ML20247D307

From kanterella
Jump to navigation Jump to search
Core Operating Limits Rept for Quad Cities Nuclear Power Station Unit 1,Reload 9 (Cycle 10)
ML20247D307
Person / Time
Site: Quad Cities Constellation icon.png
Issue date: 05/31/1989
From:
COMMONWEALTH EDISON CO.
To:
Shared Package
ML20246N654 List:
References
NUDOCS 8907250156
Download: ML20247D307 (19)


Text

, _. .- ..

pa.

c,

.yy

.'; .: y ;;

t' , ,1

'm:

j _ _ :.y .

  • i . .A -

I. ',,:

c:

l:3 I .. j

)

t.

! , Core Operating Limits. Report p+ .

. for.

Quad Cities Nuclear Power Station Unit 1, aeload 9~(Cycle 10)

I i

l r

.' t. :

5

.i l

i s

i

.s v

j i

'i 1

l i

)

l i

1

)

)

. .i a

l

' ?:

8907250156 890711

.PDR ADOCK 050 g p_

p m 1

. ;, , , ' ' Tore Operating Limit Report j

l Lj

. .[. -

i

ISSUANCE OF CHANGES SCH RRY t i i

Affected Affected l- Section Pages'

' Stamary of Changes Date L ' All2 -All Original Issue 05/89~

l 1- .

.l g-I L

l l

'l.

.I- I

.l l l

l.

l l

1.

l-l l

i I

I I

I I

I I

I I I i i i Quad Cities - Unit 1 i Cycle 10 i

' ' Core Operating Limits Report I

'IABLE OF OCNTENTS  ;

i 1

Page REFERENCES ...................................................... iii LIST OF FIGURES ................................................. iv.

i

.i 1.0 CCNTROL ROD WI'INDRANAL BWCK INSTRUMENTATION (3.2/4.2) . . . 1-1 1.1 'Ibchnical Specification Reference . . . . . . . . . . . . . . . . . 1

.1.2 Description ....................................... 1-1 2.0 AVERAGE PLANAR LINEAR HEAT GENERATION RATE (3.5/4.5) . . . . . 2-1 2.1 Technical Specification Reference ................. 2-1 2.2 Description ....................................... 2-1 3.0 LINEAR HEAT GENERATION RATE (3.5/4.5) .................. 3-1 3.1 . Technical Specification Reference ................. 3-1 3.2 Description ...................................... 3-1 4.0 MINIMUM CRITICAL POWER RATIO (3.5/4.5) ................. 4-1 4.1 Technical Specification Reference ................. 4-1 4.2 Description .......................................- 4 !

i.,

i I

u Quad Cities - Unit 1 11 Cycle 10

i,, Core Oper_ ting Limits Report

^ 3 '.

REFERENCES

1. - Cu....s =lth Edison Cornpany and Iowa-Illinois Gas and Electric Conpany Docket No. 50-254, Quad Cities Ct?Hr., unit 1 Facility Operating License, License No. DRP-29.
2. Ietter fran D. M. Crutchfield to All Power Reactor. Licenses and '

Applicants, Generic Ietter 88-16; Concerning the Bernoval of Cycle-Specific Parameter Lbnits fran Technical Specifications.

3. Supplemental Reload License Submittal for Quad Cities Nuclear Power Station, Unit 1, Reload 9 (Cycle 10), 23A5831, Rev. O, June 1987.
4. Quad Cities Nuclear Power Station, Units 1 and 2, SAFER /GESTR-IOCA Ioss-of-Coolant-Accident Analysis, NEDC-31345P, June 1987 (as amerried) .
5. General Electric Standard Application for Reactor Fuel (GESTAR),

NEDE-240ll-P-A, Septanber 1988 (as amended).

i Quad Cities - Unit 1 111 Cycle 10

.j

  • core operating Limito asport <
  • y ,

~

\

LIST'OF FIGURES l

q FIGURE TITLE / DESCRIPTION PAGE l

-i 2-1 Maximum Average Planar Linear Heat Generation Rate 2-2 (MAPIJOR) vs. Average Planar Exposure for Fuel Type P8DRB239, 2-2 Maximum Average Planar Linear Heat Generation Rate- 2-3 (MAPIJER) vs. Average Planar Exposure for Fuel Type P8DRB265L.

2-3 Maximum Average Planar Linear Heat Generation Rate 2-4 (MAPIAER) vs. Average Planar Exposure for Fuel Types P8DRB265H and BP8DRB265H.

2-4 Maxinum Average Planar Linear Heat Generation Rate 2-5 (MAPIJER) vs. Average Planar Exposure for Fuel Type P8DRB282.

2-5 Maximum Average Planar Linear Heat Generation Rate 2-6 (MAPIJGR) vs. Average Planar Exposure for Fuel Type BP8DRB282.

2-6 Maximum Average Planar Linear Heat Generation Rate 2-7 (MAPLHGR) vs. Average Planar Exposure for Fuel Type BP8DRB283H.

2-7 Maxinum Average Planar Linear Heat Generation Rate 2-8 (MAPI1GR) vs. Average Planar Exposure for Fuel Type BP8DRB299.

2-8 Maximum Average Planar Linear Heat Generation Rate 2-9 (MAPI11GR) vs. Average Planar Exposure for Fuel Type BD300A. .

l 2-9 Maximum Average Planar Linear Heat Generation Rate 2-10 (MAPIJER) vs. Average Planar Exposue for Fuel Type BD300B.

2-10 Maxinum Average Planar Linear Heat Generation Rate 2-11 (MAPIJER) vs. Average Planar Exposure for Fuel Type Barrier LTA.

4-1 Kf Factor vs. Core Flow %. 4-2 Quad Cities - Unit 1 iv Cycle 10

" ' s r e j ,.

. , . s )' 1, I

  • ._ Core Operating Limito Heport

,t .

1.0 CON 1HOL ICD WI'INDRMO\L BLOCK INSTRUMDffATION (3.2/4.2) 1.1 'mCHNICAL SPECIFICATION

REFERENCE:

Technical Specification Table 3.2-3 and 3.6.H

1.2 DESCRIPTION

'Ihe Rod Withdrawl Block )bnitor Upscale Instrumentation Trip Setpoint' for two recirculation loop operation is detennined from the following relationships

< (0.65)Wd + 43%**

    • Clanped, with an allowable value not to exc==d the allowable value for recirculation loop flow (Wd) of 100%.

Wd is the percent of drive flow required to produce a rated. core flow.

of 98 million Ib/hr. Trip level setting is in percent of rated power (2511 Mvt).

Quad Cities - Unit 1 1-1 Cycle 10 i

~

is Core M ting Limits Report p.i '

.h

<[ 2.0- ' AVERAGE PIANAR LDEAR HEAT GENERATIN RATE (APIJER) (3.5/4.5) 2.1- TECit(ICAL SPECIFICATION

REFERENCE:

.o

, Technical Specification 3.5.I

2.2 DESCRIPTION

The Maxinum Average Planar Linear Heat Generation Rates (MAPIJGR) versus Average Planar Exposure for fuel type P8DRB239 is detemined frm Figure-2-1.

The Maxinnan Average Planar Linear Heat Generation Rates (MAPIRGR) versus Average Planar Exposure for fuel type P8DRB265L is detemined 'frm Figure 2-2.

The Mav4== Average Planar Linear Heat Generation Rates' (MAPLHGR) versus Average Planar Exposure for fuel types P80RB265H and BP80RB265H are determined frm Figure 2-3.

The Maxinum Average Planar Linear Heat Generation Rates (MAPIRGR) versus Average Planar Exposure for fuel type P8DRB282 is determined from Figure 2-4.

The~ Maximum Average Planar Linear Heat Generation Rates (MAPIJER) versus Average Planar Exposure for fuel type BP8DRB282.is determined fr m Figure 2-5.

. the Maximum A/erage Planar Linear Heat Generation Rates (MAPIJGR) versus Average Planar Exposure for fuel-type'BP8DRB283H is.

detemined frtin Figure 2-6.

The Maxinnan Average Planar Linear Heat Generation' Rates (MAPIJGR) versus Average Planar Exposure for fuel type BP8DRB299 is detemined from Figure 2-7.

The Maxinnan Average Planar Linear Heat Generatiott Rates (MAFIJER) versus Average Planar Exposure for fuel type BD300A is detemined from Figure 2-8.

The Maxinaan Average Planar Linear Heat Generation Rates (MAPIJER) versus' Average Planar Exposure for fuel type BD300B is determined from Figure 2-9.

The Maxinum Average Planar Linear Heat Generation Rates (MAPIJiGR) versus Average Planar Exposure for fuel type Barrier LTA is detemined fran Figure 2-10.

Quad Cities - Unit 1 2-1 Cycle 10

_ . _ _ _ _ _ _ _ _ _ _ _ - ~ _ _ _ _ _ _ _ _ . _ . - - - m_

y p c.a ]= = 1 0 0

0 5

4 0

0 0

R 0 4

G H

L P9 0 A3 0 0

lM2B 5 3

t e R D R P a 8 0 0 S 1

n e 3 0/

0 o p 3 d i

t y W M

a T r

{

e e 0 e 0 r n u 0 u e F 3 5 2 s o

G r p o E x

a f e 0 r H er 0 0 a 0 n r

a s u 3 2 a e

n p o \ 3 e

i L

r a r E

x N 0 0

0 5

r e g

a v

n a a na 1

A l

P P 0 e

g e 0 0

g 0 a

r a 1

er v ev A

ms A 7 0 0

0 i

uv m

x a

/ p/ 5 M 0 0 0 0 0 0 0 5 0 5 0 2 1 1 0 0 1 1 1 1 1

= I V

sBw am"

,l z

e{gF3[ i l 0 0

0 5

4 0

0 R 0 0

G H

LL P5 A6 \

\4 0 0

0

M2 B 5

\

3 t

e R D a 8 )

R P 0 0 S 0

n e 0/

i t

o p a

r T y \ 3 d W

M e 0 e n u e e 0 0

5 r

u F 2 s G r o

p a

e f H e r r u a s o

\ 0 r 0

0 0

2 n

E x

a a

e n p o

e i

g L xE N 0 0 a r 0 r e a r 5 v

n a 1 A

l a na P

P 0 e

ge 0 0

0 a g 1 r a e r v e A vA 0 m s 0 0

5 u

mv i

x a

M 0 0 0 0 0 0 0 0 5 0 5 0 5 0 5 2 2 1 1 0 0 9 1 1 1 1 1 1 wM s ) ,t~

i v~ a

- l l

einN!gs L

0 0

0 s 5 4

H 5

6 2 0

B ' 0 R C.,

G R H D L 8 P P A B \ 0 0

0 lMdn 5 3

e a a' H N 0

}

T R 56 \ 0 S 0/

0 n 2 3 d i o

R a'

r B

D N {

W M

e 8 0 e 0 r n P i 0 e 5 u s G s e N 2 o

p

p x a' y E e T 0 r H 0 0 a r e 0 n 2 a a u e F n r s 3 e

' g i

L of 0 0 a r 0 r e a

n r e 5 1 v A

l a us P o p 0 e x 0 g 0 a E 0 1

r r e

v n a '

A a mP l

- 0 0

0 5

u e mg x ra i

ae Mv A -

0 0 0 0 0 0 0 0 0 0 s 5 0 5 0 5 0 5 0 5 v 2 1

2 1

1 1

1 1

0 1

0 1

9 9 8 9* eN s

eB=d5  ?~

e{wi. =$ 5 0 0

0 5

4 0

0 0

R G y 0 4

H L

P2 A8 M2 B s

\ 0 0

0 5

3 e R t D a 8 0 "

'i R P 0 S n e 0/

0 o p 3 d i

u W M

a r

T (

e e 0 0

e r

n u 0 u e F 5 s G r \ 2 o

p a' f o x

\

E e e 0 r H r 0 0 o r u 0 n s 2 a a

e o p

3 n e i

L x g E 0 0 a r

r 0 r 5 e a a 1 v n n A a a P P 0 e e 0 g g 0

0 a a r

1 e r v ev -

A A 0 ms 0 0

i u v m

x

/ 5 a

M 0 0 0 0 0 0 0 0 0 5 0 5 0 5 0 5 0 2 2 1 1 0 0 9 9 1 1 1 1 1 1 5S

.$=i~

ei;= 0 0

0 s 5 R

\4 0 0

0 0

G H

L P 2 8

\ 4 0

A 2 0 0

MB 5 3

R e D ta 8 R

n e P

B N 0j 0 S 0

0/

3 d i

o

p W y M a " {

N r

e 0 e r

n e 0 0 u e u 5 2 s G F o p

r x a o E

e f 0 r H e r 0 a 0

0 n r u a

e n osp s 2 a 3

e

' g i

L x 0 0 a r E 0 r e a r 5

1 v n

a n a A P a e P 0 0

ge 0 0

a g 1 r a e r v e A v A 0 m

u sv 0

0 5

i m

x M

a

/_ -

0 0 0 0 0 0 0 0 0 0 5 0 5 0 5 0 5 0 5 2 2 1 1 0 0 9 9 8 1 1 1 1 1 1 eg "

gE= w .

y E .l

y e5ys. 0 0

0 5

4 0

) 0 0

R 0 G 4 H H L '

P 38 A 2 N 1 0

0 0

M B 5 l R e D N 3 t

a 8 R PB \ 0 0 S 0

0/

'i i

n o ep x 3 M

M a y G F r T e

n e e u w

\ 0 e 0

0 5

2

{

r u

s o

p 1 r x a o E e f 0 r H e 0

0 a r _ 0 n r 2 a a us

- i e

n op L x r E 0

0 0

3 r e e

g a

5 a r 1 v n a A l

a n P a 0

eP 0 0

ge 0 a

r g 1 e ar A

v e v

7 0 mA u s 0

0 5

i mv x

M a

0 0 0

/ 0 0 0 0 0 0

5 0 5 0 5 0 5 0 2 2 1 1 0 0 9 9 1 1 1 1 1 1 e15gn B k- 2

e -

=N5 gs. 0 0

0 5

4 N 0 0

0 R 0 4

G H

L 9 P 9 0 A 2 \ 0 0

MB R x 5 3

i e D ta 8 R P n

o B

e p

N 0 0 S 0

0/

3 d T

)

W t

a T y M

'l r

e 0 e 0 r n e 0 u e u 5 2 s o

G F p r x a o e f 0 r E

H e 0 0 a r 0 n r u 2 a ea s  % 3 i

n o p e g

L x 0 0 a r E 0 5

r e a r 1 v n a A a n P a e P 0 0

0 ge 0 a g 1 r

e a r ve A v 0 A 0 ms u

0 5

i m v x

a M ' , 0 0 0 0 0 0 0 0 0 5 0 5 0 5 0 5 0 2 2 1 1 0 0 9 9 1 1 1 1 1 1 yBad=

- = ayis l

e s. L$~ 0 0

0 5

4 0

) 0 0

R s 0 -

G 4 H

L P

A A 0 0

.M(0 0 s 0 5

3 e3 t D aB

\ 0

)

.R e 0 S' n p s 0/

0 oy 3 d i

t T W M

a r

(

e n u e 0 e 0 r 8 eF 0 u 5 s -

2 Gr o 2 o p t f a E x e r

H ee r r s u

\ 0 r 0

0 a 0 n i u

g 2 a F ao ep P n x e i

L E r r a na

\  ;

0 0

0 r 5

1 e

g a

v n

\/

A a a -

PP ee gg 0

0 0

0 a

r ra 1

ee v v AA m

u s

v / 0 0

0 5

i m

x a

/

M -

O 0 0 0 0 0 0 0 0 0 0 5 0 5 0 5 0 5 0 5 0 0 0 9 9 8 8 3 $

1 2

1 1

1 1

1 1 1 2 "

,B= # $

, i  !

giks3Ni 0

0 0

- 5

= 4 0

T 0 0

R 0 G 4 H -

L P

A 8 0

\ 0 0

0

'M,0 5 3

e 3 t D )

a B R

n p e \ 0 0 S 0/

0 T

o y 3 d i

t T W M

a r

{

e e

n e  :

v

^

\ 0 e 0 r 0

5 u s

2 G o p

a

"- E x

e er \ 0 r H u 0 0 a 0 n r s s 2 a a o e p P i

n x e g

L E 0 0 a r r 0 r e

a n n a 5 1

A v

a a P P e

g ge .

0 0

0 0

a ar r

1 e

v ve -

A A 0 m s 0 0

u v 5 i

m x

a M / -

0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 5 0 5- 0 5 0 5 0 5 0 3 3 2 2 1 1 0 0 9 9 8 8 1 1 1 1 1 1 1 1

  • %E  %

gE~ E'

\

ggg5ga

% M

~

p N W

)R G

H \

LA ~

W P T A L (Mr e N -

ei r N ~

i0 0

0 0

t r aa N 4 )T S RB '

/

ne i

op t y Md (

W W

aT r 0 e

G ele eu F N muxop 2 r

s 1

r tafo E e e

He r 0

0 r

, 50 o 2 n w

g r a asu i

l P

F eo np 0 0

0 g e

i. x 0 2 ar E e x

t ar a v A

l Pl an a - '

0 0

0 5

1 P

e ge ag 0 0

r a i0 0

er v e Av A 1

m s 0 0

u v 0 f

5 i

m x

a M 0 '0 0

0 5

2 1

m30 m05 2

1 1

1 1

1 m5 S 0 9 1

0 8*"5 9 7 0

7 E 2 gggEen

  • wk-o_ * -

~ =

~

l l l1l,IL

-' lCoreOperatingLimitsReport  ;

-1 1 4

(

f 3.0' LINEAR t ? T GENERATION RATE (LHGR) (3.5/4.5)

.q 3.1 TBCHNICAL SPECIFICATION

REFERENCE:

~ Technical Specification 3.5.J 3.2- DESCRIPTION:

a. 'Ihe IllGR limit is 13.4 kw/ft for fuel types:

l '. P8DRB265L

-2. P8DRB265H

3. -BP80RB265H
4. BP8DRB283H
5. BP8DRB282

.6. BP8DRB299

b. 'Ihe IJGR limit is 14.4' kw/ft for fuel types:
1. BD300A
2. BD300B' Quad Cities - Unit 1 3-1 Ly le 10

7.

[ Y

  • Core Operating Limits Report

- ,t , J

,s

+

J4.0/ _ MINIMUM CRITICAL POWER RATIO (!CPR)' 13.5/4.5) 4.3_ 'IECHNICAL SPECIFICATION

REFERENCE:

Technical Specification 3.5.K-4.2- . _ DESCRIPTION -

During steady-state operation at rated core flow, ICPR shall' be-

.6 greater than or equal:

1.33 for tave 5 0.71 sec.

1.37 for tave > 0.86 sec.

I (0.278)tave + 1.131 for 0.71 sec. 3 tave 5 0.86 sec.

where tave = mean 20% scram insertion time for all surveillance data fran Tech. Spec. 4.3 C which has been generated in the current cycle.

For core flows other than rated, these naminal values of )CPR shall be increased by a factor of Kf where Kf is as shown in Figure 4-1.

f Quad Cities - Unit 1 4-1 Cycle 10

.r

g &5_p5_ W1 !

0 0

- 1 m

s

- 5 9

N

' 0 9

s 0

' 5 8

1 f s K

Z 0

0 ' 0 8

x 1 ~

n a E -

h T

tw e

a V

R U

C

' 5 7

G r

n o

f K

L s N 0 7

P O R

w R

F T N

O C

N s'

N i X

5 6

A T W - M

O L

N W O 0 % u A

F F

C -

s' ' L F

1 6

w IT

' lo

- 7 A ' 0 F h 1 5 f ( 5 0

T E r e

K U V o A

,N lC R

U 0 5

C f

s K

' N L O

R T

5 4

N s O

~ N C W

0 4

O s

NN L F

L A

U N

A I

5 3

' A M 0 3

s

' N 5 2

0 0 0 0 0 g 0 5 4 3 2 1 g 9 1 1 1 1 3 0 9x g%f 4* ~

i i t~