ML20138A561

From kanterella
Jump to navigation Jump to search
Analysis of Capsule W from DPC Plant McGuire Unit 2 Reactor Surveillance Program
ML20138A561
Person / Time
Site: Mcguire
Issue date: 03/31/1997
From: Boyle D, Grendys P, Lloyd T
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML20138A538 List:
References
WCAP-14799, NUDOCS 9704280107
Download: ML20138A561 (290)


Text

. -

~

%>> c a i'  ; @

g-l

" ~ ,

g (f 3 .e e f

), -

r jq . j . , ,

N, ,.qj ri, w 1 1.

' f(,, kk!

  • kk .,.

y g. w 9 -

p fgggg5 ,=

jgyh g; , : .-

%, fy d, . Eih '

. m

(, ..

g x d: I $

9 5' . ll ym w; j

I bc

! Cii? f.y i

. ' lql '): .

Q -

. c 3

<,.,,L

n i

yh)

,,  % ' 7

( n a I .

?. N 'f5 id

[ l l1

%pr y

J7 .M 'fk i 3

~ . .

._ [

' _ pi _ ' 1 5

s. g ysp f $

q'jA: !

7 .y av j u g  :

, [\  :

k,k pN n : m. bl _ f ^ -

<4,9 g}$ ' ' '@{ - ' *

. - l j n  ;

.. { p g

'i. , A ,: .e u p.d .. ;

"* p dfl1?

  • N 4 ya em wp a :

y  : t re yg)g%gh.

,6g sj $ g ; bg,

j g

.% M O R $ 4 & _% s E E _ N 4 $u4 86 h .

  • _.u. , w ank _n_eh,$h w. m us_,

A(y c. / ; @; $ glgggg;glld6%g 9704280107 970421 w hfi MM va,a[%g$n$p$gy$g g

F 1.Jitsy ~

p i

J$ gg P

sy$ggy!

$!??hhg 1//

PDR ADOCK 05000370

$W yy t ur4  ; ;g;;gjjp} 7* $ sid!hpf':wy$ggfi 4

(. .

Westinghouse Non-Proprietary Class 3 I

~

l WC AP-14799

++++++++

ANALYSIS OF CAPSULE W FROM THE DUKE POWER COMPANY MCGUIRE -

UNIT 2 REACTOR VESSEL RADIATION SURVEILLANCE -

PROGRAM -

Wes tin ghou se En ergy Systems g=.

WESTINGHOUSE NON-PROPRIETARY CLASS 3 WCAP-14799 ANALYSIS OF CAPSULE W FROM THE DUKE POWER COMPANY MCGUIRE UNIT 2 REACTOR VESSEL RADIATION SURVEILLANCE PROGRAM E. Terek G. K. Roberts J. F. Williams l

March 1997 l

I Work Performed Under Shop Order DXVP-106A Prepared by the Westinghouse Electric Corporation for the Duke Power Company Approved F D. E. Boyle, ManaggV L

Reactor Equipment & Materials Engineering WESTINGHOUSE ELECTRIC CORPORATION Nuclear Services Division P.O. Box 355 Pittsburgh, Pennsylvania 15230-0355

@ 1997 Westinghouse Electric Corporation All Rights Reserved

l i

l PREFACE ]

1 This report has been technically reviewed and verified. .l i

Reviewer: l Sections l_ through 5,7,8 P. A. Grendys '

, j

/ V l Appendices A, B, and C b Section 6 T. M. Lloyd I l t

l l

t l

l 4

i i

1 I

l I

)

McGuire Unit 2 Capsule W Analysis March 1997

ii TABLE OF CONTENTS S,eption ~ Title Page 1

1.0

SUMMARY

OF RESULTS 1-1

2.0 INTRODUCTION

2-1

3.0 BACKGROUND

3-1

4.0 DESCRIPTION

OF PROGRAM 4-1 5.0 TESTING OF SPECIMENS FROM CAPSULE W 5-1 5.1 Overview 5-1 )

5.2 Charpy V-Notch Impact Test Results 5-4 i 5.3 Tensile Test Results 5-6 5.4 Compact Tension Specimens 5-7 i 5.5 Bend Bar Specimens 5-7 I

6.0 RADIATION ANALYSIS AND NEUTRON DOSIMETRY 6-1 l

6.1 Introduction 6-1 I

6.2 Discrete Ordinates Analysis 6-2 6.3 Neutron Dosimetry 6-7 6.4 Projections of Pressure Vessel Exposure 6-12 j 7.0 RECOMMENDED SURVEILLANCE CAPSULE REMOVAL SCHEDULE 7-1

8.0 REFERENCES

8-1 APPENDIX A - LOAD-TIME RECORDS FOR CHARPY IMPACT TESTS A-0 APPENDIX B - CHARPY V-NOTCH SHIFT RESULTS FOR EACH CAPSULE HAND- B-0 DRAWN VS. HYPERBOLIC TANGENT CURVE-FITITNG METHOD (CVORAPH VERSION 4.1)

APPENDIX C - CHARPY V-NOTCH PLOTS FOR EACH CAPSULE USING C-0 HYPERBOLIC TANGENT CURVE-FTITING METHOD McGuire Unit 2 Capsule W Analysis March 1997

l iii I

1 LIST OF TABLES I Table Title Pace 4-1 Heat Treatment of the McGuire Unit 2 Surveillance Program Materials 4-4 4-2 Chemical Composition (wt%) of the Unirradiated McGuire Unit 2 Reactor 4-5 Vessel Surveillance Materials 4-3 Chemical Composition of Irradiated McGuire Unit 2 Charpy Specimens 4-6 Removed from Surveillance Capsules V and U 5-1 Charpy V-notch Data for the McGuire Unit 2 Intermediate Shell Forging 5-8 2

05 Irradiated to a Fluence of 2.969 x 10 n/cm (E > 1.0 MeV)

(Axial Orientation) 5-2 Charpy V-notch Data for the McGuire Unit 2 Intermediate Shell Forging 5-9 2

05 Irradiated to a Fluence of 2.969 x 10 n/cra (E > 1.0 MeV)

(Tangential Orientation) 5-3 Charpy V-notch Data for the McGuire Unit 2 Surveillance Weld Metal 5-10 2

Irradiated to a Fluence of 2.969 x 10 n/cm (E > 1.0 MeV) 5-4 Charpy V-notch Data for the McGuire Unit 2 Heat-Affected-Zone (HAZ) 5-11 2

Metal Irradiated to a Fluence of 2.969 x 10 n/cm (E > 1.0 MeV) 5-5 Instrumented Ch trpy Impact Test Results for the McGuire Unit 2 Intermediate 5-12 Shell Forging 95 Irradiated to a Fluence of 2.969 x 10 n/cm2 (E > 1.0 MeV)

(Axial Orientation)

McGuire Unit 2 Capsule W Analysis March 1997

iv I

LIST OF TABLES (CONTINUED)

Table Title Page 5-6 Instrumented Charpy Impact Test Results for the McGuire Unit 2 Intermediate 5-13 2

Shell Forging 05 Irradiated to a Fluence of 2.969 x 10 n/cm (E > 1.0 MeV)

(Tangential Orientation) 5-7 Instrumented Charpy Impact Test Results for the McGuire Unit 2 Surveillance 5-14 2

Weld Metal Irradiated to a Fluence of 2.969 x 10 n/cm (E > 1.0 MeV) i 5-8 Instrumented Charpy Impact Test Results for the McGuire Unit 2 5-15 Heat-Affected-Zone (HAZ) Metal Irradiated to a Fluence of l 1

2 2.969 x 10 n/cm (E > 1.0 MeV) 2 5-9 Effect of Irradiation to 2.969 x 10 n/cm (E > 1.0 MeV) on the Notch 5-16 Toughness Properties of the McGuire Unit 2 Capsule W Reactor Vessel Surve llance Materials 5-10 Comparison of the McGuire Unit 2 Surveillance Material 30 ft-lb Transition 5-17 Temperetare Shifts and Upper Shelf Energy Decreases with Regulatory Guide 1.99, Revision 2. Predictions 5-11 Tensile Properties of the McGuire Unit 2 Reactor Vessel Surveillance 5-18 2

Materials Irradiated to 2.969 x 10 n/cm (E > 1.0 MeV) 6-1 Calculated Fast Neutron Exposure Rates and Iron Atom Displacement Rates 6-17 at the Surveillance Car sule Center 6-2 Calculated Azimuthal Variation of Fast Neutron Exposure Rates and Iron Atom 6-19 Displacement Rates at the Reactor Vessel Clad / Base Metal Interface McGuire Unit 2 Capsule W Analysis March 1997

v LIST OF TABLES (CONTINUED)

Table Title Paec 6-3 Relative Radial Distribution of $(E > 1.0 MeV) Within the Reactor Vessel 6-21 Wall l 6-4 Relative Radial DistJbution of $(E > 0.1 MeV) Within the Reactor Vessel 6-22 ;

Wall l

1 6-5 Relative Radial Distribution of dpa/sec Within the Reactor Vessel Wall 6-23 l 6-6 Nuclear Parameters Used in the Evaluation of Neutron Sensors 6-24

)

i 6-7 Monthly Thermal Generation During the First Ten Fuel Cycles of the McGuire 6-25 Unit 2 Reactor l l

l 6-8 Measured Sensor Activities and Reaction Rates, Saturated Activities and 6-28 l Reaction Rates (for all Capsules) 6-9 Summary of Neutron Dosimetry Results Surveillance Capsules W, Y, Z, 6-34 U, X and V 6-10 Comparison of Measured and FERRET Calculated Reaction Rates at the 6-36 Surveillance Capsule Center 6-11 Adjusted Neutron Energy Spectrum at the Center of Surveillance Capsule 6-39 6-12 Comparison of Calculated and Measured Integrated Neutron Exposure of McGuire 6-45 Unit 2 Surveillance Capsules W Y, Z, U, X and V McGuire Unit 2 Capsule W Analysis March 1997

I vi 1

LIST OF TABLES (CONTINUED) I

. 1 Table , Title Page  !

l 6-13 Neutron Exposure Projections at Key Locations on the Reactor Vessel 6-46 Clad / Base Metal Interface .

i.

i 6-14 Neutron Exposure Values Within the McGuire Unit 2 Reactor Vessel 6-47  !

l

^

6-15 Updated Lead Factors for McGuire Unit 2 Surveillance Capsules 6-49 7 Recommended Surveillance Capsule Removal Schedule for the McGuire Unit 2 71 Reactor Vessel i

i

~

i  ;

i U

h d

. McGuire Unit 2 Capsule W Analysis March 1997 i 1  ;

vii LIST OF ILLUSTRATIONS Figure Title Page 4-1 Arrangement of Surveillance Capsules in the McGuire Unit 2 Reactor Vessel 4-7 4-2 Capsule W Diagram Showing the Location of Specimens, Thermal Monitors, 4-8 and Dosimeters

.5-1 Charpy V-Notch Impact Energy vs. Temperature for McGuire Unit 2 Reactor 5-19 Vessel Intermediate Shell Forging 05 (Tangential Orientation) 5-2 Charpy V-Notch Lateral Expansion vs. Temperature for McGuire Unit 2 5-20 Reactor Vessel Intermediate Shell Forging 05 (Tangential Orientation) 5-3 Charpy V-Notch Percent Shear vs. Temperature for McGuire Unit 2 Reactor 5-21 Vessel Intermediate Shell Forging 05 (Teagential Orientation) 5-4 Charpy V-Notch Impact Energy vs. Temperature for McGuire Unit 2 Reactor 5-22 Vessel Intermediate Shell Forging 05 (Axial Orientation) 5-5 Charpy V-Notch Lateral Expansion vs. Temperature for McGuire Unit 2 5-23 Reactor Vessel Intermediate Shell Forging 05 (Axial Orientation) 5-6 Charpy V-Notch Percent Shear vs. Temperature for McGuire Unit 2 Reactor 5-24 Vessel Intermediate Shell Forging 05 (Axial Orientation) 5-7. Charpy V-Notch Impact Energy vs. Temperature for McGuire Unit 2 Reactor 5-25 Vessel Weld Metal 5-8 Charpy V-Notch Lateral Expansion vs. Temperature for McGuire Unit 2 5-26 Reactor Vessel Weld Metal McGuire Unit 2 Capsule W Analysis .. March 1997

viii LIST OF ILLUSTRATIONS (CONTINUED)

Finure Title Page 5-9 Charpy V-Notch Percent Shear vs. Temperature for McGuire Unit 2 Reactor 5-27 Vessel Weld Metal l

1 5-10 Charpy V-Notch Impact Energy vs. Temperature for McGuire Unit 2 Reactor 5-28 Vessel Heat-Affected-Zone (HAZ) Metal 5 11 Charpy V-Notch Lateral Expansion vs. Temperature for McGuire Unit 2 5-29 Reactor Vessel Heat-Affected-Zone (HAZ) Metal 5-12 Charpy V-Notch Percent Shear vs. Temperature for McGuire Unit 2 Reactor 5-30 )

Vessel Heat-Affected-Zone (HAZ) Metal 5-13 Charpy Impact Specimen Fracture Surfaces of the McGuire Unit 2 Reactor 5-31 Vessel Intermediate Shell Forging 05 (Tangential Orientation) 5-14 Charpy Impact Specimen Fracture Surfaces of the McGuire Unit 2 Reactor 5-32 Vessel Intermediate Shell Forging 05 (Axial Orientation) 5-15 Charpy Impact Specimen Fracture Surfaces of the McGuire Unit 2 Reactor 5-33 Vessel Weld Metal l

5-16 Charpy Impact Specimen Fracture Surfaces of the McGuire Unit 2 Reactor 5-34 Vessel Weld Heat-Affected-Zone (HAZ) Metal 5-17 Tensile Properties for the McGuire Unit 2 Reactor Vessel Intermediate 5-35 Shell Forging 05 (Tangential Orientation)

McGuire Unit 2 Capsule W Analysis March 1997 I

r ix LIST OF ILLUSTRATIONS (CONTINUED)

Ficure Title Page 5-18 Tensile Properties for the McGuire Unit 2 Reactor Vessel Intermediate 5-36 Shell Forging 05 (Axial Orientation) 5-19 Tensile Properties for the McGuire Unit 2 Reactor Vessel Weld Metal 5-37 5-20 Fractured Tensile Specimens from the McGuire Unit 2 Reactor Vessel 5-38 Intermediate Shell Forging 05 (Tangential Orientation) 5-21 Fractured Tensile Specimens from the McGuire Unit 2 Reactor Vessel 5-39

]

Intermediate Shell Forging 05 (Axial Orientation) 5-22 Fractured Tensile Specimens from the McGuire Unit 2 Reactor Vessel 5-40 Weld Metal 5-23 Engineering Stress-Strain Curves for McGuire Unit 2 Reactor Vessel Intermediate 5-41 Shell Forging 05 Tensile Specimens DL7 and DL8 (Tangential Orientation) l 5-24 Engineering Stress-Strain Curve for McGuire Unit 2 Reactor Vessel Intermediate 5-42 Shell Forging 05 Tensile Specimen DL9 (Tangential Orientation) l 1

5-25 Engineering Stress-Strain Curves for McGuire Unit 2 Reactor Vessel Intermediate 5-43 Shell Forging 05 Tensile Specimens DT7 and DT8 (Axial Orientation) 5-26 Engineering Stress-Strain Curve for McGuire Unit 2 Reactor Vessel Intermediate 5-44 Shell Forging 05 Tensile Specimen DP) (Axial Orientation) ,

1 McGuire Unit 2 Capsule W Analysis March 1997

I X ,

i LIST OF ILLUSTRATIONS (CONTINUED) I Figure Title Page i i

5 27 Engineering Stress-Strain Curves for McGuire Unit 2 Reactor Vessel Weld 5-45 Metal Tensile Specimens DW7 and DW8 5-28 Engineering Stress-Strain Curve for McGuire Unit 2 Reactor Vessel Weld 5-46 Metal Tensile Specimen DW9 6-1 Plan View of a Dual Reactor Vessel Surveillance Capsule 6-16 2

I j

. 1 I

i l

l 1

McGuire Unit 2 Capsule W Analysis March 1997

1-1 SECTION 1.0

SUMMARY

OF RESULTS The analysis of the reactor vessel materials contained in surveillance Capsule W, the fourth capsule to be removed and tested from the Duke Power Company McGuire Unit 2 reactor pressure vessel, led to the following conclusions:

  • The capsule received an average fast neutron fluence (E > 1.0 MeV) of 2.969 x 10 n/cm2 after 9.44 Effective Full Power Years (EFPY) of plant operation.

Irradiation of the reactor vessel Intermediate Shell Forging 05 Charpy specimens, oriented with the longitudinal axis of the specimen parallel to the major working direction (tangential orientation), to 2.969 x 10 n/cm 2(E > 1.0 MeV) resulted in a 30 ft-lb transition temperature increase of 102.03*F and a 50 ft-lb transition temperature increase of 121.84 F. This results in an irradiated 30 ft-lb transition temperature of 18.92 F and an irradiated 50 ft-lb transition temperature of 64.7*F for the tangentially-oriented specimens.

Irradiation of the reactor vessel Intermediate Shell Forging 05 Charpy specimens, oriented with the longitudinal axis of the specimen normal to the major working direction (axial orientation),

2 to 2.969 x 10 n/cm (E > 1.0 MeV) resulted in a 30 ft-lb transition temperature increase of 130.33*F and a 50 ft-lb transition temperature increase of 153.4*F. This results in an irradiated 30 fr Ib transition temperature of 111.33 F and an irradiated 50 ft-lb transition temperature of 178.86 F for the axially-oriented specimens.

2 1rradiation of the weld metal Charpy specimens to 2.969 x 10 n/cm (E > 1.0 MeV) resulted in a 30 ft-Ib transition temperature increase of 43.76*F and a 50 ft-lb transition temperature increase of 59.77 F. This results in an irradiated 30 ft-lb transition temperature of - 10.l*F and an irradiated 50 ft-lb transition temperature of 36.84 F.

l McGuire Unit 2 Capsule W Analysis March 1997 J

1-2

=

frradiation of the weld Heat-Affected-Zone (HAZ) metal Charpy specimens to 2.969 x 10" 2

n/cm (E > 1.0 MeV) resulted in a 30 ft-Ib trar.sition temperature increase of 104.45 F and a 50 ft-lb transition temperature increase of 107.97'F. This results in an irradiated 30 ft-lb transition temperature of i1.35'F and an irradiated 50 ft-lb transition temperature of 58.37'F.

=

The average upper shelf energy of Intermediate Shell Forging 05 (tangential orientation) resulted in an energy decrease of 41 ft-lb after irradiation to 2.969 x 10" n/cm2 (E > 1.0 MeV).

This results in an irndiated average upper shelf energy of 113 ft-lb for the tangentially-oriented specimens.

  • The average upper shelf energy of Intermediate Shell Forging 05 (axial orientation) resulted in 2

an e:nergy decrease of 20 ft-lb after irradiation to 2.969 x 10" n/cm (E > 1.0 MeV). This results in an irradiated average upper shelf energy of 74 ft-lb for the axially-oriented specimens.

=

The average upper shelf energy of the weld metal Charpy specimens resulted in an energy 2

decrease of 5 ft-lb after irradiation to 2.969 x 10" n/cm (E > 1.0 MeV). This results in an irradiated upper shelf energy of 128 ft-lb for the weld metal specimens.

1

  • The average upper shelf energy of the weld HAZ metal decreased 20 ft-lb after irradiation to a

2.969 x 10" n/cm2 (E > 1.0 MeV). This results in an irradiated upper shelf energy of 84 ft-lb I for the weld HAZ metal.

I i

1 The surveillance Capsule W test results indicate that all measured 30 ft-lb transition temperature j shifts and upper shelf decreases are less than the Regulatory Guide 1.99, Revision 2m, j predictions.  !

l l

l

=

The surveillance capsule materials exhibit a more than adequate upper shelf energy level for continued safe plant operation and are expected to maintain an upper shelf energy of no less than 50 ft-lb throughout the life of the vessel (34 EFPY) as required by 10 CFR Part 50, j Appendix Gl2i, i

McGuire Unit 2 Capsule W Analysis March 1997 J

l J

1-3

The calculated 34 EFPY maximum neutron fluence (E > 1.0 MeV) for the McGuire Unit 2
reactor vessel is as follows:

i Vessel inner radius * = 1.93 x 10" n/cm2 4

Vessel 1/4 thickness' = 1.16 x 10" n/cm2 Vessel 3/4 thickness = 4.21 x 10" n/cm2 i

  • Clad / base metal interface 4

1 l

4 1

1 4

4-e M

i

\

d b

t 3

i

=

l l

i t

l 3

i i

1  !

I.

+

J  !

i I

i i

i l

i i

i McGuire Unit 2 Capsule W Analysis March 1997 j l

. .- . -. . . . . _ _ _ _ . ._..____+

- - - - . . .. . . - .- . . .- .- . - _ . - . . . . ~ . . _ . _ . . - _ . . _ . . .. -

l u  !

i h 2-1 _{

I SECTION 2.0 -  !

INTRODUC110N l

l This repon presents the results of the examination of Capsule W, the founh capsule to be removed and I tested from the reactor in the continuing surveillance program which monitors the effects of neutron irradiation on the Duke Power Company McGuire Unit 2 reactor pressure vessel materials under actual  ;

operating conditions. l

'i The surveillance program for the Duke Power Company McGuire Unit 2 reactor pressure vessel materials was designed and recommended by the Westinghouse Electric Corporation. A description of  !

[

the surveillance program and the pre-irradiation mehanical properties of the reactor vessel materials is j presented in WCAP-9489 entitled " Duke Power Company William B. McGuire Unit No. 2 Reactor Vessel Radiation Surveillance Program"l'i. The surveillance program was planned to cover the 40-year design life of the reactor pressure vessel and 'was based on ASTM E185-73, " Standard Recommended Practice for Surveillance Tests for Nuclear Reactor Vessels". Westinghouse personnel were contracted- l, to aid in the preparation of procedures for removing Capsule W from the reactor and its shipment to -

the Westinghouse Science and Technology Center Hot Cell Facility, where the post-irradiation '

mechanical testing of the Charpy V-notch impact and tensile surveillance specimens was performed, This report summarizes the testing of and the post-irradiation data obtained from surveillance Capsule W removed from the Duke Power Company McGuire Unit 2 reactor vessel and discusses the analysis of the data.

t McGuire Unit 2 Capsule W Analysis March 1997

3-1 SECTION

3.0 BACKGROUND

The ability of the large steel pressure vessel containing the reactor core and its primary coolant to resist fracture constitutes an imponant factor in ensuring safety in the nuclear industry. The beltline region of the reactor pressure vessel is the most critical region of the vessel because it is subjected to significant fast neutron bombardment. The overall effects of fast neutron irradiation on the mechanical properties of low alloy, ferritic pressure vessel steels such as A508 Class 2 (base material of the McGnire Unit 2 reactor pressure vessel) are well documented in the literature. Generally, low alloy ferritic materials show an increase in hardness and tensile properties and a decrease in ductility and toughness during high energy irradiation.

A method for performing analyses to guard against fast fracture in reactor pressure vessels has been presented in Appendix G to Section XI of the ASME Boiler and Pressure Vessel Code"1 The method uses fracture mechanics concepts and is based on the reference nil-ductility temperature (RTuo7).

RTsor is defined as the greater of either the drop weight nil-ductility transition temperature (NDTT per ASTM E208m) or the temperature 60 F less than the 50 ft-lb (and 35-mil lateral expansion) temperature as determined from C, harpy specimens oriented normal (axial orientation) to the major working direction of the forging. The RTuor of a given material is used to index that material to a reference stress intensity factor curve (K, i curve) which appears in Appendix G to the ASME Code.

The K i, curve is a lower bound of dynamic, crack arrest, and static fracture toughness results obtained from several heats of pressure vessel steel. When a given material is indexed to the K, i curve, allowable stress intensity factors can be obtained for this material as a function of temperature.

Allowable operating limits can then be determined using these allowable stress intensity factors.

RTuor and, in turn, the operating limits of nuclear power plants, can be adjusted to account for the effects of radiation on the reactor vessel material properties. The radiation embrittlement changes in mechanical properties of a given reactor pressure vessel steel can be monitored by a reactor surveillance program, such as the McGuire Unit 2 Reactor Vessel Radiation Surveillance Program *, in which a surveillance capsule is periodically removed from the operating nuclear reactor and the encapsulated specimens tested. The increase in the average Charpy V-notch 30 ft-lb temperature McGuire Unit 2 Capsule W Analysis March 199f

3-2 1 (ARTum) due to irradiation is added to the initial RTsm to adjust the RTum for radiation l embrittlement. This adjusted reference temperature (ART = initial RTum +ARTsm) is used to index the material to the K,, curve and, in turn, to set operating limits for the nuclear power plant which take l

1 into account the effects of irradiation on the reactor vessel materials.

i l

I i

I McGuire Unit 2 Capsule W Analysis March 1997

4-1 SECTION

4.0 DESCRIPTION

OF PROGRAM Six surveillance capsules for monitoring the effects of neutron exposure on the McGuire Unit 2 reactor pressure vessel core region materials were inserted in the reactor vessel prior to initial plant start-up.

Le six capsules were positioned in the reactor vessel between the thermal shield and the vess-1 wall as shown in Figure 4-1. The test capsules are in baskets attached to the Neutron Pads. The vertical center of the capsules is opposite the vertical center of the core.

Capsule W was removed after 9.44 Effective Full Power Years (EFPY) of plant operation. This capsule contained Charpy V-notch, tensile, and 1/2T compact tension (CT) specimens (Figure 4-2) from the submerged are weld metal fabricated with the same weld wire and flux used in the reactor vessel core region girth weld, and Charpy V-notch, tensile, CT, and bend bar specimens (Figure 4-2) from Intermediate Shell Forging 05. Capsule W also contained Charpy V-notch specimens from the weld Heat-Affected-Zone (HAZ) material. All HAZ specimens were obtained from within the HAZ of Intermediate Shell Forging 05.

Test specimens obtained from the Intermediate Shell Forging 05 (after thermal heat and forming of the forging) were taken at least one forging thickness from the quenched edges of the forging. All test specimens were machired from the 1/4-thickness location of the forging after performing a simulated postweld, stress-relieving treatment. Specimens were machined from weld metal and the heat-affected-zone (HAZ) metal of a stress-relieved weldment joining sections of the intermediate and lower shell forgings. All heat-affected-zone specimens were obtained from the weld heat-affected-zone of Intermediate Shell Forging 05.

Charpy V-notch impact specimens from Intermediate Shell Forging 05 were machined in both the axial orientation (longitudinal axis of specimen normal to major working direction) and tangential orientation (longitudinal axis of specimen parallel to major working direction). The core region weld metal Charpy impact specimens were machined from the weldment such that the long dimension of the Charpy was normal to the weld direction; the notch was machined such that the direction of crack propagation in the specimen was in the weld direction.

McGuire Unit 2 Capsule W Analysis March 1997

i l

l 4-2 l l

l

^

Tensile specimens from the Intermediate Shell Forging 05 were machined with the longitudinal axis of the specimen in the major working direction (tangential) and also normal to the major working direction (axial) of the forging. Weld metal tensile specimens were oriented normal to the welding direction.

Bend bar specimens were machined from Intermediate Shell Forging 05 with the longitudinal axis of the specimen oriented parallel to the working direction of the forging such that the simulated crack would propagate normal to the working direction of the forging. All bend bar specimens were fatigue precracked according to ASTM E3993 Compact tension specimens from the intermediate shell forging were machined in both axial and ,

tangential orientations. This was done to obtain toughness data both normal and parallel to the major working direction of the forging. Compact tension specimens from the weld metal were machined normal to the weld direction with the notch oriented in the direction of the weld. All specimens were fatigue pre-cracked per ASTM E399'61 The heat treatment of the surveillance program materials is presented in Table 4-1. The results of the chemical analyses on the unirradiated surveillance program materials are presented in Table 4-2, which were obtained from the surveillance program report"3 The results of the chemical analyses performed on irradiated Charpy specimens for capsules Vm and U'H are presented in Table 4-3.

Capsule W contained dosimeter wires of pure copper, iron, nickel, and aluminum-0.15 weight percent cobalt wire (cadmium-shielded and unshielded). In addition, cadmium shielded dosimeters of neptunium (Np 2') and uranium (U 23s) were placed in the capsule to measure the integrated flux at specific neutron energy levels.

Thermal monitors made of two low-melting eutectic alloys and sealed in Pyrex tubes were included in the capsule. These thermal monitors were used to define the maximum temperature attained by the test specimens during irradiation. The composition of the two alloys and their melting points are as follows:

2.5% Ag,97.5% Pb Melting Point: 579 F (304 C) 1.75% Ag,0.75% Sn 97.5% Pb Melting Point: 590 F (310 C)

McGuiro Unit 2 Capsule W Analysis March 1997

4-3 The arrangement of the various mechanical specimens, dosimeters and thermal monitors contained in Capsule W is shown in Figure 4-2.

McGuire Unit 2 Capsule W Analysis March 1997

4-4 TABLE 4-1 Heat Treatment of the McGuire Unit 2 Surveillance Program Materials W Material Temperature ('F) Time (hours) Coolant 3.5 Water-quenched 1688/16 7 Heated t Intermediate Shell 7.5 Air-cooled I I Forging 05

    • d to 22.0 Furnace <ooled 40 5 Weldment 15.0 Furnace-cooled 3 40 5 McGuire Unit 2 Capsule W Analysis March 1997

4-5 TABLE 4-2 Chemical Composition (wt%) of the Unirradiated McGuire Unit 2 Reactor Vessel Surveillance Materials

  • Intermediate Shell ,

Element Forging 05 Weld Metal

  • I (Ht. No. 526840) i C 0.18 0.055  !

)

S 0.017 0.015 j l

P 0.012 0.016 Cu 0.16 0.031 Si 0.23 0.29 Mo 0.58 0.55 Ni 0.79 0.73 l Mn 0.69 1.81 Cr 0.43 0.030 V <0.002 <0.002 Ti <0.001 0.004 N 0.004 0.011 Co 0.019 0.007 Sn 0.008 0.002 B <0.003 <0.003 W <0.002 <0.002 As 0.0) 8 0.015 Zr <0.002 <0.002 Sb <0.002 <0.002 Pb 0.001 0.003 Al 0.016 0.015 NOTES:

(a) Surveillance weld specimens were m2Kle of the same weld wire and flux as the girth seam weldment between forgings 04 and 05 (Weld Wire Heat No. 895075 and Grau LO. Flux Lot No. P46)

McGuire Unit 2 Capsule W Analysis March 1997

4-6 I

I i

TABLE 4-3 i Chemical Composition of Irradiated McGuire Unit 2 Charpy Specimens Removed from Surveillance Capsules V ard U .

Base Metal Weld Metal i Element DT-18") DL 8*' DW-30'd DW-3*' DW-il*' DW-15*'

Fe -- Matrix --

Matrix Matrix Matrix I Co -- 0.014 - 0.014 0.014 0.014 Cr 0.37 0.410 0.03 0.045 0.031 0.031 ,

Cu 0.14 0.151 0.03 0.039 0.036 0.n45  ;

Mn 0.63 0.730 1.66 1.875 1.963 1.882 f Mo --

0.628 -- 0.590 0.597 0.613 i Ni 0.71 0.820 0.66 0.765 0.747 0.776 P 0.010 0.014 0.005 0.014 0.015 0.014 j Ti -- <0.001 -- 0.002 0.005 0.005 V <0.002 0.003 <0.002 0.002 0.001 0.001 Al -- 0.007 --

0.011 0.012 0.012 As - 0.027 -- 0.014 0.014 0.014 I B --

0.003 -- WKM 0.004 0.002 l Nb -

0.001 - 0.011 0.002 0.002 Sn -- 0.008 -- <0.001 0.003 0.005 i W --

0.004 -

<0.001 0.001 0.001 )

i

Zr - <0.001 -

<0.001 0.001 0.001 C 0.20 0.167 0.07 0.063 0.053 0.061 S 0.012 0.012 0.004 0.007 0.005 0.005 Si 0.077 0.129 0.089 0.147 0.148 0.146 NOTES:

)

a) Specimens are from surveillance capsule V

-b) Specimens are from surveillance capsule U

]

l 1

i l

McGuire Unit 2 Capsule W Analysis March 1997 ]

t I

t

- - . - - r , , a- --

.v- t

4-7 i

I 4

J O' REACTOR VESSEL CORE BARREL I

( 2 4 NEUTRON PAD CAPSULE l U

l (TYP)

m. y. l W

's, 270* - -- -

90' I I l

x ,

W lBO' Figure 4-1 Arrangement of Surveillance Capsules in the McGuire Unit 2 Reactor Vessel McGuire Unit 2 Capsule W Analysis March 1997

1 l

l l

l

.l l

l l

l J

SPECIMEN NUMBERING CODE: )

l

. OL - INTEREDIATE SIELL FORGING 05 (TANGENTIAL) 1 DT - INTERhEDIATE SIELL FORGING OS ( AXIAL) I DW - WELD 4ETAL DH - WAT-AFFECTED-ZOPE MATERI AL BDOBARS TENSILES CORAPACTS COMPACTS CHARPYS CHARPYS CHARPYS cot 4 PACTS COMPACTS CHARPYS CHARPYS DW9 DWe DH45 DWC DH43 DW3B DH30 DW3E DH38 DW33 DH3 N DL4 DWB DW12 DW11 DW1CDW9 DW44 DH44 DW41 DH41 DW3B DMIS DL12 DL11 DL10 DL9 DW38 DH35 DW31 E Dwy DWO DH43 DWM DH40 DW37 DHTF DW34 DH34 DW31 b A l Ak 4

Al .151Co

!iilll :l)

Cu 3 jl 18 ll !i Cu

,l gli Fe  !  ; ll l Fe f'g!

L.a a a t a w 4 aq 579'F I"I f"I I"1 Al .15%Co (Cd) 590*F m r'9 G,

MONITOR 's ll 1 i MONITOR 1I I<

l ll l 1 g a t l::

i iI I:h lii II nt il IBJ i il !Y c CENTE d

TO TOP OF VESSEL

. _ . .. 4 - ..

l i

1 i

CORE w "

ANSTEC l APERTURE

. CARD ,

s Also Available on

,s ] Aporture Card

  • l i

I DOS 4 METERS TENStLES CHARPYS CHARPYS CHARPYS CHARPYS CHARPYS COMPACTS COMPACTS TENStLES DL9 DT45 DL45 DT42 DL42 DT39 DL39 DT36 DL36 DT33 DL33 DT9 l

'362 DL8 DT44 DL44 DT41 DL41 DT3B DL38 DT35 DL35 UT32 DL32 DT12 DT11 DT10 DT9 DT3 DL7 DT43 DL43 DT40 DL40 UT37 DL37 DT34 DL34 DT31 DL31 DT7 AL Al .15%Co tu a jj ! A1. 15%Co I 18 1

', li I aOU Al .15%Co (Cd) 579'F I~' M Al .15%Co (Cd)

MONITOR - (( ll s 8

II igll11Il 1i Hi Nt l! I. Il l l REllON OF VESSEL >

TO BOTTOM OF VESSEL Figure 4-2 Capsule W Diagram Showing the Location of Specimens, Thermal Monitors and Dosimeters Q70411047 01"

5-1 SECTION 5.0 TESTING OF SPECIMENS FROM CAPSULE W 5.1 Overview The post-irradiation mechanical testing of the Charpy V-notch and tensile specimens was performed at the Remote Metallographic Facility (RMF) at the Westinghouse Science and Technology Center l

(STC). Testing was performed in accordance with 10 CFR Part 50, Appendix HM, ASTM Specification E185-82"*, and Westinghouse Procedure RMF 8402, Revision 2, as modified by Westinghouse RMF Procedures 8102, Revision 1, and 8103, Revision 1.

Upon receipt of the capsule at the hot cell laboratory, the specimens and spacer blocks were carefully removed, inspected for identification number, and checked against the master list in WCAP-9489*

No discrepancies were found.

Thermal monitors made from two low-melting point eutectic alloys scaled in Pyrex tubes were l l

included in the capsule. Examination of the two low-melting point 579*F (304*C) and 590 F (310 C) l eutectic alloys indicated no melting of either type of thermal monitor. Based on this examination, the maximum temperature to which the specimens were exposed was less than 579 F (304 C).

The Charpy impact tests were performed per ASTM Specification E23-93ann and RMF Procedure 8103, Revision 1, on a Tinius-Olsen Model 74,358J machine. The tup (striker) of the Charpy machine is instrumented with a GRC 830-1 instrumentation system, feeding into an IBM compatible 486 computer. With this system, load-time and energy-time signals can be recorded in addition to the standard measurement of Charpy energy (Eo). From the load-time curve (Appendix A), the load of general yielding (Pay), time to general yielding (toy), maximum load (Pu), and time to maximum load i s

(tu) can be determined. Under some test conditions, a sharp drop in load indicative of fast fracture was observed. The load at which fast fracture was initiated is identified as the fast fracture load (P,), ,

I and the load at which fast fracture terminated is identified as the arrest load (P3 ).

The energy at maximum ioad (ES) was determined by comparing the energy-time record and the i

load-time record. The energy at maximum load is approximately equivalent to the energy required to j McGuire Unit 2 Capsule W Analysis March 1997

5-2 initiate a crack in the specimen. Therefore, the propagation energy for the crack (E,) is the difference between the total energy to fracture (Eo) and the energy at maximum load (Eu). i i

The yield stress (cy) was calculated from the three-point bend formula having the following expression:

Y a =P"B(W-a)2 C (I) '

t I

where L is the distance between the specimen supports in the impact testing machine; B is the width of the specimen measured parallel to the notch; W is the height of the specimen, measured perpendicularly to the notch; and a is the notch depth. The constant C is dependent on the notch flank l angle ($), notch root radius (p), and the type of loading (i.e., pure bending or three-point bending).

1 In three-point bending a Charpy specimen in which $ = 45 and p = 0.010 inches, Equation 1 is valid with C = 1.21. Therefore (for L = 4W),

L 3.33PgyW ay=Pay =

B(W-a)21 .21 B(W-a)2 (2)

For the Charpy specimens, B is 0.394 in., W is 0.394 in., and a is 0.079 in. Equation 2 then reduces i

to

o,=33.3

  • Par j

where ey is in units of psi and Pay is in units of Ib. The flow stress was calculated from the average of the yield and maximum loads, also using the three-point bend formula.

i i

McGuire Unit 2 Capsule W Analysis March 1997 1

+p- ,uw y u --y r

, 4 <.- . .-,

r-5-3 Symbol A is columns 4,5, and 6 of Tables 5-5 through 5-8 is the cross-sectional area under the notch of the Charpy specimens:

'9"^'* ' **

A =B +(W-a)=0.1241 Percent shear was determined from post-fracture photographs using the ratio-of-areas methods in compliance with ASTM Specification A370-92"U. The lateral expansion was measured using a dial gage rig similar to that shown in the same specification.

Tension tests were performed on a 20,000-pound Instron Model 1115, split-console test machine, per ASTM Specification E8-93"U and E21-92"*, and RMF Procedure 8102, Revision 1. The upper pull rod of the test machine was connected through a universal joint to improve axiality of loading. The tests were conducted at a constant crosshead speed of 0.05 inches per minute throughout the test.

Extension measurements were made with a linear variable displacement transducer (LVDT) extensometer. The extensometer knife edges were spring-loaded to the specimen and operated through specimen failure. The extensometer gage length is 1.00 inch. The extensometer is rated as Class B-2 per ASTM E83-93""

Elevated test temperatures were obtained with a three-zone electric resistance split-tube furnace with a nine-inch hot zone. All tests were conducted in air.

Because of the difficulty in remotely attaching a thermocouple directly to the specimen, the following procedure was used to monitor specimen temperature. Chromel-Alumel thermocouples were inserted in shallow holes in the center, each end of the gage section of a dummy specimen, and in each grip.

In the test configuration, with a slight load on the specimen, a plot of specimen temperature versus upper and lower grip and controller temperatures was developed over the range of room temperature to 550*F (288'C). The upper grip was used to control the furnace temperature. During the actual testing, the grip temperatures were used to obtain desired specimen temperatures. Experiments indicate that this method is accurate to 2*F.

McGuiro Unit 2 Capsule W Analysis March 1997

5-4 The yield load, ultimate load, fracture load, total elongation, and uniform elongation were determined directly from the load-extension curve. The yield strength, ultimate strength, and fracture strength were calculated using the original cross-sectional area. The final diameter and final gage length were determined from post-fracture photographs. The fracture area used to calculate the fracture stress (true stress at fracture) and percent reduction in area was computed using the final diameter measurement.

5.2 Charny V-Notch Impact Test Results The results of the Charpy V notch impact tests performed on the various materials contained in Capsule W, which was irradiated to 2.969 x 10" n/cm 2(E > 1.0 MeV), are presented in Tables 5-1 through 5-6. The unirradiated and Capsule W results, as well as the results from previously tested c:p3ules, are presented in Figures 5-1 through 5-12. These figures were generated using the hyperbolic tangent curve-fitting program CVGRAPH, Version 4.1 1 'U. The transition temperature increases and upper shelf energy decreases for the Capsule W materials are summarized in Table 5-9.

Irradiation of the reactor vessel Intermediate Shell Forging 05 Charpy specimens oriented with the longitudinal axis of the specimen parallel to the major working direction of the forging (tangential J

orientation) to 2.969 x 10" n/cm2 (E > 1.0 MeV) (Figure 5-1) resulted in a 30 fr-lb transition temperature increase of 102.03*F and a 50 ft-lb transition temperature increase of 121.84 F. This resulted in an irradiated 30 ft-lb transition temperature of 18.92 F and an irradiated 50 ft-lb transition temperature of 64.7 F (tangential orientation).

The average upper shelf energy (USE) of the Intermediate Shell Forging 05 Charpy specimens (tangential orientation) resulted in a energy decrease of 41 ft-lb after irradiation to 2.969 x 10" n/cm2 (E > 1.0 MeV). This results in an irradiated average USE of 113 ft-lb (Figure 5-1).

Irradiation of the reactor vessel Intermediate Shell Forging 05 Charpy specimens oriented with the longitudinal axis of the specimen perpendicular to the major working direction of the forging (axial orientation) to 2.969 x 10" n/cm2 (E > 1.0 MeV) (Figure 5-4) resulted in a 30 ft-Ib transition temperature increase of 130.33 F and a 50 ft-Ib transition temperature increase of 153.4'F. This resulted in an irradiated 30 ft-lb transition temperature of 111.33 F and an irradiated 50 ft-lb transition temperature of 178.86*F (axial orientation).

McGuire Unit 2 Capsule W Analysis March 1997

e

. a i

5-5 i i

l The average upper shelf energy (USE) of the Intermediate Shell Forging 05 Charpy specimens (axial j 2

orientation) resulted in a energy decrease of 20 ft-lb after irradiation to 2.%9 x 10" n/cm (E > 1.0 MeV). This results in an irradiated average USE of 74 ft lb (Figure 5-4). .

i i

5. .

. Irradiation of the surveillance weld metal Charpy specimens to 2.%9 x 10" n/cm 2 (E > 1.0 MeV) j

. (Figure 5-7) resulted in a 30 ft-lb transition temperature shift of 43.76*F and a 50 ft-lb transition l temperature increase of 59,77 F. This results in an irradiated 30 ft-lb transition temperature of l

-10.l*F and an irradiated 50 ft lb transition temperature of 36.84*F.

t De average upper shelf energy (USE) of the surveillance weld metal resulted in an energy decrease of -i e 5 ft-Ib after irradiation to 2.%9 x 10" n/cm 2(E > 1.0 MeV). This resulted in an irradiated average j USE of 128 ft-lb (Figure 5-7). ,

i Irradiation of the reactor vessel weld Heat-Affected-Zone (HAZ) Charpy specimens to 2.%9 x 10"' I 2

n/cm (E > 1.0 MeV) (Figure 5-10) resulted in a 30 ft-lb transition temperature increase of 104.45*F and a 50 ft-lb transition temperature increase of 107.97*F. This resulted in an irradiated 30 ft-lb 1

transition temperature of 11.35*F and an irradiated 50 ft-lb transition temperature of 58.37 F.

The average upper shelf energy (USE) of the weld HAZ metal resulted in an energy decrease of 20

ft-lb after irradiation to 2.%9 x 10" n/cm 2(E > 1.0 MeV). This resulted in an irradiated average USE

] of 84 ft-lb (Figure 5-10).

l ne fracture appearance of each irradiated Charpy specimen from the various materials is shown in Figures 5-13 through 5-16 and show an increasingly ductile or tougher appearance with increasing test temperature.

. A comparison of the McGuire Unit 2 surveillance material 30 ft-lb transition temperature shifts and upper shelf energy (USE) decreases with Regulatory Guide 1.99, Revision 2, predictions resulted in j the following conclusions:

McGuire Unit 2 Capsule W Analysis March 1997

5-6 The measured 30 ft-lb shift in transition temperature and decrease in Upper Shelf Energy of  !

interme.diate shcIl forging 05 is less than the Regulatory Guide 1.99, Revision 2, predictions -

for all capsules tested to date, j

The measured 30 ft-lb shift in transition temperature of the capsule V weld metal is 2.01*F i

greater than the Regulatory Guide 1.99, Revision 2, prediction. However, this is less than to 2 sigma allowance of 56"F required by Regulatory Guide 1.99, Revision 2, when calculating adjusted reference temperatures of weld metal,

- The measured 30 ft-lb shift in transition temperature of the weld metal for capsules X, U and W is less than the Regulatory Guide 1.99, Revision 2, predictions.

The measured percent decrease in upper shelf energy for the surveillance weld metal is less j i

than the Regulatory Guide 1.99, Revision 2, predictions for all capsules tested to date.

l The load-time records for the individual instrumented Charpy specimen tests for the capsule W Charpy l specimens are presented in Appendix A.

The Charpy V-notch property changes presented in WCAP-9489 5 , WCAP-11029m, WCAP-12556t"I, and WCAP-13516* are based on hand-fit Charpy curves using engineering judgement. However, the results presented in this report are based on a re-plot of all capsule data using CVGRAPH, Version 4.1, a hyperbolic tangent curve-fitting program. Hence, Appendix B contains a comparison of the Charpy V notch shift results for each surveillance material, hand-fit versus hyperbolic tangent curve-fitting. Additionally, Appendix C presents the CVGRAPH, Version 4.1, Charpy V-notch plots and the program input data.'

5.3 Tensile Test Results l The results of the tensile tests performed on the various materials contained in capsule W, irradiated to 2

2.%9 x 10" n/cm (E > 1.0 MeV), are presented in Table 5-11 and are compared with unirradiated results as shown in Figures 5-17 through 5-19.

McGuire Unit 2 Capsule W Analysis March 1997 '

5-7 The results of the tensile tests performed on the Intermediate Shell Forging 05 (tangential orientation) ,

2 indicated that irradiation to 2.969 x 10" n/cm (E > 1.0 MeV) caused a 11 to 17 ksi increase in the 0.2 percent offset yield strength and a 7 to 14 ksi increase in the ultimate tensile strength when compared to unirradiated data (Figure 5-17).

The results of the tensile tests performed on the Intermediate Shell Forging 05 (axial orientation) 2 indicated that irradiation to 2.969 x 10" n/cm (E > 1.0 MeV) caused a 17 to 23 ksi increase in the 0.2 percent offset yield strength and a 15 to 19 ksi increase in the ultimate tensile strength when compared to unitradiated data (Figure 5-18).

The results of the tensile tests performed on the surveillance weld metal indicated that irradiation to 2

2.969 x 10" n/cm (E > 1.0 MeV) caused a 6 to 14 ksi increase in the 0.2 percent offset yield strength and a 7 to 10 ksi increase in the ultimate tensile strength when compared to unirradiated data (Figure 5-19).

The fractured tensile specimens for the Intermediate Shell Forging 05 material are shown in Figures 5-20 and 5-21, while the fractured specimens for the surveillance weld metal are shown in Figure 5-22. The engineering stress-strain curves for the tensile tests are shown in Figures 5-23 through 5-28.

5.4 Compact Tension Specimens Per the surveillance copsule testing contract with the Duke Power Company, the compact tension specimens will not be tested. The specimens will be stored at the Westinghouse Science anti Technology Center Ilot Cell.

5.5 Bend Bar Specimens Per the surveillance capsule testing contract with the Duke Power Company, the bend bar specimens will not be tested. The specimens will be stored at the Westinghouse Science and Technology Center liot Cell.

McGuire Unll 2 Capsule W Analysis March 1997

~

5-8 TABLE 5-1 Charpy V-notch Data for the McGuire Unit 2 Intermediate Shell Forging 05 2

Irradiated to a Fluence of 2.969 x 10 n/cm (E > 1.0 MeV)

(Axial Orientation)

Sample Temperature Impact Energy Lateral Expansion Shear Number ('F) ( C) (ft-lb) (J) (mils) (mm) (%)

DT32 .-75 -59 3 4 0 0.00 0 DT38 0 -18 8 11 1 0.03 5 DT36 25 -4 9 12 2 0.05 5 DT31 50 10 22 30 13 0.33 10 DT44 72 22 24 33 14 0.36 10 DT45 100 38 24 33 18 0.46 10 DT42 115 46 28 38 22 0.56 15 DT43 125 52 36 49 25 0.64 30 DT34 150 66 44 60 32 0.81 50 DT35 175 79 40 54 32 0.81 50 DT37 200 93 53 72 45 1.14 65 DT41 250 121 74 100 58 1.47 100 DT33 300 149 73 99 54 1.37 100 DT39 350 177 72 98 57 1.45 100 DT40 400 204 76 103 56 1.42 100 McGuire Unit 2 Capsule W Analysis March 1997

5-9 TABLE 5-2 Charpy V-notch Data for the McGuire Unit 2 Intermediate Shell Forging 05 2

Irradiated to a Fluence of 2.969 x 10 n/cm (E > 1.0 MeV)

(Tangential Orientation)

Sample Temperature Impact Energy Lateral Expansion Shear Number (*F) ( C) (ft-lb) (J) (mils) (mm) (%)

DL31 -75 -59 5 7 4 0.10 0 DL43 -40 -40 8 11 5 0.13 0 DL41 -10 -23 9 12 2 0.05 5 DL34 0 -18 14 19 5 0.13 5 DL38 10 -12 31 42 19 0.48 10 DL37 25 -4 41 56 25 0.64 15 DL35 50 10 56 76 40 1.02 20 DL44 .72 22 58 79 36 0.91 20 DL45 125 52 74 100 50 1.27 30 DL42 150 66 82 111 52 1.32 55 DL36 175 79 80 108 53 1.35 50 DL39 200 93 115 156 82 2.08 100 DL40 250 121 107 145 68 1.73 100 DL33 325 163 127 172 77 1.96 100 DL32 400 204 101 137 70 1.78 100 McGuire Unit 2 Capsule W Analysis March 1997

5-10 TABLE 5-3 Charpy V-notch Data for the McGuire Unit 2 Surveillance Weld Metal 2

Irradiated to a Fluence of 2.969 x 10" n/cm (E > 1.0 MeV)

Sample Temperature Impact Energy Lateral Expansion Shear Number (*F) ( C) (ft-lb) (J) (mils) (mm) (%)

DW33 -95 -71 3 4 0 0.00 5 DW32 -75 -59 9 12 3 0.08 10 DW43 -50 -46 22 30 15 0.38 15 DW45 -25 -32 32 43 21 0.53 20 DW37 0 -18 36 49 22 0.5-i 20 DW39 15 -9 30 41 26 0.66 20 DW38 25 -4 54 73 39 0.99 45 DW41 50 10 60 81 43 1.09 60 DW34 85 29 69 94 50 1.27 70 DW36 125 52 84 114 65 0.65 80 DW35 165 74 114 155 71 1.80 85 DW44 200 93 1% 144 84 2.13 100 DW40 250 121 140 190 88 2.24 100 DW42 300 149 134 182 85 2.16 100 DW31 400 2(M 132 179 88 2.24 100

]

l l

l McGuire Unit 2 Capsule W Analysis March 1997 l

5-11 TABLE 5-4 Charpy V-notch Data for the McGuire Unit 2 Heat-Affected-Zone (HAZ) Metal l 2

Irradiated to a Fluence of 2.969 x 10" n/cm (E > 1.0 MeV)

Sample Temperature Impact Energy Lateral Expansion Shear Number (*F) ( C) (ft-lb) (J) (mils) (rmn) (%)

DH40 -95 -71 8 11 0 0.00 5 DH38 -50 -46 17 23 6 0.15 10 DH41 -25 -32 14 19 9 0.23 10 ,

l DH43 0 -18 34 46 23 0.58 20 DH32 25 -4 30 41 21 0.53 20 DH45 45 7 48 65 33 0.84 60 DH35 50 10 34 46 20 0.51 50 DH36 72 22 62 84 40 1.02 80 l DH33 100 38 65 88 43 1.09 80 DH34 150 66 77 104 50 1.27 95 DH42 200 93 89 121 70 1.78 100 DH37 250 121 80 108 52 1.32 100 DH44 300 149 97 132 55 1.40 100 '

DH39 350 177 84 114 60 1.52 100 DH31 400 204 70 95 45 1.14 100 McGuire Unit 2 Capsule W Analysis March 1997

5-12 TABLE 5 5 Instrumented Charpy Impact Test Results for the McGuin: Unit 2 Intermediate Shell Forging 05 Irradiated to a Huence of 2.969 X 10" n/cm'(E > I.0 MeV)(Axial Orientation)

Normalized Energies Sample Test Charpy ft-lMn2 Yield Time to Max. Time to Fracture Arrest Yield How Number Temp Emergy Charpy Max. Prop. Lead Yield Lead Max. Lead Lead Stress Stress

('F) (ft.Ib) Ea/A E=/A E,/A (Ib) (msec) (Ib) (msec) (Ib) (Ib) (ksi) (ksi)

DT32 -75 3 24 II 14 1938 0.09 1938 0.09 1938 0 64 64 DT38 0 8 64 38 26 3874 0.16 3874 0.16 3874' 0 129 129 DT36 25 9 72 41 32 3744 0.16 3744 0.16 3744 0 124 124 DT31 50 22 177 143 34 3634 0.15 4169 0.36 4169 0 121 130 DT44 72 24 193 138 56 3647 0.14 4149 0.34 4149 154 121 129 DT45 100 24 193 131 62 3550 0.16 4023 0.34 4023 273 118 126 DT42 115 28 225 175 50 3407 0.14 4029 0.44 4029 178 113 123 DT43 125 36 290 218 72 3386 0.15 4174 0.51 4143 395 112 126-DT34 150 44 354 215 139 3270 0.14 4113 0.52 4008 604 109 123 DT35 175 40 322 190 132 3531 0.16 4116 0.46 4116 941 117 127 DT37 200 53 427 211 216 3211 0.14 4083 0.51 4027 1797 107 121 DT41 250 74 596 209 386 3158 0.14 4019 0.51 N/A N/A 105 119 DT33 300 73 588 200 388 3015 0.15 3863 0.51 N/A N/A 100 114 DT39 350 72 580 195 385 2939 0.14 3777 0.51 N/A N/A 98 112 DT40 400 76 612 251 361 2888 0.14 3811 0.63 N/A N/A  % 11I McGuire Unit 2 Capsule W Analysis March 1997

5-13 TABLE 5-6 Instrumented Charry Impact Test Results for the McGuire Unit 2 Intermediate Shell Forging 05 trradiated to a Fluence of 2.%9 X 10" n/cm' (E > l.0 MeV) (Tangential Orientation)

Normalized Energies Semple Test Charpy ft-E/in2 Yield Time to Mas. Time to Fracture Arrest Yield flow Number Temp Energy Charpy Mas. Prop. Lead Yield Lead Max. Lead Lead Stress Stress

('O (ft.Ib) Ed/A E /A Ep/A (Ib) (msec) Ob) (msec) Ob) (Ib) (ksi) (ksi)

DL31 -75 5 40 22 19 3102 0.12 3102 0.12 3102 0 103 103 DL43 -40 8 64 36 28 3823 0.16 3823 0.16 3823 0 127 127' DL41 -10 9 72 46 26 3754 0.15 3848 0.17 3848 0 125 126 DL34 0 14 113 78 35 3648 0.14 3913 0.23 3913 0 121 126 DL38 10 31 250 213 37 3817 0.16 4459 0.47 4459 0 127 137 DL37 25 41 330 306 24 3923 0.17 4599 0.63 4599 0 130 142 DL35 50 56 451 313 138 3939 0.16 4610 0.64 4452 0 131 142 DL44 72 58 467 309 158 3481 0.14 4471 0.67 4276 0 116 132 DL45 125 74 596 3(M 292 3482 0.15 4363 0.67 3815 607 116 130 DL42 150 82 660 292 368 3232 0.14 4242 0.67 3748 1344 107 124 DL36 175 80 M4 286 358 3184 0.15 4224 0.66 3883 1165 106 123 DL39 200 115 926 291 635 3206 0.16 4284 0.67 N/A N/A 106 124 DL40 250 107 862 286 576 3051 0.14 4190 0.67 N/A N/A 101 120 DL33 '325 127 1023 279 744 2918 0.14 4064 0.67 N/A N/A ' 97 116 DL32 400 101 813 268 545 2845 0.14 3934 0.67 N/A N/A 94 113 McGuire Unit 2 Capsule W Analysis March 1997

l 5-14 i

r TABLE 5-7 Instrumented Charpy Impact Test Results for the McGuire Unit 2 Surveillance Weld Metal Irradiated to a Fluence of 2.%9 X 10" n/cm'(E > 1.0 MeV)

Normalized Energies Semple Test Charpy ft-Iblin! Yield Time to Max. Tinw to Fracture Arrest Yield How Number Temp Energy Charpy Max. Prop. Load Yleid Lead Max. Load Imed Stress Stress

('F) (ft-Ib) E4/A E=ufA E,fA (Ib) (msec) Ob) (msec) Ob) Ob) (ksi) (ksi)

DW33 -95 3 24 8 16 1556 0.09 1556 0.09 1556 0 52 52 DW32 -75 9 72 42 30 3885 0.16 3885 0.16 3885 0 129 129 DW43 -50 22 177 124 54 3796 0.16 4095 0.32 4095 511 126 131 DW45 -25 32 258 194 63 3638 0.16 4201 0.46 4201 861 121 130 DW37 0 36 290 219 71 3525 0.16 4192 0.51 4192 1344 117 128 DW39 15 30 242 138 103 3474 0.14 3949 0.36 3949 1683 115 123 DW38 25 54 435 304 131 3456 0.15 4289 0.67 4209 1673 115 129 DW41 50 60 483 293 190 3267 0.14 4193 0.67 4116 1306 109 124 DW34 85 69 556 285 270 3271 0.14 4092 0.67 3918 2214 109 122 DW36 125 84 676 279 398 3235 0.16 4042 0.66 3249 1738 107 121 DW35 165 114 918 291 627 3393 0.15 4211 0.67 2411 1600 113 126 DW44 200 106 854 272 581 3062 0.14 3943 0.67 N/A N/A 102 116 DW40 250 140 1127 355 772 2945 0.16 3999 0.84 N/A N/A 98 115 DW42 300 134 1079 342 737 2879 0.14 3828 0.83 N/A N/A 96 11I DW31 400 132 1063 332 730 2694 0.14 3725 0.84 N/A N/A 89 107 McGuire Unit 2 Capsule W Analysis March 1997

5-15 TABLE 5-8 Instrumented Charpy impact Test Results for the McGuire Unit 2 fleat-Affected-Zone (HAZ) Metal Irradiated to a Fluence of 2.%9 X 10" n/cm'(E > l.0 MeV)

Neriaalized Energies Sample Test Charpy ft.Ih/in: Yield Time to Max. limeto Fracture Arrest Yield How Number Temp Energy Charpy Max. Prop. Lead Yield Lead Max. Imad Lead Stress Stress

('F) (ft.lb) Ee/A E=/A Ee/A (Ib) (msec) (Ib) (msec) (Ib) (Ib) (ksi) (ksi)

DH40 -95 8 64 39 25 4091 0.16 4091 0.16 4091 0 136 136 DH38 -50 17 137  % 41 4106 0.16 4245 0.26 4245 0 136 139 DH41 -25 14 113 60 52 4048 0.16 4114 0.2 4114 0 134 136 DH43 0 34 274 196 77 3810 0.16 4318 0.45 4318 708 127 135 DH32 25 30 242 144 98 3637 0.14 4201 0.35 4211 752 121 130 Dil45 45 48 387 201 186 3810 0.16 4260 0.46 4260 3175 127 134 Dil35 50 34 274 146 128 3721 0.15 4220 0.36 4174 1682 124 132 Dil36 72 62 499 227 273 3701 0.15 4322 0.5 3813 2399 123 133 DH33 100 65 523 145 379 3591 0.15 4333 0.51 4123 3006 119 132 DH34 150 77 620 220 400 3437 0.15 4147 0.52 2846 2010 114 126 DH42 200 89 717 285 431 3294 0.14 4066 0.66 N/A N/A 109 122 DH37 250 80 644 290 354 3271 0.14 4179 0.67 N/A N/A 109 124 DH44 300 97 781 275 506 3043 0.15 4027 0.67 N/A N/A 101 117 DH39 350 84 676 201 475 3057 0.14 3838 0.51 N/A N/A 102 115 DH31 400 70 564 200 364 2986 0.14 3862 0.51 N/A N/A 99 114 McGuire Unit 2 Capsule W Analysis March 1997

5-16 ;

TABLE 5  !

3 Effect of livadiation to 2.%9 X 10" n/cm (E > I.0 MeV) on the Notch Toughness Properties of the McGuire Unit 2 Capsule W Reactor Vessel Surveillance Materials Average 30 (ft-Ib)" Average 35 mil Lateral " Expansion Average 50 fl-Ib " Average Energy Absorption "

Transition Temperature (*F) ~ Temperature (*F) Transition Temperature (*F) at Full Shear (ft-lb)

Material Unitradiated irradiated AT Unitradiated irradiated AT Unitradiated Irradiated AT Unirradiated irradiated AE Forging 05 . - 19.0 11I33 13033 21.69 162.% I41.27 25.46 178.86 153.4 94 74 - 20 (Axial)

Forging 05 - 83.1 18.92 102.03 - 62.09 71.89 133.98 - 57.14 64.7 121.84 154 II3 - 41 (Tangential)

Weld Metal - 53.87 - 10.1 43.76 - 30.9 34.13 65.03 -22.92 36.84 59.77 133 128 -5 HAZ Metal - 93.09 1135 104.45 - 50.98 65.01 115.99 - 49.59 5837 107.97 104 84 - 20 (a) ' Average"is defined as the value read from the curve fit through the data points of the Charpy tests McGuire Unit 2 Capsule W Analysis March 1997

l l

5-17 TABLE 5-10 Comparison of the McGuire Unit 2 Surveillance Material 30 ft-lb Transition Temperature Shifts and Upper Shelf Energy Decreases with Regulatory Guide 1.99, Revision 2, Predictions I

Capsule 30 ft.lb Transition Temperature Upper Shelf Energy Decrease Fluence Shift ,

Capsule (10" n/cm2, l E>l .0MeV) Predicted

  • Measured
  • Predicted
  • Measured Material ('F) (*F) (%) (%)

Intermediate V 0.3268 81.1 58.M 19 10 l Shell Forging 05 (Axial X 1.406 127.7 91.12 26 19 Orientation)

U l.962 138.3 84.14 28 11 W 2.969 151.2 130.33 31 21 Intermediate V 0.3268 81.1 68.97 19 13 Shell Forging 05 (Tangential X 1.406 127,7 98.28 26 14 Orientation)

U l.962 138.3 91.18 28 21 W 2.969 151.2 102.03 31 27  ;

Weld Metal V 0.3268 36.5 38.51 14.5 0 X 1.406 57.4 35.93 20.5 0 U 1.962 62.2 23.81 22 3 W 2.969 68.0 43.76 24 4 Ileat Affected V 0.3268 -- 48.33 -- 6 Zone Material X 1.406 .- 76.01 -- 1 U l.962 -- 73.95 -- 11 W 2.969 -- 1%45 -- 19 NOTES:

(a) Based on Regulatory Guide 1.99, Revision 2, methodology using the Cu and Ni weight percent and capsule fluence values.

(b) The Charpy data was fit using the hyperbolic tangent curve fitting program CVGRAPH Version 4.1".

McGuire Unit 2 Capsule W Analysis March 1997

5-18 TABLE 5-11 Tensile Properties of the McGuire Unit 2 Reactor Vessel Surveillance Materials Irradiated to 2.969 X 10 n/cm2 (E > 1.0 MeV) 0.2% Yield Ultimate Fracture Fracture Fracture Uniform Total Reduction Sample Test Temp. Strength Strength Load Stress Strength Elongation Elongation in Area Material Number ("F) (ksi) (ksi) (kip) (ksi) (ksi) (%) (%) (%)

Intermediate DL7 72 82.5 101.9 3.25 198 3 66.2 11.4 25.2 67 Forg 05 DL8 190 78.9 97.8 3.25 183.9 66.2 11.3 23.8 64 (Trngential) DL9 550 713 93.7 335 1643 68.2 10.5 20.7 58 Intermediate DT7 150 80.0 98.8 3.45 175.2 703 113 23.9 60 Shell Forging 05 DT8* 275 76.9 85.7 3.70 169.6 75.4 9.8 163 56 (Axial) DT9 550 723 97.8 3.85 150.4 78.4 10.5 19 3 48 Reactor Vessel DW7 72 81.0 92.8 2.85 188.1 58.1 12.8 273 69 Weld Metal DW8 225 78.8 87.6 2.60 202.8 53.0 9.8 263 74 DW9 550 73.8 89.6 3.05 179.2 62.1 10.5 21.8 65

  • Specimen broke in knife edge McGuire Unit 2 Capsule W Analysis March 1997

5-19 INTERMEDIATE SHELL FORGING 05 (TANGENTIAL)

CVGRAPI! (J liypertolm Tangent Cune Pnnted at E41D8 on 10-31-1996 Results Curve Fluence ISE d-LcE USE d-USE T e 30 d-T e 30 7 e 50 d-T e 53 1 0 2 0 154 0 41 0 -57J4 0 2 0 2 0 134 -7) -14J3 6&97 14 4 7L54 3 0 2 0 133 - 21 15J7 9628 52D2 109J6 4 0 2 0 122 -32 E07 9L18 4184 100 9) 5 0 2 0 113 -41 1&S2 102D3 64.7 12184 300 cn 250

.c T

$ 200 D o g

3 a n g,

g 150 i o

/ '-

100 o j Z v"i- ,

b oo sh J

f f o l

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F 1

cune Igend Ic 2C 39 4^ 5-Data Set (s) Plott4 Cune Plant Cammle Material Ori llentl 1 MC2 LMPJt IDRGNG SA508C12 LT 526840 2 MC2 Y IDRGNG SA508Cl2 LT 526B40 3 MG I FORGNG SA508C12 LT $26840 4 MG U FORGNG SA508C12 LT 526840 5 MG W IDRGNG SA508Cl2 LT 526B40 I

4 Figure 5-1 Charpy V-Notch Impact Energy vs. Temperature for McGuire Unit 2 Reactor Vessel Intermediate Shell Forging 05 (Tangential Orientation)

McGuire Unit 2 Capsule W Analysis March 1997 ,

I

5-20 INTERMEDIATE SHELL FORGING 05 (TANGENTIAL)

CVCRAPH 4j Hyperbolic Tangent Curve Printed at 0&O602 on 1F31-1996  !

Results Cune Fluence LSE d-l'SE 7 e LE35 d-T e II35 1 0 8BJ7 0 -6a09 0 2 0 818 -436 9.69 7178 3 0 86.75 -142 6115 L?l24 4 0 7Z95 -15 21 414 10E49 5 0 72 21 -1536 7139 IIL96 200 to

1s0 E

a  !

M 100 o O o fv %ss ".:'

2 ,,

)

a so O

- ,n,n c

/

,a 4

  • o i 2

M ,

i

-300 -200 - 100 0 100 200 300 400 500 000 Temperature in Degrees F Cune Wend Ic 2C 30 4^ 5.

Ihta Set (s) Plotted l Cune Plant Caseuie Waterial Ori. Ileatl 1 WC UNIRR MING SA508C12 LT 526840 2 WG V EING SA508C12 LT 526840 3 MQ I MING SA508Cl2 LT 536840 l 4 WQ U FORGING SAMect2 LT 528840 5 MQ V FORCING SA50802 LT 53B40 Figure 5-2 Charpy V-Notch Lateral Expansion vs. Temperature forMcGuire Unit 2 Reactor Vessel Intermediate Shell Forging 05 (Tangential Orientation)

McGuire Unit 2 Capsule W Analysis . March 1997

5-21 INTERMEDIATE SHELL FORGING 05 (TANGENTIAL)

CYGRAPH 4j Hyperbolic Tangent Curve Printed at 0&17:31 on 10-3M996 Results Curve Fluence T o 50x Shear d-T e 50x Shear 1 0 -7m 0 2 0 4731 5434 3 0 74.7 BL73 4 0 5953 6656 5 0 14L79 148E 100 7

- o g/ /y

  • I /

u <

8 l (g di 60 .

((/-

> Iu C ji ,

t w a

ol b / -

o e 20 u

.. l.

r

}

- f, - -

w o

2 -

1

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Cune t==a IC 2C 30 4 ^ --- 5.

Data Set (s) Plotted Cune Plant Capsule Material Ori Heatl 1 MG UNIRR JDRCING SA500Cl2 LT 526840 2 MG V FORCING SA508Cl2 LT 526B40 3 IK2 X FORGING SA508CL2 LT $26840 4 'MG U FORCING SA50BC12 LT 526840 5 MQ W FORGING SA50BCL2 LT S26640 Figure 5-3 Charpy V-Notch Percent Shear vs. Temperature for McGuire Unit 2 Reactor Vessel Intermediate Shell Forging 05 (Tangential Orientation)

McGuire Unit 2 Capsule W Analysis March 1997

- . - . .. .= . = . . . . . . . . _ . - - -

, 5-22 i

INTERMEDIATE SHELL FORGING 05 (AXIAL)

CVCRAPli (J Ilyperbolic Tangent Cune Printed at 0&3506 on 10-31-1996 Results

. Curve Fluence ISE d-ISE L5T d-USE T e 30 d-T o 30 7 o 50 d-T o 50 1 0 2 0 94 0 -19 0 2146 0 2 0 2 0 85 -9 39S4 5834 9223 66.76 3 0 2 0. 76 -18 7111 91J2 13827 112 31 4 0 2 0 84 -10 -65j4 84J4 122f1 97J5 l

5 0 2 0 74 -20 11133 13031 17M6 1514 300 (1) 260

.C T

$ 200 4

h 1 t$ '

L 150 c)

C Er.1 .

100 a =

l

~

~ I

~

o MF i

-300 -200 -100 0 100 200 300 400 500 600 '

Temperature in Degrees F cune i,.i IC 2C 30 4^ 5. i Data Setts) Ntted Curve Nnt Capsule listerial Ori liestl 1 WC2 UNIRR FORGE SA50802 TL $26840 2 M V FORGE SA50802 R 528840 3 .E X FORGE SA50ECL2 TL 528840 l 4 M U FORGE SA50002 R 528840 I 5 m v FORGE SA50802 TL 526840 .

Figure 5-4 Charpy V-Notch Impact Energy vs. Temperature for McGuire Unit 2 Reactor Vessel Intermediate Shell Forging 05 (Axial Orientation)

McGuire Unit 2 Capsule W Analysis March 1997

5-23 l

l INTERMEDIATE SHELL FORGING 05 (AXIAL)

CVGRAPil 41 Hyperbolic Tangent Curve Printed at (Tl5624 on 10-31-1996 l l

Results  !

Curve Fluence ISE d-l'SE T e IJ35 d-T e LE35 l J

1 0 6&l6 0 21 5 0 2 0 7251 434 7a26 5157 3 0 6721 -35 12934 10825

, 4 0 6235 -53 11ESB 96 9) 5 0 57.91 -1025 IfE96 14127 200 l

. <n O 150 E

X 100 ed 0 ^~

" jf;y,;.- - 1 3 So av '

of - v l

^M u \ l

-300 -200 -100 0 100 200 300 400 500 600 i Temperature in Degrees F l cune Wend IC 2C 3^ 4^ 5-Data Set (s) Plotted Curve Plant Capsule Waterial Ort Heat! ,

1 E2 UNIRR PDRGING SA50802 TL 526840 l e n V FORGING SA50802 R 526640 l

3 E2 X FORGING SA50802 R 526840 1 4 IK2 U FDRGING SA50802 TL 526840 5 WC2 W FORGING SA50802 E 526840 Figure 5-5 Charpy V-Notch Lateral Expansion vs. Temperature for McGuire Unit 2 Reactor Vessel l Inermediate Shell Forging 05 (Axial Orientation) i 1

McGuire Unit 2 Otpsule W Analysis March 1997 i

)

l

5-24 INTERMEDIATE SHELL FORGING 05 (AXIAL)

CVCRAPH (J Hyperbolic Tangent Curve Printed at 0851:ZI on 10-31-1936 Results Curve Fluerre T e 5& Shear d-T o 5k Shear 1 0 37.49 0 2 0 10957 7?JTl 3 0 15029 ti?.79 4 0 13102 9753 5 0 165.14 12754 100

-r 7-B /{ , '/

L N "/ /

c3 y l .f m So ll ,

.s.)

C b r g 4o v -

o y 0

a e S' [,

a o ',, ,

u a -

O g

-300 -200 -100 0 100 200 300 400 500 600  ;

Temperature in Degrees F 1

Curve legend l

1C 2C 30 4^ 5- l

~

Data Set (s) Plotted Curve Plant Capsule Material Ori. Heatl

! WC2 INRR NRCING SA500C12 TL 53B40 2 WC2 Y mRGING SA500Cl2 TI, 53B40 3 Mc! I mRGING S4500Cl2 TL 526840 4 WC2 U FORGING SA508Cl2 TL 526840

$ WC! W NRCING SA50802 TL f26040 Figure 5-6 Charpy V-Notch Percent Shear vs. Temperature for McGuire Unit 2 Reactor Vessel Intermediate Shell Forging 05 (Axial Orientation)

McGuire Unit 2 Capsule W Analysis March 1997

5-25 SURVEILLANCE WELD METAL CVGRAPH (j !!yperbolic Tangent Curve Prmted at OPJ453 on 10-31-1996 liesults Curve Fluence ISE d-ISE USE d-LSE Te30 d-T e 30 T e 50 d-Te50 1 0 2 0 133 0 -5337 0 -222 0 2 0 P 0 138 5 -1535 3E51 24D9 47 2 3 0 2 0 133 0 -17 S 4 3193 14.9 3733 4 0 2 0 129 -4 -30.06 2331 914 32D6 5 0 2 0 12 8 -5 -103 4176 3S34 59 7/

300 en 250

.c T

$ 200 x

u g 150 o g quj . o o 5 Ah y~

a &

y y

~

o

)W o

-300 -200 -100 0 100 P00 300 400 500 600 Temperature in Degrees F Curve byend IC 2C 30 4^ 5-Data Set (s) Plotted Curve Plant Capsule Waterial Ori Heatl I WC2 LHIRR WELD 895075 2 WC2 V WELD 895075 '

3 Mc x RED a95075 4 We U wnD 895m 5 .We i TELD 895075 Figure 5-7 Charpy V-Notch Impact Energy vs. Temperature for McGuire Unit 2 Reactor Vessel Weld Metal McGuire Unit 2 Capsule W Analysis March 1997

l 5-26 i

SURVEILLANCE WELD METAL CVGRAPil 41 Ilyperbolic Tangent Curve Printed at 102236 on D-31-1996 liesults Curve fluence USE d-USE T e IE5 d-T e IZE 1 0 9M2 0 -30S 0 2 0 89.74 - 178 13E2 4G 3 0 8729 -823 10 2 4L17  !

4 0 8733 - 8,19 4.75 35E5 5 0 8822 ~73 3 (13 6M3 i

20u i

m

=: 150 E

a x

o 100 -

r s- p_.

, o 5  % -

Y a su 9//

l o9 i F

U -

-J00 -200 -100 0 100 200 300 400 s00 600  !

Temperature in Degrees F Cune wad 1

1C 2C 30 4^ 5-Data Set (s) Plotted Curve Plant Capsule Waterial Ori. Ileatl I WC UNIER TELD BM5 2 WQ V WELD 895075 3 WQ X WELD 8M5 4 WG U FELD 8M5 l 5 WQ W FELD 81507b l

Figure 5-8 Charpy V-Notch Lateral Expansion vs. Temperature for McGuire Unit 2 Reactor Vessel Weld Metal McGuire Unit 2 Capsule W Analysis March 1997 l

1

5-27 SURVEILLANCE WELD METAL CVCRAPil 4J Ifyperbolic Tangent Curve Printed at 10'4&40 on 10-31-1996 Baults ,

Curve Fluence Te50xShear d-T e 50x Shear I O 4 43 0 2 0 15 M43 3 0 19.99 5 42 4 0 -29.06 636 5 0 4825 83.71 100 y , --

V -

j'h v u * '

e

, f e

g

^

o.

J C e o o

O /

4 5 H CL.

^

a> i g

n/

u l

, 2/,

u s l

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees . F cune us=d IC 2C 3^ 4^ 5.

Data Setts) Plotted Curve Plant Capsule Material Od thatl I WC UNIRR FD 895075 2 MC V WD 895(U5 3 WC -

X WE 8951R5 4 Me U rp 895(ns 5 uc2 I Ys 8950 s Figure 5-9 Charpy V-Not'ch Percent Shear vs. Temperature for McGuire Unit 2 Reactor Vessel Weld Metal McGuire Unit 2 Capsule W Analysis March 1997

5-28 WELD HAZ METAL CVGRAPH 41 !!yperbolic Tangent Curve Printed at 114256 on 10-31-1996 Results Curve Fluence ISE d-LSE USE d-USE T e 30 d-T e 30 7 e 50 d-T e 50 1 0 2 0 104 0 -9309 0 -4959 0 2 0 2 0 98 -6 -44.76 4833 E56 SE!5 3 0 2 0 103 -1 -17DB 7E01 E18 71.78 4 0 2 0 93 - 11 -19J4 7195 2921 783 5 0 2 0 84 -20 1135 104.45 5837 10727 a00 rn 2su 6

h x em X

6 u

150 0

C g O N o _

w_?

~ ~

=

100 '

z a o e u / A 0

A

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F cunein ai IC 2b 30 4^ 5-Data Set (s) Plotted Curve Plant Capsule Material Ori Heatl I WC UNIRR HEAT Af7D ZONE 2 WQ V HEAT AfTD 20h1 -

3 WC X HEAT AITD ZDNE 4 WC U HEAT AITD ZDNT 5 WC I HEAT AITD 20h1 Figure 510 Charpy V-Notch Impact Energy vs. Temperature for McGuire Unit 2 Reactor Vessel 4

Heat-Affected-Zone (HAZ) Metal i

McGuire Unit 2 Capsule W Analysis March 1997 1

1

5-29 WELD HAZ METAL CVCRAPd 43 Hyperbolic Tangent Curve Pnnted at 112205 on 10-31-1996 Rerults Curve Nena USE d-l5I TELE 35 d-T e IE5 l 1 0 65f2 0 -602 0 2 0 77 ILT1 2a76 7L74 3 0 6f45 116 3E79 87.77 4 0 6337 -224 29J2 5 11 5 0 Srd3 -9 48 65,01 115 5 20u m

15 0 E

o, x

100 m  ;

O 2 o o <m4-C l 3 fwgF m

,3 30 w u r -

c, 0

_ Ma#

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Cune legend Ic 20 30 4^ 5.

Data Set (s) Plotted Curve Plant Capsule Material Ort Heatl 1 MC LMRR HEAT AWD ZDhI 2 MG V HEAT A WD ZDNI 3 MQ I HDT AFD 20NE 4 MQ U HEAT AFD 20h1 5 MQ W HEAT AFD 20h1 Figure 5-11 Charpy V-Notch Lateral Expansion vs. Temperature for McGuire Unit 2 Reactor Vessel Heat-Affected-Zone (llAZ) Metal McGuire Unit 2 Capsule W Analysis March 1997

7 5-30

. l WELD HAZ METAL CVGRAPH 41 Hyperbone Tangent Cune Pnnted at 113154 on 10-31-1996 Raults Cune Nence T e 50x Shear d-T e 2 Shear 1 0 -45.93 0 2 0 -1E7 4446 3 0 41D9 87D3 4 0 -219 22.03 5 0 45 90.93 100 '32 ~

w/

r

.f

.f)/

m = /, "r e

c>

/

C - p6 i cn ,

i a =

c /.

r 8 ,b sl .

g 4o ,>

l 0

a l

y v u

- J--

-m -a -100 o too a a 400 soa soo Temperature in Degrees F Cum w IC 2C 30 4^ 5-Data Set s) Ntted Curve Plant Capule Waterial Ort Heatl I WQ l'NIRR HEAT AWD 20h1 2 WQ V HEAT AWD ZDNI 3 WQ X HEAT AFD ZDh1 4 WQ U HEAT AWD 2DNI 5 .WQ W HEAT AWD ZDNE Figure 5-12 Charpy V-Notch Percent Shear vs. Temperature for McGuire Unit 2 Reactor Vessel lleat Affected-Zone (HAZ) Metal McGuire Unit 2 Capsule W Analysis March 1997

5-31 i

lEBBER i

DL31 DL43 DL41 DL34 DL38 f DL37 DL35 bL44 DL45 DL42 lERRIB 1

DL36 DL39 DL40 DL33 DL32

Figure 513 Charpy impact Specimen Fracture Surfaces of the McGuire Unit 2 Reactor Vessel Intemtediate Shell Forging 05 (Tangential Orientation)

McGuire Unit 2 Capsule W Analysis March 1997

5-32 3 m

- . . . g o t y_, t.. .

i DT32 D13T DT36 DT31 DT44 i

DT45 DT42 ~ ~ DT43 DT34 - DT35 ' 4 i

lHEH 1

i DT37 Figure 5-14 DT41 DT33 Charpy Impact Specimen Fracture Surfaces of the McGuire Unit 2 Reactor Vessel DT39 DT40 Intermediate Shell Forging 05 (Axial Orientation) i McGuire Unit 2 Capsule W Analysis March 1997 l

1 5-33 1

1 i

~

l

~kh$ lb(: ., .~, 1 Ty:q i

,;.al/ph .. 4 DW33 DW32 DW43 DW45 DW37

)

l , m _- , .I '

a Stifs @- . K ~4e- ,:

Y' - .,

DW39 Y41 DW34 DW36 I DW35 DW44 W40 -

W42 DW31 l

l l

l Figure 5-15 Charpy Impact Specimen Fracture Surfaces of the McGuire Unit 2 Reactor Vessel Weld Metal l McGuire Unit 2 Capsule W Analysis March 1997 1

1 d 5-34 i

1 .

.."D Dif40 Dii38 DH41 DH43 DH32 DII45 Dil35 DII36 Dil33 DH34 i

g' i

l .; _ ,

I DlI42 DH37 DH44 DH39 DH31 j

Figure 5-16 Charpy Impact Specimen Fracture Surfaces of the McGuire Unit 2 Reactor Vessel Weld j Heat-Affected-Zone (HAZ) Metal l McGuire Unit 2 Capsule W Analysis March 1997

l l

l 5-35

( C) 0 50 100 150 200 250 300 120-l l l l l g l_ ,,,

110 Ultimate Tensile Strength 100 -

7" A

90 -

T bN yd --- MO p 80 - A -- g 500 m

$ 70 _ -9 m

b N_

-0 0- 4M 0.2% Yield Strength 50 _

- 3M

@ l l l l 1 i

AO Unirradiated . 1 gg irradiated 80 70 b

~

  • m. e 4 Reduction in Area O 50 -

b 40 -

Total Elongation

= 30 _\

2 U

S kN- -

A__

g 20 - =_

Ow 10 _ O O O @

Uniform Elongation 0 t i I I l 0 100 200 300 400 500 Temperature ( F)

Figure 5-17 Tensile Properties for the McGuire Unit 2 Reactor Vessel Intermediate Shell Forging 05 (Tangential Orientation)

McGuire Unit 2 Capsule W Analysis March 1997

5-36 J

(*C) ,

0 50 100 150 200 250 300 120 i  ;  ;  ;  ; ;_ ,,o 110 Ultimate Tensile Strength 700 100 -

A __g 90 -

~h

~

80 -

C A E

~

G"- 2 I 70 - -g - 500 2 .

5 0 8 -

o e 4e 0 - O 0.2% Yield Strength 40 l l l l 1

- 300 l AO Unirradiated A g Irradiated

. 80 .

i Reduction in Area g_

70 so __ . O g i 50 -

g p

=

40 -

U 30 - Total Elongation S A-._ t uA

~ {

20 1 10 G- .U

--h Uniform Elongation ,

O I i l i 1 l' 0 100 200 300 400 500 Temperature (*F)

Figure 5-18 Tensile Properties for the McGuire Unit 2 Reactor Vessel Intermediate Shell Forging 05 (Axial Orientation)

McGuire Unit 2 Capsule W Analysis March 1997 1

5-37

(*C) ,

0 50 100 150 200 250 300 -

120 l l l l l l l- 800 110 Ultimate Tensile Strength 7"

100 -

90 Eg Ng ___

-A -

600 e 2s

.0 - . a .

~

70 -

- e- 1

~

0.2% Yield Strength

~

50 __

g 1 l 1 3M l l Ao Unirradiated As Irradiated 80 m - a 70 Q

60 50 -

~

g Total Elongation 5 30 -

A / 2 5 m ~. k- f.7 5 20 2

~

$ (g_

10 -

-g 0 h. Z Uniform Elongation 0 I I I I I O 100 200 300 400 500 Temperature ('F)

Figure 5-19 Tensile Properties for the McGuire Unit 2 Reactor Vessel Weld Metal McGuire Unit 2 Capsule W Analysis March 1997

5-38 Specimen DL7 Tested at 72"F

] .

3 ,.;.. u i 1,u i , ,

a .4 4- - ,.

.) . f LQ 2 s'

p yp%

n;-::ry

  • {

l Specimen DL8 Tested at 190"F Specimen DL10 Tested at 550 F Figure 5-20 Fractured Tensile Specimens from the McGuire Unit 2 Reactor Vessel Intermediate Shell Forging 05 (Tangential Orientation)

McGuire Unit 2 Capsule W Analysis March 1997

1 l

5-39 4

l f{r t)i IsmM

\i i' l i .! .

j - . - - .

. . ? ,,,,,  ; - -.

l :ye-

Specimen DT7 Tested at 150'F Specimen DT8 Tested at 275"F l

i 1

Specimen DT9 Tested at 550>F i

t Figure 5-21 Fractured Tensile Specimens from the McGuire Unit 2 Reactor Vessel Intermediate Shell Forging 05 (Axial Orientation)

McGuire Unit 2 Capsule W Analysis March 1997 l

5-40 y

m],;-

-13

-- r.. cmn 6 9 . ,

, g Id)"ItC+' ifs l f f j ,j,. 3.i 7 g) J. 1

  • I - -.

Specimen DW7 Tested at 72"F Specimen DW8 Tested at 225"F

! Specimen W9 Tested at 550F i

I Figure 5-22 Fractured Tensile Specimens from the McGuire Unit 2 Reactor Vessel Weld Metal 1

McGuire Unit 2 Capsule W Analy;is March 1997 4

- , , - - - . - , . -_-.-r- . . - - - , - - -

! I i

5-41 I

110.00 l

100.00-90.00- .

60.00-70.00- l g 60.00- r 50.00- '

W 40.00-l 30.00-  !

DL7 ,

20.00-72 F i 10.00-i 0.00 , , , .

0.00 0.10 0.20 0.30 ,

STRAIN, IN/IN '

STRESS-STRAIN CURVE MCGUIRE UNIT 2 'W' CAPSULE 110.00 100.00-90.00-80.00-

$ 70.00-ui GO.00-

0) i W

50.00- )

W 40.00-30.00-20,00 DL8 10.00- 1go p 0.00 . . . . ,

0.00 0.10 0.20 0.30 STRAIN, IN/IN  !

Figure 5-23 Engineering Stress-Strain Curves for McGuire Unit 2 Reactor Vessel Intermediate Shell Forging 05 Tensile Specimens DL7 and DL8 (Tangential Orientation)

McGuire Unit 2 Capsule W Analysis March 1997 I

5-42 l

P 110.00 100.00-90.00-80.00-Si 70.00-x i

vi 80.00-  :

e  !

50.00- ,

  1. 40.00-

'i '

30.00-OL9 20.00-550 F 10.00 0.00 , , , '

0.00 0.10 0.i!0 O.30 STRAIN, IN/IN j..

Figure 5-24 Engineering Stress-Strain Curve for McGuire Unit 2 Reactor Vessel Intermediate Shell

. . Forging 05 Tensile Specimen DL9 (Tangential Orientation)

McGuire Unit 2 Capsule W Analysis March 1997

)

5-43 110.00 100.00-90.00-80.00- j m 70.00-x ui 80.00-m H

50.00-M 40.00- l 30.00-20.00- l 10.00- 150 F 0.00 . . . . .

0.00 0.10 0.20 0.30 STRAIN, IN/IN J STRESS-STRAIN CURVE l MCGUlRE UNIT 2 'W' CAPSULE i 110.00 100.00- I 90.00-80.00-

$ 70.00-ui 60.00-m

+

50.00-M 40.00-30.00-20.00- DT8 10.00- 275 F 0.00 . . . . -

0.00 0.10 0.20 0.30 STRAIN, IN/IN Figure 5-25 Engineering Strers-Strain Curves for McGuire Unit 2 Reactor Vessel Intermediate Shell Forging 05 Tensile Specimens DT7 and DT8 (Axial Orientation)

McGuire Unit 2 Capsule W Aialysis March 1997

h 5-44 1

1 110.00 100.00-90.00-80.00- '

$ 70.00-

@ N.N' E 50.00-H M 40.00-30.00-DT9 20.00-gg 10.00-0.00 , , , , ,

I 0.00 0.10 0.20 0.30 '

l STRAIN, IN/IN '

l Figure 5-26 Engineering Stress-Strain Curve for McGuire Unit 2 Reactor Vessel Intermediate Shell i Forging 05 Tensile Specimen DT9 (Axial Orientation)  !

McGuire Unit 2 Capsule W Analysis March 1997 l i

i

l l

l l

5-45 110.00 100.00- l 90.00- l l

80.00- ,

l E 70.00-of 60.00- .

m i E 50.00-w m 40.00-l 30.00-DW 7 20.00-10.00- 72 F 1

0.00 . . . . .

0.00 0.10 0.20 0.30 l STRAIN, IN/IN STRESS-STRAIN CURVE MCGUIRE UNIT 2 'W' CAPSULE 110.00 100.00-90.00-80.00-E 70.00-ui 80.00-m W 50.00-h m <0.00-30.00- DW8 20.00-225 F 10.00-0.00 4 . . . .

0.00 0.10 0.20 0.30 STRAIN, IN/IN Figure 5-27 Engineering Stress-Strain Curves for McGuire Unit 2 Reactor Vessel Weld Metal Tensile Specimens DW7 and DW8 McGuire Unit 2 Capsuk W Analysis March 1997 A-

3 5-46 1

110.00 100.00-90.00-80.00-5 x 70.00-I ci M

80.00-  !

50.00-M 40.00-30.00-20.00 DW9 10.00- 550 F 0.00 , , , ' 1 0.00 0.10 0.20 O.30 STRAIN, IN/IN l

l Q

Figure 5-28 Engineering Stress-Strain Curve for McGuire Unit 2 Reactor Vessel Weld Metal Tensile Specimen DW9 McGuire Unit 2 Capsule W Analysis March 1997

6-1 SECTION 6.0 RADIATION ANALYSIS AND NEUTRON DOSIMETRY 6.1 Introduction Knowledge of the neutron environment within the reactor vessel and surveillance capsule geometry is required as an integral part of LWR reactor vessel surveillance programs for two reasons. First, in order to interpret the neutron radiation induced material property changes observed in the test specimens, the neutron environment (energy spectrum, flux, fluence) to which the test specimens were exposed must be known. Second, in order to relate the changes observed in the test specimens to the present and future condition of the reactor vessel, a relationship must be established between the ,

neutron environment at various positions within the reactor vessel and that experienced by the test specimens. The former requirement is normally met by employing a combination of rigorous analytical techniques and measurements obtained with passive neutron flux monitors contained in each of the surveillance capsules. The latter information is generally derived solely from analysis.  !

The use of fast neutron fluence (E > 1.0 MeV) to correlate measured material property changes to the neutron exposure of the material has traditionally been accepted for development of damage trend curves as well as for the implementation of trend curve data to assess vessel condition. In recent years, however, it has been suggested that an exposure model that accounts for differences in neutron energy spectra between surveillance capsule locations and positions within the vessel wall could lead to an improvement in the uncertainties associated with damage trend curves as well as to a more accurate evaluation of damage gradients through the reactor vessel wall.

Because of this potential shift away from a threshold fluence toward an energy dependent damage function for data correlation, ASTM Standard Practice E853, " Analysis and Interpretation of Light Water Reactor Surveillance Results," recommends reporting displacements per iron atom (dpa) along with fluence (E > 1.0 MeV) to provide a data base for future reference. The energy dependent dpa function to be used for this evaluation is specified in ASTM Standard Practice E693, " Characterizing Neutron Exposures in Ferritic Steels in Terms of Displacements per Atom." The application of the McGuire Unit 2 Capsule W Anabsis March 1997

6-2 dpa parameter to the assessment of embrittlement gradients through the thickness of the reactor vessel j wall has already been promulgated in Revision 2 to Regulatory Guide 1.99, Radiation Embrittlement

)

of Reactor Vessel Materials."

This section provides the results of the neutron dosimetry evaluations performed in conjunction with the analysis of test specimens contained in surveillance Capsule W, withdrawn at the end of the tenth ,

1 fuel cycle. Also included is an update of the dosimetry evaluation for Capsules Y, Z, U, X, and V l withdrawn at the end of the eighth, eighth, seventh, fifth, and first fuel cycles, respectively. This update is based on current state-of-the-art methodology and nuclear data including recently released neutron transport and dosimetry cross-section libraries derived from the ENDF/B-VI data base. This j l

report provides a consistent up-to-date neutron exposure data base for use in evaluating the material '

properties of the McGuire Unit 2 reactor vessel.

In each of the capsule dosimetry evaluations, fast neutron exposure parameters in terms of neutron fluence (E > 1.0 MeV), neutron fluence (E > 0.1 MeV), and iron atom displacements (dpa) are established for the capsule irradiation history. The analytical formalism relating the measured capsule exposure to the exposure of the vessel wall is described and used to project the integrated exposure of the vessel wall. Also, uncertainties associated with the derived exposure parameters at the surveillance capsules and with the projected exposure of the reactor versel are provided.

6.2 Discrete Ordinates Analysis A plan view of the reactor geometry at the core midplane is shown in Figure 4-1. Six irradiation capsules attached to the neutron pads are included in the reactor design to constitute the reactor vessel surveillance program. The capsules are located at azimuthal angles of 56*,58.5 ,124 ,236*, 238.5 ,

and 304* relative to the core cardinal axis as shown in Figure 4-1. A plan view of a dual surveillance capsule holder attached to the neutron pad is shown in Figure 6-1. The stainless steel specimen containers are 1.182 by 1-inch and approximately 56 inches in height. The containers are positioned axially such that the test specimens are centered on the core midplane, thus spanning the central 5 feet of the 12-foot high reactor core.

McGuire Unit 2 Capsule W Analysis March 1997

I l

i 6-3 From a neutronic standpoint, the surveillance capsules and associated support structures are significant.

The presence of these materials has a marked effect on both the spatial distribution of neutron flux and the neutron energy spectrum in the water annulus between the neutron pad and the reactor vessel. In order to determine the neutron environment at the test specimen location, the capsules themselves must be included in the analytical model.

In performing the fast neutron exposure evaluations for the surveillance capsules and reactor vessel, ,

1 two distinct sets of transport calculations were carried out. The first, a single computation in the  ;

conventional forward mode, was used primarily to obtain relative neutron energy distributions j throughout the reactor geometry as well as to establish relative radial distributions of exposure parameters {$(E > 1.0 MeV), $(E > 0.1 MeV), and dpa/sec} through the vessel wall. The neutron spectral information was required for the interpretation of neutron dosimetry withdrawn from the i surveillance capsules as well as for the determination of exposure parameter ratios; i.e.,

[dpa/sec]/[$(E > 1.0 MeV)], within the reactor vessel geometry. The relative radial gradient information was required to permit the projection of measured exposure parameters to locations mterior to the reactor vessel wall; i.e., the %T, HT, and %T locations.

The second set of calculations consisted of a series of adjoint analyses relating the fast neutron flux,

$(E > 1.0 MeV), at surveillance capsule positions and at several azimuthal locations on the reactor vessel inner radius to neutron source distributions within the reactor core. The source importance functions generated from these adjoint analyses provided the basis for all absolute exposure calculations and comparison with measurement. These importance functions, when combined with fuel cycle specific neutron source distributions, yielded absolute predictions of neutron exposure at the locations of interest for each cycle of irradiation. They also established the means to perform similar ,

1 predictions and dosimetry evaluations for all subsequent fuel cycles. It is important to note that the cycle specific neutron source distributions utilized in these analyses included not only spatial variations of fission rates within the reactor core but also accounted for the effects of varying neutron yield per fission and fission spectrum introduced by the build-up of plutonium as the burnup of individual fuel assemblies increased.

McGuire Unit 2 Capsule W Analysis March 1997

6-4 The absolute cycle-specific data from the adjoint evaluations together with the relative neutron energy spectra and radial distribution information from the reference forward calculation provided the means to:

1- Evaluate neutron dosimetry obtained from surveillance capsules, 2- Relate dosimetry results to key locations at the inner radius and through the thickness of the reactor vessel wall, 3 - Enable a direct comparison of analytical prediction with measurement, and 4- Establish a mechanism for projection of reactor vessel exposure as the design of each new fuel cycle evolves.

The forward transport calculation for the reactor model summarized in Figures 4-1 and 6-1 was carried out in R,0 geometry using the DORT two-dimensional discrete ordinates code Version 2.7.390 and the BUGLE-93 cross-section library"" The BUGLE-93 library is a 47 energy group ENDF/B-VI based data set produced specifically for light water reactor applications. In these analyses, anisotropic scattering was treated with a P3expansion of the scattering cross-sections and the angular discretization was modeled with an S, order of angular quadrature.

Th: core power distribution utilized in the reference forward transport calculation was derived from statistical studies of long-term operation of Westinghouse 4-loop plants. Inherent in the development of this reference core power distribution is the use of an out-in fuel management strategy; i.e., fresh fuel on the core periphery. Furthermore, for the peripheral fuel assemblies, the neutron source was increased by a 20 margin derived from the statistical evaluation of plant-to-plant and cycle-to-cycle variations in peripheral power. Since it is unlikely that any single reactor would exhibit power levels on the core periphery at the nominal + 20 value for a large number of fuel cycles, the use of this reference distribution is expected to yield somewhat conservative results.

All adjoint calculations were also carried out using an S order of angular quadrature and the P3 cross-section approximation from the BUGLE-93 library. Adjoint source locations were chosen at several azimuthal locations along the reactor vessel inner radius as well as at the geometric center of each surveillance capsule. Again, these calculations were run in R,0 geometry to provide neutron source McGuim Unit 2 Capsule W Analysis March 1997

6-5 distribution importance functions for the exposure parameter of interest, in this case $(E > 1.0 MeV).

Having the importance functions and appropriate core source distributions, the response of interest could be calculated as:

R(r,0) = } } [1(r,0,E) S(r,0,E) r dr de dE ,

r 0 E where: R(r,0) = $(E > 1.0 MeV) at radius r and azimuthal angle 0.

I(r,0,E)= Adjoint source importance function at radius r, azimuthal angle 0, and neutron source energy E.

1 S(r,0,E)= Neutron source strength at core location r,0 and energy E. I 1

Although the adjoint importance functions used in this analysis were based on a response function defined by the threshold neutron flux $(E > 1.0 MeV), prior calculations

  • have shown that, while the implementation of low leakage loading pattems significantly impacts both the magnitude and spatial distribution of the neutron field, changes in the relative neutron energy spectrum are of second order. Thus, for a given location, the ratio of [dpa/sec]/[$(E > 1.0 MeV)] is insensitive to changing core source distributions. In the application of these adjoint importance functions to the McGuire Unit 2 reactor, therefore, the iron atom displacement rates (dpa/sec) and the neutron flux $(E > 0.1 MeV) were computed on a cycle-specific basis by using [dpa/sec]/[$(E > 1.0 MeV)] and [$(E > 0.1 MeV)]/[$(E > 1.0 MeV)] ratios from the forward analysis in conjunction with the cycle specific

$(E > 1.0 MeV) solutions from the individual adjoint evaluations.

The reactor core power distributions used in the plant specific adjoint calculations were taken from the fuel cycle design reports and from selected Duke Power Company (DPC) calculation note files for the first ten operating cycles of McGuire Unit 2 (21kmgh10]

Selected results from the neutron transport analyses are provided in Tables 6-1 through 6-5. 'Ihe data listed in these tables establish the means for absolute comparisons of analysis and measurement for the capsule irradiation periods and provide the means to correlate dosimetry results with the corresponding exposure of the reactor vessel wall.

McGuire Unit 2 Capsule W Analysis March 1997

l 6-6 In Table 6-1, the calculated exposure parameters [$(E > 1.0 MeV), $(E > 0.1 MeV), and dpa/sec]

are given at the geometric center of the two azimuthally symmetric surveillance capsule positions (31.5* and 34*) for both the reference and the plant specific core power distributions. The plant-specific data, based on the adjoint transport analysis, are meant to establish the absolute comparison of measurement with analysis. The reference data derived from the forward calculation are provided as a conservative exposure evaluation against which plant specific fluence calculations I can be compared. Similar data are given in Table 6-2 for the reactor vessel inner radius. Again, the three pertinent exposure parameters are listed for the reference and Cycles 1 through 10 plant specific power distributions.

It is important to note that the data for the vessel inner radius were taken at the clad / base metal l l

interface, and, thus, represent the maximum predicted exposure levels of the vessel plates and welds.

l l

Radial gradient information applicable to $(E > 1.0 MeV), $(E > 0.1 MeV), and dpa/sec is given in Tables 6-3,6-4, and 6-5, respectively. The data, obtained from the reference forward neutron transport calculation, are presented on a relative basis for each exposure parameter at several azimuthal locations. Exposure distributions through the vessel wall may be obtained by normalizing the calculated or projected exposure at the vessel inner radius to the gradient data listed in Tables 6-3 through 6-5, For example, the neutron flux $(E > 1.0 MeV) at the %T depth in the reactor vessel wall along the 0* azimuth is given by:

&gf0*) = 4(220.35,0*) F(225.87,0*)

where: $d 0 ) = Projected neutron flux at the %T position on the 0 azimuth.

$(220.35,0 ) = Projected or calculated neutron flux at the vessel inner radius on the 0 azimuth.

F(225.87,0*) = Ratio of the neutron flux at the %T position to the flux at the vessel inner radius for the 0 azimuth. This data is obtained from Table 6-3.

McGuire Unit 2 Capsule W Analysis March 1997

- ~= .. .- - - . _ _ _ .. - _ . - .-

6-7 l Similar expressions apply for exposure parameters expressed in terms of $(E > 0.1 MeV) and dpa/see where the attenuation function F is obtained from Tables 6-4 and 6-5, respectively.

6.3 Neutron Dosimetry The passive neutron sensors included in the McGuire Unit 2 surveillance program are listed in Table -

6-6. Also given in Table 6-6 are the primary nuclear reactions and associated nuclear constants that j were used in the evaluation of the neutron energy spectrum within the surveillance capsules and in the subsequent determination of the various exposure parameters of interest ($(E > 1.0 MeV), $(E > l

' O.1 MeV), dpa/sec]. The relative locations of the neutron sensors within the capsules are shown in ,

Figure 4-2. The iron, nickel, copper, and cobalt-aluminum monitors, in wire form, were placed in j holes drilled in spacers at several axial levels within the capsules. The cadmium shielded uranium and i

neptunium fission monitors were accommodated within the dosimeter block located near the center of I the capsule.

The use of passive monitors such as those listed in Table 6-6 does not yield a direct measure of the energy dependent neutron flux at the point of interest. Rather, the activation or fission process is a measure of the integrated effect that the time and energy dependent neutron flux has on the target material over the course of the irradiation period. An accurate assessment of the average neutron flux level incident on the various monitors may be derived from the activation measurements only if the irradiation parameters are well known. In particular, the following variables are of interest:

TM acasured specific activity of each monitor.

The physical characteristics of each monitor.

The operating history of the reactor.

The energy response of each monitor, and The neutron energy spectrum at the monitor location.

The specific activity of each of the neutron monitors was determined using established ASTM procedures * *"8*. Following sample preparation and weighing, the activity of each monitor was determined by means of a lithium-drifted germanium, Ge(Li), gamma spectrometer. The irradiation history of the McGuire Unit 2 reactor was obtained from NUREG-0020, ' Licensed Operating Reactors McGuire Unit 2 Capsule W Analysis March 1997

I 6-8 l Status Summary Report," for the Cycles 1 through 10 operating period. The irradiation history applicable to the exposure of Capsules W Y, Z, U X, and V is given in Table 6-7.

Having the measured specific activities, the physical characteristics of the sensors, and the operating history of the reactor, reaction rates referenced to full-power operation were determined from the following equation:

A R=

~

N FY{

o l C j[1-e "/] [e-"#J ref where:

R = Reaction rate averaged over the irradiation period and referenced to operation at a core power level of P,,,(rps/ nucleus).

A = Measured speciDe activity (dps/gm).

No = Number of target element atoms per gram of sensor.

F = Weight fraction of the target isotope in the sensor material.

Y = Number of product atoms produced per reaction.

P; = . Average core power level during irradiation period j (MW).

P,,, = Maximum or reference power level of the reactor (MW).

C3 = Calculated ratio of $(E > 1.0 MeV) during irradiation period j to the time weighted average $(E > 1.0 MeV) over the entire irradiation period.

1 = Decay constant of the product isotope (1/sec).

tj = Length of irradiation period j (sec).

to = Decay time following irradiation period j (sec).

and the summation is carried out over the total number of monthly intervals comprising the irradiation j period.

In the equation describing the reaction rate calculation, the ratio [P]/[P,,,)

j accounts for month by month variation of reactor core power level within any given fuel cycle as well as over multiple fuel cycles. The ratio C,, which can be calculated for each fuel cycle using the adjoint transport technology discussed in Section 6.2, accounts for the change in sensor reaction rates caused by variations in flux level induced by changes in core spatial power distributions from fuel cycle to fuel cycle. For a single McGuire Unit 2 Capsule W Analysis March 1997

l l

l i

6-9 cycle irradiation, C, is normally taken to be 1.0. However, for multiple-cycle irradiations, particularly those employing low leakage fuel management, the additional C, term should be employed. The impact of changing flux levels for constant power operation can be quite significant for sensor sets that have been irradiated for many cycles in a reactor that has transitioned from non-low leakage to low leakage fuel management or for sensor sets contained in surveillance capsules that have been moved from one capsule location to another.

For the irradiation history of Capsules W Y, Z, U, X, and V, the flux level term in the reaction rate calculations was developed from the plant-specific analysis provided in Table 6-1. Measured and saturated reaction product specific activities as well as the derived full power reaction rates are listed 23:

in Table 6-8. The specific activities and reaction rates of the U sensors provided in Table 6-8 include corrections for 2"U impurities, plutonium build-in, and gamma ray induced fissions.  !

Corrections for gamma ray induced fissions were also included in the specific activities and reaction I rates for the 2"Np sensors as well.

Values of key fast neutron exposure parameters were derived from the measured reaction rates using the ITIIRET least squares adjustment code HH The FERRET approach used the measured reaction rate data, sensor reaction cross-sections, and a calculated trial spectrum as input and proceeded to adjust the group fluxes from the trial spectrum to produce a best fit (in a least squares sense) to the measured '

reaction rate data. The measured" exposure parameters along with the associated uncertainties were then obtained from the adjusted spectrum.

In the FERRET evaluations, a log-normal least squares algorithm weights both the a priori values and the measured data in accordance with the assigned uncertainties and correlations. In general, the measured values f are linearly related to the flux $ by some response matrix A:

f f '} = { A f $f")

E McGuire Unit 2 Capsule W Analysis March 1997

6-10 l

where i indexes the measured values belonging to a single data set s, g designates the energy group, and a delineates spectra that may be simultaneously adjusted. For example, i

R, = [ ag 4, i 8 i d

)

l relates a set of measured reaction rates iR to a single spectrum 4, by the multi-group reaction cron-  !

j section o,,. The log-normal approach automatically accounts for the physical constraint of positive  ;

fluxes, even with large assigned uncenainties.

i J

In the least squares adjustment, the continuous quantities (i.e., neutron spectra and cross-sections) were j approximated in a multi-group format consisting of 53 energy groups. The trial input spectrum was converted to the FERRET 53 group structure using the S AND-Il code". This procedure was carried i out by first expanding the 47 group calculated spectrum into the SAND-II 620 group structure usmg a j i

SPLINE interpolation procedure in regions where group boundaries do not coincide. The 620 point 5 spectrum was then re-collapsed into the group structure used in FERRET.

l The sensor set reaction cross-sections, obtained from the ENDF/B-VI dosimetry file!"I, were also collapsed into the 53 energy group structure using the SAND-II code. In this instance, the trial  ;

spectrum, as expanded to 620 groups, was employed as a weighting function in the cross-section i i

collapsing procedure. Reaction cross-section uncertainties in the form of a 53 x 53 covariance matrix  ;

for each sensor reaction were also constructed from the information contained on the ENDF/B-VI data  ;

files. These matrices included energy group to energy group uncertainty correlations for each of the l

individual reactions. However, correlations between cross-sections for different sensor reactions were not included. The omission of this additional uncertainty information does not significantly impact the  !

results of the adjustment.  :

l t

i i

Due to the importance of providing a trial spectrum that exhibits a relative energy distribution close to l the actual spectrum at the sensor set locations, the neutron spectmm input to the FERRET evaluation was taken from the center of the surveillance capsule modeled in the reference forward transport calculation. While the 53 x 53 group covariance matrices applicable to the sensor reaction cross- [

McGuire Unit 2 Capsule W Analysis March 1997 t

6-11 sections were developed from the ENDF/B-VI data files, the covariance matrix for the input trial spectrum was constructed from the following relation:

M,i = R,', + R, R,1 P,i where R, specifies an overall fractional normalization uncertainty (i.e., complete correlation) for the set of values. The fractional uncertainties R, specify additional random uncenainties for group g that are correlated with a correlation matrix given by:

P,i = [1-0] 6,i + 0 e -"

where:

H = WE 2y 2 The first term in the correlation matrix equation specifies purely random uncertainties, while the second term describes short range correlations over a group range 7 (6 specifies the strength of the latter term). The value of 6 is I when g = g' and 0 otherwise. For the trial spectrum used in the current evaluations, a short range correlation of y = 6 groups was used. This choice implies that neighboring groups are strongly correlated when 0 is close to 1. Strong long range correlations (or anti-correlations) were justified based on information presented by R. E. Macrker"8', The unce.1ainties associated with the measured reaction rates included both statistical (counting) and systematic components. The systematic component of the overall uncertainty accounts for counter efficiency, counter calibrations, irradiation history corrections, and corrections for competing reactions in the individual sensors.

Results of the FERRET evaluations of the Capsules W. Y, Z, U, X, and V dosimetry are given in Table 6-9. The data summarized in this table include fast neutron exposure evalcations in terms of 4(E > 1.0 MeV), @(E > 0.1 MeV), and dpa. In general, excellent results were achieved in the fits of the adjusted spectra to the individual measured reaction rates. The measured and FERRET McGuire Unit 2 Capsule W Analysis March 1997

6-12 adjusted reaction rates for each reaction are given in Table 6-10. An examination of Table 6-10 shows that, in all cases, reaction rates calculated with the adjusted spectra match the measured reaction rates to better than 17'k. The adjusted spectra from the least squares evaluation is given in Table 6-11 in the FERRET 53 energy group structure.

In Table 6-12, absolute comparisons of the measured and calculated fluence at the center of each capsule are presented. The results for the Capsules W, Y, Z, U, X, and V dosimetry evaluations (M/C ratios of 0.98 for $(E > 1.0 MeV)) are consistent with results obtained from similar evaluations of dosimetry from other reactors using methodologies based on ENDF/B-VI cross-sections.

6.4 Proiections of Reactor Vessel Exposure The best estimate exposure of the McGuire Unit 2 reactor vessel was developed using a combination of absolute plant specific transport calculations and all available plant specific r.ieasurement data. In the case of McGuire Unit 2, the measurement data base consists of the six survoillance capsules discussed in this report.

Combining this measurement data base with the plant specific calculations, the best estimate vessel exposure is obtained from the following relationship:

  • ses t.a.
  • K @g, where: ca .c r, = The best estimate fast neutron exposure at the location of interest.

K= The plant specific measurement / calculation (M/C) bias factor derived from the surveillance capsule dosimetry data.

$c,= The absolute calculated fast neutron exposure at the location of interest.

The approach defined in the above equation is based on the premise that the measurement data represent the most accurate plant-specific information available at the locations of the dosimetry; and, further that the use of the measurement data on a plant-specific basis essentially removes biases McGuire Unit 2 Capsule W Analysis March 1997

6-13 present in the analytical approach and mitigates the uncertainties that would result from the use of analysis alone.

nat is, at the measurement points the uncertainty in the best estimate exposure is dominated by the uncenainties in the measurement process. At locations within the reactor vessel wall, additional uncenainty is incurred due to the analytically determined relative ratios among the various measurement points and locations within the reactor vessel wall.

For McGuire Unit 2, the derived plant specific bias factors were 0.98,1.06, and 1.03 for G(E > 1.0 MeV), $(E > 0.1 MeV), and dpa, respectively. Bias factors of this magnitude are fully consistent with experience using the BUGLE-93 cross-section library.

i The use of the bias factors derived from the measurement data base acts to remove plant-specific  ;

1 biases associated with the definition of the core source, actual versus assumed reactor dimensions, and j operational variations in water density within the reactor. As a result, the overall uncenainty in the best estimate exposure projections within the vessel wall depends on the individual uncertainties in the measurement process, the uncertainty in the dosimetry location, and, in the uncenainty in the calculated ratio of the neutron exposure at the point of interest to that at the measurement location. 1 l

The uncertainty in the derived neutron flux for an individual measurement is obtained directly from the results of a least squares evaluation of dosimetry data. The least squares approach combines individual uncertainty in the calculated neutron energy spectrum, the uncenainties in dosimetry cross-sections, and the uncertainties in measured foil specific activities to produce a net uncertainty in the l derived neutron flux at the measurement point. The associated uncenainty in the plant specific bias factor, K, derived from the M/C data base, in tum, depends on the total number of available measurements as well as on the uncertainty of each measurement.

In developing the overall uncertainty associated with the reactor vessel 2xposure, the positioning uncenainties for dosimetry are taken from parametric studies of sensor position performed as part a I series of analytical sensitivity studies included in the qualification of.the methodology. The uncertainties in the exposure ratios relating dosimetry results to positions within the vessel wall are again based on the analytical sensitivity studies of the vessel thickness tolerance, downcomer water McGuire Unit 2 Capsule W Analysis March 1997

. ._ . _ _ = _ ___ _ _ __ __ . _ _ _ _ _ _ _

6-14 density variations, and vessel inner radius tolerance. Thus, this portion of the overall uncertainty is controlled entirely by dimensional tolerances associated with the reactor design and by the operational characteristics of the reactor.

The net uncenainty in the bias factor, K, is combined with the uncenainty from the analytical sensitivity study to define the overall fluence uncenainty at the reactor vessel wall. In the case of McGuire Unit 2, the derived uncenainties in the bias factor, K, and the additional uncedainty from the analytical sensitivity studies combine to yield a net uncertainty of 7%.

Based on this best estimate approach, neutron exposure projections at key locations on the reactor l

vessel inner radius are given in Table 6-13. Along with the current (9.44 EFPY) exposure, projections are also provideil for exposure periods of 21 EFPY,34 EFPY, and 50.3 EFPY. Projections for future  !

I' operation were based on the assumption that the average exposure rates averaged over the Cycles 8 ti. rough 10 irradiation period would continue to be applicable throughout plant life.

In the calculation of exposure gradients within the reactor vessel wall for the McGuire Unit 2 reactor vessel, exposure projections to 21,34, and 50.3 EFPY were also employed. Data based on both a

$(E > 1.0 MeV) slope and a plant-specific dpa slope through the vessel wall are provided in Table 6-14.

In order to access RTer versus fluence curves, dpa equivalent fast neutron fluence levels for the %T, i

%T and MT positions were defined by the relations l

4(%7) = 4(0T) dpa(%T) dpa(07) 4(%7) = 4(0T) dpa(%T) dpa(07) i and 4(%T) = 4(OT) fPa(%7) apa(OT) l McGuire Unit 2 Capsule W Analysis March 1997 i

1 i

6-15 l

Using this approach results in the dpa equivalent fluence values listed in Table 6-14. j I

L In Table 6-15, updated lead factors are listed for each of the McGuire Unit 2 surveillance capsules. .

I

?

5

?

1 i

l I

l McGuire Unit 2 Capsule W Analysis March 1997 1 l

_-- ..~ . _- - - . - - _ . . . . . . - . - - . _ - . .

i j 6-16

, FIGURE 6-1 PLAN VIEW OF A DUAL REACTOR VESSEL SURVEILLANCE CAPSULE l

l l

l

. (TYPicAu C'

- 58.0* F 58.5'

~ l c \\

j T -

, r-- ,

T  !

- 81.622IN.

L L l N7

\

l l

McGuire Unit 2 Capsule W Analysis March 1997 a +w- - - - . . , - yr. ,.

4 h

6-17 ,

TABLE 6-1 CALCULATED FAST NEUTRON EXPOSURE RATES AND IRON ATOM DISPLACEMENT RATES AT THE SURVEILLANCE CAPSULE CENTER 4

2

$(E > 1.0 MeV) (n/cm -sec)- -

31.5*

Cycle No. 34*  !

Reference 1.368e+11 1.599e+11 .

I 9.878e+10 1.144e+11 2 1.145e+11 1.332e+11 3 9.983e+10 1.169e+11 4 8.823e+10 1.008e+11 5 8.495e+10 9.586e+10 ,

i 6 8.219e+10 9.205e+10 7 8.484e+10 9.553e+10 8 8.358e+10 9.471e+10 9- 8.324e+10 9.570e+10

e. 10 7.528e+10 8.598e+10 2

$(E > 0.1 MeV) (n/cm -sec)

Cycle No. 31.5* , 'ts *

, Reference 5.964e+11 ~.180e+11 1 4.307e+11 5.139e+11 l 2 4.994e+11 5.982e+11  !

3 4.353e+11 5.251e+11 4 3.847e+11 4.524e+11 5 3.704e+11 4.304e+11

6 3.583e+11 4.133e+11 7 3.699e+11 4.289e+11 8 3.644e+11 4.252e+11 9 3.629e+11 4.297e+11

10 3.282e+11 3.860e+11 McGuire Unit 2 Capsule W Analysis. March 1997

l 6-18 TABLE 6-1 cont'd CALCULATED FAST NEUTRON EXPOSURE RATES AND IRON ATOM DISPLACEMENT RATES AT THE SURVEILLANCE CAPSULE CENTER I

Displacement Rate (dpa/sec)

Cycle No. 31.5' 34*

Reference 2.609e-10 3.095e-10 1 1.884e-10 2.216e.10 2 2.184e-10 2.579e-10 3 1.904e-10 2.264e-10 4 1.683e-10 1.951e-10 5 1.620e-10 1.856e-10 6 1.567e-10 1.782e-10 7 1.618e-10 L850e-10 8 1.594e-10 1.834e-10 9 1.587e-10 1.853e-10 10 1.436e-10 1.665e-10 l

I l

McGuire Unit 2 Capsule W Analysis March 1997

6-19 TABLE 6-2 CALCULATED AZIMUTHAL VARIATION OF FAST NEUTRON EXPOSURE RATES i AND IRON ATOM DISPLACEMENT RATES AT THE REACTOR VESSEL I CLAD / BASE METAL INTERFACE 2

$(E > 1.0 MeV) (n/cm -sec)

Cvele No.- 0' 15' 30' 45' i Reference 1.761e+10 2.692e+10 2.610e+10 3.120e+10 1 1.271e+10 1.919e+10 1.900e+10 2.244e+10 2 1.495e+10 2.281e+10 2.204e+10 2.592e+10 3 1.215e+10 1.885e+10 1.911e+10 2.350e+10 4 1.253e+10 1.870e+10 1.733e+10 1.954e+10 5 1.206e+10 1.847e+10 1.680e+10 1.824e+10 ,

6 1.328e+10 1.932e+10 1.655e+10 1.749e+10 7 1.223e+10 1.865e+10 1.687e+10 1.812e+10 ,

l 8 1.249e+10 1.843e+10 1.659e+10 1.815e+10 9 1.154e+10 1.680e+10 1.620e+10 1.874e+10 10 1.014e+10 1.475e+10 1.466e+10 1.653e+10 i

2

$(E > 0.1 MeV) (n/cm -sec)

Cycle No. 0* 15 30* 45*

Reference 3.706e+10 5.733e+10 5.982e+10 7.880e+10 1 2.676e+10 4.086e+10 4.354e+10 5.668e+10 ,

2 3.148e+10 4.856e+10 5.053e+10 6.548e+10 l 3 2.557e+10 4.012e+10 4.381e+10 5.936e+10 )

4 2.638e+10 3.980e+10 3.971e+10 4.935e+10 -  ;

5- 2.539e+10 3.932e+10 3.850e+10 4.607e+10 6 2.795e+10 4.113e+10 3.794e+10 4.418e+10 i 7 2.574e+10 3.971e+10 3.866e+10 4.577e+10 8 2.629e+10 3.923e+10 3.802e+10 4.585e+10 l 9 2.430e+10 3.576e+10 3.713e+10 4.734e+10 i 10 2.134e+10 3.140e+10 3.360e+10 4.176e+10 >

i i

McGuire Unit 2 Capsule d Analysis March 1997 l i

o

i l

6-20 TABLE 6-2 cont'd CALCULATED AZIMUTHAL VARIATION OF FAST NEUTRON EXPOSURE RATES l AND IRON ATOM DISPLACEMENT RATES AT THE REACTOR VESSEL CLAD / BASE METAL INTERFACE Displacement Rate (dpa/sec)

Cycle No. 0* 15' 30' 45' Reference 2.727e-11 4.131e-11 4.057e-11 ~ 4.938e-11 1 1.968e-11 2.944e-11 2.954e-11 3.552e-11

2. 2.315e-11 3.499e-11 3.428e-11 4.104e-11 3 1.881e-Il 2.891e-11 2.972e-11 3.720e-11 4 1.940e-11 2.868e-11 2.694e-11 3.093e-11 5 1.867e-11 2.833e-11 2.612e-11 2.887e-Il 6 2.055e-11 2.963e-11 2.574e-11 2.769e-11 7 1.893e-11 2.861e-11 2.623e-11 2.868e-11 8 1.934e-11 2.827e-11 2.579e-11 2.874e-11 9 1.787e 11 2.577e-11 2.519e-11 2.967e-11 10 1.569e-1I 2.262e-11 2.279e-11 2.617e-11 McGuire Unit 2 Capsule W Analysis March 1997

i 6-21 TABLE 6-3 RELATIVE RADIAL DISTRIBUTION OF $(E > 1.0 MeV)

WITHIN THE REAL7OR VESSEL WALL RADIUS AZIMUTHAL ANGLE (cm) 0* 15" 30" 45*

220.35 1.000 1.000 1.000 1.000 221.00 0.959 0.958 0.960 0.957 222.30 0.852 0.850 0.851 0.846 223.60 0.739 0.736 0.737 0.729 224.89 0.634 0.630 0.632 0.622 225.87 0.561 0.557 0.559 0.547 227.01 0.486 0.481 0.484 0.471 228.63 0.395 0.390 0.392 0.380 230.09 0.325 0.320 0.323 0.311 231.39 0.273 0.269 0.271 0.259 232.68 0.229 0.225 0.227 0.216 234.14 0.187 0.183 0.186 0.175 235.76 0.149 0.146 0.148 0.139 236.90 0.127 0.124 0.I26 0.I17 237.88 0.110 0.107 0.109 0.101 239.18 0.091 0.088 0.090 0.082 240.47 0.074 0.072 0.074 0.067 241.77 0.061 0.058 0.060 0.053 242.42 0.058 0.055 0.057 0.050 Note: Base Metal Inner Radius = 220.35 cm Base Metal %T = 225.87 cm Base Metal %T = 231.39 cm Base Metal %T = 236.90 cm Base Metal Outer Radius = 242.42 cm 1

McGuire Unit 2 Capsule W Analysis March 1997

6-22 I

TABLE 6-4 '

RELATIVE RADIAL DISTRIBUTION OF $(E > 0.1 MeV) .

WITHIN THE REACTOR VESSEL WALL l

RADIUS AZIMUTHAL ANGLE  !

(cm) 0* 15' 30' 45' 220.35 1.000 1.000 1.000 1.000 221.00 1.014 1.012 1.015 1.009 222.30 1.002 0.996 1.002 0.988 223.60 0.966 0.957 0.965 0.943 224.89 0.920 0.908 0.918 0.890-225.87 0.882 0.868 0.880 0.848 227.01 0.835 0.820 0.833 0.797 i 228.63 0.768 0.767 0.726 I 0.752 230.09 0.708 0.691 0.707 0.663 j 231.39 - 0.654 0.637 0.654 0.608 i 232.68 0.602 0.585 0.602 0.554 234.14 0.544 0.528 0.545 0.4 %

235.76 0.481 0.467 0.484 0.434 236.90 0.438 0.425 0.442 0.392 237.88 0.401 0.389 0.405 0.356 239.18 0.353 0.343 0.359 0.309 240.47 0.307 0.298 0.313 0.263 241.77 0.262 0.250 0.264 0.216 242.42 0.253 0.240 0.254 0.206 Note: Base Metal Inner Radius = 220.35 cm ,

Base Metal %T = 225.87 cm l Base Metal %T = 231.39 cm Base Metal MT = 236.90 cm Base Metal Outer Radius = 242.42 cm l

l i

l McGuire Unit 2 Capsule W Analysis March 1997

- .- - . . . . . . . .. . - - . . - - - . - . . ~ .._- - - . .-

6 23 ,

TABLE 6-5 ,

RELATIVE RADIAL DIS'IRIBUTION OF dpa/sec WITHIN THE REACTOR VESSEL WALL l

RADIUS AZIMUTHAL ANGLE (cm) 0* 15' 30*. 45' 220.35 1.000 1.000 1.000 1.000 221.00 0.%5 0.%5 0.968 0.%5 222.30 0.877 - 0.876 0.882 0.878 223.60 0.785 0.783 0.793 0.787 224.89 0.699 0.6% 0.708 0.702 225.87 0.638 0.635 0.649 0.642 227.01 0.575 0.571 0.587 0.579 228.63 0.495 0.491 0.508 0.499 230.09 0.432 0.428 0.446 0.436 231.39 0.383 0.378 0.397 0.386 232.68 0.339 0.334 0.352 0.341 234.14 0.295 0.291 0.308 0.2 %

235.76 0.252 0.248 0.264 0.251 236.90 0.224 -0.221 0.237 0.223 237.88 0.202 0.199 0.214 0.199 239.18 0.175 0.172 0.186 0.171 240.47 0.150 0.147 0.160 0.144 -

241.77 0.127 0.123 0.135 0.118 242.42 0.123 0.118 0.130 0.113 Note: Base Metal Inner Radius = 220.35 cm Base Metal %T = 225.87 cm  !

Base Metal HT = 231.39 cm  ;

I Base Metal MT = 236.90 cm Base Metal Outer Radius = 242.42 cm I

l McGuire Unit 2 Capsule.W Analysis March 1997

6-24 TABLE 6-6 NUCLEAR PARAMETERS USED IN THE EVALUATION OF NEUTRON SENSORS Target Fission Monitor Reaction of Atom Response Product Yield Material Interest Fraction Range Half-life (%)

Copper Cu (n,a) 0.6917 E > 4.7 MeV 5.271 y Iron 5'Fe (n,p) 0.0580 E > 1.0 MeV 312.5 d Nickel 5'Ni (n p) 0.6827 E > 1.0 MeV 70.78 d l 23:

Uranium-238 U (n.f) 0.9996 E > 0.4 MeV 30.!7 y 6.00 Neptunium-237 2Np (n,f) 1.0000 E > 0.08 MeV 30.17 y 6'27 Cobalt-Al 5'Co (n,y) 0.0015 E > 0.015 MeV 5.271 y 23:

Note: U and 257 Np monitors are cadmium shielded.

l l

McGuire Unit 2 Capsule W Analysis March 1997

- ~ - - . - - .- .. - - - . - . . . .

L 6-25 l

TABLE 6-7 MONTHLY THERMAL GENERATION DURING THE FIRST TFS FUEL CYCLES OF THE McGUIRE UNIT 2 REACTOR Cycle 1 Cycle 2 Cycle 3 Cycle 4 Thermal Thermal Thermal Thermal Gen. Gen. Gen. Gen.

Month M Wt-hr Month M Wt-hr Month M Wt-hr Month MWt-hr May-83 29804 May-85 1613921 Jun-86 98860 Jul-87 1968987 Jun-83 281343 Jun-85 2080510 Jul-86 2419839 Aug-87 2304777 Jul-83 503 Jul-85 949838 Aug-86 2295334 Sep-87 2209664 Aug-83 713998 Aug-85 1698280 Sep-86 2455840 Oct-87 2534464 Sep-83 1283803 Sep-85 2451943 Oct-86 2268723 Nov-87 2091145 1 Oct-83 1407029 Oct-85 2342207 Nov-86 834670 Dec-87 2449205 Nov-83 1677739 Nov-85 2366518 Dec-86 2539926 Jan-88 2375936 Dec-83 1637288 Dec-85 1328243 Jan-87 1942205 Feb-88 2372171 _

Jan 430628 Jan-86 2284248 Feb-87 2094930 Mar-86 2528325 Feb-84 1908578 Feb-86 2262594 Mar-87 2537082 Apr-88 2446326 Mar-84 2306794 Mar-86 1070655 Apr-87 2391293 May-88 1965065 Apr-84 2301882 May-87 20798 May-84 2131577 Jun-84 2382476 Jul-84 1558900 Aug-84 614384 ,

Sep-84 2272550 Oct-84 2260438 Nov-84 1822772 Dec-84 1719551 ,

Jan-85 1948246 I

i i

l I

f

+

McGuire Unit 2 Capsule W Analysis March 1997 w w -_ _r -

6-26 TABLE 6-7 cont'd MONTHLY THERMAL GENERATION DURING THE FIRST TEN FUEL CYCLES OF THE McGUIRE UNIT '2 REACTOR Cycle 5 Cycle 6 Cycle 7 Cycle 8 Thermal Thermal Thermal Thennal Gen. Gen. Gen. Gen.

Month MWt-hr Month M Wt-hr Month MWt-hr Month M Wt-br Jul-88 182814 Sep-89 745948 Dec-90 55107 Mar-92 846822 Aug-88 2312603 Oct-89 2483669 Jan-91 2425825 Apr-92 2321028 Sep-88 2447331 Nov-89 2400111 Feb-91 2231028 May-92 1624848 Oct-88 2518180 Dec-89 2469574 Mar-91 2538082 Jun-92 403108 Nov-88 2395542 Jan-90 2458034 Apr-91 2444210 Jul-92 2529061 Dec-88 2528858 Feb-90 2283648 May-91 2523168 Aug-92 2074181 Jan-89 2475080 Mar-90 2469938 Jun-91 2372591 Sep-92 2449036 Feb-89 2280475 Apr-90 2446697 Jul-91 2191309 Oct-92 2531 % 1 Mar-89 2248654 May-90 2474847 Aug-91 2528077 Nov-92 2449669 Apr-89 1929466 Jun-90 2359097 Sep-91 2315536 Dec-92 2533105 May-89 2259109 Jul-90 2492907 Oct-91 2156131 Jan-93 2525260 Jun-89 2365375 Aug-90 2298172 Nov-91 2185092 Feb-93 2016910 Jul-89 290705 Sep-90 5074 Dec-91 2500590 Mar-93 2369376 Jan-92 628307 Apr-93 2452571 May-93 2465261 Jun-93 1947721 Jul-93 7767 I

l l

I

. McGuire Unit 2 Capsule W Analysis March 1997

1 6-27 i TABLE 6-7 cont'd  ;

I MONTHLY THERMAL GENERATION DURING THE FIRST TEN FUEL CYCLES I OF THE McGUIRE UNIT 2 REACTOR l

Cycle 9 Cycle 10 Thermal Thermal Gen. Gen. l Month M Wt-hr Month M Wt-hr I Sep-93 914446 Jan-95 1510651 Oct-93 1265251 Feb-95 2286904 Nov-93 2422534 Mar-95 2445829 Dec-93 2077334 Apr-95 1953193 l Jan-94 2018852 May-95 2534654 l Feb-94 2283841 Jun-95 2404622 l Mar-94 2533507 Jul-95 2534676 l Apr-94 2445941 Aug-95 2516579 l May-94 2529621 Sep-95 2451456 l Jun-94 2452082 Oct-95 2536146 Jul-94 2535315 Nov-95 2452222 Aug-94 2469538 Dec-95 1767303 Sep-94 2444624 Jan-96 2526107 Oct-94 2533244 Feb-96 2366757 Nov-94 1726862 Mar-96 2452599 Apr-96 325181 l

l I

l McGuire Unit 2 Capsule W Analysis March 1997

~

6-28 l

I TABLE 6-8 .

MEASURED SENSOR ACTIVITIES AhT REACTION RATES

' SURVEILLANCE CAPSULE W SATURATED ACTIVITIES AND REACTION RATES ,

j

)

Measured Saturated Reaction Activity Activity Rate  ;

Reaction - - (dos /nm) (dos /em) (rus/ atom) l

Cu (n,cz) "Co Top 1.84e+05 3.24e+05 4.94e-17

-l Middle 1.89e+05 3.33e+05 5.07e-17 1 Bottom - 1.84e+05 3.24e+05 4.94e-17  ;

"Fe (n.p) "Mn  !

Top 1.59e+06 3.0le+06 4.82e-15 Middle 1.65e+06 3.13e+06 5.00e-15 Bottom 1.60e+06 3.03e+06 4.85e-15  !

"Ni (n.p) "Co Top 7.1Se+06 4.89e+07 6.99e-15 Middle 7.36e+06 5.04e+07 7.19e-15 Bottom 7.20e+06 - 4.93e+07 7.04e-15 "Co (n,7) "Co Top 4.47e+07 7.87e+07 5.13e-12 Top 4.04e+07 7.11e+07 4.64e-12 Middle 4.16e+07 7.32e+07 4.78e-12 Middle 3.51e+07 6.18e+07 4.03e-12 Bottom 3.89e+07 6.85e+07 4.47e-12 Bottom 4.45e+07 7.83e+07 5.11e-12 "Co (n,y) "Co (Cd)

Top 2.34e+07 4.12e+07 2.69e-12 Middle 2.23e+07 3.92e+07 2.56e-12 i Bottom 2.35e+07 4.14e+07 2.70e-12  !

l 2"U (n,0 '"Cs Middle 1.29e+06 6.93e+06 4.57e-14 23'Np (n,0 '"Cs _

j Middle 9.25e+06 ' 4.97e+07 3.12e-13 j l

McGuire Unit 2 Capsule W Analysis March 1997 j

6-29 l TABLE 6-8 cont'd  !

MEASURED SENSOR ACTIVITIES AND REACTION RATES SURVEILLANCE CAPSULE Y SATURATED ACTIVITIES AND REACTION RATES Measured Saturated Reaction Activity Activity Rate Reaction (dos /cm) (dos /em) (rps/ atom)

'3 Cu (n,tx) "Co

Top 1.45e+05 3.06e+05 4.68e-17 Middle 1.54e+05 3.26e+05 4.97e-17 i Bottom 1.48e+05 3.13e+05 4.77e-17 4

"Fe (n p) "Mn Top 1.00e+06 2.62e+06 4.19e-15  ;

Middle 1.07e+06 2.80e+06 4.48e-15 l J

Bottom 1.02e+06 2.67e+06 4.27e-15 "Ni (n,p) "Co ,

Top 1.75e+06 4.36e+07 6.23e-15 1 Middle 1.83e+06 4.56e+07 6.52e-15

Bottom 1,76e+06 4.39e+07 6.27e-15 "Co (n.1) "Co Top 3.25e+07 6.87e+07 4.48e-12 Top 2.77e+07 5.86e+07 3.82e-12 Middle 2.46e+07 5.20e+07 3.39e-12 Middle 2.96e+07 6.26e+07 4.08e-12 Bottom 2.64e+07 5.58e+07 3.64e-12 "Co (n,1) "Co (Cd)

Top 1.68e+07 3.55e+07 2.32e-12 Middle 1.58e+07 3.34e+07 2.18e-12 Bottom 1.60e+07 3.38e+07 2.21e-12 1

2"U (n f) "'Cs Middle 8.52e+05 5.89e+06 3.88e-14 23'Np (n,f) "'Cs Middle 6.41e+06 4.43e+07 2.78e-13

)

i McGuire Unit 2 Capsule W Analysis March 1997 l

.j

6-30 TABLE 6-8 cont'd i

MEASURED SENSOR ACTIVITIES AND REACTION RATES SURVEILLANCE CAPSULE Z '

SATURATED ACTIVITIES AND REACTION RA'ES Measured Saturated Reaction Activity . Activity Rate Reaction (dos /gm) (dos /gm) (ros/ atom) ,

"Cu (n,u) "Co Top 1.53e+05 3.25e+05 - 4.95e-17 Middle 1.55e+05 3.29e+05 5.02e-17 Bottom 1.55e+05 3.29e+05 5.02e-17 "Fe (n,p) "Mn Top 1.12e+06 2.96e+06 4.74e-15 Middle 1.19e+06 3.15e+06 5.04e-15 Bottom 1.14e+06 3.02e+06 4.83e-15 "Ni (n.p) "Co Top 1.92e46 4.83e+07 6.90e-15 Middle 1.97e+06 4.96e+07 7.07e-15 ,

Bottom 1.90e+06 4.78e+07 6.82e-15 "Co (n,y) "Co Top 3.30e+07 7.00e+07 4.57e-12 Top 3.79e47 8.05e+07 5.25e-12 Middle 3.64e47 7.73e+07 5.04e-12 Middle 3.01e+07 6.39e+07 4.17e-12 Bottom 3.17e+07 6.73e+07 4.39e-12 "Co (n,y) "Co (Cd)

Top 1.99e+07 4.22e+07 2.76e-12 Middle 1.89e+07 4.0le+07 2.62e-12  ;

Bottom 1.94e+07 4.12e+07 2.69e-12 l 2"U (n,f) "'Cs Middle 1.04e+06 7.20e+06 4.74e-14 .

1 l

2nNp (n f) "'Cs l Middle 7.53e+06 5.21e+07 3.27e-13 McGuire Unit 2 Capsule W Analysis March 1997 l

t 6-31 I

TABLE 6-8 cont'd i j MEASURED SENSOR ACTIVITIES AND REACTION RATES  :

SURVEILLANCE CAPSULE - U .

j SATURATED ACTIVITIES AND REACTION RATES l

. I

1.  :

Measured Saturated Reaction '

Activity Activig Rate Reaction (dos /nm) (dos /nm) (rDS/ atom)

' Cu (n,a) "Co  ;

. Top 1.54e+05 3.35e+05 5.11e-17 Middle 1.63e+05 3.55e+05 5.41e-17  !

. Bottom 1.56e+05 3.40e+05 5.18e-17  !

"Fe (n.p) "Mn i 1

, Top 1.75e+06 3.17e+06 5.08e-15  !

Middle 1.86e+06 3.37e+% 5.40e-15 ,

1 Bottom 1.70e+06 3.08e+06 4.93e-15 3

"Ni (n.p) "Co Top 1.16e+07 4.89e+07 6.98e-15 l l Middle 1.19e+07 5.02e+07 7.16e-15  !

Bottom 1.18e+07 4.97e+07 - 7.10e-15 "Co (n,y) "Co Top 3.38e+07 7.36e+07 4.80e-12 Top 3.75e+07 8.16e+07 5.33e-12 Middle 3.38e+07 7.36e+07 4.80e-12 Middle 3.15e+07 6.86e+07 4.47e-12 l Bottom 3.04e+07 6.62e+07 4.32e-12 Bottom 3.57e+07 7.77e+07 5.07e-12 "Co (n,y) "Co (Cd)

, Top 2.1 Ie+07 4.59e+07 3.00e-12 Middle 1.95e+07 4.24e+07 2.77e-12 Bottom 2.05e+07 4.46e+07 2.91e-12 2"U (n,f) "'Cs Middle 8.57e+05 6.83e+06 4.50e-14 23'Np (n,f) ')'Cs Middle 6.48e+06 5.17e+07 3.24e-13 4

I McGuire Unit 2 Capsule W Analysis March 1997

~

l 6-32 l i

i I

. TABLE 6-8 cont'd

) MEASURED SENSOR ACTIVITIES AND REACTION RATES SURVEILLANCE CAPSULE X

SATURATED ACTIVITIES AND REACTION RATES  ;

Measured Saturated Reaction Activity Activity Rate i

Reaction (dos /gm) (dos /em) (rps/ atom) .

~

Cu (n,a) "Co

. Top- 1.23e+05 3.43e+05 5.23e-17 )

Middle 1.32e+05 3.68e+05 5.61e-17 j Bottom 1.28e+05 3.57e+05 5.44e-17 .j

.l 4

"Fe (n p) "Mn  !

Top .l.58e+06 3.30e+06 5.27e-15 l

. Middle 1.71e+06 _ 3.57e+06 5.71e-15 j Bottom 1.67e+06 3.49e+06 5.58e-15 "Ni (n,p) "Co

Top 6.20e+06 5.22e+07 7.45e-15 Middle 6.55e+06 5.51e+07 7.87e-15 4 Bottom 6.44e+06 5.42e+07 7.73e-15 "Co (n,y) "Co Top 2.86e+07 7.97e+07 5.20e-12

,. Top 3.33e+07 9.28e+07 6.06e-12 Middle 2.65e+07 7.39e+07 4.82e-12 Middle 3.19e+07 8.89e+07 5.80e-12 Bottom 2.77e+07 7.72c+07 5.04e-12 Bottom 3.20e+07 8.92e+07 5.82e-12 3

"Co (n,7) "Co (Cd)

Top 1.78e+07 4.96e+07 3.24e-12 Middle 1.67e+07 4.66e+07 3.04e-12 Bottom 1.69e+07 4.71e+07 3.07e-12 2"U (n,0 '"Cs Middle 6.14e+05 6.94e+06 4.57e-14 2"Np (n.0 '"Cs -

Middle 4.60e+06 5.20e+07 3.26e-13 .

3 McGuire Unit 2 Capsule W Analysis March 1997.

I 6-33 l 1

I TABLE 6-8 cont'd i MEASURED SENSOR ACTIVITIES AND REACTION RATES l SURVEILLANCE CAPSULE V  !

SATURATED ACTIVITIES AND REACTION RATES Measured Saturated Reaction Activity Activity Rate i Reaction (dos /em) (dps/em) (ros/ atom)

"Cu (n,a) "Co Top 3.84e+04 3.38e+05 5.16e-17 ,

Middle 4.03e+04 3.55e+05 5.42e-17 l Bottom 3.76e+04 3.31e+05 5.05e-17 l

"Fe (n,p) "Mn j Top 9.69e+05 3.23e+06 5.16e-15 1 l

Middle 1.01e+06 3.37e+06 5.38e-15 Bottom 9.87e+05 3.29e+% 5.26e-15 "Ni (n.p) "Co Top 3.96e+06 5.05e+07 7.21e-15 Middle 3.58e+06 4.56e+07 6.51e-15 Bottom 4.04e+06 5.15e+07 7.35e-15 "Co (n,y) "Co Top 1.0le+07 8.90e+07 5.80e-12 Middle 8.83e+06 7.78e+07 5.07e-12 Middle 7.83e+06 6.90e+07 4.50e-12 Bottom 9.49e+06 8.36e+07 5.45e-12 Bottom 8.75e+06 7.71e+07 5.03e-12 Bottom 8.34e+06 7.35e47 4.79e-12 "Co (n,y) "Co (Cd)

Top 5.04e+06 4.44e+07 2.90e-12 Middle 4.72e+06 4.16e+07 2.7 ie-12 Bottom 4.74e+06 4.I 8e+07 2.72e-12 2"U (n,0 "'Cs Middle 1.36e+05 5.95e+06 3.92e-14 2"Np (n,0 "'Cs Middle 1.20e+06 5.25e+07 3.29e-13 McGuire Unit 2 Capsule W Analysis March 1997

6-34 i

i TABLE 6-9

SUMMARY

OF NEUTRON DOSIMETRY RESULTS SURVEILLANCE CAPSULES W, Y, Z, U, X AND V Measured Flux and Fluence for Capsule W Ouantity Flux Ouantity Fluence Uncertainty 2 2

[n/cm -sec] [n/cm )

$ (E > l.0 MeV) 9.966e+10 $ (E > 1.0 MeV) 2.969e+19 8%

$ (E > 0.1 MeV) 4.783e+11 $ (E > 0.1 MeV) 1.425e+20 16 %

$ (E < 0.414 eV) 8.805e+10 $ (E < 0.414 eV) 2.623e+19 23 %

dpa/sec 2.007e-10 dpa 5.979e-02 11 %

Measured Flux and Fluence for Capsule Y Ouantity Flux Ouantity Fluence Uncertainty 2 2

[n/cm -sec) [n/cm )

$ (E > 1.0 MeV) 8.688e+10 $ (E > 1.0 MeV) 1.967e+19 8%

$ (E > 0.1 MeV) 4.188e+11 @ (E > 0.1 MeV) 9.483e+19 16%

$ (E < 0.414 eV) 7.163e+10 $ (E < 0.414 eV) 1.622e+19 24 %

dpa/sec 1.758e-10 dpa 3.981e-02 11 %

1 Measured Flux and Fluence for Capsule Z

,Ouantity Flux Ouantity Fluence Uncertainty 2 2

[n/cm .sec] [n/cm j

$ (E > 1.0 MeV) 1.037e+11 @ (E > 1.0 MeV) 2.348e+19 8%

$ (E > 9.1 MeV) 5.050e+11 @ (E > 0.1 MeV) 1.144e+20 16 %

$ (E < 0.414 eV) 8.615e+10 $ (E < 0.414 eV) 1.951e+19 24 %

dpa/sec 2.103e-10 dpa 4.762e-02 11 %

Measured Flux and Fluence for Capsule U Ouantity Flux Ouantity Fluence Uncenainty l

[n/cm'-sec) [n/cm ]

1.027e+11 $ (E > 1.0 MeV) 1.962e+19 8%

$ (E > 1.0 MeV) 4.950e+11 & (E > 0.1 MeV) 9.456e+19 16%

$ fE Ojl 8.270e+10 $ (E < 0.414 eV) 1.580e+19 24 %

2.075e-10 dpa 3.964e-02 11 %

dW McGuire Unit 2 Capsule W Analysis March 1997 l

- . ... .- .- . .. .- .. - ~. . -- . . - - -. - . . . . .

1

. \

t- 6-35  ;

i i

TABLE 6-9 cont'd  !

SUMMARY

OF NEUTRON DOSIMETRY RESULTS  ;

SURVEILLANCE CAPSULES W. Y, Z, U, X AND V  !

Measured Flux and Huence far Capsule X i

_Ouantity Flux Ouantity Fluence Uncenainty  ;

2

[n/cm'-sec) [n/cm ] l

$ (E > 1.0 MeV) 1.070e+11 @ (E > 1.0 MeV) 1.406e+19 8%  !

$ (E > 0.1 MeV) 5.024e+11 & (E > 0.1 MeV) 6.602e+19 16% l

$ (E < 0.414 eV) 1.004e+11 & (E < 0.414 eV) 1.319e+19 23 % i

, dpa/sec 2.130e-10 dpa 2.799e-02 11 %

l Measured Flux and Fluence for Capsule V Ouantity Flux Ouantity Fluence Uncenainty j 2  ;

j [n/cm'-sec) (n/cm )

$ (E > 1.0 MeV) 1.009e+11 $ (E > 1.0 MeV) 3.268e+18 8%

$ (E > 0.1 MeV) 4.802e+11 @ (E > 0.1 MeV) 1.555e+19 16 %

$ (E < 0.414 eV) 9.958e+10 3.225e+18 )

$ (E < 0.414 eV) 22 %

dpa/sec 2.026e-10 dpa 6.562e-03 11 %

I McGuire Unit 2 Capsule W Analysis - March 1997 l l

l

.- - - -- - -.- .. - -._~ -. .

)

6-36  ;

l 1

TABLE 6-10, i

COMPARISON OF MEASURED AND FERRET CALCULATED  :

REACTION RATES AT THE SURVEILLANCE CAPSULE CENTER j

i Surveillance Capsule W Reaction Rate (sps/ nucleus) .;

' Adjusted M/C Measured Calc. Adiusted  !

Cu (n,a) 4.99e-17 4.86e-17 1.03 "Fe (n.p) 4.89e-15 5.13e-15 0.95 "Ni (n.p) 7.07e-15 7.36e-15 0.96  :

8"U (n,0 (Cd) 3.42e-14 3.02e-14 1.13  :

2Np (n,0 (Cd) 3.09e-13 3.10e-13 1.00 l "Co (n,1) 4.69e-12 4.67e-12 1.00 l "Co (n,y) (Cd) 2.65e-12 2.66e-12 1.00 Surveillance Capsule Y Reaction Rate (rps/ nucleus)

Adjusted M/C Measured Calc. Adiusted

'3 Cu (n a) 4.80e-17 4.65e-17 1.03 "Fe (n,p) 4.31e-15 4.58e-15 0.94 "Ni (n.p) 6.34e-15 6.58e-15 0.%

2"U (n,0 (Cd) 3.02e-14 2.65e-14 1.14 2Np (n,0 (Cd) 2.75e-13 2.73e-13 1.01 "Co (n,y) 3.88e-12 3.87e-12 1.00 "Co (n,y) (Cd) 2.23e-12 2.24e-12 1.00 i

l McGuire Unit 2 Capsule W Analysis March 1997 I

I 6-37 .-

TABLE 6-10 cont'd i'

COMPARISON OF MEASURED AND FERRET CALCULATED REACTION RATES AT THE SURVEILLANCE CAPSULE CENTER  !

I t

i Surveillance Capsule Z f Reaction Rate (rps/ nucleus) .

Adjusted M/C l Measured Calc. _Adiusted  !

t

Cu (n,a) 5.00e-17 4.86e-17 1.03 5'Fe (n,p) - 4.87e-15 5.14e-15 0.95  !

"Ni (n.p) 6.93e-15 7.38e-15 0.94 l 2"U (n,0 (Cd) 3.65e-14 3.12e-14 1.17 j 2"Np (n,0 (Cd) 3.24e-13 3.25e-13 1.00 j "Co (n,y) 4.68e-12 4.67e-12 1.00 s "Co (n,y) (Cd) 2.69e-12 2.70e-12 1.00 l

Surveillance Capsule U Reaction Rate (rps/ nucleus)

,- Adjusted M/C Measured Cale. Adiusted

Cu (n,a) 5.24e-17 5.10e-17 1.03 5'Fe (n.p) 5.13e-15 5.35e-15 0.96 "Ni (n.p) 7.08e-15 7.57e-15 0.94 2nU (n,0 (Cd) 3.51e-14 3.12e-14 1.12 2"Np (n,0 (Cd) 3.21e-13 3.21e-13 1.00 "Co (n,y) 4.80e-12 4.79e-12 1.00 "Co (n.7) (Cd) 2.89e-12 2.90e-12 1.00 l

I 4

McGuire Unit 2 Capsule W Analysis March 1997 l l

j

6-38 TABLE 6-10 cont'd COMPARISON OF MEASURED AND FERRET CALCULATED REACTION RATES AT THE SURVEILLANCE CAPSULE CENTER Surveillance Capsule X Reaction Rate (rps/ nucleus)

Adjusted M/C Measured Calc. Adiusted

Cu (n,cx) 5.43e-17 5.32e-17 1.02 "Fe (n.p) 5.52e-15 5.71e-15 0.97 "Ni (n.p) 7.68e-15 8.08e-15 0.95 2"U (n,0 (Cd) 3.64e-14 3.27e 14 1.11 23'Np (n,0 (Cd) 3.23e-13 3.27e-13 0.99 "Co (n,y) 5.46e-12 5.44e-12 1.00 "Co (n,y) (Cd) 3.12e-12 3.13e-12 1.00 Surveillance Capsule V Reaction Rate (rps/ nucleus)

Adjusted M/C Measured Cale. Adiusted

Cu (n.cx) 5.21e-17 5.1 le-17 1.02 "Fe (n.p) 5.27e-15 5.41e-15 0.97 "Ni (n,p) 7.02e-15 7.56e-15 0.93 2"U (n,0 (Cd) 3.30e-14 3.06e-14 1.08 2Np (n,0 (Cd) 3.26e-13 3.19e-13 1.02 "Co (a,1) 5.1le-12 5.09e-12 1.00 "Co (n,y) (Cd) 2.78e-12 2.79e-12 1.00 McGuire Unit 2 Capsule W Analysis March 1997

6-39 TABLE 6-11 ADJUSTED NEUTRON ENERGY SPECTRUM AT THE CENTER OF SURVEILLANCE CAPSULE ,

Capsule W Energy Flux Energy Flux Group # (MeV) (n/cm 2-sec) Group # (MeV) (n/cm 2,sec) 1 1.73e+01 6.12e+06 9.12e-03 2 1.49edl 1.31e47 28 2.20e+10 5

3 1.35e+01 4.84e+07 29 2.81e+10 4

3' 5 1.16e+01 1.33e+08 30 8.74e+09 5 1.00e+01 3.00e+08 31 8.34e+09 6 8.61e+00 5.25e@8 32 8.06e+09

.03e-03 7 7.41e+00 1.26e+09 33 2.35e+10 6.07e+00 1.94e+09

. e-03 8 34 2.25e+10 7.49e-04 9 4.97e+00 4.11e+09 35 2.03e+10 l

10 3.68e+00 5.04e+09 36 l.79e+10

. Se @

11 2.87e+00 1.03e+10 37 1.96e+10  :

1.67e @

12 2.23e+00 1.48e+10 38 1.90e+10  !

1.0le @

13 1.74e+00 2.12e+10 39 2.03e+10 6.14e-05 14 1.35e+00 2.48e+10 40 2.03e+10 3.73e-05 15 1.lle@0 4.42e+10 41 2.0le+10 2.26e-05 16 8.21e-01 5.28e+10 42 1.98e+10 1.37e-05 17 6.39e-01 5.84e+10 43 1.92e+10 4.98e-01 4.0le+10 44 8.31e4 18 1.85e+10 5.04e-06 19 3.88e-01 6.09e+10 45 1.77e+10 20 3.02e-01 6.40e+10 46 l.75e+10 1.8%

21 1.83e-01 6.35e+10 47 1.73e+10

.13e 4 22 1.l le-01 4.66e+10 48 1.21e+10 0'

  • 23 6.74e-02 3.63e+10 49 1.33e+10 I 4.14e-07 24 4.09e-02 1.96e+10 50 1.80e+10 2.51e-07 25 2.55e-02 2.28e+10 51 1.68e+10 1.52e-07 26 1.99e-02 1.09e+10 52 1.53e+10 27 1.50e-02 1.90e+10

. 4e 8 53 3.78e+10 1

Note: Tabulated energy levels represent the upper energy in each group.

I i

McGuire Unit 2 Capsule W Analysis March 1997

6-40 TABLE 6-11 cont'd

. ADJUSTED NEUTRON ENERGY SPECTRUM AT THE 1 CENTER OF SURVEILLANCE CAPSULE Capsule Y l Energy Flux Energy Flux ,

Group # (MeV) (r/cm'-sec) Group # (MeV) (n/cm2-sec) j 1 1.73e+01 6.21e406 9.12e-03 2 1.49e+01 1.32e+07 28 1.92e+10 5.53e-03 3 1.35e+01 4.80e+07 29 2.46e+10 4 1.16e+01 1.30e+08 30 7.62e+09 2.

5 1.00e+01 2.90e+08 31 7.24e+09 6 8.61e+00 4.97e+08 32 6.96e+09 7 7.41e+00 1.18e+09 33 f40 2.02e+10

[

8 6.07e+00 1.76e+09 34 1.93e+10 l 9 4.97e+00 3.64e+09 35 . e+ 0 j 4.54e-04 10 3.68e+00 4.38e+09 36 1.53e+10 '

II 2.87e+00 8.94e+09 37 6 -M 1.66e+10  !

12 2.23e+00 1.29e+10 38 1.59e+10  ;

1'01e-04 13 1.74e+00 1.84e+10 39 l.72e+10

6. M 5 14 1.35e+00 2.16e+10 40 1.72e+10 3.73e-05 15 1.1 le+00 3.84e+10 41 1.71e+10 2.2 H 5 16 8.21e-01 4.59e+10 42 1.69e+10 1.37e-05 17 6.39e-01 5.10e+10 43 1.64e+10 8.31e-06 18 4.98e-01 3.52e+10 44 1.58e+10 I 5.Ne-06 19 3.88e-01 5.33e+10 45 1.52e+10 20 3.02e-01 5.66e+10 46 3&&

l.50e+10 +

5.60e+10 I'

21 1.83e-01 47 l.49e+10 4.lle+10 22 1.11e-01 48 1.04e+10 23 6.74e-02 6.83e@

3.20e+10 49 1.13e+10 i 4.14e-07 24 4.09e-02 1.73e+10 50 1.51e+10 l 2.51e-07 l 25 2.55e-02 1.98e+10 51 1.39e+10 1.52e-07 l 26 1.99e-02 9.62e+09 52 1.26e+10

~

27 1.50e-02 1.68e+10 53 3.00e+10 l l

l l

i

. Note: Tabulated energy levels represent the upper energy in each group.

I l

I l

McGuire Unit 2 Capsule W Analysis March 1997  !

i 6-41 TABLE 6-11 cont'd l I

ADJUSTED NEUTRON ENERGY SPECTRUM AT THE CENTER OF SURVEll1ANCE CAPSULE Capsule Z Energy Flux Energy Flux Group # (MeV) 2 (n/cm -sec) Group # (MeV) (n/cm2.sec) 1 1.73e+01 6.17e+06 )

.12e43 2 1.49e+01 1.31e+07 28 2.26e+10 3 1.35e+01 4.83e+07 29 2.89e+10

. e-03 4 1.16e+01 1.32e+08 30 8.98e+09

. 03 5 1.00e+01 2.98e+08 31 8.56e+09 6 8.61e+00 5.21e+08 32 8.27e+09 7 7.41e+00 1.26e+09 33 f40 2.40e+10 8 6.07e+00 1.93e+09 34 ' g, 2.30e+10 9 4.97e+00 4.11e+09 35 2.07e+10 4.54e-04 10 3.68e+00 5.08e+09 36 2.75e-04

~ *+'

11 2.87e+00 1.05e+10 37 1.99e+10 l 12 2.23e+00 1.54e+10 38 l.93e+10 3'

13 1.74e+00 2.23e+10 39 2.07e+10  !

6.14e-05 '

14 1.35e+00 2.61e+10 40 2.07e+10 3.73e-05 15 1.lle+00 4.68e+10 41 2.05e+10 2.26e-05 16 8.21e-01 5.61e+10 42 2.02e+10 1.37e-05 17 6.39e-01 6.22e+10 43 1.96e+10 18 4.9Re-01 4.27e+10 44 8.31e4 1.88e+10 I 5.04e-06 '

19 3.88e-0) 6.46e+10 45 1.81e+10 20 3.02e-01 6.77e+10 46 l.78e+10 I'b 21 1.83e-01 6.70e+10 47 1.76e+10 I'I

  • 22 1.lle-01 4.89e+10 48 1.23e+10 6.83e@

23 6.74e-02 3.79e+10 49 1.34e+10 4'I4* 7 24 4.09e-02 2.03e+10 50 1.80e+10 2.51e-07 25 2.55e-02 2.37e+10 51 1.66e+10 26 52 1.99e-02 1.13e+10 1.51e+10 9.24e48 27 1.50e-02 1.96e+10 53 3.64e+10 Note: Tabulated energy levels represent the upper energy in each group.

i McG'Jire Unit 2 Capsule W Analysis March 1997

1 6-42 TABLE 6-11 cont'd ADJUSTED NEUTRON ENERGY SPECTRUM AT THE CENTER OF SURVEILLANCE CAPSULE Capsule U Energy Flux Energy Flux  ;

Group # ' (MeV) (n/cm 2-sec) Group # (MeV) 2 (n/cm sec) 1 1.73e+01 6.46e+06 '

2 9.12e43 1.49e+01 1.38e+07 28 2.31e+10 3 1.35e+01 5.11e+07 29 2.95e+10 3

4 1.16e+01 1.40e+08 30 9.20e+09 5 1.00: 4 1 3.16e+08 31 8.80e+09 6 8.61e+00 5.51e+08 32 8.52e+09 i 2.03e-03 7 7.41e+00 1.32e+09 33 2.49e+10

. e-03

, 8 6.07e+00 2.02e+09 34 2.39e+10 l

!- 9 10 4.97e+00 3.68e+00 5.27e+09 5.22e+09 35 36 f

2.75e-04 2.17e+10 1 e+10  :

11 2.87e+00 1.06e+10 37 2.11e+10 12 2.23e+00 1.53e+10 38 2.09e+10

, 13 1.74e+00 2.18e+10 39 . +10 614e-05 14 1.35e+00 2.56e+10 40 2.18e+10 -

15 1.11e+00 4.55e+10 41 2.

2.16e+10 )

16 8.21e-01 5.44e+10 42 2.l le+10 l 1.37e-05 17 6.39e-01 6.04e+10 43 2.04e+10 18 4.98e-01 4.15e+10 44 1.96e+10 l S h 06 19 3.88e-01 6.31e+10 45 1.87e+10 l 20 3.02e-01 6.65e+10 46 1.84e+10 l 21 1.83e-01 6.62e+10 47 1.8 M '

1.81e+10 1.1 e-06 22 1.lle-01 4.86e+10 48 1.26e+10 23 ' 6.83e@

6.74e-02 3.79e+10 49 1.35e+10 24 4.09e-02 2.04e+10 50 1.78e+10 2.51e-07 25 2.55e-02 2.39e+10 51 1.62e+10

1. e-07 26 1.99e-02 1.14e+10 52 1.45e+10 27 1.50e-02 2.00e+10 9.2408 53 3.41e+10 Note: Tabulated energy levels represent the upper energy in each group.

i McGuire Unit 2 Capsule W Analysis March 1997

i l

6-43 l TABLE 6-11 cont'd ,

ADJUSTED NEUTRON ENERGY SPECTRUM AT THE CENTER OF SURVEILLANCE CAPSULE Capsule X Energy Flux Energy Flux Group # (MeV) 2 (n/cm -sec) Group # (MeV) (n/cm 2-sec) 1 1.73e+01 6.63e+06 I 9.12e-03 2 1.49e+01 - 1.42e+07 28 5 53e-03 3 1.35e+01 5.28e+07 29 .07e+10 4 3 35e-03 1.16e+01 1.46e+08 30 9.59e+09 5 1.00e+01 3.31e+08 2 84M3 31 *'

2 40e-03 6 8.61e+00 5.80e+08 32

  • 2 03e-03 7 7.41e+00 1.40e+09 33 1.23e-03 8 6.07e+00 2.16e+09 34 7' g 2.'52e+10 9 4.97e+00 4.59e+09 35 2.3 M 0 454e-04 10 3.68e+00 5.58e+09 36 2.75e-04

. e+10 11 2.87e+00 1.13e+10 37 . e 0 1'67e-04 12 2.23e+00 1.60e+10 38 3 Ole-04 13 1.74e+00 2.26e+10 39 2.35e+10 6.14e-05 14 1.35e+00 2.64e+10 40 ' **'

3 73e-05 15 1.11e+00 4.65e+10 41 g26e-05 *'

16 8.21e-01 5.52e+10 42 +0

{37e-05 17 6.39e-01 6.08e+10 43 ~

  • 8.31e-06 18 4.98e-01 4.17e+10 44 .08eH0 5.04e-06 19 3.88e-01 6.34e+10 45 1 e+10 3.06e-06 20 3.02e-01 6.68e+10 46 1.96e+10 3 'gg  ;

21 1.83e-01 6.65e+10 47 * '

22 3 13e-06 1.1le-01 4.90e+10 48 '

23 6 83e-07 6.74e-02 3.84c +10 49 1.50e+10 24 4.09e-02 2.08. +10 50 2.04e+10 25 2.55e-02 2.45a+10 51 . e+10 1.52e-07 26 1.99e-02 1.18e+10 52 . +0 27 9*24e-08 1.50e-02 2.06e+10 53 4.36e+10 Note: Tabulated energy levels represent the upper energy in each group.

McGuire Unit 2 Capsule W Analysis March 1997

6-44 l

TABLE 6-11 cont'd ,

ADJUSTED NEUTRON ENERGY SPECTRUM AT THE CENTER OF SURVEILLANCE CAPSULE i

Capsule V Energy Flux Energy Flux Group # (MeV) (n/cm 2-sec) Group # (MeV) (n/cm 2,see) 1 1.73e+01 6.67e+06 9.12e-03 2 1.49e+01 1.42e+07 28 2.19e+10 5.53e-03 3 1.35e+01 5.22e+07 29 2.83e+10 ,

3 35e-03 4 1.16e+01 1.42e+08 30 2.84e-03 5 1.00e+01 3.21e+08 31 2.40e-03 8.h@

6 8.61e+00 5.58e+08 32 8.06e+@

7.41e+00 1.34e+09 2'03e-03 )

7 33 2.35e+10  ;

3.23e-03  ;

8 6.07e+00 2.05e+09 34 2.27e+10 9 4.97e+00 4.31e+09 35 2.06e+10 10 3.68e+00 5.18e+09 36 1.84e+10 l 11 2.87e+00 1.05e+10 37 2.0le+10 12 2.23e+00 1.50e+10 38 j* 2.01e+10 ,

13 1.74e+00 2.13e+10 39 2.10c+10 l 5

14 1.35e+00 2.50e+10 40 2.09e+10 0

15 1.11e+00 4.44e+10 41 2.06e+10 2.26e-05 16 8.21e-01 5.28e+10 42 2.02e+10 1.37e-05 17 6.39e-01 5.84e+10 43 1.95e+10 18 4.98e-01 4.02e+10 44 1.87e+10 5

19 3.88e-01 6.07e+10 45 1. 0 3.06e-06 20 3.02e-01 6.44e+10 46 1.77e+10 1.8 & -06 21 1.83e-01 6.37e+10 47 1.75e+10 22 1.11e-01 4.68e+10 48 1.23e+10 23 6.74e-02 3.64e+10 49 , 1.40e+10 4 07 24 4.09e 02 1.97e+10 50 1.93e+10 2.51e-07 25 2.55e-02 2.26e+10 51 1.85e+10 1.52e-07 26 1.99e-02 1.10e+10 5'z 1.71e+10 9.24e-08 27 1.50e-02 1.92e+10 5'a 4.46e+10 Note: Tabulated energy levels represent the upper energy in each group. ,

McGuire Unit 2 Capsule W Analysis March 1997

6-45 TABLE 612 COMPARISON OF CALCULATED AND MEASURED INTEGRATED NEUTRON EXPOSURE OF McGUIRE UNIT 2 SURVEILLANCE CAPSULES W, Y, Z, J, X, AND V CAPSULE W Calculated Measuse,d_ M/C

$(E > 1.0 MeV) [n/cm2] 3.005e+19 2.969e+19 0.99

$(E > 0.1 MeV)_ [n/cm2] 1.349e+20 1.425e+20 1.06 dpa 5.818e-02 5.979e-02 1.03 CAPSULE Y Calculated Measured M/C 4(E > 1.0 MeV) [n/cm2] 2.062e+19 1.967e+19 0.95

$(E > 0.1 MeV) [n/cm2] 8.991e+19 9.483e+19 1.05 dpa 3.933e-02 3.981e-02 1.01 CAPSULE Z Calculated Measured M/C

$(E > 1.0 MeV) [n/cm2] 2.357e+19 2.348e+19 1.00

$(E > 0.1 MeV) [n/cm2] 1.058e+20 1.144e+20 1.08 dpa 4.563e-02 4.762e-02 1.04 CAPSULE U Calculated Measured M/C

$(E > 1.0 MeV) [n/cm2] 2.022e+19 1.962e+19 0.97

$(E > 0.1 MeV) [n/cm2] 9.078e+19 9.456e+19 1.04 dpa 3.914e-02 3.964e-02 1.01 CAPSULE X Calculated Measured M/C

$(E > 1.0 MeV) [n/cm2] 1.462e+19 1.406e+19 0.96 i

$(E > 0.1 MeV) [n/cm2] 6.566e+19 6.602e+19 1.01 dpa 2.831e-02 2.799e-02 0.99 CAPSULE V Calculated Measured M/C 4(E > 1.0 MeV) [n/cm2] 3.199e+18 3.268e+18 1.02 4(E > 0.1 MeV) [n/cm2] 1.395e+19 1.555e+19 1.12 dpa 6.101e-03 6.562e-03 1.08 McGuire Unit 2 Capsule W Analysis March 1997 l

j 6-46 I

TABLE 6-13 J

j NEUTRON EXPOSURE PROJECTIONS AT KEY LOCATIONS ON THE REACTOR VESSEL CLAD / BASE METAL INTERFACE Best Estimate Exposure (9.44 EFPY) at the Reactor Vessel Inner Radius 0* 15' 30* 45' 1

4 (E > 1.0 MeV) 3.59e+18 5.37e+18 5.05e+18 5.71e+18 i

& (E > 0.1 MeV) 8.15e+18 1.23e+19 1.25e+19 1.56e+19

dpa 5.8Ie-03 8.61e-03 8.21e-03 9.46e-03 Best Estimate Exposure (21 EFPY) at the Reactor Vessel Inner Radius O' 15' 30' 45'

@ (E > l.0 MeV) 7.67e+18 1.13e+19 1.07e+19 1.21e+19

!' 4 (E > 0.1 MeV) 1.74e+19 2.60e+19 2.65e+19 3.29e+19 dpa 1.24e-02 1.82e-02 1.74e'-02 2.00e-02 I

Best Estimate Exposure (34 EFPY) at the Reactor Vessel Inner Radius 0* 15' 30* 45' i

4 (E > l.0 MeV) 1.23e+19 1.80e+19 1.71e+19 1.93e+19 4 (E > 0.1 MeV) 2.78e+19 4.14e+19 4.22e+19 5.25e+19  !

dpa 1.98e-02 2.89e-02 2.78e-02 3.19e-02

  • i i- I Best Estimate Exposure (50.3 EFPY) at the Reactor Vessel Inner Radius 1

0' 15' 30* 45' 4 (E > l.0 MeV) 1.80e+19 2.65e+19 2.51e+19 2.83e+19 4 (E > 0.1 MeV) 4.09e+19 6.08e+19 6.20e+19 7.70e+19 l dpa - 2.92e-02 4.24e-02 4.08e-02 4.68e-02 4.

i McGiste Unit 2 Capsule W Analysis March 1997 l l

- ~. - . . . . . . - - . . . - . _ . - - -. . .. _ - _ - . -

h 6-47 l i

i TABLE 6-14 i NEUTRON EXPOSURE VALUES WITHIN THE McGUIRE UNIT 2 REACTOR VESSEL 4  !

FLUENCE BASED ON E > 1.0 MeV SLOPE

+

2 21 EFPY e (E > 1.0 MeV) [n/cm )

0* 15' 30' 45' Surface 7.67e+18 1.13e+19 1.07e+19 1.21e+19

%T 4.30e+18 6.31e+18 5.99e+18 6.61e+18

%T 2.09e+18 3.05e+18 2.90e+18 3.13e+18 ,

%T 9.74e+17 1.41e+18 1.35e+18 1.41e+18 2

34 EFPY @ (E > 1.0 MeV) [n/cm ] .

O' 15' 30* 45' Surface 1.23e+19 1.80e+19 1.71e+19 1.93e+19

%T 6.88e+18 1.0le+19 9.55e+18 1.05e+19

%'T 3.35e+18 4.85e+18 4.63e+18 4.99e+18  !

%T 1.56e+18 2.24e+18 2.15e+18 2.25e+18 2

50.3 EFPY e (E > 1.0 MeV) [n/cm )

0' 15' 30' 45' Surface 1.80e+19 2.65e+19 2.51e+19 2.83e+19 I %T 1.01e+19 1.47e+19 1.40e+19 1.55e+19

%T 4.92e+18 7.12e+18 6.80e+18 7.32e+18

%T 2.29e+18 3.28e+18 3.16e+18 3.31e+18 i-McGuire Unit 2 Capsule W Analysis March 1997

l.

6-48 TABLE 6-14 cont'd NEUTRON EXPOSURE VALUES WITHIN THE McGUIRE UNIT 2 REACTOR VESSEL FLUENCE BASED ON dpa SLOPE 2

21 EFPY 4 (E > 1.0 MeV) [n/cm ]

0* 15* 30' 45' '

Surface 7.67e+18 1.13e+19 .1.07e+19 1.21 e+19

%T 4.89e+18 7.20e+18 6.96e+18 7.76e+18 ,

%T 2.94e+18 4.28e+18 4.25e+18 4.67e+18 MT 1.72e+18 2.51e+18 2.54e+18 2.70e+18 e

2 34 EFPY @ (E > 1.0 MeV) [n/cm ]

0' 15' 30' 45' Surface 1.23e+19 1.80e+19 1.71e+19 1.93e+19

%T 7.82e+18 1.15e+19 1.1 le+19 1.24e+19

%T 4.70e+18 6.82e+18 6.78e+18 7.44e+18 l

-%T 2.75e+18 3.99e+18 4.05e+18 4.30e+18 50.3 EFPY $ (E > 1.0 MeV) [n/cm2j  :

0* 15" 30* 45*

Surface 1.80e+19 2.65e+19 2.51e+19 ' 2.83e+19

%T 1.15e+19 1.68e+19 1.63e+19 1.81e+19 i

%T 6.90e+18 1.00e+19 9.96e+18 1.09e+19

%T 4.04e+ 18 5.85e+18 5.94e+18 6.30e+18 l

l i

l McGuire Unit 2 Capsule W Analysis March 1997  :

i k

6-49 4

i i

TABLE 6-15 UPDATED LEAD FACTORS FOR McGUIRE UNIT 2 SURVEILLANCE CAPSULES '

Capsule Lead Factor Vl 4.40 X'*l 5.12 ,

Ukl 5.16  :

Z 5.17 Yld' 4.52 W"I 5.17 4

4

[a] - Withdrawn at the end of Cycle 1. l

, [b] - Withdrawn at the end of Cycle 5. i

, [c] - Withdrawn at the end of Cycle 7.

[d] - Withdrawn at the end of Cycle 8. .

[e] - Withdrawn at the end of Cycle 10.  !

t

.a

)

1 1

l 1

i EGuire Unit 2 Capsule W Analysis March 1997

I 7-1 SECTION 7.0 RECOMMENDED SURVEILLANCE CAPSULE REMOVAL SCHEDULE The following surveillance capsule removal schedule rnects the requirements of ASTM E185-82 and is ,

recommended for future capsules to be removed from the McGuire Unit 2 reactor vessel. This '

recommended removal schedule is applicable to 34 EFPY.

1 TABLE 7-1 Recommended Surveillance Capsule Removal Schedule for the McGuire Unit 2 Reactor Vessel Capsule Location Lead Withdrawal Fluence'*)

Capsule (degree) Factor) EFPYS) (n/cm2 , E > 1.0 MeV)

V 58.5 4.40 1.03 3.268 x 10"

.X 236.0 5.12 4.16 1.406 x 10"*

U 56.0 5.16 6.05 1.962 x 10"*

W 124.0 5.17 9.44 2.969 x 10"*

Y 238.5 4.52 Standby (* 1.967 x 10"*

Z 304.0 5.17 Standby'* 2.348 x 10"*

NOTES:

(a) Updated in Capsule W dosimetry analysis; see Section 6.0 of this report.

(b) Effective Full Power Years (EFPY) from plant startup.

(c) Plant specific evaluation.

(d) The two remaining capsules Y and Z are standby capsules. These capsules were removed from the reactor vessel and placed in storage due to their high lead factors. Capsule Y was removed at a fluence of 1.967 x 10" n/cm2(E > 1.0 MeV) and capsule Z was removed at a 2

fluence of 2.348 x 10" n/cm (E > 1.0 MeV)

McGuire Unit 2 Capsule W Analysis March 1997

8-1 !

l SECTION

8.0 REFERENCES

I l

l Regulatory Guide 1.99, Revision 2, " Radiation Embrittlement of Reactor Vessel Materials", U.S.

1.

Nuclear Regulatory Commission, May,1988.

l

2. 10 CFR 50, Appendix G, " Fracture Toughness Requirements", Federal Register, Volume 60, No. l 243, dated December 19,1995.
3. WCAP-9489, " Duke Power Company William B. McGuire Unit No. 2 Reactor Vessel Radiation Surveillance Program", K. Koyamw, et al., May 1979.

I

4.Section XI of the ASME Boiler and Pressure Vessel Code, Appendix G, " Fracture Toughness j Criteria for Protection Against Failure". J
5. ASTM E208, " Standard Test Method for Conducting Drop-Weight Test to Determme i Nil-Ductility Transition Temperature of Ferritic Steels",in ASTM Standards, Section 3, American l

Society for Testing and Materials, Philadelphia, PA. '

6. ASTM E399, " Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials",

in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA. i I

7. WCAP-11029, " Analysis of Capsule V from the Duke Power Company McGuire Unit 2 Reactor l Vessel Radiation Surveillance Program", S. E. Yanichko, et al., January 1986. 1 l
8. WCAP-13516, " Analysis of Capsule U from the Duke Power Company McGuire Unit 2 Reactor Vessel Radiation Surveillance Program", J. M. Chicots, et al., October 1992. I
9. 10 CFR Part 50, Appendix H, " Reactor Vessel Material Surveillance Program Requirements",

Federal Register, Volume 60, No. 243, dated December 19,1995.

10. ASTM E185-82, " Standard Practice for Conducting Surveillance Tests for Light Water Cooled Nucicar Power Reactor Vessels", E706 (IF), in ASTM Standards, Section 3 American Society for Testing and Materials, Philadelphia, PA,1993.

I1. ASTM E23-93a, " Standard Test Methods for Notched Bar Impact Testing of Metallic Materials",

in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA, 1993.

12. ASTM A370-92, " Standard Test Methods and Definitions for Mechanical Testing of Steel Products", in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA,1993.
13. ASTM E8-93, " Standard Test Methods for Tension Testing of Metallic Materials", in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA,1993.

McGuire Unit 2 Capsule W Analysis March 1997

8-2 l

i

14. ASTM E21-92, " Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials", in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA,1993.
15. ASTM E83-93, " Standard Practice for Verification and Classification of Extensometers", in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA,1993.
16. CVGRAPH, Hyperbolic Tangent Curve-Fitting Program, Version 4.1, developed by ATI Consulting, March 1996.
17. WCAP-12556, " Analysis of Capsule X from the Duke Power Company McGuire Unit 2 Reactor Vessel Radiation Surveillance Program", E. Terek, et al., April 1990.
18. RSIC Computer Code Collection CCC-543, " TORT-DORT Two- and Three-Dimensional Discrete i Ordinates Transport, Version 2.7.3", May 1993.

i

19. RSIC Data Library Collection DLC-175, " BUGLE-93, Production and Testing of the VITAMIN-  !

B6 Fine Group and the BUGLE-93 Broad Group Neutron / Photon Cross-Section Libraries Derived I from ENDF/B-VI Nuclear Data", April 1994.

20. R. E. Maerker, et al., " Accounting for Changing Source Distributions in Light Water Reactor Surveillance Dosimetry Analysis", Nuclear Science and Engineering, Volume 94, Pages 291-308, 1986.
21. V. A. Perone, et al., "The Nuclear Design and Core Physics Characteristics of the  ;

W. B. McGuire Unit 2 Nuclear Power Plant Cycle 1", WCAP-10182, September 1982. l

[ Westinghouse Proprietary Class 2]

22. C. R. Savage, et al., "The Nuclear Design of the W. B. McGuire Unit 2 Nuclear Power Plant Cycle 2", WCAP-10747, March 1985. -[ Westinghouse Proprietary Class 2]
23. P. D. Banning, et al., "The Nuclear Design of the W. B. McGuire Unit 2 Nuclear Power Plant Cycle 3", WCAP-11048, March 1986. [ Westinghouse Proprietary Class 2]
24. P. D. Banning, et al., "The Nuclear Design of the W. B. McGuire Unit 2 Nuclear Power Plant Cycle 4", WCAP-11530, June 1987. [ Westinghouse Proprietary Class 2]
25. J. R. Lesko, et al., "The Nuclear Design of the McGuire Unit 2 Nuclear Power Plant Cycle 5",

WCAP-11891, July 1988. [ Westinghouse Proprietary Class 2]

26. M. A. Kotun, et al., "The Nuclear Design of the McGuire Unit 2 Nuclear Power Plant Cycle 6", WCAP-12316, August 1989. [ Westinghouse Proprietary Class 2]
27. J. R. Lesko, et al., "The Nuclear Design of the McGuire Ursit 2 Nuclear Power Plant Cycle 7",

WCAP-12736, July 1990. [ Westinghouse Proprietary Class 2]

McGuire Unit 2 Capsule W Analysis March 1997

l l

l 8-3

28. K. Naugle, " Transmittal of the McGuire Unit 2 Cycle 8 core inventory, average assembly bumups, and average axial power conditions", October 10,1996. [DPC Proprietary Information from DPC Calc. File: MCC-1553.05-00-0083, Rev. 3, June 1993 and MCC-1553.05-00-0155, February 1994]
29. K. Naugle, " Transmittal of the McGuire Unit 2 Cycle 9 core inventory, average assembly burnups, and average axial power conditions". October 10,1996. [DPC Proprietary Information from DPC Calc. File: MCC-1553.05-00-0123, Rev. 3, June 1993 and MCC-1553.05-00-0183, December 1994)
30. K. Naugle, " Transmittal of the McGuire Unit 2 Cycle 10 core inventory, average assembly bumups, and average axial power conditions", October 10,1996. [DPC Proprietary Information from DPC Calc. File: MCC-1553.05-00-0154, December 1993 and MCC-1553.05-00-0185, Rev.

1, April 19%)

31. ASTM Designation E482-89, " Standard Guide for Application of Neutron Transport Methods for Reactor Vessel Surveillance", in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA,1993.
32. ASTM Designation E560-84, " Standard Recommended Practice for Extrapolating Reactor Vessel Surveillance Dosimetry Results",in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA,1993.
33. ASTM Designation E693-79, " Standard Practice for Characterizing Neutron Exposures in Ferritic Steels in Terms of Displacements per Atom (dpa)", in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA,1993.
34. ASTM Designation E706-87, " Standard Master Matrix for Light Water Reactor Pressure Vessel Surveillance Standard",in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA,1993.
35. ASTM Designation E853-87," Standard Practice for Analysis and Interpretation of Light-Water Reactor Surveillance Results", in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA,1993.
36. ASTM Designation E261-90, " Standard Practice for Determining Neutron Fluence Rate, Fluence, and Spectra by Radioactivation Techniques", in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA,1993.
37. ASTM Designation E262-86, " Standard Method for Determining Thermal Neutron Reaction and Fluence Rates by Radioactivation Techniques", in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA,1993.
38. ASTM Designation E263 88, " Standard Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Iron", in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA,1993.

McGuire Unit 2 Capsule W Analysis March 1997

i 8-4 l

J i

e

39. ASTM Designation E264-92, " Standard Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Nickel", in ASTM Standards, Section 12, American Society for Testing and ')

Materials, Philadelphia, PA,1993.

40. ASTM Designation E481-92, " Standard Method for Measuring Neutron-Fluence Rate by Radioactivation of Cobalt and Silver" in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA,1993.
41. ASTM Designation E523-87, " Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Copper", in ASTM Standards, Section 12, American Society for Testing i and Materials, Philadelphia, PA,1993. ,
42. ASTM Designation E704-90, " Standard Test Method for Measuring Reaction Rates by Radioactivation of Uranium-238", in ASTM Standards, Section 12, American Society for Testing arJ Materials, Philadelphia, PA,1993.
43. ASTM Designation E705-90, " Standard Test Method for Measuring Reaction Rates by ,

Radioactivation of Neptunium-237", in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA,1993.

44. ASTM Designation E1005-84, " Standard Test Method for Application and Analysis of Radiometric Monitors for Reactor Vessel Surveillance", in ASTM Standards, i Section 12, American Society for Testing and Materials, Philadelphia, PA,1993.

)

45. F. A. Schmittroth, " FERRET Data Analysis Core", HEDL-TME 79-40, Hanford Engineering Development Laboratory, Richland, WA, September 1979. ]

l

46. W. N. McElroy, S. Berg and T. Crocket, "A Computer-Automated Iterative Method of Neutron l Flux Spectra Determined by Foil Activation", AFWL-TR-7-41 Vol. I-IV, Air Force Weapons Laboratory, Kirkland AFB, NM, July 1967.
47. RSIC Data Library Collection DLC-178, "SNLRML Recommended Dosimetry Cross-Section Compendium", July 1994.
48. EPRI-NP-2188, " Development and Demonstration of an Advanced Methodology for LWR Dosimetry Applications", R. E. Maerker, et al.,1981.

- McGuire Unit 2 Capsule W Analysis March 1997 l l

i I

A-0 i 1

1 I

I

')

)

APPENDIX A - 1 1

)

LOAD-TIME RECORDS FOR CHARPY IMPACT "G.STS l I

1 4

McGuwe Unit 2 Capsule W Analysis March 1997  !

cun.7sunuis

W g  : : Wp y

-PM - Maximum Load r Pp- Fast Fracture Load P Geneml i r GY Yield Load l

v i

$ l PA- Fast Fracture

, 7  : Arrest Load I

31 1

> 1 I L i I I I I I I I I I I I I I I I I I I I I

--* *t GY

ty  ;

e tg -

Time Wg - Fracture initiation Region tGY = Time to GeneralYielding t

Wp = Fracture Propagation Region M = Time to Maximum Load tg = Time to Fast (Brittle) Fracture Start Fig. A-1-Idealized load-time record

.. .-. .. .~ , . . .. . . . .. -- . . . . . . . - . . - - . . . -- -

l l

1 1

, necusacsa u ce ass ups '

  • i 6 6 s

.j I

i

~

l J

4 i a i 1

1 \

4 i ad -

i k

, I o,,-

e 9-i

.1 I

mA A $A AAa_AA AA.m AA m A A _A A a a A --A A

  • A A _a a . a s a s

.3 a.t 2.4 a.6 4.e 6.o i

! tinc < nice > 1 1

McGUIRE #2 "W" CAP SPECIMEN NUMBER :DL31 MATERIAL :LONG  ;

9

~

CAPSULE McGUIRE #2

"W" CAPSULE .

1 nCGUIRC et "W" CAP E43 TRant

  • . I 4 i i e

S 4

a 1

e A g. =

a A

.I w

I-ei l

I 4

l

. .a us _ A mm mm. _m._m. _ _m . .._ _ . . . . . .

. # 6 a i j

.t s.2 2.4 3.6 4.s 6.0 I tinc < nste > l McGUIRE #2 "W" CAP j

'IANG DL43 l MATERIAL :LONG l CAPSULE :McGUIRE #2 l

"W" CAPSULE
Figure A-2. Load-time records for Specimens DL31 and DL43.

i l

I A-2 i i

1 4 i

+ -

t i

1 4

recusag ea u* cn cues Las e i i i i I

I 1

.- l 4

l a i

!7  !

. I'

~e- l ci i 3

- I

[ ';~ l l

l I

l

,ab_ a A _ A _ __A _ _ = . _^- A -- ^ ^-

j

  • 68 n s.a a.. a.6 4.s  !

7:rt < nstc ) l McGUIRE #2 "W" CAP SPECIMEN NUMBER :DL41 MATERIAL :LONG CAPSULE McCUIRE #2

"W" CAPSULE recurnc sa ua ce oL34 urc
  • . i i i i e

4 a

z

.- .( -

A a

y- -

in i Aa -

i A__Am mnam an.

i

.nA_.__ i

. 1

.9 .a.a a.4 3.6 4.9 6. 0 718E ( MICC 3 McGUIRE #2 "W" CAP SPECIMEN NUMBER :DL34 MATERIAL LONG CAPSULE :McGUIEZ #2 "W" CAPSULE Figure A-3. Load-time records for Specimens DL41 and DL34.

i A-3 i 1

l l

l

, NCCutst sa *u* CW (L38 LDC

  • 1 1 6 4 g- -

M 1

a g- -

.3 k A A A. m.maaA. _ A .

s.: a.4

.,x__m_

a.s

. _.-..__m . _ _ .

4.s 6. o T!rE ( MSEC )

McGUIRE #2 "W" CAP

SPECIMEN NUMBER DL38 MATERIAL
LONG CAPSULE :McGUIRE #2
"W" CAPSULE MCCulet ## "W* CW OL37 upc i i i

. g g- _

a 1

z a e- .

O w l u

N~ .

A-m AA M A a _S A ,

  • AA A A m ._ ._ _ .. _. ,,,,

. i i .

  • D 1.3 8.4 3. 6 4.0 s.0 T!rt ( MICC >

McGUIRE #2 "W" CAP SPECIMEN NUMBER :DL37 4

MATERIAL :LONG CAPSULE  : McGUIRE #2 "W" CAPSULE Figure A-4. Load-time records for Specimens DL38 and DL37.

4 A-4 I

. - - - -- . . _ _ . ..- _ . -~.. - - . . - . .

MetallpE et au" CAP OL35 IDC e , # 6 6 4

l

.l 0

1

~ 1

_e-a 5 a

w g e- )

i 94 f I

I i

A. . AA _ A. *-_A /%m . A a bA m _ _ -. . . _ -

J i i i

.9 1.2 E. 4 3.6 4.8 6.0

?!PE ( MSCc )

McGUIRE #2 "W" CAP SPECIMEN NUMBER DL35 MATERIAL :LONG CAPSULE :McGUIRE #2

"W" CAPSULE I

Mecusac sa u cAe ot44 unc 1 i i 6 I l l

I l

i I

e- -

w' M

1 I

  • e- -

3 w

e- -

A I

u- -

i

_A M b A_ A m A __A 8. AA - A A A Aa m _m _m - - -m.

g B & i I

.9 1.3 2.4 3.6 4.0 6. 0 T!fE ( MSCc 3 McGUIRE #2 "W" CAP SPECIMEN NUMBER :DL44 MATERIAL :LONG CAPSULE :McGUIRE #2

"W" CAPSULE Figure A-5. Load-time records for Specimens DL35 and DrA4.

A-5

nccuraC ea *u" CAP CLeS LDc

  • . n s s
  • 6 4

'M

-1 s

I w

e4 a

1 f

(

.t 8.2 4.4

. . h A h. 7. 4 m _ _ _ _ -

4.0

6. 0 T!PC ( f6tC )

McGUIRE #2 "W" CAP '

SPECIMEN NUMBER :DL45 MATERIAL LONG CAPSULE :McGUIRE #2

"W" CAPSULE necuinc sa *u* car OL4e tac j i e i 4 T

M I

  • e- -

5" w

m m- -

.9 1.2 2.4 3. 6 4.8 6.0 firt c nsCC 3 McGUIRE #2 "W" CAP SPECIMEN NUMBER :DL42 MATERIAL :LONG CAPSULE :McGUIRE #2

"W" CAPSULE Figure A-6. Load-time records for Specimens DL45 and DL42.

A-6,

,ccuinc ee u c., m.x um

)

4 m

I i x ~

l

$ }

w i

5~

N

- i ev -

~ _ _ _

  • *
  • s

.t 8.8 2.4 3. 6 4.0 6.6 TIPE ( nScC )

McGUIRE #2 "W" CAP SPECIMEN NUMBER :DL36 MATERIAL :LONG CAPSULE McGUIRE #2

"W" CAPSULE necutat sa u car 06.3 9 unc

. i

.  : 4 I

I

t. - 4 I

a .- -

S" 1

~

l3  :

w-4 l

l l

.t s.a e. 4 3.6 4.s 6. o tint < nste >

McGUIRE #2 "W" CAP SPECIMEN NUMBER' :DL39 MATERIAL' :LONG CAPSULE :McGUIRE #2

"W" CAPSULE Figure A-7. Load-time records for Specimens DL36 and DL39.

A-7

I l

McCular et *u CW DLC0 LIMC 8, 4 4 6 4 l

  • i i

4 m

1 2

a N an w

(

1 1

l q-

. > a ' *

,y 3,3 3.e 3.6 4.0 6.0 TIE < nsEC 3 McGUIRE #2 "W" CAP SPECIMEN NUMBER :DL40 MATERIAL :LONG CAPSULE :McGUIRE #2

"W" CAPSULE ncaulac sa u c e otsa umC 1

, j i

T M

i

~ , , - -

l 3" l l

- i ha.- l l

9.-,

. i 1

I ,

1 l

.* . e.. s.6 4.s 6.o i

TIE ( nsCC )

McGUIRE #2 "W" CAP l SPECIMEN NUMBER :DL33  ;

MATERIAL :LONG CAPSULE :McGUIRE #2

"W" CAPSULE I Figure A-F. Load-time records for Specimens DL40 and DL33.

A-8

r- - -- . _ - .

. . . - ~ - . _- ,-- . - . - - .- - -

nCCUIAC 42 *U* CAP (L32 1.DMG

  • 3 4 a j 6 M

1 >

r a .- -

3 w

4 g- -

. . . . i

.t 1.2 2.4 3.6 4.0 6.0 l TDC ( MICC >

McGUIRE #2 "W" CAP SPECIMEN NUMBER :DL32 MATERIAL IIDNG CAPSULE :McGUIRE #2

"W" CAPSULE 1 nccusac se w cap otse Tanns i i s i i 1

n I

r S

a l

.. am _,... _..,_ ..___ ____ ___ __

, _7.

.* .a a.4 3.s a. 0 s.o

]

TIfE ( MBEC ) j McGUIRE #2 "W" CAP i SPECIMEN NUMBER :DT32 I MATERIAL :TRANS- I CAPSULE McGUIRE #2 3"W" CAPSULE i Figure A-9. Load time records for Specimens DL32 and DT32. ,

A-9

necurnt sa u- cw trae - nuves i i i i 6 4

7

, 7 { -

.s a

w 1a,-

+

'$. .6 A . _ A A A _$b= A OOA Ah A M m A -A- I h

.-A

, . 4 s

.t s.: a.4 3.s 4.s s. o L

?!ft ( nSEC D i McGUIRE #2 "W" CAP SPECIMEN NUMBER :DT38 MATERIAL :TRANS CAPSULE McGUIRE #2 i  :"W" CAPSULE eccurar se u em cras taans

  • 6 a i a 4

M 4

1 '

i 7

. . - f -

.d

.e w

i .- -  ;

a  ?

i 9-1 4

n._u. A a. . .. m .__.___m _ _ .. _ _ _ _

. a s s s et 1.2 2.4 3.6 4.0 s. 0 f tpE ( MBEC >

McGUIRE #2 "W" CAP SPECIMEN NUMBER :DT36 MATERIAL :TRANS CAPSULE  : McGUIRE #2

"w" CAPSULE Figure A-10. Load-time records for Specimens DT38 and DT36.

1 i

I A-10 l I

necul#C ta W* car 0731 thans 9 i i 6 &

1 I

l 4

1 )

7 S

~

,~ 1 84 I

~

  • t ~ l 1

1 1

,AA. A AA A A AA . _._A- _ A - _m __ .- . - - j i i i

.3 s.: e.4 s.6 ..e 6. o tinc < nsce >

McGUIRE #2 W" CAP SPECIMEN NUMBER :DT31 MATERIAL :TRANS -

I CAPSULE :McGUIRE #2 "W" CAPSULE  !

necurac or u cap 0744 inwes i i e a i e

4 M

i e

3 q- .

AM M A __A A-A* _m . _ _ _ __ __ __ ,

. i i & i

.9 8.2 8. 4 3. 6 4.0 6.0 tre < nace McGUIRE #2 "W" CAP SPECIMEN NUMBER :DT44 MATERIAL. :TRANS CAPSULE *McGUIRE #2

"W" CAPSULE Figure A-11. Load-time records for Specimens DT31 and DT44.

A-11

  1. CculpC et *W Cp 0745 thans i i i i i n

1 7

1 a s a

w a

h i u naa m i m- _ _ _ _ _ _

.a s.a a.4 s.s 4.s 6.0 itec c nste >

McGUIRE #2 "W" CAP SPECIMEN NUMBER :DT45 MATERIAL :TRANS CAPSULE  : McGUIRE #2

"W" CAPSULE necuint se r e m ot4a teve

} I I i i M

1 7

=

e- -

a d a

w l

=~

~

bOAAAAn^^^^^*m.n_

i i i

_m ._x i

  • I 1.a a.4 3.6 4.8 6.0 T!Pc ( nsEC )

McGUIRE #2 "W" CAP' I' SPECIMEN NUMBER :DT42 MATERIAL :TRANS i CAPSULE McGUIRE #2 -l

"W" CAPSULE Figure A-12. Load-time records for Specimens DT45 and DT42.

i A-12 l l

l

MCCUIRC et "u" CAP 0703 Sanns

  • s s 6 6 N

1 z

3 e

~

e, =

q-sn-- _

. . A n. - . - - .

.D 1.2 2.4 3.6 4.8 6. 0 TIPE ( n3EC >

McGUIRE #2 "W" CAP SPECIMEN NUMBER :DT43 MATERIAL :TRANS CAPSULE :McGUIRE #2

"W" CAPSULE nccusac et u Cae 07 4 vnnns y e i i iz e .- -

e; i

AAA^ma ..._ ___ __ __

. a i .

.t s.a a.4 3.6 .. e 6.o 7:nc nsce >

McGUIRE #2 "W" CAP SPECIMEN NUMBER :DT34 MATERIAL :TRANS CAPSULE :McGUIRE #2

"W" CAPSULE Figure A-13. Load-time records for Specimens DT43 and DT34.

A-13

i 4

necutsc se u- ce o73s taans

  • 4 4 6 6 M

i 7

~e- -

e d a

w e

=

i

. i i i i

,t 1.2 a. 4 3. 6 4.s 6. o t!E ( n3Cc )

McGUIRE #2 "W" CAP SPECIMEN NUMBER :DT35 MATERIAL :TRANS CAPSULE McGUIRE #2

"W" CAPSULE ncourac sa v ce orar vanns g i i e i 1

7

  • * ~ -

S"

=- -

. i mn_ ___ - -

i i i

.8 a.a e.4 3.s 4e s, .

7:E < mec >

McGUIRE #2 "W" CAP SPECIMEN NUMBER :DT37 MATERIAL :TRANS CAPSULE McGUIRE #2

"W" CAPSULE

- Figure A-14. Load-time records for Specimens DT35 and D'13'/.

A-14

t

(

I nCcu!RC C2 au" cmp CT41 Tmans  !

  • . I i i #

l

+

I E. i.

A g. -

O w 1 l

1 i

1 l

. -- i i i i

.S 1.2 2. 4 3.s 4.0 s.O Tim < nste > l McGUIRE #2 "W" CAP SPECIMEN NUMBER :DT41 ,

MATERIAL :TRANS 1 CAPSULE :McGUIRE #2 )

"W" CAPSULE -

l necutar et u car 0723 Tams

", i i e a 4

e 1

S N

=- -

i l

. i i 4 i

.2 s.t 2.4 a.s 4.s 6. o Ts < nste >-

McGUIRE #2 "W" CAP SPECIMEN NUMBER :DT33 MATERIAL :TRANS CAPSULE :McGUIRE #2 "W" CAPSULE Figure A-15. Load-time records for Specimens DT41 and DT33.

A-15

. _ _ _ ~ - .. _- . - -. - - - .

ncturacsa u ce o73, tous 5

e e i i i i

l l

e-

  • 4 M

i_

e d a

I l4 '

1 I

I

. . . i .

.3 a.: a.4 s.6 4.s s.o tinc < nste >

McGUIRE #2 "W" CAP I SPECIMEN NUMBER :DT39 MATERIAL :TRANS CAPSULE :McGUIRE #2

"W" CAPSULE l

l l

nccurac sa u- c e cT4e inwa j i i i i a

e- -

M i  !

a i e- - i S" l I

i 3-a.

I

  • f - -

l

.9 a.a a.4 3.s 4.s s. e TIE ( MIEc )

McGUIRE #2 "W" CAP SPECIMEN NUMBER :DT40 MATERIAL :TRANS CAPSULE :McGUIRE #2  !

"W" CAPSULE Figure A-16. Load-time records for Specimens DT39 and DT40.

A-16

ncCutat at "W" Ce cu23 utLD 5 s s i e

i e- - 1 7

A 7

~ , - -

IN s

1 l

s I

l. & nA _ . . . _ ..__.____ ___ _ _ _ _ a_ _ _ _ _

e s a s s l

.9 1.2 2.4 3.6 4.8 6.8 1 f!MC ( ftSEC ) l McGUIRE #2 "W" CAP l SPECIMEN NUMBER :DW33 j MATERIAL  : WELD l CAPSULE :McGUIRE #2

"W" CAPSULE MCCUISC et "W" CM Ou28 m i i a 6 e

M i

i -

S" ,

- l m

I

==

.: I

<an_ eA. *

.a. *& *_ _A____ ___ a_ _ __ _ . _ ,

o 6 e a s l

.% 1.3 2.4 3.6 4.0 6.0

?!MC -t nsCC >

McGUIRE #2 "W" CAP i SPECIMEN NUMBER DW32 l MATERIAL  : WELD CAPSULE :McGUIRE #2

"W" CAPSULE Figure A-17. Load-time records for Specimens DW33 and DW32.

A-17

.. ~ _ -_. - - -

l l

l 1

1

,,ccu- ., . - -, .

} I i i i  ;

1 7- \

5 I l a 5 1 I

'~

IN y

. l I

l i'

q. .

l AA A m _ A _ A _ _ Am __AA _A A _ A A O A.

___A _ -

.D 1.2 2.4 3.6 4.0 6.0 T!PC 4 MICC ) e McGUIRE #2 "W" CAP l SPECIMEN NUMBER :DW43 J MATERIAL  : WELD l CAPSULE McGUIRE #2

"W" CAPSULE necutaC sa v car ou4s e
  • . I 4 i s l

T ,

a i I .

i z

e d ad w

d N~ .

~

Am. A. .

y 5 L i &

.1 1.4 2.4 3. 6 4.8 6.0 f!MC ( restC 3 McGUIRE #2 "W" CAP SPECIMEN NUMBER :DW45 MATERIAL  : WELD CAPSULE :McGUIRE #2 a

"W" CAPSULE Figure A-18. Load-time records for Specimens DW43 and DW45.

A-18

7 McGutet of *.t CAP SG7 &

9 i e a i I

7 -

S" b*,

y___. ., ___ ,

i., ... ... ... ...

?!E ( MSCC 3 McGUIRE #2 "W" CAP SPECIMEN NUMBER :DW37 MATERIAL  : WELD CAPSULE :McGUIRE #2

"W" CAPSULE Mccusec sa u car mas e 9 i a i i e-4 a

1 a -

e N a

w IN q_

AA - __ _ _

.9 1.3 2.4 3.6 ..$ 6.0

?!T C MSEC )

McGUIRE'#2 "W" CAP LONG- :DW39 MATERIAL  : WELD CAPSULE :McGUIRE #2

"W" CAPSULE Figure A-19. Load-time records for Specimens DW37 and DW39.

A-19

. _ . . . _ .,. _ ___.1.. . , __ _ . .m, _ . _ . _.

i l

nccusat es -w cm aus m.o I 6 6 e i d

l s

M I

1 O

w ,

A

9. -

1

^^ . - _ _ _ _ _ _ _ _ _ _ ,

, i a 4 s

.9 8.2 2.4 3.6 4.0 6.0 TIPC ( MSEC ) '

McGUIRE #2 "W" CAP i SPECIMEN NUMBER :DW38 )

MATERIAL  : WELD CAPSULE McGUIRE #2

"W" CAPSULE necuinc ea u c e ouel m.o I 4 6 i e

a i

e e

z 3

w e

9. -

, i a 6 i

.9 1.8 2. 4 3. 6 4.0 6. 9 TIME ( MSEC )

McGUIRE #2 "W" CAP SPECIMEN NUMBER :DW41 MATERIAL  : WELD CAPSULE :McGUIRE #2

"W" CAPSULE Figure A-20. Load-time records for Specimens DW38 and DW41.

A-20 i

1

. . - . _ .1

. . . . . . - - , __ _ _ . __ ._ .- ~. .

MCCU!aC e4 *W* CAP OW34 le.D

  • i i i i j

i n

1 z .

I I

i4

- i 3.-

A - _ - _ _

.o a.: a.4 3.s 4.s s.o b

TIM C M3CC )

McGUIRE #2 "W" CAP SPECIMEN NUMBER :DW34 MATERIAL  : WELD CAPSULE :McGUIRE #2

"W" CAPSULE i l

McCUIRC e2 *W* CAP DW36 6ED l

  • a 4 8 8 j 9~

s e

1 z -

3 w

~

m-A- .__ m i i 6 '

3.6 s. 0

.) 3.2 2.4 4.s T:4 ( MSCC 3 McGUIRE #2 "W" CAP SPECIMEN NUMBER :DW36 MATERIAL  : WELD CAPSULE :McGUIRE #2

"W" CAPSULE Figure A-21. Load time records for Specimens DW34 and DW36.

A-21

  1. CCUIng sa au" Cap CH35 6 ELD
  • . I 4 i i 4

4 R

f 3"

w k

a q.

l

.5 1.2 E. 4 3.6 4.0 6.0 TIE ( ntCC ) g McGUIRE #2 "W" CAP SPECIMEN NUMBER :DW35 MATERIAL WELD CAPSULE :McGUIRE #2

"W" CAPSULE necutet sa au car ou44 m

. 4 i i s e

i i

n I

r a .- -

3 w

h l

9- -

.5 1.2 2. 4 3. 6 4.0 6.0 i

TIPC ( MSEC >

McGUIRE #2'"W" CAP j SPECIMEN NUMBER :DW44 MATERIAL  : WELD CAPSULE :McGUIRE #2

"W" CAPSULE Figure A-22. Load-time records for Specimens DW35 and DW44.

1 A-22 '

i r

nccusacea u en nues e n n s s i e

M 1

7 2^

u g 5 O I i

.t s.a a.4 s.s 4.e s. s TIE ( nScc >

McCUIRE #2 "W" CAP SPECIMEN NUMBER :DW40 MATERIAL  : WELD CAPSULE :McGUIRE #2

"W" CAPSULE nccusacen u ce cuea e 9*

e i i i T

IT S

q.

^

. i i , i

.o s.a a.

  • s.s e.e s.e TIE ( MBEC 3 McGUIRE #2 "W" CAP SPECIMEN NUMBER :DW42 MATERIAL tWELD CAPSULE :McGUIRE #2
"W" CAPSULE Figure A-23. Load-time records for Specimens DW40 and DW42.

A-23

.. . .- - ~. . , _ . . - .. - __ -.

McCulaC et *W* CW SO1 m

} 4 4 4 A J

l I

s

,_ =

4 m

I e

a g- -

3 w

sJ i

e . . . .

.9 1.3 2.4 3.6 4.0 6. 0 TIfC ( MSCC 3 McGUIRE #2 "W" CAP 1 SPECIMEN NUMBER :DW31 MATERIAL  : WELD CAPSULE :McGUIRE #2

"W" CAPSULE nccu!nt et aw ce owse w '

1 6 i 4 I

l l

l

,= .

4 m

I r

5 e.a w

g wm," -

g u

A a AA .b^4 Aa. nn. _ .A_.*_ .n. ,___ _._

e 8 6 i a

.% I.2 2.4 3.6 4.0 6. 0 TIME i MsCC )

McGUIRE #2 "W" CAP I SPECIMEN NUMBER :DH40 l MATERIAL :HAZ I CAPSULE :McGUIRE #2

"W" CAPSULE Figure A-24. Load-time records for Specimens DW31 and DH40. l i

A-24

- necurnt se wace noe w s s y > s 4

R 1_

/-

a A ad l 1

- \

.- )

d m- I l

)

1 M.AAAnaanan_ >

^^_ xa.

..n_...

-a_...

. 6.o l

.t s.a e.. ss 4.s j

tam a nice >

McGUIRE #2 "W" CAP j

DH38 i

SPECIMEN NUMBER '

MATERIAL :HAZ CAPSULE :McGUIRE #2

"W" CAPSULE Necusac se u ce man W
  • I 4 6 8

~

a I 1

e ~

a A

.4 w

1A

~

u.

e's M A b ih A a _x x mix s

m . _ _ _ _ _ . _ _ _ _ _ __ _ _ _ _

o s

. o 1.3 E.4 3.6 4.0 6.0 fig ( MstC 3 McGUIRE #2 "W" CAP LONG :DH41 MATERIAL :HAZ CAPSULE :McGUIRE #2 3"W". CAPSULE Figure A-25. Load-time records for Specimens DH38 and DH41.

A-25

. . ~ . . ~- . .-. . x--- .~.. . - . . - , .

McCutRC e2 *u* C# CM43 Mn2

} i i i a 4 ,

M 1-

" 7 _

5  !

w gM

.ee F

q.

MA A A A n s n a . . . . _ i _ _ _ _ _ . _ _ - _ _ -

i

. i

.t s.a a.4 s.s 4.s s. o TIME ( n3CC >

McGUIRE #2 "W" CAP l J

SPECIMEN NUMBER :DH43 MATERIAL :HAZ CAPSULE :McGUIRE #2

. 1

"W" CAPSULE acculec ee u ce owse unz 9

a a a i i

e. -

I 7 i q _ 1 3

a  !

9 - I 4

Aansa.. ______ _ _ _ _ . __ __

. i e i i 2 a

.3 a.a r.4 s.s 4.s s.o 7:Mc c note >

McGUIRE #2 "W" CAP LONG :DH32 MATERIAL :HAZ CAPSULE :McGUIRE #2

"W" CAPSULE Figure A-26. Load-time records for Specimens DH43 and DH32.

A-26

nCculac sa *u' C# DMe5 W i

} e 4 a M

i z -

O a

f I

AAAm.____ _

s s 6 s

.9 1.3 2.4 3.6 4.8 6.0 TIE ( MSEC >

McGUIRE #2 "W" CAP LONG DH45 MATERIAL :HAZ CAPSULE :McGUIRE #2 l

"W" CAPSULE ,

l necuinc . u' Ce oms = l

  • . I I 6 I l
  • \

e a

1 l' e

3 w

9-4

)

u-E 1 J

^ - _ _ _ _ _ _ _ _

6 6 4

, 6

.D t.2 2. 4 3.6 4.8 6.0 T!4 ( MICC )

McGUIRE #2 "W" CAP SPECIMEN NUMBER :DH35 i j

MATERIAL :HAZ CAPSULE :McGUIRE #2

"W" CAPSULE Figure A-27. Load-time records for Specimens DH45 and DH35.

A-27

_. _. 4 ._ __ . m

  • MCCU:PC ea *W* CAP CH3 Het
  • i 6 a &

e i2 S"

N 1

i i . .

.t s.: a.. s.s 4.s 6.o TIT ( MsCC )

McGUIRE #2 "W" CAP

' SPECIMEN NUMBER :DH33 MATERIAL :HAZ CAPSULE  : McGUIRE #2

"W" CAPSULE Mccuint sa *W* CAP CH36 Hna .

i i 9 i a

~

J

' M i 1 2 -

,. \

S I ,-.

u --

. . i .

.3 s.: a.4 3.6 4. s s.o TIE ( MSCC 3 McGUIRE #2 "W" CAP SPECIMEN NUMBER :DH36 MATERIAL- :HAZ CAPSULE :McGUIRE #2

"W" CAPSULE Figure A-28. Load-time records for Specimens DH36 and DH33.

A-28

..i i

1 l

1 necutat se awa ce moe w I

} 4 i 6 4 i

M 1 l 7

a ,,- _ i

'l " '

1 1

  • ~ -

l

=

y_ _

l

, . i i i i

.1 1.a a. 4 3.6 4.s 6. 8 fic < nste >

, McGUIRE #2 "W" CAP 1 SPECIMEN NUMBER :DH34 'I MATERIAL :HAZ  !

CAPSULE :McGUIRE #2

"W" CAPSULE i

necunne sa u ce peer w

  • . s e i e e

l M

1 e

a d a

w I

1 s

9 I 4 5 j

.9 1.2 4.4 3. 6 4. 8 6.0 ftMc ( Mste )

McGUIRE #2 "W" CAP SPECIMEN NUMBER DH42 MATERIAL :HAZ CAPSULE :McGUIRE #2 -

"W" CAPSULE Figure A-29. Load-time records for Specimens DH34 and DH42.

A-29 .

v

ncoutet sa wa cw 043P Mar

  • 4 4 4 6 4

~

4 m

1 I -

3 . ,

~

s a s

, a 2.4 3.6 4.s 6.0

.3 3.3 i ris < nace >

McGUIRE #2 "W" CAP SPECIMEN NUMBER :DH37 MATERIAL :HAZ CAPSULE tMcGUIRE #2

"W" CAPSULE nccusac sa -u ce on+4 Mar
  • i i a 6 l

4 e

i I

3 e

I

- I l

. a a a i  !

.% 1.2 8.4 3. 6 4.0 6.0 J TIE ( MBEc )

McGUIRE #2 "W" CAP SPECIMEN NUMBER :DH44 MATERIAL :HAZ CAPSULE .:McGUIRE #2

"W" CAPSULE Figure A-30. Load-time records for Specimens DH37 and DH44.

J A-30

j l

l l

recurac sa v cw t>os =

j i e i a 4

n 1

S 3-i

^

. i i . .

.3 a. - e. 4 s.s 4.s s.o ts < nste >

McGUIRE #2 "W" CAP LONG :DH39 MATERIAL :HAZ CAPSULE :McGUIRE #2

"W" CAPSULE nespiacsa*u ce soon w
  • . i i i i l

e I

S" a

l

-^

. i n s i

.t t.: a.4 s.s 4.s s.o its c necc >

McGUIRE #2 "W" CAP SPECIMEN NUMBER DH31 i MATERIAL :HAZ l CAPSULE :McGUIRE #2 l

"W" CAPSULE Figure A-31. Load-time records for Specimens DH39 and DH31.

i A-31

B-0 t

i P

i '

d' APPENDIX B CHARPY V-NOTCH SHIFT RESULTS FOR EACH CAPSULE

, HAND-DFAWN VS. HYPERBOLIC TANGENT CURVE-FTITING METHOD (CVGRAPH VERSION 4.1) i 1

4 McGuire Unit 2 Capsule W Analysis March 1997

B-1 TABLE B-1 Changes in Average 30 ft-lb Temperatures for Intermediate Shell Forging 05 (Axial Orientation)

Hand Fit vs. CVGRAPH 4.1 Capsule Unirradiated Hand Fit ATw Unitradiated CVGRAPH ATw Fit V -25*F 45"F 70 F -19 F 39.64*F 58.64*F X -25*F 80 F 105 F -19'F 72.11 *F 91.12 F U -25*F 60 F 85 F -19 F 65.14 F 84.14*F W -- -- --

-19*F 111.33 F 130.33 F TABLE B-2 i

Changes in Average 50 ft-lb Temperatures for Intermediate Shell Forging 05 (Axial Orientation)

Hand Fit vs. CVORAPH 4.1 Capsule Unitradiated Hand Fit ATS Unirradiated CVGRAPH ATw Fit V 25*F 95*F 70 F 25.46*F 92.23*F 66.76 F X 25*F 145*F 120*F 25.46 F 138.27 F 112.81*F U 25*F 115 F 90*F 25.46 F 122.61*F 97.15*F W -- -- --

25.46*F 178.86*F 153.4*F McGuire Unit 2 Capsule W Analysis March 1997

B-2 ,

l l

l l

TABLE B-3 Changes in Average 35 mil Lateral Expansion Temperatures for Intermediate Shell Forging 05 (Axial Orientation)

Hand Fit vs. CVGRAPH 4.1 Capsule Unirradiated Hand Fit AT35 Unirradiated CVGRAPH AT35 Fit V 25 F 75'F 50'F 21.69'F 75.26*F 53.57'F l

X 15 F i15 F 100 F 21.69*F 129.94 F 108.25'F U 25 F 110 F 85 F 21.69*F 118.68 F 96.99'F W -- -- --

21.69'F 162.96*F 141.27 F l

1 l

TABLE B-4 l

Changes in Average Energy Absorption at Full Shear for Intermediate Shell Forging 05 (Axial Orientation)

Hand Fit vs. CVGRAPH 4.1 l

Capsule Unirradiated Hand Fit AE Unirradiated CVGRAPH AE Fit V 94 ft-lb 85 ft-lb -9 ft-lb 94 ft-lb 85 ft-Ib -9 ft-lb  ;

X. 94 ft-lb 77 ft-lb -17 ft-lb 94 ft-lb 76 ft-lb -18 ft-lb U 94 ft-lb 84 ft-lb -10 ft-lb 94 ft-lb 84 ft-lb -10 ft-lb W -- -- --

94 ft-lb 74 ft-lb -20 ft-lb l

McGuire Unit 2 Capsule W Analysis March 1997

B-3 TABLE B Changes in Average 30 ft-lb Temperatures for Intermediate Shell Forging 05 (Tangential Orientation)

Hand Fit vs. CVGRAPH 4.1 Capsule Unirradiated Hand Fit ATw Unirradiated CVGRAPH ATw Fit V -75'F -10'F 65'F -83.I'F -14.13'F 68.97*F -

'X -75 F ' 2','F 100*F -83. l *F - 15.17 F 98.28*F

}_ U -75"F 15 F 90 F- -83.1*F 8.07 F 91.18*F W- -- -- --

-83. l *F 18.92*F 102.03 F i

TABLE B-6 5

Changes in Average 50 ft-lb Temperatures for Intermediate Shell Forging 05 (Tangential Orientation)

Hand Fit vs. CVGRAPH 4.1 1

Capsule Unitradiated Hand Fit -AT, Unirradiated CVGRAPH AT, Fit a

^

1- V- -60*F 10 F 70'F -57.14'F 14.4 F 71.54*F -

X- -60*F 60 F 120*F -57.14*F 52.02'F 109.16 7

'U- -60*F 45 F : 105*F -57.14'F 43.84*F 100,99'F

'W -- -- - - - -57.14*F 64.7'F 121.84'F

. McGuire Unit 2 Capsule W Analysis March 1997

l I

i l

~

B-4 I i

TABLE B-7 .

l Changes in Average 35 mil Lateral Expansion Temperatures for Intermediate Shell l Forging 05 (Tangential Orientation)

Hand Fit vs. CVGRAPH 4.1 1

Capsule Unirradiated Hand Fit AT35 Unirradiated CVGRAPH AT35 Fit V -70 F 5*F 75*F -62.09'F 9.69 F 71.78 F X -70*F 65'F 135 F -62.09 F 65.15'F 127.24'F U -70 F 35*F 105 F -62.09'F 43.4*F 105.49 F l W -- -- --

-62.09*F 71.89 F 133.98 F TABLE B-8 '

l Changes in Average Energy Absorption at Full Shear for Intermediate Shell Forging 05 (Tangential Orientation)

Hand Fit vs. CVGRAPH 4.1 Capsule Unitradiated Hand Fit AE Unirradiated CVGRAPH AE Fit V 156 ft-lb 134 ft-lb -22 ft-lb 154 ft-lb 134 ft-lb -20 ft-lb X 156 ft-lb 136 ft-lb -20 ft-lb 154 ft-lb 133 ft-lb -21 ft-lb U 156 ft-lb 122 b -34 ft-lb 154 ft-lb 122 ft-lb -32 ft-lb W -- -- --

154 ft-lb 113 ft-lb -41 ft-Ib McGuire Unit 2 Caps,2e W Analysis March 1997

_ _ _ _ _ _ _ _ ___ _ _ , _ _ __._. - _ _ _ _ . ~ _ ._._._ __ . . - . . _ . ., _ _ . _ - _ . _ . _

l B-5 j l

TABLE B-9 i,  ;

Changes in Average 30 ft-lb Temperatures for the Surveillance Weld Metal l Hand Fit vs. CVGRAPH 4.1 Capsule Unirradiated Hand Fit ATw Unirradiated CVGRAPH ATw ,

. Fit 1

V -50*F -5'F 45'F -53.87 F -15.36'F 38.51*F l

X -50 F -15 F 35 F -53.87 F -17.94'F 35.93'F ,

l U -50 F -30 F 20 F -53.87'F -30.06'F 23.81 F W -- -- --

-53.87'F -10. I'F 43.76'F TABLE B-10 1

Changes in Average 50 ft-lb Temperatures for the Surveillance Weld Metal i Hand Fit vs. CVGRAPH 4.1 Capsule Unirradiated Hand Fit ATw Unirradiated CVGRAPH ATw ]

Fit 1 i

V -25'F 20*F 45 F -22.92*F 24.09 F 47.02*F X -25'F 15*F 40*F -22.92'F 14.9 F 37.83 F U -25'F 10*F 35'F -22.92*F 9.14 F 32.06'F W -- -- -- -22.92*F 36.84'F 59.77 F l

1 l

I 4

McGuire Unit 2 Capsule W Analysis March 1997

B-6 TABLE B-ll Changes in Average 35 mil Lateral Expansion Temperatures for the Surveillance Weld Metal Hand Fit vs. CVGRAPH 4.1 Capsule Unitradiated Hand Fit AT35 Uninadiated CVGRAPH AT33 Fit V -35 F 10*F 45'F -30.9 F 13.62*F 44.52 F X -45*F -5 F 40 F -30.9*F 10.26 F 41.17 F U -45*F 0F 45 F -30.9'F 4.75'F 35.65"F W -- -- --

-30.9 F 34.13 F 65.03 F TABLE B-12 Changes in Average Energy Absorption at Full Shear for the Surveillance Weld Metal Hand Fit vs. CVGRAPH 4.1 Capsule Unirradiated Hand Fit AE Unitradiated CVGRAPH AE Fit V 133 ft-lb 138 ft-lb +5 ft-lb 133 ft-lb 138 ft-lb +5 ft-lb X 133 ft-lb 138 ft-lb +5 ft-lb 133 ft-lb 133 ft-lb 0 ft-lb U 133 ft-lb 129 ft-lb -4 ft-lb 133 ft-lb 129 ft-Ib -4 ft-lb W -- -- --

133 ft-lb 128 ft-lb -5 ft-lb McGuts Unit 2 Capsule W Analysis March 1997

B-7 TABLE B-13 Changes in Average 30 ft-lb Temperatures for the Surveillance HAZ Material Hand Fit vs. CVGRAPH 4.1 Capsule Unirradiated Hand Fit ATw Uninadiated CVGRAPH ATw Fit V -90*F -35*F 55*F -93.09 F -44.76*F 48.33 F X -90 F -15'F 75'F -93.09 F -17.08 F 76.01 F ]

U -90 F -5*F 85*F -93.09*F -19.14*F 73.95*F j W -- -- --

-93.09 F i1.35 F 104.45*F TABLE B-14 Changes in Average 50 ft-lb Temperatures for the Surveillance HAZ Material Hand Fit vs. CVGRAPH 4.1 Capsule Unitradiated Hand Fit AT, Unitradiated CVGRAPH ATw Fit V -55*F 5F 60 F -49.59 F 6.56 F 56.15 F X -55*F 20*F 75 F -49.59 F 22.18 F 71.78 F U -55*F 30*F 85 F -49.59"F 29.21 F 78.8*F W -- -- --

-49.59 F 58.37*F 107.97'F McGuire Unit 2 Capsule W Analysis March 1997

. . . . _ . . -- . _ ~ - . - . . __ . . . -

i B-8 i

TABLE B-15 Changes in Average 35 mil Lateral Expansion Temperatures for the Surveillance HAZ Material Hand Fit vs. CVGRAPH 4.1 Capsule Unirradiated Hand Fit AT33 Unitradiated CVGRAPH AT33 Fit V -55'F 0*F 55*F -50.98 F 20.76*F 71.74*F X -70 F 20*F 90'F -50.98 F 36.79 F 87.77 F U -70 F 30*F 100 F -50.98 F 29.12*F 80.l*F W -- -- -- -50.98 F 65.0l *F 115.99 F TABLE B-16 Changes in Average Energy Absorption at Full Shear for the Surveillance HAZ Material Hand Fit vs. CVGRAPH 4.1 Capsule Unirradiated Hand Fit AE Unirradiated CVGRAPH AE Fit .

i V 104 ft-lb 98 ft-lb -6 ft-lb 104 ft-lb 98 ft-lb -6 ft-lb X IN ft-lb 106 ft-lb +2 ft-lb 104 ft-lb 103 ft-lb -1 ft-lb U IN ft-lb 93 ft-lb -11 ft-Ib 104 ft-lb 93 ft-lb -11 ft-lb W -- -- -- 104 ft-lb 84 ft-lb -20 ft-lb McGuire Unit 2 Capsule W Analysis March 1997

i t

1 C-0 L i

5 i

i i

r APPENDIX C i

CHARPY V-NOTCH PLOTS FOR EACH CAPSULE USING HYPERBOLIC TANGENT CURVE FITTING METHOD ,

l 1

I j

I i

l i

McGuire Unit 2 Capsule W Analysis March 1997

. - .. .-  ?. . ,

~

C-1 Charpy V-Notch Data as Input in CVGRAPH Lower Shelf Energy values were fixed at 2.0 ft-lb. The following table presents the upper shelf energy values fixed in CVGRAPH. The unirradiated and irradiated values were calculated per the ASTM E185-82 definition of upper shelf energy.

Upper Shelf Energy Values Fixed in CVGRAPH Material Unirradiatu l Capsule V Capsule X Capsule U Capsule W Intermediate Shell Forging 05 94 ft-Ib 85 ft-lb 76 ft-lb 84 ft-lb 74 ft lb

( Asial Orientation)

Intermediate Shell Forging 05 154 ft-lb 134 ft-lb 133 ft-lb 122 ft-lb 113 ft-lb (Tangential Onentation)

Weld Metal 133 ft-lb 138 ft-lb 133 ft-lb 129 ft-lb 128 ft-lb HAZ Material g 104 ft-lb 98 ft-lb 103 ft-lb 93 fi-lb 84 ft lb McGuire Unit 2 Capsule W Analysis March 1997

C-2 UNIRRADIATED CVGP.APH 4J Hyperbolic Tangent Curve Printed at (T/:41f)B on 10-31-1996 Page1 Coefficients of Curve 1 A = 78 B = 76 C = 72S3 TO = -29.06 i Equation is CVN = A + B ' I tanh((T - 1D)/C) ]

Upper Shelf Energy: 154 Fixed Temp. at 30 ft-lbs -83J Temp. at 50 ft-lbs -57J laer Shelf Energy 2 Fixel Materiah FORGING SA508Cl2 Heat Number. 526840 Or'entation LT Capsule: UNIRR Total Fluence:

300 cn 250

,.O I

a x 200 I x a n tm R 4 150 a a>

c o N

100 a .

Z l

> 00 C O su o

4  ;

i

-300 -200 -100 0 100 200 300 400 500 600 i l

Temperature in Degrees F l Data Set (s) Plotted Plant: MC2 Cap; UNIPS Material: FORGING SA508Cl2 Ori: LT Heat h 526840 j Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential

-125 2.5 123 -9.6

-100 2 2037 -18B7 ,

-100 35 2037 -1737

-W 44 39J9 43

-W 69 SJ9 3B

-50 70 56S8 1331

-30 56 E01 -21D1

-30 93 E01 15.96 0 915 106.88 -1538

" Data continued on next page =

C-3 UNIRRADIATED Page2 Material R)RGING SA500Cl2 Heat Number. 526840 Orientation LT Capsule UNIRR Total Fluence Charpy V-Notch Data (Continued) i Temperature input CYN Energy Computed CVN Energy Differential 0 96 10638 -10B8 25 11 3 126.01 -1101 25 1435 126.01 17.48 70 1595 14437 1432 70 152 144.67 722 125 148 15134 -384 125 158 15184 6.15 t

210 152 153.78 -1.78 210 1565 15178 2.71 SUM of RESIDUAIS = .62 I

l 1

i 1

l l

C-4 CAPSULE V CVGRAPH 43 Hyperbolic Tangent Curve Printed at 07:4108 on 10-31-1996 Page1 Coefficients of Curve 2 A = 68 B = 66 C = Ta84 70 = 35.62 Equation is CVN = A + B ' [ tanh((T - TO)/C) l Upper Shelf Energy: 134 Fixed Temp. at 30 ft-lbs -14J Temp. at 50 ft-Its 14.4 laer Shelf Energy: 2 Fixed Materiah R)RGING SA508Cl2 Heat Number. 526840 Orientation LT Capsule: Y Total Fluence 300 m eso

, ,.O

~

l ,

a N 2m i 1

x n DO L 150 0 0

U o

N /

. 100--

0 o M /

_ oo 1 o

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: MC Cap.: V Materiah FDP.GING SA508CL2 Ori: LT Heat f. 526840

Charpy V-Notch Data Temperature input CVN Energy Computed CVN Energy Differential

~50 13 14.49 -1.49

-25 6 24J9 -16J9 -

32.48 3151 l

- 10 64

-10 30 32.48 -248 0 11 39D9 -28.09 0 56 39D9 16 S 25 55 58B1 -331 50 83 80.36 2S3

~ Data continued on next page =

C-5 ,

CAPSULE V Page2 Material: FDPf,ING SA508Cl2 Heat Number. 52foi0 Orientation LT Capsule V Total Fluence Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 82 99 10198 -4.98 100 120 11356 E43 15 0 127 12733 -33 200 11 4 13229 -1829 250 145 13353 1146 300 134 13337 12

375 152 13198 1& 01 SUM of RESIDUAIS = 10.9

'T l

a 1

i i

e

C-6 CAPSULE X CVGRAPH 4J Hyperbolic Tangent Curve Printed at W:41DB on 10-31-1996 Page1 Coefficients of Curve 3 A = 675 B = 655 C = WE1 TO = 7&74 Equation is CVN = A + B ' [ tanh((T - TO)/C) ]

Upper Shelf Energy:133 Fixed Temp. at 30 ft-lbs til Temp. at 50 ft-lbs 52 lower Shelf Energy: 2 Fixed Materiah FORGING SA508Cl2 Heat Numbec 526M0 Orientation LT Capsule X Total Fluence 300 u3 250 4

I g em N

en 22 b e.

c w N

100 e 7  !

O o m 50 /

g W

o I

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F I Data Set (s) Plotted I Plant: MC2 Cap X Materiah R)RGING SA508Cl2 Ori: LT Heat l: 526M0 Charpy V-Notch Data Temperature Input CYN Energy Computed CYN Energy Differential 1

-75 8 738 El l

-50 10 10.74 .74

-50 8 10.74 -2.74 0 28 23.75 424 1 25 30 34E8 -4E8 50 58 48.74 925 86 645 7235 -7B5 88 105 73SB 3131 l l

  • Data continued on next page =

r-. . _ . - _ . . _ _ _ _ _ -. _ _ _ __

C-7 CAPSULE X 4

Page2 Material FORGING SA508Cl2 Heat Numte- 526840 Orientation: LT +

Capsule X Total Fluence Charpy V-Notch Data (Continued)

Temperature input CVN Energy Computed CVN Energy Differential 100 50 8133 -3153 100 77 Bl53 -453 125 92 96.4 -4.4 150 119 1063 1039 200 126 12291 . 3.08 250 12919 BB  !

138 275 134 130.69 33 SUM of RESIDUAIS = 143 i

i i

i s

e i

C-8 CAPSULE U CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 07:4LM on 10-31-1996 Page1 Coefficients of Curve 4 A = 62 B = 60 C = 9123 TO = 6234 Fauation is CVN = A + B

  • l tanh((T - 1D)/C) l Upper Shelf Energy: 122 Fired Temp. at 30 ft-lts 8 Temp. at 50 ft-lbs 43.8 lower Shelf Energy: 2 Fixed Material FORGING SA508Cl2 Heat Number: 526840 Orientation LT Capsule: U Total Fluence:

3m I

m a 4

I a em N

A l un L 150 a> "

Q ~~

o N -

f-100 ,

o

~

0

} .

l \ l

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: MQ Cap;U Material: FORGING SA500Cl2 Ori.: LT heat f: 526840 Charpy V-Notch Data Temperatum input CVN Energy Computed CVN Energy Differential

-100 5 532 -2

-00 10 9.68 31

-25 17 17.41 .41

-5 9 2431 -1531 0 8 2637 -1837 5 25 2&57 -357 25 47 38.72 82/

" Data continued on next page =

C-9 CAPSULE U Page2 Material: FORGING SA508Cl2 Heat Number. 520S40 Orientation LT Capsule: U Total Fluence Charpy V-Notch Data (Continued)

Temperature input CVN Energy Computed CVN Energy Differential 50 67 53.93 13.06 75 W 707/ 2&72 125 80 97.75 -17.75 130 85 993 -14B 150 98 106B7 -&67 200 127 11 & 4 10.59 240 121 1193 139 275 11 8 12037 -237 SUM of PEDUAIS =-2L75 l

l l

1 i

C-10 CAPSULE W '

CVGRAPH 41 Hyperbolic Tangent Curve Printed at W:4008 on 10-31-1996 Page1 Coefficients of Curve 5 ,

A = 575 B = 555 C = 1127/ TO = 79.98 Equation is CVN = A + B ' I tanh((T - 11))/C) l Upper Shelf Energy:113 Fixed Temp. at 30 ft-lbs 18.9 Temp. at 50 ft-lbs 64.7 leer Shelf Energy 2 Fired Materiat R)RGING SA508Cl2 Heat Number 526840 Orientation LT Capsule W Total Fluence 300  !

l 1

m 250

,C 1 i a

N 22 h

en 4 150 D

c "

M x ..

100 Z .

O v/ v A

[

o ,

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set Plant: MQ Capt W Materiah GFORGIN(s)SA508CI2 Ori.:Plotted LT Heat l: 526840 Charpy V-Notch Data Temperature Input CYN Energy Computed CVN Energy Differential

-75 5 8.61 -3S1

-40 8 13.73 -5.73

-10 9 20E2 -1142 0 14 2354 -954 10 31 263 419 25 41 3232 E67

"" Data continued on next page ""

C-11 CAPSULE W Page2 Material F0PSING SA508Cl2 Heat Number. 526840 Orientation LT Capsule i Total Fluence Charpy V-Notch Data (Continued) '

Temperature input CVN Energy Computed CYN Energy Differential 50 56 43.03 1296 72 58 5356 4.43 ,

125 74 7841 -4f1 150 82 882 -62 175 80 9172 -1172 200 115 1012/ 13.72 250 IW IWB6 -A6 325 127 1116 15.39 400 101 11262 -1122 SUM of RESIDUAIS =-10J6 1

1 l

C-12 UNIRRADIATED CVGRAPH 4J Hyperbolic Tangent Curve Printed at 0&0&O2 on 10-31-1996 Page1 Coefficients of Curve 1 A = 442 B = 4358 C = 61 TO = -4&44 Ex;uation is E = A + B ' I tanh((T - 11))/C) ]

Upper Shelf LE: 8&l7 Temperature at E 35- -62 lower Shelf II: 1 Fixed Materiah FORGING SA500Cl2 Heat Number. 526840 Orientation LT j Capsule: UNIRR Total Fluence 20o i

en

.O 150

$ l a

>i 1

M 100 =-

o (L) o 0) '

4 \

cd m a l a m -

o l 0

J

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: MQ Cap: UNIRR Materiah FORCING SA508Cl2 Ori.: LT Heat f. 526M0 Charpy V-Notch Data Temperature input lateral Expansion Computed 11 Differential

-125 5 755 -255

-100 0 1457 -1457

-100 0 1457 -1457

-70 30 29.79 2

-70 51 29.79 212

-50 54 43.48 1051 1

-30 415 5738 -15B8

-30 67 57 2 941 0 635 7339 -939

  • Data continued on next page =

~

I C-13 1

UNIRRADIATED Page2 Materiah FDRGING SA508Cl2 Heat Number: 526840 Orientation LT ,

1 i

Capsule UNIRR Total Fluence Charpy V-Notch Data (Continued) l Temperature input lateral Erpansion Computed 12 Differential 0 69 7339 -439 25 78 80 7/ -P5/

25 83 80 5/ 2.02 70 90 E41 358 70 90 86.41 358 125 86 8738 -1B8 125 93 87B8 5.11 210 Tl 88.15 -1125 210 !T7 8&l5 834 SUM of RESIDUAIS = -132

C-14 CAPSULE V CVGRAPH 4J Hyperbolic Tangent Curve Printed at 080&O2 on 10-31-1996 Page1 Coefficients of Curve 2 A = 424 B = 4L4 C = 76.01 TO = 23.43 Equation is 12 = A + B ' l tanh((T - TO)/C) ]

Upper Shelf LE: 83B Temperature at 12 3E 9.6 Lower Shelf LE: 1 Fixed Material FORGING SA508Cl2 Heat Numben 526840 Orientation LT Capsule: V Total Fluence:

200 m

.O 150

$ l a

M N 100

- n . n ,

, O O a)

W O O

\

ec '

u so  %

Oo o

1

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted i Plant: MC2 Cap;Y Material: FDRGING SA50BCl2 Ori: LT Heat f: 526840 Charpy V-Notch Data Temperature input lateral Expansion Computed 12 Differential

-50 12 5 it47 ID2 l

-25 75 19.09 -1159 l

-10 485 2528 2321

-10 21 2528 -428 0 65 30.02 -2352 0 43 30.02 12W 25 42 4325 -125 50 63 563 6S9

" Data continued on next page =

C-15 CAPSULE V Page2 Material IDRGING SA508C12 Heat Number. 526M0 Orientation: LT Capsule Y Total Fluence:

Charpy V-Notch Data (Continued)

Temperature input lateral F2pansion Computed LE Differential 82 595 6919 -9E9 100 78.5 745 4.43 150 83 80.94 2.05 200 78 8101 - 5.01 250 86 83.59 2.4 300 83 8174 .74 375 855 8179 1.7 SUM of PISIDUAIS -L61

C-16 I CAPSULE X CVGRAPH 41 Hyperbolic Tangent Curve Printed at 0&O8f)2 on 10-31-1996 Page1 Coefficients of Curve 3 A = 43B7 B = 4237 C = 8613 1D = 8325 Fquation is 2 = A + B

  • l tanh((T - TO)/C) } ,

Upper Shelf 1186.75 Temperature at E 35- 651 lower Shelf Il 1 Fixed Materiah MRGING SA500C12 Heat Number. 526840 Orientation LT Capsule X Total Fluence 200 en

.O 150 6  !

n  :

M l 100 l

?

E o

?

W cd C a so e

o e W

o

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F l Data Set (s) Plotted l Plant: MQ Cap: X Materiah mRGING SA508Cl2 Ori: LT Heat f. 526840 l Charpy V-Notch Data Temperature input lateral Expansion Computed M Differential

-3 1 312 -P12  ;

-50 6 4.71 128

-50 5 4.71 28 0 19 11B3 716 25 16 1861 -261 50 21 281 -71 l 86 41 4524 -424 i 88 67 4623 20.%

  • Data continued on next page =

l

-a-w a ww..- aa+ um-- - - - - - - - - - - - - - - - - - . - - - - - -

C-17 CAPSULE X Page2 Material FORGING SA508CL2 Ileat Number. 526840 Orientation: LT ,

Capsule X Total Fluence Charpy V-Notch Data (Continued)

Temperature Input lateral Erpansion Computed LI Differential 100 36 5 2.11 - 16.11 100 54 5211 138 125 58 63.17 - 5.17 150 82 7L73 1026 200 77 BL4 -4.4 250 87 85 199 Fa 84 85.76 -L76 SUM of PEIDUAIS = .08 r

i I

l l

l l

1 l

l l

l C-18  !

CAPSULE U CVGRAPil 41 Hyperbolic Tangent Curve Printed at 0&O8f)2 on 10-31-1996 Page1 l Coefficients of Curve 4 A = 31.97 B = 35M C = 69.46 TO = 4722 l

Equation is 2 = A + B ' [ tanh((T - 1D)/C) ]

Upper Shelf 117P95 Temperature at E 35- 43.4 lower Shelf 111 Fixed Material: FORCING SA50BCl2 Heat Number. 5540 Orientation LT l Capsule U Total Fluence zou m

.O 150 a

M N 100 m

p

c. a

.3 W ./

[ '

a w n a

A zu M o i 1

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: MC2 Cap;U Materiah IDRGING SA508Cl2 Ori: LT lleat f: 526M0 Charpy V-Notch Data Temperature input Lateral Expansion Computed E Differential

-100 3 P02 W

-60 11 433 636

-25 17 E99 8

-5 3 14D8 -1 LOB 0 6 15.69 -9E9 -

5 14 17.45 -145 25 30 2534 4J5 5

  • Data continued on next page ~

C-19 l

CAPSULE U Page2 Material FORGING SA508Cl2 Ileat Number. 526840 Orientation LT Capsule U Total Fluence Charpy V-Notch Data (Continued) -

Temperature input lateral Expansion Computed LE Differential 50 45 3&41 62 7a 58 50f>4 73 125 55 66.03 -1103 130 59 6638 -7B8 150 67 69.41 -2.41 200 79 72j)B 6.91 240 79 72E8 631 2fa 73 72 5 34 SUM of RESIDUAIS = 175

C-20 CAPSULE W I CVCRAPH 4J Hyperbolic Tangent Curve Printed at 08M02 on 10-31-1996 Page1 Coefficients of Curve 5 A : 36S $=35S C = 1025 TO = 7/34 Equation is 12 = A + B ' l tanh((T - TO)/C) l Upper Shelf 12: 72B1 Temperature at 12 35: 71B lower Shelf 12: 1 Fixed Materiah mRGING SA508Cl2 Heat Number. 526840 Orientation LT Capsule W Total Fluence

)

200  !

m

.O 150

% \

M  !

N 100

~

2 -

e> ' ,, v a /- ,  ;

a So v

e '

V I o

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant MC2 Cap:W Materiah FORGING SA50BCl2 Ori.: LT Heatf.526840 Charpy V-Notch Data Temperature input lateral Expansion Computed 11 Differential

- 70 4 4.49 .49

-40 5 7E -2S

-10 2 1205 -10.05 0 5 14 -9 10 19 1621 E78 25 25 20.01 4.96

- Data continued on next page =

C-21 CAPSULE W Page 2 Material FORGING SA500CL2 Heat Numben 526M0 Orientation LT l Capsule W Total Fluence: ,

1 Charpy V-Notch Data (Continued) l 1

Temperature Input lateral Expansion Computed 12 Differential )

1 50 40 2754 12.4 5 72 36 35.03 .96 '

l 125 50 5249 -249 150 52 58B -6B 175 53 6351 -10.51 200 82 66B 1519 250 68 70.42 -2.42 325 77 7224 4.75 400 ' 70 7238 -268 SUM of RISIDUAIS = -5S3 1

1 1

I l

C-22 i

UNIRRADIATED CVGRAPil 4.1 Ilyperbolic Tangent Curve Printed at 0&l7:31 on 10-31-1996 Page1 Coefficients of Curve 1 A = 50 B = 50 C = 68.96 10 = -7D3 F4 uation is Shearx = A + B ' [ tanh((T - 10)/C) ]

Temperature at 50x Shear: -7 Materiah IVRGING SA508Cl2 IIeat Number 526M0 Orientation LT Ca:sule: UNIRR Total Fluence:

100 r -

80 u

m e-  ;

,C  !

W r -

a {u c l o

i o

O C L 40 e

20 u 2

0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: MC2 Cap; UNIRR Materiah FDP.GING SA506Cl2 Ori LT lleat b 526840 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-125 0 3.16 -3J6

-100 0 632 -632

-100 0 632 -632

-70 10 1336 -3B6

-70 19 1336 513

-50 23 2233 S6

-30 40 3193 6.06 -

-30 45 3193 1106  !

0 50 55DB -5.08 )

- n.u nunua on not m ~

C-23

UNIRRADIATED Page2 Material F0PSING SA500Cl2 Heat Number. 526840 Orientation LT Capsule UNIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 0 51 55DB -4D8 25 59 7148 -1268 25 70 7L68 -138 70 100 9022 9B 70 100 9022 9R 12 5 100 WM 212 125 100 WM 2J2 210 100 99B1 18 210 100 9931 18 SUM of PISIDUAIS = lL68

'I l

C-24 CAPSULE V l CVGRAPH 41 Hyperbolic Tangent Curve Printed at 082t10 on 10-31-1996 l Page1 Coefficients of Cun'e 2 A = 50 B = 50 C = 505 TO = 47B1 Equation is Shearx = A + B ' I tanh((T - TO)/C) ]

Temperature at 50x Shear: 473 Material F0P.GING SA508Cl2 Heat Number: 536840 Orientation LT Capsule V Total Fluence  !

2 2 '

100 o c) I u

  • cc D l d

m 30 i a

c e

O i L 40 I e

% o

/

0  :

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: MC2 Cap;Y Material FORGING SA508Cl2 Ori LT Heat f. 526840 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-50 2 2D3 -D3

-25 3 53 -23

-10 11 92 1.79

-10 8 92 -12 0 9 1308 -4DB 0 29 13DB 15.91 25 28 2833 -33 50 43 5216 -936

" Data continued on next page =

i C-25 CAPSULE V Page2 Material FDPSING SA508C12 Heat Number. 526840 Orientation: LT Capsule V Total Fluence -

Charpy V-Notch Data (Continued) ]

Temperature input Percent Shear Computed Percent Shear Differential l 82 81 79.47 152  !

100 96 8&76 923 150 100 9028 L71 200 100 99.75 24 250 100 99.96 .03 300 100 99.99 0  :

375 100 99.99 0 l SUM of RESIDUAIS : 12B3 l

l l

I l

l l

I l

1

I, C-26 CAPSULE X CVGP.APil 43 Hyperbolic Tangent Curve Printed at 0837:31 on 10-31-1996 Page1 Coefficients of Curve 3 A = 50 B = 50 C = 80S8 TO = 74.7 Equation is: Shearx = A + B ' I tanh((T - 11))/C) 1 Temperature at 50x Shear. 74.7 Material FORGING SA500Cl2 ilcal Numben 52fo10 Orientation LT Capsule: X Total Fluence 100 g e

a 8o m

e A i m ,

a ce eo O

b 40 0

20 i

e 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted ,

Plant: MC Cap;X Material FORGING SA508Cl2 Ori LT Heat f 526840 l Charpy V-Notch Data Temperature Input Perwnt Shear Computed Percent Shear Differential

-75 2 2.41 .41

-50 5 45 fa

-50 2 439 -229 0 20 1164 625 25 20 2?.65 -235 50 35 352 -2 86 45 5632 - 11 S 2 88 85 5813 26B6

- Data continued on next page " )

i C-27 '

i I

CAPSULE X Page2 Material FORGING SA508Cl2 Heat Number: 526840 Orientation LT Capsule: X Total Fluence Charpy V-Notch Data (Continized)

Temperature input Percent Shear Computed Percent Shear Differential 100 45 6512 -2012 .

100 65 6512 -12 l 125 75 7/59 -259 150 95 8652 847 200 100 9166 433 250 100 9869 13 275 100 9929 2 SUM of PEIDUAIS = 819 l

i

C-28 CAPSULE U CVGRAPH 41 Hyperbolic Tangent Curve Printed at 0&l7:31 on 10-3'-1996 Page1 Coefficients of Curve 4 f A = 50 B = 50 C = 79J9 TO = 5953 Equation is Shear /. = A + B

  • l tanh((T - TO)/C) ]

Temperature at 50x Shear. 595 Materiat WRGING SA500Cl2 IIeat Number: 526&l0 Orientation: LT Capsule U Total Fluence:

100 ^M '

u

  • I g . /.

i .c ,

i' CO Go c

  • e O

k 40 e

. C du a

D l

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set i Plant: WC2 Cap; U Materiah NRCI%{d SA506Cl2 Slotted Ori: LT lleat f. 526&l0 1

Charpy V-Notch Data Temperatum Input Percent Shear Computed Percent Shear Differential

-100- 5 1.74 325

-60 10 455 534

-25 15 1057 4.42

-5 10 ir38 -638 0 10  !!J9 -&l9 5 15 2fi.!4 -5J4 25 30 7148 51

)

" Data continued on next page =

C-29 l

l CAPSULE U Page2 Material }DPSING SA508C12 Heat Number. 52fo40 Orientation LT Capsule U Total Fluence Charpy V-Notch Data (Continued)

Temperature input Percent Shear Computed Percent Shear Differential 50 50 44D1 5.98 75 70 59.64 1035 13 70 83S3 -13 S 3 130 85 85 2 -2 150 90 90.75 .75 200 100 W2 2.79 240 100 98.96 1.03 275 100 99 2 .43 SUM of REIDUAIS = -34

C-30 i CAPSULE W  !

1 CVCRAPH 4J Hyperbolic Tangent Curve Printed at 0017:31 on 1&-31-1996 l Page1 l Coefficients of Curve 5 j A = 50 B = 50 C = 8935 TO = 14L79 Equation is Shearx = A + B ' I tanh((T - TO)/C) ]

Temperature at 50x Shean 14L7 Material FORGING SA508Cl2 Heat Numben 526&to Orientation LT f Capsule W Total Fluence  ;

100 -

r a 80 /

e e  ;

.C 1 cn e, l a

c , i O

O b 40 0

20 --

/

7 J

0 ~ i

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: MQ Cap; W Material FORGING SA508Cl2 Ori: LT Heatf526&l0 Charpy V-Notch Data Temperature input Percent Shear Computed Percent Shear Differential

-75 0 .79 .79

-40 0 L71 -L71

-10 5 329 L7 0 5 4.08 s1 10 10 5.05 491 25 15 6.91 8.08

  • Data continued on next page =

l C-31 l

CAPSULE W i Page2  !

Material: FURGING SA500Cl2 Heat Number. 526840 Orientation LT

. l Capsule W Total Fluence l

Charpy V-Notch Data (Continued)

Temperature input Perwnt Shear Computed Percent Shear Differential  !

50 20 IL47 a52  :

72 20 17.45 254 l 125 30 40.76 -10.76 i 150 55 5455 .44  !

175 50 67R -17B 200 100 7&5 2L49 1 250 100 9L74 825 l 325 100 9833 If4 400 100 99.68 13 1 SUM of RESIDUAIS = 27.94 l

l l

l l

~

1 C-32 l

l UNIRRADIATED CVGRAPIl 41 Ilyperbolic Tangent Curve Printed at 0&28f)5 on 10-31-1996 l

Page1 Coefficients of Curve 1 A = 48 B = 46 C= W34 TO = 2122 Equation is: CVN = A + B ' l tanh((T - 1D)/C) J Upper Shelf Eaergy: 94 Fixed Temp. at 30 ft-Its -19 Temp. at 50 ft-lts 25.4 lower Shelf Energy: 2 Fixed Material PORGING SA508Cl2 Heat Number. 520M0 Orientation TL Capsule UNIRR Total Fluence 300 en 2w Q

I a

z am h

em L 150 0 t c: I l w

(a 100 n 2;

b ~

J^

0

- r/

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: MC2 Cap: UNIRR Materiah F0P.GING SA508Cl2 Ori TL lleat f. 526MO Charpy V-Notch Data Temperature input CVN Energy Computed CVN Energy Differential

-100 75 9.03 -153

-100 55 9.03 -353

-50 21 1929 L7

-25 29 US6 133

-25 2&5 3 46 B3 0 34 3812 -412 25 53 49.78 3 21 25 49 49.78 .78 56 63 6176 .76

" Data continued on next page "

C-33 UNIRRADIATED Page2 Material: FDP4ING SA508CL2 lleat Number: 526840 Orientation TL Capsule UNIRR Total Fluence Charpy V-Notch Data (Continued) l ramperature Input CVN Energy Computed CVN Energy Differential 56 67 63.76 323 56 68 6176 423 100 715 7&78 -728 100 74 78.78 -4.78 100 72 7&78 -&78 140 925 86.62 5B7 l 140 93 8&62 637 210 97 9 2.13 4B6 210 95 92.13 2B6 i SUM of RESIDUAIS = 433 1

)

l l

l

i C-34 l

CAPSULE V CVGRAPH 41 Hyperbolic Tangent Curve Printed at 00282 on 10-31-1996 Page1 Coefficients of Curve 2 A = 435 B = 415 C = 10613 E = 75.46 Equation is CVN = A + B ' l tanh((T - E)/C) ]

Upper Shelf Energy: 85 Fixed Temp. at 30 ft-lbs 39.6 Temp. at 50 ft-lbs 922 lower Shelf Energy 2 Fixed Material R)RGING SA508Cl2 Heat Number. 526840 Orientation TL Capsule V Total Fluence a00 u) 250 4

I a

g am h l em L 150- 1

0) l c l r.za 100 o Z fM b ~

o 50 o j o 1 d

o I

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant MC2 Cap;V Material FORCING SA508Cl2 Ori; TL Heat f. 520M0 Charpy V-Notch Data Temperature input CVN Energy Computed CVN Energy Differential

-50 8 933 -113 0 Ti 1812 M7 25 26 2512 El 25 19 2512 -612 50 42 3172 87/

50 32 33.72 -1.72 82 41 46.05 -505 85 50 4721 2.78

Data continued on next page

C-35

)

CAPSULE V l Page2 Material: FOPSLNG SA508Cl2 Heat Number. 526840 Orientation TL Capsule: V Total Fluence l

Charpy V-Notch Data (Continued) l 4

Temperature input CVN Energy Computed CVN Energy Differential l 100 45 52.92 -7.92 i 125 54 6137 -757 l 150 7/ 68.64 835 l 200 M 77.75 624 200 82 7/.75 424 250 82 8?.01 .01 ,

375 92 84.7 729 '

SUM of RESIDUAIS = 1738 ,

i i

i l

1 l

l l

l l

C-36 CAPSULE X CVGRAPH 41 Hyperbolic Tangent Curve Printed at 0&2&05 on 10-31-1996 i Page1 i Coefficients of Curve 3 A = 39 B = 37 C = 11925 TO = 10L71 Equation is CVN = A + B * [ tanh((T - TO)/C) l Upper Shelf Energy: 76 Fired Temp. at 30 ft-lbs 72.1 Temp. at 50 ft-lbs 1382 Lower Shelf Energy: 2 Fixed Material FORGING SA508Cl2 Heat Number: 526M0 Orientation TL Capsule X Total Fluence 300 cn 250 Q

I '

a '

% 200

>> l bD 4

L 150 0

c m

100 o j e

P 50 u se e

o

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: MC2 Cap; X Materiah FORGING SA500Cl2 Ori; TL Heat f. 526840 Charpy V-Notch Data Temperature input CVN Energy Computed CVN Energy Differential

-50 7 738 .38 0 18 13 77 4E2 25 17 18.01 -1D1 50 20 23B8 -3B8 86 30 3415 -415 100 47 3&46 853 100 43 3&46 453 12 5 44 4613 -213

= Data continued on next page "

C-37 CAPSULE X Page2 Material: FORGING SA508Cl2 Heat Number: 526840 Orientation TL Capsule X Total Fluence Charpy V-Notch Data (Continued)

Temperature input CVN Energy Computed CVN Energy Differential l l

150 43 5321 -1021 150 59 5321 178 175 52 5924 -724 200 58 64D6 -6.06 225 64 67 69 16 3 250 73 7031 2.68 Z?5 72 7236 _

-16 SUM of RFSDUAIS = 721 I

l l

I i

C-38 i CAPSULE U CVGRAPH 41 Hyperbolic Tangent Curve Printed at 082&05 on 10-31-1996 l

Page1 l Coefficients of Curve 4 A = 43 B = 41 C : 114.76 TO = 10283 Equation is CVN : A + B ' [ tanh((T - TO)/C) l Upper Shelf Energy: M Fixed Temp. at 30 ft-lbs 651 Temp. at 50 ft-lbs 1226 lower Shelf Ene;gr. 2 Fixed Materiat MRGING SA508Cl2 Heat Number 526840 Orientation TL J

Capsule U Total Fluence i

300 m 250 D

l l

> \

% 200 4 N 4 bD 1 L 150-e c

ca 100 a Z r

^

o so e

/

a I a

o l l

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: MC2 Cap:U Materiah RRGING SA508Cl2 Ori: TL Heat [ 526840 Charpy V-Notch Data Temperature input CYN Energy Computed CVN Energy Differential

-75 12 553 6.46

-50 6 734 -134

-25 7 97/ -297 20 27 17f6 933 35 18 2124 -324 50 33 2535 7f4 75 23 3324 -1024

Data continued on next page

C-39 CAPSULE U Page2 Material: FORGING SA508Cl2 Heat Number 526M0 Orientation TL Capsule U Total Fluence Charpy V-Notch Data (Continued)

Temperatme Input CVN Energy Computed CVN Energy Differential 75 35 3324 1.75 100 38 4L96 -198 125 52 50B2 Ll?

165 60 6326 -326 200 74 7126 2.73 250 89 78.14 1035 285 79 80.7 -L7 325 84 8?.32 167 SUM of RESIDUAIS = 14B6 l

I e

I i i

i

i c-40

, CAPSULE W ,

t l

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 0&2&05 on 10-31-1996 )

Page1 Coefficients of Curve 5 A = 38 B = 36 C = 117.94 TO = IR96 F4uation is: CVN = A + B * [ tanh((T - TO)/C) }

Upper Shelf Energy: 74 Fired Temp. at 30 ft-lbs 1113 Temp. at 50 ft-lts 1783 Lower Shelf Energy: 2 Fixed Material FORCING SA508Cl2 Heat Number. 526840 Orientation TL Capsule E Total Fluence 300 m 250

,C I

a x em N

em L 150 0

c w

100

> f,.

~.

O ,

o f

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: MC2 Cap.:W Material FORGING SA500Cl2 Ori.: TL Heat f. 526840 Charpy V-Notch Data Temperature input CVN Energy Computed CVN Energy Differential

-75 3 3B9 .89 0 8 832 -22 25 9 1123 -223 50 22 1522 6.77 72 24 19.72 4 21 100 24 26.78 -278

" Data continued on next page =

C-41 CAPSULE W '

Page2 Material: FORGING SA508Cl2 Heat Number: 526840 Orientation: TL Capsule i Total Fluence Charpy V-Notch Data (Continued)

Temperature input CVN Energy Computed CVN Energy Differential 115 28 31M -1(Tl 12 5 36 34D5 L94 150 44 4L65 234 175 40 48S4 -BS4 200 53 5535 -235 250 74 64S2 9 51 300 73 6936 333 350 72 72R -M 400 76 7316 233 SUM of PSDUAIS = 102 1

c-42 i UNIRRADIATED  !

CVGliAPll 41 Hyperbolic Tangent Curve Printed at 075624 on 10-31-1996 Page1 Coefficients of Curve 1 A = 34 2 B = 3358- C = 0622 11) = 20.62 Equation is E : A + B * [ tanh((T - TO)/C) )

Upper Shelf LL 6&l6 Temperature at E 35- 2L6 lower Shelf 2: 1 Fixed Materiah FORGING SA508Cl2 Heat Number: 526840 Orientation TL Capsule UNIRR Total Fluence:

200 en O 150 a

M 100 ce L a

.3 ce A c r A 50 4

0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: MC2 Cap: UNIPR Materiak II)PSING SA508Cl2 Ori TL Heat j: 526840 Charpy V-Notch Data Temperature Input lateral Expansion Computed E Differential

-100 1 45 -35

-100 1 45 -3E  !

-50 12 1192 .07

-25 20 18 3 12

-25 18 1&3 -3 1 0 26 26.7 .7 I 25 39 3628 2.71 25 40 3628 1 71 56 46 47 2 -163 n u On Ded Kge "

l l

C-43 UNIRRADIATED Page2 l

Material FORGING SA500Cl2 Heat Number. 526&t0 Orientation TL Capsule UNIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature input lateral Erpansion Computed LE Differential 56 47 47 2 -33 56 47 47B3 -S3 100 54 587/ -4FI 100 61 58F/ P.02  :

100 55 58F/ -3.97 l 140 64 642 -2 ]

140 71 642 6.79 )

210 67 6734 -34  !

210 67 6734 -34  !

SUM of RESIDUAIS = -4.47 l 1

l l

4 1

I e

l l

i

c-44 l l

CAPSULE V i l

CVGRAPfl 41 Hyperbolic Tangent Curve Printed at 075624 on 10-31-1996 l Page1 Coefficients of Curve 2 A = 36.75 B = 35.75 . C = 109 TO = 80E2 Equation is II = A + B ' [ tanh((T - %)/C) l Upper Shelf LE: 7251 Temperature at II 3& 752 lower Shelf II: 1 Fixed Material: NRCING SA508Cl2 Heat Number. 526840 Orientation TL Capsule: V Total Fluence:

200 u)

= 150 a

M 100 b # 0 Y w a (

o 1 0

o j d \

-300 -200

-100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: MC Cap.: V Material NRCING SA508Cl2 Ori: TL Heat l: 526840 i Charpy V-Notch Data I Temperature Input lateral Expansion Computed II Differential

-50 25 6S6 -4.46 0 215 1426 723 25 20 19.94 D5 25 17 5 19 S 4 -244 50 32 2696 5.03 50 26 26.96 .96 82 32 372 -52 85 365 3819 -1B9

= Data continued on next page

  • C-45 o

CAPSULE V Page2 Material: FORGING SA508Cl2 Heat Number. 526840 Orientation: TL Capsule V Total Fluence Charpy V-Notch Data (Continued)

Temperature input lateral Expansion Computed I.E. Differential 100 41 43D4 -2D4 125 51 5055 .44 l

15 0 59 56B6 213 200 65 6521 -31 200 68 6531 2S8 250 705 69.45 ID4 375 69 7P.19 -319 SUM of PSDUAIS = -1.71 i

I

C-46 CAPSULE X j CVCRAPH 4J Hyperbolic Tangent Curve Printed at 07:5624 on 10-31-1996 Page1 Coefficients of Curve 3 ,

A = MJ B = 33J C = 13626 TO = 12626 Equation is: 12 = A + B

  • l tanh((T - TO)/C) ]

Upper Shelf 12: 6721 Temperatura at II 35 129.9 lower Shelf LE: 1 Fixed Materiat WRGING SA5052 Heat Number: 526M0 Orientation TL l Capsule: X Total Fluence 200 en 7 150

$ l a

M M 100 ec  :

A a> ~

T a 50 e [

o ,o o

d I

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: MC2 Cap X Material mRGING SA50BCl2 Ori: TL Heat f 526840 Charpy V-Notch Data Temperature input lateral Expansion Computed LE Differential

-50 3 5E3 -2E3 0 12 997 p_02 25 8 1321 -521 50 14 1729 -329 86 28 2459 3.4 100 28 27B J9 100 35 27B 7J9 14 36 3179 ,

22

" Data continued on next page "

C-47 l

CAPSULE X l Page2 Material: FORGING SA508Cl2 Heat Number. 'Eo40 Orientation TL Capsule X Total Fluence Charpy V-Notch Data (Continued)

Temperature Input lateral Expansion Computed LE, Differential 150 31 39B1 -831 ,

l 150 47 3931 718 175 37 45.46 -&46 200 48 50.45 -245 225 60 54E2 537 250 59 57.95 LO4 275 60 60.5 -5 SUM of RESIDUAIS = -276 l

i i

e t

C-48 CAPSULE U CVGRAPH 4J Hyperbolic Tangent Curve Printed at 07:5fr24 on 10-31-1990 Page1 Coefficients of Curve 4 A = 31.92 B = 30.92 C = 10916 TO = 107B1 F4 uation is E : A + B ' l tanh((T - TO)/C) ]

Upper Shelf LF; 6225 Temperature at E 3rx 118.6 lower Shelf M: 1 Fixed Material FORGING SA508Cl2 Heat Number. 526840 Orientation TL Capsule U Total Fluence 20o m

O' 150 n

M N 100 e  !

L

^

h a 50 s/

e

,= .

A 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set Plant: MC Cap.: U Material IMGIN(s) G SA508Cl2 Plotted Ori: TL Heat f. 526840 Charpy V-Notch Data Temperature input lateral Expansion Computed E Differential

-75 11 3D9 7.9

-50 2 425 -225

-25 3 5.99 -P_99 20 18 1121 6S8 35 10 13B9 -339 l 50 22 16.T 5.07 75 . 14 2?.9 -89 j

= Data continued on next page -

j

C-49 CAPSULE U Page2 j Material FORGING SA50BCl2 Ileat Number. 526840 Orientation TL Capsule U Total Fluence Charpy V-Notch Data (Continued) l i

Temperature input lateral Expansion Computed LE Differential 7a 20 22.9 -P_9 100 31 29.71 128 125 42 36.75 524 165 47 46.79 2 200 53 5321 -21 250 57 58S -16 i 285 60 6054 -54 1 325 63 61.72 127 SUM of RESIDUAIS = 45 i

1 i

, 1 i

l l

l

C-50 CAPSULE W CVGRAPH 4J Ifyperbolic Tangent Curve Printed at 07:56:24 on 14-31-1996 Page1

)

Coefficients of Curve 5  !

A = 29.45 B = 2&45 C = 9936 10 = 14326 )

F4 uation is E = A + B ' [ tanh((T - TO)/C) }

Upper Shelf 11 57.91 Temperature at E 35 16?.9 Lower Shelf 111 Fixed Materiah FORGING SA508Cl2 Heat Number: 526M0 Orientation TL 1

Capsule: W Total Fluence: I l

20o l

m

.O 150 I a

X 100 co .

L i c) 1 x

,-a 50 w . , 1

/

v i

i U

=!l j

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted  !

Plant: MC2 Cap: W Materiah FORGING SA500Cl2 Ori; TL Heat l: 526840 l

Charpy V-Notch Data l Temperature input lateral Expansion Computed E Differential l

-Ta 0 171 -L71 0 1 4Fa -3.05 25 2 537 -3Fi 50 13 a61 438 72 14 12.01 1.98 100 18 1784 .15 i

  • Data continued on next page
  • a

C-51 CAPSULE W Page2 Material FDP.GING SA500Cl2 IIeat Number: 526840 Orientation TL Capsule: W Total lluenm Charpy V-Notch Data (Continued)

Temperature loput lateral Expansion Computed 12 Differential 115 22 21E1 38 125 25 2431 .68 150 32 3137 E2 175 32 382 -62 200 45 44DB S1 250 58 51S1 608 300 54 5555 -1.55 350 57 57D2 .02 400 56 57.58 -L5B SUM of PISIDUAIS :-P.78 4

. C-52 UNIRRADIATED CVGRAPH 41 Hyperbolic Tangent Curve Printed at 0&5123 on 10-31-1996 Page1 Coefficients of Curve 1 A = 50 B = 50 C = 7134 TO = 37.49 F4uation is Shearx = A + B

  • l tanh((T - TO)/C) l Temperature at 50x Shear. 37.4 Material IDRGING SA508Cl2 Heat Number. 52fB40 Orientation TL Capsule UNIRR Total Fluence 100 - -

El .

A y 80 l c

g 4

.c W

co i a a l c '

0 o O

L 40 0

% e i

20 0

J 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: MC? Cap.: UNIkR MaterialIVRGING SA508Cl2 Ori: TL IIcat f: 526840 Charpy V-Notch Data Temperature input Percent Shear Computed Perrent Shear Differential

-100 2 2.05 .05

-100 2 P_05 -D5

-50 15 7B7 712

-25 15 14.71 28

-25 15 14.71 2B 0 30 2534 435 25 45 413 369 25 45 413 3.69 56 54 6 ?_71 -a71

  • Data continued on next page =

C-53 UNIRRADIATED Page2 Material: PDPSING SA50802 Heat Numben 526840 Orientation: TL Capsule UNIRR Total Fluence Charpy V-Notch Data (Continued) '

Temperature Input Percent Shear Computed Pemnt Shear Differenti>'

56 54 6 2.71 -8 ?. -

56 54 62.71 -E71 100 90 8528 4.71 -

100 92 8528 6.71 100 94 8528 & 71 140 100 94E9 53 140 100 94E9 53 210 100 9922 .77 210 100 9922 .77 .

SUM of PISIDUAIS : 2529 l

I

.f

C-54 CAPSULE V l

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 085123 on 10-31-19%

Page1 Coefficients of Curve 2 l A = 50 B = 50 C = 70.75 TO = 10957 Equation is Shear /. : A + B

  • I tanh((T - TO)/C) ]

Temperature at 50x Shear 109.5 Material WRGING SA508Cl2 Heat Number. 526840 Orientation TL Capsule V Total Fluence

~

100 i

[

m u

u CC  ;

o m

5

  • l m

O /

O  ;

40 c

4 O

a>

o o

u O

. -300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: MQ Cap.V Materiah NRCING SA508Cl2 Ori: TL Heat f. 526&l0 Charpy V-Notch Data Temperatme input Percent Shear Computed Percent Shear Differential

-50 2 1DB S1 0 10 432 SS7 25 15 838 6El 25 9 &38 El 50 23 15S5 7M 50 17 15SS 134 82 28 31.44 -144 85 30 313 -33

- Data continued on next page "

c 55 i

CAPSULE V Page 2

Material IURGING SA508Cl2 Heat Number. 526840 Orientation TL Capsule V Total Fluence Charpy V-Notch Data (Continued)

Temperature input Percent Shear Computed Percent Shear Differential 100 39 4327 -4 21 125 57 60.73 -173 150 79 75 2 3J7 l 200 100 E79 72 200 100 E79 72 250 100 9BJ4 1E 37a 100 99.94 2 SUM of RESIDUAIS = 2722 l

J

C 1 CAPSULE X l l

CVGRAPil 41 Hyperidic Tangent Curve Printed at 0&51:23 on 10-31-1996 j Page1 l Coefficients of Curve 3 A : 50 B = 50 C = 9821  % = 15029 Fquation is Shearx : A + B ' I tanh((T - E)/C) ]

Temperature at 50x Shear: 1502 Material FORGING SA508Cl2 Heat Numben 526840 Orientation TL Capsule X Total Fluence 100 --

g a

  • C3 /

e ,

A cn ,

a +

c e

e 9

M 40 v

e o 6 1 20

) i I

e es v

0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F ,

Data Set (s) Plotted I Plant: ML2 Cap;X Materiat R)RGING SA508Cl2 Ori: T!, Heat [r. 526840 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-50 2 137 22 0 10 4.48 551 25 10 725 274 50 15 11 5 3.49 8G 20 2128 -128 100 30 26.44 355 100 35 26.44 855 125 35 37.41 -241

" Data continued on next page =

l

C-57 CAPSULE X l Page2 Material: FORGING SA50BCL2 Ileat Number. 526840 Orientation: TL

\ Capsule X Total Fluence I

.Charpy V-Notch Data (Continued) l Temp.rature input Percent Shear Computed Percent Shear Differential 150 40 49 5 -95 150 55 49M 534 17 5 50 623 -12 3 200 60 7332 -13.32 225 100 82.05 17.94 260 100 8837 1l62 275 100 92M 7.33 a

SUM of RESIDUAIS = ' H7 l

l l

5 i

I

l C-58 i ,

CAPSULE U

]

CVGRAPH 4J Hyperbolic Tangent Curre Printed at 085123 on 10-31-1996 Page1 Coefficients of Cun'e 4 A = 50 B = 50 C = 8557 TO = 13102 Equation is Shearx = A + B ' I tanh((T - TO)/C) ]

Temperature at 50x Shear: 135 Material FURGING SA508Cl2 Heat Number. 526840 Orientation TL Capsule U Total Fluence 100 -

4%

a m (0

e ,

A  :

cn t 60

]

a e

O 40 A

,/ i 20 A

4A

- l 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Pio.ied Plant: MC2 Cap:U Materiah FORGING SA500Cl2 Ori: TL Heat f: 526840 Charpy V-Notch Data Temperatmr input Percent Shear Computed Percent Shear Differential

-75 10 .73 926

-50 5 L3 3S9

-25 5 232 2S7 20 15 636 8S3 b 10 8S 139 50 20 I? 05 7.94 75 15 19.73 -4.73

" Data continued on next page "

C-59 CAPSULE U Page2 Materiah FORGING SA508CL2 Ileat Number: 526840 Orientation TL Capsule U Total Fluence Charpy V-Notch Data (Continued)

Temperature input Percent Shear Computed Percent Shear Differential 75 20 19.73 26 100 25 30.6 -5.6 125 45 4436 B3 165 60 66B2 -6B2 200 90 82D3 7.96 250 100 93B2 637 285 100 WDB 291 325 100 98B3 IJ6 SUM of REIDUAIS = 357/

C-60 CAPSULE W CVGRAPH 43 Hyperbolic Tangent Curve Printal at 0&5123 on 10-31-1996 Page1 Coefficients of Curve 5 A = 50 B = 50 C = 76.95 TO = 16534 Equation is Shear /. : A + B ' I tanh((T - TO)/C) J Temperature at 50x Shear,1653

Material FORGING SA50BCl2 lleat Number
526M0 Orientation TL Capsule Y Total Fluence 100 ~

r a ao e

e

.c L cn I ao d v. '

o O

g 40 a v 20 /

/v vvv 5F v o *

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F i Ibta Set  ;

Plant: MC2 Cap; W Material F0P4Ih(s)

G SA508Cl2 Plotted Ori: TL Heat f. 526M0  !

Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-75 0 19 -19 0 5 134 165 25 5 255 244 50 10 4.77 522 72 10 &l6 IB3 100 10 1553 -553

" Data continued on next page = l

i C-61 l 1

CAPSULE W l Page2 l Material F0PSING SA508C12 Heat Number. 526840 Orientation

  • TL l

Capsule W Total Fluence Charpy V-Notch Data (Continued) j Temperature Input Per nt Shear Computed Percent Shear Differential )

115 15 21 2 -62 125 30 26.05 3S4 150 50 4028 9.71 '

17 5 50 56 2 -63 200 65 7121 -621 y 250 100 90.07 992 300 100 WDB 2S1 350 100 9918 B1 22 I 400 100 99.77 SUM of PISIDUAIS = 16.02

}

l 1

C-62 1

UNIRRADIATED l l

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 021453 on 10-31-1996 Page1 Coefficients of Curve 1

]

A = 675 B = 65.5 C = 82 TO = .46 Equation is CVN = A + B ' l tanh((T - 1V)/C) ]

Upper Shelf Energy: 133 Fixed Temp. at 30 ft-lbs -518 Temp. at 50 ft-lbs -22.9 lower Shelf Energy: 2 Fixed Material WELD Heat Number. 895075 Orientation-Capsule UNIRR Total Fluence 300 cn 250 p

I x am X

un L 150 a o a> -

a r -

N 100 o

/

0 J So j

0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: M(2 Cap.: UNIRR Material: WELD Ori.: Heat b 895(T/5 Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential j

-150

-150 1 532 -432 )

1 532 -432

-75 20 203 -3 l

-75 16 5 203 -33 I

-35 34 4L44 -7,44

-35 52 4L44 1055

-16 595 5524 425

-16 50 5524 -524

-16 57 5524 L7a j

        • Data continued on next page =

C-63 UNIRRADIATED Page2 Materiah WELD lieat Number: 8%(T/5 Orientation-

, Capsule UNIRR Total fluence Charpy V-Notch Data (Continued) l Temperature input CYN Energy Computed CVN Energy Differential 25 93 8721 5.78 25 83.5 8721 - 1 71  !

71 112 113.48 -L48 71 110 113.48 -3.48 125 125  !?ll3 -233 12 5 124 12713 - 3.13 210 140 13223 7.%

'210 132.5 13223 26 275 1445 132M 11f>5 SUM of RESIDUAIS = 265 -

i i

l l

l l

1 l

l l

l l

C-64 CAPSULE V CVCRAPil 4J liyperbolic Tangent Curve Printed at 091453 on 10-31-1996 Page1 Coefficients of Curve 2 l A = 70 B = 68 C = 106f9 TO = 5625 F4uation is: CVN = A + B ' I tanh((T - TO)/C) ]

Upper Shelf Energy:138 Fixed Temp. at 30 ft-lbs: -15 3 Temp. at 50 ft-lbs- 24 lower Shelf Energy 2 Fixed Material WELD Ileat Number. 895075 Orientation- i i

Capsule V Total Fluence a00 m 250 Q

I  :

a '

x am N

bD L 150 oo o ,

,s d

100 o r

[

b O w s/o 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted l Plant: MC2 Cap:V Material: WELD Ori.: lleat b 895(Tl5 j Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential

-100 8 8.79 .79 ,

-50 9 1&l6 -9J6 1

-10 30 3231 -231 I

-10 40 3231 7E8 0 42 36.98 5DI 25 55 5053 4.46  :

25 39 5053 -1153 i' 50 63 65.99 -2.99

" Data continued on next page =  !

C-65 CAPSULE V Page2 Material WELD lleat Number. 895075 Orientation' Ca[sule V Total Fluence Charpy V-Notch Data (Continued)

Temperature input CVN Energy Computed CVN Energy Differential  ;

82 96 8618 931 150 112 11816 - 6.16 )

200 12 5 12951 -4 51 300 139 136.63 236 350 142 1 5.46 453 35 145 137fi6 733 SUM of RESIDUAIS = 173 i

l 1

C-66 CAPSULE X CVGRAPil 4.1 Ilyperbolic Tangent Curve Printed at 09J453 on 10-31-1996 Page1 Coefficients of Curve 3 A = 675 B = 655 C = 87D3 TO = 38.73 F4uation is CVN = A + B * [ tanh((T - TO)/C) ]

Upper Shelf Energy: 133 Fixed Temp. at 30 ft-lbs -17S Temp. at 50 ft-lbs: 14 S Iser Shelf Energy 2 Fixed Materiah WELD Heat Number. 895W5 Orientation:

Capsule X Total Fluence:

300 ca 250 Q

~

l ,

4 1 N 200 h

bD .

L V 150 . go OA 100 Z .

O e ,

% s /

o

+

0 l

-300 -200 -100 0 100 200 300 400 500 600  !

Temperature in Degrees F l' Data Set (s) Plotted Plant: M(2 Cap; X Materiah WELD Ori: Heat f: 895W5 l l

Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential

-25 18 26.59 -859

-25 38 2659 IL4 0 57 4012 16 5 0 28 4012 -1232 2b 52 5724 -524 50 7/ 75S2 1M 50 71 7aS2 -4S2 84 109 96.79 10 2

= Data continued on next page "

C-67 CAPSULE X Page2 Material TELD Heat Number. 895075 Orientation-Capsule X Total Fluenm Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 100 103 10724 -424 100 104 10724 -324 15 0 122 12357 -157 175 114 1551 -1351 17 5 139 1351 1148 200 142 129B5 IPJ4 35 147 13142 1457 SUM of PISIDUAIS : 2426 r

4 l

C-68 CAPSULE U  ;

CVGRAMi 43 Hyperbolic Tangent Curve Printed at 09J453 on 10-31-1996 Page1 Coefficients of Curve 4 A = 655 B = 635 C = 10254 1V = 34B8 Equation is CVN = A + B

  • l tanh((T - TO)/C) ]

Upper Shelf Energy: 129 Fixed Temp. at 30 ft-lbs -30 Temp. at 50 ft-lbs 93 leer Shelf Energy: 2 Fixed Material: NELD Heat Number: 895075 Orientation-Capsule U Total Fluence 300 m 250 Q

1 I a 1 x am X

e L 150 4 u a>

c ^

ce 100 ,

[

0 So t a

a o

-300 -200 -100 0 100 200 300 400 500 600

, Temperature in Degrees F Data Set (s) Plotted Plant: MC2 Cap; U Material NELD Ori; Heatb895075 Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential

-100 8 1056 -256

-3 10 1537 -5.37

-50 28 22.43 556  ;

-40 27 25.99 1

-25 36 3221 178 i 0 40 44B -4B l 5 48 4731 38

    • Data continued on next page ** i i

C-69 CAPSULE U Page2 Material WELD Heat Number: 89007a Orientation:

Capsule U Total Fluence Charpy V-Notch Data (Continued)

Temperature input CVN Energy Computed CVN Energy Differential 25 60 5951 .48 75 89 8925 -25 110 105 10523 -23 150 120 116B8 3.11 175 116 1212/ -57/

215 118 1252 -72 250 141 I??J2 1337 300 141 12828 12.71 SUM of REDUAIS : 15D9 i

1 l

j

C-70 1

CAPSULE W i

CVCRAPH 4.1 Hyperbolic Tangent Curve Printed at 091453 on 1&31-1996 )

l Page1 Coefficients of Curve 5 A = 65 B = 63 C = 122.4 1V = 6656 l 1

Equation is CVN = A + B ' [ tanh((T - 1V)/C) ] j Upper Shelf Energy:128 Fired Temp. at 30 ft-lbs: -101 Temp. at 50 ft-lbs 36B lower Shelf Energy: 2 Fixed I Materiah WELD Heat Number. 895075 Orientation-Capsule W Total Fluence: 1 a00 rn 250 D

I a

x em h

bD L 150 v a> ,, ,

d w y; e ,

Z 4

b

,, /

/,

o

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: MC2 Cap W Materiah WELD Ori: Heat l: 895M5 Charpy V-Notch Data Temperature input CVN Energy Computed CVN Energy Differential

-95 3 1029 -729

- 70 9 1324 -434

-50 22 1&32 367

-25 32 25.05 6.94 0 36 33.76 2.23 15 30 39.92 -9.92

" Data continued on next page "

C-71 CAPSULE W Page2 Material TELD Heat Number. 895075 Orientation-Capsule i Total Fluence:

Charpy V-Notch Data (Continued)

Temperatum Input CVN Energy Computed CVN Energy Differential 25 54 4439 93 50 60 5&52 3.47 i 85 69 74.41 -5.41  :

125 84 9?.98 -&98 165 11 4 10 & 98 7D1 1 200 100 115 2 -92 '

250 140 122 1799 300 134 12528 & 71 400 132 17/.46 453 SUM of RESIDUAIS = 1&92

C-72 UNIRRADIATED

]

CVCRAPH 43 Hyperbolic Tangent Curve Printed at 102206 on 10-31-1996 Page1 Coefficients of Curve 1 A = 4826 B = 4726 C = 81J6  % = -75 Fquation is LE = A + B ' [ tanh((T - E)/C) ]

Upper Shelf LE: 9552 Temperature at LE 35 -30.9 lower Shelf LE: 1 Fired Materiah WELD Heat Number. 895075 Orientation-Capsule UNIP2 Total Fluence ax>

m

.% 150 a

x N 100 , o Cd 5>

e i a

50 O

o s

0 -

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F  !

Data Set (s) Plotted Plant: MQ Cap UNIRR Materiah WELD Ori Heat f. 895W5 Charpy V-Notch Data Temperature input lateral Expansion Computed LE Differential l

-150 0 174 - 174

-150 0 174 -174

-75 15 5 IE06 -36

-75 95 16.06 -E56

-35 31 32.83 -1B3

-35 40 3?83 736

-16 47 4333 3.66

-16 40 4133 -333

-16' 46 4333 2.66

" Data continued on next page =

C-73 UNIRRADIATED Page2 Mafnial WELD lleat Number. 895075 Orientation-Capsule UNIRR Total Fluence 1 Charpy V-Notch Data (Continued)

Temperature Input Lateral Erpansion Computed 12 Differential l 25 67 6623 .76 1 25 64 6623 -P.23 71 82 8359 -159 i 71 80 8359 -359 i 125 91 92D4 -104 125 92 92D4 -D4 210 96 95.06 .91 210 965 95.06 L41 275 96 95.43 256 SUM of RESIDUAIS :-9J3 1

1 l

l l

C-74 I

CAPSULE V i l

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 10:2206 on 10-31-1996 I Page1 Coefficients of Cune 2 A = 4537 B = 4437 C = 94.73 TO = 36J8 Equation is: E = A + B ' [ tanh((T - TO)/C) J Upper Shelf LE: 89.74 Temperature at E 3fx 13.6 lower Shelf LE: 1 Fired Material WELD Heat Number. 895(T/5 Orientation-Capsule: V Total Fluence:

i 20o l l

l 1

en O 150 1 6  !

l M

M 100 o ec r o" L

h A 50' o

Y l o

l J '

O 1

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F l Data Set (s) Plotted Plant: MC2 Cap:V Material: WELD Ori: Heat f 8950Ta Charpy V-Notch Data Temperatum Input lateral Expansion Computed E Differential

-100 75 5.73 L76

-50 95 1338 -338

-10 29 253 329

-10 315 253 639 0 2&5 292 .7 25 445 4015 434 25 32 40J5 -8J5 50 4&5 51.79 -529

- Data continued on next page =

C-75 CAPSULE V Page2 .

Material Wild lleat Number. 895075 Orientatiorr Capsule V Total Fluence Charpy V-Notch Data (Continued)

Temperature loput lateral Erpansion Computed LE Differential 82 685 653 319 150 875 (E38 511 200 84 87D3 -3.03 l 300 945 89.4 5.09 i 350 845 8932 - 5.12 T/5 89 8937 -E7 I SUM of PISIDUAIS = 253 J

C-76 CAPSULE X l'

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 10:3:M0 on 10-31-1996 Page1 Coefficients of Curve 3 l A = 4415 B = 4115 C = 8951 TO = 2953 Fquation is: E = A + B

  • 1 tanh((T - TO)/C) ]

Upper Shelf 2: 873 Temperature at E 35- 102 lower Shelf II: 1 Fired Material WEID Heat Number: 895075 Orientation-Capsule: X Total Fluence 200 .

1 1

en

.O 150 l 6 l a

>i N 100

- es -

~

8 2 e.

c) o a

cc A 50 e

f o

s o ,

-300 -200 -100 0 100 200 300 400 500 600 ,

l Temperature in Degrees F  !

Data Set (s) Plotted I Plant: MC2 Cap X Material FEIS Ori: Heat f: 895075 l Charpy V-Notch Data j Temperature Input lateral Expansion Computed E Differential l

-25 13 2039 -7S9

-25 20 20.69 -f9 1 0 42 30.4 1159 0 32 30.4 159 l 25 3c 4tso _53s 50 56 5334 P15 50 51 53M -2M 61 73 6758 5.41

" Data continued on next page "

C-77 CAPSULE X Page2 Material TELD IIcat Number: 895075 Orientation-Capsule: X Total Fluence Charpy V-Notch Data (Continued)

Temperatum Input lateral Erpansion Computed 11 Differential 100 72 72.49 .49 100 65 7249 -7.49

, 150 88 81B2 637 I 1 70 n Mm em 17a 89 84m 4S2 200 84 85.42 -1.42 27a 87 86S4 .05 SUM of P2SIDUAIS = -B i

1

C-78 CAPSULE U CVCRAPH 41 Hyperbolic Tangent Curve Printed at 10:3340 on 10-31-1996 Page1 Coefficients of Curve 4 A 4416 B = 4310 C = 11173 TO : 29.05 L luation is: E : A + B ' I tanh((T - 11))/C) ]

Upper Shelf LE: 8733 Temperature at E 35- 4.7 Imer Shelf II: 1 Fixed Material WELD Heat Numb r. 895075 Orientation-Capsule: U Total fluence:

200 Cn

.O 150 b

a N 100 A

% A *< .

4 Q) f w

Q Q

g . /

f U

e- -300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: MC2 Cap;U Materiah YELD Ori: Heat f. 895(T/5 Charpy V-Notch Data Temperature input Lateral Expansion Computed E Differential

-100 5 8.94 -3.94

-75 12 1177 .77

-G) 22 18.0 4 3.95

-40 20 20.6 -S

-25 26 24.92 1#7 0 31 3328 -228 5' 37 35.09 L9

  • Data continued on next page "

C-79 i

CAPSULE U Page2 ,

l Material: Wild Heat Numben 895075 Orientation-  !

Capsule U Total Fluence Charpy V-Notch Data (Continued)

Temperature input lateral Expansion Computal II Differential 25 45 4261 238 75 58 6031 -234 110 67 70.74 - 174 15 0 84 7829 5.7 17 5 82 8131 E8 215 82 8426 -226 250 90 85E5 434 300 83 86S4 -3.64 SUM of FISIDUAIS : -D3

)

I l

I l

l l

C-80 CAPSULE W CVGRAPH 4J Hyperbolic Tangent Curve Printed at 102236 on 10-31-1996 l

Page1 Coefficients of Curve 5 A : 44S1 B = 43S1 C = 1195 11) = 60.9

. Equation is 11 : A + B * [ tanh((T - TO)/C) ]

Upper Shelf II: 8822 Temperature at il 35- 341 Iser Shelf LE: 1 Fixed Material WELD Heat Numben 895W5 Orientation-Capule W Total Fluence 200 en ,

O 150 l a

M N 100 3 - p-U a

C6 /

a 5o v

s o "

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: MC2 Cap F Material TELD Ori: Heat f. 895075 Charpy V-Notch Data Temperature input lateral Expansion Computed 12 Differential

-95 0 6S7 -697

-75 3 933 -613

-50 15 12.78 2 21

-25 21 17.73 326 0 22 24J2 -212 i

15 26 28S3 -P.83

" Data continued on next page -

C-81 CAPSULE W

, Page2 l Material: WDD lleat Number. 895075 Orientation:

Capsule W Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LE. Differential ,

25 39 3138 7.11  !

50 43 40E4 21 6 l 85 50 5320 -328' 125 65 65.98 .98 165 71 7521 -421 200 84 80.47 352 l 250 88 84EB 3 31 300 85 8&65 -1E5 400 88 UK M .

SUM of PEIDUAIS = -6.15 j l

4 i

n l

1 e

C-82 l

UNIRRADIATED l l

CVCRAPH 41 Hyperbolic Tangent Curve Printed at 104&40 on 10-31-1996 Page1 Coefficients of Curve 1 A = 50 B = 50 C = 9438 TO = -35.43 F4uation is Shearx : A + B

  • i tanh((T - 1D)/C) ]

Temperature at 50:< Shear. -35.4  ;

Materiah WELD Heat Number. 895075 Orientation-Capsule: UNIRR Total Fluence:

100 y -

~

u ao g n ,

c) l A a, i Cn gn i

a a c

e O

g 40 20 i i

o -

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: MC2 Cap: UNIRR Materiah YELD Ori Heat [ 89505 Charpy V-Notch Data Temperature input Percent Shear Computed Percent Shear Differential

-150 0 81 -al

-15 0 0 8J -8j

-75 30 3018 .18

-3 29 30J8 -138

-35 46 . 5022 -422

-35 54 5022 3.7/

-16 65 6035 434

-16 65 6035 434

-16 65 6015 4M

" Data continued on next page =

C-83 UNIRRADIATED Page2 Material WFID lleat Numben 895075 Orientation- )

Capsule UNIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature input Pertent Shear Computed Percent Shear Differential 25 81 7825 2.74 25 77 7825 -125 71 75 9031 -15.51 71 79 90.51 -1151 1 125 90 96.76 123 i 125 99 96.76 223 i 210 100 99.45 54 l

210 99 99.45 .45 275 100 99.86 13 SUM of RESIDUAIS :-2532 l

C-84 CAPSULE V CVCRAPH 4.1 Hyperbolic Tangent Curve Printed at 104&40 on 10-31-1996 Page1 Coefficients of Curve 2 A = 50 B = 50 C = 79B8 1D = 15 Equation is Shearz = A + B ' [ tanh((T - TO)/C) ]

Temperature at 50x Shear. 15 Materiah NELD Heat Numter: 895W5 Orientation-  ;

Capsule V Total Fluence 100 O r

/e

/ i

- so d- ,

e s

,C i cn n  ;

so .

a C; <

e i O g 40~- 5 a> l o

_J 0 '

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F DataSet Plant: MQ Cap;Y Materiah(s) WELD Plotted Ori.: Heat f: 895@5 i

Charpy V-Notch Data l Temperature input Pertent Shear Computed Percent Shear Differential  ;

-100 7 531 168

'j -50 17 1&41 .58

-10 37 3434 P.15

-10 33 3434 -134 0 38 4 0.71 -2.71 25 61 5622 ( 77 25 56 5622 -22 50 64 70B -6B l

" Data continued on next page

  • I

1 C-85 CAPSULE V Page 2 Material WELD Heat Numben 895075 Orientation- )

Capsule V Total Fluence l Charpy V-Notch Data (Continued)

Temperature input Percent Shear Computed Percent Shear Differential 82 89 R25 4.74 150 !Tl 96.7 29 200 100 99D3 .96 l' 300 100 99.92 M 350 100 9951 2 375 100 99.98 .01 SUM of RESIDUAIS : 3.91 l

1 1

l

C-86 CAPSULE X CVGRAPH 4J Hyperbolic Tangent Curve Printed at 1&4&40 on 10-31-12 Page1 Coefficients of Cun'e 3 A = 50 B = 50 C = 67.7 TO = 1999 F4uation is: ShearA = A + B ' [ tanh((T - TO)/C) ]

4 Temperature at 50x Shear: 19.9 Materiah WELD Heat Number: 895075 Orientation- )

Capsule: X Total Fluence:

^

'J 100 o

c 0

C W

so a

C o>

0 O

b **

c- (

eo s

l 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F hta Set (s) Plotted Plant: MC2 Calv X Matcriah WELD Ori.: Heat f. 895075 Charpy V-Notch Data Temperature input Percent Shear Computed Percent Shear Differential

-25 15 20.93 -5.93

-25 25 20S3 4D6 0 50 35S5 1434 0 25 35E5 -10 S5 25 50 53S9 -169 50 75 7031 4J8 50 70 7031 -31 84 90 8E88 1 11 l

-- not. .ouooa oo mi m. -

l I

1

C-87 CAPSULE X Page2 Material: WELD Ileat Number. 895075 Orientation-Capsule X Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 100 90 9L4 -14 .

100 85 9L4 -6.4 15 0 100 !TIB9 P.1 I 17 5 100 9E98 101  !

17 5 100 9&98 101 3)0 100 9951 .48 7/5 100 99.94 B5 SUM of PlSIDUAIS = L49 l

l I

I i

e-- - .--- ---.- - - - - - - - - - -

C-88 CAPSULE U CVGPRH 41 Hyperbolic Tangent Curve Printed at 104&40 on 10-31-1996 Page1 Coefficients of Curve 4 J

A = 50 B = 50 C = 9413 1B = -29D6  !

l Equation is Shearx = A + B ' l tanh((T - TO)/C) l I Temperature at 50x Shear. -29 Materiah WE Heat Number. 895075 Orientation-Capsule U Total Fluence a

^

k OU cd c)

A ^J Cf3 J

d G) a O

a

^

ar r u

o 7 1

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: MC2 Cap:U Materiah NELD Ori: Heatb895075 I

Charpy V-Notch Data Temperature input Penent Shear Computed Pen:ent Shear Differential I

-100 10 1&l3 -a13

-75 20 27 2 -736

-50 45 39D5 5.94

-40 45 4421 .78

-25 60 5235 734 0 m gg m 5 70 6731 22

" Data continued on next page *  ;

4 I

C-89 CAPSULE U Page2 Material: WDD lleat Number. 895075 Orientation-Capsule: U Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 25 75 75.92 .92 75 80 90.12 -1012 11 0 90 E04 -5.04 150 95 F/B2 -232 175 100 9&7 129 215 100 99.44 55 250 100 99.73 26 300 100 99.9 D9 SUM of REIDUAIS =-14.95 i

C-90 CAPSULE W i 1

CVGRAPH 4J liyperbolic Tangent Curve Printed at 104640 on 10-31-1996 Page1 Coefficients of Curve 5 -

A = 50 B=50 C = 9624 TO = 4828 Equation is Shearx = A + B ' I tanh((T - TO)/C) l Temperature at 50x Shear: 482 Material WELD Heat Number: 895075 Orientation:

Capsule: W Total Fluence:

100 g v

u ce ('

a>

.c w . -

a c

0 "

b a cL 20 - -

/

v v

s 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: MC2 Cap:W Material TELD Ori Heat f. 895075 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-95 5 4M J5

-75 10 7J6 P_83

-50 15 - 11.4 8 351

-25 20 17.9 209 0 20 26B2 -6B2 15 20 3336

, -1336

"** Data continued on next page =

a C-91 CAPSULE W Page2 Materiah illD Heat Number. 895075 Orientation-Capsule N Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Pement Shear Computed Penent Shear Differential 25 45 38.13 6M 50 60 50.89 "t 85 70 682 Ll9 125 80 8112 - 3.12 165 85 91E7 -6.87 200 100 95.9 4M 250 100 98.51 L48 300 100 99.46 53 400 100 99.93 E SUM of RESIDUAIS = 236 i

l l

1 i

l

C-92 UNIRRADIATED i

CVCPdPH 43 Hyperbolic Tangent Curve Printed at it4256 on 14-31-1996 Page1 Coefficients of Curve 1 A = 53 B = 51 C = 10157 TO = -4359 Equation is CVN = A + B ' I tanh((T - 1D)/C) ] 4 Upper Shelf Energy 141 Fixed Temp. at 30 ft-lbs -93 Temp. at 50 ft-lbs -495 lower Shelf Energy: 2 Fixed Material: HEAT AFFD ZONE Heat Number. Orientation:

Capsule UNIRR Total Fluence 3m m 2w

.c I

a x em A

t:o L 150 CJ N 8 N o _

g*

a a [

o

/

/

O

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: MC2 Cap; UNIRR Materiah HEAT AFFD ZONE Ori; Heatf.

Charpy V-Notch Data Temperature input CVN Energy Computed CVN Energy Differential

-15 0 3 1323 -1023

-12 5 35 1936 -15.66

-12 5 65 1936 -12.66

-100 29 2733 1.66

-75 31 37.75 -3.75

-75 73 37.75 3524

-50 43 49.79 -6.79

-16 78 6&48 1151

-16 66 6&48 .48

= Data continued on next page "

i C-93 UNIRRADIATED 2 Page2 Material HEAT AFFD ZONE Heat Number. Orientation-Capsule UNIRR Total Fluence Charpy V-Notch Data (Continued)  !

Temperature input CVN Energy Computed CVN Energy Differential l

-16 67 66.48 51  !

32 67 85.14 -1814 1 32 82 85.14 - 114 100 81 9&25 -1725  ;

100 107 9825 &74 15 0 101 101.76 .76 210 116 1013 . 1239 210 121 1033 17 S 9 i 250 99 10368 -4E8 l

SUM of RESIDUALS = -552 l

l 4

I i

1 l

C-94 CAPSULE V CVGRAPH 43 Hyperbolic Tangent Curve Printed at 114266 on 10-31-1996 Page1 Coefficients of Cune 2 A = 50 B = 48 C = 115.68 TO = 656 Equation is CVN = A + B

  • I tanh((T - 1D)/C) i Upper Shelf Energy: 98 Fired Temp. at 30 ft-lbs -44.7 Temp. at 50 ft-lls 65 lower Shelf Energy: 2 Fixed Material HEAT AFFD ZONE Heat Number. Orientation-Capsule V Total Fluence 300 m 2so

,C 1

g 200 h

t:w w 150 D

C o N o 100 -

o

> 0 O O

so -

o O 3

o

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: MC2 Cap;V Material HEAT AFFD 20hI Ori: Heatf.

Charpy V-Notch Data Temperature Input CVN Energy Computed CYN Energy Differential

-100 4 1533 -1t13

-75 32 20B3 1t16

-50 31 2823 276

-50 30 2823 L76

-25 40 3721 278

-25 38 3721 .78 0 35 4728 -1228 0 35 4728 -1228

" Data continued on next page "

C-95 CAPSULE V Page2 Material HEAT AITD ZONE Heat Number. Orientation-Capsule V Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input OH Energy Computed CVN Energy Differential 25 70 5758 12.41 25 59 5758 141 82 85 775 7.49 160 72 91B8 -1938 200 106 94.72 1127 300 E W.4 -5.4 375 121 WB3 23.16 SUM of RFSIDUALS :1422 i

C-96 CAPSULE X l l

CVGRAPH 4J Hyperbolic Tangent Curve Printed at 1142f6 on 10-31-1996 )

Page1 Coefficients of Curve 3 A = 525 B = 505 C : 91.42 TO = 26.71 F4 uation is CVN : A + B ' I tanh((T - %)/C) l Upper Shelf Energy: 103 Fixed Temp. at 30 ft-lbs -17 Temp. at 50 ft-lbs 221 lower Shelf Energy: 2 Fired i Material HEAT AFFD ZONE Heat Number. Orientation-Capsule: X Total Fluence eco w aso

,C I

a w 200 h

no L 150 0

c +

N _

o 100

%[ o

> +

+ l O o l N /

s e s o

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: MC2 Cap:X Material HEAT AFFD Z0$T Ori: Heatf.

1 Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential

-75 17 1134 515

-50 22 1738 411

-50 24 17B8 611

-25 13 26.63 -13 S 3 0 305 3&l4 -7S4 0 34 3&l4 -434 25 63 5155 11.4 4 50 73 65DB 7S1 j

" Data continued on next page =

C-97 1

CAPSULE X Page2 Material IIEAT AFFD ZONE Ileat Number Orientation:

Capsule X Total Fluence Charpy V-Notch Data (Continued)

Temperature input CVN Energy Computed CVN Energy Differential 86 92 8131 1038 100 58 86M -28.07 100 91 86M 4.92 150 99 96S2 237 200 106 100.76 523 j 250 112 10224 9.75 1 250 93 10224 -924 SUM of RESIDUAIS = 4S5 l

I l

l

C-98 ,

CAPSULE U i

CVGP.APil 41 Hyperbolic Tangent Curve Printed at 11:4266 on 10-31-1996 l Page1 Coefficients of Curve 4 A = 475 B = 455 C = 105.01 TO = 2143 F4uation is: CVN = A + B

  • l tanh((T - TO)/C) l Upper Shelf Faergy: 93 Fixed Temp. at 30 ft-Its -191 Temp. at 50 ft-lbs: 292 Imer Shelf Energy: 2 Fixed Material HEAT AFFD ZONE Heat Number: Orientation-Capsule U Total Fluence 300 rn 250 D

I a

N 22 N .

te L 150 0

c N

kb A A ^

Z g D

w /

./

JY o

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F  ;

Data Set (s) Plotted Plant: MQ Cap: U Material HEAT AFFD ZONE Ori.: Heath Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential

-100 17 9.91 7.08

-80 & 1113 13B6

-60 19 17.42 157

-40 20 2? 93 -293

-25 28 WB8 .11

-5 28 35.47 -7.47 1 0 24 3751 -1351 l 1

        • Data continued on next page =

C-99 CAPSULE U Page2 Matedal HEAT AFD ZONE Heat Number: Orientation-Capsule U Total Fluence Charpy V-Notch Data (Continued)

Temperature input CVN Energy Computed CVN Energy Differential 15 53 43B5 9J4 40 57 54f1 238 70 65 6&44 -1.44 100 71 75B2 -182 140 91 84D6 6.91 17a 92 8&l9 33 225 98 9t0B 6.91 275 92 9225 -25 SUM of RESIDUAIS = 2436 f

I

C-100 CAPSULE W CVGRAPH 4J Hyperbolic Tangent Curve Printed at 114256 on 10-31-1996 Page1 Coefficients of Curve 5 A = 43 B = 41 C = 93B9  % = 4218 Equation is CVN = A + B * [ tanh((T - %)/C) l Upper Shelf Energy: 84 Fixed Temp at 30 ft-lbs 11 3 Temp at 50 ft-lbs 583 lower Shelf Energy: 2 Fixed Materiah HEAT AFFD ZONE Heat Number. Orientation:

(

Capsule: W Total Fluence 300 to 250

,Q I

a N 2m i

N tw 4 150 a>

c N

100 s' z

o y [ s, 6"

s f '

o i

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: MC2 Cap:W Materiah HEAT AFFD ZONE Ori: Heat f:

Charpy V-Notch Data Temperature input CVN Energy Computed CVN Energy Differential 4 8 y M 21

-50 17 1209 4S

-25 14 17B1 -3B1 4

0 34 25.72 827 25 30 35.57 -5.57 45 48 4422 3.77 4

" Data continued on next page =

C-101 CAPSULE W Page2 Materiah HEAT AFD ZONE Heat Number. Orientation:

Capsule W Total Fluence.

Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential-50 34 4&4 -12.4 72 62 5559 6.4 100 65 65.47 .47 15 0 77 765 .49 200 89 8125 7.74 250 80 83.03 -3.03 300 W 8166 1133 350 84 83B8 11 400 70 83.95 -13S5 SUM of PEDUAIS = 7S i

l l

l 4

1 h

1 i

l l

l

C-102 UNIRRADIATED CVGRAPH 41 Hyperbolic Tangent Curve Printed at 132205 on 10-31-1996 Page1 Coefficients of Curve 1 A = 3331 B = 3231 C = 7523 TO = -54.91 Equation is 12 : A + B * [ tanh((T - TO)/C) ]

Upper Shelf 1165R Temperature at II 35 -50.9 Imer Shelf 12: 1 Fixed Material: HEAT AFFD ZONE Heat Number. Orientation-Capsule: UNIRR Total Fluence:

200 m

150 a

>i 100 e

$ o a a T

a so a m fo o -

-300 -200 -100 0 100 200 300 400 600 600 Temperature in Degrees F Data Set (s) Plotted Plant: MC2 Cap: UNIRE MateriM: HEAT AFFD ZONE Ori: Heat #:

Charpy V-Notch Data Temperature Input lateral Expansion Computed 12 Differential

-150 1.5 5.7/ -4 21

-125 0 9B8 -92

-125 0 9.68 -938

-100 16 1557 .02

-75 26 2438 111

-75 48 2438 2111

-50 28 35.42 -7.42

-16 51 4857 232

-16 43 4&S7 -5S7

" Data continued on next page =

C-103 UNIRRADIATED Page 2 Material HEAT AFFD 20NE Heat Number. Orientation-Capsule UNIP2 Total Fluence Charpy V-Notch Data (Continued)

Temperature input lateral Expansion Computed I.E Differential

-16 485 48E7 -17 32 58 59.79 -179 32 56 59.79 - 179 100 56 6438 -8.58 100 69 6458 4.41 150 70 6534 4S5 210 66 6556 .43 210 67 6556 1.43 250 69 65.6 339 SUM of P2SIDUAIS =-1018 i

I I

C-104 CAPSULE V l

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 132205 on 10-31-1996 l Page1  ;

Coefficients of Curve 2  !

A = 39 B = 38 C = 193B6 TO = 4125 Equation is 12 = A + B ' [ tanh((T - TO)/C) l Upper Shelf LE: 7/ Temperature at 12 3fx 2a7 lower Shelf LE: 1 Fixed l I

Material HEAT AFFD ZONE Heat Number. Orientation-Capsule: V Total Fluence 200 en c7 150 a

M pq g-

$ 0

$ M Y

a w e o / >

o

- /o D

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: MC2 Cap:V Materiah HEAT AFFD ZONE Ori: Heat l:

Charpy V-Notch Data Temperature Input lateral Expansion Computed 11 Differential

-100 6 1535 -935

-75 21 1&6 239

-50 24 5 2232 217

-60 265 2232 417

-25 26 26.49 .49

-25 23 26.49 -3.49 0 235 31.03 -753 0 24 5 31B3 -653

" Data continued on next page "

C-105 )

l l

CAPSULE V i Page2 l l

Material HEAT AWD ZONE Heat Number. Orientation- i Capsule: V Total Fluence  !

Charpy V-Notch Data (Continued)

Temperature input Lateral Expansion Computed 12 Differential l 25 45 35.82 917

. 25 43 35B2 737 82 545 46El 7E2 160 54 59.74 -5.74 200 585 64E3 -613 300 685 7207 -357 37a 825 7434 735 l SUM of RESIDUAIS = -229 l

)

l I

l i

C-106 CAPSULE CVGRAPH 41 Hyperbolic Tangent Curve Printed at 132205 on 10-31-1996 Page1 Coefficients of Curve 3 A = 33.64 B = 32.64 C = 9552 TO = 3P_81 Equation is: 12 = A + B ' [ tanh((T - TO)/C) ]

Upper Shelf II: 6628 Temperature at 12 35: 36.7 lower Shelf 12: 1 Fired l

Materiah HEAT AFFD ZONE Heat Number. Orientation- l t

Capsule: X Total Fluence-200 m I

.- 150 a

>t 100 e

a

$ o O e s" s a so o

O A

- +

o .

-300 -200 -100 0 100 200 300 400 500 600

]

Temperature in Degrees F l Data Set (s) Plotted Plant: MC2 Cap: X Materiah HEAT A}TD ZONE Ori; Heat f.

Charpy V-Notch Data Temperatum input Lateral Expansion Computed 12 l Differential

?

-75 17 718 931

-50 9 10.79 -1.79 I

-50 14 10.79 32

-25 8 15.99 -7.99 0 21 22.84 -134  !

0 22 22B4 -34 25 36 3097 5.02 50 37 39.45 -145

  • Data conunued on next page =

C-107 CAPSULE X Page2 Material: HEAT AFD ZONE Heat Number. Orientation-Capsule X Total Fluen :

Charpy V-Notch Data (Continued)

Temperature input lateral Erpansion Computed LE Differential 86 54 50J4 3B5 100 49 53.43 -4.43 100 53 53.43 .43 150 65 6111 3.88 200 69 64J/ 432 250 71 6559 5.4 250 54 6559 -1159 SUM of RESIDUAIS : 439 l

-. _- .- -- . - . . _ _ ~ . _ . - _ _ . . . ...

C-108 i -

CAPSULE U  !

CVGRAPH 43 Hyperbolic Tangent Curve Printed at 1322f)5 on 10-31-1996 Page1

. Coefficients of Curve 4  ;

A = 3P.18 B = 3118 C = 10439 TO = 19.68 Equation is II : A + B * [ tanh((T - TO)/C) l l Upper Shelf II: 6337 Temperature at 12 31 293 Lower Shelf LE: 1 Fixed Materiah HEAT AITD ZONE Heat Number Orientation:

, Capsule U Total Fluence 200 en O 150 .

6 a

M  :

N 100 e .

L .

e ^~

Y u m .

a O

l

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: MQ Cap:U Materiah HEAT A}7D ZONE Ori: Heat b Charpy V-Notch Data Temperature input lateral Expansion Computed 11 Differential

-100 9 6.72 22/

-80 11 9h4 1.95

-60 13 1213 B6

-40 17 1&O7 .92

-25 19 1959 .59 4 22 24 S4 -2S4 0 20 26 7/ -67/

" Data continued on next page =

C-110 CAPSULE W CVGRAPH 41 Hyperbolic Tangent Curve Printed at 132205 on 10-31-1996 Page1 Coefficients of Curve 5 A = 2a56 B = 2756 C = 85f>5 1D = 44f>4 Equation is 11 = A + B ' I tanh((T - TO)/C) l Upper Shelf LE: 5613 Temperature at 12 35: 65 lower Shelf LL 1 Fixed Materiah HEAT AITD ZONE Heat Number. Orientation-Capsule: W Total Fluence 200 en

.O 150 a

M 100 a

a b ,,

e - -

=

a su v

r ,,

V J

U

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: MC2 Cap: W Materiah HEAT Af7D ZONE Ori; Heat f:

J Charpy V-Notch Data Temperature Input lateral Expansion Computed la Differential

-95 0 303 -103

-50 6 6.44 .44

-25 9 10.06 -126 0 23 15 37 7S2 25 21 2235 -135 45 33 2&68 4 31

= Data mntinued on next page -

~ _ _ . _ , . _ _

C-109 CAPSULE U Page2 Material: HEAT AFFD ZONE Heat Number: Orientation-Capsule: U Total Fluence )

Charpy V-Notch Data (Continued)

Temperature input lateral Erpansion Computed 12 Differential 15 34 30.78 321 1 40 42 3&l8 331  ;

70 44 4E15 - 115  :

100 52 5235 -35 l 140 60 57.71 228 l 175 61 6034 E5  !

225 62 6217 -17 275 61 62.91 -1.91 I I

SUM of REIDUAIS = 1.46 l

l

C-111

. . CAPSULE W Page2 Material liEAT AWD ZONE' Heat Number. Orientation-Capsule N Total Fluence 1

Charpy V-Notch Data (Continued) )

l Temperature input lateral Expansion Computed II Differential 50 20 3028 -1028 72 40 37DB 2.91 100 43 4425 -125 150 50 SL79 -1.79 200 70 54.7 1529 ,

-3.68 i 250 52 55BB 300 55 55.99 .99 350 60 56.08 3.91 400 45 56.12 -1132 l SUM of PISIDUAIS = .96 j 4

)

i

C-112 UNIRRADIATED CVCRAPH 41 Hyperbolic Tangent Curve Printed at 1331M on 10-31-1996 Page1 i

l Coefficients of Curve 1 A = 50 B = 50 C = 74.44 TO = -45S3 Equation is Shear /. : A + B * [ tanh((T - TO)/C) ]

Temperature at 50x Shear: -45.9 Material IIEAT Af7D ZONE Heat Number: Orientation:

Capsule: UNIRR Total Fluence:

~

2e 2 100 0

% D f e ,

o w so a o c

o o O

4o b /

a

=

20 r l

22 o

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant MC2 Capt UNIRR Material: HEAT AITD ZONE Ori: Heatf Charpy V-Notch Data Temperature input Percent Shear Computed Percent Shear Differential

-15 0 0 5.75 -5.75 i

-12 5 0 10B7 -10M i

-125 0 10.67 -10f7

-100 18 18 S 6 .96

-75 47 31.41 1558 .

-75 56 31.41 2458

-50 20 472/ -272/

-16 77 69.08 791

-16 69 69DB -B6

Data continued on next page

C-113 UNIRRADIATED Page2 Material: HEAT AFTD ZONE IIeat Number. Orientation-Capsule: UNIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature input Percent Shear Computed Percent Shear Differential

-16 64 69BB -5.06 32 87 89.03 -2.03 32 91 89El 1.96 100 100 98.05 1.94 100 100 98D5 1.94 150 100 99.48 51 210 100 9939 1 210 100 9939 1 250 100 99.96 D3 SUM of REIDUAIS = -7B6 i

l 1

l l

f I

a

C-114 CAPSULE V i

CVGRAM 4J Hyperbolic Tangent Curve Printed at 133154 on 10-31-1996 Page1 Coefficients of Curve 2 A = 50 B = 50 0 = 68.96 TO : -137 Equation is Shearx = A + B

  • l tanh((T - TO)/C) ]

Temperature at 50% Shear -13 Materiah HEAT AWD ZONE Heat Number: Orientation:

Capsule V Total Fluence J

100

[

O u 80 cc a>

.c cn 80 a

c 1

8 Ofo g c3 a 0 20 4

Jo 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant; MC2 Cap.:V Ori:

Materiah HEAT AFD ZONE Heatf

~

Charpy V-Notch Data Temperature input Percent Shear Computed Percent Shear Differenti. ' j

-100 2 5.49 -149

-75 11 10.7! 28

-50 28 191 &l4

-50 15 19B5 -4B5

-25 33 3310 -33

-25 44 3333 1036 0- 45 5125 -635 0 39 5135 -1235 l

" Data continued on next page = l

C-115 CAPSULE V Page2 Materiah HEAT AFFD ZONE Heat Number: Orientation-Capsule V Total Fluence Charpy V-Notch Data (Continued)  !

Temperature Input Percent Shear Computed Percent Shear Differential 1 25 06 68.55 -355 1 25 83 fa55 14.44 i 82 92 91S2 27 1f4 100 99D9 S 200 100 9 9.71 28 000 100 99.98 D1 lr/5 100 9999 0 SUM of REIDUALS = 2.88 l

C-116 CAPSULE X CVGRAPH 4J Hyperbolic Tangent Curve Printed at 133154 on 10-31-1996 Page1 Coefficients of Curve 3 A = 50 B = 50 C = 80.45 70 = 41.09 F4 uation is Shearx = A + B ' I tanh((T - 10)/C) ]

Temperature at 50x Shear: 41 Materiat ifEAT AFFD ZONE Heat Number. Orientation-Capsule: X Total Fluence 100 - 0~

o

^

. m e

e

.c o cn , e a

c:

D s O

y 40 m 1<

0 e s

o-

-300 -200 -100 0 100 200 300 400 500 600 ,

1 Temperature in Degrees F Data Set (s) Plotted Plant: MC2 Cap X Materiah HEAT AFFD ZONE Ori: Heatb ,

Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-75 10 520 4.71

-50 10 9.4 .59

-50 10 9.4 39

-25 10 162 -62 0 20 2&46 -6.46 0 25 26.46 -1.46 25 45 40J2 4M 50 65 555 9.49 l

" Data continued on next page =

I

)

C-Il7 CAPSULE X l

Page2 Material HEAT AFD ZONE Heat Number. Orientation:

Capsule X Total Fluence Charpy V-Notch Data (Continued)

Temperature input Percent Shear Computed Percent Shear Differential 86 80 Ta32 4El 100 60 8121 -2121 100 85 8121 178 150 100 9174 625 200 100 9 & 11 L88 200 100 99.44 55 250 100 99.44 55 SUM of PJSIDUAIS : 2S l

l i

i J

C-118 CAPSULE U CVGRAPIl 4J Hyperbolic Tangent Curve Printed at 13:3154 on 10-31-1996 Page1 Coefficients of Curve 4 A = 50 B = 50 C = 8757 1V = -23.9 Equation is: Shearx : A + B ' [ tanh((T - TO)/C) ]

Temperature at 50x Shean -23.9 Material HEAT AWD ZONE Heat Numbec Orientation-Capsule: U Total Fluence 100

[

A a m .

CC e

.c

  • cn ,

a a

e a O

L 40

/

0 I

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set (s) Plotted Plant: MC2 Cap: U Material: HEAT AFD ZONT Ori; Heat f.

Charpy V-Notch Data Temperature input Pertent Shear Computed Percent Shear Differential

-100 15 14 S 5 .D1

-00 20 21.73 -L73

-60 25 30.48 -5.48

-40 45 40S1 4.08

-25 50 4937 E2

-5 65 60.62 437 0 60 6131 - 3 31

= Data continued on next page "

C-119 CAPSULE U Page2 Material:lEAT AFD ZONE Heat Number. Orientation-Capsule U Total Fluence Charpy V-Notch Data (Continued) 1 Temperature Input Percent Shear Computed Percent Shear Differential 15 75 7035 414 l 40 80 811 4 -134 l 70 85 89.51 -4 51  :

100 90 R42 -4.42 i 140 100 WS8 2 31  :

1 70 100 98.94 105 225 100 99fe 33 27a 100 9939 J SUM of RESIDUAIS = -355 l

l

C-120 CAPSULE W CVGRAPH 43 Hyperbolic Tangent Curve Printed at 133154 on 10-31-1996 Page1 Coefficients of Curve 5 A = 50 B = 50 C = 5816 TO = 45 Equation is Shearx = A + B

  • l tanh((T - 10)/C) l Temperature at 50x Shear: 45 Material: HEAT AFFD ZONE Heat Number Orientation-Capsule W Total Fluence 100

/

u w -

cd e

A m , -

l a

Y '

o O

y 40 i

20 y l

/

v

'7 O

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F l Data Set (s) Plotted Plant: MC2 Cap W Material: HEAT AFFD ZONE Ori: Heatf.

1 Charpy V-Notch Data Temperature input Percent Shear Computed Percent Shear Differential I

-95 5 B 419 ,

-50 10 3S7 632

-25 10 826 1.73 0 20 1754 2.45 25 20 3145 -1145 45 60 50 10

" Data continued on next page -

C-121 CAPSULE W Page2 Material HEAT AWD ZONE Heat Number. Orientation-Capsule W Total Fluence Charpy V-Notch Data (Continued)

Temperature input Pertent Shear Computed Percent Shear Differential 50 50 5428 -428 72 80 71F/ 832 100 80 86B9 -6B9 15 0 95 9736 -236 200 100 9951 .48 200 100 99.91 DB 300 100 99SB D1 350 100 99.99 0 400 100 99.99 0 SUM of RESIDUAIS = 632 I

I J