ML17319B048: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 23: Line 23:


===5.2 Instrument===
===5.2 Instrument===
Specifications 5.3 Sensor Locations 5.4 Instrument Error Analysis 5.5 Pressurization Apparatus 10 10 11 12 12 14 6.0 Containment Model and Leak Rate Calculations 14 6.1 Volume lleighing Factors 6.2 Containment Pressure and Vapor Pressure 6.3 Containment Temperatures
Specifications
 
===5.3 Sensor===
Locations 5.4 Instrument Error Analysis 5.5 Pressurization Apparatus 10 10 11 12 12 14 6.0 Containment Model and Leak Rate Calculations 14 6.1 Volume lleighing Factors 6.2 Containment Pressure and Vapor Pressure 6.3 Containment Temperatures


===6.4 Statistical===
===6.4 Statistical===
Line 92: Line 95:
-20'F.The air enters the con'tainment through a spare penetration in the upper volume.A valve is provided at the penetration outside the containment, where the air line can be isolated and closed with a blank flange.6.0 Containment Model and Leak Rate Calculation The containment leak are performed by the'absolute'ethod on a'total time's described in AHS-N45.4-1972.
-20'F.The air enters the con'tainment through a spare penetration in the upper volume.A valve is provided at the penetration outside the containment, where the air line can be isolated and closed with a blank flange.6.0 Containment Model and Leak Rate Calculation The containment leak are performed by the'absolute'ethod on a'total time's described in AHS-N45.4-1972.
The containment design pressure is 12.0 psig and allowable leakage (0.75 La)is 0.18755 wt/day.The containment model and leakage calculations used to perform this test-are essentially the same as the ones used in the Unit 1 and Unit 2 preoperational tests.A 3-compartment model is employed for the calculation of the containment leak rate.It was developed to accommodate the distinct and widely varied envi ronmental condi tions existing in each of the Upper, Lower and Ice Condenser Volumes.The normalized fraction of the initial containment dry air mass, W , is calculated on a compartmental basis by ratioing the sum ofnthe product of each compartment's dry air density and compartment volume fractions as determined from data collected at time t , to the same value deter-mined from the initial data collected atntime t.0 Expressed in equation fons: 1 Wn=K WF un Un+VWF Ln Ln+VWF P-VP P-VP u Tun L T PIn-VPIn TIn 1 R VWFU Uo Uo+VWF Lo L+VWF Uo Lo Io-VPIo TIo Page 14 Ip li Where: W=normalized weight remaining in containment at time t (dimensionless) n f t-1 bs R=gas constant for dry air=53.34 ibm-'R (The terms cancel)VWF=Volume Weighing Factor (Each compartment volume is ratioed to the Lower Compartment Volume)(dimensionless)
The containment design pressure is 12.0 psig and allowable leakage (0.75 La)is 0.18755 wt/day.The containment model and leakage calculations used to perform this test-are essentially the same as the ones used in the Unit 1 and Unit 2 preoperational tests.A 3-compartment model is employed for the calculation of the containment leak rate.It was developed to accommodate the distinct and widely varied envi ronmental condi tions existing in each of the Upper, Lower and Ice Condenser Volumes.The normalized fraction of the initial containment dry air mass, W , is calculated on a compartmental basis by ratioing the sum ofnthe product of each compartment's dry air density and compartment volume fractions as determined from data collected at time t , to the same value deter-mined from the initial data collected atntime t.0 Expressed in equation fons: 1 Wn=K WF un Un+VWF Ln Ln+VWF P-VP P-VP u Tun L T PIn-VPIn TIn 1 R VWFU Uo Uo+VWF Lo L+VWF Uo Lo Io-VPIo TIo Page 14 Ip li Where: W=normalized weight remaining in containment at time t (dimensionless) n f t-1 bs R=gas constant for dry air=53.34 ibm-'R (The terms cancel)VWF=Volume Weighing Factor (Each compartment volume is ratioed to the Lower Compartment Volume)(dimensionless)
P=Compartment Total Pressure (psia)VP=Compartment Vapor Pressure (psi)T=Compartment Weighed Average Temperature (degrees Rankine)Upper Compartment Lower Compartment Ice Condenser Initial Time time at nth data collection 6.1 Volume Wei hin Factors Table 6.1.1 shows the compartment free volume distribution for normal operation:
P=Compartment Total Pressure (psia)VP=Compartment Vapor Pressure (psi)T=Compartment Weighed Average Temperature (degrees Rankine)Upper Compartment Lower Compartment Ice Condenser Initial Time time at nth data collection
 
===6.1 Volume===
Wei hin Factors Table 6.1.1 shows the compartment free volume distribution for normal operation:
Table 6.1.1*.Containment Free Volume Com artment Free Volume ft Upper Lower Ice Condenser Total 687,819 365,614 210,723 1,264,156 The volume distribution existing at the time of the test may differ from the values indicated in Table 6.1.1 in two ways:*Ref.AEPSC I&C Calculation 12-PI-05'Volume Weighing Factors'age 15 1.The total volume of the ice condenser in Table 6.1.1 does not include the volume of ice resident in the'ice basket'.2.The location of the moveable sections of the reactor missile shield do not necessarily have to be in place during the test.The ice condenser volume was adjusted for the presense of the volume of ice in the ice condenser as determined by the Ice Basket Weighing Program, performed per plant procedure 12 THP 4030 STP.211 between Majch 16 and April 8, 1981.The total ice weight w~s 2.637 x 10 pounds.The standard density of ice, 563lbs/ft , is assumed to calculate the volume displaced, 47,095 ft.3 This reduces the net free volume in the Ice Condenser to 163,628 ft.The location of the movable sections of the reactor missile shield affects the volume distribution between the upper and lower volumes.When the shield is removed from its normal operating position it provides open access to the cont~ol rod drives, and reactor head from the upper volume.The 16, 147 ft of free volume above the head normally isolated from the upper volume by the shields, is then in direct communications with the upper volume.When the shields are in place, the volume is vented only.to the lower containment and is therefore considered part of the lower volume.Table 6.1 shows the volume distribution of the'containment with a missile shield removed, which is the position the shields were in for)he performance of this test.Had the shields been in place, 16, 147 ft would have been subtracted from the upper volume total and added to the lower volume.The containment volumes used in the calculations of the leak rate in this test are shown in Table 6.1.,2.Table 6.1.2 Containment Volume Ad'usted For Conditions Existin Durin Unit 2 ILRT.Com artment Free Volume ft Upper Lower Ice Condenser Total 703,966 349,467 163,628 1,217,061 Volume weighing factors were determined from the values in Table 6.1.2'.The volume weighing factors express compartment volumes in per-unit using the lower volume as'base'.Table 6.1.3 shows the volume weighing factors used for the calculation of the leak rate in this, test.Page 16 Table 6.1.3 Containment Volume Hei hin Factors derived from Table 6.1.2 Com artment Upper Lower Vu L VL L Volume liei hin Factor 2.0144 1.0000 Ice Condenser I VL 0.4682 6.2 Containment Pressure and Va or Pressure 6.3 Equation 6-1 shows that the compartment pressures are compen-sated for vapor pressure in the calculation of weight remain-ing in the containment volume.The evaporation of water from the exposed surfaces of water volumes in the containment would result in an increase in containment vapor pressure as well as total pressure.The condensation of water vapor onto containment surfaces cooler than the dew point of the vapor would cause a decrease in both the vapor pressure and total pressure.If the total pressure were not compensated for vapor pressure, vapor pressure increases due to evaporation would reflect an apparent increase of the containment air mass, which when superimposed over a mass loss due to containment leakage would result in a measured leak rate of a less magnitude than the actual leak rate.Condensation would result in a measured leakage greater than the actual leak rate if the correspondi ng vapor pressure change were not accounted for.The sensitivity of the leak rate calculations to vapor pressure changes is especially great in an Ice Condenser Containment since the energy absorbing ice bed reduces the design accident pressure from 50-60 psig, typical of conventional containments, to 12 psig.The vapor pressure therefore represents a large fraction of the total pressure in the ice condenser containment.
Table 6.1.1*.Containment Free Volume Com artment Free Volume ft Upper Lower Ice Condenser Total 687,819 365,614 210,723 1,264,156 The volume distribution existing at the time of the test may differ from the values indicated in Table 6.1.1 in two ways:*Ref.AEPSC I&C Calculation 12-PI-05'Volume Weighing Factors'age 15 1.The total volume of the ice condenser in Table 6.1.1 does not include the volume of ice resident in the'ice basket'.2.The location of the moveable sections of the reactor missile shield do not necessarily have to be in place during the test.The ice condenser volume was adjusted for the presense of the volume of ice in the ice condenser as determined by the Ice Basket Weighing Program, performed per plant procedure 12 THP 4030 STP.211 between Majch 16 and April 8, 1981.The total ice weight w~s 2.637 x 10 pounds.The standard density of ice, 563lbs/ft , is assumed to calculate the volume displaced, 47,095 ft.3 This reduces the net free volume in the Ice Condenser to 163,628 ft.The location of the movable sections of the reactor missile shield affects the volume distribution between the upper and lower volumes.When the shield is removed from its normal operating position it provides open access to the cont~ol rod drives, and reactor head from the upper volume.The 16, 147 ft of free volume above the head normally isolated from the upper volume by the shields, is then in direct communications with the upper volume.When the shields are in place, the volume is vented only.to the lower containment and is therefore considered part of the lower volume.Table 6.1 shows the volume distribution of the'containment with a missile shield removed, which is the position the shields were in for)he performance of this test.Had the shields been in place, 16, 147 ft would have been subtracted from the upper volume total and added to the lower volume.The containment volumes used in the calculations of the leak rate in this test are shown in Table 6.1.,2.Table 6.1.2 Containment Volume Ad'usted For Conditions Existin Durin Unit 2 ILRT.Com artment Free Volume ft Upper Lower Ice Condenser Total 703,966 349,467 163,628 1,217,061 Volume weighing factors were determined from the values in Table 6.1.2'.The volume weighing factors express compartment volumes in per-unit using the lower volume as'base'.Table 6.1.3 shows the volume weighing factors used for the calculation of the leak rate in this, test.Page 16 Table 6.1.3 Containment Volume Hei hin Factors derived from Table 6.1.2 Com artment Upper Lower Vu L VL L Volume liei hin Factor 2.0144 1.0000 Ice Condenser I VL 0.4682 6.2 Containment Pressure and Va or Pressure 6.3 Equation 6-1 shows that the compartment pressures are compen-sated for vapor pressure in the calculation of weight remain-ing in the containment volume.The evaporation of water from the exposed surfaces of water volumes in the containment would result in an increase in containment vapor pressure as well as total pressure.The condensation of water vapor onto containment surfaces cooler than the dew point of the vapor would cause a decrease in both the vapor pressure and total pressure.If the total pressure were not compensated for vapor pressure, vapor pressure increases due to evaporation would reflect an apparent increase of the containment air mass, which when superimposed over a mass loss due to containment leakage would result in a measured leak rate of a less magnitude than the actual leak rate.Condensation would result in a measured leakage greater than the actual leak rate if the correspondi ng vapor pressure change were not accounted for.The sensitivity of the leak rate calculations to vapor pressure changes is especially great in an Ice Condenser Containment since the energy absorbing ice bed reduces the design accident pressure from 50-60 psig, typical of conventional containments, to 12 psig.The vapor pressure therefore represents a large fraction of the total pressure in the ice condenser containment.
Containment Tem eratures Containment temperatures are used to compensate the weight remaining calculation for total pressure changes caused by the thermal expansion or contraction of the containment atmosphere.
Containment Tem eratures Containment temperatures are used to compensate the weight remaining calculation for total pressure changes caused by the thermal expansion or contraction of the containment atmosphere.
Line 355: Line 361:
I~00009 UPPER CONFIOENCE LIMIT FOR THE RATE IS-0~28030 Pane 43  
I~00009 UPPER CONFIOENCE LIMIT FOR THE RATE IS-0~28030 Pane 43  


9.0 Local Leak Test Pro ram 9.1 Past Test Results Summar Local leak tests have been conducted periodically on Unit 2 in accordance with guidelines specified in 10 CFR 50 Appendix J, the FSAR, and the Plant Technical Specifications.
===9.0 Local===
Leak Test Pro ram 9.1 Past Test Results Summar Local leak tests have been conducted periodically on Unit 2 in accordance with guidelines specified in 10 CFR 50 Appendix J, the FSAR, and the Plant Technical Specifications.
Testing is performed under plant procedure 12 THP 4030 STP.203,'Type B and C Leak Rate Test'.The program consists of'Type B'ests designed to determine leakage through the containment electrical and pipe penetrations, air lock door seals and overall air lock leakage, and'ype C'ests designed to determine leakage through containment isolation valves.Table 9.1.1 summarizes the test results for Type B and C testing performed since the Unit 2 Preoperational test.The leakage detection instrumentation used in the conduct of the'Type B and C'ests is certified, traceable to NBS, and calibrated pr ior'to the tests.The instruments consist of 4 cali brated flow meters, of different ranges, connected in parallel.A test is performed by isolating a test volume bound by the containment isolation barriers under examination.
Testing is performed under plant procedure 12 THP 4030 STP.203,'Type B and C Leak Rate Test'.The program consists of'Type B'ests designed to determine leakage through the containment electrical and pipe penetrations, air lock door seals and overall air lock leakage, and'ype C'ests designed to determine leakage through containment isolation valves.Table 9.1.1 summarizes the test results for Type B and C testing performed since the Unit 2 Preoperational test.The leakage detection instrumentation used in the conduct of the'Type B and C'ests is certified, traceable to NBS, and calibrated pr ior'to the tests.The instruments consist of 4 cali brated flow meters, of different ranges, connected in parallel.A test is performed by isolating a test volume bound by the containment isolation barriers under examination.
The test volume is pressurized to 12.0 psig.A regulator in the air supply line to the leak rate monitor maintains the test volume pressure at 12.0 psig while the flowmeters measure the air flow required to maintain this pressure.This flow is equivalent to the leakage out of the test volume.Exact test pressure and temperature is recorded and used to convert the measured leakage to standard conditions.
The test volume is pressurized to 12.0 psig.A regulator in the air supply line to the leak rate monitor maintains the test volume pressure at 12.0 psig while the flowmeters measure the air flow required to maintain this pressure.This flow is equivalent to the leakage out of the test volume.Exact test pressure and temperature is recorded and used to convert the measured leakage to standard conditions.

Revision as of 13:39, 18 October 2018

Reactor Containment Bldg Integrated Leak Rate Test, 810430-0504
ML17319B048
Person / Time
Site: Cook American Electric Power icon.png
Issue date: 09/10/1981
From:
INDIANA MICHIGAN POWER CO. (FORMERLY INDIANA & MICHIG
To:
Shared Package
ML17319B047 List:
References
NUDOCS 8109150437
Download: ML17319B048 (157)


Text

{{#Wiki_filter:D,C.COOK PLANT UNIT NO.2 REACTOR BUILDING CONTAINMENT INTEGRATED LEAK RATE TEST APRIL 30-MAY 4, 1981 INDIANA 8 MICHIGAN ELECTRIC COMPANY 988 8109i50437 8i09i0 PDR ADOCK 05000315 PDR

D.C.COOK PLANT UNIT NO.2 CONTAINMENT INTEGRATED LEAK RATE TEST APRIL 30-MAY 4, 1981 TABLE OF CONTENTS Section 1.0 Introduction ~Pa e 2.0 ILRT Acceptance Criteria 3.0 ILRT Results 4.0 Conduct of Test 4.1 Organization of Test 4.2 Log of Time and Events 5.0 Test Instrumentation and Equipment 5.1 Table of Instruments

5.2 Instrument

Specifications

5.3 Sensor

Locations 5.4 Instrument Error Analysis 5.5 Pressurization Apparatus 10 10 11 12 12 14 6.0 Containment Model and Leak Rate Calculations 14 6.1 Volume lleighing Factors 6.2 Containment Pressure and Vapor Pressure 6.3 Containment Temperatures

6.4 Statistical

Determination of the Leak Rate 6.5 Upper Confidence Limit 6.6 Leak Rate Computer Program,'LRTEST'5 17 17 18 19 22 7.0'LRT'rogram Printout 24 Page i Table of Contents Continued.Section 8.0 Data Analysis and Summaries 8.1 Graphical Analysis 8.2 Program Summaries~Pa e 32 32 35 9.0 Local Leak Test Program 9.1 Past Test Results Summary 9.2 l1ay'1981 Local Leak Test Results 44 44 53 10.0 References Page ii

1.0 Introduction

The first periodic Integrated Leak Rate Test (ILRT)for the Donald C.Cook Nuclear Plant-Unit 2 reactor containment was successfully completed on May 4, 1981 by personnel of Indiana 8 Michigan Electric Company (18M).The ILRT was performed as specified in surveillance test procedure 12 THP 4030 STP.202, Rev.3 and in compliance with American National Standard-ANSI N45.4-1972,'Leakage Rate Testing of Containment Struc-tures for Nuclear Reactors'nd Code of Federal Regulations 10 CFR 50 Appendix J-'Primary Reactor Containment Leakage Testing for Hater Cooled Power Reactors'. The absolute test method was used on the 3 com-partment containment model developed for both the Unit 1 and Unit 2 Preoperational Integrated"Leak Rate Tests.Data was collected at half hour intervals over a 24 hour test period.This data was used to.calculate the normalized weight of the initial dry air mass remaining in the containment at each half hour interval.The measured Type A leakage rate, Lam, is the slope of a straight line determined for a linear least-squares fit of the calculated normalized weight vs.time.2.0 ILRT Acce tance Criteria The Unit 2 Technical Specifications and Section 5 of the Final Safety Analysis Report (FSAR)define the containment allowable leakage, La, as 0.25 percent by weight of the containment air per 24 hours at a pressure, Pa, of 12.0 psig.The measured leakage rate.Lam, must be demonstrated to be less than 0.75 La, (0.1875'A wt/day)as required by 10 CFR 50 Appendix J.In addition, the accuracy of the leakage measurement must be verified by performing a supplemental test, the results of which are acceptable provided the difference between the supplemental test results and the Type A results is within'.25 La'(0.'0625/ wt/day).As specified in Section 5.0 of D;C.Cook Plant Surveillance Test Procedure 12 THP 4030 STP.202 and in accordance with 10 CFR 50 Appendix J Section III-A,'Leakage Test-Requirements, Type A'ests', the test was considered acceptable when the following criteria had been met: 2.1 The leak rate, as determined by the 95%upper confidence limit of the least squares line, Lam/955 has converged to an'acceptable level: 'Lam/95K (0.75 La-Type C Leakage Penalty}2.2 The duration of the ILRT has exceeded the minimum of 12 hou'rs and the difference between the 954 upper confidence leakage limit and the leakage rate itself does not exceed ,0.0625/wt/day in the most recent data set.Page 1

2.3 The upper confidence level leakage and the measured leakage do not show a negative trend over the last four data runs.The Supplemental Test was considered acceptable when the'following criteria were met: 2.4 The duration of the Supplemental Test meets or exceeds the minimum of 6 hours.-2.5 The sum of the imposed leak, L , and the leakage measured~during the Type A test, L , i3 within+0.25 L of the composite leakage, L , meNured in the supplemental test.(L+L-0.25 L)<L<(L+L+0.25 L)The criteria used for this Integrated Leak Rate Test is more stringent than that specified in 10 CFR 50 Appendix J.These criteria incorporate additional test commitments made by D.C.Cook to the Nuclear Regulatory Commission. These.additional commitments are embodied in a response to guestion 22.14 of Appendix g o'f the D.C.Cook Nuclear Plant Unit 2 FSAR.3.0 ILRT Results 3.1=Leakage Rate Summary: Duration of Type A Test: 24 hours Duration of Supplemental Test: 6 hours A.ILRT'Type A'eak Rate, Lam B.ILRT'Type A'55 Upper Confidence Limit Leak Rate, Lam/95%C.Type C Leakage Penalty Neasured Leakage*'wt 24 hours-0.05287-0.05748-0.015975 Allowable Leakage*X wt/24 hours-0.1875**0.75 La-Type C Leakage Penalty++=-0.1875-(-0.015975) =-0.17153 N/A D.Imposed Leak Rate, Lo-0.2006 0 5 La<Lo<La-0.125<Lo<-0.25 E.Suppl cmental Test=Composite Leakage, Lc-0.24631 N/A F.Supplemental Test-Correlation am (Lc Lo)0.00716 Lam-(Lc Lo)<.25 La**Lam-(Lc" Lo)<~0625 Page 2

The slope of the linear regression line computed for weight remaining in the containment as a function of time is negative since weight remaining in the containment decreases as a function of time.Hence leakage out of the containment is shown as negative in the-table.**10 CFR 50 Appendix J criterion++Test criterion specified by plant procedure 12 THP 4030 STP.202+Guideline proposed by ANS 274 Draft No.1.Item A, L , is the measured containment leakage after 24 hours of tBing data in one-half hour intervals. It was calculated using the'Absolute Method'n a'total time'asis as described in American National Standard N45.4-1972.Item B, L/95%, is the 95K upper confidence limit of the leak rate I't is calculated from the variance of the slope of the least-squares line and the value of the t-distribution for a 95K confidence that L/95/is the upper limit of the actual leak rate.Item C, The type C penalty leakage is calculatd from the local leakage test program conducted per plant procedure 12 THP 4030 STP.203,'Type B and C Leak Rate Test'.The Type C penalty leakage represents the leakage of systems penetrating the containment pressure boundary that is required to be drained and vented for the Type A test, that due to existing piping, configurations or plant conditions could not be drained or vented.The leakage of isolation valves associated with these systems appears in Table 3.2.The".otal on Table 3.2, expressed in weight percent per day, is subtracted from the allowable leakage specified for Item B in Section 3.1.The use of the Type C penalty in li'eu of draining the affected system was part of commitments made to the NRC and appears formally in Appendi,x g, question 22.'l4 of the Unit 2 FSAR.Item D, L , is the imposed leak used in the supplemental test to verify t3e accuracy of the Type A test.In accordance with guidelines of ANS 274 Draft No.1 and the Unit 2 Technical Specifications the rate of the air bleed, in weight X/day, was established at.2006 wt 5/day.Page 3 Table 3.2 T e C Penalt Leaka e For Undrain S stems RCDT to RCDT pps CPNP 40 Isolation Valves DCR-205 DCR-206 Leakage~SCCM RC System accumulator fill lines Refueling water line to Refueling Cavity 68 36 ICM-256 SF-151 SF-153 49.6 Cont.Sump Line to Haste Hold up Tanks 41 DCR-600 DCR-601 748.6 NESW to and from Containment 6061.4 RCP Seal Hater Lines 11 12 13 14 CS-442-1 CS-442-2 CS-442-3 CS-442-4 76.2 CVCS Letdown and Excess Letdown Lines 34 37 QCR-300~50.0 QCM-250&-350 Sample Lines from Accumulators 81 ICR-5 ICR-6 Sample Lines from Pressuri zer 66 NCR-109&110 0 NCR-107&108 CYCS Charging Line 35.CS-321 60.6 Glycol Lines to.and From Ice Condenser AHU's 86 VCR-10&11 VCR-201 Total Type C Leakage Penalty (SCCM)=7046.4 Expressed in/La=6.39 Expressed in/wt/day=.015975 Page 4 fl l, f l! Item E, the composite leakage, L , is the slope of the least squares line determined from the data taken during the.supplemental test.Ideally, L would be equal to the sum of L and L.c am oItem F, Supplemental Test Correlation. 10 CFR 50 Appendix J requires that the agr'cement between L and (L+L)is within.25 L.The table shows that th5 correlHion 8etween L and (L+L)is a'00716/wt/day or 0.03 L.4.0 Conduct of Test 4.1 Or anization of Test The D.C.Cook Plant Performance Engineering Section was responsibile for the Integrated Leak Rate Test.Functions performed by persons involved in the test could be subdivided between pre-test and test activities. Figure 4.1.1 and 4.1.2 illustrate the organization of pre-test and test activities, respectively. Pre-Test Res onsibilities Test Supervisor -Organized efforts required to ensure the readiness of Unit 2 Containment Systems and test instrumentation for the conduct of this test.This included arranging for instrument calib'ration, installation, and system channel verification, and completing test prerequisites. Instrument Technicians -Performed installation and channel verification of test.instrument system.Containment Inspection Group-Organized and conducted an inspection of all accessible containment interior and exterior surfaces, penetrations and associated systems.Evaluated and reported inspection results and was responsible f'r initiating any'corrective action required.Local Leak Test Program Group-Performed Type B and C Leak Rate Test as per plant procedure 12 THP.4030 STP.203.Responsible for initiation corrective action as indicated by test results.Reported results to Test Supervisor. Department Interfaces -Contacted as required to help safisfy test prerequisites. Test Res onsibilities Test Supervisor -(1 per 12 hour shift)Responsible for maintenance of test documentation, data inspection, and the general conduct of the test.Page 5 Timekeeper/Data Coordinator -(1 per 12 hour'hift) Maintained control over data collection intervals and transferred data to the computer input format.Data Dispatcher -(1 per 12 hour shift)Checked the transfer of data from data acquisition system tapes and data takers'heets to the computer input format.Shuttled coding forms from test area to computer terminal, loaded punched cards into card reader, and checked transfer of data from coding forms to computer printout.Data Takers-(3 per 12 hour shift)Responsible for the recording of specific test instrument readings.Keypunch Operator-(1 per 8 hour shift)Responsible for punching data onto cards from coding sheet.Assisted data dispatcher in checking transfer of data from coding forms to computer printout.Page 6 FIGURE 4.1.1-PRE-TEST ORGANIZATION TEST SUPERVISOR INSTRUMENT TECHNIC IANS CONTA INME NT INSPECTION LOCAL LEAK TEST PROGRAM TEST GROUP DEPARTMENT INTERFACES w/OPERATIONS, CSI, MAINT.FIGURE 4.1.2-TEST ORGANIZATION 'EST SUPERVISOR KEYPUNCH OPERATOR INSTRUMENT TIME KEEPER DATA COLLEC-TION COOR.AEPSC COMPUTER TECHNICAL SUPPORT CANTON DEPARTMENT INTERFACES w/OPERATIONS, C8tI, MAINT., RAD PROTECTIO DATA DISPATCHERS DATA TAKERS Page 7

AEPSC Computer Technical Support-Canton-On call in case of a failure of either the data analyais program or the computer system.Instrument Technicians -(2 per 12 hour shift)Responsible for maintaining all test instrumentation in a proper operating condition. Department Interfaces -Contacted as required to complete test requirements. 4.2 Lo of Times and Events Having satisfactorily completed the installation and checkout of all test instrumentation, a successful containment inspection, the valve line-up.initial conditions, and all other test pre-requisites, pressurization 'of the containment was initiated. Pressurization of the Unit 2 reactor containment began at 0530 hours on May 1, 1981.Containment temperatures, pressures,'nd vapor pressures, and ambient temperature and barometric pressure were logged on an hourly basis.Each data set collected were assigned a'Run Number'tar ting with Run 81 at 0600 hours.At 0130 on May 2, 1981 pressurization was terminated at a pressure of 12.4932 PSIG (Run 25 P).During the pressurization period two separate entries were made into the containment instrument room to work on dew point hygrometers. Rewiring of the hygrometer readouts corrected the hygrometer problems on all hygrometers except VPL-2.It was decided just prior to the end of the pressurization period to run the test without this redundant hygrometer.

  • Throughout the remainder of the test YPL-I was used alone for lower volume dew point.The stabilization period was initiated at 0200 on May 2.After the minimum period of 4 hours, containment temperatures were monitored closely to determine when the stabilization criteria had been met.Stabilization criteria defined by procedure 12 THP 4030 STP.202 are: a.The duration of the stabilization period has exceeded the minimum 4 hours.b.The containment has been maintained at a pressure of 12.0 (+0.5,-0.0)psig for a minimum of 2 hours.c.The weighed average temperature in the Upper, Lower, and'Ice Condenser compartments has not varied more than 0.1'F/hr over the last four (4)hour period.d.No single Upper, Lower or Ice Condenser compartment temperature reading has changed more than 0.5'F during the last hour of the stabilization period.Page 8 ij At approximately 0300 it was discovered that a heater was energized on HV-CUV-2 which was running.This heater was secured and all ventilating units in the containment were started to try to circulate air to improve the temperature distribution.

tlost of the fans tripped off due to thermal overload after about one hour and were left off.All fans were secured at about 0530.After 15 hours all of the stabilization criteria were met and the stabilization period was declared over at 1700 on Hay 2, 1981 (Run 31S).The'Type A'est was begun at 1730 on Hay 2, 1981 with a containment pressure of 12.3799 psig.Preliminary leakage cal-culations performed for the stabilization period had indicated that the'Type A'est criterion had already been satisfied. It was now just a matter of continuing the half-hour data collection intervals until the minimum 24 hour time requirement and other self imposed criteria had been met.After 24 hours of data collection the'Type A'est was declared successfully complete.(Run 49T).After Radiation Protection drew a sample of the containment air for analysis, air was bled from the containment through a cali-brated rotameter. This leak rate was established at 3.1 scfm (.2006 wt I/day)which is in accordance with the Unit 2 Technical Specifications (quantity greater than 255 of total measured leakage at Pa)and the guidelines of ANS 274 Draft 1 (.5 L L<L).At the completion of the minimum 6 hours of dat3 c8lleciion the supplemental test and the ILRT was declared successfully complete.The supplemental test showed a correlation between the measured leak and the imposed leak of.03 L , well within the requirement of less than.25 L.The contaikment was subsequently depressurized and sy'stems were restored to normal as required by plant operations. Page 9 5.0 Test Instrum ion 8 E ui ment Table 5.1 Tes nstrumentation Item Pressure Measurement Manufacturer Mensor Quartz Model Ran<ac QM10100-001 0-100 psi g 0-75 psia*~Accurac Test ID+0.015 reading PU-l, PL-1, PL-2.0001 psi resolution PI-1, PI-2 PU-2" Texas Instr.Manometer 145 0-50 psia+.03%reading.0001 psi resolution Patm Temperature Sensors/Bridge Hycal Engineering 1000 Platinum RTD's/Matched Modular Lin-earizing Bridges RTS-4233-B Upper Cont., ESD-9050-A Ice Cond.(0-100'F)+0.06'F Lower Cont.(0-120'F)ETR-101 thru ETR-146, Ambient Dew Point Temperature Temperature Recorder Supplemental Test Flowmeter EG3tG Fluke Brooks Mirror Surface Data Logger Rotameter 992 (B)660 4)22408 1110-08 0-100'F-50 to+100'C 0-40 mV 0-4 v 0.2 to 5.6 SCFM i0.5'F+0.3'C+0.014 reading+0.005K span+lc/FS YPL-l, VPL-2 VPI-1, VPI-2, VPU-1, VPU-2 ETR's Dew Points Suppl cmental Hei se Test Pressure Gage Bourdon Tube CCM 0-3 psig 0.1Ã,FS N/A*0-75 psia Quartz manometer used at test connection PU-2.Page 10

5.2 Instrument

S ecifications The instrumentation used during the ILRT is shown in Table 5.1.Each of the instruments shown here was supplied with calibration performed within 6 months of the test and traceable to the National Bureau of Standards. Calibration conversion formulas and corrections were preprogrammed into the ILRT computer program to allow direct input of all pressure, temperature and dew point instrument readings.Two precision t3ensor quartz manometers were used for redundant measurement of the pressure in each of the upper, lower, and ice condenser compartments of the containment. A seventh was used to moni tor atmospheric pressure during the test.The three containment compartments were instrumented with a total of forty-six.(46) 100 platinum RTD sensors.The upper, lower, and ice condenser compartments contained 16, 23 and 7 sensors respectively. Each sensor is located to represent the temperature of a unique sub-volume within its compartment. The sub-volumes collectively represent the total volume of their respective compartment. Each RTD reading is converted in the leak rate computer program to temperature in degrees Fahrenheit. Each temperature is weighed by the fraction of the total compartment volume contained in the sub-volume the RTD represents. The sum of the weighed temperatures in each compartment is the weighed average temperature of that compartment. Page ll

Six Cambridge Dew Point Hygrometers were used for monitoring compartment dew point temperatures for the determination of vapor pressure in the leak rate computer program.They provided redundant measurement of dew point in each of the lower containment, upper containment and ice condenser. The Unit 1 and Unit 2 preoperational tests used only 4 hygrometers, 2 i n the lower volume and one in both the upper and ice condenser volumes.For this test, two hygrometers were added for the upper and ice condenser volumes.The original 4 hygrometers are the t1odel 8992 dew point hygrometers used in the Unit 1 and Unit 2 preoperational tests.The new)1odel 8660 hygrometers are improved and more compact than the Nodel f992.They all operate on the same principle. The air sample is drawn through instrument lines across a mirrored surface of which the temperature is controlled by an optical feedback circuit to precisely the point at which a dew (or frost)appears.The mirror temperature is measured by a platinum RTD imbedded in the body of the mi rror.The sensor and control units were located inside the lower containment volume so that the samples would be maintained at the containment pressure.The er ror associated with each individual dew point measurement is+0.5 F.The addition of redundant measurements did not significantly affect the error of the overall dew point temperature measurement system.Page 12 1J A Brooks rotameter was used in the supplemental test to measure and maintain a constant flow rate for the imposed leak.It was calibrated in the range of 0.6 to 6 scfm at 14.7 psia and 70 F with an accuracy of+1.05 of Full Scale.The actual inlet temperature and pressure for the supplemental test were 63.7 and 18.8 psia.The temperature was measured using ETR-133 which is in close proximity to the end of the rotameter inlet line inside the lower containment. Pressure was measured at the inlet to the rotameter itself using a 0-30 psia Heise gage.The temperature and pressure readings were used to correct the indicated rotameter readings to standard conditions using the following relationship: Wcorr=Wind X+T ETR-133 X Gage atm 14.7 Wcorr Wind ETR-133 atm Corrected rotameter flow in path Indicated rotameter flow in cfm Rotameter inlet temperature,'Atmospheric pressure, psia 5.3 Sensor Locations The locations of the sensors used for this test were identical to the locations originally specified for the Unit 1 and Unit 2 preoperational ILRT's, Figure 5.2.1 (MSK-78C)shows the location in section views of the containment. 5.4~A The inaccuracies associated with the use of the test instrumentation package used in the Unit 2 Preoperational ILRT in measurement of the containment leakage rate was determined to be+0.076 L.A copy of the analysis calculation is contained in the Unit 2.Preoperational Integrated Leak Rate Test Report.In terms of the impact on this error analysis only insignificant differences exist between the instrumentation package used in the Unit 2 Preoperational-ILRT and the package used, in this test.The error analysis and the+0.076 L result obtained for the Unit 2 Pre-operational ILRT Ts considlred to be also representative of the modified instrumentation package used in this test.Page 13

5.5 Containment

Pressurization A aratus As in the Unit 1 and Unit 2 Preoperational tests, the plant air system, in conjunction with test pressurization filters and driers, were used for pressurizing the containment. The air enters the containment at approximately ambient temperature and a dew point of approximately -20'F.The air enters the con'tainment through a spare penetration in the upper volume.A valve is provided at the penetration outside the containment, where the air line can be isolated and closed with a blank flange.6.0 Containment Model and Leak Rate Calculation The containment leak are performed by the'absolute'ethod on a'total time's described in AHS-N45.4-1972. The containment design pressure is 12.0 psig and allowable leakage (0.75 La)is 0.18755 wt/day.The containment model and leakage calculations used to perform this test-are essentially the same as the ones used in the Unit 1 and Unit 2 preoperational tests.A 3-compartment model is employed for the calculation of the containment leak rate.It was developed to accommodate the distinct and widely varied envi ronmental condi tions existing in each of the Upper, Lower and Ice Condenser Volumes.The normalized fraction of the initial containment dry air mass, W , is calculated on a compartmental basis by ratioing the sum ofnthe product of each compartment's dry air density and compartment volume fractions as determined from data collected at time t , to the same value deter-mined from the initial data collected atntime t.0 Expressed in equation fons: 1 Wn=K WF un Un+VWF Ln Ln+VWF P-VP P-VP u Tun L T PIn-VPIn TIn 1 R VWFU Uo Uo+VWF Lo L+VWF Uo Lo Io-VPIo TIo Page 14 Ip li Where: W=normalized weight remaining in containment at time t (dimensionless) n f t-1 bs R=gas constant for dry air=53.34 ibm-'R (The terms cancel)VWF=Volume Weighing Factor (Each compartment volume is ratioed to the Lower Compartment Volume)(dimensionless) P=Compartment Total Pressure (psia)VP=Compartment Vapor Pressure (psi)T=Compartment Weighed Average Temperature (degrees Rankine)Upper Compartment Lower Compartment Ice Condenser Initial Time time at nth data collection

6.1 Volume

Wei hin Factors Table 6.1.1 shows the compartment free volume distribution for normal operation: Table 6.1.1*.Containment Free Volume Com artment Free Volume ft Upper Lower Ice Condenser Total 687,819 365,614 210,723 1,264,156 The volume distribution existing at the time of the test may differ from the values indicated in Table 6.1.1 in two ways:*Ref.AEPSC I&C Calculation 12-PI-05'Volume Weighing Factors'age 15 1.The total volume of the ice condenser in Table 6.1.1 does not include the volume of ice resident in the'ice basket'.2.The location of the moveable sections of the reactor missile shield do not necessarily have to be in place during the test.The ice condenser volume was adjusted for the presense of the volume of ice in the ice condenser as determined by the Ice Basket Weighing Program, performed per plant procedure 12 THP 4030 STP.211 between Majch 16 and April 8, 1981.The total ice weight w~s 2.637 x 10 pounds.The standard density of ice, 563lbs/ft , is assumed to calculate the volume displaced, 47,095 ft.3 This reduces the net free volume in the Ice Condenser to 163,628 ft.The location of the movable sections of the reactor missile shield affects the volume distribution between the upper and lower volumes.When the shield is removed from its normal operating position it provides open access to the cont~ol rod drives, and reactor head from the upper volume.The 16, 147 ft of free volume above the head normally isolated from the upper volume by the shields, is then in direct communications with the upper volume.When the shields are in place, the volume is vented only.to the lower containment and is therefore considered part of the lower volume.Table 6.1 shows the volume distribution of the'containment with a missile shield removed, which is the position the shields were in for)he performance of this test.Had the shields been in place, 16, 147 ft would have been subtracted from the upper volume total and added to the lower volume.The containment volumes used in the calculations of the leak rate in this test are shown in Table 6.1.,2.Table 6.1.2 Containment Volume Ad'usted For Conditions Existin Durin Unit 2 ILRT.Com artment Free Volume ft Upper Lower Ice Condenser Total 703,966 349,467 163,628 1,217,061 Volume weighing factors were determined from the values in Table 6.1.2'.The volume weighing factors express compartment volumes in per-unit using the lower volume as'base'.Table 6.1.3 shows the volume weighing factors used for the calculation of the leak rate in this, test.Page 16 Table 6.1.3 Containment Volume Hei hin Factors derived from Table 6.1.2 Com artment Upper Lower Vu L VL L Volume liei hin Factor 2.0144 1.0000 Ice Condenser I VL 0.4682 6.2 Containment Pressure and Va or Pressure 6.3 Equation 6-1 shows that the compartment pressures are compen-sated for vapor pressure in the calculation of weight remain-ing in the containment volume.The evaporation of water from the exposed surfaces of water volumes in the containment would result in an increase in containment vapor pressure as well as total pressure.The condensation of water vapor onto containment surfaces cooler than the dew point of the vapor would cause a decrease in both the vapor pressure and total pressure.If the total pressure were not compensated for vapor pressure, vapor pressure increases due to evaporation would reflect an apparent increase of the containment air mass, which when superimposed over a mass loss due to containment leakage would result in a measured leak rate of a less magnitude than the actual leak rate.Condensation would result in a measured leakage greater than the actual leak rate if the correspondi ng vapor pressure change were not accounted for.The sensitivity of the leak rate calculations to vapor pressure changes is especially great in an Ice Condenser Containment since the energy absorbing ice bed reduces the design accident pressure from 50-60 psig, typical of conventional containments, to 12 psig.The vapor pressure therefore represents a large fraction of the total pressure in the ice condenser containment. Containment Tem eratures Containment temperatures are used to compensate the weight remaining calculation for total pressure changes caused by the thermal expansion or contraction of the containment atmosphere. It is recognized that temperature gradients exist in the containment and temperature changes will not necessarily be uniform throughout the containment. Therefore the containment Page 17 is instrumented with 46 temperature probes, located such that each monitors a fraction of the total containment volume.In the establishment of temperature sub-volume boundaries and temperature probe location, consideration was given to the location of physical thermal barriers and heat sources and sinks.The sub-volumes are generally different in size as well as shape, thus, in determining average containment temp-erature, temperature readings are weighed as a function of the volume fraction they represent. The weighing of temperature readings occurs on a compartmental basis.The weighted average temperature in a compartment is given by the following expression. Nc T Z T K vgcn i=].cni ci T a v l<e i g h e d a v e r a g e c o m p a r t m e n t t e m p e r a t u r e (')cn for compartment c at time t n K cn Temperature at sensor i in compartment c at'ime t K.Ci Temperature weighing factor associated with sensor i in compartment c.Total number of sensors ih compartment c.Temperature weighing factors, like the volume weighing factors discussed in Section 6.1 vary as a function of both ice condenser load and reactor missile shield placement. 6.4 The Statistical Determination of the Leak Rate There is inevitably a certian amount of random error associated with the leak rate measurements and the containment leakage itself that cause a variance in the calculated remaining weight, Wn, and the leak rate, Lam.In order to determine the leak rate from Wn after a test period of t , a fi rst order (linear)least-squares fit of W vs t is performed. n This method selects a function, W(t)=bt+a, in which slope, b and intercept, a, are determined by minimizing the variance g , of W wi th respect to W(t).The variance of Wn relative to W(t)fs: Page 18 2" (Wi-W(t))=z (Wi-(bt.+a))n 1=1 (6.4-1)The values of a and b that establish the minimum variance~are given by the homogeneous simultaneous solution of the partial derivatives of a with respect to a and b: 0 and-=0 Ba Ba~aa Bb (6.4-2)The solution of the above yield: n n n E Wt-E W E i=1 i=1 i=1 (6.4-3)n.2 n n n E t~.z W~-z t.E W~i=1 i=1 i=1 i=1 n 2 n z ti-(z t)i=1 1=1 (6.4-4 The slope of w(t), b, is the leak rate expressed as the change in normalized containment weight per unit time.The unit of time used is hours, and thus, L is given by 2400 Lam=tn (Xwt/day)6.5 The U er Confidence Limit The 951 Upper Confidence Limit of the leak rate is determined from'he variance of the slope of the least-squares line, W(t), and the value of the t-distribution for n-2 degrees of freedom based on a one-sided 95%confidence interval.The use of the one-sided interval in this test has replaced the two-sided interval used in the Unit 1 and Unit 2 Preoperational tests.The two-sided limit placed upper and lower bounds about the measured leak rate within which there was a 95K certainty of the'actual'eak rate existing.Since the interval determined by this method is symmetrical, the 954 two-sided interval was actually imposing a 97.5Ãconfidence on the upper bound of the leak rate.The imposition of a 954 confidence on the upper limit of the leak rate is equivalent to taking the upper bound of a 90/two-sided interval.Page 19 The t-distribution is used to estimate the interval about the mean value of a finite set of v (nu)independent normally distributed measurements within which the mean of the popu-lation of infinite measurements from which the finite set was taken;exists to a stated level of confidence. Referring to Table 6.5.1, the value K of the t-distribution, as determined from the point at which the cumulative dis-tribution of the t-distribution has the normalized value~/2, defines a two sided interval about the mean of o(nu)independent measurements the entire population of measurements exist to a confidence of 1n.The t-distribution is normalized such that its mean is zero and the standard deviation is one.This allows K(v,a)to be applied directly to the mean, x, and standard deviation s, of any sample U independent measure-ments representing a normally distributed population. The confidence limits are expressed as x+K(u,a)S.In the application of this statistical method to the leak rate test, the slope of the least-squares line, b, is the'mean'a/ue of the leak rate and the variance of the'mean', S , is given by: n S=E (W.-(bt.+a))b i=1 n where, t=E t.l=l Page 20 t I, Oh>>)Oa>>TABL~6,$, l DISTR!St TIOlS OF g O>>Sr>>ca of freeclocn K o K 0.10 Probabilicy o 0.0$I 0.0l l 0.001 I 2 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 60 120 6314 2.920 nM3 2.132 XOI5 1.943 1 JL95 1.860 I JU3 1.8'12 1.796 1.782.1.771 I 761 1.753 1.746 I 740 1.734 1.729 1.725.1.72l 1.717 1.714 1.711 1.708 I.r06 1.703 1.701 I.&99 1.697 1.684 1.671 1.658 1.645 12.706 4305 3.182 2.776 5571 2.447 2365 2306 2262 222S LAI 2.179~2.160 2.14$2.131 2.120'.110 2.101 2.093 2.086%080 2.074 2.069 2.064 2960 2.056, 2.052 2.048 2.045 2.042'.021 2.000 I.980'.960 &3.657 9.925 5.841 4.604 4.032 3.'707 3.499 3355 3250 5.169 5.106 3.055 3.012 2.977 2,947 2.921 23198 2.S78 2.S61 2445" X$31 ZSI9 2307 2.797 5787 2.779 Z.r 7I 2.763~2.756 L750 2.704 2.&60 2.617 Zi76 636.619.31398 IÃ941 8.610 6.859$.959 5;405 5.041 4.781 4387 4.437 4318 4221'.140 4.073 4.015 3.965 3.922~3.88)~3.850 3.819 3.792 3.767 3.745 3.725 3.707 3.690 3.674 3.659 3.646 3851.3.460)373 3491 icua mblc Sires the>>aloes of c corresponding to>>ccsnus>>aloes o(the prooabiiicy o 0>>eel of silnifceancel ofa random eaciablc iaUin9 cnsccte che shaded areas inthe Rlscre.for a ci>>cn number of dryrees of free dom raeaihblcforcheccticnacicm of error.For a onnudcd tcs chcennfcdcncc0rnftsareobtaincd for ocr ihistablciscahcnfromiaoic ill of Fisher fs Yaccsc Sccruoorf i>>kkc j>>r Bi>>f>>fcrcf. Byn'cafe>>r>>f. >>M.Mrec&Erst>>rnt oublashed by Qliect Bc Boyd l'd EoinburSil by permission of the authors and publishers'he above~~able's used to determine the aporopriate value of'K'ased on prevai3.'cg demees of freedom.This table has be n ez"racted" om Basic Statistical Methods:or=.~i.ers~cd, Sci ntists.I Page 21 6.6 Of the total of n measurements (W.t.)only n-2 are independent since a and b, the slope and interchpt of the least-squares line, having been derived from n (W.t.), can predict any two (W.t.)with the other n-2 measuremeht3. Hence, v=n-2.1 1 The value of a used is that which corresponds to a 90/two-sided confidence interval which is equivalent to a 1-a/2 or 95Ãone-sided interval.The value of a is therefore 0.1.Now, the upper confidence limit of the leak rate, b, is expressed as: b-K(n-2, O.1)=Sb The negative sign defines the upper limit since the value of b is negative.The Leak Rate Com uter Pro ram'LRTEST'he leak rate computer program,'LRTEST', has replaced earlier versions of the two programs used in the Unit I and Unit 2 preoperational test, know as'CCVDREP'nd 'CCVREPT'. 'LRTEST'ncorporates the revised statistical analysis discussed in Section 6.5 and an added degree of flexibility that its predecessors lacked.'LRTEST'ccommodates the operator input of certain'fixed-data': the calibration conversion and correction coefficients of the present instrumentation system, and the volume and temperature weighing factors., The fixed data represents that which is fixed for the duration of one ILRT, but will vary from one ILRT to the next.'LRTEST'eceives test data from a card reader.The raw test data collected for each test interval is coded onto input data coding sheets and punched on to computer cards.The data includes the data run number, the elapsed decimal time from run 81 in hours, the 46 containment temperatures in millivolts, seven pressures (6 containment, 1 barometric) in psia, and dew point temperatures in millivolts. The data cards are accumulated in a deck in the order of the run numbers.The program establishes a file for the raw data and computes values expressed in the proper engineering units.The program computes the average compartment and containment pressures, the containment pressure relative to atmospheric, the weighed average compartment temperatures, and the average compartment dew point temperatures. From the average dew point, the vapor pressure is calculated using the Goff-Gratch formulas for saturation vapor pressure over water or over ice.Page 22

For each run of the computer program, the raw input data and the above computed values are summarized for the most recent data run.This is a valuable aid to input data error checking and analysis.Also, at the option of the program operator this summary may be printed for an operator-specified range of runs ending with the last data run.A separate summary of average compartment pressures, temperatures and vapor pressures is also printed for either all the runs entered into the program, or for all the runs in a range specified by the operator.The elapsed time printed for both the individual run summaries and the overall summary is controlled by the starting point of the range.After three data runs have been made or three runs are available in the user specified range, (a minimum of three runs is required to perform the least-squares and statistical analysis)the program calculates the leak rate and 95%upper confidence limit of the leak rate.In addition, the program calculates the remaining weight of the containment, and of each compartment. The remaining weights in a compartment 'c', is given by the following: .P-PV cn cn cn cn P PV co The individual compartment remaining weights are used only as an aid to data interpretation. A copy of'ILRTEST'ppears as Section 7.0 of this report.The program outputs for this test can be found in Section 8.0 of this report.Page 23 7.0 D.C.COOK NUCLEAR PLANT CONTAINMENT INTEGRATED LEAK RATE TEST PROGRAM'LRTEST'age 24 e-HBR=ILRTEST ol/14/75 LIB=>>%%%%%%% ANERICAN ELECTRZ R SERVICE CORPORATION COMPUTER APPLICATIONS DIVISIO'.(SOURCE LIBRARY OUTPUT ol/28/81 11.23.27 PAGE 0002-=-----QIBRARYj FEB 5 l98i RKCiKTVF 1 000100 000200 000300 000400 000500 000600 000700 000800 000900 001000 001100 001200 001300 001400 001500 001600 001700 001800 30%302%303%304%305 001900 002000 002100 002200 002300 002400 002500 002600 002700 002800 002900 003000 003100 003200 003300 003400 003500 003600 003?00 003800 003900 004000 004100 004200 004300 004400 004500 004600 004700 004800 004900 005000 005100 005200 005300 005400 005500 30 IMPLICIT REAL>>8(A-H P-Z)REAL>>8 K>LVP DIMENSION TEHPUC(16)<<TEMP LC(24)>TEHPZC(7)DIMENSION TEHPU(16)<<TEHPL(24) >TEHPI(7)DATA LUC<<LLCtLIC/16 ~24>7/DIMENSION RTDLl(16)<<RTDL2(24) <<RTOL3(07) DATA RTDL1/'ETR-101 ETR-102ETR-103ETR-104ETR 105'>.--'ETR-106ETR-107ETR-108ETR-109ETR-110'ETR ill~'TR 112>ETR ll tTR 128<<ETR 133>ETR 113/DATA RTOL2/'ETR-122 'ETR-123'ETR-124'ETR-125'ETR-126'TR-127TR-129TR-130'ETR-131TR-132'ETP.-134'ETR-135'<<'ETR-136 '>'ETR-137 'ETR-138'TR-139TR-140TR-141TR-142TR-143 t'ETR 144ETR 145ETR-146ETR-113'/DATA RTDL3/'ETR-115 -'<<'ETR-116 '>'ETR-117 '>'ETR-118 '<<'ETR-119-'> 'ETR-120'>'ETR-121 '/DIHENSION MUC(99)<<MLC(99)tWZC(99)>M(99)>TINE(99)<<NRA(99)t-ATUC(99)>APUC(99)>AVPUC(99) >ATLC(99)>APLC(99)>AVPLC(99) >ATIC(99)>APZC(99)<<AVPIC(99)DIMENSION K(18)<<SR(70)>DP(6)<<LVP(6)>PRES(7)t PRESC'(7)<<VPR(6)DIMENSION WTUP(16)>WTLOM(24) >WTICE(7)>TABLE(97) DATA TABLE/6~314<<2~920<<2~353>2 132<<2~015<<l 943>l 895<<l 860<<l 833~-1.812>1.796>1.782>1.771>1.761>1.753>1.746>1.740>1.734<<1.729>1.725<< -1.721,1.717,1.714,1.711,1.708,1.706,1.703,1.701,1.699,1.697,1.695,-1 694>l 692>1 691>l 689tl 688>1~687<<1~686>l 685>1 684>l 683<<l 682>1 681>l 680<<l 679<<l 679<<l 678>l 677>l 676<<l 676>l 675>1 675<<l 674<<-1.673>1.673>1.672>1.672>1.671>1.671>1.671>1.670<<1.670<<1.669<<1.669<<-1.669<<3%1.668>3%1.667<<3%1.666>4%1.665>4%1.664>5%1.663>5%1.662>-5%1.661/DATA MDUP<<MDLO>MDIC/ UPPER<<LOWER>ZCE/START OF PROGRAH I=1 OLGIOO=DLOGZQ(1013.246DO) DLGO=OLOG10(6.107100) .MDEH=0.0 READ (5<<300>ERR=22<<END=12) Cl>C2>C3>C4>C5>C6<<IXS>IXE<<IPR 0 FORMAT(6F6 ~3<<4X<<13>?X>13>?X<<13) I-"2 READ (5>301>ERR=22<<END=12). K 1 FORMAT(6F11.6/6F11.6/6F11.6) I"-3 READ (5<<302<<ERR 22>END 12)SK FORHAT(ZOF8.5/10F8.5/10F8.5/loF8.5/10F8.5/10F8.5/ZOF8.5) Z=4 READ (5>303<<ERR 22<<END=12) MTUP<<MTLOMtMTZCE FORHAT(loF6.5/6F6.5/11F6.5/13F6.5/7F6.5) I==5 READ (5>304>ERR 2'2>END-12) VWFltVWF2>VWF3 FORMAT(3F7.5) WRITE (6>305)Cl>C'2<<C3>C4>C5<<C6tK(l) tK(2)>K(3)>K(7)<<K(8)<<K(9)<<K(13)<<K(14)>K(15)<<K(4)~K(5)>K(6)<<K(10)<<K(ll)<<K(12)~K(16)tK(17)tK(18)>SR FORMAT(1Hl<<l4X>%%%THIS IS A CHECK OF THE INPUT DATA%%%////1H'RTD)1ILLI-VOLT TO FAHRENHEIT CONVERSION COEFFICIENTS'/lH >6X>UPPER>12X>LPO'OR>13X>ICE/1H>F5~2<<3X>F5 2>4X<<F5~2~3X<<%%ol/27/78%%02/02/78%%01/27/78------%%01/27/78%%01/27/78%%01/27/78%%01/27/78-=---%%01/27/78%%ol/27/78%%01/27/78%%01/27/78%%01/27/78%%01/27/78%%Ol/27/78==--%%01/27/78%%ol/27/78%%01/27/78%%ol/27/78%>>01/27/78==


=%%01/27/78%%05/23/78%%05/23/78%%05/23/78=--

--%%05/23/78%%05/23/78%%05/23/78>>>>05/23/78=-- ===--%%05/23/78%%05/23/g8%%01/27/78=%%=01/27/78 %%01/27/78%%ol/27/78%%01/27/78%>>02/22/78-===-=-.%%01/27/78 02/22/78%% 02/22/78%%01/27/78 01/27/78-%%01/27/78%%01/27/78%%Ol/27/78-===---.%%10/24/77%%01/27/78%%01/27/78%%10/18/77%%=01/27/78-02/02/78%%10/18/77%%01/27/78%>>Ol/27/78--


=--%%ol/27/78%%10/18/77%%10/18/77 10/1~77 Paae 25 R=ILRTEST 01/14/75 LIB=<))))))))))))))

SOUR~NARY OUTPUT 01/28/81, 11.23.27 003 005600 005700 005800 005900 006000 006100 006200 006300 006400 006500 ooeeoo 006700 ooesoo 006900 007000 007100 007200 007300 007400 007500 007600 007700 007800 007900 ODSDOO 008100 008200 008300 008400 006500 008600 008700 008800 006900 009000 009100 009200 009300 009400 009500 OD9600 009700 009800 009900 010000 010100 010200 010300 010400 010500 010600 010700 01D600 010900 011000 011100 011200 011300 F5~2>4X>F5 2~3X>F5~2//Ii 1H>HYGROtlETER t(ILLI VOLT TO'FAtlREt(HEIT COHVERSIOi(COEFFZCIEt(TS'/lH )T15>'UPPER-1'T48>>-=-----=LO)1ER 1)T82>ICE 1/1H)9(Flo 5)1X)//1H)T15>UPPER 2)T)8)'LO'HER-2')TG2)'ICE-2'/1H )9(F10.5)1X)////1H )'t(At(Ot(ETER PRESSUR E CORRECTICt(COEFFICIENTS'/T40) PU 1/10(lX>F7 4)//1H~38X>PU 2/1H)9(F7 4>>lX)>>F7~4//1H>38X>'PL 1/1H>9(F7~4)lX)>F7.4//1H)38X)'PL-2'/1H)9(F7.4>lX) >F7.4//1H)36X)'PZ-1'/1H)9(F7 4>lX)~F7 4//1H~3SX>'PI 2'/1H>9(F7 4>>lX)>F7)//1H>36X>>P ATt1 llH>9(F7 4>1X)~F7 4)WRITE (6>306)WTUP>WTLOW>WTZCE>VWF1>VWF2>VWF3 306 FORHAT(lH-> 'RTD WEIGHTItlG FACT/?5'/jH >27X>'UPPER'/ZH >9(F5.4)lX)) F5 4/jH>5(F5 4>lX)>F5 4//1H">27X>LO>iER/1H slo(F5 4~1X)>F5 4/lH>12(F5 4)1X)>F5 4//1H)28X>'CE I 1H)6(F5 4>lX)>F5 4////1H>'VOLU11E WEIGHTING FACTORS'/1H >1X>UPPER>2X>'OWER'3X>'ICE'/1H>2(F6.4)lX) >F6.4)IF (IXS.LE.O) ZXS=1 IF (ZXE.LE.O) IXE=999 02/22/78<)) IF (WTUP(16).LE.O.O) GO TO 701-LLC=23 GO TO 702 701 LUC=15 702 NR"-0 LZCP1=LIC+1 LUCP1=LUC t 1<C NR IS STORAGE INDEX>PROGRAtl DATA ACCESS LOOP STARTS HERE.)t DO 20 IR=1 99 IBYP=0 READ (5>>100>ERR=42>END=32) NRD>TZHER 100 FOPt1AT(Z3,1X)F5.2) 02/22/78lE% %C INPUT SEQUEt(CE CHECK))%ZF (t(R.EQ.O.OR.HRD.GT.HRO) GO TO 703 WRITE (10)901)IR>t(RD%)f 901 FORilAT (1HO>2X,'ILR005I D INCORRECT DATA SEQUENCE'2X>I2,2X,I3) 02/24/78<)) GO TO 23 32 IF (IPR.HE.O) GO TO 40 IPR-"99 GO TO 55 703 HRO=t(RO=.=-.K%IF (t(RO.GT.ZXE) GO TO 32 ZF (t(RO.GE.IXS) GO TO 705 IBYP=1 GO TO 707 705 ZF (t(RO.EQ.ZXS) TZt(EST=TZtlER NR=NR+1 TINE(ti)\)=TIt(ER Tlt(EST ttRA(t'iR) =HRD 200 FORHAT(lHl> 'RUN t(UHBER'4XsZ3/lH s'ELAPSED TINE'2X>F5 ~2///1H~02/22/78))> 'COtlTAItli(EHT TEtlPERATURES DATA CHECK'//1H >7X>'UPPER VOLUHE's 21X>'LOWER VOLUHE')19X) 'ZCE CONDEt(SER'llH )3X)'RTD'2X>'t1ILLI-VOLTS'2X) 'DEG~F-'7X)'RTD'2X>'HILLZ-VOLTS'2X>>- 'DEG.F.'7X)'RTD'2X>>'t)ILLI-VOLTS'2X> 'DEG.F.'707 READ (5ilol>ERR=42 ~Et?D=62)TEtlPUC 101 FORtlAT(10(F5.2 1X)/6(F5.2 1X))READ (5)102 ERR=42 END=62)TEHPLC 102 FORMAT(jj(F5.2>>jX)/13(F5.2>jX)) READ (5>103>ERR=42>END=62) TEt1PIC 103 FORtlAT(7(F5.2,1X) )IF (ZBYP EQ 1)GO TO 45 10/18/77 01/27/78 01/27/78 Ol/27/76 02/D2/78 10/24/77 10/24/77 10/24/77 10/24/77 Ol/27/78=01/27/76 10/18/77 10/18/77 10/18/77-- 10/18/77 01/27/78 o2/22/7e 01/27/78=01/27/78 01/27/78 01/27/78 02/02/78=----.-01/27/78 01/27/78 Ol/27/78 Ol/27/78--=--01/27/78 01/27/78 02/22/78 01/27/78 02/09/78 Ol/27/78 02/24/78 0 1/27/78=-===-ol/27/7e 01/27/78 01/27/78 01/27/78=====-=01/27/78 01/27/78 01/27/78 01/27/78-=-01/27/78 02/02/78 01/27/78 01/27/78 02/22/78 10/18/77 10/24/77 10/16/77-=-=--==-10/le/77 01/27/78 10/18/77 01/27/76-- 10/24/77 01/27/78 10/18/77 01/2 f78 Page 26 BR=ILRTEST 01/14/75 LIB=NNNKmwxx SO BRARY OUTPUT 01/28/81 1 1.23.27 0005 017200 017300 017400 017500 017600 017700 017800 017900 018000 018100 018200 018300 018400 018500 018500 018700 018800 018900 019000 019100 019200 019300 019400 019500 019600 019700 019800 019900 020000 020100 020200 020300 020400 020500 020600 020700 020800 020900 021000 021100 021200 021300 021400 021500 021600 021700 021800 021900 022000 022100 022200 022300 022400 022500 022600 022700 022800 022900 505 FORMAT (1H t32XtABt2XtF6.2t5XtF6.2) WRITE (6t507)TtlSMUCtTMSMLCtTMSMICtTMSMURtTt!SMLRtTMSMIR 507 FORtlAT (1H-t17Xt'SUtl"IARY OF WEIGHTED AVERAGE TEMPERATURES'//1H -'UPPER VOLUtlE (DEG-F~)'F5.2t4Xt'LOllER VOLU)1E (DEG.F~)F6~2t tXt ICE CONDENSER (DEG~F~)tF5 2/1H UPPER VOLUtlE (DEG~R)tF6~2t4Xt LOWER VOLUME (DEG~R~)'=F7 2t tXt ICE COtlDEt>SER (DEG~R~)t F7 2)ZF (ZFR.EQ.99) GO TO 35 45 READ (5t509~ERR=42tEND=62) VPRltVPR2tVPR3tVPR4tVPR5tVPRbtPRES 509 FORMAT (6F6.3/7F8.5)- IF (IBYP.EQil) GO TO 20 DP(1)=K(l)>VPRl<VPR1 +K(2)>VFRl+K(3)DP(2)=K(4)NVPR2NVPR2 +K(5)>VFR2+K(6)DP(3)=K(7)>VFR3<VPR3 +K(8)KVPR3+K(9)DP(4)=K(10)>VPR4>VPR4 +K(ll)<VPR4 +K(12)DP(5)=K(13)xVPR5xVPR5 +K(14)>VPR5 +K(15)DP(6)=K(16)<VPR6<VPR6 +K(17)<VPR6 +K(18).-DO 403 J=lt4 ZF (DP(J).LE.0.0) GO TO 403 CIOOC=373.16/((DP(J)-32.)/1.8 +273.16)LVP(J)=-7.90298>(CIOOC -1.0)+5.02808>DLOG10(CIOOC) +DLGIOO-1.3816<(10M>(-7.0) )>(10<<(11.344<(1.0-1.0/CIOOC) )-1<<)t8.1328%(lOKW(-3 ~0))<(10>>(-3.49149<(CIOOC -1.0))-l.)403 COtlTZNUE DO 50 J=5t6=-ZF (DP(J).LE.O.O) GO TO 50 COC=273.16/((DP(J)-32.0)/1.8 +273.16)LVP(J)=-9.09718<(COC-1.0) -3.56654ttDLOG10(COC) >0.876793%(1.0-1.0/COC)+DLGO 50 CONTI'/E DO 404 KAY=lt6 IF (DP(KAY).LE.O.O) GO TO 404 VPR(KAY)=0.0145038<10>>LVP(KAY) 404 COHTIHUE CHECK FOR MISSIHG VAPOR PRESSURE AND CALCULATE AVERAGE.IF (DP(1).LE.0.0) GO TO 713 IF (DP(2).GT.O.O) GO TO 715 VPAUC=VPR(1)VFR(2)=0.0 GO TO 717 713 VPAUC=VPR(2)VPR(l)=0.0 GO TO 717 715 VPAUC=0.5<(VPR(l) +VPR(2))717 IF (DP(3).LE.0.0) GO TO 719 IF (DP(4).GT.0.0) GO TO 721 VPALC=VPR(3)VPR(4)=0.0 GO TO 723 719 VPALC=VPR(4)VFR(3)=0.0 GO TO 723 721 VPALC=0.5<(VPR(3) t VPR(4))723 IF (DP(5).LE.O.O) GO TO 725 IF (DP(6)GT.0.0)GO TO 727 VPAIC=VPR(5)VFR(6)=0.0 GO TO 729 01/27/78 02/02/78 02/02/78 02/02/78 02/02/78 02/02/78 02/02/78 01/27/78 01/27/78 01/27/78--=-.01/27/78 01/27/78 01/27/78 01/27/78 01/27/'78 01/27/78 01/27/78 01/27/'78=-01/27/78 01/27/78 01/27/je 01/27/78-==-=-- ==01/27/78 01/27/78 01/27/78 f 01/27/78 01/27/78 02/02/78 01/27/78 01/27/78=--=-01/27/78 01/27/78 01/27/78 01/27/78------01/27/78 01/27/78 01/27/78 01/27/78-=--==01/27/78 01/'27/78 01/27/78 01/27/78---01/27/78 01/27/78 01/27/78 01/27/'78-01/27/78 01/27/78 01/27/78 01/27/78--=01/27/78 01/27/78 01/27/78 01/27/78---=-=-01/27/78 01/27/78 01/27/'78 01/27/78=-==-=--==Paae 28 I r BR=ILRTEST Ol/14/75 LIB-"wwwwwwwe SOUR QRARY OUTPUT 01/28/81 11.23.27 il006 023000 023100 023200 023300 023400 023500 023600 023700 023800 023900 024000 024100 024200 024300 024400 024500 024600 024700 024800 024900 025000 025100 025200 025300 025400 025500 025600 025700 025800 025900 026000 026100 026200 026300 0264>00 026500 026600 026700 026800 026900 027000 027100 027200 027300 027400 027500 027600 027700 027800 027900 028000 028100 028200 028300 028400 028500 028600 028700 725 VPAIC=VPR(6)VPR(5)=0.0 GO TO 729 727 VPAIC=0.5<(VFR(5) +VPR(6))LXtlEAR ItlTERPOLATIOtl FOR PRESSURES. 729 DO 405 tl=l>70)10 HX=Mtl NR=tl>9 tlY=((M-1)/10)+1 PRDG=PRES(MY)ZF (FRDG.EQ.O.O) GO TO 408 DO 406 tl=Hl>t(2>2 IF (FRDG.LT.SR(tl)) GD TO 406 IF (PRDG.EQ.SR(tl) )GO TO 731 IF (H.EQ.tll) GO TO 444 PRESC(MY)"-SR(tl-1)+(FRDG-SR(N))w(SR(H-3)-SR(N-I) )/(SR(N-2)-SR(H) )GOTO 405<406 COitlTINUE ='K%444 V/RITE (10~407)NRD)MY>PRDG OR/22/78<> 407 FORilAT(T2) KK))MANOMETER READItlG OFF CALIBRATZOH>><)RX)I3)RX) 02/22/78<> -ZR>F9.4)02/22/78<> 408 PRESC(MY)"-0.0 GO TO 405 731 PRESC(MY)=SR(H-1)<405 COtlTINUE>C AVERAGItlG PRESSURES ALLOMZtlG FOR ZERO ENTRY.PRESCU=0.5<(PRESC(l) +PRESC(2))FRESCL=0.5w(PRESC(3) +PRESC(4))PRESCZ"-0.5))(PRESC(5) t FRESC(6))ZF (PRESC(1).LE.O.O.OR.FRESC(2).LE.O.O) PRESCU=2.0<PRESCU -=--=-..IF (PRESC(3).LE.O.O.OR.PRESC(4) ~LE.O.O)PRESCL=R.OKPRESCL IF (PRESC(5).LE.O.O.OR.PRESC(6).LE.O.O) PRESCI=2.0>PRESCZ ACPA=(PRESCUOPRESCLIPRESCZ)/3 ACPG=ACPA-FRESC(7) ==)EK IF (IPR.EQ.O.OR.IPR.GT.HPD) GO TO 747 35 VRITE (6)508)VPRl)DP(1) >VPR(l))PRES(1)>PRESC(1)>VPRR)DP(2))VPR(2))PRES(2) >PRESC(2)>VPR3>DP(3) >VPR(3))PRES(3)>PRESC(3)>VFR4>DP(4) >VPR(4)>PRES(4)>PRESC(4)>VPR5>DP(5))VPR(5))PRES(5)>PRESC'(5)~VPR6)DP(6))VPR(6))PRES(6))PRESC(6))PRES(7)>PRESC(7)~VPAUC)VPALC>FRESCU)VPAXC)PRESCL)PRESCI)ACPA>ACPG 508 FORMAT (1H,llX,~COtlTAItlMEtlT VAPOR PRESSURE DATA CHECK',T83,'COtlTAXt(MENT PRESSURES DATA CHECK'//1H >19X)t'1ZLLI-SX'DEN POItlT'4X) VAPOR PRESSURE'30X) 'Ut(CORRECTED'7X> CORRECTED/1H~RX>'HYGROiMETER)SX>VOLTS~8X>(DEG F)>7X>(PSIA)>23X>MAtlOMETER >RX>READXNG (PSIA)>RX>READIHG (PSXA)/1H)5X)'VPU 1>10X>F5 2>10X)F5~2)9X>F7~4)25X>PU 1 2(SX>F7 4)/T7>VPU 2~2'(10X>FS 2)~9X)F7~4>T83)PU 2)2(8X>F7~4)/T7)VPL 1~2(10X)F5 2)>9X>F7 4)T83~PL 1)2(8X)F7~4)/T7>'VPL-2'2(lOX>F5 2))9X>F7 4)T83>'PL-2')2(SX)F7 4)/T7)VPI 1)2(lOX>F5~2)>9X>F7~4>T83>PI 1)2(8X)F7 4)/T7~VPI 2)2(10X)F5~2))9X>F7~4>T83)'PI 2>2(8X)F7 4)/T83~At(BIEtlT)T95)F7 4)8X>F7 4/XH)T24>AVERAGE VAPOR PRESSURES-T86>'SUtlMARY OF CORRECTED AVERAGE PRESSURES'/ -1H>T17>'UPPER CONTAItltlEtlT (PSIA)'T47>F7.4/ -1H>T17>'ONER CONTAINMEtlT (PSIA)'T47>F7.4)TS1>-.'AVERAGE UPPER PR SSURE (PSIA)'>T120>F7.4/lH >T17>Page 29 01/27/78 01/27/78-01/27/78 Ol/27/78 Ol/27/78 01/27/78=-==--=10/20/77 10/20/77 10/20/77 01/27/78=-= 02/09/78 10/20/77 01/27/78 01/27/78 01/27/78 01/27/78 10/20/77 10/20/77-02/22/78 02/22/78 02/22/78 02/09/78-=-=-=- --*01/27/78 01/27/78 10/20/77 01/27/78=---01/27/78 01/27/78 01/27/78 Ol/27/78 01/27/78 01/27/78 10/20/77 10/20/77---01/R7/78 01/27/78 01/27/78 01/27/78=01/27/78 01/R7/78 01/27/78 02/02/78==----01/27/78 10/21/77 10/21/77 10/21/77=10/21/77 10/24/77 01/27/78 01/27/78.01/27/78 01/27/78 01/27/78 02/02/78==-02/02/78 02/02/78 01/27/78 01/27 j78---=-

SR=ZLRTEST 01/14/75 LIB=>>>>>>>>>>Nues>> SOUR RARY OUTPUT 01/28/81 11.23.27 007 028800 028900 029000 029100 029200 029300 029400 029500 029600 029700 029800 029900 030000 030100 030200 030300 030400 030500 030600 030700 030800 030900 031000 031100 031200 031300 031400 031500 031600 031700 031800 031900 032000 032100 032200 032300 032400 032500 032600 032700 032800 032900 033000 033100 033200 033300 033400 033500 033600 033700 033800 033900 034000 034100 034200 034300 034400 034500 ICE COiNDEtlSER (PSIA)>T47>F7 4>T81>AVERAGE LOWER PRESSURE (P SIA)>>T120>F7~4/T81>AVERAGE ICE COt(DENSER PRESSURE (PSIA)>T120>--F7.4/T81,'AVERAGE CONTAINMENT PRESSURE (PSIA)', T120,F7.4/Tel, AVERAGE COslTAXtll'IENT PRESSURE (PSIG)>T120>F7 4)ZF (IPR.EQ.99) GO TO 40 CALCULATE NORNALIZED WEIGHT FRACTIONS> STORE WITH PRESSURES~=--=-747 WUCt(UN=(FRESCU-VPAUC)/THStlUR WLCtlUN=(PRESCL-VPALC)/TNStlLR WXCHUN=(PRESCI-VPAIC)/THStlIR MNUH=VWF1>>>ltUCNUN +VMF2NWLCHUN +VWF3%WICNUN -%>f IF (MDEt1.GT.O.O) GO TO 749 WUCDEN=WUCNUi1 WLCDEN=WLCtlUN%K WICDEN-"WXCt(UH VDEN=VtiUtl K%749 WUC(tlR)=WUCtlUN/VUCDEN 01/27/78 01/27/78---01/27/78 01/27/78 01/'27/78 01/27/78--


01/27/78 01/27/78 01/27/78 01/27/78==

-=02/22/78 01/27/78 01/27/78 01/27/78-01/'27/78 01/27/78 WLC(NR)=WLCtiUN/WLCDEN W IC(t(R)=WICt(UN/M I COEN W(HR)=WNUN/WDEH ATUC(HR)"-TtlStlUC ATLC(HR)=THSNLC 3f%02/02/78 02/02/78 02/02/78-= ATIC(NR)TH-HIC APUC(HR)=PRESCU APLC(HR)=PRESCL 02/02/78 02/02/78 02/02/78 APZC(tlR)=PRESCX-AVPUC(hR) =VPAUC---%K 02/02/78.-==-02/02/78 01/27/78 01/27/78-=--AVPXC(tlR) =VPAIC Cot(TItiVE 20 WRITE (10>903)903 FORllAT (1HO>2X>'ZLR006I 0<w>>>DATA SPACE EXCEEDED>>>ww>) 02/24/78<w GO TO 23 END OF FILE AND OTHER ERROR NESSAGES 12 WRITE (10>904)I 904 FORHAT (1HO>2X>ILR002I 0<>END OF DATA ZH SYSTEN GROUP>02/24/78<< I2>2X>'x>>>>') 02/24/78%% 23 VPITE (10>905)905 FOPtlAT (1H>2X>'ZLR008Z 0 tt>WABHORNAL RUH TERNIHATZON<>>Ht' ---02/24/78<> GO TO 24 22 WRITE (10>906)I 906 FORHAT (1HO~2X>'ZLR001I D<>>>READ ERROR IH SYSTEN DATA GROUP'02/24/78<< -X2>2X>)---====-02/24/78%K GO TO 23%If 42 WRITE (10>907)NRD 907 FORMAT (1HO>2X>ILR003I 0<>>READ ERROR IH TEST GROUP>I3>2X><>)02/24/78<> GO TO 23=Klf 62 li'RITE (10>90S)NRD f 908 FORNAT (1HO>>2X>'ZLR004I D>>>>END OF DATA ZN TEST GROUP'I3>'>>)02/24/78ll>>l GO TO 23 RESULT PORTIOH OF PROGRAM 40 IF (HR.GE.3)GO TO 41 K>>>VPZTE (10>909)%K 909 FORtlAT (1HO>2X>ILR007Z D<l>>LESS THAN 3 TEST POINTS NORE DATA HE02/24/78ll<-EDED<w')02/24/78K'O TO 23%34 41 TSS-"TINE(1)xTINE(1)+TINE(2)NTINE(2)TS=TINE(1)+TItlE(2)T2SW=TINE(l)>>>W(1) +TINE(2)NW(2) o2r24/7e 01/27/78 01/27/78 01/27/78 02/24/78 02/24/78 01/27/78 02/24/78---01/27/78 01/27/78 02/24/78 02/24/78 01/27/78 01/27/78 02/24/78 01/27/78==--01/27/78 02/24/78 01/27/78 01/27/'78 01/27/78 01/27/78 02/24/78 02/24r7e 01/27/78 01/27/78 01/'27/78 01/27/78--.=.-AVPLC(t(R) =VPALC<<OR/02/78 Page 30

R=ILRTEST 01/14/75 LIB=>><wwNwxw SOUR RARY OUTPUT 01/28/81 11.23.27 oo>034600 034700 034800 034900 035000 035100 035200 035300 035400 035500 035600 035700 035800 035900 036000 036100 036200 036300 036400 036500 036600 036700 036800 036900 037000 037100 037200 037300 037400 037500 037600 037700 037800 037900 038000 038100 038200 038300 038400 038500 038600 038700 038800 038900 039000 039100 039200 039300 039400 039500 039600 039700 039800 039900 040000 040100 201 FORMAT(lHl>4SX> '

SUMMARY

OF AVERAGES'///1H >2X>>'RUN It'2X>'ELAPSED>2X>3(34HAVG TEtlP AVG PRESS AVG V PRESS)/lH>10X>TINE'6X>U PPER'6X>'UPPER'7X> UPPER>6X>'LOWER'6X> 'LOWER'7X> 'LOWER'7X> Z-CE'BX>'ICE'9X>'ICE'/)DO 43 I=1>HR 43 WRITE (9>202)HRA(I)>TIME(I)~ATUC(I)~APUC(I)>AVPUC(I)>ATLC(I)>APLC(I)~AVPLC(I)>ATIC(I)>APIC(I)>AVPIC(I)202 FOR)'IAT (1H>2X>Z3>4X>F6.2>2X>3(F9.4>2X>F9-4 ~3X~F9-4>2X)J VRITE (9,205)205 FORtIAT(lH1>34X> 'RESULTS OF THE LINEAR REGRESSZOH ANALYSIS'/// -1H>2X>'RUH it'>SX>'W'>llX>'LEAKAGE RATE'>9X>'LEAKAGE'>9X> W UPPER>7X>'W LOWER>9X>W ICE/1H>10X>'EXPERIMENTAL ~-6X>'UPPER LItfIT'llX>'RATE'SX>'CONTAZHMEtiT'>3X> 'COtiTAItitlEtiT'5X> 'CONDENSER'/) REGRESSZOH LOOP DO 44 Z=3>HR TSS=TSS+TINE(I)%TINE(Z) TS=TS+TIt'IE(Z)WS=WS+M(Z)T2SW=T25W+TINE(I)I>M(I) ARUM=TSS<WS-TS<T2SW XHRR=I ADEN=XHRR<TSS-TS<TS A=AtmM/ADEN.3ftt Bt(UM=Xt(RRNT2SW -TS>WS B"-SHUN/ADEtl II=I WSUil=0.0 SUM OF SQUARED DIFFERENCES DO 46 L=l>ZI WLR=A i 8<TINE(L)3f%IF (DABS(W(L)-MLR).LE.1.0D-39) GO TO 46-VSUtl=WSUtl+(W(L)-MLR)<(M(L)-MLR) COtiTItiUE AT=TS/Xt(RR TOT=AT%AT DO 48 tl=2>ZI 48 TOT=TOT+(TIME(N)-AT)I>(TINE(N)-AT) B=2400.0MB EKK=TABLE(ZI-2) SIGMAB=DSQRT(WSUN/(TOT<(XHRR-2.0) ))DEL=EKK<SIGMAB+2400.0 BU=B-DEL 206 44 V>RITE (9>206)HRA(II)>W(ZZ)>BU>B>llUC(IZ) >WLC(ZZ)>WIG(ZZ)-=-.==)It(FORtIAT (T4>Z3>5X>F9.5>2(9X ~F9.5)>7X>F9.5>SX>F9 '>6X>F9.5) COHTItIUE%C EHD OF REGRESSION LOOP WRZTE (9>203)B>A 203 FORMAT(IHO 21X'FINAL LEAKAGE RATE (%PER DAY)='9.5 5X'INTERCE-PT='>F9.5) I'RZTE (9,204)BU 204 FORMAT (1HO>21X>'PPER COHFIDEtiCE LIMIT FOR THE RATE IS>F9 5)24 CALL EXIT EHD 01/27/78 01/27/78 02/'02/78 02/02/78 01/27/78 01/27/78 01/27/78 01/27/78=-01/27/78 01/27/78 05/23/78 05/23/78 05/23/78 01/27/'78 01/27/78 01/'27/78-01/27/78 01/27/78 01/27/78 01/27/78 01/27/78 01/27/78 01/27/78 01/27/78==- ===01/27/78 01/27/78 01/27/78 01/27/78-..==.01/27/78 01/27/78 01/27/78 01/27/78==- =----01/27/78 01/27/78 01/27/78 01/27/78-.-.-01/27/78 02/02/78 01/27/78 01/27/78=01/27/78 01/27/78 05/23/78 05/23/78 05/23/78 01/27/78 01/27/78 01/27/?8 01/27/78 01/27/78 05/23/78 05/23/78 01/27/78 WS=W(l)+W(2)%%01/27/78 WRITE (9>201)=-=-==-%%01/27/78-=----=--Paqe 31

8.0 Data Anal sis and Summaries This section of the report contains graphical analysis of data obtained during the conduct of the ILRT.The'ILRTEST'rogram summaries of average containment temperatures, pressures, and vapor pressures, and leak rate calculations appear in Section 8.2 of this report.Past test experience has shown that the instrumentation package used for this'est is quite capable of measuring the leak rate accurately, as evidenced by the rapid convergence of the 95Ãupper confidence limit of the leak rate and the excellent correlation of results between the'Type A'nd the Supplemental Test.The error analysis for the instrumentation system predicts+0.0195 wt/day, and this test correlates well within that interval.8.1 Gra hical Anal sis Figure'8.1.1 is a plot of containment weight remaining vs.time for the Type A Test, the slope of the least-squares line is the calculated leak rate.A second line is drawn using the vertical intercept of the least-squares line and a slope corresponding to the 955 upper confidence limit leakage.A line corresponding to the allowable leak rate (0.75 L)is also shown to illustrate the relatively wide margin 5y which the leakage criterion was met.Figure 8.1.2 is a plot of the containment weight remaining vs.time for the Supplemental Test.The slope of the least-squares line is the composite leakage rate (L).Using the vertical intercept of this least-squares line, two additional lines are drawn corresponding to the Supplemental Test correlation limits[(L+L+.25 L)>L>(L+L-.25 L 0].Page 32 4 I.f>ik I tooooo k.~<<t-I 4 4 J I~D.CICooK Pcrrur Vivre 2'/RT,/Ay/'78/Tr<E 8'@sr Cavrwurrzur Wester Re~we vs.7i~r'0 8-k-!JO!O 0 0 8 8 i I 1 0499/"!0 PMEJ9 lrAK'-I I'~00 Co/vrrortacs';',.RArr0 00 Lrwsr Sovt9zrs 4'J're Twas R'rsr.78'0 99)DO/0 IE ECSWun 7ine-h'49'o Page 33 1I 4!li)O 4~1 4 4+4 1 O.C.CoOA PSAAIr.UkIT c Z'I,RT,.PAT I'IBI!Surr Zenana>P.riSI!COPITAIAlnEP7 LVEIGk QEftAIIJIIIJI'4 VS.7IIIII 4j.!JJJ i g 4 4 0[->==PP t l 1 4, 4 4~o E/M (MIISS IITA J~4!x~0 V 4'4-.1 PL EnEA(Th CoZASJ!4 4 I-, 4'4,'4 IO/8'ZuerwcaXuia's ., Page 34 'f I y 8.2'LRTEST'ro ram Summaries D.C.Cook Unit 2, Integrated Leak Rate Test April 30-May 4, 1981 8.4.1 Fixed Pro ram Information ~Pa e 8.4.2 Pressurization Runs 1P-25P Summary of Averages 8.4.3 Stabilization Runs 1S-31A Summary of Averages Preliminary Leak Rate Analysis 8.4.4'Type A'est Runs 1T-49T Summary of Averages Type A Leak Rate Analysis 8.4.5 Supplemental Test Runs 1Su-13Su Summary of'verages Supplemental Leak Rate Analysis Page 35 THIS IS A CHLCV, OF T>(j IHOIJT l)ATA PTn HILLI-vOLI I(>I'Af<<F<>><f. IT Cn)!vhvslow COFf F tel j)IIS<J>.PF.>>LO'4FI'CF.?.nn.<).<>2.oo n.o?.ou n.u>>Yor O>>f IF>>>>ILI.I-VOLT TO Fn><<IF~HE,IT COWVI:><SIO <COf:Ff IcftNTS>>I>>i>>P-I LOWt>(-I n,r!1<.unnOO 32.(>OAnn n.nOO>)5 1.9bhol 0.04nl?ICL-I I>I.AOAOA l?.unnOO n.n pi<>r r.>~-7 I~, n r>n 0 u 32.0 n 0 n o 0~n I.O<>I'.>r 2 0~0 0~0 r>~0 I<:F.-2 If>ooouou 37 normo~>!'hr>PI;Tf.<()><>t S<(I>'f COH>>LCT I(>><toFFF IC IF.NTS I V-I ln.Ann<>3<>.l lan 77.0000 27.IS60 2>>.soon?6.64<0 26 Vnnn?6.1530?S.nn<>n 7>.1490 I>I I-7 3(.~Anno 3'9~4<>60?1~norm 35~5430 2(>~Rnnu 34~>:>?10 26~OOA(>34~2350 75~Anno l?~<)7.'jo Pl.-I ln.Anno 29.>'r>I<'7.noun 76.82(n 2<..anno 26.3300 26.norm 25.>>3;In 75.Anon 74.)>420 PI-2 lo.onno?9.><.24 27.noun?6.97on 2<,.sono 76.4 rno 26.unnu?s.974n 2s.Anno 74.9750 P 1-1 ln~Anno 3(>Shl<I 7/000('7~<'>?0 2(~Snou 76>>lbu 26~OOOO 76~4700?5~On<>n?5 4490 P 1-2 79 (><30 79~T 9 ln?I Oo I)?7~<>03A?r~4850 7>~4>'bn 26 0030?6~0020?5~<>A ln 7N~AO30 P-ATM??.30<>n 44.656A 19.<>?n<>3<>.r>040 14.66()u 20.7140 I?.49no 74.9390 9.<>><on I>>.f>>I>(o PTO>'f 16HT l><O r ACT<>AS UI>I I'<>~r>67><I)<I~u>>31 A831 A<>r 0 0960~0960~A>>60~0296~I'?'96.A?nr.0296.AI<r).OIO>.nl67.0>I3 I O>>/I~0415~0415~<>41'>I>41~nl ni~02d4~ASH6~<>>>><(>~A26h U'&<6 I<>31.Inaf.1037.IA3I.Osor>.On>)2.n24<.(>1<>5.nl r<<;.>2>9.<)719.(>7r.r>.<<4?l ICF.r 730.0 73n.u 7<>6.0 70<.?23 I.779<.~?094>rnl,(I'~F ><I;1n<>T l<>v f>>CT<)>~IIPPI<>I.<>I>F I'CI 7~014>~I~(>Ann>>~46>7 Page 36 SUNF(ANY 0.HAG/5 f(UN f'APSF 0 hV(j TFHV 7 I HL~'PPI: R AVG Pf)F.SS ()PPF:R AVG V PAF.SS ()ppE)r AVG TF.'t)P AVG PAF SS LOWE)(LOMF.)0 hvG v f)(F.SS LOWE)(AVG TF.F)P ICF;AVG I HF.SS I Cf.AVG V P))FSS I CF.I 2 3 4 6 I ln 11 12)3 14 lb Ib l/10 19 ZU?I?2 23?4?b 2/20?Y 3()31 O~U O.bo I VO).Sn VU Z.bo F 00 3.bn 4~OV 4.50 5.00'j.bo 6~00 6.bo 7 QU 7 bn 8+Un 0.50 9~Uo 9 bn)oooo lo~bo 11~VV Il-bn 12.00 ,jn 13 F 00)3.b((14.UU)4'bo IS.on e8.9045 60 F007 60.0289 60.7654 60 SV77 60.1160 60.1199 67.7060 67.0249 6/8274 67'/154 eral 6623 67 F 598/67.5606 67.4056 e7.44o3 67 4099 b/.3510 er.?783 6/o?562 67?321 67.1276 67.)053 67.0400 67.0235 66'YH02 66 F 9404 66.'9130 ee.UHs0 66.8549 66.8321 26+9463 26.944e Zb.94)2 26.9306 26.92ro 2'239 26')er Zb Ylls 2'016 zboU956 26'Y05 26.UUb9 26'832 26 0035'6'703 ze.U/e9 26'/40 26'/39 26'696 26'679 26'657 26.H635?6+0509?ee0575 26.0b41 26 Ub31 i?6~US05 2'sns Zb.U4ee 26'470?6~044 0 n.)osr Oo)049 0)042 0'034 Oe)0?3 Oe 1023 n.Io)z 0 F 1005 0~IUOY Oe)OQY 0~Ioob 0'994 0~090/0~0'980 0 F 09/3 0'963 0'956 0'946 0'932 0+0922 0'91'Y 0'912 0'90'9 0'099 0'892 O.0806 0+0800 0~0873 0 F 08/3 0~VH51 0'H73/0'930 7'492 IU~Hlol rv.rr44 rl~2822 r)~369)I I o4/25 7)~49)3 7'052 TU~0401 ro~7940 TO;eH)4 Toe6384 7'913 70'408 IU~5102'ro.4ezY 70'342 70'104 Ivy 3/91'/0'50'9 70'286/VS 3300 70'?/34/0'5?4 TV~2190 70'169/0~2131 70~)762 TUBE 1403/0'5)2 26 9162 26 9152 26'122 26'071 26'981 26~0<4)26 HHYI 26.0((4)?6~874Q Ze.f(675 Ze.f)640 26'574 26 US34 26 F 85?4 26'464 26'449 26.13419 26'4)4 26'394 26'369 26'559 26'534 26'404 26.8459 26'4)9 zbe0429 26+03((9 26'384 26'363 26'343 26'320 0.08OY Q.nTYT 0 0/YV 0 F 07))b 0~OUZY 0'030 0'039 0'840 o.OUlb n.oHos 0+0792 0,07H4 0'775 o.oTeS 0.0761 Q 07b4 0+0729 0 F 0728 0'727 0'725 0 F 0724 U.O719 O.oTZI 0'717 O.OTIS 0 F 0711 0 F 0710 0'708 0'710 0 0706 0'707 1/.3049 I I 3<a((I I I 3'ji?9 49(7 I I~4032 I/.4002 17.3129 I I~2440 I/~2103 I'I~)687 I r.1263 I'I~V980 1/0752 I/~1103 I/1047 I/~1307 I I~2209 I I~2171)7~)049 I/2020 I?~1930)7+2)40 I'I~1731 I I~1361)7'700 I/o 1431 l/170'5 II~3090 1/1936 I I.263'5 I/.Z359 ze.946?26'452 26'417 26 94)h 26,92f(4 26~9?44 26~91'94 26.9124 26.9030 26'961 26'Y67 ze.UHse 26'011 26 0002 26'732 26.8'/1/zero/03 26'680 26.0643 26'620 26'593 Zeo857Y 26.0519 26'509 26'479 26'469 26'430 26'984 26'395 26'30'5?6'371 0'35/0'354 0 0349 0~0348 0'343 0.0329 0~0 33')0 0337 0~0'333 0.0.32 7 0'320 0'325 0'330 0 0348 0'330 0.0337 0 F 03?1 0'321 0 0:319 0 0317 0 0310 0'310 0 0315 0'322 0~0'342 0'336 0 0304 0~0'.307 0'332 0.031'I.0 0320 Page 37 HF.SULTS OF IHE LINEAR H ION ANALYSIS HVN W F.XPCHI tiCNTAL LEAKAGE.HATE.()PPCH LIMIT (CAKAOC Ha'(C W I)PPFH W LOWER CONTAINMENT CONTAINMFNT W ICC C0NOF I IS 8 R J 4 5/IU II 12 IJ 14 15 16 I/Id 19 Zo 21 22 23 24 25 26 2/ZH 29 30 31 I 00008 l.nnuOJ 0'99hs 0 99988 0~94963 0'99'91 0'99/1 0~99958 0.99961 (1+99954 U.99954 0~99940 0.99951 0'9956 0~99955 0'9963 0.9996Z 0')9961 0+99980 0'9985 0 99971 0'99/8 Oe99968 0~999/5 0.99970 0~99946 0'9965 0'99/Z O.99961-0'07?6-0 26726-0'2300-0~62003-0~57978-O.438e8-0'8287-0'/062-0'J833-0'1941-0.29810-0.27152-o.Z!~e52-n 23vlv~0 21993-0'0026-0 F 18296"0 16815-0 14814-0 F 12826-n.llS9o-o.lozes-0'9474-Oi0853?-0'7845-0.08120-0~07639-0~07005-o.oevzv FINaL LEAKAGE PaTE 0~18/12 0'4V91-0'b991-0'bb98-0~J3200-Oe22206-0'1919-0'4045-O.ZJ33c-0 2J303-OoZZ530-0~cubRV-VS 20044-0 e 18634-0~I/34J-0~Ibb19-0~I J99/-O U I@770-0 I IV&39-o.u84oe-0'/455>>0'6320-O.ob818-0~0>08/-0 F 04629-0.05102-Oou4820-0 F 04334-0'4230 (%PLH OAY)=-0~04230 I.OOOle I.noo21 I~000J4 I 00093 I.nnovo I 00132 Ioooovl I~00048 I 00051 I.ono48 I~00053 I.nnoe2 I.nOOel 1.00069 1,00069 I.nonni I~00084 1.00085 I~00083 1.00097 1.00085 I~00095 I.oon89 I.oon94 I 00096 I.ooln4 1.00094 Iooollo I~00095 INTERCFPT= 1.00008 0'9997 0~99852 0'9817 0~99779 0~99756 0~99823 0~99830 0~99830 0'9830 0 99827 0~99836 0'9824 0'9827 0 99834 0'9838 0.99835 0~99832 0~99909 0~99906 0~99885 0'9889 0'9879 0+99890 0'9876 0~99875 0'9874 0~9987'5 0~99867 0~99984 0~99976 0'9946 0'9919 0'9908 0~99906 0'9895 0.99869 0 99854 0~998b4 0~99830 0.99817'0.99799 0.9976~0 99766 0.99747 0 99/44 VS 9973'5 u.99727 0'9715 0~99705 0~99693 0~99694 0~99669 0'9673 0'9664 0'9469 0~99636 0.99624 0.99623 UPPER CONFIOCNCE LIMIT FOR THC HATE IS-0'67?7 Page 38

SUMMARY

0 GES RUN ll ELAN SEU I I HE AVG TEMP AVG PRESS AVG V PRESS AVG TEMP AVG PRESS AVG V PRESS AVG TEHP AVG PRESS UPPER.UPPER,...=.UPPER-,.LONER...LOWER...LOHER...]CK.ICE.AVG V PRESS ICE I 2 3 5 6 7 8 9 10 11 12 13 14 15]6]7]8 19 20 21 22 23 24 25 0~0 1.00 2 F 00 2.50 F 00 F 00 5.00 6 F 00 7+00 8 00 9.00 10.00 11.00 12 00]3<<00 14.00 15.00 16.00 17 F 00]7<<50 18.00 18~So 19 F 00 1'0 20.00 69.]4]7 69 6250 69.7087 69'494 69,7495 69'869 69 A]68 69'557 69'588 69'956 69'198 69<<9078 69'333 69.9612 69'?78 69'736 69'950 70.0228 70'340 To.oe58 69'084 69.2748 69.2124 69'284 69.1597 0~0 0~0 0~0 0~0 0'.0~0 0~0 0~0 0~0 0~0 0~0 0~0 0<<0 0'0<<0~0 0 0~0 25'803 26'857 26'290 26<<79]8 26'733 26.8254 2e.8]e7 26'550 601'130 7'935 0~0 590'125 72'897.0~0 523.0715 72.1841 0.0 577'485 72 1833.0~0=610.7735..72+]569 0~0.590'403 72'169 0~0 603'Z79 72'790 0~0 609'247 , 72+]753 0~0 670.8578 72'192 0~0 659'614 72'877 0~0 636 1914 71'969.-.0 0 608'686 7]<<9208 0~0 1]1.9387 7l.eso6 o.o 0<<]335.7]<<8?8]..0~0 0<<]580 7]<<7335 0~0 0<<]530 71 F 6629 0~0 0<<]020..7]~59]3-0 0=0<<]]22 71 4495 25~1663 0 1103 71'489 26 1586 0<<]095=.7]~3925 Zb<<5045 0.1072 71 2694 26.'7611 0.1072 71.1176 26'435==0 1072 71 0603 26 7962 0 1068 70 9698 26 7862 0 1064 70'595 26 9257 o.]2]e o.12eS 0~1294 0<<]303 0~1310 0<<]320 0'344 0 1334 0~]304 0<<]264 0~1216 0~1170 0<<]]29 0<<]090 o.lo4e 0 F 1010 0~0967=-0~0944 0~0898 0~0887 0~0874 0~0857 0 0847.0~0827 0~0819]6<<8504 0~0 16.8627<<0~0 1'522 0~0]6+8584 0~0 1'793=0~0 17 0197 0~0 1'073 0~0 16~9747.-0~0 17~0934 0~0 17~0955 0<<0 16 9156 0~0]6 8032 0~0 1'725 0~0 16.7524 0~0 16'894 0,0 16'264 0~0 16~9594.0~0=]7+]786 25'932 1'7S2 26<<]833 17~2175<<26<<532]17'705 26'914 17'442 26.7741 17 2955.26 8271]7~2903 26'152 1'240 26'556 0<<5266 0~5330 468~3?41 5]]<<]095 537'050 505.7419 542'652 516'?28 420 0445 372'063 364 2604 3]4<<8742 244.0879 0~0321 0'600 0~1549 ,.-0 1508 0'345 0.0345 0~0321 0~0334 0~0345 0~0342 0~0336 0'348 Page 39 q<1>15'h<IY <s).5 Vt.e>h('t aa~r<i~~~)a ee)<s 1)1<)i)9)ii)I lH a>)e>7)7<Ph)ia r" I pea<<s 31 nr)ca lh$6<I e ie rs<<r 4>ie<<reh Ca e, ie I ce>ca ie I I 5)<ai i>I)" I ('<>es, hes).<~>>)<le>r,~aii l,<e<i ie~<~c>4~bi'sa>C.')~i f,<~'>I<I<>7 p>E It~(ee~>4 n.0<>ne csea)A~<es>)0~~s>]).isn))who))~(io)7.5n)'l~(}n)l,h<1)4~O<s)4~pcl)h~5<>)Ca 17.00 11~>>>)>s~<io)Ie C>n)aV.<.n)'1.5>I 70~s><1 r~I 71~(io P),h<~pr7<.on)g~hes)ia~<>>1 c>V6 Il"r'<<pa.5 i f>s, ps-'.<a><<t>./</rs i>i, I])!<>~a Ice/a<<ii r;~5 h ra sin fera~C a>h'>ia(p's,eilr iar>~~37)>.6~a 5 cs~+e><<e>fsh,>-e>7>< i (>~>0,3 i fs e~as<>9 I ts." 1.3)66eee]%IS ,'l<ah P I 6~ra Iei<<f 6.)'pc?,'<ee].>cscp~,)hie I<Fii, 3473 ia(>, l lgo C (>~79'If>f.!5~I)Hcl 3 iel C I,)'ebu Ca6~jPr<75<6(s~r 106 (a(p~)314 66~c<si>4 C i)~pi<94 fa(i,)nh7 tsf>r" s?95 t cp~))HA F(i~)<<5'p i'ci~)a>foal Csfp~)e>91 C 6,)h76 i(i,).<a<<Fh~)e>'.3>t Ftpe))1'I f<'>, I'>)0 fsf>~Ce>]ri i ip~s arr>9 r6.(/0)iefp~I')I>C6"173/apc>.I I 4<<Is<>h<a r C>~r<ie le h pis~tace)ce r'i.,>>i, Ah)is~<5 l7 I I, ital rf.~Ia,)pia pis tt Jef.i'i b'<)i, i'6 6277?.C r)lee<a)Fh 7>>b)%(s)ei~h)i>3 pfi.<s))I P('ie I<)Qh i'fi bc'.)7 7(i.b 1 c>]ps4.<'Si?0'e r f>ihi 04 7+.ts)753 Pc-815)ph t<1'IA 76~8 1 t'0 i'f~0143 76 F 8)39?Ca~8176 Pis~8c>c 6 76.8)]3 76~<10P3?c>.805>3?i.<)0(1?hi<5074 Pri 8045 PCi~8>oh7)Cs.an?7 76~8<)46 76~<><1 I h ph.)s(iPA pc.8onp pc~79'13 76~/94<>?ha 794/7 I'i~7 as cia>Pie~/9ho)ha 79r" 7/s~Ia?46 pfi/a<ps<pi>~I'>74 AV<>sc Ie>pl-c>$<<as<a)IP<>i'rsb<I s<.3'I<>~<>>I'19 0~s>>>lis<I,<,5>.C>&c>I 0<>>l)8 0 oit)e'>~<>>s)r 0~'I>>0 II 0~0 1><e<0~<>I'>1 (i~07'))0~0/91 A,<I?e35s 0~0/Hb 0.0182 0~0/7'9 0.0777 0~0/7/n 0768 0~0 76.>0.07hI n.075/o,07%1 0.07<>1 0.A/cp I 0~0'I,j I 0.6754 0.o 7<><<0~015)0~0 131 f>~0740 0~0 Iran 0'732 0~0735 0'735 0~oIJ5 o.<1135 0~0/35 0~<I/32 0t<1.<>lc)A.o/)1 (i~0/)cs 0.<>'I)<i A V<~(<rile)Ii<<5 u I<i~),Ics>s I,>.)0).I I<')03 I i 1 ae)lh I>>.<i<,)~I>>0 IC>I I>i e (~11M I<1~04)c?ci i~cc>5>5)I u 0!i'30'I 0~)!;ct<Io~0425 7!1~0)1/C>4~C>a>(sf>h9~99i!4 C s>~99ea)IO~0162 (a9~Vt.01 C>9'514 69.9601 69.<ihn9 69.9<<h<<ip'9 9:<6'r?c>9~919's 69'0H3 C>9~(<942 69~HHBC>69'496 69'558>9 69.>5535 6'/8570 69.8i?92 6'9~>53ti/69.8299 i>9 8?cs 0 69.8)9><69'95h 69~/90<>69~7880 699i'9 ii9i 1715 is Y~I I i.'4 c>4.lhi: J e>9~746>>i9/J19 5 4./J/9 6'i~'I 3/4 aay, 7)<]isi>~7)]es h V(i s>sr)ha<(I><ch<r)r.~5<'3)<ri~0<)l r'C~I'sr'I'~>i)ca<<r is~>>)isla r'.>~itr,'l'r.~H)sl;r'4~I')r'3 2h.I')'l.l c'<~>a 1 c>3 P(s~><1'>3 pf.>a)73 P (a a lt)re 53 Zh Sa)a>1 AH))H i!Ci 8 o o'I 76~H)(>7 26 AH]07?6~Hn+I 2/paHn47?Cp~Ho<a?.P6~H f)'P i?f.'o+a?fa 5<e)4P?6,4077 P6 HA27)f Hno'I Ph 79<<7 2f.7997 76.79/7 Pf.7977 76i/912 jj?i.~7947 Zf 7'977 26.7942 26 F 7>>]7 Zf~7947, Ph, 7ali.'?.2f>~7937 26~785<7 Pr,~7877 pt.751<<6 ph,7al77 pF~7><I)pt>7>sr)I'3)6 Ph~75)cac>?i~I>', jia Zh, I~<36 i,o<>V 85.1'~h I<~>at>a i'I.07('6<I~O Ines 0 O I l>ci 0 7(see<I 0 7(l<<0~0 I<ice 0~0703 0, A7(eap 4.<i'Io<O~Atsh'I<I~(i>s 14 0 Ots/(5 0~(1 ti 0 0 0~0(aj ai A.P619 A.06)to 0.Af>81 n.06P)0.0679 0 0 (stab o.n684 0.(>686 C>~Hot<6 0 06H6 n.06Ht, 0.0692 0,06H8 na069(0.0688<)~06H9 n.0693 0~nt>92 n.eh'>I<3.064]0.06<<J 0.064/<1~064(>0~At>r>5 0'647 n.06>a<<0.06<<o<1~Ah<a 3 n.n(.ii<<<1~(i 64 cp A.AC 4)A.nt.ri<<<1~(i(>.)'9 0~ni 4)0~(>Cire(hV<~I<Ie)P)CI)/~.)(s i~i I I.J(e>h 1/43)J)I.<<o<i)1 I~17<>.s)/~c>i>0!p)/~e eases)I.!>4)0)I~i>C)/~4i-><IS)'I ri.lr'i]I~46)J)I,<<902 1/<<7i>4)I c<<]6 11~!3861 11 h7/>0]I.t 15/]I~C>hr..p 1/.842<<)I a<<hi<9 11.<<.181 11<<1'/9)/.:3()e 1/~'i831 1 I~J97.1)I.J(.0 J 1/.2'?Ca(1/J431 1'I~31(i(i)I..I))5 1/~3916]I.27hb 11.3]58 1/.3o]1 1/.3)>35 1 I~JS<<<4 1 I.<<ce)5]I..I>~>cs 1/~47<pZ 1 I~4?ca 6]1~4<<68 11.ei7)C]I e'>9ca/11.<<o]h 1/<<r 11:]I.3i'5<J)7 cap<<I'./>V(~I Ie).64)(:), ts.l6<I i.'+~IS.S.<Cs 2<~H 3))Ii)I>i)6~t)C>a8)i>fp)t.Csp/<i',5>~8 i?f>I i?F~8 i'I 1 Zi,~55)ie P c.'<-ts).l)'<-.t<Z]7. i 6 t)i'.)c.'ta~8191 2<p.IS)7'I 25'8)4/?ti~8)'pl 2(.81iil Zf.~8)h?2(i.814 I 26.8171 Zii~8098 2('H 1 0R 2i<5108 ZC.8045<2f i8084 Z(i 8 0653 Zf 8023 if>~802H Zc~8003 2fi~8004 ih.7919 Z6~79H4 2fs.7959?6.'1969 Zf~7964 (f~7914 Zt.r964 2.7964 (ie~79i>4 C.'6 7934 c?fa~7'r04?.i-~7904 26./u)n (6'<<45)h.'I>a/0 Zi.I>'u(I 2h.lht h 26.Ic<f>5 hV(V I>4]:.<8>h )Cf.n.n 3)n n.O.3)ii 0.03)I 0.A)ln 0~0 l<<6 0.0 354 A~0 35h A.n 1)1 n.nla I 0'331 0.0.3?ep 0.03?7 0~03'31 0~0334 0~<1334 0'339 0 0 l.'l9 0~nia)2 n.nJZ)0 a 03'3'5 0.0331 A.na?7 n.n331 0 0.3?I 0~0308 0'311 o.n3)(3 0'3i'7 A.n33J 0'333 oioJ?r".n.0.3C.O 0~03i'9 0 0327 n.nl)1 0~0J)1 Page 40 kF'>tlt.TS OF IHF.L]ILhw kFG)>FSS)ON h:IALYR)r. I x)-I~'t.l Nl ht.I.F AYI<GL la A I f, I)I'PFk l.)!4)I Lt.hhDGF.kn 11.W I)I>>>r.t>ts'(><<F.I-C(iNI A)N>F)4T CON)A)N>>LN) ]C];C{>NI)F t)SF I>3 l>ci'I>1>>]rl ll)))4]Cs]6)7 I><)9 7(i i>]??73?I4?ra ra Ca?.7.c c<?s>I<)32 3)>I~'35';3/>;31'I>1 I~>Ca (1 c.)Ca s>Ca t Cs Ca Ca (i Ca/ca sl Ca'>(1~<)YU'),1 (a~19 I')ll (1,'j>>>>'>7 0~G>>9/<>n.>)9><2 ri 99<>><ca n.<>99'>n 0~'>>>9'c'.<>9'>> O r..ail/9i 4{1~>>l><>usa 0~<>c)<?><1 ct~9<>911 0~>>us>fsC>(>~<>9<>/c)r'.>>91 n (1,<isj>>'/5 (1~C>9>>/rp li<jl)>s<> 11~>>c)<>cs (n.'>9<>10 (<~c>9<>I 1 (l~>>9>>10 (>~>>>>>>1 R (1~'>>><16 O.<>9>>55 0~<><j>>(ar>0~>><>a/5(a n.<>9<>4n (1~G>>94 1 (a>>s)9l>I>ci~<>9<)>>><)~<>9<>63 Q~>>>><<54{1">99h?11~>>Ct<>s j4 (1~>>>>9>)V.>>>>960 n 9994 I (s~'>9<~c)9 l 1 ca ca 0~c>99cs>Ii~c)9<>ca I{'>>9>><C>n~<><a<><sl Ci~>>9't's I (1~<>I lj<s I 0 bors/4-tl.2<~{>68 n~)7<><j4-n.?7>>]f,-r..23c 60 0~I 9f>Ca 4 c>~)>>7/a-n~1'3<>-n.130<in 0 1 1406-O.O'97>>?.-O.nb?hi 0~t)8691-(1.0969C.-n.0970?-n.]04m-n.(l~l?H 0~0'90?R-0'87?5 0~Q8h20-n~08?3?-n.o76?H-n~U72n>-h 06<?>>3-n.nb7>>O-O.O7O33-n.of>806-n.(){<Hhr!-O.nt Ic 3-n.ne987-n.0683o-n.0665H-r..0642?0~06'.(%6-Q~(16]l3-{>Qenr>4-n.n58>>c n~0'>867 Oa>>>76-n.o~986-n.neon)-n.0~9<4-n.n,<>>69-O.uf 04?<1~n5>>40-n.Oct><4:1-n.ti-Ic>>!-Va]163)-0~08>>7'I-U~04563-rl,)I?H9-o.]62<jH,.-0 1 J I'.jb-I)~09$6)3-0.09i?H.I-U.U909'I-0.(I/vt)b-Q.ueb?]-O.oh]ie-0~r?bi?74-Qao/332-o~u/6]]-U~0>3459-0.01'1>>v-0.07)9V-U~U 1062-0.07112-u.06829-U~06203-0 F 06929-0~V5749-U~Ub635-0.059?4-U~Ob7c>4-0~Ubol<9-u.obt<?e-0~Vt>0<9)-0 V'.>9>>2-O~UHH5(>-0~ube3)-O.ubh]u-0'5398-0'53<3/-U~ub2?1>-0~u bc>2'I-Q~06261-u~nb393 0~U64 14-Q~nb44.<0~ttb4<jl 0 u>54)-u~l>645 3-u.ub.l7(a-u~bees></].r nor I n.>>>>><i7 1.norm.'I 0.9>>>>G?n.>>>>>>c>c,].nr>non].nnnn>>>><)c)>>7 1.nunc>h).Onr>p7].r<nn)3).(>nnnk 1.nouns n.9>>9>>c,)arm(i)3 0~<>>>l>c><j].Onn)~].nnr)l>>].non>>1].norm?1.1)nrlnc).nno]p 1 e nein()P).nnnn>>].nnnoh n~<<997].nnnol 0~9>>li>>6.).nOnr?1)<>>>s)<>O)~onnln n~9>>9>>9 I.Otic>(>3 n.9<>>>>3 1 onnn4 0')>>99]).()nnn3 n.9<)G>>4 o~G>><>Gr>O.>>>>lin>>n.>>>><><>)n~<)C>9<>){1~i<cia)~>ca 0~<>Ca s)>s 4 n~>><><><<9 11~9<>~>l>)s C)~<><>l>ra<>0~9>>992 l.uooai n.9<</9U 0 99'?HO Os9>>981 0.999H)O>><>9>>c cl~9>>l/84 n.999(.(i 0 s9>>912 n.99913~0.9<>91?0~99<If>c>0.9995?O.9>>94n V.9'?9hli n.99961 0.9>>956 0.99953 0~999<>2 Q~99 jc>H 0 99943 0 o.9994n 0 9"935 0.99915 0'9'937 0)>>9?R 0,9>>92>3 n.999()9 0~99'j]9 9>>9'IC<0.99940 n~999<'>0~9'9944 n.999.'ll>0.9>>943 0'>>92'5 0.9992'~9<>914 n~9>>9?5 n.>>>9?1 n~9'99?>s 1>~c?>>9].l rl.9'?9?2 (1~99/2{1 U'>>>97?0~999t>1 u~99'>44 0'9950 0'9>>i?3 0.99929 1?~99929 0~9991?os 999]f U~99917 U~99916 0.999U9 0.99896 U~998'9c'.9988/- u.99R59 u.99828 0'9851 0~99HC<?U.99852 0'9864 r).9>>815 U~99H78 0'98H3 0'?9865 U.9981?0'9868 0'9880 0~998'52 0'9R59 0~9<j><55 0'9H35 0.99>353 0'9HSO 0'9H50 U~9983);O.9c?8<, 1 0~'99817 0~99H29 u~99805 0'9HU)0~>>9197 u~99/'?7 u~9>>18(i u,>>9794 U.'>9'199 0.99><V3 u~991'94 I'.;/I I I n~nr>F kn)F<is~tsr la C;>>>f II;I 1>r'I I<>>&<a IP I I f{?1~lait."<n(F.c)'>c.'~1 I R (1~nas'/Cl>~~>>99<>3 Page 41

SUMMARY

OF ES RUN 0 ELAPSE Q TIME AVG TEMP UPPER AVG PRFS5 UPPF.R AVG V PRESS AVG TEMP AVG PRFSS AVG V PRESS AVG TEMP UPPER..LOWER..-LOWFR--==LOWFH---=ICE AVC>>PRES5 ICE AVG V PRF:SS ICE~I 1 2 3 6 7 8 9 10 11 lz 13 0~0 0 F 50 I~00 1.50 F 00 2 50 F 00 3.50 F 00 F 50 5.00 S.bn 6.00 6549482 65 9211 65'956 65.9656 65'304 65 8933 65.P828 65.9042 65.9025 65'304 65.9242 65.~zee 65'557 26~7813 26'817 26>>7778?6'783 26 7757 26 I753 26.f723 26.7714 26'688 26 7667 26'667?64 I654 26'624 0'705 0>>0708 0~0708 n.nvoo..0 0703=0~0705 0.0705 0'708 0.0705 0~0705 0 0705 0'703 0~0695 69.6664 69'478 69.esl8 69 6357 69'392 69.e41e 69 6091 69'121 6'9.5984 69 5950 6945948 69.5842 69'940 26'726 ze.vvee 26'691 ze.veoe 26.7671 ze.veee 26'631 26 76?I 26'616 26'590 26'590?647570 26'540 0~0639 0~0641-o.Oele 0~0623=0'623 0'624 0.0622 0.0624 o.nezs 0'627 0'62S o.nbzs 0'626 17'456 17 5942 1744517 17 454e 17 3863.17'786 17 3872 1744723 17'711 17.4224 17 4143 17.2215 1744470 26'781 26'781 26'746 26'751 26'721 26.7716 26~7681 26'676 26'661 26.7637 26'622 26'622 26 7607 0'327 0.0331 0'335 040303 0'306 0.0318 0.0321 0.0322 0.0317 0'324 0'322 0~0327 0~0329 4 4>>lX 1'(It 4 C>>Page 42 I' RUN EXPE.RIMENTAL RESULTS OF THE LINEAP RE.ON ANALYSIS LEAKAGE RATE LEAKAGE w UPPER W LOwER w ICE UPPER LIMIT,...RATE=CONTAINMENT

CONTAINMENT.CONOENSER I t 3 4 5 6 7 8 10 ll 12 13 0.99998 0'9995 0'9991 0'9992 0'9982 0'9973 0.99968 0'9957 0'9958 0'9959 0'9940-I~39701-0'0246-0'8909-0.21488-0.22165-0+25223-0'6284-0'8690-0'8017 0'6445-0'8030-0'5509-0'0993-0~14493-0.12636=Oe 15421-0'8959-0 F 21035-0'3688-0.23981-0'2956-0'4631 0'9996 0'9987 0'9983 0'9988 0'9979 0'9970 0'9962 0 99949 0'9950 0'9946 0.99932 0'9998 I F 00000 0 99991 0'9988 0+99982=...0.99976 0'9977 0'9967 0 99968 0'9961 0'9949 I~00003 I~00017 I~00019 lo00014 0'9998 0'9978 0'9975 0'9973 0'9970 1.00008 0'99SS..~1~FINAL LEAKAGE.RATE l%PFR OAY)=-0~24631 INTERCFPT

I~00009 UPPER CONFIOENCE LIMIT FOR THE RATE IS-0~28030 Pane 43

9.0 Local

Leak Test Pro ram 9.1 Past Test Results Summar Local leak tests have been conducted periodically on Unit 2 in accordance with guidelines specified in 10 CFR 50 Appendix J, the FSAR, and the Plant Technical Specifications. Testing is performed under plant procedure 12 THP 4030 STP.203,'Type B and C Leak Rate Test'.The program consists of'Type B'ests designed to determine leakage through the containment electrical and pipe penetrations, air lock door seals and overall air lock leakage, and'ype C'ests designed to determine leakage through containment isolation valves.Table 9.1.1 summarizes the test results for Type B and C testing performed since the Unit 2 Preoperational test.The leakage detection instrumentation used in the conduct of the'Type B and C'ests is certified, traceable to NBS, and calibrated pr ior'to the tests.The instruments consist of 4 cali brated flow meters, of different ranges, connected in parallel.A test is performed by isolating a test volume bound by the containment isolation barriers under examination. The test volume is pressurized to 12.0 psig.A regulator in the air supply line to the leak rate monitor maintains the test volume pressure at 12.0 psig while the flowmeters measure the air flow required to maintain this pressure.This flow is equivalent to the leakage out of the test volume.Exact test pressure and temperature is recorded and used to convert the measured leakage to standard conditions. Table 9.1.1 T e B and C Test Results Summar Leakage Expresse as Fraction of L)Test Date Allowable Type B 0.147 Type C 0.443 Type B8 C 0.6 May 1979 Dec.1979 May 1981 0.0033 0.0041 0.0116 0.1261 0.2090 0.1633 0.129 0.213 0.175 Table 9.1.2 shows the valves which were found to leak in excess of the guideline leakage during the two previous surveillance tests, May-June 1979 and October-December 1979.The valves marked with an asterisk (*)were also found to exhibit excessive leakage during the most recent surveillance, May 1981.(See, also Table 9.1.3).Table 9..1.4 lists those valves which were repaired, during the May 1981 surveillance, and also gives a short synopsis of the repair.Page 44 It should be noted that the guideline leakage is not an acceptance cri teria.It is strictly a guide for the Test Engineer to use in determining whether repairs should be made.Seventeen of the thirty-eight valves which failed the Type C test were found in the Non-Essential Service Water System (NSW).Three of these valves (check valves NSW-415-1, NSW-417-1, NSW-244-1) have failed the two previous surveillance tests, while 9 other check valves failed the last test.Three of the seven air operated valve failures were repeats from the previous test.The check valves were repaired by cleaning the seating surfaces and replacing the gaskets.If the check valve had a neoprene seat, the enti re valve was replaced.The air operated valves were repaired by cleaning and lapping the seating surfaces.The other group of valves found leaking above guideline values the Containment Purge valves.The valves in this group which failed were: VCR-101 8 VCR-201 Instr.Rm.Supply VCR-102 8 VCR-202 Instr.Rm.Exhaust VCR-104 5 VCR-204 Lower Cont.Exhaust I The Instrument Room Supply and the Lower Containment Exhaust Purge Valves have failed the previous two tests while the Instrument Room Exhaust Purge Valves failed for the first time in 1981.All of these valves were repaired by cleaning the neoprene seal, and then lubricating with Dow-Corning Silicone III.When VCR-104 and VCR-204 were tested after the above mentioned repair, the leakage was still excessive (27,000 SCCt1).A bead was then welded to the edge of the valve flapper to increase the tightness of the neoprene seal when the valve was closed.This repair reduced the leakage in VCR-104 and VCR-204 to 50 SCCH.Page 45 Table 9.1.2Valves As Found sccm As Left~sccm May-June 1979 Leakage As Found~sccm As Left~sccm Oct.-Dec.1979 Leakage NSW-415-1 NSW-415-3 NSW-415-4 NSW-419-2 NS-19-3 NSW-419-4 NSW-244-1 NSW-244-2 5000 Passed 5000 681 Passed Teste A asnst WCR-930 Tested A ainst WCR-934 5000.0 Passed 39,900 14,000 46,000 24,000 47,000 47,000 5,000 37,000 718 62 150 764 220 NS-244-3 NS-44-4 NS-417-4 5000 2000 Passed Passed 14,000 37,000 8,000 40,000 219 100 1000 CR-930 CR-934 CR-967 WCR-901 5000 5000 2000 Passed Passed Tested A ainst NSW-419-4 Passed 7 400*WCR-909 (CR-921 WCR-933 CR-951 5000 Passed Passed Passed 8,000 17 000 5 000 24 000 5618 125 137*WCR-952 WCR-954*WCR-958 WCR-961*VCR-101 VCR-201 VCR-103 VCR-203 Passed Passed Passed Passed Passed 2000 Tested A ainst VCR-203 6000 44 14 000 24 000 400 25,000 Passed Passed 325 Tested A ainst WCR-954 10 000 Tested A ainst VCR-201 VCR-104 Tested A ainst VCR-204 Tested A ainst VCR-204~VCR-204 VCR-105 6000 301 Tested A ainst VCR-205 41 000 3000 Passed CR-05 ECR-18 ECR-28 CS-442-1 SI-189 2000 2472 Passed asse 5000 105 Passed Tested 38 Passed ainst ECR-28 SM-1 N-102 VCR-10 VCR-11 5000 360 Passed Tested A ainst VCR-11 4959 975 500 Passed Passed Passed 500 VCR-20 VCR-21 N-160 Tested Against VCR-21 29 0.Passed 1300 Passed asse 520 Page 46 ~~I~~~~~~I'I I'I'I'e I'I I I'l I I~e~~III III-~'.III I'I~I~I~-~'.~e~~~~~-~'I~-~'.I I I I I I I~~~~~I~I I e~'e el~~ 4 Table 9.1.3-Type C Failures-May 1981~~IAULL Nu dt VALVt.b------------ OI till.I.fA<<AGL IN f.XCfSS..~)t<f L f AKAGf VOL UtIL Df SC>>IP)ION Lf A<tAGf Gut uf I.I r<F.I SCCHI LLAI nrif.AS f QU<<D ISCCHI Lf AICAbf AS Lf.t I tSCCHI CI.V I IISW-415" I At<D Melt-903 CVN-I'I<2l CUV I NSM".<<lo-I AND Melt-.922 CI'II-.2b cuv 4 NSW-,I)-4 AND MCtt-')34 CIN-eh ltCI'NSM-24<<-I At<0'MCI<-945 CVtt-26 IICP I MCII-95I AND Melt.-.955.,CI!tt:26 ltcl'Nsw-244 4 AND wet<-')hll cPN-uh IICV 4 WCR-954 ANI)MCII-95u CI'N-uh CLV.2 NSM-.<<l5"2 At<D.MCA=9OD. CPN=i.'2 CLV 3 NSW-hl5-3 AND MCII-9l I CPtt-23 CLV 3 MCN-')U')Attu ASCII-')I 0 CI'N-23 CUV 2.r<SM-hl9-.2 AND MCI<=926.Cl'N=27.... CUV 3 NSW-4 I9-3 ANU MCI<-')30 CI'N-u5 CUV 3 WCI'I-929 At<0 Wert-93)CVN-45 IICI'NSM-2!<9-2 AND MCII-.')46 CI'tt-.27 NCI'WCI<-952 AND WCII-')56 CON-27 INSII<~i<Ha t.A'SI tlSM-4l7-h<MCN-963 CPN-73 Ittsllto I'IM.MLSI t<SW-.OI7;3<MCII-967 CPtt=73 Ir<STII.I<H.Iul<Gf SUPI<LY Vert-tut,aal INSIII.I<H.fA>>AUST'CII-I02,iu2 IIUIIGfl Lowflt Put<<if tl<tl VCll..lao~204 CPN.63 Itft.lff vl.vt:.<loo.Io vltr sl-luu cl'lt-I5 All<I AIII/I<AU GAS HO>>l Jul<St<" I CVN-3l 4<la, UU 2000+00 360.00 i 2ooo,uo 360~00.............t.. 2000~00 360.UO 360 F 00 2000~UU 2000 F 00../20.00......... >..2000,0U, I20,00 2000.00 720.00 ,+2000 F 00 400.00:.....t 2000 F 00, 400 F 00 i 2000.0U 400,00>2000.uo 3bo F 00.....C,2000 F 00 360 F 00 2000.UU 240 qua+20UU~Uo.240.00....}.20UO.UU.l6UU F 00 4470 bl leuU.UO i<<0000.00......-..3600~00 I i'.0~00 60.00...>r<oooa.ou. <<UI~67 2340~Uu 720.00 29')43.55..<<uu.ao.....)502.uh 0~0.35.la 2u')0~I 6 0~u)0.05 0~0 239,32 0~0 0+0 I Sl.23 I.996.2<<6<<, rlu 0'Ooo 0~U a.o 0+0 24 tl<<20<<o6)49.77 hut,e7 2340 ou.N-.Z At<D vt.rtl IIDII Ful<IICD1 NIDU<DCII=2UI,.......,-'......... I20 00......v 2000.0U.AU Page 48

(, Table 9.1.3 Continued-;IAt)Lt.NU 4t VALVES SIIOMlttG LEAKAGE IN Cxcfss UI I)It, GUIUEL INf.I.EAKAIif. VOLUHC OCSCH)PI IOII ,.LCAKAGt...,....,. LEAKAGt: GIIIOEL It)E AS FOUND ISCCHI I SCCH)I.faKnGE..... AS LEFI I SCCH))<litt Ilf.C INC IL t ICH 305 CPN 45 I)CI UFL IN)i CAVe OIIAltt SF-l59~l60 CPN-42 CLV ANO CUV OIIAIN)ID)I OCII-62U 162)Cf'N-3l EUNI sut)P Io IIUI~5 oct)-600e60l cl'N-4I I UIIU~00 l390 F 00)360 F 00>2000 F 00 l20 F 00 l290~70 360+00...,..., 740~59..., 0'.740.5').l390 F 00 0~0 ItCU I SAHI'Lt'.NCII-I 00 e I 0 I CI'N" 0 I altt I'nul/Itnu Gas Hut)lion Ectl-33 cPN-3l 60 F 00 l40l~32 I 401 o 32..:60~00.......... I I9'9.....I I9~8$AIH I'nttl/Ital) GAS Hutt tC)l-Jl)32 CPN-32 CUN A III lu Cut)1~AC)I)02 t I 03 CPN=29 I20IOO, 3303~I2 l20~00...=...399~25...3303'2.399'5 tt" 2 IO I'Al IiCft-30 I UOltON INJ~ICH-250 CPN-74 CPN"44 45.0n l)9.71 2t n.oo>40000.00 I)9+77 99.62 LC)t IO CI'N COII.S 2e5 CC)t-243-25 CPN-25 CC>t 10 Cl'tI COILS 2 s5 CC)I-244-25 CPN-25 CC)t'IO CI'N COILS 3~4 CCII-244-72 CPII-72 60.00.60 00 I 009~57 007~66 60+00 IOO)o70 0.0 Own 250'7 CCM FIIOH CEI)-I CCH-43l CCw IO Ctt)-2 CCI~-n32 CC)t FAOH CEO-2 CCII-433 CPI~-25 CPN-12 CPtt-12 90 F 00 90,00 l24.76 I 19~6690,00...>.?000.00 Oen 0,0 0~0 Page 49 Table 9.1.4 Leak Rates of Containment Isolation Valves, and Corrective Actions Taken Val ve NSW-415-1 NSW-419-1 NSW-419-4 NSW-244-1 WCR-951 WCR-948 WCR-958 NSW-415-2 NSW-415-3 WCR-909 NSW-419-2 NSW-419-3 WCR-929 NSW-244-2 WCR-952 NSW-417-4 NSW-417-3 As Found~SCCM 30,000.0 1,500.0 2,000.0 2,000.0 2,000.0 2,000.0 2,000.0 2,000.0 2,000.0 2,000.0 2,000.0 2,000.0 2;000.0 2,000.0 2,000.0 2,000.0 2,000.0 Page 50 As Left~SCCM 0.0 35.0 2100.0 0.0 10.0 0.0 240.0 0.0 0.0 650.0 2000.0 65.0 0.0 0.0 0.0 0.0 0.0 Corrective Action Replaced disc, replaced gaskets (SJO-07592-4)Cleaned seating surface (SJO-07592-1)Cleaned valve, replaced gaskets (SJO-07592-12)Clean seat, replace gaskets (SJO-07592-13)Lap seats.replaced gaskets (SJO-07592-14)Lapped seat, replaced gaskets (SJO-07592-16)Lapped seat (SJO-07592-17, 39)Lapped seats, replaced gaskets, disc (SJO-07592-9, 45)Replaced valve (SJO-07592-3, 40)Cleaned 5 replaced gaskets (SJO-07592-2)Replaced valve (SJO-07592-5, 41)Replaced valve (SJO-07592-6)Lap seats, replaced gaskets (SJO-07592-7)Replaced valve (SJO-07592-10)Cleaned valve (SJO-07592-11)Lapped, replaced gaskets (SJO-07592-33, 48)Lapped seat, replaced gaskets (SJO-07592-32) ' Table 9.1.4 Continued Valve As Found~SCCM As Left~SCCM Corrective Action VCR-101, 201 4,500.0 VCR-102, 202 40,000.0 VCR-104, 204 40,000.0 25.0 205.0 50.0 Cleaned internals, tubed with Silicone 111 (SJO-07592-42)Cleaned, lubed seal with Silicone 11 (SJO-07592-49)Wel ded S.S.to val ve so i t would seat against the neoprene seal (SJO-07592-43)SM-1 N-160 DCR-620 DCR-621 SF-159 ECR-33 ECR-31, 33 CCW-243-25 CCW-244-25 CCW-244-72 CCM-431 CCM-432 CCM-433 NSW-244-4 2,340.1 2,000.0~1,300.0 1,300.0 2,000.0 1,400.0 3,300.0 1,000.0 800.0 1,800.0 2,000.0 125.0 180.0 2,000.0 2340.0 0.0 Tested Against DCR-621 0.0 0.0 1400.0 3300.0 0.0 0.0 250.0 0.0 0.0 0.0 0.0 Cancelled (SJO-07592-31)Lapped seat and cleaned (SJO-07592-46 Cleaned, blued seat (SJO-07592-24)Cleaned and blued seat (SJO-07592-25, 50)Replaced diaphragm (SJO-07592-27)Cancelled (SJO-07592-28)Cancelled (SJO-07592-29)Replaced seats (SJO-07592-22)Replaced seats (SJO-08592-23)Installed new disc, lapped seat (SJO-08592-21)Lapped seat, cleaned (SJO-08592-18)Lapped seat, cleaned (SJO-08592-19)Lapped seat, cleaned (SJO-07592-20)Replaced valve (SJO-08592-15)Page 51

Table 9.1.4 Continued Valve CTS-131-W As Found~SCCM 15.491 CCM As Left~SCCM 0.0 CCM Corrective Action Cleaned, blued seat (SJO-07592-34)CTS-131-E 3.853 CCM 0.861 CCN Cleaned, blued seat (SJO-07592-36)I CN-250 40,000.0 0.0 Lapped seat (SJO-07592-51)Page 52

9.2 Hay 1981 L eak Test Results 0, C~COOK NUC AR PLANT UNIT NO~2 TYPE"8" AND"C" LEAK RA)E TFST OF CONTAINMENT ISOLATION VALVES DURING APRL 1981 OUTAGE TY)E."8" DATA INFORMATION TtST VOLUHE COHPLtTED TEST VOLUHFS OESCR IP T ION GUIDELINE LEAKAGE CORRECTEO LEAKAGE TRIAL NO WHEN VOLUHE PASSED 1 2 3 4 5 7 10 PERSONNEL AIRLOCKS 612'L~CPN-N/A PERSONNEL AIRLOCKS 650'L~CPN-N/A ZONE 3 PENETRATIONSltttCTf?ICAL) CPN-N/A ZONE 4 PENETRATIONS(HECHANICAI )CPN-N/A BLIND FLANGE-FUEL TRANS)'tR CPN-I BLIND FLANGE-PLANT AIR TO CONT CPN-29 BLIND FLANGE-ICE, LOADING.CPN-57 BL'IND FLANGE-ICE LOADING CPN-BOER BLIND FLANGE;-FLUX THHBLt HANDLE CPN 76 BLIND FLANGE-SPARE(UNIT 2 ONLY)CPN-67 5511 0 5511'1173.0)173+0 1200 0 1200.0 480'720'960'240'58~0 I~0 0'171.7 850.0 0'0'120+I 74'0'I I I I I I I 1 I I Page 53 o~+"4~~o~" D~I:~COOK NUCLEAR PLANTe UNIT NO TYPE"8" AND"C" LEAK RAIE TEST OF CONTAINMENT ISOLATION VALVES DURING APRL 1981 OUTAGE TYI'F."C" DATA INFORMATION TEST VOLUME, OESCR lP I ION COMPLETED TEST VOLUMES GUI OEL INE 1.EAKAGE CORRECTEO LEAKAGF.T R I AL NO'WHEN VOLUME PASSED 1 2 3 4 5 e 7 8 9 10 11 12 13 14 15 16 17 18 19 20?I 22 23 24 25 26 27 28 29.30 31 32 33 34 35 36 37 38 39 40 41 43 CLV 1 NSW-415-1 AND WCH-903 CPN-17~21 CLV I WCR901 AND WCR-'902 CPN-17 UZI CLV 4 NSW-415-4 ANO WCH-915 CPN-s Oi24 CLV 4 WCR-913 AND WCH-914 5 CPN-ZQ)24. CUV 1 NSW-419-1 ANO WCH-9?Z CPN-26 CUQ I WCR-921 ANU WCH-923 CPN-Z6 CUV 4 NSW-419-4 AND WCH-934 CPN-84 CUV 4 WCR-933 ANI)WCR-935 CPN 84 RCP I NSW-244-1 ANO WCH-945 CPN-26 RCP 1 WCR-951 ANO WCH-'955 CPN-26 Rcp 4 Nsw-244-4 AND wcH-94H cpN-84 RCP 4 WCR-954 AMI)WCH-958 CPN-84 CLV 2 NSW-415-2 AND WCH-906 CPN-22 CLV 2 WCR-905 AND WCH-907 CPN 2?CLV 3 NSW-415-3 AND WCH"911 CPN-23 CLV 3 WCR-909 ANI)WCH-910 CPN-23 CUV 2 NSW 419-2 ANO WCH-926 CPN-27 CUV 2 WCR-925 ANI)WCH-927 CPN-27 CUV 3 NSW-419-3 AND WCH 930 CPN-85 CUV 3 WCR-929 AND WCH-931 CPN-85 Hcp 2 Nsw-244-z AND wcH-946 cpN-27 RcP 2'wcR-952 AND wcH-956 cPN-27 Rcp 3 Nsw-z44-3 AND wcH-947 cpN-Bs RCP 3 WCR-953 ANO WCH-957 CPN-85 INSTR~RH~EAST NSW-411-4 WCR-963 CPN-73.INSTR'M~EAST wcR-961~WCH-962 CPN-73 INSTR'H, WFST NSW-417-3iWCH-967 CPN-73 INSTR.RH.WEST WCR-965~WCH-966 CPN-73.INSTR'H PURGE SUPPLY VCH-101 F 201 INSTR'H EXHAUST VCH-102~?02 IPUHGE)LOWER PURGE SUPPLY VCH-103'03 CPN 64 LOWER PIIRGE EX'CR-104t204 CPN-63 UPPER PURGE SUPPLY VCH)05ti05 CPN 59 UPPER PIIRGE EXH VCH-lob 206 CPN 60 PRESS~RELIEF PU>eE VCH-10 I~207 CPN-65 HYn~RETURN LINE tCH-lotZO CPN 95 HYDE SAMPLE ECR-11 F 21 CPN-95 MY'AMPLE ECf)-IZ~ZZ CPM 95 HYD.SA~~LE ECR-I3.23 CPN-95 HYn.saMpLE ECR-14.24 cpN-93 HYD~SAMPI E ECR lent 25 CPN 95 Hvo.5AMpLE EcR-le.26 cpN-93 HYO~SAMPLE ECR)7+27 CPN 93 7?0~0 720'720'720'480'480'480'480'360'.360'360'360', 7?0'720.0 720+0 720'480'480'480'480'360'360'36Q~0 360'.240'240'240'240'leBO.O leoo.o 2880io 3600.0 3600oo 2880'1440'eo.o eo.o eo.o 60'eo.o 60'eo~0 eo.o 0~0.350+3 149+4 0~0 35'99'2090'99'0'.10~0 0~0 239'..0~0.185.2 0+0 651+2 1996.2 0~0 64~9=0~0 0'Oio 0~0 0.0 0'Oeo 0'90'24'204 F 6 79 5 49'124.2 794'0'0'48'Qio 0~0 39'0'0~0 0~0 2 I 1 I 2 I 2 I 2 2 2 3 3 1 3 2 3 I 3 2 2 1 3 I 2 I 2 Page 54 4 o"~" D CD COOK NUCLEAR PLANT~UNIT NP 2~o<<>>~ooo TYPE"8" ANO"C" LEAK Rn(E TES)Or CONTAINMENT ISOLATION VALVES DURING APRL 1981 OUTAGE TYPE'C" DATA INFORMATION TEST VOLUHE OFSCRIP'(ION COMPLETED TEST VOLUMES GUIOEL I NE LEAKAGE CORRECTEO LEAKAGE TRIAL NO WHEN VOLUHF.PASSED 44 45 4e 47 48 49 50 51 52 53 54 55 se sr 58 59 60 el e2 63 64 es ee 67 e8 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 8e HYO~SAMPLE ECR-Jr)~28 CPN-93 HYO~SAMPLE ECH-IVAN 29 CPN"93 HCP-I SEAL WATER CS-442-1 CPN-11 RCP-4 SEAL WATFH CS-442-4 CPN-14 RCP-2 SEAL WATFP CS-442-2 CPN-12 RCP-3 SEAL WATFP.CS-442-3 CPN-13 RELIEF VLVE.HDR.To PHT.S1-189 CPN-IS AIR PART/RAD GAS HONITOH SH"I CPN-31 N-2 TO ACCUHULATOHS N102 CPN-32 N-?TO PRT N159 CPN-74 PRIMARY'WATER TO PHT PW"275 CPN-33 CHG TO REGEN HEAT EX's-321 CPN-35 DEAD WEIGHT CnLI8.Nlx-151-Vl CPN-30 GLYCOL SUPP(Y VCH-10~ll CPN-86 GLYCOL RETURN VCH-20y2i CPN-56 N-2 AND VENT HDR l'OR HCUT UCR-203e207 N-2 AND VENT HOR FOR HCUT N160~OCH-201 ICF.COND AHU DRAIN HUH UCR-610'11 CLV ANU CUV DRAIN HOH U(H-620'21 CPN-31 RCDT ORAI)l HDH OCH-205rcve CPN-40 CONT SUMP TO HUT'S OCH-600 bol CPN-41 RCS LETDOWN OCR-300 CPN-34 HCP SFAL WATER RElURN OCH-250 350 CPN-37 RHR HECIRC~E'CM-305 CPN-45 RH(r RECIRC>W'CM-306 CPN-46 pw FDH Rx cnv scH ow209(212) .2lo(21 ll REFUELING H20 RX CAV SFISI (152)rl53(154)REFUFLING CAV~DRAIN 5)'-159eleo CPN 42 HOT LEG sAMPLES NCH-Iobiloe CPN-ee PHFSS Llo SAMPLE.NCR-107.108 CPN-ee STEAH SAHPLE NCR-109~llv CPN-ee RcoT snMpLE RGR-)vo.loi cpN-81 PHT sAMP(E DcR-202i204 cPN-81 ACCUH SAHPLES ICP-5~6 CPN-81 AIH PAHT/HAO GAS MONITOH ECH-33 CPN-31'N~SI PP OISCHe ICM"26V CPN-43(68) 'S'I PP OISCH ICM-265 CPN-68(43) AIR PAHT/HAO GAS MON tcH-31~32 CPN-32 CON AIR TO CONT~XCR-100~101 CPN-74 CON AIH TO CONT~XCH-IOZe)OJ CPN-29 N-2 TO PRT GCH-301 CPN-74 N-2 TO ACCUMULATORS SV-101'CR-314 SI TEST LINE SI I ll~I/2t 194 CPN 32 60'60'120'120'120.0 120'120.0 eo.o 60'45'180 0 180'30'480'480'120'120'300'120'480'360 0 120'480'1080.0 1080'120.0 300'360'eo.o 60 0 60'60'60'eo.o eo.o 240'240'120'120'120'45 F 0 60.0 270'26.7 19 F 8 0 0 25.4 20'30+5 401~9-.=--2340.1 0~0 0~0 Ioo2 eo.e 0~0 0~0 0~0 25'0~0 10.0 0~0.....0~0'748~6 0~0 sory 0 1390'105~0=-.--0'0'0 0 0'0~0 0'119+9 0~0 0~0 1401'0'49'3303.1 0'399'119'0~0 0'Page 55 DE CD COOK NUCLFAR PLANTe UNIT No+2>>O4ooooo TYPE"8" ANO"C" LEAK RATE TEST OF CONTAINMENT ISOLATION VALVES OUHING APHL 1981 OUTAGE TYPE"C" OATA INFORMATION COMPLETED TEST VOLUMFS TEST VOLUME OESCRIPT ION GUIOEL INE CORRECTEO LFAKAGE LEAKAGE TRIAI NO WHEN VOLUME PASSEO 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 lll ll?113 114 115 116 117 118 119 PW TO PRT NCR-252 CPN-33 CCW FOR HCP OIL CLHS CCM-452'54t458 CCW FOH RCP OIL CLHS CCM-4bli453t459 CCW FOR EXCESS LU MX CCH-460 46Z CPN-75 CCW FOH RX SUPPOHIS CCH 457~CCW-135 CCW FOR HX SUPPORTS CCH-4bb~456 CPN-82 GRAB SAMr LE SM-4~6 CPN-92'CONT PRESS AD 8 ISOL PPP-300 CPN-94 CONT PRESS AiB ISOL PPP 301"6N-92 CONT PRFSS AiB ISOL PPP-302 CPN-91 CONT PHFSS A 8 ISOL PPP-30J CPN-96 CONT PFFSS ALARM PPA-310 311 CPN-97 CONT VHFSS ALARM PPA-312'1J CPN-98 BORON INJe ICM-?50 CPN"44 BORON IN'CM-?51 CPN-44 WELO CHANtlEL PRESS CA-181S CPN-83 wELO CHANNEL PRESS CA-181N CPN-83 GRAB SAMPLE SM-8+10 CPN-89 CCW TO CPN COII.S Ze5 CCw-243-25 CPN-25 CCW TO CPN COILS 2'CCW-244-25 CPN-25 CCW TO CPN COILS 3'CCW-243-72 CPN-72 CCw TO CPN COILS 3e4 CCW-244-72 CPN-72 CCW TO CEO-I CCM-430 CPN-25 CCW FROM CFO-I CCM-431 CPN-25 CCW FHOM CPN COILS 2~5 CCH-440 CPN-25 CCW TO CEO-2 CC<-432 CPN"72 CCW FHOM CEO-2 CCM-433 CPN-72 CC'W FROM CPN COILS 3e4 CCH-441 CPN-72 GLYCOL SUPPLY EXP'-Ibetl'~9 CPN-86 GLYCOL RETURN EXP'-Ibl)158 CPN-56 POST ACCIOENT SAMPLING RETUHN CPN-67 POST ACCIOFNT SAMPLING SUPPLY CPN-67 POST ACCIOENT SAMPLING H-II/IZ CPN-32 180 0 1200'1200'360'240'240 0 60'ooo 0'0'0 0 0~0.0~0-240~0 240'30'30'eo.o 60'60'eo.o 60'90 F 0 90'90 0 90'90'90'eo.o eo.o 30'30'eo.o 139~7 79~6 99'119 7 159~7 109'74'.0'0~0 0'0'0'.49~8-..99~6 0~0 0'0~0 5'0'.0~0 0'250.5 0'0 0 0~0 0'0~0 35.0 0~0 0~0 24'90'0'Page 56 0~C~COOK NUCLEA PI ANT~UNIT NP~2++++++++4+ TYPE"8" ANO"C" LEAK PAlE TEST Ot CONTAINHENT ISOLATION VALVES OURING APRL 1981 OUTAGE CONTAINMENT SPRAY CHECK VALVFS CHECK VALVE, START TIME F INISH I IHF START ELEVAT ION FINISH ELEVATION LEAK RATE TO PASS LEAK RATE ACTUAL DATE TESTEO SUPPLEMtNTAL JOB VROUW,R CTS-127E.CTS-127W CTS" 131E CTS-1318 CTS-131W CTS-131W 12-'l 12:ll 12:11 9: 0 12:ll 9: 0 16:I)16'-l l 16:11 13: 0 16:11 IO: 0 634 F 000 634~OOV 640.000 640~OOV 640 F 000 640~OOU 634 F 000 633'90 639'06 640 F 000 639'22 639'79 21'10 22'50 F 000 F 000 3'30 3'30-0~0-0 i 237 3'53 0'15'91 0 861 3-?7 3-27 3-27 4-20 3-27 4-20 36 34 Page 57 D C~COOK NUCLE.AR PLANT~UNI T NO TYPE"8" ANO"C" LEAK RATF.TEST OF CONTAINMENT ISOLATION VALVES DURING APRL 1981 OUTAGE LEAK R AT F.SUHHARV SCCH LA I YPE s>8n TYPF."C" 1275.6S 19423.07 0'116.0+1762 TOTAL 20698 F 71 0 1878 COHPLLT I ON RATE,SUHHARY TOTAL TESTED INITIALLY-129 F AILEO" 30 PASSED-99 TOTAL RETESTEO-30 FA ILEO-0 PASSED-30 OUT OF 129 VOLUHES TO TFST~0 STILL HAVE TO 8E'TESTED OVERALL COHPLET ION RATE.IS 100 F 00'5 Page 58

10.0 REFERENCES

10.1 Donald C.Cook Nuclear Plant Final Safety Analysis Report 10.1.1 Initial Leakage Rate Testing of Containment Section 5.2.1 10.1.2 Containment Leakage Test Program Question 5.93, Appendix Q Containment Integrated Leak Rate (Type A)Testing Question 022.14, Appendix Q (Unit 2)10.1.4 Local Leak Rate (Type B and C)Testing Question 022.15, Appendix Q (Unit 2)10.2 Donald C.Cook Nuclear Plant Unit No.1 Technical Specifications 10.2.1 Containment Systems-Containment Leakage Specifications: 3.6.1.2 Surveillance Requirements: 4.6.1.2 10.2.2 Containment Systems-Containment Air Locks Specifications: 3.6.1.3 Surveillance Requirements: 4.6.1.3 10.3 American National Standards Institute (ANSI)10.3.1 ANS N 45.4-1972'Leakage Rate Testing of Containment Structures for Nuclear Reactors'0.3.2 ANS N 274 Draft No.1,'Containment System Leakage Testing Requirements'0.4 Code of Federal Regulations, 10 CFR 50 Appendix J,'Primary Reactor Containment Leakage Testing for Water-Cooled Power Reactors.10.5 Donald C.Cook Plant, Unit 2'Reactor Containment Building Integrated Leak Rate Test (Preoperational) Test Report'.10.6 Donald C.-Cook Plant Surveillance Test Procedures 10.6.1 12 THP 4030 STP.202,'ntegrated Leak Rate Test'0.6.2 12 THP 4030 STP.203,'Type B and C Leak Rate Test'0.6.3 12 THP 4030 STP.204,'Personnel Air Lock Leakage Test'age 59 g,.tI 0 Attachment No.1 to AEP:NRC:00500E Additional Ini'ormation on Hydrogen Mitigation and Control Donald C.Cook Nuclear Plant Unit Nos.'and 2.Supplement to AEP:NRC:00500C

1.0 Distributed

I nition S stem DI S Instrument Room Isolation Our review of the communication paths between the instrument room and the lower volume subcompartments has revealed that limited communication exists through several small openings and a number of pipe sleeves which are not sealed.Therefore, the DIS design described in Attachment No.2'o our AEP:NRC:00500A letter has been modified to include two'additional igniters (one per train)in the instrument room.These two additional igniters will be installed~,}n Unit 1 during the current refueling outage and in Unit 2 during the next ice weighing surveillance shutdown (late 1981)(See Section 3.0 below for a discussion of Clasix results).Thus, the Cook Plant DIS will employ a total of seventy (70)igniters per Unit.1.2 DIS Technical S ecifications, 2.0 Proposed Technical Specification Table 3.6-1A, submitted by our AEP:NRC:00500C letter dated May 29, 1981, has been modified to reflect the addition of two igniters (one per train)in the instrument room.Revised pages reflecting this change for each Unit of the Cook Plant are contained in Attachment No.4.Ice Condenser Insulation s The ice condensers in Cook Units 1 and 2 are very similar to those in McGuire and Sequoyah-. ,However,, instead of polyurethane foam, fiber-glass encapsulated in polyethylene bags is'mployed in the Cook Units for insulation purposes.The insulation is'ocated between the con-tainment wall and the crane wall and the air handling ducts, and is covered by galvanized steel sheets with joints between panels sealed to prevent vapor penetration. Fiberglass exhibits very stable material characteristics even at high temperatures. Existing data indicate that fiberglass begins to'soften(1) at about 1350oF, and that significant decomposition is not expected except at much higher temperatures. The other component which makes up the insulation assemblies is polyethylene sheets.The thickness of these sheets is about 6 mi ls.Review of existing literature on the thermophysical properties of polyethylene shows that.significant degradation (greater than a few percept per hour)has been observed at temperatures in excess of 700oF<).The energy content of polyethylene is reported to be about 1.3x104 BTU (3f P~J~At 1 I 0 Recent analysis performed for the Cook Units using the modified CLASIX code predicts upper plenum temperatures of approximately 1100oF for short durations (see Attachment No.2).Burns in the upper plenum exist for no more than 10 seconds.The shortest interval between burns is approximately 60 seconds.The Cook temperature profile of the upper plenum generated by CLASIX is similar to that of Sequoyah.Using the CLASIX results at the upper plenum as temperature inputs, TVA has calculated the heat-up rate of equipment, such as igniter assembly box and cable within condui ts, in the region and found that the inside surface temperature of the metal casing does not exceed 270oF.Therefore, it is reasonable to believe that, due to the similarity between th'e transient temperature input data for Cook and Sequoyah, the results obtained by TVA can be used as a good approximation for the inside surface temperature of the galvanized steel cover on the insulation. Given these conditions at the upper plenum, the insulation behind the steel covers is not expected to be exposed to temperatures which might lead to sub-stantial amount of polyethylene degradation. Calculation of the energy content for all the polyethylene in the upper plenum reveals that there would be about 7x106 BTU re-leased into the containment even in the unlikely event of its complete decomposition. This amount of energy is.less than forty percent of the energy calculated by Duke Power for the'ntermediate deck doors and is less than ten percent of the energy generated from hydrogen combustion for a typical CLASIX analysis.Moreover, based on the heat transfer calculations performed on insulation heat-up in the ice-bed region by Duke Power for the McGuire Plant, the temperature of the surface adjacent to the insulation is estimated to be about 370oF.Due to the similar configuration of the Cook and McGuire ice condensers, the heat transfer results reported by Duke are applicable to Cook.Hence, the polyethylene in the ice-bed region of the ice condenser is not likely to experience substantial degradation under these predicted conditions. Therefore, despite the fact that a different type of insulation is used at the Cook ice condensers, it appears that the potential impact of insulation degradation on the containment is similar to that of McGuire and Sequoyah.3.0 CLASIX Code Results Attachment No.2 to this submittal contains the preliminary results of a Cook-specific CLASIX analysis utilizing passive heatsinks, a fan flow/head curve and a separate nodal volume representation ~I V@I (p~I.of the ice condenser upper plenum.This analysis indicates that the peak pressure due to hydrogen combustion remains below the containment design pressure.As expected, no combustion occurred, in the upper volume, the fan/accumula'tor rooms, or'he dead-ended volume.A total of thirty seven (37)burns are predicted; seven i.n the lower volume and thirty in the upper plenum.Slightly less than one million pounds of ice remain at the completion of the transient.

4.0 Containment

Air Recir culation/dro en Skimmer (HYS)Fans V The results of the CLASIX analysis mentioned in Section 3.0 indicate that maximum differential pressure between the fan/accumulator room and upper volume'of 2.5 psi;with the higher pressure existing in the upper volume.In the cours'e of our investigation of the fan survivabi li ty,'e have identified a potential failure'echanism due to the possible development of a differential pressure across the'fan housing when the upper compartment pressure is greater than the fan/accumulator room pressure.In such case the fan housing could collapse.l<e are investigating various modifications to the HYS fans which would eliminate this concern and will report to you on the schedule for the completion of the selected modifications in a later submittal.

References:

(1)Baumeister,.T., et al,'Standard Handbook for Mechanical Engineers,'cGraw-Hill (2)Madorsky, S.,'Thermal Degradation of Organic Polymers,'nterscience, 1964 (3)Tewarson, A., et al,'Categorization of Cable Flammability,'PRI Report NP-1200, Part 1, 1979 (4)'Resolution of Equipment Survivability Issues for the Sequoyah Nuclear Plant,'VA, May 1981 I~o<g 4 I Attachment No.2 to AEP:NRC:00500E Additional Information on Hydrogen Mitigation and Control Donald C.Cook Nuclear Plant Unit Nos.I and 2 CLASIX Code Analysis ~-l%,~i TABLE 1 Cook CLASIX Input MARCH Reactor Coolant Mass and Energy Release Rates S2D S uence Time (seconds)0.0 2172 2478 3180 3804 4428 4752 5700 6012 6960 7062 7206.,H20 Mass Release Rate (1bn/sec)197.2 190.5 44.85 53.53 34.82 21.40 48.42 19.42 14.07 5.253 4.718 4.060 H20 Energy Release Rate (B tu/sec)1.167 x 10 1.097 x 10 5.230 x 10 6.547 x 10 4.262 x 10 2.842 x 10 5.558 x 10 2.182 x 10 4 1.583 x 10 5.989 x 10 5.388 x 10 4.693 x 10 I l TABLE 2.Cook CLASIX Input MARCH Hydrogen Generation Rates and Temperatures S2D S uence Time (seconds)0.0 3480 3804 4116 4428 4752 5700 6330 6648 6960 8070 H Mass Release Rate (1hn/sec)0.0 0.0 0.0413 0.260 0.740 1.07 0.430 0.223 0.160 0.117 0.0367 H2 Temperature (F)61 61 67 1582 795 771 612 555 535 519 519 I'k V e TABLE 3 Cook CIASIX Input MARCH Fission Product Energy Release Rates S2D Se uence Time (seconds)0.0 3810 4116 4428 4752 5376 7080 Energy Release Rate (Btu/sec)0.0 0.0 1803 4800 6708 7000 7135 I l, I 0 TABLE 4 Cook CLASIX Input Burn Parameters Lower Compar tment Ice Condenser Lower Plenum Ice Condenser Upper Plenum Upper Compartment Dead Ended FAN/ACC Region Rooms Hydrogen 7F for Ignition V Hydrogen/F for Propagation Hydrogen Fraction Burned Minimum Oxygen PF for Ignition Minima Oxygen PF to Support Combustion 0.08 0.08 0.85 0.05 0.0 0.08 0.08 0.85 0.05 0.0 0.08 0.08 0.85 0.05 0.0 0.08 0.08 0.85 0.05 0.0 0.08 0.08 0.85 0.05 0.0 0.08 0.08 0.85 0.05 0.0 Burn Time (sec)*13*Based on a flame speed of 6 ft/sec. TABLE 5 Cook CLASIX Input Com rtment Initial Conditions Volume (ft)3 Temperature (F)02 pressure (psia)N2 pressure (psia)H20 pressure (psia)Lower Compar tment 249/681 110 3.14 11.67 0.19 Ice Condenser Lower Plenum 24700 32 3.18 11.81 0.OQ Ice Condenser Upper Plenum 47010 32 3.18 11.81 0.Upper Compartment 681283 75 3.17 11.77 0.06 Dead Ended Region 61105 98 3.16 11.71 0.13 FAN/ACC Rooms 54828 110 3.14 11.67 0.19 TABLE 6 Cook CLASIX Input Flow Path Parameters Minimum Flow Area (ft)LC-LP LP-UP UP-UP UC-LC DE-LC F/A-LC******2 2 40 30'low Loss Coefficient 2.05 3.04 1.45 1.5 4.2 4.2 Burn Propagation Delay Time (sec)*0*Based on a flame speed of 6 ft/sec.**Function of door opening. TABLE 7 Cook CLASIX Input Ice Bed Parameters Parameter Initial Ice Mass Initial Ice Heat Transfer Area Heat of Fusion of Ice Flow Loss Coefficient Initial Net Free Gas Volume Value 2.37 x 10 ibm 2.93 x 10 ft 248 Btu/ibm~0.42 86780 ft*Includes 150 Btu/ibm actual heat of fusion plus 98 Btu/ibm to raise ice condenser drain temperature from 32 F to 130 F. TABLE 8 Cook CLASIX Input Ice Condenser Door Parameters Lower Inlet Doors Maximun Opening Angle Minimum Differential Pressure for Maximum Opening Maximum Flow Area Bypass Flow Area 55 0.0069 psi 990 ft Intermediate Deck Coors Maximum Opening Angle Ninimum Differential Pressure for Maximum Opening Maximum Flow Area Bypass Flow Area 89 5.5 psi 1326 ft 20 ft Top Deck Doors Maximum Opening Angle Minimum Differential Pressure for Maximum Opening Maximum Flow area Bypass Flow Area Minimum Differential Pressure to Initiate Door Opening 89 1.15 psi 2040 ft 20 ft 0.005 psi TABLE 9 Cook CIASIX Input Air Return Fan/H dr en Skimmer S stem Parameters Parameter Number of Trains Initiation Time Flow Fractions per Train UC-F/A LC-F/A DE-F/A Flow Rate Head (in H20)Value 0.9569 0.0359 0.0024 Flow Rate Per Train (cfm)0.0 1.0 2.0 3.0 4.0 4.5 5.0 6.0 6.5 6.8 6.9 6.9 5.30 5.05 4.75 4.45 4.15 3.97 3.80 3.42 3.10 2.50 1.60 0.0 x 104 x 104 x 104 x 10 x 104 x 104 x 104 x 1044 x 10 x 104 4 x 10*Initiated 10 minutes after the containment reaches 3.0 psig pressure. TABEZ 10 Cook CIASIX Input S ra S stem Parameters Parameter Drop Diameter (in)Drop Fall Time Flow Rate gpn 0.0276 10.66 4000 5.75 1.68 1800 528 F/A 0.0276 0.0276 Temperature (F)Drop Film Coefficient (Btu/hr ft F)Initiation Time sec 125 20 125 20 125 20*Initiated 30 seconds after the containment reaches 3.0 psig pressure. P~0 TABLE ll Cook CLASIX Input Com rtment De ndent Passive Heat Sink Parameters Parameter Temperature Lower Compar tment Ice Condenser Lower Plenum Ice Condenser Upper Plenum Upper Compartment Dead Ended Region Fan/Accumulator Rooms Value 110 F 15 F 75 F 98 F 110 FRadiant Heat Transfer Beam Leng&Lower Compartment Ice Condenser Lower Plenum Ice Condenser.Upper Plenum Upper Compartment Dead Ended Region Fan/Accumulator Rooms 25.0 ft 8.5 ft 8.5 ft 59.0 ft 8.5 ft 8.5 ft*See Table 15. TABLE 12 Cook CIASIX Input Material De ndent Passive Heat Sink Parameters Parameter Material Value Emmissivity* Concrete Carbon Steel Paint Stainless Steel 0.9 0.9 0.9 0.4 Thermal Conductivit+(Btu/hr ft F)Volumetric Heat Capacity*(Btu/f t F)Paint on Steel (UC" Paint on Steel (LC, DE, F/A$gP)Paint on Concrete Concrete Carbon Steel Stainless Steel~~nt on~oAc.<Q&<Paint on Steel (UC)Paint on Steel (LC, DE<F/AQVf)Paint on Concrete Concrete Carbon Steel Stainless Steel 0.21 0.22 0.087 0.84 27.3 9.87 g.8+29.8 14.7 29.8 30.2 59.2 59.2 er Exit Heat Transfer Coefficient* Paint to Steel or Concrete (Btu/hr ft F)2 Concrete to Concrete Conor~tc Qe Steel Steel to Concrete'teel to Steel Last Layer Adiabatic Wall 10 10 IO 10 10 0*See individual lower plenum wall data in Table 15.~6 lQ)tlpug~pp~~een~ider M i~ipwi S'<<~+>~"+cozz~c~cz en~i.&~ed vs~p guava r~ TABLE 13 Cook CLASIX Input U r Com rtment Passive Heat Sinks CLASIX Wall Number'escription Initial Wall Temperature Surface 2 (F)Area (ft)Layer Number Number of Nodes Layer Material Layer Thickness (ft)75 75 26086 2 15 12 10 2 15 Paint Carbon steel Concrete Concrete Paint Carbon steel 0.001 0.03 1 1.89 0.001 0.03 75 75 5284 595 2 25 12 6 3 2 30 10 Paint Carbon steel Concrete Concrete Concrete Paint Carbon steel Concrete 0.001 0.05 1 1 1.5 0.001 0.06 0.83 75 75 350 25433 3 15~8 12 3 Concrete Carbon steel Concrete Concrete Concrete 0.15 0.03 0.63 75 4381 12 8 Concrete Concrete 1 1.53 0 TABLE 14 Cook CIASIX Input Lower Com rtment Passive Heat Sinks CLASIX Wall Number Description Initial Wall Temperature Surface 2 (F)Area (ft)Layer Number Number of Nodes Layer Material Layer Thickness (ft)110 540 1 2 2 15 Paint S.steel 0.001 0.03 10 12 110 110 110 110 595 3224 gR304 k7972 1 2 3 1 2 3 4 5 2 30 It)2 15 12 6 2 12 3 2 12 6 3 Paint S.steel CD~~$g Paint S.steel Concrete Concrete Concrete Paint Concrete Concrete Paint Concrete Concrete Concrete 0.001 0.06 a.Rp 0.001 0.03 1 1 2.05 0.001 GVV 0.001 1 1 1.61 lp TABLE 15 Cook CIASIX Input Ice Condenser Lower Plenum Passive Heat Sinks C[ASIX Initial Wall Wall Temperature Surface 2 Layer Number (F)Area (ft)Number Number of Nodes Layer Material Layer Thickness (ft)Layer Conductivity (Btu/hr ft F)Layer Heat Capacity (Btq/f t F)Layer Heat Heat Transfer (Btu/hr ft F)13 80 19100 5 31 insulation steel 1 0.0625 0.15 26.0 2.75 56.4 0.7 0.0 14 80 13055 5 12 insulation 1 concrete 1 0.2 0.8 3.663 28.8 0.7 0.0 15 15 paint concrete.000833.33 0.0833 0.8 28.4 28.8 10 0.0 'I l't!e I TABLE 16 Cook CIASIX Input Ice Condenser U r Plenum Passive Heat Sinks CLASIX Wall Number Description Initial Wall Temperature Surface 2 Layer Number (F)Area (ft)Number of Nodes Layer Material Layer Thickness (ft)16 15 9453 1 2 3 2~/5 lG ln paint 0.001 carbon steel%-.66-0-OQ I Q-Of 3 s~)o 4 o4 I TABLE 17 Cook CLASIX Input Dead Ended R ion Passive Heat Sinks CLASIX Wall Number Description Initial Wall Temperature Surface 2 (F)Area (ft)Layer Number Number of Nodes Layer Material Layer Thickness (ft)17 98 6590 2 25 12 6 3 paint carbon steel concrete concrete concrete 0.001 0.05 1 1 1.5 18 98 16789 2 12 3 paint concrete concrete 0.001 1 TABLE 18 Cook CLASIX Input Fan/Accumulator Rooms Passive Heat Sinks CLASIX Wall Number Description 19 Initial Wall Temperature Surface 2 LayerNumber (F)Area (ft)Number of Nodes 110 5640 1 2 2 25 3 12 4 6 5 3 Layer Material paint carbon steel concrete concrete concrete Layer Thickness (ft)0.001 0.05 1 1 1.5 20 110 10134 2 12 3 paint concrete concrete 0.001 1 0.54 r TABLE 19 Cook CLASIX Analysis Summar of Results Lower Ice Condenser Ice Condenser Compartment Lower Plenum Upper Plenum Upper Dead Ended Fan/Acc Compartment Region Rooms Number of Burns Magnitude of Burns (ibm)Total H2 Burned (ibm)H2 Remaining (ibm)Peak Temperature (F)Peak Pressure (psig)62-73 481 88 828 10.9 47 383 10.8 30 15-40 595 26 1155 10.8 256 168 10.5 24 216 10.9 21 205*10.8 Ice Remaining in Ice Bed at 7080 sec.9.9 x 10 ibm.*Occurs before burn period.

~Stt Chttl OOOOOCFII Fh)I 030$0PII SPAIY~OSPCT hT OWO OFPO Fh Ilh)il)%II TSIIPKRATLÃC r Tllit IF)IOKC)Ott 0 r NOO 30toO/Nit llMot/NT1 1St+i r$03$tltof/$40$t4$ot r 707 IOOIIIOH PIKSOISIE r Tlllt IPSlh)CSKC)tSo0/M$t tSoS/~tS S/MI OS.t r$03$tSo0 r MS4 tS,S r SM4 NA)IIISNI POSOONC/T1IK IPSLO)I SEC)10oO/$051 10.0 r~14+0/$034 10.$r Sea 10.0 r%034 10ot/SCH IIOXlRH tlFFERS)ITlhL PRES%Ã%/TllKISKC)%TO LC LC-~oO/~LP t.O r Nae toS/Nlt I)C toS r Nlt o3/$03$FA el/NIS~0/NOO~.~r~tel r N1$t.t r N1$~0/N10~0/$000 loi/NOO i+i/4710~eO r~~3/4044 lot r NOO lot/NOO 1 0/$0$t 1.$/$030 i+4/$030~oO/~loS r 4TN iA/SOSt Fh~0/$00$tel/NO toS/Stlt teS r'tlt~oO/~~t/$400 to</SttO t.S r NI~t.S r Nlt~t r$03$~4/SOtt Oat/~ il)l ~AEP SZ CASEI 80oOOCF~~~~=<S~>ORT OUTPUT FKN 6328GPV<SP RAY OURN 05 AT HV/0 6FPS T IHE PRESSURE(P (SEC)LC 5 IA)/TE.'tP ERATURE(F)LP UP UC DE PR 5 200E+03 5 201 E+03 5.202E+03 5.203E+03 5 204E+03 5.205E+03 5 206E+03 5 ZOTE+03 5 208E+03 5 209E+03 5 210E+03 5 ZLLE+03 5 212E+03 5.ZINE+03 5 214E+03 5 215E+03 5 ZioE+03 5 ZLTE~03 5~218E+03 5~219E+03 5 220E 4 03 5 221E+03 5~222E+03 i.)3 raceme>03 5.225E+03 5.226E+03 5'27E+03 5'28E+03 5.229E+03 5.230E+03 5 23LE+03 5 232E+03 5.233E+03 5.234E+03 5 235E+03 5.236E+03 5.237E+03 5 238E+03 5'39E+03 5.24OE+03 5 24 LE+03 5.242E+03 5.243E I 03 5~244F.+03 5~245E+03 5~24oE+C3 5.247E+03 5'40E+03 5~249E+03 2L~5/21 2/Zl I/20~9/20.8/20'/20 7/21 9/22 9/23 3/23 7/23.7/23 0/Z3.0/21 4/20 5/20 1/19 7/19.5/19 3/1-9~2/19 2/19 2/19.7/19 3/19 3/19 41 19.5/19 7/19 0/19 9/20 0/20 2/20 3/20 3/20 3/20 3/20.3/20~3/20.3/Zu.3/20 3/20~3/23 3/20.3/Zu 3/20~3/20~3/20~31 20.3/101.7 LBO.I.178 9 170 2 177 6 L77 3 17r I 282 5 409 3 523 8 629 8 716~4 791 3 764.0 614 1 519 0 453 2 403~8 365 9 336 4 312 8 293-0 270 1 264~9 255 3 247~3 240-5 234 7 229 7 225 5 221 9 Zie~6 215 9 213-6 211 I 208 6 206 3 204 3 202 5 200~9 199 5 190.~L97 0 196 0 195 0 194 I 193 3 19?6 192 0 191 2).5/21.2/21 I/20~9/20 8/20 0/20 71 21~9/22 0/23.0/22 9/23 I/23 6/22.8/21 3/20 5/21 l/21~5/21 7/21 7/21 6/21 51 21 4/21 3/2l.2/21 1/21 0/20 9/20 8/20 7/20 6/20 5/20 4/20 3/20 3/20 3/20 3/20 3/20 3/20~3/20 3/20'3/160'162~4 l 64 I 165 5 166~8 167 9 169 0 187 3 216 0 264~7 301 3 346 302 9 379 I 252 I 176~7 170 8 160 167 0 165 0 163 I 161.2 159 3 15l 5 155.8 154 I 152 150 8)49 2 147~6 146 I 144 6 L43 2 141 0 142 8 146~1 149 3 152 3 155 2 157 9 160 4 L62 8 20 3/20.3/20 3/20 3/172~4 173 9 l.75 3 I r~>5 20 3/165 1 20 3/1.67 1 20 3/169 0 20~3/I TO.8 2I.5/21 I/21 0/20 9/ZO.B/2o.r/20 7/21 I/21 5/22~4/22-8/22~0/Z3 I/23 2/22 9/22 6/22 4/22.1/22.0/21 0/21 7/21.6/21 41 21, 3/21 2/2 1.~I/2I.0/?.0~9/20 8/20 7/20 6/20 5/20 4/20 4/20 3/20 3/20 3/20'/20 3/20 3/20 3/20 3/20 3/7.0 3/20 3/20~3/20.2/20 2/20 2/?O.Z/012 5 463~0 316 7 235 8 184 2 I43~4 138 2 I.36~2 134'133'131.9 130 l.LZB F 7 IZT 4 126 7)26 I 126 0 125 0 124 6 124.3)23 9 123 9 123 6 123 0 172 7 122 6 122 I IZL.U LZ1 5 121 2 120 9 120.7)20 4 120-5 119~0 117 2 115 4 113 6 ILL 8 110 I 100.4 l.06~8 105 I 103 5 102 0 100 5 98 9 97.5 96~I 94.r 21-5/21 2/21-0/20 91 20~8/20 7/20 7/21 0/21 5/22 0/22 4/22 8/23 0/23 2/23 0/22 7/22 4/22 2/22 0/21 8/21~TI 21~6/21 4/21 3/21 2/2 1.1./21 0/c'.0~9/20.8/20 7/20 6/20 5/20 4/20 41 20 3/?0 3/20 3/20.3/20 3/20 3/20 3/20.3/20 3/20.3/20 3/20-2/70 2/20 21 20'/20 2/140-I l 38 4 137 2 136'135 3 134 5 133 0 134 135 7 136 7 137 5 138 3 130 6 130 5 137 2 135 7 134 4 133 2 132 2 131 3 130.5 129.7 129 I 120 4 LZT 8-127 2 126 T 126 1 125~7 125 2 IZ4~8 IZ4~4 124 0 123 6 123 3 123 I 123 0 122 8 122 6 122 4)22 2 12'121 0 l.2 I~5 I~4 121-2, 120 9 120 7 120 6 LZO~8 21.4/21.3/21-1/21 0/20.8/20~7/20 0/21 0/22.8/23.3/23.7/23 7/23 0/23 2/21 5/20 6/20 1/19 7/19 5/).9 3/1.9.2/19 2/19 I/19 2/19 2/19 3/19-4/19 5/19 7/19 F 81 19'/20 0/20 I/20 3/20 3/20.4/20.3/20 3/20 3/20 3/20 31 20 3/20~3/20~3/20 3/20 3/23 3/20 3/20 3/ZO.J/173.3 173.8 173.4 173.I 171 9 I 71 7 l 72 6 178 6 106.7 193 2 198 4 199 8 201 8 198 4 100~I 181 177 2 1.74~0 171~0 170 2 170 2 169.I 169 I 170 169~3 169~6 169~9 170.I 171 4 171 0 172 I.L71~4 I 71 0 172 172 3 173 3 I.T2~3 173~3 173 3 ITZ 2 173~2 l73.Z Lrz 2 173~?.I r3 2 173 IT3 2 172-I IT2 2 1.72.2 21 5/129 2 21.21 LZB 7 21 I/128 5 20 9/128 2 20 9/128 1 20 8/1ZB 0 20 7/127 9 21 9/136 0 22 9/148 I 23 3/155 5'3 7/164 5 23'/168 23 0/173 3 23 2/172 9 21 5/163 9 20 6/158 I.20 I/l.53'19 7/150 4 19 5/147 6 19'/145'19 2/143 3 19 2/141 7 19 2/140 3 19 2/139 I 19 3/138 2 19 3/137 3 19 4/136 6 19.5/135.9 19 7/135 3 19 0/134 8 19.9/134 20 0/133 9 20 2/133'20 3/133 2 20 3/132 6 20 3/131 9 20 3/131 2 20 3/130 6 20 3/130 I 20 3/129 5 20 3/129 0 20'/12'20'/IZB~4 20 3/128 3 20 3/128 2 20-3/).20 0 20 3/12'20 3/127 8 20 3/1.27 7 20 3/127 9 'i I i r I I'I c E I 4 L TI%lSXOQS)ver sm cern ooecium~amse eww~aver ar~one TII%CKCOOO)KKF SSD CASH MOOQCFR SWI~578%WIV M%I~AT Sit@%PS (s TSK (NXOOS)SOP SOS CIISEi MNSRI FW OJeÃtll%%IV~SECT AT SAO IFFY t ~~a+ii'I I" l~I TQC lSBX8$01<<CF SRO~SOCOSCAI FWI tÃSOPII%%IV RHS KPCT Cf 8%%%Pl 0 I I I~~I'I""~ S TQK (SKOQQS)SCP'R CASH NONCPll RN t'ai"XWt SANER SION SSPCf NT 8&0 OR% I j 5~C~" (TBK (RCO$$1 SCt SSQ CNEf CNNVII FWI CNiÃRI$%hV LHI IWCT NT SWO OVO %~@~$.,~.)~~- J%F)<~~'A I w l~~ i e J >ir--7.~~S.-~ 0 I I~~~7' I~~'I l~~F TBK tSEOOO)~SR@~INCtll FSI NQRPII%%AY RHI SECT AT 04%%SO t l J'R I'Y'c I j l e r I t n L I I I I i l jl I I'~I l'tW I tl L W I"~l~~)A~.>$~-~ ~\I I~~ 1 hm cmeeei SCF SRD OCQ NSNVII AW Cl~Rl SPWIV WW SECT¹T SA%OPPl 1~t 4 V 4 ~~ Attachment No..3 to AEP:NRC:00500E Additional Information on Hydrogen Mitigation and Control Donald C.Cook Nuclear Plant Unit Nos.1 and 2 SMA Report on Containment Ultimate Strength}}