RA-20-0373, Submittal of IWB-3640 Analytical Evaluation of RPV Nozzle N4D Safe End to Pipe Weld Indication

From kanterella
(Redirected from ML21025A063)
Jump to navigation Jump to search
Submittal of IWB-3640 Analytical Evaluation of RPV Nozzle N4D Safe End to Pipe Weld Indication
ML21025A063
Person / Time
Site: Brunswick  Duke Energy icon.png
Issue date: 01/19/2021
From: Snider S
Duke Energy Progress
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
RA-20-0373
Download: ML21025A063 (72)


Text

Steve Snider Vice President Nuclear Engineering 526 South Church Street, EC-07H Charlotte, NC 28202 980-373-6195 Steve.Snider@duke-energy.com RA-20-0373 19, 2021 January U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001 Brunswick Steam Electric Plant, Unit Nos. 1 and 2 Renewed Facility Operating License Nos. DPR-71 and DPR-62 Docket Nos. 50-325 and 50-324

Subject:

Brunswick Unit 1, Submittal of IWB-3640 Analytical Evaluation of RPV Nozzle N4D Safe End to Pipe Weld Indication Pursuant to the 2001 Edition through the 2003 Addenda of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code,Section XI, IWB-3134(b), Duke Energy is submitting an Analytical Evaluation for the Brunswick Steam Electric Plant (BSEP) performed to accept an ASME code rejected circumfrential flaw identified on N4D nozzle weld 1B21N4D SW2-3. The flaw was identified during the Unit 1 Spring 2018 outage (B1R22). The 2018 Analytical Evaluation for the code rejected flaw was performed during the BSE p Fourth Inservice Inspection (ISI) Interval in accordance with the 2001 Edition through the 2003 Addenda of the ASME Boiler and Pressure Vessel Code,Section XI, IWB-3640 and is being submitted for information only.

The Enclosure contains the nozzle weld flaw evaluation per ASME Code,Section XI, IWB-3640 requirements. As concluded in this evaluation, the flawed N4D nozzle safe end to pipe weld indication meets the ASME Section XI Code acceptance criteria for continued operation. Using the bounding loads assumption, the weld flaw still meets the Section XI acceptance criteria after approximately 9.3 years of additional flaw growth from the day of discovery, during which time this weld/indication will be examined in accordance with the requirements of NRC GL 88-01 and BWRVIP-75-A, Examination Category F.

This submittal contains no regulatory commitments. Please refer any questions regarding this submittal to Art Zaremba, Manager - Nuclear Fleet Licensing, at 980-373-2062.

Sincerely, Steve Snider Vice President - Nuclear Engineering

Enclosure:

Evaluation of the Flaw in the N4D Nozzle Weld 1B21N4D-5-SW2-3

U.S. Nuclear Regulatory Commission Page 2 RA-20-0373 cc: (w/ Enclosure)

L. Dudes, Regional Administrator U. S. Nuclear Regulatory Commission - Region II Marquis One Tower 245 Peachtree Center Ave., NE Suite 1200 Atlanta, GA 30303-1257 A.L. Hon, Project Manager (BSEP) (Electronic Copy only)

U. S. Nuclear Regulatory Commission One White Flint North, Mail Stop 8 G9A 11555 Rockville Pike Rockville, MD 20852-2738 Andrew.Hon@nrc.gov G. Smith, NRC Senior Resident Inspector 8470 River Road Southport, NC 28461-8869

Enclosure to RA-20-0373 Enclosure Evaluation of the Flaw in the N4D Nozzle Weld 1B21N4D-5-SW2-3

Attachment B EC 411734 Rev. 0 Page 1 of 69 File No.: 1800389.301 Structural Integrity Associates, Inc.

Project No.: 1800389 CALCULATION PACKAGE Quality Program Type: Nuclear

  • Commercial PROJECT NAME:

BSEP N4A Flaw Evaluation CONTRACT NO.:

CLIENT: PLANT:

Duke Energy Brunswick Nuclear Plant, Unit 1 CALCULATION TITLE:

Evaluation of the Flaw in the N4D Nozzle Weld 1B21N4D-5-SW2-3 Project Manager Preparer(s) &

Document Affected Revision Description Approval Checker(s)

Revision Pages Signature & Date Signatures & Date 0 1 - 34 Initial Issue Preparers:

A A-2 B B-3 C C-24 D-1 D-6 James W. Axline JWA 3/23/18 A.Alleshwaram AA 3/23/18 S. Tang SST 3/23/18 Checkers:

C. Fourcade CJF 3/23/18 C. Lohse CSL 3/23/18 DJ Shim DJS 3/23/18 Page 1 of 34 F0306-01R2

e Attachment B EC 411734 Rev. 0 Page 2 of 69 Structural Integrity Associates, Inc.

Table of Contents

1.0 INTRODUCTION

......................................................................................................... 4 2.0 TECHNICAL APPROACH .......................................................................................... 5 3.0 DESIGN INPUTS.......................................................................................................... 6 3.1 Geometry ........................................................................................................... 6 3.2 Loads.................................................................................................................. 6 3.3 Operating Conditions ......................................................................................... 6 3.4 Material .............................................................................................................. 6 3.5 IGSCC Mitigation with HWC ........................................................................... 7 3.6 Indication Characterization .............................................................................. 10 3.7 Cause of Cracking............................................................................................ 10 3.8 Thermal Transients .......................................................................................... 10 3.9 Residual Stress ................................................................................................. 12 4.0 CALCULATIONS ....................................................................................................... 14 4.1 Flaw Characterization ...................................................................................... 15 4.2 Determination of Stresses and Load Combinations......................................... 15 4.3 Thermal Transient Stress Analyses and Stress Intensity Factors Determination ............................................................ 17 4.4 Crack Growth Evaluation ................................................................................ 18 4.4.1 Stress Intensity Factors.................................................................................... 18 4.4.2 Alloy 600 Fatigue Crack Growth Law and Stress Corrosion Cracking .......... 18 4.4.3 Loading Combinations and Stresses ................................................................ 20 4.4.4 Allowable Flaw Size Determination ................................................................ 21 5.0 RESULTS .................................................................................................................... 22

6.0 CONCLUSION

S ......................................................................................................... 22

7.0 REFERENCES

............................................................................................................ 23 APPENDIX A NDE ISI EXAMINATION DATA .............................................................. A-1 APPENDIXB COMPUTER FILE LISTING ....................................................................... B-1 APPENDIX C PC-CRACK OUTPUT FILES ...................................................................... C-1 APPENDIXD SI-TIFFANY OUTPUT FILE ...................................................................... D-1 File No.: 1800389.301 Page 2 of 34 Revision: 0 F0306-01R2

e Attachment B EC 411734 Rev. 0 Page 3 of 69 Structural Integrity Associates, Inc.

List of Tables Table 1: Brunswick 1 IGSCC Mitigation Water Chemistry History ........................................ 7 Table 2: Piping Loads ............................................................................................................. 25 Table 3: Primary Stresses for Outboard Weld ........................................................................ 26 Table 4: Crack Growth Loadings ........................................................................................... 27 Table 5: Initial and Final Flaw Sizes For Outboard Flaw ...................................................... 27 Table 6: Allowable Flaw Sizes Combined Loading ............................................................ 28 Table 7: Allowable Flaw Sizes Membrane Loading ........................................................... 28 List of Figures Figure 1: Brunswick Unit 1 N4 Nozzle .................................................................................... 4 Figure 2: Brunswick Unit 1 N4 Nozzle with HWC Mitigated Welds Circled in Solid Green Line ..................................................................................... 8 Figure 3: Alloy 600 Disposition Crack Growth Rate Curve for NWC .................................... 9 Figure 4: Alloy 600 Disposition Crack Growth Rate Curve for HWC .................................... 9 Figure 5: Bounding Transient ................................................................................................. 11 Figure 6: Axial Real Component of Fourier Coefficients for ID Repair ................................ 13 Figure 7: Axial Imaginary Component of Fourier Coefficients for ID Repair....................... 14 Figure 8: Weld Residual Stress Results .................................................................................. 14 Figure 9: SCC Curves for Alloy 600 in BWR Environment .................................................. 20 Figure 10. Drawing of the Feedwater Nozzle ......................................................................... 29 Figure 11: Reactor Thermal Cycle Diagram for Evaluation .................................................. 30 Figure 12: Feedwater Thermal Transient Cycles for Evaluation............................................ 31 Figure 13: Stress intensity Factors Plot for Outboard Location - Typical .............................. 32 Figure 14: Crack Growth Results for OutBoard Location, Weld 1B21N4D-5-SW2-3 ......... 33 Figure 15: Semi-Elliptic Flaw on Inside Surface of a Cylinder ............................................. 34 File No.: 1800389.301 Page 3 of 34 Revision: 0 F0306-01R2

e Attachment B EC 411734 Rev. 0 Page 4 of 69 Structural Integrity Associates, Inc.

1.0 INTRODUCTION

During the inservice inspection of the N4 Nozzles at Brunswick Nuclear Plant, Unit 1 in the Spring 2018 1R22 outage, multiple flaws were discovered. Multiple circumferential flaws were discovered in the N4A nozzle weld 1B21N4A-2-SW1-2. For the N4D nozzle, multiple circumferential flaws were discovered in weld 1B21N4D-5-SW1-2 and one circumferential flaw was discovered in weld 1B21N4D-5-SW2-3 [11, 12, 13]. Figure 1 contains a schematic of the nozzle welds. For nozzle N4D, the two welds that contain flaws are weld C and weld E. For nozzle N4A, the flaw is in weld C.

This calculation documents an evaluation to determine the acceptability for continued operation of the circumferential flaw identified in the N4D nozzle on the outboard region (i.e., weld E in Figure 1). This is weld 1B21N4D-5-SW2-3. For the other two welds with flaws, allowable flaw size calculations are performed in a separate document to evaluate flaw growth against ASME Code,Section XI acceptance criteria for operability during the last cycle. These two Inboard welds, 1B21N4A-2-SW1-2 and 1B21N4D-5-SW1-2, are being repaired/mitigated with a full structural weld overlay (FSWOL).

The purpose of this calculation is to show that the flaw in weld 1B21N4D-5-SW2-3 (Outboard) is acceptable for continued operation for one operating cycle (2 years). Included in this calculation is documentation of loadings, calculation of stresses and stress intensity factors, determination of crack growth (fatigue and stress corrosion cracking (SCC)), and the allowable flaw size. Figure 1 below shows the N4 nozzle configuration.

~ .J.,. u tJ*uk l t3lIN'IA t *PJtJ~A4S*3 I etI N'l(3 *3

  • Fl.)IJ'!Ool5
  • J I

\

\

\

I 11321>J'iA *2

  • SWl* 2. !INBOARD l )

I62IN'f(3 3 *51J1

  • 2.

A B

,I 2 :\\" 'is F

/

SME ENO $1Tto,J

  • t ,If S* H Er< D SI

,ns"ot>

Figure 1: Brunswick Unit 1 N4 Nozzle [17]

File No.: 1800389.301 Page 4 of 34 Revision: 0 F0306-01R2

e Attachment B EC 411734 Rev. 0 Page 5 of 69 Structural Integrity Associates, Inc.

2.0 TECHNICAL APPROACH The technical approach used for the showing continued acceptance for weld 1B21N4D-5-SW2-3 consists of using the ASME Code,Section XI, IWB-3600 and Appendix C [7] requirements summarized in the following steps:

1. Characterize the flaw and perform detailed flaw evaluation using the rules of IWB-3600. The specific steps in the evaluation involved are listed below.
2. Determine the stresses at the flaw location. Since the flaw is in the circumferential direction, the stresses required are the axial stresses. The loadings considered in this evaluation include pressure, deadweight, axial shrinkage, thermal expansion, seismic, residual, and thermal transient stresses.
3. Determine the ASME Code,Section XI allowable flaw size in IWB-3640 and Appendix C [7].
4. Determine a bounding thermal transient applicable to this location.
5. Calculate stress intensity factors for the thermal transient and other loadings.
6. Perform a crack growth evaluation (considering fatigue and SCC) to determine how long it will take the as-found flaw to reach the ASME Code,Section XI allowable flaw size determined in Step 3.
7. Compare the end of the evaluation period flaw (after crack growth) to the ASME Code,Section XI allowable flaw size to determine acceptability for operation through the evaluation period.

The current version of ASME Code,Section XI used at Brunswick [23] is the 2001 Edition with 2003 Addenda [7].

Two computer programs, verified under Structural Integrity Associates (SI) Quality Assurance (QA) program, are used to facilitate the calculations in this evaluation. These computer programs are SI-TIFFANY [9] and pc-CRACK [10].

The software SI-TIFFANY [9] performs time history thermal stress and stress intensity factor analysis of a pipe with a specified temperature/flow history of the fluid inside the pipe. The end result (output) of the software is tables of the maximum and minimum stress intensity factor for ID part-through wall circumferential or axial flaws for selected crack sizes.

In this calculation, SI-TIFFANY is used to calculate the thermal transient stress and minimum and maximum stress intensity factor distributions for the bounding thermal transient(s). These maximum and minimum stress intensity factors are used for the fatigue crack growth evaluation.

The crack growth evaluation is performed using pc-CRACK [10]. pc-CRACK is a Windows-based software for the fracture mechanics analysis of cracks in materials. Analysis procedures performed are based on linear elastic fracture mechanics (LEFM) or elastic-plastic fracture mechanics (EPFM). The code can be used for a very wide range of crack geometries subjected to a variety of stress states. Some 35 LEFM and 15 EPFM crack configurations are included, several with influence functions that allow File No.: 1800389.301 Page 5 of 34 Revision: 0 F0306-01R2

e Attachment B EC 411734 Rev. 0 Page 6 of 69 Structural Integrity Associates, Inc.

consideration of arbitrary stress distributions. pc-CRACK can compute critical crack size, allowable flaw size based on the ASME Code, and the life of a component subjected to sub-critical crack growth such as fatigue, stress corrosion cracking (SCC) or primary water stress corrosion cracking (PWSCC).

In this calculation, pc-CRACK is used to calculate the crack growth and to determine the allowable flaw size using the rules of ASME Code,Section XI, Appendix C [7].

3.0 DESIGN INPUTS 3.1 Geometry Weld Number 1B21N4D-5-SW2-3 Outside diameter (OD) = 13.25 inches [15, 16]

Thickness = 1.1 inches [15, 16]

3.2 Loads All piping loads for this analysis are taken from Reference [14, pages A-6 through A-9, and 15]. The loads are further explained in the calculation of stresses.

3.3 Operating Conditions Operating conditions are defined in Reference [19, 20]. Discussion of the thermal transients applicable to this location is contained in Section 3.8.

Internal Pressure = 1550 psig [19, 20]

Temperature = 551°F [25]

3.4 Material The material of the component is Alloy 600 [17] on one side of the outboard weld E and Carbon Steel on the pipe side. Reference 17 identifies the weld as being Alloy 82/182. It is unclear if this is a flux weld or a non-flux weld, so the allowable flaw size is determined using flux weld material properties, which is conservative. The elastic plastic fracture mechanics method of the ASME Code,Section XI, Appendix C will be required for the allowable flaw size determination.

For the allowable flaw size calculation, the flow stress of the material is required. At a temperature of 551°F, the Alloy 600 material properties are as follows:

Sy = 30.1 ksi [6]

Su = 80.0 ksi [6]

(J'f = 55.05 ksi (average of Sy and Su)

File No.: 1800389.301 Page 6 of 34 Revision: 0 F0306-01R2

e Attachment B EC 411734 Rev. 0 Page 7 of 69 Structural Integrity Associates, Inc.

3.5 IGSCC Mitigation with HWC The timeline for the intergranular stress corrosion cracking (IGSCC) mitigation via water chemistry changes at the Brunswick Unit 1 BWR is presented in Table 1.

Table 1: Brunswick 1 IGSCC Mitigation Water Chemistry History Water Chemistry Change Motivation Date Mitigation of IGSCC of Hydrogen water chemistry (HWC) Start [22] June 1990 recirculation piping Mitigation of IGSCC of HWC moderate (HWC-M) Start [22] January 1994 reactor internals Mitigation of IGSCC of reactor internals with HWC + on-line noble chemistry (OLNC) Start August 2014 lower required dissolved hydrogen Based on References [1, 2], the welds outside of the space created by the thermal sleeve, (Welds G, D, E, and F (Figure 2)), are considered IGSCC mitigated by OLNC+HWC only, with a conservative factor of 10 decrease in crack growth rate [3]. The dissimilar metal Weld C (Figure 2) is not considered mitigated by OLNC+HWC or HWC-M (green dashed circle). With hydrogen alone, such as with HWC or HWC-M, sufficient mixing is required to reduce oxidants and produce a molar ratio of hydrogen to oxidants at surfaces greater than 2:1. This is not expected at the elevation of the feedwater spargers and would not mitigate any of the aforementioned welds. When combined with noble metals that are expected to be deposited inside the thermal sleeve during OLNC applications, there is a high enough concentration of hydrogen present in the feedwater to drive recombination reactions and to produce molar ratios of 2 [2], mitigating the welds outside of the space created by the thermal sleeve.

Figure 3 and Figure 4 show the difference in the growth rate between normal water chemistry (NWC) and HWC, respectively [4]. The HWC conditions are defined for Figure 4 are ECP < -230 mV(SHE) and conductivity < 0.3 µS/cm [4] and these conditions would also be produced with OLNC+HWC.

File No.: 1800389.301 Page 7 of 34 Revision: 0 F0306-01R2

e Attachment B EC 411734 Rev. 0 Page 8 of 69 Structural Integrity Associates, Inc.

1(321>/qA 2- F iJ4A% *J I ll.21 N~C -:?,-F N't(l iJ.s * .'!

I

\ INBOARD I

OUTBOARD l \

-~---

A I

r 2 3i "

C*~eo.. S1Hl

/

'(l/.0" 5*rF Ei<D ~I Location of Indication, ~38% Lhrour wall , approx 3" clrcu mfere nllal Figure 2: Brunswick Unit 1 N4 Nozzle with HWC Mitigated Welds Circled in Solid Green Line Reference 17 File No.: 1800389.301 Page 8 of 34 Revision: 0 F0306-01R2

e Attachment B EC 411734 Rev. 0 Page 9 of 69 Structural Integrity Associates, Inc.

0.001 Note: The data covers the following ranges:

0.0001 9<K < 45 ksi-in1/2

,* . 0.055<Cond<0.298 uS/cm

-575<ECP<160 mV,she Crack Growth Rate, in/hr

& ~

~

/  !* * **

/ ***

~ ** **

  • 0.00001

&

  • T T I

I TAT BWRVIP Data after GE

.T A

~:

T Screening

/ i TT I

  • NWC Disposition Curve
  • ~

0.000001 0.0000001 0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 Stress Intensity, ksi-in1/2 Figure 3: Alloy 600 Disposition Crack Growth Rate Curve for NWC [4]

1.00E-04 1.00E-05

  • CAVS Data at low ECP Crack Growth Rate, in/hr

~

  • *
  • GENE Near HWC Lab V * ~ Data 1.00E-06 HWC Disposition Curve

,I 7.1.

/

/

r~

da/dt (in/hr)= 3.2 x 10-10 (K) 1.00E-07

^3 (K< 25 ksi--in1/2) da/dt = 5 x 10-6 in/hr (K>=25 ksi-in1/2)

I 1.00E-08 0 5 10 15 20 25 30 35 40 45 K, ksi-in1/2 Figure 4: Alloy 600 Disposition Crack Growth Rate Curve for HWC [4]

File No.: 1800389.301 Page 9 of 34 Revision: 0 F0306-01R2

e Attachment B EC 411734 Rev. 0 Page 10 of 69 Structural Integrity Associates, Inc.

3.6 Indication Characterization The flaws which are identified in Figure 1 are described below.

OUTBOARD Weld 1B21N4D-5-SW2-3: One circumferential indication was identified in the weld [13].

The NDE report is contained in Appendix A of this calculation.

Length = 4.37 inch [13]

Maximum flaw depth = 0.306 inch [13]

Flaw depth-to-thickness ratio (a/t) = 0.278 (based on nominal 1.1 inch thickness) 3.7 Cause of Cracking A thorough root cause of the cracking cannot be undertaken since the flawed components were not removed from service. As these components are made of susceptible material in a BWR environment, then the most likely cause of the cracking is SCC. As the welds protected by the thermal sleeve are not mitigated by HWC, SCC is probably the cause of their cracking. The outboard welds which are not protected by the thermal sleeve are considered mitigated by HWC, so the SCC growth rate is smaller.

The feedwater line is also subject to thermal transients during startup and shutdown. So, the cause of cracking is most likely SCC, but there will be some contribution to growth by thermal fatigue. For the evaluation of the outboard weld (Weld E), both SCC and fatigue are considered for crack growth.

3.8 Thermal Transients The thermal transient definition is taken from Reference [19, 20, 25]. To perform a fatigue crack growth evaluation, SI developed a conservative pressure and temperature transient. The bounding pressure and thermal transient is shown schematically below in Figure 5. For conservatism, the total number of all transients was used to determine a bounding transient cycles/year value, from References [19, 20].

File No.: 1800389.301 Page 10 of 34 Revision: 0 F0306-01R2

e Attachment B EC 411734 Rev. 0 Page 11 of 69 Structural Integrity Associates, Inc.

Pressure (psig)

I I I I I I 1800 1600 ,_

1400 Pressure (psig) 1200 1000 800 600 400 200 0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 Time (Seconds)

Temperature (F) 600 500 Fluid Temperature (F) 400 300 200 100 0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 Time (Seconds)

Figure 5: Bounding Transient The specifics of the transient are:

1. The N4 nozzle is pressurized at 1550 psig and the fluid temperature is 551°F.
2. It then instantaneously drops pressure to zero, and fluid temperature to 40°F.
3. After 900 seconds (long enough for the pipe to reach 40°F thru-wall), the pressure is instantaneously ramped to 1550 psig and the fluid temperature goes to 551°F. The selection of 900 seconds for this portion of the transient is an engineering judgement and is not a realistic File No.: 1800389.301 Page 11 of 34 Revision: 0 F0306-01R2

e Attachment B EC 411734 Rev. 0 Page 12 of 69 Structural Integrity Associates, Inc.

value for any actual N4 Nozzle transient. It is only intended to conservatively assure steady state behavior prior to the temperature upshock.

4. Then another period of time sufficient to reach steady state at the 1550 psig and 551°F is added.

This transient conservatively bounds the maximum pressure change (1550 psig to 0 psig [19, 20]) and the maximum operating temperature range (551°F to 40°F) [19, 20, 25].

Relative to the number of cycles to be evaluated, SI is conservatively using 17 cycles/year. Based on the selected transients given in Figures 11 and 12, a total of all cycles (120+180+10+328), equals 638 total cycles for 40 years. Conservatively, 17 cycles per year are considered in this analysis.

A flow of 7763 GPM per nozzle is assumed for this analysis and is based on the information provided in the GE Certified Design Specification [25].

3.9 Residual Stress Simplified weld residual stress (WRS) models were developed and benchmarked by Sommerville, Qin and Walter in PVP2014-28828 [5]. This methodology was developed utilizing finite element weld residual stress analysis of several pipe and nozzle configurations. WRS distributions were decomposed into a finite series of trigonometric functions using discrete Fourier transform (DFT).

The WRS solutions take the form of [5]:

  • L 3

WRS c0 + 2 Re (c k e j 2 kx (1) k =1 Where: j = - 1, ck = the complex Fourier series coefficient, obtained from the linear equations provided for the weld condition (original or repaired) and stress orientation (axial, hoop), c0, corresponds to the mean term of the series expansion x = the distance through the pipe wall Note that the Re signifies the real component of the resulting number.

File No.: 1800389.301 Page 12 of 34 Revision: 0 F0306-01R2

e Attachment B EC 411734 Rev. 0 Page 13 of 69 Structural Integrity Associates, Inc.

The WRS axial stress for a ID repair is given as [5]:

-l A + 2 *[~ Re( A *e J])

3 z j2 k t t

WRS _ Axial

= rr f 0 k 1 k H {-) , psi (2)

[ 0.047 0.012 (-)]+ [l x

t j 0

[ 0.373 0.733 (-)]+ *[-

x t

j 0.048 0.778 -(-)]x t

[- -(-)]

A=

0.219 + 0.473

(-)]+ *[ +

x t

j 0.026 6.012 10 -3 x

t

[- 0.013 0.036 (-)]+ *[-

x t

j 3.372 10 3 0.045 -(-)]

x t

Where: cr f = the flow stress ((jf = ((jy+(ju)/2) of Alloy 600 at 70°F, 57,500 psi [6]

x = the depth of the repair weld from the ID surface, 0.330 inches (30% wall thickness) z = the through-wall location measured from the ID surface, inches t = the nominal wall thickness at the DMW location, 1.100 inches j = the imaginary number given by - 1 The Fourier coefficients for axial stress with ID repair are shown in Figure 5 and Figure 6 for real and imaginary components, respectively

-0.0 1 ~ ~ ~ ~

0.046 * *. - 0.05

-0.02 0.044 -0.1 I ,

-0.03 0.042 0 -0.15 O.°t) I 02 OJ 0.4 0.5 . o.b.l 0.2 0.3 0.4 O.! - 011.1 0.2 0.3 0A 0.5 -0.o.i;.1 0.2 0.3 0.4 0.5 x/t x/t x/t x/t Coefficient #0 Coefficient # I Coefficient #2 Coefficient #3 Figure 6: Axial Real Component of Fourier Coefficients for ID Repair [5]

File No.: 1800389.301 Page 13 of 34 Revision: 0 F0306-01R2

e Attachment B EC 411734 Rev. 0 Page 14 of 69 Structural Integrity Associates, Inc.

- 0.1

- 0.2

~ OJ I

- 0.02

- 0.4

-0.0S' i.1 0.2 OJ 0.4 Qj 0.1 01 OJ 0.4 0.5 0.2 OJ 0.J 0.5 x/t x/t x/t Coefficient #1 Coefficient #2 Coefficient #3 Figure 7: Axial Imaginary Component of Fourier Coefficients for ID Repair [5]

Figure 7 presents the results of the calculations. For the WRS profile used, a 30% ID repair is conservatively assumed. Repair information is unknown, and a 30% repair (0.33 depth) is a significant ID repair. As shown in Figure 7, the 30% repair generates tensile stresses that extend well into the weld.

Brunswick FW Nozzle WRS 60,000 40,000 20,000 Stress, psi 0

20,000 40,000 60,000 0.1 0.1 0.3 0.5 0.7 0.9 1.1 Distance from ID (in)

No Repair 10% ID Repair 30% ID Repair Figure 8: Weld Residual Stress Results 4.0 CALCULATIONS File No.: 1800389.301 Page 14 of 34 Revision: 0 F0306-01R2

e Attachment B EC 411734 Rev. 0 Page 15 of 69 Structural Integrity Associates, Inc.

4.1 Flaw Characterization Since only one circumferential flaw was identified in the N4D outboard weld, the flaw combination rules of ASME Code,Section XI, IWA-3330 do not apply. The bounding characterized flaw depth is 0.306 inch [13] (see Section 3.5). The nominal pipe wall thickness of 1.1 inches is conservatively used for a flaw-depth to-thickness ratio of 0.278. The nominal pipe wall thickness was used, as the measured thickness have averages greater than 1.1 in. [26]. As the weld is susceptible to SCC, the acceptance standards of IWB-3514 do not apply and a flaw evaluation using IWB-3600 must be performed for continued operation.

4.2 Determination of Stresses and Load Combinations The stresses are calculated based on the piping loads from Reference [14 pages A-6 through A-9] and

[15] and the loads are contained in Table 2. Table 3 gives the resulting membrane and bending stresses from the load combinations. Tables 6 and 7 list the allowable flaw sizes for the outboard flaw.

A description of the individual loads is given below. Following the description of the individual loads, the load combinations for all service levels are defined and listed.

Deadweight (DW) - Deadweight of piping system [15]

Thermal Expansion - Thermal expansion of piping system [15]

Only Upset (Service Level B) and Emergency (Service Level C) piping loads are provided for EPU Conditions [14]. As there is no Normal (Service Level A) or Faulted (Service Level D) piping load combination specifically provided, the Upset loads will be conservatively evaluated as Service Level A and the Emergency loads as Service Level C. It is also assumed that these loads include OBE in the Upset condition and SSE in the Emergency condition.

With the definition of the piping loadings, the load combinations for each Service Level are defined as:

Primary Loads:

Service Level A DW + Pressure (P)

Service Level B DW + P + OBE Service Level C/D DW + P + SSE Secondary Loads Thermal loads from CPL-34Q-301 [15] are used as secondary loads. However, Reference 15 predates implementation of EPU. Per Reference 14 (page 3-14), the effects of higher temperature due to EPU was evaluated by applying an EPU factor From Reference 14 (pages A-2 and A-5) the EPU factor can be determined by the ratio of power uprate stress to the original maximum normal thermal stress (T)m which is calculated to be 1.022. Therefore, the final secondary thermal stress value to be evaluated is 3.7*1.022 = 3.8 ksi.

File No.: 1800389.301 Page 15 of 34 Revision: 0 F0306-01R2

e Attachment B EC 411734 Rev. 0 Page 16 of 69 Structural Integrity Associates, Inc.

The load combinations are performed. The piping stresses are calculated based on pressure and external bending moments using equations from Appendix C, Section C-2500 [7] as described as follows.

Primary membrane stress ( m) is given by:

In this calculation (Jm, due to pressure, is conservatively calculated as:

(jm = PDo2/(Do2 Di2), which results in a greater (Jm value than m = PDo/4t from C-2500 m = PDo2/(Do2 Di2)

P = operating pressure for the service level being considered Do = outside diameter of the component Di = inside diameter of the component t = thickness, consistent with the location at which the outside diameter is taken F = resultant force for the appropriate primary load combination for each Service Level A = cross sectional area of the pipe Primary bending stress ( b) is given by:

b = DMb/(2I), where:

D = outside diameter of the component d = inside diameter, consistent with the point at which the outside diameter is taken Mb = resultant moment for the appropriate primary load combination for each Service Level I = moment of inertia, (1t/64) (D4 d4)

Secondary bending stress ( e) is given by:

e = DMe/(2I), where:

D = outside diameter of the component d = inside diameter, consistent with the point at which the outside diameter is taken Me = resultant moment for the appropriate secondary load combination for each Service Level (includes seismic anchor loads and thermal expansion)

I = moment of inertia, (1t/64) (D4 d4)

File No.: 1800389.301 Page 16 of 34 Revision: 0 F0306-01R2

e Attachment B EC 411734 Rev. 0 Page 17 of 69 Structural Integrity Associates, Inc.

Weld Overlay Induced Shrinkage Stresses:

The flawed weld is located on the 4D nozzle in the Outboard region (Figure 1). At the same time the Inboard DMW (1B21N4D-5-SW1-2) is being repaired by a weld overlay (WOL). The WOL will result in some level of axial shrinkage in the WOL. This will in turn create secondary stresses in the Outboard sector, included the flawed weld, 1B21N4D-5-SW2-3, that is evaluated in this calculation. Based on measured shrinkage data from a WOL applied to a similar BWR nozzle [24], the measured axial shrinkage of 0.034 resulted in a calculated axial stress of approximately 500 psi. For, conservatism, this stress level will be factored by four (4) to result in an applied secondary tension of 2 ksi. This 2 ksi tension is added to the crack growth analysis for both SCC and fatigue crack growth.

4.3 Thermal Transient Stress Analyses and Stress Intensity Factors Determination Figure 5 shows the transient that is evaluated for the flawed location. The transient is evaluated with SI-TIFFANY to determine the transient stresses and stress intensity factors. Construction of the input file for the transient involves inserting the transient time history into an input file. A time step of 0.1 seconds is used in all SI-TIFFANY runs.

Each SI-TIFFANY run with the corresponding filename has the following relevant files, which are included as supporting files to this calculation:

  • .dat SI-TIFFANY input file
  • .rpt SI-TIFFANY output file, which echoes the inputs.
  • .mnn SI-TIFFANY output file with tabulated Kmin values.
  • .mxn SI-TIFFANY output file with tabulated Kmax values.

The tabulated values of the minimum and maximum stress intensity factors, K min and Kmax, for specific crack sizes are used for fatigue crack growth analysis. All SI-TIFFANY files are listed in Appendix B.

SI-TIFFANY uses temperature history of the transient to compute the thermal stress due to the radial gradient of the temperature in the pipe wall. At the beginning of the transient, the piping location is taken to be at a uniform temperature equal to the first line in the transient history. The radial gradient thermal stress is then combined with the pressure stress and thermal expansion stresses due to tensile and bending loads (restraint of thermal expansion) to provide stresses that are used to calculate stress intensity factors. The thermal expansion tension and bending stress at the beginning of the transient is taken to be the stress due to the resultant force and moment of the restraint of thermal expansion, which are obtained from the loads in Reference 15, scaled up or down from the normal operating temperature using the following relation:

Tave 40 er (Tave ) =-'----CF no Tno 40 File No.: 1800389.301 Page 17 of 34 Revision: 0 F0306-01R2

e Attachment B EC 411734 Rev. 0 Page 18 of 69 Structural Integrity Associates, Inc.

This relation is applied to tension and bending thermal expansion stresses to scale the values during the transient. Tno is 551.0°F (normal operation temperature). Tave is the average wall temperature, which is evaluated in SI-TIFFANY. The values of no (nominal stress) for tension and bending were calculated using the equations from Section 4.2 and the EPU-factored loads from Reference [15] for the bounding thermal load case.

The values of no tension and a no bending from thermal expansion input to SI-TIFFANY are 0.035 ksi and 2.79 ksi, respectively. Stresses due to deadweight, axial shrinkage, residual stress, and seismic are input separately in the subsequent crack growth calculation. Pressure stresses do not need to be input to SI-TIFFANY separately. Only the pressure term is included as SI-TIFFANY calculates the stresses due to pressure and adds them to the thermal transient stress results.

SI-TIFFANY treats the piping conservatively as insulated and the insulation is considered perfect which means that no heat transfer is considered to the surrounding environment.

4.4 Crack Growth Evaluation 4.4.1 Stress Intensity Factors SI-TIFFANY calculates the stress intensity factors (K) and determines maximum applied K (K max) and minimum applied K (Kmin) for a semi-elliptical inside-surface circumferential flaw in a cylinder for various flaw depths and aspect ratios. The K max and Kmin values include the effects of internal pressure, thermal expansion piping loads, and thermal transient stresses. Kmax and Kmin (Table 4) represent the range of applied K for each transient whose difference, K = Kmax - Kmin, are used by pc-CRACK for the fatigue crack growth (FCG) calculations.

The constant stress intensity values for deadweight, axial shrinkage, and residual stress were not included in SI-TIFFANY. As such, they are input as constant stress values for each load cycle. Seismic is input as a reversible stress. Additionally, the crack face pressure of 1.55 ksi (conservative operating pressure) is added to the Kmax term. The semi-elliptical flaw model with variable aspect ratio is used in pc-CRACK to determine the fatigue crack growth. The flaw model is shown in Figure 15.

4.4.2 Alloy 600 Fatigue Crack Growth Law and Stress Corrosion Cracking The 2001 Edition of Section XI with addenda through 2003 [7] does not contain a specific fatigue crack growth law for Alloy 600. C-8430 of Appendix C [7] states that applicable crack growth laws for other materials may be used. A later edition of the ASME Code has developed fatigue crack growth laws for Alloy 600 material in BWR water environments and is given in ASME Section XI Section C-8411(a)

[8]. This correlation calculates the Co term that is used in the general crack growth equation in C-3210(a). The general form of that equation is:

da/dN = C0*( K1)n, units of inch/cycle where:

File No.: 1800389.301 Page 18 of 34 Revision: 0 F0306-01R2

e Attachment B EC 411734 Rev. 0 Page 19 of 69 Structural Integrity Associates, Inc.

C0 = scaling parameter that accounts for the effect of loading rate and environment on fatigue crack growth rate

= CT SR SENV (Defined in C-8411(a) [8]

n = slope of the log (da/dN) versus log ( K) curve = 4.1 K = stress intensity factor range, ksi in The coefficient C0 was calculated to be 2.080 x10-12.

To simplify the equation and for ease of use, some simplifications are made to certain constants. The rise time is used as a scalar factor to the crack growth scaling factor. The longer the rise time, the more conservative the fatigue crack growth. The transients used are conservative and very fast acting transients (step change) and as such would have a small rise time. For conservatism, the maximum rise time specified in the ASME Code is used, which is 30 seconds. The R ratio which is defined as Kmin/Kmax affects the constant factor. Since the transient is close to a fully reversing load, a R ratio of

-0.5 was used. This is conservative as the R ratio starts to approach values closer to -1.0. The metal temperature was taken at 550°F which is representative for the feedwater line (maximum temperature =

551°F [25]). The higher temperature gives a higher crack growth rate. The following parameters were used:

  • T = 550°F (metal temperature)
  • R = -0.5 (representative value)
  • TR = 30 seconds (maximum rise time specified in C-8411(a))

Similar to the fatigue crack growth law, the 2001 Edition of Section XI with Addenda through 2003 [7]

does not contain stress corrosion cracking correlations. The later Edition of Section XI [8] does contain stress corrosion cracking correlations for BWRs with both HWC and NWC. The evaluation uses the SCC growth law from C-8512(c) [8] and guidance from BWRVIP Letter 2012-074 [21]. The basis for the Alloy 600 crack growth rate is BWRVIP-59-A [3]. C-8512 defines the SCC growth law as a K dependent portion followed by a K independent portion for growth in the depth direction. The BWRVIP letter defines the crack growth in the length direction as a constant value of 5x10 -6 in/hr. Due to limitations in pc-CRACK, a single growth rate must be specified for both the length and depth directions. For this evaluation, the K independent constant value is used for both the surface and deepest point (see red line in Figure 8). This is conservative as it calculates a faster crack growth rate for the flaw in the depth direction when the K value aligns with the K dependent portion (see Figure 8). The growth rate used is:

SCC crack growth rate = 5.0 x10-6 (in/hr)

The FCG and SCC crack growth equations are used to grow the flaw using the specified loadings. The crack growth evaluation is performed with a variable aspect ratio, which uses the K values at the deepest File No.: 1800389.301 Page 19 of 34 Revision: 0 F0306-01R2

e Attachment B EC 411734 Rev. 0 Page 20 of 69 Structural Integrity Associates, Inc.

and surface points of the flaw, while allowing the flaw aspect ratio (depth, a, divided by length, l) to vary.

Figure C-8510-2 sec Curves for Alloy 600, 182, and 132 in BWR Environment

1. E-04 SCC Curve used in the analysis 7

~

/ ~

/ Normal water chemistry

1. E-05 /

~

~

~ ..r

/ /

~

Cl)

1. E-06 I /

Ill a:

-=

I i Hydrogen water chemistry e

C,

/

. I

.:a,::

u Ill u

1. E-07 j
1. E-08 0 5 10 15 20 25 30 35 40 / 45 Stress Intensity Factor, K1 (ksi--./irt.}

Figure 9: SCC Curves for Alloy 600 in BWR Environment [8]

4.4.3 Loading Combinations and Stresses SI-TIFFANY was used to obtain tables of maximum applied K (K max) and minimum applied K (Kmin) for various flaw depths and aspect ratios due to system transients. The K max values are contained in the filename with MXN file extension and the Kmin values are contained in the filename with MNN file extension.

The maximum and minimum K for crack growth cycles are the combined total of the Kmax and Kmin tables output from SI-TIFFANY, combined with deadweight, axial shrinkage, and weld residual stress added to both the max and min of the cycle. Seismic is added to K max as a plus value and added to Kmin as a minus value. Deadweight and normal operating thermal stresses (factored) are obtained from Reference [15]. Deadweight, axial shrinkage, and residual stress loads do not cycle but are present in both the maximum and minimum of the cycle. The fatigue crack growth also needs to include Service Level B seismic load. Therefore, the seismic load was considered to occur with the bounding transient.

File No.: 1800389.301 Page 20 of 34 Revision: 0 F0306-01R2

e Attachment B EC 411734 Rev. 0 Page 21 of 69 Structural Integrity Associates, Inc.

17 Seismic cycles are assumed per year. This is a conservative value for seismic cycles and exceeds the design basis value [14].

4.4.4 Allowable Flaw Size Determination After the fatigue crack growth is performed, the final flaw size has to be checked against the allowable flaw sizes in the ASME Code,Section XI, Appendix C [7]. pc-CRACK is used to determine the allowable flaw sizes. As stated earlier, the process with which the weld was manufactured is unknown.

Therefore, allowable flaw size is calculated using the most conservative method i.e., the use of elastic plastic fracture mechanics (EPFM). The EPFM rules and equations are contained in Article C-6000 of Section XI [7]. The allowable flaw size is determined using the equations of Appendix C.

Using the EPFM rules requires a Z-factor to account for the reduced toughness of the weld. The 2001 Edition of Section XI with addenda through 2003 does not contain a Z-factor for Alloy 600. Later editions of Section XI [8] do contain a Z-factor for Alloy 600 material. As the Z-factor is hard coded into pc-CRACK, the Z-factor for stainless steel is used as it is conservative when compared to the Z-factor for Alloy 600. The Z-factor for Alloy 600 is around 1.2 while the value for stainless steel would be greater than 1.3.

For austenitic weldments fabricated by SMAW, Z = 1.30[1 + 0.010(NPS - 4)] , Reference 8, C-6330 Where: NPS = Nominal pipe size Safety factors are provided in Appendix C of Section XI for evaluation of flaws in Alloy 600 piping.

The safety factors used for the weld overlay sizing shown below, are taken from C-2621 [8].

File No.: 1800389.301 Page 21 of 34 Revision: 0 F0306-01R2

e Attachment B EC 411734 Rev. 0 Page 22 of 69 Structural Integrity Associates, Inc.

Safety Factors for Sizing Circumferential Flaw [8, C-2621]

Service Membrane Stress Bending Stress Safety Level Safety Factor, SFm Factor, SFb A 2.7 2.3 B 2.4 2.0 C 1.8 1.6 D 1.3 1.4 Each service level is checked by using the pipe geometry, crack parameters, and stresses appropriate for the service level. For this calculation, the initial flaw size is used as input for the program. Based on the stress ratios, it gives the allowable flaw size tables (a/t (flaw depth/pipe thickness) and l/c (flaw length/pipe circumference) values). The pc-CRACK output files for the allowable flaw sizes are contained in Appendix C for the outboard weld location.

5.0 RESULTS The results of the allowable flaw size determination are contained in Tables 6 and 7, which contain the bounding limiting allowable flaw size from all Service Levels, for both combined stress and membrane stress. For the loadings, all Service Levels, A through D (see Appendix C), show that the allowable flaw depth is relatively large (75% of pipe wall thickness which is the maximum allowed by the ASME Code,Section XI).

For the crack growth evaluation, the flaw was grown with a variable aspect ratio. Table 5 contains the initial flaw size and the final flaw size considering a variable aspect ratio. The results show that using the conservative bounding flaw size, the conservative bounding loads, a conservative transient loading and a conservative crack growth rate, the flaw does not exceed the ASME Code,Section XI allowable flaw size for the next operating cycle of 2 years. The flaw is predicted to exceed the allowable flaw depth of 75% in approximately 9.3 years. Figures 13 and 14 show plots of stress intensity factors and crack growth (depth) per year with the allowable flaw size. All files used in the analysis are listed in Appendix B.

6.0 CONCLUSION

S The evaluation presented in this report has shown that for the flawed N4D nozzle weld 1B21N4D SW2-3 [13], the outboard location meets ASME Code,Section XI acceptance criteria for continued operation. Using the bounding loads assumption, the flaw still meetsSection XI acceptance criteria after approximately 9.3 years of additional flaw growth from the present day.

File No.: 1800389.301 Page 22 of 34 Revision: 0 F0306-01R2

e Attachment B EC 411734 Rev. 0 Page 23 of 69 Structural Integrity Associates, Inc.

7.0 REFERENCES

1. BWRVIP-219: BWR Vessel and Internals Project, Technical Basis for On-Line NobleChem Mitigation and Effectiveness Criteria for Inspection Relief. EPRI, Palo Alto, CA: 2009. 1019071.

PROPRIETARY.

2. BWRVIP-62 Revision 1: BWR Vessel and Internals Project. Technical Basis for Inspection Relief for BWR Internal Components with Hydrogen Injection. EPRI, Palo Alto, CA: 2011. 1022844.

PROPRIETARY.

3. BWRVIP-59-A: BWR Vessel and Internals Project, Evaluation of Crack Growth in BWR Nickel Base Austenitic Alloys in RPV Internals. EPRI, Palo Alto, CA: 2007. 1014874. PROPRIETARY.
4. R. Pathania and R. Carter, Nickel Alloy Crack Growth Correlations in BWR Environment and Application to Core Support Structure Welds Evaluation, Proceedings of PVP2008-61299 ASME Pressure Vessels and Piping Division Conference, July 27-31, 2008, Chicago, IL.
5. Sommerville, D., Qin, M. and Walter, M., Simplified Dissimilar Metal Weld Through-Wall Weld Residual Stress Models for Single V Groove Welds in Cylindrical Components, Proceedings of the ASME 2014 Pressure Vessel and Piping Conference PVP2014, PVP2014-28828.
6. ASME Boiler and Pressure Vessel Code,Section II, Part D, 2001 Edition with Addenda through 2003.
7. ASME Boiler and Pressure Vessel Code,Section XI, 2001 Edition, with Addenda through 2003.
8. ASME Boiler and Pressure Vessel Code,Section XI, 2013 Edition.
9. SI-TIFFANY 3.0, Structural Integrity Associates, September 15, 2015.
10. pc-CRACK 4.1 CS, Version Control No. 4.1.0.0, Structural Integrity Associates, December 31, 2013.
11. Brunswick 1 Nuclear Plant (B1R22) Indication Notification Report, Component: N4A Safe End to Pipe DM weld (1B21N4A-2-SW1-2) SI File No. 1800389.201.
12. Brunswick 1 Nuclear Plant (B1R22) Indication Notification Report, Component: N4D Safe End to Pipe DM weld (1B21N4D-5-SW1-2) SI File No. 1800389.201.
13. Brunswick 1 Nuclear Plant (B1R22) Indication Notification Report, Component: N4D Pipe to Safe End DM weld (1B21N4D-5-SW2-3) SI File No. 1800389.201.
14. GE Project Task Report No. GE-NE-A22-00113-14-01, Rev. 0, Class III, June 2001, Brunswick Nuclear Plant Unit 1 and 2 Extended Power Uprate, Task T0308: Reactor Coolant Pressure Boundary Piping, PROPRIETARY, SI File No. 1800389.201P.

File No.: 1800389.301 Page 23 of 34 Revision: 0 F0306-01R2

e Attachment B EC 411734 Rev. 0 Page 24 of 69 Structural Integrity Associates, Inc.

15. SI Calculation CPL-34Q-301, Revision 1, Weld Overlay Repair Design For BSEP Unit 1 FW Safe-end Welds.
16. Outline Safe End Reactor Vessel, GE drawing number 131C9063, SI File No: BSEP-03Q-219.
17. Email attachment from Jeremie Varnam (SI) to Christopher Lohse (SI), RE: Indication on N4a at Brunswick, dated 3/12/2018, N4 Weld Profile.pdf, SI File No. 1800389.201.
18. CP&L Calculation SA-B21-660, Rev 2. Reactor Feedwater Inlet Piping Loop A, Brunswick Steam Electric Plant Unit 1,10/31/1996, SI File No. 1800389.201.
19. GE Drawing No. 729E762, Reactor Thermal Cycles, SI File No: CPL-35Q-245.
20. GE Drawing No. 135B9990, Feedwater Nozzle Thermal Cycles, SI File No: CPL-35Q-245.
21. BWRVIP Letter 2012-074 from Chuck Wirtz and Randy Stark to All BWRVIP Committee Members, Superseded Needed Guidance Regarding Crack Growth Assumptions, dated March 22, 2012, SI File No. 1800389.201.
22. BWRVIP-190: BWR Vessel and Internals Project, BWR Water Chemistry Guidelines2008 Revision. EPRI, Palo Alto, CA: 2008. 1016579.
23. Email from William Keith (Duke) to Jim Axline (SI), March 15, 2018, 8:10 AM,

Subject:

Re:

Questions on piping loads, with attached file, SI File No. 1800389.201

a. SI Questions and Answers.docx.
24. SI Calculation 1200972.302, Revision 0, N-5 Feedwater Nozzle Weld Overlay Shrinkage Calculation.
25. GE Certified Design Specification 25A5062, Revision 2, "Reactor Vessel Power Uprate," SI File No. 1800389.201.
26. Framatome Thickness Report, Weld ID 1B21N4D-5-SW2-3, with Profile and Thickness Report, Dated 3/15/2018, SI File No. 1800389.201.

File No.: 1800389.301 Page 24 of 34 Revision: 0 F0306-01R2

e Attachment B EC 411734 Rev. 0 Page 25 of 69 Structural Integrity Associates, Inc.

Table 2: Piping Loads EPU Resultant EPU Resultant Nozzle Condition Force, lbs Moment, ft-lbs Upset 9,331 39,090 N4A Emergency 10,459 42,908 Upset 2,986 24,544 N4B Emergency 4,086 29,235 Upset 2,546 26,289 N4C Emergency 3,375 30,878 Upset 12,737 47,807 N4D Emergency 14,052 52,786 Notes:

1) The bounding piping loads are in bold and underlined.
2) Loads are from Reference [14, pages A-6 through A-9].
3) The DW stress is taken as 0.19 ksi [15] and normal operating thermal stress load is 3.8 ksi [15] used in the crack growth calculation. For the thermal transient analysis, the thermal piping expansion loads in [15] for force and moment are used to calculate the secondary thermal membrane and bending stress (0.035 ksi membrane, and 2.79 ksi bending) input to TIFFANY.
4) Loads shown in this table for Upset and Emergency conditions both include thermal loading. Therefore, not only is the thermal loading included as Pe, but also in Pb (bending), which is conservative.

File No.: 1800389.301 Page 25 of 34 Revision: 0 F0306-01R2

e Attachment B EC 411734 Rev. 0 Page 26 of 69 Structural Integrity Associates, Inc.

Table 3: Primary Stresses for Outboard Weld STRESS Calculation SW2 3 OUTBOARD Pipe OD 13.25 tnom 1.1 Pipe ID 11.05 Pressure 1550 Stress 5090.2 Pressure Axial Membrane Stress (P*(re/4)(Do^2))/(re /4)(Do^2 Di^2)

Pipe Metal Cross sectional area (re/4)(Do^2 Di^2) 41.987 in2 Pipe Section Modulus (re/(32*Do)*(Do^4 Di^4) 117.907 in3 Membrane Stress = FSRSS/Apipe Bending Stress = MomentSRSS/Section Modulus Primary Membrane Stress OUTBOARD Summary Force (SRSS) (lb) Stress (psi) Total Service Level A 12737.0 303.4 5393.5 Service Level B 12737.0 303.4 5393.5 Service Level C 14052.0 334.7 5424.9 Service Level D 14052.0 334.7 5424.9 Primary Bending Stress OUTBOARD Stress Summary Moment(SRSS)ft lb (psi)

Service Level A 47807.0 4865.6 Service Level B 47807.0 4865.6 Service Level C 52786.0 5372.3 Service Level D 52786.0 5372.3 File No.: 1800389.301 Page 26 of 34 Revision: 0 F0306-01R2

e Attachment B EC 411734 Rev. 0 Page 27 of 69 Structural Integrity Associates, Inc.

Table 4: Crack Growth Loadings Event Kmax Kmin Thermal Expansionmax, Thermal Expansionmin, Thermal Transientmax, Thermal Transientmin, Pressuremax, Pressuremin, Deadweight, Deadweight, Turbine Roll Transient Residual, Residual, Seismicmax Seismicmin Axial Shrinkage Axial Shrinkage Crack Face Pressure Crack Face Pressure Table 5: Initial and Final Flaw Sizes For Outboard Flaw Flaw Depth (in) Length (in) a/t(1) l/circ (1)(3)

SW2-3 OUTBOARD 0.306 4.37 0.278 0.126 (Initial)

OUTBOARD 0.822 6.74 0.747 (2) 0.194 (Final)

Notes: 1. a/t is the ratio of the flaw depth to the pipe wall thickness. l/c is the ratio of the flaw length to the inside pipe circumference.

2. The pc-CRACK results indicate that for all evaluated flaws, the allowable a/t ratio is 0.75, the maximum allowed by ASME Code,Section XI.
3. Circ calculated based on inside radius File No.: 1800389.301 Page 27 of 34 Revision: 0 F0306-01R2

e Attachment B EC 411734 Rev. 0 Page 28 of 69 Structural Integrity Associates, Inc.

Table 6: Allowable Flaw Sizes Combined Loading Allowable flaw depth (a/t)

Level A/B Level C/D l/Cir. SR=0.3066 SR=0.3391 0 0.7500 0.7500 0.1 0.7500 0.7500 0.2 0.7500 0.7500 0.3 0.7474 0.7500 0.4 0.6754 0.7266 0.5 0.5881 0.6609 0.6 0.5394 0.6049 0.75 0.5121 0.5588 SR= Stress Ratio, L/Cir. = 0.105 Table 7: Allowable Flaw Sizes Membrane Loading Allowable flaw depth (a/t)

Level A/B Level C/D l/Cir. SR=0.3749 SR=0.2514 0 0.7500 0.7500 0.1 0.7500 0.7500 0.2 0.7500 0.7500 0.3 0.7500 0.7500 0.4 0.7500 0.7500 0.5 0.7350 0.7500 0.6 0.6826 0.7500 0.75 0.6251 0.7243 SR= Stress Ratio, L/Cir. = 0.105 File No.: 1800389.301 Page 28 of 34 Revision: 0 F0306-01R2

e Attachment B EC 411734 Rev. 0 Page 29 of 69 Structural Integrity Associates, Inc.

J..,,<v

""*'"~

~

1021N'IA t *PJt.J~~'+S*.3 1e21 1'1'1(3*3* Fl.lN'I0*3S

  • 3 I

\

\

\)

I la211J'IA *2

  • 5Wl* 2. !INBOARD l

16211J'i8 3*5<.J1*2.

A B

,I 2 l\. 'IS

. F

/

SM£ [ NI)

'l Ir $AH [110 SIV'il

,ns"ot>

Figure 10. Drawing of the Feedwater Nozzle File No.: 1800389.301 Page 29 of 34 Revision: 0 F0306-01R2

e Attachment B EC 411734 Rev. 0 Page 30 of 69 Structural Integrity Associates, Inc.

  • ' 7---r--11=r----------'------,-.:.--i

' .J~.

  • -~ ~

~;,,r1-r-~-t -ti-rt-1-~~c_- ttt~+/-!;---t..:.:._~~1+----1LJ1t-+-l--+-+J--Ll---.:Ir*

r i

... I* l

! . _:~=fa.¥-"";?£~:..i+/-'l~TJ-

  • "--"'~ -*:i:'t?Effi~~~~~

" . .=. ..F;:...... ~"'<:::-*~,:.::::-:::;.:-:.

i "' **ir,.:s,":5:'.,;:..,;;.,=-'"-"""'="=

Le.:::~v::M***-:~:"\z......~-..,__*~

\,

.--=--** - ,_ . _- '--*-.... ._:cc! - * '--* ' *-.. ... _

'*- . .1 1, --_*-\_-=--J-:~-.J:1 I -;~* --;-__ ,_ *.

-. \i:-~*

Figure 11: Reactor Thermal Cycle Diagram for Evaluation [19]

File No.: 1800389.301 Page 30 of 34 Revision: 0 F0306-01R2

Attachment B EC 411734 Rev. 0 Page 31 of 69 I} Structural Integrity Associates, Inc.

SUiU Al@E lECTIIIC

+

+

+ ..11.llLL.

n

  • T#H/1' #~,,,,Y 'U , .r,,.,,s i DVNJ N~ "TNI'.$ , T'N~IJ Oll ,f.LI.$ ""It' L~~::,N,.c;,,;,.H_,~~~~,.,,I *

,.,,.4~ D 3'T#IH ,,f7 llf"#&l *K I

TM~ ~AT, ,. IN Tl/~N0 7l,l,.L, .,,11c,

.,1s ~,o,.1 1/

&. lt/llHJ 5M'~o ,cre .. , . CO~F ¥~A

  • D 71,.T.N illr *'"'Il l .1111 ,~cn,
  • Yl$~ 14 TN#~l <f.fL C'1:'&.&

~

.. l'LOW CCU~l 'LI *N,.>'l 'W#t:O

..,.,,u**r c,,.,,;~u..... CflN.O IT.IO" f r,~,,_,,,.,.rv~,a J,,l'//IY . , . , ,..

CllfVS ID SC,.. ,,.

6: ..,.,,.,, .,-, ' *

'$.1'111,.,N ,.., c-r-~ ,,

+ ""1.JC ere LI.I ~,.~, .r ,rr*.! '

~ n,,,.J ,..,,., r,,,-,r;4 4,.

~~

- * . .\

b,'.-~.

---t. *~.: --- ....

    • ~-....... -
~ -- _!; . J. .

Figure 12: Feedwater Thermal Transient Cycles for Evaluation [20]

Note: Bounding transient of Turbine Roll is selected from the above plot [20]

File No.: 1800389.301 Page 31 of 34 Revision: 0 F0306-01R2

e Attachment B EC 411734 Rev. 0 Page 32 of 69 Structural Integrity Associates, Inc.

100 80 60 40 20 c

~*.;; 0

~ ....

-20

-40

-60

--- -- ~--

-80

-100 j_ '

0 0.1 0 .2 0 .3 0.4 0.5 0 .6 0.7 0.8 0.9 Crack Dept h (in)

- - Pres, Deep Pres, Surf - - ow,oeep -

- - Therm, Deep Therm,Surf - - Resid 30% ID Repai r,Deep - - - - Resid, 30% ID Repair,Surf

- - Trans, Ma>i:, Deep - -

  • Trans, Max, Surf - - Trans, Min, Deep - - TransMin

- - OBE,Deep - - OBE,Surf Figure 13: Stress intensity Factors Plot for Outboard Location - Typical File No.: 1800389.301 Page 32 of 34 Revision: 0 F0306-01R2

e Attachment B EC 411734 Rev. 0 Page 33 of 69 Structural Integrity Associates, Inc.

0.9 0.8 0 .7 0.6 C

~...., 0.5 0..

(]J 0

"Drn 0 .4 u

0 .3

- lnsp CrkSize 0 .2 - 75% Thk

- Rsd 30% ID Repair+2 ksi, Const CG 0 .1 0

0 1 2 3 4 5 6 7 8 9 10 Year Figure 14: Crack Growth Results for OutBoard Location, Weld 1B21N4D-5-SW2-3 File No.: 1800389.301 Page 33 of 34 Revision: 0 F0306-01R2

e Attachment B EC 411734 Rev. 0 Page 34 of 69 Structural Integrity Associates, Inc.

O' Figure 15: Semi-Elliptic Flaw on Inside Surface of a Cylinder File No.: 1800389.301 Page 34 of 34 Revision: 0 F0306-01R2

Attachment B EC 411734 Rev. 0 Page 35 of 69 APPENDIX A NDE ISI EXAMINATION DATA (Selected pages)

File No.: 1800389.301 Page A-1 of A-2 Revision: 0 F0306-01R2

Attachment B EC 411734 Rev. 0 Page 36 of 69 PROG~~S Brunswick 1 Nuclear Plant (B1R22J Auto DM Piping Ultrasonic Examinations Indication Notification Report Revision Date: March 13, 2018 Time: 09:00 Component: N4D Pipe to Safe End OM Weld (1B21 N4D SW2-3)

Reference Position Notes:

1. TDC and centerline of weld
2. Clockwise airection progresses from o* towards 360" looking in!o lhe nozzle.

Purpose:

This liNR provides preliminary notification of a chan ge in the material cond ition of the referenced com ponent Desc ription of Co.n dition : One ( 1) ID connected circumfe rential flaw has been identified on the lnoonel 600 safe end side of the OM weld . This flaw has planer characteristics and is separate from any geometric conditions.


~ ------~ ------- ------*

Side of Initiating Ci11cu mfere ntia I l'n d.# Fl'a w L~ngt.h Depth N'otes Weld Surface Location 1 Safe End ID 6,02" I 10.39" 4 .3T' 0.306" File No.: 1800389.301 Page A-2 of A-2 Revision: 0 F0306-01R2

Attachment B EC 411734 Rev. 0 Page 37 of 69 APPENDIXB COMPUTER FILE LISTING File No.: 1800389.301 Page B-1 of B-3 Revision: 0 F0306-01R2

Attachment B EC 411734 Rev. 0 Page 38 of 69 SI-TIFFANY Files trans_OB.dat SI-TIFFANY input file trans_OB.rpt SI-TIFFANY output file, which echoes the inputs SI-TIFFANY output file with tabulated Kmin trans_OB.mnn values SI-TIFFANY output file with tabulated Kmax trans_OB.mxn values File No.: 1800389.301 Page B-2 of B-3 Revision: 0 F0306-01R2

Attachment B EC 411734 Rev. 0 Page 39 of 69 pc-CRACK Files pc-CRACK input file for Service Level A/B EPFM OBSizingLvlA.pcf evaluation for Outboard weld pc-CRACK input file for Service Level C/D EPFM OBSizingLvlC.pcf evaluation for Outboard weld pc-CRACK output file for Service Level A/B EPFM OBSizingLvlA.rpt evaluation for Outboard weld pc-CRACK output file for Service Level C/D EPFM OBSizingLvlC.rpt evaluation for Outboard weld pc-CRACK input file for fatigue crack growth for variable CGRRsd30Cnst.pcf aspect ratio pc-CRACK output file for fatigue crack growth for variable CGRRsd30Cnst.rpt aspect ratio pc-CRACK file including K vs A for fatigue crack growth CGRRsd30Cnst.kva with variable aspect ratio pc-CRACK file including crack depth vs time for fatigue CGRRsd30Cnst.avn crack growth with variable aspect ratio File No.: 1800389.301 Page B-3 of B-3 Revision: 0 F0306-01R2

Attachment B EC 411734 Rev. 0 Page 40 of 69 APPENDIXC PC-CRACK OUTPUT FILES File No.: 1800389.301 Page C-1 of C-24 Revision: 0 F0306-01R2

Attachment B EC 411734 Rev. 0 Page 41 of 69 Allowable Flaw Size for Outboard Location Service Level A/B OBSizingLvlA.rpt pc-CRACK 4.1 CS Version Control No. 4.1.0.0 Structural Integrity Associates, Inc.

www.structint.com pccrack@structint.com Date: 03/23/2018 13:53 Input Data read from D:\Brunswick 1800389\OutBoard Weld\OBAlwSzLvA.pcf Analysis

Title:

Brunswich, N4D nozzle, OutBoard Units Selected: US Customary Linear Dimensions - inches Stress - ksi Load - kips Temperature - deg F Time - hours Jic - in-lbs/in^2 Analysis Type: ASME Section XI IWB-3640 (2004)

Crack Geometry Orientation: Circumferential Crack Depth = 0.3060 Crack Length = 4.3700 Pipe Geometry Nominal Pipe Size = 13.0000 Outer Diameter = 13.2500 Wall Thickness = 1.1000 Service Level: A The allowable flaw size is determined using Tables Stresses Pm = 5.3940 (safety factor = 2.7000)

Pb = 4.8660 (safety factor = 2.3000)

Pe = 3.8000 K (Residual Stress) = 0.0000 Material: Stainless Steel File No.: 1800389.301 Page C-2 of C-24 Revision: 0 F0306-01R2

Attachment B EC 411734 Rev. 0 Page 42 of 69 Flux weld Flow Stress = 55.0500 Number of Warnings in Inputs: 0 Analysis Results Failure Mode per Screening Criteria:EPFM (Class 1 screening rules used)

Table C-5310-1 used Stress Ratio = 0.3066 Z factor = 1.4170 l/circumference = 0.1050 allowable a/t = 0.7500 (Combined Loading) l/Circumference Allowable a/t 0.0000 0.7500 0.1000 0.7500 0.2000 0.7500 0.3000 0.7474 0.4000 0.6754 0.5000 0.5881 0.6000 0.5394 0.7500 0.5121 Table C-5310-5 used Stress Ratio = 0.3749 Z factor = 1.4170 l/circumference = 0.1050 allowable a/t = 0.7500 (Membrane Loading) l/Circumference Allowable a/t 0.0000 0.7500 0.1000 0.7500 0.2000 0.7500 0.3000 0.7500 0.4000 0.7500 0.5000 0.7350 0.6000 0.6826 0.7500 0.6251 Note: Allowable crack size is calculated based on the failure mode indicated by the screening criteria which is based on the input crack size Number of Runtime Warnings: 0

      • End of pc-CRACK output ***

File No.: 1800389.301 Page C-3 of C-24 Revision: 0 F0306-01R2

Attachment B EC 411734 Rev. 0 Page 43 of 69 Allowable Flaw Size for Outboard Location Service Level C/D OBSizingLvlC.rpt pc-CRACK 4.1 CS Version Control No. 4.1.0.0 Structural Integrity Associates, Inc.

www.structint.com pccrack@structint.com Date: 03/23/2018 13:54 Input Data read from D:\Brunswick 1800389\OutBoard Weld\OBAlwSzLvC.pcf Analysis

Title:

Brunswich, N4D nozzle, OutBoard Units Selected: US Customary Linear Dimensions - inches Stress - ksi Load - kips Temperature - deg F Time - hours Jic - in-lbs/in^2 Analysis Type: ASME Section XI IWB-3640 (2004)

Crack Geometry Orientation: Circumferential Crack Depth = 0.3060 Crack Length = 4.3700 Pipe Geometry Nominal Pipe Size = 13.0000 Outer Diameter = 13.2500 Wall Thickness = 1.1000 Service Level: C The allowable flaw size is determined using Tables Stresses Pm = 5.4250 (safety factor = 1.8000)

Pb = 5.3720 (safety factor = 1.6000)

Pe = 3.8000 K (Residual Stress) = 0.0000 Material: Stainless Steel File No.: 1800389.301 Page C-4 of C-24 Revision: 0 F0306-01R2

Attachment B EC 411734 Rev. 0 Page 44 of 69 Flux weld Flow Stress = 55.0500 Number of Warnings in Inputs: 0 Analysis Results Failure Mode per Screening Criteria:EPFM (Class 1 screening rules used)

Table C-5310-3 used Stress Ratio = 0.3391 Z factor = 1.4170 l/circumference = 0.1050 allowable a/t = 0.7500 (Combined Loading) l/Circumference Allowable a/t 0.0000 0.7500 0.1000 0.7500 0.2000 0.7500 0.3000 0.7500 0.4000 0.7266 0.5000 0.6609 0.6000 0.6049 0.7500 0.5588 Table C-5310-5 used Stress Ratio = 0.2514 Z factor = 1.4170 l/circumference = 0.1050 allowable a/t = 0.7500 (Membrane Loading) l/Circumference Allowable a/t 0.0000 0.7500 0.1000 0.7500 0.2000 0.7500 0.3000 0.7500 0.4000 0.7500 0.5000 0.7500 0.6000 0.7500 0.7500 0.7243 Note: Allowable crack size is calculated based on the failure mode indicated by the screening criteria which is based on the input crack size Number of Runtime Warnings: 0

      • End of pc-CRACK output ***

File No.: 1800389.301 Page C-5 of C-24 Revision: 0 F0306-01R2

Attachment B EC 411734 Rev. 0 Page 45 of 69 Crack Growth for Outboard Location CGRRsd30Cnst.rpt pc-CRACK 4.1 CS Version Control No. 4.1.0.0 Structural Integrity Associates, Inc.

www.structint.com pccrack@structint.com Date: 03/23/2018 09:59 Input Data read from D:\Brunswick 1800389\OutBoard Weld\CGRRsd30Cnst.pcf Analysis

Title:

Brunswick, Feedwater Nozzle, N4D, OutBoard Units Selected: US Customary Linear Dimensions - inches Stress - ksi Load - kips Temperature - deg F Time - hours Analysis Type: Crack Growth (LEFM)

Crack Growth Calculation Method - Cycle/Time Stepping Maxinum Number of Load Blocks = 100 Block Print Interval = 1 Crack Model: 306-Semi-Elliptical Circumferential Crack in Cylinder on the Inside Surface (API 579)

Crack Depth, a = 0.3060 Half Crack Length, c = 2.1850 Wall Thickness, t = 1.1000 Inside Radius, Ri = 5.5250 Aspect ratio allowed to vary Maximum a/t = 0.75 Crack Depth Print Increment for SIF Tabulation = 0.05 Maximum Aspect Ratio (c/a) for SIF Tabulation = 8 Aspect Ratio Increment for SIF Tabulation = 1 Total Load Cases: 8 Load Case 1:Pressure Type: Stress Coefficients Input by User File No.: 1800389.301 Page C-6 of C-24 Revision: 0 F0306-01R2

Attachment B EC 411734 Rev. 0 Page 46 of 69 Coefficient C0 = 5.0900 Coefficient C1 = 0.0000 Coefficient C2 = 0.0000 Coefficient C3 = 0.0000 Load Case 2:DW Type: Stress Coefficients Input by User Coefficient C0 = 0.1900 Coefficient C1 = 0.0000 Coefficient C2 = 0.0000 Coefficient C3 = 0.0000 Load Case 3:Thermal Type: Stress Coefficients Input by User Coefficient C0 = 3.8000 Coefficient C1 = 0.0000 Coefficient C2 = 0.0000 Coefficient C3 = 0.0000 Load Case 4:Residual 30%

The stresses originally read from D:\Brunswick 1800389\OutBoard Weld\OBRsd30.dat Type: Stress Table X Stress 0.0000 10.5000 0.0110 13.2200 0.0220 16.0800 0.0330 19.0700 0.0440 22.1400 0.0550 25.2700 0.0660 28.4200 0.0770 31.5500 0.0880 34.6100 0.0990 37.5600 0.1100 40.3600 0.1210 42.9700 0.1320 45.3400 0.1430 47.4500 0.1540 49.2600 0.1650 50.7400 0.1760 51.8800 0.1870 52.6400 0.1980 53.0300 0.2090 53.0400 File No.: 1800389.301 Page C-7 of C-24 Revision: 0 F0306-01R2

Attachment B EC 411734 Rev. 0 Page 47 of 69 0.2200 52.6600 0.2310 51.9200 0.2420 50.8100 0.2530 49.3700 0.2640 47.6000 0.2750 45.5400 0.2860 43.2200 0.2970 40.6800 0.3080 37.9400 0.3190 35.0400 0.3300 32.0100 0.3410 28.9000 0.3520 25.7400 0.3630 22.5400 0.3740 19.3600 0.3850 16.2000 0.3960 13.1000 0.4070 10.0600 0.4180 7.1200 0.4290 4.2700 0.4400 1.5400 0.4510 -1.0800 0.4620 -3.5800 0.4730 -5.9500 0.4840 -8.2100 0.4950 -10.3400 0.5060 -12.3500 0.5170 -14.2400 0.5280 -16.0200 0.5390 -17.6900 0.5500 -19.2400 0.5610 -20.6800 0.5720 -22.0100 0.5830 -23.2200 0.5940 -24.3200 0.6050 -25.2900 0.6160 -26.1400 0.6270 -26.8600 0.6380 -27.4500 0.6490 -27.9000 0.6600 -28.2100 0.6710 -28.3700 0.6820 -28.4000 0.6930 -28.2800 0.7040 -28.0200 0.7150 -27.6300 0.7260 -27.1100 0.7370 -26.4800 File No.: 1800389.301 Page C-8 of C-24 Revision: 0 F0306-01R2

Attachment B EC 411734 Rev. 0 Page 48 of 69 0.7480 -25.7400 0.7590 -24.9000 0.7700 -23.9900 0.7810 -23.0100 0.7920 -21.9900 0.8030 -20.9400 0.8140 -19.8800 0.8250 -18.8200 0.8360 -17.7800 0.8470 -16.7700 0.8580 -15.8000 0.8690 -14.8800 0.8800 -14.0200 0.8910 -13.2000 0.9020 -12.4400 0.9130 -11.7200 0.9240 -11.0400 0.9350 -10.3700 0.9460 -9.7100 0.9570 -9.0300 0.9680 -8.3100 0.9790 -7.5300 0.9900 -6.6700 1.0010 -5.7000 1.0120 -4.6000 1.0230 -3.3600 1.0340 -1.9500 1.0450 -0.3600 1.0560 1.4200 1.0670 3.4000 1.0780 5.5800 1.0890 7.9500 1.1000 10.5000 Load Case 5:Crack Face Pres Type: Stress Coefficients Input by User Coefficient C0 = 1.5500 Coefficient C1 = 0.0000 Coefficient C2 = 0.0000 Coefficient C3 = 0.0000 Load Case 6:Trans, Max 2-d SIF Input by User The SIF originally read from D:\Brunswick 1800389\OutBoard Weld\trans_ob.mxn File No.: 1800389.301 Page C-9 of C-24 Revision: 0 F0306-01R2

Attachment B EC 411734 Rev. 0 Page 49 of 69 No. of aspect ratios (a/c) in the tables = 6 a/c = 0.1250 Crack Depth Kdeepest Ksurface 0.0110 28.8060 10.8080 0.1100 71.5500 32.5180 0.2200 79.7220 43.0800 0.3300 82.5890 51.7000 0.4400 80.1840 58.3970 0.5500 75.9010 64.8210 0.6600 68.7750 70.3480 0.7700 56.2090 78.6980 0.8690 41.2160 85.7810 0.8800 39.3700 86.5420 a/c = 0.1500 Crack Depth Kdeepest Ksurface 0.0110 28.4940 11.8200 0.1100 70.5570 35.4690 0.2200 78.3710 46.9210 0.3300 80.4610 56.4420 0.4400 77.2070 63.9330 0.5500 72.1250 70.8370 0.6600 64.3710 76.6850 0.7700 51.9590 85.1090 0.8690 37.6040 92.1220 0.8800 35.8570 92.8680 a/c = 0.2000 Crack Depth Kdeepest Ksurface 0.0110 27.8200 13.7650 0.1100 68.4560 41.1400 0.2200 75.5530 54.3020 0.3300 76.1260 65.5640 0.4400 71.2350 74.5890 0.5500 64.6120 82.4250 0.6600 55.6580 88.8980 0.7700 43.5690 97.4620 0.8690 30.4920 104.3300 0.8800 28.9400 105.0400 a/c = 0.2500 Crack Depth Kdeepest Ksurface 0.0110 27.0950 15.5990 0.1100 66.2480 46.4890 File No.: 1800389.301 Page C-10 of C-24 Revision: 0 F0306-01R2

Attachment B EC 411734 Rev. 0 Page 50 of 69 0.2200 72.6370 61.2650 0.3300 71.7540 74.1760 0.4400 65.3120 84.6580 0.5500 57.2320 93.3810 0.6600 47.1560 100.4500 0.7700 35.4030 109.1400 0.8690 23.5820 115.8500 0.8800 22.2230 116.5400 a/c = 0.5000 Crack Depth Kdeepest Ksurface 0.0110 23.5060 19.6780 0.1100 56.4780 58.4160 0.2200 60.4710 77.0020 0.3300 56.9040 91.0740 0.4400 48.6950 101.7300 0.5500 38.6710 111.3300 0.6600 27.3580 118.9400 0.7700 14.3570 124.6100 0.8690 11.0770 128.5900 0.8800 12.0880 128.9700 a/c = 1.0000 Crack Depth Kdeepest Ksurface 0.0110 17.4810 20.6920 0.1100 40.4820 60.7220 0.2200 41.3320 78.9900 0.3300 37.8740 92.8730 0.4400 31.3770 103.4000 0.5500 20.9260 111.6300 0.6600 9.4642 118.3600 0.7700 14.1210 122.9100 0.8690 22.4600 125.9600 0.8800 23.5480 126.2500 Load Case 7:Trans, Min 2-d SIF Input by User The SIF originally read from D:\Brunswick 1800389\OutBoard Weld\trans_ob.mnn No. of aspect ratios (a/c) in the tables = 6 a/c = 0.1250 Crack Depth Kdeepest Ksurface 0.0110 -30.5730 -11.5190 File No.: 1800389.301 Page C-11 of C-24 Revision: 0 F0306-01R2

Attachment B EC 411734 Rev. 0 Page 51 of 69 0.1100 -74.7110 -34.4310 0.2200 -82.5290 -45.2880 0.3300 -84.5100 -54.0880 0.4400 -80.5270 -60.8450 0.5500 -73.9730 -67.3570 0.6600 -63.9000 -72.9330 0.7700 -47.0460 -81.5370 0.8690 -27.3500 -88.8210 0.8800 -24.9380 -89.6030 a/c = 0.1500 Crack Depth Kdeepest Ksurface 0.0110 -30.2420 -12.5960 0.1100 -73.6730 -37.5340 0.2200 -81.1300 -49.2880 0.3300 -82.3310 -58.9960 0.4400 -77.5070 -66.5430 0.5500 -70.1710 -73.4800 0.6600 -59.5090 -79.3040 0.7700 -42.9890 -87.8610 0.8690 -24.1850 -94.9510 0.8800 -21.9050 -95.7030 a/c = 0.2000 Crack Depth Kdeepest Ksurface 0.0110 -29.5250 -14.6660 0.1100 -71.4770 -43.4960 0.2200 -78.2110 -56.9810 0.3300 -77.8940 -68.4420 0.4400 -71.4520 -77.5190 0.5500 -62.6180 -85.2900 0.6600 -50.8440 -91.6080 0.7700 -35.0040 -100.0700 0.8690 -17.9770 -106.7800 0.8800 -15.9590 -107.4700 a/c = 0.2500 Crack Depth Kdeepest Ksurface 0.0110 -28.7540 -16.6190 0.1100 -69.1710 -49.1210 0.2200 -75.1900 -64.2420 0.3300 -73.4200 -77.3650 0.4400 -65.4530 -87.8960 0.5500 -55.2150 -96.4660 0.6600 -42.4150 -103.2600 File No.: 1800389.301 Page C-12 of C-24 Revision: 0 F0306-01R2

Attachment B EC 411734 Rev. 0 Page 52 of 69 0.7700 -27.2590 -111.6400 0.8690 -11.9770 -117.9700 0.8800 -10.2150 -118.6000 a/c = 0.5000 Crack Depth Kdeepest Ksurface 0.0110 -24.9420 -20.9580 0.1100 -58.9610 -61.6280 0.2200 -62.5970 -80.5990 0.3300 -58.1980 -94.7900 0.4400 -48.6240 -105.3600 0.5500 -36.6940 -114.6500 0.6600 -23.0280 -121.7900 0.7700 -7.2283 -126.8700 0.8690 -0.2793 -130.2200 0.8800 -0.7112 -130.5200 a/c = 1.0000 Crack Depth Kdeepest Ksurface 0.0110 -18.5420 -22.0360 0.1100 -42.2580 -64.0190 0.2200 -42.8110 -82.5960 0.3300 -38.7110 -96.5700 0.4400 -31.1340 -107.0100 0.5500 -19.1390 -114.9700 0.6600 -5.7736 -121.3500 0.7700 -6.0090 -125.3900 0.8690 -13.2270 -127.9200 0.8800 -14.1960 -128.1500 Load Case 8:OBE Type: Stress Coefficients Input by User Coefficient C0 = 5.1690 Coefficient C1 = 0.0000 Coefficient C2 = 0.0000 Coefficient C3 = 0.0000 Total Load Sub-Blocks: 3 Load Sub-Block # 1 Load Sub-block Name: HWC Maximum Load Case Multiplier Load Case ID File No.: 1800389.301 Page C-13 of C-24 Revision: 0 F0306-01R2

Attachment B EC 411734 Rev. 0 Page 53 of 69 1.0000 Residual 30%

1.0000 Pressure 1.0000 Thermal 1.0000 Crack Face Pres 1.0000 DW Growth Law: SCC Cycles/Time: 8760 Calc. Interval: 10 Print Interval: 1000 Load Sub-Block # 2 Load Sub-block Name: Thermal Transient Maximum Load Case Multiplier Load Case ID 1.0000 Residual 30%

1.0000 Crack Face Pres 1.0000 Trans, Max 1.0000 DW Minimum Load Case Multiplier Load Case ID 1.0000 Residual 30%

1.0000 Trans, Min 1.0000 DW Growth Law: Paris Cycles/Time: 17 Calc. Interval: 1 Print Interval: 17 Load Sub-Block # 3 Load Sub-block Name: OBE Maximum Load Case Multiplier Load Case ID 1.0000 Pressure 1.0000 DW 1.0000 Crack Face Pres 1.0000 OBE 1.0000 Thermal Minimum Load Case Multiplier Load Case ID 1.0000 Pressure 1.0000 DW 1.0000 Crack Face Pres

-1.0000 OBE 1.0000 Thermal Growth Law: Paris Cycles/Time: 17 File No.: 1800389.301 Page C-14 of C-24 Revision: 0 F0306-01R2

Attachment B EC 411734 Rev. 0 Page 54 of 69 Calc. Interval: 1 Print Interval: 17 Material: 13 Alloy 600,: HWC constant Crack Growth Stress Corrosion Crack Growth Equation C = 5.000E-06 n = 1.000E-04 K Threshold = 0.0000 Stress Corrosion Cracking (SCC) Crack Growth Law The Crack Growth Rate in/h (or m/h) is given by:

da/dt = C * (Kmax)^n where C,n = empirical constants da/dt = 0 for Kmax < K Threshold No. of Data in the KIC Table = 1 Crack Depth KIC 0.0000 500.0000 Paris Fatigue Crack Growth Equation C = 2.080E-12 n= 4.1000 Delta K Threshold = 0.0000 Paris Crack Growth Law The Fatigue Crack Growth Rate in/cycle (or m/cycle) is given by:

da/dN = C * (Delta K)^n where Delta K = Kmax - Kmin C,n = empirical constants File No.: 1800389.301 Page C-15 of C-24 Revision: 0 F0306-01R2

Attachment B EC 411734 Rev. 0 Page 55 of 69 da/dN = 0 for Delta K < Delta K Threshold messages/Warnings:

Number of Warnings in Inputs: 0

- - - - - - - - - - ANALYSIS RESULTS - - - - - - - - -

STRESS INTENSITY FACTORS Load Case # 1: Pressure


Crack Dimensions ------------ K at tips a c a/t c/a a c c/a = 7.1405 0.3060 2.1850 0.2782 7.1405 5.8700 2.1268 0.3560 2.5420 0.3236 7.1405 6.5289 2.3353 0.4060 2.8991 0.3691 7.1405 7.1832 2.5381 0.4560 3.2561 0.4145 7.1405 7.8573 2.7429 0.5060 3.6131 0.4600 7.1405 8.5819 2.9595 0.5560 3.9701 0.5055 7.1405 9.3157 3.1757 0.6060 4.3272 0.5509 7.1405 10.0593 3.3921 0.6560 4.6842 0.5964 7.1405 10.8133 3.6091 0.7060 5.0412 0.6418 7.1405 11.7809 3.8982 0.7560 5.3982 0.6873 7.1405 12.7919 4.1999 0.8060 5.7553 0.7327 7.1405 13.8285 4.5079 Load Case # 2: DW


Crack Dimensions ------------ K at tips a c a/t c/a a c c/a = 7.1405 0.3060 2.1850 0.2782 7.1405 0.2191 0.0794 0.3560 2.5420 0.3236 7.1405 0.2437 0.0872 0.4060 2.8991 0.3691 7.1405 0.2681 0.0947 0.4560 3.2561 0.4145 7.1405 0.2933 0.1024 0.5060 3.6131 0.4600 7.1405 0.3203 0.1105 0.5560 3.9701 0.5055 7.1405 0.3477 0.1185 0.6060 4.3272 0.5509 7.1405 0.3755 0.1266 0.6560 4.6842 0.5964 7.1405 0.4036 0.1347 File No.: 1800389.301 Page C-16 of C-24 Revision: 0 F0306-01R2

Attachment B EC 411734 Rev. 0 Page 56 of 69 0.7060 5.0412 0.6418 7.1405 0.4398 0.1455 0.7560 5.3982 0.6873 7.1405 0.4775 0.1568 0.8060 5.7553 0.7327 7.1405 0.5162 0.1683 Load Case # 3: Thermal


Crack Dimensions ------------ K at tips a c a/t c/a a c c/a = 7.1405 0.3060 2.1850 0.2782 7.1405 4.3823 1.5878 0.3560 2.5420 0.3236 7.1405 4.8742 1.7435 0.4060 2.8991 0.3691 7.1405 5.3627 1.8948 0.4560 3.2561 0.4145 7.1405 5.8660 2.0478 0.5060 3.6131 0.4600 7.1405 6.4069 2.2094 0.5560 3.9701 0.5055 7.1405 6.9547 2.3709 0.6060 4.3272 0.5509 7.1405 7.5099 2.5324 0.6560 4.6842 0.5964 7.1405 8.0728 2.6944 0.7060 5.0412 0.6418 7.1405 8.7952 2.9103 0.7560 5.3982 0.6873 7.1405 9.5499 3.1355 0.8060 5.7553 0.7327 7.1405 10.3239 3.3654 Load Case # 4: Residual 30%


Crack Dimensions ------------ K at tips a c a/t c/a a c c/a = 7.1405 0.3060 2.1850 0.2782 7.1405 46.5841 8.2781 0.3560 2.5420 0.3236 7.1405 47.7430 9.6479 0.4060 2.8991 0.3691 7.1405 46.4439 10.9793 0.4560 3.2561 0.4145 7.1405 43.6212 12.2837 0.5060 3.6131 0.4600 7.1405 40.1035 13.6001 0.5560 3.9701 0.5055 7.1405 36.0595 14.8479 0.6060 4.3272 0.5509 7.1405 31.8347 16.0209 0.6560 4.6842 0.5964 7.1405 27.8035 17.1165 0.7060 5.0412 0.6418 7.1405 23.7925 18.6088 0.7560 5.3982 0.6873 7.1405 20.3034 20.1257 0.8060 5.7553 0.7327 7.1405 17.6577 21.6242 Load Case # 5: Crack Face Pres


Crack Dimensions ------------ K at tips a c a/t c/a a c c/a = 7.1405 0.3060 2.1850 0.2782 7.1405 1.7875 0.6477 0.3560 2.5420 0.3236 7.1405 1.9882 0.7111 File No.: 1800389.301 Page C-17 of C-24 Revision: 0 F0306-01R2

Attachment B EC 411734 Rev. 0 Page 57 of 69 0.4060 2.8991 0.3691 7.1405 2.1874 0.7729 0.4560 3.2561 0.4145 7.1405 2.3927 0.8353 0.5060 3.6131 0.4600 7.1405 2.6134 0.9012 0.5560 3.9701 0.5055 7.1405 2.8368 0.9671 0.6060 4.3272 0.5509 7.1405 3.0632 1.0330 0.6560 4.6842 0.5964 7.1405 3.2929 1.0990 0.7060 5.0412 0.6418 7.1405 3.5875 1.1871 0.7560 5.3982 0.6873 7.1405 3.8954 1.2789 0.8060 5.7553 0.7327 7.1405 4.2111 1.3727 Load Case # 6: Trans, Max


Crack Dimensions ------------ K at tips a c a/t c/a a c c/a = 7.1405 0.3060 2.1850 0.2782 7.1405 80.7848 52.5548 0.3560 2.5420 0.3236 7.1405 80.6191 56.2498 0.4060 2.8991 0.3691 7.1405 79.2936 59.5111 0.4560 3.2561 0.4145 7.1405 77.6994 62.7052 0.5060 3.6131 0.4600 7.1405 75.5340 65.7565 0.5560 3.9701 0.5055 7.1405 73.2192 68.7536 0.6060 4.3272 0.5509 7.1405 69.8083 71.3537 0.6560 4.6842 0.5964 7.1405 66.3974 73.9538 0.7060 5.0412 0.6418 7.1405 60.9084 77.6722 0.7560 5.3982 0.6873 7.1405 55.2387 81.4879 0.8060 5.7553 0.7327 7.1405 48.3388 85.1167 Load Case # 7: Trans, Min


Crack Dimensions ------------ K at tips a c a/t c/a a c c/a = 7.1405 0.3060 2.1850 0.2782 7.1405 -82.8688 -55.0026 0.3560 2.5420 0.3236 7.1405 -82.1375 -58.7513 0.4060 2.8991 0.3691 7.1405 -80.0970 -62.0387 0.4560 3.2561 0.4145 7.1405 -77.6877 -65.2586 0.5060 3.6131 0.4600 7.1405 -74.4947 -68.3349 0.5560 3.9701 0.5055 7.1405 -71.1161 -71.3543 0.6060 4.3272 0.5509 7.1405 -66.3763 -73.9567 0.6560 4.6842 0.5964 7.1405 -61.6365 -76.5591 0.7060 5.0412 0.6418 7.1405 -54.2934 -80.3535 0.7560 5.3982 0.6873 7.1405 -46.7238 -84.2515 0.8060 5.7553 0.7327 7.1405 -37.6374 -87.9492 Load Case # 8: OBE File No.: 1800389.301 Page C-18 of C-24 Revision: 0 F0306-01R2

Attachment B EC 411734 Rev. 0 Page 58 of 69


Crack Dimensions ------------ K at tips a c a/t c/a a c c/a = 7.1405 0.3060 2.1850 0.2782 7.1405 5.9611 2.1598 0.3560 2.5420 0.3236 7.1405 6.6303 2.3716 0.4060 2.8991 0.3691 7.1405 7.2947 2.5775 0.4560 3.2561 0.4145 7.1405 7.9793 2.7855 0.5060 3.6131 0.4600 7.1405 8.7151 3.0054 0.5560 3.9701 0.5055 7.1405 9.4602 3.2250 0.6060 4.3272 0.5509 7.1405 10.2154 3.4448 0.6560 4.6842 0.5964 7.1405 10.9812 3.6651 0.7060 5.0412 0.6418 7.1405 11.9638 3.9587 0.7560 5.3982 0.6873 7.1405 12.9904 4.2650 0.8060 5.7553 0.7327 7.1405 14.0432 4.5778 CRACK GROWTH ANALYSIS RESULTS Total Subblock Cycles Cycles DaDn

/Time /Time Kmax Kmin DeltaK /DaDt Crack Dimensions a a/t c c/a Blocks: 1 1000.0000 1000.0000 59.1471 5.002E-06 0.3110 0.2827 13.0136 5.001E-06 2.1900 7.0418 2000.0000 2000.0000 59.4196 5.002E-06 0.3160 0.2873 13.3131 5.001E-06 2.1950 6.9461 3000.0000 3000.0000 59.6602 5.002E-06 0.3210 0.2918 13.6153 5.001E-06 2.2000 6.8535 4000.0000 4000.0000 59.8665 5.002E-06 0.3260 0.2964 13.9201 5.001E-06 2.2050 6.7637 5000.0000 5000.0000 60.0417 5.002E-06 0.3310 0.3009 14.2276 5.001E-06 2.2100 6.6766 6000.0000 6000.0000 60.1844 5.002E-06 0.3360 0.3055 14.5376 5.001E-06 2.2150 6.5920 7000.0000 7000.0000 60.2969 5.002E-06 0.3410 0.3100 14.8501 5.001E-06 2.2200 6.5100 8000.0000 8000.0000 60.3789 5.002E-06 0.3460 0.3146 15.1650 5.001E-06 2.2250 6.4304 8760.0000 8760.0000 60.4215 5.002E-06 0.3498 0.3180 15.4060 5.001E-06 2.2288 6.3713 8777.0000 17.0000 124.7788 -31.4499 156.2287 2.053E-03 0.3874 0.3522 77.5608 -55.0665 132.6272 1.049E-03 2.2439 5.7917 8794.0000 17.0000 20.9419 7.2387 13.7033 9.529E-08 0.3874 0.3522 8.6076 2.9753 5.6324 2.488E-09 2.2439 5.7917 File No.: 1800389.301 Page C-19 of C-24 Revision: 0 F0306-01R2

Attachment B EC 411734 Rev. 0 Page 59 of 69 Blocks: 2 9794.0000 1000.0000 59.7249 5.002E-06 0.3924 0.3568 18.3190 5.001E-06 2.2489 5.7306 1.079E+04 2000.0000 59.5353 5.002E-06 0.3974 0.3613 18.6585 5.001E-06 2.2539 5.6711 1.179E+04 3000.0000 59.3244 5.002E-06 0.4024 0.3659 18.9999 5.001E-06 2.2589 5.6130 1.279E+04 4000.0000 59.0916 5.002E-06 0.4074 0.3704 19.3431 5.001E-06 2.2639 5.5564 1.379E+04 5000.0000 58.8400 5.002E-06 0.4124 0.3750 19.6881 5.001E-06 2.2689 5.5011 1.479E+04 6000.0000 58.5686 5.002E-06 0.4174 0.3795 20.0349 5.001E-06 2.2739 5.4472 1.579E+04 7000.0000 58.2791 5.002E-06 0.4225 0.3840 20.3833 5.002E-06 2.2789 5.3945 1.679E+04 8000.0000 57.9716 5.002E-06 0.4275 0.3886 20.7334 5.002E-06 2.2839 5.3431 1.755E+04 8760.0000 57.7261 5.002E-06 0.4313 0.3920 21.0006 5.002E-06 2.2877 5.3048 1.757E+04 17.0000 113.6867 -29.7219 143.4086 1.446E-03 0.4577 0.4161 92.0876 -62.0434 154.1311 1.943E-03 2.3178 5.0639 1.759E+04 17.0000 23.1144 7.9896 15.1248 1.428E-07 0.4577 0.4161 10.4431 3.6097 6.8334 5.496E-09 2.3178 5.0638 Blocks: 3 1.859E+04 1000.0000 55.5716 5.002E-06 0.4627 0.4206 23.3260 5.002E-06 2.3228 5.0199 1.959E+04 2000.0000 55.1891 5.002E-06 0.4677 0.4252 23.7123 5.002E-06 2.3278 4.9769 2.059E+04 3000.0000 54.7939 5.002E-06 0.4727 0.4297 24.1003 5.002E-06 2.3328 4.9348 2.159E+04 4000.0000 54.3881 5.002E-06 0.4777 0.4343 24.4898 5.002E-06 2.3378 4.8936 2.259E+04 5000.0000 53.9712 5.002E-06 0.4827 0.4388 24.8808 5.002E-06 2.3428 4.8533 2.359E+04 6000.0000 53.5443 5.002E-06 0.4877 0.4434 25.2732 5.002E-06 2.3478 4.8138 2.459E+04 7000.0000 53.1085 5.002E-06 0.4927 0.4479 25.6669 5.002E-06 2.3528 4.7750 2.559E+04 8000.0000 52.6633 5.002E-06 0.4977 0.4525 26.0618 5.002E-06 2.3578 4.7371 2.635E+04 8760.0000 52.3201 5.002E-06 0.5015 0.4559 26.3628 5.002E-06 2.3616 4.7088 2.637E+04 17.0000 101.4181 -28.5700 129.9880 9.662E-04 0.5188 0.4716 103.9832 -66.8923 170.8755 2.965E-03 2.4099 4.6456 2.638E+04 17.0000 25.0059 8.6434 16.3625 1.972E-07 0.5188 0.4716 12.1077 4.1851 7.9226 1.008E-08 2.4099 4.6455 File No.: 1800389.301 Page C-20 of C-24 Revision: 0 F0306-01R2

Attachment B EC 411734 Rev. 0 Page 60 of 69 Blocks: 4 2.738E+04 1000.0000 50.4727 5.002E-06 0.5238 0.4761 27.8708 5.002E-06 2.4149 4.6107 2.838E+04 2000.0000 49.9878 5.002E-06 0.5288 0.4807 28.2681 5.002E-06 2.4199 4.5766 2.938E+04 3000.0000 49.4986 5.002E-06 0.5338 0.4852 28.6661 5.002E-06 2.4249 4.5431 3.038E+04 4000.0000 49.0032 5.002E-06 0.5388 0.4898 29.0647 5.002E-06 2.4299 4.5102 3.138E+04 5000.0000 48.5041 5.002E-06 0.5438 0.4943 29.4638 5.002E-06 2.4349 4.4779 3.238E+04 6000.0000 48.0005 5.002E-06 0.5488 0.4989 29.8633 5.002E-06 2.4399 4.4462 3.338E+04 7000.0000 47.4933 5.002E-06 0.5538 0.5034 30.2633 5.002E-06 2.4449 4.4150 3.438E+04 8000.0000 46.9831 5.002E-06 0.5588 0.5080 30.6636 5.002E-06 2.4499 4.3845 3.514E+04 8760.0000 46.5926 5.002E-06 0.5626 0.5114 30.9680 5.002E-06 2.4537 4.3616 3.516E+04 17.0000 89.5556 -27.5670 117.1226 6.302E-04 0.5736 0.5214 113.5631 -70.4751 184.0383 4.020E-03 2.5217 4.3965 3.518E+04 17.0000 26.6683 9.2180 17.4503 2.567E-07 0.5736 0.5214 13.5608 4.6873 8.8734 1.604E-08 2.5217 4.3965 Blocks: 5 3.618E+04 1000.0000 45.4587 5.002E-06 0.5786 0.5260 31.7154 5.002E-06 2.5267 4.3671 3.718E+04 2000.0000 44.9450 5.002E-06 0.5836 0.5305 32.1104 5.002E-06 2.5317 4.3382 3.818E+04 3000.0000 44.4316 5.002E-06 0.5886 0.5351 32.5054 5.002E-06 2.5367 4.3099 3.918E+04 4000.0000 43.9168 5.002E-06 0.5936 0.5396 32.9002 5.002E-06 2.5417 4.2820 4.018E+04 5000.0000 43.4030 5.002E-06 0.5986 0.5442 33.2949 5.002E-06 2.5467 4.2545 4.118E+04 6000.0000 42.8898 5.002E-06 0.6036 0.5487 33.6894 5.002E-06 2.5517 4.2276 4.218E+04 7000.0000 42.3776 5.002E-06 0.6086 0.5533 34.0835 5.002E-06 2.5567 4.2010 4.318E+04 8000.0000 41.8675 5.002E-06 0.6136 0.5578 34.4773 5.002E-06 2.5617 4.1750 4.394E+04 8760.0000 41.4803 5.002E-06 0.6174 0.5613 34.7764 5.002E-06 2.5655 4.1554 4.395E+04 17.0000 78.5243 -26.0252 104.5496 3.956E-04 0.6241 0.5673 121.0434 -72.9826 194.0260 4.992E-03 2.6517 4.2491 4.397E+04 17.0000 28.2244 9.7559 18.4685 3.239E-07 0.6241 0.5673 14.8331 5.1271 9.7060 2.317E-08 2.6517 4.2490 File No.: 1800389.301 Page C-21 of C-24 Revision: 0 F0306-01R2

Attachment B EC 411734 Rev. 0 Page 61 of 69 Blocks: 6 4.497E+04 1000.0000 41.0879 5.002E-06 0.6291 0.5719 34.9056 5.002E-06 2.6567 4.2232 4.597E+04 2000.0000 40.5989 5.002E-06 0.6341 0.5764 35.2903 5.002E-06 2.6617 4.1978 4.697E+04 3000.0000 40.1125 5.002E-06 0.6391 0.5810 35.6745 5.002E-06 2.6667 4.1727 4.797E+04 4000.0000 39.6323 5.002E-06 0.6441 0.5855 36.0580 5.002E-06 2.6717 4.1481 4.897E+04 5000.0000 39.1559 5.002E-06 0.6491 0.5901 36.4409 5.002E-06 2.6767 4.1238 4.997E+04 6000.0000 38.6864 5.002E-06 0.6541 0.5946 36.8231 5.002E-06 2.6817 4.0999 5.097E+04 7000.0000 38.2223 5.002E-06 0.6591 0.5992 37.2046 5.002E-06 2.6867 4.0764 5.197E+04 8000.0000 37.7774 5.002E-06 0.6641 0.6037 37.6398 5.002E-06 2.6917 4.0533 5.273E+04 8760.0000 37.4457 5.002E-06 0.6679 0.6072 37.9800 5.002E-06 2.6955 4.0359 5.275E+04 17.0000 68.8400 -24.0333 92.8733 2.435E-04 0.6719 0.6108 127.4956 -75.1410 202.6366 5.965E-03 2.7998 4.1671 5.276E+04 17.0000 29.8329 10.3119 19.5210 4.066E-07 0.6719 0.6108 16.0227 5.5383 10.4844 3.179E-08 2.7998 4.1670 Blocks: 7 5.376E+04 1000.0000 37.6952 5.002E-06 0.6769 0.6154 37.7684 5.002E-06 2.8048 4.1436 5.476E+04 2000.0000 37.2830 5.002E-06 0.6819 0.6199 38.2072 5.002E-06 2.8098 4.1206 5.576E+04 3000.0000 36.8793 5.002E-06 0.6869 0.6245 38.6455 5.002E-06 2.8148 4.0978 5.676E+04 4000.0000 36.4833 5.002E-06 0.6919 0.6290 39.0833 5.002E-06 2.8198 4.0754 5.776E+04 5000.0000 36.0960 5.002E-06 0.6969 0.6336 39.5205 5.002E-06 2.8248 4.0534 5.876E+04 6000.0000 35.7182 5.002E-06 0.7019 0.6381 39.9572 5.002E-06 2.8298 4.0316 5.976E+04 7000.0000 35.3493 5.002E-06 0.7069 0.6427 40.3932 5.002E-06 2.8348 4.0102 6.076E+04 8000.0000 35.0273 5.002E-06 0.7119 0.6472 40.7821 5.002E-06 2.8399 3.9890 6.152E+04 8760.0000 34.8144 5.002E-06 0.7157 0.6507 41.0428 5.002E-06 2.8437 3.9731 6.154E+04 17.0000 60.1453 -20.8626 81.0079 1.390E-04 0.7179 0.6527 133.7241 -77.1507 210.8748 7.024E-03 2.9675 4.1333 6.156E+04 17.0000 31.6910 10.9541 20.7368 5.208E-07 0.7180 0.6527 17.2696 5.9693 11.3003 4.322E-08 2.9675 4.1333 File No.: 1800389.301 Page C-22 of C-24 Revision: 0 F0306-01R2

Attachment B EC 411734 Rev. 0 Page 62 of 69 Blocks: 8 6.256E+04 1000.0000 35.4535 5.002E-06 0.7230 0.6572 40.5551 5.002E-06 2.9725 4.1116 6.356E+04 2000.0000 35.1344 5.002E-06 0.7280 0.6618 40.9801 5.002E-06 2.9775 4.0902 6.456E+04 3000.0000 34.8275 5.002E-06 0.7330 0.6663 41.4042 5.002E-06 2.9825 4.0691 6.556E+04 4000.0000 34.5307 5.002E-06 0.7380 0.6709 41.8276 5.002E-06 2.9875 4.0483 6.656E+04 5000.0000 34.2468 5.002E-06 0.7430 0.6754 42.2501 5.002E-06 2.9925 4.0278 6.756E+04 6000.0000 33.9739 5.002E-06 0.7480 0.6800 42.6717 5.002E-06 2.9975 4.0076 6.856E+04 7000.0000 33.7536 5.002E-06 0.7530 0.6845 43.0351 5.002E-06 3.0025 3.9876 6.956E+04 8000.0000 33.5697 5.002E-06 0.7580 0.6891 43.3604 5.002E-06 3.0075 3.9679 7.032E+04 8760.0000 33.4372 5.002E-06 0.7618 0.6925 43.6060 5.002E-06 3.0113 3.9531 7.034E+04 17.0000 52.9873 -17.1004 70.0877 7.677E-05 0.7630 0.6936 139.0613 -78.9463 218.0075 8.050E-03 3.1538 4.1336 7.035E+04 17.0000 33.6246 11.6225 22.0021 6.640E-07 0.7630 0.6936 18.4272 6.3694 12.0577 5.640E-08 3.1538 4.1335 Blocks: 9 7.135E+04 1000.0000 34.3463 5.002E-06 0.7680 0.6982 42.9515 5.002E-06 3.1588 4.1131 7.235E+04 2000.0000 34.1372 5.002E-06 0.7730 0.7027 43.3609 5.002E-06 3.1638 4.0930 7.335E+04 3000.0000 33.9406 5.002E-06 0.7780 0.7073 43.7693 5.002E-06 3.1688 4.0731 7.435E+04 4000.0000 33.7551 5.002E-06 0.7830 0.7118 44.1767 5.002E-06 3.1738 4.0535 7.535E+04 5000.0000 33.5814 5.002E-06 0.7880 0.7164 44.5832 5.002E-06 3.1788 4.0341 7.635E+04 6000.0000 33.4186 5.002E-06 0.7930 0.7209 44.9887 5.002E-06 3.1838 4.0149 7.735E+04 7000.0000 33.2787 5.002E-06 0.7980 0.7254 45.3740 5.002E-06 3.1888 3.9960 7.835E+04 8000.0000 33.1949 5.002E-06 0.8030 0.7300 45.6816 5.002E-06 3.1938 3.9774 7.911E+04 8760.0000 33.1374 5.002E-06 0.8068 0.7334 45.9140 5.002E-06 3.1976 3.9633 7.913E+04 17.0000 46.5979 -11.9439 58.5418 3.670E-05 0.8074 0.7340 143.3533 -80.2018 223.5551 8.924E-03 3.3561 4.1569 7.915E+04 17.0000 35.6547 12.3242 23.3305 8.444E-07 0.8074 0.7340 19.5194 6.7470 12.7725 7.141E-08 3.3561 4.1568 File No.: 1800389.301 Page C-23 of C-24 Revision: 0 F0306-01R2

Attachment B EC 411734 Rev. 0 Page 63 of 69 Blocks: 10 8.015E+04 1000.0000 34.2878 5.002E-06 0.8124 0.7385 45.0447 5.002E-06 3.3611 4.1374 8.115E+04 2000.0000 34.1779 5.002E-06 0.8174 0.7431 45.4384 5.002E-06 3.3661 4.1182 8.215E+04 3000.0000 34.0776 5.002E-06 0.8224 0.7476 45.8311 5.002E-06 3.3711 4.0992 Crack Depth, a = 0.8250 exceeds user-specified maximum = 0.8250 Number of Runtime Warnings: 0

      • End of pc-CRACK output ***

File No.: 1800389.301 Page C-24 of C-24 Revision: 0 F0306-01R2

Attachment B EC 411734 Rev. 0 Page 64 of 69 APPENDIXD SI-TIFFANY OUTPUT FILE File No.: 1800389.301 Page D-1 of D-6 Revision: 0 F0306-01R2

Attachment B EC 411734 Rev. 0 Page 65 of 69 SI TIFFANY Version 3 Compiled Sept. 2015 Run Title Brunswick Feedwater Nozzle, N4D, Outboard Flaw Eval Calculate Radial Gradient Thermal Stresses and SIFs Units US Customary Time ...................... seconds Temperature ............... Deg F Flow Rate ................. inches/sec Pressure .................. psi Stress .................... ksi Heat Transfer Coeff........ BTU/(SEC.IN.IN.F)

Fluid Viscocity ........... IN.IN/SEC Fluid Conductivity ........ BTU/(SEC.IN.F)

Stress Intensity Factor.... ksi.sqrt(in)

Crack Model: Semi Elliptical Circumferential ID connected Pipe Outside Diameter = 13.25 Inside Material Thickness = 0.5500 Outside Material Thickness = 0.5500 Poisson's Ratio 0.2900 Tzero 40.00 No. of Data in the Fluid History = 5 Time Temp Flow Rate Pressure 0.000 551.0 312.0 1550.

0.1000 40.00 312.0 0.000 900.0 40.00 312.0 0.000 900.1 551.0 312.0 1550.

3600. 551.0 312.0 1550.

Time step 0.1000 Material Properties Inside Outside Youngs Modulus = 0.2870E+05 0.2870E+05 Density = 0.3000 0.3000 Specific Heat = 0.1210 0.1210 Thermal Exp. Coeff. = 0.9800E 05 0.9800E 05 K at T1 = 0.1990E 03 0.1990E 03 K at T2 = 0.2510E 03 0.2510E 03 T1 = 40.00 40.00 T2 = 551.0 551.0 Normal Membrane Stress (No Pr) = 0.3500E 01 Normal Bending Stress = 2.790 Normal Operating Temperature = 551.0 Scale normal stresses with average temperature No. of a/t points for PW cracks = 10 0.1000E 01 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.7900 0.8000 No. of a/c points for PW cracks= 6 0.1250 0.1500 0.2000 0.2500 0.5000 1.000 Run Title Brunswick Feedwater Nozzle, N4D, Outboard Flaw Eval TIME FLD TEMP FLD VELOCITY HEAT TRANSFER COEFFICIENT PRNTL REYNOLDS FLUID VISCOSITY FLUID CONDUCTIVITY Avg (SEC) (F) (IN/SEC) BTU/(SEC.IN.IN.F) BTU/H.FT.FT.F) NO NO (IN.IN/SEC BTU/(SEC.IN.F) Temp 0.100 40.000 312.000 0.004648 2409.696 4.54 0.3244E+07 0.001063 0.0000084 546.2 RADIAL DISTANCE (IN) TEMP ( F) SIGMAR(KSI) SIGMAT(KSI) SIGMAZ(KSI) 5.525 386.333 0.000 63.799 63.799 5.547 479.387 0.170 26.767 26.937 5.569 519.855 0.238 10.667 10.906 5.591 537.455 0.264 3.670 3.934 5.613 545.109 0.270 0.631 0.902 5.635 548.438 0.269 0.686 0.417 5.657 549.886 0.264 1.255 0.991 5.679 550.515 0.258 1.498 1.240 5.701 550.789 0.251 1.599 1.349 File No.: 1800389.301 Page D-2 of D-6 Revision: 0 F0306-01R2

Attachment B EC 411734 Rev. 0 Page 66 of 69 5.723 550.908 0.243 1.639 1.396 5.745 550.960 0.236 1.652 1.416 5.767 550.983 0.229 1.654 1.425 5.789 550.992 0.222 1.651 1.429 5.811 550.997 0.215 1.645 1.431 5.833 550.999 0.208 1.639 1.431 5.855 550.999 0.201 1.633 1.432 5.877 551.000 0.194 1.626 1.432 5.899 551.000 0.187 1.619 1.432 5.921 551.000 0.180 1.612 1.432 5.943 551.000 0.174 1.606 1.432 5.965 551.000 0.167 1.599 1.432 5.987 551.000 0.161 1.593 1.432 6.009 551.000 0.154 1.586 1.432 6.031 551.000 0.148 1.580 1.432 6.053 551.000 0.142 1.574 1.432 6.075 551.000 0.136 1.568 1.432 INTERFACE 6.075 551.000 0.136 1.568 1.432 6.097 551.000 0.129 1.561 1.432 6.119 551.000 0.123 1.555 1.432 6.141 551.000 0.117 1.549 1.432 6.163 551.000 0.111 1.543 1.432 6.185 551.000 0.105 1.538 1.432 6.207 551.000 0.100 1.532 1.432 6.229 551.000 0.094 1.526 1.432 6.251 551.000 0.088 1.520 1.432 6.273 551.000 0.083 1.515 1.432 6.295 551.000 0.077 1.509 1.432 6.317 551.000 0.072 1.504 1.432 6.339 551.000 0.066 1.498 1.432 6.361 551.000 0.061 1.493 1.432 6.383 551.000 0.055 1.487 1.432 6.405 551.000 0.050 1.482 1.432 6.427 551.000 0.045 1.477 1.432 6.449 551.000 0.040 1.472 1.432 6.471 551.000 0.034 1.467 1.432 6.493 551.000 0.029 1.461 1.432 6.515 551.000 0.024 1.456 1.432 6.537 551.000 0.019 1.451 1.432 6.559 551.000 0.014 1.447 1.432 6.581 551.000 0.010 1.442 1.432 6.603 551.000 0.005 1.437 1.432 6.625 551.000 0.000 1.432 1.432 INTERMEDIATE TIMES NOT SHOWN FOR BREVITY Time Pressure Pressure Membrane Bending Stress Stress Stress 899.90 0.0000 0.0000 0.21780E 02 0.17362 Run Title Brunswick Feedwater Nozzle, N4D, Outboard Flaw Eval TIME FLD TEMP FLD VELOCITY HEAT TRANSFER COEFFICIENT PRNTL REYNOLDS FLUID VISCOSITY FLUID CONDUCTIVITY Avg (SEC) (F) (IN/SEC) BTU/(SEC.IN.IN.F) BTU/H.FT.FT.F) NO NO (IN.IN/SEC BTU/(SEC.IN.F) Temp 900.000 40.000 312.000 0.004648 2409.696 4.54 0.3244E+07 0.001063 0.0000084 40.1 RADIAL DISTANCE (IN) TEMP ( F) SIGMAR(KSI) SIGMAT(KSI) SIGMAZ(KSI) 5.525 40.006 0.000 0.025 0.025 5.547 40.009 0.000 0.023 0.024 5.569 40.013 0.000 0.022 0.022 5.591 40.016 0.000 0.021 0.021 5.613 40.019 0.000 0.019 0.020 5.635 40.022 0.000 0.018 0.019 5.657 40.025 0.000 0.017 0.017 File No.: 1800389.301 Page D-3 of D-6 Revision: 0 F0306-01R2

Attachment B EC 411734 Rev. 0 Page 67 of 69 5.679 40.028 0.001 0.016 0.016 5.701 40.031 0.001 0.014 0.015 5.723 40.034 0.001 0.013 0.014 5.745 40.037 0.001 0.012 0.013 5.767 40.040 0.001 0.011 0.011 5.789 40.043 0.001 0.010 0.010 5.811 40.045 0.001 0.008 0.009 5.833 40.048 0.001 0.007 0.008 5.855 40.051 0.001 0.006 0.007 5.877 40.053 0.001 0.005 0.006 5.899 40.056 0.001 0.004 0.005 5.921 40.059 0.001 0.003 0.004 5.943 40.061 0.001 0.002 0.003 5.965 40.063 0.001 0.001 0.002 5.987 40.066 0.001 0.000 0.001 6.009 40.068 0.001 0.001 0.000 6.031 40.070 0.001 0.001 0.001 6.053 40.072 0.001 0.002 0.001 6.075 40.074 0.001 0.003 0.002 INTERFACE 6.075 40.074 0.001 0.003 0.002 6.097 40.076 0.001 0.004 0.003 6.119 40.078 0.001 0.005 0.004 6.141 40.080 0.001 0.005 0.005 6.163 40.082 0.001 0.006 0.005 6.185 40.084 0.001 0.007 0.006 6.207 40.085 0.001 0.007 0.007 6.229 40.087 0.001 0.008 0.007 6.251 40.088 0.001 0.008 0.008 6.273 40.090 0.001 0.009 0.008 6.295 40.091 0.001 0.009 0.009 6.317 40.092 0.001 0.010 0.009 6.339 40.093 0.001 0.010 0.010 6.361 40.095 0.001 0.011 0.010 6.383 40.096 0.000 0.011 0.011 6.405 40.096 0.000 0.011 0.011 6.427 40.097 0.000 0.012 0.011 6.449 40.098 0.000 0.012 0.012 6.471 40.099 0.000 0.012 0.012 6.493 40.099 0.000 0.012 0.012 6.515 40.100 0.000 0.012 0.012 6.537 40.100 0.000 0.013 0.012 6.559 40.100 0.000 0.013 0.012 6.581 40.101 0.000 0.013 0.013 6.603 40.101 0.000 0.013 0.013 6.625 40.101 0.000 0.013 0.013 Time Pressure Pressure Membrane Bending Stress Stress Stress 900.00 0.21093E 08 0.48176E 08 0.21780E 02 0.17362 Run Title Brunswick Feedwater Nozzle, N4D, Outboard Flaw Eval TIME FLD TEMP FLD VELOCITY HEAT TRANSFER COEFFICIENT PRNTL REYNOLDS FLUID VISCOSITY FLUID CONDUCTIVITY Avg (SEC) (F) (IN/SEC) BTU/(SEC.IN.IN.F) BTU/H.FT.FT.F) NO NO (IN.IN/SEC BTU/(SEC.IN.F) Temp 900.100 551.000 312.000 0.009657 5006.162 0.87 0.1809E+08 0.000191 0.0000076 47.3 RADIAL DISTANCE (IN) TEMP ( F) SIGMAR(KSI) SIGMAT(KSI) SIGMAZ(KSI) 5.525 308.085 0.000 104.093 104.093 5.547 145.447 0.265 39.400 39.665 5.569 81.482 0.362 13.965 14.326 5.591 56.326 0.392 3.968 4.361 5.613 46.434 0.398 0.045 0.442 5.635 42.545 0.393 1.491 1.098 5.657 41.017 0.384 2.088 1.704 5.679 40.418 0.374 2.315 1.941 5.701 40.185 0.363 2.397 2.033 5.723 40.094 0.353 2.422 2.069 File No.: 1800389.301 Page D-4 of D-6 Revision: 0 F0306-01R2

Attachment B EC 411734 Rev. 0 Page 68 of 69 5.745 40.061 0.342 2.425 2.083 5.767 40.049 0.332 2.419 2.087 5.789 40.046 0.321 2.409 2.088 5.811 40.047 0.311 2.399 2.088 5.833 40.049 0.301 2.388 2.087 5.855 40.051 0.291 2.377 2.086 5.877 40.054 0.281 2.366 2.085 5.899 40.056 0.271 2.355 2.084 5.921 40.059 0.261 2.344 2.083 5.943 40.061 0.251 2.334 2.082 5.965 40.063 0.242 2.323 2.081 5.987 40.066 0.232 2.313 2.081 6.009 40.068 0.223 2.303 2.080 6.031 40.070 0.214 2.293 2.079 6.053 40.072 0.205 2.283 2.078 6.075 40.074 0.196 2.273 2.077 INTERFACE 6.075 40.074 0.196 2.273 2.077 6.097 40.076 0.187 2.263 2.076 6.119 40.078 0.178 2.254 2.076 6.141 40.080 0.170 2.244 2.075 6.163 40.082 0.161 2.235 2.074 6.185 40.084 0.152 2.226 2.073 6.207 40.085 0.144 2.217 2.073 6.229 40.087 0.136 2.208 2.072 6.251 40.088 0.127 2.199 2.072 6.273 40.090 0.119 2.190 2.071 6.295 40.091 0.111 2.182 2.071 6.317 40.092 0.103 2.173 2.070 6.339 40.093 0.095 2.165 2.070 6.361 40.094 0.088 2.157 2.069 6.383 40.095 0.080 2.149 2.069 6.405 40.096 0.072 2.141 2.068 6.427 40.097 0.065 2.133 2.068 6.449 40.098 0.057 2.125 2.068 6.471 40.099 0.050 2.117 2.068 6.493 40.099 0.042 2.110 2.067 6.515 40.100 0.035 2.102 2.067 6.537 40.100 0.028 2.095 2.067 6.559 40.100 0.021 2.088 2.067 6.581 40.100 0.014 2.081 2.067 6.603 40.101 0.007 2.074 2.067 6.625 40.101 0.000 2.067 2.067 INTERMEDIATE TIMES NOT SHOWN FOR BREVITY Time Pressure Pressure Membrane Bending Stress Stress Stress 3599.9 1.5500 3.5402 0.35000E 01 2.7900 Run Title Brunswick Feedwater Nozzle, N4D, Outboard Flaw Eval TIME FLD TEMP FLD VELOCITY HEAT TRANSFER COEFFICIENT PRNTL REYNOLDS FLUID VISCOSITY FLUID CONDUCTIVITY Avg (SEC) (F) (IN/SEC) BTU/(SEC.IN.IN.F) BTU/H.FT.FT.F) NO NO (IN.IN/SEC BTU/(SEC.IN.F) Temp 3600.000 551.000 312.000 0.009657 5006.162 0.87 0.1809E+08 0.000191 0.0000076 551.0 RADIAL DISTANCE (IN) TEMP ( F) SIGMAR(KSI) SIGMAT(KSI) SIGMAZ(KSI) 5.525 551.000 0.000 0.000 0.000 5.547 551.000 0.000 0.000 0.000 5.569 551.000 0.000 0.000 0.000 5.591 551.000 0.000 0.000 0.000 5.613 551.000 0.000 0.000 0.000 5.635 551.000 0.000 0.000 0.000 File No.: 1800389.301 Page D-5 of D-6 Revision: 0 F0306-01R2

Attachment B EC 411734 Rev. 0 Page 69 of 69 5.657 551.000 0.000 0.000 0.000 5.679 551.000 0.000 0.000 0.000 5.701 551.000 0.000 0.000 0.000 5.723 551.000 0.000 0.000 0.000 5.745 551.000 0.000 0.000 0.000 5.767 551.000 0.000 0.000 0.000 5.789 551.000 0.000 0.000 0.000 5.811 551.000 0.000 0.000 0.000 5.833 551.000 0.000 0.000 0.000 5.855 551.000 0.000 0.000 0.000 5.877 551.000 0.000 0.000 0.000 5.899 551.000 0.000 0.000 0.000 5.921 551.000 0.000 0.000 0.000 5.943 551.000 0.000 0.000 0.000 5.965 551.000 0.000 0.000 0.000 5.987 551.000 0.000 0.000 0.000 6.009 551.000 0.000 0.000 0.000 6.031 551.000 0.000 0.000 0.000 6.053 551.000 0.000 0.000 0.000 6.075 551.000 0.000 0.000 0.000 INTERFACE 6.075 551.000 0.000 0.000 0.000 6.097 551.000 0.000 0.000 0.000 6.119 551.000 0.000 0.000 0.000 6.141 551.000 0.000 0.000 0.000 6.163 551.000 0.000 0.000 0.000 6.185 551.000 0.000 0.000 0.000 6.207 551.000 0.000 0.000 0.000 6.229 551.000 0.000 0.000 0.000 6.251 551.000 0.000 0.000 0.000 6.273 551.000 0.000 0.000 0.000 6.295 551.000 0.000 0.000 0.000 6.317 551.000 0.000 0.000 0.000 6.339 551.000 0.000 0.000 0.000 6.361 551.000 0.000 0.000 0.000 6.383 551.000 0.000 0.000 0.000 6.405 551.000 0.000 0.000 0.000 6.427 551.000 0.000 0.000 0.000 6.449 551.000 0.000 0.000 0.000 6.471 551.000 0.000 0.000 0.000 6.493 551.000 0.000 0.000 0.000 6.515 551.000 0.000 0.000 0.000 6.537 551.000 0.000 0.000 0.000 6.559 551.000 0.000 0.000 0.000 6.581 551.000 0.000 0.000 0.000 6.603 551.000 0.000 0.000 0.000 6.625 551.000 0.000 0.000 0.000 Time Pressure Pressure Membrane Bending Stress Stress Stress 3600.0 1.5500 3.5402 0.35000E 01 2.7900 Elapsed Time (sec) = 38.000 File No.: 1800389.301 Page D-6 of D-6 Revision: 0 F0306-01R2