ML17059A341: Difference between revisions
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
||
Line 42: | Line 42: | ||
Pa1MPR ASSOCIATES INC.ENG'INEERS Section 1 INTRODUCTION The purpose of this report is to document a fatigue evaluation of the Control Rod Drive Return (CRDR)nozzle in the Nine Mile Point Unit 1 reactor vessel.The nozzle is a four inch vessel penetration that accepts low temperature water from the control rod drive system.The objectives of the evaluation were to estimate: 1)the long-term susceptibility of the CRDR nozzle to thermal fatigue cracking, and 2)the crack growth rate of a potential flaw in the CRDR nozzle over the remaining life of the plant.This evaluation was undertaken to support Niagara Mohawk Power Corporation (NMPC)efforts to perform an ultrasonic inspection of the CRDR nozzle instead of the dye penetrant inspection specifie by NUREG-0619. | Pa1MPR ASSOCIATES INC.ENG'INEERS Section 1 INTRODUCTION The purpose of this report is to document a fatigue evaluation of the Control Rod Drive Return (CRDR)nozzle in the Nine Mile Point Unit 1 reactor vessel.The nozzle is a four inch vessel penetration that accepts low temperature water from the control rod drive system.The objectives of the evaluation were to estimate: 1)the long-term susceptibility of the CRDR nozzle to thermal fatigue cracking, and 2)the crack growth rate of a potential flaw in the CRDR nozzle over the remaining life of the plant.This evaluation was undertaken to support Niagara Mohawk Power Corporation (NMPC)efforts to perform an ultrasonic inspection of the CRDR nozzle instead of the dye penetrant inspection specifie by NUREG-0619. | ||
The fatigue evaluation of the CRDR nozzle considered the number of pressure and temperature cycles the nozzle has experienced to date as well as an estimate of the number of future cycles.Finite element stress analyses of the nozzle were performed to determine the stress distribution in the nozzle due to the pressure and temperature cycles.Stress analysis results were then used to calculate nozzle fatigue usage and crack growth rates.1.1 BACKGROUND In the 1970's, a number of BWRs detected signiTicant cracking of feedwater and CRDR nozzles.The cracks in the CRDR nozzles were caused by thermal fatigue resulting from changes in cold CRDR flow at the nozzles, The NRC issued NUREG-0619,"BWR Feedwater Nozzle and Control Rod Drive Return Line Nozzle Cracking," (Reference 1)that identified interim and long-term recommendations regarding this issue, including inspection requirements. | The fatigue evaluation of the CRDR nozzle considered the number of pressure and temperature cycles the nozzle has experienced to date as well as an estimate of the number of future cycles.Finite element stress analyses of the nozzle were performed to determine the stress distribution in the nozzle due to the pressure and temperature cycles.Stress analysis results were then used to calculate nozzle fatigue usage and crack growth rates. | ||
==1.1 BACKGROUND== | |||
In the 1970's, a number of BWRs detected signiTicant cracking of feedwater and CRDR nozzles.The cracks in the CRDR nozzles were caused by thermal fatigue resulting from changes in cold CRDR flow at the nozzles, The NRC issued NUREG-0619,"BWR Feedwater Nozzle and Control Rod Drive Return Line Nozzle Cracking," (Reference 1)that identified interim and long-term recommendations regarding this issue, including inspection requirements. | |||
For Nine Mile Point Unit 1, the inspection requirements include performing a dye penetrant (PT)examination of the CRDR nozzle internal surface during the upcoming 1995 ref'ueling outage.NMPC plans to perform an ultrasonic (UT)inspection of the CRDR nozzle instead of the dye penetrant examination based on the following: | For Nine Mile Point Unit 1, the inspection requirements include performing a dye penetrant (PT)examination of the CRDR nozzle internal surface during the upcoming 1995 ref'ueling outage.NMPC plans to perform an ultrasonic (UT)inspection of the CRDR nozzle instead of the dye penetrant examination based on the following: | ||
1.Automated UT inspection systems are now available for performing accurate inspections from outside the vessel.UT inspection systems at the time NUREG-0619 was issued did not provide sufficient detection or flaw sizing capabilities. | 1.Automated UT inspection systems are now available for performing accurate inspections from outside the vessel.UT inspection systems at the time NUREG-0619 was issued did not provide sufficient detection or flaw sizing capabilities. |
Revision as of 22:54, 1 February 2019
ML17059A341 | |
Person / Time | |
---|---|
Site: | Nine Mile Point |
Issue date: | 04/30/1994 |
From: | MPR ASSOCIATES, INC. |
To: | |
Shared Package | |
ML17059A339 | List: |
References | |
MPR-1485, MPR-1485-R, MPR-1485-R00, NUDOCS 9407010168 | |
Download: ML17059A341 (438) | |
Text
P>1MPR ASSOCIATES INC.ENGINEERS MPR-1485 Revision 0 April 1994 Nine Mile Point Unit 1 Control Rod Drive Return Nozzle Fatigue Evaluation Preyared for Niagara Mohawk Power Coryoration 301 Plainfield Road Syracuse, NY 13212 9407010168 940M3 PDR.ADOCK 05000220 P'DR 0
Pi9MPR ASSOCIATES INC.E N&I N E ERS Nine Mile Point Unit 1 Control Rod Drive Return Nozzle Fatigue Evaluation MPR-1485 Revision 0 April 1994 Principal Contributors E.B.Bird J.E.Nestell R.S.Paul A.B.Russell Prepared for Niagara Mohawk Power Corporation 301 Plainfield Road Syracuse, NY 13212 J.Gawler NMPC Engineer 320 KING STREET ALEXANDRIA.
VA 22314-3238 703-519-0200 FAX: 703.519-0224
Pa1MPR ASSOCIATES INC.E N G I N E E 0 S CONTENTS Section 1 INTRODUCTION
1.1 Background
2
SUMMARY
3 DISCUSSION
3.1 Design
and Operation 3.2 Load Cycle Definition
3.3 Structural
Analysis 3.4 Fatigue Evaluation
3.5 Fracture
Mechanics-Crack Growth Rate 3.6 Experience Survey 4 REFERENCES 5 APPENDICES
~Pa e 2-1 3-1 3-1.3-1 3-2 3-3 3-4 3-5 4-1 5-1 APPENDIX A APPENDIX B APPENDIX C APPENDIX D APPENDIX E APPENDIX F APPENDIX G APPENDIX H APPENDIX I Calculation of CRDR Nozzle Thermal and Pressure Cycles CRDR Nozzle Finite Element Model, Geometry CRDR Nozzle Finite Element Model, Material Properties Calculation of Heat Transfer CoefGcients CRDR Nozzle Finite Element Model, Boundary Conditions and Results Low Cycle Fatigue Usage Crack Growth Rate Computer Program Verification Crack Growth Rate Analysis Cases Implementation Plan A-1 B-1 C-1 D-1 E-1 F-1 G-1 H-1
PA1MPR ASS 0 C I ATES IN C.ENGINEERS LIST OF FIGURES F~Fi ore 3-1 3-2 3-3 3-4 3-5 3-6~Detcri tioo CRDR Nozzle Dimensions Finite Element Model Finite Element Model Details Calculated Temperature Distribution Calculated Stress Intensity Distribution Fatigue Crack Growth
Pa1MPR ASSOCIATES INC.ENG'INEERS Section 1 INTRODUCTION The purpose of this report is to document a fatigue evaluation of the Control Rod Drive Return (CRDR)nozzle in the Nine Mile Point Unit 1 reactor vessel.The nozzle is a four inch vessel penetration that accepts low temperature water from the control rod drive system.The objectives of the evaluation were to estimate: 1)the long-term susceptibility of the CRDR nozzle to thermal fatigue cracking, and 2)the crack growth rate of a potential flaw in the CRDR nozzle over the remaining life of the plant.This evaluation was undertaken to support Niagara Mohawk Power Corporation (NMPC)efforts to perform an ultrasonic inspection of the CRDR nozzle instead of the dye penetrant inspection specifie by NUREG-0619.
The fatigue evaluation of the CRDR nozzle considered the number of pressure and temperature cycles the nozzle has experienced to date as well as an estimate of the number of future cycles.Finite element stress analyses of the nozzle were performed to determine the stress distribution in the nozzle due to the pressure and temperature cycles.Stress analysis results were then used to calculate nozzle fatigue usage and crack growth rates.
1.1 BACKGROUND
In the 1970's, a number of BWRs detected signiTicant cracking of feedwater and CRDR nozzles.The cracks in the CRDR nozzles were caused by thermal fatigue resulting from changes in cold CRDR flow at the nozzles, The NRC issued NUREG-0619,"BWR Feedwater Nozzle and Control Rod Drive Return Line Nozzle Cracking," (Reference 1)that identified interim and long-term recommendations regarding this issue, including inspection requirements.
For Nine Mile Point Unit 1, the inspection requirements include performing a dye penetrant (PT)examination of the CRDR nozzle internal surface during the upcoming 1995 ref'ueling outage.NMPC plans to perform an ultrasonic (UT)inspection of the CRDR nozzle instead of the dye penetrant examination based on the following:
1.Automated UT inspection systems are now available for performing accurate inspections from outside the vessel.UT inspection systems at the time NUREG-0619 was issued did not provide sufficient detection or flaw sizing capabilities.
2.The CRDR nozzle thermal sleeve design (welded in place)makes the nozzle less susceptible to thermal fatigue cracking than the original designs at other BWRs.In fact, no damage to the CRDR nozzle was found during the 1977 in-vessel PT examination or in any subsequent examination.
1-1
3.Detailed analytic modeling of the CRDR nozzle shows that small surface flaws will not grow to unacceptable values within specified operating periods.This report addresses Item 3 above for the CRDR nozzle.In addition, this report documents the results of a survey of BWRs regarding CRDR nozzle inspection history and experience.
The implementation plan for this task is provided in Appendix I.1-2
P&qMPR ASSOCIATES INC.ENGINEERS Section 2
SUMMARY
Three pressure and temperature cycles were identified for the CRDR nozzle: startup/shutdown, reactor scram, and hydrostatic test.These cycle are defined for the CRDR nozzle as follows: Startup/Shutdown
-a reactor vessel heatup/cooldown between power operation and shutdown or standby conditions where the shutdown is achieved manually by plant operators.
Reactor Scram-a startup/shutdown cycle where the shutdown is achieved by a reactor scram.~Hydrostatic Test-reactor vessel pressurization and depressurization to identify leaks prior to power ascension.
The number of cycles experienced to date, the number of cycles experienced since the 1977 PT inspection and the projected number of cycles in the future are listed below.Star tup/Shutdown Reactor Scram Hydrostatic Test Number of Cycles to Date 96 100 18 Number of Cycles Since 1977 PT Inspection 38 27 9 Projected Number of Cycles per Year 5 The reactor scram transient is the limiting cycle for CRDR nozzle stresses, Finite element modeling of the thermal transient shows that the peak stress intensity in the base metal occurs at the end of the transient in the bore of the nozzle just above the blend region.The peak stress intensity due to pressure and temperature was calculated to be 110 ksi.Fatigue analyses show that fatigue usage for the CRDR nozzle is very low (approximately 0.003 per operating year).For the calculated stress and the number of cycles experienced to date, a fatigue crack would not be predicted to initiate in the 2-1
CRDR nozzle at the present time.Considering the calculated stress and the number of cycles expected in the f'uture, a fatigue crack is not predicted within the life of the plant.Fracture mechanics calculations show that a postulated 1/4 inch flaw located in the highest stressed region of the nozzle would not grow to an unacceptable size within the life of the plant.The postulated 1/4 inch Qaw is calculated to grow to a depth of only 0.4 inches in 40 years.A 0.4 inch flaw does not exceed the allowable Qaw size for the analyzed section of the nozzle which is approximately
0.5 inches
based on criteria given in Section XI of the ASME Code.The allowable Qaw size provides signiTicant margin to ensure the nozzle does not fail by brittle f'racture.
2-2
PAIMPR ASSOCIATES INC.E N&INEERS Section 3 DISCUSSION
3.1 DESIGN
AND OPERATION The NMP-1 Control Rod Drive Return (CRDR)nozzle is a 4-inch reactor vessel penetration located at the same elevation as the feedwater nozzle.Figure 3-1 is a section view of the nozzle which shows selected dimensions.
The CRDR nozzle is equipped with a thermal sleeve which is welded to the CRDR nozzle at the sleeve inlet and extends into the reactor downcomer with a circular plate at the end.This design is intended to protect the bore of the nozzle and the vessel wall adjacent to the nozzle from the relatively cold CRDR flow.The Control Rod Drive (CRD)System provides water from the condensate storage tank at a temperature of about 70'F to the control rod drive mechanisms to cool the control rod drives, to reposition rods, and to scram the rods.Under typical plant conditions, the system operates at all times when fuel is in the vessel.During normal operation, flow from the CRD pumps is maintained relatively constant with a portion of the flow recirculated to the condensate storage tank, about 30-47 gpm of the flow used for control rod drive mechanism cooling, and about 17-35 gpm (the remaining flow)returned to the vessel via the CRDR nozzle.Some accident sequences involving loss-of-offsite power may result in system shutdown for a short period of time, These accident sequences are not considered for this analysis.The flow rate does not change as a result of repositioning a control rod since the flow diverted to move the rod is compensated by the water displaced by the rod drive which is routed to the CRDR line.A reactor scram results in a CRDR nozzle flow transient.
During a scram, the CRDR accumulators discharge to drive the control rods into the core.This results in an increase in CRDR nozzle flow to 65 gpm.When accumulator pressure drops below reactor pressure, CRDR flow rate goes to zero as the accumulators are recharged.
After the accumulators have been recharged, CRDR flow rate returns to the nominal 17 to 35 gpm.3.2 LOAD CYCLE DEFINITION Table 3-1 lists the pressure and temperature cycles which were considered in the structural evaluation.
The number of cycles was determined from plant data regarding the number of plant startups/shutdowns and scrams.The cycles are defined as follows: 3-1 0
~Startup/Shutdown
-a reactor vessel heatup/cooldown between power operation and shutdown or standby conditions where the shutdown is achieved manually by plant operators.
~Reactor Scram-a startup/shutdown cycle where the shutdown is achieved by a reactor scram.~Hydrostatic Test-reactor vessel pressurization and depressurization to identify leaks prior to power ascension.
The number of annual cycles expected in the future is conservatively estimated to be 50%more than the average annual number of cycles that occurred over the past 10 years.A calculation of operating cycles is presented in Appendix'A.
33 STRUCTURAL ANALYSIS Stress analyses were performed to determine the stresses for the fatigue and crack growth rate analyses described in Section 3.4 and 3.5 below.Transient thermal analyses were performed to calculate the temperature distribution in the nozzle as a function of time for the reactor scram transient.
Steady state stresses due to pressure and temperature were calculated at specified time intervals throughout the transient.
The sections below describe the finite element model, material properties, boundary conditions, and results.33.1 Finite Element Model The ANSYS computer program was used to develop a finite element model of the CRDR nozzle.The model includes the CRDR nozzle itself and a sufficient length of the reactor vessel shell and attached CRDR piping to eliminate interaction between the CRDR nozzle and the structural boundary conditions applied to the edges of the vessel shell and attached piping.The three-dimensional nozzle-to-cylinder intersection was modeled with a two-dimensional axisymmetric model of a nozzle in a sphere.The equivalent spherical radius was chosen to be 3.2 times the radius of the reactor vessel cylinder to insure that the maximum hoop stress and stress intensity calculated by the axisymmetric model would be comparable to those in the actual three-dimensional intersection.
Appendix B documents the finite element model.The finite element mesh of the CRDR nozzle is shown in Figures 3-2 and 3-3.33.2 Material Pro erties T he model of the CRDR nozzle is composed of three regions with different material properties.
The reactor vessel wall is SA302 Grade B low alloy steel.The CRDR nozzle is an SA336 low alloy steel forging with ASME Code Case 1236-1 for nickel addition.The clad is assumed to be Type 308 stainless steel.3-2
Temperature dependent material properties were used in the thermal'a'nd stress analyses of the CRDR nozzle.Appendix C documents the material properties used in the analyses.399 Thermal Bounda Conditions Thermal boundary conditions for the reactor scram transient are discussed in detail in Appendices D and E and summarized below.The last portion of the reactor scram transient was modeled.Initially, the CRDR nozzle is at a uniform temperature of 525'F corresponding to zero flow through the CRDR nozzle as the accumulators are recharged.
At the start of the transient, the CRDR flow rate is step changed to it's nominal value of 35 gpm with a fluid temperature of 70'F.Heat transfer coefficients and bulk fluid temperatures are applied to the inside surface of the reactor vessel wall and the bore of the CRDR nozzle.All other surfaces are assumed to be adiabatic (insulated).
Appendix D is a calculation of the heat transfer coefficient in th'e CRDR nozzle bore.The overall heat transfer coefficient between the CRDR fluid and the nozzle bore which includes the effects of the thermal sleeve and water annulus was calculated to be 100 BTU/hr-ft~-'F.
This includes the effects of the fluid film on the inside surface of the thermal sleeve, conduction through the thermal sleeve, and natural convection through the stagnant fluid layer between the thermal sleeve and the nozzle bore.A heat transfer coefficient of 1000 BTU/hr-ft2-'F was used between the bulk downcomer fluid temperature and the vessel wall.39.4 Structural Bounda Conditions The structural boundary conditions for the stress analysis include applied pressures and displacements (Appendix E).A pressure of 1250 psig was applied to the inside surface of the reactor vessel wall and the bore of the CRDR nozzle.A negative pressure was applied to the safe end to simulate the axial load in the attached piping.At the end of the reactor vessel wall, symmetry boundary conditions are applied to permit radial displacement and to prohibit rotation.At the safe end, couples are used to allow translation of the safe end but to prohibit rotation.39.5 Results The peak stress intensity in the base metal occurs at the end of the scram transient.
Figure 3-4 shows the calculated temperature distribution at the end of the transient.
Figure 3-5 shows the calculated stress intensity distribution at the end of the transient.
The peak stress (110 ksi)in the base metal occurs in the bore of the CRDR nozzle at the base metal to cladding interface, just above the blend into the vessel wall.The principal component of the stress intensity is hoop stress.3-3
3.4 FATIGUE
EVALUATION A fatigue evaluation of the CRDR nozzle was performed based on the load cycles defined in Section 3.2 and the results of the finite element stress analysis discussed in Section 3.3.Nozzle fatigue usage for current plant operation conditions was evaluated on a per cycle basis.As discussed in Section 3.2, the CRDR nozzle is subject to startup/shutdown cycles and startup/scram cycles.Fatigue usage was calculated for both of these cycles.The nozzle also undergoes hydrostatic testing;however, this cycle is bounded by the pressure-temperature conditions during a startup/shutdown cycle.Fatigue usage is calculated by: u=g n N where: u=fatigue usage n=number of cycles which occur N=number of allowable cycles based on the cyclic stresses A fatigue usage of 1.0 indicates that there is a potential for fatigue crack initiation in the nozzle.The allowable cycles are determined from the ASME Code Design Fatigue Curve for Carbon, Low Alloy and High Tensile Steels (Reference 2, Figure I-9.1).This curve provides a conservative number of allowable cycles for a given alternating stress range (safety factors have already been applied).Therefore, use of this curve for the usage evaluation provides a conservative estimate of fatigue usage for the nozzle.Calculation of fatigue usage for startup/shutdown and startup/scram cycles are documented in Appendix F.The calculation is performed using the peak stress intensity range on the base metal inside surface of the nozzle for each of the cycles.The fatigue usage for the nozzle was calculated to be 1.963 x 10~per startup/shutdown cycle and 3.848 x 10 per startup/scram cycle.Based on recent plant operating history, there are approximately five startup/shutdown cycles, one hydrostatic test and four startup/scram cycles per year, which corresponds to an annual fatigue usage of 0.003.3.5 FRACTURE MECHANICS-CRACK GROWTH RATE Crack growth of an assumed pre-existing fiaw in the nozzle due to the pressure and thermal cycles defined in Section 3.2 is analyzed using the Paris crack growth rate equation:=C (AK)dN 3-4
\where: crack growth rate (inches/cycle) da Gn stress intensity factor range (ksiPin)C, m=constants (dependent on material, environment, and loading)C and m are taken from the ASME crack growth curve for surface Qaws in a water reactor environment (Reference 2, Figure A-4300-1).
The stress intensity factor range is the maximum change in stress intensity factor during the given cycle.Stress intensity factor is a function of stress and crack size.As described in Section 3.3, stresses were analyzed by Qnite element analysis, Using the Qnite element model results, a section though the nozzle wall, passing through the peak surface stresses on the inside and outside surfaces of the nozzle, was determined.
This section is located in the blend region of the nozzle near to the transition to the bore region.A third order polynomial was Qit to the stresses through the section as a function of depth through the nozzle.Stress intensity factors were determined by the methods of Reference 3.Stress intensity factors are calculated as a f'unction of crack size and the polynomial coefficients from the cubic stress distribution.
A computer program that calculates crack growth based on the method described above was developed to analyze assumed Qaws in the nozzle.The program description and veriQcation are documented in Appendix G.Inputs and results of the crack growth analysis are provided in Appendix H.The results of the crack growth analysis, assuming an initial Qaw size of 0.25 inches, are shown in Figure 3-6.As shown in Figure 3-6, the assumed 0.25 inch initial Qaw will grow to approximately 0.40 inches in 40 years of operation.
The results indicate a very small crack growth rate for a crack in the CRDR nozzle.In addition, the 0.40 inch final Qaw size is less than the allowable Qaw size of 0.5 inches.The allowable flaw size for the analyzed section of the nozzle was determined from criteria given in Section XI of the ASME Code[Ref.2].Determination of the allowable Qaw size is documented in Appendix H.An allowable flaw size of 0,5 inches provides signiQcant margin to ensure the nozzle will not fail by brittle fracture.The applied stress intensity factor for a 0.5 inch flaw under the most severe stress conditions in the nozzle is approximately 81 ksiIin.The nozzle is not predicted to fail by brittle fracture until the applied stress intensity factor exceeds the critical stress intensity factor for the CRDR nozzle material.At normal operating temperatures the critical stress intensity factor is approximately 200 ksiIin, which is more than twice the applied stress intensity factor of the 0.5 inch allowable flaw.3-5
3.6 EXPERIENCE
SURVEY A survey was performed to determine the experiences of other utilities with regard to CRDR nozzle cracking.NUREG-0619 responses to the NRC from utilities operating BWR plants were reviewed to determine how the CRDR nozzle cracking issue was resolved at each of the plants.In addition, several utilities were contacted to determine more detailed information about inspection practices for the CRDR nozzle.The results are surnrnarized below.Review of utility responses to the NRC indicated that almost all operating BWRs cut and capped the CRDR return line, either with or without flow rerouted'to another system.Plants with a capped CRDR nozzle are not required by NUREG-0619 to perform inspections of the nozzle (besides a final PT inspection required prior to capping the nozzle).However, some plants were operated for extended periods of time with the CRD return line valved out, which NUREG-0619 considers to be a temporary solution.In addition, one plant, Oyster Creek Nuclear Generating Station, has continued to operate with CRD return line flow through the CRDR nozzle.Oyster Creek is the only other plant besides NMP Unit 1 permitted to operate with the CRDR nozzle in service, Several plants, including Oyster Creek, were contacted to determine information about inspection techniques and results of nozzle inspections.
T wo of the plants contacted, Duane Arnold Energy Center and Quad-Cities Station, found cracks in the CRDR nozzle during recent inspections (past Give years).At Duane Arnold, the CRD return line was valved out and capped with a blind flange in 1982.During a visual inspection of the CRDR nozzle in 1990, evidence of cracking was found and a full PT examination was performed.
A crack approximately 3 inches long and 0.25 inches deep, just penetrating into the base metal of the nozzle, was found and ground out.The nozzle probably had a thermal sleeve installed prior to being capped;however, the type of thermal sleeve is unknown.The plant performs a visual inspection of the nozzle every outage, but does not perform any ultrasonic inspections.
Quad Cities operated with the CRD return line in a valved-out conflguration until 1989 when cracking was found in the CRDR nozzle.During this period of operation, the CRD return line was visually inspected every outage.As a result of the cracking, the CRD return line was cut and capped in 1989.Since that time no inspections of the nozzle have been performed.
In both of these cases, cracking was found after a signiflcant period of operation with the CRDR nozzle isolated from CRDR flow.Most likely, cracking initiated prior to isolation of the CRDR flow, but was not identifled until later inspections, Oyster Creek is the only other plant (besides Nile Mile Point Unit 1)allowed by NUREG-0619 to operate with flow to the CRDR nozzle.Similar to NMP Unit 1, Oyster Creek applied for an exemption of the NUREG-0619 requirements for the CRDR nozzle, including the scheduled PT examination.
Based on automated ultrasonic
~~~~(UT)examinations of the CRDR nozzle, which did not identify any indications, Oyster reek was given an exemption from the nozzle PT examination until the next refueling outage.Qualiflcation of the UT system was performed using a mock-up of the CRDR nozzle.Even though the UT system was designed specifically for the nozzle geometry, 3-6
I there were several problems encountered during setup of the system.Mounting the system took longer than typical UT systems due to space constraints around the nozzle.In addition, removal of the mirror insulation around the nozzle area was expensive and time consuming.
After the inspection, a new type of removable insulation was installed to provide easier access for future installations.
3-7 0
Table 3-1 CRDR Nozzle Pressure and Temperature Cycles Description 1 Normal Startup/Shutdown 2 Reactor Scram 3 Initial Hydro 4 Refueling Hydro 5 10 year ISI Hydro Reactor Vessel Pressure (psi)0 1030-0 1030 1250 0 1875 0 0>>1030-0 0 1133 0 Downcomer Fluid Temperature
('F)70-525-70 250 250 250 CRDR Nozzle Fluid Temperature
('F)70 70<<525<<70 70 70 70 Number of Cycles to Date 96 15 Number of Cycles Expected per Year 5.0 3.9 0.0 1.0 0.1
23 e~')ASS CQ.SKQ I gCULCL I'QTLRe~I t$0 Ji Vc 4 8>~~~mt'TT I cue nor.~~tg ncuovr.l up~t I Tb~+prre<v+'.i)a eisa)~'Mi7 (Sb~T.IL)Z1 VO Vreeaa RCr.)4~~q~'-iTYTT, SYSIEII gETUTPTT uCJ LE KSQ'Y Figure 3-1.CRDR Nozzle Dimensions
il',j f llRllllIWIIIIIIIIIIEIIIIIIIIRIlllIllgggyyygIlllt
'J," i~l)llew%%%%%ASRSIOSIONAOOSOSk500%000iiggg
<<Will%%%IARAARIIAINIIARSARIlIOOO klan%g ggyININll<<1tIINIIlg jg II (~//Il Jllmssaskskaasaassssissaaaaisg~~gpg llkNIIILIlllggpNtII INIIgyygggy
<il)'p/(]/
t(gggggaaaaaaaaaaaaeaaaaaaaaag~~~~)
NNkOOOOggg~~
)'P/)/<III jjaaaaaaaaaaaaAaaaeaaaaakiaaagaggi OOOOkOOOOkggOO OOiNkOOg'>'<>ISO JlOSRSk%+++++++++++++++++++I+INOO+lg+Ogaa OOIOOaaigk44OIOO+gg
)<ittye ssssaas<<w>>>>>>+++i+++++++++++iasgaaeae+ig++++~isaizg++
kkIhggg+OOI (If 4ggg ggggggiwgsakWSQOWSQOWkSOi 1%1 aaaagggg()(kkOkI 1+ggg asaesegz O4tk Xq~%+1as<<eataee+>qx eeassg p~~~~mee@>>
~~~~~wwm~~~~+++raeewaaq
+++Aaeay~wa~~+alas+~c~~
Illlllllll~ls>
ylllllll>gt~p llllllllll IIII~)l<)p~gy))l)~)(lpga/j illa'~'>If(l>~l//j god,'hagi~/j fbi)]4~~%Iaaaammmmmmmmmaa
~)~lykyggggRR%%%~%%%g%%%
WaOrsnaammmmmmmmmmmm
%~~~+~~~~~~~~~~~~~~~~~~
i 0 ANSYS 5.0 APR 4 1994 16:33:47 PLOT NO.1 NODAL SOLUTION STEP=2 SUB=21 TIME=3601 TEMP TEPC=9.434 SMN=88.846 SMX=523.562 88.846 100 200 300 400 500 600 Figure 3-4.Calculated Temperature Distribution
4 h rent a w Q~7Q p:P ANSYS 5.0 MAR 31 1994 10:40:18 PLOT NO.1 NODAL SOLUTION STEP=14 SUB=1 TIME=3600 SINT (AVG)DMX=1.462 SMN=3533 SMNB=2569 SMX=96413 SMXB=105008 3533 13853 24173 34493 44813 55133 65453 75773 86093 96413'+~~Figure 3-5.Calculated Stress Intensity Distribution
0.44 0.42 0.40 0.38~0.36~0.34 (~p 0.32.0.30 0 0.28 0.26 0.24 0.22 0.20 0 50 I I I I I I I I T I I I I I 100 150 200 250 300 350 400 Cycles (10 cycles per year}Figure 3-6.Fatigue Crack Growth
PD1MPR ASSOCIATES INC.EN&INEEITS Section 4 REFERENCES 1.NUREG-0619,"BWR Feedwater Nozzle and Control Rod Drive Return Line Nozzle Cracking, November 1980.2.ASME Boiler and Pressure Vessel Code, 1980 Edition with Addenda.3.Buchalet,'C.B., and Bamford,'.W.H.,"Stress Intensity Factor Solutions for Continuous Surface Flaws in Reactor Pressure Vessel," ASTM-STP-590, 1975.4-1 I'
rpMPR ENGINEERS Section 5 APPENDICES A.Calculation of CRDR Nozzle Thermal and Pressure Cycles B.CRDR Nozzle Finite Element Model, Geometry C.CRDR Nozzle Finite Element Model, Material Properties D.Calculation of Heat Transfer Coefficients E.CRDR Nozzle Finite Element Model, Boundary Conditions and Results F.Low Cycle Fatigue Usage G.Crack Growth Rate Computer Program Verification H.Crack Growth Rate Analysis Cases I.Implementation Plan 5-1
FA1MPR SSOCIATES INC.ENGINEERS Appendix A CALCULATION OF CRDR NOZZLE THERMAL AND PRESSURE CYCLES
lLRMPQ MPR Associates, Inc.320 King Street Alexandria, VA 22314 CALCU LATION TITLE PAG E Client rv lg&ARA/YloH AWK, Pa wG R C~Rf'oRATlo Page 1 of (2 Project F'P(~LIP l T/gQA/TgoL-R~DR i v'8 g,G Tu~A<Ya/E 1 HGR~c AAD PREssua.G cygne E~Task No.c 8 S-~~a Calculation No.(PALS-23G-/SR-6 I Preparer/Date Checker/Date Reviewer/Date Rev.No.~/lo/9P s/~o Fdi~P/~o/Vg I c~+~a.(3/Sl ('i9
lxIMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No.o8s-'Z3c>-48 P=D(Revision Prepar d By Checked By Fw[lw(c~Description Page~~+I C lMgw lSSyE;p.3 AuD).9.DELETED><5'7A V uF'/sHU7'Do~~
C)'CLOS Rat WTeb wo SwR'Top'ES'v's A~V<Rh(u(~C C~i~i COLS Pe f'.rOX~Gr>P l965'.TH Zsr uCL.e S DELETE'D tOiQ!VOi iWVC LVE Pl A~PeATUP.
K%MPR MPR Associates, Inc.320 King Street Aiexandria, VA 22314 Calculation No.i Prepared By C7B5-ZQO-A8R.
Dl~gg+REV>i Checked By Page~lo5E: TH 1 gP SE oF TH 6 AT DEF(~Th'E 7flERPAC 4~b t RCS5ugC.cgCI G5 Oa TAE'co~Res-Rot DgiyE R~TuCW (cRDRD A'oKKLK/Ar TAC AINE~IL-8 F'otNT U<17/F'.E'AC7og l/ESX'G~~TC CuVuZ 7'OweE'R c F CYCLES 7u ngTE, PND~o s 557 tAA tE.gflf A/U/vl8f R.cg F FUTUP.c<y~eE.s.GumWA l2 p'REALS<l 0 E<Vc~-Clod'TC~F W CY~t E'S ToTA C 10 PRESenn.I.O~ia~r~o'7ow 52.5&7c7 70 96 g.o 2..0~i25o~o 7O+57 5 W/O 70 s-9/2 5'o 7o+5z g w7 lOo 0 W[875&0 O&IO3e~+zoo 70 D~Ilrz~0 zoo 70 CYc~z):u~a+Ac naRTvp/gHvv'oo~m lvcr.G5 2.A~D p.S~ARTcrP/Sc IZAAK cvcc.e's y 5 zn b s.'Essec HY.bR~s>AT'tc mesmer
RMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.oes-z~o-/8 p-ol Prepared By Checked By (7-equi~Page g(hro CE E SC, TRKQAAL 5'LEKVAR PL.ATE cRD cg~R RBAcyoR SH Rou~ClzQ g/courggA4gug VW~ss.~&At L, Po~wCo~p~
~i lLiMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.o8+-2.3o-A8R-6/Prepared By Checked By g/,'i,~Page IN I HE'ESSG-I So Fco~-F+!Ra UC H Ttt E Cygne iso>RLC tS>)p(cAL&o RmgL FLaw 7 HRav>tf-FpC Ao KZL 4-.(5)7"3,5&PA SAC f46~DoE 5 nroT CH4k+C g S A l2ESu C.7 C7F gePo~ITIdd(N con TRoL a<D gijvCh THAN FLo~DIL/5'ATES vo~oVL-THE'~D IS GamPE'mSATe D BY TRC u 4TZR E ISf'L,AC~+
EY q HK CR2 C ERICH>>JZ.o4'mD 8 4c k.To WH 6 CRD R, I-I we.4 R<A<Taf 54RC}Al RC SvLTS ln F<o~rR+&S(E&7$
7 HRo>G-H 7 I-(E.cgOR.no%7-LE, UPON A 5cRAAh SI&~QLg 7 HL CRS RccumuLAToR.s D(ScH/R@p Zo baal 1/E'HE Ccwrgcl f2'ops'A7III s RE 5ULT'5 IAJ T ffE'jz.Q cooLI>c-FLow Egl!AC-gey IP Q'$7/5 7'HK C Rg g.WOt~LE>(NC IZ<85'I]VCr A'O~yLK F LO~TO 6S G.'PPlAFTER Rcc.umUt AT'os.PRESSukK DRoPS eFLow RCAC'TO%F'RESSED'P-t)
V IRTVILLy ALC CRb 5'/ST'8'I.a4r 6<<>RC-CHAR.6-E
~HE Ac<,umUt QToNS'q-HvS, CJZDR AokkiE'5 0&PA.<RbR Ato>tLE FL<<Is gE-c 5rABLI SHKb
RMPR MPR Associates, inc.320 King Street Alexandria, VA 22314 Calculation No.Prepared By o85-23o gal-0)gg.Checked By T+(,~f o.u Page.HL Q~AL-ze sMRE c cL P,ISED Ch/7HZ 4848 DISC.uS5'(cr~S C'yCI Eg 4AC COmS'<DE,P.gQ F.OR 7 r~~F'eP.HV (~~maDC 5~4'cga%L 57A+IIP j/IloiZAnAC 5H(ITboN~8~5 NO ZPlAI ST+RT'I/P/5cR/A1.
HyDRo TEST PPessURE cycLE5 ARE ALso Co~SI E Z 8 Eb.THE RMAL C YCL+5 t9Rt=-R'E.PRESE'ATES 9'f 7 HC Fl MIQ TL=WPE R.ATVIZi PvsiDq THE 1 HERINA<SLEEK (T)A4D THE Do~uconn&R.(M~).WHE'~Cgt)fZ F:Lobed STol'~DuRimC-4 S<gAhh,,%HE't vip YS&FGQATUPE IA'HE THCRmAL 5(O'EVE IS'55k'WL=.D
+O 8F<HE SW~G'S 7 HE po4~Cu~6+c" g Clog 4C.
o RlMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.e ps'-w~>-$8P=o(Prepa ed By c7-8.Checked By 7@I;~/-.Page S~~<<C F'/~ur~Al SHvTD~u~.g Cacvoa pg e,ss uR.E, C]o sip)p=tog~ps'p~~~g;~~Pv'cg5 pv<Cp'Ro W<~e'A,AT(A/4 Q4'pg oruo H0,g<(x>/>I A rrWcneZ-dnrO V FSAIQ GTvlpg~'rut 6 C r)60O-7(&L.T>,=4%5 F<cp~"-lo F~~DC~+4~OPIA.A.fgAJC-b4 74-0/oo Hz,5 oAr Gl LP/9/P s sue vivum Tera(8 M7vRr Fo p.Rect RC vL/lac~f'v~ps)/VoT~: Mr GAPt-iER$84RZ 7HrZe was~erg EAPHAsiS Rd~P T'ggi~]v Cc)wytgloAJ5
~(CRT Fogy J O cyc~84~~HKAG paSSSVae'lo3~
p pic)r4WJ)Wp~(~ZS 4'cc>RP-F-D.<HE8>vE'.gc L E 15.As'svw<o 7>gdtjwD 8l-L G)CL.E;S
WMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.d 8'5-73o-A8 R.->l Prepared By Checked By Page g 5 78 R 7 lJ P/S~P-AM,-IZcag'cA c To/Z PRe,ssoeG I 0'3a psL 5C,PAhh, I Go<<~l>5o psig-Pr~ssur~p sip 5afef/(r s.(ur-qadi).
Agsu~l+o c.ur or~]l Sc,r~~S,.<<~p~aATuRG PoF)+a~=5 l.a CQQR FgP c~~s glZYATI 5AA'Pagss'Ugc, i s possum 87 I%SO i sip SLIP.I QCCCr~Vg g PuP~~Wc Hcl C6-tnJC.I iih f, A cc o~ulA l aQ, PEWIIAP G.le.H VD<o 5~ATlC, q g g T Pg.C<5U pg cy(gf'.~L,~-25>F PER I Imi'Ts Irv Tgc..g SPQQ 3 Q.~(/de upTQ iS aPPy)>~<<H>'DR<'-.P=l875 psL'g ('Re.F.uVSga.)El~+<E'AcH pa FVGIIAIG':
)OZcr pa Pg (DPEMTIMC P)'>P'<2<X'I-l>X l>rCPSC~=/lZ3 PSI'g (RF<-rt/Pipi iP7 ooiP-p-ls)COMDR, FL~~lS HSSV WSQ FC R H'IPDRa ST/7'l C~PS~~, I
ti~MPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.VGV-I<s's-vs~-A 8 e.-g)Prepared By Checked By Page U&ag12.DF cY<LEs/yPLPC, PEg5ouAKL yzyei.oPG'5 4w OKrggg S'uwdnARy Fog.~~['(~H ifDKA'Tl Fi K5 yH I: Pn TE TPPG(~.~.5'cd<SHVTbO1V&>
fdoT 5'TRA'D8'/)
IZEWSOW A&5 DVRATfd&oF FC)ce cvTADE..8ASElO c~Zge 5VhfptApy, 7-pZ F'oLc.oi i~6-fS 7 HE A'O'AQG R,>F c YC,C.E5.~P ksss v P.6+Dc 4o.CP'C L,6S 0 Co io'30 Wo STAI.Tuf/F sa'g I 5 8 tn pow pl N<o 52.5 j70 F 7o F 5 TFIPTu/P ScRAM 0vo/250<o~@sip 125o pic'g qo y~5'2-5 go7O F 7'd'or~sz<<o 7a F lOG lod H ypR.op~ATiz Tt-.sTS 01@l88'~>pi'g Prr/o30 vo Opgi'~Pt~I133 to,4's'QO L5o F Z.Sc F 7o F 7o i-7<F moue i'u<AC-O'Zo HoT g7gmD 9'y 3Rw i~CLu 5Kb.mom'c Z.RO RE'ACTOR STARTS in/l942 Aa SlARTVP<6$YS TRAlA'tPc-CR,tTlCAL,S ARE h/W iNculDEb SECBVgE No I F'L]9~pgATuF W'AS IuVOL VED.<<DR.Ft o~iS AsSQWSS DtJRimC HQDpcfsf'~
ric g8's'75
lLWMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.~g S-~a~-Wsa.-ul Prepared By Checked By 7~I'(gc,.-Page I~AhtTic (PA t=AVM 6'g OF'C,LC5 PVlZ(ug~VTUCf+<BgAT(aAI THE AluT(cip87ED FutuaE iv'vplBER QF svA R7op/s'N vr Do@~AA/9~gglQ P SGRAjN C ycc c g pg~el.L, 4S Iiyp+O5'r~/4
~g T PRESS'Vg.i-C~~~eS/S8WSEC O~Zrl.~7iVe~y RECT~ILA~EPPES'RIEWCE':.5'i~DE 7HE HWD oF rNE lP&N IZGFCJELbV&
(6/8Q-//99),ADJI/SYED FOR~:HG.'3m nna~TH Our'A6-t=.
in l>87-, l.99O.2'T.Is ASStta GD 7 HHT t=VT~R,t oPR'pe(da.
~ii~NAV'L 50 fd&OP.4 5'NVYbomwg AND 5oRAA'rt5 (AAWV+al y)7HS T~Tl C.1 6 SIT PRF SS VQG Cye L.E 5 I T l S, 4~5~~6 5 1pAT T~sTs"o 4'PE@A'Tlpd-PREssugE.(Iozopsg sviLu occup ouse PER.Yen'WHC cc~a.E~r aF~RAl'l~C C,y'CL,E-lg g.9 Pss~TH~As~u~P>l~~
I5 AVG@uATE~a Iccov~Y'uQA alp-4yC, ouv'A&g As~s'uv).7HE Is/7ssTPRessu<G (IIX'sst)"<<<ONCE Q Vf P.P/0 y5'4 i25 BYOIZ>5 Q TlC EST"rFAF'8'RAToCGS
/RC<SSuAG>~8E'~F 6RCATC<Fog, fv7uf, c.yet.E'HATS AT lSK<PY.)N~u~~~A Rp<Fls A~woAL c~lc~c 5 F~R Fwvtz.E)~PGp-ATt4'~
4Rc., P RESS uZC h/o.cyc~C S'/R.>SAavuP/0-I03~-0 psst 5 H o<bcJ~~7b-$25'-.70 7a F 5", 0 svAavuP/s'~CA" o IZP'-a-ps)g zo-72,5-7o F 7&F 3.9 Hyi r~ST WTic-7 ESSES I z5<pyle 0-IPPO-C7~'S's,'~0-II Z3'-o Pi goo F goo P 70-5'z5-70
~7o"F CP~Z<<>~>S+SSu~GD b(r Rf JV6 MYDR~57 ATTIC, MS'.
~~>>a~'j I NIAGARA MOHAWK CORPORATION
~OPERATOR NINE MILE POINT NUCLEAR STATION UNIT NO.1 O r))jc pof-")E.!T/)
I 0, O'WIk IE)<f I IH SIEAM IIOW tll)$'>ll COt.II COC.12 CO'..ll COL.12 I<a>>I O E.IEAD W.'LEAD TOTAL QRWQV ti Q ggG P'P gS~~g Q CO)E COIE 1<tf tr Mal.SVCT TENt D~~~f.r.r@EK i K~g'/=K/4V(/gG'EACTOR CIR MPS tVMt 12 tVMt SVCI Dt)CH'IEMt IEMt, SVCT.DOCH TEMt.If>>at.FLOW SVCI D>>SCH LE>>at TEMP.FI Ilies).RTR I'VC I If<at n)12 t)<O I')I)4)S vc D)14'D)IS j n)IS I D)II D)IS I'Sa Li)IF raw I CSIS Aa)I 41 S>>'e<1 Aa)0 I I Aa)1 A4)2 4)SINI Ac)~t Aa)S A~)I ILS/Nt Aa)S Ac)A440 4)SINS Acl)A44>>'ec~l)ir~I: 0()o th')3().3>>('3('0(:)4 t.c0 9"00 C>e'i(i 4,<<~~'(>>a>>6()(l 70()c".;r'(>>I I~f>>t(cr;0 3 r'0 I c/2~}034.'l I C/cl/c/W-".()a a'!a(6!aa'4~~r a~I ar 4!Zc),')2 V.'J'i)r ar<<r>>mr>>,~r 4>>a!Cr>>I t I I r Hi~I'2'I'7.'I Jca)8..25~..8~aZ3!i~>><<<<c r'atv<<le 1~.(>>C;4"'i'<<'%a~I,<<<'.('D T I)r),e (>>a: 0.vc i J<<>>Oi 0.)'i 0.5'=0.rZ!0.wc>>Oi." 1;0."(: e I 4.'6.!ZZbb)ll c0 74J3 i('3 I?bi?~F 7/jt)>>'/:5 I 7.2 e 730 7>>)',/atC.7<<a<<68c)ia)}/: '.;('r VH",I (:>>Zb I 10/()67.j26 j/r g/r>>p~541 I'54 I~}7 I c 327:ct 4:":~I'I Cj;)3<}~;I a}" I})31~~I 4~C>CI jl>>I r 365'.:: (-"-1 3/r'/r>c~ct:3'C,~/<<r~>0 r': 3C 36~(tr'..blab~'0c/~3(,c(Ca~<<>>0<r
.4:<<40 I'I c'".'I r)I b.:~(>s.,%01 j Cj'.'I 7 i.)P%>>3'.)'<<I c/S'.i0 1 Cc/tc.3 i 5 I~('ll t'o5-,11(.~r)pc,~S I~ca 1r'a(el 4'.a"4"'I=OJ 2"I)/e~w 6'<<0JCc/D:I C3rc>>03 l9/, ca r.'2>>0 cg)Fb I 3()bV<<)C)3)4S C.a z1,34)04>)c?6
[30/>>05022) fb)3}a>>C.<<0Z.I/C't I/-c)r ra)a'I Zr'i},'()ea>>I: v"'!tLb i 363,<<C<<<<a\qc)~AQC":.c.(" 11'!Zb'2 I I 2:"bc'3"6'?.jl I:.ci bc).3'170.<3.: i 0366 J.4>>T/0.I;: j(CC AY.b I j'0.01!04>II(:<<>>3/0~4 3)i I i Ibb'J.I I 0.4 I'.j'a 69.6 4/(>.Z<.e>>'<<T'I'2'.076:./6::": 6E).:4<<L.c/.?r~2.: I b~).I 36'!.?C>162~-'36c/.Q9, e ir rrt I}'07 t>>I/a'a'!O a"aCLI."rci'c>'('7')7"0~le r.a r~v~i, j}rlc r I>>.~r:<<'a'r 4<<21<<)s'3"'>>}
4 4 r r r H~')c'}c't<3 934>>/3/c)3/")I36 S:c'I 9" 7 66175;/".I!aC>>Cglc le)n,lr)I 34>}(C')I 3'e 1 3 347<<('/: c)/i 3}NO~09~>>'U c agp 04'c>rw>>}r)'/.=-'1 ra85(:/';08: 0'74:0/30'";50c~~()".': 31')C'i:8>>0<<c:I re%4 C{an ht'e~2<~15())'".
>>N,'-)3(ij 34)()c)0A.301C'7')8)
=c 4)b;1)7:02, I C'I')i 7l 34)j}rj~)3'<')6S 3~3 rg g 3ct 7/~-3<}/8 3"'c rt>>D/r.3/}ci0 3<UZI>>art)")ar" ii<<3IOI I 338(!i-.,-"'I~>>>>M/44 a">>Ct<l 4/('>>4'6'I>>I a(I/:-6 I I JO~~.4<<~Jl 12 g~r rr>>!rr 0<<9.r36I 9 c/:>>2'/~~V e i I')CI ctP>>ZZ'zl'l)>I rpc!I>>I C'v~70c;'/I at'.I c.r i" a an@'/a'(:c), r~CC>>r~>>i C->'r'jt".'I 0)g<C~rDC I e~;.3/8})'4'.
()'.C.~tc)'.I cr a.THE=Q/p/>C~I g CscD/~C~Et t=-<A/6-R.rc}Ar 0 i (=WT S SO PC: T,RES c/HovE.em'.0 Te r Tci Tr I'i ej'r
NINE MILE POINT UNIT NON-CFIITICAL HYDROTEST 1400 1200 O'I 000 800 614 eoO K 400 360 0 O 200 NCN-CRITICAL OPERATION MINllvLM TEMP I=TLRE FOR BOLTLP 100 F 100 130 0 50 100'150 200 250 800 850 REACTOR VESSEL BELTLINE DOWNCOMER NATER TEMPERATURE (F)(reactor vessel belt!inc downcomer water temperature is measured at recirculation loop suction)FIGURE 3.2.2.e MINIMUM SELTLINE DOWNCOMER WATER TEMPERATURE FOR PRESSURIZATION DURING IN-SERVICE HYDROSTATIC TFSTING AND'LEAK TESTING (REACTOR NOT.CRITICAL)
FOR UP TO 18 EFFECTIVE FULL POWER YEARS OF OPERATION Amendment Iio.pn, p, pn l27
PDIMPR ASSOCIATES INC.ENGINEERS Appendix B CRDR NOZZLE FINITE ELEMENT MODEL GEOMETRY
y lLIMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 CALCULATION TITLE PAGE Client Nr4~g~oh'5-wW~rn/P~/gg j Or~I MWI7 Page 1 of I3 Project g~>~m neo zan.E-J'WFsS Task No.dew-2 2.f Title~<ODEC~%Md I/r-/'alculation No.~g~-+gal-dZ 8-0/Preparer/Date Checker/Date Reviewer/Date Rev.No.
lx)MPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No.Old-2zf-~jPQ-aI Revision<T.~Checked By P~fib',;Description Page
WMPQ MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.ops-z~-685-o l'7S'Checked By Page Purpose The purpose of this calculation is to document the geometric input data for a finite element analysis of the Niagara Mohawk Power Corporation, Nine Mile Point Unit 1 (NMP-1)Control Rod Drive (CRD)Return Nozzle.A transient thermal/stress analysis simulating a reactor scram was performed.
References 1 and 2 are calculations which document the finite element model material properties and boundary conditions/
results.The ANSYS computer program (Reference 3)was used to calculate the transient temperature distribution in an axisymmetric model of the nozzle.The program was then used to calculate stress profiles due to pressure and due to the calculated temperature distribution.
The results of this analysis, in the form of stress distributions through the bore/blend section of the nozzle, will be used in a fatigue and crack growth evaluation of the CRD return nozzle.Discussion Figure 1 is a drawing of the CRD return nozzle which shows pertinent dimensions (Reference 4).The dimensions used in the analysis are as follows: Vessel Radius RV Vessel Thickness TV Clad Thickness CLAD Angular Extent ANG1 106.7*3.2 inches 7.125 inches.2188 inches 8 degrees Other dimensions from Figure 1 are as follows: Nozzle Bore Nozzle OD Safe End OD Vessel Cut Out R1 R2 R3 R4 2.061 inches 4.813 inches 2A69 inches 5.563 inches 8.688 inches 4.125 inches 1.344 inches Safe End H1 Safe End H2 Safe End H3 The radial dimensions for the nozzle bore, R1, and the vessel, RV, are to the base metal-cladding interface.
These dimensions should be reduced by the thickness of
O lxlMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.4785-g~)t-Q,S-OI Checked By P~74u Page the cladding (7/32").This discrepancy between the finite element model and the drawing dimensions should have a negligible affect on the calculated stresses.Figures 2 and 3 show the axisymmetric finite element model of the nozzle.The'xisymrnetric model uses a radius 3.2 times the actual radius of the reactor vessel.This is to insure the maximum hoop stress and stress intensity from the model will be comparable to those in the actual three-dimensional intersection (Reference 5).The angular extent of the finite element model affects the number of elements in the model and consequently the computer running time for the model.The angular extent assumed in these analyses is 8 degrees.This extent was selected by performing pressure only load cases with models of varying extent and evaluating the stresses at the vessel cut line.The pressure analyses showed that 8 degrees is sufficiently far from the CRD return nozzle such that the stress distribution at the vessel cut line is uniform.Reference 6 is the ANSYS output file which shows the PREP7 echo of the input data.References MPR Calculation 085-229-EBB-02,"CRDR Nozzle Finite Element Model Material Properties", Revision 0.2.MPR Calculation 085-229-EBB-03,"CRDR Nozzle Finite Element Model Boundary Conditions and Results", Revision 0.3.ANSYS computer program version 5.0.4 Combustion Engineering Report CENC 1142,"Analytical Report For Niagara Mohawk Reactor Vessel", drawing number 231-567-7.
5.J.B.Truitt and P.P.Raju, ASME-78-PVP-6,"Three-Dimensional Versus Axisymmetric Finite Element Analysis of a Cylindrical Vessel Inlet Nozzle Subject to Internal Pressure, A Comparative Study" 6.7.MPR Calculation"Geometry", task number 85-31"Low Flow Feedwater Control System", 2/28/83.ANSYS output file NOZZLE.OUT, 87,853 bytes dated 4-04-94 3:45:28 pm.
7v hg 0'o (5 Ql O~Q~+Wz'I 0'b p~74)+2 I l~gcLkCL I Fig yQ'I 5 r j (unQ~.o 0'~e I 4 C~5 0 A Vc e ck I 0 I I~~I~l~rf I'N%X Q4C CÃNCZZ;Q C4 I.'LIW gP W>1u C CA: 5uCL j~~C~RX74 Rv ccats CFOdl(ui~l
,)u+'~eisa~u'L I w~g.j~>>F25-~<<-gvrai'c'1.)K I21 TO 4'f SSEL QCJ:)+rW/ze/~-wYD'5YSPEII gETljgg LlQJ~g D~<'~'L e~CLI Q IQ~x O~Q 0'<0 (0 Co (~g'eI IQ~g Q o
I I I g I e~I tll~I I 4l llNlRRHRNtNNlNRINlllllRIIgg pygmy (l AlENRISllINklllINSENlllalaappplltllOIINNNINIIQQppygmy
((<~I NNSkSNNNkNNNIAIAASIRNINglgggglNINIIIONNISgggggNI 8 I I III ha10aaaixikaaoaaiaskakkaEiaiaaak aakiiaae i il laaaa%kSA%%ikiIAiiiSARLAWLOISaaggggkNS
%000kL)ygygiO)0+)
r'(~<s%%%%%%%%%%RRSR%RSRRlkEAAlkOLSIIggggRNO tlOOOOOlgg 0000y ftll)iigaaoleSSOIIO%1101IOsOagagggla OQOkONONOgggNOOlkOllggg it~)e ssseaassa<<aiii~iaiii+<>sasasiaeeeaewaa++++aiaee+
OOOI1I 1g~~~t+Ot saea+w++++
+~~++~~'~++~+++e>saeaaaaesggg~
++1sasgggg+++1%ggg~
+1 lq%oe+++W~ae~~~>+eaeae~gg
+>+Ihl<ag~
-~~-
I
~erg(!// 1/~)~~/~~/j~// '~laaaaaauan lRNRREIIQ g)y>l]'k)~((//(/ //i~<PA/~/(l((g IR%%%%'8%%%agg g)]~i]]g(((](g %%%5585M%I'i]titllll I aaaaaaaaaaa ]<(~l<4<geuaaaaaaaaaaaaaa (~]py~kIlIllRa~mmmmmmmm55 >y4ieamaaauaaasaaeFa aNNSISRRa%%%%%%%% AiSiiRRSRRWRRSASAR ~~Wmmmmm~~~~~~~~~~~~>> pf Path: C:)NOZZLE File: GEOM.INP 1,511.a..3-24-94 1:30:36 pm/PREP7/TITLE, NMP Unit 1 CRD Return Nozzle Page g~!Reactor Vessel Modified Radius!Reactor Vessel Wall Thickness RV=(106.+23/32)*3.2 TV=7.125 ANG1=82 ANG2=90 CLAD=7/32 R1=4.122/2 R2=(9+5/8)/2 R3=(4+15/16)/2 R4=(11+1/8)/2 H1=8+ll/16 H2=4+1/8 H3=1+11/32 t m~4~~44 gtcilcrc~!Material Property Macro MATL CSYS,1 PCIRC~RVgRV+TVgANGlgANG2 CSYS,O RECTNGIOgRlgRV 2gRV+TV ASBA,1,2 RECTNGiRliR2IRV+TV/2iRV+TV+Hl H2 RECTNG~RlgR3gRV+TV+Hl H2gRV+TV+Hl H3 RECTNGgRlgR3~RV+TV+Hl H3IRV+TV+Hl P'<0'A'wclia//g"Jim rn J/oe~rn~py~g/,~P vrr/gu~4 W 4~~<<ckXcl~Qj~J/~2 (/XA c IC~j'//jZ, 7A J I/isa"ys P Pl=KP(R3,RV+TV+Hl-H2,0) P2 KP(R2IRV+TV+Hl H2IO)P3=KP(R3,RV+TV+Hl-H3,0) A,P1,P2,P3 AADD,ALL YF=SQRT((RV+TV)**2-R2**2) RADIUSgR2JYFgO/1 ~5 YF=SQRT(RV**2-R2**2) RADIUSgR2gYFgOgl ~25 RADIUS/R2IRV+TV+Hl H2JO/1~0 RADIUS/R3gRV+TV+Hl H3gOI1~0 LSELgS~LOCgXgR1 LCOMB,ALL CSYS,1 LSELgSgLOCgXgRV 2IRV+2 Clirm~z~J'"4 v/C~S/c~/~l~l r/~p"r/v~~MPR ASSOC!ATFS, i!i,'g.Calculation No.o s-42$'-Kdd-of Pfopared By Chcc'(c<J f"y Bow~ 4 Path: C:)NOZZLE File: GEOM.INP CSYS,0 LSELg Ag LOC/Xg R1 LGEN~2 I ALL g g g CLADS CLAD 1,511.a..3-24-94 1:30:36 pm Page g'3 P 1 KP (R 1 g RV+TV+H 1 g 0)P2 KP (R1+CLAD g RV+TV+H 1+CLAD g 0)L,P1,P2 CSYS, 1 Pl KP(RVgANG1I 0)CSYS,O PX=KX(P1)PY=KY(P1)P2=KP(PX+CLAD,PY+CLAD,O) L,P1,P2 AL,ALL AOVLAP,1,2 ADELE g 4~5 I 1 g 1 CUT I R4~RV 2 g 0 J R4 I RV+TV+2 g 0 KCUT KP (R2 I RV+TV+H1 H2 1~0)KCY=KY(KCUT) CUTg OgKCYg OgR2+2 gKCYg 0 ALLSEL NUMMRG,ALL NUMCMP,ALL LSELt S/LOCgXgRl CSYS, 1 LSELgAgLOC~XgRV 05 HARV+~05 CSYS,O KSLL,S,1 LSLK,S,1 CM,LID,LINE MSH ALLSEL FINISH SAVE!Slice Areas With Cut.Macro!ID Surface For Loads!Mesh Areas MPH ASSOCIATES, INC.Calculat!on No.>>-~~Prepared By Checked By Page i Path: C:hNOZZLE File: RADIUS.MAC 342.a..9-18-93 12:03:56 am!Create Radius at Keypoint-Associated Area is Modified ARG1=X Location!ARG2=Y Location ARG3=Z Location ARG4=Radius POINT KP (ARG 1 g ARG2 f ARG3)KSELg S g KP g~POINT LSLK,S LSEL,R,EXT
- GET,L1,LINE,,NUM,MIN
Path: C:)NOZZLE File: CUT.MAC 496.a..1-17-94 2:13:14 pm Page Cut Areas ARG1=X ARG2=Y ARG3=Z ARG4=X ARG5=Y ARG6=Z by Line Location, Location, Location, Location, Location, Location, Point 1 Point 1 Point 1 Point 2 Point 2 Point 2*GET g KMAX g KP g g NUM g MAX*GET~LMAXg LINE I~NUMB MAX ASEL,ALL NUMCMP,AREA
- GETJNAREAgAREAIgCOUNT NUMSTR,AREA,COUNT+1
Path: C:iNOZZLE File: MSH.MAC 1,019.a..3-24-94 1:39:32 pm 1!Concatenate Lines I Page'l0.ASEL, S,AREA,,2 LSLA LSELi Ri LOCI Y I RV+TV 2 i RV+TV+2 LCCAT,ALL ASEL,S,AREA,,6 LSLA LSELiRILOCiYiRV+TVIRV+TV+81 H2 1 LCCAT,ALL ASEL,S,AREA,,6 LSLA LSEL g U i LOC i Y g RV+TVi RV+TV+H 1 H2 1 LSELI Ui LOCi XiR4 LSEL i U g LOC i Y i KCY LCCAT,ALL ASEL,S,AREAii4 CSYS,1 LS EL I S i LOC I X I RV~05 I RV+05~~CSYS,O SELi Ai LOG i Xi Rl LSLA, R KSLL,S,l LSLK,S,1 LCCAT,ALL ASEL,S,AREA,,1 LSLA LSEL i U i LOC i Y I RV+TV+H 1~05 I RV+TV+H 1+05 LSELi Ui LOCI Y i KCY 05 I KCY+05 LSEL i U i LOC I X i R 1+CLAD LCCAT,ALL I!Element Size For Lines I ASEL i S i AREA I I 3 LSLA CSYS, 1 LSELi Ri LOCi Y i ANGl CSYS,O LESZZEi ALL i i i 2 ASEL, S, AREA,, 2 LSLA CSYS,1 I~Qi~MPR ASSOCIATES, N~.~Calculattgn NO.08s-ne-cog".-%
Prep red ay Checkr-~~>~%a By
~~'v 4 w i~~~~s.~4.i i~.~~,~Path: C:)NOZZLE File: MSH.MAC LSELgR~LOCg YgANG1 CSYS,O LESIZEgALLggg12gl/4
!LESIZE~ALL,,~12~
2 LSLA LSELg RJ LOCg X g R4 LESIZEgALLJ f g 12 f 4!LESIZE~ALLg g g 12~2 ALLSEL LESIZEg 1 1~g g 20 I!Mesh Areas I 1,019.a..3-24-94 1:39:32 pm Page lQ ET,l,PLANE55 KEYOPT~1~3 g 1 TYPE,1 ESHAPE,2 ESIZE,3/4 MAT,1 AMESH,2 ESIZE,1/2 MAT,2 AMESH,6 MAT,3 AMESH,3,5,1 MAT,2 AMESH,1*l=Axisymmetric
>~~R As8oclA768;
, Ca(Culatian NO.Oez-WV-e4g~p lsd Qy Cr~ecred gy~&I act."4f Page
~&qMPR ASSOCIATES INC ENGINEERS Appendix C CRDR NOZZLE FINITE El EMENT MODEL MATERIAL PROPERTIES
taiMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 CALCULATION TITLE PAGE Client~g fJQ<EQ~op/~/C/g//V/MM I//Project 4E B AM n/o+RcE-J'r PEss gwdc-Pea'age 1 of m Task No.gF-P4g Title/ÃoPEWTi Ei Calculation No.y 8<-gal'-pZ/j-o 2 Preparer/Date Checker/Date Reviewer/Date Rev.No.Pe~a~c4 4y j/p(/
RMPR MPR Associates, Inc.320.King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No.-o4f-J J$-fart'rt-oZ Revision Prepare/By Q/5.Checked By$0@Description Page g OW/6 r~+C.A J ob
PRIMP'PR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.+g-gag-$3/f-0 Z Prepared By Checked By Page g~Pur oee The purpose of this calculation is to document the material properties used in a finite element analysis of the Niagara Mohawk Power Corporation, Nine Mile Point Unit 1 (NMP-1)Control Rod Drive (CRD)Return Nozzle.The ANSYS computer program was used to calculate the transient temperature distribution in the nozzle.In addition, the program was used to calculate stress profiles due to pressure and due to the calculated temperature distribution.
The material properties required in the analyses are: Elastic Modulus Coefficient of Thermal Expansion Thermal Conductivity Specific Heat Poisson's Ratio Density Discussion Figure 1 shows a schematic of the CRDR nozzle outline.The nozzle model is composed of three regions with distinct material properties.
~Region 1 is the reactor vessel wall.The vessel wall material is SA 302 Grade B (Mn-1/2Mo), Reference 1.~Region 2 is the CRDR nozzle.The nozzle material is SA 336 with ASME Code Case 1236-1, Reference 1.Equivalent material is SA 508 Class 2 (3/4Ni-1/2Mo-1/3Cr-V) as discussed below.~Region 3 is the Clad, assumed to be type 308 Stainless Steel.Stainless Steel Type 304, 18Cr-8Ni material properties are a close match and are used in this analysis.Previous finite element analyses of the feedwater nozzle used 1980 ASME Code material properties (Reference 2).In that calculation, a comparison of material chemical composition between the original 1964 specification and the 1980 Code was made.The comparison showed that for the vessel wall 1980 ASME Code material properties were equivalent.
The calculation also showed that the equivalent material
lxHMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.de-d4 5'+44-oz Checked By S~mt~~Page y property for the nozzle was SA 508 Class 2 (3/4Ni-1/2Mo-1/3Cr-V).
The same material properties used in the previous calculation for the feedwater nozzle and vessel wall are used in this analysis for the CRD Return nozzle and vessel wall respectively.
Results Temperature dependent material properties are listed in Tables 1 through 3 for the reactor vessel wall, CRD Return nozzle and cladding respectively.
Attachment A is a listing of the ANSYS macro MATL.MAC which is the computer program input data for material properties.(The input data also lists heat transfer coefficients.)
For all three materials, a density of 489 Ib/ft and Poisson's Ratio of 0.3 were used (Reference 3).The reference temperature for the coefficient of thermal expansion (REFT in file MATL.MAC)is 70'F for the nozzle and vessel wall.For the cladding material, the average temperature between the downcomer and nozzle fluid temperatures at full power conditions was used for the reference temperature to approximate the residual stress state in the cladding.Specific heat was calculated from thermal diffusivity by the following formula: Cp=K/(Rho*TD)
Where: Cp K Rho TD Specific Heat (btu/Ib-'F)
Thermal Conductivity (btu/hr-ft-'F)
Density (Ib/ft)Thermal Diffusivity (ft/hr)References Combustion Engineering Report CENC 1142,"Analytical Report For Niagara Mohawk Reactor Vessel", page A-78.2.MPR Calculation"Material Properties", task number 85-31"Low Feed-water Flow Control", 2/28/93.3.Standard Handbook For Mechanical Engineers, Seventh Edition, pages 5-6 and 6-7.
K1MPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.CtP~-V25'-Z45-o Z Prepared By~a.w../Checked By P0~:~4'~Page C>lA 0
wiiMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.gg~+g$'-prZ8-a z Prepared By w<W./Checked By Page g Table 1 , Material Properties
-SA 302 Grade B Carbon Molybdenum (Mn-1/2Mo)
":"~sg!i%~:.,:,ii~iq'~~c,"..'...i:,.',.
);..."'(1 0a pepsi)~'.<<x
.;.,::.:: Exp'a'rision',"',';:~'l:,:::,:,:;:I,:';,Cor'iductiyity',";,!k::';
.'-.:".::;::.;':.::::.:',::(ee'a'r'i.::,iafii'e)'.m.':~'::"::.'::I<(Btulhi;-:,':ft';,,F)'4'::,:
- .,pe'ciho
'::.;',';:(Btb1lb';.,F).jI 70 100 150 200 250 300 350 400 450 500 550 600 29.20 29.04 28.77 28.50 28.25 28.00 27.70 27.40 27.20 27.00 26.70 26.40 7.02 7.06 7.16 7.25 7.34 7.43 7.50 7.58 7.63 7.70 7.77 7.83 23.3 23.6 24.1 24.4 24.6 24.7 24.7 24.6 24.4 24.2 23.9 23.5.1047.1070.1110.1142~1173.1203.1235.1264.1286.1313.1343.1361
~i MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.Od~-g2g-E.g/P-o 2-Prepared By Checked By Pdb/R~~Page p.Table 2 Material Properties
-SA 336 with Code Case 1236-1 Equivalent to SA 508 Class 2 (3/4¹i1/2Mo-1/3Cr-V) 70 100 150 200 250 300 350 400 450 500 550 600 Mo'du!.'Us~of
'.:,":Ela'sticity",:;:E:;'::,'~"..=;;(10:::;:;psi):::;:"':
29.70 29.54 29.27 29.00 28.75 28.50 28.20 27.90 27.70 27.50 27.20 26.90.":.:::Co'etficie'nt<of~~'.:,."'I
';:I:'::::.j'(me'an'j~yaIue}<~",,-::,'.:, i';:::;:I::(1;0;.:,.',;.~!n/iril,;,F)km,:., 6.41 6.50 6.57 6.67 6.77 6.87 6.98 7.07 7.15 7.25 7.34 7.42'IG'ondiictiyity'.:k,I, l'j<:(Btu/hr',-:,,',ft-."':,F(}':,-';:I:.-;, 23.6 23.7 23.9 24.0 24.0 23.9 23.7 23.6 23.3 23.1 22.7 22.4 K,"m,'(Bi'u/ib;-";,,F}',;",'",:
~1063.1084.~1118.1149.1180.1204.1224.1254.1274.1305.1326.1351 Modulus of Elasticity values are for 1/2-2Cr Chrome Molybdenum.
~r>1MPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.dA-gg5'-8/-oz-Prepared By Checked By Po'in.~Page 8 Table 3 Material Properties
-Stainless Steel Type 308 Type 304 Properties Usted (18Cr-8Ni)
,;:!Tem'jeratu'r'e">
r:.>M,odulus:,.",,of;:;:.;.
- ,:I>Ela'sticjtj-::>E,::'::.,'.<<'(<1 Q~;>,psl)i&py>.
.,"'::;;;.:,:,::,"',;.'.(incan~;yafii'e)>>-",-:.',':,'::,.':,:?(Btu'jar,;-'.:ft'-,,',.F)';:;,,',':
Ni'>>'"<a,-',>,'..:<, ISÃ'Sp Tl 70 100 150 200 250 300 350 400 450 500 550 600 28.30 28.14, 27.87 27.60 27.30 27.00 26.75 26.50 26.15 25.80 25.55 25.30 8.16 8.55 8.67 8.79 8.90 9.00 9.10 9.19 9.28 9.37 9.45 9.53 8.6 8.7 9.0 9.3 9.6 9.8 10.1 10.4 10.6 10.9 11.3~1165.1170.1195.1219.1243.1253.1275.1289.1298.1311.1320.1328
Path: C:)NOZZLE File: MATL.MAC 2,346.a..4-01-94 12:10:32 pm Page g9 G=386.4 F=3600*12 MPTEMP/1/70/100/150/200/250/300 MPTEMP/7 i 350/400/450/500 i 550/600!¹1-Vessel Wall Material-SA 302 Gr B-Carbon-molybdenum MPDATA/EX/1/1/29 20E6/29~04E6 i 28 77E6/28 50E6/28~25E6/28 OOE6 MPDATA/EX/1/7/27~70E6 i 27~40E6/27~20E6/27~OOE6/26~70E6/26~40E6 MPDATA/KXX/1/1/23 3/F/23~6/F/24~1/F/24~4/F/24~6/F/24~7/F MPDATA/KXX/1/7/24 7/F/24~6/F/24~4/F/24~2/F/23~9/F/23~5/F MPDATA/ALPX/
1/1/7~02E 6/7~06E 6/7~16E 6/7~25E 6/7~34E 6/7~43E 6 MPDATA/ALPX/
1 i 7/7 50E 6/7~58E 6/7~63E 6/7 70E 6/7~77E 6/7~83E 6 MPDATA, C,1,1,.1047*G,.1070*G,.1110*G,.1142*G,.1173*G,.1203*G MPDATA/C/1/7/1235*G/1264*G/~1286*G/~1313*G/.1343*G/1361*G MP/DENS/1/489/1728/G MP/NUXY/1/0~3 MP/REFT/1 i 70!¹2-CRDR Nozzle Material-SA 336!¹3-Clad Material-308 Stainless Steel MPDATA/EX/3/
1/28~30E6/28 14E6/27~87E6/27 60E6/27~30E6/27~OOE6 MPDATA/EX/3 i 7/26~75E6/26~50E6/2 6~15E6/25~80E6/25~55E6/25~30E6 MPDATA/KXX/3/1/8~6/F/8~7/F/9~0/Fi 9 3/F/9~6/F/9~8/F MPDATA/KXX/
3/7/10~1/F/10~4/F/10~6/F/10~9/F/1 1~1/F/1 1~3/F MPDATA/ALPX/3/
1/8~16E 6/8~55E 6/8~67E 6/8~79E 6/8~90E 6/9~OOE 6 MPDATA/ALPX/3/7/
9~10E 6/9~19E 6/9~28E 6/9~37E 6/9~45E 6/9~53E 6 MPDATA, C,3,1,.1165*G,.1170*G,.1195*G,.1219*G,.1243*G, 1253*G MPDATA, C,3,7,.1275*G,.1289*G,.1298*G,.1311*G/.1320*G,.1328*G MP/DENS/3/489/1728/G MP/NUXY/3/0~3 MP/REFT/3 i (70+525)/2 MPR ASSOCIATES, INC.Calcutatfon No.+~~~~~~+Prepared By+Checked By Page MPDATA/EX/2/1/29~70E6/29~54E6/29~27E6/29~OOE6/28~75E6/28~50E6 MPDATA/EX/2/7/28~20E6/27~90E6/27~70E6/27~50E6/27~20E6/26~90E6 MPDATA/KXX/2/1/23~6/F/23~7/F/23~9/F/24~0/F/24~0/F/23~9/F MPDATA/KXX/2/7/23~7/F/23~6/F/23~3/F/23~1/F/22~7/F/22 4/F MPDATA/ALPX/2/
1/6~41E 6/6~50E 6/6~57E 6/6~67E 6/6~77E 6/6~87E 6 MPDATA/ALPX/
2/7/6~98E 6/7~07E 6/7~15E 6/7 25E 6/7~34E 6/7~42E 6 MPDATA/C/2/1 i 1063*G/1084*G/~1 1 18*G/~1 149*G/~1 180*G/~1204*G MPDATA, C,2,7,.1224*G,.1254*G,.1274*G,.1305*G,.1326*G, 1351*G MP/DENS/2 i 489/1728/G MP/NUXY/2/0~3 MP i REFT/2 i 70
~'w-~4 ii~~.vows Path: C:(NOZZLE File: MATL.MAC 2,346.a..4-01-94 12:10:32 pm Page gr'0 g4-Heat Transfer Coefficient
-CRDR Nozzle ID HT=144*3600 MPDATAiHF~4i1~
100/HTi 100/HT~100/HTI 100/HTi 100/HTi 100/HT MPDATAiHFi4i7I 100/HTi 100/HTi 100/HTi 100/HTI 100/HTi 100/HT!g5-Heat Transfer Coefficient
-Vessel Annulus HT=144*3600 MP,HF,5, 1000'HT MPR ASSOC)ATES, fNC.Catculatton No.~~~++~Prepared By Checked Bg Page lO, r
e ASSOCIATES INC.ENGINEERS Appendix D CALCULATION OF HEAT TRANSFER COEFFICIENTS
taiMPR MPR Associates, Inc.320.King Street Alexandria, VA 22314 CALCULATION TITLE PAGE Client~IAMB f4'ldHA ulk Pau Eg pe,POrA<lnAr Page 1 of/Ql Project/Mt'ill g PotA)Y'PiV I Tit'le OVERALL.HCA7<Rl>~f=KR.
Cos'ACIE~waR.t=R,DP%d+pI 5 AT NA1F'Task No.Calculation No.Opg-zoo-AB
~aZ Preparer/Date Checker/Date Reviewer/Date Rev.No.>l~s/yq F~;>-8/>o/y(j
WMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No Prepared By DP5-23o-ggg-dz egg Revision Checked By Description Page~GP tb l~1t tissu G
a~Mr u MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.085-z.Qo-ABC-yz Prepared By Checked By Page+PAPosC 7HE T UR,F'asE'F 7 HIS'AI cCIL$7ldAJ ts Io CAt cOc>7G'HC AVERA~E VVe RI4L.L-HEAT TRA<5'FC R COb, P'F(c lEiVT Fok THg couTgaL RoD DRIVER'E'TUIZ/V (CR'DR)LINE REAcTo R V EASEL F'E NETR47 (O~h/OWWLE-roe.~~AL S~e,FVE Aw~iYE Al~E~<<NT ueiT (.8 Es vL I MD ce rV c c tJ 5 (o AID~HE,~vE-RAG-E c>>EQALL HEAT'-RID'Sf-GR Cue;FFlCl FAT 9)F'cr Z yH E'R'T)I2, Ad%7CC ibad&'E, f 54/QFA t g l5~/sou 0 b L.o&&PAn 2 6'eo annAc)(t'~~~)Conn PARlSowS o F TH KSE',55'uL.7 s Zo yAg08$<A<cV<ATYD gY CE.APQ NPR FoR THG FEED(Alga.~oKMG~IwDicd ASS'HESG RESUL.7~ggG.QSC)SO~gggg,
r>~MPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.885-2~-A 6: P-O'Z Prepared By Checked By/~i~~Page F CRQ g No&%8 W 6 P]vlA L L E.VE'-CE a.~Ao~w L.s 7o F g.go~"(o~)
~He,PA1AQ 5~EEV~(tpcSOu 55)Z.gm"(rr)Q/, 5'z5 F VG ss KL.wALl.JHGRPlAt 5t EE.VE QtN E jvsI>As'R>~-unapt.E'WtnnFA S(OP eR'o~REF.2~gmeePAq-L ZrS Ae~AS>V~K>.g)E-F.(VH~AH@,~AL-Sot=-BVG i5 I E.LDF E i~To 7 HE A~Z7L4 5o TH~T Qo 5lE, gpp pypA55'EA pp(-5 t5 8'~p+C7$5.
~(
lLiMpR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.085-zgcr-gg P-o>Prepared By Checked By Page~c ZcOLAYlUA'E~T TR'ANsFEg.
/Ho>EL: Kq.~I-s~~v8's's el mal~TccDQ..,.A o~g L.EHE+7 TRAPS'FKR, F~R'(oru(EMlZ't(Cgl lugged 8 U=c ve gwi~Hzg7<a~@gr.c~CoF F F'(C l E+Y"v~a~lS T'~TER~lN~D F'%cate~HI DiTTUS-Boat pep Ecgu4-p c~.-h D,, o.a n=~.az.>Re'r Cg,p~D iT~5 AsSuwKp+~MT
WMPR Calculation No.o8$-z.>~-A8 P=o~Prepared By Checked By Page g MPR Associates, Inc.320 King Street Alexandria, VA 22314$T.7~~.(IRATE p)=70 F-'Pr=6.>9 y=o, o3~89~i~d.3 l>~N~Et~F z>-z.ceo I'=oav~S+~ii=~.)zi+i-(W s (z 6 2.go x(o B.lS 7SVxro+Kgg=CO/@DUCT i Vl'r~/Oi-5'7/IAILGS 5~<F4 lf'30$)ate (~e~.i-i)ox." 1.6Sl"=u.ice=EPPt VAC.gA T<<~PUC7t V IT/y E.TMG'GA'COAIC&VTg'1 C YLINPEl2 5 l 5 FOuA l)Prom EXP~g'imEm7A L COg Q 6 LA 7 (am~FR~V ibex>l~RGF.5.SPECI~~clCLY, rHE.-CoRRCLAq-<Ous ARE'EASING OAr pHe PRoD OCT
RMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.Deg-23M-38 P=c Prepared By Checked By Fd'age 7&g~fg~HGP 6-Q.g<-QRA5HoFI.AIGAngEg"gh5'E,D o~gA~tAc CAI'Bmu'~CW YSC.noa<CE'.A~b~i SF-VG 2'.RWA'DTl-
/QUAL.g t=R iT is AssvnnE><HAT THF WT~c.ao~s wRE AA0]4L g4P l 5 HALF WHF 7OTdw Q>f Ra&PblE't'PP Fc~~Tc T H E.REHcvap vE5SGL Fc.UlD WE~Pez~~urzE: (s~s V), I Z i=~(S?.S-7o)=z~a iv'z Asgg~gy)HAT 7HG'VG'P-~4~
7 lw THE'oc i/L, a3 v's'-'m=5?.6-~A>=Ezs'-'~~s)"-L///F P=g 8?OxlD.-'3 8=o.<78</0 6/l, Pa=@-8'8 k=e.svg6
@HAMI R MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.g+5~2.3'c3~A 8 l2-43~Prepared By Checked By TAu'-PageQg=(3z..w z~(do~5'3 fj)(o820x(o
<)Izz8 F)(g0g57g=(G.72./g~)(>C<~g,)=9.3rA'(0 log Ca P~=la~[(9.aye(O
)(D 88.)j=6 92.
ra~MI R MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.gag-2.3o-gg g-QX Prepared By Checked By FCkl L Sc Page/Ht=gedsoWAtrgqmgs-5 c F weKsE we~ogT's/5'j-IECKC Q>p~/CoW pAR,(A+gGSUL-TS'0 cALcucAT 6 lo v"ALvEs'<P
~HG FFEQbrl7KR
~o~<LE:/qsA 7 (~Vg 5 g a L tug I-L~lZ~~FCR gE'Q lom5~O&QL-E, A/oEVCC'NI Om cA<cocATEh gGQ (om 33 87/(<<CW (6EVA<U.<)
t-W (ALPS VALVE I oaO JOO)50/.F Ran/L R5 F.6+~-Z<9.3S5UmGS'c i+fE.Retd&
5'I-E.EvE xvfAss l E.At.4C E Fzow gGF~.clssduE~s'f~~Hze~gt s~zzys hyPA5'5.
0 r>~MPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.Prepared By o6'S-2.3 o-A II 12-o L~+Checked By T<<~lQ Page/~VALUE'ALCULI I EL Fak~HE CR~g.~<+~LE Is'HE SAWE AS cate CuI AT E D~ok<HC FW NOZZLE HP2)Sd IS'oWS IDEE'GZ)F-GAIN ABLE, RzFF bee i)~Z DgAu (N+(ggQ+84/DRIVE~CITY@REER~lA'L-GT)CE:~R/I&(No E 23I--5.'67, psv.7,/I/aW'ELK DE>"AILS I/E-S S6 L HEAT WRAÃsFER/9TH EpITlo&I CHANC A/I//l98 I l)CRC HA//DEoo g Fo PPL(ED EmG I'A'EEI2I//S5CI.E//c E'A b eyIVIO~.5)HEAT A//l0 f11 Fl$5 T A/vSFEE'ECKEZT'Aml>DRAPE//955'P P'3<7-33/, 6)GEPGP~P'T/I/EDE-~l IEZ I., BaILI~O IaAT+R.REACTOR'EEDI//ATEgAO'W~
LE/S PA E'@EP'FI//Al RE.PORT bATF 0 en~Rg5 l9Vg'.-7)/NPP REPoRT ZbIPPaVEQ Lou/FLoloFEEloI
/ITEP Ca//TRoL SV57E/I/I i&TED'RIAL/PS'9 SECT/aW/.7.(Fo'EM/APIIE5 7o P.AnA~~AFGRR4 cV Ar~p<Ey LEMER, DARED JI/~E I, Isev),
ASSOCIATES INC.ENGINEERS Appendix E CRDR NOZZLE FINITE ELEMENT MODEL BOUNDARY CONDITIONS AND RESULTS
lLimpR MPR Associates, Inc.320 King Street Alexandria, VA 22314 CALCULATION TITLE PAGE Client~~~~gp/~/g+//L/g W/Qg/0/rv/~~///Page 1 of gq Project g~/~~~~o pygmy rT/Q Task No.0Z~Title go~~p~pY Anted/77@AS~i>ZF~ur-I~Calculation No.~-P29-Ct~d-o3 Preparer/Date az.8.'/Z-Z/-5'y Checker/Date g<g.'7~Reviewer/Date Rev.No.
txrMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No..080=PP 9-Fd'rs-y3 Revision RECORD OF REVISIONS Prepared By Description Page 0+1+pv<r rO'J vP
t>IMPR Calculation No.dd~-cVW-ggg-o J Prepared By MPR Associates, Inc.320 King Street Alexandria, VA 22314 Page~Purpose The purpose of this calculation is to document the boundary conditions and results of a finite element analysis of the Niagara Mohawk Power Corporation, Nine Mile Point Unit 1 (NMP-1)Control Rod Drive (CRD)Return Nozzle.A transient thermal/stress analysis simulating a reactor scram was performed.
References 1 and 2 are calculations which document the finite element model geometry and material properties.
The ANSYS computer program (Reference 3)was used to calculate the transient temperature distribution in an axisymmetric model of the nozzle.The program was then used to calculate stress profiles due to pressure and due to the calculated temperature distribution.
The results of this analysis, in the form of stress distributions through the bore/blend section of the nozzle, will be used in a fatigue and crack growth evaluation of the CRD return nozzle.Discussion The CRD system provides water from the condensate storage tank at a temperature of about 70'F to the control rod drive mechanisms to cool the control rod drives, to reposition rods and to scram the rods.The system operates at all times that fuel is in the vessel.Excess fiow from the CRD pumps is routed to the reactor vessel via the CRD return nozzle.Consequently, flow through the CRD return nozzle is typical.Nominal CRD return flow rate is 17 to 35 gpm.The flow rate does not change as a result of repositioning a control rod since the flow diverted to move the rod is compensated by the water displaced by the rod.A reactor scram results in a CRD return nozzle flow transient (Reference 4).During a scram, the CRD accumulators discharge to drive the control rods into the core.this results in an increase in CRD return flow to 65 gpm.When accumulator pressure drops below reactor pressure, CRD flow rate goes to zero as the accumulators are recharged.
After the accumulators have been recharged, CRD flow rate returns to the nominal 17 to 35 gpm.The last portion of the reactor scram transient is simulated in this calculation.
At time zero the nozzle is at a uniform temperature of 525'F corresponding to zero flow through the CRD return nozzle as the accumulators are recharged.
At 1 second into the transient, the CRD return flow rate is step changed to the nominal flow rate of 35
l41MPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.os%->z 1 wed-o 7 Prepared By Checked By gR~Page~gpm with a fluid temperature of 70'F.A pressure of 1250 psig is applied to the inside surface of the reactor vessel wall and the inside of CRD return nozzle throughout the transient (nominal reactor pressure is 1030 psig, scram pressure is 1250 psig).Details of the thermal and structural boundary conditions are discussed below.Thermal Bounda Conditions for the reactor scram transient are shown on Figure 1 and discussed below.At time zero the CRD return nozzle and reactor vessel wall are at a uniform temperature of 525'F corresponding to the bulk downcomer fluid temperature.
The overall heat transfer coefficient between the downcomer fluid and the vessel wall is assumed to be 1000 Btu/(hr-ft
-'F).This is the value used in prior analyses for the feedwater nozzle.At 1 second into the transient, the bulk fluid temperature in the CRD return nozzle is step changed to 70'F.The overall heat transfer coefficient between the CRD return fluid and the nozzle wall is 100 Btu/(hr-ft-
'F).The heat transfer coefficient in the nozzle includes the effects of the fluid film on the inside diameter of the thermal sleeve, conduction through the thermal sleeve, and natural convection through the stagnant layer between the thermal sleeve and the nozzle bore.Reference 5 is a calculation of the overall heat transfer coefficient between the CRD return fluid and the nozzle inside surface.The outside of the vessel wall, the outside of the nozzle and the radial cut lines through the vessel wall and safe end are modeled as adiabatic (no heat flow across the surface).Structural Bounda Conditions include applied pressure and displacement constraints.
Figure 2 shows the applied pressure along the inside surface of the reactor vessel wall and the inside surface of the CRD return nozzle.The applied pressure on these surfaces is 1250 psig.A pressure is also applied to the safe end to represent the axial load in the attached piping, The value of the pressure applied to the safe end is calculated as follows (dimensions are from Reference 1): Aint Fl Al Pend=Where: pi*R12 Pint"Aint pi*(R3-R1)=FI/AI 13.34 in 16681.Ibf 5.803 in 2875.psi 0
RMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.oN-d4f-F4ss'-oZ Prepared By 7K~Page Aint R1 Pint Fl AI R3 Pend=Inside area of safe end (in)Safe end inside diameter=2.061 inches Internal pressure=1250 psig Longitudinal force (Ibf)Cross sectional area of safe end Safe end outside diameter=2A69 inches Pressure applied to the safe end (psi)Figure 3 shows the displacement boundary conditions applied to the end of the reactor vessel wall.Symmetry boundary conditions are applied to permit radial displacement along the cut line but to prohibit rotation of the cut line.Figure 4 shows the displacement boundary conditions applied to the safe end.Couples are used to allow translation of the safe end cut line but to prohibit rotation of the cut line.Results The peak stress intensity occurs at the end of the transient when steady state conditions have been reached.Figure 5 shows the time history of stress intensity at several nodes in the bore/blend region.The stresses shown in the time history are at the cladding to base metal interface.
Figure 6 shows the calculated temperature distribution at the end of the transient.
The peak stress intensity in the base metal for the transient occurs at node 806 in the bore blend region of the nozzle at the base metal to cladding interface (Attachment A).The peak stress intensity at node 806 due to temperature and pressure is 110 ksi.The stress intensity due to pressure alone at node 806 is 65 ksi.The principal component of the stress intensity is the hoop stress.Color coded contour plots of stress distribution are shown in Figures 7 through 10 for pressure only loading (time zero of the transient).
Figures 11 through 14 show stress distributions at the end of the reactor scram transient for pressure and temperature loading.Four plots are shown for each loading: Stress intensity, ASME code or Tresca stress intensity, Hoop stress, the Z component of stress for the axisymmetric model,~X component stress, interpreted as a second hoop stress for the e 0 lLiMpR Calculation No.ogJ-g2 g-flag-cg Prepared By Z.N.N~cl MPR Associates, Inc.320 King Street Alexandria, VA 22314 Page spherical model of the vessel wall, Y component stress, interpreted as axial stress in the nozzle region.Figures 15 and 16 show the locations of nodes 806 and 14.Node 806 is the point of maximum stress intensity at the interface between the cladding and the base metal.Node 14 is the point of maximum stress intensity on the outside surface of the nozzle/vessel intersection.
A straight line (path)is drawn from node 806 to node 14 and the stress intensity values are interpolated onto the path (Figure 11 shows the interpolation path).Figures 17 and 18 show stress intensity along this path for the pressure only case and the pressure and temperature case.Attachment B is a tabular listing of the stress versus path length values for Figures 17 and 18.Attachments C and D provide the ANSYS input data for the thermal and stress passes of the analysis.Reference 6 is the hard copy output file for the both the thermal and stress passes.References 1.MPR Calculation 085-229-EBB-01,"CRDR Nozzle Finite Element Model Geometry".
2.MPR Calculation 085-229-EBB-02,"CRDR Nozzle Finite Element Model Material Properties", Revision 0.3.ANSYS computer program version 5.0.MPR Calculation 085-230-ABR-01,"Nine Mile Point Unit 1, Control Rod Drive Return Nozzle Thermal and Pressure Cycles", Revision 1.5.MPR Calculation 085-230-ABR-02,"Over all Heat Transfer Coefficient For CRDR Nozzle at NMP-1", Revision 0.6.ANSYS output file NOZZLE.OUT, 87,853 bytes dated 4-04-94 3:45:28 pm.
ANSYS 5.0 APR 7 1994 12:00:41 PLOT NO.2 NODES TYPE NUM CONV ZV=1 DIST=25.552 XF=25.29 YF=347.745~g-0 I=p g=/Ego Heat Transfer Boundary Conditions
ANSYS 5.0 APR 7 1994 11:59:26 PLOT NO.1 NODES TYPE NUM PRES P8P<PZg cyylrccf~gag-g<~+~JJu~ZV=1 DIST=25.552 XF=25.29 YF=347.745~~QJIQ 4/pl]eel+~J C M Pressure Boundary Conditions r/'Cut 6
ANSYS 5'APR 7 1994 12:03:24 PLOT NO.3 NODES TYPE NUM U ZV=1 DIST=25.552 XF=25.29 YF=347.745+r'I'/III I I I I I I I i I I I I~~~~Iiiiiii Structural Boundary Conditions
-Radial Symmetry ,~/Q U/Z&
ANSYS 5'APR 7 1994 12:05:05 PLOT NO.4 NODES TYPE NUM CP/OA c.+a!1~ZV=1 DIST=25.552 ZF=25.29 YF=347.745 A"~1';~,~~~~~~~~//IIIII I I I I I I I I I I I I I I I I I I I I I I I I I I I I I Structural Boundary Conditions
-No Rotation at Safe End g-((-ug C
ANSYS 5.0 (x 10442)105 SZ-806 100 90 SZ-803 SZ-806 SZ-805 SZ 807 85 800 75 70 650 60 S50 0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800 5200 Ti me (Sec)Reactor Scram Transient+/&u/Z~
ANSYS 5.0 APR 4 1994 16:33:47 PLOT NO.1 NODAL SOLUTION STEP=2 SUB=21 TIME=3601 TEMP TEPC=9.434 SMN=88.846 SMX=523.562 88.846 100 200 300 400 500 600 Reactor Scram, Temperature Profile+/5-u4C-.
~g tt"'~S iSQSy S fS)9 ANSYS 5.0 APR 4 1994 16:32:56 PLOT NO.1 NODAL SOLUTION STEP=1 SUB=1 TIME=1 SINT (AVG)DMX=1.501 SMN=1421 SMNB=920.904 SMZ=66400 SMKB=72225 1421 8641 15861 23081 30300 37520 44740 51960 59180 66400 Pressure Only, Stress Intensity P/6 u4 E'
ANSYS 5.0 APR 4 1994 16:33:00 PLOT NO.2 NODAL SOLUTION STEP=1 SUB=1 TIME=1 SZ (AVG)RSYS=O DMX=1.501 SMN=-22178 SMNB=-30892 SMX=63262 SMXB=68966
-22178-12685-3192 6302 15795 25288 34782 44275 53769 63262 Pressure Only, Hoop Stress Erbv~g 8
S$.E..e C ANSYS 5.0 APR 4 1994 16:33:03 PLOT NO.3 NODAL SOLUTION STEP=1 SUB=1 TIME=1 SX (AVG)RSYS=O DMX=1.501 SMN=-3074 SMNB=-13025 SMZ=42194 SMZB=46227
-3074 1956 6986 12015 17045 22075 27104 32134 37164 42194 Pressure Only, X Component Stress P/'bu/ZC
ANSYS 5.0 APR 4 1994 16:33:06 PLOT NO.4 NODAL SOLUTION STEP=1 SUB=1 TIME=1 SY (AVG)RSYS=O DMX=1.501 SMN=-23031 SMNB=-32313 SMX=4943 SMXB=9878-23031-19923-16815-13706-10598-7490-4382-1273 1835 4943 Pressure Only, Y Component Stress.g/gu/Z&/0
~~q~</'oc-8 77onf/~(ANSYS 5.0 APR 4 1994 16:33:25 PLOT NO.5 NODAL SOLUTION STEP=14 SUB=1 TIME=3600 SINT (AVG)DMX=1.46 SMN=3550 SMNB=2589 SMX=95834 SMXB=104406 3550 13804 24057 34311 44565 54819 65072 75326 85580~95834 X~sS W~oW Reactor Scram, Stress Intensity y4-&,c.//
ANSYS 5.0 APR 4 1994 16:33:28 PLOT NO.6 NODAL SOLUTION STEP=14 SUB=1 TIME=3600 SZ (AVG)RSYS=O mX=1.46 SMN=-44957 SMNB=-61709 Sm=98365 SMXB=106937
-44957-29032-13108 2817 18742 34666 50591 66516 82440 98365 Reactor Scram, Hoop Stress.+J+u/C~
4+z c:t$a.~ANSYS 5.0 APR 4 1994 16:33:31 PLOT NO.7 NODAL SOLUTION STEP=14,'UB
=1 TIME=3600 SX (AVG)RSYS=O DMX=1.46 SMN=-5953 SMNB=-23928 SMX=65837 SMXB=70794
-5953 2023 10000 17977 25953 33930 41907 49883 57860 65837 Reactor Scram, X Component Stress
ANSYS 5.0 APR 4 1994 16.33.35 PLOT NO.8 NODAL SOLUTION STEP=14 SUB=1 TIME=3600 SY (AVG)RSYS=O DMX=1.46 SMN=-45246 SMNB=-61830 SMX=18196 SMXB=20255
-45246-38197-31148-24099-17050-10001-2952 4098 11147 18196 Reactor Scram, Y Component Stress~g~d.v/Z0/'/
822 831 833 83l 835$36$37 838 839$l0$41$42 843$44 845$46$47$48 849 ANSYS 5.0 APR 7 1994 12:23:22 PLOT NO.1 NODES NODE NUM ZV=1*DIST=1.386
- XF=5.994*YF=348.819 141 2140 14 82 1139 2138 1137 1136$135 2134 1133 2132 3131 2130 13 Node Numbers-OD 253 164 275+/&v/z.C/J
$03 l323 l300$04 l322 l301$05 l321 l302$65$64$63 948 920$92 947 919 946 945 ANSYS 5.0 APR 7 1994 12:27:42 PLOT NO.2 NODES NODE NUM ZV=1*DIST=2.621
- XF=2.975*YF=344.095$62 917$06 l3$89 l303$61 916 944 943$07$88 l319 l304 915$60 942$08$87 l318 914 l305 941$59$86 l317 l306$58 913.786 1316 l283$57$85$84.789 l315 l286$56 Node Numbers-ID.788 l314 l285.787 1313 1284+/pv/CC/4
(x 10I 01)652 612 ANSYS 5.0 APR 4 1994 18:06:06 PLOT NO.1 POST1 STEP=1 SUB=1 TIME=1 PATH PLOT NOD1=806 NOD2=14 CO 573 5331 C 453 C ZV=1 DIST=0.75 XF=0.5 YF=0.5 ZF=0.5 CENTROID HIDDEN 413 373 333 293 2537 0.541 1.083 1~624 2.165 3.248 2.707 3.79 4.331 4.872 5.414 Po s i 4 i o n , ID 4 o OD Pressure Only Bid ue l7
(x 104 I'2)110 102 ANSYS 5.0 APR 4 1994 18:06:26 PLOT NO.2 POST1 STEP=14 SUB=1 TIME=3600 PATH PLOT NOD1=806 NOD2=14 957.962 887.1+816.23 C 745.37 C ZV=1 DIST=0.75 ZF=0.5 YF=0.5 ZF=0.5 CENTROID HIDDEN 674.51 C 603.65 532.79 461.93 391.071 0 1.083 2.165 3.248 4.331 5.414 0.541 1.624 2.707 3.79 Posi ti on, ID to OD 4.872 Reactor Scram Transient-g/6.use/8
Path: C:(NOZZLE File: PRINC.OUT 3,779.a..4-19-94 11:26:26 am Page 1 2 PRINT S NODAL SOLUTION PER NODE*****POST1 NODAL STRESS LISTING*****LOAD STEP=14 TIME=3600.0 SUBSTEP=LOAD 1 CASE=0 NODE 786 788 789 804 805 806 807 808 809 856 857 858 859 860 861 862 863 864 884 885 886 887 888 889 890 891 913 914 915 916 917 918 919 942 943 944 945 S1 81146~56018.67399.94075.96912.98365.98266.96331.91893.57385.68590.79143.85484.88636.89736.89338.87672.84840.59084.68866.76618.80398.82186.82524.81716.79890.68225.73604.75714.76516.76268.75133.73179.70289.71275.71356.70657.S2 10911 6038'6629.0 14592.14833.14961.14952.14815.14731.14104.14550.16890.19029.19955.20410.20538.20432.20125.20609.20742.21866.23376.24231.24660.24790.24681.25290.25862.26976.27659.27992.28080.27924.29135.29919.30402.30633.S3-319~20-6398.4 3727~2 88.197 1399.5 2531.2 3189.8 3144.3 3307.7-5699.0-2822.1-785.25 836.86 1416.9 1333.5 696.85-258.09-1283.0-4961.7-3016.3-1252.0-159.63 98.306-166.38-798.84-1622.9-2831.9-1587.6-1036.3-1036.6-1413.2-2032.6-2739.3-1999.6-1828.9-2021.0-2474.8 SINT 81465'2416'1126.93987.95513.95834.95076.93187.88585.63084.71412.79929.84647.87219'8402.88641.87930.86123.64045.71882.77870.80557'2087.82690.82515.81512.71057.75192.76750.77553.77682.77165.75918.72289.73104.73377.73132.SEQV 76471.57221.66555.87640.89555.90263.89775.87934.83462.55880.64505.72720.77176.79586.80576.80574.79627.77664.55839.63433.69267.71746.73073.73493.73158.72056.61981.65904.67271.67915.67933.67362.66151.62804.63492.63689.63429.*****POST1 NODAL STRESS LISTING*****LOAD STEP=14 TIME=3600.0 SUBSTEP=LOAD 1 CASE=0
Path: C:)NOZZLE File: PRINC.OUT 3,779.a..4-19-94 11:26:26 am Page 2 2.NODE S1 S2 S3 SINT SEQV MINIMUM VALUES NODE 788 VALUE 56018.788 6038.2 788-6398.4 788 62416.884 55839.MAXIMUM VALUES NODE 806 945 809 806 806 VALUE 98365.30633.3307.7 95834.90263.*****ESTIMATED BOUNDS CONSIDERING THE EFFECT OF DISCRETIZATION ERROR*****MINIMUM VALUES NODE 788 VALUE 50335.789-1620.3 788-12082.788 56733.856 50585.MAXIMUM VALUES NODE 806 945 809 806 806 VALUE 0.10694E+06 34037.11892.0.10441E+06 98835.***************************************************************************
- ENTER HELP, ERROR FOR AN EXPLANATION OF ANSYS ERROR ESTIMATION
- END OF INPUT ENCOUNTERED
- EXIT THE ANSYS POST1 DATABASE PROCESSOR
Path: C:hNOZZLE Fi.le: XPATH.OUT 13,436.a..4-04-94 6:06:28 pm Arecsi~idwT' Page 1 Qd WELCOME TO THE ANSYSPROGRAM
- ANSYS COMMAND LINE ARGUMENTS*****MEMORY REQUESTED (MB)=64.0*****INPUT FROM CONFIG.ANS FILE KEYWORD INPUT VALUE VALUE USED NUM VPAG 512 512 SIZ VPAG 12288 12288 EXT FILE 0 0*****ANSYS DYNAMIC MEMORY ALLOCATION
- WORK SPACE REQUESTED 16777216 64.000 MB COMMAND LINE MINIMUM WORK SPACE REQUIRED 6815744 26.000 MB MINIMUM WORK SPACE RECOMMENDED
=8799648 33.568 MB WORK SPACE OBTAINED 16777214 64.000 MB BYTES PER WORD 4*****NOTICE*****THIS IS THE ANSYS GENERAL PURPOSE FINITE ELEMENT COMPUTER PROGRAM.NEITHER SWANSON ANALYSIS SYSTEMS, INC.NOR THE DISTRIBUTOR SUPPLYING THIS PROGRAM ASSUME ANY RESPONSIBILITY FOR THE VALIDITYi ACCURACY'R APPLICABILITY OF ANY RESULTS OBTAINED FROM THE ANSYS SYSTEM.USERS MUST VERIFY THEIR OWN RESULTS.ANSYS (R)COPYRIGHT (C)1971 i 1978 i 1982 i 1983 i 1985 i 1987'989 i 1992 BY SWANSON ANALYSIS SYSTEMS, INC.AS AN UNPUBLISHED WORK.PROPRI ETARY DATA UNAUTHORI ZED USE i DI STRI BUTION i OR DUPLI CATION IS PROHIBITED.
ALL RIGHTS RESERVED.SWANSON ANALYSIS SYSTEMS,INC.
IS ENDEAVORING TO MAKE THE ANSYS PROGRAM AS COMPLETE i ACCURATE i AND EASY TO USE AS POSSIBLE.SUGGESTIONS AND COMMENTS ARE WELCOMED ANY ERRORS ENCOUNTERED IN EXTHER THE DOCUMENTATION OR THE RESULTS SHOULD BE IMMEDIATELY BROUGHT TO OUR ATTENTION
Path: C:)NOZZLE File: XPATH.OUT 13,436.a..4-04-94 6:06:28 pm Page 2><~ENTER/SHOW, device TO SET THE GRAPHICS DISPLAY TO device(e.g.
VGA, HALO,ETC.)
ENTER/MENU, ON TO START THE ANSYS MENU SYSTEM-ENTER HELP FOR GENERAL ANSYS HELP INFORMATION MPR ASSOCIATES VERSION=PC 386/486 REVISION=5.0 FOR SUPPORT CALL PHONE 703/519-0200 CURRENT JOBNAME=file 18:05:44 APR 04, 1994 CP=FAX 0.000 BEGIN: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25/FILNAM,NOZZLE RESUME/POST1/SHOW g XPATH g PLT FILETS NOZZLE'ST SET, 1/TITLE, Pressure Only/GRID,1/AXLAB,X,Position, ID to OD/AXLAB,Y,Stress Intensity (psi)LPATHg 806 g 14 PDEFg SINTER S g INT PLPATH,SINT PRPATH,SINT SET,LAST/TITLE, Reactor Scram Transient/GRID,1/AXLAB,X,Position, ID to OD/AXLAB,Y,Stress Intensity (psi)LPATH~806g14 PDEFgSINTgSgINT PLPATH,SINT PRPATH,SINT CURRENT JOBNAME REDEFINED AS NOZZLE RESUME ANSYS DATA FROM FILE NAME=NOZZLE.db
- ANSYS GLOBAL STATUS***TITLE=NMP Unit 1 CRD Return Nozzle ANALYSIS TYPE=STATIC (STEADY-STATE)
NUMBER OF ELEMENT TYPES=1 1358 ELEMENTS CURRENTLY SELECTED.MAX ELEMENT NUMBER 1470 NODES CURRENTLY SELECTED.MAX NODE NUMBER 25 KEYPOINTS CURRENTLY SELECTED.MAX KEYPOINT NUMBER 31 LINES CURRENTLY SELECTED.MAX LINE NUMBER 6 AREAS CURRENTLY SELECTED.MAX AREA NUMBER 1 COMPONENTS CURRENTLY DEFINED 1358 1470 25 31 6
Path: C:)NOZZLE File: XPATH.OUT 13,436.a..MAXIMUM LINEAR PROPERTY NUMBER ACTIVE COORDINATE SYSTEM MAXIMUM COUPLED D.O.F.SET NUMBER NUMBER OF SPECIFIED CONSTRAINTS NUMBER OF SPECIFIED SURFACE LOADS INITIAL JOBNAME=file CURRENT JOBNAME=NOZZLE 1 4-04-94 6:06:28 pm 5 0 (CARTESIAN) 1 15 208 Page 3 Qg d*****ANSYS-ENGINEERING ANALYSIS SYSTEM REVISION 5.0*****MPR ASSOCIATES VERSION PC 386/486 18 05 48 APR 04i 1994 CP FOR SUPPORT CALL PHONE 703/519-0200 FAX NMP Unit 1 CRD Return Nozzle 3.790*****ANSYS RESULTS INTERPRETATION (POST1)*****/SHOW SWITCH PLOTS TO FILE XPATH.PLT RASTER MODE.DATA FILE CHANGED TO FILE=NOZZLE.RST USE LOAD STEP 1 SUBSTEP 0 FOR LOAD CASE 0 SET COMMAND GOT LOAD STEP=TIME/FREQUENCY=
1.0000 TITLE='ressure Only 1 SUBSTEP=1 CUMULATIVE ITERATION=
GRAPH PLOT KEY=1 X AXIS LABEL=Position, ID to OD Y AXIS LABEL=Stress Intensity (psi)DEFINE A PATH FOR SUBSEQUENT CALCULATIONS THROUGH NODES: 806 14 DEFINE PATH IN PATH COORDINATE SYSTEM 0 DIRECTION MAX MIN X 6.2855 2.2798 Y 348.57 344 93 Z 0.00000E+00 0.00000E+00 TOTAL PATH LENGTH=5.4136 DEFINE PATH VARIABLE SINT AS THE NODAL DATA ITEM=S COMP=INT ROTATED INTO COORDINATE SYSTEM 0 AND MOVED TO THE PATH NUMBER OF PATH VARIABLES DEFINED IS 5
Path: C:)NOZZLE File: XPATH.OUT 13,436.a..4-04-94 6:06:28 pm Page 4 ogcP***WARNING***CP=18.730 TIME=18: 06: 03 The selected element set contains mixed materials.
This could invalidate error estimation.
SUMMARY
OF VARIABLE SINT MAX=65283.MIN=25366.DISPLAY ALONG PATH DEFINED BY LPATH COMMAND.DSYS=0 CUMULATIVE DISPLAY NUMBER 1 WRITTEN TO FILE XPATH.PLT DISPLAY TITLE=Pressure Only PRINT ALONG PATH DEFINED BY LPATH COMMAND.DSYS=0 1-RASTER MODE.*****ANSYS-ENGINEERING ANALYSIS SYSTEM REVISION 5 0*****MPR ASSOCIATES VERSION PC 386/486 18 06 07 APR 04 g 1994 CP FOR SUPPORT CALL PHONE 703/519-0200 FAX Pressure Only 22.460*****PATH VARIABLE
SUMMARY
- S 0.00000E+00 0.11278 0.22557 0.33835 0.45114 0.56392 0.67670 0.78949 0 90227 1.0151 1.1278 1.2406 1.3534 1.4662 1.5790 1.6918 1.8045 1.9173 2.0301 2.1429 2.2557 2.3685 2.4813 2.5940 2.7068 NT 65283 56417.55542.54202.52785.51498.50264.49109.48019.46971.46001.45053.44170.43285.42462.41670.40901.40178.39460.38800.38185.37550.36926.36478.35974.I~o Cs
Path: C:)NOZZLE File: XPATH.OUT 13,436.a..4-04-94 6:06:28 pm Xage SQ8 2.8196 2.9324 3.0452 3.1580 3.2707 3.3835 3.4963 3.6091 3.7219 3.8347 3.9474 4.0602 4.1730 4.2858 4.3986 4.5114 4.6242 35466.34944.34360.33722.32732.31830'0986.30218.29503'8831 28199.27566.26938 26171'5366.27591.29301.*****ANSYS-ENGINEERING ANALYSIS SYSTEM REVISION 5.0*****MPR ASSOCIATES VERSION PC 386/486 18 06 07 APR 04~1994 CP FOR SUPPORT CALL PHONE 703/519-0200 FAX Pressure Only 22.510,*****PATH VARIABLE
SUMMARY
- S 4.7369 4.8497 4.9625 5.0753 5.1881 5.3009 5.4136 SINT 31204.33304.35360.36726.38077.39423.40778.USE LAST SUBSTEP ON RESULT FILE FOR LOAD CASE 0 SET COMMAND GOT LOAD STEP=14 SUBSTEP=1 CUMULATIVE ITERATION=
14 TIME/FREQUENCY=
3600.0 TITLE=Reactor Scram Transient GRAPH PLOT KEY=1 X AXIS LABEL=Position, ID to OD Y AXIS LABEL=Stress Intensity (psi)
Path: C:iNOZZLE File: XPATH.OUT 13,436.a..4-04-94 6:06:28 pm DEFINE A PATH FOR SUBSEQUENT CALCULATIONS THROUGH NODES: 806 14 Page 6 a<Z***NOTE***CP=32.130 TIME=18:06:17 Previous interpolated path data has been erased.Reissue PDEF command to interpolate desired data.DEFINE PATH IN PATH COORDINATE SYSTEM 0 DIRECTION MAX MIN X 6.2855 2.2798 Y 348.57 344.93 Z 0.00000E+00 0.00000E+00 TOTAL PATH LENGTH=5.4136 DEFINE PATH VARIABLE SINT AS THE NODAL DATA ITEM=S COMP=INT ROTATED INTO COORDINATE SYSTEM 0 AND MOVED TO THE PATH NUMBER OF PATH VARIABLES DEFINED IS 5***WARNING***CP=37.950 The selected element set contains mixed materials.
This could invalidate error estimation.
TIME=18 06:22
SUMMARY
OF VARIABLE SINT MAX=0.10997E+06 MIN=39107.CUMULATIVE DISPLAY NUMBER 2 WRITTEN TO FILE XPATH.PLT DISPLAY TITLE=Reactor Scram Transient RASTER MODE.PRINT ALONG PATH DEFINED BY LPATH COMMAND.DSYS=0 1*****ANSYS-ENGINEERING ANALYSIS SYSTEM REVISION 5.0*****MPR ASSOCIATES VERSION=PC 386/486 18:06:26 APR 04, 1994 CP=FOR SUPPORT CALL PHONE 703/519-0200 FAX Reactor Scram Transient 41.680*****PATH VARIABLE
SUMMARY
- S 0.00000E+00 0.11278 0.22557 0.33835 0.45114 0.56392 0.67670 SINT 0.10997E+06 911)rru~i 88915.86153.83317.80781.78373.
Patn: File: 0.78949 0.90227 1.0151 1.1278 1.2406 1.3534 1'662 1.5790 1.6918 1.8045 1.9173 2.0301 2.1429 2.2557 2.3685 2.4813 2.5940 2'068 2.8196 2.9324 3.0452 3.1580 3.2707 3.3835 3.4963 3.6091 3.7219 3.8347 3.9474 4 0602 4.1730 4.2858 4.3986 4.5114 4.6242 C:KNOZZLE XPATH.OUT 13,436.a..4-04-94 6:06:28 pm 76148.74078.72106.70305.68564.66937.65312.63805.62374.60995.59673.58388.57214.56098.54950.53857.53067.52158.51230.50269.49216.48061.46233.44546.43265.42541.41859.41175.40518.39815.39107.39160.41883.44307.46492.Page 7 Pg 8*****ANSYS-ENGINEERING ANALYSIS SYSTEM REVISION 5.0*****MPR ASSOCIATES VERSION=PC 386/486 18:06:26 APR 04, 1994 CP=FOR SUPPORT CALL PHONE 703/519-0200 FAX Reactor Scram Transient 41.740*****PATH VARIABLE
SUMMARY
- S 4.7369 4.8497 4.9625 5 0753 5.1881 SINT 49026'1915.54876.'57081.59280.
Path: C:(NOZZLE File: XPATH.OUT 13,436.a..4-04-94 6:06:28 pm Page 8~+8 5.3009 5.4136 61484.63709.*****END OF INPUT ENCOUNTERED
- NUMBER OF WARNING MESSAGES ENCOUNTERED=
NUMBER OF ERROR MESSAGES ENCOUNTERED=
4774<P~Fr~i C'ath: C:(NOZZLE File: BCT.INP/SOLUTION OUTRESgALLgALL ANTYPE,TRANS KBC, 1 TREF,70 THOT=525 TCOLD=70 570.a..3-28-94 5:13:42 pm!1=Step Change, 0=Ramp Page 1 p//TUNIF,THOT LSELI S J LOC g Xg Rl SFL g ALL g CONVg 4 g g THOT CMSEL I S g LI D LSELg U~LOC/X g R1 SFLg ALL g CONVI 5 I g THOT ALLSEL NSUBST,1 TIME,1 SOLVE SAVE LSEL~S g LOCI Xg R1 S FLDELE g ALL f CONV SFLg ALL~CONVI 4 I~TCOLD ALLSEL UTOTS,ON ELTIM,1,1 TIME,3601 SOLVE SAVE FINISH!CRDR ID!Number of Sub-Load-Steps
!CRDR ID!Automatic Time-Stepping ON~0m AmmC~a~W IN'.CalculaUon 80.~Preparact Dy Checked By C'-)Page
Path: C:)NOZZLE File: STRESS.INP/PREP7 ETCHG 767.a..3-29-94 12:17:26 pm 4TrHru mgnli 7)Page 1g/CSYS, 1 LSELI SI LOCg YgANGl DL,ALL,,SYMM CSYS,O LSEL,ALL!Symmetry at, Cut NSEL I S~LOC g Y I RV+TV+H 1~05 g RV+TV+H 1+05 CP~1~UYgALL TREF, 70 PINT=1250 CMSEL g S/LID SFL g ALL f PRES I PINT PI=ACOS(-1)
FLONG=PINT*PI*R1**2 ALONG=PI*(R3**2-R1**2)
PLONG=FLONG/ALONG LSELgSgLOCgYIRV+TV+H1
~05gRV+TV+H1+
05 SFLgALLIPRESI PLONG FINISH!Longitudinal Force!End Pressure/SOLUTION ANTYPE I STATIC NSUBST,1 ALLSEL*Number of Sub-Load-Steps
- DIM,SNAP, ARRAY,14 SNAP(1)1 I 10I 20I 40 I 60J 801 100'00 SNAP (9)600 I 1200 I 1800 g 2400 g 3000 g 3600 NT=14*DO,N,1,NT T=SNAP (N)TIME,T LDREAD g TEMP g I g T I g NOZZLE g RTH SOLVE*ENDDO SAVE FINISH MpR ASSOCIATES, INC..Calculation No.Prepared By Checked By Page
PD~MPR ASSOCIATES INC.E N&INE ERS Appendix F LO%CYCLE FATIGUE USAGE
PLIMpR MPR Associates, Inc.320 King Street Alexandria, VA 22314 CALCULAT!ON TITLE PAGE Client hJ IRGR<R 4 (ol 8>IC PUB A.Co'R~DNRTidlJ Page 1 of Project Qg,g g~~Q<ag Q>~4.7~4'~C~c~lc.~>]Task No.o&s=)50 gp.g wk,~~L.,'nz a~4 L,~P~lq F'4j<vwq~Calculation No.ugly 530 psp3 Preparer/Date Checker/Date p i q6(Reviewer/Date APL~~~](~i~as Rev.No.
lxlMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.QSS-l-3o-P~P3 Revision RECORD OF REVISIONS Checked By Description Page O~igi~a((ss~e
t>~MPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.og<-~so-PsP9'2 S'~Checked By Page PvCpo&F
RMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.OS'=53o-%gQ Checked By jl~A4~Page R esuh'G F~ks'I.e<sa)e a F+hem/.r/P un 9/'<~A/P 4 I Dnve r epu n r/inc rsvp phla.ava 7 o/p/nn/prrssnrr/S~per;Purr chic/~era/rsvp'ad&4;, 54r+/54 J.(lawn M 4~(S~ra~l-l~Ar,~<4'gg F4~0sa e (e t.%3~(o t 3,898.<<(o (,')63 w/o
raiMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.os'-xsg-PSIr'3 Prepared By'7s Checked By Page PPFYLoRcI-I 7 k~j~c usaq~.o4+M c.~kaI>>c J, J,r~(CP-h)I ('>>4wVw n;-~4.ic c>>(~(>>4~2 l>>~ed r/co bd vsny pi>>sgw~c ac/v gee~>>/(I f u.hie.4 or t.w ol v~q gusrakq+pens>c~zs n-4 (i 0 (>>.g~-~-., 4.g/~1,.k d.~).Riess<<n~(4~~p'valour>>/-J)c/~Q/(<02-re4~li'~>>~.~~)e.a.cc.do~~~e~keg,'~
E>>(cree(e I, ,.4.',..4 r~id>>~4i.e,~p(4e J, g~A (.J~ar cl 4-q-ev,q 8 A~~g<.les.(>>8j imp~spy.f/A~cat ce/~,~/n~no-+w(c fg cw/c/>>-A~g dan>>p8v Ly c/g b.si'f.~Qe pc/eJ Jefi'.4,'.
f<'eX'r nate, I>>s Each:<:
K~MPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.a gg-x~-Psl>Prepar d By Checked By Page lA e('c..'~Agua eSnp~$Q pC/(n inn bCn of app(si p/qg/ag 4r ii pi~en p/.rssurc-hm~~+g gg~J~tl ii nn/nn'~pllg~~ik/(:
i/('0 4'i~ssuw-4e~perzgrg s t,4>I(, TInQ 6 l tiiw<le(~(i(u~(gei eP a7 (,((iiJ/j)lg<<<v c./u/(g/'4n i/i I'~Jm~mln~g/(~gg~/h-P 5//2 (doe)3pslyn Cwgsgvf'~r vp Pv'e('gii~
A/n)e.W//'y(/eve/g 5'0'/~gb Z, g),.7-~J./ttIC, a l48v n<4i(i]'a4YY 5 5 rav ge.~u Si" 0 4j (c,u(vC (g Jekrn,/(,g 44+N(i%8%Cry, z)
ralMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.085-'P~o-ping re ared By Checked By Page (Sea kaQ)~a@(gfmaS ((~(q'~Et y~>ping O mirage'is~ze.WS, (Aa, K alkarna4i~p s*asS i'a.14Ila.J, 4 Ah v'~gib ef gag g~g e("Jig~aufvz c.(a ski>>>ssas>>.as J, News erss4sm s.t>>S',~ssssu.>><<a 1 s<<(ev 4(>>.qsj>>5 t/a<0~H>>a~~is;s s>>4.4J i-Waai~I k p (s'svkJ.~s e4-s<<-(i,)(S"aw., 4 4,.)fns.l Ii's%54 G4-4 6/C~C 8 CEC ffn~~l A~s a P ASS'~ie 4s~ps~4~>>s~~ee.IVokcp.h 8 kic ss<<4f/'sera~F'gglgVY gt54~JUL~~~4f CAew L'e,*Q$p>>gS y s/>s4>>k ((s~~~g~t~4I.ggg'.r~gpss>>+lQ 4rXQgs.J CstC4)5v 6f C
<5 kyc4s Pry.Ql;p<~5Hgg (ps)g)7p~pera Nre~ClbR ())P3 7o-s2.s 70 7o-gQ (Mb o-io3o 70
ti1MPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.os<-z.so-WP~'22~Checked By"" io She~eS;/4 e~l~sees es~ee~~~l~~pt Using q gin ik el(vne~4 r ader~ae~~4~l/i~e 5'Z/0~/e/oem'.4r~girr Ae.hv r-r j~vc'p n q sr>i<era eire ce r rrrrn,"rr f4'A-S LJ Ir r rib 44.PiR<(e/e'-n er.~1 n ery rf/r pe k->Crt'sv l+A~GL, 4e(C,IA[..(\~hev-/l0~0 l~~SeS'(bnckrr+e'r~4c.51.5"F CreOree Fl J%rrrprrr4.h
T-Ir.s-4sc, 4ens h'A'54erd.p/s k~gJer n~)e(eJ prebSrree i C f rid 0 p s c)anA ckf&rnr/4"c/'-
WMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.o8r-2M-TL~PS Prepared By Checked By ay~~Page q 4g Csh~>>,V~)]~~s;~c4,$i~)<o,o<ss l2go pig$0.(p cz g~(~g I she'~bia/>>S~,>>ri~sA,is,-/a~u,)~~(<n~)jl(,)-s.lg As 2 ss.f'p~iisisl)
HL<l/n~Ap I va>>(1>>>>Afc'r>>>>i>>>>s y>>/id g>>+;/~pa e
WMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.oM-tM-RS'P3 R Checked By goo VkoAs Page Au ij~g.E~ens<2 CApp,&,a~, F g>-V i)eM u s'5 own'30~JO pJc 7/a go++(a~pe//oj I S 5A-33po~k'cl)(n-~(.(g n,'Q 4ns,'h s4ron~Ag&O gsi e.(os@Wo J.(i s o W4'>bl<'8 5~ieC Qo~>>o'P PjPog cy J 7ha o o (o(v o.of HE~-ne%+(L ss 6~~a oA 3o Po o sli o4 i<<ppi wiin ooA$pea o v~~4~apooa+~t'c
~s~sasa~~a ss~~a~SSISS~~SSSSS~~NSISS~~
~SNSS~~SQIISS~~SSSS~~
~QSREr%~'NNSr~~SQAS%%~
naaraaaaemraarm~ta)rrraaiaa Saaaraa~Saeara~rnuarRjea BRIRSR~~ER~~RIEERSS~
EBSIE~~ESE~~ESEERS~
SRSER~BR~~BHBRTR~
~EEIERSR~HER~HBHSISI~
IHSSRMllBRRRWNIRBSsw ramrrmmaarrmnararam IIIIIIUERmllll@RIIIIII)ilR I~&WM~~SHRER~~Ea~~ESEHELW~~
~anaaam~aaam~anntimm~
lHIIRRH~HHHRA~lUUUNEEH~
IHBIQR~IIIQ15%~lllSlSR~
IIIHQLHIIIIIQRHllllRIiLH IIIIIIRRmIIIUSRIIIINSER
~KSERHW~%R~~~LRm~HRRRHM~R&M~NBSES&M~
~aaaara~maara~aaeaa~
IBSRR~RS>RR~TBBIER~
IIIISSNM~mREIWM~NIINR~~
!IIIQSWMIIHItSQNflllllllSRM IIIIIIRRmlRiNVlllllEER I~SEEK\M~~~T~SRRR~~
SEERSE~ass'~SEES~
~Qlssr%~56lsrN~sslss%~
IIRIRERE~EEEBEN!~BEEN%~
E~ERW~~BHRRNNt~llRRRH~~
taatrrmmiaarrmmnarm r llllllRRmllSRUllllmR
mmx R MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.%p Checked By Page 7 ego/, 7o'
WMPR MPR Associates, inc.320 King Street Alexandria, VA 22314 Calculation No.DBS-230-N5FD repared By Checked By 9>76~Page I g P(,Lc.Wy pe.Mv ev AN~hel'.Ksi)Sq (ts,i)Allow~44, Cqc les Us,a.g~"Iw 9o.b l(7, 7/%3>/v l lO)0 gi)b 97i1
lLBMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.c 8S-Sou-&Pa 7sZg Checked By Page T4e~a&5'N~S4'~$fwQ dec csea I 2.~~si sI+polnASCA8Gf 52 g Pn.ks Pb L~d Ce L Jim/s fl z 0/3 gZ;/(g, g-=//5>0 I IO 0~~ig b 255.1 e 5'7>I~e, o I I aw<LLL 6~rwIem cd c/c,lpz gn csn q/c'one/shy S4rc>>e~4 C's s 4ecp/~/~J vscn>7<4/e~-7~5~="75 jV'ZocsD IVg=5C>DP y'c ja
ljiMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.os-L30-65PQ repared By Checked By~'Nc~Page (7 jv=9153 g,GS'tw ld 24 I 2-Fr~ws4 l~l~;<c,]or>=5F%Ca<v'rM'fp'Nd J p o Lnncj (Jns(iV>4g Z-
liiMpR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.os-~3,5-I>U Prepared By Ws Checked By Page 29 5@/N=4/SO(u u~r~eZ g.l36 g lo z-ark~(g, (c (c fe>ieiiiyg'aj4 I:
~.
r>IMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.o Vg-zs>-&P3 gS Checked By Page I.P&E>le (5)6 S.BVsvro C I)I 943 ii<(i)Qi 002$
RMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.c 8s=z.m-R>r 9 Checked By Lv illa~Page~Rw/c122t ass~~~'<<(<>~'Ref n<~ale 7Tjer e/Aw4 Prrssan Qc/rs,'<12 C~4</arian 085-LEO'-$8g-o/~Rev/,//S/4F 8o, lee c M Pr ran r V ne/Cg Je.5~<di6 l is~FC4~.'l, AAJ.3<~
PA1MPR ASSOCIATES INC.ENGINEERS Appendix G CRACK GROWTH RATE COMPUTER PROGRAM VERIFICATION
RMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 CALCU LATION TITLE PAG E Client Page 1 of$8 Project~-f
- rive, tJ>~~le Aqalys,<Task No.o65-230 Title&nc~er$a$~eeA pen,Pica'~
aP~pe~Pro~r~~W CaR C K'.E,yE'alculation No.o85-4~-gsP)Preparer/Date p-2/-'gl'hecker/Date Reviewer/Date Vl~l<<Rev.No.
WMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No.c ss.->so-RSP/Revision Prepared By Z2.Checked By'8,.Ca Description Page gr jinx(I stag
'0~o p~~~
r~lMPR MPR Associates, inc.320 King Street Alexandria, VA 22314 Calculation No.oeS->3o-<F'QY~Checked By Page PES Ul 1 5 gCRACk.F Xg>Versm (.0 Curvecf(cA 4 taA'8 c~c c,k pow kg.of g/wc)(U)Illy flite no~>>~8-~4 (~ass~s4 4s e~(q(,Ie~, 7~e
~W P~~e
a~MI R MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.ops-Mo-Rsvp l Checked By Xd Page PA+Ccq, 2.)Kw~--H~,.X4 ga LJ.~'g F..7~M;.)C)de.(.WsL t~)Q.assi.Awe cols.(Vs'~~)C~4 y~4h is app~im~]eJ
&q,)ha=Cv,~k srto~$4 Fin'~Vs))J.'o~og q~(es IVo~k44 44is<<ppasfee4'a (i vnb eppb~bt~s~ll vela~~h e~'/AN re~a~g ra~ah z~sI>4.
lLiMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.DBS-w>0-%P I Pre ared By Checked By Page 4 4o s,re.de4r~ine/LsA m po:Ss~ee a~4 ao~+(as (6LC~eael (J CV~s~~S 4'ale,(awkio
~aoa(l~yam is z epee,9<b)+$('li&et~4of'(aa()vl~w.l 0=ZgaSS (A,i,)o(lsAn e/Awol]l no~p/g oui (((Wchw)Pal)n~P Coef<c e HZ
t>IMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.aSS=E3o-@PI Checked By'X~Page p CF(l).l-pe~,'jp P Q (Ws.'()L n)gf)(v'les)>>~>>>f>eeflen Refers (s>epeneter>f en ge>>&Y])swiss g,'st'Le)>en s (ad eve C/">i tz)'e>re de/er n>r>eJ.'s no~Pr>h p e(ense H eee gs s~g f,ress>rrt.
slyness I Pwg.S-I~s 4~4'Iv,v': i 8 cq<pm~SX~C>s cL ft'.Q vwlCJ I~v~.l 1>net)u..k4~ness~.7/ir n>el~efr ss liszt>A>>f ens I>>re ct ke ne>nQ r>4o eegsnenee ne>>lee>>>W<l>er>/es>
a<el><4 pr ge'4>sussex 4 o4L v.his--'s-l.v~rn (>-.e~v$~Ah>~M~r~4 ek~ga
TLIMPR MPR Associates, Inc.320.King Street Alexandria, VA 22314 Calculation No.sos-~30-I'-sPI Pre ared By Checked By Page~f 4 Jl NIAl~l4~~br<<~,.(8AS+y (acgoY5 CgQ jive<cyc,4 p<-assure s an)e~<h'yale.,/he p<<<<<<'CS Glelk<'-~fCAj i~5 Gl<C.I j/Pi'~s~covc<&pa~<g%m>mam 6-&<st d<fc (ps<)Pi>=Pc mud.u>~r s~~k'rg 4 wn s4 s<4k Cp'j r<<~e<<k~c b'igvw<vu, cw<<: a rN ol i nq s4<ess s4)e (')W<e 4e~)~~M RAN<<ev ce~vespsvds Q/II~4<~Pn~Qc.JbR~m~defi'<.J g~Ac e'l.~~4 lQ<s.d q.-A~-.-4 A.~/S res Se S'.s4<s I 3.~,'))$<J<g~g~L<l.$<<i
a 0~l r~~~~~)~e 0 t (/t I
WMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.o Ss=~-RsP/Prepared By nz Checked By Page I~Pg-44,co~pwss~used$e 6eprvni~c
txiMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calcuiation No.ago-z.so-gs, p]Prepared By 0<Za Checked By Page),//cn MIny goer Ct r.o Jc
0()vac-Qg c.~Q~RC-K.BXC;'his program calculates crack growth In~nozzle due to pressure and'hermal cycles DECLARE SUS Crackgrowth (At, Nsbl, PII, P2I, Sdist1, T11, TrII, Sdlst2, T21, Tr21)DECLARE fUNC'I!OH Klt (Al¹, L)DECLARE fUNCTIDH dadxt (dK, R)DIH NSub(5, 5), hain(5, 5), Peax(5, 5), Strdistsn(5, 5), Strdistex(5, 5), Tlein(5, 5), Tieax(5, 5), 12min(5, 5), T2eax(5, 5)DIH Nsubcyc(5), Repcyc(5), BO(5), Sl(5), 82(5), 83(5), RefStr(5)CQHHOH SNARED Pl CLS~Open Input and output flies inputfileS
~COrp(ANDS OPEN inputflleS FOR INPUT AS tl flan~LEN(RTRINS(lnputfileS))
outflleS~LEFIS(RIRINS(lnputflleS), flan-4)+".OUT" OPEN outfileS FOR OUtPUT AS¹2'ead input file INPUT tl, Aot, Nflnal INPUT t1, Rmin, CIRmlnt, C2Rmint, ml, e2 INPUT¹I, Reax, C1Reaxt, C2Rmaxt INPUT tie Fl, f2, F3, F4 INPUI tl, Nstrdlst foR I~0 TO Nstrdist INPUI'l, 80(l), 81(l), 82(1), 83(l), Refgtr(l)NEXT I INPUT<<I, Ncyctype fOR I~1 TO Ncyctype INpUT tl, Repcyc(1), Nsctrcyc(l) fOR J a I TO Nsubcyc(l)
INPUT tl, NSub(l, J)~Pein(l, J), Peax(l, J), Strdistsn(I
~J)~TImin(I, J), T2min(l~J), Strdistex(l
~J), TIeax(I, J), T2eax(l, J)NEXT J NEXT I'onstants Pi~3.I 81592 Calculate crack growth Ntot~0 At~Aot PRINT t2, USING"ttO DO UNTIL Ntot>>Nfinal FOR I~1 TO Ncyctype<<.ttN'tot; At FOR K~'I TO Repcyc(l)Ntot~Hiot+1 fOR J~I TO Nsubcyc(l)
CALL Crackgrowth(AS, NSub(I, J), hain(l, J), Peax(l, J), Strdlstcn(l, J), Tlmln(l, J), T2eln(l, J), Strdlstex(l, J), Tieax(l, J), T2eax(I, J))NEXT J PRINT<<2, USING"ttO t.ttO"I Ntot;At NEXT K NEXT I LOOP END 0 QL o 1 O c 0 R p 0 V'0I)x O~Q to-cC)co CoCD to lO Cr)o
CCF(D d(P-ACE, E,ME.(('~>SUB CrsckGrorrth (A¹, Nsb, Pl, P2, Sdlstl,'ll, Trl, Sdist2, 12, Tr2)~This subroutine calculates crack grorrth given the Initial crack length,'he member of cycles and the mlnfaara and msxfaaaa pressures and-'ecperatures.
dtl=Trl-Tl=dt2~tr2-12 Kl Pl i KIN(AN, 0)+dtl e KIN(AN, Sdlstl)L2 a I 2~Kit(AN, 0)+dt2 e KIN(AN, Sdlst2)IF Kl e K2 THEN Kmin~Kl Kmsx~K2 ELSE Kein 8 K2 Kmsx Kl END IF dK i Kesx-Kmin R~Kmin/Kesx dst~dscgrf(d(, R)e Nab~Af+ds¹FUNCTION dscgrf (cB:, R)'alculate dscBI given dK snd R SHARED hain, Clhainf, C2Relnf, el, e2 SHARED Rmsx, CIRmsxt, C2Rmsxt If hain~Rmsx THEN Clf~Clhalnf C2N~C2ibalnt ELSE SELECT CASE R CASE IS<<Rein Clf~CIRmlnt C2N~C2Rmlnf-CASE IS>>Rmsx Clt~CIRmaxf C2N~C2Resxf CASE ELSE Clt~Cllbalnt+(CIResxt-CIReinf)a ((R-Rmln)/(Rmsx-hain))C2N~C2lbalnt+(C2Resxt-C2Reint)e ((R-hain)/(Rmsx-Rein))END SELECT ENO IF IF Clt~C2N THEM dscgrt~Clf e dK ml ELSE cB:tran~(C2N/Clf)(1/(ml-m2))SELEC't CASE cX CASE IS e dxtrsn dsdxf~Clt a dK all CASE IS>a dKtrsn dsdMN C2N a dK END SELECT EHD IF END FUXC'tlOH FUNCTION Kit (Alt, L)'alculate Stress Intensity factor'iven crack'Length snd stress distr ibutlon SHARED Fl, f2, f3, F4, 80(), 81(), 82(), 83(), Refstr()Klf ((Pl e AIN).5)a (Fl a 80(L)+F?*81(L)a 2 a Alf/Pl+f3 e 82(L)e Alf 2/2+F4~83(L)a 4 e Alt 3/3/Pl)/Refgtr(L)EHD FUNCTION Pq o Q o>I O~0 U (D o Q (I)O.~Cr)Q x Og ID D K (o-CQ CD o.0)o (Z IO'(D~cD cD Q w (o Q (r)4 o
TLiMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.oSS-%3o-9-5 p/Prepared By WS'hecked By Page~~C.<ac K~~kg gv~ves: PJ~&cV-CW A.c,c,<ph CVV'VCS y$8+i<~/in pL ES~ey J($lg~GLEAM GIAck q/lA/t'g CvC~is~gg~gl~/eg~>/$g.QCLC.4 c,p'~+dig 54/s<X 8 3'8s 8&(s//go se'/5 df Q~>/+g/g
WMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.0~g g~Q~~p5p (RQZa Checked By'K.Qu.Page[(
RMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.t/55->3o-JVt 1 Checked By Page C;>/" g t'=th1,'peen~44~WP<,eee1 I4'n)elepvJi'q e 4 K.)tJeeke'<M4~~vcS~.a$~4~.e.vna LPW1q'g ISA Y~p.~ce')ne-kh c~Ie1~,"l'.~~e.'h.
i'.4e~sec4m eC-P/)4 e cvveeS is Je/~eai~ecl; I Ci (A I', h,L g)ee/pJ Wee appeaec g Pr ace n ee1 en'~+eaee S7 Msl'e~~esag by/bc A<bfG 9 i/er seae/eeeevvc Yeesz/Cee/e..
lxlMPQ MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calcvlation No.os'-230-g5p/Checked By Page~t Pressure and New ccrc vcccce g o P pcessvf c.ace A$'iccor crea(q clcs aced k,sk~c~c~l leg'e8 4~cnp 4 4s Mc-RRc-K'"=
<E y P5 A('sea sseg belom.<Ice~~carr,l, 4c'~, As xebec.,l ea p~vco~sg, peers~ccrc%Rebec cccci cs*ess of'57 rclcckcinJ'crp P7 i D I ocdec" polcl crccc~'ccc(cc C Z4.ss as-Zn~k~oP c(is4ncc+roc cll v4 now+(c c.e (I J.lTee pc lqvl wcl ccc (c c!e Pl ciencS R4'c'SS cri dcnSc i cr gcc~v.c ore cC5cd,n~Ic./odin's IM~R C K.c Xg cc ccetok cri p gs/err orii;to ressccrp z 4i"esf cc SA.n~t 4 7-Ck-.I st.Zr a.s4.'b~A~s.
crrce~ressvre.s~c Riser'l~~4'oui i s ri e cessewq zircccpressiccc.
c'okcescc5 ccrc (ireocY'-4 ap(Q p~ssuit.Assocrjcg',gj cricl, s4rrsZ I li lg/s re+~ez~'c,~natu.r) c.cvd;A~-
KiMPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.Dg+-230-gap/
Prepared By Ch eked By Page (II~l L ides'ee%ac.ajpIW..'locccl~M-4 c$M+Yvli~~~gee~Q iX*1 L)vcII.IVI, (ec fliclevnc(ant~c(gi cI.n','r 44 aq (I H p~zs~z ulcc(I~.a l, pa-Sc.8~cc S veS J ,~P~en~Ic~~~(c~c a k C Anna, ada, I 4'A~g$ev~~f y.u'~f R veda$/le q'ag (a"c cI/(7/)e/tiara J I a(cnenvloPJA.JeI
~44Akji)>~nIvd I h',~4srsgPI 7 d 4 enIa.dpf~neJ u~+he, Pi ni4 e('m a]~ede,/,
RMPR Calculation No.os'=z~-jcspj Prepared By MPR Associates, Inc.320 King Street Alexandria, VA 22314 PagegO(~m.j,;.;4)ms, V)4..:..k~Jr f8re~g o4 g~tcs c 4 J~W~Q aa-P l (coco cnC eccc.4 g c 6 lnrlcc'cop!
4 S I.g~t~ts PcAAg-CXC.g f c.)c.l~Q4ned'I acccs a<<sscncs a4 nccccoccc>>cccc s Iccss s IeSc', etorcQ 0/lc~<I II~<i.,>)Te~p I.W~6~n~~Sk<<SS~4-4 d~,p gal<.hso&slq (oc f I>>3)7 ctc>>Iejccac<