ML20066F400

From kanterella
Jump to navigation Jump to search
Core Operating Limits Rept for Quad-Cities Unit 1 Cycle 12
ML20066F400
Person / Time
Site: Quad Cities Constellation icon.png
Issue date: 01/21/1991
From:
COMMONWEALTH EDISON CO.
To:
Shared Package
ML20066F397 List:
References
NUDOCS 9101230298
Download: ML20066F400 (21)


Text

_ _ _.

.t".

p 1

1 as

-l t

' ATTACHMENT -

l CORE OPERATI$G LIMIiS REPORT FOR:

QUAD CITIES UNIT 1 CYCLE 12; ei is t

19101230298 910121 PDR ADOCK 05000254 h

P PDR

~

wwss2tsa.

CorG Operatirq Limits Report for Quad Cities IAlclear Power Station

. Unit 1, Reload 11 (Cycle 12)

I l

l

  • Core Operating Limits' Report--

.t i

ISSUANT OF QiANGES..SuttBRY Affected Affected Section Paoes

~ Simvv of Charnes D!1te '

t All All Oriainal Imm_= (Cvels 11)-

'06/89s i

All All Orialnal Tn= = (Cvele'12)

-10/90'

- i

-l

- i

- i.

-I k

r

.k f

h

- )

i i_

' )

'?.

-1, i

f'

?

t

'i e

i 4

Quad Cities - Unit-1 i

Cycle:12 a

s r-1,-yv w-,

core operating Limits ' Report j

i i

TABIE OF COMU7FS i

BL99 REIERENCES......................................................

iii LIST OF FIGURES -.......................................... -'... '....

iv' 1.0 CINTROL ROD WITHWAl&L BIDCK INS'IRUMDfTATION (3.2/4.2)...

1-1 Technical Specification Reference-.................

1.1 h iption......................................

1-1 1.2

. f1-1 1

2.0 AVERAGE PINIAR LINEAR HEAT GENERATION RATE (3.5/4.5);.....

.2-1 2.1 Technical Specification Reference.................

2 2.2 Description.................................'......' 2-1 3.0 LINEAR HEAT GENERATION RATE (3.5/4.5) 3-1 3.1 Technical Specification Reference-.................

3 3.2 Description _......................................

3.

4.0 MININUM CRITICAL 10WER RATIO (3.5/4.5)................. -.

4-1 4.1

'1%chnical Specification Refelwice................. 1 4.2 Description................................'.......j 4-1 a

1 J

Quad Cities - Unit 1 ii

. Cycle 12

' Core Operating Limits Report-BEEERENCES 1.

Ctunonwealth Edison Ccmpany and Iowa-Illinois Gas and Electric Docket No. 50-254, Quad Cities Station, Unit 1 Facility Opera License, License No. IRP-29.

2.

Istter fIun D. M. Crutchfield to All Power Reactor Licenses an:1 Applicants, Generic letter 88-16; Concerning the Removal of

. Cycle-Specific Parameter Limits-frun 2 Weal Specifications.

3.-

Supplemental Reload License Sulnittal for Q.md Cities Nuclear Power Station,: Unit ~1, Reload 11- (Cycle 12), 23A5989,. Ew. 0,-

Class I, August 1990..

4.

Quad Cities Nuclear Power Station, Units 1 arxi 2, SAFER /GESTR-IOCA Ioss-of-Coolant-Accident Analysis,- NEDC-31345P, June 1987, (as amended).

5.

General Electric Standard Application for Reactor Fuel (CESTAR),

NEDE-24011-P-A-9, ' September 1988 (as _ amended).

6.

Dctended Operating Dcznain and Equipnent Out-of-Service (EOD/ECOS)-

?

for Quad Cities Nuclear Power Station, ' Units l'and I, H. X. Hoang, NEDC-31449, Class II, July 1987.

-t j-

' i Quad Cities - Unit 1-lii Cycle 12

l 11

.i

' Core Operatify Limits Report y

IIST OF FIGUPES.

l PIGURE TITIE/DESCRIPTIN EMiE 2 Marl== Average Plarar Linear Heat Generation Rate -

2 (MAPU1GR) vs. Average Planar ExporJre for Fuel-Types PBIRB265H and-BP8IRB265H.

1 2-2_

Maxinum Average Planar Linear Heat Generation Rate 2-3 1

(MAPUtarl) vs. ' Average Planar Exposure for Fuel Type DFBIRB282.

1 2-3 Mav4= = Average Planar Linear Heat Generation Rate 2-4I (MAPUlGR) vs. Average Planar Exposure for Fuel' Type BPBIRB283H.

~.i 2-4 Mi== Average Planar Linear Heat Generation Rate-2 (MAPU1GR). vs.- Average Planar Exposure for Riel Type BPBIRB299.

2-5

- M4== Average Planar Linear Heat Generation Rate (MAPDER)-' vs. Average Planar Wn for Riel Type 6-BD300A.'

2-6 Maximun-Average Planar Linear Heat: Generation Rate

'2 (MAPINGR) vs. Average Planar Exposure for' Fuel Type BD300B.'

2-7 Mav4== Average Planar Linear Heat Generation Rate 2-8i Ji

- (MAPU1GR)' vs. Average Planar Exposure for:Ebel Type BD301H.~

2-8 M4==. Average Planar Linear Heat Generation Rate I

2-9 (MAPDER) vs. Average Planar E-2re for Ebel Type Barrier LTA.

2-9 Maxinun Average Planar Linear Heat Generation Rate 2-10' (MAPDER) vs. Average Planar Exposure for Fuel: Type GE9B-P8tMB258-9GZ-80M-145-T.-

2-10' Maxinum Averaoe Planar Linear Heat Generation Rate' 2-11

_-(MAPUER)' vsC Average Planar Exposure for: Fuel Type GE9B-P8mB258-4G4 ~. 0/3GL 0-80M-145+T.

4-1 Kf Factor vs. Core Flow %.

4-2 Quad Cities - Unit 1 iv Cycle 12;

---,.s-m- - ---.',

1

Core Operatirr LimiliReport-

+

1.0 MOL ROD WI'IfD3 ANAL BIDCK DETRUMENTATICN (3.2/4.2)

1. 't '

MCAL dit,unCATION Kt.ru<rriCE: -

-'Ibrianical Specification Table 3.2-3 arrl 3.6.H

-a

1.2 DESCRIPITON

'Ihe Rod Withdrawl Block Monitor Upscale Instrumentation Trip

-i Setpoint for two recirullation loop operation is determined from.

the following relationship:

~~

L (0.65)Wd + 43%**

    • Clanped, with an allowable value not to exceed the allowable value.

for recirculation loop flow (Wd) 'of 100%.

3 Wd is the per a nt of drive flow required to produce ~a rated core 4

flew of 98 million-lb/hr. -- Trip level setting is in-percent of rated power -(2511-NWth).-

~

l-i 4

i l

l l

Quad Cities - Unit 1-1-1 Cycle.12

--,___m.___.

]

g o

i

  • Core Operating Limits Report j
s

,x it 2.0

&ZBgy: PLANAR LTNEAR HEAT GENERATION RATE (APDER)"(3.5/4.5)

'2.1 TEWNICAL SPECIFICATIGi

REFERENCE:

\\

Technical 4 Specification 3.'5.I:

2.2 IESCRIPI'ICH

i

,a.

'Ihn Mav4== Average Planar Linear Heat;-Generation' Rates (MAPINGR)-

versus Average Planar rwann for;fueld:ypea P8tRB265H andi a

BP8[RB265H are determined frtan Figurai2-1.

,q

, Ihe Mari== Average Planar Linear Heat Generation Rates (MAPIH:iRN N

versus Average Planar 5'wann for fuelEtype BP8tRB282.is t 1

determined fr a Figure 2-2i g.

'Ihe Maxizen Average Planar Linear Heat! Generation Rates 1(MAPulGR):.

versus Average Planar Exposure-;for fuel;. type BP8tRB283HLis

~

determinmi fr m FigureL2-3.'

'[he Mav4== Averagi Planar Linear Heat Generatim Rates (MAPDIGR))

d versus Average Planar fwann 'for fuel' type BP8tRB299'.is; determined'fr a-. Figure 2-4.

1

'Ihe Mav4==l Average Planar Linear Heat' Generation Rates?(MAPIER) i versus Average Planar Exposure for fuelt. type BD300Aris determined

.j frtan Figuru 2-5...

'Iha May4==: Average Planar Linear Heat:Generatim Rates:(MAPIHGR):

"i s

versus Average Planar W M for;fuelttype BD300B;is determined fr m Figure 32-6.:

i

'd

'Ibe Maximum Average Planar Linear Heat Generation Ratest(MAPulGR) 1 versus Avera

. frm Figure.ge Planar 5'wann for.fuelutype'BD301H Lis determined 2-7

'Ihe Mavi== Average Planar Linear Heat Generation RatesT(MAPIlt:iR) 3 l=

versus' Average : Planar 5'wanmeifor,fuelltype Barrier LTA is-determinedzfr m Figure 2-8.n

'Ihe Maximum Average' Planar Linear Heat Generation Rates (MAPINGR):

versus Average Planar Exposure forl fuel type GE9B-PBEMB258-9GZ 4

8G4-145-T'is determined fr m Figure 2-9 9

-t

'Ihe Mavi==: Average Planar Linear Heat Generatlon: Rates =(MAPIHGR);

versusl Average Planar 5'wann.fornfuel type GE9B-P8DWB258-4G4.0/3G3.0-80M-145-T :is determined fra Figure ~ 2-10.

i I

5

)

.I f Q

Quad cities - Unit'l-1

cycleil2:

l 1ey Q

.a

= -

-- + ~ + ~ -~~

g i = h $ =-

000 l

s 5

4 5

6 0

2

)

00 RB 0

R 4

G) l j 8 lP) 0 A B 00 Md 53

(

n e a taH N

)

0 T R 5 0 S 6

00/

N n2 3 d oB W

iaE y

t

(

re8 0 e n1 0

r 1

0 u N

e 52 s s

o 2

G e

p t

p x

e a y E

r eT 0 r u

l 0 a g

0 N

0 n i

e r

2 a

F a u l

eF P

n e

r

i. o g

l 0

a f

0 r

0 r

a e 5 e 1

v n ru A

a s

P o p

e 0

x 0

g 0

E 0

a 1

r r e a v n A a 0

m) 005 u e mg i a x r a e Mv A 0

m5 0

0 0

0 0

0 0

0 s

5 0

5 0

5 0

5 v

2 2

1 1

0 0

9 9

B 1

1 1

1 1

1 Ehsgh eB=d~

v

gi5An." E" 00054 0

)

0 R

0 N

0 G

'4 l

i L

2 P

8 A 2 0

MB 00 y

5

(

3 R

eD

\\

t 8

a P

)

R 0 T B

0 S 0

n 0/

y o e 3 d J

W i

\\

t y

M arT

.(

e 0 e 0 r 2

n e e u 0 u 5

G' 2 s o

2 t

r p

a o x

e ef E

ru l

0 r e

0 l

a g

s 0

r 0 n i

r u

2 a F

a s

e lP o

n p

i.

e x

g 0

rE 0

a 0

r a

5 e r

n a 1

v A

a n P'a e) 0 ge 0

y 0

a g 0

1 r

a e

r v e A v A

0 m

00 us 5

mv

/

ixa M

0 0

0 0

0 0

0 0

0 0

5 0

5~

0 5

0 5

0 5

2 2

1 1

0 0

9 9

8 1

1 1

1 1

1

_g$

5 eSS E~

v i

Core Operating Umits Repori g;+

..[

i

'/

8 ncc:

.8 w

,e

=_

aW

/

e=c m

/

g 1

a =m

/

a=

_m c=>

m e oc n-t;5 m

N e

/

a:

oe

=. ca.

.E!E

_=

  • c e-I

. c"3 CD g

/

gs a

y g

ng n

R-as m a w

w m-

==

,m l

=..

4 : a-e ra g !s; t ~ y n.s m

.o n_

3 L

, _c.= m.

m y

a :,.

.g g t

g 58 8 sh c g ig:

=

=

ca_ m

. C2

c;p l

en.

M i

l5= m l

i

= g ac -

sE."C N

= m-e --

'E m

=E

. c, R

8 8

8 8

8 8

8;

~

m.

m g

m m

(uM mwi Quad Cilles -Unit i p.2-4 Cycle 12

g g%=A5 H 000 N

5 4

0

)

00 R

0 G

4 IL 9

\\

0 P

9 0

A 2

0 MB y

53

(

R x

eD t

8 a

)

P 0 T R

0 S B

00/

n e

3 d o

W

)

i t

y M

ar"

(

el 0 e N

n e 0 r 0

u N

e l

5 i

2 s

GF op t r x

e a o E

r ef u

0 r l

0 a g

e l

0 x

0 n r

i r

2 a F

u a

s l

P e o n

p e

iL x g

0 a rE 00 r a

5 e

r v

1 n a A

a n P a P

e 0

0 ge 0

0 a g

/

1 r

a e

r v e A v A 0

m 00 u s 5

mv i xa M

0 0

0 0

0 0

0 5

0 5

0 5

0 2

2 0

0 9

9 1

1 1

1 e['E eB1a ~

1

Maximum Average P anar.inear Hea': 13eneraion Ra':e MlPl.lu]R g

s.

B vs Average P anar Exposure for :ue "ype BD300A g

E w

e

==

~

=

~

1150 13~00

/

N 12.50-s

/

\\

A$J D

N g11.00-s e EE 10.50-

\\

$ 10.00 -

s 9.50-N 9.00 s

8.50 8.00 0

5000 10000 15000 20000 25000 30000 35000 40000-Average Planar Exposure !)Nd/ST}

s igure24 l

l l

Core Operating Limits Report-g n

/

g R

e

=

1 ca m

<x i

E C

/

8

-o m c e.>

7 8

m

- C"'S m

m "m

wR m

/

.c ca.

o o ::=-.

/

g 3::

= t-

/

ma M8 e

(o co

.a P,,

I

/

o c-a

/

8

S$ $

g.b ME y*

e c=

g c ><:

a m

. i u.a e gi m -

g b

- a g-aa N

SS

=m

=-

o

=E

\\

5 E

N N

=

2

=

i i

i i

8 8 8 838@ 8.-Si

8. S 8 ss s s

--e (9/m)mwn Quad Cities -Unit 1 p.M Cycb 12 o

+

2 ou 4

.2 L

y A

m-m 9

t Core Operating Umits Report f

/

/

e

/

8

=

c=

C

/

[

-l

,a

.o_.

4

/

w M-o

.l M

e e

e

-C j

H CO CC3

  • =

=

a c=

c=

C"D >

. )

g.

l

    • ~~' E

/

"lll"I

-+--*

v co 8E g

W W

a o

e-Lu i

".co

=

.U

.2

~. * - $

g

.m 8

,/

g g

'^-

c=.

m

-(N cis -

g=

pac

[

,C U h

m 5 E5 c

c-

/

1

.e

-o mC

-.8

~

O*=

4 #-

'j

m E$

\\

88 1

==

-N

.ss

\\

g

~

L m m s a s - c a m m m m s s m-m-0 WI) m m Quad Citics -Unit 1 p.2-8 Cycle 12 j

i a

Core Operating Limits Report g

/

i[

g ca 3

8 CL 4 g

g

.<c

?, a u.

m

>/

g m-

~ a51

@10 m

cx: co

.sq E*

in EC

$E g #,

' g ce c$

oMa

-s r

=

g-E m

- ED E!

.EP

-. =

g _sa n.r -

E8 8'

~m c=

c F

5' 8 b

-" M

$4 m=

  • -?

92,'

.R gm

> ca

  • E s

\\

a

=m

\\

o

.!5E,

N

\\

=E

=

8 8

8 Si 8

8 8

8 8

S g

a

~--c (U/M)'dDHldVW Ouad Cities -lJnit 1 2-9 Cycle 12

I I

Core Operating Urnits Report g

j l

a

/

h g

/

R c_c

/,

/

_J

./

Q-

<=c

/

,r-i

/

s

~

8 as m

-s 8

% >a I

K32 & w

  • p i

A t.n 8em

. /

@s

=-

/

'o CCT

/

A$

=-

E S o:: s

,/

.g y C D

=

m=

t m

<c y k gm m

% 8 c=4 a

f**

m acr>

8,_

==

j lllllllll

>=ac I

SO CF3

'/

g iG-u.a e

~

3ma Et

/

R e m

.=

= E s::

8m

=

i

._ s

(

g a

~

m

~

E==ra "

c _ 5 ' m;;-

/

3:

m o

/

T

/

E'< <@c

~

m o

m=

-::c EEi

\\

o

=

8 s

.E

\\

m N

m

s t

o 888888s88888s888s8 amma-aaaa aaa Mw)een Quad Ciths -Unit I

p. 2-10 Cycle 12 1

gi{5 00055 0

g 00

\\

0

)

5 R

G

\\

>\\

l 0

l L

0 3'

0 P

5 4

A

\\

M T

(

0 e5 0

e 0

p4 0

RTH

\\

ta y

4) TS 0/

n eL x'

0 d o

l 0

W i0 i

5 F

t 3 M a

8

(

r r

e 0

e o0 nf 0 r 0 u 1

e e3

,0 0

s G rG 3 o u

p 2 3

t s x

a o/

E e

e p0 0

r N

0 r u

l 0 a x4 l

52 n

g rE G i

a F

a r4 lP e a n n 00 e 8

i 0 g L a

~

5 0 a 2

r) 2 re a

~

eB v

n A

a gW 00 a

P rD 0

~

5 e8 1

e vP gA a

B 0

r s 0

9 0

e v 0

v E

1 A

G m

0 0

li 0

m 5

i

/

xa M

0

~

0 U

0000000000000 5

U 0 5 0 5 0 5 0.5 0.5 0 5 0 3

f1 009988776655 1

'j1 1 1 ED5hsdM E

,5'l ="

F

Core Operating Limits Report-

. s..

3. 0 --

LINEAR HEAT GMERATION RATE (UlGR) (3. 5/4. 5) 3.1 TEQWICAL SPECIFICATION Rt.nau21CEt

% chnical Specification;3.5.J.

f 3.2-DES m fPTIONI-a.

Se UiGR limit is 13.4 kw/ft for fuel typest-

[

l'.-

. BP8IRB265He 2..

BPBIRB283H 3.

BP6IRB282 4

1 4.

BPRIRB299 l

5.

Barrier III'A'-

q b.

.%e IMR limit is '14.4 kw/ft for; fue'l' types:;

1.

BD300A 2..

BD300B 3.

BD301H 4.

GE9B-PBDWB258-9GZ-80M-145-T 5.

GE9B-P6DNB25814G4.0/3G3.0-80M-145-T-i t

i-7 V

)

.- i i

f Y

Quad cities - Unit 1 3-1 cycle 12

  • Core' Operating Limits Report!

g 4

-4.0-MINDiN CRITIGL POWER PATIO fMCPR) ~~ (3.5/4,5) i 4.1 TEGNIGL SPECIFIGTION Mr.nktNCE: ~

'Dachnical= Specification'3.5.K ard 3.6.H.'

sr

4.2 DESGIITION

-i

Durirg steady-state operation at rated core flow,' the MCPR limit-(OIMCPR)l shall be greater than or equal:-

.1. 3 0 - for tave $l0.68 sec.

.1.35 for tava 2 0.86'seci (0.278)tave + 1.111 [for 0.68 sec.;< tave <[OiB6=sec..

'l i

where tave = mean 20% scram insertion time for.all surveillance i

data fran 'Dsch. Spec. -4.3.C which has been' generated-

-in the current cycle.

~

Ibr core' flows :other than rated,' these ncminal values of MCPR shall-be incrmaari by aJfactor of Kf where Kf is as shown in y Lj Figure 4-1.

When operating with a Feedwater Heater Out-of-Service l(FMOOS),.

r-1 the Operatin

--information,g-Limit'MCPR;(OIMCPR)',: calculated using< the above shall be'increaari by 0.02. 'Ihis event,1which-conservatively bounds the recpim.nts detailed within the-EDD/EDOS dm=*nt (Reference 6), goes beyond allloperatingE..

conditions which can be expected during normal eparation as' set.

forth in the SRIS;(Reference 3)..

1 l

l i

1 l

t

+

L i

Quad Cities - Unit 1' 4. Cycle 12

D (1 FMTOR e

e g_

I s2 F

E A

1.50 K-2

!?

_==

5 1.40 g

s N N

1.30 \\

'\\

AUTOMATIC FLOW CONTROL Kf CURVE l

\\

l's.

s N

N 9.20 vx N

s s

t N

~. N N

N

'u 1.10-N

's N

- N N

N N

HANilAL FLOW CONTROL Kf CURVE 0071 FLOWMAXJ x s

1.00 0.90 25

$0 35; 40 45 50 55

-60.

' 65

- 70 75 80 85 90 95

.100 Core Flow %

Figure 4-1 l,,--

m-g y-w

'me-vw m.>

,m-w-o

,