ML20129E178

From kanterella
Jump to navigation Jump to search
Draft Engineering Summary Rept of Complete Loss of Feedwater Transient Analyses for Davis-Besse,Unit 1
ML20129E178
Person / Time
Site: Davis Besse Cleveland Electric icon.png
Issue date: 06/22/1981
From:
BABCOCK & WILCOX CO.
To:
References
NUDOCS 8507300280
Download: ML20129E178 (73)


Text

_--

%k syk 86

,C>,

n. 6 1126460'00

),

\

i @ ,

llh L:.i& . . .'), .: : .EM M ~

k.'T,'[ j hf, ENGINEERING SU}efARY REPORT of a Complete Loss

.of Feedwater Transient Analyses for Davis-Bess a, Unit I THE AS

.coc.uwtEST is PE6SELTED PEELIMidy ASJO Fef, -,

IPT:

CCM ATIGJ etJC.y. WIS D cc u v1 & T Do65 vbf SER'G As A L lCEL2SUJG l PWL"DuCM GASG DO"MLM N P-DAU s - SEs5E ,

8507300280 810622 PDR P

ADOCK 05000346 5 2-7 1 PDR June 22, 1981 3

/. .

o .

O

~

1 I O O d 6 l) Og Analysis of a Complete Loss of Feedwater Transient for the Davis-Besse Unit

1. Introduction During a complete loss of feedwater accident and heat removal via the steam generator, the primary system repressurizes rapidly to the PORV setpoint. The primary system relies on the high pressure injection (KPI) system to ensure core coverage throughout the transient. For the raised loop Davis-Besse plant which is equipped with low shut-off head HPI pumps, the operator action is required in order to depressurize the system.

Analyses have been performed in order to define when and what operator actions are necessary to mitigate the accident. The following is a compilation of all ECCS analyses for a complete loss of feedwater transient performed to date with appli-cability to DB-1: 7

(

k g.. _.

-(a) Using conservative licensing assumptions, the mawimum time available for operator action to prevent core uncovery was determined.

(b) Using a " realistic" decay heat curve, an analysis of operator action at 30 minutes to open the PORY and manually initiate two makeup pumps was ex-amined.

(c) Using a " realistic" decay heat curve, opening of the PORY, manual initiation .

of one makeup pump, and actuation of the startup feedwater pump via operator

\

action at 30 minutes was arm =4ned. N N w.

(d) Using a " realistic" decay heat curve, manual initiation of two makeup pumps and starrup feeduster pump via the operator action at 30 minutes without taking credit for PORY was awamined.

Using the results of these analyses, other operator actious which would control the transient are also identified.

4

60 1146460 00.

2. Summary and Conclusions 1

Analyses have been performed for a complete loss of feedwater transient on 1

Davis-Besse 1. Due to the low shutoff head on the HPI pumps at Davis-Besse 1, l operator action is required to prevent core uncovery. Using normal conserva ,

tive licensing assumptions and no operator action, core uncovery started at approximately 37 minutes and was completely uncovered by 41 minutes. Thus, operator action should be taken by 30 minutes to ensure that c. ore uncovery

-does not occur.

Using a " realistic" decay heat curve, three analyses were performed examining the effect of various operator actions. In the first case, opening of the PORY arid manual initiation of two makeup pumps by the operator at 30 minutes was assumed and extends the : ore uncovery time from 37 minutes to greater than one hour. However, further operator action would be required to prevent core uncovery. ' N E

Operator action at 30 minutes to open the PORV, manually initiate i-one makeup pump and actuate che startup feedwater pump was analyzed for the second case and is shown to prevent core uncovery.

In the third case, operator accion.was assumed to manually initiate two makeup pumps and the startup feedwater pump at 30 minutes wbile the PORY remained closed.

Similar to the second case, the operator action was sufficient to prevent core un-covery.

A review of the analyses uns performed to determine other combinations of accept-able operator actions. Table 2.1 shows alternate operator actions that were evaluated and found to be acceptable for controlling the event.

(

3

c' ,

f. a .. ga ,

3 Table 2.1 Alternate Operator Actions for TECO, l Loss of All Feedwater and Offsite Power Tesnsient Operator action required 1.0 ANS decay heat at 30 minutes 1.2 ANS decay heat (realistic cases)

Number of makeup pumps actuated ac 30 minutes 2 2 L 2 1 PORV opened at 30 minutes Yes No No Yes Yes Electric startup feedwater pump acedated at 30 minutes Yes Yes Yes Yes Yes Success of action to miti-gate accident 50

  • Yes 50
  • Yes Yes
  • Chance of success. ,' l
3. Results of analysis 3.1 Me'thod  ;-

The analyses in this report were performed using the Davis-Besse CRAFT model utilized in the analysis presented,in Section 6.2.5 of " Evaluation of Tran-sient Zahavior and Small Reactor Coolant System Breaks in the 177-Fuel assembly Plant," May 7, 1979, Reference 1. The analysis method is that described in Chapter 5 of BAW-10104, Revision 3, "B&W ECCS Evaluation Model,"

Reference 2. The model and input assumptions are basically identical to that used for the 177 FA lowered-loop plant small break analysis submitted in the lettar report of July 18, 1978 from J. H. Taylor (B&W) to S. A. Varga (NRC),

Reference 3. The CRAFT 2 noding model used in this analysis is shown in j i

Figure 1. The following assumptions are made for conditions and system j l

responses during the accident: I

1. The reactor is operating at 102 percent of the steady-state power level i

of 2772 MWg .

2. No offsite power is available.

(a

, ,! ,' ' 86-11*26460 00

3. The safety rods begin entering the core after 0.5 seconds delay from the time the reactor trip signal is reached.
4. .The RC pumps trip and coast down coincident with reactor trip.
5. The pressurizar code' safeties (2) were modeled to be opened to 70 percent "of full capacity' at a' set pressure of 2435 psig, and to ,be fdly opened ~

c 103 percent of.the set pressure.

6. When operator action was assumed to manually open the PORY valve, the flow characteristics were based on full design capacity plus 10 percent.
7. The discharge from the code safety valves and the POR7 v:,1ve used the Berrou111 equation for the subcooled portion of the transient, while the Moo <.y corralation was used in the two-phase and steam portion. The area of the valves were' chosen such that the Moody calculated steam flow at the valve rated pressure were coincident with the design capacity of N

the valve. 2

.p -

8. When operator action was assumed to manually initiate the makeup pump (s),

7.

the makeup pump flow characteristics, based on the control. valve being wide open, were modeled.

9. For the " realistic" decay heat curve cases, the decay heat curve is based on 1.0 time the 1971 ANS 5.1 standard for infinite reactor operation.
10. The ==e4=7 feedwater (7W) system is assumed not ts be available during the transient.

~

A'dditional assumptions for each specific case are given in the concent I of the analysis.

A total of four analyses were performed, all of which assumed a complace loss of feedvatar. Except for the first case which utilized conservative licensing s

assumptions, the other three used a " ram 14mtic" 1.0 ANS decay heat. Table 3.1 shows the metrix of " realistic" analysee. ,

i

(-

.F ' * . ' ' -

86-l'106460 00

1. Mass rate of liquid boiled by core decay heat

.g - M

~

core h gg(93)

2. Stama volume generated by core ' decay heat

, t

- y .y e v fg(P'S) -

c - core

3. Makeup water volume injected into the RCS Y = 2K '

u u

  • v f(PS)
4. Mass of staan condensed by the makeup injection .

, u f(PS) ~ in}

ucond , h fs(PS)

5. Volume of steam condensed by the makeup water

- 2-

~

=i Ypeond = W *v fg(PS) 1 ucona .

.T' .- y

6. Mass of steen condensed in primary system due to feedwater injection 4 . , -

fw Sm(SS) - hg ,]

! l

."fs(Ps) .

7. volissa of steam condensed in primary system due to feedvater injection Neond * #$Geood * "fg(PS)
8. Volume h7 - =

Y

! ase *Y e *Y u ~Yucond ~ #Neond nac 2 0 system pressure is controlled at pressurizar code safety if 7

,,g,,p,,,,,,,

l if 7,g < 0 system will depressurize and safety valves will close 1

.- _ __ __,,-....----r _ ~-----e--e * - - - - - - - + = - -- ~' ~ - ' ' """-~~~" """ ** - - ~ - ~ ' ' ' ' ' ' #' ' * - ' ~ ' " - ' - ~

. .. . . . - __ . _ - - - - . . . . _ _ _ = _ _ .. -

... ' ' . s' , .

9. Mass lost vis pressuri=er safety valves .

If V,,g > 0,' than Y

g . Mt -

. SV . V gg

. If Yne't s 0, then Wg = 0.

1

10. Liquid Mass Balance '

not = 2Wu +Wucond + WSCcond -Wcore -WSV W

'if W not < 0 liquid assa in primary system is decreasing .

~

W,,, = 0 system liquid mass is constant W > 0 liquid mass in primary system is increasing.

net 3.'

System pressure is determined by the volume balance. ..

If we had a closed

.t..

, system and Y was greater than zero,,p'rimary system pressure would increase.

not However, the code safety valves on the pressuriser will open and discharge sufficient volume of fluid to maintain the system pressure constant.

is,less than zero, the primary sytten will,depressurize and the pressurizer j code safety valves will close and the system will refill. '

j g The volume balace a=1au1= tion, given in Equation 8 above was utilized to i

l determine the time the RCS starts to dep a due to condensation effects of the makeup water and the startup feedwater injected to the SG. A mass belance was performed, using Equation 10, to determine the amount of fluid inventory lost, following the operator action at 30 minutes, and to determine

~

whether the core r==mina covered during'the. transient.

1

, _ . _ _ _ _ . , _ _ _ . - . , - - - - - - - - - * - ' - - * ' ' ~ ^ ' ' - ' - ~ ' ' ' ~ ' ' ' ' ~"

04 31dd t

i i -

CO l 1

1 Table 3.1 Matrix of Realistic Analyses performed for a '

Complete Loss of Feedwater Transient for TECO Specific assumptions and operator actions Case 1 Case 2 Case 3 1.0 ANS decay heat (realistic) X X X PORY opened at 30 minutes X X Electric startup feedwater pump actuated at 30 minutes X X Number of Makeup pumps actuated at 30 minutes 2 1 2 The realistic cases analyzed used combinations of makeup pump and electric startup feedwater pump flows for accident mitigation. Tables 3.2, 3.3 and 3,.4 show the flow provided by one and two makeup pumps and electric feedwater pump, respectively.

Table 3.2 Flow Race ersus Back Pressure for one Makeup Pump

~

7 e FlowiGPM Back Pressure. Psia 350 15 300 1015 250 1515 205 1915 170 2115 135 2315 110 2415 -

80 2515 40 2615 0 2800 \

0

/0

~. _

,' s' "-

I a k d i 0 :/ s t)

\ .

O Table 3.3 Flow Rate versus Back Pressure for two Makeup Pumps Flow, CPM Back Pressure, Psia l

500 15 430 1015 380 1515 310 1915

  • - 270 2115 220 2315 190 2415 165 2515 130 2615 0 2800' Table 3.4 Flow Race versus Secondary Pressure for Startup Feedwater Pump Flow. LBM/SEC Pressure, Psia l

20.79 0.

20.79 Y 925.

17.325 -

1001.29

_ 13.86 1049.97 12.82 .' 1065.55 10.395 1086.14 6.93 -

1111.12 3.465 1127.49 0.0 1141.30 The " realistic" cases one and two were analyzed using computer calculations i for the entire transient. However, hand calculations were utilized for the last realistic case after 30 minutes to determine.if the operator actions to actuate two makeup pumps and startup feedwater pump were sufficient to W ho core covered throughout the transient. The system response prior

! to the operator action at 30 minutes was the same as that of the other l

l realistic cases. The following equations show the methods utilized for 1

the hand calculttions. A list of nomenclatures utilized is given in

,'Section 4.

l //

, . d 0 ~ I l % d4 C O () y 1

i' 3.2 Results Table 3.5 provides a summary of the computer runs. Results of individual cases are in the following sections Table 3.5 Summary of Computer Runs for Complete

, 1.oss of Feedwater Transient -

g'e, Version /Date Run Name Date of Run Description CRAIT2 8.4/6-26-78 DB501R3 5/16/79 1.2 ANS, PORV opened at 40 minutes CRAFr2 8.4/6-26-78 DA502S5 5/17/79 1.0 ANS, PORY opened and 2 makeup pumps CRAFT 2 8.4/6-26-78 DB50452 5/25/79 1.0 ANS, PORY opened, -

1 makeup pump, startup" feedwater pump 3.2.1 Loss of All Feedvater - 1.2 ANS Complete loss of all feedvater - PORY manually opened simultaneously actuating LPI-HPI piggy-back at 40 minutes - 1.2 x ANS 5.1 decay heat.

Figures 2 thrcush 17 show the transient system response for this accident.

The following table presents key results of the analysis:

6 l

'6r u .i 4

a3 a L uu

i. p '* .

Secuence of events Time, s Loss of main feedwater, loss of offsite 0.0 power (RC pumps coastdown)

Renctor trips on high pressure, turbine 8.0 trip SG secondary side inventory boiled-off 250.0 Two pressurizer cede safety valves open, 750.0 pressurizar goes solid Natural circulation essentially lost 1550.0 Pressurizer goes two-phase ,

1600.0 F=v M = repressuri:ation reached 1800.0 Pressurizer level begins to drop 2150.0 Core starts to uncover 2200.0 PORY manually opened, LPI-BPI piggy-back 2400.0 actuated Core completely uncovers , 2500.0 Figure 2 shows the core pressure egansient for this accident. With the simultaneous loss of main feedwate) and loss of offsite power, RCS pressure rapidly rises to the high pressure- trip setpoint (2300 psia) thus causing SCIIAM  : .

the BCS to scran. The reduction in core power causes the RCS pressure to l decrease. With the loss of heat removal to the steam generators at 250 seconds, due to failure of auxiliary feedwater to come on, the RCS repressurizes to the pressurizer code safety setpoint. The two pressurizer safety valves open discharging RCS liquid inventory. At 1600 seconds into the transient, the pressurizer liquid volume begins to drop and a two-phase steam-water

'r mixtura exita the safety valves. The mass flow rate out of the safety valves drod and the RCS pressure increases.

This ca ases the safety valves to go fullgopen. At 1900 seconds, the liquid volume in the hot legs, as shown in Pigure 7, drops below the surge line, thus high quality steam enters the i

pressurizar. This results in an increase of stana . volume being relieved

~

through the safety valves thus decreasing the RCS pressure to just above the 13

, .e

. . ,o

~ 8 6 - 1 ~ 10 6 -1 '6 0 00

~

code safety set pressure. Just prior to core uncovery, as is shown in Figure 4, the pressurizar mixture level begins to drop. At 2200 seconds the core starts to uncover and is completely uncovered at 2500 seconds, as shown in Figure 3.

~

The core r===4ne uncovered throughout the remainder of the transient, thus the Madding temperature would rise above that allowed by 10 CFR 50.46. ,

1 At 2400 seconds the PORY valve was manually opened to attempt to lower the RCS pressure and thus actuate the HPI system. The RCS pressure did not depressurize because the discharge rate out of the PORV was too smal relieve suffidenssteam being generated by the core. Thus, additional operator actions are required for this transione. ,

i 3.2.2 Realistic Analyses 3.2.2.1 Complace loss of. All Feedveter - PORY Manually opened and 2 Makeup Pumps Actuated at 30 Minutes -

1.0 z ANS 5.1 Decay Heat *-

Figures 18 through 34 show the trsasient system response for this accident.

Thefolicisingtablepresentskeyr[esultsoftheanalysis: ,

j Sequence of events Time, s Loss-of main feedvater, loss of offsite 0.0 power (RC pumps coastdown)

Essetor trips on high pressure, turbine 8.0 trip

, SG secondaty side inventory boiled-off 275.0 Two pressurizar code safety valves open, 1000.0 ps.s.= 1zer goes solid P017 =maumt 1y opened, 2 *2p pumps in- 1800.0 jact water also into RCS

~

Natural circulation essesarially lost 2000.0 Pressurizar goes two-phase 2250.0 Maximum repressurization reached 2000.0 Pressurizar level begins to drop (est.) 3800.0 Core starts to uncover (est.) 3900.0

_ . - _ _ _ _ _ _ - - . . 3 4 _ _ __. . _ - - - - _ - _ _ _ ._.- _ ~ .

o . t . *2 ,-

ua S j ',

The scenario is similiar to Case 1 except that the decay heat is based on a realistic value of 1.0 x ANS 5.1 decay power.

Figure 18 shows the core pressure transient for this accident. With the simultaneous loss of main feedwater and loss of offsite power, RCS pressure rapidly rises to the high pressure trip setpoint (2300 psia) thus causing thin *RCS to sc ram. The reduction in core power causes the RCS pressure to decrease. W1.th the loss of heat removal to the steam generators, the RCS repressurizes to the pressurizer code safety setpoint. .The two pressurizer safety valves open disch'arging the RCS liquid inventory.

At 1800 seconds the operator is assumed to manually open the PORY and c.oncur-

, rently actuate 2 makeup pumps. The RCS pressure did not iepressurize because the discharge rate out of the PORV and the condensation e2fect of the makeup -

l water wais less than the steam generation rate of the core. Figure 19 shows

\ .i '

the inner vessel mixture level. Just girior to loss of natural circulation, I the inner vessel mixture level decreases to the hot leg nozzle elevation and

~

holds constant to 3500 seconds. Ac this point in. time the core mixture level l starts to drop again. Band calculations indicate that the core will start to uncover at approximately 3900 seconds. As shown in Figure 20, the pressurizer mixture level remains full but, similiarly to Case !. the pressur1*er z lavel will begin to drop just prior to core uncovery. Figures 21 and 22 show pres-surizar code safety flowrate and exit quality, respectively. Figures 23 and 24 show pressurizer PORY flowrate and exit quality, respectively. At 3100 l

seconds into the transient, a steam bubble forms at the top of the pressurizar and the two-phase mixture discharging from the 2 code safety valves and PORY change to steam.

As shown, opening of the PORY and actuation of 2 askeup pumps to 30 minutes

/f

J0* . i

  • t, c o g,. U 6) c' .- *
  • is insufficient to mitigate the transient. However, core uncovery time is extended from 2200 seconde to 3900 seconds. Since all available makeup has been utilized in this analysis, it is shown that a depressurization mechanism must be found.

3.2.2.2 Complete Less'of All Feedvater - PORV Manually Opened and One Makeup Pump and Startup Feedvater Pump Actuation at 30 Minutes -

1.0 x ANS 5.1 Decav Heat

. Figures 35 through 51 show the transient system response for this accident.

The following table presents key results of the analysis:

Sequence of events Time, s Loss of main feedvater, loss of offsite 0.0 (RC pumps coastdown)

Reactor trips o'n high pressure, turbine 8.0 trips .

SG secondary side inventory boiled-off 275.0 Two pressurtzer code safety valves open, 1000.0 pressurizer goes solid .

PORY manumily opened, one mak'aup pump 1800.0 injects water in RCS, electric startup

,feedwater pump actuated M= vim = repressurization reached 1800.0 Natural circulation essencial17 lost 2100.0 Long term cooling established (based on 5000.0 (est.)

one nakeup pump) '

F4 " 4 -= core level 16.7 ft (es t. )

Ine first 30 minutes of this case is the same as the realistic analysis l

described in Section 3.2.2.1. At 30 minutes into the transient operator i

action is taken, the PORY valve is manually opened, one mak~tp pump is actuated and starts to inject water in the RCS and the startup feeawater pump is actuated and injects water into the secondary side of the steam i

g, j', dd~Il*d H I fj f) Qf) generator. Figure 35 shows the core pressure transient for this accident.

The RCS pressure depressurizes because of the cumulative effect of the follow-ing mechanisms: The PORV relieves steam generated by the core, the water from the makeup pumps condenses steam in the RCS, and the secondary side of the steam generator removes energy, thus condensing steam and contracting liquid inventory in the RCS. The code safety valves close as the RCS pressure falls below the valve set pressure of 2435 psig.

As the RCS depressurizes, the liquid volume contracts in the loops forming a steam bubble at the top of the hot leg thereby stopping natural circulation.

The loss of natural circulation interrupts the steam generator cooling and results in a temporary build up of steam in loops and a rise in system pres-sure. A local contraction of liquid in the bottom half of the steam generator

, tubes due to heat removal to the S'G, causes intermittent recurrences of natural cireviation. That is, slugs of ho'eter liquid in the hot legs-rise over the candy' cane and into the upper portion of the steam generator. The slugs of

~

botter liquid =4v== with the cooler liquid in the primary side of the steam generator, the RCS pressure decreases, the liquid volume contracts, natural circulation stops, and the oscillatory cycle repeats. At 3100 seconds the liquid volume in the hot legs has depleted sufficiently to prevent hot leg i

water from flowing into the scesa generator, and the intermittent natural l

circulation cease's. As shown in Figure 36, the inner vessel mixture height )

levels off at approximately the hot leg centerline. The pressuriier-mixture '

height, as shown in Figure 37, remains full throughout the transient. Figurec

/

39 and 40 show the flow race through the PORY saa exit quality from the pres-surizar, respectively. The low quality two-phase leak rate out of the PORV slowly decreases with system pressure. Hand calculations show t' hat-J:he core will tenain covered throughout the trausient and long term cooling would occur 17

g / d6 i 12 64 6 0 00 at approximately 5000 seconds. If the LPI-HPI system was piggy-backed to the LPI prior to one hour, long term cooling would occur at approximately 4100 seconds. Since no core uncovery occurs, the criteria of 10 CFR 50.46 is satisfied and cladding temperatures will remain with a few degrees of saturation.

3.2."2.3 Complete Loss of All Feedvater - PORY Remained Closed - Two Makeup Pumps and Startup Feedwater Pump Actuated at 30 Minutes 1.0 ANS Decav Heat As stated previously, the computer analysis presented in other realistic case are valid for the first 30 minutes of the transient. At 30 minutes, there is 251480 lba of liquid available in the system, excluding the pres-surizer, above the top of the cort. Assuming operator action at 30 minutes to actuate the two makeup pumps and the startup feedvater pump, the follow-ing are the results of the equacidas in Section 3.1 at 1800 seconds.

core = 127 lb/s W

Ve = 13.54 fc3/s I Wn = 24.7 lb/s "

Y = .39 ft 3/s u

7 peond = 44.48 lb/s V,cond = 4.73 ft3 /s W3g = 76.2 lb/s Vg,g =.S.1 ft3/s V

net = +1.1 ft3 /s Ug = 216.47 lb/s W

not

~ 198.09 lb/s Thus, we can see at 1800 seconds, the primary system pressure vill remain at The safety valve pressure and system inventory is decreasing.

/8

l

\

O ~5 f .I i. 2 d i '3 is O i) l l

I A similar calculation was performed at 2400 seconds. The results of that calculation shows that V = 0 and the primary system will depressurize thereafter due to reduced core heat. A mass balance performed at that tima. 1 l

shows that W,, g

= +28.4 lb/s and the primary system is refilling. l A gonservative assessment of the system inventory was made for this case.s Using the liquid loss rate calculated at 1800 seconds and holding it constant between 1800 and 2400 seconds, 11PS54 lba of liquid is calculated to be lost from the system. Substracting this from the liquid inventory above the top

~

of the core at 1800 seconds, there will still be at least 132626 lba above the top of the core prior to system refill. Since the core will not uncover, the cladding temperature vill remain within a few degrees of the saturated fluid temperature and no cladding ruptures nor metal-water reaction will occur.

Thus the criteria of 10 CTR 50.46'is satisfied.

3.2.3 Other Acceptable Operator Actions ~

For all cases in which normal auxi11ary feedwater is supplied within 30 minutes of the loss of main feedwater event, the transient can be safely terminated without core damage. Actuation of auxiliary feedwater will cause the RCS to j rapidly depressurize, immediately closing the core safety valves. This will stop the loss ef RCS inventory. The pressure will continue to decrease to i

the ESFAS setpoint and actuate the high pressure injection systen resulting in s

a refill of the RCS.

Extensive hand calculations were made to determine other combinations of acceptable operator actions. The calculations determined the time when the KCS will depressurize due to condensation effects.from the makeup water, steam generator feedwater affects, and RCS inventory released through the PORV. When f

the RCS begins to depressurize a mass balance calculation was made to assure IF

i

' ~ . \

. . / .

- 3 5 - : i d 6 4 5 ::

00 1

I that the core remained covered until long term cooling was established.

Table 3.6 shows alternate operator actions examined with the assu=ption of 1.2 ANS decay heat, there is only one case that has a 50 percent chance of i success. This case requires actuation of two makeup pumps, opening of the PORV, and actuation of the startup feedwater pump at 30 minutes. All other cases with 1.2 ANS decay heat will uncover the core and be unacceptable.

For use of 1.0 ANS decay heat (realistic cases) there are three combinations which will successfully mitigate the accident, a combination which has a 50 percent change, and three cases that will uncover the core. All the successful cases equire actuation of the startup feedwater pump and at least one mekaup sump. '

4 T

4 i

e O

O 4

O O

N

l Table 3.6 Summary of Alternate Operator Actions for TECO, BURP & SLURP Analysis. Loss of All Feedwater and Offsite Power Operator action required 1.0 ANS decay heat-at 30 minutes 1.2 ANS decay heat (realistic cases)

Number of makeup pumps 2 1 2 1 1 2 2 1 2 1 1 2 2 actuated at 30 minutes

, , i n si i t ;r .

p, PORV opened at 30 minutes No No Yes .Yes Yes Yes No No Yes Yes Yes Yes No Electric startup feedwater Yes Yes Yes Yes No No Yes Yes Yes Yes No No No pump actuated at 30 minutes success of action to miti- No No 50%* No No No Yes 50%4 Yes Yes No No** No gate accident

  • Chance of success.
    • Refer to Section 3.2.2.

D L

' r n

i

d O *' ,

~

, ., iL..Y. J .-

4. Nomenclature W = Rate of liquid boiled by core decay heat, Ibm /s QDH "
    • *"*I **** "*

V = Volume of steam created by core decay heat, ft.3/lba 4

W = Flow for one makeup pump, Ibm /s V = Volume of fluid injected from makeup pumps, ft.3/s . _ _ . _

W pc ad

= Race of steam condensed due to condensation caused by the makeup water, ibs/s Y

cad

= Volume of steam e udensed by the makeup water, ft.3/lba h g = Enthalpy of irijected fluid, Stu/lba Wg = Startup feedwater pump flow, Ib/s i

. W 3

= Masa rate of steas' condensed in primary system by startup feedvater pump flow, lb/s Neond = V lume f steam e udensed in primary system by startup V

feedwater pump flow, ft.3/s W = Rate of liquid loss through safety valves, lba/s 37 Subscripts PS = Property evaluated at primary system pressure SS = Property evaluated at secondary side of SG pressure 22

, i . . i , 6 *; G :)

5. References
1. " Evaluation of Transient Behavior and Small Reactor Coolant System

. Breaks in the 177-Fuel Assembly Plant," Babcock & Wilcox, May 7, 1979.-

, 2. BAW-10104, Rev.' 3, "B&W ECCS Eva?.uation Model," Auguse 1977.

3. Letter from J. H. Taylor to S. A. Varga, July 18, 1978, concerning 1777A Plants Small Break Analysis.

1 I

i E ,,

e

.~ ,.

e

\

l 23

__. _ _. - _ .. .. . _ _ . ~ . . _

, ,s .1= s ,.

,* vv pggg 1 .

CN4fT2 H K J .. @ @

.,l 2+

& I C't

_ 25

_ 3)

- 81 k

f z --

16 l'I

~

3' g 4 g b y m Fi: o 2'

8 $

_, t

' 3 . {s ' _ _ .

<t

. m et @_ &

, u 7 2z - zo "g

'I T ,- @~ t I -

e-

@ 4

%g 11

,,,,, ,,u ag. .sw.

g "

e gn t+ h2 @ ._ -

G@ @

- -e @ :,.L :.* ::a=

.T i mi .

@ g,pt r .

u .= r..-

g tema

@ r-. c .u e.

- . a sec r

, 3mm h aspee.n s 3od ,No. Identification Path Wo. Identification 11 Devasemer 1,2 Core 1 Lower ?lenum 3,4,28,29 Est Leg Piping .

I 2 *- Core 4 Upper Plasnm 5,30,41,43 Est Leg, Upper .

3,16 Est Les Piping 6,31 ,

, 4,17 SG & Upper Head 7,32 SC Lower Head 3,18 Steam Generacor Tubee a Core Sypase 4,19 Secondary. SC 9,12,33 Cold Les Piping 7,20 SC I, aver Head 10.23,34 Pumps 3,14 4 . Ce&d Les Piping 11,12.24,25,33,36 cold Les Piping 9,13,22 *

. cold tme Qing 13,16 Downsomer 3D Urper Dowacomer 26 LFI 12 Pressuriser 13,14 Upper Downconer 12 e- . . < - e 17 Pressuriser 23 gyper Plenia la Test Valve 24,23 SG Upper Esed 19,27 EFI I

37 Containment Sprave 34,39 Core to Upper Plenum s., 40,42 SG Upper Head

. 's 20,21 Leafs 4 Return Fach a

4 i 24 -

l 86-1126460 00 -

29.000 - .

FIGURE 2: CORE PRESSURE 27.000 - -

Teessutttce code

_ rAFmes opew -

4 25.000 - ,

O

25.000 -

.t 2a.cCc - -

E t

T .

m Q. 23.0(%! - -

s w

E B

e y 22.000 -

1 21.C(%! ' -

i 1

20.000 -

O.0C0 5 000 10 0C3 15.000 20.0c0 25.000 .:50.000 v - TIME ( SEC l( X10 )

~

PROV OPEN 1 2RNS .

\::E 2 c a

l s  : .-

8 6 -U 2 64 6 0 OT~

IS .cCc --

FIFURE 3: CORE MIXTURE HEIGHT 14 .ccc.- - .

L2.cca -

T P OF M ,5 , ,f , , _.

l I

I 10.cc0 - -

[

l

,_ s.ccc -- _

', _i n e

~

I.u -

La s.ccc - -

o O

C .

4.cCc - - .

t i

l  %

t z.cac - - I i

( '

c.cca - ' - \

c.aca s.aca ic.aca is.aca 20.aca es.aca ,m .aco TIME C SEC I C X10 )

PROV OPEN 1 2RNS -

r- r

\ w, -

c.

86-1126460 00 s

SD .000 -

FIsuas 4: PRESSURIZER MIXTURE Lavet 55.000.- -

  • 5G .CCC - -

4 45.000 - -

h

(

~. y Aa .cCa -

.7.

. t -

g . .

u.

" as.cco - -

a O

a -

a 30.0 2 1 .

25 000 --

go coa -

0.000 5.000 10.000 15.000 20.000 25.000 30.0C0 L _

TIME (SEC)(X10*')

PROV OPEN 1 2ANS

\ g av

c. ..

86-1126460 00 l

y' ' \ \

~

~

go,cca .. FIGURE 5: LcWER PLENUM LIQUID VOLUME TG eG. -

.- sc.cao - -

o-X sc. coa - -

~ ' '

i t '. .g 40.C21- -

W -

u -

~ -

E > .

Oa m. coa - ,

C Q '

a l C, . 20.031- - , i

_a f 1a.caa - -

c.cca  :  :  :  :  :

. . . . a.aca s.aca 1o.000 Is.aca ca.acu :s .aca,, m .aco 2.

TINE (X10 ) sac PORV OPEN 1-2ANS m

__ r- -

\, w w ..

.~. -

86-1126460 00 16.0C0 --

FIGURE 6: ,

CORE LIQUID VOLUME l4.GED,- -

q -* .--en . . . + , . , - e -- - + - --

o x

- a 10.CCG - -

8.000 - -

j e

_ 5 - __.

s -

6.000 - -

a C

C 8

,,,,, 4.CCG - - ,

J z.000 - -

c.cCo  :  :  :  : 9  :

. a.aca s.aca to.ccc is.aca 2a.aca 2s.aca aa.aca

'.. TIME ( X10 ** ) suc PORV OPEN 1-20NS m

--_ d 79

. 86-1126460 00 r~-

3C .000 -

FIGURE 7: Hor LEG LIouto VotuMe t

70.CIQ - -

S0.000 - -

o X

w 50.031 - -

40 000 - - .I.

en "! .< -

H k u .

~

s -

30.0C0 - -

J O

c

~ .

3 3 20.037- -

a -

\

N 10 000 - -

  1. . 1 0.G00  : l l , .

0 0CU 5.0C0 10 000 15.000 21.000 5 000,, 30.'dca TINE ( X10 ) sec

.PORV OPEN 1" 2RNS , -- -

W W SA .,,

. 86-1126460 00 l ~'

Sc.cCc --

FIGURE 8: UPPER $6 LIQUID VOLUME 7c .ccc. - -

1

.- sc.cca - -

o I

x  :

w sc.cca - -

}

._ s I

4c.cco - -

en I' ,

l---

g o

-2 o

a m.cac -

o o

2 :c.cca - -

a .

to.cac -

I c.cco  :  :  :

c. ace s.aca Ic.aca 1s.000 c.aca :s.aca , m .aca T IME( X10 ) Set PORV OPEN 1 2RNS .,-

s

<v l .

i. .a.

~

l 1 86-1126460 00

,- s 16.0C0 --

(

FIGURE 9: LOWER SG Liouto VOLUME 14 00Q - .

4 L2.0C0 - -

o X

w

~

to.GCC - -

8.000 - -

- m .

P-1  ? i, s .

.. j w I r

S.003 - -

]

o c

3 3

a 4.000 - -

2.00G - -

t c.cco  :  :  :

k. .

G.000 S.CCU 10 000 15.000 20.000 25.CCU, m .000 TIME ( X10 ) sec PORV OPEN 1 2RNS

\,--J- 5

s . , '

, 86-1126460 00 -

1

~

A5.000 -

FIsuas 10: SG LOWER PLENUM i LtauIo VOLUME 40.GQ - -

. 35 000 - -

o-x w

30.G00 - -

25 000 - - --

(n f.

>=

=

L 5 b

2 2a. coa . . .

J '

o

a. .

3 .

S 15.CCG - -

10 000 - -

i,

i. - s 5.00G
l l l G.000 5 000 10 000 15 000 20 000 25 .G00,, 30.003 TIMEC X10 " ) sec, PORV OPEN 1-2RNS --

__ 7

- ...-----r, . - . - , - - - - - - - -

. o '

s . -

, 86-1126460 00 -

  • mm 75.00G --

FIGURE 11: PUMP SUCTION LIQUID VOLUME 70.ccq - -

ss. Coo - -

r' r

(,

50 000 - -

l

[ .

l (r) w -

A 55 0C0

-l-s .

g "

o .-

J C

> 50 0III - -

, , i a

O C

m J

45.000 -

40.00G - -

35.000  ;  ?  !  ! l l 0.000 5.cca 10 000 15.0c0 3 .000 3 .000,, T .000 TINE (X10)sec PORV OPEN 1 2ANS ,' , _.

\. - -

- . 8

.,.s.

86-1126460 00 --

'C'UCU "

FIGURE-12: PUMP DISCHARGE LIourn VotuME 35 031,- -

2 30 000 - -

o x

4 25 000 - -

' 20.000 - -

co -

u., -

s , .-

h 3 15.000 - -

L o

i >

l i O -

m l

S 10 000 - -

_.2 i

i 5.00G - -  !

( I i

C.000

'r' ,

~

N. i .

0.000 5.000 10 000 15 000 21 000 25.000,, 30.000

/

TINE ( X10 " ) sec

! PORV OPEN 1 2RNS l  : C

,m ._ -

s  ;'

86-1126460 00 s.

40.GGI--

FIsuRE 13: UPPER DOWNCOMER LIQUID VOLUME 35.0m,- -

--- J 30 000 - --- .-.

o X

w 25.000 - -

20.000 + *-

m 6 u., .,-.

s .-

u.!

r 3 15 000 - -

J o

c a

S tc.cac - -

s.aca - - -

c.cCc

' 'h ' '

a.aca S.aca Ic.cca 1s.aca 20.aca 25.aca,, m'.aca

> TINEC X10 ) sec PORV OPEN 1-2RNS .

\ . w,-

, v

~

.s.

86-1126460 00 ac.m - FIGURE 14: L0wsR DOWNCOMER LIouro V0tuMe 70 000 - -

. 60 000 - -

o U  !

50.000 - -

?

C 40 000 - ~

1 en &

1--  :-

u_ y 30.007 - -

o

~

c. .

O C

, 20.CCD - -

a

10. M - -
  • s.

g C.CDG ' l l l ,  ;

0 000 5.GCU ' 10 0C0 15.000 20.GCU 25 006, 31 000

TIMECX10)sec PORV OPEN 1 2ANS , .

\

m is--mmi - i summassem

4 g. .,

~

86-1126460' 00 _

74.000 --

FIGURE 15: hot LEG TEMPERATURE 72 0CU,- -

70.0C0 - -

O X

~

a 55 000 - -

E

\

a w SS.000 - - T

~

W *

?

E D

w .

C Q:: 64.0m -

w 0

r w

w

w

@ S2.CCU -

2 '

SC.0GI - -

55.000 - ' ' ' ' ' ' '

. 0.000 5.000 10.000 15 000 3 000 3.000 ., % .000 TIME (SEC IC X10 l Sec PROV OPEN l.2RNS qc

\ ._. 3 M - _ _ .

. 86-1126453 00 6C .CCC --

FIGURE 16: SECONDARY SG LIOuro LEVEL 10.GCC - -

SG .CCG - -

50 000 - -

r.

( 40 000 - ,

, .+

a .

LU .

tu

" M.000 - -

C C

o 20.C00 - - .

I L

10 000 - -

G.CCG  :

l 0.0C0 5.CCG 10 000 15.000 3 000 25.CCU , 2 .000 TIME (X!O)sec PORV OPEN 1 2RNS g

\

n

g ,

86-1126i60 00 1 12.500 -

FIGURE 17: SECONDARY SG PRESSURE t2 0c0 -

g t1 500 - -

e X

t t .000 - -

  • me

,, . x _

10.500 - - };

t 5

i e Q.- 10.0 2 - -

. s ta

> =

a m

n a

s.500 - -

s.aa0 - -

l

! s .sc0 -m - - - - . .

0.000 5.0C0 10.0C0 15.000 20.000 25.0C0 30.0C0 TIME (SEC1(X10'z'iSEc PROV OPEN 1 2RNS

-. .# .?. . .

l

. 1

./ ,

86-1126460 bd 27.2 r FIGURE 18: CORE PRESSURE

25. 2 --

Pas 55DEG.ER. Goof  %

.5AFETIES ope 4 FORY dPFM  :-

[o25m ..

=

N 24 6 --

7 E -

. _v 23.CCD -

t U2 L 22. S - -

w E

o u) '

v3 '

E' 21 M - -

20.CIII - -

I

- s

t tg gcc 30.GC0 35 5.CCU 10.0C0 15 0C0 20 0C0 25 300 I/ 0.000

TIMECX10*') SEC E PORV MU ON 1.0RNS NlR TT 2

36-1126460 00 -

4c .c m ,-

FIGURE 19: INNER VESS'EL MIXTURE LEVEL (TOP OF ACTIVE CORE = 12 FT) 35 003 - -

sc.00c - -

25 003 - -

~

t w .-

, 14. /

2c.cca -- l w

W

' 15 000 - -

o

. = -

c a

ic.cca - -

4 l

5 00c -

e I

' 6 9

g 25.sca c.aca 3s UC ic'.aca 15.Lca 20.cca 2 o.aca 5.cca TIME (X10 . ) Sec PORV MU ON 1.0RNS N,J_;,,_.

23 .

o, . .

86-1126460 O_e ss.ccc - PRESSURIZER MIXTURE LEVEL

. FIGURE 20:

sc.coc --

~

.ts.cca a l

)

i m .ccc - -

1 A 2 x .  ?- .

t -

3,cco . .

M w - l J m.cco --

c 2 -

o

.J rs.ccc -- 1

\

2c .E " "

^

. +

m.

n aca 15.0c0 20.aca 25. ace

- ts' coa '.aca s.cca to.aca 2

') sec o

IIMEt X10 PORV MU ON 1.ORNS R,E ,2

~~

86-1126460 00 -

ss.cG3 - PRESSURIZER MIXTURE LEVEL

. FIGURE 20:

sc.c:n - -

is.cca - -

4 4a.ccc -

35.ccc - - i..

a

'M

.d .

a 3c. ace ..

c. I o

C

_.2 zs.ccc - .

m.ccc . -

l 25.cca so.cca m.

- 15.ccc  !

ts.cca 2c.aca z s.cca Ic. ace c.aca TIMEf X10 ') SEC PORV MU ON 1 ORNS

a .. .. .

~

86-1126460 00 40.cm ,-

FIsuRE 21: PRESSURIZER CODE SAFETY FtowRATE(2CODESAFETIES[

35.000 ,- **

3C.CCC - -

3
x
  • S 25.C:D --

20 m - h- f

.~4

? l

.- 1 w -

<n N

15a v '

c I

(

3 k  ; j 3 10.CCD - ,

j.

i I . )

1 j I SM-it T,

15.0C0 20.CC3 N.CCD, 30.000 N 5.DCD 10.CCD 0.0CG

"" T IMEC X10 ) sEc.

PORV MU ON 1 ORNS a ..

i l

o.

[. .

~~

L 86-1126460 00 1 500 --

FIsuRE 22: PRESSURIZER CODE SAFETY

- b1T QUALIW t .4m - -

1.2cn --

t. Coo

- I

.G - -

4 y .-

' t

.o

$ .SCD +

w .

i

- L

. - (

c

.aca - .

I i

.200 -

1 1

c.cco 15.CC3 m .0C0 25.CCU 33.000 35.I 0.0C0 5.CC3 10.000

- TIMEC X10 2') sec PORV MU ON 1 ORNS g-D:' , , d5

s . . , .

8 6 - 1 [h 64 6 000 ms ta.cm 7 FIGURE 23: PRESSURIZER PORV Ftow RATE _

l 2s.am - -

o 302 7 3 o e

n .

25.c00 y l

.- 3

---zo s - -

T l

lu w

a ts.cm - -

N m

a .

1 .

O tc.cx - -

\

w k _4 N

s.cac 1 20.cca 25.cca "

15.0cc 2 C CUU s.cca Io.cca

_ o.cca TIME (X10 . ) sec PORV MU ON 1 ORNS PR I , n, 44

r, . .. .

86-1126460 00

.m.

~

1.SCO -

FIGURE 24: PRESSURIZER PORV EXIT GUALITY 1.dCD - .,

f 1.200 -

1.cac - .

i

/

. sac-l .-

n a

. sac -

tu CL c_ .

.a -

I

.20a - -

m ... . ,

g I

)

c.cac -

o.cca s.cca Io.aca 1s.aca 2c.cca 2s.acc, 30.cca 3s ..

TIMEC X 10 ) see PORV MU ON 1.ORNS

>c-i d, d, 47 . .- ._ .. . - - ..

86"1126460 00 s

72 5GG -

FIGURE 25: LOWER PLENUM LIQUID VOLUME -_

72.032 - -

. 71 5CG - - .

C x

.6 71.GDG - -

7 -

7a.sca - -

m W

u.:

r 3 70.C00 -

s C

C o

O SS .5GI - - -

I ss.cm -

I 1

( ,

Ww ss.5cc 1s.aca m.aca es .cca,, m .cca c.aca 5.aca 1c.cca T IME( X 10 ) SEC PORV MU ON 1.ORNS 9 -

r- -

..___ sa w ..

Ad

-~~ . - _ . . _ _ . , , -

o. ,.

86 _1.126460 00 . _ . _

sa.ccc -

FIGURE 26: CORE Liouta VOLUME se.cco : -

es .cco --

c X

1 84,000 - - .

1-82.CCG - - -

m .=

e

'P . .

w r

C SC .CCU - -

a f, C

o o

O 7s.cco - - -

j, J

7s.cca -

l-

&V l l l 74.0C0 . l 0 D.CCU 5.00U 10.0C3 15.000 20 003 3 5C0 '!0.000 2

' TIME (X10 ') see PORV MU ON 1.0RNS - , m- r

  • j o'.. ,s * .

i

. I 86-1126460 00 l

SC.CCC -

FrGURE 27: Hor LEG Ltouto VotuMe ,

3,ggg . .

2 BC.CCG - -

C X

w .

1 SU.CCC - -

2.

1 .

t 40.C3 - - r

M E .

>- =

4 LA-  : ..

i 30.CCC - -

C

g

._. m .CCa - - .

- g 1 10.C2 - -

a C.CCC i

5 0.QCQ $.CCC 10.CCG 16.0C0 3 .0C0 25.CCQ 30.QCQ 5  ;

TIMECX10**1 sec PORV MU ON 1 0RNS ,. ,

ame

-- e . . - - - _ - - . , , _ _ _ _ , _ _ _ . _ _

, _ . , . , , , _ . . , _ , _ _ , . _ , , _ _ , , , , ,g. , , ,_ ,

. .t.

86 1126460 00 t

SC .CCC FIGURE 28: UPPER SG LtouIo Vot.UME 70.CCC - -

SC.CCC - -

3 w ,

r SC.CCC - - 4.

h 4 - $ '

r: ..C .CCC -  ;.

k .-

w s

!i '

2 5 m.CCC - .

ib- .

!3 t]

3.CCC - -

r

.J i

i IC.CCC - - i, l

r C.CCC C.CCC 5.CCC 10.CCC 15.GCQ 20 0C0 25.GCQ, x .CCQ x .Q:

TIME (X10 ") sec PORV MU ON ORNS 1

__ w qpg; d

c .*.

86-l126460. ._ . _ . - - -

00 ts.cCa -

, FrGURE 29: LowEn Ss LrouIo VOLUME i 14.000 - -

i i

~ ~ ~ -- -- . .. . . . . . . .

12.0C0 - - l 13

x ^

'~~

\

La.QCG - -

t-

.' S.GCC - '

.v) .
A .-

1 e

(

13 g,aco - -

!d i >

3 ,

i: f. 4.000 - -

J 2.C00 - -

C.CCU  :  :  :

- 0.000 5. E 10 000 15.0C0 23.0C0 25.000 30 0C0 35.Ut

~ 2 4 TIMEC X10 'l sec PORV MU ON 1.ORNS - - -

r

-___ _ __ _ _ _ _ ___ ___ _ _ _ s 1__ _ _____ _ m _ m __ _ _ _ Q _ _ _

.. O0"l126460.00._

40.CCC -

t FIGURE 30: UPPER DOWNCOMER LIo_uIo VOLufiE 25.000 -

20.CCC - -

3 x -

25.CCG - -

1

.?

~_

t

~

23.00G - - i'.

.cr: i k .

s ts.cca - -

k

8 -

,,,)

LG.CCG

\

w ~

s s.cac -

s g . . .

.~

' C'" ts'.cca Tc.ccc 25.CCU,, 3a.cca 35 ..

a .cca 5.cc3 ta'.aca TIME ( X10 ) Sec ,

PORV MU ON 1 ORNS _. , -

\,'Jr'. m_ . . -

c3 l

86-1126460 00

~

st.ccc - FIGURE 31: LOWER DOWNCOMER LIQUID VOLUME sz.cco - i l'

sc a - - .

4 ss.am - -

t

.s.cm - -

n .

1 .

5J sr.cco - -

2 t N

3 sz.ccc -- - t N

J sc.cac -

o" ..cc s.ccc ic.za tLxc e.ccc W.xc. a.mc d.x TIME ( X10 ) SEC I PORV MU ON 1.ORNS _

~ - - . . . .

u _ -

86 1126460 .00. .

74.0C0 --

FisuRE 32: Hor LEs TEMPERATURE 72.tXII - -

.; 70'.003 - -

O i

x - '

CJ.CDD - ,

. I i .

m SS.CCC - ,..

~

w .- -

g 1 -

2 w

54.003 - -

w w

52.0C0 < ,

30.000 - -

1 1

1 I

A g n

~'

15.000 20.003 25.UC3,, 30.0C0 5 ,

O.CCC 5.CCU 10.000 TIMECX10)Sec ,

PORV MU ON 1 0RNS _ .  !

\ -__

' ;,__ 3  !

.i t... _ .

86-1126460 .00 ..

j BCG Y FisunE 33: SG UPPER PLENUM L!au!D VOLUME 70 0CD -

50.CCD -

1 a a 50.0CD -

l  :

t

a- 'c i 40.0CD - - - -
r? .
6 3

30.CCD id > .

l 1 ic

' asse 3

_ 20.CtD

.j -I i

l I

10.CCD I

1 k

\ .

. CD 2.

20.CCC 25.CCO 0 *# 15.003 2 10 0c0 0 0cc 5.CCD TIMER.X10 .)Jac J

PORV MU ON 1 ORNS K, 2L

l i'..,..

i .

l 80[.1126460 00

!s.

12 5x --

l _ _ _ . .

FIGURE 34: SECONDARY SG PRESSURE ,

l 4 11 5C0 -

O x

w .

tl .M - - .

u .

[

e-10.500 j .

u2 ,

c I tc.m - >

c.o '

9.5f2 -

9 000 >

, . 3 5CG 20.CCQ 25.QCQ, 30.ccQ 3 0 0C0 $.QCQ 10 000 15.QCQ T IME t X 10 ) sne.

PORV MU ON 1 0ANS -

qu ,.

l <

l

_m _ _ . D

,.s .. -

86-1126460 00 25 CCU -

FIGURE 35: CORE PRESSURE Fressunast mot SAFET'tES men 7bav OPv4 _

25.OCE.- -

n  :.

g 24 000 - - -- -

o

. X

~

4 23 000 - -

f 22.CDC - -

g .

U3 c 21.CCD -

s g-u.s W 20.CCC - -

ts.cco - -

18.CCD  :  :

O.M 5.0C0 10.0C0 15.0C0 T.CCD 25 0C0, 30.0C0

.._ T IMEC X10 ) sac 1 0ANS 1.MU PORY SG -

\ a-, \

gg

,.w .

86 1126460 00 -

RGURE 36: VESSEL MIXTURE LEWL 31.5 -- .. = . . . . . - - - - . . - - - -

29.5- -

.27.5 - -

g 15.5 - -

g l '

s 23.5- -

,i 4 .

t g -

S s .a.r-N

/T,f- -

II '

1

/

17.$~  ; '

[ygg .

-p 3.rh JG.3Cd IS.GCd 20.3Ch 7.5.000 , 10 00h '5.DCh TIME ( X10 ) S ec-1.ORNS 1 MU PORV SG

, r

\. .

p

. - 86-1126460 00 ss.Cac -

FIGURE 37: PRESSURIZER MINIMUM l.EVEL so.aan - -

4s.am - -

40.CW - -

! s 3s.Ca0 - -

A ,

a

. w . . .

W 30.0E - -

c o

O -

2s.cao -. .

x

. s ., , -

m .cac --

i .

s ts.Cao
:

r.0CD 5.0C0 10.0C0 1s.0C0 20.0C0 is.CC3 30.0C0

. f_ . . ____ TIMECX10*')Sec.

1 ORNS 1.MU PORV SG sr m .2

s.. .

S 86-1126460 00

'C 05 --

FIGURE 38: Ftow RATE LBM/SEC PRESSURIZER CODE SAFETY VALVES as.coc  :,

30.cna - -

o . .

x 25.000 - - -

u m.coc - -

{.

?. ,.

u w

Q 15.C2 - .

m a

4 s .

3 a Ic.cac - -

l w .

s. coa - -

c.coe  :  :

O.000 5.000 10 000 15.QCQ m .CCQ ;5.G00 30.00g s, 2

. . . . . TIME (X10 .yy,c, 1 OANS 1.MU PORV SG 3 0 -~ '

45

86

  • 1J 2 64 6 0 ,,

00 ,

'c .cm -- FIsuRE 39: Flow RATE THROUGH PORV

=

35.002 - ,

. , 30 003 -

C l

25.000 -

?.

20.Ct%I - - i I' [I u - .

, W M

N 15.003 - -

to '

l l s

E a 10.00C - -

L -

e vi 5.CIII-

~

- O -

1 .

C.0III '

0 000 $.DCQ 10.Qc0 15.acg m ,gcg f, gag 3g',ggg y

. T. . . -

TIME ( X10 ) sec 1 ORNS 1.MU PORV SG 3 _! - i 4.2 4,, d.

a n a . ..

86 1126460 00.,

t . scc -

F'GURE 40: QUALITY OF FLOW RATE THROUGH PORV t .G - -

l t .20a - -

t .a - .

1 l

.sCa -

{.

>- 4 -

t -

l .sco - -

tu lC c.

.a. .

'[

'y'

,g . . ' l l k c.cae - - .

. k . . .

! O.000 5.0C0 10 0C0 15.000 20.0C0 25.000 , 30 0C0 $.

TINE ( X10 " ) 5sc 1-0ANS 1.MU PORV SG D m z z-l 43

.s s .

86-1126460 00 _ _ . . . . _ . . _ _ - _ _ , _

74. E -- -

FIGURE 41: LOWER PLENUM LIQUID VOLUME ,

73.cCc - -

72. cal - -

o

- 3 x

7 L .cCD - -

  • 7c.cGI- -

(

o -

r .-

s

'i

.. i 5, o.cac - -

'i '

5 , -

's i

\ b liit .

!3_ sa.cCo - -

J . ,

l r

I 4 ,

s.7. @ --  !

1 i

i

ss.cac  :  :  : +- i c.cca s.aca Ic.aca ts.aca 2c.aca :s.aca,, m.aca ss.ac T IME( X10 ) sec  !

1.ORNS 1.MU PORV SG ,

q

l

! '.

  • g #.. -

8._6-1126460 00 11.CCC -

l FIGURE 42: CORE l! QUID VOLUME 10 532- -

  • = . .

l O

l l

10.C00 - - _ _ . . . . -. , _. ._.

)

9.532- -

9.CCC +

1 -

~

s i

5 a.5aa . .

,3 l-J., 8.C32 - -

J '

I

^

7.522 -

l y ,y . . . . . . .  ;

c.!CD 5.DCU 10.000 15.0C0 20.0C0 25.0C0 30.0C0 35.00.

TIME (X10**) sac 1.ORNS 1.MU PORV SG y \P~~

- - - . 2

8.6, 1126460 00 - -.-

10.000 --

FIGURE 43: HOT LEG LIouto VOLUME 3 0C0 - -

8.0C0 - -

3 7 000 - -

  • S CCII - -
7 - ,;-

t <.

i s .

~

d 5 s cco - -

J

.3

'3 I

5 3

4.G - -

\\ \g J -

\

{

~%..

3.E - "

\

2.C00 0.000 5.0C0 10.000 15.003 E OCG ' -25.000 30 000 35.0C1

~

~-

TIME (X10 2

.) ,,c 1 ORNS 1 MU PORV SG - , -

. 1 '

\ .ww i

_.86-1126460 .

00 so.cca -- FIGURE 44: UPPER SG LIQUID VOLUME 4

E.M - -

70.CIII - -

0 -

x w

4 so.cac - - ~

'y I .

1 i i

c i so.cac - -

}.

.n -

,i

_ e.

)b $ f y

o c.cac - -

8:> *

'3 g .

m.cx - -

a .

20.cac - -

a.aaa s.aca 1b.aca 15.0c0 20.000 2s'.aca i.aca i.ac TIMECX10 ,,)Sec -

4 452 1 ORNS 1.MU PORV SG _ . , _

y \'

~

-. d.

. i

... s..

- - - - - 86-1126460 00

n. coa --

FIGURE 45: LOWER SG Ltoura VOLUME 7s.cao - -

7s.cac - -

a a

74.CCU - -

b 73.000 - -

2 -

a e -

c

o
J n.caa - -
o 2

.o l 3 71.Gl%I - -

a

~ 1

\

i 20.cm - -

ss.a m  :  :  :  :  :

0.000 5.0C3 10.003 15.003 20 003 25 0C0 .000 5 00 2 l

, TIME (X10 ')Sec 1 0ANS 1 MU PORV SG s, c 5 '

a -

l l

o

., s,.

8 6 - ) 1 E!4 6 0 . 0 0._

e cco " FIGURE 46: UPPER DOWNCOMER LIQUID VOLUME 35.GCD - -

m. coa - -

o X

w 25 000 - -

1 N

zo.cca - -

i m L F

i.

o a 15.caa -

.o Q

8 ic.coc - -

a .

5.032 - - ,

f.

c,cca  :

bs4- -

0.000 5.0C0 10 0C0 15 000 20'0C0 25'0C0 30'0C0 L OC 2

TIMECX10 .)3,c 1ORNS 1 . M U P O R V S 0-

\. J

86-1126460 00 es.coc -

FIGURE 47: lower DOWNCOMER Liourn VotuME 8C.GCU - -

. 7s.cao - -

Io x

i-70.cos - -

1 Es.00G - -

i m f -

+

m .

w .

r '

CJ 50.CT.- -

l lc I l> ,

c Ig 9

,\ .

O t I L C Es.00G - -

f J

'a .

ti i, f [p I ;

t--

J-So.cDa . .

45.C00 c.aca s.aca Io.aca Is.aca 20.aca 25.aca 30 0c0 as.ac TIME (X10**}sse 1.ORNS 1.MU PORV SG y,,E

, w '..

[ .

86 1126460 00 sc.cco .. FIGURE 48: SG UPPER PLENUM LiouIn VotuME 70.cca - -

' SG.cCc - - .__ ..

x so.cao - - .

m,cca . . =

n u a_.

.o -

C D: So.clXI - -

o c .

a .

3 20.c00 - -

10 6 - -

c= . , [ $1 .

Lo o.oc , m.. is. . m'. = e.

c

m. coa m.m

~ ~ -

TIMEt X10 1 sec 1.ORNS 1.MU PORV SG 7/

\J__ -

. 2L

[

= =o y 86 1126460 00 FIGURE 49: Hor LEG IEMPERATURE S7.CCC -

SS.CCC - -

S5.0c0 - -

3 x ,

S4.CLD - - *

.: S3.CCC - '

a r .

O I

E S2.GIE -

P i=

M g -

8 St.atn -- .'

z .

'\

SU.CQI -

/

Ss.ctu o.cca s.cca Ic.cca 1s.aca 20.aca 2s.cca,, so.cca as.ac TIMEC X10 ) sac 1 ORNS 1 -MU PORV SG

,c-yg \ w, w[

( -

- 4 ; 'u . -

86- , - 1126460 00 ism - FIGURE 50: SECONDARY SG Liouto VOLUME 14 6 - -

. 12.ccc --

2 tom -.. .

C-e.cac - -

~

1 3

J s.ccc - -

J 3 4.cac - -

J .

%~ .

w_'

zm- -

l o.aca s.cca Io.cca 15 0c0 20.aca s .aca,, .30.cca ss.ac:

__ TIMEC X10 ) SEC 1-ORNS 1-MU PORV SG ,

, \,.g.-,,_

u g

73

4 86 1126460 00 12.sco -- FIGURE 51: SECONDARY SG PRESSURE 12.C00 -- ,

ll .5Co --

3 a

it .cac - -

t 10.50c -' - -

o L ' 10.CQ2 - -

a e

a 0

0 i s. sac - - -

s.cac - -

33g c.aca s.cco Io.aca is.cco 2c.aca 2s.cca m .cca as.cc

. TIMEI X10 *' ) Sec 1 ORNS 1 MU PORV SG

\0]E 6 g 74