Min-Sec Area-Opened.at S Ft Min-Sec Wind Direction Degrees Prom North Wind Velocity MPH Outside Temp-oF 2 4 1H 109 117 170-175 164 180-185.164 184 164 165-170 164 1/0 165-170$2+H 0-00 10-00 0-00 0-00 0-00 0-00~28-+28 56 161 224 224 10 to 15m 18-1/2 to 20m 0-00 0-00 0-00 0-00 270 86--No Observation--

--No Observation

-, 140 10-15 69~180 10 60.Test No.'2 4(1)5 Time of'irst Observed.Fire Spread.Min-Sec 16-00 18-19 0-00 0-00 0-00 Time to 5 ft Radius after Start of'pread Min-Sec 2-45 1-21 1-25 0-55 1-5.6 6 15 6 6 10(2)~5(5)Maximum Pire Radius Pire When 1st Radius A.S'.Operates Observed Ft Ft'I (1), Six simultaneous fires.FLgures ard typical'of'ne fire area.i (2)Maximum radius possible for ind,ividual fire area before merging, with a+a-cent fire area.(Max.area involved,-1400 sq ft), (>)Maximum persistent'ize is given.Occasional mo<<~mentary outshoots not included..

Test No.1 2 4 5 Time 1st SprinM.er Operates Min-Sec From I nition 20-45.19-57 2-03..1-50 1-9 Time 1st Sprinkler'perates Min-Sec From 1st Pire S read, 4-45 x8 2-'Ol 3.-50 1-9 Discharge Pressure At Sprinklers PSX 5..5--'5 5(1)Sprinkl.er'ischarge Density GPM Ft Number of rinklers ned.0.1>24(').0.1$17 0.15 11.15 24(2)0.1 (1)24 (1).Xnitial valu=s only.Sey text for in-'reases.(2)Manual control.A13.24 heads open when water supplied to them.FACTORY MPiUAL RE~~CH CORPORATION Norwood, Mass.Report No.1$4$4 September 9, 1957 0 0 t ib Appendix Sheet 2y

SUMMARY

OF MAXIMUM TEMPERATURE DATA Avera es oz Maximum Recorded Tem eratures-F est 0~Ceiling Laterall from Ignition.Point 1/25 Ceiling$2 ft Laterally f rom Ignition Point 865 Steel Structur H-Colum 0'o 10'bove Floor 14qo Steel Structure H-Column 10'o 20'bove-.Floor 148o Steel ,Structure Lower Cross-arms 10'evel 16oo Steel Structure~Upper~.Cross-,arms 20'evel 10/5$50 66o 505.,550.275 580 505 4(1)ly75(2)6oo 900 950 870 86o 6o5 1145 1>80 1510 1510 (1)Average maxima are probably above values'hown for Test No.because rapid temperature changes occurred.in less time than that required'for one complete printing cycle of temperature recorders.

(2)Single average maximum ceiling.value'iven because this fire*~was from multiple rather than s1ngle point ignition.t FACTORY MUTUAL RESEARCH'CORPORATION Norwood., Mass.Report No.3.5434 September 9, 1957 1 0 Cl 0