|
---|
Category:TECHNICAL SPECIFICATIONS
MONTHYEARML20217C7961999-10-0606 October 1999 Marked-up & Type Written Proposed TS Pages,Revising TSs 1.0, 3.6,Bases 3.0,Bases 3.6 & 5.5,to Adopt Implementation Requirements of 10CFR50,App J,Option B for Performance of Type A,B & C Containment Leakage Rate Testing ML20209A7351999-06-23023 June 1999 Proposed Tech Specs Pages 3.3-4 & 3.3-6,replacing Page 3.3-6 Re Recirculation Loop Flow Transmitters & Applicable SRs Associated with Function 2.b ML20196B4741999-06-17017 June 1999 Proposed Tech Specs Bases Changes Made at Plant Subsequent to Receipt of License Amend 178,dtd 980731,for Conversion to Its,Through 990610 ML20195E9101999-06-0808 June 1999 Proposed Tech Specs,Correcting Described Method by Which SGTS Heaters Are to Be Tested ML20205H2891999-03-31031 March 1999 Proposed Tech Specs Modifying ACs for Unit Staff Qualifications for Shift Supervisor,Senior Operator,Licensed Operator,Shift Technical Advisor & Radiation Manager Positions ML20236W1141998-07-28028 July 1998 Proposed Tech Specs Re Implementation of BWR Thermal Hydraulic Stability Solution ML20151Q0621998-07-28028 July 1998 Final Version of Improved TS & Bases Re Proposed Change to Conversion to Improved Standard TS ML20236R9821998-07-16016 July 1998 Proposed Tech Specs Section 6.5.1,re Implementation of BWR Thermal Hydraulic Stability Solution ML20236Q0641998-07-13013 July 1998 Proposed Tech Specs Re Rev B to Conversion to Improved STS ML20216H0801998-04-15015 April 1998 Proposed Tech Specs Sections 2.1.A.1.d & 3.2.C,deleting Max Rated Power for APRM Rod Block Trip Setting ML20216H0571998-04-15015 April 1998 Proposed Tech Specs 4.2.C,exempting Neutron Detectors from Channel Calibr Requirements ML20216B4481998-04-0202 April 1998 Proposed Tech Specs 4.2.C,exempting Neutron Detectors from Channel Calibr Requirements ML20148G3481997-05-30030 May 1997 Proposed Tech Specs,Changing Frequency of Testing RHR Cross Tie valve,RHR-MOV-MO20,position Indication from Once Per Month to Once Per Operating Cycle ML20138J0751997-05-0505 May 1997 Proposed Tech Specs,Relocating Control of Standby Liquid Control Relief Valve Setpoint in TS 4.4.A.2.a & Associated Bases ML20148B0041997-05-0202 May 1997 Proposed Tech Specs,Deleting SLC Relief Valve Testing Described in TS Section 4.4.A.2.a & Associated Bases in Bases Section 3.4.A Since Testing Is Already Performed Under ISI Program ML20134K3771997-02-10010 February 1997 Proposed Tech Specs Re Requirements for Avoidance & Protection from Thermal Hydraulic Instabilities to Be Consistent w/NEDO-31960 & NEDO-31960,Suppl 1, BWR Owners Group Long-Term Stability Solutions.. ML20117K3291996-06-0606 June 1996 Proposed Tech Specs Revising Safety Limit MCPR from 1.06 to 1.07 for Dual Recirculation Loop Operation & from 1.07 to 1.08 for Single Recirculation Loop Operation ML20100R4431996-03-0505 March 1996 Proposed Tech Specs,Consisting of Change Request 142, Revising TS, DG Enhancements ML20086K4421995-07-14014 July 1995 Revised Proposed Tech Specs Re DG Enhancements Reflecting More Conservative Approach to Enhancing DGs ML20086B7061995-06-28028 June 1995 Proposed Tech Specs Re Increasing Required RPV Boron Concentration & Modifying Surveillance Frequency for SLC Pump Operability Testing ML20085J2631995-06-15015 June 1995 Proposed Tech Specs Re Extension of Surveillance Intervals for Logic Sys Functional Testing for ECCS ML20083A7241995-05-0505 May 1995 Proposed Tech Specs Reflecting Changes to TSs & Associated Bases for License DPR-46 ML20083A1341995-05-0202 May 1995 Proposed Tech Specs Re Temporary Rev to SR to Extend Two Year LLRT Interval Requirement ML20149H8821994-12-27027 December 1994 Proposed Tech Specs Re Control Room Emergency Filter Sys ML20078S5711994-12-22022 December 1994 Proposed Tech Specs Re Definition of Lco,Per GL 87-09 ML20073J2371994-09-26026 September 1994 Proposed TS LCOs 3.5.C.1 & 3.5.C.4,increasing Min Pressure at Which HPCI Sys Required to Be Operable from Greater than 113 Psig to Greater than 150 Psig ML20071K1541994-07-26026 July 1994 Proposed Tech Specs to Increase Flow Capacity of Control Room Emergency Filter System ML20070M6671994-04-26026 April 1994 Proposed Tech Specs Re Intermittent Operation of Hydrogen/ Oxygen Analyzers ML20065K1931994-04-12012 April 1994 Proposed Tech Specs,Reflecting Removal of Definitions 1.0.Z.B.1 Through 5,change to LCO 3.21.B.1.a (Line 5) Re Ref to 10CFR20.106 & Change to Paragraphs 1,4,5 & 6 (Lines 6,3,8 & 2 Respectively) Re Ref to 10CFR20.106 ML20058N2321993-12-10010 December 1993 Proposed Tech Specs 3/4.21, Environ/Radiological Effluents, 6.5, Station Reporting Requirements & 6.5.1.C.2 Re 10CFR50.59(b) Rept ML20058N2881993-12-10010 December 1993 Proposed Tech Specs for Pressure Vs Temp Operating Limit Curves ML20058M2591993-09-28028 September 1993 Proposed Tech Specs Modifying Organizational Structure by Removing Mgt Positions of Site Manager & Senior Manager of Operation ML20056G5971993-08-31031 August 1993 Proposed TS Re Primary Containment Isolation Valve Tables ML20056G5821993-08-31031 August 1993 Proposed TS Re Primary & Secondary Containment Integrity ML20056G2341993-08-25025 August 1993 Proposed Tech Specs Bases Section to Reflect Operational & Design Changes Made to CNS Svc Water Sys During 1993 Refueling Outage ML20056F3331993-08-23023 August 1993 Proposed Tech Specs 6.0, Administrative Controls, Reflecting Creation of Mgt Position of Vice President - Nuclear ML20045D8991993-06-23023 June 1993 Proposed TS SR 4.9.A.2 Re Determination of Particulate Concentration Level of Diesel Fuel Oil Storage Tanks ML20045C0031993-06-14014 June 1993 Proposed Tech Specs Associated W/Dc Performance Criteria ML20045C8301993-06-14014 June 1993 Proposed Tech Specs Incorporating New Requirements of 10CFR20 ML20128L5561993-02-12012 February 1993 Proposed TS Table 4.2.D, Min Test & Calibr Frequencies for Radiation Monitoring Sys & TS Pages 81 & 84 Re Notes for Tables 4.2.A Through 4.2.F ML20128E6201993-02-0101 February 1993 Proposed Tech Specs Reflecting Current NRC Positions Re Leak Detection & ISI Schedules,Methods,Personnel & Sample Expansion,Per GL 88-01 ML20127B8331993-01-0505 January 1993 Proposed TS Pages 53,55,70 & 71,removing Bus 1A & 1B Low Voltage Auxiliary Relays ML20115F8531992-10-15015 October 1992 Proposed Tech Specs Page 48,reflecting Relocation of Mechanical Vacuum Pump Isolation SRs ML20115A3481992-10-0808 October 1992 Proposed TS Section 6.1.2 Re Offsite & Onsite Organizations, Delineating Responsibilities of Site Manager & 6.2.1.A Re Min Composition of Station Operations Review Committee ML20104B2091992-09-0909 September 1992 Proposed TS 3.1.1 Re Reactor Protection Sys Instrumentation Requirements & TS Table 3.2.D Re Radiation Monitoring Sys That Initiate &/Or Isolate Sys ML20104A8691992-09-0202 September 1992 Proposed TS 3.9 & 4.9 Re Auxiliary Electrical Sys ML20099D4151992-07-28028 July 1992 Proposed TS 3.6 Re LCO for Primary Sys Boundary & 4.6 Re Surveillance Requirements for Primary Sys Boundary ML20113G8241992-05-0404 May 1992 Proposed Tech Spec Pages for Removal of Component Lists,Per Generic Ltr 91-08 ML20096D6111992-05-0404 May 1992 Proposed Tech Specs Change 100 to Eliminate Main Steam Line Radiation Monitor Scram & Isolation Functions ML20090A8061992-02-25025 February 1992 Proposed Tech Specs Re Dc Power Sys 1999-06-08
[Table view] Category:TECHNICAL SPECIFICATIONS & TEST REPORTS
MONTHYEARML20217C7961999-10-0606 October 1999 Marked-up & Type Written Proposed TS Pages,Revising TSs 1.0, 3.6,Bases 3.0,Bases 3.6 & 5.5,to Adopt Implementation Requirements of 10CFR50,App J,Option B for Performance of Type A,B & C Containment Leakage Rate Testing ML20209A7351999-06-23023 June 1999 Proposed Tech Specs Pages 3.3-4 & 3.3-6,replacing Page 3.3-6 Re Recirculation Loop Flow Transmitters & Applicable SRs Associated with Function 2.b ML20196B4741999-06-17017 June 1999 Proposed Tech Specs Bases Changes Made at Plant Subsequent to Receipt of License Amend 178,dtd 980731,for Conversion to Its,Through 990610 ML20195E9101999-06-0808 June 1999 Proposed Tech Specs,Correcting Described Method by Which SGTS Heaters Are to Be Tested ML20207A0761999-05-14014 May 1999 Rev 3 to CNS Strategy for Achieving Engineering Excellence ML20206J2661999-04-22022 April 1999 CNS Offsite Dose Assessment Manual (Odam) ML20205H2891999-03-31031 March 1999 Proposed Tech Specs Modifying ACs for Unit Staff Qualifications for Shift Supervisor,Senior Operator,Licensed Operator,Shift Technical Advisor & Radiation Manager Positions ML20151Q0621998-07-28028 July 1998 Final Version of Improved TS & Bases Re Proposed Change to Conversion to Improved Standard TS ML20236W1141998-07-28028 July 1998 Proposed Tech Specs Re Implementation of BWR Thermal Hydraulic Stability Solution ML20236R9821998-07-16016 July 1998 Proposed Tech Specs Section 6.5.1,re Implementation of BWR Thermal Hydraulic Stability Solution ML20236Q0641998-07-13013 July 1998 Proposed Tech Specs Re Rev B to Conversion to Improved STS ML20206P9051998-07-0707 July 1998 Rev 2, Strategy for Achieving Engineering Excellence, for Cooper Nuclear Station ML20216H0571998-04-15015 April 1998 Proposed Tech Specs 4.2.C,exempting Neutron Detectors from Channel Calibr Requirements ML20216H0801998-04-15015 April 1998 Proposed Tech Specs Sections 2.1.A.1.d & 3.2.C,deleting Max Rated Power for APRM Rod Block Trip Setting ML20216D8971998-04-0808 April 1998 Rev 1 to Strategy for Achieving Engineering Excellence ML20216B4481998-04-0202 April 1998 Proposed Tech Specs 4.2.C,exempting Neutron Detectors from Channel Calibr Requirements ML20203G4271998-02-24024 February 1998 Rev 0 to First Ten-Year Interval Containment Insp Program for Cns ML20202H5311998-02-11011 February 1998 Strategy for Achieving Engineering Excellence ML20216G1571997-09-0505 September 1997 Rev 2.1 to Third 10-Yr Interval Inservice Insp Program ML20210H5641997-08-0707 August 1997 Rev 2 to NPPD CNS Third Interval Inservice Testing Program ML20148G3481997-05-30030 May 1997 Proposed Tech Specs,Changing Frequency of Testing RHR Cross Tie valve,RHR-MOV-MO20,position Indication from Once Per Month to Once Per Operating Cycle ML20148G8531997-05-0909 May 1997 Nebraska Public Power District Nuclear Power Group Phase 3 Performance Improvement Plan, Closure Rept ML20138J0751997-05-0505 May 1997 Proposed Tech Specs,Relocating Control of Standby Liquid Control Relief Valve Setpoint in TS 4.4.A.2.a & Associated Bases ML20148B0041997-05-0202 May 1997 Proposed Tech Specs,Deleting SLC Relief Valve Testing Described in TS Section 4.4.A.2.a & Associated Bases in Bases Section 3.4.A Since Testing Is Already Performed Under ISI Program ML20138H3861997-04-29029 April 1997 Rev 1.2 to CNS Third Interval IST Program ML20134K3771997-02-10010 February 1997 Proposed Tech Specs Re Requirements for Avoidance & Protection from Thermal Hydraulic Instabilities to Be Consistent w/NEDO-31960 & NEDO-31960,Suppl 1, BWR Owners Group Long-Term Stability Solutions.. ML20134E1091996-10-25025 October 1996 NPPD Cooper Nuclear Station Third Interval IST Program, Rev 1 ML20117K3291996-06-0606 June 1996 Proposed Tech Specs Revising Safety Limit MCPR from 1.06 to 1.07 for Dual Recirculation Loop Operation & from 1.07 to 1.08 for Single Recirculation Loop Operation ML20100R4431996-03-0505 March 1996 Proposed Tech Specs,Consisting of Change Request 142, Revising TS, DG Enhancements ML20101L8381995-12-31031 December 1995 Reactor Containment Bldg Integrated Leak Rate Test. W/ ML20113B0531995-12-29029 December 1995 Rev 4.1 to NPPD CNS Second Ten Yr Interval ISI Program for ASME Class 1,2 & 3 Components ML20093L1901995-10-18018 October 1995 Rev 0 to Third Ten-Yr Interval ISI Program for Cns ML20086K4421995-07-14014 July 1995 Revised Proposed Tech Specs Re DG Enhancements Reflecting More Conservative Approach to Enhancing DGs ML20086H7341995-07-14014 July 1995 Rev 7 to CNS Second Ten Yr Interval IST Program ML20086H7601995-06-30030 June 1995 Rev 4 to CNS Second Ten Yr Interval ISI Program for ASME Class 1,2 & 3 Components ML20086B7061995-06-28028 June 1995 Proposed Tech Specs Re Increasing Required RPV Boron Concentration & Modifying Surveillance Frequency for SLC Pump Operability Testing ML20085J2631995-06-15015 June 1995 Proposed Tech Specs Re Extension of Surveillance Intervals for Logic Sys Functional Testing for ECCS ML20083A7241995-05-0505 May 1995 Proposed Tech Specs Reflecting Changes to TSs & Associated Bases for License DPR-46 ML20083A1341995-05-0202 May 1995 Proposed Tech Specs Re Temporary Rev to SR to Extend Two Year LLRT Interval Requirement ML20083M0401995-01-20020 January 1995 Rev 1 to Restart Readiness Program ML20083M0901995-01-13013 January 1995 Rev 2 to Startup & Power Ascension Plan ML20149H8821994-12-27027 December 1994 Proposed Tech Specs Re Control Room Emergency Filter Sys ML20078S5711994-12-22022 December 1994 Proposed Tech Specs Re Definition of Lco,Per GL 87-09 ML20083M0141994-11-0909 November 1994 Rev 3 to Phase 1 Plan, ML20083M0321994-11-0808 November 1994 Rev 0 to Restart Readiness Program ML20073J2371994-09-26026 September 1994 Proposed TS LCOs 3.5.C.1 & 3.5.C.4,increasing Min Pressure at Which HPCI Sys Required to Be Operable from Greater than 113 Psig to Greater than 150 Psig ML20149F9921994-09-15015 September 1994 Rev 1 to CNS Startup Plan ML20071K9311994-07-27027 July 1994 Diagnostic Self Assessment (DSA) Implementation Plan ML20071K1541994-07-26026 July 1994 Proposed Tech Specs to Increase Flow Capacity of Control Room Emergency Filter System ML20070M6671994-04-26026 April 1994 Proposed Tech Specs Re Intermittent Operation of Hydrogen/ Oxygen Analyzers 1999-06-08
[Table view] |
Text
- . . . - . . .
LIMITING CONDITIONS FOR OPERATION SURVEILLANCE REQUIREMENTS 3.7.B (cont'd) 4.7.B (cont'd)
- 4. If these conditions cannot be met, 4.a. At least once per operating cycle procedures shall be initiated automatic initiation of each branch of i immediately to establish reactor conditions for which the standby the standby gas treatment system shall gas treatment system is not be demonstrated.
required.
4
- 5. Use of the Standby Gas Treatment for purging / venting the primary b. At least once per operating cycle i containment with both the inboard manual operability of the bypass and outboard exhaust isolation valve for filter cooling shall valves open in series from either the drywell (231MV and 246AV) and/or be demonstraced.
the Suppression Chamber (230MV
- c. When one standby gas treatment system and 2i5AV) is limited to 90 hours0.00104 days <br />0.025 hours <br />1.488095e-4 weeks <br />3.4245e-5 months <br /> becomes inoperable the other standby per calendar year when coolant tempersture is greater than 212.F.
Eas treatment system shall be demon-During such time bsth Standby Gas atrated to be operable immediately and daily thereafter. A demonstra-Treatment Systems shall be operable cion of diesel generator operability and only one Standby Gas Treatment is not requ' red by this specification.
l System is to be used for the j ,
purge / vent operation.
)
C. Secondary Containment C. Secondary Containment
- 1. Secondary containment integrity shall 1. Sec ndary containment surveillance be maintained during all modes of shall be performed as indicated plant operation except when all of the following conditions are met. ,
l l
l l
l i
8804260017 880419 -165a-PDR ADOCK 05000298 P DCD
, j
i TABLE 3.7.4 PRIMARY CONTAINMENT TESTABLE ISOLATION VALVES TEST PEN. NO. VALVE NUMBERS MEDIA X-7A MS-AO-80A and MS-AO-86A, Main Steam Isolation Valves Air X-7B MS-A0-80B and MS-AO-86B, Main Steam Isolation Valves Air X-70 MS-AO-80C and MS-AO-860, Main Steam Isolation Valves Air i'
X-7D MS-A0-80D and MS-AO-86D, Main Steam Isolation valves Air X-8 MS-MO-74 and MS-M0-77, Main Steam Line Drain Air X-9A RF-15CV and RF-16CV, Feedwater Check Valves Air A
X-9A RCIC-AO-22, RCIC-MO-17, and RVCU-15CV, RCIC/RWCU Connection to Feedwater Air X-9B RF-13CV and RF-14CV, Feedwater Check Valves Air l
X-9B HPCI-AO-18 and HPCI-MO-57, HPCI Connection to Feedwater Air j X-10 RCIC-MO-15 and RCIC-MO-16, RCIC Steam Line Air 1
l X-11 HPCI-MO-15 and HPCI-MO-16 HPCI Steam Line Air l
\
I X-12 RHR-MO-17 and RHR-MO-18 RHR Suction Cooling Air j 2
X-13A RHR-M0-25A and RHR-M0-27A, RHR Supply to RPV Air -
X-13B RHR-MO-23B and RHR-MO-27B, RHR Supply to RPV Air ;
j X-14 RWCU-M0-15 and RWCU-MO-18, Inlet to RWCU System Air )
X-16A CS-MO-11A and CS-MO-12A, Core Spray to RPV Air j X-16B CS-MO-11B and CS-MO-12B, Core Spray to RPV Air
, X-18 RW-732AV and RW-733AV, Drywell Equipment Sump Discharge Air
)
X-19 RW-765AV and RW-766AV, Drywell Floor Drain Sump Discharge Air X-25 (Note 1) PC-232MV and PC-238AV, Purge and Vent Supply to Drywell Air l
X-25 ACAD-1305MV and ACAD-1306MV, Supply to Drywell Air 4
X-26 (Note 1) PC-231MV, PC-246AV, and PC-306 MV Purge and Vent l i Exhaust from Drywell l Air 4
X-26 ACAD-1310MV, Bleed from Drywell Air 4
1 1 l 5 l b i
-173-
- - - - - t
l TABLE 3.7.4 (page 2)
PRIMARY CONTAINMENT TESTABLE ISOLATION VALVES l
. TEST l PEN. NO.*' VALVE NUMBERS MEDIA
~
i X-39A RHR-MO-26A and RHR-M0-31A, Drywell Spray Header Supply Air
- X-39B RHR-MO-26B and RHR-MO-31B, Drywell Spray Header Supply Air X-39B ACAD-1311MV and ACAD-1312MV, Supply to Drywell Air X-41 RRV-740AV and RRV-741AV, Reactor Water Sample Line Air X-42 SLC-12CV and SLC-13CV, Standby Liquid Control Air X-205 (Note 1) PC-233MV and PC-237AV, Purge and Vent Supply to Torus Air X-205 PC-13CV and PC-243AV, Torus Vacuum Relief Air X-205 PC-14CV and PC-244AV, Torus Vacuum Relief Air j X-205. ACAD-1303MV and ACAD-1304MV, Supply to Torus Air X-210A RCIC-MO-27 and RCIC-13CV, RCIC Minimum Flow Line Air X-210A RHR-MO-21A, RHR to Torus Air.
X-210A RHR-MO-16A, RHR-10CV, and RHR-12CV, RHR Minimum Flow Line Air 4
X-210B RHR-MO-21B, RHR to Torus Air X-210B HPCI-17CV and HPCI-M0-25. HPCI Minimum Flow Line Air X-210B RHR-MO-168, RHR-11CV, and RHR-13CV, RHR Minimum Flow Line Air X-210A and 211A RHR-MO-34A, RHR-MO-38A, and RHR-MO-39A, RHR to Torus Air X-210B and 211B RHR-MO-34B, RHR-M0-38B, and RHR-MO-39B, RHR to Torus Air i
X-211B ACAD-130lMV and ACAD-1302MV, Supply to' Torus Air X-212 RCIC-15CV and RCIC-37, RCIC Turbine Exhaust Air X-214 HPCI-15CV and HPCI-44, HPCI Turbine Exhaust Air X-214 HPCI-AO-70 and HPCI-AO-71, HPCI Turbine Exhaust Drain Air X-214 RHR-MO-166A and RHR-MO-167A RER Heat Exch. Vent Air l X-214 RHR-M0-166B and RHR-MO-167B RHR Heat Exch. Vent Air J
l l X-220 (Note 1) PC-230MV, PC-245AV, and PC-305MV Purge end Vent Exhaust from Torus Air X-220 ACAD-1308MV, Bleed from Torus Air j X-221 RCIC-12CV and RCIC-42, RCIC Vacuum Line Air 3
X-222 HPCI-50 and HPCI-16CV, HPCI Turbine Drain Air 1
- -174-
~ .. .
,l TABLE 3.7.4 (page 3)
PRIMARY CONTAINMENT TESTABLE ISOLATION VALVES
. TEST g N. NO. VALVE NUMBERS- MEDIA i X-223A CS-M0-26A and CS-MO-5A, Core Spray Test and Minimum Flow Air i X-223B CS-MO-26B and CS-MO-5B, Core Spray Test and Minimum Flow Air ;
X-225A-D RHR-MO-13A, RUR-MO-13C, RHR-MO-13B, RHR-MO-13D, RHR Suction From Torus Air X-224 RCIC-MO-41, RCIC Suction From Torus Air X-226 HPCI-M0-58, HPCI Suction From Torus Air X-227A, B' CS-MO-7A and CS-MO-7B, Core Spray Suction From Torus Air
{
Notes to Table 3.7.4
- l. Once per operating c.ycle, while shutdown, the devices which limit the maximum i opening angle shall be verified functional for the following valves-i PC-230MV '
a PC-231MV PC-232MV PC-233MV l
i l
)
7
)
l l
4 i
i l
1
-175-
._. . _ , - - - . ~ _ _ . __ --. _- - .,.- _ - _ -_ .___.. -~, ..- -. _ .-_ _ ,___ J
3.7.A & 4.7.A BASES (cont'd)
The primary containment is normaJ1y slightly pressurized during periods of reactor operation. Nitrogen used for inerting could leak out of the containment but air could not leak in to increase oxygen concentration. Once the containment is filled with nitrogen to the required concentration, no monitoring of oxygen concentration is necessary. However, at least twice a week the oxygen concentration will be determined as added assurance.
The 500 gallon conservative limit on the nitrogen storege tank assures that adequate time is available to get the tank refilled assuming normal plant operation. The estimated maximum makeup race is 1500 SCFD which would require 1 bout 160 gallons for a 10 day makeup requirement. The normal leak rate should be about 200 SCFD.
3.7.B & 3.7.C STANDBY GAS TREATMENT SYSTEM AND SECONDARY CONTAINMENT The secondary containment is designed to minimize any ground level release of radio-active materials which might result f rom a serious accident. The reactor building provides secondary containment during reactor operation when the drywelF is sealed and in service. The reactor building provides primary containment when the reactor is shut down and the drywell is open, as during refueling. Because the secondary containment is an integral part of the complete containment system, secondary con-tainment is required at all times that primary containment is required as well as during refueling. Secondary containment may be broken for short periods of time to allow access to the reactor building roof to perform necessary inspections and maintenance. .
The standby gas treatment system is designed to filter and exhaust the reactor building atmosphere to the stack during secondary containment isolation conditions.
Both standby gas treatment system fans are designed to automatically-start upon-containment isolation and to maintain the reactor building pressure to the design negative pressure so that all leakage should be in-leakage. Should one system fail to start, the redundant system is designed to start automatically. Each of the two fans has 100 percent capacity.
The intent of Specification 3.7.B.S is to minimize the amount of time a' SBGT system l 1s on line while coolant temperature is greater than 212*F and both inboard and '
outboard exhaust isolation valves from the drywell and/or torus are open in series.
The concern is to decrease the probability of damage to the SBGT filters that would !
occur from excessive differential pressure caused by a LOCA with the main isolation '
exhaust valves open in series. Even it this should occur, the other SBGT system will be operable and available for use. This specification does allow purge / venting with the inboard exhaust bypass valve and the outboard exhaust valve both open in series and the time does not count against the yearly limit. The NRC has accepted the determination that due to the small size of the bypass v.alve, 1 there is no chance of damage to the filters if a LOCA occurs while purging / venting j the containment through the bypass with a SBGT system on line. For the purpose of !
Specification 3.7.B.S. the term "calendar year" is a period of time beginning on l January 1 and ending on December 31 for each numbered year. l 1
-tac-j
3.7.D & 4.7.D BASES (cont'd) results in a failure probability of 1.1 x 10~7 that a line will not isolate.
~
, More frequent testing for valve operability results in a greater assurance that the valve will be operable when needed.
4 In order to assure that the doses that may result from a steam line break do not exceed the ICCFR100 guidelines, it is necessary that no fuel rod perforation resulting from the accident occur prior to closure of the main steam line isolation valves. Analyses indicate that fuel rod cladding perforations would be avoided for main steam valve closure times, including instrument delay, as long as 10.5 seconds. r The primary containment is penetrated by several small diameter instrument lines connected to the reactor coolant system. Each instrument line contains a 0.25 inch restricting orifice inside the primary contain=ent and an excess flow check valve outside the primary containment. A program for periodic testing and examination of the excess flow check valves is performed as follows:
- 1. Vessel at pressure sufficient to actuate valves. This could be at time .
of vesse'l hydro following a refueling outage.
- 2. Isolate sensing line from its instrbment at the instrument manifold.
- 3. Provide means for observing and collecting the instrument drain or vent valve flow. !
- 4. Open vent or drain valve. * - =
- a. Observe flow cessation and any leakage rate. !
- b. Reset valve after test completion.
- 5. The head seal leak detection line cannot be teseed in this manner. This ;
j valve will not be exposed to primary system pressure except under unlikely conditions of seal failure where it could be partially pressurized to ,
reactor pressure. Any leakage path is restricted at the source and there-
. fore this valve need not be tested. This valve is in a sensing line that is not safety related.
- 6. Valves will be accepted if a marked decrease in flow rate is observed and I the leakage rate is acceptable. ,
The operators t'or containaent vent / purge valves PC-230MV, PC-231MV, PC-232MV, and .
PC-233MV have devices in place to limit the maximum opening angle to 60 degrees. '
This has been done to ensure these valves are able to close against the maximum differential pressure expected to occur during a design basis LOCA. .
T I
l 1 1 I
)
-184-