ML20136C928

From kanterella
Jump to navigation Jump to search
Forwards Meterological Input to Facility App I Evaluation, Specifically,Calculated Concentration & Relative Deposition Values at Points of Interest.Meteorological Data from 770404-790404 & Apr 1980 - Mar 1981 Used.Related Info Encl
ML20136C928
Person / Time
Site: 05000000, Vogtle
Issue date: 07/25/1984
From: Gammill W
Office of Nuclear Reactor Regulation
To: Congel F
Office of Nuclear Reactor Regulation
Shared Package
ML082840446 List: ... further results
References
FOIA-84-663, RTR-NUREG-CR-2919 NUDOCS 8601040023
Download: ML20136C928 (200)


Text

{{#Wiki_filter:.2,..g - t-v

a -

'o UNITED STATES [ ..e :. g NUCLEAR REGULATORY COlylMISSION 5* p WASHINGTON, D. C. 20555 p %,...../ JUL 2 51984 Docket No. 50-424/425 MEMORANDUM FOR: Frank J. Congel, Chief, RAB FROM: William P. Gammill, Chief, METB

SUBJECT:

METEOROLOGICAL INPUT TO V0GTLE APPENDIX I EVALUATION Enclosed are calculated relative concentration (X/Q) and relative deposition (D/Q) values at specified points of interest and as functions of direction out to a distance of 80km from the Vogtle Plant. Punched-card output was provided to J. Swift on 7/24/84. A three-year composite set of meteorological data (April 4, 1977-April 4, 1979 and April 1, 1980-March 31, 1981) was used for this evaluation. Wind speed and direction data were based on measurements at the 10m level, and atmospheric stability was defined by the vert ~ical temperature gradient measured between the 45.7m and 10m levels. This evaluation was performed using the~ straight-line, Gaussian atmospheric dispersion model described in Regulatory Guide 1.111. Spatial and temporal variations in airflow were considered using the terrain correction factors contained in NUREG/_CR-2919. Receptor information was initially provided in the T/18/64 me'morandum from E. Branagan to I. Spickler, with additional information on site boundary distances provided informally on 7/6/84, and revised site boundary information provided in the 7/17/84 memorandum from E. Branagan to I. Spickler. Release point characteristics were provided in the 7/5/84 note from C. Willis to I. Spickler. Releases from the plant vents (atop the containment building) were considered to be a mixture of elevated and ground level except for the transport directions (affected sectors) of east-northeast and east, where the natural draft cooling towers could significantly affect atmospheric dispersion. Releases from the turbine building (including the air ejector exhausts) were considered as ground level with mixing in the turbulent wake of plant structures. Releases O 8601040023 851127 PDR Fogg BELL 84-663 PDR h

-..--l?__ JUL 2 51384 F. J. Congel from the radwaste building were also considered as ground level, with mixing in the turbulent wake of that building. All releases were assumed to be continuous. This evaluation was performed by J. Fairobent, and any questions may be directed to him at x29427. w us.m n y w vps sinias F. Casas 111 William P. Gamill, Chief Meteorology & Effluent Treatment Branch

Enclosure:

As stated cc: D. Nuller E. Branagan J. Swift I. Spickier J. Fairobent DISTRIBUTION: Docket File 50-424 Docket File 50-425 METB Docket File METB Reading File WPGammill A omes >.D.S..I..:. .B....D..S. I. M..E..T.B... ..D.S..I. T..B.... " " * * >J.F,4.tr

,t v..,,2,,,,, H.

],1....,,,.',,...,,.......... 0.?B.?/M....... 078.NM.....0?/.SilM....

==: rs:w m no sciuncu oa' OFFICIAL RECORD COPY

  • u.s.opo msoo.

g g q 7~y p,pp - g =m -- p m A D 6 \\ t ". e W' e Y Aw N k N% OOOOOOOOOOOOOeOOOOOOOOOOOOOOOOOOOOOOOOCCOOCOCCOOOCcC e 0000000000000000000000000000000 C. O. O. O. O O C O O O O O O O O O C e C.CC o e e e. e e. e e... e.. e e e e OOe4CoheOOOOOOOOOOOOOowwOeOOweede=NOweOmNoOmCoNwCO-Ne wekeN =N -Neem ameceN NMe OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOc OOO00000000000000000000000000000 COOOOOOOOOOCOOOOCOOCO e e e e e e e o e e o e e e e o e e e o e o e o e e e e e e e e e e * *

  • e e e e e e o e o e o e e e e o e

} ONMOOpehmOOOOOOOOOO=Or4mDwCOmMmWMhWOmMMMO4eeOMMethe#M NMehO wmm w=WWW mW@g&W wM@hN= mm

== d D000000000000000000000000000000DOOOOOCCOOOOOOCOOOOOOC OOOOOOOOOOOCOOOOCOOOOOOOOOOOOOOOOOOOOOOOOCOOOOOOCOCOC e e o e e o e e e e e o e o e e e e e e e e e o e e o e o e e a e o e o e e e o e e e o e e e e o e o e e O COm4WNhDwCOOOOOOOOOOO4MN44COOWMONOMOwM@MhPSCDeNCemc4N O =Nm4M WM mNWe@ MdMem =MC=M O wNw c wm a O OOOOOOOOOOOOOOOOOOOOCC 0000000000000000000 CDOOOOCCOCQC 0000000CO0000000000000000000000 GOOOOOOOOOOOOOOOCOOCCC C e o e e e e e o e e e o e e e e o e e e o e e e e o e e e e o e o e o e e e o e o e e o e e o e o e e e o O CwMMmemeOOOOOOOOOOOOONMNWMOmOM44@heOOO@wwCmhC==MCSh?T O wS4N4 mM9e wNmmM mWh@MN =WCNN O mMm m mm O P CCOOOOOOOOOOOOOOOOOOOOOOCOOOOOOOOOOOOOCOOCOOOCOOCOCCC m C C000000000000000CO0000000000000 COOOCOOOOOOOOOOOCOCOOC = C e e o e o e e e o e e o e o e e o e o e e e e e e e e e e e e e o e e o e e o O O w C M m m = O O O O C O O O O O O O O M N O.e.e O O N e h e m O M C = M h M r.eM 4 M m e % 4 M N -,e C e e e e e e e o e o e C mNhC4 N4w NhrM mmeCOM =Chhe = C m C = N= m O Ch OOO0000000000000000000000000000 ON 0000000000000000000000000000000 CCOOOOCOOOOOOOOOCOOOCC DOCOOOCOOOOOOCCCOOOCC C W C e e e e * *

  • e e * * *
  • e * * *
  • e e e *
  • e * * *
  • e * *
  • e e * *
  • e
  • e e o e e o e o e o e * * *
  • I OS CC=hPNFOOOOOOOCOOOOOWNMPCPOOOMdeprO*NN4=NemN=C=hWACA#

= CL OWN mM mwhN4 =@=C@N =# CON N J = Ou www = ? O 0000000000000000%Q0wO00000000000 cOOOOOOOOOCOCCCCCCCCC D OJ COCOOOOOOOCOOOOGCOOOOOOOOOOCOOOOOOCOOOCOCOCOCC C 9 CCCCC CC e *

  • e e o e o e e *
  • e
  • e * *
  • e e *
  • e o e * *
  • e
  • e
  • e #
  • e o e e e o e e e e * * * * *
  • e
  • OD OOOweM4=COOOOsOOOOOOOmm=WMOCONSO4mw=NChWOCmPOCOMTWArt E

mM wNw mMONr wMCOOM =W 4=A Oh w -FN O = On COOOOOOOOOCOOOOC 0000000 CCOOOCCOOOOOOOCCDOCOOCCCCC OCCC CW COCCOOCCCCCCCC OCCCCOOCCOOCOCCOOCCOCOOOCOCOCCCC CeCC cec OJ e o e e e o e e o e e o e e e e e e o e e e o e o e e e e e e e e e o e e o e o e e o e e e o e e o e o e b OOOmrWNwoocOOOOOOCCCCONOC=COCNNWmN=NM-@M4@ 4NCwCWCE #CA CQ

== m mNSNm w@come =M/cw C = mMN W OO E C e COOOOCCOOOOOOOOOCOOOOOOOOOOOOOOOOCOCOCOCCCCCCCCCCC 8 OC C CC OOOOCOOOOCOOOOOCCOCOCCOOCCOOOOOOCCOOOOOOCCCOCOOCOCCCC J = o e e e e o e o e o e o e o e e e e o e e e e e t e e e e o e o e e e o e o e o e e e e e e o e e o e e e D Ok CCC@Cr4MODOOOOOOOOCOCOmrM=OwOerMAWOOmmeC*hPACAte4C 7 Oh

N 4h e w

mAPow eCNAMw N#Vew t OZ m wh= h C w Cm COCOOO CCOOCCCOOOCCOOCOCCCCCOCOCOCCCCCCCCCCCCCCCcCC CCCC C CDOCOCOCOOOCOCDGOCOCOCCOOCCCOCDOCCOCCOGCCOCCCCC DCCOCC C ON O e e o e e e e o e e e e e e e e e e e e e e o e e o e o e o e o e o e e o e o e o e e o e o e o e o e e e W Om eOC=M4M4hCOCOOOOCOOCCwMG44MOOm47NCmmCNMOWNO==CabrCe=@e CM M Mr

  • N

=h0

MMOON= N#4C= 4 O% C w

N

0 CM DOOCCOCDOCDOOOOOOC0C00000DCCOCCCCOOOOOOOCCOCOCCCC 2 CO COCrc COCCCOCCO=OCCOOCCCOCOCOOCOCCCCCOOCOCCCCCCOCCCCCCCC D Ch OCCC O e e * * * *

  • e e e e e e e e # # e o e e e e e e e e e e * *
  • e e *
  • e o e e o e e
  • e o e o e o e e e M

C

  • CCwMe@@FCCOOCOCCCCCOOOWCONCC=mhC4CkCwmP-ONO4C=MO l

OO O OCP* A OCm mN wNG== wV<hC mMVCA CC N =

== OmOOCCCCCCCCOOCCOOCOCCCCCOOOOOOOOOCOCOCOCOOOCOCCCCC CCCCCC C C % CCCCCOCOCOCCCCCCCOOOOOOOOCOCOOCCOOOCOCOCOC CCC OCOOC CC & CC og eC e o e e o e e o e o e e e e o e e o e e e e e e e e e e o e e e o e o o e e o e o e e o e o e e o e e o e O O eCONNa@@eCCOCOOCCOOOO=NeeAPOC=44FN=hCNMFCWC@ @CwCeC =CPe CO C whmm wM =MSNM NCPr=* =We# wm M = =

== C S OO OOOCCOOCOOOOOOCOOOOOOOOCOOOCOOCOOCOOCOCOOC+OOCOCCCCCCOCC e Ch OOOCCCOCOCOCCOOCOCOCCCOOCCCCCOOOCCCCOOOCCCCCOOOOOOOCCC HN ON C eO e e e o e o e e o e * *

  • e e e e e e e e e * * *
  • e e o e o e * * * * * *
  • e e o e o e e e e * * * *
  • C#@C eCONMN4C=CCCCCCCCCCComN==NMCwCMcA4N4CAMACW40hCObwa="

M 9M 44 =N4NM wNMm mN&hh we4 PUN

F#h

  • O CW

=

== "a C M 00 eCCCOCOOCOCOCOCOOCOOCOCOCCCOCOOCCOOCCCCOOCOCOCCOCCCCCCO 2 DN@NCCCCCOCCCCCOOCOOCOOOOOCCCCOCCOOOOOOOOC CO3OCCC CCCCCCCCC

  • W C

= eC e e e e o e o e e e o e e e e e e e e e e e e e e e e e e o e e o e e o e a e e e o e e e e e o e o e e o b N *C=OhNWOCOOOOOCOOOOOOO@NC4COC=NhTe4=ON=M4e4CMcC# ANON ON e Ch O =MOA* =New

  • M=C4 Nehemp

,G 0% mm NMVha = wN

== C Oec

  • . C O%

CCCOCCOOOOOOCCOOOCOCOOOOOOOCOOCCOC00000C000OOOOCOCCCOCC p%3 m Cw CCOOOOOOOOOcCOOOOCOOCOOCOOOCOOeOCCOCOOCCCCoeoCOOCCvCOCC g ; e so e e o e e o e e o e *

  • e e e o e e e e o e e e e o e e o e e e e o e e e e o e o e e e e e e e o e e o e x

n CO = eOww&ChomOCOOCCCCOOOOOm4=ceQONF4NUCeCNONW4ChrCAWUPh&C= [ S 4 C6hCO mMhCM

  • NW mMhNM mWCmCC

=N@4w w u m7 = = = O =

== O N =m CCCOOCCOCOCCCCOCOOOCCCOOCCOCOOCDOCCCOCOCOCCCCCOCCDOCOOC mu O W OC OOCOCOOOCOCOOCOOOCCOCOCOOOCOOCCCCCCCOOOCOOOOOOCCCC OCO e CJC eO e o e e o e e e e e e e e e e e e e e e e e e e e e e e e e o e o e o e e e o e e e e e e e *

  • e o e e e h 4 2

OmmC OOOmOGMM*COOOOOOOOOOOMN4m=4OOmwNh===CNWCecNP=ON4hC@mC= w = DC =O NNECN wN nab =N MmPPN =NM4" ~> OO k mM L O 1 O N I L 3 e C u a mNMec44444444444444444444444444444444444444444444444444444 l E Z Z = M E D k k b N N O M M Y N

-. ~. - - -rm-- --..-m ~.e__ w w / q (~ d t b 0.00 C.00 0.00 'O.00 0.0D 0.R0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6 1.00 5.00 1.00 3.00 2.00 2.00 0.00 1.00 2.00 1.00 1.00 1.00 0.00 1.00 3.00 2.00 6 8.00 11.00 8.00 4.00 4.00 3.00 4.00 4.00 1.00 2.00 4.00 4.00 2.00 4.00 -7.00 0.00 6 25.00 14.00 22.00 15.00 15.00 13.00 6.00 7.00 7.00 6.00 11.00 11.00 17.00 23.00 17.00 17.00 6 41.00 37.00 43.00 2a.00 43.00 29.00 25.00 25.00 29.00 15.00 39.00 27.00 22.00 20.00 25.00 34.00 i 6 38.00 41.00 55.00 28.00 29.00 23.00 19.00 18.00 27.00 32.00 55.00 56.00 46.00 40.00 42.00 21.00 ~ 6 32.00 43.00 40.00 15.00 24.00 75.00 22.00 9.00 33.00 43.00 87.00 114.00 66.00 65.00 30.00 15.00 6 4.00 9.00 3.00 1.00 2.00 2.00 3.00 4.00 2.00 2.00 13.00 12.00 11.00 7.00-8.00 3.00 6 1.00 0.00 0.00 3.00 0.00 1.00 1.00 0.00 1.00 5.00 2.00 0.00 2.00 2.00 1.00 1.00 6 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7 -1. 0.270 0.500 0.750 1.0PJ 1.500 2.000 3.000 5.000 10.000 12.000 0.000 0.000 0.000 0.000 VIDISTeVRCR NOT INPUTTED. NO IERRAIN DATA I48UT TED. 12 16 6 2 2 2 13 SITE ANopy la l 1640.0 2 1820.0 3 2094.0 4 1890.0 5 2120.0 6 2740.0 7 2500.0 8 2370.0 ( 9 1780.0 10 1310.0 11 1140.0 12 1320.0 13 1660.0 14 1780.0 15 1820.0 16 1720.0 L 13 HRST RESID p to 4 1931.0 5 2414.0 6 3058.0 9 1860.0 13 1980.0 15 5310.0 13 VFC GRDN 14 4 2255.0 7 3862.0 g 13 NILK Cow t k 14 3 8000.0 15 7401.0 15 HEAT ANML 14 3 4989.0 7 6276.0 { 15 RAD WASTE SUILDING: CONTINUOUS CRnHND LEVEL RELEASE j 16 0.000 0.000 0.0 15.0 450.0 10.0 0.00 g 17 4 0 0 0 6 h I t ( t t ( 9 ( C. (a [ (, d j C-O ()

~ ^ 1 c q c,[ c e e e e e e e e e e e e e n ~ 9 .o I Joemee#ohMC Joooooooooo JooWredhpMe JNNdmeC 4 cCNCo?N*mCo Maccoconocco ecooNPCowden 4 macmpp pooC=>Meosom >o0000000000 >cocemWoproN pocCNec C e o e e e e e o e e e C e e e o e e e e e o e O e e e e e e o e e e e O e o e e o e wooooO*WeNoh wooooooooooo Woooooommoot woooon= KCC Chad cNCo Rooooooocce ToccCNW4M*C zoCWheC 2CoC*eCooNoe FooooooooooC ZCCoomoWeMoe ZCOC=AC 2CooOC=Memoo Zooooooooooo ZCCoCCoCCCCm 2 ocoCCm o e e e e o e e e e e e o e e e e o e e o e e e e e e o e e e e e e e e e e e ocoooooooom ooooooooooo ooooooooooo oooCoc BooeNMWebMW Eo00000000o Ecowommepeo TooWNec ZoommeN4MWoo Recocoocoooo zoccoNNWkWON ZoComWe cocoowMMWoh ooooooooooo ocococooooN ocooCo e o e e e e e e o e e e e e e o e o e e e e e e e e e e e e e e e e e o e econococoom o0000000000 CoCocoCCooo occoOC EoeoW499@at Ecocococooo EocoomNo@@c ECCCkW* FoooedeNomos 2Coooooooooo ToccoN=WWNO4 zocC=#@ Cooocootm@es nooooooooooo KooooooowooN EcoCCCC e o e o e e e o e o e e e e o e o e e e e e e e o e e e o e o e e e e e o e e econooomoCN ooooooooooo ocoooooooCo CooceC WooWNW44 Moo Eo00000000C EcconeewNeo 35WCN4e ooommereces ooooooooooo comoNm9mmam oCCm4C cocoomemboA ooooooooooo aoCocoomooW o C C o o =. e e e e e e e e e e e e e e e e e e e e e e e e e e o e e e e e e e e e e e Coooooowoom ooooooooCoo oooCooGoooo DCCCCC 4 S U C m EccoWwemeMo e 2oo00000000 m BoonCNempto m 2commet m e mocooWemmmed e o00000c00000 m meccomoeemot m mCC ONNw m 4 B CocCooMMNOW 4 BoooooCoooCo 4 3CCCCCoomeoM 4 3CCC&C= 9 J e o e e e o e o e e e J e e e e e e o e e e e J e e e e e e e o e e e J e e e o e e W U cocooCocoome u ooooooooooo u ococooCCCCo W CCCC CC m C e 2ecowe>Wmmo > Noooooooooo XocateNephe IcooN4N w mooooNMmmeoW w ecoCocoooooo w mooooom>WMop = mocC=44 W J comoCommood J oooooooooco J ooCocoowooN J CCCCCC r w e e e e e e e e e e e w e e e e e e e o e e e w e e e e e e e e e e e w e e o e e e = E ooooooooooo D ooooooooooo C ococoCCooCo C oCCCCC 4 4 4 4 h k 2 N m IooooWMGPWo e Boooooooooo e EOoooWN4mWo e TCoctte 3 e moCCooM@WooW Woococcooooo MCoooomWPOCm McCoC@N N 5 U MCoooooowooN U mooooooooooo U mocococcooCN O MCoCCC = K w e o e e e e e e o e e w e e e e e e e e e e e w e o e e e e o e e e e m e e e e e e J R 00000000000 m o0000000000 E CoCococooCo CooCCC U w W W W Z Z Z T J A MooooNeeoWC k mecoccooCoC A meCoCCEh#WC MCCCCCO e e ocoomN@roCW e CCooCCecoCC m CCCCCCMMCCA e CCcCre 3 C ococoooooCm O ococoooCOOC C CocCCCoocom C occDCC e I e e o e e e e e o e e I e e e o e e e o e o e E e e e o e o e e o e e 1 e o e e e o e cocooococco ococoCCCoco DCCooCooC CC CC C CC C 4 4 4 4 W 4 e > Wooooh*NrNo WoooooCOCCO WCCCocmNWWO weeC%N# 9 J MCoooMMeomem mCocooCocoCC mooccoN4mcoe M3CC = De J W mCCOOoComooN mCocoOCoccoC MCoCoCCOooC= MCCCC = c. = C e e e o e e e e o e e e o e e e e e e e e e e e e e e e e e e e e e e e o 7 CCoconocoCC coceCCocooC ocomoCCoCCC eCCOCC 9 o N e = C WocCWNWhNPC WoooCCOOCoe WoCoWNMdCAC WCCWrZ C m MoooCmNMMNCW MoooooCococo moCCCmM4o-CW roc CA( ( S OCCCoomNoot ecoGCoooCCC ocoCCCo-C CA CCC CC C W F e e e e e e e e o e e 2 e e e e e e e e o e e 2 e e e e e e e o e e e 2 e e e e e e Z C 0o000000000 Q CCoCocooCCC C coCCCCooCCC O CCCCCC 4 w w = w Q m C u WoooWNMMNWo u WoococoComo U WOCCohh@MPC U 6 037 WC* F W MC Coc=MCMmod W MCCCooCooCCC W mcCoC==WENON w McC C Ch e D E WoooCOCNMood C WoCooCoooCoe E WCoooCoCCCo% C WGCC COC R M = e e o e o e o e e e o w e e e e e e e e e o e e e e e o e e e o e e w e e e o e o C OCoCOCoC000 C oCCCoCocooC C OCoCooCCoCD L CCC C CC M C C C a O Z Woocete4Meo Z WoccoCCCooC 2 WooaWCNtN>C 2 WCC e#th d CoococCDroA 4 ceCCococoCC 4 Cococm4Mmet 4 CC C f. 4* CCCCoCMWCoe coconoceCCC CCCCoCC=CCN CC C CC-o c e e e e e e e o e e e c e e e e e e e e e e e C e o e e o e e e e e e c e e o e e e C W cooCoococcc W CocooCCCoOC W COCCoCCeCCo W CCC CCC W W W W w E k k o M WCocCWmMhte e WooooCocoCC e WoCove4hNeo e WFWCNF = e W 2CeoorphpNom Zooooocococo 2cooCoWCMeoM ICC CadD N C WooooooNWmoo O Wooooocococo C WCoccoCCmCCM C woCC CCO C Z e e o e e e e e e e e 2 e e e e o e o e o e e Z e e e o e e e e e *

  • I e e *
  • e e T

h w ooConococom M occoCooocco w OCCCoCCoCoC = CC CC CC C I X 3 7 w P M N k WoCWmCNeWhe k WooCCoConoc h WoCoemodeCo k woCUCCm 2 C OCCCNhMM*FoW C ZooCooccocco C MooooNr=& rom C 4 CCCChe W W CooComW@mCM CCooCCCooCo oC CoocamCOC CC C CC= T e e e e o e e e e e e e e e o e o e o e o e 2 e e o e e o e e o e e O e o e e e e e W C CCoCoccooCm C ocoCOCCocoC C CoCCoCCocoo C CCCCCC C = = = 0 C c > 3 WOCWW@heWye 3 WoCececocoe 3 WocooWe>4MO 3 WCoCN4N 3 2 ZCooch@mmWoN E 2conocoCC CCC C TCOOcodeCMOC C 2Cor=4M C h = ZCococmMW=om = FeCOOCCococo w CooooccomoCM = 2CCOOC= m h g e e o e e e e e e e e g e e o e e e e e e e e g e o e e e e e e e e e 2 e e e e e e k e m

  • ooCooCocoom 0o000000000 OCCooCoComo oCSCDC 9

m e e c w w w U e O ZooerMeeghc o Zoeocococco O ZCCONe@Nhec C 7oCWC=N W cocommWWeCe oCCoCooocco ocomoN4cNCN OCCCP= Q oooCo-MMCOP ooCoCococoC CCCoC OCocoN OCCoCm n k Q e e o e e e o e e o e y e o e o e e e e o e e u e e o e e o e e e e e U e * * * *

  • W 7

2 COCCCooCoCC Z occoCoCocco Z cocooCooCoo 2 CCCooC W W W W 3 m 3 3 3 O L W C a O a O = 7 = E a W M W m W m 6 7 C E E 2 C W C h I k E h 1 k Z C w w w w u > ke@cocoCoCJ-No@cococoCJ NCrocoOCooJ

  • COCoo E

7 MNOhorCoooed = MN#NomCocoot 2 MNWho#CCCood 2 MN@ho@c 2 w e e e e o e e e e e ok w 4 e o e e e e e e e ok 4 e o e e e e o e e em m e o e o e e o e O ZooommNMWONC C EccommNMeoNO O ToccumNMmoNO O recommN 3 3 ww> 3

==> 3

==> 9 3 f- - w. ~. - _ -. _ _. ~ _ ?

naartm _ --- Ma-- .n.w.e --mmmm.;csw smay,. ~ w & n'enu- --M~-~~er en.waw - wi.- Lg,e ' (i e+ es r 4NMk JWWeaOmmwWh JMCerNmhMWO JWoONNameMO N#MmW eNOmNMWMhWmp 4&NfO4NmMPOO eWCermeerCOO medem hwmNmNMNhweN WOwNmhe@MNOC >MwmPOMhMOOM ee e o e C e e e e o e e o e e e C e e e o e o e e o e e oe e e e o e e e o e e phNOS MOOOmM@NPNOW MOOOmNWmmOO6 >OOOONNNOOOP = m M m J SMOO ErehmCWSMhc SwhthWeeCwo 24FwCmhNNSC 4 C Nemes 2OOwWNh4heOO ZwwCSN4NONOm 2NOMhWe4=OcW NNCON 2COOOawmMCON 2COOOmmwSCO4 2OOOOmOOOOOW CC e e e e e e e e e e e e o e e e o e e e o e e o e o e e e o e e e e o e e e he OOOOO OOOOOOOOOOw 00000030000 00000000000 m IN DPNG EmWNWeemOMO MONNehehWWO RONOOaWWMWO 2 e ameOW EOOwe>WONNOW ZOwwkmMNomOP ZWmNhonNMOOP ZW NMmee OOOOmW4WMON OOOOwNM=OOD OOOOwamOOOW e e o e o e o e e e o e o e e e o e o e e o e o e e e e e o e o e o e o e e OOOOD OOOOOOOOOON OOOOOOOOOOO DOOOOOOOOOO Yh 2 e Were 3mWNhhheOOD NecemwN4Dee EMehredDrec 4 hemO@ 2OOmMMh>NWem 2OOObemWWOOM 2momemd4 NOON wMNDO SOOCOmNmeNom BCOOOmMWwCON ECOOOmwNCOOh e e o e e e o e e o e e e o e o e e o e e e o e e o e e e e e o e e e e o e OOOOO OOOOOOOOOON COOOOOOOOOm C0000000000 Th 2 e th MWho BOOme=WWDNS EMWWWPO40he BOOeemomete Wemme OONmm@mmwOw OOOMPWNNmek OOOMPPhWOOP NWwSO OOOONNemmOD OOOOwMmmOON GOCOOmNOOO4 e ee o e o e e e o e e e e e e e e e o e e e e e e o e e e e e e e o e o e E4 OOOSw OOOOOOOOOCm OOOOOOOOOOw OOOOOOO&OCO W b G C mwho e EmWNODNWNPN m EMWMOONMkhc e 2MehdNNNOCO wNMOW e MOOmmerspeed e MOOMMPOMMMOP W meemswMheOOW MemON 4 XOOOONMCm=ON 4 XOOOOmMhwCOS 4 SCOOO-NGCCOP TE e e e e e J e e e e e e e e e e e J e o e e e e e e e e e J e e o e e e e e e e e v. e OOOOm U OOOOOOOOOON U COOOOOOOOOm U OOOOOOOOOOC 3 > h heet XOeedOWNwmW WOOWOWOmmwe EMehemeOWOO NweOW M emOO4M4DppCO M MOOchNWNPNeh M Omew4dNemOOP 2N MFNON J OOOO=WmMOOS J OOOONMeOOOM J GOO 3*NMOOOC m o e o e o e m o e e e e o e e e o e w e e e e o e e e o e o m o e e e o e e e o e e W 0000= C OOOOOOweOON e OOOOOOOOOOm e OOOOOOOCOCO e 4 4 hmme m XOSFOmmNNme M 2OOwS4hemMO M 2MWemNNOC=O 2M PowCO mmONhWWWMdOW mOONmehdPMOM ,m=OON4MheNCm e e MWNCM U MOOOOmWNemO@ U MOOOOwNWOOOm U mOOOOGamOCOW M4 e e e e o m o e e e e o e e e e e M e o e o e e o e e e e M e e e o e o e e e e e DOOOm E DOOOOOmOOON E DOOOOOOOOOm E OOOOOOOOOOO W W W 3 T Z m= mW=e emMWNppekWO E mMWOswehree a meeW9eNheWC e MCwCN e

==Odwm>>>OS e C ecreWPhoOe e NC ONWmMcCCF 4 M@NON O OOOONWNewom O OOOO=NMOOOP O 9000m==c006 e e e e e 1 e e e e e e e e e e e E e e e e e o e e o e e E e e e e o e o e e e e COOCm COOOOOmOOCM COCOOCOOOOO OOOOOOOOOOO 4 4 W CN m o meeO WWWwmdPO40e WeerPNOOONO WMehPWmhhCC Cr GMmem MOONemOWhmOO mOONPMethwCP mmOmNchMmOOP MWOOO MOOOwMrpmood MOOOONNeocce MCCOC=OCCCCN e e e e o e o e e e e o e e o e e e o e e o e o e e e e e e e e e e o e e e OOOOw COOOOOOOOON OCOOOOOOOOO OOOOOOOOOOC 6* m o MmNC WOENW=Nem40 WMWPWWwmNNO WOOhrWe= Nee Nm4Cd mmOwNmNNOWO4 FOONOW@M4mCF MOOmNCNP=CCM MOOCP OOOmMWerOON COO =NNMOOOO OCCOmCOOCCM e e e e e 2 e o e e e e e e o e e 2 e e o e e e e e e o e 2 e o e e e e e e e e e wO O#CCO C OOOCOOOOOON Q GCOOCOOOOOm C OCCOOOOOOOC m o m M = W# h h h 4FOO U.WWWN9mMN=WO U WMWNC4O4mCO U WacNWOWWWWO FFNOW W MComNmCwmNC4 W MCO=reWC@ Och W mNC=WNPC C C o r. MSOOC C WOOOONNhecch C WCOOOmNNOCOC 2 WCCComomCCOW Wh e e e o a w e e o e o e e e e e e m e o e e e o e e o e e m o e e o e o e e o e o e OOOOm C OCDOOOOOCCm C C0000000000 C OOOOOOOCOCC / O O O CwMc 2 WOCNmNMWMNO 2 WMWhW900hhD Z weCMNCOPECO 40mOF 4 momPM*rP404 4 CommDhWMmOW 4 NCMehNPCOOW k W Mr=SN O C " rJ M f W O C P COOOwmNOOCh CCCC=wCCCC# 2 e e ee e e C - e e o e e e e e e e C e e e e o e e e e o e C e e e e e e o e e o e we OOCOw W OOOOOCOOOCm W COOOOOOOOOO W OCOCOOOOOOO V W W A A E kNFO M WOeNOhhNhNO M WCOPedwNe@c m WONhNP4NSNC Je Ommer 2mempehmmmO= ZOONehmeeNem 2Wa=4PadcmON g

  • MMMCM Q

WOCCONNe4=Om O WOOOOmmMOOce O WOOOOO-DOOOC h l e e e e e Z e e e e e e o e e e e 2, e e e e e e e e e e e 2 e e o e e e e e e e e OSOOm w OOOOOOOOCSN = OOCCOOCOOOO = OOOCOCOCOCC i F E 2 N >WC NMMC 6 WOeWFWhhePC 6 wemm=MWPeeO k WMWMmee4NCC e UZ e kmrOS O Z-OCPhNCM-04 O 2NENe@Wm40Ch 3 ZmOMPMN4=COM e 23r WMNCE OCOCmM4WNCO COComNMCOOP OCOOwN=6cCh W m W e o e e e 2 e e e e e e e e e e e 2 e e e o e e e e e e e ? e e o e e e e e e o e N c 3 OOOOm C OOOOOCOOOON O COCOOOOOOOO O OOCCCOCOCOO w C 6 M M M W W2P 7 h b 2 W C e W 4hPO 3 WOChOmOPM40 3 WeeheOdemWO O W4=4WMOCbCO 4 E 6 W L C# MOW Zwo=WPPmeecr S FOOmmNMcWOce C 24NWhmkhMCCm 3 I' MSNCN m ZOOCommWWmOW = ZOOOOmNNOcch M ZOOOCam=COOw C C 7 W e e e e e E o e e o e o e e e o e E e e e e e o e e e e e T e e o e o e o e e e. W e O OOCCm A OOOOOOOCOCm OCOOCCOOOOO OOOCCOOCCOO E O = w 1 C m m Q w i w w M L U c WOhh O 20ehMwOmehO O Ze@@cdwe@WO C EMWMWONNhWO M W W @@@@m momMWWCaeOM CONhadekoor

  • OMOhWMwCOM m > c w

NWOSC OCCC=NMSOCM OOOOmmmOCOe OOOm===CCC4 Z 4

== a e e e e e u o e o e e o e o e e e u o e e e e e e e o e e U e e o e o e e o e o e c 07 m OOOOm 2 CCOCOOOOOOm Z OOOOCOOOOOO 2 OOCOOOOOOOO W C C W W W W cm C i O 3 3 m E Z> 2 c a c a c a 2 0 mum m w m w e W m 3 m Zw> Z i E K E Q W 20 h I h 7 E I Z W Jm2 J l w w w JDJ J MOROJ WC@cOOCCOCJ h he@ccCOOCCJ homOOOOOOCJ J 4 3 e e' 904 2 MN@h0rOOOOOe 2 MN@hemOOOOC4 Z WN@hOmOOOOC4 4 O E33 E 3 e a e ok = 4 e e e e o e a e e e> m e o e e e e e e o e em m 4 e e o e o e e o e ok 2 W2W W MmONC O EOOOmmNMmONC C ZOOOmmNMrONO O EOOOwmNMMONO O = >mE www 7 3 mwp M 3

==> 9 3 www I Q3h C l f r

s ' 'q .k C4u t!!ND SPEED (M/S): e.270 0.570 e.750 1.003 1.520 2.000 3.000 5.000 10.800 12.000. t ?)., AVE WIND SPEED (M/S): 0.115 0.385 e.625 0.n75 1.250 1.750 2.500 a.000 7.500 11.000

  • D, c!'n SPEF0 FRE0tlENCY 0.56 0.38 0.09 3.5a 9.90 15.12 33.49 29.37 e.55 0.08 i

5

89 l

e f ' I 9 9 9 9 O, 'l 1 .- ) .} 1 -) .)- s) -) ) ,1 ) W

n_ _.c . - =. - ~ ~. +s USNIC COMPUTED C00E-z00009. VERS!0t: 2.0 RUN DATE 17.JUL-84 RUN TIME 08:49:24 V0GTLE: JF0 4/4/77 TO 4/4/79 TO 4/1/80 10 3/31/81 HTe10.0 DELTA isU-L CLMe.27 '. O A AD t:ASTE SUILDING: CONTINUOUS CROUNO LEVEL RELEASE 8;0 DECAY. UNDEPLETED l CONRFCTED USING STANUARO OPEN TERRAIN FACTORS j O ANNUAL AVERAGE CHI /G (SEC/METFR CUMEO) O! STANCE IN MILES FROM THE 8ITE [ 8EC f fir 0.250 0.500 0.750 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500 O S 4.27AE-05 1.470E-G5 7.565E-06 3.704E 06 1.436E-06 7.676E,-07 4.840E-07 3.373E-07 2.512E-07 1.96tE-07 1.584E-07 SSW 5.310F-05 2.036E-05 1.053E-05 5.175E-06 2.017E-06 1.082E.06 6.842E-07 4.779E-07 3.567E-07 2.790E.07 2.260E-07 S4 6.079E-05 2.068E-05 1.06tE-05 5.179E-06 2.001E.06 1.066E-06 6.709E-07 4.667E-07 3.471E-07 2.706E-07 2.186E-07 q WS4 5.063E-05 1.726E.05 8.867E-06 4.333E-06 1.674E-06 8.924E-07 5.615E 07 3.906E-07 2.905E-07 2.265E-07 1.829E-07 i i 1 5.032F=05 1.722E=05 8.859E-06 4.331F.06 1.674F=06 A.930E-07 5.622E-07 3.912F 07 2.910E=07 2.270E-07 1.834E-07 .) 8 WNW 4.504E.05 1.5a3E-05 7.934E-06 3.878r-06 1.498E-06 7.989E-47 5.028E 07 3.498E-07 2.602E.07 2.029E-07 1.639E-07 q l HM 4.613E-05 1.545E-05 7.897F-06 3.83hE-06 1.470E-06 7.747E-07 4.877E-07 3.379E-07 2.504E-07 1.947E-07 1.568E-07 HW 5.012E-05 1.688E-05 8.64hE-06 4.206E-06 1.614E-06 8.559E-07 5.364E-07 3.719E-07 2.757E-07 2.144E-07 1.728E-07 l N 5.317E-05 1.8t?E-05 9.313E-06 4.542E-06 1.749E-06 9.298E-07 5.839E-07 4.055E-07 3.0llE-07 2.345E=07 1.892E=07 q i NNr 5.033E=05 1.70tE-05 8.719E-06 4.244E-06 8.630E-06 8.650E-07 5.424E-07 3.762E-07 2.790E-07 2.171E-07 1.750E-07 i flF 5.923E.45 2.030E-05 1.044E=05 5.100F.06 1.970E-06 1.050E-06 6.606E-07 4.595E-07 3.417E-07 2.664E-07 2.152E=07 I Ef 8F 5.792E-05 1.980E-05 1.017E-05 a.970E-06 1.923E-06 1.026E-06 6.460E.07 4.4975 07 3.146E-07 2.611E-07 2.110E-07 4 l E 4.432E-05 1.607E-05 8.187F=06 3.945E=O6 1.536E-06 8.193E-07 5.153E-07 3.588E-07 2.664E-07 2.077E-07 1.677E-07 l ESF 4.904E=05 1.667F.-05 A.547F-06 4.177E-06 1.619E-06 8.654E 07 5.458E-07 3.804E=07 2.833E-07 2.212E-07 1.789E-07 j SE 5.276F-05 1.81RE 95 9.357E-06 4.583E 06 1.780E-06 9.527E=07 6.015E-07 4.195E-07 3.127E.07 2.444E=07 1.977E-07 'I SSE 4.03tE-05 1.390E-05 7.156E.06 3.507E.06 1.362E-06 7.291E-07 4.603E-07 3.211E-07 2.393E=07 1.870E-07 1.513E=07 i I ANNUAL AVERAGE CHI /O (SEC/ METER CURED) DISTANCE IN HILES FROM THE $1TE SECTOR 5.000 7.500 10.000 15.000 20.000 25.000 30.000 35.000 40.000 45.000 50.000 N l 3 1.318E-07 6.49?E-04 4.535E-04 2.664E-04 1.83hE-08 1.340E.08 1.094E-08 9.004E-09 7.611E.09 6.565E=09 5.755E-09 SSW t.881E-07 9.894E-08 6.537E-08 3.863E-06 2.675E-08 2.017E-08 1.604E-08 1.322E-08 1.120E=08 9.67AE-09 A.497E-09 SW l.414F-07 9.447E-08 6.196E-08 3.623E 08 2.490E-08 1.867E-08 1.477E-08 1.214E-08 1.024E-04 8.823E-09 7.724E-09 O WSW t.5tRE-07 7.909E-04 5.187E=0A 3.034E 08 2.086E-0P 1.564E-08 1.238E-08 1.017E-08 8.583E=09 7.396E-09 6.476E-09 W t.522F.07 7.933E-0A 5.206E-08 3.047E-08 2.095E-04 1.570E-08 1.243E-08 1.02tE-08 8.622E 09 7.429E=09 6.505t=09 ) WNW l.360E-07 7.087F=08 4.449E-08 2.719E-08 1.668E-09 1.400E.08 1.108E-08 9.10lf 09 7.680E=09 4.616E-09 5.792E-09 } HW t.298E-07 6.693E-08 4.357E-08 2.520E.08 1.718E-08 1.279E-08 1.007E=08 8.229E-09 6.916E=09 5.936E-09 5.179E-09 l NNA 1.43tF=07 7.389E-0A 4.815E-08 2.78AE.08 1.902E-08 1.417E-08 1.116E.08 9.127E=09 7.673E-09 6.588E-09 5.75tE-09 N l.56AE=07 8.132E-09 5.316E=08 1.092E-08 2.lt6E-08 1.58tE-08 1.247E 08 1.022E-08 8.607E-09 7.400E-09 6.468F-09 I NNE 1.449E.07 7.492E-08 4.886E-08 2.833E 08 1.934E-08 1.442E-08 1.136E-08 9.300F-89 7.823E-09 6.720E-09 5.86AE-09 t'E t.786E.07 9.299E-08 6.097E-04 3.563E.OR 2.447E-08 l.833E.08 I J50E 08 1.190E-08 1.004E-08 8.645E-09 7.566E-09 ENE 1.752F=07 9.13RE-08 6.000E-08 1.514E=0A 2.417E-na 1.st3E-08 1.1135F.O R t.179E 08 9.957E-09 8.580E-09 7.514F-09 F t.592F=07 7.245E-08 4.750E-04 2.777E-04 1.909E-08 1.431E-08 1.132E-08 9.301F=09 7.849E-09 6.762E-09 5.920E-09 d ESE 1.497E-07 7.777E-0A 5.117E-34 3.00AE-08 2.072E-04 1.557F-08 1.234E-0A l.015E-08 8.5AlF-09 7.40lE=09 6.487E-09 t SE !.644E-07 b.618E-a8 5.678E=nn 3.342E-08 2.307F-08 l.735E-08 1.377E=08 1.134E-08 9.5P6E-09 8.27?F-09 7.253F-09 SSE I.25PF.u? 6.593E-04 4.344E.0A 2.557E-04 1.765E-09 1.327E-0A 1.053E.08 8.673E-09 7.335f-09 6.330F-09 5.55tE-09 O 1 VENT AND RUILDING PARAMETERS: RELEASE HEIGHT (METERS) 0.00 REP. WINO HEIGHT (METER 8) 10.0 d DIAMETEP (HETERS) 0.00 RU[L0tHG HE{r.HT (METERS) 15.0 EXII VfLOCITY (HETERS) 0.00 FiLOG. MIN.CRS.SFC.4REA (50.MffERS) 450.0 HE AT EHISSION RATE (CAL /SEr) 0.0 AJ ALL GROUND LEVEL AFLEASES. Jj i) .) l I J) g: i

n m l USNRC C0t*PUTER CODE-NOGDOU. VERSION 2.0 EUN DATE 17-JUL-34 CUN 71ME 08:49:24 g V0GTLE: JFD 4/4/77 70 4/4/79 70 4/1/80 TO 3/31/81 HToto.0 DEL 7A IsU-L CLNo.27 O RAD WASTE PHILD1HG CONTIHUOUS GRollND LEVEL RELFASE NO DECav, uhDEPLETED

O.

. 3 { CHI /O (SEC/ METER CUaED) FOR EACH SEGMEN7 O SEGNENT BOUNDARIES IN MILES FROM THE SITE f DI ECTION 5-1 1-2 2-3 3-4 4-5 5-10 10-20 20-30 30-40 40-50 F10M SITE O S 7.435E-06 1.643E-06 5.009E-07 2.548E-07 1.598E-07 7.24tE-08 2.712E-08 1.347E-08 9.027E-09 6.575E-09 SSW l.033E-35 2.303E-06 7.077E-07 3.618E-07 2.277E-07 1.030E=07 3.929E-08 2.027E-08 1.326E-08 9.69tE=09 SW l.045t-05 2.292E-06 6.947E-07 3.52tE=07 2.202E-07 9.934E-08 3.69tE-08 1.877E=08 1.217E-08 8.836E=09 4' '} WSW 8.717E-06 1.917E-06 5.814E-07 2.947E=07 1.843E-07 8.315E-08 3.09tr-08 1.572E-04 1.020E=08 7.407E=09 l-of N d 7.796E-06 1.7thE-06 9.206E-07 2.640E-07 1.65tE-07 7.452E-08 2.770f=08 1.404E-08 9.126E=09 6.626E-09 W 8.70%E-06 3.917E*06 5.820E-07 2.952E-07 1.847E*07 8.34tE-06 3.103E=08 1.579E=08 1.024E-04 7.440E=09 q NW 7.770E-06 1.686E-06 5.054t=07 2.542E-07 1.580E-07 7.052E-04 2.572E-08 1.287E-08 8.254E=09 5.946E=09 HNd 8.502E-06 1.853r-06 5.558E-07 2.799E-07 1.74tE-07 7.783E-05 2.845E-08 1.426E=08 9.154E-09 6.600E=09 N 9.149E-06 2.005E-n6 6.048E-07 3.056E-07 1.906E-07 8.559E-08 3.152E-08 1.590E-08 1.025E-08 7.412E=09 4 NNE A.572E-06 1.87tE=06 5.619E-07 2.832E-07 1.763E-07 7.890E=08 2.890E=08 1.45tE-08 9.327E-09 6.73tE-09 NE 1.026E-05 2.257E=06 6.840E-07 3.467E-07 2.168E-07 9.778E-08 3.630E-08 1.843E-08 1.193E-08 8.659E-09 5 EHE 9.999E=06 2.201E=06 6.688E-07 3.395E-07 2.126E-07 9.605E-08 3.579E.0a 1.823E-08 1.183E-08 8.593E-09 4 E 8.072E-06 1.762E=06 5.336E-07 2.703E*07 1.690E-07 7.619E=08 2.830E-08 1.439E=08 9.326E=09 6.773E-09 l ESE 8.410E-06 1.453E-06 5.648E-07 2.474E-07 1.802E-07 8.170E-08 3.060E-08 1.565E=08 1.018E-05 7.412E-09 ~ SE 9.196E=06 2.035E-06 6.224E-07 3.172E*07 1.992E-07 9.049E=08 3.401E-08 1.744E=08 1.136E-08 8.294E-09 O SSE 7.033E-06 1.557E-06 4.763E=07 2.427E-07 1.524E-07 6.923E-08 2.602E=08 1.334E=08 8.695E-09 6.339E-09 1 l 1< s j 3' O l l a o .) l t 3 .) 4 i I

O! USN:C C0aPUTER CODE-200000, VERSION 2.8 CUN DATE 17=JUL-84 RUN TIME 08:49:28 ~ g-V0GTLE JFD 4/4/77 TO 4/4/79 TO 4/t/Se TO 3/31/91 Nielo.0 DELTA TeU.L CLNo.27 O' RAD WASTE 8HILDING: CONTINUOUS G40UNO LEVEL RELEASE 2.260 DAY DECAYe UNDEPLETED q, C0%RECTED USING STANDARO OPEN TERRAIN FACTORS ANNUAL 4VERAGE CHI /O (SEC/ METER CumED) DIST ANCE IN MIL ES FROM THE SITE O i SECTOR 0.250 n.500 0.750 1.000 1.500 2.n00 2.500 3.000 3.500 4.000 4.500 i S 4.269E.05 1.464E=05 7.5taE.06 3.67tE-#6 1.417E-06 7.538C-97 4.73tE.07 3.282E-07 2.434E-07 1.892E-07 1.523E-07 SSW 5.789E=05 2.n20E-05 1.04tE=05 5.095E=06 1.970E=06 1.048E=86 6.575E=07 4.556E 07 3.373E-07 2.610E-07 2.104E=n7 SW 6.065E=05 2.058E-05 1.055E.P5 5.127E.06 1.97tE-06 1.045E.06 6.542E=07 4.528E.07 3.351E=07 2.600E=67 2.089E.07 .s, WSW 5.048E-05 1.716E=05 8.787E-06 4.280E.06 1.643E-06 0.784E=47 5.442E-07 3.76tE-07 2.779E=07 2.153E-07 1.728E=07 N 5.020E=05 1.714E.95 8.792E-06 4.287E=06 1.649F-06 8.747E.07 5.478E.07 3.792E-07 2.006E=07 2.177E-07 8.759E 07 WN4 4.495E 05 1.535E-05 7.874E.06 3.638E-06 1.475F=06 7.824E-07 4.898E-07.3.390E-07 2.508E-07 1.945E=b7 1.563E 07 9 ! N4 4.607E-05 1.54tE 05 7.865E-06 3.815E-06 1.458E.06 7.703E=07 4.812E-07 3.325E 07 2.458E.07 1.9051 07 1.53tE=07 NNw 5.002E.05 1.6RIE=o5 8.594E-46 4.172E=06 1.594E=06 8.420E-07 5.256E=07 3.629E-07 2.679E-07 2.075E=37 1.665E-07 N 5.385E.45 1.803E-05 9.246E-06 4.498F-06 1.723E-06 9.ll7E=07 5.697E.07 3.937E.07 2.909E.97 2.254E.01 1.809E.n7 9 NNE 5.025E-05 1.695E-85 8.675E-06 4.2tSE=06 1.613E 06 8.531E 07 5.331E.07 3.684E 07 2.723E 07 2.lllE-07 8.696E.07 { NE 5.914E.05 2.024E 05 1.039E.05 5.069E-06 1.95tE-06 1.037E 06 6.503E.07 4.509E-07 3.342E 07 2.598E=07 2.092E=07 1 ENE 5.781E=05 1.974E 05 1.ot?E-05 4.939E-06 1.904E-06 1.013E=06 6.357E.07 4.411E.07 3.272E.07 2.5e4E.07 2.050E.07 L 4 E 4.M27E-05 1.604E-05 8.lelE-06 3.968E 06 1.528E-06 8.124E=07 5.099E-07 3.539E=07 2.625E-07 2.042E-07 1.646E-07 j ESE 4.896E.45 1.662E 05 9.505E-06 4.149E.06 1.603E=06 8.539E=07 5.367E.07 3.720E-07 2.767E.07 2.tS4E-07 1.136E.07 SF 5.26tE.05 1.807E 05 9.272E=06 4.527E 06 1.747E-06 9.292E-07 5.829E=07 4.040E=07 2.993E-07 2.324E-07 8.R69E-07 t q j SSE 4.018E 05 1.38tE=05 7.088E-06 3.462E-06 1.336E=06 7.105E 07 4.456E.07 3.088E=07 2.287E-07 1.775E-07 1.427E-07 l ) ANNU1L AVERAGE CHI /O (SEC/ METER CU9ED) DISTANCE IN MILES PROM THE SITE O 5 SECTOR 5.000 7.500 10.000 15.000 20.000 25.n00 30.000 35.000 40.000 45.000 50.000 S 1.260E.07 6.447E-08 4.154E=88 2.344E-08 1.557E=08 1.130E-08 8.667E.09 6.9ttE.09 5.649E 09 4.752E 09 4.052E 09 i l SSW 1.737E-07 4.789E-48 5.593E-08 3.080E-08 1.998E=08 1.420E-08 1.069E-08 8.38tE=09 6.776E-09 5.609E-09 4.732E-09 ) i Sd 1.726F.07 8.774E.08 5.624E-08 3.149E.08 2.079E-08 1.50tE-08 1.147E=08 9.lt6E.09 7.458E=09 4.238E-09 5.310E.09 i WSW t.425E-07 7.197E-c8 4.58tE-08 2.53tE.08 1.65tE-08 1.180E.08 8.93tE=09 7.04aE=09 5.789E.09 4.755E=09 4.027E=09 ,), i W l.445E-07 7.34tE.04 4.700E-n8 2.625E.08 1.728E-ns 1.244E=08 9.481E-09 7.538E.09 6.137t=09 5.123E.09 4.353E=09 WN4 1.29tE=07 6.552E-08 4.19tE.08 2.338E-08 1.537E=08 1.186E-08 8.414E.09 6.677E-09 5.450E.09 4.550E-09 3.866E-09 )l 6 hw l.264E.07 6.434E-08 4.135E=en 2.333E-08 1.553E=0R 1.130E=08 8.692E.09 6.953E=09 5.715E.09 4.40tE.09 4.10tE-09 3 NNW l.174E.nF 6.951L-04 4.442E-on 2.477E.04 1.63tE=0A 1.176E-08 8.969E.09 7.11 % O9 5.816F=09 4.858E.09 4.129E=09 I N 1.492E 07 7.553E-08 4.823E-08 2.(84E-08 1.763E-0R 1.268E=08 9.66tE-09 7.662E.09 6.259E-09 5.230E 09 4.449E-09 f NhF 1.400E.07 7.134E-en 4.563E=OM 2.563E=0A 1.699F=08 1.232E-08 9.453E-09 7.545E.39 6.197E.8) 5.203E=09 4.444E=09 .} l l NE 1.73tE-07 8.875E-04 5.732E-08 1.256E.08 2.177E.08 1.599E-08 1.227E-08 9.844E-09 0.121E.09 6.845E=09 5.867E 09 t ENE 1.696E=07 8.713E-08 5.635E 08 3.206E.n8 2.146E 08 1.569F=08 1.212E-08 9.730E=09 8.033E=09 6.774E-09 5.810E.09 l F t.363E-07 7.024E=08 4.559E.08 2.614E-08 1.762E=08 1.296E=08 1.007E.08 8.120E.09 6.730E-09 5.694E-09 4.898E=09 'I ESE t.438E=07 7.399E=04 4.792E.08 2.730E.08 1.829E-08 1.337E=08 1.033E.08 8.296E=09 6.847E=09 5.773E-09 4.950E.09 8 SE 1.544E=87 7.85tE=04 5.023E=04 2.797E-08 1.435E-08 1.317E-08 1.001E-08 7.934E-09 6.448E.09 5.375E=09 4.562E.09 S5F 1.179E-07 5.989E.08 3.R29E=0A 2.12AE 08 1.313E-0R 9.9PoE=09 7.569E-09 5.974E 09 4.856E=09 4.038E=09 3.419E=09 ') j l VENT AND BUILDING PARAMETERS: l RELEASE HEIGHT (HETERS) 0.00 REP. MINO HEIGNT (METERS) 10.0 ') ; i UIaMETER (METERS) 0.00 BUILDING HEIGHT (METERS) 15.0 EXIT VELOCITY (METERS) 0.00 PLOG. MIN.CRS.SFC. AREA (SQ.NETERS) 450.0 d li HEAT EMISSION PATE (CAL /SEC) 0.0 4 y ALL _. L -.EL,ASeS. 5 I J' t bl t

T Q USNIC C0HPUTER CODE-u00001,VERSICH 2.0 CUN DATE 17-JUL*84 GUN Tite 08:G9:28 s Y GTLE: JF0 4/4/77 TO 4/4/79 TO 4/t/80 70 3/31/81 HT*10.0 DELTA T*U-L CLMe.27 .O 3 CAD WASTE BUILDING: CON 71HUUUS GROUND LEVEL RELEASE ? 2.260 DAY DECAY, UNDEPLETED 9; CHI /O (SEC/ METER CUAED) FOR EACH SECMENT 1 SEGMENr 800NDARIE3 IN MILES FROM THE SITE O f 0!EEtt10* .5-1 1-2 2-3 3-4 4-5 5-10 10-20 20-30 30-40 a0-50 FROM SITE 7.389E-06 1.623E-06 a.900E-07 2.470E-07 1.535E-07 4.795E-00 2.196E-08 1.138E=48 6.9COE=09 a.765E-09 O, S$w 1.022E-05 2.254E-06 6.809E-07 3.a23E-07 2.lP4E-07 9.27at-08 3.159E=0A 1.434E-08 8.428E-09 5.630E-09 5d 1.036E-05 2.26tE-n6 6.779E-07 3.401E-07 2.106E-07 9.259E-0E 3.223E-08 1.515E-08 9.157E-09 6.2' 6 E-0 9 9 W8W 8.644E-06 1.886E-06 5.639E-07 2.821E-07 1.742E-07 7.602E-08 2.596E-08 1.19tE-08 7.077E-09 s.77tE-09 w 8.645E-06 1.891E=n6 5.675E-07 2.848E-07 1.763E-07 7.747E-08 2,687E-08 1.255E-08 7.552E-09 5.134E-09 MNd 7.742E-06 1.692E-06 5.075E-07 2.546E-07 1.575E-07 6.915E-08 2.394E-08 1.lt5E-04 6.709E-09 4.563E-09 O-Nd 7.74tE-ne 1.676E-06 e.98ME-n7 2.495E-07 1.543E*07 6.791E=08 2.387E-08 1.138E-08 6.977E-09 a.813E-09 NHW 8.a55E-06 1.R33E-06 5.449F-07 2.72nE-07 1.679E-07 7.344E=08 2.538E-08 1.186E-68 7.15tE609 4.872E-09 N 9.008E-06 1.97'E-06 5.905E-07 2.953E-07 1.8PoE-07 7.978E-08 2.750E-08 1.279E-08 7.696E-09 5.245E-09

j HNE 8.53tE-06 1.aSeE-06 5.526L-07 7.765E-07 1.709E-07 7.510E-08 2.623E-08 1.242E-08 7.577E-09 5.216E-09 9'

NE I.02tE-05 2.238E-06 6.736E-07 3.392E-07 2.108E-07 9.351E-08 3.326E-08 1.601E-08 9.88tE-09 6.86tE-09 c. ENE 9.955E-06 2.lM2E-06 6.58eE-07 3.320E-07 2.065E-07 9.178E-08 3.274E-08 1.583E-te 9.766E-09 6.790E-09 i E A.04ME-06 1.752E-06 5.28tE-07 2.664E-07 1.659E-07 7.397E-08 2.668E-08 1.305E-C8 8.147E-09 5.706E-09 0; ESE 8.372E-06 1.836E-n6 5.557E-07 2.80AE-07 1.749E-07 7.79tE-08 2.788E-08 1,347E=08 8.327E-09 5.786E-09 d. SE 9.ll8E-06 2.00lE-06 6.037E-07 3.037E-07 1.A83E-07 8.281E-08 2.864E-08 1.328E-08 7.953E-04 5.392E-09 0 i SSE 6.971E-06 1.53tE-06 a.615E-07 2.321E-07 1.a38E-07 6.318E-08 2.180E-08 1.007E-08 6.004E*09 4.052E-09 9l i l O 4 9 i ) 0 4 9 -) i i O O l ] r'

s .. 4 USNIC C0'GUTER CODE z00003, VERS!0N 2.0 RUN DATE 17-JUL-84 RUN 7tME 08:49:34 V0 GILE: JF0 4/a/77 TO 4/4/79 TO 4/t/8'O TO 3/31/81 Histo.0 DELTA TsU L CLMe.27 GAD WASTE BUILDthGs CONTINUGUS GROUND LEVEL RELEASE - g 9.000 DAY DECAY. DEPLETED COMECTED USING ST.ANDARD OPEN TERRAIN FACTORS . O ANNUAL AVERAGE CHI /O (9EC/ METER CHAED) DISTANCE IN MILES FROM THE SITE SECTOR 0.250 0.500 0.750 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500 O 3-4.0a6E.05 1.3 ale.05 6.728E 06 3.25aE=06 1.215E-06 6.3235 07 3.895E.07 2.65PE-07 1.942E-07 1.490E-07 1.105E=07 SSW 5.493E.05 1.R55E.05 9.35tE-06 4.510E-06 1.701E-06 8.877E-07 5.479E.07 3.74aE-07 2.739E 07 2.103E=07 1.672F.07 SW 5.750E-05 1.A86E.05 9.43tE 06 4.520E=06 1.692E-06 8.778E.07 5.395E.07 3.675E 07 2.601E.07 2.053E=07 1.65tE.07 g W5W 4.787E-05 1.573E-05 7.88tE-06 3.779E-06 1.414E.06 7.337E 07 4.508E.07 3.069E-07 2.230E 07 1.713E=07 1.360E=07 4 4.759E-05 1.57tE.05 7.878E-06 3.780E.06 1.416E-06 7.35tE-07 4.520E.07 3.079E.07 2.247E-07 1.72tE-07 1.368E-07 WNW 4.25*E=05 1.407E.05 7.055E.06 3.384E.06 1.267E.06 6.576E 07 4.082E-07 2.754E=07 2.009E.07 1.539E=07 1.222E 07 g HW a.16aE-05 1.4tnE-05 7.029E-06 3.353E-06 1.245E.06 6.428E 07 3.935E.07 2.672E=07 1.944E-07 1.445E-07 1.177E 07 NNW 4.74tE-OS 1.Sa0E=05 7.692E=06 3.673E.06 1.366E.06 7.058E.07 4.320E.07 2.933E-07 2.134E.07 1.631E.07 1.293E-07 N 5.028E-05 1.652E.05 R.2b?E.06 3.965E.06 1.879E-06 7.656E-07 4.697E-07 3.194E-07 2.326E-07 1.779E=07 1.412E 07 9 NNE 4.762E-05 1.55tE-05 7.759E-06 3.706F.06 1.38aE.06 7.334E 07 4.372E.07 2.970E.07 2.162E-07 1.653E-07 1.3tlE-07 NE 5.603E-05 1.852E=05 9.292E.06 4.457E.06 1.668E-06 8.662E=07 5.327E-07 3.630E-07 2.649E.07 2.030E.07 1.614E.07 ENE 5.479E-05 1.807E-05 9.051E-06 4.343E.06 1.628E-06 8.463E.07 5.209E.07 3.552E.07 2.594E-07 1.989E=07 1.502E-07 9 E a.572E-C5 1.a67E-05 7.289E=06 3.4R4E 06 1.304E-06 6.768E-07 4.162E-07 2.836E-07 2.070E=07 1.587E=07 1.26tE-07 ESE 4.639E.05 1.52tE.05 7.606E-06 3.6e9E.06 1.37tE.06 7.139E 07 4.400E.07 3.004E.07 2.196E.07 1.685E=07 1.3 ale =07 SE 4.990E.05 1.657E.05 8.317E-06 3.99aE.06 1.504E=06 7.832E-07 4.828E.07 3.296F-07 2.409E=07 1.049E.07 1.47tE-07. w q l SSE 3.8 t lF =05 1.267L-05 6.360E-06 3.058E 06 1.15tE-06 5.993E-07 3.694E=07 2.522E-07 1.843E.07 1.414E-07 1.125E 07 O ANNUAL AVENAGE CHI /O (SEC/ METER CUPED) DISTANCE IN HILES FRDM THE SITE SECTOP 5.000 7.500 10.000 15.000 20.000 25.000 30.000 35.000 40.000 45.000 50.000 O S 9.695E.08 4.76aE-0E 2.967E-08 1.593E 08 1.018E.08 7.159E-09 5.345E-09 4.160E 09 3.330E.09 2.741E.09 2.292E-09 SSd 1.370E-n? 6.734t.08 4.190E.08 2.238E.08 1.422E.08 9.93tE-09 7.36tE-09 5.686E.09 4.520E.09 3.690E.09 3.063E=09 Sd 1.3 3 3E-07 6.516f =nq 4.043E-68 2.157E.08 1.373E=08 9.619E.09 7.160E.09 5.556E.09 4.447E.09 3.643E.09 3.040E-09 WSW

l. tite-07 5.e20E-08 3.356E-08 1.782E.08 1.129F.08 7.875E.09 5.834E.09 4.507E=09 3.591E-09 2.929E.09 2.43aE=09 O.

W t.117E.07 5.465E=08 3.391E 08 1.409E=0A 1.150E-08 8.049E 09 5.984E-09 4.639E=09 3.708E=09 3.034E-09 2.529E 09 WNd 9.985F=04 4.RRIF.08 3.027E=08 1.613E-08 1.025E.08 7.165E-09 5.323E-09 4.124E 09 3.29ar.09 2.694E.09 2.2e4E-09 NW 9.603E-08 4.665E=08 2.883E.08 1.532E.08 9.734E.09 6.818E-09 5.078E.09 3.945E 09 3.162E-09 2.595E=09 2.170E-09 I NNW l.054E-07 5.116E.04 3.158E=08 1.672E.J8 1.058E-08 7.382E.09 5.476E.09 4.239E.09 3.384E=09 2.767E.09 2.305E.c9 N 1.tS2E-07 5.608L-04 3.467E-08 1.839E-08 1.165E.03 8.12aE-09 6.024E.09 4.660E.09 3.718E 09 3.037E-09 2.528E-09 NNE 1.070E.07 5.201E.08 3.236E.08 1.708E-09 1.084E-08 7.58tE.09 5.635E.09 a.37eE.09 3.500E.09 2.86AE-09 2.3,aE.09 I NE 1.31*E.07 6.e65E=0A 4.02tE=0A 2.155E.08 1.377E.08 9.690E-09 7.24tE.09 5.642E-09 4.532E.09 3.727E-09 3.122E 09 ENE 1.294E-07 6.352E 08 3.956E pA 2.124E-06 1.360E.0n 9.577E-09 7.163E-09 5.586E=09 4.49tE=09 3.695E-09 3.097E.09 E I.03tE-07 5.062E-84 3.154E-08 1.697E 08 1.089E-08 7.690E-09 5.769E.09 4.5ttE-09 3.636E=09 3.000E.09 2.52tE-09 O ESE 1.097F=07 5.403E.08 3.37tF=04 1.835E.08 1.164E-08 8.205E-09 6.143E.09 4.794E.09 3.856E.09 3.174E-09 2.66tE.09 SE 1.203E-07 5.9n9E.04 3.676E-08 1.966E-on 1.25tE.On 8.757E 09 6.509E.09 5.042E.09 C.027E-09 3.292E.09 2.74tE.09 SSE 9.200E.0* 4.517E.08 2.809E=08 1.502E-08 9.556E-09 6.687E.09 4.968E=09 3.849F-09 3.072E=09 2.5tlE=09 2.090E-09 0 YENT AND RUILDING PARAMETERSI NELEASE HEIGHT (HETERS) 0.00 RFP. h!Hn HEIGHT (HETERS) 10.0 O, ? DIAMETER (METFRS) 0.00 BUILDING HEtnHT (HETEHS) 15.0 EAIT VELOCITY (HETERS) 0.00 BLDG. MIN.CRS.SEC. AREA (SQ. METERS) 450.0 Y HE AT EHISSION RATE (CAL /SEC) 0.0 l ALL GROUND LEVEL RELEASES. O Ls

)

O

m m USNIC COMPUTEQ CODE-It0:000.VFR810H 2.0 EUN D6TE 17-JUL-84 RUN TIME 00:49:34 V0GTLE: 'JFD 4/en7 70 4/4/79 TO 4/1/8e TO 3/31/41 HTuto.0 DELT4 TmU-L CLMe.27 .O' t I c40 wnSTE BUILDING: CONTINUGUS GROUND LEVEL ret. EASE 8.000 DAY DEC4f, DEPLETED - 9 j CHI /O (SEC/ METE 9 CUBCO) FOR E4CH SFGMENT SEGHENT 80UN04 RIES IN MILES FROM THE 8tTE O / 'OtEECTION .5-1 3-2 2-3 3-4 4-5 5-10 10-20 20-30 30-40 40-50 ( FROM StTE S 6.660E-06 1.405E-n6 4.040E-Of 1.974E-07 1.196E-07 LetlE-OS 1.643E-08 7.239E-09. 4.185E-09 2.75tt-09 { SSW 9.243E-06 1.964E-06 5.69tE-07 2.784E-07 1.688E-07 7.150E-08 2.309E-G8 1.005E-08 5.724E-09 3.706E-09 SW 9.343E-06 1.959E-06 5.609E-07 2.726E-07 1.646E-07 a.930E=08 2.228E-08 9.732E-09 5.592f=09 3.658E-09 q. WSm 7.803E-06 1.637F-06 4.686E-07 2.775E-07 1.373E-07 5.767E-08 1.842E-08 7.970E-09 4.537E-09 2.942E-09 W 7.796E-06 1.639E-06 4.699E-07 2.295E-07 1.380E-07 5.812E-08 1.868E-08 8.ta3E-09 4.668E-09 3.046E-09 j ENW 6.982E-06 1.467E-06 4.203E=07 2.042E-07 1.233E-07 5.19tE-08 1.666E-05 7.250i=09 4.150E-09 2.705E-09 Nw 6.966F=06 1.446E-o6 4.095E of 1.977E-07 1.388E*07 4.970E-08 1.584E-08 6.899E-09 3.97tE-09 2.606E-09 Of NNW 7.619E-06 1.585E-06 4.494E-07 2.171E of 1.304E-07 5.45tE-08 3.729E-08 7.473E-89 4.267E=09 2.779E-09 l N 8.j94f=06 1.714E-06 4.885E-07 2.366E-07 1.425E-07 5.97tE-08 1.901E-08 8.223E-09 4.69tE-09 3.050E=09 q' NNE 7.682E-06 1.601E-06 4.54fE-07 2.199E-07 1.323E-07 5.540E-08 1.766E-08 7.573E-09 4.402E-09 2.880E=09 NE 9.194E-06 1.932E-06 5.538E-07 2.694E-07 1.628E-07 6.874E-00 2.224E-08 9.800E-09 5.676E-09 3.742E=09 ENE 8.962F.=06 1.884E=o6 5.418E-07 2.63ME-07 1.596E*07 6.750E=08 E.192E-08 9.684E=09 5.639E=09 3.709E=09 O (c F 7.238E-06 1.510F=06-4.326E-07 2.105E-07 1.273E-07 5.38tE-08 1.750E-08 7.775E-09 4.537E-09 3.0 lE=09 l ESE 7.537t=06 1.585E-06 4.572E-07 2.232E-07 1.353E-07 5.738E-08 1.87tE-08 8.295E-09 4.822E-09 3.186E-09 SE 8.232E-06 1.738E-06 5.017E-07 2.449E-07 1.484E-07 6.277E-08 2.028E-08 8.859E-09 5.074r-09 3.306E-09 ? 9 ! SSE 6.295E-06 1.330E-06 3.838E=07 1.873E-07 3.135E 4.799E-08 1.550E-08 6.765E-09 3.873E-09 2.52tE-09 2 l qt 3 O ( a C 7 s C Q I ~ I j 4l 1 4 m) O! A 0

  • )f k

s! 3 kl .b I f

  • Ql USNRC COMPUTER CODE-300DnQ.VERSIEN 2.0 EUN 047E 17-JUL-84 RUN TIME 0A:40 42 i

D' VnG7LEt JFD 1/4/77 TO 4/4/79 7n 4/1/80 70 3/31/81 NTato.4 DELTA Tsu-L CLws.27 RAn WASTE SUILDING8 CONTINUGUS GROUNO LEVEL RELEASE CORf ECTED USING STANDARD UPEN TFRRAIN FACTORS - O 4eeeeeeeeeeeeeeeeeeen RELATIVE DEPOSITION PER UNIT ARE4 (Hee =2) AT FINED POINTS SY 00HNWI40 SECTORS seeeeeeeeeeeeeeeense DIRECTION DISTANCES IN HILES 0 FROH SITE 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 1.126E-07 3.807E-98 1.955E=08 9.293E-09 3.33nE-09 1.655E-09 9.747E-10 6.392E-to 4.49tE-10 3.328E-10 2.565E-10 $$h I.346E-07 4.552E-08 2.317E-09 1.11tE-08 3.99tE-09 1.979E-89 1.16fE=09 7.63tE-10 5.370E-10 3s980E-10 3.067E-to 0; SW t.702E-07 5.754E-08 2.954E-08 1.405E-08 5.045E-09 2.5025-09 1.473E-09 9.647E-lo 6.788E-10 5.03tE-10 3.877E-10 uSW t.462E-07 4.945E-08 2.539E-08 1.207E-08 4.336E-09 2.150E=09 1.266E-09 8.29aE-10 5.434E-13 4.323E-10 3.332E-10 W t.3ttE-07 4.434E-08 2.277E-08 1.082E=0m 3.889E-09 1.928E-09 1.135E-09 7.434E-lo 5.23tE-to 3.877E-10 2.987E-in Ot WNW t.155E-07 3.905E-06 2.005E-09 9.532E-09 3.424E-09 1.698E-09 9.999E-10 6.547E-10 4.60?E-10 3.41sE-10 2.63tE-10 NW l.222E-07 4.132E-08 2.12tE-08 1.009E-08 3.623E-09 1.797E=09 1.058E=09 6.927E 10 4.874E-10 3.612E-10 2.783E-10 NNW 3.2tif-07 4.093E-08 2.102E-08 9.995E-09 3.590E-09 1.78tE-09 1.045E-09 6.865E-10 4.85tE-10 3.580E-10 2.759E-to N t.4n5E-07 4.750E-08 2.439E-08 1.tS9E-08 4.164E-09 2.065E-09 1.216E-09 7.963E-10 5.603E-10 4.152E-10 3.200E-to gi NNE I.454E-07 4.918E-08 2.52SE-08 1.200E-08 4.312E-09 2.13PE-09 1.259E-09 8.245E-10 5.801E-to 4.299E-10 3.313E-tu NE 1.675E-07 5.664E-06 2.908E-08 1.383E-08 4.966E-09 2.463E-09 1.450E-09 9.495E-10 6.68tE-lo 4.95tE-10 3.016E-to g ENE 1.797E-07 6.077F=08 3.120E-08 1.483E-08 5.329E-09 2.643E-09 1.556E-09 1.019E-09 7.169E 10 5.313E-10 4.094E-10 E 1.984E-07 6.709E-09 3.444E-08 1.637E-08 5.R82E-09 2.917E=09 1.718E=09 1.125E-09 7.913E-10 5.865E-10 4.519E-10 ESE 1.782E-07 6.026E-08 3.094E-08 1.47tE-08 5.284E-09 2.620E-09 1.543E-09 1.010E-09 7.109E-10 5.268E-10 4.060E-10 g' SE !.545E-07 5.224E-08 2.682E-08 1.275E-08 4.580E-09 2.27tE=09 1.337E-09 8.757E-10 6.162E-10 4.567E-10 3.519E-10 SSE 9.842E-08 3.328E-04 1.709E-08 8.124E-09 2.918E-09 1.447E-09 8.521E 10 5.580E-10 3.926E-10 2.910E-10 2.242E-10 DIRECTION DISTANCES IN NILES FROM SITE 5.00 7.50 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 S 2.038E-10 9.05tt-It 5.483E-tt 2.77tE-11 1.677E-Il 1.129E-It 8.059E-12 6.05tt=12 4.705E-12 3.758E-12 3.068E-12 0l SSW 2.436E-10 1.082E-to 6.556E-fl 3.314F-11 2.006E-Il 1.345E-11 9.636E-12 7.235E-12 5.626E-12 4.494E-12 3.660E-12 SW 3.080E-10 1.368F-t o 8.288E-11 4.189E-I t 2.5 55E-Il 1.700E-Il 1.218E-Il 9.146E-12 7.112E-12 5.68tE-12 4.637E-12 WSW 2.647E-to 1.176E-10 7.122E-It 3.600E-It 2.179E 11 1.46tE-11 1.04?E-11 7.860E-12 4.tl2E-12 4.882E-12 3.9tSE 12 l M 2.373E-10 1.054E=10 6.387E-Il 3.228E-ll 1.954E-It 1.310E-tt 9.387E-12 7.048E-12 5.480E-12 4.378E-12 3.573E-12 0; i WHW 2.090E-10 9.285F-It 5.624E-Il 2.843E-11 1.72tE-It 1.154E-11 8.267E-12 6.207E-12 4.826E-12 3.855E-12 3.147E-12 NW 2.2tlE-10 9.823E-II 5.95tE-11 3.008E-Il 1.820E-It 1.22tE-tg 8.746E-12 6.567E 12 5.106E-12 4.079E-12 3.329E 12 ) NN4 2.192E-10 9.736F-11 5.898E-11 2.98tE-it 1.804E-11 1.210E-Il 8.668E-12 6.509E-12 5.06tE-12 4.043E-12 3.300E-12 N 2.542E-10 1.129E=to 6.84tE-It 3.458E-st 2.093E-st 1.403E-It 1.005E 11 7.549E-12 5.870E-12 4.689E-12 3.827E=12 NhE 2.632E-10 1.169E-10 7.083E=tt 3.58nE-fl 2.167E-Il 1.453E=ll 1.04tE-It 7.817E-12 6.078E-12 4.855E-12 3.963E-12 0 1 NE 3.05tE-10 1.347E-10 8.157E-It 4.123E-tt 2.496E It 1.673E=tt 1.199E-11 9.003E-12 7.000E-12 5.59tE-12 4.564E-12 i ENE 3.253E-10 1.445E-10 A.753E=ll 4.424E-ll 2.678E-it 1.795E-11 1.286E-11 9.660E-12 7.5tlE-12 6.000E-12 4.497E-12 E 3.590E-10 1.595E-to 4.662E-fl 4.883E-11 2.956E-it 1.982E-ft 1.420E-11 1.066E-11 8.29tE-12 6.623E-12 5.406E-12 O,. l ESE 3.225E-10 1.433E-to 8.679E=lt 4.307E-11 2.655E=tt 1.780E-tt 1.276E-tt 9.579E-12 7.448E-12 5.949E-12 4.856E-12 SF 2.796E-10 1.242E-to 7.523E-11 3.803E 11 2.302E-st 1.543E-It 1.106E-it 8.303E-12 6.456E-12 5.157E-12 4.209E-12 SSE 1.74 tE-In 7.913f-11 4.793E-It 2.423E-11 1.466E-I t 9.832E-12 7.045E-12 5.2gnE-12 4.113E-12 3.286E-12 2.682E-12 3 O. i 0. i 4 l a, O j ? J O

- = - -. _ - ~ ~em m :. x q U$NRC COMPUTED CODE-A00000,VECSION 2.0 RUN DATE 17-JUL-84 RUN TIME 08:49:42 V0GTLE: JFD 4/4/77 TO 4/4/79 TO 4/1/80 TO 3/31/81 His10.0 del.TA Tsu-L CLHa.27 .O CAD t'ASTE HVILDINEc CCNTINUGUS GROUND LEVEL RELEeSE 3 seeeeeeeeeeeeeeeeeeeeeee RELATIVE DEPOSITION PER UNIT AREA (Mee-2) BY DOWNWIND SECTORS

  • eseeeeeeeeeeeeeeeeeeeee SEGMENT 8OUNDARIES IN MILES O

DIRECTION 51 1-2 2-3 3-4 4-5 5-10 10-20 20-30 30-40 40-50 FsnM SITE S 1.9ttE-08 3.913E-09 1.022E-09 4.588E-10 2.596E-lo

  • 962 East 2.884E-It 1.145E-11 6.tl2E-12 3.783E-12 9

SSW 2.284E-08 4.679E-09 1.222E-09 5.486E-10 3.104E-to 3,194Ewt3 3 453E-Il 1.369E-fl 7.308E-12 4.523E-12 SW 2.F88r-08 5.9tSE-01 1.544E-09 6.935E-10 3.923E-10 't.509E-13 4.365E-11 1.730E-11 9.238E-12 5.71RE-12 { t:S:t 2.482E-04 5.043E-09 1.327E-09 5.960F-10 3.372E-10 1.297E-10 3.75tE=lt 1.487E-It 7.939E-12 4.914E *2 9 i W 2.225E-08 4.558E-09 1.190E-09 5.345E-10 3.n232-10 1.163E-10 3.364E-lt 1.333E-11 7.119E-12 4.s06E-12 WNM l.960E-06 4.014E-09 1.048F-09 4.707E-lo 2.663E-10 1.024E-10 2.962E-11 1.174E-It 6.270E-12 3.88tE-12 NW 2.073E=0d 4.297E-09 1.109E-09 4.980E-10 2.817F-10 1.083E-10 3.134E-Il 1.242E-11 6.633E-12 4.106E-12 q NNW 2.055E-08 4.209E-no 1.099E-09 4.935E-10 2.792E-13 1.074E-10 3.106E=ll 3.231E-It 6.574E-12 4.069E-12 N 2.3n4E-04 4.882F=09 1.275E-09 5.724E-10 3.239E-lo 1.245E-10 3 603E=ll 1.428E-it 7.625E-12 4.720E-12 NNE 2.468E-On 5.055E-n9 1.320E-09 5.927E-10 3.353E-10 1.289E-10 3.730E-11 1.479E=ll 7.896E-12 4.887Ep12 g NE 2.842E-09 5.822F=09 1.520E-09 6.826E-10 3.862E-10 1.465E-lo 4.296E=ll 1.703E-11 9.093E-12 5.628E=12 ENE 3.050E-09 6.247E-09 1.63tE=09 7.325E-10 4.144E-10 1.593E-10 4.610E-11 1.827E-It 9.757E-12 6.039E-12 E 3.367E-08 6.096E-09 1.800E-09 8.085E-lo 4.574E-10 !.759E-10 5.089E-tt 2.017E-It 1.077E-11 6.666E*12 3j ESE 3.024E-08 6.195E-09 1.617E=09 7.263E-10 0.109E 10 1.580E-10 4.57tE=ll 1 812E-It 9.675E-12 5.988E*12 SE 2.62tE-00 5.370E-09 1.402E-09 6.296E-10 3.562E-10 1.370E-10 3.962E-It 1.570E-11 8.386E-12 5.191E-12 l'. SSE t.670E=08 3.421E-09 8.93tE-10 4.0tlE-10 2.269E-10 8.727E-It 2.525E-11 1.001E-tt 5.343E-12 3.307E-12 9[ j-VENT AND BUILDING PARAMETERS RELEASE HEIGHT (HETER $) 0.00 REP. WIND HEIGHT (METER 8) 10.0 O DIAMETER (HETERS) 0.00 BUILDING HEIGHT (HETER 8) 15.0 k EXIf VELOCITY (HETERS) 0.00 RLDG. MIN.CRS.8EC. AREA (80. METER 8) 450.0 HEAT EMISSION RATE (CAL /SEC) 0.0 g All GROUND LEVEL RELEASES. 0 q O 0 i# )- 1 0 ) '2 ) p 4 )

l O f USN;C COMPUTEP CODE =XnID0hvE::SION 2.0 CUN DATE 17-JUL*44 CUN TIME 08:40t42 VDGTLEs JFD 4/4/77 to 4/4/79 TO 4/1/80 TO 3/31/A1 HTale.0 DELTA TeU=L CLMe.27 CA3 ::ASTE SUILDING CONTINUONS 4ROUND LEVEL RELEASE l-C0ZRECTED USING STANDARD OPEN TERRAIN FACTORS j SPECIFIC POINTS OF INTEREST 0 RELEASE TYPE OF DIRECTION DISTANCE X/0 X/0 X/0 D/0 ID LOCATION FROM SITE (MILES) (METERS) (SEC/ CUR. METER) (8EC/CUS. METER) (SEC/ Cue. METER) (PER SQ. METER) NO DECAY 2.260 DAY DECAY 8.000 DAY DECAY f UNDEPLETED UNDEPLETED DEPLETED A SITE BNDRY 3 1.02 1640 3.5E=06 3.5E=06 3.1E=06 8.9E=09 A SITE ANDRY SSd 1.13 1820. 3.9E=06 3.8E=06 3.3E=06 8.1E=09 q A SITE ONDRY SW 1.30 2090. 2.8E=06 2.7E=06 2.4E=06 7.2E=09 A SITE BNORY WSW l.17 1890. 2.9E=06 2.9E=06 2.5E=06 8.0E=09 A SITE ONGRY H 1,32 2120. 2.3E=06 2.2E=06 1.9E=06 5.4E=09 q A SITE PNDRY WNW 1.70 2740. 1.lE=06 1.lE=06 9.5E=07 2.5E=09 A SITE BNDRY NW !.55 2500. 1.4r=06 1.3E=06 1.tE=06 3.3E=09 A SITE PNDRY NNW t.47 2370. 1.7E=06 1.7E=06 1.4E=06 3.8E=09 9 A SITE RNDRY 4 1.11 1780. 3.6E=06 3.5E=06 3.tE=06 9.0E=09 3 ] A SITE PNDRY NNE 0.81 1310. 7.1E=O6 7.lE=06 6.3E=06 2.1E=08 f. A SITE RNDRY NE 0.71 1840. 1.lE=05 1.lE=05 1.0E=05 3.2E=08 q A SITE BNDRY ENE 0.82 1320. A.tE=06 8.1E=06 7.2E=06 2.5E=08 i A SITE ANDRY E 1.03 1660. 3.7E=06 3.7E=06 3.2E=06 1.5E=08 g A SITE BNDRY ESE 1.11 1780. 3.3E=06 3.3E=06 2.8E=06 1.lE=08 'l A SITE HNDRY SE 1.13 1820. 3.4E=06 3.4E=06 2.oE=06 9.3E=09 A SITE PNORY SSE 1.07 1720. 3.0E=06 2.9E=06 2.6E=06 6.8E=09 A NRST RFSID WSW t.20 1931.. 2.8E=06 2.8E=06 2.4E=06 7.6E=09 O A NRST RESID W t.90 2414. 1.7E=06 1.6E=06 1.4E=06 3.9E=09 A NPST RESID WNH 1.90 3058. 8.9E=0F 8.7E=07 7.4E=07 1.9E=09 A NRST RESID N 1.16 1860. 3.2E=06 3.2E=06 2.8E=06 8.0E=09 q A NRST RESID E 1.23 1980. 2.4E=06 2.4E=06 2.lE=06 9.7t=09 A NRST RESID SE 3.30 5310 3.5E=07 3.4E=07 2.7E=07 7.01-10 l A VEG GRON WSW !.40 2253. 2.0E=06 1.9E=06 1.7E=06 5.1C=09 3-A VEC GRD4 NW 2.40 3862. 5.3E=07 5.2E=07 4.3E=07 1.5t=09 A MILK COW SW 4.97 8000. 1.8E=07 1.7E=07 1.3E=07 ?.iE=10 A MILK CON SE 4.60 7403. 1.9E=07 1.8E=07 1.4E=07 3.4E=10 ') A MEAT,NHL SM 3.10 4989 4.4E=07 4.2E=07 3.4E=07 8.9E-10 A MEAT ANHL NN 3.90 6276. 2.0E=07 2.0E=07 1.6E=07 3.AE 10 ') VENT AND PUILDING PAPANETERSt RELEASE HEIGHT (WETERS) 0.00 REP. WIND HEIGHT (METER 8) 10.0 DIAMETER (METERS) 0.00 RUILDING HEICHT (METER 8) 15.0 'I EXIT VELOCITY (METERS) 0.00 BLDC.HIN.CRS.SEC. AREA (SO.NETEH8) 450.0 HEAT EMISSION RATE (CAL /SEC) 0.0 I{ ( alt. GROU'4D LEVEL PELE ASES. l I i ..) l 0-e I i J- )

r -- - .m. .= w e.. s (',... ( f. .P. P. ~ f ( ( (

st
  • ) 5(%

y COOOOOOOOOOOOOOC 00000000000000000000000000000 CDOOOCC e eL 0000000000000000000000000000000COC000000000C06O00000C e o e o e e o e e e o e o e e e e o e e e e e o e e e o e e e e e e e e e e o e o e o e o e e o e o e o e OOW40WhPOOOOOOOOOOOOOWwmoeOOmWPem=NomWO=NPO=OWN=OOmNO ( g9 mWhPN mN wNeem mMeePN NMemm [ 19 4 Met O@OO0000000000000000000000000000000000000000000C00000 00000000000000000000000000000000 DOOCOOOOOOOOOOOOOOOOO e o e e e e o e e e e o e e e e e o e o e e o e o e e o e e o e o e o e o e o e e e e o e e o e e o e o e l f ONMOOpokwCOOOOOOOOOmemewPmOOmMweMhWOwMMMcdeeCMMPCNPr* e NMehe maw wwmh3 medWPh =MmhNw mm

== b DOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOC 000000000000 00000000000000000000000000000000000000000000000000000 e e o e e e e e o e e e e e o e e o e e o e e e o e e e e e o e e e e e o e o e o e o e o e o e e o e o e O OOmeWNhemOOOOOOOOOOOOdMN440cOUMONWMOwmPMhemeOONeermdN O

  • Neem em mNeem M4MPm meewM we m

c mNm O O DOOOOOOOOOOOOOOOOOOOOOOOOOOCOOOOC 000000000000000000OO SC00000000000000000000000000000 COOOOOOCCCOOOOOOOOCOOC O e e e e e o e e o e e o e e o e o e e o e e e e e o e e e e e o e o e e e e e e e o e e o e o e e e o e e O OmMmmemPOOOOOOOOOOOOONMNWMOmOMd4PheOOmemmemhommMCONPC O mWohe wNew mNm=M embmMN =WENN O mMm =

== w o m OOCDOOOOOOOOOOOOOOOOOOOOOOOOOOOOOCCOOCOOCOOOOCOOOCCCC O O OCOO000000000000000000000000000COOOOOOOOOOOOOOOOOOCOC = c e e o e e e e e o e o e e e e e e o e e e o e e o e e o e e e o e e o e o e o e e e o e e e o e e e o e e C CO=OMMMwOOOOOOOOOOOOOMNOCWOONWheWOMOmMMMWWM4MmCNd*hMP N O wNWee New NWWM m#CCUM wWhkm O w = N= = M N O ON 0000000000000000000000000000000000000000000000000000C O00000000C000000000000000000CO0COOOOOOOOOOOOOOOCOCOOC O e W C W e e e e o e o e e e o e e e e e e e o e o e e o e e e o e o e e o e e o e e o e e o e e e o e o e o e e o L OE OOmhPNmOOOOOOOOOOOOOmNMP4POOOM4#PmcmNN4=Ne=N=emhWNCNW m OJ WhN mM mwhN4 =WmePN =WCON w =No = h u O 2 OJ OOOOOOOOOOOOOOOOCOOOOOOOOOOOOOOOOCCCOOOOOOOCOOOOOOCCC 3 0 9 COOOOOOOOOOCOOOOOOOOOOOOOOOOOCOOOOOOOCOOOOOOOOOOCOOCO 03 e e e e o e e e e e e e o e e o e o e e e * *

  • e o e e o e e e e e o e e e o e e e e o e e e e e o e o e CW OComeM4=OCOOOOOOOOOOOmMmNMOOONWO4mm=NehWPomPOOmMWhNe=

h

  • M mNm mMPNm

=MOCOM WWe=N O e wMN w On Ch OOOOOOOOOOOOOOOOOOOOOOOOOCOCCCOOOCCOCCCOOOOCOCCOOOCCC C O C. O. C O. O O C. C O C O C O. O. C C O. O. O C O. O. O O C. C C. C. O. O. C. O C. O O C. O. C C C C C C C. C C C C C C C OJ e e e e e o e e e e e e e e e e e e e e e e *

  • e e e e e e e e o l

OW C OOOmmWN=OOOOOOOOCOOOOCNPemOOONN4mN=NMmWM4P4NOmCC@ c4CA g O mw w wNeNW mWOCMc mMWPw = wmN OO W O e G CO DOOOOOOOOOOOOOOOOOOOOOCDOOOOOOOOOOOOOOOCCCCCCOCCCCCOC 0 Om OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOCDOOCCOCCOGOCOCC J n e e e e e e e e e' e e e o e e e e e e e e e e e e e e e e e e e e e e e e e e o e e e e e e e o e e e e e 3 O> OOOPem@MOOOCOOOOOOCOOOmWMmOwC4mMNWWCamW4MNPNCN4e@cd% C OZ

  • N mm mNPOm MCNNMe NOWCo

=

N

9 O b Om m De OCOOOOCOOOOOOCDOOOOOOOOCOOOC0C0000000000C0COCOC C OCCCOC CO00000000000000000000000000000 COOCCOOOOCOOOOOCOOCOC CC Om C e e e e e e e e o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e o e e e e e e e e e e W OM eOOmM4MehCOOOOOOOOOOO=MC4eMOOm4WNemmONMCONOwwomhme*mme C% M MM w rj wmbow MhCONw NW4=m W OM C w =Nw O O O 00000000000000000 COOOOOOOOOOOOOOOOOOOOOOOOOCCOOCCCOCC C T Op COOOOCOOOOOOOOCOCOCOOCOOCOCOOOOOOOCOOOOCOOOCOCC CCCCCCC 3 O O e e e o e e o e o e e o e e e o e e e e e e e e e e e e e e e o e o e e e e e e *

  • e o e e o e e e o e e E

OO

  • OCmMCPWMCCCCCOOOOOOOOWWCONOOwahC4Chc=MP=CNetC=MOCOPMN C4 O

WGm mN HNemm om4hD

  • CV ON

= w= O% N O%OOOOOOOOOOOOOOOOOOOOOOOOOOOOCOOOCOOOOOOOOOOC CCCDOCCOCOCC 8 CW CC 000000000C00000000000000000000 COOCOOCOCCCCCCCCOCOOC CO O eO e e e e o e e e e e e e e o e e o e e e e o e e e e e o e e e e e o e e e e e o e e o e e e * * * *

  • e e

{ 00 C eOONNmWPWOCCOOOOCOCOCwNM4NPComedMh=hCNMM4WCOmomWMC=C@ e Oh C mWmm am wmWNM Nmem=w =WWW m

== m M = i OP O Oh DOCOOOOOOOOOOOOOOOOOCOOOOOOCDOOOOOOOCOCOOOOOOCOOOCOOCOC e O% COOOOOOOOOOOOOOOOOOOCOCOOOOOOOOOOOOOOOOOOOCOCCCCOCCCCC C. e N 05 eO e *

  • e e e e o e * * *
  • e e *
  • e e e
  • e
  • e *
  • e e e e o e e e e e e e o e e e e a e 4 e e e e e e e O%FC eOONMN40=OOCCOOCOCCOCmN=whMOmOMUN4N4CNMNOhe@hCOh*=mMd4 2

W SM wNeNM mNMm

  • NPMW wW4PWN
  • MmWw 9

O O w =

  • =

s m OO Om 4O000000000000CO000000000000000 cOOOCOOOOOOOOOCOCOCCCCCC E C WNOCOOCOOOOOCOCCOOOOOOOOCCOOOOCCOOOCOCOOOCOOOOOOCOOCCCCC W che eO e e * *

  • e e e e e e e * * *
  • e e * *
  • e o e * *
  • e e e * *
  • e e e e *
  • e e e *
  • e e *
  • e
  • e e
  • N eOmmWNWPSOOOOOOOOOOOComNC4WOOmNhWW4=ONmMNP4CMOOWNWFh4N

O% O mMONM =NWm

  • mmc @

NWW4MW = 'aMehw mN

== - 3 CW mm

  1. "O C%W

= C CW CO00000000000000000000000000000 DOOOOOOOOOOCDOC 000000000 C O O O O C o O C O O C C O. O O O O O. O. O. O O C O O. O. O O O. O. O. C. C C o. i .e a m O OOOOCOOOOC 000000000 e e e e e o e o e e e e e e e e e e e o e e . c O o eO e e e e e e e e e e e e e e e eO==eCWOWCCOOOOOOOOOOOmdameCCNMeNWOMONONh4ChmONUWPkPC= I W 2 06 = b 9 W O%hCO wm>OM

  • NW mMhNm weWwce

NWe

=

== W $9 w w w O OOOOOOOCOCOOOCOOOOOOOOOOOOOCOOOOOCOOOOOOOOOOOCOOCOCOCOO p ..G W w ? U 3 W COOOOOOOCCOOOOOOOOOOOOOCOOOOOOOOOCOOCOOOOOOOOOOOOOc70CO i OsO so e e e e e e e e o e o e o e o e e o e e e e o e e e e e e e e e e e e e e e e e e e e e e e e o e e e e e g. Z C hmO eOO=CCMMwCOCOOOOOOOOOMNem=400=mNh*==ONWCeeNPmON4hCPrem "(OW m CG

  • C NNeeN
  • N NNhmN MmPPN wNMGm

= .h OO 3 6 ee > V L U L i

  1. C U

O O wNMWW4444444g4444444444444444444404@d44444444444444444444@ O E 2 2 = M E 3 s s - ~ ~ ~ e - n w - - ~ - - ~ ,r-_ T

Q y -- - -- m. p __+ w a, m,.., f

  • (P-

?' f. P. P. P .#m P P A A A to P n, r -n J e00o000000 e e o e e e e o e o eeeeOOOOee OOOOOOOOOO e e e e e e e o e e eNe>WwmMwe l. ee M N se I eeeeeeeeeOO e o ee e eeeee eeeeeGOeeeO eGOSSOOOeO e e e e o e e e e se SM>>FNeemee wNWM "- e

  • u.

eeeeeeeOOOO e e e e e e e e o e SeeeeeeeeeO eeOeOOOOOO eo e o e o e e e se SwSMeem> Nee NNW4-G SeeeeeeOOce e o e e o e e e e e SeteOSeGeOS COOOOeeeeG ee e e e a o e e se OO OONmN44wWO e WNW4m O e e OO Wh eeOSOOOOOOO e e o e e e o e o e Me GOWeeeeeOOO OOOOOOOOSO NN e e e e e e e e een ewWwh48NOO e' wNmmm O ed w w OOOOeeeeOOO e e e e e e e e e e OO eOOOOeeeeOO SeOOeeeeeO e e e e e e e e e e e ec oo owWwP@hMNO e e4 wM@ew N WP Nw w OOOOOOOOOOO e e e e e e e e e e OSeeeWeOSOS OOOOeOOOOO 9= M es e e o e o e o e e oO swN4FNMNpee mMW e PO C e e e w DC O eeeeeeeeeem e e ee e e e e e e Ww a WNOOOOOmee >P M .eeee.OOOOOOK e e e e e e e se S ee Nw m GNwhrhMNwe e M 4 NNM r m p e de = w 4 O @OOOOeOOOcc e e e e e e e e e e eeOOOOOOOOO OWOkONO@DC OO O e e e e e e e e e oC D e O em e e e E SwWh@ePWOO e r O F e CO O w Na M

=

Ne e 4 we P E Nw w EW SCOOOOOOOOO e e e e e e e e e e WO OOOOOOOOOOO D49NOWO@OC e e e o e o e e o se e ewswSw MM M e Z e 'OeWereNMwe e e e m N w w NwN N w w N OO O w L e o e 3 OOOOOOOOOOO e e e e e e e e e e OO O O SOOOOOOOOCO edOOONDFOW ON 4 W e e e o e e o e e e em O OwOwWmON PM e MC de ONMPPMrNwe e F O F 4 9 ww w wNNN w w on w N W J WN P W OOOOOObeeDO e e e e e e e e e e w go e SOOOOmeOOOO ONOOOOOOOO e e e e e e e eo eo o OO O We ONeWMPWNee e W e

  • Cd eO-e OM WWNN w

-w WW F EN

== c eOOOOOOSeeO e e e e e e e e e e Mw M CO SWeeeeOSOO@ OdeOOPOOCG W e MW o e e e e o e e e oW-O emow eMWWWerwme e m e N MW 4 we wNNw O w w w OO O O O em - eeOOOSOSeOO e o e e e e o e e e o e e e o e3C CSOOOOGOOOO OPOMONOOOON OO W N M 40 e M 3 e. e e e e e e e e a er O OwON Mw w O Nz OweNMeOMOO e p o m OM W e W NWWW e w w Nw N M M dm> e N 7 O SeOOOOOOOOOO e e e e o e o e e e NO F M MCO w a uo OOmeteOOOOhWOccOOOOOOO W e e o e e e e o e eN > O Omme>wmPOO s e= m >OO DO O O Ow e wwMWW S3 4E e a w e e eJ e>NC COO ew2MTOTPF 2 ZNe WMceCOZew OOOOOceeOO em

o. t e e eo e e e e ese EPENuc4PDO SOOe@eOOOOm OWOFOOOOOO wm
  • GN t

W D e e e o e o e e o e g e= O Ow dW w > kwe Owe @weNWwO OO O => M J 4 2 e NWMM 2h a map SWWWmMWM4M n 3 > Z K J* a e 's U E> e b OO44444444hWCwowOwSwOwNMW MOMSMWMWWeb wwwwwwwwwww wwwwwwwwwwwwww + O E> .R .. s

~ y q. .g. g-r v~ v~ ,~w. an n M e* e e 1 j JOOmcemOhme JOOOOOOOOOO JOOeemehemo JNNeece gCONCOPMMPOC

  • COOOOOOOOOO g COON @ cPh4Oh 4m=W mPP

>OOOm>MdOmoe >OOOOOOOOOOO >OOOOwWOpmON > OOONe@ ee e e e e o e e e e e oe o e e e e e o e o e C e * *

  • e e o e o e e oe e e o e e HOOOOOwWeNOW

>OOOOOOOOOOO WOOOOOOm*OOW WOOOOOm I m 2Occh444NGC 20000000000 2OOOObedemo ECOWMOC 200Dw&DDONOW ZOOOOOOOOOOO 2OOOOwCWemOe 2OOOmko 's ZCOOOOmme=CO 2OOOOOOOOOOO 2OCOOCOOOOOm ZOCCCCm g e e o e e o e o e o e e e e o e e e e e e o e o e e e e o e e o e e o e e e o j OOOOOCOOOOm OCOOOOOOOOO OOOOOOOOOOO OOOCCO A 2OOeNMW@hMW TOOOOOOOOOO 2OOWowmepec XOOSNCE ZOOOweNemWoe 2o0000000000 ZOOCCNNWWWON ZoCo=WA OOOOOwMMWOW 00000000000 OOOOOOOOOON 000000 e o e o e e e e e o e e e e o e e e e e e e o e e o e e o e o e o e o e e e o DOOOOOOOOOm OCOOOOOOOOO OOOOOOOOOOO C00000 FOOOW499W4W 20000000000 2OOOO@NODWO 2OCOhe* T O O O O 4 p M. O h o e ZOOOOOOOOOOO 2OOOONmMWNCe ZOCOwet a s O. C O. O. O. O. . e. O. W. z O O O O O O.O O.O.O.O. m O O. O. O O.O O m.O.O N. x O O c e c. e e e e e e e e e e e e e e e o e e 3 OOOOOOOmOON C0000000000 DOOOOOOOOOO OOOCCC l 2006NW44 MOO EOOOOOOOOOO EDOOOOWmNWO KWWON&e A OOOmFOOOOOO GOOOOOOOOOD OOOON@Oemom Ocom40 1 OOOOemem>ON OOOOOOOOOOD OOOOOOOmOOW OOOCam e e e e e e o e o e e o e o e o e e e e e e e o e e e o e e o e e e e e e e e OOOOOOOmOOm DOOOCOOOOOO OOOOOOOOCOO OCC000 , f, 4 e u o l e M XOOOWmmweMO e 2OOOOCOOOOO m 2OOOONempeo e ECOC=C a it O M SOCOOWPmmmO4 m MOOOOCOOOOOO M dOCOOncercO4 m McC ONNm l = 4 EOCOOOOm>NOW W ACCOOOOOOOOO 4 AOOOOOOOwCOM 4 XCOOCCw e w J e e e e e e e o e e e J e o e e o e e o e e e J e o e e e e e e e e e J e o e e e e 't N U OOOOOOOOOOw U OOOOCOOOOOO U OOOOOCOOOCO U CCCCC C l = l O zoOOWe>Wome 20000000000 XOOOweNee>O xOOCNeN w WOOOONMhwCOW w MocOOOOOOOOO w MOOOOOwhWmCP w MOOOm44 W J OOOOwOwMOO4 J 00000000000 J OCOCOCOwCON J COCCCC I w e e e e e o e o e e e w e e e e e o e e e e e w e e e e o e e o e e e w e e e e o e 4 w OCOOOOOOOOO E C0000000000 S C0000000000 m CCCCC O i d g g 4 N h 2 e M MOOOOWMWPRO W 20000000000 M ZOOOOWN4=WO M 2COCCC W O 5 SCOOOOMmWOOW MOOOOOOOOOOO MOCOOOmWPPCm MCOCOdN M E U MOOOOOOOmOON U 200000000000 U MCCOOOOOOOON U ECCCCC* s J w e o e e e o e e o e a w e e e e o e o e e o e w e e o e o e e e o e a w e e e o e e U E 0000000000C E 00000000000 K 00000000000 E C00000 W W W W J K Z Z L 3 MODOONweOSO

  1. O00000000O E

MOOOOOehmWO A McCocce 2 m DOOOmNFFOOO e CDOOOOOCC00 M CCOOOO9hDON v C CC CTV W C OOOOOOOOOGm C C0000000000 O DOOOOOOOOOm C GOCCOC 1 e e e o% e e e o e e E e e o e o e o e o e e X e e e e o e e o e e e E e e e o e o COOOOOOOOOC OOCOOOOOOOC OCOCOOOOOOO CCCCCC 4 4 4 4 4 W 1 e-J WOOOchMNONO WOOOOOOOOOO WCOOOOwNWWC WWOOhNW { p W MOOOOmM40=Om MOOOOOOOOOOO WOOOOONemOOW MOOCmde J O M O C O O O O O m O. O.N. E C C O C C C. MOOOOOOOOOOO MOOCOOOOCOCm ,D e o e e e e e e e e e e e o e e e e e e e e e e e e e e e e e e e e o O0000000000 OOOOC000000 00C00000000 00000C i 8 e i O w m WOOOWNehmeO WOOOOOOccOO WOOceNMeeNO wCCWes O E McCOOmNMmNOW MOCOOOOCCOOO MOOC ommdo=OW MCCCN## COOOOOwNOOW OOOOOOOOOOO OOOCOOOmOON OCCOCC W Z 2 e e e e e e * * * *

  • 2 e o e e o e e o e e e 2

e o e e e e o e e e e T e e e e e O OOOOOOOOOOO C OCOOOOOOOOO C OCOOOOOOOOC C C00000 4 m w = m m i c e U WOOOWNmmNWO U WOOOOOOOOOO u WOOOOhhemeO U WeOWWo* 2 w W mOOOOmmOceCe w mOOOOOOccOOC W mcOCommheNON w eOOOOhr O M E W O O.O O O O N.m O O e W O O O c. O C O O.O.O O. W O O O O O. O O.O C O. N. W C C C.C C C E E E E s m e e e e e e e e e w e e e e e e e m e e e e e e e e e e e e m O GOOOCOCOOOO O COOCCOOOOOO C OCCOOOC0000 C CCCOC C I' O C O c C 1 2 WeOOmedemeO Z WOOOOCOOOOO Z WOOOceN4Nhc 2 WCOce4A j g CocOOWO& mon g CCCOOOGOCCO 4 OOCOOm@ mmc 4 4 OCCN4* O ccOOOCmWOOP OCCOOOOCOOO OOOOOOOmCON COOOCm e C e o e e e e o e o e e O e e * * * * * * * *

  • O e e *
  • e * *
  • e *
  • C a

W OOOOCCOOOOO W OOOOOOOOOOO W C0000000000 W OOCCOC = W W W w I L a L A C M WOOceWmmhc0 m WOOOOOOOOOO M WOOOWe4NNWO M WeWONT= d e TOOOOw9heNom EOC000000000 2OOcOOwemeom ZOCC=VV N O C WOOccOONewCO O WOOOOOOOOOOO O WOOCOccOwOCm c WOCCOOo g

  • 2 e o e e o e Z

e o e e e e e e e e e 2 e e o e o e o e e e e a e e o e o e e e e o e l 2 m COOOOOOOOCm m COOOOOOCOOO w OCOOCCOOCCO m CCOOcc O O 2 2 2 2 4 m s M k WOOWmONewho k 60COOOOOOOO k WOOOOmCAOGO 6 WCOWec= E W C 2OOONhmmmmOr o FocOOOOCCoco o ZOOOCNeme#Om C zocCCNe W COOOOmW@ mom OCOOOOCOCOO OOOCOC=wCCW OOOOC= W 2 e o e e e e e e o e e 2 e e e e e e e o e e e 2 e o e o e e e e e e e = e e e o e e o C OOCOOOOOOOm o COCOOOOOOOO O COOOCOOOOOO o CCC CCc c Q w w w w c > O D' WOOWW@hPWmc 3 WOOCOCOOOOO 3 WOOOOW4he*O 3 WOceN4N O N C 2OOOOhrmmeCN O ZOOOOOOCOOOO C 2OOOOOdeemoe C ZOcomem O h w ZOOOOCmMWmom m 200000000000 w ZOOOOOOOmOOM = ZOOOOOm n W e e e e e o e e e e e E e e e e e e e e e o e E e e e e e e e e e e o E e o e e e e 4 W OOOOOOOOC3m C0000000C00 00000000000 OOOCCO W M M M M O W w w w w ,) O C 2OOOWMewWho O 2OOCCOOOOOO O ZOCONerNhee C 2COWa=N W D COOceweseOe OOCOCOOOOOO OOOmON4CNON C000@ = A CCOOC=mmCOP OOOOOOOOCOC OOOOOOcccON CCC CCm i U, u e o e e o e o e e e e U e e o e e e e e o e e U e o e e e e e e e o e U e e e e o e j W Z OOOOOOOOCOO 2 OCOOOOOOOOO 2 OCOCOOOOOOO E C00000 >.= W W tJ W 4, 2 O O 3 3 4 k w C a O a 3 a 2 a j Z J W M W e W M w M C = E N E 2 2 } U L' h I h T h I m I C w w w w U hCFCOOCOOOJ w horceOOOOOJ hocOCOOOOOJ NOOOOO .M N e.h O.c O O O O O 4 .M N.O N.O @ C 2 2 MNWMOWOOOOO4 2 j M 2 M N W M C.@.O O.O O.O M e e e o e e e em M e e e e 2 w . e. e e e> w . e. e e. * *

  • e op w

rOOOm=Nme M zOOOmmN ONo rOOOmmmmcO~o zOOCwmNaco~o ,o ,o ,o ,o a o www o e-> o m-> a 1, 4 A 1, C C C C v w L w u m w m LP29"*r *' - ' - - - - w 4,a _,-M w. ym -,e_m ,em,_ _ pnnacumumm.n.e._ n _

f in d i 0 D 4NMk JWTP40mm*Wh JMOmeNWNMOO JWeONNe@eMC NPMme WNomNMWMkNap 4eN404%=MPOO 4 WCa@mmerC CC we400 km*N=NMNMmON WQmNmboeMNCe WMwMPOMMMOOM e o e e e O e e o e e e o e o e e C e e e e e o e e e e e O e o e o e e o e e e e WWNOe MOOOmMONPNOW > OOOmNWOmOOm NOOOONNNOOOP = M J eMOO 2mehmCWeMhc TmWChW4.Omo 24CMOmhNNWG 4 0 NWOOg ZOOmWNheheOO ZwmOWN4NONOm LNOMW@edmOO@ h e NNCOM ZOOOOmmMMOON 20000mwaO004 ZOOOOmOCOOCO CC e e e e o e o e e e o e o e o e e e e o e e e e e e e e o e o e e e o e o e WO OOOOO OOOOOOOOOOw OOOOOOOOOOO C0000000000 m 2N PONO F@eNeemmOMO EPNNPhdhweO EONPoetemeC 2

  • maeOW ZOOmm>WONNO@

ZOmmWmMNOWOP ZemNhCWNMC OP Z4 NMace OOOOmNeeMON OOOOmNM=OOP OOOOmmwCCor e o e e e e e o e e e e e e o e e e e e e o e o e e e o e e e o e e e e e o DOOOO COOOOOOOODN 00000000000 00000000000 3> 2 e WePO ImWNhhh4OOO TocemmN4 Pee TMehm44Ppec 4 kWmOP TOO*MMWhMWow ZOOOW4mkWCCM Zwompm44NOCN mMNOe EDOOOmNeeNom 2OOOOmMemOON ROOOOmmNOOCW e e e o e o e o e e e o e e e e e e e o e e e o e o e e e o e e e e e o e e 00000 OOOOOOOOOON 0000000000m COCOCOOOOOO T M 7 e 3h WWho XOOmemeePNO 3MeespedOMO EOcec=OMeeO We@Oc OONMapemmom OOOMP&NNmOh OOONPPMWOOP NWmOO OCOONN4mmOP OGOOwMr*OON DOOOOmNOCC4 e e e o e e e e e e e o e e o e e e e e e e e e e o e e o e o e e e o e e e v 4 000Cm OOOOOOOOOOm OOOOOOOOOOm OOOOOOOOOOO e W b G e maNo M 2reNOPNONPN e XMGMOONMkhc e 2Meh4NNNOOO mNMOS M MOOmWmmePeme e MOOMmPOMMMOP e MacmemmerOCW MomON 4 ACOCONMe@ MON 4 3COCOmMb=OOW 4 XOOOOmNWCCCP Z r e e e e e J o'o e e o e e e e o e a e e e e e e e e o e e J e e e e e e e o e o e n e OOCom U CCOOOOOOOON u OOOOOCOCCOm W OOOCOCOOCCC Th Neem EO e4OONmmt ROOOOWOmmmO EMOh4=eOweO NmWOO w MmOO4h4PPPOO w MOOOWNWNPNON w MacmW4Ne@OCP ZN MFNON J OOOOwWmWOOM J COOONM40 DOM J OCCOmNMOCCC W e e o e e e w e e e e e e e e e e e M e e o e o e e e o e e e e o e o e e o e e e b OOCCm W OVOOOOmOOON e 0000000000m e COCOOOOOOOC e 4 4 hom4 M XOeMOmmNNaC M TOOmweh@pMO M 2MWe@NNeCwc l e POmOO MmONh@@WM40W MOONr h4PMcM

== EON 4MhCNO@ e e M@ NOM U mcOOOwWNe=OP W MOOOOmNWOOOm U MOOOOCwmOC OO M4 e e e e e e e e e o e o e e o e w e e e e e o e e e o e w e o e o e o e e e o e OOOOm E DOOOOOmOOON W OCOOOOOOOOw E OOOOOCCOCCO W W W X Z Z Om emme A MFNWNPPPheO E MMecewohmeo MeeePCN>&ec e MomON M

==O4mMkh>OC C Ocor4WPMOOM M NOONNmMcCCF 4 MONON O OQOONWNPwCm O COOC=NMOOOP C OccommwCoce o e e e e X e e e e e e o e e o e Z e o e e e o e e e o e 1 e e o e o e e e o e e COOOm OOOOOCmOOOM C0000000000 OCDOCCCCC CC 4 d 4 WN M e wwee Wr@mw4PO4CC W4cWPNCOCho WMWWPS@hhDC F# eMMO@ POONWrorhmCO MOONPMWPhmOP MeowNONMwCOP MOOOO MOOOmM@POOO4 MOOOONNmOOce MOCCC=COCCCN e e e o e e e e e e o e e e e e e o e e e e o e e e o e e e o e e o e e e e OOOCw OOOOOCOOOON COCOOOCOOOO CCCOOCCOCCC WM E e MONO WOeNumNemeC WMePeemeNNO WOch@@@mNU C NM404 MmO=NmNNOSO4 MOONOW4M4=CW MocmNOMP =C CM MOOOP OOOwMWerOON COCmNNMOOOC OOOO=OOOOOM e e e e e Z e e e e e o e e o e e Z e o e * * * *

  • e e
  • Z e e * *
  • e * * * *
  • WO OOCOC C

COOOOOOOOCN O OCOOOOOOOC= 0 COC00000000 M e m w W@ 4@OO U WFWNPmNNa@c U WMONedO4WWC U W4WNWorTc3C prhoe W MCommme=MNC4 W MComrecePOCW W MNommMPOOOOM MOOOO E WOOOONNNCOON E WOCCo=NNocce M WOOOO( -JmOOOO WN e e e e a w e e o e e e o e o e e e e e e e o e e e e e e e e o e e o e e e e e OOOOw C OOCOCOOCOOm C C0000000000 C OOOCCCC OGCO J O O C OwMO 2 Wo.NcNMcMNO Z WMehepoch>O Z WeeMNeoPrOO 40 FOP 4 =CmPMPOP4O4 4 Co=@PhWMmOO 4 NOM 4WNPOCOe 67 MOwCN COCONM44 COP COOOmmNOOOM OOOOmmGOOOW 2 e o e e o e C e *

  • e e o e e e e e O
  • e * *
  • e o e * *
  • C e e e e * * * *
  • e
  • we OOOQw W

OOCOOOOOOCm W OOOOOOOOOOO W 0000C000000 W W W E kN@O M WOeNOhkNNNO M WOOP4.=Ne@C M WONNNP4rdeNC wm PamOP ZmCamOkam=Om ZOONWNaO4 Nom ZWweepm40=ON Z e MMMor C WOOcoNNedmOm C WOOOCwNMOOce O WOOOOO=OOCCW W e e e e e Z e e e e e o e e o e e 2 e e e e e e e e e e e Z e e o e e e o e e e e OOOOm M OCOOCOOOOON w OOOOOOCCCCC w OCCCOOOOOCO X 3 3 N >we NMMO k WOcerekhePC h WPa==MWPeep A WMWMmee4NOC r U2 e = ZC# O 7mOOphNeMmO4 C ZNWNP@em4OOM C ZmOMPMN4mOGM h@@O.S DOCowMe@NOO OOCOwNMOOOO OCCO*NmCOGb M W WSNO e e e e e 2 e e e e e o e e e e e = e e e e e e e e e e o Z e e o e e e e o e e e N g D OOOOm C OOOOOOOOCCN C 00000000000 C OOOOOC00000 W O u w w w W WMP 7 2 W G e 4hPO 3 WOeMOPC@M40 3 WeekeO@dmWO 3 W4weWMOchCO 4 I w W O es P w e e e ZmomWPPWeeOW e ZOOmmWMeecce e Z4NWhWNWMOc@ O MONON ZOOOommes=O@ w ZOOOO*NNOCOk a ZOOOCaw*OGON C C 2 W e e e o e a e e e e e e e e e e e g e e e e o e e e o e e 2 e e e o e e e e e o e W

  • O 2

COOOm OOCCOOOOOOm COOOOOOOOOO OOOOOOOOOOC E C = w M M M W = > m m C U O WCho C ZO.>MmOwCWO O Zee @O4werec Q 2MWM@ CNN>go W W >>4SOF mOmmesFmeCM OONhadehCO@

  • OMOWpMmOOM M

M M w NWOOO O O O O m N M c O Ct9 OOOOmamOCO4 COO====COc4 2 4 m m L e e o e e u e e o e e e e o e e e u e e e e o e e e e o e U e e e e e e o e o e o C LZ F OOOOm 2 0000000000m Z OCCCCOOOOOO 2 OCOCOOCCOOO W C C W W W W Om C O O D M Q Z> I c = c D M U= = O = 3 = w e W M w e O M Ze> 3 a N g 2 C e nu h E g 7 E Z Z W JM Z J w 1 JCW m w w OCDOJ w NOfCOCOCCCJ WOfCOOCDOOJ hD@ DOC 6003J J 4 D OOOO4 2 MN#MOOOOOCO4 Z MN#wCOOOcaO4 E uN@ho#OOOOO4 4 O 200 m e e e eh

== 4 e e e o e e e e e em me 4 e o e e e e e e e op p 4 e e e e e e e e e * * = > Z m2W w MMONO O YOOOmmNM@oNC O IOOOm=NMmONO O TOOOm=NM#CNC C m >=E

==> 3

==> 3

==> 3

==> > Y 074 C k g ' g. g g g, b bums has ese bus %e W D ~ -mm.~ e sos. -m .oem..--. on. ~m ._w..

C e e e c r r c c c r W e e e e e. e e e. MOOOOOOOOOO M u,.......... MOOOOOOOOQp OC OOO W e e e e. e o e e e 900 WsOOOOOOOOOO e e e W Nmo em OO W e e e e e e e e o e 00@ 000000000O G_W O O e e e One a W e e e e e e e e e s OO =20000000000 OON Ww OOM M e e e w M N W e o e e e e e o e e W2OOOOOOOOOO DO Z OOP OMd e e e Z MNm OW e e e e e e e e e e M E20000000000 OO OWN 2 Ohm O e e a w2 * * *

  • e e e e e e New w

wNOOccOOOO = u Wm w OO It we OOO w FNP c3 e o e e e e e o e e e o e TOMOWONO@OO w=P m2O O O em o e o r e a w w Om e Okt 23 e e e e e e e e e e Omp o2OdONOWOWOO e e e w O Omomem wCM M O M N u = w N Z O@ DE e e e e e e e e e e WNO w204OOONe@om h40 20 OwowsF=cN e o e M O m p OOO m o N M2 e e e e o e o e e e Om E ONOOOOOOOO OGO W O WMM M M e e e W w OOO 1 2 e e e e e e e e e e 2MO@SCOOOOOO OF 42O Owow kMe F O P Nwm M = m e e e OOO ZE e e e e e e e e e e QMOPOMONOOOO w O OwcN W W C M as

==

=

23 e e e e e e e o e e me> MMemOOOOOOOO MMo <MO %%2 E ZZW E wwD W a -M e e e. e. e e e e cow .OWOwCOOOOO WWE o O Om Www z O O ma em> e MMo W MF 7 7 7 2 7 new wowawoWowowc zza u-u-u-u-u-u- < u.. z w = ~ z ~.=.~ =~z ~~M Em o -w~>->~>->-> MW2 MEMWMWWWMWMW <>w wmmJudmJmJmJ z<3 ocowoWowoWow s. D f f C s. s -m-m -=m= m m m m m. ,m,__ m _,_= m ___ .m ,... _.. _ _ _ _. _.. _. _ _ _. _. - _ -. _. _ _ _ _. _ _....__ g

.s g USNRC COMPUTER CODE-x00000,vtRSinN 2.0 EUN DATE 17=JUL*24 CUN 7IME 80g31:44 . i VDCTLE JFD 4/4/77 TO 4/4/79 TO 4/1/80 TO 3/31/81 Histo.0 DEL 7A Tou-L CLMe.27 PLANT VENT: CONTINU0US MIMED MODE RELEASE MITH TERR 4tN DATA .j NO DECAYe UPDfPLETE0 COIRECTED US.NG ST$NDARD OPEN TERHAIN FACTORS g .I I ANNU4L AVERAGE CHI /Q (SEC/ METER CURE 6) iSTANCE IN HILES FMDM THE SITE SECTOR 0.250 0.500 0.750 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500 O S 7.360E-07 2.500E-07 1.454E-07 1.018E-07 7.717E-08 6.210E-08 5.104E 08 a.279E-08 3.655E c 8 3.174E-08 2.795E-08 SSd 8.68tE-07 3.105E-07 1.92tE-07 1.300E-07 9.282E-08 7.279E-08 5.909E-08 a.92tE-08 4.185E-08 3.623E-08 3.184E-08 Sw 1.073E-06 3.84tE-07 2.416E-07 1.707E-07 1.2s6E-07 9.77tE-08 7.905E-08 6.562E-08 5.569E-08 4.814E-08 4.227E-08 g WSW 9.165E-07 3.224E-07 2.074E-07 1.498E-07 1.125E-07 8.94tE-08 7.267E 08 6.034E-08 5.109E-08 4.400E-08 3.846E-08 N 7.205E-07 2.434E-07 1.538E-07 1.155E-07 9.500E-08 7.942E-08 6.643E-08 5.617E-08 4.816E-08 4.187E-08 3.687E-08 WHW 5.890E-07 2.108E-07 1.738E-07 1.737E-07 1.780E-07 1.506E-07 1.157E 07 9.207E-08 7.552E-08 6.347E-08 5.442E-08 g 7 HW .4.94tE-07 1.801E-07 1.282E-07 1.04pE-07 9.239E-08 8.045E-08 6.901E-08 5.939E-08 5.160E-04 4.532E-08 4.023E-08 NNd 4.374E-07 1.625E-07 1.188E-07 1.027E-07 9.800E-08 8.705E-08 7.494E-08 6.440E-08 5.578E-08 4.883E-08 4.320E-06 N 5.832E-07 2.153E=07 1.560E-07 1.268E-07 1.tl3E-07 9.552E-08 8.078E-08 6.865E-08 5.901E-08 5.135E-08 4.523E-08 q 7 6.185E-07 2.270E-07 1.629E-01 1.304E-07 1.120E-07 9.534E-08 8.040E-08 6.828E-08 5.869E-08 5.110E-08 4.503E-08 f NNE a NE 7.787E-07 2.779E-07 1.854E-07 1.395E-07 1.136E-07 9.532E-08 8.019E 08 6.820E-08 5.880E-08 5.137E-08 4.543E-08 ENE -tA88E-06 -3.562E-07+h 195E-07 1.4 6 t E-07 1.105E-07 -8.997E-08 --7.474E-08 6.323E-08 5.440E 4 75 t E-08 4.20 3E-08 ') 4 g t.678E-06 4.943E-07 2.494E=07 1.563E-07 1.095E-07 8.585E-08 6.995E-08 5.849E-08 4.994E-08 4.337E-08 3.82tE-08 E ESE 1.480E-06 4.386E-07 2.234E=07 1.398E-07 9.804E-08 7.746E-08 6.352E-08 5.339E-05 4.576E-08 3.988E-08 3.523E-08 SE I.21e!-06 3.778E-07 2.015E-07 1.3t t E-07 9.525E-08 7.613E-08 6.256E-08 5.254E-08 4.496E-08 3.91 t E-08 3.449E-08 ) 1 ( 7.073E-07 2.320E-07 1.224E-07 8.184E-08 6.260E-08 5.120E-08 4.262E-08 3.608E=08 3.105E-08 2.713E-08 2.40tE-08 SSE I I ANNUAL AVERAGE CHI /O (SEC/ METER CUREh) DISTANCE IN MILES FROM THE SITE SECTnR 5.0n0 7.500 10.000 15.000 20.000 25.n00 30.000 35.000 40.000 45.000 50.000 I S 2.490E-08 1.633E-08 1.22tE-08 8.329E-09 6.283E-09 5.023E-09.4.173E 09 3.563E-09 3.103E-09 2.746E=09 2.460E=09 SSW 2.833E-08 8.849E-08 1.38tE-08 9.419E-09 7.124E-09 5.TtSE=09 4.765E-09 4.383E-09 3.569E-09 3.169E-09 2.848E-09 3 aW 3.759E-08 2.456E-08 1.836E-08 1.252E-08 9.438E=09 7.538E-09 6.254E 09 5.33tE=09 4.636E-09 4.096E=09 3.664E-09 y

y hSW 3.405E-08 2.17tE-08 1.590E-08 1.05tE-08 7.759E-09 6.104E-09 5.007E-09 4.25tE=09 3.654E-09 3.210E-09 2.858E-09 9

d 3.282E-08 2.13tE-08 1.577E-08 1.055E=no 7.840E=09 6.196E-09 5.100E=09 4.32tt-09 3.739E-09 3.290E-09 2.933E-09 g W1w 4.743E-08 2.88AE-08 2.067E-08 1.336E=08 9.743E-09 7.603E-09 6.200E-09 5.213E-09 4.485E-09 3.926E-09 3.484E-09 y< i, Nd 3.605E-08 2.388E-08 1.78tE-08 1.198E-C8 8.887E-09 6.997E-09 3.733E-09 4.833E=09 4.162E-09 3.645t=0* 3.235E-09 NNW 3.860E=08 2.526E-08 1.870E-08 1.246E-08 9.193E-09 7.213E-09 5.897E-09 4.963E=09 4.270E-09 3.736E=09 3.313E-09 [ N 4.026E-06 2.604E-38 1.916E-08 1.268E-08 9.35tt-09 7.IllE-09 5.973E-09 5.027E-09 4.326E-09 3.786E-09 3.359E-09 y hdE 4.0ttE-08 2.602E-08 1.917E-08 1.27tE-04 9.36tE-09 7.335E=09 5.99tE=09 5.040E-09 4.334E=09 3.79tE-09 3.36tE-09 hE 4.06tE*08 2.676E-08 1.998E-08 1.35tE-08 1.010E-08 8.008E-09 6.604E-09 5.601E-09 4.85tE-09 4.269E-09 3.807E-09 ENE -3 760E-etF2;494E-88-t.87 3E=08 1.279E-08 9.622E-09 7.649E-09 6.350E 09 5.403E=09 4.692E-09 4.139E-09 3.698E p 4 E

3. 00 % = %2 r239E-944d74E-0 8 1.137E-08 8.534E-09 6.788E-09 5.612E-09 4.769E=09 4r137E-09 3.646E-09 -3.255E-09 4

ESE 3.149E-08 2.085E-08 1.566E-08 1.070E-08 8.064E-09 6.436E-09 5.336E-09 4.546E=09 3.952E-09 3.490E-09 3.12tE-09 I SE 3.078E-08 2.026E-08 1.517E-08 1.e34E 08 7.788E-09 6.2tTE-09 5.158E-09 4.398E=09 3.627E-09 3.384E=09 3.029E-09 f $$E 2.149E-08 1.430E-08 1.078E-08 7.426E-09 5.630E-09 a.518E-n9 3.763E-09 3.219E-09 2.809E-09 2.489E-09 2.233E-09 O,f VENT AND RUILDING PARAMETERS: f. PELEASE HEIGHT (METERS) 61.00 REP. WIND HEIGHT (FETERS) 10.0 DIAMETER (METERS) 2.40 BUILDING HEIGHT (HETENS) 55.0 EXIT VELOCITY (METERS) 13.10 BLDG.HIN.CRS.SEC. AREA (80. METERS) 2368.0 0 HEAT EMISSION RATE (CAL /SEC) 0.0 AT THE RFLEASE HE1GHT AT THE MEASURED NINn HE1GHT ( l0.0 METERS)8 VENT RELFASE MODE WING S PEED (METERS /SEC)

VENT RELFASE 400E WTNp SPEED IME TER5/M C) 4tNO SPEED (METERS /SEC) k STABLE CONDITIONS UNSTAMLE/NEUTHAL CONDITIOHi

[ ELEVATED LESS THAN 2.670 ELEVATED LESS THAN 2.620 . LESS THAN 2.620 1 MIMED BETHEEN 2.670 AND 13.t00 g t* I xE n PETwEEh 2.620 AND 13.100 DETaELN 2.620 AND 13.100 GRotlND LEVFL AHOVE 13.100 GununD LEVEL 8POWE 15.100 ARHVE 13.100 ( 3 dj

= -= (~) 3 i c USNAC CO9PUTER CODE-X00000,vERSIDH 2.0 EUN DATE 17-JUL-84 PUN TIME 09:31:44 VICTLE : JFD 4/4/77 TO 4/4/79 TO 4/1/80 TO 3/31/81 HTul0.0 DELTA 1sU-1. ELMe.27 t t PLANT VENT: CONTINUGUS HINED MODE RELEASE WITH TERRAIN 0414 NO DECAV, UNDFP(E]ED f CHI /o (SEC/ METER CUGED) FOR EACH SEGME NT g a DIRECTION 5-1 1-2 2-3 3-4 4-5 5-10 to-2n 20 30 30-40 40-50 FROM SITE S 1.493E-07 7.596E-09 5.869E-08 3.650E-SS 2.794E-08 .l.641E-08 8.283E=e9 5.dl9E-09 3.562E-09 2.746E-09 SSW 1.90tE-07 9.217E-08 5.879E=06 4.18tE-08 3.184E*00 1.860E-08 9.374E-09 5.7tlE-09 4.082C=09 3.169E-09 S '8 2.4 3 8E-0 7 1.229E-07 7.865E-04 5.565E-08 4.228E-08 2.470E-08 1.2a5E-08 7.531E-09 5.330E-09 4.096E-09 .) ' WSw 2.074E-07 1.105E-07 7.220E-08 5.103E-04 3.847E-08 2.187E-08 1.049f=08 6.107E-09 4.233E-09 3.2tlE-09 W l.567E-07 9.263E-08 6.579E-08 4.805E-08 3.695E-08 2.14tE-08 1.050E-08 6.196E-09 4.322E-09 3.29tE-09 wha 1.820E-07 1.649E-07 1.156E-07 7.566E*06 452E-08 2.935E-08 1.338E-08 7.612E-09 5.21st-09 3.928E-09 Na 1.290E=07 8.967E-08 6.821E-08 5.143E-08 4.019E-08 2.389E-08 1.190E-08 6.995E-09 4.835E-09 3.646E-09 e .NNW 1.214E-07 9.418E-08 7.395E-08 5.560E*04 4.316E-08 2.53tE-08 .l.240f=08 7.215E-09 4.966E-09 3.738E-09 N 1.562E-07 1.077E-07 7.986E-08 5.885E-08 4.520E-08 2.634E-08 1.263E-08 7.315E-09 5.030E-09 3.788E-09 9;' NWE 1.627E-07 1.087E-07 7.95 5E-0 8 5.854E*08 4.500E*08 2.6tlE-08 1.266E-08 7.338E-09 5.042E-09 3.792E-09 g. NE 1.856Ea07 1.112E-07 7.943E-08 5.866t=08 4.540E-08 2.682E-08 1.343E-08 8.004E-09 5.602E-09 4.270E-09 ENE -2rt*5E 11493E-07 -7s4205-c8 5.430E-04 4.202E-08 2.499E l a 270E-06 -- 7.662E 5.403E-89 -4.140E-09 9 E 2.624f-07 1.094E-07 6.960E-08 4.988E-08 3.82tE-08 2.247E-08 1.130E-08 6.783E-09 4.769E-09 3.647E-09 g-ESE 2.34tE-07 9.81AE-08 6.318E-08 4.570E-08 3.522E-08 2.091E-08 1.063E-08 6.430E-09 4.545E-09 3.491E-09 SE 2.094E-07 9.472E-08 6.217E-08 4.490E*08 3.448E*08 2.034E-08 1.020E-08 6.212E-09 4.398E-09 3.384t=09 9 SSE 1.287E-07 6.881E=08 4.229E-08 3.099E-08 2.400E*06 1.433E-08 7.374E=09 4.513E-09 3.219E-09 2.489E-09 r AVERAGE EFFECTIVE STACK HEIGHT IN METEMS FOR EACH SEGMENT 4 r OIRECTION .5-1 1-2 2-3 3-4 4-5 5-10 10-20 20-30 30-40 40-50 9 FROM SITE 8.978E901 8.978E+0! 8.978E+0! S.978E+0! 8.978Etel 8.978E+01 8.978E+0! 8.97eE+01 8.97eE+01 8.978E*01 I SSW 8.889E+01 8.889E*01 8.889E+01 8.889E+01 8.889E*01 8.889E+01 8.889E+01 8.889E+01 8.889E+01 8.889E+01 SW 8.836E*01 8.836E+01 8.836E+01 8.836E+01 8.836E+01 8.836E+01 8.836E+01 E.836t+01 8.836E+01 8.836E*01 g[ WSW 8.785E+01 8.792E+01 8.793E+01 8.793E*01 8.793E+01 8.793E+0! 8.793E+01 4.793E+01 8.793E+0! 8.793E+01 r 8.825E901 8.825E+01 8.825E+01 8.325E+01 8.825E+01 8.825E+01 8.825E*01 8.825E+01 8.825E+01 8.825E+01 MNW 7.602E*01 6.716E+01 6.382E*01 6.382E+01 6.382E+01 6.382E+01 6.382E+01 6.382E+01 6.382E+01 6.387E+01 = NM 8.760E+0! 8.760E+01 8.760E901 8.760E+01 8.760E+01 8.760E+01 8.760E+01 8.760E+01 8.760E+0! 8.760E+0! NNd 8.849E+01 8.856E+01 8.857E+01 8.857E+01 8.857E+01 8.857E+01 8.857E+01 8.057E+01 8.857E+01 8.857E+01 g N 8.539E901 8.539E+01 8.539E+01 8.539E+01 8.539E*01 8.539E+0! 8.539E+01 8.539E+41 8.539E+0! 8.539E+01 i NNE 8.553E+0! 8.553E+0! 8.553E+01 8.553E*01 8.553E+01 8.553E+01 8.553E+01 8.553E*01 8.553E+01

8. 5'i 3 E
  • 01

'h NE 8.548E+01 8.54AE+01 8.548E+01 8.548E+01 8.548E+01 8.548E+01 8.548E+01 8.548E+01 8.5a8E+01 8.540E+01 j FNE 8.592E+01 8.592f+01 8.592E+01 8.592E*01 8.592E+01 8.592E+01 8.592E+01 8.592E+0! 8.592E+01 8.592E+01 d E 8.715E*01 8.7?OE+01 8.720E+0! 8.720E+01 8.720E*01 8.720E+01 d.720E+01 8.720E+0! 8.720E+0! 8.720E*01 ESE 8.579E+01 8.57*E+01 8.579E+01 8.579E+01 8.579E+01 8.579E+01 8.579E+01 8.579E+01 8.579E+01 8.579t+01 SE 8.648E+01 8.64mf+01 8.648E401 8.648E+0! 8.648E*01 A.648E*01 8.648f*01 8.648E+01 8.648E+01 8.648E*01 'Y SSE 9.054E+0i 9.054E*01 9.054E*01 9.054E+01 9.054E+08 9.054E+01 9.054E+01 9.054E+01 9.054E+0! 9.054Etel ) I .I a i-

1 q 'S USNIC Co*PUTER Cn:E-zo000GeVERSIDH 2.0 RUN DATE 17-JUL-84 EUN TIME 09 32:51 s ~' V0GTLE JFD 4/4/77 TO 4/4/79 TO 4/1/80 TO 3/M/41 Histo.0 del.TA You-L CLMs.27 ~ ELANT VENT: CONTINUOUS MINED MODE PELEASE WITH TERRAIN DATA n-h. 2.260 OAY DECAY. UNDEPLETEn. C3%RECTE0 USING ST AND ARD OPEN TERR AIN T ACTORS ANNUAL AWESAGE CHI /O (SEC/ METER CU8ED) O!8TANCE IN NILES FROM THE SITE s SECTOR 0.250 0.500 0.750 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500 4 O S 7.356E-07 2.497E-07 1.452E-07 1.016E-07 7.688E-08 6.17M-08 5.06tE-08 4.233E-08 3.606E-08 3.122E-08 2.74t E-08 SSN 8.677E-07 3.102E-07 1.899E=07 1.297t=07 9.248E-04 7.238E=08 5.862E-08 4.069E-08 4.13tE-04 3.567E-08 3.126E-08 2 SW t.073E-06 3.837E-07 2.413E-07 1.704E-07 1.24tE-07 9.719E-08 7.845E-08 6.497E-08 5.499E-08 4.74tE=08 4.15tE=08 WSW 9.16tE=07 3.221E-07 2.072E-07 1.495E-07 1.12tE-07 8.89at-08 7.214E-08 5.977E-08 5.049E-08 4.340E-08 3.785E=08 7.202E-07 2.432E-07 1.536E-07 1.153E-07 9.463E-08 7.895E-08 6.588E-08 5.558E-08 4.754E-08 4.123E-08 3.62tE-06 W WHW 5.888E-07 2.106E-07 1.735E-07=1.733E-07 1.772E-07 1.497E-07 1.147E 07 9.107E-08 7.453E-08 6.250E-08 5.347E-08 9 4.919E-07 1.800E-07 1.280E-07 1.038E-07 9.20tE-08 7.995t=08 6.842E-08 5.874E-08 5.09tE-08 4.460E-08 3.949E-08 NNW 4.373E-07 1.624E-07 1.186E-07 1.025E-07 9.760E-08 8.652E-08 7.433E-08 6.374E-08 5.509E-08 4.812E-08 4.248E-08 N 5.830E-07 2.152E-07 1.558E-07 1.266E-07 1.109E-07 9.500E-08 8.016E-08 6.797E-08 5.829E-08 5.06tE-08 4.447E-08 0 Nt.E 6.183E-07 2.268E-07 1.627E-07 1.302E-07 1.116E-07 9.483E-08 7.98tE=ce 6.764E-08 5.802E-08 5.041E-04 4.433E-00 NE 7.784E-07 2.777E-07 1.852E-07 1.392E-07 1.132E-07 9.442E-08 7.960E-08 6.757E-08 5.813E-08 5.069E-04 4.473E-08 -1.484E-46-h569E-97-h t#3E-07 1.458E-07 14102E 8 950E-08 -7 422E-08 6.267E-08 Ss 302E-08-4.69tE-08 4.142E-08 I ENE 4 r E -tT*77E-96-4 93eE-67-2 490E=07 1.560E-07 14 09 t E-07 8.542E-08 6.949E-00 5a 001E 4s944E-08 a 287t=08 34 7 7 t E 7 s j ESE 1.480E-06 4.382E-07 2.231E-07 1.396E-07 9.772E-08 7.700E-08 6.309E-08 5.293E-08 4.529E-08 3.939E-08 3.473E-08 SE 1.210E-06 3.775E-07 2.013E-07 1.309E-87 9.492E-08 7.574E-08 6.212E-08 5.206E-08 4.446E-08 3.859E-08 3.396E-06 U SSE 7.070E-07 2.317E-07 1.223E-07 8.167E-08 6.236E-08 5.090E-08 4.227E-08 3.570E-08 3.064E-08 2.670E-08 2.357E-08 O AN:tUAL AVERAGE CHI /O (SEC/ METER CUREO) DISTANCE IN MILES PROM THE 8ITE SECTOR 5.000 7.500 10.000 15.000 20.000 25.000 30.000 35.000 40.000 45.000 50.000 3 I.436E-08 1.575E-08 1.16tE-08 7.692E-09 5.647E-09 4.391E-09 3.554E-09 2.958E-09 2.513E-09 2.17tE-09 1.999E-09 SSW 2.774E-08 1.786E-08 1.315E-08 8.713E-09 6.399E-09 4.984E-09 4.035E=09 3.359E-09 2.854E-09 2.464E-09 2.155E-09 Sn 3.681E-G8 2.367E-08 1.740E-08 1.147E-08 8.368E-09 6.473E-09 5.209E=09 4.312E-09 3.646E-09 3.135E-09 2.733E-09 WSW 3.343E=08 2.100E=08 1.525E-08 9.855E=09 7.106E-09 5.468E-09 4.374E-09 3.6tlE-09 3.047E-09 2.616E-09 2.279E-09 W 3.216E-08 2.062E-08 1.506E-06 9.826E-09 7.12tE-09 5.490E-09 4.409E-09 3.646E-09 3.04tt-09 2.649E-09 2.308E-09 WHW 4.649E*08 2.796E-08 1.976E-08 1.243E=08 8.822E-09 6.700E-09 5.318E-09 4.356E-09 3.65tE-09 3.lt7E-09 2.699E=09 Nw 3.531E=08 2.310E-08 1.702E-08 1.lt7E-08 8.096E-09 6.232E=09 4.994E-09 4 120E-09 3.473E-09 2.979E-09 2.590E=09 NNW 3.786E-08 2.450E-08 1.793E-08 1.166E-08 8.399E-09 6.435E-09 5.138E-09 4.225E-09 3.552E-09 3.038E-09 2.635E-09 4 4 3.949E-0A 2.524E-08 1.835E-08 1.187E-08 8.533E-09 6.53aE-09 5.226E=09 4.305E-09 3.627E-09 3.tl0E-09 2.705E-09 y NHE 3.940E-08 2.529E-06 1.845E-08 1.199E-08 8.649E-09 6.646E-09 5.124E-09 4.394E-09 3.709E-09 3.185E-09 2.773E-09 S NE 3.990E-08 2.603E-04 1.924E=08 1.276E-08 9.35tE-09 7.275E-09 5.889E=09 4.903E-09 4.170E-09 3.605E-09 3.158E-09 s] ENE --3 644E "" 2. MM - M 1. "06E 1.2 0 9E-0 8 e s 917E=09 -4:970E-09 4:462E-49-4 s 728E-09-4 r#30E-09 3,49tE-09-3.063E *j E -3r357E-08-hf 86E-06-tT620E-08 1.08 t E-08 7.97eE-09 6 6 23PE-09 5 6 062E-09 4.2287 59 3.604E-09 3 s t 22E-09 2.740E-09 f ESE 3.099E 88 2.032E-0A 1.512E-08 1.014E-08 7.501E-09 5.876E-09 4.783E-09 4.000E-09 3.415E-n9 2.962E-09 2.602E-09 SE 3.024E-08 1.964E-08 1.456E-08 9.677t=09 7.304E-09 5.52*E-09 4.472E 09 3.720E-09 3.159E-09 2.727E-09 2.384E-09 'k } SSE 2.103E-08 1.379E-08 1.024E-08 6.832E-09 5.039E-09 3.903E-09 3.154E-09 2.619E-09 2.220E-09 1.912E-09 1.669E-09 VENT AND SU1LDING PARAMETERS: I RFLE ASIL HEIGHT (METERS) 61.00 REP. WIND HEIGHT (METERS) 10.0 j DIAMETER (METERS) 2.40 AUILDING HEIGHT ( P'E TER S ) 55.0 i EXtf VELOCITY (METERS) 11.10 nLOG. PIN.CRS.SFC.4REA (54. METERS) 2368.0 q ** HEAT EHIS$10N PATE (CAL /SEC) 0.0 4T THE RELEASF HEIGHT: AT THE MEASURED WINn NElGHT 10.0 METERS 1s VENT RELEASF MODE WIND $ PEED (HETEPS/SEC)

WENT RFLEASE MODE WIND SPEED (HETERS/SF C)

WINO SPEED (METERS /SEC) I STAHLE CONDITIONS UNSTABLE / NEUTRAL CnNDITIONS ELEVATED LESS THAN 2.620 ELEVATEn LESS THAH 7.e?0 LF3s THAN 2.620 MINED RETWEEN 2.620 AND {4.[QA 3 HIXED Rf.1hEEN 2.620 AMD 13.100 RETWEEN 2.620 AND 11.100 h -) GROUND LEVEL A80VE t3.Ino GROHND LFVEL AM01; 33.100 A40VE 13.t00

=% . r) USN4C CO*PUTER C00E-x00!O3, VERSION 2.0 RUN DATE 17-JUL-43 RUN TIME 04:32s51 rs V0GTLE : JFD 4/4/77 TO 4/4/79 70 4/1/80 70 3/31/91 HTet0.0 DELTA Tsu-L CLMe.27 O PLANT VF.HT: CONTINU0US MINED HODE RELEASE WI7H TERRAIN DATA ,[k 2.260 D4Y DECAY. UNDEPLETED CHf/0 (SEC/ METER CUBED) FOR EaCH SEGMENT

  1. I SECHENT BOUNOARIES IN MILE 8 FROM THE SITE 3

A DI;ECTInN 5-1 1-2 ' 7-3 3-4 4-5 5-10 10-20 20-30 30-40 40-50 F;0M SITE h S 1.4*tE-07 7.565E-08 5.026E-08 3.601E-08 2.74tE-08 t.582E-08 7.65tE-09 4.390E-09 2.959E-09 2.172E-99

  1. I)

S5d 1.899E-07 9.182E-c8 5.832E-08 4.127E-08 3.124E-08 1.796E-ne 8.670E-o* 4.982E-09 3.360E-09 2.465E-09 SW 2.414E-07 1.224E c7 7.805E-08 5.496E-08 4.152E*08 2.380E-08 1.14tE-08 6.473E-09 4.315E-09 3.138E-09 e ,9 W54 2.07 E-07 1.101E-07 7.167E-08 5.044E-08 3.785E-08 2.123E-08 9.833E-09 5.464E-09 3.614E-09 2.619E-09 W l.565E-07 9.225E-09 6.525E-08 4.743E-08 3.620E-08 2.07tE-08 9.787E-09 5.492E-09 3.449E-09 2.650E-09 WNW l.817E=07 1.64tE-07 1.146E-07 7.467E-08 5.356E-08 2.843E-08 1.246E-00 6.713E-09 4.363E-09 3.120E-09 r. fg Na 1.288E-07 8.927E-04 6.762L-09 5.074E-08 3.946E-08 2.3ttE-08 1.110E-08 6.234E-09 4.123F-09 2.94tE-09 L NNW t.212E-07 9.376E-09 7.334E-08 5.49tE-08 4.24aE*08 2.455E-08 1.160E-08 6.440E-09 4.230E-09 3.04tE=09 N 1.560E-07 1.073E-07 7.924E-08 5.813E-08 4.444E-08 2.535E-08 1.183E-08 6.545E-09 4.310E-09 3.113E=09 7 ,.y NNE 1.625E-07 1.083E-07 7.894E-08 5.787E-08 4.43tE-08 2.538E-08 1.194E-08 6.65tE-09 4.399E-09 3.188E-09 NE 1.853E -C 7 1.108E-07 7.865E-09 5.799E-08 4.471E*08 2.609E-08 1.268E-08 7.274E-09 4.906E-09 3.607E=09 ENE f r t-4 0 E-0 7 ---t i 4 49E-0 7 7s367E-08 5.37tE-08 4.140E-06 2.434E-04 1.200E-08 - 6a966E 44 729E-09 ---3.492E-09 I I E -24 62 t F-0 7-- lin90E-07 ---6 a 914E-08 4.939E-06 3.770E 2.195E-08 1.075E-08 6.228F-09 4.229E-09 3.124E-09 ESE 2.338E-07 9.785E-04 6.27hE-38 4.523E-08 3.473E-08 2.038E-08 1.007E-08 5.872E-09 4.001E-09 2.963E-09 SE 2.09tE-07 9.439E-08 6.173E-08 4.440E-08 3.395E-09 1.975E-08 9.618E-09 5.526E-09' 3.72tE=09 2.720E=09

  • Ij SSE 1.285E-07 6.tS6E=08 4.194E-08 3.0%9E-08 2.356E-08

.t.392E-08 6.784E-09 3.901E-09 2.620E-09 1.913E-09 r l I ') L p en : ') E c),

)

p 3-T 1 ~

)

.) ) i t i ) i e e Ad

m .m.~..------- -Q + USMC CWUIER CCDE-40!DM. VERSION 2.0 CUN DATE 17-JUL-84 RUN TIME 09:34:21 9 VIGILE JF0 4/4/77 TO 4/4/79 70 4/1/40 TO 3/31/41 HTate.0 DELTA Tou-L CLMe.27. ~f PLANT VENT: CONTINUOUS MINED N00E RELEASE NITH 7 ERR 4IN DATA 4.000 DAY DECAY, OEPLETED C0~2ECTED USIhG 374 HOARD OPEN TERRAIN FACTORS p. T ANNU4L AVER 4GE CHI /O (SEC/ METER CUSEDI DISTANCE IN MILES FROM THE SITE 4( SECloR 0.250 0.500 0.750 i.no i.5 0 2.000 2.500 3.000 3.500 4.0 8 4.500 ,.1 m =07 2.391be, i.37 07 9.68 08 7.4,- -08 5.,86,.e. 4.92 08 4.i2- -58 3.5i 0

3. 4.. 8 2.67 88 554 8.45eE.07 2.966b e7 1.7975 07 1.234E-07 8.896E-08 6.997E-08 5.682E-08 4.720E-08 4.017E.08 3.473E te 3.047E.08 I:

Sw 1.044E-06 3.H2E-07 2.2836 07 1.624507 1.197E-07 9.4e9E.08 7.61tE.08 6.3tlE 08 5.349E.08 4.617E.e4 4.047E-Os g WS4 8.884E-07 3.05eE-07 1.953E-07 1.423E-07 1.08tE-07 8.620E-08 7.000E.00 5.815E.08 4.918E 08 4.230E-e8 3.692E.08 7.n06E-07 2.316E-87 1.45tE-07 1.10lf 07 9.18tE=08 7.703E 08 6.446E.08 5.446E=08 4.664E-te 4.049E=88 3.560E-08 WNw 5.705E.07 2.001E=e7 1.654E 07 1.684E 07 1.744E.e7 1.477E-07 1.133E-07 9.0026 88 7.373E-08 6.188E-te 5.299608 g nw 4.766E.07 1.700E-07 1.206E.07 9.930E 08 8.963E-08 7.839E 08 6.732E-08 5.792E-08 5.029E.08 4.414E-08 3.914E-06 NNW 4.196E*07 1.521E-07 1.113E-07 9.8ttE.08 9.532E-08 8.593E.08 7.326E.08 6.294E.00 5.447E.08 4.764E.es 4.210E.08 r N 5.55 3E-07 1.995E-07 1.446E-07 1.199E-07 1.075E.07 9.28 t E=08 7.86 t E.00 6.68 t E=68 5.74et.09 4.99t E=e8 4.392E.es NNE 5.90SE-07 2.tl2E-07 1.515E-07 1.235E.07 1.081 5 07 9.255 508 7.at6E-08 6.637 608 5.702E.04 4.960E.e5 4.367E.08 NE 7.496E.07 2.6145 07 1.7336 07 1.32tt.07 1.094E-07 9.235E-08 7.782E-08 6.62tE-08 5.707E-04 4.983E-08 4.404E.08 ) ENE -td57E #6-3;38'597-tT979E=e7-1.384E 07 -t a 06 t E 8.68 t E-08-T a222E=e8 6. lllE=e8 -5.256be8 -4,587E-04 4.055b08-g r 5 e 620E e 796E.08 4.162E=08 -3;H4E 08 - E tv+46E-66-4;76cE=e?-fr364E=07-l.483E-97 1st47E=of-8.240E-08 6672tE.08 s ESE 1.446E-06 4.194E-07 2.098E-07 1.316E-97 9.336E.08 7.417E.08 6.096E-08 5.127E-08 4.395E=06 3.828E 08 3.340E.es e SE 1.177E-06 3.594E-87 1.885E=07 1.232E.07 9.08tE.08 7.302E=08 6.014E.08 5.054E-08 4.325E 08 3.760E.08 3.313E-08 O' SSE 6.922E-07 2.2296 07 1.158E-07 7.777E.08 6.017E-08 4.940E=08 4.ll3E-08 3.4796 08 2.991608 2.6095 08 2.306E-08 T 4NNU4L AVERAGE CHI /G (SEC/ METER CUBED) DISTANCE IN MILES FROM THE SITE SECTOR 5.000 7.500 10.000 15.000 20.000 25.000 30.000 35.000 40.0 0 45.000 50.000 I 2.383E 08 1.55tE-e4 1.152E-08 7.755E=e9 5.778E-09 4.5HE-09 3.750E.09 3.166b e9 2.728b09 2.388E-09 2.ttSE-09 S SSW 2.707E-04 1.755E-48 1.302E-08 8.769E.09 6.548E-09 5.187E-09 4.270E-09 3.612E=99 3.117E-09 2.732E=09 2.423E-09 I Ed 3.594E 08 2.33tt-08 1.730E-09 1.163E-08 8.644E-09 6.810E.09 5.575E=09 4.690E-09 4.025E-09 3.511E.09 3.100E.09 W5w 3.263E-08 2.068504 1.505E-08 9.836509 7.179E-09 5.587E.09 4.534E.09 3.791E.09 3.239E-09 2.616E-09 2.479E-09 h. 3.165E-08 2.042E.08 1.50tE.08 9.929E.09 7.298E-09 5.708E-09 4.650E.09 3.899E.09 3.340E-09 2.910E=09 2.568E-09 [ = WNd 4.612E=08 2.79tE-SA 1.987E=08 1.270E.08 9.163E-09 7.076E=09 5.709E.09 4.749E.09 4.020E-09 3.467E=09 3.02AE-09 h Nw 3.504E=08 2.31nt.e8 1.715E-08 1.142E 08 4.397E.09 6.55ag.09 5.325E.09 4.452E.09 3.802E-09 3.304E-09 2.907E-09 NNw 3.757E-08 2.447E=08 1.402E=O4 1.189E-08 8.695E.09 6.76tE-e9 5.478E.09 4.57tE-09 3.898E.09 3.382E-09 2.973E 09 H 3.905E=98 2.514E-98 1.84tE-06 1.207E.08 8.800E.09 6.835E=09 5.536E.09 4.619E-09 3.940E.09 3.420E-09 3.008E-09 NNE 3.886E=08 2.509608 1.84tE.08 1.210E-08 8.438E=09 6.872E-09 5.57tE-09 4.652E.09 3.970E.09 3.448E-09 3.034E.09 i NE 3.933E-08 2.582E=0A 1.920E-08 1.289E.08 9.557E=09 7.523E=e9 6.160E.09 5.187E.09 4.460E-09 3.49eE-09 3.449E-09 ENE -3;625 bee-2;394E ee-tvf 99544-t-2n 2E-te 9;e43E-09-7;149E-09-5.n74Eme9-4 959E.09 4;27tE 09 -3;739E=et-3;313E=09 - 6 E 4.M 46-2 rt 54E-64 -835885e8 -l an68E-06-7:938E-09-6:256E-99 -5.127E-09 4 e 318E.09 3.712E-09 3.243E.49 -2.a68E.09 - ESE 3.019E.n8 1.990E-08 1.488E=0A 1.00RE-08 7.528E.09 5.956E.09 4.896E 09 4.136E=09 3.564E-09 3.12tE-09 2.766E-09 SE 2.954E 08 1.934E-08 1.442E-08 9.725E-09 7.242E-09 5.717E-09 4.69tE-09 3.955E-09 3.403E-09 2.974E.09 2.632E-09 SSE 2.060E-08 1.36tE=48 1.019E-08 6.922E-09 5.177E.09 4.099E=09 3.369E=09 2.845E=09 2.450E-09 2.143E.09 1.896E=09 'k VENT AND RUILDING PARAMETERS: RELEASE HEIGHT ("ETERS) 61.00 REP. WING HEIGHT (HETERS) 10.0 'h f; DIAMETER (METERS) 2.40 BUILDING HEIGHT (METERS) 55.0 ERIT VELDCITY (METERS) 13.10 MLOG.HIN.CRS.SEC.4REA (SQ.HETERS) 2369.0 HEAT EHISSION 4 ATE (CAL /SEC) 0.0 AT THF GELEASE HEIGHit AT THE HEASURF0 WIND HEIGHT ( 10.0 METERS)3 VENT RELEASE HODE WIND S PEED (HETERS/SEC)

VENT RELEASE MnDE WIND SPEED (METERS /SEC)

NIND SPEED 1HETE95/SEC) A7ARLE CONDITIONS tlHST ABLE/NF.UTR AL CONDITION 9 ELEVATED LESS IHAN 2.620 t ELEVATED LESS THAN 2.620 LESS THAN 2.620 'f MINED dETWEEN 2.6/0 ANO 13.100 B

  1. 11NED

'lETdEEN 2.620 ANO 13.100 RETwEEN 2.620 AND 13.100 GROUN3 LEVEL AHOVE 13.3n0 GROUND LEVEL AunvE 33.100 4610 VE 15.100 3 a'

u_ - -~. -- - _ - s M { USNHC COMPUTE 3 CODE-so 400,VE%8!DN 2.0 CUN DATE 17-JUL*84 RUN TIME 09:34:21 V0GTLE : JFD 4/4/77 Ta 4/4/79 TO 4/1/80 in 3/31/81 HTe10.0 DELTA TmU-L CLMs.27 .Oh PLANT %ENTI CONTINUOUS NINED MODE RELEASE WITH TERRAIN DATA

  • .g g s

A.000 DAY DECAY, DEPLETED -l 6 CHI /O (SEC/ METER CORED) FOR EACH SEGMENT j Ot SEGMENT B0UNDARIES IN MILES FROM THE SITE DI;ECTION .5-1 1-2 2-3 3-4 4-5 5-10 10-20 20-30 30-40 40-50 I F=M SITE I 3 1.420E-07 7.285E-04 4.884E-6A 3.509E-08 2.67AE-08 f.558E-08 7.712E-09 4.563E=09 3.166E-09 2.388E-09 h 35W 3.807F=07 8.nl8L-08 5.651E-08 4.013E-08 3.047E-08 1.765E-08 8.726E-09 5.183E-09 3.412E-09 2.732E-09 F SN 2.296E-07 1.17AE-07 7.570E-08 5.345E-08 4.048E-06 2.344E-08 1.156E-08 6.005E-09 4.689E=09 3.5tlE=09 'g[ WSW l.963E-07 1.059E-07 6.961E=08 4.912E-04 3.693E-04 2.083E-08 9.813E-09 5.590E-09 3.793E-09 2.816E-09 d 1.4RPF-07 8.932E-08 6.38tE-08 4.653E-08 3.558E-08 2.05tE-08 9.849E=09 5.709E-09 3.90lE=09 2.911E=09 WNd 1.746E-07 1.612E-07 1.132E-07 7.347E-08 5.308E-08 2.83nr 08 1.272E-08 7.066E-09 4.746E=09 3.469E=09 9 Nd 1.22tE-07 8.677E-08 6.65tE-08 5.013E-08 3.910E-08 2.311E=08 1.135E-08 6.554E-09 4.454E=89 3.305E-09 HNw 1.145E-07 9.137E-08 7.227E-08 5.429E-08 4.206E-08 2.452E-08 1.tP3E-08 6.764t=09 4.574E-09 3.383E=09 N 1.458E-07 1.037E-07 7.768E-08 5.724E-04 4.389E-08 2.524E-08 1,*.02E-08 6.839E-09 4.622E=09 3.422E=09 NNE 1.523E-07 1.046E=07 7.728E-08 5.687E-08 4.365E-08 2.518E=08 '.205E-08 6.876E-09 4.655E=09 3.449E-09 O[ NE 1.746E-07 1.669E-07 7.705E-08 5.693E-08 4.401E-08 2.588E-08 1.28tE-08 7.520E-09 5.188E-09 3.098E=09 ENE 2 d47 E-64--liO47E-t? TvM7E -5 6 2 46E-0 8 -4.054E-08-- -2 s599E-04-- -l e204E 7.144E-49 -4.958E-09 -3.7 39E=0 0. - 4[ E 2.~4 L ;7 1.G45E%7--4.666E e8 - 4.790E -3 4 663E-08 --2 s142E -i s e62E-08 -es253E=09 -- 4 ell 8E-09 ---3 a 243E g ESE 2.216E-07 9.332E-08 6.060E-08 4.388E-08 3.3F9E-08 1.996E=cJ 1.00lE-08 5.951E-09 4.135E-09 3.12tE=09 t SE I.975E-07 9.OllE-08 5.974E-08 4.3tRE-08 3.312E-08 1.943E-J8 9.665E-09 5.713E-09 3.955E-09 2.974t=09 .I SSE 1.227E-07 5.929E-08 4.080E-08 2.985E-08 2.305E-08 1.365E.08 6.874E-09 4.095E-09 2.844E=09 2.143E=09 )$ e

  • )

.)! ,f Ia E .h t .) i f l \\d k l

_.__m \\ *% USh C COMPUTEft C00E=X08000.VERSICH 2.0 RUN D4TE 17-JUL-Ae CUN TIME 09:33:57 V0GTLE I JFD 4/8/77 70 4/4/79 TO 4/1/86 TO 3/31/81 HTet0.0_ DELTA TeU-L CLMe.27 O I PLAUT WENT: CONTINUOUS MINED H0DE RELEASE WITH TERRAIN DATA C0!RECTE0 USING ST ANDARO OPEN TERRAIN F ACTORS eeeeeeeeeeeeeeeeeeese REL4TIVE DEPos! TION PER UNIT ARE4 (Mee-2) 6T PINED POINTS SY DOWhMINO SECTORS. eeeeeeeeeeeeeeeeeeen i DIRE C TION DISTANCES IN MILES FROH SITE 0.25 0.50 0.75 1.00 1.50 2.00 2.5n 3.00 3.50 4.00 4.50 S t.155E e8 6.525E-e* 4.218E-e* 2.3tlE-09 9.133E-te 4.992E-te 3.153E-10 2.177E-te 1.594E-te 1.217E-10 9.597E-It SSW t.530E-04 8.495E-99 5.437E=e9 2.949E-09 1.156E-09 6.259E-10 3.926E-to 2.698E-10 1.970E-10 1.502E-10 1.te3E 10 gI j' Sd 1.887E-08 1.03*E-08 6.69tE-09 3.676E-09 1.466E-09 8.02tE-te 5.066E-10 3.496E-to 2.558E-te 1.953E-10 1.538E-10 j NSW l.59GE=o8 8.62eE-09 5.55PE=09 3.064E=e9 1.232E-09 4.743E-10 8.257E-te 2.936E-10 2.147E-10 1.638E-10 1.209E-10 4 - p 3.215E-ee 6.749E-09 4.396E-09 2.433E-09 9.759E-10 5.364E-10 3.399E-10 2.350E-10 1.722E-te 1.315E-te 1.036E-10 g 1 HNW t.162E-08 6.258E-09 3.877E-09 2.101E-e9 9.496E-10 5.02tE-10 3.040E-10 2.08tt-10 1.500E-10 1.134E-te 8.875E-Il j N4 7.767E=09 4.162E=09 2.734E-09 1.545E-09 6.364E-to 3.55?E=le 2.278E-10 1.585E-10 1.165E-10 8.915E-t! 7.028E-t! l-HN* 5.875E-09 2.99tE-09 2.830E-09 1.208E-09 5.29tE-10 3.05tE-te 1.99tE-10 1.400E-10 1.035E-10 7.934E-It 6.255E-It j h 7.658E-09 3.507E-09 2.325E-09 1.369E-09 6.024E-10 3.435E-10 2.222E-10 1.553E-10 1.143E-10 a.730E-Il 6.865E-Il O HNE 9.024E-09 4.315E-09 2.828E-09 1.638E-09 7.064E-10 3.998E-te 2.576E-10 1.796E-te 1.32tE-10 1.009E-te 7.940E-11 j. NE 1.243E-08 6.434E-e9 4.108E=09 2.269E-09 9.192E-10 5.042E-te 3.187E-10 2.198E-te 1.607E-10 1.225E-10 9.642E-Il ENE h444E-oe-tve-5the&-er449E=e9 - 3 a 44 t E-et-tT 33 t E-et-Tr tSTE-19-4 4 72E 5 s 965E-t e -E s 234E-t e - t s 792E-t e-t 34 eE-t 0 - - q 3 E fr34eE-44-h44AE=eA-til26E-98 5.813E-09 2.18 AE=e9 1 e 124E=99 6e899E-10 4e678E.1e 3.390E-t e-2 576E-10 7e928E-10 j-ESE 2.782E-04 1.493E~en 9.049E-09 4.666E-09 1.729E-09 9.026E-10 5.530E-10 3.744E-10 2.709E-10 2.856E-to 1.617E-10 l SE 2.220E-04 1.157E-Of 6.98tE-09 3.617E-09 1.357E-09 7.1326 10 4.388E-10 2.9786 10 2.157E=le 1.638E-10 1.288E-10 'I SSE 1.153E-08 6.532E-09 4.136E-09 2.212E-09 8.485E-te 4.560E-10 2.850E-10 1.955E=10 1.427E-10 1.088E-10 8.577E-tt DIRECTION O!8TANCES IN HTLES O FROM tt1E 5.00 7.50 10.80 15.00 20.00 25.00 30.00 35.00 40.0e 45.00 50.00 i 7.760E-tt 3.692E-Il 2.282E-It 1.223E-It 7.829E-12 5.784E-12 4.478E-12 3.582E-12 2.937E-12 2.453E-12 2.083E-12 E MW 9.56tE-Il 4.534E-11 2.797E-It 1.496E-It 9.574E-12 7.07tE-12 5.476E-12 4.383E-12 3.598E-12 3.00mg-12 2.556E 12 3 i SW t.243E-10 5.89tE-St 3.630E-Il 1.937E-11 1.236E-Il 9.078E-12 7.000E-12 5.583E-12 4.569E-12 3.810E-12 3.23aE-12 g i. WSa 1.04tE-10 4.916E=ll 3.82tE-11 1.603E=ll 1.020E-lt 7.450E-12 5.789E-12 4.544E=12 3.706E-12 3.08tE-12 2.605E-12 R.373E-It 3.972E-tt 2.449E-It 1.365E-tt 8.323E-12 6.1076 12 4.702E-12 3.743E-12 3.056E-12 2.543E-12 2.15tE-12 9 j M RNW 7.143E-Il 3.266E-It 1.960E-It 1.020E-St 6.556E-12 4.743E-12 3.805E-12 3.190E-12 2.797E-12 2.485E-12 2.265E-12 Nw 5.674E-11 2.699E.It 1.656E-Il 8.792E-12 5.584E-12 4.064E-12 3.114E-12 2.474E-12 2.018E-12 8.680E-12 1.423E-12 4 l NNW 5.n43E-fl 2.382E-Il 1.460E-Il 7.67tE-12 4.A3tE-12 3.455E-12 2.614E-12 2.058E-12 1.668bl2 1.382E-12 1.147 612 N 5.522E-11 2.578E-It 1.568E-11 8.121E-12 5.070E-12 3.575E-12 2.685E-12 2.108E 12 1.7tlE-12 1.422b 12 1.208E-12 0 i NNE 6.393E-11 2.99at-11 1.826E-Il 9.526E-12 5.942E-12 4.257E-12 3.221E-12 2.543E-12 2.073E-12 1.728E-12 1.47tE-12 f NE 7.778E 11 3.662E-t! 2.246E-13 1.187E-Il 7.535E-12 5.483E-12 4.214E-12 3.365E-12 2.764E 12 2.317E=12 1.980E 12 I r ENE tve#3E-l+-ht-3*E 4 ; 3. 2 % f t-t s 744E-t t-i re93E-ti-6ie99E-12-6 r399E=l 2 5:469E-12-4 rt46E=12 -3 5195t t-3:010E h tv 42E-t e-7 s 816E-t 1-4r654E=l 1-Es 642E=1 t-t s 711E-t 1 -li284E-11 -t s el eE t 1-6,185E tr72 tE=lf-S e 634E=l f"4 r7996 Q i E e ESE 1.30RE-10 6.206E-It 3.848E-Il 2.085E-It 1.348E-11 1.0ttE-It 7.916E-12 6.387E-12 5.278E-12 4.432E-12 3.77AE-12 O r j SE 1.04tE-to 0.92tE=ll 3.045E-11 1.642E-It 1.059E-Il 7.482E-12 6.148E-12 4.949E-12 4.085E-12 3.429612 2.924E-12 l SSE 6.940E-11 3.309E=lt 2.052E-Il 1.108 611 7.127E 12 5.313E-12 4.136E-12 3.319E-12 2.727E-12 2.279E-12 1.934E-12 l g O L l 0 l 0 L i lA O i O 1 i }% J l b i J

O\\v.} USNRC COMPUTER CODE-M00000,VERSIDN 2e6 PUN DATE 17-JUL-84 EUN TIME 09133:52

  • O WOGTLE JFD 4/4/77 TD 4/4/79 TD 4/1/80 TD 3/31/91 HTel0.0' DELTA Tsu-L CLMe.27 b

PLANT VENT CONTINUOUS MIEED MODE RELEASE WITH TERRAIN DATA esoseeeeeeeeeeeeeeeeeeee

  1. ELAYlVE DEPOSIT!DH PER UNIT AREA (Mee-21 BY DOWNWIND SECTORS e***eeeeeeeeeeeeeeeeeeen t

r SEGME4T BOUNDARIE' IN MILES Oi DICECTION .5-1 1-2 2-3 3-9 4-5 5-10 10-20 20-30 30-40 40-50 f FZM SITE S 3.883E-09 1.040E-09 3.253E 10 1.617E-10 9.680E=ll 3.969E=ll 1.263E=ll 5.807E-12 3.193E-12 2.459E-12 e S79E-Il 1 546E-Il 7.101E=12 4.396E=12 3.015r-12 OI SSW 5.OllE-09 1.319E-09 4.057E-10 2.00SE-10 1.193E-10 s [1 S2 6.171E-09 1.662E-09 5.226E-10 2.595E-10 1.552E=le 6.339E-Il 2 002E-Il 9.122E-12 5.602E-12 3.8/nE-12 ESW 5.130E-00 1.391E-09 4.392E-10 2.17AE-lo 1.30lE-10 5.295E-Il 1 659E-Il 7.492E-12 4.560E-12 3.090E-12 W 4.047E-09 1.In4E-69 3.503E-lO .l.746E-10 1.045E-10 4.273E-Il 1.349E-11 6.136E-12 3.755E-12 2.550E-12 OI h 4 N's 3.617E-09 1.007E-09 3.198E-10 1.526E-10 8.963E=ll 3.547E-Il 1 067Eall 4.865E-12 3.219E-12 2.496E-12 1-NW 2.523E-09 7.136E-10 2.342E-10 1.18tE-10 7.086E-Il 2.893E=ll 9.092E-12 4.090E-12 2.483E-12 1.665E-12 I OI I NNd 1.878E-09 5.A04E-10 2.037E-10 1.047E-10 6.304E-Il 2.563E-Il 7.949E-12 3.485E-12 2.06ME-12 1.388E-12 N 2.163E-09 6.578E-10 2.278E 10 1.157E-10 6.920E=ll 2.783E-11 8.445E-12 3.617E-12 2.122E-12 1.42BL-12 [ j 4 f w NNE 2.630E-09 7.772E-lo 2.643E-10 1.334E-10 8.005E-11 3.230E-Il 9.893E-12 4.302E-12 2.558E-12 1.735E-12 NE 3.803E=09 1.035E=01 3.286E-10 1.631E=10 9.725E-Il 3.947E-Il 1 230E-Il 5.522E-12 3.378E-12 2.325E-12 t MteE=99--o 625E-to-f.269E-10

. 352E-l e---5 ;529E=ll i T 759E*l l -9 r135E-i t--5,884Ea l2 -3. 52 8 E L ENE

-h9elb M r E 1,04 4E-08-2. 508E-09-7 6169E=l e-3.4 4 0 E=l e -2;o4 7 E-16---4 -413E=l l-- 2 6 7 21E-f l - 14 290E=l l 8.161E-12 5.644 E V

  • l ?

ESE 8.408E-09 2.014E-09 5.748E-10 2.756E-10 1.633E-10 4.686E-11 2.149E-Il 1.013E-Il 6.401E-12 4.440E-12 SE 6.506E=09 1.573E=09 4.556E-10 2.194E-10 1.500E-10 5.306E=11 1 695E-it 7.910E-12 4.962E-12 3.436Eal2 f 8SE 3.813E-09 9.77tE-10 2.948E-10 1.449E-10 8.653E=ll 3.557E-It 1 142E-Il 5.326E=12 3.327E-12 2.284E-12 [ VENT AND BUILDING PARAMETERS: 0 KELEASE HEIGHT (METERS) 61.0C REP. WIND HEIGHT (METERS) 10.0 0I DIAMFTER (METERS 1 2.aC RUILDING HEIGHT (METER 8) 55.0 EXIT VELOCITY (METENS) 13.10 BLDG. MIN.CRS.SEC. AREA (SO. METERS) 2368.0 N HEAT EMISSION RATE (CAL /SEC) 0.0 ) AT THE RELEASF HEIGHT 3 AT THE MEASURED WIND HEIGHT ( 10.0 METERS): k i VENT #ELEASE MODE WIND S PEED (PETERS /SEC)

VENT RELEASE MODE WIND SPEED (METERS /SEC)

WINO SPEED (METER 9/SEC) 4 STABLE CONDITIONS UN8 TABLE / NEUTRAL CONDITIONS ELEVATED LESS THAN 2.620 ELEVATED LESS THAN 2.620 LESS THAN 2.620 l MIXED BETWEEN 2.620 AND 13.100 1 MINED RETWEEN 2.620 AND 13.100 SETWEEN 2.620 AND 13.100 0 GROUNO LEVEL Ats0VE 13 lco CROUND LEVEL ABOVE 13.100 A80VE 13.100 0-a ) i 4 I o o i' .] i )

___.,__--_w.---- O U$eNIC CO *PUTED CobE-s00000,vt2910N 2.0 KUN DATE 17-JUL*44 GUN TIME 09:37919 WOCTLE : JFD 4/4/77 TO 4/4/79 TO 4/1/00 TO 3/31/91 Histo.0 DELTA Tat.L CLMs.27 ..- g[ ( PLA%T VENT CONTINUOUS MINED H00E RELEASE WITH TERRAIN DATA J/ CDR2ECTED USING STANOARD OPEN TERRAIN FACTOR $ ~ ~ SPECIFIC POINTS OF {NTFREST

  1. ELEASE TYPE OF DIRECTION DISTANCE X/0 N/0 X/9 D/G ID LOCATION F404 SITE (MILES) (METERS) (SEC/CUS. METER) (SEC/CUS. METER) (SEC/CUS.NETER) (PER 80.NETER)

NO DECAY 2,260 DAY DECAY 0.000 DAY DEC4Y ,l'F UNDEPLETED 8UNDEPLETED DEPLETED A SITE RNORY t.13 1820. 9.2E.es g.2E=88 8.8E=88 1.7E 09 4 SITE RNORY SSN 1.26 2030 1.tE.07 1.tE 07 3.0E=67 1.7E=09 O A SITE 8NDRY Sd t.35 2170 1.3E.07 3.3E.0y 3.3E.07 1.9g.09 A SITE RNDRY WSW 1.18 1900. 1.3E.07 3.3E 07 1.3E.07 2.tE=09 A SITE RNDNY W t.32 2120. 1.0E.07 1.0E.07 9.7E=00 1.3E-09 9 4 SITE 8NDRY WNW l.70 2740. 1.7E 07 1.7E.0y 3.7E.07 7.tE-10 A SITE RNDRY NW t.55 2500 9.tE.es 9.lE.os 0.0E.00 5.9E.10 A SITE RNDRY NN4 1.47 2370. 9.8E.04 9.0E.08 9.6E=00 5.5E.10 -h A SITE 8ND4Y N 1.11 1780. l.2E 07 1.2E 07 1.2E 07 1.tE=09 A SITE ONORY NNE 0.01 1310 1.5E.07 1.5E=07 1.4E.07 2.4E.09 A SITE ONDRY NC 0.71 1840. 1.9E.07 1.9E.07 1.4E=47 4.0Ee09 +v E-f 7-#I-oh 1.70-075#E-06 5.!L 00 - MT-of 1 A SITE RNDRY ENE 0.82 1320

1. 0 L
  • N~ff-ofs a

i A SITE FNDRY E 1.03 1660. h5E-47-J 7E-04 tr5E-07.7. 7M fv4E-47J.ff-os -5,4E-04 /.5/4/ y A SITE RNDRY ESE t.19 1910. 1.2E.07 1.2E.07 1.tE.07 3.tE.09 a SITE RNDRV SE 1.22 1960. 1.lE-07 1.lt.0y 1.0E.07 2.3E=09 gk i A SITE RNDRY SSE t.78 2870. 5.5E-08 5.5E-08 5.3E=00 5.6E=to L A NRST RESID WSW t.24 1931. 1.3E.07 1.3E.07 1.2E=67 2.0E=09 A NWST RESID d 1.50 2414. 9.5E.00 9.4E.0g 9.tt.00 9.0E.10 0 A NkST RESID WNw 1.90 3054. l.6E.07 1.6E.07 1.6E=07 5.6E.10 6 WRST RESID N 1.16 tR60. 1.2E-07 g.2E=07 1.2E=67 1.0E=09 e A NRST RESID E I.23 1900. -tv 56 89-4 W-Cin -hr35-47 /.ff.o& 1.00- 07 /.6/-di. ".5" 0" 9 7I-09 9 A NRST RESID SE 3.34 5310. 4.8E.08 4.7E-08 4.6E=00 2.4E.10 A VEC GRON MSV t.40 2253. 1.2E.07 1.2E.07 1.1E*07 1.4E=09 j A VEG CRDN NW 2.40 3862. 7.lE 00 7.lE=0R 6.9E=08 2.5E-10 g i A MILR COM S4 4.97 0000 3.8E-08 3.7E.08 3.6E=00 1.3E=10 j A MILK CON SE 4.60 7403. 3.4E-05 3.3E 04 3.2E=00 1.2E.10 3 i a MEAT ANHL SW 3.10 4989. 6.3E.08 6.3E=0p 6.tE=00 3.3E-te O. j j A NEAT ANHL Nw 3.90 6276. 4.6E.00 4.6E-Os 4.5E.08 9.4E.11 f VENT ann nUILDING PARAMETERS: 0 t j RELEASE HEIGHT (HETER $) 61.00 REP. NIND HEIGHT (NETERS) 10.0 j, DIAMETER (NETERS) 2.49 8UILDING HEIGHT (METERS) 55.0 l EXIT VELOCITY (METERS) 13.10 SLOG.HIN.CRS.SEC. AREA (30 METERO) 2368.0 4 i HEAT ENISSION RATE (CAL /SEC) 0.0 [ AT THE RELEASE HEIGHit AT THE MEASURED NINO HEIGHT ( 10.0 PETER 0):

  • 3 VENT RELEASE MODE WIND 3 PEED (METEPS/SEC)
WENT RELEASE MODE WIND SPEED (METERS /SEC)

WIND SPEED (METERS /8EC) i I 3TAOLE CONDITIONS UNSTA6LE/ NEUTRAL CnNDITIONS 0 ELEVATED LESS THAN 2.620 ELEVATED LESS IHAN 2.620 LESS THAN 2.620 NI st 0 SET WE E N 2.620 AND 13.304 g MigED PETWEEN 2.620 AND 13.100 dETWEEN 2.620 AND 13.100 GNUU@ LEVEL ABOVE 13.100 GROUND LEVEL A00VE 13.100 A80VE 13.100 g O o U

sea.- y 1 2 s e L t t e. e I I l i O00C0000c0000000000000000000000 GOOOCOOOOOOCOCCOOeceeC 0 0 D. 0 C. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 COOOOOOOCOGCOCOCOOOOO e e e e e e e e # e e e e e e e e e e o e e e o e e e e o e e o e o e o e e e e o e e. OOW40WMPOOOOOOOOOOOOOWa=OGOOwWeemmNomWOmNP.C=CWN=CO=NF gN

W-PN mN mN..

wM.C N NMWMm 0000000000000000000000000000000 cOOOOOOOOOOOOOuC OOOOOC 00000000000990000000000000000000 OGOOOOOCCCCOCOOOCCC CC e o e o e e o e o e e e e o e e e o e e o e e e e e e e e e e e e e o e e o e e o e e o e o e e e e a e o ONMOOPOkmOOOOOOOOOOmOW4mPMOOmMmWMMW l NMOhD O-MMMC4CSOMFPENOM# mmw wmm>U

W4WPh mM@hN

mm mm 1 00000000000000000000000000000000eOOOOOOOOOOOeOCOceOOe OOOOOGOOOOOOOOOOOOOOOOOOOOOOOOOOOOOCCOOOCCCCCOcCOOOOC e o e e e o e e e e e e e e e e e e o e e o e o e e o e o e e o e e e o e e o e o e e o e e o e e o e o e O C O w e W N h e w C O O O O O O O O O O O 4 M N 4 4 O O O W M O N W M C m M P M M P G C C C N C P M L* d 4 f O wNm4M mM -NWem M4Mer =MC=M O =Na 5 O em = O OOOOOOOOOOOOOOOOOCC 000000000000000 COCoCOOOOOOCCCOCCoo OOO00000000000000000000000000000 OOOOOOOOOOOOCCSCOOOCC O e o e o e e e e e e e e e e e e e o e e e o e e e e o e e o e e e o e e e e e o e e e o e e e o e e e o e O OmMMWWmpOOOOOOOOOOOOOhMNSMO*OM44PhCOOMWamEMNC=wmeWh@ O C

  • Wehe wNew mNW=M arbrMA

=WENN O =Mm O m

== = N OOOOOC 0000000000000000000000000000 COOOOOOOOCCCCCCCOCC O DOOOOCOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOCDOOOOOOOOOCOOCC = O e o e * * *

  • e e e e e e e o e e e o e e e e e o e e e e e e e e e's e o e e o e e o e o e e o e o e o e W

O CO*OMOMwOCOOOOOOOOOOOMNOWWOONWhemOMOmMhrWWM4M=SN4Mh*P { U O mNMEe Nem NhWM mmCCOM wekhr = C = m Nm E h C ON 000000000006OO000000000000000000000000000000000C0000C O e D000000000000000000000000000000 DDOCDOOOOOOOCCCCOOOOCC W Om e e e e e e o e e e e e e e e e e e o e o e e e e o e e o e e e o e o e e o e e o e e o e o e e o e o e e F CE OQwMPNMOOOOOOOOOOOOOm4MP4POOCMe@P@c=NNewNC =N=OchWNON# = OJ WMN mM

==MN4 mW=CPN mWCON k u i O = wNw w I 2 OJ OOOOOOOOOOOOOOOOOOOOOOOOOOOOCOOOOOOOOCCOOOOOOOOOOOCOO I 3 O G O O O O O O O O. O O. O O O O.O. O O O O O O O O O C O O O O O O. O O O O O O O O C O O O O O O O C O C C C C U Om e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e..... e e o e e e On OCOwcMd=OOOOOOOOOOcOO=M-NMOOONWO4===NdhePO=PCOrMehmet mm wNw =MPN@ =MC3OM mW4=N O Og .= =MN g. =- A. Or COOOOOOOOOOOOOOOOOOOOOOOCOOOOOOOOOOOOceOOOeOCOOOOOeCO CJ OOOOOOOOOOCOOOOOOCOOOOOCOOOCOCOOOOC CCCCCCCCCCCCCCCOCC OW e e e e e e o e e e e e e e e e e e e e e e o e e e o e e e e e o e e e e o e e e e o e e e e o e e e o e C OOCMrWNwCOCOOCOCOOCOOONPCwCOONNWmN=NMmmMdp dNC=OWDCdt A O

== w wNENr =WCCMS =*@@ OO = = w mMN W O e it OO COOOOOOOC 0000000000000000000000000 COOOOOOCOOOOOOOCCC C 9 Om OOOOOOOOOOOOOOOOCCOOOOOOOOOOCOOOOOOOOOOOOOOOOOOCCCCCC J m o e e e e e e e e e e e e e e e e e o e #o e o e e e e e e o e e o e e o e e e e e e e e e o e e o e e e 3 O> OOOPSMoMOOOCOOCOOCOOOOWOMmOwCWOMNWWOmreCMhPNCN45 M O2 wN dC dhe

==

  • NPO=

MCNNM= NF(U= 0 O h O-w mN= j = GC OOOOOOOOOOOOOOOOOOOOOOOOOOCOOCOOOOcccOCOOOOOOCOOCOCCCO UWt OOOOOOOOOOOOOOOOCOOOOOOOOOOOOOOOOOOOOCOMOOCOOCOCOOCCCC C= O e e e e e e o e e e e o e e e e e e e o e e o e e e o e e e e o e e o e e e o e e e e o e e e o e e o e

  • W CM eOOmMdMehCOOOOOCOCOOO=MedeMOOw4WNC#@ONMOONCm=OmhVOM=#e O%

M MW mN mwhC= MhCON= NrdC=

  • E OM W

m wN= Q O C OOOOOOOOOOOOOOOOOOOOOOcODOOOOOOOOOOOOOOOOOOOOOCOOOOOOC 2 OM OOOOOOOCOOOOCOOCOCOCOOCOBOOOOOOOOOOOOOOOOOCOCOOCOOCOOC 3 O C e e o e e e e e e e e o e e e e e e e e e e e e e e e o e e e o e e o e e e o e o e e e e e e e e e e e e O Oc eOOwMCPMMOOOOOCCOOOOOCWWCONOCa*MOechemMP=CNW @C=McCCPMN OC O Wem =N m N O = ee medhe =4O4A O% N w

== m O%COOOOOOOOOOOOOOCOOOCOOOOOOOOOOOOOCCCCOOCOCCOOOOOOCCOOCCC 09 OOCOCOCOOOOOCOOCOCOOOOOCOOCOOOOOCOOOOOOOOOOOCCCCCCCCCC C C DO e e e e e e e e o e e # # e o e e e e e e e e e o e e e o e e e o e e o e e e e e e * *

  • e o *
  • e e
  • e OO O
  • CONN =W@ WOOOOOOOOOOCOwNM4NPOC=edMk=mONMM4WCPPC=CMF=CPT Ok O

wh== mM wMcNM NmPr== weWW = M = m

== OP \\ On OOOOOOOOOOCOOOOOOOOOOOOOOCOOOOOOOOOOOOOOOCCOOOOOCCOC CC? e O% COOOOOOOOOOOOOOCCOOOOOOOOOOOOOOOOOOCOOOOCCOOC OCCCCCCC CC N OW 00 e e e o e e e e e o e o e e e e e e e e e e e e o e e e e o e e e e o e e o e o e o e e e e e * * *

  • e e O%@C e=CNMNdemOCOOCOCCOCOOmNewNMOwCMWNdN4CNMNCht&MOCh*="Med gO 7 W

OM

NeNM wNM

mNPh> med>WN =MVWe

  • o c c

m m

== m OC l s'

  • OOeOOOOOOOOCCOCOOOOOOOOOOOOOOOOOOOv<OOOCOOOCOOOOCCCOCO m

De M O PACOOCOOOCOOCOOOCCOOOOOOCCOCOCOCOOOCS OCOOOOOOCOCOOOOCCCC d Obw OO e e e e e e e e e e e e e e e e e e e e *

  • e
  • e e o e e e o e o e e e e e e e e o e e e e e e o e o e e 4>

N eO=m>NWPeOOCOOCCOOOOOorNeeWOO-NmWW+=oN=MNP4CMoceNMPh dN s s O% O =MCNm =NW~ =M=Ca NWneMe = NMen= " C OW ww C O%O -N mm O OW COOOOOCOOOOOC 000000000000000000000000000C00000000000000 \\ si n C OOCOOOCOCOOOOOOOC 000000000000000000000000000 CCOCOCD0000 C Q Q GO e e o e e e e e e o e o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e o e e e e e e e e o e e % w a Ok = eOmmeckCFOCOOCOCOCOCOO=4=meOONMdNWOMCNWNhdON#CNSOpbPew 3 g OMNOO mMkOM mNW mMhNW mWFwOW =Nrda r W u w w w =

== c mm e C m OOOOOOCCDOOOOOOOOOCOOOOOOOCOOOOOOOOOADOOOOOOOOOC0DC0000 u 3 W C.COOOOOOOOOOOCOOCOOOOOOOOOCOOOOOOCOOOOOOOOOOOOCOOOOOOCC g OJO

  1. C *
              • e e e e e e e e e e e e e * *
  • e
  • e e e e e o e o e *
    • e e e o e e e e e * * *
  • e MQ 2

Obwe eOOmOCMmmCOCOOOOOOCCOMNem=400==Nhm==ONWCWGN>mONebCOWC= m M CO me NNCON

  • N NNh=N MOPPN mNMW=

u > cO m f 3 k => 4 O F C W p u y =4M4r44444444444444444444444444444444444444444444444444444 . u > 3 3 54 w C ( L 0 w w w w v e w w w w e

n q 4 0.00 8 Ce e.e3 S.Ce 8.00 e.00 e.00 0.00 0.00 0.se 4.00 e.se' e te 0.0e 4.Se 0.00 s 0-1.00 5.00 1.se 3.00 2.08 2.00 0.00 1.se 2.se 1.00 1.00 1.00 e.se. 1.00 3.00 2.00 7 ..O 6 0.00 '11.00 0.30 4.es 0.00 3.00 4.00 4.00 1.80 2.00 4.90 4.00 2.04 4.00 7.00 0.e0 6 25.00 18.00 22.3e 15.es 15.00 11.00 6.00 7.e0 7.00 6.00 11.00 11.e0 IF.ee 23.00. 17.se 17.00 6 41.se 57.00 43.00 24.00 43.00 29.00 25.00 25.00 29.00 15.00 39.00 27.00 22.00 2s.00 25.00 34.00 f q 6 30.00 41.se 55.00 28.00 29.00 23.00 1s.00 18.00 27.40 32.00 55.00 56.00 46.00 40.00 42.00 21.00 6 32.00,43.00 40.00 15.0e 24.00 25.00 22.00 9.so 33.ee 43.00 47.00 114.40 66.00 65.00 30.00 15.00 6 4.00 9.se 3.00 1.00 2.80 2.00 3.00 4.00 2.ee 2.00 13.00 12.84 11.00 7.00 8.00 3.00 ,) 6 1.00 0.00 0.00 3.30 e.n0 1.00 1.00 0.00 1.00 5.00 2.00 0.0e 2.00 2.00 1.e0 1.00 6 0.00 0.0e 0.00 e.no e.e6 0.00 e.00 0.00 e.00 9.00 0.00 0.00 e.se e.es 0.00 0.00 7 -1. 9.2Fe 8.5e0 0.750 1.000 1.500 2.000 3.00s, 5.000 10.000 12.000 0.000 0.000 0.000 e.000 V;DIST.VieCR NOT IN'llTTED. ,) i NO TERRatta DATA INPUTTED. 12 16 6 2 2 2 ,g 13 SITE SNDpY la 1 1820.e 2 2030.e 3 2170,0 4 1900.0 5 2120.8 6 2740.0 7 2500.8 e 2370.0 9 1700.0 10 1310.0 18 1848.0 12 1320.0 13 1660.0 14 195e.0 15 9 1 60.0 16 2n70,0 g 4 13 NRST RESID 14 4 1931.0 5 2414.0 6 3958.0 9 1860.0 13 1980.0 15 5310.0 g II VEG GRDN ,) 14 4 2253.6 7 3n62.0 I-13 NILM C0w 14 3 4000.0 15 7403.0 I 13 NEaTAWL 14 3 49d9.0 7 6276.0 - I g 15 TURRINE SUILDING: CONTINUOUS C#00ND LEVEL RELEASE NO TERR 4IN 'b 16 0.0n0 0.000 0.0 55.0 2360.0 10.0 0.00 j 17 A 0 0 0 i g I I O i ( .D 1 1 ( O I, i b I ) ) l- ) b .) I g i .)

(- n. ~ ~ ..mp.- y -y -. p,,,,- p. -.,n ,,,w p --w ~.m _ _ _ - p 1 e JOO*Cemokme JOOOOOOOOOO Jocemmehemo JNNerce 4 CONCOPhmmCO 4COOOOOOOOOO MOOON&Oehech 4 mmempe > O O O O. m e O p c C N >OOOmhm40ect MOOOOOOOOOOO >OCONem oe

  • e e o e * *
  • e o e e e e o e O e e e e e e e e * *
  • O * * * *
  • e * *
  • e e WOOOOome@NOh WOOOOOOOOOOO MOOOOOOwwooe WCCCOOw w

I OOOh444NOC 2CCOOOCOOOO TOCCCheemmc 2 Occhet ZOOOm44CONOe 200000000000 ZOOOOwceemOC TOCCmh c ZOOOOOmmemCO 2CCOOOOOOOOO ZCCOOOOOOOO= ZOOOCCm o e e o e e e o e e e e o e o e e o e e e e e e o e e o e e e e e e e e o e e OOOOOOOOOOm OOOOOOOOOCO OCOOOOOOOCO OC3OCC EOOWNmeekMe 20000000000 XOcecareP40 7eceN4C ZOOOmCNemWOW 2O0000000000 ZOOOONNeheON ZOccmar i O.O.O O.O.w.m h e o n O.O.O.O.O e.O.O O O O. O.O O O. O O.O.O O O N C. O. C. O C O. 6 e e e o e e e e e e e e e e e e e e e DOOOOOOOOOm 00000000000 00000000000 OOCCOC I 2OOue4&PW4e 20000000000 XOOOOWNC@mO XOcchem I TOOOO4pNONOW 2O0000000000 2OOOON=meNO4 7Oocm@e X O.O. O.O.O.O.4. m M.O e. 3O.0000000000 X O.O.O.O. O.O.O.w.C. O.N. C. O. O. O. O C. E e e e o e e OOOOOOO= CON OOOOOOOOOCO OOOOOCOOOOO COOCOC l } 3COWNeedeOO 20000000000 NOOOOeowNec meechec j OOOw@cp( sOOO COOOOOOOOOO OOOONmPC@Cw CC3=CO OOOCOwe@h0N OOOOOOOCOOO OOOOOOCwOce OOCCC m e e o e e e a e e e e e o e o e o e e e e e e e e e o e e e e o e e o e e e e OOOOOOOmOOM 00000000004 OOOOOOOOCOO COCCCC ,4 C u O I l N M ECOOswfmemo M ROOOOOOOOCO M ECOOONCMOmo M ECCCmg4 O M Mococepa#@O4 M MOOOOOOOOccc M MOOOOwCCamO4 r E OCCNNw I = 4 3 CCCCOOMhNOe 4 1COOOOOOOOOO 4 XOOOOOOC=OCM 4 N COOCOw e J e e e e o e e o e o e J e o e e o e e o e o e J e e o e e e. e e o e J e e e e o e e_ u COOOOCOOOCm u OOOOOOOcoco u OOOOOOccCCO u OOOOOC = b b c TeOOe.> mmo =O000000000 - xOcceeNeehe wCCON4N w MOOOONmhwCOe w MOOOOOOOOOOO w MOOOOOmhemOP = PCOOm44 W J OOOOCOwmOO4 J OOOCCOOOOOD J 0000000* CON J COCCCC T w e e e e e e e e e e e w e o e e e e e e e e e w e e e e e e e e e e e m e e e e e e w D DOOOOOOOOCO e OOOOCOOCOOO e OOOOOCODOCO e CCOODC k 4 4 4 4 N b h 7 e M NOOOOeMe@ eO M MOOOOOOOOOC M ZOOOOWN4=P r M TOOCCre W MOOOOOmreOOW MOOOOOOOOOOO MOOOO Owe @ Om

  • E CC CO@N W

I u MOOOOOOOwCON u MOOOOOOOOOOO u MOOOOOOOOCO* u PCOCOOm J = e e o e e e e e e e e w e e e e e e e e e e e = e e e e a e e e e e a w e e e e o e 3 U E C0000000000 E OOOOOOOOOOO E C000000000C M eGCOOO W W W W j J Z I Z 1 9 A MOOOONmeesc MOeCOOOOOOO E MCOOOOchree A McCCCOP 4 M OOOOwNemOCO M OcoccOOOOOO M CCococm>CCN M OC CCVC 4 m O 000000000Cm O CDOOOOCOOOO C CC00000000= C CCCCCC E e e e e% e e e e e e L e o e e e e o e e o e I e e e o e e o e o e e 1 e e e e o e COOOOOOOOOO OOCCOOOCOOC OCCCCCOOOOC CCroce 4 4 4 4 4 0 e J WOOOOhmNENO WOCOCOCOOOO WOOOOOmNeeC WWeC>Nr e W MOOOOmm40=Om MOOCOCOOOOOO MOOCOONerCoe McC C=Ae J C MOOCOOOOwCON MOOOOOCOCOOO McC C O O C O.C C o m C C C C. MCC D e e o e e e e e e e e e e e e e e e e e e o e e o e e e e e e e e e e O COC00000000 00000000000 OOOOOOCOOCO COCCtc 5 e h O w w WCCOWNmhN@ O WOCOOCCOOOC WCcceNedCNC WCCe@t o N MOCocmNmmNoe MOOOOOOOOCOO McCOC wm40=ce McC ON#m OOOOOCmNC04 OCDOOOOCCOO OOOOOOOmOON CCOCCO W 2 7 e o e e o e e e e o e 2 e e e o e e e e e e e 2 e o e o e o e e e e e F e e o e o e O C0000000000 0 00000000000 O COOOOOOOcco O OCOCOO 4 m w w w w C e u WOcceNmmNec u WOOOOOOOOOO u WeOOchhreeO u WOcvecm 2 w W MOOCCamcerO4 W MCOCOOOOOOOO W MC CCC w=heNcN W MOOC Che = m a WOC OOOONMOO4 2 WOOOOOCOCOCO E WOOOOOcOOOON a WCCCC C C u w e e o e e e e e e e e w e o e e e e e. e o e w e o e e o e e e e e e w e e e o e e m O OOOOOCOOCOO O OCOOOCOCOOC C OCCCCCOOOCC C cCCCC C C O O C C 2 WOCome44mCO 2 WOOOOCOOCOO 4 WC oceeN4Nhc 2 WOOe#4h 4 OOOOceOPPON 4 OCOOOOOOCOO 4 EOOOOm4 MMC 4 4 CCCN4# D COCOOOmeOOP GCCCCGOOOOO eOOOCCO= CON COCC Cm e C e o e * * *

  • e e o e C

e o e e e *

  • e e e o C

e e e e e e e o e e e O e *

  • e o e W

00000000000 W OCCCCCCCCOO W OOOOOOOOOOO W COCCCO w W W W W A A j O e M WOCOmemmhec M WOOOOOOOOOO M WOcceedhNWO M kWWCNCm e ZOOOomphphom 2OOOCOCCOOOO ZOOOOOwemmOM 2CC omWP N O O WOOOOCONe=OO O WOOOOOOOOOOO O WOCOOOOOwOCm O W C,O O C O C 2 e e e e e e e e e e e 2 e e e e e e e e e e e Z e e e e e e e e e e e = e e e e e N w OOccccOOOOm = OOOOOCOOCCO w OOOOCOCOCCC w OCCCCC O O E S 3 R i w h M A WOOW=CNweho k WOOOOOOCOc0 k EOOcemO40ee k WOceCO= + et e C 4cOUNhmmerom O 2OOOOOOCOCC O C ZOOOC Ne m e r o m C ZeC oche W OOOOOmer=CM OOOOOOCOOOC OOCOOOw= Ope OCOOCm > e 2 e e o e e e o e e o e 2 e e e e e e e e e e e 2 e e e e e e e e o e e 2 e * * *

  • e O

COOOOOOOOOm C OOOOOOOOCOO O COCOOOOOOOO O OC COOO O O w w w = O O m WOOwecheemo s WOOOOOOeOOO = wCCOce4hame s wOeeN4N O h C ZOOcchWwmeON e 2COccOOCOOOC ZOCCOO4eCmc& C 2CC Ow&M O N w 2OOOOOmme=Ow w 200000000000 m 2OOOOOOOwoom = ZCCOOCm M E e e e e e e e e e e e E e e e e o e o e e e e E e e e e e e o e e o e g e e e e e o 8 e w OOOOOOOOOOm OOOOOOOOOOO OOCOOOOOOOO CCCCOO W M M M M O e w w w w i te O 2OOOsmeeeko O 2OceOOOOeOO O 2OOONeWNh@O O ZOceswN U C OC COcmeetDe OOOOOOCC000 ODOmON4mNON COOOPw i k OC OOOmmmOOP C0000000000 OGOOOccOOON COOOOm i O 7 u e e e o e e e e e e e u e o e e e e e e e e e u e o e e o e o e e e e y e o e e e e e b Z OCOOOOOOOOO 2 00000000000 Z COOOOOOOOOO 2 OOCC CO j m W W W W 3 3 D 3 D U c a O m C a c e T J w e W M w W r M E M G E u O m E k E b I k T C w w m w u > w WO@DcOOOOOJ hofCC000CCJ NC@eOCOOOOJ NC@@CO F Z MN@ho@OOOOO4 2 MN@ho@OOOOO4 2 M N@hocOOOOO4 2 MN#>OWO 2 = 4 e e e e e e e e e ep 4 e e e e e e o e e op p 4 e e e e e e e e e ow w 4 e o e e e e M O EOOOm=NMOONO O EOOOwwNm@ONO O ZOOOmmNmcONO O EOOOw=N 3 9 3 wak 7 3 www M D www M 3 t I b k k de w w %e he b w be w w v w w we he V .J d.

  • .- m*

n ? t> F F r )T ( f_. (e .(_ ( (* f't 3- + I e l 4NMk JWWDeemmwSW JMOWmNWhMWO JeeONNdW4MO NpMme eNOmmMWMhNwp WeNecdNmMPOO WWOWmarWrCOC l moder kmwNmMMN> wen hewNm>OSMNee >MwMPOMMMOOM l eo e e o O e o e o e e e o e e o O e * *

  • e e e e e e o O e e o e o e e e e e e m>Noe

>COOwMWNPNOW >OOOmMWWwoom peOOONNNOOOP M w 1 J l RMOS 3remmeWsMNO 3mkCNWeeOwO EdaMOmhANWC ec NWpOW 2OOw&NhdheOO ZwwOeNdN@NOW ZNCMMWedmOOW > e l NNcOh ReccOwmMMoem 2OOOOmmwCOO4 Z O O O c w C C C C C W. CC p ee e e e o e e e e e o e o e e e e o e o e. e e e e e o e e e o e wO r eOOOO OceceOOOOOm OOOOOOeOOOO OOOoOOOoOOO w F TN l 99Ne EmWNWeepOMO TPNN&hdhWWO NONDOWWWMWO 2

  • 1 mweet 2Oomp>WONNOW ZowakpMmemOp ZWwNWOWNMeO@

Ze NMwOe OOmemNeeMON eOOOwNMweOO OOOom**COOF e e e o e e e o e e e o e e e o e e e e e e o e e e e e o e o e e o e o e e 99990 eeeeeOOOOON OOOOOmeOOee OOOOOOOOOCO E> 2 e Were EmWN>>hdeae TOmerwNe@ee XMehmed@@EO hewe9 NeO=MMMWNWOm 2OOeWem>SOOM ZwempedeNDON mMNOC BODeemNWeNew EOOOOmMWeeeN 3eeemmmmOOOM e e e o e o e e e e o e e e e e o e e o e e o e e o e e e o e e e e e e o e OOOOO SOOceOOO9eN COeeeeeOOOm SOOCOOOOOOO Th 2 e L 26 f MWMO ReememWW9No BMWWW9edehe SeO&oweMeeC Wemme OOmemempwow OOemDWWNweh eeOhe@hecop NW=OS emeeNNemwer eeOOwMmmeem SOOOOwNCOCd e e e o e e e e e o e o e o e o e e e e e e e o e o e e e e o e e e o e o e 34 f, OOcem Oceeeeeeeem SOOeeeeeeem OeOSOOOOOGO e W k e e e wwke e BWWNODNmM9N e EMWMOONMhhe e NMWh4NNNOCO mNMCW moom>m@W95me e meeMMOOMMMe9 SwamWwM>rOOW Mewch e ReceeNMemmON 4 XOOOOwMkwees 4 3eecem45GCCO 2C e e e o e J e e e e e e e e e e e J e e e e o e e e e e e J e e e e e o e e e e e e e OGOCW u OCOOOOOOOGN U OOOOmeeeeem W OOOOOCOCOOO Tk i heet 3OcedOWN=we TeOWOWommwe EMWheweeteO l NwWOW w eweedh499peO w MODOWNWN@NOW w emO=W4NomOOD 2A l RFNON J eOOOmWm>Ome J DOOONReeOOM J COOOwNMOOOO e e i e o e e a w e e e o e e e e e e e = e e o e o e e e e e e w e e o e o e o e e e e b ] mOOOm e GOOOOOmOOON e OOOOOOOOOew e OOOOOOOOOOO 4 e e l' Nee e e EMemmNNCEwo TM mm.memmNNme MOOmW4WWWM.O kmww m N~WrWM40W MOeNee-4.M M mwooNdM~CNOc e o eemOO MWNOM U meseOwWNewe@ U MOOOOwNWOOOw U WOOOO?wwOCOS F, 4 e e e e e w e o e e t si e o e e e o e= e e e e e e e e e o e eo e o e e o e e e e e e OOOOw E OOOSeemeOON R OOOOCOOOOOm E SOOCCCOOOOO W W W Z 2 2 mm erms emNWN99FhWO @MWeewekmec GeeW9eNheWO e MOweN M wwcewM>>>OE e meerdWebeep E NeeNN=MOOOW 4 MWNON O e#OeNWNewsm O OOOOmmMeeOP O cece==mCOOW ee e e o 2 e e e o e e e e e o e 2 e e e e o e e e e e e 1 e e e e e e e o e o e eeOOm OOteeOweeem 9000000000O M OOOOOOGOOOO 4 4 4 wN m e wmec W@WmmePO406 WdemPNOOOkO WMWkpW@hhCO m@ emmem meeNWmOWheOO MOcNemWehmoe m=OmNOhmmece i MWOOO MOOOmMWFreed MOOOONNwCOce WOOOOwCOOCON [ e e e e e e e o e e e e e o e o e e e e o e o e e e e o e e o e e e e e o e i OCOCm OOOOOOOOOON 00000000000 OOOOOOCOOCO we i e e V McNC WeeNewNewee WMWpWWmpNNO WOOhrem=NWe t NMeed emowNwNNOSO4 mOONOW4Memem MOOmNOkp-DOM MWOOD OOOmmeemeCN OOOwNNMOOOO OOOOwOOOOCM e o e e o 2 e o e e e e e e o e e 2 e o e e e e e e o e e 2 e e o e e e e o e e o wo eOOOO O DOOOOOOOOON O OOOOOCOOOOm O OOOOOOOOOOO v. + w w w WV @@ec W WWWN9mNNwpc U WMWNedeepec U WeeNWOWWWWC PFMew W MOOmhmEwMNed W MOOmpdWePOON W WNcarNPOOOOM MWOOO E WOOOONNhWOch C WOOOOmNNCOce E WOOCOwo=CCCW mh e o e e e w e e e e e e e e e o e = e e e e o e e e e o e w e e e e e o e e o e e e OOOOw C DOOOOecocee Q OOOOOOOOOOO O OOOOOOOOOOO V O O O e=MO 2 WeeNrNMWMNe 2 WMWWWOOOh>O 2 WeeMNeceseO e3 D @ e m 4 me=9MP@pded 4 come@bWMwet 4 NOME >NPOOOW WM I - MeweN OceeNedWOct coeOmwNOOOM OeOOwmeOOOm 2 e oe e e e C e o e e e o e o e e e C e o e e e o e e e o e Q e o e e e e e e e e e W4 OOOew W OOOOOOOOeOm W 3DeeeeeOOOO W OOC 00e00000 W W W 3 knee m WGCNokkNNNO e WOO @de=Neme e WONNNe4NWNO we RwwCD 2=e=WOhmwwem 2OON#NwC4 Nom 2W wwdemdomON 2 e MMMem O WOOOONNedmem O WOOOCwNMOOOW O WOOOOOwCCeOW h e e e e e 2 e e e e e e e e e e e 2 e e e e e e e e e e e 2 e e e e e e e e e e e OOOOm w OCOOOOOOOON = OOOOOOCOOOO w OOOOOOOOOOO 3 3 2 N >WC NMMS E WeeWWWhhCPO h W@wwwMWPeeO E WMWMmeCdNCC W U2 e hereO C ZweCe>Neemed O 2NWNPMemdOOM C Z= cme >N4=OcM = e 72# USNe@ O c e c m M d e sw G O COSOmWMOOct OGOewNwCOOM W M w e e e e e 2 e e o e e e -

  • e o e 2

e e e e o e e * *

  • e 2

e o e e e o e e e o e N E L 9966= O OOOOOS+ U OON O OOCOOccOOOC O SOCOOOOOCOO W D u w w w w > w2e Z E W a e a dh@@ D WSCheMe@M4C 3 WeekeOddwWO 3 WomemMeekOO 4 2 h W 2-e@ wet a 2=OmreprW&Om e 2OOmrNMeWOOO G 24NekrhmMCOW C' ,l MSNcN = 20eOOmmteac@ w 2OOOOmNNOOON w 2OOOOwamOOOM C O 2 h

  • ee e e e g

e e e e a e e e e e e E e e e e e e e e e e e E e e e o e o e o e e e W e O g-OOOOm 0000000000* 00000000C00 F OOOOCOOOOOO E O = 4 M e e W w w w w Q U C @Mhc O 2eckMme=OMO O 2de@ed-dWWO O 2MGMSONNhWC w W w (4 deO@ mowmWWeweOM OONhwe4WOOW wOmO>@MwCOM M 2 h Neece SOCOwNMWOOM OOccamwOOO4 000m==wo994 2 e w= E e e e e e u o e e o e e o e e e e u e e o e e e e o e e e u o e o e e e e e e o e O O2 m' t OOeem 2 OOOOOOOOOCm 2 O C O O C O O 8A C O O 2 OOOOOOOceCO U C C i W W W W Cw C D D 3 m B 2M 2 O m 2 m C = 2 3 wu= m W e W m W e D e 7w> 1 4 K C 4 kU k E h 1 h T 2 W Jm2 J' w w w 1 JCW 4 OCOCJ he@DOOOOOOJ NC@CCOOOOOJ NO@eOOOOCOJ J 4 3 e WOOew 2 WN@heWOOOOOW 2 MN@mO@COOOO4 2 MN@bc@cOOOO4 O kOO M e e e ew = q e e e e o e o e o em w e e e e e e e e e e e> m 4 e e e e a e e e e ok 2 W2W h MWeNO O EceewwNM@ONO O EOcemwNMmONO O EOmemmmmmONJ O = Dwa wwk D mm> D www D www W 03h C, /

Xm
:

-~ z, w _i:. - - wa. s r~ w

[:. Qf T NAE WING SPEED (M/S)s 0.270 0.500 0.750

1. eke 1.500 2.000 3.000 5.000 10.000 12.000 AVE CINO SPEE3 (M/S):

0.135 e.305 8.?25 0.075 1.250 1.750 2.50s. 4.000 7.500 GINO SPEED FRE00ENCYt 8.56 e.30 0.09 3.5a 9.90 15.12 31.64 29.37 A.55 ' 11.000 ., 1 O.e4 .'<9 4 ,g h o 3 ., j s 4 3 34 f 1!

)

,3 .): c)I n at t s) 1 J O)

^ d i USNRC CowPUTER C00E=N00000.vEESIDN 2.0 CUN DATE 17-JUL*44 RUM 7IME 08 C4:57 { O V0GTLE : JFD 4/4/77 TO 4/4/79 TU 4/1/8e TO 3/31/81 His10.0 DELTA TsU.L CLMe.27 l. TURBINE eu!LDING CONTINUOUS GROUND LEVEL RELEASE NO TERRAIN 40 DECA 1 UMOEPLETED 'O ) CORIECTED USING STANDA90 OPEN TERR 4IN FACTORS I. 1 ANNUst AVERAGE CHI'o (SEC/ METER CUPED) DISTANCE IN MILES PROM THE SITE O ~ / j SECTOR 0.250 0.500 0.7S0 1.000 1.500 2.400 2.500 3.000 3.50s 4.000 4.500 3.435E-05 1.esat-05 5.335E=P6 2.682E-e6 1.079E-06 6.033 -47 3.915E-97 2.704E-07 2.105E=e7 1.643E-47 1.357E-07 1 S 4.845E-45 1.457E-05 7.342L-06 3.662E-06 1.465E-06 8.253{t=07 5.385E-07 3.046E-07 2.9fti-07 2.312E-07 1.893E-07 i SSW Sa 4.757E-05 1.a55E-05 7.477E-06 3.795E-06 1.535E-06 8.549E=e7.5.530E-07 3.92tr=07 2.958E-07 2.332E-47 1.900E-07 ,p l WSW 3.975E=e5 1.226E=05 6.342E-06 3.19eE-06 1.282E-06 7.13tE-07 4.610E-07 3.268E-07 2.464E-07 1.942E-07 1.583E-07 6 4 3.95sE-05 1.217E-05 6.346E 06 3.18tE-06 1.279E-06 7.124E-07 4.609E-07 3.269E-07 2.467E-07 1.945E-07 1.586E-07 L WNw 3.524E -05 1.0 BaE-45 5.614E-06 2.84 3E-06 1.147E 06 6.389E=e7 a.133E-07 2.93tE.07 2.211E=e7 1.744E-07 1.42tE=07 O{' hw 3.39tE-05 1.e6aE-05 5.652E-06 2.904E.06 1.183E-06 6.526E=47 4.189E 07 2.952E-e7 2.2tSE-07 1.738E.07 1.41tE-07 Nuw 3.7ttE=e5 1.164E-n5 6.210E-06 3.18tE-06 1.290E-06 7.12tE=07 4.575E-07 3.226E-07 2.422E-07 1.902E.07 1.544E-07 f-H 4.029E-05 1.26tE-05 6.668E-06 3.393E-06 1.370E-06 7.594E-47 4.894E-07 3.460E-07 2.68aE-07 2.948E-07 3.666E-07 g ", NNE 3.754E-05 1.180E-05 6.256E-te 3.198E.06 1.295E-06 7.tS7E-87 4.601E-07 3.247E-07 2.439E-07 1.916E-07 1.557E-07 hF a.605E-05 1.417F-05 7.370E-06 3.744E-06 1.534E-06 8.43tE-47 5.453E-87 3.866E-47 2.916E-07 2.299E-07 3.873E-07 l-ENE 4.555E-05 1.387E-05 7.137E=06 3.623E-06 3.467E-06 8.136E=e7 5.303E-07 3.764E-07 2.842E-07 2.242E-07 1.829E-07 O( l E 3.755E 05 1.13tE-05 5.806E-06 2.950E-06 1.194E-06 6.657E=47 4.301E=e7 3.047E-07 2.296E. M 1.809E-07 1.47aE-07 ESE 3.9enE-05 1.17tE-05 5.982E.06 3.028E-06 1.227E-06 6.866E-07 4.456E-07 3.168E-07 2.395E-07 1.892E.07 1.Sa5E-07 SE 4.264E-05 1.2ADE=e5 6.527E=e6 3.292F-o6 1.330E-06 7.458E-e7 4.850E-07 3.e54E-07 2.615E-07 2.068E-07 1.690E-07 SSE 3.266E-05 9.85tE-06 4.99tE-06 2.515E-06 1.015E-06 5.693E-07 3.703E-07 2.637E-07 1.996E-07 1.579E-87 1.290E 07 I l ANNUAL AVERAGE CHI /O (SEC/ METER COMED) DISTANCE IN HILES PROM THE SITE '). i SECTOR 5.000 7.500 10.000 15.000 20.000 25.000 30.000 35.000 40.000 45.000 50.000 1.137E-07 6.098E-00 4.070E-04 2.43tE-08 1.692E=0e 1.200E-88 1.020E-08 8.420E-09 7.137E-99 6.172E-09 5.42tE-09 ') SSd 1.549E.07 8.599E-04 5.774E-88 3.476E-08 2.434E-0A 1.848E-08 1.478E-08 1.224E-08 1.04eE-08 9.013E-09 7.932E-09 Sw 3.589E-07 8.472E=e8 5.63tE-08 3.343E.08 2.318E-08 1.74RE-te 1.349E-05 1.la5E-04 9.685E-09 8.362E-09 7.334E-09 ] wSw 1.323E=e7 7.456E-04 4.69GE-04 2.785E-88 1.932E-04 1.457E-08 1.158E-08 9.547E-09 8.08eE=09 6.978E.09 6.122E-09 f w 1.326E-07 7.e77E-08 4.707E=08 2.797E-08 1.940E=e8 1.463E-e8 1.163E-08 9.59tE-09 8.118E-09 7.030E-09 6.150E=09 l kNw 1.188E=e7 6.339E-e4 4.214E-04 2.542E.08 1.735E-08 t.3e#E-OR 1.039E=08 8.565E-09 7.247E 09 6.257E-09 '3.4enE-09 I i Nw 1.175E-07 6.180E=3n 4.067E-08 2.380E-88 1.63eE-08 1.222E.08 9.647E.09 7.906E-09 6.657E-09 5.723E.09 5.000E-09 l' NHw 1.287E-07 6.78tE-88 4.E68E-04 2.619E=08 1.799E-08 1.347E=e8 3.06at-04 8.726E-09 7.352E-e9 6.323E-09 5.527E-09 N 1.39tE-07 7.16AE-38 4.474E=e8 2.874E-08 1.982E-04 1.a*9E-08 1.179E-08 9.688F-09 A.177E-09 7.044E-09 6.167E-09 Il NNE 1.298E-07 6.84RE-08 4.517E-48 2.652E-08 1.824E-08 1.367E-08 1.0 ate-04 8.468E-09 7.474E.09 6.433E-09 5.626E-09 NF 1.566E-07 8.346E-08 5.545E=88 3.2R9E-08 2.27aE-08 1.716E-08 1.363E-04 1.123E-08 9.a96E-09 R.194E-09 7.184E-09 { ENE I.530E-87 8.lf6E-08 5.4a2E-06 3.236E-04 2.246E-08 1.695E=e4 1.34AE-09 1.ltlE 08 9.406E-09 8.123E-09 7.127E-09 .j E 1.23tE-07 6.556E=e8 4.353E-OR 2.58tE-08 1.789E-04 1.348E-88 1.07tE-04 8.826E-09 7.467E-09 6.446E-09 5.653E-09 'I ESE I.293E-87 6.937F-88 4.629E-08 2.762E-08 1.922E-on 1.453E.08 1.tS7E-08 9.552E=09 8.095E-09 6.998E-09 6.145E=09 j-SE 1.416E-07 7.62tE-88 5.096E-08 3.050E-08 2.126E-08 1.6tnE-68 1.293E-08 1.06tE-08 8.995E-09 7.782E=09 6.838E-09 i f SSE 1.08tE-07 5.n19E-04 3.892E=0A 2.330E OR 1.624E-08 1.25GE-04 9.806F=09 8.10aE-09 6.87aE=09 5.948E-09 5.227E=09 3 4 ] VENT AND BUILDING PARAMETERS's f RELEASE HEIGHT (METERS) 0.00 REP. WING HEIGH' (METERS) 10.0 l DIAMETER (METENS) 0.00 SUILDING HEIGHT (METERS) 55.0 Ml 1-Euti VELOCITY (METERS) 0.40 DLDG. MIN.CRS.SEC.A9EA (SG.METENS) 2368.0 ), HE AT EMISSION RATE (CAL /SEC) 0.0 f. a{. 1, ALL GROUND EEVEL RELEASES. 1 i. i b G

--.~ _=-- m_ r-.. h h

  1. } 9 USNRC COMPUTED C00E=x00000,VERSICN 2,0 CUN DATE 17-JUL-83 CUN TIME 02:48:57
  2. I V0GTLE : JFD 4/s/77 in 4/4/79 TO 4/1/80 TO 3/31/41 Histo.O DELT6 Tou-L CLNs.27 TURSINE AUILDINGs CONTINUOUS GROUND LEVEL RELEASE NO TERR 4IN

'O NO DEC4Y. UNDEPLETED CHt/3 (SEC/METFR Cu'nED: FOR EACN SEGMENT 'I SEGNEN7 80UNDARIES IN MILES PRON THE SITE DIRECTIDH .5 1 1-2 2-3 3-4 e-5 5-10 10-20 20-30 30-40 40-50 FCON SITE

  1. I,

S 5.289E-06 1.224E-06 4.028E-07 2.130E-0F 1.366E-07 g.368E-08 2.467E-08 1.285E-08 8.438E-09 6.lA0E-09 SSW 7.3tlE-06 1.669E-06 5.53aE-07 2.952E-07 1.90eE-07 a.963E-08 3.523E-08 1.856E-08 1.226E-08 9.02aE-09 Sw 7.attE-06 1.735E-06 5.69tE-07 2.994E-07 1.913E-07 8.857E-08 3.396E-08 1.756E-08 1.147E-08 8.374E-09 fy 45w 6.254E-06 1.45aE-06 a.745E-07 2.495E-07 1.591E*07 7.377E-08 2.829E-04 1.464E-08 9.570E-09 6.987E-09 4 6.22tr-06 1.450E-06 4.748E-07 2.497E-07 1.596E-07 7.397E-08 2.841E-08 1.47tE-08 9.614E-09 7.020E-09 uwd 5.545E-06 1.298E-06 c.258E-07 2.239E*07 1.43tE-07 6.627E-08 2.542E-08 3.3taEwe8 8.586E-09 6.265E=09 j r) NW 5.54at-06 1.33tE-06 4.317E-07 2.2eeE-07 1.420E-07 6.479E-08 2.423E-08

1. 229E -08 7.928E-09 5.732E-09 NNw 6.080E-06 1.453E-06 e.714E-07 2.454E-07 1.555E-07 7,106E-08 2.666E-08 1.354E G8 8.750E-09 6.333E=09 N

6.534E-06 '.548E-04 5.CalE-07 2.637E-07 1.677E*07 7.712E-08 2.922E-04 1.496E-05 9.713E-09 7.055E-09 f) NNE 6.130E-06 1.460E-06 4.74tE-07 2.47tE-07 1.567E-07 7.174E-08 2.699E-08 1.374E=0A 8.892E-09 6.443E=09 NF 7.270F-06 1.71tE-06 5.612E-07 2.952E-07 1.885E-07 8.726E-08 3.34tE-08 1.725E-08 1.125E-08 8.206E-09 ENE 7.072E-06 1.658E-06 5.456E-07 2.877E-07 1.84tt-07 8.543E-08 3.286E-os 1.703E-00 1.!IaE-08 8.13aE-09 9 E 5.759E-06 8.35tE-06 4.427E-07 2.325E-07 1.483E-07 6.857E-08 2.623E-08 1.355E-08 8.847E-09 6.455E-09 ESE 5.*43E-06 l.387E-06 4.584E-07 2.425E-07 1.555E-07 7.2esE-08 2.803E-08 1.460E-08 9.57eE=09 7.007E-09 i SE 6.484E-06 1.506E-06 4.940E-07 -2.647E-07 1.701E*07 7.953E-08 3.09aE-08 1.617t=08 1.063E-08 7.792E-09 I SSE 4.966E-06 1.150E-06 3.807E-07 2.020E-07 1.298E-07 6.072E=08 2.363E-08 1.235E-08 8.122E-09 5.955E-09 ') ) 2

)

c) .) t ) () .) r

USNRC CCMPUTER C00E=X00000,VECSION 2.0 CL'N D ATE 17-JUL-04 CUM TIHF ODsc8:59 V0GTLE JFD 4/4/77 TO 4/4/79 TO 4/1/80 TO 3/31/81 Hielo.0 DELT-Tou-L CLNo.27 O / TUR8tNE GUILDING: CONTINUOUS CROUNn LEVEL RELEASE NO TERRAIN 2.260 DAY DEC4Y. UNDEPLETEn 9 4 C041ECTEn USING STANDARD DPEN TERRAIN FACTORS ANNUAL AVER 8CE CHI /O (SEC/ METER CURED) DISTANCE IN MILES FROM THE SITE O SECTOR 0.250 0.500 0.750 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500 S 3.427E-05 1.039E-05 5.295E-06 2.659E-06 1.065E-06 5.929f=67 3.83tE-07 2.712E-07 2.04tE=07 1.605E-07 1.305E-07 SSW 9.826E-05 1.445E-05 7.260E-06 3.60nE-06 1.43aE-06 8.01aE-07 5.188E-07 3.676E-07 2.768E-07 2.176E-07 1.768E-07 SW e.745E-05 1.4a7E-05 7.424E-06 3.758E-06 1.515E-06 A.38aE-07 5.195E-07 3.807E-07 2.857E-07 2.242E-07 1.818Ea07 nSw 3.962E-05 1.218E-05 6.287E-06 3.158E-06 1.26tE-06 6.97tE-07 4.479E-07 3.156E-07 2.365E-07 1.853E-07 1.501E-07 w 3.944E-05 1.2tlE-05 6.260E-06 3.15tt-06 1.26tE-06 6.989E-07 4.499E-07 3.175E-07 2.383E-07 1.870E-07 1.517E-07 wNN 3.515E-05 1.079E-05 5.573E-06 2.Pl6E-06 1.13tE-06 6.269E-07 4.035E-07 2.8s7E-07 2.137E-07 1.676E-07 1.359E-07 O Nw 3.387E-05 1.06tE-05 5.629E-06 2.892E-06 1.174E-06 6.456E-07 4.133E 07 2.904E-07 2.173E-07 1.701E-07 1.377E-07 NNm 3.703E-05 1.164E-05 6.174E-06 3.157E-06 1.275E-06 7.013E-07 4.487E-07 3.152E-07 2.357E-07 1.443E-07 1.49tE-07 N 4.019E-05 1.255E-05 6.622E-06 3.363E-06 1.352E-06 7.458E-07 4.783E-07 3.366E-07 2.520E-07 1.973E-07 1.597E-07 g NNE 3.747E-05 1.176E-05 6.225E-06 3.178E 06 1.283E-06 7.065E-07 4.527E-07 3.184E-07 2.384E-07 1.R66E-07 1.EllE-07 NE e.597E-05 1.413E-05 7.336E-06 3.722E-06 1.501E-06 8.33tE-07 5.371E-07 3.797E-07 2.855E-07 2.284E-07 1.422E-07 ENE a.548E-05 1.383E-05 7.la4E-06 3.601E-06 1.a54E-06 8.087E-07 5.222E-07 3.696E-07 2.78tE-07 2.188E-07 1.778E-07 4 E 3.75tE-05 1.12ME-05 5.787E-06 2.938E-06 1.190E-06 6.602E-07 4.256E-07 3.008E-07 2.263E-07 1.779E-07 1.446E-07 ESE 3.902E-05 1.168E-05 5.953E-06 3.009E-06 1.216E-06 6.780E-07 4.386E-07 3.109E-07 2.343E-07 1.845E=07 1.501E-07 SE 4.250E-05 1.27tE-05 6.470E-06 3.254E-06 1.107E-06 7.289E-07 4.7ttE-07 3.335E-07 2.510E-07 1.973E-07 1.602E-07 O, SSE 3.255E-05 9.769E-06 4.9a6E-06 2.485E-06 9.96RE-07 5.556E-07 3.59tE-07 2.541E-07 1.912E-07 1.503E-07 1.220E 37 A"NUal AVERAGE CHI /G (SEC/ METER CUREO) DISTANCE IN MILES FROM THE 817E O SECTOR 5.003 7.500 10.000 15.000 20.000 25.000 30.000 35.000 40.000 45.000 50.000 E S 1.058E-07 5.712E-08 3.734E-08 2.143E 08 1.438E-08 1.050E-08 8.095E-09 6.480E-09 5.332E-09 4.481E-09 3.829E-09 O SSW t.472E-07 7.674E-08 4.967E-08 2.79tE=08 1.833E-08 1.313E-08 9.942E=09 7.834E-09 6.358E-09 5.280E-09 4.467E-09 SN 1.512E-07 7.876E=0A 5.116E-06 2.908E-08 1.937E-08 f.407E-08 1.080E-08 8.610E-09 7.063E-09 5.92tE-09 5.051E-09 O;i =54 1.2a7E-07 6.454E-08 4.167E-09 2.34tE-08 1.543E-08 1.110E-08 8.444E=09 6.684E-09 5.447E-09 4.54tE-09 3.854E-09 w 1.262E-07 6.570E-08 4.266E-08 2.421E-08 1.609E-08 1.166E-08 8.930E-09 7.107E-09 5.819E-09 4.870E-09 4.147E-09 kl NNW l.13tE-07 5.884E-08 3.817E-08 2.164E-08 1.437E-08 1.040E-08 7.96eE-09 6.336E-09 5.187E-09 4.341E-09 3.697E-09 Ha 1.144E-07 5.939E-08 3.859E-08.2.204E-08 1.477E-09 1.079E-08 8.330E-09 6.677E-09 5.501E-09 4.629E-09 3.960E-09 NNW t.238E-07 6.393E=0m 4.133E-08 2.335E-0A 1.549E-08 1.122E=0R 6.594E-09 6.840E-09 5.601E-09 4.687E 09 3.99tE-09 N 1.327E-07 6.867E-08 4.4etE=08 2.508E-08 1.66tE-0R 1.202E-09 9.197E 09 7.319E-09 5.994E-09 5.020E=09 4.278E-09 NNE l.256E-07 6.516E-09 4.229E-08 2.407E-08 1.608E-08 1.172E=0A 9.029E=09 7.227E-09 5.950E-09 5.005E-09 a.282E-09 4, NE 1.519E=07 7.976E-08 5.22tE-04 3.0ttE-08 2.03tE-08 1.492E-Oe 1.157E 08 9.313E-09 7.705E-09 6.508E-09 5.589E-09 ENE l.483E-07 7.806E-08 5.It9E-08 2.959E-08 1.999E-08 1.470E-08 1.tstE 08 9.192E-09 7.609E-c9 6.832E-09 5.52nE-09 O E 1.206E-07 6.356E-04 4.178E-OR 2.430E-08 1.652E-09 1.222E-08 9.528E 09 7.708E=09 6.aoeE-09 5.430E=09 4.67AE-09 ESE 1.253E-07 6.612E-08 4.344E-04 2.516E-04 1.702E-08 1.252E-08 9.724E-09 7.834E-09 4.485E-09 5.481E-09 4.709E-09 SE 1.335E-07 6.972E-08 4.53tE-08 2.569F 08 1.703E-08 1.23lE-08 9.405E-09 7.a70E-09 6.107E-09 5.104E-09 4.345E-09

d. ii SSE 1.016E-07 5.303E-08 3.443E-0A 1.9anE-08 1.289E-08 9.299E=09 7.090E-09 5.619E-09 4.583E-09 3.822E-09 3.241E-09 VENT AND MUILDING PARAMETERS O

NELEaSE HEIGHT (METERS) 0.00 REP. NIND HEIGHT (METERS) 10.0 DIAMETER (METERS) 0.00 BUILDING HEIGHT (METER 5) 55.0 EXIT VELOCITY (METERS) 0.00 RLOG. MIN.ERS.SEC. AREA (SQ. METERS) 2368.0 HEAT ENISSION RATE (CAL /SEC) 0.0 ALL GROUND LEVEL RELEASES. g f ) ) Q

2 CSWRC C0CPUTER CDOE=X000!C,vECSION 2.0 CUN DATE 17-JUL-84 (UN T!PE 00:48:5'J '[ V0GTLE : JFD 4/4/77 TO 4/4/79 TO 4/t/80 TO 3/31/91 HTelo.0 DELT4 Tou-L C8."=.27 Ot g TURFINE BUILDING EONTINUGUS CROUNO LEVEL RELEASE MO TERR 4tH 2.260 Daf DEC4Y, upnEPLETED CHt/0 (SFC/ HETER CUSEDj FOR EACH SECMEM7 4 DIRECTIou .5-1 1-2 2-3 3-4 4-5 5-10 10-20 20-30 30-40 40-50 FNnM SITE .I S 5.257E-06 1.209E-06 3.943E-07 2.067E-07 1.313E-07 3.98tt-08 2.183E-08 1.057E-08 6.504E-09 4.492E-09 SSW 7.235E-06 1.636E-06 5.337E-07 2.802E-07 1.779E-07 8.038t=08 2.849E-08 1.3E4E-08 7.874E-09 5.298E-09 3h 7.362E-06 1.712E-06 5.557E-07 2.894E-07 1.830E*07 8.260E-04 2.967E-08 1.417E-08 8.646E-09 5.937E-09 wSw 6.207E-06 1.432E-06 a.618E-07 2.196E-07 1.51tE*07 6.775E-08 2.392E-08 1.119E-08 6.715E=09 4.555E-09 h 6.179E-06 1.4)lE-06 4.633E-07 2.414E-07 1.527E-07 6.890E-08 2.470E-08 1.175E-08 7.137E-09 4.843E-09 WNd 5.507F-06 1.287E-06 4.155E-07 2.164E-07 1.369E-07 6.17tE-08 2.208E-08 1.048E-08 6.363E-09 4.353E-09 9 Nw 5.520F=06 1.32tE-04 4.26tE-07 2.20PE-07 1.387E*07 6.237E-08 2.248E-08 1.087E-08 6.701E-09 4.440E-09 l NN4 6.047E-06 1.438E-06 4.627E-07 2.198E-07 1.502E-07 6.71tE-08 2.385E-08 1.13tE-08 6.869E-09 4.700E-GS N 6.492E-06 1.529E-06 4.930E-07 2.553E-07 1.609E-07 7.28tE-08 2.56tE-04 1.212E-08 7.35tr-09 5.034E-09 g' NNE 6.101E-06 1.448E-06 4.666E-07 2.415E-07 1.522E-07 6.842E-08 2.457E-08 1.18tE-08 7.255E-09 5.017E NE 7.239E-06 1.694E-06 5.53tE-07 2.89tE-07 1.855E-07 8.355E-08 3.067E-04 1.502E-04 9.345E-09 6.522E-09 ENE 7.041E-06 1.644E=06 5.376E=07 2.416E-07 1.790E*07 8.173E-08 3.012E-08 1.479E=08 9.223E-09 6.446E-09 %( E 5.742E-06 1.343E-06 4.382E-07 2.292E-07 1.456E*07 6.656E-08 2.472E=08 1.229E-08 7.73tE-09 5.44cE-09 ESE 5.916E-06 1.375E-06 4.513E-07 2.372E-07 1.5tlE*07 6.918E-08 2.560E-08 1.260E-04 7.460E-09 5.493E-09 SE 6.43tE-06 1.483E-06 4.848E-07 2.54tE-07 1.613E*07 7.304E-08 2.620E-08 1.24tE-04 7.504E-09 5.119E-09 SSE 4.924E-06 1.13tE-06 3.695E-07 1.936E-07 1.228E*07 5.556E-08 1.987t=08 9.374E-09 5.645E-09 3.833E-09 { i .y A, iq 3 s t' m 4 &I i Of + l (#

m_ J USNIC COMPUTER C00E-R09000eVEESION 2.0 EUN DATE 17-JUL*04 RUN TIME 08:49:04 O V0 GILE JF0 4/4/77 70 4/4/79 TO 4/t/80 TO 3/31/81 HTetc.0 nELTA Tsu-L CLMs.27 w TUIPINE nUILDING: CONTINUOUS GROUND LEVEL RELEASE No TERRAIN 8.000 DAY DECAY. OEPLETED 9y COR;ECTED USING STANDARD OPEN TERNAIN FACTORS AO UAL AVFRAGE CHI /O (SEC/ METER CHAED) DISTANCE IN MILES FRON THE Stik O SECinR _ 0.250 0.500 0.750 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500 3 3.249E-05 9.520E-06 4.742E-06 2.342E-06 9.128E-07 4.9715-07 3.152E-07 2.195E-07 1.620E-07 1.263E-07 1.015E-07 S$W 4.59tE-05 1.327E=05 6.522E-06 3.192E-06 1.237E-06 6.777E-07 4.316E-07 3.015E-07 2.242E-07 8.744E-07 1.403E-07 S= 4.499E-05 1.326E-05 6.649E-06 3.313E-06 1.29aE=06 7.040E-07 4.440E-07 3.088t=07 2.285E-07 1.770E-07 1.4 tee-07 9j NSN 3.759E-05 1.tlAE-05 5.638E-06 2.787E-06 1.083E-06 5.867E-07 3.703E-07 2.570E=07 1.900E-07 1.47tE-07 1.17AE=07 N 3.739E-05 1.110E-05 5.60AE=06 2.777E-06 1.082E-06 5.867E-07 3.708E-07 2.575E=07 1.906E-07 1.476E-07 1.183E-07 WMu 3.333E-05 9.8anE-84 4.993E-06 2.en2E 06 9.703E-07 5.262E-07 3.325E 07 2.309E-07 1.709E-07 1.323E-07 1.06tE-07 Hw 3.208E-05 9.708E-06 5.03tE-06 2.54tE-06 1.003E-06 5.387E-07 3.380E-07 2.334E-07 1.719E-07 1.326E-07 1.059E-07 O N4w 3.510E-05 1.066E-45 5.525E-06 2.778E-06 1.092E-06 5.87tE-07 3.685E 07 2.545E-07 1.875E-07 1.447E-07 1.156E-07 N 3.81IE=05 1.150E-05 5.930E-06 2.963E-06 1.159E-06 6.256E-07 3.938E 07 2.727C-07 2.012E-07 1.555E-07 1.244E-07 9 o NNE 3.55tE-05 1.077E=05 5.567E-06 2.794E-06 1.09 7E-06 5.904E-07 3.7 3 0E 07 2.564E-07 1.89 t E-07 1.460E-07 1.167E-0 7 NE 4.356E-05 1,293E-05 6.559E-06 3.272E-06 1.283E-06 6.95mE-07 4.398E-07 3.055E-07 2.261E-07 1.752E-07 1.405E-07 [ ENE 4.309E-05 1.266E-05 6.352E-06 3.166E-06 1.243E-06 6.755E-07 4.277E 47 2.974E-07 2.204E-07 1.709E-07 1.372E-07 ,) h, E 3.552E-05 1.0 32E-05 5.169E-06 2.5 80E-06 1.015E-06 5.500E-C7 3.473E 07 2.48tE=07 1.784E-07 1.382E-07 1.108E-07 ESE 3.697E-05 1.069E-05 5.323E-06 2.646E-06 1.040E-06 5.665E-07 3.593E-07 2.503E-07 1.057E-07 1.442E-07 1.15nE=07 p SE 4.032E-05 1.167E-05 5.802E-06 2.872E-06 1.124E-06 6.835E-07 3.896E-07 2.786E-07 2.014E-07 1.566E-07 1.258E-07 O SSE 3.08nE-05 8.96tL-06 4.436E-06 2.194E-06 8.575E-07 4.68tE-07 2.973E-07 2.072E-07 1.530E-07 3.195E-07 9.598E-08 ANNUAL AVER AGE CHI /O (SEC/ METE 8t CUPED) DISTANCE IN MILES FROM THE SITE O! SLCIOR 5.000 7.500 10.000 15.000 20.000 25.000 30.000 35.000 40.000 45.000 50.000 { S 8.365E-e8 4.217E=e8 2.665E-08 l'.454E-08 9.387E-09 6.643E-09 4.984E-09 3.894E-09 3.133E-09 2.579E-09 2.162E-09 O! SSW 1.158E-07 5.860E-08 3.707E-08 2.018E-08 1.297E-08 9.128E-09 6.805E 09 5.28tE-09 4.220E=09 3.450E-09 2.87tE-09 SW l.167E-07 5.845E-08 3.675E-08 8.99tE-08 1.27AE-08 9.009E-09 6.734E-09 5.243E-09 4.207E-09 3.454E=09 2.808E-09 scS W 9.694E-08 4.844E-08 3.040g-08 1.640E-08 1.049E-08 7.360E-09 5.479E-09 4.249E-09 3.395E=09 2.776E-09 2.312E-09 0 l d 9.74tE-08 4.880E-04 3.070E-08 1.663E-08 1.067E-08 7.585E-09 5.613E-09 4.366E-09 3.500E-09 2.871E-09 2.39eEa09 WNd 8.730E-08 4.37tE-08 2.748E-0A 1.48FE=08.9.535E-09 6.709E-09 5.00TE 09 3.893E-09 3.119E-09 2.557E-09 2.134E-09 2 Nd 8.692E-a8 4.307E-08 2.69tE-08 t.447E-08 9.25FE-09 6.St2E-09 4.866E-09 3.790E-09 3.044E-09 2.502E-09 2.095E-09 O p HNd 9.485E-08 4.698E-06 2.932E-08 1.572E-08 1.002E-08 7.027E-09 5.232E=09 4.060E-09 3.249E-09 2.66tE=09 2.22tE-09 7 N' t.022E-07 5.086E=08 3.183E-08 1.712E 08 1.093E-08 7.667E=09 5.709E-09 4.430E-09 3.543E-09 2.90lE=09 2.419E-09 NNE 9.58tE-08 4.757E-0R 2.975E-08 1.60tE-08 1.024L-08 7.195E-09 5.370E 09 4.178E-09 3.35tE=09 2.75tE=09 2.300E=09 O NE 1.tS7E-07 5.806E-08 3.459E=0a 1.99tE-08 1.28u-05 9.082E-09 6.816E 09 5.324E-09 4.292E-09 3.537E-09 2.969E-09 ENE I.130E-07 5.686E-08 3,590E-e8 1.958E-08 1.265E=0a 8.96tE-09 6.733E=09 5.26eE=09 4.247E-09 3.502E-09 2.94tE-09 E 9.124E-08 4.58tE-08 2.890E-08 1.577E 08 1.02tE-08 7.247E 99 5.458E 09 4.28tE=09 3.459E-09 2.860E-09 2.407E-09 'I j ESE 9.552E-08 4.822E-08 3.05tE-38 1.669E-08 1.080E-48 7.666E-09 5.767E=09 4.516E-09 1.643E-09 3.006E-09 2.524E-09 L SE 1.038E-07 5.232E-08 3.304g a8 8.79FE-08 1.156E-08 8.345E=09 6.085E-09 4.732E-09 3.792E-09 3.108E-09 2.594E=09 SSF 7.985E-08 3.99tE-Sa 2.520E-08 1.370E-08 8.409E-09 6.206E-09 4.635E=09 3.604E-09 2.887E=09 2.365E=09 1.974E-09 '} VENT AND BUILDING PARAMETERS: l 1 RELEASE HEIGH 7 (HETER 8) 0.00 REP. MING HEIGH 7 (METERS) 10.0

  • ).

DIAMETER (METERS) 0.00 BUILDING HEIGHT (METERS) 55.0 EXIT VELOCITY (HETENS) 0.00 6 LOG.HIN.CRS.SFC. ARE A (SQ.NETERS) 2368.0 3 Hraf EMISSION RATE (CAL /SEC) 0.0 O' ALL GROUND LEVEL RELEASES. l i 1 Q

I r}( USNIC COMPUTER CCDE=XIOD04. VERSION 2.0 KUN DATE 17-JUL-84 RUN TIME 05389104 fI f VOCTLE JFD 4/4/77 70 4/4/79 TO 4/1/80 TO 3/31/91 HTale.0 DELTA T=U L CLMs.27 I

s TUR3INE 9UILDING CONTINUOUS GROUND LEVEL RELEASE NO TERRAIN U

,[I l! 4.000 D&Y DEC4Y. DEPLETED t CH1/0 (SEC/ METER CumED) FOR EACH SECMENT

  1. I SECHENT SOUNDARIES IN MILES PROM THE SITE DIKFCTION

.5-1 1-2 2-3 3-4 4-5 5-10 10-20 20-30 30-40 40-50 FCOM SITE 'I S 4.737E-06 1.046E-oe 3.254E-07 1.65tE-07 1.022E-07 p.449E=08 1.494E-08 6.7tlE-09 3.916E-09 2.549E-09 SSW 6.542E-06 1.423E=06 4.452E-07 2.273E-07 1.413E-07 6.175E-04 2.073E-08 9.224E-09 5.312E-09 3.464E-09 ,F SW 6.656E-06 1.482E-06 4.595E-07 2.318E-07 1.429E*07 6.176E-08 2.049E-04 9.105E-09 5.274E-09 3.468E=09 'I l NSW 5.60lE-06 1.241E-06 3.827E-07 1.928E-07 1.188E-07 5.120E-08 1.688E-08 7.442E-09 4.275E-09 2.788E=09 W 5.57tE-06 1.234E-06 3.830E-07 l.933E-07 1.193E-07 5.156E-08 8.7tlE-08 7.596E-09 4.393E-09 2.882E=09 }f MNd 4.965E-06 1.109E-06 3.435E-07 1.733E-07 1.069E*07 4.618E-08 1.530E-08 6.782E-09 3.916E-09 2.567E-09 i ,9 Nd 4.944E-06 1.138E-06 3.497E-07 1.745E-07 1.068E*07 4.563E-08 1.492E-08 6.586E-09~ 3.813E-09 2.512E-09 NNW 5.445E-06 1.242E=06 3.812E-07 1.903E-07 1.165E-07 4.977E-08 1.62tE-08 7.100E=09 4.086E-09 2.672E=09 N 5.850E-06 1.323E-06 4.072E-07 2.042E-07 1.254E-07 5.382E-08 1.764t=88 7.754E-09 4.457E-09 2.983E=09 ,g NNE 5.491E-06 1.249E-06 3.837E-07 1.919E-07 1.176E*07 5.037E-08 1.650E-08 7.276E=09 4.204E-09 2.762E-09 f AE 6.514E-06 1.464E-06 4.543E-07 2.294E-07 1.486E-07 6.132E=08 2.047E-08 9.176E-09 5.359E-09 3.550E-09 E N F. 6.337E-06 1.418E-06 4.417E-07 2.236E-07 1.382E*07 6.802E-08 2.012E=08 9.052E-09 5.297E=09 3.585E-09 E 5.162E-06 1.156E-06 3.589E-07 l.810E-07 1.ll7E-07 4.839E-08 1.622E-08 7.320E=09 4.304E-09 2.8 TOE-09 fg l; ESE 5.325E-06 1.186E-06 3.710E-07 1.883E-07 1.167E-07 5.086E-04 1.785E-08 7.743E-09 4.54tE=09 3.017E-09 0 SE 5.804E-06 1.286E-06 4.023E=07 2.045E*07 1.268E*07 5.518E-08 1.047E-08 8.231E-09 4.760E=09 3.120E=09 I ,I SSE 4.445E-06 9.814E-07 3.06PE-07 1.560E-07 9.6FIE-08 4.209E-08 1.400E-08 6.272E-09 3.625E=09 2.375E-09 l ') -) ; .)( e 3 O) t .4 4 I 4 i -) l 4 j i .) ^ 4 <3 ; i

py-USNIC COMPUTER CODE =r00000.vER$10N 2.0 RUN DATE 17-JUL-84 RUN TINE 08:49tst I) V0GTLE : JF0 4/4/77 TO 4/4/79 70 4/1/80 10 3/31/81 Himlo.O DELTA TmU-L CLNo.27 TUZ8INE 3UILDING: CONTINUOUS GROUND LEVEL RELEASE NO TERRAIN 9: C0%%ECTED USING STANDARD OPEN TERRAIN FACTORS seeeeeeeeeeeeeeeeeeee RELATIVE DEPOSITION PER UNIT AREA (Neo-2) A7 FINED PolNTS BV 004NNIND SECTORS eeeeeeeeeeeeeeeeeee. OtIECTinN DISTANCE 8 IN HILE8 FEnN SITE 0.25 n.50 0.75 1.00 1.50 2.00 2.5c-3.00 3.50 '4.00 4.50 S l.126E-07 3.807E-08 1.955E-08 9.293F=09 3.338E-09 1.655E-09 9.747E-10 6.382E-10 4.49tE-10 3.32eE-10 2.565E-10 SSW l.346E-07 4.552E-04 2.337E-08 1.tttE-08 3.99tE-09 1.979E=09 1.165E-09 7.63tE-10 5.370E-te 3.980E-10 3.067E-10 54 1.702E-07 5.754E-08 2.954E-08 1.403E-08 5.045E-67 2.5028 09 1.473E=09 9.647E-lo 6.788E-10 5.03tE-10 3.877E-10 NS4 1.462E-07 4.945E-08 2.539E-08 1.207E-08 4.336E-09 2.150E-09 1.266E-09 8.290E-10 5.834E 10 4.323E-10 3.332E-10 W l.3tlE-07 4.434E-08 2.277E-08 1.082E-08 3.888E-n9 1.928E-09 1.135E-09 7.434E-10 5.23tE-10 3.877E-10 2.987E-10 f). NH4 1.155E-07 3.905E-08 2.005E 48 9.532E-09 3.424E-09 1.698f=09 9.999E-10 6.547E-10 4.607E 10 3.414E-10 2.63tE 10 N4 1.222E-07 4.132E=08 2.12tE-08 1.009E 08 3.623E-n* !.797E=e9 1.058E-09 6.927E=le 4.874E-10 3.612E-10 2.783E-lo NNW l.2ttE-07 4.095E-08 2.102E-08 9.995E-09 3.590E-09 1.76tE=09 1.048E-09 6.865E-lo 4.83tE-to 3.580E-10 2.759E-10 I, N 1.405E-07 4.750E-08 2.439E-08 1.tS9E-08 4.164E-09 2.065E=09 1.216E-09 7.963E-10 5.603E-10 4.152E-10 3.200E-10 NNF l.454E-07 4.9tME-00 2.525E-08 1.200E-08 4.312E=09 2.13PE-09 1.259E-09 8.245E 10 5.80tE-10 4.299E 10 3.313E-10 NE 1.675E-07 5.664E-08 2.908E-08 1.383E-08 4.966E-09 2.463E-09 1.450E-09 9.495E-to 6.68tE-10 4.95tE-10 3.816E-10

  1. I ENE 1.797E-07 6.077E-08 3.120E-04 1.483E-08 5.329E-09 2.643E-09 1.556E=09 1.019E=09 7.169E-10 5.383E-to 4.094E-10 E

t.984E-07 6.70RE-08 3.444E-08 1.637E-08 5.882E-09 2.917E-09 1.718E-09 1.125E-09 7.913E-10 5.865E-10 4.519E-10 ESE 1.782E-07 6.026E-08 3.094E-08 1.47tE-08 5.284E=09 2.620E-09 1.543E=09 1.010E=09 7.109E-10 5.268E-10 4.060E-10

  1. 1 SE 1.545E-07 5.224E-08 2.682E-08 1.275E-08 4.580E-09 2.27tE=09 1.337E-09 8.757E-10 6.162E-10 4.567E-10 3.589E-10

$3E 9.842E-08 3.328E-08 1.709E-0A 8.124E-09 2.9 tee-09 1.447E-09 8.52tE-to 5.580E-10 3.926E-10 2.910E-lo 2.242E-10 'l DICECTION DISTANCES IN HILES FROH SITE 5.00 7.50 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 S 2.038E-10 9.051E-It 5.483E=tl 2.77tE=ll 1.677E-ft 1.125E-it 8.059E-12 6.051E 12 4.705E-12 3.758E-12 3.064E-12 SSW 2.436E-lo 1.08/E-10 6.556E-11 3.334E-Il 2.006E-Il 1.345E-Il 9.636E-12 7.235E-12 5.62SE-12 4.494E-12 3.668E 12

  • I SN 3.080E-10 1.368E-10 8.288E-11 4.189E-11 2.535E-Il 1.700E-tt 1.218E-11 9.146E-12 7.112E-12 5.68tt-12 4.637E-12 WSW 2.647E 10 1.176E-10 7.122E-11 3.600E lt 2.179E-11 1.46tE=il 1.047E-Il 7.860E-12 6.tl2E-12 4.882E-12 3.985E-12 N

2.373E-10 1.054E-10 6.387E-tt 3.228E=lt 1.954E-tt 1.3 TOE-11 9.387E-12 7.048E-12 5.480E-12 4.378E-12 3.573E-12

  • 3 ENn 2.090E-10 9.285E=11 5.624E-11 2.843E-Il 1.721F.-11 1.154E=ll 8.267E-12 6.207E-12 4.826E-12 3.855E-12 3.147E 12 NH 2.28tE-10 9.823E-ll 5.95tE-tt 3.008E lt 1.820E-tt 1.27tE=ll 8.746E-12 6.567E-12 5.106E-12 4.079E-12 3.329E-12

'l NNN 2.192E-10 9.736E-11 5.898E=ll 2.98tE-It 1.804E=ll 1.230E-tt 8.668E-12 6.509E 12 5.06tE-12 4.043E-12 3.300E-12 N 2.542E-10 1.129E-10 6.84tE 11 3.458E-It 2.093E-It 1.403E-Il 1.005E-11 7.544&r12 5.470E-12 4.689E-12 3.827E-12 NNE 2.612E=le 1.169E-lo 7.083E-11 3.580E-Il 2.167E-tt 1.453E-It 1.041E-11 7.Gna=12 6.078E-12 4.45%F-12 3.963E-12

  • I NE 3.03tE-10 1.347E-10 8.157E-11 4.123E-ll 2.496E-Il I.673E-ll 1.199E-It 9.003E-12 7.000E-12 5 4.564E-12 ENE 3.253E-10 1.445E-10 8.753E-Il 4.424E=ll 2.678E-11 1.795E-It 1.286E=ll 9.660E-12 7.5 fit-12 6.06-4.897E-12 E

3.590E-to 1.595E-to 9.662E-tt 4.883E-It 2.956E-Il 1.982E=ll I.420E-11 1.066E-It 8.'29tE-12 6.423E-11 406E-12 ESE 3.225E 10 1.433E-10 8.679E-Il 4.387E-Il 2.655E-Il 1.780E-It 1.276E-Il 9.579E-12 7.448E-12 5.949E-12 J.mS6E-12 'I SE 2.796E-10 1.242E-10 7.523E-tt 3.803E=ll 2.302E-tt 1.543E-It 1.106E=lt 8.303E 12 6.456E-12 5el57E-12 4.204E-12 . SSE I.78tE-10 7.913E-tt 4.793E-It 2.423E-Il 1.466E=ll 9.832E 12 7.045E-12 5.290E-12 4.tt3E-12 3.286E-12 2.682E-12 ,) 1: 'd 1 EJ 1

  • t

) 5 >

g US3%C CoaPUTE2 CODE =X0!DOU. VERSION 2,0 EUN DATE 17-J ul,-8 4 KUN TIME 08:49111 V0GTLt : JFD 4/4/77 TO 4/4/79 TO 4/1/A0 TO 3/31/81 Hielo.O DELTA Tau-L ELMe.27 TUIRINE 90!LDING: CONTINHOUS GROUNO LEVEL RELEASE NO TERRAIN ,q eeeeeeeeeeeeeeeeeeeeeeen RELATIVE DEPOSITION PER UNIT AREA (Mee=2) RY 00WNWIND SECTORS meeeeeeeeeeeeeeeeeeeeeen e P SEGMENT MOUN04 RIES IN MILEi 4 + OIKECTION .5-1 1-2 2-3 3-4 4-5 5 10 1S420 20-30 30 40 40-50 4 f' FEon SITE S 1.911E-08 3.913E-09 1.022E-09 4.598E-10 2.596E-10 9.982E*ll 2.888E*ll 1.145E=ll 6.ll2E-12 3.783E-12 354 2.284E-08 4.679E.09 1.222E-09 5.466E-10 3.104E-lo 1,194E-10 5 453E it 1.369E=ll 7.308E-12 4.523E-12 SW 2.488E-04 5.915E-09 1.544E-09 6.935E=le 1.923E-10 1.509E-te 4.365E-tl 1.730E*ll 9.234E-12 5.788E-12 I qk C:54 2.482t 08 5.043E-89 1.327E=09 5.960E-te 3.372E 10 1.297E-10 3.75tE=ll 1.487E=ll 7.939E-12 4.914E-12 2.225E=c6 4.558E-09 1.190E-09 5.345E=le 3.023E-10 1.163E=le 3.364E.ll 1.333E=tl 7.119E.12 4.406E-12 S KNW .l.960E-08 4.084E=09 1.04SE=09 4.707E-10 2.665E-10 1.024E=le 2 962E-Il 1.174E=tl 6.270E=lt 3.881E=12 j NW 2.073E-08 4.247E-09 3.109E-09 4.980E.10 2.817E-10 1.083E-10 3.134E*ll 1.242E=ll 6.633E.12 4.106E=12 q NNd 2.055E=08 4.289E=09 1.099E=09 4.935E-lo 2.792E.10 1.074E-10 3.106E-tl 1.251E=lt 6.574E-12' 4.049E*l2 N 2.3 pee.08 4.882E-09 1.275E-09 5.724E=le 3.234E-10 1.245E=le 3 603E=tl 1.424E-fl 7.625E.12 4.720E-12 NNE 2.468E.08 5.055E.09 1.320E-09 5.927E-10 3.353E-10 1.249E-10 3.730E-fl 1.479E.it 7.896E-12 4.887E-12 4 NE 2.842E=09 5.822E-09 1.520E-09 6.A26E-10 3.862E.10 1.485E-10 4.296E=tl 1.703E=ll 9.093E-12 5.628E=12 i ENE 3.050E-04 6.247E.n* 1.63tE-09 7.325E-10 4.144E-10 1.593E=to 4.610E-Il 1.827E=ll 9.757E-12 4.039E-12 1 E 3.367E-08 6.896E 09 1.800E-09 8.085E-10 4.574E.10 1.759E-te 5.089E=ll 2.417E-it 1.077E-It 6.666E-12 4 i ESE 3.024E.08 6.195E=09 1.617E -09 7.263E-10 4.109E-10 1.98eE=10 4.57tE.it 1.812E=11 9.675E-12 5.98aE-12 SE 2.621E.ns 5.370E.09 1.402E-09 6.296E-10 3.562E=10 1.370E-10 3 942E=ll 1.570E=ll 0.386E-12 5.19tE=12 SSE I.670E-08 3.42tE-09 8.93tE-10 4.Ollt 10 2.269E-10 8.727E-Il 2.525E=11 1.001E=tt 5.343E=12 3.307E-12 4 VENT AND Bu!LDING PARAMETE#St NELEASE HEIGHT (METERS) 0.00 REP. WIND HEIGHT (METERS) 10.0 9 l DIAMETER (METERS) 0.00 UUILDING HEIGHT (METE 48) 55.0 1 Eu!T VELOCITY (METERS) 0.no 8tDG. MIN.CRs.SEC. AREA (80. METERS) 2368.0 ( HEAT ENISSION RATE (CAL /8EC) 0.0 ALL GROUMD LEVEL SELEASES. i l f l a a: W O s O s T. l J ( i J i

f s USNRC CDuPUTER CDDE=x00D 0,VER$10N 2.0 RUN DATE 17-JUL*A4 RUN Tite 08:40: 13 i. VDG1LE : JFD C/4/77 TD 4/4/79 TO 4/1/80 TO 3/31/81 HTol0.0 DELTA T:U-L CLN3.27 F I,0 TURBINE QUILDING CONTINUDUS GROUND LEVEL RELEASE ND TERRAIN CL'CRECTED USING STANDARD OPEN TERRAIN FACTORS = SPECIFIC POINTS OF INTEREST

  • I RELEASE TYPE DF DIREC7!ON DISTANCE N/G N/Q N/Q D/G ID LOCATION FRON SITE (NILES) (METERS) (SEC/CUS.NETER) (SEC/ CUB. METER) (SEC/CUS. METER) (PER 80. HETER) l ND DECAY 2.260 DAY DEC4Y 8.000 DAY DECAY q

UNDEPLETED UNDEPLETED DFPLETED A SITE 8NDRY S 1.13 1820. 2.0E=06 2.0E=06 1.7E=06 6.8t=09 } A SITE nNDdY SSW t.26 2030. 2.tE=06 2.lE=06 1.8E=06 6.2E=09 g A SITE BNDRY Sd 1.35 2170. 1.9E=06 1.9E=06 1.6t=06 6.6E=09 A SITE BNDRY NSW l.18 1900 2.2E=06 2.lE=06 1.9E=06 7.9E=09 4 SITE MHDRY d 1.32 2120. 1.7E=06 1.7E=06 1.4E*06 5.4t=09 A SITE RNDRY dNd 1.70 2740. 8.8E=07 8.7E=07 7.4E=07 2.5E=09 A SITE BNDRY Nd 1.55 2500. 1.1E=06 1.lE=06 9.3E=07 3.3E=09 i h A SITE 8NDRY NNH 1.47 2370. 1.3E=06 1.3E=06 1.lE=06 3.8E=09 A SITE BNDRY N 1.11 1780. 2.7E=06 2.7E=06 2.3E=06 9.0E=09 A SITE BNDRY NNE 0.81 1310. 5.2E=06 5.2E=06 4.6t=06 2.tE=08 A SITE RNDNY NE 0.71 1140. M.0E=06 8.0E=06 T.2E=06 3.2E=08 A SITE BNDRY ENE 0.82 1320. 5.8E=06 5.8E=06 5.tE=06 2.5E=08 O. A SITE BNDRY E t.03 1660. 2.7E=06 2.7E=06 2.4E*06 1.5E=08 A SITE BNDRY ESE 1.19 1910. 2.0E=06 2.0E=06 1.8E=06 9.5E=09 A SITE 8NDRY SE 1.22 1960. 2.1E=06 2.lE=06 1.8E=06 7.7E=09 O A SITE ANDRY SSE l.78 2870. 7.tE=07 7.0E=07 5.9E=07 .t.9E=09 4 NRST RESID WSM 1.20 1931. 2.tE=O6 2.lE=06 1.8E=06 7.6E=09 3 A NRST RESID W t.50 2414. l.3E=06 1.3E=06 letE=06 3.9E=09 O A NRST RESID WNd 1.90 3058 7.tE=07 7.0E=07 5.9E=07 1.9E=09 f A NRST RESID N 1.16 1860. 2.4E=06 2.4E=06 2.tE=06 8.0E=09 i. NRST RESID E 1.23 1980. l.8E=06

1. 8E=0 6 '

t.6E=06 9.7E=09 O A NRST RESID SE 3.30 5310. 2.9E=07 2.AE=07 2.1E=07 7.0E=10 j A VEG GRDN WSW t.40 2253. 1.5g=06 1.5E=06 1.3E=06 5.lt=09 A VEG GRON NW 2.40 3862. 4.5E=07 4.5E=07 3.7E=07 1.2E=09 O A MILK C0d SW 4.97 8000. 1.6E=07 1.5E=07 1.2E=07 3.tE=10 i a MILM Cod SE 4.60 7403. 1.6E=07 1.5E=07 1.2E=07 3.4E=10 A MEAT ANML SW 3.10 4989. 3.7t=07 3.6E=07 2.9E=07 8.9E=10

  • )

A MEAT ANHL NW 3.90 6276. 1.8E=07 1.8E=07 1.4E=07 3.8E=to p VENT AND BUILDING PARAMETERSs O PELEASE HEIGHT (METERS) 0.00 REP. WINO HEIGHT (METER 8) 10.0 i DIAMETER (NETER8) 0.00 RUILDING HEIGHT (METERS) 55.0 C EXIT VELOCITY (NETERS) 0.00 BLDG. MIN.CRS.SEC. AREA _ (SQ. METER 81 2368.0

  • )

NEAT EMISSION RATE (CAL /SEC) 0.0 i ALL GPOUND LEVEL RELEASES. O t Q s i .j i i a O j

' ~ ~ Qy - dqup t< ' g. u - % 'I y verpmso,ou g Q MO 6I' Y V f4 QA W ?uebsd f*hi-to y ar r 9 Is,/ ox flesse cal /f/d VEGP-FSAR-Q h " * "A we Question 260.61 )( - 2 </( 3 o Section 17.1.2.2. of the standard format (Regulatory Guide 1.70) requires the identification of safety-related structures, systems, and components controlled by the QA program. You are requested to supplement and clarify the'FSAR in accordance with the following (additional clarification may be required when the mechanical engineering and power systems branches ccmplete the r FSAR review): A. The following items do not appear in table 3.2.2-1. Add the appropriate items to the table or justify not doing so: 1. Fuel assemblies. 2. Underground Cctegory 1 piping and :enduits. 3. Site drainage system alterations. 4. Roof scuppers (Category 1 structures). 5. Dikes around the refueling, reactor makeup, and condensate tanks. k 6. Fuel building radiation monitors. 7. Accident-related meteorological data collection g equipment. 8. Radiation protection systems (including necessary 3m equipment and supplies). a. Radioactive contamination measurement and hp analysis. b. Personnel monitoring (internal, e.g., whole ps b body counter, and external, e.g., a y 3 thermoluminescent dosimeter system). i s c. Instrument storage, calibration,and s3ps e$3 maintenance program. e 'ES d. Decontamination facilities, personnel, and ""g equipment. e. Respiratory protection equipment (including 3 g testing). 2 \\ f. Contamination control. <E l2)l Q260.61-1 Amend. 8 7/84 b WS '(

.m h VEGP-FSAR-Q i 9. Safety-related masonry walls (see IE Bulletin 80-11). 10. Expendable and consumable items necessary for the functional performance of safety-related i structures, systems, and components (i.e., weld rod, fuel oil, boric acid, snubber oil, etc.). 11. Power-operated relief valves, block valves, anc ? their actuators. 12. Control rods. B. Clarify table 3.2.2-1 as noted below or justify not doing so: 1. Sheet 90, item 33, shows the nuclear service cooling water tower valve house as not being Q-listed. Clarify that this structure shall be subject to the pertinent prov sion of the VEGP operational QA program or justify not doing so. 2. As part of the control room heating, ventilation, and air conditioning (HVAC) system (sheet 59), clarify that the hydrogen sulfide, chlorine, and radiation monitors for the air intakes are sub ect to the pertinent provisions of the VEGP operaticna.' QA program or Justify not doing so. 3. Provide a commitment that the safety-related instrumentation and controls described in sectiens 7.1 through 7.6 of the FSAR, plus safety-related instrumentation and controls for safety-related fluid systems, will be' subject to the pertinent requirements of the FSAR QA program. This can be done by footnote to table 3.2.2-1. C. of NUREG-0737, Clarification of TMI Acticn i Plan Requirements (November 1980), identified numerous items that are safety-related and appropriate for operating license application and therefore should be on table 3.2.2-1. These items are listed below. Add the appropriate items to table 3.2.2-1, and provide a commitment that the remaining items are subject to the pertinent requirements of the ESAR operational QA program or justify not doing so: I h 1. Reactor coolant system vents II.B.1 2. Plant shielding II.B.2 4 2 Q260.61-2 Amend. 8 7/S* i

cm_ _-_,x-- , - ~ ~..,... _,,. - _ _ _.,., _ _ F = -[ VEGP-FSAR-Q 3. Valve position indication II.D.3 l 4. Auxiliary feedwater system II.E.1.2 (' initiation and flow 5. Emergency power for II.E.1.2 l pressurizer heaters 6. Dedicated hydrogen penetrations II.E.4.1 7. Containment isolation II.E.4.2 dependability 8. Accident monitoring II.F.1 instrumentation (containment water level and pressure monitors) 9. Instrumentation for detection II.F.2 i of inadequate core cooling 10. Power suppl'ies for pressurizer II.G.1 relief valves, block valves, and level indicators 11. Autematic power-operated II.K.3(1) relief valve isolation 12. Automatic trip of reactor II.K.3(5) coolant pumps 13. PID controller II.K.3(9) 14. Anticipatory reactor trip II.K.3(12) on turbine trip 15. Power,on pump seals II.K.3(25) 16. Emergency plans (and related III.A.1.1/III.A.2 equipment) 17. Equipment and other items III.A.1.2 associated with the emergency support facilities 18. Inplant 1 radiation monitoring III.D.3.3 2 19. Control room habitability III.D.3.4 i l I ( l Q260.61-3 imend. 8 7/84

w .-...:._...------c ~,. _... e e ( s-k 8 i VEGP-FSAR-Q ~ - I

Response

I t } The following responses correspond to the above questions: A. In regard.to items of table 3.2.2-1: t } 1. Table 3.2.2-1 (sheet 1), item 3, identifies the ) fuel assemblies as being controlled by the QA f program. OpC h 2. Table 3.2.2-1 (sheet 90) has been revised to include underground Category 1 piping hnd conduits. l ~m .~...,...,.>..~m.....,, ..~. oy ~~ l 3. The site drainage system is not'q 1'isted, and,, i j g ~ alterations will be evaluated commensurate with the design of the original site drainage system. The j _3,,1 O fku 0 '< storm drain system is identified in table 3.2.2-1 n 7, y.__.... - -(sheet 90). --,.. ~. fj.n.....-.. k ~ - - - ~ ~.. - s_. 4. Roof scuppers on Category 1 structures are concrete extensions of the Category 1 structures and are-consequently included under the structure,withcut ( explicit identification. The Category 1 structures are listed on sheets 82 and 89 of table 3.2.2 *.. i H OK l 5. Table 3.2.2-1 (sheets 88 and 89) have been revised ( to include the dikes around the refueling, reactor i i makeup, and condensate tanks (items 12, 13, and 22, respectively). OK f l 6. The fuel handling building radiogas radiation monitors in the HVAC ducting are Q listed and are discussed in section 11.5. These radiation monitors are included in table 3.2.2-1 (sheet 92, item 1).06The fuel handling building area monitors [, ' are non-Q listed and are discussed in subsection-ja f 12.3.4. These area monitors are included in table l 3.2.2-1 (sheet 82,. item 3). ( g /,',: l 7. The accident-related" meteorological data collection equipment is non-Q listed.,The equipment is 3? included in table 3.2.2-1 (sheet 83, item 3) and is discussed in section 7.5. (N d) 8.,, - /2 <. J.,. f i m p. o t. t. u, s y3 % Georgia Power _ Company recognizes the importance of these items and activities, and they will be Q'* cicsely controlled by approved procedures. However, there are no regulatory requirements which Fe "- identify these ac Q items. ) s I (g.. l Q260.61-4 Amend. 8 7/84 i l

.m

c.. :. m. _ _.;..m. m _

._._.._.__m__..- .s i F ( VEGP-FSAR-Q f The storage, calibration, and maintenance of these instruments is dictated by the QA program that was used to procure the original component. I 9. As stated in paragraph 3.8.4.1.12 there are no safety-related masonry walls within the plant. g/c a 10. Expendabid and consumable items associated with a safety-related item inherently fall under the appropriate QA program based on the classification of the item or system that it is associated with. i For example, lubrication oil for a component will j be the same or equivalent to the oil qualified and i supplied with the component and falls under the QA program which is similar to the one that was used to procure the original component. Similar QA programs would be used for weld rod control, diesel 0 14 fuel oil, etc. 11. Power-operated relief valves, block valves, and their actuators are Q listed and are covered under items 11, 35, and 37, respectively, of table 3.2.2-1 (sheets 1 and 2). 05 12. Table 3.2.2-1 (sheet 3) has been revised to include control rods. ()g 3. Clarification is as follows: 1. Table 3.2.2-1 (sheet 90), item 33, has been revised to reflect that the nuclear service cooling water ON tower valve house is Q listed. 2. Radiation monitors for the control room air intakes are Q listed as part of item 1 on sheet 82 of table 3.2.2-1. The hydrogen sulfide detectors have been j deleted from the design as indicated in Amendment 7. The chlorine monitors have been added to table 3.2.2-1 (sheet 60). OM 3. The safety-related instrumentation and controls i described in sections 7.1 thr'ough 7.6 plus safety-related instrumentation and controls for i safety-related fluid systems are subjec_t to the QA i program as identified in table 3.2.2-1 (sheets 81 l through 83) plus the item on safety-related instrumentation under each safety-related fluid system listed in table 3.2.2-1. O l5 f( l 1 1 Q260.61-5 = Amend. 8 7/84

w: w a_ : -

ww-w u_=

.D I r p VEGP-FSAR-Q [s-C. In regard to table 3.2.2-1: L 1. The reactor coolant system vents are identified in table 3.2.2-1 (sheet 3) under reactor head vent \\ system., gjg 2. " Plant shielding" as such is not safety related and is not Q listed. However, all structural walls and floors which comprise the safety-related buildings meet the classifications stated in table 3.2.2-1 (sheets 88 through 90). These walls and floor also serve to attenuate radiation sources and therefore constitute plant shielding. Adequacy of the shielding is-verified by periodic station radiation surveys. This'is done in accordance with the O'.. FadiationJrotection.yrogr&D 3.- The primary system power-operated relief valve status is Q listed and is identified in table- -3.2.2-1 (sheet 83, item 1).04The primary system f safety valve status has been classified as a Regulatory Guide 1.97, Revision 2, Category 2 variable and is qualified from the sensor up to and including the isolation device (see note p of table 3.2.2-1). The safety-related portion (i.e., from the sensor up to and including the isolation 7 device) is Q listed and is included under the post-accident monitoring system, item 1, sheet 83 sof table 3.2.2-1. 4. Auxiliary feedwater system initiation is part of the engineered safety' features (ESF) actuation system identified in table 3.2.2-1 (sheet 62). Auxiliary feedwater flow is discussed in section 7.5 and is identified in table 3.2.2-1 (sheet 83, item 1) as part of the post-accident monitoring j system. 5. The heaters are not safety related and are_ listed in table 3.2.2-1, sheet 1 (items 13 and 14). The pressurizer heaters consist of two banks of normal pressurizer heaters and two* banks of backup pressurizer heaters. The banks of backup heaters may be administrative 1y loaded onto the non-Class 1E emergency power buses. The non-Class 1E emergency power bus is backed by the diesel generators. The standby power system is listed on sheet 87 of table 3.2.2-1. y-Y) C)h( Q260.61-6 Amend. 8 7/84

x -..n~ .~__=.__-n.. no n -. - - ~,,, - -... _.. - - _... _ _ + 7 VEGP-FSAR-Q a 6. Dedicated hydrogen penetrations are not applicable because internal recombiners are used. 0/4 7. The containment isolation syste.n is safety related and is-listed in table 3.2.2-1 (sheets 13 and 14). O/% 8. Accident monitoring instrumentatfon is discussed in i section 7.5. The containment water level monitor and containment pressure monitor hre safety related and are included in table 3.2.2-1 (sheet 83, item 1). OK i 9. Instrumentation for detection of inadequate core cooling is a part of the post-accident monitoring system and is included in table 3.2.2-1 (sheet 83, j item 1), as identified in. table 7.5-1. OK 10. Power supplies for pressuriser relief valves, block valvey, and level indicators are from the. Class ic i ac and'de systems identified in table 3.2.2-1 Oh i (sheets 84 and 85). 11. Automatic power-operated relief valve isolation is part of protection. system NSS identified en table 3.2.2-1 (sheet 81). y) /C 12. As stated in paragraph 5.4.1.1, the autcmatic trip of the reactor coolant pumps discussed in TMI action item II.K.3.5 is not part of the VEGP design. Safety-related ficw instrumentation ice auxiliary component cooling water (ACCW) to the i j reactor coolant pumps has been added to the VEGP design and is included.in table 3.2.2-1 (sheet 16, 4 item 10). This is in agreement with the i Westinghouse owners Group guidelines for this TMI action item. O /4 13. The PID controller,is part of protection system NSS 1 identified in table 3.2.2-1 (sheet 81). The l protection system is discussed in section 7.2. 0/C 3 I ] 14. As discussed in paragraph 7.*2.1.1.2. F, 'the anticipatory reactor trip on turbine trip is safety i related and is part.of protection system NSS Oj 1 identified in table 3.2.2-1 (sheet 81). 1

bu c < e.v pump mL l
15.,The ACCW system supplies cooling water to the seal water heat exchangers and to the reactor coolant f

pump thermal barrier coolers. As discussed in paragraph 9.2.8.5, during loss of offsite power the i reactor coolant. pumps will incur no damage with an Q260.61-7 Amend. 8 7/84

m - %- = - - ~ ,____.-.u.- A wm L': ^ ' '- f. ~# ...v + g .= i l t I' VEGP-ESAR-Q ..e l ACCW flow interruption of 10 min. Because the j reactor coolant pump seals could fail as a result ~ F of extended loss of offsite power, the ACCW pumps are. automatically sequenced onto the diesel L generators upon loss of offsit'e power, unless I coincident with an ESF signal. If desired, the l ACCW-system can be manually loaded onto the diese'. l gen'erator after an ESF signal. The standby power ~ j system is listed on sheet 87 of table 3.2.2-1. g g4 l s-e ws. e w.:,% + 16. The Emergency Plan 1s a policy and planning 3 i document and does not set forth detailed procedures which are either administratively or operationally required to bring the plant to a safe shutdown The Emergency Plan is prepared using the guidance i given in NUREG-0654. As such, it does not belcng on the classification list. In accordance with l Technical Specification 6.8.l(e), written i procedures shall be established, implemented, and I maintained covering the Emergency Plan-l implementation. The Emergency Plan and procedures will be audited during the life of the plant as outlined in - sub'section 17. 2.18. Os, ~ i ..)

17. {__

.e s:r wt uThe, emergency support facilities serve to 'ccate q

s... w. usn.* ~'->

n suppert personnel who advise the plant cperaters a'nd/or coordinate offsite emergen:y response activities. The equipment 1ccated in these "' 4' facilities is primarily communication: and data di' splay components and as-built drawings for the pla9t which support the functions described ab:ve. The emergency support facilities are controlled by ~~ plant procedures which are audited during the life of the plant. This facility was designed using the guidance of NUREG-0654. OK y.q l?^ ' 18. Permanently located 1odine radiation monito ing 3 instrumentation is nonsafety related, except the post-accident plant vent iodine cartridge. These 4 iodine radiation monitors are discussed in section 11.5 and are included in table 3.2.2-1 (sheet 82, i ~ items 2 and 3). The post-accident plant vent iodine cartridge has been classified as a Regulatory Guide 1.97, Revision 2, Category 2 variable (see note p of table 3.2.2-1) and is included under the post-accident monitoring system, 4 item 2, sheet 83 of table 3.2.2-1. Portable instruments will be appropriately calibrated but need not be Q listed. For the operations phase, use of such devices falls under the appropriate plant procedures which are developed and controlled Q260.61-8 Amend. 8 7/84 b

o *.' o i g l (( f-VEGP-FSAR-Q r under-the GPC quality assurance program as described in section 17.2. 19. Control room habitability is discussed in section 6.4 and is ensured by the contro,1 room HVAC system which is Q listed as indicated on sheets 59 and 60 i of table 3.2.2-1. l k r l l l 1 l 'l l Q260.61-9 Amend. 8 7/84

T '2.)h(E5 1 ov-l .z i J.\\'.u..t \\ of t - k vnfoGkeck k d b O.c1(d\\ krojw <ttq b@\\\\ h1ahviot i> med. A k,% pay yadulsA@993 6pochJ ch.dtnsihes rony.jrue sto b \\\\s pc4 /o indsig co me-sh Steve Yoged (Om D \\b Il /c fi nt5 2 Manahton O,45,,ic O bo NosdYO'O IQ]ta ro,-n in - Muvne.ohilsh; %,% ice.3 Yag4 h<6m id h Io em/ soc. - 90. a.\\; n = i u,,,, f, e.,, c.., \\ % c. 2 t \\tq O9 4 9 e S e I ,\\cc a/, Q S - e i v'

I Vooru XOQboQ Paar vidrs (70.0 0? coerotia.usar zoo wns') - mab eatz, cc<mivucus 2 4.& eitsy7~ 35m. Vrevi' +'Etur &I m VENf 21Abtiii.?

d. mu (YdtT* I) l urr vacory

/3.I,. @ ( dasr.7) (flC7CC 4~'idTil 2/ C0 W e/d 7CeJ U,'. ~ 8MI, 8) l 702.11.~1E cu:c,.L :.'vVI. coannuout J t cu i..:.. ' 85o.. (ccamu..rr.~li) i

  1. 36b,, " (/cy /3. </ /Mt) o

.1 24ht M rs - Coalb AcKt ec un se cet I E C h G Kr~/.'s.h'i~ l$ nau l ZiI % ' **t%.i .~ E E / l il LC.: S'SO no e, " d 2 c v.RAk tu -

s. ~,; u ; L-:.

l m :w.~.-

y b u.

77? Awl (Fcic r1iL n&,i it:f;:i) &J d d G /6 % s /S*m. Em n wa.uan.:Acc... G 290 % dlm-Ftc, :)st i92c,, U'u t ~' l NM (* 2h'br M%s R t!,t. A re itdv. :< l~ l Alnd & /80n.. i'C<m 7 N Zt.C /. !. 5 -!* p y c.,2. n d0 /1*/k /4 o.u )

2. 1, r l (,-) T V4eo il !'

~ *

  • Of".(UG* JJh:u rico-ll*icrCit l

t E A Cc hlP N tff L-11H : s'lY{77 - *//b's ?? + 9'//{M 1/st/'/ f l us wh / o,ri,, 47 W. 7- /O ,s 12 'I

i %)le ll6 [! w accidents should be included ir the analysis to c ver i those accident conditions resulti :g ir, airb.'rne rnntaminants rewiting specifically frna fire / .G ~ 8-y,,i u. .s 5. Per Regulatory Guide 1.70, Revision 3, this :ubse: i n (2.3.2A) should includ,6 thC$G i sf st wndwt to spwsifis $A:( twstiugn $t C*/*c t in wn1Crp. Set e Cro t C 0;1:a l anc air ;Ve lity CCn:11100s disetssed in 2.3.2 are used fcr cesign and ;erating ~ basis cor.siderations. 6. Per F.egulatory Guide 1.70. Revisi:r. 3, previce a list of (2.4.1.2) c.ners, icestiens and -ate of use by rurface water users whese ir.take: c:uld ce aeversely af fe:ted by accicental release of c:n aminants. Se:tien 2.4.1.2.9akes reference ~ "" to "two c: esti: water users... as stated in .i

  • a ra g ra ph 2.1.4. 3. "

The parageapn referenced c:es not 5 ( p. a;; ear in the F5AR. Either previde the ir.fermaticn noted n:t\\ as part of 2.4.1.2, or provide the inferr.ation in 2.1.4.3 as referenced. 7. Per Regulatory Guice lhC. Revisies 3, Secti:n 2.5 (2.5), shculd be trefaced by a surtary that centains a syrepsis f cf Sections 2.5.1 througn 2.5.6. The ;-efa:e should 1' contain a brief description of the sites, the / 'n.* itnestiy4tiutis per f urri.ed, i esults of lin estig.',iuns, l' cenclusions, and a statecent as to who perfor:ec the ork.. E. ib: Vogtle FIAR c:ts not ciccus Icc:1 c: mage prediction (3.5.3) in c posite barriers as icentified in SRP 3.5.3, ,f[p. $s: tion II.1.C. If composite er multi-ele' ent r.itsile 0.8 rp,. d !:arriers are ret used, so state; cinerv.ise discuss the o cc. :: site carriers as identified ir. SRE 3.5.3. i ; c. Taele 3.6.2-1. Hi;n Energy Pipe ereat Stress Asalysis (J.6.2) Results, is in:::Plete. Sneets ! th cugh 60, 65 / ,/ { I* i .o ' l 12(, a 1 o

u. g y g ,,y l. .C. 7 1 Z q h ~ C h t ^. h a I ) ...l. . +. -. 6 - -. d.,_ L.,..... .,_4 ....,I-a . u. u ___.. .c. ...i. -.a .w.. y .mmmm.._,-.._$ -q .w... .,_--9. -...,w_. +__m._ .m.-. --i w . -.i.-,.. 4 ._i.. s,_

  • m.-

4p.--.g. .g. i .-6 I I 3 i l --.7.- 8 p i 5..~,_.__ _ + _ _.... _ ._+. .. ~ + C ... 4..* 4 + --+- +._. e., >-,.4 .._4 . _ + - -. 4... s . - - -.., + - .. + _ __A._,.4 >..e_ . _ - +.. h__.-...,_-9. i .-4,- .g .n .-.m_.. t .p l s ... - - +. -. i .._..{..~._4........._. N a p_v} I i u_ __.a + __ i f. i. i 6 e 2 k _.4. _. -.E, f _+__ _. - + -.- a +_ + -.-e e e .., -- _,-.h i I L. e _,.. wp m4_.. .e-.. c _+_ -... _ _ _. _._. ... - _ __ -..-_._3____g...._-.. g- -y ._._+__.g---. e. --e..4__.____._____. - t .mm._.p_ t. g _ i


..-_.--'a--I.--.*.._...=-

-e,..._.=$. .. +... _ _. g. w W. e,e _.._em-e.w.-.e . T-.-T_.1..'._-~~-'.'_-*-~~.- y . - - - * ~ ~ ' * ~ ~ - ' ' .... -.. _. _ = s y w e. _.e.pm.-,- e.a ,-.e.-.. ,.+e.,whe. --g.u ...e.be- -g-._._. -.._.---_._-e A.. _ _.._ -. - - -. + __ .- h.. 1 - _ __4 _4.+._.._..I..- 6 ._o _. 4...___ _ M e +m.. + . -. = =.. _ -._.. i ___. - - Q.4. . I,-+.-._ ,=4. _ - _ - _ 4+ 4 g e m_' a 3 -.*6 .mm ._.4 a. _ eT, _-__--}._...-.,. __4.___ _a-.. _ ._ - x - - - ^-' -. z _ -_t -.. _ 4._; s. t y s j. a. a ,-=_Ae.,,,.,..f.....,.. 6 e_-. ,.. +.. - _.i-. -. ..-+-4 e. ir gi i.- 4 + ..,e._a m .-h e. m._i F- ..-,=_.-_.7 . - =.',e .i-..p.. 6 .*1-*.- 4- - - -' - - - -- - + - - - - - - + - - - - - - - ~ + - + - - + - - - - + - -- /, r.6 - 1. - ---+t -- + - - 4 I * ' ' * ' ~

  • " * ~ ~
    • - ' " - * ~

l r * * ~*'. l 9 _, - g p,, + -- ._4. te. a dl ,....5 .,y f--. _ 4. _...__..._..-.,.. _. -._. ._.j.. e ...._4.... - + - _ -, .__g ._.r_. ...._..4.,... ._.4.__++_. .j g. [. j f.. ..__I.-9__p._...__. ,._ _.J.. -..+.-.I.___ 4,. -. Ph m. . 4._,....... ,2 p. _. g ;. -.. + b 6 _ o_ _ I S-4 .4.. 4. .... - + ..+. a l, r. H.p' - - +. -.. _g h...-- -_ . h.. d_ y ..4.. l. y p. l-p -_. .- p.- _. A V Q gi r.4 ' p_. -_ e - p._.L._ 1 l ,, r, 1 ..L,.. ,1 . = = I "[g . e ...._'"") + = w av e \\ ---.a.-q=i p._ p._..... .y_. 6,. - + - = 4. - +.. , g M d s.o.., .+_ 9 .$i....-,.4~_. - ~. _ +... - -q - i.. _.+..g. -...,-,_,.g.__..._M_,_.,,m e ...e e_ ..t,_....... _ g $- ^ $.h ..e

r. $.e.e

.-.-p.... $. -t~. ...e.e ii $e_

s. 6

+ e g --+...i.- .w g p_. ..+. - -. +.. - - _. -.. r X, l I f_.. l..- ..a 0 I 4 l i i I i

e. (_ L_..___

L._

a. _

.f _ _ __._, . N'._ l l i l 1 -6 I 6 T 4..4. e. _. -..._-...~.~.._.....,. _ _. _..,. _.. _--...+ _._.._....._._i .--..n. -- +-.. ....s_- . _ L_ . _......~. 4, - e e..-e..-.e.---t i, + 4 .. +.. f + +.+--.-. ~. 9 -. a . a. _. j... _.. p._.__.... _4. 4_.4-_ 4 ._..._~.; ,,, 7,, 1......_i... .. l _. _ I i 6 i s a I T. t to N en W M '4 8'" - C 4 w ta') t% v 3.e t

n ~m-up (,e-c) -d .r ? ..., ~ a. --a ..., s e. e r- ,s n u.. m. 'e > .4 s s sa u:. ( -..m._.,_ g i ~ -* = !, " -.;;,. ...~ ...i. -...i- _i _. y r % f.

  • 5 1

, f t,. 6 !^ g L, s_* ~: c~~ 's-t

  • t y

4 4 _.. ' p,- _ _..

_m.

g

.4 :

/- / k ,i r i. / 4 5, , S= j r w_.___ e-p g., o g, 9 s.- 4 .f p .....w. 't . +.. y* d 8 ^ . g FY1 + y.,..a. g., ~.. _ _ =._ _ wa ._. _ a,-...... ._g - =. q g -._--..--_-._.0 4 . _._.-..-.7_...-.. 4- $. n$ i t,. a' s. i g__ +y; g o q g E - _ _ _ - _ n s o-A- s.g 4 p s q 'g,e %~ y . _.. _.... _ _ ___ ~. _ _ _. _ _ _. "n* _.y -y-.93 y 4-_ I

  1. i

. r i ; s . - h.i -l [ L w4 1 / i ' t '.- ..Cm-2 ' a e i ,.L_ y** L i - g.. .i. *~ ~ ~

  • 4

, j. i f. 4, $m 'g 9 4 g. t',

  • T,

?x U e.6-+w-WW-3.h.Z-D- WN. M h6 kg .i. .m ~ ' ~ ~

  • h

.4' }';} [ ..w. , i - _ a. _r- ,, % m + . pal-t. , %J /j =) e f 4 e, r4, t t ^ 1 - t.t 7 &g r- *~ - -* s,.y t-t- j !a _r i C ,; Q f f,7~ a i i, .l . - g -. g.. -. ). -.j. .j. --g..}7.....p .{ t s/ :/= h : t. 1 i i t i t-f t t - ! 1 i ./t #. - 4 t -4 / j /1 i i i 1. -f 1 1 ! l .il i i l I t .d. 8 4 .J e %+..+. 0,* y,. ..,4,. i -,.. I., ..... a...,.. e. .d .a e ' e, +.. g _... x h -- e g = -y1'- } d 4 1 9 4... 6 ...7..,...- 7. 7 -.. y.,,,.. t ._.h n y.- g_K f! ' q t _,.,4, }, l s e9 % h w

nan w.s . _. - v w - p sw.aw w w x m m x.w a w w w ww. x.ma mm w,.e o 4 C ge e" es ? JC N W" at = I O l l I l ..-,1 4 C, - w a. . {-. + .l t },,'.-...-. - -- -. .-s t. .._. - L d[._ + t~ ...l -.-. . i L. L. L a. F -p -.+,,. a-o.i.~..-.4.. r =... .. a. g a, i

)

C; N- ..,. i...I.J g t L. _L_ t b I 6 t a, 6 s [ k 't._, I l l f p-1. 7 4 _.,.g ~~ w... . + .i 4 - - - _q q m c4

C L 3_____-.

Y I i 1 i (g - L,,1 .m.,,,_ ( ...~w - y I f%,., ; ....,4 ~ ~. g_ g C ) { 6 4 w -3 I e w i. _4 N. I 1 .k i J' g _ 4_ _..i 1 i i ~., _h i 1 t ) r i I. - -+ ' t L g, i i 7, ) o b r ~

  • ----~...".'g

- ~ ' g.-- .- c o ~. %_ w, 4 -g i j p',, _7 m u t 1 I ~ 1 . -- j v y }__ _.... _. .. ~ - ,. *.. -. ~. - -.- -. - ~ -.. e. ~ .._.S +. =. n',,. t* ._.-4) 4 1 . ~. +.. -. .-I + l .. 7 .. g 9

o....

~ 4 P... _ 4 t m..._.,. 4 I .-__g I I 4._._.. .-.A --.6--- -4 j g 4 y 1 p.~.-. - -. l 1 4 6 e.~ v ,e 6. - -, ,,,,.f'.^-***.*_*'*.'~~ 1 r = '. ' '. " " ' ' " ' _ ' *. ' ~ ' '. ' - * ' * - ' '. ' ~ ' ' * +.,, I w -.-e...+ -.6.. H .-4* p..-

a. m.

1 .w.- -. j f r._.. 6 e+ p . N .L~ j !' ;i r 1w~.,. _.,~n~. j +.. -- 4 m,. m- .-4_. ,..9..,~.. .. _L I 1 .....4,._w .--...4 4-4 e, I .W .--._w- , b.. F. 6-.-,...- {

4.. 4 -._

---1 I ..,.j 4 .I_...__-. m.i, E ,.--......n.$.._. . _.. __.. L._... (.-,..e...-~1... s .. m. p P .m.., ,t . ~.. _. [ .O .,.-w..-,p. .e t

  • _... +. m. g h_

,,M .... ~. -.. +...., - l ,.-4 .-_-9.. j,. ..,,.,.-%r.. ..._=.6.--c,. '. - 4 +. [ E --,..-p r-1 - .,,,g,,, _ _ _ b. t I -e 3 4 L-. .,.4~. 1- - _.._ j, I

p. E- - - 4.

m., t

  • ig"

g .+ I I i 4 ( e 2 W ;, t 9 ..~~ ~ g ;, -j -+ e --- .4-. .e i f l ' t.' .I 9.+ +. - 3 h I I l f f' a 8. %^ ._.'. 9 p.._ .4.% ,.9. t 4.o e 4. I...f.-. .....e.a.., seg. 4.y i.,e e* * = - 9 h. f*.+*.e+ *,. - _,... _. I ^ ..,,., _..g, e i t eA I ...+em.e.. p $e w ~._.#._..... g I A 9 } .4. .e a

y.. ~

.-i 6- -{ _ l r [ m.. e.-. . 1 t t f k l 7'.E ' 6 b I i i

e.. @

[ - 'I l I l 1 i l I i g g .,4..,... .***=.-.$.w=*-., - -... .e....,w..._, _. ..ew.e, -p e.e 4,e-e .e-,e p ..e ... e.-.. _. .e.e..e. ...6-* ...=.'&.a6.*.. _m.e.. .$-.-..f.....e.e.e.,-,,ge e g.-.. 4 .e W* s.eef -. -._6 e F 4 4 ,s )e l

      • " y ". d -+f*

e.e a ee o. woe i j r c ...m..I_ t

i.....i...

. _.a i I-l i I i _ _i.. _. ,- e %e. me .y V, 9 W e o @ W P% VI of M N 8* C. i 2: P= 4 in at m N t ( n y 6/t

.4 .i.3,.. m_ .e_- r _1s%wsu%. _._m ... a m_.m %; - - e.c. ? n h = A

  • 3C A

C d' W ~~ l i ._.1 -. t i --+-----t---.-. .g .._ l -__L.__ . _. u- . -+-j--+--- s i . - - -- D. ~~ ~ ~~ - - - ' I-k-f O .i.'__..*~~_~T.',.~.~_~1.-'--~~+. ._ _ T. L._~ g I _.- I -,f-, i l O, e ._.l _ I ._..u_ 4 1 --f -- - - p_. ._q I 4-._ g.. i_._. i _m. .m.__. _ _.. _ _. _.. _ _...~ 5 i 6 _a. 1 L. _4.. i. _4. _ + _ I ~ f%. __i._-.+. ~ _.--

  • 4 I.

I l { t r l l' } t i Ll } l l

h. _ _.

I t i i t 4 gi 4_.. i t . - --- _ g g 4 I i .,t_, - --.q 3 O w O g . -.... - ~ - -. - +. +-6..---....-..-+_,.. _.__ _,... - _.. ~ _ _., I g -_A.__.m...-~1_- o s...4 4 ~ _.. _.__. ,m._.._-._ 1._.._-. ._4 r'

  • E~-'t-~~'Z.N-*._.r+-_.._~~~.--~"

~':T .. _. - J.7 7~-'.. _."- t ~ :C. --- ~ ~ p- ._... -. L

4. _ _.. ___.

_4 . _.m._ .__._w_.___ ,p- -p _.4- _.-k _..p.,___,_.. .s ._____.4-a -_.4 __ig._-. ?, ..~~e , __ + _. y ___._ _ T( _.._+___4 g__ 4 ....6___._. .+-.---_s-. n,.,._.. y 1..%..A_,.----. ,,_..---6 4 + I I I I I g_ 4* nm6-.. - - -+--6--.--+ _M 1 e y_ .._.9 .,_y.g_...,....... .---t---+--t t - -+ -j ~ ~ ~ - - 1 i r i ~ }_ 4 t-e- . 4 E I { I =.. _.. _ _ _. _ _.. 1 .-p.* e m i s.. .__,__._i-. ..e + .b.e_..>.a t-..=. 1 t p. --. - 4 f e-._h e f.--- e... - 4 i i b. -,..-...._,4._...,. 4 ~,4 4-,46,++_.--_ ....-.. - e ..4 } -- - i, - --4 er 4 L I 2 ^ I _. . _... -. ( h .M"bh s 9 _.4 f'.. 9 _._ 4-9 R. - E e a 6 e g m. ..e i.+ ..e._< 'e...-.ihai._*e$-.a e.

  • i

-e-e.. .~ k t. s._... -r._..s_..__A_..e_-.n. ..-.--o.,_,-... = _ =... I ._.~ 4._ 4 k. __+ } 4 . _ ~ _ _ l 4 = ._+._.._ 4 _ ___ y .... +.. t h. .hE= T - . t ~.~.. _. m.,._f_.~-t-__-.,...,,.. - _. ~. _. _ ......4 l'. _. ...a _e W 1--._.. t 4.. _ __4._._.. ,..4.. nm + < ~*===>~4- --Wi e ,m._ 4.. ..I ,..... ~.... --+ -

  • 4
  • a 4
  • * * *... + - *

,. ' ~. _ ...-_a , g 4._. _e......, 4-- i_,_ .f ..y._._. . _.. _, _ _, est a ..-4. ~ 4 6 ._.... _-_ g ),p. 9 - + f. .* < e. e s .i..w ,.e.iw .,.,.gg

.._.....- p. w.

.. _ =.1 i I 5 3y J ;.LL. L. L \\s. ; _ I_ L I !/ ._L_,.D~ . _ U.___ - f f i I

le W

i c v 4,. _ - e.- ~. -..74..~ . _ -. _.. _... { e.r,_., t. .+.y..~. - _,... _... a ,..n.. m .._.+_g.._: 4 ,.... -___t..w. p. -.'i.& u.h GN h.ih..h ,.6 g... p. $-_.=ak._e ,.e _.e.e_.i

  • g w..

.g hi,eg. .g...gii.4+. . + - -.* g + +% 4..*--... 4 a, i k k..d _.h.[. I - ,, i . _ - - h +.... - N + e. e 1 $,' 3 a. w r__. L.:.=__ p_. _! __. l [ l l l g' w +- - + .y-.g-. .9 _t_ m._ .. _....t __... _.... ..a_.._-._.... 1 g _. !'. _. _.._.L , _._.a a ,,w 4...' p .__.w_ 1 4,.__ _. L___ ..._q.._... -S y 7.. I L-.a d_. -.L._. _ _A o-i A s.3== gese 'y p 0 O o.= e e e-e e m n

    • ,,, W

? M % C %f et r* 9% 5 3 V. - <r CD e . m

-...- ;,- :. a. - ..-. - _. -.. n _. a. ..u ...:. _.....: _.;;..... :.: _ a._ iin ^ %f-DE/' n 4 ws. _,u b. 9 4 -1 c-*j ,~.. C'^ ~ /. Y X10 3, L y ic ~ 3 '~~~ ./ pu g-g,9 s io

i. c r n^

.5 ,g 4 y,., - 1 ni ','

3. 5, so O

y 9 x o. 4 s pp

2. p y 10 V

e a 5 % L!H t f. d.S ' ' O g- ] ~' ev y 7, ) y I ( C t 9 c i. C O l O

j; 7 [ [ } 'C ~

S'leL.IMtC y. ) b $ s tenor 9, f> / 0 l 1 '?.b.6 x /0 f 4 t j (- /, <2 y /D 5.0

  • lb O

f .V p J < /D ' /.Is'o . c,' J Q ^ !v 9 l 9 O S i ( G ( l t 9 i 1 O 1 4 O t G e

h .m


m._._._

-m y _.. e lDGr7LC 1 t i fitp w acy F C / i ': t?Y c a u tili n &

  • r k e,C A

13 c p E F 7?-73 h3 ?3 GN SE.i C.7 /?.? ?. 77 77 Is. it J.1- /.4 /12 J$s /kE ,~. 1 I( ??- 7'i it.l O.B /3 /7. } 33.o is.: ,9.2 N M /9.'i J. Y

i. 9 C ;/

D. 7 /y.i' ~= 2,-79 /E E s.. a /,5 /$4 5?. 'i li2 c icwh h.a arn o ?,ec.;u uxy I 7:-D v-w n.4 m ~i i /J "7 3 Of 8ei Yi ' 8. l n /A::. * <!,? 55 S.:1 Sy 5 c. i N ?. 2. 7,6

7. 5
7. 4 7.f lv'

&S L.: s7 6.C .,5 ( LA ...h ) ;;, 6.} L.*s l

t. :1 et nt St S. *l

!= G 6,>

t.. c 6,o S.?
5. 5 ser

(.o 6.o 6,7 $ l,, O f.. Y b'. 6

4. Y 4,?

'I } 20 L.1-

w. '

s.s s.+ 5.s s 7.y s.s

7. 5 73
  1. +'
  • /[1

!~ (.. S 75 7,g W t.Y j 4. l* 7.4 7,1 tru/td 1, $ F., 6.L 2.4 7, }. nw f', t, t..' b.?; (*.

  • G.i A%4 5.1

'I

  • V,te 1.9

), 3 -_,s,_

  1. w e.._~

---e<-="-e--"~~*- y$ &f I ),tt.(

  • /

.e /* i/ 2.4 Hvdrologic Engineering 2.4.1 Hydrologic Description l l 2.4.1.1 Introduction f i The staff has reviewed the hydrologic engineering aspects of the applicant's design, design criteria and design basis of safety related facilities for Vogtle Electric Generating Plant ? T ) / ~The acceptance criteria used as a W basis for the staff's evaluations are set forth in the Standard Review Plan (SRP) NUREG-0800 in Sections 2.4-1 through 2.4-14 (Hydrologic Engineering). These acceptance criteria include the applicable General Design Criteria (10 CFR 50, Appendix A), Reactor Site Criteria (10 CFR 100) and Standards for

  • ' Protection Against Radiation (10 CFR 20, Appendix 8. Table II).

Guidelines for implementativn of the requirements of the acceptance criteria are provided in regulatory guides, ANSI standards, and branch technical positions identified in Sections 2.4-1 through 2.4-14 of the SRP. Conformance to the acceptance criteria provides the bases for concluding that the site and facilities meet tht requirements of Parts 20, 50 and 100 of 10 CFR with respect to hydrologic engineering. 2.4.1.2 Site and Facilities The Vogtle site which encompasses an approximate area of 3169 acres, is owned by Georgia Power Coropany. The plant is located about 26 air miles south-southeast of Augusta, Georgia, along the west bank of the Savannah River, and 15 air miles east-northeast of Waynesboro, Georgia, in the eastern sector of Burke County, Georgia, at Savannah River mile 151.1. The drainage area above the plant site is about 8015 sq. mi. including the Beaverdam Creek area (about 35 sq. mi.). The topography of the site is shown in FSAR Figure 2.4.1-2, Sheet 1. P 28 12/04/84 2-1 V0GTLE DSER SEC 2.4 [$Wl

2 p-1 l lhe plant is on high ground with the entrance to the power block buildings at grade el 220 f t msl, approximately 140 f t aboveginimum riger levgd_about [ 80 above probable maximum flood (PMF) leve s based on all-season probable maximum precipitation (PHP) of Hydrometerological Repor). (HMR) 51 and HMR 52 (1979 version) by the National Weather Servict/ The grade elevNion at the Mf5take structure is approximately 125 f t msl. 2.4.1.3 Hydrosphere l The Vogtle site is located adjacent to the Savannah River about 50 river miles below Augusta, Georgia. At a minimum flow of 5800 ft2/s, the river at this ., location is about 340 ft wide and from 9 to 13 ft deep and has an average velocity of about 2 mph. The two principal headwater streams of tr.e Savannah River are the Seneca and Tugaloo Rivers, which join near Hartwell, Georgia. From this point, the Savannah River flows about 300 miles south-southeasterly to discharge into the Atlantic Ocean near Savannah, Georgia. Its major down-stream tributaries include the Broad River in Georgia, the two Little Rivers in ' Georgia and South Carolina, and Brier Creek in Georgia. The topography of the basin varies from el 5500 ft at the headwaters of the Tallulah River to about 1000 f t in the rolling and hilly Piedmont province, oescending to around 200 f t at Augusta, Georgia, and from there, gently rolling to the nearby Coastal province f rom Augusta to the Atlantic Ocean. Rainfall is generally abundant and is about 80 in. annua' t Snow cover is rare except in the trountains. Runoff average is about 15 in. annually for the entire drainage area, while runof f at Augusta, Georgia, averag., tbout 19 in. Total stream flow varies considerably from year to year. Streams in the basin typically have high flows in the winter and early spring. During the summer, ficws diminish and remain low through autumn. Two upstream reservoirs, Clark Hill and Hartwell, along with certain channel improvements, ensure mininum water requirements. River regulation has increased the minimum daily flow f rom a record of 1105 f t2/s before construction of the dams to 6100 f t2/s af ter their construction. As shown in FSAR Figure 2.4.4-11 the Savannah River Basin is wider at upper reaches and has about uniform width from Hartwell Dam to Clark Hill Dam. From 12/04/84 + 22 V0GTLE 05ER SEC 2 4

~ ~ -~s, ss Belcw Augusta the basin width gradually narrows. Hill Dim to Augusta the l ntic Ocean. nues 13 narrow to the At a Savannah River Basin; ~ of Engineers dams in theThe three reservoirs h are three major CorpsB. Russell, and Clark Hill.5,660,000 acre-feet of whic l ily Hartwell, Richardcapac,ity of approximately In addition to flood contro, e a tctal storage reserved for flood contro. ower generation and low l i g ,,000 cere-feet are water for hydroelectric pdiment which reduces dredg ninform e ovide 2 reservoirs also prThe reservoirs also trap seand harbors. Additional ow augmentation. igable waterways FSAR T able 2.4.1-3. ists in the downstream navin the basin is provided inRiver) n these and other dams water (the Savannah 112 river of surface are Beaufort / Jasper County, Went are two domestic water users users d These There sownstream of the plant. kee Hill (Port ailes downstream, and the Chero Section 2.4.13 discusses the c miles downstream. plcnt, 122 river waters. and cf effluent releases to surface FSAR and drawings the material presented in thevisit and concludes that requirements The staff has reviewed theobtained during a Februaryi criteria in SRP 2.4.1 1984 site applicable photographs general hydrologic descript A, GDC 2 and the acceptance i of 10 CFR Part 50, Append x Floods 2.4.2 The peak discnarge Flood History 6 2.4.2.1 ah River occurred in 179000 cubic feet pe f) water surface The maximum flood on the Savann was estimated to be 360, a comparable flood would produceThe riod at Augusta. Georgia The applicant estimated that aof 116 feet msl. was 350,000 cfs of several d (1883) at Augustaoccurred prior to const site tion elevation at the since records were maintaineThese floodsnow re l en October 3,1929. are well as by upstream hyOconee Nuclea Flood flows upstream dams. and Clark H111 Reservoirs ashree-unit two associated with the t V0GTLE OSER SEC 2.4 2-3 12/04/84 I

-n__-_-__ . n -- .~ -._. .32G V5' u 1HM I s . ' * -l l .... ~ so . i. sr s >se *. * *h = f U. %,.. r.r_. ,7 / Q . o. ) a r w,' eM, LMM s.< -+..- s Ai 2-,e-a i.. , '. z, c. : c. t, /

m. e iCwi4-
  • -w -

.-,. f.:..u. -/. r.

v.. ~
a..y r

cw 7nw (a...a) l

  • ,.'.u ~ '~C : e y. gr, i. j... A; r!.
5. -

Gw=== - Li.. u: a l' qa -< ' y' .* y....w e u-j' s.. f j-u.. -f f e-1 : ) %e . (., s.. . w.. y.. s. c.- l...-- -t.7, s.~ .~: 7.. / 1 * ~..._,.....! u- .1 ~s .wa.... ' .s ..,c....sc

c..

.........u .. c..,. ;. ,. w.....I . n .L.. e.s., c. .,i..g ., a.,,. i:c t i. v, w s. u. t c. ..s. .-n . s,as-I .c <- m.- . <~ j j ..c -i 1..:

,.... y.

m r.- t ~ < g

x. u S

,-w q, .o r. 7. ... ' /.,. ! s. t w...,.... -/ fh; 6. -% Lt...o, I 3.. ~. ' 4 ,,,,, g - -s 1 f / /a." 4 L..g 9 ....,w-o .. ~.. .. u n.;.t .~ ., s u.- .2 l l 1 i h !. 4 #* M k. 8 i (4 -4 1* 4 '* -

  • 4

.g g g g b b 1 b g.,5 b= - ( e', b .1*' s

4. f 4.

is, j

  1. %. wg v,,

1 i I N s.-

    • j r
  • s

,a ./ i / . <. f ', ,W 4 t; e ., s. ~ s.. l l

~ o.. l l L ' ej V N* - c t l ll.'. cI 0. n 0 -jQ'n u i : 't -

  • i B

e s.. i , ud', \\ 74 4 g M % z - L n w. A.. j J f d 'ft9i /8" M & wA & '$ o U PI \\ TL 4 - M 9 2-p-y @ was. 7L

q. twLwn. &

My O.a eltse A Ql c m. 9 a )iz a. rs J % M- --& C ~ W rc 4 L a a wz 2 p:~ p f M 'm % 1 MA A dM oat--o @ n St.f2.%2-00N$w Q %;2& Y& t<. p M -f-~ r) o s (L M.s.) imp wu p waf.4&v ceeA. Aw p 4cer. l f P.L i O d WM i^ ^ f( a F m i a es w.<.,p. L a a t y uP z.y, z cJ bC, ^ "u' ausetTE-l ft, m.auz:A /0 CFL iAuf VD, d yMV ll, 6AC ~E, w f

.u____- _.um..m__..______.___~ 6 i tion of Local Intense Precip ta not suffi Vnt 2 Effects ermined that there isconclusio cts of ~h e.+ h e fM 4aff-+res-redewed-the-reach a 'mstlen available to enable us applicant needs to provideincluding roof to sys c. needs to The ~ roof drainage plicant also ability to 2 1 int 2nse precipitation.ysis of the The n s and its cn cnd a detaion safety-rellted structure.system MP. The nage the site dr and including the local P ding levels wide additional information on to vailable ,psse of local severe pre e most rece t PMP guidance a cipi ation N asked.to consider plicant was a ions. taff cannot re ,inf all depth-duration available, th e to is are ith re_pect nal information and analys s requirements of GDC 2 wsafety-related st Theref or Tutil the addit ts the

onclude that the plant meelocal intense precipitation on affect

/ , open item. and Rivers Streams Probable Maximum Flood (PMF) on site based the Vogtle timate's for PMF flow at HMR 51 and 52, stream-2.4.3 applicant has made several esiques including PMP based on from Clark Hill-Dam. l on standard hydrologic techn ls and design spillway outf ow000 cf s a The flow network simulation mode 540,000 to 895, ange from These PMF discharge estimates r for the Vogtle licant from the Corps hip was developed by the appcomputer site. A stage discharge relations 4 ) by using a site (FSAR Figure 2.4.3-11, HEC-2 " Water Surf ace Profiles. (USGS)topohaphical ited States Geological Surveytle site were fie k d and of Engineers, designated sections were taken f rom Unof these sections at the Vog obt of n run to of 1929, 1940, and 1948 wereThe Three In order to maps. compared with the USGS maps. floods h fwiththeresultant (coefficient of roughness), t ei h computer results. applica compare high-water marks w t ed by the 2.4.3-11. procedures and parameters us as shown in FSAR Figure stage-discharge rating curve V0GTLE DSER SEC 2.4 2-4 g 12/04/84 s v ' th 3

m gy - n _ _.,,.

n.. _ w _ a.

-a ; .o d the rating curve in FSAR 895,000 cfs an l 3-11, the maximum PMF elevation at the Vogtle site woul 3cxigum PMF discharge of incident winds The applicant estimated that wave 'runup f rom coThe eppli' ca ,sl. nt since the combined

nt to En additional 25 feet.

l imated by as much as 10 feet, but it is irre eva) is well below the plant . and bcse flood level (162.0 f t msiThis site is considered a " Dry d ce of 220 ft ms1. dafinition provided in RG 1.102. I se.vative r ?cadaEnadditionalindependentanalyspsusingtheconThese generalize zed PHF from Appendix B of RG 1.59.015 square mile drainage area ~ cfs for the 8 3 11, this 1,000,000 Using the rating curve in FSAR Figure 2.4. -f about 140 ft ak discharge of e Vogtle site.

e. corresponds to a peak flood elevation o that the plant meets the licant cnd staff analyses, the staff concludescriteria specified in SRP 2.4.3 ment of GDC 2 and fulfills the acceptance i

h River. sspect to flood potential from the Savanna Potential Dam Failures e designed such that most seismic i

jor dams upstream of the Vogtle s te ar However, domino-type would not cause failure of these structures.applica'nt to evaluate the h

~ re of the' upstream dams was assumed by t eAll.saf ety-related structures and t of the flood wave at the plant site.i cident wave runup elevation of 168 . ment are above the dam failure and co n 1. Dam Failure Permutations 4.1 d its tributaries above the Vogtle Je ara 13 dams on the Savannah River an immediately upstream of The Hartwell and Clark Hill Dams are major dam j

dam, plant site.

hard'B. Russell, is under construction andSAR Figure 2.4.4-11. The existing and proposed dams are shown in F '84. 1 I V0GTLE DSER SEC 2.4 r 2-5 8/04/84 1

fails due to Even if Cla k Hill Damf lood-wave considered a dry site. maximum flooding, the valley storage. Jc h probable site due to structure site is ic event coincident wit it reaches the plan fcu d e.the intake le safety of will be flooded substantially before the flooding will not af f ect structure tes the intake

a saf ety-related f acility, its tial dam f ailures
Gvent i

effect of other potensurface profiles to Vogtle. deter-iant. also investigated the water affect River failure to lated i jpplicant resultant Savannahworst possible dam has f ailure that can be postuearth-qua and the e Vogtle assumptions for theworst reasonableresult of an ld f ollow. i A x the basic h study indicated that t eof Jocassee Dam reaction that woubeCuv5C it has been as a c-ald be the failore (SPF) and the t reasonably possib e.p+ : include chain l earth-andard Project Floodof Jocassee Dam is no Oconee Nuclear Plant to conserva-is more However, it h ismic f ailurestated in the PSAR for t eearthquake - 0.1 g). water level at maximum asigned as is ining the iuake forces (design basthis f ailure in determ assumed tive to postulate was where Jocassee Dambreach Vogtle. failure scenarioThe floodwave f rom this ~ Flood (SPF). outflow from the applicant analyzed such adard Project downstream. Theearth section of Hartwell to fail during a Stanfail Keowee Dam 15 miles The fail the assumed would overtop and would overtop and wave from the coan-The surge 60 miles ilure assumed Keowee Dam fa from Keowee Dam. Richard B. Russell Dam, assumed f Richard Dam 51 miles downstreamwould overtop the by about 9 feet. ld overtop (by about The Hartwell Dam f ailure ll stream from Hartwell Dam a floodwave that wou the' Richard 8. Russe j I which would produce 38 miles downstream fromremoval of C Dam l B. Russell Dam fail the Clark Hill Dam, applicant assumed instan The I taneous of 2,400,000 ft /sec. i inished, to New 2 f and was transf erred und m gia. This e a peak outflow dischargof Clark Hill Dam river from Augusta, Georunsteady, no The Dam. results in f rom the f ailure which is down using the at the Vogtle site I Dam site graph Savannah Bluff Lock androuted past the Vogtle and dischargecoincident wind wave /. ~ The peak stage hydrograph was then The CH. respectively. flow computer program 50980,000 ft /sec, / 3 ,f ft msl and V0GTLE D5ER SEC 2 is 141 / I f. 2-6 I 12/04/84

n; y -. -,... t ~ l i. t grade sl which is well below plan

  • ) cut elevation 168 f t m asl.

i le dam f ailure also analyzed several mult py Plans for the areas d t eam of Engineers the failure to d velop Flood Emergenc worst case scenaris was. l Spillway Savannah River. Hill Dams during the Hartwel This he New Ord B. Russell and Clark only routed downstream to t at The peak stage is. failure hydrograph wasDam just south of Augusta,d would Georgia. less Bluff and is about elevation 149 ft msl anam from the New Savannah (ck and te, 50 river miles downstre analyses perf ormed by the ludes that review of the dam f ailureof Engineers, the staff coatno affect laff's She U.S. Army Corps will have RP Section oilures on the Savannah Riverrocedur(s described in Sf GDC 2 ties at Vogtle. Using the pt meets the requirements o 1 i l -aff finds that the p an e hydrologic aspects of dam f. failures. l Flooding { h

ble Maximum Surge and Seic e tle is not sited near a large not applicable because Vogseiche flooding.

1 ction'is er susceptible to surge or l-m soable Maximum Tsunami Flooding large body of ~. because Vogtle is not near a. s:ction is not applicable eceptible to tsunami flooding. e fee Ef fects of the Savannah )( formation on the lower reaches of river tempera ture supported by records .s no record of-ice cbservation is furtheris generally greater than 5'C. This the ainimum observation V0GTLE DSER SEC 2.4 2-7 {/84

~-~~2_., m. - ~. _ ~ - - -. ~.. _ =-%.._, ' w -.~.. u iver intake, since Hartwell, i i. e d l te the ik21y to occur at the Vogtle rt eam of Augusta will mo u a i l11, and Clark Hill Dams ups r 1 intake and 22 Vogtle, the design of the riverof 24 ft ensure h et I lg w2re.to occur at-I h intake. with flow of water into t e intake ,!r d:pth inside theira river will not interfere pf its review of the FSAR, using proced d not on the intake structure woul kludas that the effect of ice the plant meets the require-cet plant operation and, therefore,55a and 10 CFR 100 with ice effects.

2, 10 CFR 50.

i ng Water Canals and Reservo rs formed by vertical sheet pilingAs discussed short canal less than 400 f t long and the Savannah River. dary cting the river intake structureriver makeup water is the secon The river 2.4.11.4 of this report, the ling water tower basins.

Thus, rce for the ruclear service coocanal have no safety function.

fety of utture as well as the inta e t cause a threat to the sa k A review under the I this river intake canal will no at Vogtle. i There are no reservoirst applicable to this plant. l I rations.

s of SRP Section 2.4.8 is no k

nannel Diversions a relatively straight and stab e {,,__,,- l intake' annah River near the Vogtle s will be diverted from the ite has ly to the intake from

f. It is very unlikely that the riverAny possible effe emedied Jral causes.

i er intake has no safety 1 changrs should come f rom extremSince, as previous licable y occur. ion, a review using the procedures is plant. l l V0GTtE DSER SEC 2.4 2-8 ) 34/84 i

,e __yv._ rs'< =r s +- v.w i m a* m - waw wa.c .5r,+wa r ws6-n -45 m e n7 w* w +aes.J w - y %I 4, Se 2.7 ~ s

2. 'A i', E. v. : 1 g p. 't,

D Cl ^ i j S h j '~ds W ec$ b.iw % Q;n..( C-. ' ' ~ i.,. :.:_5, Mc i i.e &P * ,9 f

  • o#

V.'- ~ * >l '~ ~ ' # Y .A T A.' V(** ~ / ys_ h> a I

  • 8#

'g g

  • Y

&==* M$ [W r ~ ~ ) cJ>.& 3 2 o. o p Jv-t bf.A:, ! a-a n J.v.s3L( c 3 e.Jui,m 4-w ,.GJ --LD. i f, 4 2 = .e n) b.2 S $ta. u"*.'<,*,.,/ C **,: r ' 'd -%

  • i ' * *. !..t o

.."/***,w"

  • ** ~ t 'm'

? W 6l g y d 4 slaw.%. 7Cv au n a -p %.9 Js X L n x: 5 2/ / G 7YNo 's e. *U ld, ' .,,o< f r Yi'* (* S [r '- ?.;' y. n, ba.w %., u d ' J i c % h.-6 t O e e t 3 i

I .f stfes i d structures, saf f concludes nts Prote tion Requireme 4, saf ety-relate t l The s ,ing 2 4 sis flooding. duringdhe design ba Lt ed effects /in5setions2.4.3and2..will be floodedand thit t of levels flood from the / l not a cra protected are structure structure /rade level and thusof site drainage (SER fts iiritikeN of th2 igh saf ety-rel'atewell belo p,lan tg xception requirements N [is not a a the l =cceptab e. f acilities7 With are River i Interse Precipf or flood protectionappli cant hvcnnah arc h Y furnis ! safety-related h.4.2.2 "Ef f ect, of'Localeet and provisionsco pleted when i s m 10 have been will be jewifsitedrainagerequested by the staff. CW) formation cooling water (NSare provided Water Supply service Cooling nuclear NSCW towersof the NSCW f or Vogtle,is the I redundant train ultimate heat 1 ismic Category h associated with eacwhich contains are transferred ultimate heat sinkTwo 100% capacity short-term he f i loads capacity of each generating un consists which ars. NSCW tower structure in hat the the intent of t he The Each applicant states t RG 1.27 stem. upper meet with and an to atmosphere. unit are designed conformance system, as .nk water The of the is in capabilities d ins per i r.fwo tower bas without makeup anregarding the o the requirementsral reservations h storage seve / staff has forced w l discussed belo. constructed of rein I Ea h

System Description

c towers cells. draft d al ansfer pump, fan 2.4.11.1 mechanical into four indivi uhe NSCW pumps, tr circular subdivided ( are NSCW towers r is which contains t towe / Th2 Ea h c a pumphouse hp, reducer by a 100 concrete. s valves. I tower includes bypass fan Each i rrturn header, and right-angle gear c buses. I f t / min. 2 535,000 through a essential a / from the capacity of NSCW f an is driven I wered and has SEC 2.4 a i is po 05ER Each motor that 12 blades V0GTLE with j 1800-rpm in diameter / is 22 2-9 ft l c 12/04/84

~ +. ft 3 in deep at inside diameter and are 80is 3.65 x 10 gal of 6 f av? an 88-t i o nininum capacity of each bas nided in each tower basin to .tr:nsfer pumps are prov the other basin. DCsin to be used as makeup for jticn ibed in cooling tower basin as descr oling tower 5 i J' acticn from theThe water is returned to the coerature fr $his r; port. to in th2 event of low return tempwater is returned directly jnif olds are bypassed and the affected by direct contact cooling t is and evaporative ijection to the environmen l mal operation Plow, which provides both sensib e and drift losses during norired, from the Savannah Evaporation te pump net flow. ICW makeup wells and, if requalso designed to ensure adequa .lagt short-ins tnd pumps are d at the end of the 1 nad under all operating modes an rib:d in RG 1.27. a of-coolant accident (L.OCA) or C e. o e n, y f r

onditions, including a loss-ide the containment with loss o 7

med rcak accident (MSLBA) ins nonsafety-related) are presu NSCW tower of basin pakeup water combined inventory of the twod y cooling wate a n t wu.,,- s m n ing aurces e Jch conditions, the loads rating unit provides a 26.7-a and accident heat l conditions vaporative losses. i , nation of meteorolog caload, basin temperature, and eh lf o sfer tow;r heat ity of the two basins to in contains approximately one-a i the combined storage capac The basins are concrete i ement of RG 1.27.d with the normal I d to p;rmit '6.7-day short-term requ rlocated entirely below grounresulting in loss of i I lory 1 structures basin failure approximately at grade. A i. c nsid; red highly improbable. 5 V0GTLE DSER SEC 2.4 2-10

k"*- 1A fd J aW"#P- ^- 2_"_'- W BrF, JW F 2 =

    • a ~ m v.4mi %y' e.#"'

6, + us t lM j Y 4 & ~ aspa m~ yA sua da cws> p v p a A a, w(A/ )16 I c % a c-M 4 cA mn Q-A cJJ [ t w i cua A u o, 7 d s ju J y. tuags A w p d trL nw.L 6:~Pc ar wRp.4 'Q'y fla uL9 && n cqig&J vuAu 9zF*F cd M L w.A & AJ 3o p % s Lec -fe 9A en s AT2L c4 h .-f w. L C uL a u mat a s,nspe.a a c~ cas ~%As a3 -ts m eja v.sw l D l nud2a4 7fu u Hs'.is u m u u s a m w ' t ( waa &+n <... J 2, s, mw, up n,s uz, ~ h$ A e i df J.f? 4 b* 4 b

i J$<!~ N hueGw'<<0 chaff a W --6<wk cd -k -s caGI y# 0 & ~ ~DL 3c> L34 y m/ g r . e n_. a p a A y r p ' y cs-w,..m a e A A,ayo Am J /,2 7. % - w G. J 2 t h 4 8 i l e i o i 4 4 t F s i 4 g f L

ff~ s./ l 2.4.11.3 System Performance 7 2,l osi Based on heat loads (FSAR Table 9.2.5.2) on the NSCW cooling towers during both normal operation and accident conditions and extreme meteorological data from the U.S. Weather Station at Augusta, Georgia, the applicant analyzed several scenarios of UHS ' operation to determine maximum water use and maximum return water temperature. The applicant's analyses predicts a maximum return water temperature of 92.9 F and maximum water use of 3.65 x 106 gallons (equiva-lent to 26.7 days of operation) for the 30 day performance period'specified in l R' 1** mse +@ p l [ ~ The applicant needs to provide a discussion in FSAR Section 9.2.5 regarding ' the use of the UHS 30-day water supply for fire protection. This should include a description of when the water in the NSCW cooling tower basins might be used for fire protection and the extenuating circumstances. The applicant l l must discuss the significance of the impact on the 30-day water supply consider-I l J ing that the makeup sources for the NSCW cooling tower basins is not seismic f Category I. FSARSecgt'on9.2.5.6isalsounclear. This section may be interpreted to 1 imply that he basins provided a 26.7-day supply of water without makeup.e " Che FA s9 Further, it may be implied that changes which occurred (diesel generator rating, fuel pit loading, " worst 30-day" meteorological data) reduced the. storage capability by 6.2 days to a net availability of 20.5 days. The [ applicant has indicated that a greater than 30-day supply existed at the CP stage and the above changes reduced the supply to the present 26.7-day supply. The applicant has committed to clarify this information in the next FSAR l amendment. i Additionally, RG 1.27 allows that a cooling water capacity of less than 30 7 l j days may be acceptable if it can be demonstrated that replenish ment or use of an alternate water supply can be ef fected to assure the continuous capability l of the. sink to perform its safety functions, taking into account the availa-l bility of replenishment equipment and limitatons that may be imposed on " freedom i of movement" following an accident or the occurrence of severe natural phenomena. e 12/04/84 2-11 V0GTLE DSER SEC 2.4 l

~ ~ ~~ ~~. ~ ~r g lenishment or rocedures for ensuring rep tinued capa- ~ ~ ~% applicant needs to discuss phan 30-day capacity and con l source of make-up for less t ~[ T hus, the citerngte thermal and bility after 30 days. its independent analyses of t eThis will have h supply. RG 1.27 )/ staf f has not yet completedof,the emergency cooling waw ter / The hydrologic performance staff can determine system. j to be completed before t e the emergency cooling water h and GOC 44 with respect to Plant Requirements makeup water is required 2.4.11.4 a flow of 406-gal / min ft and cooling tower and also losses due to driimum evapo During normal plant operation, are 1270 replace evaporative losses During accident conditions, maxCWS operation) i reactor Tower to r 30 days. f gal / min (for two-train NS f ter 1 day and 210 gal / min a te fore, total losse blowdown. decreasing to 340 gal / min a ccident conditions, and therei e only evaporation ing accident conditions compr ssub p is assumed blowdown is isolated during a k and makeup requirements durHowever, as discus reactor uent to and drift. unavailable during theditions concurrent with a los basins provided shutdown under accident con f the two NSCWS cooling towercueate 30-day to be inven-combined storage capacity o quired to provide the appc.the plant a safe shutdown for each generating unit are retor shutdown and maintainrequi The A tory to permit safe reac h the short-term N condition in conformance wit adetseef~eL-ttn= ban s Lv ormal operation and to prov nonsafety-related ide long-term To provide NSCVS makeup during n with RG 1.27, water from Two makeup conformance ilable. i (after 30 days) cooling ind the Savannah River) is avatowers for both ge approxi-systems (deep water wells anmakeup to the NSCWS cooling wells are The wells provide the primary ith a 2000-gal / min pump. 1000 f t and 400 f t, with eac1 well equipped wh is located approximately wells provide water These units,1100 . mately 2160 ft apart, and eacdiate plant site boundary. respectively, f rom the imme for the following uses: V0GTLE DSER S 2-12 12/04/84

7 __ _ ~,,---- _ -- -____ --__ ___m___.. _t ,e i.' l ? app Fire protection. Construction demands. Potable and sanitary uses. Makeup to the well water storage tank. j 1 \\ [ Water-in the well water storage tank is utilized for utility purposes, for NSCW tower makeup, and for the makeup demineralizer. The makeup wells have been sited on the basis of extensive investightions on the characteristics of the groundwater at the plant site, which show the i existence of two distinct aquifers, a shallow water table aquifer and a deep, 1 confined Tuscaloosa aquife,r~ Estimated recoverable water quantity in the

  • Tuscaloosa aquifer is approximately 21 billion acre-ft.

In the event that the well water is not available, river water can also be utilized for NSCW cooling tower makeup. The Savannah River provides the i makeup water for the natural draft cooling towers and dilution water for the plant effluent discharge. The Savannah River, bordering the plant site on the east side, is approximately 340 f t wide and 9 to 13 f t deep at the site, with minimum and maximum flows of 5800 ft3/s and 71,700 ft3/s, respectively. The river temperature, recorded at the Burton's Ferry Bridge from January 1960 through September 1970, ranged from a minimum of 41*F (5*C) to a maximum of 4 84*F (18.9 C). Four 22,000 gal / min capacity nonsafety-related river makeup water pumps provide makeup to the natural draft cooling towers. Provision is also made for these pumps to supply additional dilution water as required for the plant radwaste liquid discharge to the Savannah River. Piping is provided f rom the supply header of the river makeup water pumps to the basins of the NSCW cooling towers as a secondary source of makeup water. The plant makeup-water well system serves as the primary makeup source for the NSCW cooling towers. To ensore adequate river makeup water pump suction conditions, the pump suction is installed 9 ft 10 in, below the minimum river water surface elevation of 78 f t, in accordance with the requirements specified by the pump supplier. 12/04/84 2-13 V0GTLE DSER SEC 2.4

~. .. _. ~,. ~. ~. -. -. - ~ e, The large Corps of Engineers dams located on the Savannah River upstream of the site provide a large volume of multipurpose storage that augments low flows in the river. Minimum river flows should not be less than 5800 cfs which is more than adequate for plant make-up requirements. The completion of staff review under the provi ions of SRP Section 2.4.11 is A contingent upon the applicant providing clarificati.on of the analyses for 30 day. water supply and identification of alternate sources for the period between the basin capacity and 30 days (SER Section 2.4.11.3) and the staff { completion of its independent analysis. The staff cannot conclude that the plant meets the requirements of GDC 44 and the criteria of RG 1.27. Therefore, . cooling water supply is an open item. Y 2.4.12 Groundwater 2.4.12.1 Local Aquifers, Formations, Sources, and Sinks 'T The initial geologic exploration program for Vogtle included groundwater field studies which were conducted principally within a 25-mile radius of the site. The groundwater investigative program included pumping tests, permeability testing, well canvassing, chemical analyses, and observation well installation - and monitoring. Additional hydrogeologic. data were also acquired during the Millett fault study of 1982. These cata are.the basis for establishing ground-water conditions within the 25-mile radius. In the vicinity of the main plant facilities at the Vogtle site there are two distinct aquifers. [shown in EsM Figure 2.4.12-8)Jbove the Blue Bluf f Marl .2c w f Member of the Lisbon Formation (Tertiary System), there is a perchedjwater table),aquife g In the vicinity of the river intake structure there is also a water table aquifer in the alluvium adjacent to the Savannah River. Below the Blue Bluff Marl Member of the Lisbon Formation there is a confined or artesian aquifer that includes a Tertiary aquifer in the Lisbon Formation and a Cretaceous aquifer in the Tuscaloosa Formation. These two aquifers are separated by an aquita~rd consisting of the Huber and Ellenton Formations. The aquitard permits hydraulic contact between the Tertiary and Cretaceous aquifers. E4 -U-efafxf a.& v #' Mr Ma } c::tnle. Lit G W' ""' f C-c <mee eGem eu av.4 - W e% Mm. E % mJ. 12/04/84 2-14 V0GTLE DSER SEC 2.4

1

  • l l

I k I i i l ll i i l I t i ii I t i l i t I d i l i i I i I I I i i i f I I l ti I I I i i i ll t I t i I f I 1 1 l i i i i I li I l 1 l I I e I i I t i i I; I _ i /l F // / /! l Il i ./T i / /I / - / r. / ~7. / 3 i f li // _ l _/ AI /i I L/ Ir' / I_ i i i ti i /n U v i i / i I I i i. q r i i i I I i l i i .i i i i i I i I o h I e a g ii i, i,, e. i 1 ! L - ( /W A /c J. '/ / Z ' f I i i._ ,a / t- /i'] t 1 i s l i t i i 3 t - e i I: i -t _-s e A I I i a 1 % L - + & q W W i s.', 4 u ~~ %~ i t l i i t j j ?! l i l l t I 5 t c t i i f I: 1 i j i t i i r t i 4 i i f i 4 i i i I i I il t I i l i I i l e g I' i t i i i I I f 't ti i 1 -l 5 i 11 i i i !O 'm ii i i i i i i = l 11 i l i I I It I i i l' i I l t i i, i i i i ~ Il l I I I l I' I I I I i i I il I i t i l i l i il 1 I i l' t i I I i t I i I i i I b I I t 11 I I i i I It i i l I 'l I I n i i i i i i, i l I i i i i i 9 i i i i i i i j il i 1 I l t i i

j

,o -( \\ 2.'4.12.1.1[v_ N uaternajWaterTableAquifers d { The marl aquiclude is overlain at Vogtle and throughout much of the 25-mile study area by the Barnwell Group (late Eocene),which, in turn,_is ov.ef ain by l %u p pwa.& :- the Hawthorne Formation (early Miocene). Both, formations are extbnsively 4 Pleistocene exposed since erosion h'as~ removed much of the Hawthorne unit. W alluvial and te ace deposils are altepent-as.-are Halocene flood plain WtN 4 fw aa anopaa.:e deposits te t e Savannah River. u.u~ g In the general vicinity of Vogtle, the basal unit of the Barnwell Group is the Utley Limestone member of the Clinchfield formation (immR Figure' 2.4.12-8). This is a fossiliferous and cavernous limestone unit which is capable of transmitting However, the unit rarely exceeds a few tens of feet in thickness. grouncwater. 3 and it is of limited areal extent. / tud' l The remaining sedimentary units overlying the marl and the Utley limestone consist of unconsolidated clays, silts, and sands, which contain ground-water under water table conditions. Data from packer and permeameter tests performed during exploration and plant construction irfdicate that both lateral and vertical permeability of these sediments varies considerably. This variation is attributed mainly to the highly variable quantities of clay distributed throughout the aq'ulfer. ~ Hydrogeologic characteristics of the water table aquifer are not well known -due to lack of development. No studies were made for the Vogt'le program as there was never any intention of using water from this aquifer for either construction or plant operation. Water level data have been gathered during well canvassing programs, but aquifer characteristics such as transmissivities and stc$ age coefficients are not known. The canvas data show that the over-whelming majority of wells open to the water table aquifers are low yield, domestic wells for which quantitative data are very sparse. Recharge to the water table aquifer is almost exclusively by infiltration of direct precipitation. The presence of porous surf ace sands and the moderate topographic relief in the site area indicate that there is no significant storm runoff; hence, virtually all precipitation infiltrates the ground. 12/04/84 2-15 V0GTLE DSER SEC 2.4

7___-- - ~... _ t f h 9 'db % v2cd rk &&y W -<,a L A O 4~%uu+ u.A l .J( 4 sv9 p..4-J mp ma-a,- ) y i k /J O [ w z p an z.va. t. i / %& 2. kh MC l$0 A.2 C4 m Mw &~k ch t /W pm 1 l l W0 A % Oh WO pdB lu<w w $h ? n d lUC L* w Su cfw~ AA &%n 4 c4J hc ;s.r-&c,.t i .a.,=:.-. -=, b) twN.$.JL.) 6-1.c.o_ & c 4 J / ? o 4 l n d m

  • T. */ g s 1 (,.

P &A lA/0 ?-m $m iEL:v Y no wY g ' l.-/us M* e A*. W.*e M, e

+% x~ s._ ~ %, %~~s~ because the plant area channels ignificantis isolated by drainag e adjacent areas is ins i.e., it and act as interceptor ard the interfluve. l rocharge f roman interfluvial hig ; marl aquiclude h M near the moving laterally tow rated on e or down to sources e ossi cut have to patential recharge t 3 g iVM1 Systems \\ Tertiary} Groundwater study area by ~ 25-mile G retaceou represented in the C feet below 4.12.1.2 g system is which and appears to be 400 about of lies dwater This formation f ault study area. na Cretaceous groun f t thick near Vogtlelina in the Millettwith ds mation. ,he Tuscaloosa For approximately 700k ess in South Caro and gravels a highly transmissive plant grade is f cross-bedded sands aqual or greater thic n It is ) It consists primarily o(4dd4 Figure 2.4.12-8 i of rainf all f of silt, clay, and kaol n f rom infiltrationsame general area aquifer system. aquifer is primarily In the system. us tle. the Cretaceouscontact and Recharge to the Cretaceoexposed north of Vogexposed and off-laps in hydraulic ( is where the formation system is Tertiary systems are water infiltrates also 5t sore conditions. Af ter the direction. sedianhis / Tertiary groundwater and ous In this area, the Cretace water table south by southeastthe Cretaceous i under in a sediments, it migrates area, groundsater inand silts downdip of tne l the groundwater is clays hese two recharge impermeableexact point at which t i he distance downdip f rom tconfined beneath the (Paleoce known, but it probabGroundwater in relatively ly does the not \\ The i not and E11enton Format onaquiclude is becomes and south of Vogtle. same general direction, confin Huber an effective a few miles the units become until it progressesmigrates downdip in thep area becomesme us l occur also and are in hydraulic of the recharge /outcro This Tertiary system in a few miles of the Lisbon Format o. conditions and discrete artesian separate in this within Blue B1,uf f Marl MemberTertiary sy th under and become

south, Sardis to the i undergoes '

several miles and contact units somewhere between for ke place. - hydrogeologicsignificant changes ta V0GTLE DSER SEC zone, two 2-16 12/04/84

-s ..,u.- ~. ~... = - -.. ..3.. v ble moderately prrmea / = ivalent the Combined withof the Lisbon-equ and m Clays limestone. ts 'I aquifer. overlying sedimen to permeable i ns provide the ian he principal artesnd younger f ormat o cnd permeable ang2 O sequence becomes tof the Barnwell a Huber Forma-Q / sands ( j,the conditions. and y_d sediments artesian Ellenton ous ability of the confirie the Cretace to produce m rtiary vel as to dif fers f rom the Te -nt ccurs in the permesuch a le their are 4 ind change decreases to regimen, which ifferent, as s f o ic are d 4 Perreabilityrate hydrogeologof the two systems 9 a,sepa ls e , I*i l Theyezametric leve represented by -tw - <under for ]<! r me be /. m system is helowerlished{ consists o; ~~' abilities. groundwateFigure2.4.12-8)] r estab permeab e, as site, the TertiaryFormation (FSAR not yet moderately operation l l been i Vogtle nom?nclature has are and by the ft h2 wrFof the Lisbonf ormal stratigraphicand sand sediments river facilities upper 25 l se in the ifer C' completed of the Tert ary aqu i ch is l fluvial sandsfield permeability supply well, which makeup t member l water of the lo of cooling system wer ifers. source us/ Tertiary aqu wn by l 1 the Vogtle potab eTotal thickness io approximately 100from these Cretaceo MU-2(a) incicated i. The ft. rage ~N member. wells MU-1 and000 gal /d/f t and st af this j wells produ ing c pa. site isVogtle is makeup water 0 i of 110,000 to 23,to 6.6 x 10 4 .,j for the for ! water conducted t tests range , transmissivitiesfrom 2.1 x 10 5 Pumping in the f l ff Marl .[ site is the Blue B u ranging te marl with subordina,.,..:..o coef ficients I p.:X..s .cc, - the r at marl layer mation d glauconitic system. of the Lisbon Forof semiconsolida The / The limestone. thick. M.A-Th2 s4 dead me ber 70 ft m U ists Member, which conswell-indurated, and is j member / of dense, icnses unnamed sands [ scheduled / everlies the well was old well will be new The is being relocated. time the I f well MU-2 June 1984 at which Makeup watercompleted by OSER SEC 2.4 to be V0GTLE a. abandoned. 2-17 I /04/84

and it is classified as an permeability of the marl layer is extremely low, It effectively confines the unnamed sands to produce artesian cquatlude. conditions at the site. Downdip from Vogtle, the marl grades to limestone (unnamed) and becomes a member unit of the progressively thickening Tertiary aquifer system that is more commonly known as the principal artesian aquifer. pg ~Eh The Huber Formation (Paleocene), which separates the twegaquifers and confines the Cretaceous system, is present at Vogtle, but, based on its lithology, it probably is not an effective aquiclude because the two aquifer systems are in Downdip from hydraulic contact in the general vicinity of the plant site. Vogtle, the clay content of the Huber Formation increases and it does become ' an effective aquiclude, as indicated by two distinct piezometric levels that OM were established by thelMillett f ault study. MO */ o *.fi%. .WG.mo ek < L O :: ! m The Ellenton Formation (Paleocene), which underlies the Huber Formation, was ,not recognized at Vogtle, but was identified in the exploratory borings for the Millett fault study. It, therefore, either pinches out between Vogtle and Girard (located 7 miles south of the site) or it thins to such a degree that it cannot be mapped at Vogtle. The Ellenton unit consists mainly of carbon-aceous clays, which augment the confining properties of the overlying Huber j m) til (D. ~~~ f c r N 2 */l- [ MI] Formation. wQ}To summarize, the Tertiary aquifer system overlies and of f-laps the Cretaceous system in its outcrop areas north of Vogtle. Groundwater is under water table conditions in both aquifers in this area. Progressing downdip, the two systems become separated stratigraphically (but not hydraulically) by 'the Huber Forma-tion, which pinches out several miles north of Vogtle. The two systems also become confined beneath the Blue Bluf f Marl Menber of the Lisbon Formation. These conditions prevail to an unidentified point between Vogtle and Girard. In this area, hydraulic separation occurs as the Ellenton Formation begins and, combined with the Huber formation, confines the Cretaceous system under artesian conditions. Still further downdip, the marl grades to limestone and combines with both underlying and overlying permeable Tertiary units to become the principal artesian aquifer. Confinement is provided for this system by fine grained silts and clays in the overlying Barnwell Group and younger Tertiary sediments. 12/04/84 2-18 V0GTLE DSER SEC 2.4

r i < - u - a. ~. in v s ~<. --- pn, <. t.. I. % n sr i%>j,g= B*r~c fu{af G G vo~., d, frp Elwes(in D/-m l gfg,f-(. g,- Te th~ur s. at... ) .,,.g, g (p a y . jy.s.uw;) l.o ces p,en g.y,,,, g-S~' s$ I13 k) ? So - p a(t-c!) ~ 2,, o ~ . S I, car,[-), Iv j(G) ? 52 *C 3 P I 2s, 7 e a t c.>. < U 0 v~I,.1,<!.! S~e9* I? s~-lhX (2) 3 o z_ I h1Ala i 2 t> 1 'I -Samd l IW 'I' IES 'I ") I' (2) 19 'r7[' dn ', A.

  • WAf Scnl lc 7A cca}

Jo2.y . s., a p S,J u,711 V'I J v 7 'l In't. Is,f.'l { p.,1 ie, + cu) Q gy52. ,11 *% F s ~ ,,i w J,: /a A -J :< J L f r, f I 07 A "*1 r/? 9 ' 'III pe 711-t(<) ?Oj '/ IN I 3 211. 3 -2r.:' Y zzp.3 227 7 67* 7~ 155

  • 2' U]

f? 7 i ~ f,J 3,,3 U / 't ~ I W' L ,I 225.7 p y(r,; ,' ',D*,' ',' cf Sb w,c :,s % ~,.h SA&cJ,0 2' l ' l- ,,y,3 la1 4 g n...... us .g.;2), Scs-), Sc> ~A 3 p3 (n t 22'l 9 214 1 vi.9 (3) 7,'it 1 Cen-.p a ele : * ~!) I ** gr.C.7-2a't.1 (3) I e ! "V l* t 5 z'n. g ~ 2;o. c3 (3 ) 376 7 Ce,-p t 1 1 0 " d) S " b 3g, fa) p.2 c,, ' > zog.3 - l91.s'~~ U) S=l5 ~ S' ~ '"b> A" $ 3I1 (h) L s~s. s-2 yg, y_ zy.g, z (3) 'l.16 'e-C '"P " ' I' ' '"9 2 Ig, C-213 5~ (3) l l C N']'"1 S'"' b 3 '5 I (G) 2 'Z <>

  • 9 jgg.cf - is 7 c.1 )
  • t,1Gir ce-p de [M"h nr.1 - 12a.'l O) i t

h l l j ~ -1 r ~... _,,. -, -. - -.. - -,,. - - _ _ _ _.. -., _ _. _ _ _..... _, ~. _.. _ _,. _. ~. -, _. _ _ _ _ _ _ - - -

ele +hb ;r fe Te:r-Ihc' eu '* <flr'y I?c u, c,a t: < s> Bo" hie # 't'if< "f G n.,.l Tes(<J Cyt-es Iqa lw sq.J fpjg l ent LccJae n n t-e<u sI cle+he n 2: ve v-tr}// ver to-m j P'M(b) C,lls/ky5 .; gj, z, q alac.- 91 1 01 13 o c ~20 0 i F-4r3(b) selfs,Cis=gS 70 f 10 6 - 21,.5 (/ l- ~ ~ P-L 6 lb) sa" l 91 fr 91.sr-11 8' l't) 1.sc, o V-G Cdh) Sa-ul ']2 l 72 1 ~t:2 1 ('I) L1000 \\ f-l D[b) .Sa-,L 91 7 L l. 7 - S1."1 l'I) 27w) PLCo ssT-19'e K rit L Z (* *-l'"< l" * ' 'r z. t a (2.) 4.,c7 o t i gdo &,c.KfzII l ct, firo '73 9 i (c,wh9<~pe) G) y you <fr. 7 ' 7? 'r (2) 2 2& c. to

  • '*"' "
  • N lh

'I ' '

  • S * /j G ll f' ll

~ ~ ( Gw.b le -ple ) c2) I frZ o l' g, l'I3 # ,93.'< c) 'l30 (g) . U TL t?') Lime-s rwr E la (r) Se,J,1 ell, W 'cll 2/0. '/ 19I.'l~I3t.'l (-O l't,lov 7Aeis Cven micfr!It mar. et a.ulm n I<a I. I-131 1 (5) 12Cyoo rI> <> s cm e n. t < f 1B (G.) wloi,e cla 2n S**b p,, m:=>' J<<> ~! *'~ ~..' a ;~ I'- r 5(c0s Cogus-ch:1ey ,[, j, ,9, f 1 C (G- ) w $ *l' S*

  • d **d C I'13 p s I.3 ICL*. 3 - 131.3 (S~)

90.U'0 So,J,s(ella E, } ,,g, ,$,, g_ g3a.3-(C) '/'lt1% } Y (G) U'Ic 36"d 'A Cl"12 g,y,g. 17,700 p,s /w., ha c scit>tv n IA,1g,fc,jo ,5,_ p, y (g v3,y ,;2 g(d) Ces gut a 't - AS'f r 5 e/h A19,2. /f 7, 2. -13 '/. 2. p-) 3,25'O I#"' I"1 #*

  1. '""'I S+, le my r e' UC 7 ('O.

f hheY}'hetl 300 l'l.f- } 3 0 (g) 3 ((co I 1 O e Q -m o e o s-y a n_..e e--s s wmummme we - o we e ,am-

g.,,

p em e e w-n e = wm o~ v eee M._ . m e,. m-._w s w- .gmgw m, -w omp_, s

a \\r f I h s 4 4-3 )w d 4.' p% a I N' 4 k t -k e t+1a.4. 3tE 1 S. s ~ M M ws yw3 'N l w 8' , > t. e- ,, 5 ^ ig y ss 4 N "' -,w -d 'O 4 '== 'I N

t. N

) { N U. (l ( 8 il.* n Nd (* 4 -<% s' t Q,'a -= I ., ao

r. *-

s '*4 N N ar uN g b ; mw o-a 4 * 'S k 3 i g t C -b t l n k N w. 't f t X -2

  • g 't 5

e 4 1

2. f er,

-v:Q g' sec e gow w a wq e .s b i.

  • * ' ^

-4k s K go o O O OO f c-ca D, 2 c-t 3 r-M y I t.: 9 e-m 7.o o00c0 0D A2 I AV et ~ m-C ~ i '" n m. k k -he ~ O '^ b ~03 S3 5 3 ESBT O i 5';s : c-5~5 c c-u g m a te a r w si "U so ( I e4 b 7 el h E N '"' T5 5'>h IA. O. E. mA O. Q m 'l O Q Dk q l 1% i

  • 8 d J

%1 h 6 8 'g A ec A=bA 'b1 ~ ej f ss

  • D 4 1 " $ "i 7 }a M $

?- ,e l i \\ .[ N .: a i t 4 i i i ea kN C e 4w D 'o b d m ':- (9 --~2' O

f. u u

end % gg _ _ ~. b4 4 J % 6 ^NEd c., b. ub 4 r4 ae, c.:. 4 o oc sw q-o O nn - ~~ s W N 5-Q N \\ %~ N ob b'S 5 be bA$S V-o m ~ u ~~ ~ g N of N N ~ ~~~ 6, N fd D NO a n C\\) N Y A 4, 6 4 T~M ii dk9 E i s. s F 4 .a' a.E k 9 M y w w b 'd Pg "'r- %3 .3 'l N k D g % ad Y Y g di E1. t a# i 4 4 g, s .4' s *1 1.1 ,3 xn 3 as %. $. A 6,4,, l. 'C f CO I T

    • 4

.D W op 3 f % i 4 O 4 *

  • Nl h

9 V D D s i: '; f 8 3df 3 s ^ ,,,, s e s r 4w c %D e 5 h k tc 6 - F r. b NN b d -NqN b S S 1 9'4 l 5n 3 ~ ~- e ma-k

iJ ~ l . U 70 ~6 $M ,c A

  • C t

g3 ss. w " b -g 4 i 'hth ( e3 s 4Td y

  • ,s a,

s M %, -:::. - J &e 't s C. b . -.:: n \\ q }'C- 0 3000 O - i 00 DD 00 0 4 e- } D n 1 \\ %. 2 ! d 5 E ~F F 99 CS8 ODOE DE q ~ -. ~ 5 u-4 C, S a } 7 2 f S &rn h o n.3 s'- d d d s s % 2. c c s a Ga6 'Oo i ia R R ve r-s s 1r :N o_ e *

u s -

s c-

  • M S, p 'j e t h

s a c DD f

  1. 1 c 4 - :- "

O '.o NDNN is a v C O ;,1

  • i.;, gs :5

.: c 9 4 O. S o - I'

i

.n c n.em men n ~ e "r i Q g O. O 6 ) et n 2 a a

  • I

% a e, n N ~ c.s..nQ. ~i. m. r '!'. I 'k. I 7, 'g 9 + { "* -[ ~v .Q.70 ' & 9 8 Y t ': I d "g s's ' 'U',.C,"' E ',& $ k 1 sg ? .t ' ~ n-s' s. r r. 5 g I, a >,,.t,,4 \\w s a .g g c, Y * ?? "" 1 %.,~C.

  • g T g,.y 4, d p g.,,;. 's.

e E "d [.}. sf a rt - t '*- u.s s '.s s: r

c

.'To ,,.,. s c. 'll. s '",, w .,e m J. 1 : fa ., b )p M.

s.
  • e Mr'- es e

% gehL .v s l k -: ** 4.a. , 1;

=. M 5 N d.f-1.d N k

f k i cn 4 m..,i k ~* I .i t~.c r ,aeI h i.h

  • 1
  • b W4

, + E i 4., Q{ I IOO* b h T S h.. f-a f.. ; I e. 2 u a2u p '; N 3h_'~.1'rM ',i. 51 }.d. ' d[u e ..= m. riba i

  • i 3. k 5,i. $ ${

f 4 j~f 'a t g,4 s t f a . d.",' E N. 'd,]f_ $ s u ) c C'* " Y ~b~b #,. %* O s

i. L *Ci (3,g %.f'

'i 2 6 k *p .3, 6 -]- { g u t o s, sut m w a t em m, - > 1 n = u c H w, 4 y a s t 7 4%Q s 2 2 .e v v O' h a'* n, = N o Q i n ). a. --_-e,~,-- ...__~.m_-m-,.#_


m -._

s..~, ..- w s. u., Ocvc lhle M T g e o f ittu f r vo la I (7 r,.. J G le.< 6, s z~ in,<,/ pit ~ 1% =.eu !,, /. iy 2""IO %d Loce. 4 ei.* L'le > s & e e n 'ps{d(fe est.) mel4ej f4.lp $O3 @) MAf L ' Cle.jey S.]f gray, y,q 19'l*3~ I31 o ~ Ill S~ UI) O cc. Ic s re,vs, ve,.,fe roe. tw.y s27.S-92 5-I'l) O cc r.ded e.ssse.rs.$c.sL.4 813 5 'il.S~ (*II U mo2<<o4el' 9't.f-11.S~ VI) O

a..s,.f.ce e41 se eJules s

56 e e1 (vs. c (se.,5. ec.< cts . ~.i,..,. SO*iW) P n C I ' [r".1 a V(* 1 fe ee' C< * /tc;,j LIsf,( ~lZ 7 G ~ lIf. C (tj) o C (ce ng. Vev g Caice r o.s s. s Ar= kly IIl C ~ l*$.6 s kcas 107.6-99.c l'U D c-e an +<.t,s.*/ 4 y, ms ssn eel md.,t s. ksvl e,eJeas+st,ce.e.Fe $4e o fv<,y e.,ha.,s ~.e.o. u 97,9 g,,,g (LI) c> /)f-e i 129 C ~ ill.C (I,'*'e2.!!? 3 SI~~lI'L (g nfcdeales c< le e nu 4 e., c, i.3 +4.re K e o y.ae^<<1: j 14<- c tl ca-.-e Ie t I,.., t,,, a u y!,,,u < t. foc.ca) ein+Noreta & s.g i rp~d:f. '1""), I1 % 7 ' l' ~ ** ( '} V* I" '#' " '" csIc=< e as va n F vo~ g,1%, ean u n s, cc - e.e4*d, "*sseec,h's k*s 'l m,ja.,(aty ce. 'c J "ed.*ler, SLc!! f.,,9, I s. Al e I 61.7-1f.?]S**Is Co.fq J/'ts$c.,-ped <d M */ c.,1cc,ve.os 4 ll'c C5"' ' I M c l ' lit-37. 7; L,-.-sh=<,'Gr?**"3 fy $e h 4.rJ, vev.f bl *' sf '** *

  • l y, (s..

$s tgk l- !; ve.f, s.r bSis N, $ f* n + ci!I.f ' l '-i S~~ 'k " 'M' se,1,on punt. h.je<5 */ Y'eff. 4, (,,,',- a ll S 11/* 8' S S' 'I' SO 7(G) Ct n 'l-t'M E-lWt*I'* *91"'** N ~ v V ** S f* ve.s aS*I#1 t '.e1e.e4eI ce/ f J -.e-s r w a,1.,e, <,Re ei f* ydi *' " yygg,j,,j,,,,,,,; y 1,,f,17 7 g Zv e:. Sis 'ilG).CJ Af Met. ga s,,,,, 5,y de ferwoh e sta1:JiFg cf c,,,,.. / E9 0 - lis3.s"- 36 5" (.) y a ~ -res is. g,,a e, a is i<s (c1; a it '4 " I . o g, is, + e r ve, ls T-s /<J ; aR u, S t. 7 ( 1) S~lo(G} Clvf-nJUCl_ g,a 2Jo.1 13g,y 391 t,.Ae o te e u pu. a.6& -

,t 1 a s I' e -V 5 k 1 E.

  • s

= t I s. ih. i d C s s s s tD I / s Cr g [ k 41 3 35t b:.m a> G' n A V'4 O O (i%o O O o o k.2 S OO d* ' j p4 yM f) o. d'm 10 bs k - m g r-a- m m .. -{ V - *^ ( D b n, D E Dg( V 2

r-
r-2-

v g . -W w w 0 ' h % N E IN M " It S S "e dk @ (4 8 7 { ut

  • S d

U A N 5 7 ? O ? t, Q u b i J. L MN .h 'M 4 5 A 9 4, i, 6 4 ~ l' f,f b N $- IS bS S 5 d U 5 CNs s( 97 d

  • l' a

@h f su 5 M "9 3 iN D r.- M 02- .7 5M a< 7, i, 'd >e a g E '.5 a ~ ~ e-

f.,.. -

4 .r- % C 2-e

  • 3 @J o

't.

  • w 1

4 9 I %8 3-E .L [ 3 I h ).4

o. s, 3 ' 4 f C,* w 7.

.L 1 (43 t k ! M, A $ *t i w., s g 4 g 4 4 IA ( i T 3 p-g { [ sf +2 2 ' ', w w' D-s 4 -f,[ r t k = -o 1 an 'S,i i.1.1.2 1 r, d f E i, [ d i 4 d.

c ~N,

.:. A J d e-4

  • b 3

u y, 3' '"y f = i t. t-a4 m -'4, E m d.1.c. t.

  • E w , :E. 4

[,': 1 'l , w et s v o m h - s U 5 0 C' " d I 'h iE i$ s., ( 4 5 4 I r r I'G.

f. % $ ii i

@ 4d dd kw EE

t 7

~ 4 - Q' 2 2 ~ ~

' ' ' n e

~ e e e be

5. N N

h M 'I-h"+G C; Q d. L L k' d. Li d 4-. "f u e se j

) y f .g gs eA( A y f- [ Q, l 7 = l p }< ,#d - v' p,T-u i f" bJ e w p** d f p yf hT"afd W 7, 1 s e' v1 , f R -( / ) ). u ) )) y (2 ,,( u, n I s-I (( S (. 4 ) T ~ t. Q M<- /nT n.w ) g ,I / a / cJ f 5 e <, ~ )c I S 'I 0 (I T 1 / 4 I. I. 2 0 L o

n. U A2 t

c., / m G T c1 m2 b <. a, . a 1s i / F e ~. Gie n .c e.k ,g, b I u. s-e u v w I a ) k. a a-

g

,e n 'c JL j i. l a, s f, y y, ae ~ J a ab C m 4 l L l !ll!

-___.m 2.4.12.1.3 Pre-Cretaceous Groundwater Systems None of the exploratory borings for the Vogtle penetrated the crystalline basemat rocks. There are no plans to use this system as a source of' water for Vogtle and thus it is not discussed here. 2.4.12.2 Hydrogeologic Properties of Subsurface Materials l 2. 2.4.12.2.[ Properties of the Lisbon Formation er,d Alle.iwi. The Lisbon Formation at the Vogtle consists of an unnamed sands member overlain

    • by the Blue Bluf f Marl Member (FSAR Figure 2.4.12-8).

The sands member is in hydraulic contact with the Cretaceous system, hence the hydrogeologic properties determined from the pumping tests for MU-1 and MU-2 include influences these sands contribute to the overall system. @d.uwM(" cme <TNEh Permeability tests were performed in the. unnamed sands during early site investigations and again as part of the field investigations related to con-j struction of the river facilities. All of the permeability values obtained, during the river f acilities investigation are summarized on F%ii. Table 2.4.O These latter tests, which were performed in the upper 20 f t of the sands, j showed a permeability range of 60 to 340 ft/ year. This range of relatively low values are indicative of the varying amounts of silt and possibly clay in the member at the site. i The river facilities investigation also included permeability tests in the . marl member. Th'esrtes t.51.id n..ted tMt the m;ri i; s e..tisily if* perm: e. A l estrtIs of the tests are summar12ed-44SMk.Iable ?. i.Wr Furtner indic - tions the extremely low permeability of the marl were also otita+ d during l the tests per d to determine its effectivenes ude. At explor-atory hole 42, bservation d at various depths and designated 42A, B, C, D, and proH a measure of the effectiveness of.the marl, as an aquiclude. H differential between is (42A and 428) which arE / ea located ju,st-above and just below the marl is more than 50 his difference i s-cons./ristent-throughout--the-area _. cay.ered by observations wells. Expl o rator-ys fQ} ^~ 12/04/84 2-19 V0GTLE DSER SEC 2.4 L

Cn' ' ww "-v s - N m e:--h "wp -6 4 w h-muwme w 7% w ww =- - , - - ' ' - - awJ, f +.. O 1^ jw3 1 g 'f A N i .s ) $ & -e.9-~ pa s.1w ~ U$ biAA L <f. L. M c l M -<L a s x %s. YL ~ [ n s 9 -k o [(). f* % MW 24J / O 1 \\ \\ cuf L 0u U & l,.e k. $.l,L.~ a d 4 l-ch h Suu & s s I s w ey'DL pn % u & N.=v l ma 'M i 0 JAc .Y*a Css '$ =$ N e ' A

  • pw s v i

mnl c2M - ~~T &'~ 'd4 d w a ur L 'S.f~ ",%!A i U-l-4 'k-4 3s< r-$- &J i J 0 ~ U.) Cu Ud#

  • 4 t
3. jt= A Sb, 'T.~-EL Wu &g c;--w.n 4

I. C1 l z s y... w k c.h. hy u~) ~y u.-a.-t)n a t \\ fn bf$ -y > % d A Q 'C C d 't h n .s cf JkiA 7 1 en h fs-L&f &A W 6cJ -wa $ affJn.J eluXAJ << n.ev cy aspL2 i l 3 us, + 1

o e '(2 A, cri. 6, 42. C, 42.D M yzG, t pA & w j TS f%- n l Y 't.,$ V440 cu ca.-.s

(.

& W Git:.4 -t w.A s A* {g,,/ ' U {A,oA /.fo OW VM Ca. !*= ^* 4 ) 77 g,,_,9,,, w -ff, 49 ay'u'a uud

f. u :.4 2

'f ? p c ~ ) o :. f ris.c / ~ j.pi.6c---s =. D g A L w :ue) suc 2 &9 i 0.: 'C.~& Ej ~N..,> .bd e fu.t h n fr)Y 'l$ l u ft.d -< r 4 cue; ct ^. g y -t$ ,2.,zw y p_y",, p '_, u,, J, n i 1 i l c= O k. c t l As cc.Mt.o -k& m CC 'l 2-n u w W h aJ24

gp

.2. v.1. es. z z.2 ,Am u, x $.4* < tA$ $% [JJ':$.I Lt20 V2 C (~qA /Of. K )M CA r~# /Lcr cI'u~. A y.2 t c i L-O ' cd /o p.< N bv.-h 12v~s. WO MD % W fc t toci 911 A0. hi& - 0t 0-4.c< WW) YZf3 (Mk v.~< t f.s.<.u.0 ) W tuhv A~ -4" h-- - ~ /2U, h es*.<_.$ CWL G A.-e d l0 l.9 e. tR J -f:b

c. m ih a ) w y n y
2. J q 3o -Buf bQ.cz uxes..q,

/00 -[uS 10.< 0 o < rd's / 2f 'u il f Ljg ;j.. 4);)) Qp 4 4 QQ Q )C U** Y 05 (l0L C

  • <.v !r rb &

J L.ku'<. h

...,_.-.., n,,,,.n-,_ _ G Q q ltc:<) cQfL.:m ),3+&uJ l O Su ~6 & c J \\ % c3 c d C-O ~ C20 & d.- =-: cd M in -ff.s cyauAA. hmp QM; % w tud_L rM ced J wAU cus1 -1%d w cut.a.E{ t t dats.hJ cn+,uto us & tb ~ w M C-Y u. r +C= - - a me & p p <.O S c v et 4 k co c<~ TLw c s c^u &bc( O v).c TS'c y -a , Mo ~ b O&f a a,-xml VGd [^: :U.%. v' l: a u~1- ,f u n ~ O A w p.r~ J, y-a a L f, ~ T ; - f. u y - 2.e 4& jn y bb tu<u) cq.u _ A,b, S Q A, % cu=.o. 9., ~ % -fn $ OL Ja +m .- (. '.'e wJ (w:2h':A d l2.c). O f c m Adi tu u.a &%0 T0 4 lusa e u.w%.ad) & iht/o n & L), f9x a ir an. m ? (* M4M N.~' l'v0 /*44 Opf U (M v L e q,. wca &1~ t (? s~ # 3 $ $ % p..w. L.a. n1 - p. (L Q f & cp---- 14 mf .kk ec n Doy

.G . _.,wwwma wm w ar e wymm_m -.2 -1

-Mcg r

s F, l Gk conLO jwga 7.L c uz_; u L w f $ - Q c & w a-%,~s Vl.t2m) Q) K YJ Shd ? CW Y' P<u % -f".w /\\ 2.% [- ww wadw.d9i us.dD n fo V & u f- & QQ, cA? C? N=~1 A M dyr -4.- t 4 t ojjl0 0 etas n.< /$Y ke -c $t 9 cull $ -h 8 4 -= p u O ~ -Ctf no J g c d r t Q, w a. lic es m l c u er A ll, *A e l.

  • l.

W t**%' %s *_ o e. s'/

  • w

/vv A lsA 'l.$.o f 0, & O? [.; L ?v d u S Mu_0-( Yb S j ll (**) YNU J g. +i

t e, pg y $g 7 7 w~ M-Jn cs m>s y-cb EvJJ n2m"- l -t u c s -ab. A cup u b J ~tL w <b -n.f. s t 1 A / 7d,'*J <a w 1s & ca ~ ts M-, && -i da o5 cS.,. d. e a = .L

c. -.-:..

uM 7 ~ e cess-3 ;spJ e-- p-nun i=s - te utjg %L % x-g n. pn x.~y? 4e ~, -;&ce.. 2.r .=, - G.. :; n. . 7 ^ WEU-(po: c. 2. t),, k~.+. s. k{.j% b m&j 'T.0ni w& u.;ny quc.Aai p 76 -4 p r,ep -p Vp,, W M cJa m p.-pr &.4 =~ y J d<cS.lLLO, b W AAN -4c-h y ~CSr 4. vuJ ft-n o,: x orc,.!i, c ~ w.a p ~ ;ea ptw ~ceq A~ u p, f n n2t 9z e,sj, d 1;#/ w w A a kes ,2. v, z. d l

l l s r hole 4 s aban.doned durin giant to ruction.,/This and all other holes not comp) ted as,o{servatio ellsafnopen to the/ / / / confined aquife/ r were, sealed / ./ w)(hgrout. / / ~ The marked difference in water leve)s indicates a large contrast in permeability / / / ,j between the aqu' rs an'd I.he mar 1. The marked, difference in p'iezometric lev 61s / j) ilhplies tha e barrier mu be extensive d without si,ghificant continuous {gWfkd verifie[over a lar openings such as fracturps or solution cavities. The co[tinuity of the marl is ' area by numerous xploraKory oles drilled't ough it. A I (t h None f f the bori g encountered hig y fractured ones nor was t,h re evidence E~ o;f leathing and emoval of calc ous material. r Permeability tests were performed in the alluvial materials along the Savannah River as part of the river facilities investigation. To a dept,h of 10 f t, these deposits show a permeability range of 130 to 260 ft/ye(ap:& tal.L)from a ~ ov Tests depth of 10 to 40 f t show a permeability range of 21,000 to 36,000 f t/ year. The wide difference between the upper 10 ft and the lower 30 ft is attributed mainly to normal gradation for stream deposition; i.e., coarser (and more permeable) grains settle out first while finer (and less permeable) grains settle out last. 7 )',yC-The r ge of lues s wn on MAFTable '*.1M compare orab y with,valu'es for simil typesj materip d.re rted in p ishe litpr5tu se g ,K Qederg, n). 2.4.12.2. Properties of the Water Table Aquifers f h * 'l f, Laboratory and field permeability testing was performed on the materials ~ overlying the marl aquiclude' at Vogtle during early site' investigation The eabilityvaluesof200t{250ft/yearand field tests indicated e f aboratory tests indicated es of 10 to 20,000 ft/ year. These were the o y quanti-tative tests ormed in the water tabl aquifer. More compr ensive testing 2 of hydro logic properties was considered unnecessary beca se (1) Vogtle does / ater from this aquiferAnd (2) the plant is sitc/ not us 1 / ated on an interfluvial / / l hi,gfi which is hydraulically' isolated from other simil,ar aquifers. / f 12/04 K4

  • > dh* '1si 'l

\\ /8 2-20 V0GTLE DSER SEC 2.4 7 a l

m..

y.- . - - -y, s,. #.c,ar=w w e m ?= -'7usissw.,.w a. . w + .-s;ca- - * - j e e. e e j I'. n k [ ~ L.$ 0A ? WNY l} 4 3 p s JLt.i x e ~ p ?j'. ~ o~ M J. a -@'p w % *: -9. _ %.-,: a 4 n (, o 'C 346 n Mc 7 v. z. e 4 i l

r - w --,._m_..s._ m I s Gk 2.4.12.2.3 Properties of the Cretaceous and Tertiary Aquifers As stated in Section 2.4.12.1.2 of this report, the Cretaceous and Tertiary aquifers are in hydraulic connection at the site (55iir Figure 2.4.12-8). The hydrologeologic properties of the combined Cretaceous / Tertiary aquifer were determined at the plant.si,te by pumping tests on test well TW-1 during early site investigations and by pumping tests on makeup wells MU-1 and MU-2 during plant construction. FSAR Table 2.4.12-8 summarizes aquifer characteristics as determined during both the test well program conducted in 1972 and the makeup water well installation , program completed in 1977. The moderately wide range of transmissivities and storage coefficients shown on the table suggest's that the aquifer is not unifoim in character and that permeability varies from place to place. No particular significance is attached to this condition because (1) the range of differences is not especially large and (2) the lowest of the values (110,400 gal /d/ft) is still indicative of a highly productive aquifer. It is noteworthy that the 158,000 gal /d/ft value, determined from a distance-drawdown analysis and considered more. indicative of the average, falls very close to the median value between the highest and lowest transNssivities obtained. This implies x that the value of 150,000 gal /d/f t is a realistic and conservative value to be used in evaluating the capability' of the area to yield water to wells. The values of storage coefficient determined from the pumping tests indicate the aquifer is effectively confined. pj[ - ),%3(S.,.nr1) n, c,+ 6~: u.- Jo heru ( W [o M @,3 / Qe M m 2.4.12. ^ Monitoring of S fegua%' Requirements uld' 2~O Aq..,1+' r.:.cQ A ea-h';E groundwater monitoring program has been implemented at Vogtly. This program was designed (1) to monitor groundwater levels and movement in both the confined and unconfined aquifers for life of the plant and (2) to monitor levels of groundwater accumulating in the compacted backfill inside the power block excavation throughout construction. The original program consisted of 9 observation wells set in the confined aquifer,16 observation wells set in the unconfined aquifer, and 11 observation wells set in the backfill. Some of the backfill wells were located at sites of structures and were later abandoned. Those not abandoned witt "be maintained for the permanent Cw% 12/04/84 2-21 V0GTLE DSER SEC 2.4

p ~ u, lef : i.. 0 5 cA.J :~.J s y 71 pJs tw-pys-7 l 14 qqs a p 16 m )c~J ~->(a/cp-L u

    • d 2

O M# W ~.., AW [SA. W -f U L WWW ~ V cz) sms G&.31/A i-C @ ; G) -tS, ra<.9 crvr lb j?JJefl.Stfc d ^ dRS)!) }yw_)A n l LY) /$ ~ M~a cugu.4 )r A ~ $ NaA+.fu ~ R q <u S A 7004 n k. w/p<.pnjJy 5 e40.uk J( % & % g u g g w %.%LG~/.'> %f:

M c

4 peL9 c3-au aa:~t= Jsy ep.a.nsa se

n... J 7~.aJk rw%,

a b Mqvm O (Ay G. U W T.t.,1 s W :s A &a && al+<%c& M wdA s.17%JJ ~ b,b c:.2 1. % D J l y n l 9 tm p RWmE Pxpem 04 r "& w Qm 2. %- YC l 6 < a y w>s <J a u x x p q J ,s [ oALL s-e c m 1:a t % a pf. 7f 41:Jp + 1 Au was wvD As f A.uM c,- ps+y w%%

? -( r e / g %Q "V e g s + ~ *

  • m ss A.J

+4s - aucznu, 4 ts 44u o b de d u~is'. ?.:,.1' $ cfS(m 0 m h - ~' (m y ' w f _ kk w k ausa2Q- %*Y A b-% Yu'0 ? W N y ~ ccAL cf . cA ~4LL, we y nuwJA 20g, fj hwA$ -Q c. y,yl v,ef,f, 7b x0&.0 A =g c- 0 O

u Ju c,a 1 9 -< A J ) p A ~.!e~ C?:

a-a-a a.ua.J9 w2A y n L - A c. 1 - p w) -t V vJ a.42A A.OLJ =D~p ~ A,)rA,)a-. p Assd. chi w)-4 u%~ :' L, w y -& = ' -p. 3 $b lGJ ? Y{/) As af/Aud !&v h.cy). '/ w.c LS e ' M K.

a.29 y 9. y - tr.

Wn ~.7% w.% uf cu.+!L,~ c~ J -%. A ;n w a.a.*.:A ~G V:, ng. 50 AJ c& w ua u CTd' i ~L., w -l' & L. w _ 2. a f c A 1., ?pm-

.A :AL ew.D n.... 1. G-M Sw LL f.i2-h

'l * ' 2 '!! %,2. 7 B.L LLP) n%!9 Oc=a$)!A 7L aff.6J bo-< & A<+fd y w'Al-! A d' n%.D. L L 2Y,iz.7.z,%,<aA ce. c k <' A cg 5AE bM sfg 2 2-~ sp/g c8 -buT7 'ds swn) a ] osi& L f w + u.> " 7 $ ' % --- M. ~. (oeCf 'h a.c:~~..O o./

w..=, y.L/ 'N.D.

"h &> c21 ve ~ t y.>-> o-}-<>< i ~ 0.3.x.8 >...~. G?, n'.<u) r.u.. E'.. = 'N -) 49:ed'utu. 7 U

u i $. o..'..2:.. 02p>J.-8w:.<a aa

&n J('gxv1.e

2. Y - %r.

~,% ^." 2" '5 ?- " : E.0.'2 Q J &y w h s A a

/u -

0 w a K f A < 4 ' G ':-4 w S4 h5 ^ e y Ad:.2b ,f ' v% d 02 de nu & d J YG cux AG - q n J.c. m.sx, m -=. :. a. +.. s a w.9, & c., 5(d.-?s nJ m a w)2y (h< y ,-L.T.h, L d- %.ya. 6

  • \\

k e 8 e. e t. hhh.W t.4 lw' A f&* I Sf w W A. U I { A@ H) 4.2d.AL /& ~ r A y-Augu="{ i 3 V% J***- 4" W& M i t I i l qq uR~.3 ~ p y nNJ. - Us Cdda ~

6 LQ,,,nf Ls' t.c! O..:.,.y cc. t44

-f.. -1.1f'

  • . -H 9

ctJ s~ A<2s Ef:- aw,y - J< c: A,c % $ (?..,3 -t..:, :/ t {,gn TO w n-DL u.s..%il, .L -tuf.,$.-n G t k n .f:. ~t. L.l -- c.L .%u 7... - r - 5. 4. J - ' k -- l YQ-f - ~ ^ ^" A "U

  • {

,f W M

  • w p

h $M A$m 4 O Q.~'f /~ f f sf4 @_W - i U i Mq l(w ,Y M '. 't ls l' l ' N/WN.,' N ~ &n)) LA pt:d.& n,c.J 4.n ith de c.-a:.- i r 6

1-a m, K w_" mWW' &,,s.3Re Azm^bi op m %m, M-J+ e @m 4AAMea y,,A,_m. A a2m-,. N mms,,,,m a.a _ W A,n,AA,_M sW. _,,mmA, 6,. +LaaL en.,J-.w-,Mk_sGJ%--4 mn ma__ _,._.JA by_A _&_,.m. A-A.an"'-R-6,4*a -~"c~ g. i l i w w w Ls aw. 9 1 e Lu,M s it N [Hett _^d -wY* A, Ft4< ~

  • .syg 4 J-Ox~ t s v fa cm.=, L.

a I h Y, eY J.o.Js -M i.& .y ~.: iwA p pn d TA., mcJ. T0.-<Eile u U.} -jk 9 r Q t l ~' g f c9 4.% c o o $6' ? - {p y ) f t p d il.s 1...i T ?-

a.,, w,

fu s.uu.5x', t.f, ,,/d.* 4 :~/ 0 / + l O =[ V M, k wC pQ V F N asp'8 N '* ,/ I l c I l i [ i 6 b mm.---- - m m. .-. A

m _,. =. .loV*3 . 4,4-STATUS CF DRILL HOLES e ? l shf Gjtu $w hs*- V W Aae/ w.'I I !* * + ~- 3 In reep::: t: tu w u :t for a h a.. :f in t-te: :f :n m ,,,P.ag).A u.F*$v UhU2 :L ~<?' W': n i ~ %.iLlI cen f s % E -o g ' y k Cr I 4.~ N~ m h-i-r+--mei ma smuvu 2.2..3.k...:;..y5:::m L 4 a.Lduu G%_, m,'ib in raditter to vtL f.% + c&,_ d w @ a< 4.- m. e J_3,. p,te,- .2_-.,- m 4,.., . 3r,.,yy,, 1,g3), Y 'tYY {.,4&D J YY l.*LY 4 es n I Ah. rallowine d i cr neelon.-and-accompany-ing & nM e are submit. tad.- l )-e.t.;L.h tfl,d-Q O s%aQ' 2 3& C4 <ne LIZ <<f-Th p f., k m 4< % c&c M -CL, : % L f 9*:u Lk ' MI' :kfCG -12, s payLI 4, Holes Penetrating the Blue Blu'ff Marl l l All of the holes that were drilled through the water-table aquifer, the Blue Bluff mari, and into the underlying confined aquifer are listed on 2.V* */ Table M. The status of each hole is also shown. It is ner..a1 practice of the engineering firms conducting thp., rilling of exploratory holes to .d 1 fill them with grout following their completion, unless they are utilized as an observation or production well. Nine of the wells are active ground water observation wells open to the confined aquifer. There are four production wells open to the unnamed Lisben sands (Tertiary), three of which supply construction water and one supplies water for the i simulator Building. In addition, four wells are co=pleted as production wells open to the deeper Tuscaloosa Formation (Cretaceous); two are plant operation make-up wells, and two are wells originally planned as make-up wells, but are presently not planned to be utilized. All of the remaining holes on this table were for exploratory purposes only. There is documentation that all of the holes were grouted except y's h G,-weof%a (mlJ ev 4 - mi<y &.7V~YS J four;236,237,239,and334.b There are no data'to indicate the exact }{p af),.Su O 02 disposition of these holes. However, it--is believekthese were also i- ' grouted because it is the practice to do so. t t 0635g \\

. - --.. - _, m,._- e. The grouting method used for sealing all holes, exploratory, seismic, and 4 observationwellsifthesame. The method employed is con:nonly known as the "tremie method", which is performed by insertion of a small diameter pipe (drill rods, 1/2 to 1-inch steel or PVC, etc.) to near the bottom of the hole and pumping cement slurry through the pipe, f1111ng the hole from the bottom up. Grouting continues until grout appears at the top of the hole. This method is employed to assure that the hole is completely grouted and no voids are present. ),'/<3* L A4 other Holes in the Confined Aquifer Several exploratory holes were drilled through alluvium of the Savannah River flood plain into the confined aquifer, but did not penetrate the' marl. As discussed in the FSAR, the Blue Bluff marl is not present { D. %f beneath the flood plain of the river. All of the holes on Table M were drilled'in the flood plain into the confined aquifer. The area is stratigraphically below the bottom of the marl. Of these holes, two were completed as observation wells, one of which was grouted in 1985 because its location interferred with construction of the river facilities. The other is a flowing well that has been capped and equipped *with a pressure sage for monitoring. There is documentation that hole 123 was grouted to elevation 29 feet but I there is no documentatit.u as to the final completion or abandonment of 1 l .,n... .-r, -~- -..n-

.u;-._..me-th3 remaining h31cs. Tho greuting poth:d fcr ocoling cbservation wall +

2. 'f, f. /

\\ j 121 and hole 123 was the tremie method as discussed in Section e:-1. ) / b ),t],3.) [ A9-Holes Drilled only into the Unconfined Aquifer or River Alluvium f iI l Holes penetrating only the unconfined aquifer or the river alluvium are { }'/ b shown on Table 4-+. Thirty of these holes were completed. as observation i wells to monitor the unconfined aquifer, thirteen of which are still in use. Of the remaining seve.nteen,10 have been grouted, leaving seven that are inactive but with no documentation concerning the method of ) abandonment, r i i k one of the wells, PW-1, is the water supply well' for Plant Wilsen. l The remaining wells were constructed as temporary observation wells in { ( ( the backfill at the Power Block excavation. These wells were installed to monitor the water level in the backfill as backfilling operations were conducted to assure.that the ground water would not rise high enough to interfere with proper backfilling and compaction. As backfilling progressed, and the usefulness of these walls diminished, they were destroyed by filling with grout. All gecuting operations were performed L 2, 'l,3. l using the tremie method as discussed in Section R i l l i 4

m _ -.-- .~e _m s

_.1

. om - TABLE 4-+ A T '[ e a. l HOLES THAT PENETRATE BLUE BLUFF MARL AQUICLUDE i (Drilled into confined aquifer) b i Hole Hole Nurnber Status Number Status i 1 Crouted 107A Crouted 2 Grouted 109 Croeted 3 Crouted 111 Crouted 5 Crouted 111.A Crouted 6 Crouted 113 Crouted 7 Crouted 114 Crouted 8 Grouted 114A Crouted 9 Crouted 116 Crouted 10 Crouted 119 Crouted 11 Groute'd 122 Crouted l 12 Crouted 132 Crouted 13 Crouted 133 Crouted 14 Crouted 134 Crouted 15 Crouted 135 Obs. well, grouted ) 16 Crouted 136 Grouted i 17 Crouted 137 Crouted 18 Crouted 138A Crouted in mar 1** 19 Crouted 139 Crouted 20 Crouted 144 Obs well, grouted ( 21 Crouted 144A Crouted i 22 Crouted 145 Crouted 23 Grouted 147 Obs, well, grouted l 24 Obs. well, grouteda 152 Crouted 25 Crouted 156 Crouted i 26 Obs. well, grouted 157 Obs, well, grouted 27 Obs, well, active 170 Crouted 29 Obs well, active 175 Obs. well, grouted 31 Obs. well, grouted 180 Crouted f 32 Obs. well, grouted 181 Obs. well, inactive / l 33 Obs. well, grouted 182 Crouted 37 Crouted 202 Crouted 38 Crouted 203 Crouted in marl 39 Grouted 204 Crouted in marl 40 Crouted 216 Crouted 42 Crouted 217 Crouted 42A Obs. well, grouted 218 Crouted 42B Obs. well, grouted (I) 219 Crouted 42C Obs. well, grouted (1) 220 Crouted in marl 45 Crouted 221 Crouted i 101A Obs. well, grouted 222 Crouted 102 Crouted 223 Crouted 102A Crouted 224 Crouted 104A Crouted 225 Crouted l 105 Crouted 226 Crouted g 106 Crouted 227 Crouted 107 Crouted 228 Crouted (1) Not drilled into confined aquifer, screened in' marl aquielude. w

2, tf. ') TABLE 4-t-(esntinu:d) ,e HOLES THAT PENETRATE BLUE BLUFF HARL AQUICLUDE (Dellied into confined aquifer) Hole Hole Number Status Number Status 229 Crouted 502 Crouted 230 Crouted 503 Grouted 235 Crouted 503A Crouted 236 No closure record "# 504 Crouted 237 No closure record v/' 505 Crouted 238 Crouted in marl 506 Crouted / 239 No closure record 507 Crouted 243 Obs. well, grouted 508 Crouted 244 Obs. well, grouted in mar 1*** 509 Crouted 245 Obs. well, grooted 510 Crouted 246 Obs. well, grouted 511 Crouted 247 Obs. well, grouted in earl 512 Grouted 248 ots, well, grouted in earl 513 Grouted 249 Obs. well, grouted in marl 514 Crouted 301 Crouted 515 Crouted 302 Crouted 516 Crouted 303 Grouted 517 Crouted 304 Crouted 518 Crouted ( 305 Crouted 519 Crouted 306 Crouted $20 Crouted 307 Crouted $21 Crouted 308 Crouted 522 Crouted 309 Crouted $23 Crouted 310 Crouted 524 Crouted 311 Crouted 601 Crouted 312 Crouted 603 Crouted 313 Crouted 605 Crouted 314 Crouted 607 Crouted 316 Crouted 609 Crouted 319 Crouted 609A Crouted 322 Crouted 610 Crouted 324 Crouted 611 Crouted 326 Crouted 613 Crouted 329 Crouted 615 Crouted 331 Crouted 617 Crouted 333 Crouted 619 Crouted 334 No closure record v 621 Crouted 335 Crouted 623 Crouted 336 Crouted 624 Crouted 337 Crouted 625 Crouted 338 Crouted 627 Crouted 339-Crouted 629 Crouted 408 Crouted 631 Crouted 409 Crouted 633 Crouted 501 Crouted 702 Crouted 501A Crouted 704 Crouted l

- - ~ _ _ - .~. p TABLE (etntinu:d) l - f-HOLES THAT PENETRATE BLUE BLUFF KARL AOUICLUDE l (Drilled into confined aquifer) Hole Hole Number Status Number Status 705 Crouted P-5 Crouted 705A Crouted RF-1 Crouted 706A Crouted RF-1 Crouted 707 Grouted RF-2 Crouted 709 Crouted RF-3 Crouted 711 Grouted RF-4 Crouted 712A Crouted RF-5 Crouted 713 Grouted RF-6 Crouted 850 Crouted RF-7 Crouted 850A Obs, well, active RF-8 Crouted 851 Crouted RF-9 Crouted 851A Obs, well, active CW-1 Construction well, active 852 Obs. well, active CW-2 Construction well, active 853 obs. well, active CW-3 Construction well, active 854 Obs well, active NU-1 Make-up well, active 855 Obs, well, active MU-2 hake-up well, active 856 Obs. well, active NU-2A Make-up well, active F-1 Crouted SB-1 Simulator bids, well, ( P-2 Crouted active P-3 Crouted TW-1 Test well, active l P-4 Crouted l l l Obs. well, grouted - hole was completed as observation well. i Observation well was grouted at later date. Grouted in marl - hole was drilled through marl. Harl was grouted before hole abandoned. l l Obs well, grouted in marl - hole was drilled through mari. Marl was grouted and hole completed as observation well open to unconfined aquifer. O l

e TABLE 4-4 2/I HOLES DRILLED INTO CONFINED AQUIFER WHERE BLUE BLUFF MARL IS NOT PRESENT* Hole Number Status f 28 No closure record 30 No closure record i 34 Obs. well, inactive 35A No closure record 36A No closure record 36B No closure record 120 No closure record 121 Obs. well, grouted 123 Grouted to El. 29 401 No closure record l 402 No closure record 403 No closure record 404 No closure record 405 No closure record 406 No closure record 407 No closure record l OD-1 No' closure record RH-1 No closure record ( l l t 1 i Holes located in Savannah River channel where Blue Bluff Marl is not present. b t (0634g) l 1 .. - - -. - -. - -. -. ~ - -

m,. _ _ n _ _ - . nn - - -.. -- e. TABLE 4 4-7 8f,(. HOLES DRILLED INTO THE UNCOEFINED AQUIFER OR RIVER ALLtTVIUM Hole Hole Nuttber Status Number Status 42D Obs, well, grouted ST-6 Crouted i 42E Obs, well, grouted ST-7 Crouted 124 Obs, well, inactive ST-8 Crouted 129 Obs. well, active ST-8A Crouted 138 obs, well, grouted ST-9 Crouted 140 Obs. well, grouted ST-10 Crouted 141 Obs. well, grouted ST-11 Crouted 142 Obs. well, active ST-11A Crouted 143 Obs. well, grouted ST-12 Crouted 145G Obr. well, inactive ST-13 Crouted 176 Obs, well, inactive ST-14 Crouted 177 Obs. well, grouted ST-14A Crouted 178 Obs. well, grouted ST-15 Crouted 179 Obs.' well, active ST-A Crouted 243 Obs. well, grouted ST-B Crouted 244 Obs. well, inactive WP-3 7 Crouted 245 Obs. well, grouted. PW-1 Plant Wilson well, active 247 Obs well, inactive RF 601 Crouted 248 Obs. well, inactive RF 602 Crouted ( 249 Obs. well, inactive RF 603 Crouted i 800 Obs. well, active RF 604 Crouted 801 Obs. well, active RF 605 Crouted 802 Obs. well, active RF 606 Crouted 803A obs. well, active RF 607 Backfilled w/ sand

  • 804 Obs. well, active RF 608 Crouted 805A Obs. well, active RF 609 Crouted l

806B Obs. well, active RF 610 Crouted 807A obs. well, active RF 611 Crouted LT-1 Crouted RF 612 Backfilled w/ sand

  • LT-1A Obs. well, active RF 613 Backfilled w/ sand
  • LT-2 Crouted RF 614 Crouted l

LT-3 Crouted RF 615 Crouted LT-4 Crouted RF 616 Crouted LT-5 Crouted RF 617 Crouted l LT-6 Grouted RF 618 Crouted l LT-7 Obs, well, active RF 621 Crouted LT-8 Crouted RF 623 Crouted LT-9 Crouted RF 626 Grouted l LT-10 Crouted RF 628 Crouted LT-11 Crouted RF 631 Crouted ST-1 Crouted RF 634 Crouted ST-2 Grouted RF 636 Crouted l ST-3 Crouted RF 637 Crouted ST-4 Grouted RF 638 Crouted ST-5 Crouted RF 639 Crouted t.3 " l l

  • Hole located in Savannah River l

(0664s) l

9 3l+ TABLE 4-3 (centinu:d) HOLES DRILLED INTO THE UNCONFINED AQUIFER [ OR RIVER ALLUVIUM 1 f I Hole -Number Status RF 640 Crouted P-1 Crouted F-1A Crouted P-2 Crouted P-3 Crouted P-3A Crouted P-4 Crouted i F-4A Crouted P-5 Crouted F-6 Crouted F-6A Crouted f P-6B Grouted P-6C Grouted 39 P-6D Crouted i l i 9 I t l t a h [ (0664s) I t h

, _ - - c - _ n - -. n ~.--u. ~. a w.a w _..m.e o { (%&u er 5 U$m ja)/ ~ nitoring program. FSAR Table 2.,4.12-7,9 6. sh e e t -1, e r),. m wa t e r vell *%2-M/ nm~ y'?1P;s .lQ % ~ ).'/. *(3 L -ton qf9 I w me" rad t -!~ -site e loration Tahia d k;:s im ern.alEx i m., M... n -;..v.c s cr.t o u n w, r [;t-ncorded-s i.,e .he nj< qe. p, re% te ? =d sum-it.JLo. kraJ' 144n-ws o q r $$7 moso in no crocram p; ;s s'$' 4 %f5 (t911-tfry) hv A+ cw && ?.s y.y. Tua-G 2.y.3 g a p expr =am as. - o 1Au *AL - Contamination of usable groundwater by normal $peration of Vogtle, or by accidental spflis, is unlikely. The potential for such an ocurrence is very low. The marl underlying the site is an effective barrier,to migration of fluids. Construction of the makeup water wells and the standby test well includes a cement grout seal to prevent movement of fluids from the lower aquifer to the. upper aquifer. The pumping wells and observation wells placed b'eneath the marl aqui clude provide a direct and available means of monitoring J the confined ground water aquifer, if it is considered desirable or should a question arise. Samples may be taken immediately and analyses performed for prompt determination of any change in water quality., C Observation s are also p ced in the' water table aquifer and provide a means to monitor and sample'the groundwater in the materials overlying the marl aquiclude. The monitoring program will continue for the life of the plant. Motetur-imtJ-pragea-ab5ervation wallt-r-1i5ted-en-FSA2 ' W-2A,-12-:-7. -The-h-imat4cnMea chown on FS6LF_i_guce-2-4M2*2r-2.4.12.4 Plant Operating Requirements Groundwater is the primary source of supply for reactor cooling water makeup, normal makeup to the nuclear service cooling towers, and fire protection. Two makeup wells (designated MU-1 and MU-2 on FSAR Figure 2.4.12-2) producing from the combined Cretaceo,us/ Tertiary aquifers supply water to storage tanks from which plant water is withdrawn as needed. Each well is capable of supplying the expected total quantity of makeup water for the two units (2000 gal / min) during normal operation. The two wells pumping simultaneously have sufficient capacity to supply expected process makeup requirements and completely fill the major plant tanks in one day. The plant well system is not required for safe s'hutdown of the plant but is the normal source of water supplied as makeup to the ultimate heat sink. The Savannah River is an independent alternate source also available for cooling water makeup. (See Section 2.4.11 of this report.) 12/04/84 2-22 V0GTLE DSER SEC 2.4

(\\ ~~. _ ~ ' ~ ~ _ _ ~ ~ -. ~ ~ ~ - ~ - ~ _ ~ ~. ~ e = static Loading Design Basis f or Subsurf ace Hydro l vation e hydrostatic loading is e e 12.5' fficient data and bases for the f cpplicant's design basis for subsur ac Moreover, based on inf or-applicant has not provided su selected design basis level. staff's judgem l is too low to be The i ft cs1. aff to concur in the level wat weeld h i ,tien available, it is t e maximum level for hydrostat c approximate 25 year groundwaterSE seis !ed as the probable L may4e acceptable as the l.S a used for dynamic load (combined S l well readings

1) is based on observationThe applicant has only The cpplicant's value (165 f t as ram of 1971-1974.

The applicant needs his period. staff will also d'uring the site exploration prog annual high and low values for tll readings and we The providtd the to provide the monthly we tion values for the same per require the monthly precipita staf f as r:adings. not regarded by theoundwater level FSAR are h Quarterly well readings presented in t ein establishing a desig of suf ficient quality for useThe staf f concludes that during a rainfall. of aquifer. hat result f rom local intense in this type is possible to miss peak values t in the plant backfill d r) for at least one wellaquifer close t l ck A continuous reco'rd (well recor eundisturbed water tabl Until this well in the ls. design basis ground-water leveapp and at least weekly readings on and one clude h data necessary to determine t e area ided by the nts i additional inf ormation is provdwater level meets the requiremean ope l that the design basis groun This remains ter. CFR 100 with respect to groundwa I e V0GTLE DSER SEC 2.4 2-23 12/04/84 a m,

'N~ - ~ N_. l ter in Ground and Surf ace Wa of Liquid Effluents JidentolReleases f Radioactive Material l, of Accidental Spill o l Consideration would first ite reaching in Grcundwater ground at the plant s l After / water table. on the goactive fluid 'nflitrating the springs rated zone to the to the The i i laterally and dischargethe Savannah confined River. unsatu the wnw:rd through r t:ble, it would move and eventually reach toward the d-cdjacent streamsfurther downward movemen relatively flat groun t of a t would will prevent northwest sidevicinity of the plan f the feet from

quiclude situated on thereleased in the spring about 3200However, there is V;gtle is i

to a Radfonuclidesnorth.csterly direct onFigure 2.4.12-7). Unit 1 containm Or. P plateau. 7 building (see FSAR2800 f eet southeast of thealthou staff conserva-is likely that the / a Gbly cigrate in Unit 2 containment Sher spring located about the somewhat closer. Thus, ill would be.to l in a northwesterly direct o,a postulated tank sp be 1 ding that would ld be in I tainment pathway wou dwater pathway for i l nt. is determined valy assumed the grounf eet southeast of the p a along this flow pathmaterials i and the fspring2800 migrate ter to porosity of the were perf ormed required f or groundwativity* and ef f ect ve i ts materials (see laboratory and fleid tesconductivity of t .X Sh] tire by the hydraulic,conducwater tab e. Both 1 l the hydraulicThe field tests indicatets indicated va of 10 gradient of theapplicant to determinereport). mucri more and the laboratory tessurements to beboratory values Section 2.4.12.5 of thisof 200 tokSO f t/yearsta by the of 350 values The of aquifer of the water table to 20,000 ft/ year.and representativesmall disturbed samp e l uoted, the of permeability for theof laboratory val reliable which represent only avery reasonable i estimate use in wide rangeof 8000 f t/ year for f t/ year is However, in light of the a value conservative cquifer. ultra staff selected an used interchangeably in bility are conductivity and permea ydraulic V0GTLE DSER SEC 2.4 Section 2.4. 2-24 12/04/84 ~~ ~

7 = All of the radionuclides for the WECHT would be less than the 10 CFR Part 20 ,[ requirements at the spring 2800 feet southeast of the plant using the more l realistic estimate of groundwater travel time of 338 years. ~ ~ ', i I However, with the conservative groundwater travel time of 14.8 years, several f radionuclides with lon'g' half lives and/or high initial concentrations (Co 60, f Sr 90, Cs 134 and Cs 137) exceed the 10 CFR Part 20 requirements at the spring These chemically l and it is necessary to consider the effects of sorption. f active nuclides would travel through the groundwater pathway at a much slower rate because of the process of sorption onto the sol 1 and rock media.' The j degree of retardation is governed by the various physical properties such as bulk density, aquifer porosity and species equilibrium distribution coefficient. The radionuclide concentration at the spring can be derived by the following j l expression: i X f C = ( e"A*t t t l where: { C = final concentration C, = initial concentration i k = in 2/th' t = radionuclide half life (years) a=1+2 Kg n p = bulk density of aquifer media (gm/cm3) n = total porosity of aquifer d = distribution coefficient which is defined as the mass of K i radionuclide absorbed per gram of soil divided by the mass of radionuclide dissolved per milliliter of groundwater (cm2/gm) I t a groundwater transport time (years) A typical value of the ratio p/n is 5, however, the staff used a conservative j The staf f has made an extensive literature search of equilibrium value of 4.1. l l 2-26 V0GTLE DSER SEC 2.4 i 12/04/84 m--

n -~ m ~~~-. ~ , ~ ~. o - s deteraingd b2 n The hydraulic gradient maystaff analysis of { (...

/

The 4 12-7. applicant //rv31ecities. rs shown in FSAR Figure 2.. The r 1000 feet. The staf f used a conserva- ~1 /,edogradientof7.1feetpesand to be 45%. i jrositycfthe ity. l'cr the effective poros the following relations hip: !sa, may be determined by ,l li 1 eiccity (ft/ year), ulic conductivity (ft/ yea r). \\ l ~ ant of permeability or hydra 'i: le gradient (dimensionless). { hless).

ive porosity (dimensic f f conservatively estima e

{ td t f and relationship the staThe travel time to the neares more i Using a t values

  • 189.3 ft/ year).the groundwater i locity to be 189.3 f t/ year.(2800 ft sove

'est)*is then 14.8 yearsconductivity of 350 ft/ year, spring (2800 f eet) I lue fer hydraulic and the travel t me to the i lfd be 8.3 f t/ year i active ' i e of tanks containing rad oConcentrate 1 years. CHT) of possible failure i }rmined that the Waste (esporat on concentrations lvaluatirn dionuclideis tant; has a nominal volume o f 96 f t /tico1'ttnk with respect to raan unrestrdted area.. Th y butid one a different tank than theRef i fjons;cnd is located inside the auxil ar /.ter us'ar in f is at el 220 It ms1). Thisd by the applicant. t gr.tde

! Holdup Tank) evaluate ort for further discussion.

e vcGTti OSER SEC 2.4 i J I 2-25 's 1 64 .,s L ~ "--~ m ~ ' - ~ --c,

~. - ~ - ~x ~~ 134, and l 7 of 100 f or Co 60, Cs and conserva- ~ l l ~ value expression ntrations l and selected abased on thestaf f calc above A _. coefficients 0 distribution value of 10 for Sr 9 effects, thespring;andtheywereits sorption Cs 137 and a spring andRequirements of at the tive parameters for the i nuclides The fer the four critical rad o equirements. property boundary. water supplies of the 10 CFR Part 20 rriver is.al.1 within thec unrestricted area 3 l ble j / frcctions an user in T hus, radionucifde downstream the plant. 'i course to the 10 CFR Part 20 are for nearestmiles downstream from diluted in the The I a nonrestricted area. y 112 river would also be f ullyEven by ignoring is Beaufort / Jasper Countof radionuclides water intake. combined ground and in any accidental re, lease reaching a potable l time, the sufficient reduce to to groundwater traveabout 140,000 whichCF River before is Savannah '* r'adioactive decay duewater dilution f actor fractions is of the 10 staf f small in SRP 2.4.13, the100 with respec river ll radionuclides to ibed using procedures descrments of 10 CFR Part A require effluents. review eets the Based upon its of radioactive concludes that the plant mtal release Requirements to potential acciden and Emergency Operatingany i Technical Specification ~ require 4 14. / staf f has f ound noas provided in SRP 2.. 2.4.14 reason to P Requirements this time the or Emergency Operating At tions l r I e l e V0GTI.E DSE 2-27 l 12/04/84 ~

-~._.-.-n~~---_ov_-- ,.n-___ C ~ B__ibliography esm*

  • llett Fault," October B:chtel Power Corporatien, "Stu' dies of Postulated Mi 1982.

ew or nd Flow Nets.,dohn [Wiley, C da/gran, (R.,5(eoage,A nace ~ / / / 489 967. statistical data t D;partment of the Interior, U.S. Geological Survey, Atlan a, Savannah River (data cn river flow, temperature, and chemical analyses for theHydro Projects Depart h r:tricved f rom USGS computer on July 8,1981, for t e Sotthe.F. Company Services). Repor', Ccapaiy,' Oconee Nuclear Plant Preliminary Safety Analysis Duke Powee subsectims 2.4.2 and 2.4.3. b ble Maximum Hans:n, E. H., and Schreiner, L. C., " Application of Pro a idian," Hydro-Precipitation Eitimates, United States East of the 10Sth MerNational Wa ) Cet;orological Report No. 52 (preliminary, Spring, Maryland,1979 Precipitation Schreiner, Louis C., and Riedel, John T., " Probable Maximum l ical Estimates, United States East of the 105th Meridian," Hydrometeoro og f Commerce, Rep;rt No. 51, National Weather Service, NOAA, U.S. Department o Washington, D.C.,1978. l Hydrau!ics Tennessee Valley Authority, Computer Code Simulated Open Channe (SOCH), Transient, Flow Mathematical Model, January 1972. Water Resources U.S. Army Corps of Engineers, South Atlantic Division, Dnvelopment in South Carolina, Atlanta, Georgia, March 1975. Manua_1, 1975. U.S. Army Corps of Engineers, HEC-1 Computer Prooram User s V0GTLE DSER SEC 2.4 2-28 12/04/84

w ~- ~ -,., _ ~ - -., -, _,..., _ _,.,., - - ~n.__, - - ~ - o -- e U.S.- Army Corps of Engineers, HEC-2 Water Surf ace Profiles, February 1972. S U.S. Army Corps of Enginee M iood Emergency Plan. e ee M \\ N_- e e e e e e 12/04/84 2-29 V0GTLE DSER SEC 2.4

.s- -- smo. -.. m mo _ m. m.._u,.-m_ a. .= O 3 ( [ = d =** e O P l Ys f? Y.**de vf./! *

  • J

/ i \\ f >n !! 2 /, j. *-/. .s -- -. -w. ouxsw,r f. W ), % f' /on Bu- #LJ Ad ~ ~1

  • 1 WW n

,0. A 2.Y.l o ,I s I i e i h I i. I i t i

I' 6 O W p 1 c(wJs y ea)LL,_. ~.m e N O ^

M b-W _gy -y \\* I i It I.<w i +a x },wyx "..., & e 9 e L

-.-m3 's'hQ M..Q Q g. y a m-e p -, Q .Wi4 ygyg.@gw -- Q MgMM 9 s .- e' a 9 n cpuu. % y 2 h .I W 9 . + .m e m. m i .. m. .m .m. . s.

.1

. q f~ Ifod 2, 4 '/ I "%%,Lig-p. q, -. t t 9 4

g,g%7----


msw-g-g

,.p ,s'% y. ,y. ,,.c q w..- 'W'c., , Q i4 OU e 8E ,ei g aw 2 t/, C la-%.4 bwjs Af M a2"&Ai. ue+n.w,e 3-] e

m sw .m n,s m we n.---. - wm u-a, A$ g q - 2 4, f % 2 Y. 9 3'. (Ra gs. vAc0 n e e m.

F s T W e g.O S 9 ,,w a.s y 04 M. ~ 4 0

n. .s --,m m - ,, w_ a gn - - ,v, kr +D .g ? i e> L-b 0 1 a l s I i ),!.-{Cfq' AC/R/ / -3 f y",= 'J '2v-J &$ax O ..F^. f p4, lW(A /, w ) ./ n.e,, p i t i I a

f.. .a m -- - m - .--w z f l t-q 1 Ef) DEPARTMENT OF THE ARMY d - s aa S AV ANN AH DISTRICT. CORPS Olr ENGINEERS d P. O. BOX 889 7 {, .} ,, f s AvANN AH. GLORGI A 314o2 Z0,,,, January 27, 1984 o l Engineering Division Of ;. f W [' i (/ 4 yc/ 94 1 4 c, v q q I Mr. Gary Staley f/ 4. U. S. Naclear Regulatory Commission Washington, D. C. 20555

Dear Mr. Staley:

l This is in response to our telephone conversation concerning E the Savannah District's Dam Safety Plan. Furnished, under separate cover,.are copics of the Dam Safety Plan and the Dam Failure Inundation Maps for Hartwell, Clarks Hill, and Richard B. Russell Lakes. l .Our plan addresses emergencies related to above normal reservoir water levels and/or rapid release of large volumes of water past the dam. -It covers identification of impending or existing emergencies, notification of other parties concerning impending or existing emergencies, and emergency operations and repairs. Areas potentially affected by emergencies are identified for the cases of Spillway Design Flood without dam failure: Spillway Design Flood with dam failure; and dam failure at top of l flood control pool and maximum power pool. i If we can be of any further assistance, please contact Mrs. Joel James at ' 912-944-5513. t I ( Sincerely, 1 A,/ I l/ .A f Y Ran, f '.7 dall C hller j Encl - Chief, Hydtology and I kHydraulic'sBranch .I ~ l )3 12 9 q Byo hiv.2W xk 3 1 tA

E. DRAFT /GStaley:ws ~ ^- 1/17/84 ("_,', Hydrologic Engineering Section Vogtle Site Visit The following is a list of items of interest to Gary B. Staley of the Hydrologic Engineering Section in connection with the February 6 Vogtle Site Visit: ' 1. Site Drainage - Contributing drainage area, peripheral roads and railroads, drainage ditches, culverts, catch basins, and temporary buildings. Would also like to look at and record all exterior grade level entrances to safety-related buildings (including pipe galleries, tunnels, etc. ). 2. Mechanical draft cooling towers and basins (UHS). 3. Exterior tanks. tha,t will contain radioactive liquids. '4. The River Intake and vicinity. 5. The basemat level of the Reactor Containment if accessible. 6. Review aerial photographs of the site and vicinity if they are .available. kb ~$ I{ G T f}}