ML20115D215

From kanterella
Jump to navigation Jump to search
Rev 1 to Design Rept for Brunswick,Units 1 & 2,Core Spray Sys N5 Nozzle Safe-End,Thermal Sleeve & Transition Piece Replacement
ML20115D215
Person / Time
Site: Brunswick  Duke Energy icon.png
Issue date: 01/31/1991
From: Cofie N, Mattson R, Pytel M
STRUCTURAL INTEGRITY ASSOCIATES, INC.
To:
Shared Package
ML20115D187 List:
References
SIR-89-036, SIR-89-036-R01, SIR-89-36, SIR-89-36-R1, NUDOCS 9607150058
Download: ML20115D215 (106)


Text

1 l

)

Report No.: SIR-89-036 l

Revision No. 1 i

. Project No.: CPL-11Q j January, 1991  :

1 I

DESIGN REPORT FOR' BRUNSWICK, UNITS 1 AND 2,  !

CORE SPRAY SYSTEM N5 NOZZLE [

SAFE-END, THERMAL SLEEVE, AND i TRANSITION PIECE REPLACEMENT ,

Prepared for-l Carolina Power & Light Company Prepared by:

Structural Integrity Associates, Inc.

~ '

l Prepared by: . . DateMgM/[/M/

l R. A. Mattson Date: / - #Y ~ 8/

I N. G. Cofie d Date: /-/4 - 9/

M. L. Pytel p b Date: / '/ N'M J. F. Copeland 9607150058 960701 .

PDR ADOCK 05000324 StructuralIntegrity Associates, Inc.

P PDR ,

l l

~ _. _.

l I

REVISION CONTROL SIIEET l

. REPORT NO: SIR-89-036 TITLE: DESIGN REPORT FOR BRUNSWICK, UNITS 1 AND 2, CORE SPRAY SYSTEM N5 NOZZLE SAFE-END, TIIERMAL SLEEVE, AND TRANSITION PIECE REPLACEMENT Name: R. A. Mattson Initials .

NGC.,

Name: N. G. Cofie Initials Name: Initials Name: Initials Pages Rev. Prepared Accuracy Criteria Remarks by/Date Check by/ Check Date by/

Date g/ft NG c.  % C-A Complete revision to

';_" 9 yg shy /9/ th4/3/ Revisicm 0 I

i n 2-1 l' 3 3-4 1 4 4-7 1 5 5-43 1 6 6-19 1 l 7-1-7-6 1 8 8-11 1 9-1 1 p

,I q 10-1 l 1 l

l f StructuralIntegrityAssociates,Inc.

r .

I REVISION CONTROL SHEET (CONTINUATION) l REPORT NO: SIR-89-036 TITLE: DESIGN REPORT FOR BRUNSWICK, UNITS 1 AND 2, CORE SPRAY SYSTEM N5 NOZZLE SAFE-END, THERMAL SLEEVE, AND TRANSITION PIECE REPLACEMENT Pages Rev. Prepared Accuracy Criteria Remarks by/Date Check by/ Check Date by/

Date A A-20 1 M ^' "

'//8/

^ ' " Complete revision B-1, B-2 1 //#/d/ '/4/3/ to Revision 0 C C-3 1 D D-76 1 E E-14 1 F F-3 1 4 4 "

l h StructuralIntegrityAssociates,Inc.

i l

l EXECUTIVE

SUMMARY

l Carolina Power & Light Company (CP&L) is i 'n the process of upgrading the materials in the core spray system at the Brunswick Steam Electric Plant, Units 1 and 2, in order to mitigate intergranular stress corrosion cracking (IGSCC). In forthcoming plant outages, the core spray system safe-ends will be replaced with material which is less susceptible to IGSCC than that currently in place. Structural Integrity Associates was

contracted by CP&L to - provide the design and stress analysis which verifies the adequacy of the replaced safe-ends, transition pieces, and those portions of the core spray inlet nozzles which will be reduced in thickness in order to remove existing Ni-Cr-Fe (Inconel) material. l This Design Report provides a complete set of stress analysis l calculations establishing that the design, shown by the drawings i used for construction, complies with the requirements of the Design Specification and the rules of the ASME Code,Section III.

l Detailed finite element analyses were performed for pressure, thermal transient, and attached piping mechanical loadings.

Stress intensities were then conservativ e_1.y determined, and '

l compared against ASME Code allowable va?.ues for primary and primary plus secondary effects. In all cases, the reported l 1

values of stress intensjty are less than or equal to their e corresponding ASME Code allowable values. '

.w i

A detailed fatigue evaluation was also performed for the austenitic stainless steel, low alloy steel, and carbon steel materials. For all materials, the cumulative fatigue usage i factor was conservatively calculated, and was less than the ASME i Code allowable value of 1.0. l l

In conclusion, the proposed replacement safe-end and transition piece, and nozzle modification satisfy the requirements contained

. in the Design Specification and the ASME Code.

I SIR-89-036, Rev. 1 i f StructuralIntegrityAssociates,Inc.

l CERTIFICATION l

l I, the undersigned, being a registered Professional Engineer competent in the applicable field of design, and using the certified Design Specification identified below as a basis for design, do hereby certify that to the best of my knowledge and belief this Design Report complies with the requirements of the ASME Boiler and Pressure Vessel Code,Section III, 1986 Edition.

l l Carolina Power & Light Company, " Design Specification for Core Spray System N5 Nozzles, Safe Ends, Thermal Sleeves and Transition Pieces", Specification No.

l 248-157, Revision 1, December 1, 1989.

Certified by: R. A. Mattson, P.E.

Registration No.: C-25664 State: CA Date: .d4MJAdf' /2, /99f/ l l

g0 FESS /0/

i %, $ ,

~."$1.). 3 s -

n

.C 25664 %

Or gj@

i i

I

(

SIR-89-036, Rev. 1 11

{ StructuralIntegrityAssociates,Inc.

l l

1 TABLE OF CONTENTS l

Section Page

1.0 INTRODUCTION

. . . . . . . . . . . . . .... . . . . 1-1 2.0 DESIGN CRITERIA . . . . . . . . . . . .... . . . 2-1 3.0 COMPONENT DESCRIPTION . . . . . . . . ....... 3-1 4.0 LOADS AND LOAD COMBINATIONS . . . . . .... . . . 4-1 i j

4.1 Loads . . . . . . . . . . . . . . ....... 4-1 1 4.2 Load Combinations . . . . . . . . .... . . . 4-2 5.0 THERMAL TRANSIENT ANALYSES . . . . . . ....... 5-1 5.1 Thermal Transients . . . . . . . ....... 5-1 5.2 Analytical Model . . . . . . . . ....... 5-2 5.3 Material Properties . . . . . . . .... . .. 5-3 .

5.4 Thermal Boundary Conditions . . . .... . . . 5-3 5.5 Analyses Results . . . . . . . . ....... 5-3 6.0 MECHANICAL LOADS / PRESSURE ANALYSES . . ....... 6-1 6.1 Attached Piping Mechanical Loads .... . . . 6-1 6.2 Pressure with coincident Temperature Loads . . 6-2 7.0 CODE STRESS EVALUATION . . . . . . . . ..... . . 7-1 7.1 Design Load Combination . . . . . .... ... 7-1 7.2 Level C Load Combination .. . . . .... ... 7-2 7.3 Test Load Combination . . . . . . .... ... 7-3 7.4 Level A/B Load Combination . . . .... ... 7-3 8.0 ' CODE FATIGUE E7ALUATION 8-1 )

,1 1

9.0

SUMMARY

. . . . . . . . . . . . .. . .... ... 9-1 I

10.0 REFERENCES

. . . . . . . . . . . . . . .... . . 10-1 APPENDICES j APPENDIX A MECHANICAL LOADS EVALUATION APPENDIX B PRESSURE LOADS EVALUATION I APPENDIX C PRIMARY STRESS INTENSITY EVALUATION APPENDIX D THERMAL TRANSIENT EVALUATION APPENDIX E RANGE OF PRIMARY PLUS SECONDARY STRESS  !

INTENSITIES EXCLUDING THERMAL BENDING APPENDIX F THERMAL STRESS RATCHETING i l

SIR-89-036, Rev. 1 iii f StructuralIntegrityAssociates,Inc.

LIST OF TABLES Table Pace )

4-1 Core Spray Piping Reactions . . . . . . . . 4-3 1

l 4-2 Load Combinations . . . . . . . . . . . . 4-4 I

! 4-3 Stress Criteria For ASME Code Class 1 Components . 4-5 4-4 Pressure Transients . . . . . . . . . . . 4-6 4-5 Thermal Transients . . . . . . . . . . . 4-7 l

l 5-1 Material Properties at 300*F . . . . . . . . 5-8 5-2 Heat Transfer Coefficients . . . . . . . . . 5-9 5-3 Time Steps (AT) Used for the Emergency Shutdown l

Transient . . . . . .

,. . . . . . . . 5-10 l

5-4 Time Steps (AT) Used for the Loss of Feedwater Pumps Transient . . . . . . . . . . . . . . 5-11 l 5-5 Time Steps (AT) Used for the Startup/ Shutdown l Transient . . . . . . . . . . . . . . 5-12 6-1 Maximum Stress Intensities - Attached Piping Mechanical Loads . . . .. . . . . . . . . 6-3 6-2 Maximum Stress Intensities - Operating Pressure . . 6-4 6-3 General Primary Membrane Stress Intensities -

Design Pressure . . . . . . . . . . . . 6-4 i

7-1 Design. Lead Combinatica - Primary Stress u  !

Intensity Evaluation .- . . . . .. . . . . 7-5 I

7-2 Level C Load Combination - Primary Stress Intensity Evaluation . . . . . . . . . . . 7-5 7-3 ' Test Load Combination - Primary Stress l Intensity Evaluation . . . . . . . . . . . 7-6 I 7-4 Level A/B Load Combination - Primary + Secondary l Stress Intensity Evaluation . . . . . . . . 7-6 l

l 8-1 Maximum Ranges of Stress Intensity for Attached Piping Mechanical Loads + Pressure, and Thermal Transients . . . . . . . . . . . . . . 8-5 8-2 Condition A: Emergency Shutdown Transient - 3 Cycles

Austenitic Material . . . . . . . . . . . 8-6 SIR-89-036, Rev. 1 iv h StructuralIntegrityAssociates,Inc.

1 LIST OF TABLES  !

(Concluded) l Table Pace l

8-3 Condition B: Startup/ Shutdown Transient - 117 Cycles Austenitic Material . . . . . . . . . . . 8-6 8-4 Condition C Loss of FW Pumps Transient 30 Cycles Austenitic Material . . . . . . . . . . . 8-7 8-5 Condition D: Test Condition - 310 Cycles  !

Austenitic Material . . . . . . . . . . . 8-7 l 8-6 Fatigue Evaluation - Austenitic Material . . . . 8-8 8-7 Condition A: Emergency Shutdown Transient - 3 Cycles Carbon and Low Alloy Steel' Materials . . . . . 8-9 8-8 Condition B: Startup/ Shutdown Transient - 117 Cycles Carbon and Low Alloy Steel Materials . . . . . 8-9 8-9 Condition C: Loss of FW Pumps Transient - 30 Cycles Carbon and Low Alloy Steel Materials . . . . . 8-10 8-10 Condition D: Test Condition - 310 Cycles Carbon and Lcw Alloy Steel Materials . . . . . 8-10 8-11 Fatigue Evaluation - Carbon and Low Alloy Steel Materials . . . . . . . . . . . . . . 8-11

)

> \

v l

i i

l 1

i SIR-89-036, Rev. 1 v h StructuralIntegrity Associates, Inc.

b I i  :

l LIST OF FIGURES  !

l j Ficure Pace l 3-1 Unit 1 Safe-End Detail . . . . . . . . . . 3-2  :

i l 3-2 Unit 2 Safe-End Detail . . . . . . . . . . 3-3 l

3-3 Uncorroded Geometry for Bounding Analyses.Models . 3-4 l

l 5-1 Description of the Emergency Shutdown Transient . .. 5-13 5-2 Description of the Loss of Feedwater Pumps Transient . . . . . . . . . . . . . . 5-14 ,

5-3 Description of the Modified Startup/ Shutdown i Transient . . . . . . . . . . . . . . 5-15 i 5-4 Areas / Sections Examined for Thermal Transients . . 5-16 l

5-5 Emergency Shutdown Time-Temp. Plot - Section 8 . . 5-17 l

5-6 Emergency Shutdown Time-Temp. Plot - Section 12 . . 5-18 5-7 Emergency Shutdown Time-Temp. Plot - Section 15 . . 5-19 '

j 5-8 Emergency Shutdown Time-Temp. Plot - Section 17 . . 5 t j 5-9 Emergency Shutdown Time-Temp. Plot - Section 20 . . 5-21 5-10 Emergency Shutdown Time-Stress Plot - Section 8 . . 5-22 i 5-11 Emergency Shutdown Time-Stress Plot - Section 12 . 5-23 r 5-12 En ergency Shutdown Time-Stress Plot.,- Section 15 . 5-24 ,

-r t l 5-13 Emergency Shutdown Time-Stress Plot - Section 17 . 5-25 i i

5-14 Emergency Shutdown Time-Stress Plot - Section 20 . 5-26 i 5-15 Loss of FW Pumps Time-Temp. Plot - Section 8 . . . 5-27 l 5-16 Loss of FW Pumps Time-Temp. Plot - Section 12 . . 5-28 5-17 Loss of FW Pumps Time-Temp. Plot - Section 15 . . 5-29 -

5-18 Loss of Di Pumps Time-Temp. Plot - Section 17 . . 5-30 ,

l 5-19 Loss of FW Pumps Time-Temp. Plot - Section 20 . . 5-31 5-20 Loss of FW Pumps Time-Stress Plot - Section 8 . . 5-32  !

5-21 Loss of FW Pumps Time-Stress Plot - Section 12 . . 5-33

{

SIR-89-036, Rev. 1 vi f StructuralIntegrityAssociates,Inc.

i

1

. l l

l LIST OF FIGURES (Concluded)

Ficure Pace 5-22 Loss of FW Pumps Time-Stress Plot - Section 15 . . 5-34 5-23 Loss of FW Pumps Time-Stress Plot - Section 17 . . 5-35 5-24 Loss of FW Pumps Time-Stress Plot - Section 20 . . 5-36 5-25 Startup/ Shutdown Time-Temp. Plot - Section 17 . . 5-37 5-26 Startup/ Shutdown Time-Temp. Plot - Section 20 . . 5-38 5-27 Startup/ Shutdown Time-Stress Plot - Section 8 . . 5-39 .

5-28 Startup/ Shutdown Time-Stress Plot - Section 12 . . 5-40 5-29 Startup/ Shutdown Time-Stress Plot - Section 15 . . 5-41 5-30 Startup/ Shutdown Time-Stress Plot - Section 17 . 5-42 5-31 Startup/ Shutdown Time-Stress Plot - Section 20 . . 5-43  !

6-1 Mechanical Loads / Pressure Analyses Finite Element Model . . . . . . . . . . . . . 6-5 l

6-2 Detail of Area A - Sheet 1 . . . . . . . . . 6-6  ;

6-3 Detail of Area A - Sheet 2 . . . . . . . . . 6-7 )

6-4 Detail c" Area A - Sheet 3 . . . . . . . . . 6-8 i

6-5 Detail of Area A - Sheet 4 . . . . . . . . . 6-9 6-6 Detali of Area B . . . . . . . . . . . . 6-10

]

(' 6-7 Detail of Area C - Sheet 1 . . . . . . . . . 6-11 6-8 Detail of Area C - Sheet 2 . . . . . . . . . 6-12  !

l 1 6-9 Detail of Area D . . . . . . . . . . . . 6-13 6-10 Detail of Area E . . . . . . . . . . . . 6-14 6-11 Detail of Area F . . . . . . . . . . . . 6-15 l 6-12 Detail of Area G - Sheet 1 . . . . . . . . . 6-16 6-13 Detail of Area G - Sheet 2 . . . . . . . . . 6-17

,' 6-14 Detail of Area G - Sheet 3 . . . . . . . . . 6-18 6-15 Detail of Area G - Sheet 4 . . . . . . . . . 6-19 SIR-89-036, Rev. 1 vii f StructuralIntegrityAssociates,Inc.

l.

l 1.O INTRODUCTION i

l Carolina Power & Light Company (CP&L) is in the process of l upgrading the materials in the core spray system at the Brunswick l Steam Electric Plant (BSEP), Units 1 and 2, in order to mitigate intergranular stress corrosion cracking (IGSCC). In forthcoming plant outages, the core spray system safe-ends will be replaced l with material which is less susceptible to IGSCC than that i currently in place. Structural Integrity Associates (SI) was contracted by CP&L to provide the design and stress analysis which verifies the adequacy of the replaced safe-ends, transition pieces, and those portions of the core spray inlet nozzles which will be reduced in thickness in order to remove existing Ni-Cr-Fe  !

(Inconel) material.

I This Design Report provides a complete set of stress analysis l calculations establishing that the design, shown by the drawings used for construction, complies with the requirements of the l Design Specification and the rules of the ASME Code,Section III. l This Design Report is applicable to both Units 1 and 2, and i

addresses the geometrical differences between the two units in a manner which satisfies the pertinent requirements for each.

This Design Report has been organized into the following sections:

l Design Criteria Component Description Loads and Load Combinations Thermal Transient Analyses Mechanical Loads / Pressure Analyses Code Stress Evaluation Code Fatigue Evaluation Summary j -

References Appendices i

SIR-89-036, Rev. 1 1-1 f StructuralIntegrityAssociates,Inc.

The Design Criteria section identifies the applicable Design Specification and industry codes and standards. The modified safe-end is described in some detail in the section titled Component Description, along with a discussion on the geometrical differences between the two units. The pertinent loads and load combinations are defined in the Loads and Load Combinations section. Also, since the allowable stress intensities vary with the particular load combination being considered, the allowables are discussed in this section. The actual stress analysis calculations and Code evaluations are presented in the next four sections Finally, a Summary and list of References are presented in the last two sections of the main body of the report. The Appendices include detailed analysis calculations.

SIR-89-036, Rev. 1 1-2 f StructuralIntegrityAssociates,Inc.

I l

l i

2.0 DESIGN CRITERIA  !

Carolina Power & Light has prepared and certified the Design l

Specification (Reference 1) required by Section III of the ASME Boiler and Pressure Vessel Code (Reference 2). This Design l Specification sets forth the criteria for the design, fabrication, examination and testing of the nozzle safe-ends.

Where appropriate, sections of the Design Specification will be referenced in this Design Report.

l i

( The applicable industry codes and standards are specified in Section 2.2 of the Design Specification. The safe-ends are specified as ASME Class 1 components. The rules of Subsection l NB , Subarticle NB-3300, of Section III of the ASME Code, 1986

  • t Edition, apply.

I I

l l

I L

- .c a . : .. -  ;

J l

l l

i l

4 4

SIR-89-036, Rev. 1 2-1 l

f Structure!integrityAssociates,Inc.

- _. -._. - . _ . _ _ _ . _ . ~ _ _ _ _ _ _ . _ _ _ _ _ - . . _ _ _ _ . _ _ . _ _ _ _ _ _

3.0 COMPONENT DESCRIPTION The safe-ends are Type 316 Nuclear Grade, low carbon, stainless steel forgings which form the transition between the core spray system piping and the reactor vessel nozzles. The basic dimensions and configuration are as established by the Design Specification, and as illustrated in Figures 3-1 and 3-2. The geometrical differences between the two units are as follows:

I e Unit 1 currently has weld overlays on the I nozzle / safe-end. weld which will be removed. This will result in a reduced thickness of the base material at the weld joint.

  • The transition piece for Unit 1 will be replaced, whereas the Unit 2 transition piece will remain intact.
  • The replacement safe-ends are somewhat different on the 1 j

thermal sleeve side (see Figures 3-1 and 3-2). I e The thermal sleeves beyond the safe-end connection welds are of different geometry, and Unit 1 has a locking device attached to the inlet nozzle.  ;

Therefore, a conservative geometry has been developed to envelope the maximum stresses from each unit. This geometry, along with anticipated modifications- during installation which have been discussed with CP&L, are incorporated in Figure 3-3 for ,use.in  !

-design analyses. In the design analysesf~! corrosion- allowances, in accordance with the Design Specification, were applied to reduce.the thickness of relevant surfaces shown in Figure 3-3.

I SIR-89-036, Rev. 1 3-1 h StructuralIntegrity Associates, Inc.

q

tn F-4 7

oo I4.435 '(REF) y 5 75"(RET)

~1 l

, 20*t2*

g 4.12*(R EF) .I 3 825'(REF) !

  • 18 5*!SI DE T. 'A' E

" (DC T.'S' / s 'f .

I

/-

ls f g

/

  • h rua anons,s __ /

\I _

/ j's, I

4s 12-s e^% i7 !

s ,/~ , x I .l - s ,. i l

l .25 2 ce D '0W (d' L.od c.cos 4y ,

ny . . . . i4* Hu -

" ami r

.  :- y - -

s s s es ner. A 3 3 * .'

+

J' (DE T.'B' OPPOSITE HAND)

= -

a a =

,. ,. ie y

= s 6 i w

J.1:'

noTas: PURGE SEE LL-0+523 FOR DEWLS MT5HI (2 2 TOTAL) O.b

i. au. - - Aar em Nc=Es. ,,, ( } ,
4. ALL CDfutEA6 g EDGES To SE .it RAcads (ave.) g a* i;;- i s 1 MATERIALS CP4 L SAEc RCATiest 144 853 (346 NG55)
  • E ?. f #
4. .lueFACE F6446st
  • E
  • A outsion suaracts: las aus et BETTER $ ,y 30 DE h 'C' P.M.

Insion searACES S 32 * * *

"[ ,g I'89-092 Eno Fact adaFAcu.a. aso a = = 9

s. Tar caps. NoecArno nErrarmcc AAE rot OEll6N INPO. THE FINAL OsM$. WILL BE b CAROLINA POWER & LIGHT CO.

l

$ macHsNgo to Suit Acnns. FIELO ComotriONG. 1 0 4 ,

eRON$$ $IEAM fifCIRC PLANT g,,, , ,

E

"- O COAC SPdAf

O'I IU '

_ FIELO MACHsNING DETAIL Z k NLICLEAR SAFETV RELATE 0 ,

A 'N FIRM s5auE K4 PM89dSZ gg f we o.s NonE P I ASME SECT. m

  • CL. t
  • g g l sg.u.89-092-os E **" " ' " "

I/' '~ ~ "" "

LL -4 502) SHT-$

c.

R h

$ Figure 3-1. Unit 1 Safe-End Detail 8

sr

'd t

N N

9

- - _ _ _ _ - _ . - -_________ _-__-___- _ ___________ ______________ - _ _ _ - _ _ _ _ - - _ _ _ _ _ _ _ _ - _ _ . _ - _ _ - - _ _ _ ~

tn N

$2 14.415 *(REF) e g 575"(RET) -

y 4.12'(R E F) 3:25'(RgE) (,20**2* ,

. ,as*g*

m S

fM T.A DET. 8 / pi

\  ! 45*22*

hruu. nous (_e/.-

/- g l g i

s' /

' a f --

,.. p]- -- - l. .25.

  • 003

, ~  % f q

~

] io*(TrP) [ o3o* *.cos

,, s. , , , , .... w=.

M k

  • w  %

= ." 8 $ @

d DET.A 8 I -

? . 2' (DET. B OPPOSITE HAND) 3 2* l'

d t* e t Y

u Pult6E PORT (2 TOTAL)

NOTES: SEE LL4323 SHT. 2

1. ALL DeptdsacNS ARE IN ONcHES. s
2. Att. CDRnEsts 9 EDGES To SE .41 RAORG6' OA:4.)
3. MATERIALe CP4 L SPEC FicATiod 146113 ($4 NG55)
4. SURFACE Flatsd ' A Cu15tDE SURFACE $ t 125 RMS CA BETTER P. M.

IN 5t Or. SURFACE S

  • 32 g9 054 EnD FACE SustFACEE* 2$0
5. Tac o:Ms. iNoacATao RErERENCE APE F0ft CAROLINA POWER & LIGIIT CO.

DEStGN INFD. Tele FINAL DIMS. Wau. BE entmsweca sitans stacinic riAus g MActilMED 70 SunT ACTA FIER.O CONDITIONG . tJNat NO. Z 4 core seau f - - $AFE ENO E Q-Lint -

FIELO MACsisN!N6 DETAll.

Q "h NOCLEAR SAFETV REL4TED A '/ FIRST t55dE FER m 89054  % , gg as m NONE

  • ASME SECT. IU , CL. l .

4::2.

R h

M Figure 3-2. Unit 2 Safe-End Detail

  • 8 m-5

-D N

9 L __

I l

6.94"R 0.18 8 " ' '

b. : ,

e N

  • . :. . e n.

tn  !!!$:.:.;...,

lij:!!3li! . . 6.375"R e c

. .::: 7.m.::

- o &

w  :::: .::::::w-:: 5.94"R A* -

N1b g ,o w ij  ![4:iI!hli!!A!h

:::::: . ::: , 5 W

M

s3:::!8i:d'::i N O-* 3

=

'E ::iiiii: Stain 1ess e 4 Stee1 E U :s:i::::8siY$i!! ]

~ 'i:!!!!jiji:+ ?: Thermal 8 3 N

$ 'iii Sleeve E* W $

^

A  ? ? v "

h $

. a *

- s o t

> . .- . . 7.75"R e

  • C '

m e' y o

" E Z

e .

! .. 6.49"R e e m W

W .. 4:.:

A 4 m~-

o.

o

/ { g s g. c !'. s .N b

! , A. gh N , Safe-End/ Thermal .3 ! '

E .$c (9

l m a jg Sleeve Weld d, . g a n ,. , -

a 9 4 m

( 4 c r m s \  % M

" ~

. 7 \ 'n - 2- . E

/ 9

  • 3 i 9 I
3.
  • D

/ ......:

/ " @ h

~

" O i

iyP l .

H c A.

3w $,

< ~

-...:.. . i o

n 0:&43 '

s = j -

u

> - 9 . .

~ mI s n m m a N

k ='*
  • L q h j n t o a E l

v .

a'j O o

5 $

m

,r, 5.555"R f ,

y C#. a*

n ,

  • 10 Typical Pipe / - ~ o ,

'hf t

7.875"R C'

'~

7 Transition I 85 cu t Piece Weld O 9

mm o 5,$ 'e 6.69"R 5.375"R U

~o C e

mk cw m u O

0 g

3e.

n Ej 5.94"R k

c. 4.82"R
  • i 3e a Of p m A

<d

.5 %

g=~ ~ a j o e 5 Transition Piece / c\ $

o _ Safe-End Weld S k @

n(

, o _._, w .x z

" O  %

4

'b i

l SIR-89-036, Rev. 1 3-4 f StructuralIntegrityAssociates,Inc.

4.0 LOADS AND LOAD COMBINATIONS l <

l l The Design Specification defines certain basic loads to be l

considered in the safe-end evaluation. The loads can be broken l down into three basic categories:

1. Attached piping mechanical loads j 2. Pressure and coincident temperature loads
3. Thermal transient loads The above loads must be combined. in accordance with the requirements of the Design Specification. The combinations which j are formed from these loads can likewise be categorized into four basic groups:

l

1. Design Load Combination
2. Level A/B Load Combination
3. Level C Load Combination
4. Test Load Combination l The specific loads, load combinations, number of occurrences, and  !

l allowable stress intensities for each classification of stress  !

are discussed in this section.

4.1 Loads . 1 The basic loads to be considered are discussed in the following l paragraphs in further detail:

a. Attached Piping Mechanical Loads j Paragraphs 4.4.2 and 4.5.1 of the Design Specification specify the attached piping mechanical loads to be
considered, and reference CP&L calculations (Reference
10) for the core spray piping loads. Table 1 of the

, Design Specification provides thermal sleeve reactions.

For the core spray piping reactions, the maximum values are used, and are presen*.ed in the Reference 11 SIR-89-036, Rev. 1 4-1 f SitucturalIntegrityAssociates,Inc.

letter. Table 4-1 summarizes the loads which are considered.

b. Pressure and Coincident Temperature Loads Per Paragraph 4.4.1 of the Design Specification, the Design Pressure in the core spray system flow path and reactor pressure vessel is 1250 psig. The Design Temperature is 575*F.

Per Paragraph 4.5.1 of the Design Specification and the referenced GE drawings (References 4 and 5), the anticipated pressure in the core spray system and i reactor pressure vessel can vary up to 1375 psig (a Level C Condition). The operating temperature varies up to 54 6* F.

t

c. Thermal Transient Loads I Paragraph 4.5.1 of the Design Specification specifies the operating transients to be considered for design and analysis. I 4.2 Load Combinations The combinations of the basic loads which are examined for the safe-end design are defined in Table 4-2. L. this table, the ,I

' loads are~ identified in terms of the designation's established;,in.

Section 4.1 of this report. Also, for each combination, the allowable stress intensities are established (per Table 4-3).

l Table 4-3 presents allowable stress intensities for Class 1 components. Four basic sets of allowables are described. These sets are referenced in Table 4-2.

Per Paragraphs 4.5.1 and 4.5.2 of the Design Specification, cyclic information is contained on GE drawings 135B9990 (Reference 4) and 729E762 (Reference 5). Summaries of the transients which are considered in this Design Report are shown in Tables 4-4 and 4-5.

SIR-89-036, Rev. 1 4-StructuralIntegrity Associates, Inc.

i Table 4-1 1

Core Sorav Pioina Reactions l

Force (kips)/Momer t (inch-kips)

Load Combination Axial Shear Torsional Bending l Force Force Moment Moment .

t I

Design 3 5.9 5.2 106.3 457.8 i

l Level A/B3 ' 13.3 11.1 222.8 973.1 (Total Range)

OBE Inertia 4 11.5 8.2 187.4 757.8 (Range) I l ' Level C3 6.2 6.6 141.9 498.0 Test 3 5.9 5.2 106.3 457.8 l-l l

l Notes: 1. Load application is at a radius from the reactor vessel centerline of 140.1". .

I

2. Loads are conservatively assumed to act in either direction.
3. See Table 5 of the Reference 11 letter for development of loads. .,

. .u .n .. c

4. Based upon informatioN' contained in the Reference l 10 calculations, l

i

! l l

l 4

)

i SIR-89-036, Rev. 1 4-3 h StructuralIntegrity Associates, Inc.

i Table 4-2 Load Combinations Loads Load Combinationst Design Level Level Test A/B C Core Spray Piping a a a a Reactions 3 Thermal Sleeve a a. a a Reactions 3 Pressure, psig 1250 b 1375 1565 Temperature,*F 575 b 546 100 Thermal Transients -

c - -

l Stress Allowable Set 2 1 2 3 4 l

! Notes: 1. Loads are identified in terms of the applicable i paragraph numbers of Section 4.1 when specific  !

numerical values are not listed. i I

2. Allowables are in terms of an applicable set of  !

allowables. Specific values for each set of allowables are provided in Table 4-3.

3. Per Subparagraph NB-3227.5 of the ASME Code, beyond the l

,. - limits of reinforcement,. primary., stresses must_.ba * *

.,~~

_ ;-l- evaluated for pressure and externally applied loads, ' .,35 r l

' other than those attributable to restrained free'end displacement of attached piping. All loads must be considered for primary plus secondary stress evaluation. All areas to be examined in this Design Report are beyond the limits of reinforcement.

i l

l f SIR-89-036, Rev. 1 4-4

{ StructuralIntegrityAssociates,Inc.

Table 4-3 in H

m -Stress Criteria For ASME Code Class 1 Components i i

os

@ 1 8

O Stress Applicable Code, l'able P. Pg Pg + Pb Pg + Pb +Q Notes Allowable S. Sy 0

,$ Set 1 I-1.1/I-1.2 ------

1.0S. 1.5S.. 1.5S. -----

3 2 I-1.1/I-1.2 3.0S, 1,3 i 3 -----

I-2.1/I-2.2 1.0S y 1.SS y 1.5S y -----

3,4 4 -----

0.9S y ------ ---- -----

2,3 s

I{- <n 2.1/I-2. 2 m ,

J Notes: 1. The requirements, of Subparagraph NB-3222.4 for peak stresses and cyclic operation must be' met. '

e

2. The allowable general primary membrane stress intensity is limited to 0.9 S y.

, The allowable general primary membrane plus primary bending stress intensity is also limited to a specific value. Ilowever, all stresses resulting from pressure E! and attached piping mechanical loads will conservatively be classified as

$ general primary membrane when evaluating the Test Load Combination.

2 k 3. SA-182, Grade F316 or SA-376, Grade TP316 stainless steel safe-end, SA-350, E Grade LF2 transition piece, and SA-508, Class 2 low alloy steel nozzle material 4:. will be evaluated.

M 3 4. Conservative values.

M 8

sr

?

W E

k 5,

.____._m._ . _ _ . _ . - _ _ . _ _ _ _ _ _ _ _ _ _,*____.___.______._m _ _ _ _ _ _ _ _ _ _ _ _ _ . - - -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Table 4-4 Pressure Transients Event Cyclee Comments 1 Design Hydrotest 130 Test Load Combination 2 Startup/ Shutdown 119 Level A/B Load Combination 3 Loss of F.W. Pumps 20 1 Level A/B Load Combination 4 Turbine Gen. Trip 40 Level A/B Load Combination 5 Reactor Overpressure 1 Level C Load Combination 6 All Other Scrams 147 Level A/B Load Combination 7 Hydrostatic Test 3 Test Load Combination 8 Emergency Shutdown 13 Level A/B Load Combination 2,3,4, Level A/B 327 6& 8 Combination 5 Level C Combination 12 1 & 7 Test Combination 133 l Notes; 1. 10 cycles of occurrenco,. wi .t1 2 fluctuations,per . . , ',

7...:-w.. :~&

,.-.(

_ cycle. ~

~'^

- ~*'+*---

, . + -.

2. The Level C loads do not have to be considered in the fatigue evaluation.
3. For the purposes of this Design Report, one Emergency Shutdown transient will be considered, and it will be treated as a Level A/B Service Condition. This approach is consistent with the analyses performed previously by CBI Nuclear Company (Reference 3).

i i

1 i i I SIR-89-036, Rev. 1 4-6 f StructuralIntegrityAssociates,Inc.

.. . .. . . . . . , --. . -~..... .-.. .. - . . . . . .

6 Table 4-5 i Thermal Transients Event Cycles Comments -

! 1 117 Startup/ Shutdown- 100*F/ hour transient s 2 Loss of F.W. Pumps 30 1 Cooldown/Heatup i 3 SRV Blowdown 2 Governed by Event 4 f '

l. 4 Emergency Shutdown 13 Cold Injection ,
i. .

l l

1 100*F/ hour transient 117 2 l 2 Loss of F.W. Pumps 30 2  ;

i 3,4 Emergency Shutdown 32 l  :

1 I

Notes: 1. 10 cycles of occurrence, with 3 fluctuations per cycle. '

2. Attached piping mechanical loads will be assumed to  ;

have the total number of cycles shown above, or 150 '

cycles.

3. For the purposes of this Design Report, one Emergency ~'

i Shutdown transient.,will be considered, and it will be

. A de treated ascar Le_%/B Serv _ ice Condition. This *~~"""

approach-is consistent with the analyses performed previously by CBI Nuclear Company (Reference 3).

lI 1

l' s i SIR-89-036, Rev. 1 4-7 f StructuralIntegrityAssociates,Inc.

5.0 THERMAL TRANSIENT ANALYSES l

l This section of the reporti describes the thermal transient analyses of the replacement core spray inlet nozzle safe-end, 4

l transition piece, 'and thermal sleeve extension design for BSEP. J The purpose of the analyses is to examine the effect of the i change in the safe-end material and/or geometry on thermal j stresses. The input for the present thermal transient analyses i

is largely based on the CBI Nuclear Stress Report (Reference 3).

\

5.1 Thermal Transients The thermal cycles for the core spray nozzles are defined by GE in Reference 5- . There is a total of 25 design transients defined for the region in the reactor vessel where the core. spray inlet nozzles are located. In addition, one more transient, Emergency i Shutdown, is defined in Reference 4. In this report, three bounding transients are analyzed to determine significant thermal l stresses. These three transients are:

Emergency Shutdown Loss of Feedwater Pumps Startup/ Shutdown l

l The three transienta are graphically presented in Figures 5-1, 5-2, and 5-3, respectively.

It should be noted 'that a 250* F/ hour Startup/ Shutdown' transient was conservatively considered in lieu of the 100* F/ hour transient from Reference 5. This was done in I light of the fact that CP&L has experienced such transients in l the recent past at BSEP.

The other transients contained in Reference 5 were evaluated,  :

based upon results provided in Reference 3, and it was determined that their stress results are enveloped by those analyzed herein.

l SIR-89-036, Rev. 1 5-1 f StructuralIntegrity Associates, Inc.

l l

o I

j 5.2 Analytical Model 1

1 f The dimensions of the replacement safe-end design to be used in the analyses are shown in Figure 3-3. The analytical model of the area under review is shown in Section 6.0, and schematically in Figure 5-4. It is an axisymmetric finite element model composed of 1164 two-dimensional solid elements and 1340 nodes.

! The model includes a portion of the nozzle, the replacement safe-end, the transition piece, and the attached core spray system piping and thermal sleeve.

l l

L only a portion of the nozzle is included in this model. The L effect of not modeling the complete nozzle is insignificant I

t because the priority of the present evaluation is to examine the l stress state in the' safe-end and reduced thickness portion of the l

nozzle. In the safe-end, temperature response in the radial l

' i direction due to heat transfer from temperature on the inside surface is faster than the axial heat conduction due to the temperature from the reactor vessel. In Reference 6, a thermal I transient analysis of a feedwater nozzle with a three-dimensional finite element model was performed. The transient temperature response due to a step change of temperature at the inside .

1 surface of the feedwater nozzle indicated that the temperature i gradient is in the radial direction of the nozzle (i.e., through '

the wall of the pipe and the nozzle) , and that-there was very j little temperature gradient in.the axial direction of the nozzle (i.e., perpendicular to the reactor vessel wall). Therefore, there is little effect on the final stress results in the safe-end even though part of the nozzle and the reactor pressure vessel are truncated in the present analysis. l A sufficient portion of the geometry is included in the model such that stresses in the region in the proximity of the safe-end i

to the nozzle weld can still be determined with a high degree of

! accuracy. The original stainless steel cladding in the nozzle SIR-89-036, Rev. 1 5-2 h StructuralIntegrityAssociates,Inc.

l l

I I

and the new stainless steel ~ cladding deposit are also included in the model.

I A roller displacement boundary condition is imposed at the nozzle end of the model. The pipe and thermal sleeve ends are assumed j to be free to expand during the transients.

1 i I 5.3 Material Properties l The material properties for the analyses are obtained from the i

ASME Code, and are presented in Table 5-1. All values are based upon transient average temperatures of 300*F.

I l

5.4 Thermal Boundary Conditions The exterior surfaces of the safe-end, nozzle, transition piece l and the connecting piping are conservatively assumed to be perfectly insulated. The heat transfer coefficients in the flow path and annulus regions are presented in Table 5-2. An j adiabatic thermal boundary condition is assumed at both ends of the model.

i l

! 5.5 Analyses Results l

The therrt( tt.ransient analyses of the replacement safe-end design are performed ~using Structural Integrity Associates' proprietary l finite element code FEM 2D (Reference 7). This finite element

! code has the capabilities of performing transient heat  !

transfer / therm'.sl stress analyses. The heat transfer solution is decoupled from the thermal stress solution. A temperature distribution in the structure is obtained by solving a two-dimensional heat conduction equation in the time domain,  !

using the direct integration scheme developed by Newmark 2

(Reference 8). The temperature distribution at each time step from the heat transfer solution is then used as the input to the structural model to determine the thermal stress distribution.

SIR-89-036, Rev. 1 5-3 f StructuralIntegrityAssociates,Inc.

. _. . _._._ __ . _ - . . - . _ _ _ _ . _ _ . _ . _ . _ . _ ~ . . _ - - - . - . _ _ _ _ _ _ . _

r  !

e i

The time steps- used in the thermal transient analyses are estimated.using the following equation: ,

i At < -

4a 1

i

where a is - the thermal diffusivity of ;the material, and 6 is a j characteristic length in the model. This equation - provides a l rough estimation of the time step. Several test runs were .f
j. . performed to refine the time step interval . in order. to obtain'-

[

optimum results. Tables 5-3, 5-4, and 5-5 present the time steps i

~

used.during the various stages of the three transients.  !

i l

For.the Startup/ Shutdown transient, the reference temperature is' assumed to be at 70*F. Therefore, the temperature ramp from 70*E -

j .to 546*F can be modeled as a; temperature ramp from 0*F to 476*F j.

i for input into the FEM 2D computer code. A similar method was  ;

used for the other two-transients. ,

1 I I l  : Thermal transient results for selected cross-sections in the replacement safe-end.are presented in sections 5.5.1, 5.5.2, and l 5.5.3. These cross-sections are shown in Figure . 5-4, and are.

representative of critical locations within the replacement safe-end.

f I

r 5.5.1 Emergency Shutdown Transient s t

i Temperature and stress- response vary with location in the .!

. geometry analyzed. Figure 5-5 presents'the temperature response '

at Section 8 for the Emergency Shutdown transient. At-Section 8, temperature response at the inside surface follows closely with '

the flow path fluid temperature. At mid-wall and at the outside l surface, the response lags behind the inside surface. Figure 5-10 presents'the element centroidal stress results in the radial

. (Sr) , axial (Sa) and hoop . (Sh) directions at Section 8. The i

highest stress is in the hoop direction at the inside surface, l

l SIR-89-036, Rev. 1 5-4 StructuralIntegrity Associates, Inc.

and occurs at about 15 seconds into the transient. The maximum l hoop and axial ~ stresses are approximately 75 ksi, both tensile l

near the inside surface. These stresses become compressive about halfway through the wall thickness.

l Figure 5-6 presents the temperature response at Section 12. This location shows a slower response through the wall thickness i compared with section 8, due to the fact that it is a thicker section of the safe-end. Figure 5-11 presents the stress transients in this section. The highest stress occurs at about 18 seconds into the transient, near the inside surface, with a j maximum value of approximately 110 ksi.

j Figure 5-7 presents the temperature response, and Figure 5-12 presents the stress transients for Sectibn 15. It shows tensile stresses on the inside surface, and compressive stresses on the  ;

i outside surface throughout the transient. The maximum stress at j this section occurs at about 14 seconds into the transient, and

! is approximately 90 ksi.

I Figures 5-8 and 5-9 present the temperature responses for Sections 17 and 20, which are on the nozzle side of the safe-end.

i l These sections do not have direct contact with the fluid in the core spray system. Therefore, heat conduction to these sections is predominately through the thick section of the safe-end. Even though the fluid in the annulus steps down from 546'F to 212*F at the beginning of the transient, the low heat transfer coefficient

(10.5 Btu /hr-ft 2_*F) in the annulus prevents significant cooling. '

Therefore, the temperature response at these locations is much >

slower, and the through-wall temperature gradients are much smaller. Figures 5-13 and 5-14 present the stress transients at ,

these sections. They have a more gradual increase with time, compared to the stress responses at the other sections, and maximum stresses are also at lower magnitudes.

SIR-89-036, Rev. 1 5-5 h StructuralIntegrityAssociates,Inc.

l 5.5.2 Loss of Feedwater Pumps Transient Figures 5-15 through 5-19 present the temperature responses for the Loss of Feedwater Pumps transient at Sections 8, 12, 15, 17, and 20, respectively. The temperature responses ar'e plotted for three locations through the thickness; namely, at the inside l surface, mid-wall, and outside surface. Because of the gradual I

change in temperature associated with this transient, the response at the inside and outside surfaces are almost identical.

Figures 5-20 ,through 5-24 present through-wall stress transients at Sections 8, 12, 15, 17, and 20, respectively. The critical locations for both axial and hoop stresses are either at the safe-end to nozzle weld, at the interface between the stainless j steel c1hdding and the nozzle base material, or at the safe-end I

to transition piece weld.

It should be noted that the instability which occurred at certain i

l times in the analysis is due to the chosen time. steps (see Figure l 5-20). However, such instabilities typically occur at lower

{

stress values, and have no effect upon the analytical results utilized in this Design Report.

5.5.3 Modified Startup/ Shutdown Transient Figures 5-25 and 5-26 present the temperature responses for the 250*F/ hour Startup/ Shutdown transient at Sections 17 and 20, l respectively. The temperature responses are plotted for three l

locations through the thickness; namely, at the inside surface, l mid-wall, and outside surface. Because of the gradual change in temperature associated with this transient, the response at the i

inside and outside surfaces are almost identical.

l Figures 5-27 through 5-31 present through-wall stress transients at Sections 8, 12, 15, 17, and 20, respectively. Again, minor analysis instabilities do not impact the use of these stress SIR-89-036, Rev. 1 5-6 h StructuralIntegrity Associates, Inc.

I- 1 l

l

( 'results. The critical. locations for both axial and hoop stresses

( are either at the safe-end to nozzle weld, at the interface between the stainless steel cladding and the nozzle base material, or at the safe-end to transition piece weld.

i; I

5.5.4 Summary of Analyses Results 1 It can be seen from the above results that the stresses in the.

safe-end resulting from the Emergency. Shutdown transient are much more- significant than those resulting from the other two transients examined. -

l l

l l

l l

1 l

l l

l- i I i l

l i

l i

a SIR-89-036, Rev. 1 5-7 l.

f StructuralIntegrity Associates, Inc.

1 . . . . .

i Table 5-1  ;

Material ProDerties at 300*F l

E a P k c Material (psi) (in/in/*F) (lb/in3 ) (Btu /hr-ft *F) (Btu / bm

  • F) l Nozzle 28x10e 7. 3 0x10- 6 0.283 23.9 0.1204 l

Safe-End 27x106 9.56x10-8 0.283 9.0 0.1269 Thermal Sleeve 27x108 9.46x10-6 0.283 9.8 0.1252 l Transition

! and 28.3x106 7.04x10-6 0.283 24.4 0.1229 l Piping Note: 1. Nomenclature is as follows:

E - modulus of elasticity a -

coefficient of thermal expansion i

p - weight density k -

thermal conductivity c -

specific heat l P t

l l

i l

I 1

i SIR-89-036, Rev. 1 5-8 f StructuralIntegrityAssociates,Inc.

. ~ . . - - . - -

I l-l l

Table 5-2

, Heat Transfer Coefficients I

h Transient Location (Btu /hr-ft 2 _a F) (Btu /sec-in2 *F)

Emergency Flow Path 2547 4. 91 x 10- 3  ;

Shutdown 1 l

Annulus 10.5 2. 03 x 10- 5 l l

l Loss of Flow Path 10,000

1. 9 3 x 10- 2 i l Feedwater Pumps Annulus 10,000 1. 9 3 x 10 2 Startup/ Flow Path 198 3 . 8 2 x 10- 4 Shutdown l

l Annulus 1200 2. 31 x 10- 3 i

! I 1

l l

i l

l SIR-89-036, Rev. 1 5-9 f StructuralIntegrityAssociates,Inc.

.- . . _ . _ . . . _ . _ . . m. _ . _ _ . . . _ - _ _ _ . . . _ . . . - . _ . . _ _ _ _ . . - _ - _ .

i

)

1 Table 5-3 Time Stecs (AT) Used for the Emercency Shutdown Transient From To  !

. Time Time AT Flow Path (Seconds) (Seconds) (Seconds) Temperature  !

0 10 0.5 From 546*F to 406*F i i

10 11 0.1 70*F  ;

11 13 0.1  !

13 16 0.2 l 16 20 0.2 20 25 0.5 -

i 25 35 0.5 35 45 1.0 I 45 95 5.0 ,

95 195 10.0 t

195 695 50.0 , j 695 1695 100.0  ;

1695 3695 100.0 ,

' l I

l l

SIR-89-036, Rev. 1 5-10

{ StructuralIntegrityAssociates,Inc.

! l i

i Table 5-4 Time Stens (6T) Used for the Loss of Feedwater Pumos Transient  !

I  !

From To i Time Time AT Fluid  !

(Seconds) (Seconds) (Seconds) Temperature f i

0 5 0.5 From 522*F to 300*F j l-5 15 1.0  !

15 90 5.0 90 220 10.0 ,,

l 220 230 1.0 From 300*F to 500*F

! 230 280 5.0 l 280 380 10.0 380 600 20.0 l l 600 1000 40.0  !

1000 2200 80.0

2200 2210 1.0 From 500'F to 300*F  !

2210 2260 5.0 2260 2380 10.0 2380 2390 1.0 From 300 F to 500*F  !

2390 2440 5.0 i 2440 2540 10.0 I l 2540 2740 20.0 l

2740 3180 40.0 l 3180 4060 80.0 i 4060 5160 100.0 l 5160 ,6760 100.0 ,,  !

6760 6770 1.0 From 500*F to 300*F i 6770 6820 5.0 6820 6920 10.0 6930 7180 20.0-

/180 7190 1.0 3dO* F 7190 7280 5.0 7280 7480 10.0 7480 7580 10.0 100*F/ Hour i 7580 7780 20.0 '

7780 8180 40.0  !

t 1

i

\ \

i 4

SIR-89-036, Rev. 1 5-11 h StructuralIntegrityAssociates,Inc.

_ . - _.. _ ~ _ _. _ _ . -

Table 5-5 I

}

Time Stecs (AT) Used for the Startue/ Shutdown Transient )

From To l Time Time AT Fluid I l (Seconds) (Seconds) (Seconds) Temperature 0 200 10.0 From 70*F to 546*F 200 400 20.0 400 800 40.0 800 1600 80.0 l 1600 2600 100.0 2600 6600 100.0 6600 6850 50.0 6850 6855 5.0 ,,

6855 7055 10.0 546*F 7055 8055 50.0 8055 9055 100.0 9055 10,000 Steady-State ..

10,000 10,100 10.0 From 546* F to 70* F 10,100 10,300 20.0 10,300 10,800 50.0 10,800 11,300 50.0 11,300 16,300 50.0 16,300 16,800 50.0 16,800 16,855 55.0 ,,

16,855 16,955 10.0 70'F j 16,955 17,455 50.0 17,455 18,455 50.0 l

! 1 I

I 1

I i

4 1

i l SIR-89-036, Rev. 1 5-12 h StructuralIntegrityAssociates,Inc.

i l

l Figure 5-1 Description of the Emergency Shutdown Transient s

l l

546 F i

I

. Vessel Fluid Temperature 212 F -

l

\

l 0 w

i 3

, s,*

co w

o

! c. 546 F .

100% Nozzle Flow E  :

i2 / i 406 F  ;

1 i  : l t

l t  :

1  :

l  !

Flow Path Fluid Temperature  !

I 70*F .  !

I i

1 0.0 10 30 l l

Time (Seconds) I

. 89-005RM SIR-89-036' Rev. 1 5-13 .

StructuralIntegrity Associates, Inc. ,

1 i

Figure 5-2 l Description.of the Loss of Feedwater Pumps Transient I

, Flow Path and Vessel Fluid Temperature -

l  !

522 *F 500 *F --- -- - - - - - - - - - - . 100'F/hr

\

e. ,

o

%w e

a.

l E - - - - - - - - --

@ 300 *F l

oo oo oo o o gNN om ee e v N co N e v C9 NN @ N N g" j

, Time (Seconds)

Nozzle Flow 0 l

l ,

1 89-009RM STR-89-036, Rev. 1 5-14 StructuralIntegrity Associates, Inc.

I I

l l

i Figure 5-3 t

Description of the Modified Startup/ Shutdown Transient I

1 Flow Path and Vessel e Fluid Temperature l 546 F I

i  :

\  :

l  :

4 y l

. l 250 F/HR  :

e w

3  :

m  :

i u  : .

c)  :

O  !

E  :  ;

70 F , i l

.- i

. 1 I

6,855 l 0.0 Time (Seconds)

Nozzle Flow 0 l

l l 89-006RM t

SIR-89-036, Rev. 1 5-15 StructuralIntegrity Associates, Inc.

en 8

?

E

- Notes: 1. " Areas" are designated by letters.

~

2. " Sections" are designated by numbers.

=_ -

2 C .g w

  • O- .O ,

e,J, N/h)  ?

u~

4 Sib.ii

/ - .

Q e o g'

/ 6 e >

.g 6

D .

B .

E Figure 5-4. Areas / Sections Examined for Thermal Transients k

3 s

R 8

E -

v 5

9

. _ _ - - - _ _ _ _ _ _ . . . _ - - - _ _ _ _ _ _ - . _ _ . _ - - - - _ _ _ _ - _ _ _ _ _ - ~ - _ - - _ - _ . __ . - _ . _ _ . _ . _ - - , _ , . - - - - - . - - __ . . - - _ _ _ , - . _ _ - .

- . _ _ - _ . - . . ~ . _ . _ _ _ _ _ _ _ - - _ _ - - - - _ _ _ - _ _- - _ - _ _ - - - - - _ - - - _ - _ - - - - _ - - - - - _ - - _ _ _ _ - _ _ - - - - - - - _ _ _ _ _ _ _ - _ - -

m

?

8 Section 8 4, Emergency Shutdown p 600 _

E -

500 -

1 400 -

Cv e El u

Y' 300 -

O 'o

[]

, a E El o [1 200 -

\

h 100 -

E

-oooooocm o  : = =

k E

iir '

E R

O -

O 100 200 . 300 N

w g Time (sec) w

& O l.D. + Mid-Woll o. O.D.

.m E

9 Figure 5-5. Emergency Shutdown Time-Temperature Plot - Section 8

_ _ _ - --- _ -* _ . . . . se.- -, r- . .- _ - - ---:- _m _...m..__ _.m__2____--_--a

. _ _ . _ _ _ ____.__....__.__m__ .._m_m__... ..-________.____.m_ _ - _ . _ _ _ . _ .=1, . i2- __- - ._m1_u _ _ _ _

i l

5' Sec. tion 12 i t

8- Emergency Shutdown i

. E>

u 600 '

m m i a I e

< i

. t t

~

500 - l r

i

! I 400 -

o I m . .

r in il'  ;

v  : ,

e u .

l

, t Y $, 'l .

300 -

[

= c a 1 4

E  ;

o 1 200 -

t 100 -

L - -+-:- : y 9 +- 9 9 9 9 q q q i l$

Q aoooooooooo o a 6 6 6 6 6 d d d d Y

g

?

un f f I i 1 1 1 . I i 1 1 I i I i l i I I 3 O y 4 0 0.2 OA O.G 0.8 1 1.2 1.4 1.6 -1.8 D

w (Thousands) -

t g Time (sec) c it 'O- 1. D. + Mid-Wall o 0.D.

  • l

.w >

-E .. -

9 Figure 5-6. Einergency Shutdown Time-Temperature Plot - Section 12  :

i i i i

K

__m._ _. _.__.__--_m__m___m_m..__..m_m._ ___._____.__-______m_meau me_, - - - ----e,am,-e -..-,-..-..,--,,-.-w,-e.w.c.,-_- mtes.- ,-...--..m -- + - ow-w w, , - - . ~.-~, --n.,..,+e-.. . -,_-s

e '

e 0

_ 5

_ e '

0 6 1 n

o i

e t c

e

. S

- e '

t o

l D. P e 0 e

r u

0 o t a

n e 5 w 0

4 r

e p

1 o m d

t e

u ) l T

e c l

a e nS h e s W m oy ( - i T

i c e ' e id n t n e mM w o

c g r

. i T d eem o +

t h

u SE .

S y

0 m'

c 0 .

n '

2 D. e l g

  • r w e

p -

1 o

m m O E i

p _

7 5

4 e

s r

' u

' g

>,> , i

.\

,','L.

- F 1 ) 1 I. c L kf 1

I 0 0 0 0 0 0 0

- 0 0 0 0 0 6 5 4 3 2 '

C**3 ocea E eF r F

. =rm Io ? m@- ~ Y'e IiE.WiE4 i ir saOk$ h -

FP h

r, 4

m rg Section 17 .

Emergency Shutdown -

!> 600 5'

550 - i

  • l .

~

i 500 -

450 -

i m

u.

v 400 -

8 ,

r

v. 3  !

L, o 350 -

s ,

o g -

a  ;

h 300 -

p

  • t-f 250 -

- i t

en 200 -

1  ;

E n

i 150 -

2 2 :  :  : : 0 a

E i e i i i i i 100 8 kg 0 1 2 3 4 t

^

(Thousands)

  • 8 o Time (sec)-  ;

E O I.D. + Mid-Wall o 0.D.

jR ,

h Figure 5-8. Emergency Shutdown Time-Temperature Plot - Section 17 w-

- . - . , ,,r--- v- ,--,,r, e.. ,.w-,=-e-re,,,,,-m--,e,-,+,-,w,%,.- .-m-----,,---e-,=,-w.4 ,+v ,,---e --w -

in es w---. . ,r.m,-c ,+ - - --+

? Section 20 .

"Y k* 560 l

I 540 i w -

0 h 520 - I g

500 - - '

480 -

9 ik n 460 - i b 14 o 440 - Il 5

'a

[ y 420 -

~ v 400 -

4 380 -

360 - '

s A

340 -

320 -

E '

El

= 300 -

E

=

' ' ' I

$ 280 0

I i i 4, 1 2 3 4 g (Thousands) 8 Time (sec) m-M O l.D. + Mid -Wall o 0.D.

.m

-3 9 Figure 5-9. Emergency Shutdown Titte-Temperature Plot - Section 20 w

?

? Section 8 8 Emergency Shutdown

?

g 8 0 0 0 0 --

ooooo S

1. D.

60000 - ll '

-S 1. D.

h i OMMS 1.D.

          • Sr Mid. Wall 0 +++++ S Mid. Wall -

0 -S Mid. Wall 40000 - 0

- a

+- S r O.D.

  • +*+* S 0.D.

3 g -S 0.D.

u m

k

g 20000 -
a. -

i v -

v> -

0-l " '***** ^ ^ 5 AIj[p5pj E 5  ! 5 7', -

-20000 / .--

& _ 7" G

n.

=

-40000 k -

E _

k ~

4 -60000 i i i I ' l '

D 0 100 200 300 8

S' TIME (sec) iit

.m

~ Irigure 5-10. Emergency Shutdown Time-Stress Plot - Section 8

l o

__ o o

N ou a. 1

]

l om m. 1 o

<,=, i: <i _o N y L.o l __

l e O

oOO < , .c .g3. ,

3 D

355 I u

. . . . /

  • ' 3 -

E2 d d d.5~2' d O O

_.: _ -.: 2 22o00 f]* ,

=n,n=n ...

O c mmmmmmmmm llh o g o e 9 <x -

.. , .s;. ,3 _o S c&o<x: 44 I. I N m

a O e e g- - 4 u ,, j g $$o$: 3 ll ll ' m- 2 e v w o

! _C . m. . 3 -

W C f a>-

2 p c

, O_ y "O / $

U r- 1. o o og <

e>- -o u WG ' s :o. -

h

'jl.

x 0 i l

w E

i l

T o

_ E

{

^

$l rc h

w

~7 y y

-,m. n I o .

o <rd. ,  ; -o ,

? 4I 4

  • ! :[].

<! O-a

<3

)

c l / \

0 4 u ,a. u l

f l

t -

/ \.* w T:

i E

. wyy.c= _- -

> w. _ _

! O i i i 4 i i i i j i e i 4 i i j ii i,, ,,,TT8 i i o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o m o D c w a m w

" " l l

( ISd ) ssa45 l SIR-89-036, Rev. 1 5-23 Structural Integrity Associates, Inc.

i

E: .

?

m

? Section 15 y Emergency Shutdown s' 100000 -

~

$ j neeen S r I.D.

80000 - ( a**** S l. D.

OMM S 1.D.

          • S r Mid. Wall l ,.

+++++ S Mid. Wall 60000 - Q -S Mid. Wall

_ n - Sr O.D.

o -S 0.D.

o .

-S 0.D.

40000 [-

m _

Y Gi -

? a- --

o  %

20000 - '

%e m -1 ..

E

% emu . . . . . .  !

i 0 -I

_t' -

?%******"$1 f f f- f f f

-.* ~

:  :  : 2

-20000 - / g#

g

.a d -40000 -

w -

C -

4 -60000 i i i i i i i

k 0 200 400 600 8 TIME (sec)

Er E '

5 g Figure 5-12. Er ergency Shutdown Time-Stress Plot - Section 15 9 i

1

- 1 l

l I

i 1

O

._. o i o

_v

=

==OO O .;[ .o- a

- \

1 333 , .,

,,,, o t

.. . . . _o  !

d Q Q',"d.3.3 0 9 9 '

3 -Of- o e a : :s22 O OO

<i

_n QQQQQQ

<3 <tb- o <r WWWWWWWWW _o o N Q$Qt it o <r o <2 os. o N Q> _m

<r :t o o a o , C Q <r -

F o o O C <t " " " " _

]

o 3: - n o u o 1'- o " " " o o o

{ _o m

<o-. o @ l

_m o

C u

3 -

0 g .o-. o e m V _c c.,

_o e v

% *J <O-- 2: <> <t

_N m

o "C -

w w .-

q $

O o o

_ag  ;

x { .._ o v s g -o- o -

H e o _mw U C

@ f -

h 5 M (Qn) T, ~o O

u { ^!

3 q) 9-

w. 3 -8 .g

_ - m LLI h

i  : o.

1 E 4

/

48 1

i

- o

_o o co 4 o W w p -

7 g rg.- W t

a+ -

o , o m i

-o - )

4 e

4.-

o- o

\,\

+.

_o n i

I a mu -

->- o o *g _

e i

/

,. u  !

Qu b os l

Qt-o D

'e .

o 3

ea I

'a

  • 4 C+-

4 o

4 e N -- <q o. A

$ 4 'a u o '. - i l

i i i i i l 4 i r i , .- .

J I

F i

) i i

- ,#,)

i ,

s i i o

j o o o o o o o o o o o o o o o o o o o o o o o W n - -

m o

to i I i .

( ISd ) ssms I

r l SIR-89-036, Rev. 1 5-25 StructuralIntegrity Associates, Inc.

m .. :.. & 4.m..m... m...__m .s . . . _ , . . ..m... ..-4.__ , . . _ . __ __ 2 l

l l

r O

O O

-v

=== UI m- ::o ,9 O

O

" Gt in-::<>,3 W ddd.N.N.Nddd _m

'""222666 i) worworuOrA - '

WWWWWWWWW. _O o tir m.  : <> < ) N O o c <;> < r - :c 4 .: a F) N Q <>11  :( -F <t ,6 Qy<><r :t -F <t a

" g

m. ::<> . ) O Q $ <> <r u o << o (lr H

O 4 <t> v n o o o O u C

<I (lC <ll- :l<> ()

-Q N N - I g or <i,- ::<> . : M D 0 C ,

O *3 [ir <ik-  ::<> < 1 v

-N m N .C ~

C (f") Cit 4-  ::<> <1

? E

.Ob _Ov Oh I

"@ (lg ar.  :'<> O 5

~ N t.LJ E OC 2 $

, UC ~

P N LO car a-  :'o g h car ,r.

<> O '

O (3r a- D .@

u p

E. x ,n c LJ -

in 7 m- -o y .

/' O e

91 ,,,

N ti i

"' e

+ CD '

()r i, -

W i

Or i '

o -

Or t

  • - o i O I 4 -O

$ Ot I \ .

e .. <> C - co ~.e 4 Ot i- ;t & 4ll

. .e Or o :t 4 l 1 f o

8; *o <

n ,

i u oz ,

e t'

! 0: g O u il L

g e

$ -O 3 -

4' +- 4 4 - T U

-q- m "

l r ' >

I

~

i- I l t i i l . - i i r' i '- r4 O l i i i o O O O 4

O O O o o O O o o O O y

N O O ,

N v  !

I i l

( ISd ) ssa;;s l t

i i

S1g-89-036, Rev. 1

  • StructuralIntegrity Associates, Inc. \

1 8

k k 0 8

,>,',; , > , c' > ; (

{' '

n

- o i

_ r t c

e S

6 t o

- l

- P

. e r

D. u O t a

r s e p

- p O m m .

) e s T 8 P u

d n e m

r a i 4 su )c l

nt e ' l a T -

e i

oa d w

os W-h(

T s

p m

t e ( e id u e P c F r i mM r T e ef o t

a

+

S s s

d w

e

. o , , , , , , ' '

,!, e -

L ,

3i.

I [ (l

!i b .

F .

{

_ [ [ [ [

f

_ D. o

_ y '

2' I r

r i

O L s

s o

m 7!

of' , 5

_ g/- 1 c 5 e

r

- u g

> , , z

, , k k( i

- '-, > ,i gr p l

. :-' l rI F

? (f I -- I l f O

I lI l l I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 2 0 8 6 4 2 0 8 6 4 2 0 8 5 5 5 4 4 4 4 4 3 3 3 3 3 2 nb eb eoaEo E yo ? g* - u s," hMEnEk&E1RkRagE9 r i

8 -

{ _

i _ k l . i a 2

- ( .

l I L

I I

U - b 6 '

1 i

n _

o i

t c

e _

S 6 -

t o

l P

D. e 0 r .

' u t

s a p o r e

2 m u

)

s p

m e

1 P d n T _

r a l e

e 4 su )c e la m

nt a os W i

T w h(

i od e T

( e id s

p e mM t m -

u

c. F i

T P _

eo s f '

r -

+ e t

S s o

a w

ing d e

[

L  ! l _

. (

I E e

. uClf k

D. F i

2 f 1 '

o O s s

o _

L

' 6 1

5

- e .

r _

- u jt i ;

- g l l ijq E(} l t ;i ; ugi t

t t U E g r i

yll l 7

O F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 2 0 8 6 4 2 0 8 6 4 2 0 8 5 5 5 4 4 4 4 4 3 3 3 3 3 2

$ e,j ok E 4) r s

iay8? g? - ,L* 3 5

2 GEE EcE{gRag o ED T

.y e 1

'D p _

c O

r4 u

U W

e m i

% u O

~

- O m 1

o u e

1 3 l gn u ,

a. o n l LO [ T ( l r C- i 8 C

b -

v0 0% $

a 3

88 3 Iv l 3

0 r o

'e H vU ._y Ed rn l

  • o i " '

u .E_ e U r a

. _ m OJ m '

+ u (f) g

  • 3

=

.3 y :gg e n _2ma.. .- -

u g- m

- = I -

i o

3

- c; -

E e O g

N a

-a _ _

m, ._. s - _i u

.3_ g - 1 ,__. __,-,

g c -

l l

l  !  ! l  !  !  ! I I I  !  !

o o o o o o o o o o o o o o

-
ca o m e e ca o o e e ca o e e o m r e r e e m m n o ea (3) aanto;adu;al k StructuralIntegrity Associates, Inc.

c,p on noc nn, i 5 ,O

1 8

7 1

n 3 l k

o i o

t

( c I e S

t o

l 6 P e

, b r

- u

. t a

D. r 6, 0 e p

m s e p o T

) e 7 m u

d s

i m

1 P n T r a s 4 su )c l

e ' l p

e a m nt a os W P u

w h(

i od e T

( e id r

e t

F e mM t a

c i

/ '

T w eo s f

+

d e

e S s o f> -

. .j?V F

f

' ' 'j,,{; \' 1 o

L ' > ' '

j { r {8 .

j g .

D. s

>, l 2 1 s

o

' L O 8 1

f c/ -

5 e

/' r u

g k i F

' ' ' , ' l'i s ik (

Jg. 'g  ; y 1 g

p (

i$ i ~

r t I I

[l$I l ( f O

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

< 2 0 8 6 4 2 0 8 6 4 2 0 8 5 5 5 4 4 4 4 4 3 3 3 3 3 2 S ah )

0 5

3GOka

  • E&$0gw. k i l  ; 3 S , 1

5 Section 20 y loss of Feedwater Pumps 3 540

?

g 520 -

l l

4

f. ,

- 500 -

ij /

4:. rf ,

480 -

p7 ('  !.

I"i 460 -

], . .-

3 440 e t-

, r ,

u, ti 420 -

7 j r

&fu g, l '

D '

, ~ t!'

o 400 -

  • a f- ,

I E , E o 380 -

L ., g

+ .

L l' ([

360 -

340 -

L b

f5 >~

\ h N.

co I . i II.

I E 320 -

I-3 e t d h 300 -

d pg O

h, 280 '

4 0 2 4 6 8 D (Thousands)

$ Time (sec) m-g O l.D. + Mid-Wall o 0.D.

?T D Figure 5-19. Loss of,Fecdwater Pumps Time-Temperature Plot - Section 20

l l

, o l

1 _a

_o i l - c) l l  : 1 l 4 . o  ;

._ o h > l l

p y _o i -e

==" -, -

M-j  : =: -n a

l, aa .,

o o

u o i

. 9

  • e o - W 4 *a it -

t/3 v3  ! <t c. -o

o '

i o_ t. .

N x

l

.t o .e o u i

E . _ = = t  : ::  :  :  :* a a 0 00 t i. ) :l g  : m CL SSS  : ll:l +

)4  : m 1

.c g _a .

o ci c o . v. a o / e o00,22o00

  • o O w i

00 k-q) _;;22

+

+

, * <t t

<e

-Og a r

  • n .t 1- m -O o en

, nu mo mrmnu . + a -t o c -

o I

\

C "D o r ,u o r

  • n

"' ' t t o 4

c -

- 3 E l

.O 3

. WWWWWWWWW *

, $ j [ g 4 4  : y w H

" ~O o <1 o S a o o o e g '

c<t oy U q) Q<3o 4 a o u o $w , .k1 ' _o p rn Q) g Q<3o & lt u a <> e J:H ' . _o C.

(1 <3o & o -T E g Lt_ Q <a o e M o x o o I

e y (;;;

,.  ; g

. . si -

,

  • T  : y O -o u e

! o 3 V)

To. - , 5 O - E

__; q 2 R ,^^ =_~ , . . = = = _~7 '~; ... ,} q _ _ _

y -

, _ w; ; -

_o o I, *

+ "O m e .

  • < -O m

-N O I.* .

M: -

a

( e -e I  : ,

i

% -P: -

a h  ! bo

_o I

e ,

o -o

_- o 1

I - u 5

I

[ = [ - ~j "- a[ [ g o- # [o l i i i j i i i j i I i,..i;, .irT i ,,iijiii o o o o o o o o o o o o o o o o o o o o o o o o o o o Q N O n - " n O S i

i 1 l l l ( ISd ) ssans l

l l

l SIR-89-036, Rev. 1 5-32 1

StructuralIntegrity Associates, Inc.

m W

5 a Section 12 F Loss of Feedwater Pumps 5 20000 -

~

18000( o

!, 4 16000 -  ! < ,

'l Y

_ o fil 14000 - d s

"B ,

Co

'h f, 12000( <

ooooo S r I.D.

(

o 8 a*** S l.D.

^ -

n < [i MMO S 1.D.

yi _ 10000 7 u  ; v

$ $ ***** S r Mid. Wall tf )

P + + +-+-+ S Mid. Wall v

8000(-(

" '.1 "

"- S Mid. Wall #( (;

-S 0.D. b'

( '

vi -n' -+ S ) 0.D.

5 6000 k t . '; - S 1) 0.D. -

o ,t to ,. .

4000 - e o' -l k

L, , '

@ c S

2000 :

.( '

0 -)

l _

__.q g 4 5 '%$66 6 6 . eo 044+

E -20002 'p h

4. -4000 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii:iiiiiiiiiqiiiiiiiiiiiiiiiiiiii g 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 Q TIME (sec)

'k

'[:s Figure 5-21. Loss of Feedwater Pumps Time-Stress Plot - Section 12

.9

1 o  :

_o

-o

- C) i  : i g -o 1

~o

_ 1

- o i , -m 1

n

-w i- -

S g' ~ h mm = = = _ _ ~ ~

g e
R

~

N. F

  • i t

$o e

1

e p?  :

- o 8 ,

O ~.o u )

Q ".e 'i>C

- o

- O M o

I

a. '

E - - = = - ,< -

a o oo O..rf

m m

a 333 n e , $.

- o e

u .

to NO ^o " \

d bQ _Og =

l e G e a aas ss o oo

". ,c -  ;

co NNm 5I$

~ **

- ~

E

~

e E

mmmmmmmmm - >$

. o._ 3:

" O o ;

-_oo$p m

c.

Oe eg e.:

o <5

+

A u .r .. o u 4 .i o . , _ o

- y ,5 e

g LL ec44 a u .i o 3 ,

e4oe-Ao 1 , ..

' W,-='  ;;:

'-; u ~ . . 4 O wr &# -

i i j i i -i i .

[ i i i i i , o 1 i i i l 1 .

o o o o o o o o o o o o o o o o o o o o o n a n - - m c I I l i ( ISd ) ssms l

l l sia-89-036, nev. 1 5-34 { StructuralIntegrityAssociates,Inc.

I l

l o

1 _. o

-o i

_ cn l  :

-o

._ o o

l <

i

. - co

- s

_f -> u l

E*

n < - $

\

N hf I w :o u

! C- $ gg g$ rS 4

E
*

a 233

  • r hg*<  :  :.

l 3 33 . -

a <m ddi$$oNY 0 $

u d "2 22 O OO l

07 0 I O a llI

. C o MGM

"*+<

    • c - $ d l . O_ 3: mmtnommmmm "* gg  : g ,

~ TJ a <s o , u o u o L o -o2 n.

e i

Ooy c) c<24, o <1 4. 4 n o u o n a a o gg -_o o ;- l
u.g -e g L1- eeo n 4 a o n o 4 4 u

d46 l} _

O hf b

-o a l '5 _o y -o  ?.

w - ro i s c.  !

O - < '

, . . 5  %

-I

G W - y 'r E ~- C =_,:. _, ___ ,

h -

gfirmam  :

_g

$] _ o a o

  • , -o l

,  ; i- -N l

( :l4 $

}/ Eg A l o 1

o

-- g

w

'" w w Y ~ _z _.,._ _

2= w n--  : -

g a w*p ,

5 liiitiiijiiiiiiiiiiiiiiiiiiijiiij6Fijiiisi.ii...i..,..iii,igitigiiiiiiiiiiiiii;4ii i o

oo ooooo oooooooooooooooooooo ooo oooo ooo ooo o o oooooooooo O v N o CO o v N o 00 o y N o ooo o oooo ooo N v o 00 oN v c m m mn - - - - - i i t i 1 I I I

( ISd ) ssaas SIR-89-036, Rev. 1 5-35 f StructuralIntegrityAssociates,Inc.

l

-==

'5 o o o 3 33 _O O

60C$2200.

_--s22o00 O.  :

n"^n~n~  :

lL  : O mmmmmmmmm g! --g a o u o a g h9 <!a h l[ .F iI i>

-_ co o<3+<x - a .r o o -

c<39<x d <3 o <r

c .> u o u t u o _ _ ,_

- O

! [ Z U

\ ,

g $ .$

D e

M 4

  • ', .=f
  • 4

+

m -O i k s .

$ $ 0 a E

  • J" +

f 8 -O a 1 c

t -
m J .,

f O- = f  : $

O t l:ll + :OO mug e.

g

., t u

w

-O

O ^N

& l  : h ca .

..l - 10 -

m 3

.O3 gT 1

i  :  ;  :

s ..

, _ w s j O2 m I Oe (D g

.:s

, c.

10 p

-O c.

e

  • 5, M la .

. 35 .

~N -

1 -

9 O

t i  :

, -O e 3

E: , 10 3 m E.h r.g -O  ?

O .y_ -

~n -

a a~~r- u e 2

{a{+tj w.

1

~~~

j

~

g 18

s g

9

~

.  :. :f' . ,

-5 g -

e 1v l2 c m jf  :

bO d

lo __ O O
b' e,
-e s.

aww

< t crw x = = >

E 5

O 2

i i i i i i , , , , , , i i i i i i i i i i i i i i i i i gi ri i i i i i . n , , , , , , , , , , .,iiiiiii O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O v N O CO O v N N T C 00 O N v c

- - e r l l l r w - -

l 1 I I I

( ISd ) ssa;1s SIR-89-036, Rev. 1 5-36 gg,yggg73; jgggg,;gy pgggg;gggg, ,gg,

Sec tion 17 f 600 Startup/ Shutdown v

500 -

/

400 -

C v

300 -

w o

a. .

E i t' 3 200 -

w g 100 -

E i d c W

W ' i t i , , , , , , , , , , ' '

0 0 2 4 6 8 10 12 14 16 18 s

M (Thousands) .

8 T,ime (sec)

Q- 0 1.D. + Mid-Wall' o 0 .~ D .

E D Figure 5-25. Startup/ Shutdown Time-Temperature Plot - Section 17

~

3 Section 20 I

g Startup/ Shutdown .

, 600 ,

l

?.

- 500 -

r l

, d 400 -

v r a

fo 300 -

$bn '

E '

o f F- ,

200 -

e f 100 -

E i ,

d E

4 E O 0 2 4 6 8 10 12 14 16 18 g (Thousands) g Time (sec)

Er

& O l . D. + Mid-Wall O O.D.

9 E

9 Figure 5-26. Startup/ Shutdown Time-Temperature Plot - Section 20

0 _

0

0 0

2 l l l l l la aa W WW ,

..d .dd . D. D.

I 1 1 M iiD.0O D.D.D.i MM 0 i r

0

_ 0 i0 8 SSSSSSSSS -

6 ns0A

. t n

, = =

t 1 o _

e o 0 A e c 0 A s o 0 A

=

=

_ p

, i t

c ac0A ==~ .

S e

t o

x l 0 P _

0 n g.

e ,0 s s

2

_ w 1 e r

8od -

)

c t

S t e -

nu * ,

, (

s e m

i oh E i

T tS M n c

e/p

. I i

._ T w o

0 d

_ S u i0 t

(

t .

. 0 u r . h 8 S a N /

t S t.

  • Q 4 g t

p u

r f .

' , a

[ '

f, t.

i t

S

/ i

0 0

7 2

',/

_

  • 0 5

- g N 4 e r

',* #, Y

?

i i

u g

\^s F

  • ,?
  • ,] ^

i

^

^ ,

_ - - _ - - _ . - _- 0 0 0 0 0 0 0 _

0 0 0 0 0 0 0 0 0 0 0 0 _

5 3 1 1

3 5 _

^

i D M _

=?m?y y<. ~ v' 6 $hg Ee:::.4k8W&M'g9

i l

l l

l O 1 0

-O l O N

l l lI  ; O O

< ro -O O

<r-O N

~

ai:l) c

<ro o

~

ar,[3 M

<r- d

]

<x4a ,

-r-a O a u

-O O

<110 m C A 3: i! l! _ m e mO r- 3

h. '*~

-l1 4

_ _. _l 4<

4 _ S 8 E U

m a w i C _r .

s y Ow 2~ -

- +

ZN i; o

_O g O

O a, j O

  • o wr' __

=

3 533 A' g -

2 3 3 33 Chr E

N U  : L

~

?

d 9_dd.imdRR

_322600 1:cr L

' h,

~

MGM .

h mmmmmmm.

ae,.x a e o ,

y

. q.

i _sO .

0 9 <> <1 o " t v

  • Q S <> <I o o ?

.f,rh g i

<> <r o o 9 d< ro e -

n o <4 o <x x o o a .

rA 1 b! .k -

~

l l l 4 l I 6 'g l  ! I l l 1 l l

l, O O O O O O O O O O O O O ,

v N N v l 1

l I l

[ ( isa ) ssus s1a-89-036, nev- 1 '~'*

& structurallategrityAssociates,Inc. l

l 1

1 l

O  !

O

-O O

N

.' ' fa . . _ _ _ _

O O

,,i r e i o

< ,:: o

-~]

< , 4 f il

. ., - u U 1

~

G

p. , ,,

M f il o ,

I _ i

-== '

I ' " u  !

I l 0 gg00 C

. ) -u o 3

O $

C ddd.

_ :- s 22 0 00 3

, g r: 4

_ha g LO 3 CWTWCW ' '

) M

,I .

- o -

mmmmmmmmm {l -= -

n y . ,

3- 2o g a u o o o ( 4 .

C] o (D <s

<: 9 ,& a o o _ $ Ew

. 9 _C $ll <p "llll c

- (n o <2 . o to .

y 2 0

%) P 2

~

c = ,

i .( E u x

i

<r

'f }

i,i: *g .3 C/3

.I <, B < , @

o ,,

u <

3 _ cy 4 o L

n <

3 O

e f 1' 8' _O

< n <

3 O a

  • p T to

<  : w iE 4 I

3 --

4 > e" 4 4 L' 4 n . _

l

.--e.np  :- + -

l 3 l 1 I ijia i j i i I l 6 I i l 4 i l 's e i il l I i l i i i j i6 i l l 6 i O O O O O O O O O O O O O O O O O O O O O O O O N (O v T CO N O O N - - l l

- - N I I I

( ISd ) ssans i

STR-89-036, Rev. 1 5-41 f StructuralIntegrityAssociates,Inc.

o

-8o N

a

l t e . : _;- n n -

k 1_  :- -

, n g 2

. , -o c

. o i 1 -

B h l. 0 l - '

/:

.: 4 J.

t

. 2  :. 4

[ g55 8 g C .3 . n, ,,

3 33 -o e

W3 .$ ... -

b n O O ,'# l .

add.522OR9

.:- ;2 22 0 00 n

o 9e

~ #

c s m m- - 8 .$

gDc M. 1 - v s

l m m vw. m m m m m u; e N Q-

E i

E 1 % i f ll lI i i

$ 1llllII o

E .!

W D eaoe+x o 4 e _. o .=

Y 1. $ ' , _

o -

it

,y y . 4 ,

o. t 3

.t 4: 4o -

4k . dr

'k - fp a

\ v + -

d A

h+ f:rt

_8

  • t

-9: t 2

--Q t m -

y t i 1 1  % i: -

~

} [

I i i i I i i i

i i i i

i i i o

o o o o O O O O O o o o o O O O O o o o o o O O O v ro N -

7 y }

v

( ISd ) 55845 SIR-89-036, Rev. 1 5-42 f StructuralIntegrity Associates, Inc.

O

-8O CN

~

==

oOO

$$$ ~

dddSSSOdd

_.:_s226oo O

O ObCE \ _O o WWWWWWWWW - O O <1 9 9 u a <n a

\ -

w C<a49 Cd) $ .p o -i ,,

t 4F <t i,

\ 4.J u o < " *

@2++<> o, u e .' t .

_ g" v<, .

s

~

M g<r

\

\ O O c)

N g

~~

O M a _

C D l 6 , _ O b

.9 C f J w d

-m 2 s UN Q)

"h i

~

P c 3

Wh a .,

g i

-@ O

E G l . t 9t D  :

O .-. .

ib y) l .x /

x / f

., i ,e,/

y

<z y _

~

7 O d

  • " O M O d

[

\ l

. t f

e 7' _

a g

a g - ;r.,

\, _

t l e I j i i i j i4 i l iil l e I l 1 il l 1 i 6 l 6 , , O l

O O O C O O O O O i O O O O O O O O O O O O O O O O O O s m ci e - n N - c

- - 1 l - -

I 1 I

( ISd ) ssans SIR-89-036, Rev. 1 5-43 StructuralIntegrity Associates, Inc.

f 6.0 MECHANICAL LOADS / PRESSURE ANALYSES The geometry shown in Figure 3-3, and in the Design Specification, is analyzed for attached piping mechanical loads, and pressure with coincident temperature loads. This section describes the analyses performed for each of these loads, and the '

resulting stress intensities. These stress intensities, along ,

with those resulting from the thermal transient analyses reported '

in Section 5.0, are compared to ASME Code allowable values in Section 7.0 of this report. These results are also employed in the fatigue evaluation cont'ained in Section 8.0.

6.1 Attached Piping Mechanical Loads The appropriate geometry was mathematically modeled for analyses )

using the public domain computer program SuperSap (Reference 9).

The mathematical model is shown in Figures 6-1 through 6-15, and is the same as that used for the thermal transient analyses.

Two unit load analyses were performed: (1) a 1000 pound axial ll load on the end of the core spray piping, and (2) a 1000 pound axial load on the end of the thermal sleeve piping. The results of these analyses were then ratioed to account for axial loads and bending moments resulting from various load combinations.

The modeled geometry is divided into definitive " Areas" for evaluation purposes. Figure 6-1 depicts those areas which are considered. Area G1 designates the stainless steel material, and Area G2 designates the low alloy steel material within Area G.  ;

The maximum stress intensity in each area is reported in Appendix A for the core spray piping unit load analysis (page A-1) , and l for the thermal sleeve unit load analysis (page A-2).

i

! Maximum stress intensities for primary and primary plus secondary i loadings were then calculated for:

SIR-89-036, Rev. 1 6-1 f StructuralIntegrityAssociates,Inc. }

r

,) . *', . . -

1 Core Spray Piping Primary Loads (page A-3),

Core Spray Piping Primary + Secondary (Range) Loads (page A-9),

Thermal Sleeve Primary Loads (page A-14), and, l

Thermal Sleeve Primary + Secondary Loads (page A-18).

1 l

The maximum stress intensities per " Area" for each of the above l l loads are summarized in Table 6-1.

6.2 Pressure with Coincident Temperature Loads The same mathematical model and computer software were used for the pressure evaluation as that described in Section 6.1 of this report. An operating pressure case was analyzed, with pressures of 1150 psig in both the flow path and annulus regions.

l As with the " Attached Piping Mechanical Loads", the maximum stress intensities in each area were determined, and are reported in Appendix B (page B-2). In addition, general primary membrane stress intensities are reported for the Design Pressure load (page B-1) . The maximum stress inte;sities per " Area" for the operating pressure' case are summarized in Table 6-2. The general priinary membrane stress intensities per " Area" (not considering "G1", the stainlers steel naterial) for the Dc. sign Pressure case l are reported in Table 6-3. '

I i

SIR-89-036, Rev. 1 6-2 f StructuralIntegrityAssociates,Inc.

Table 6-1 1 Maximum Stress Intensities - Attached Pinina Mechanical Loads Areas Core Spray Piping Thermal Sleeve Piping P ,1 Pg+P1 b Pg+Pb+Q P ,3 Pg+P3 4 P +Pb + g5 (ksi) (ksi) (ksi) (ksi) (ksi) (ksi)

A 5.6 14.7 38.4 - 7 7 0.0 B 2.4 6.0 15.0 7 - 7 1.0 C 2.4 6.3 15.4 0.7 1.9 5.3 i D - 6 6 7.0 1.2 3.1 4.2 E - 6 _ 6 1.1 1.5 3.7 3.9 F 1.8 4.8 12.2 0.7 1.6 2.4 G1 - 9 - 9 9.6 -9 9 1.7 G2 3.4 9.0 12.7 1.3 2.7 2.1 i

Notes: 1. See page A-7.

1

2. See page A-12.
3. See page A-16.
4. See pago A-17.

l

5. See page A-20.
6. None of the loads are transferred to these Areas, as the load path is from the core spray system piping to the reactor pressure vessel nozzle.
7. None of the loads are transferred to these Areas, as the load path is from the thermal sleeve piping to the reactor pressure vessel nozzle.
8. G1 is the stainless steel material. G2 is the low alloy steel material.
9. Credit is not taken for the cladding in satisfying primary stress intensity requirements.

SIR-89-036, Rev. 1 6-3 f StructuralIntegrity Associates,Inc.

Table 6-2 Maximum Stress Intensities - Oceratina Pressure Areal Stress Intensity A 15.0 ksi B 11.2 ksi C 16.4 ksi D 2.8 ksi E 1.0 ksi F 13.1 ksi G1 10.6 ksi G2 11.1 ksi Note: 1. G1 is the stainless steel material. G2 is the low alloy steel material.

Table 6-3 General Primary Membrane Stress Intensities - Desien Pressure Area Stress Intensity A 14.5 ksi I l

B 11.2 ksi C 11.2 ksi D 1.3 ksi i E 1.3 ksi i F 12.4 ksi G 24.1 ksi (LAS)

SIR-89-036, Rev. 1 6-4 f StructuralIntegrity Associates, Inc.

tn bI m

e 1

0

?

n

?

e Area A Area B Area C Area F Area G

- . = = = = = = = ==

m di

/ s

/ . / -
/ , _

lll(((((({@{lllillMllI 321titMllNIMQmMMUlHHfll lg[gyuanum ,

tatss=staraWeit=2#14411144111115INgmFig Area D Area E g -

E, T

E M

g Figure 6-1. Mechanical Loads / Pressure Analyses Finite Element Model a

.M. ,

N 9

i 1

\

-ere

14. . A. D B.

t .. P.

1D r ON 1444E.. - .

<r!o s o

, I

. .L.. .L..L.L 1  : s.s l

lll- -

%o.p. a.

IDIDiB B

,' .v.v..v..v.

<al D

.D.i T' l

<v- v Il

.i.n. .-e.

. .o..v. u .

.v..v. v

- v.

o o

.=

m i

a 0

L w

O eH e4 I

n '

. .r...I D. .s. .D. u. 1

.v. ..v .v v a l

- i

. i n '

s I c '

C W

=

co u.

1 0 v

  • 9 i v'N N N l

,'v-.-. v v. .v t

l

! l l

l I

I l l%<0I e i

il. . l SIR-89-036, Rev. 1 6-6 f StructuralIntegrityAssociates,Inc.

U1 H

M i

co I

o u

W

?

IIOY ch II42 I158 1

M II47 I142 i15g IAG2 1149 i14g ggg4 IAG7 I161 I14g 2ggg IIB 2 itsy

! !6' k iIce iIGg 1g44 1887 ' II 77 !!72 !IB t ligg

!! lIgg ligg 186 2 ~ Ig49 1145 g ;O

I16,5 5 11eg, 76 1171; Igg 4 Il4a g; ##?9 11 74 g g g I16 3 IIG5 l184 ##8 21 75 g gg IIBa N*

1~

E E.

GCh

2.

R k Figure 6-3. Detail of Area A - Sheet 2 8

m-5

.M 9

H

?

b H

87 11e; 1897 1892 1867 1882 1896 1991 1998 1961 m $1h 118 1 1 %ks lis ta 1996 189e 1995 1ees

%g te N- 1894 1se9 1984 1879

% k is 9e .1895 1see 1995 1870 AAA x' y' 444 447 /

@ 47 to 2

S.

5 iir Figure 6-4. Detail of Area A - Sheet 3 9

D 8 -

B-E a

9

UI H

N i 8

os e

8 o

u m

d I

H i

1877 1872 1867 1862 1857 1862 47 m

I e 1878 1871 1868 *1861 18E8 1861 1 8 1975 1878 1866 1888 1965 less 184 1974 1869 1864 1859 1954 1849 1844 1975 1868 1885 1850 1865 1848 1845 to E

a.

c:

k w

iir tz

':2.

9 Figure 6-5. Detail of Area A - Sheet 4 h

8 a-

.D 3

r>

in H

M I

co e

i o

u m

N m

.a P

m 1

o 1922

\ 10' 2 1807 102:2 10;:7 1917 1812 1007 1002 997 992 907 90;! 97 "

97s. 96 98;!

\ 19411008 102;1 10ae 1821 late 1811 1988 1801 998 991 988 98: 970 971 9st' 96'

\1414a 02 6 1000 10: 6 1s20 1816 1818 fees 1000 996 990 986 551eg 4 le; 9 01l 97U 97E 96E: 9 64l

\1_ 9 1924 1919 1914 1809 999

,1004 994 989 984 97'l 97<, 96<1 98< 96'l

]""Tets 10: e 10; 5 1810 1815 1000 1805 990 995 900 905 970 97U 9st '

962: 960 to E

n E

k a

k::. Figure 6-6. Detail of Area B Q

h 8

sr i

-M 3

9

(n H '

y .

b o

I u

m 858

. 050 g

/ 082 y -

/ 078 849 078 OE4 086 f / 056

/ 894 / **'

04e

[/f 3, ,

q13 y

9e2 e95

/

ses y

877 p

889

/

847

/

y 055 qeq 068 854

[ 917 f 904 942 926 / 992 y y

/ 947 52 y see - 855

/ 952 ./ 924 # 075 p-967

/

/ 941 952 p #.. -

099 89:

095 -.p ,,,

915 # p BM 961 925 060 958 g 951 y 090 098 B02 03I 45 940 qn 914 908 045 960 to 850

$ 954 q49 944 959 929 921 915 935 097 009 001 075 965 057 042

' 954 - -

k 955 940 945 920 912 qg4 041 029 g 958 %

098 ggg 800 072 064

<t N 927 N 911  % g 048 929 h N 007 o

N N

079 871 065 055 059 827 O- N w

'g Figure 6-7. Detail ot Area C - Sheet 1 ,

9

5 4 5 2 5 2 0 6 4 2 0 8 4 0 7 7 7 7 2 1 0 7 0 0 2 1 2 _

5 2 0 0 0 8 4 2 7 9 7 7 7 7 7

5 5 1 2 1 1 1 0 0 _

0 0 0 0

2 1 2

0 6 4 7 -

7 7 7 7 0 _

0 _

0 1 0 1 7 _

0 0 8 _

4 2 0 7 7 4 7 _

2 1 0 7 _

0 0 9 0 9 _

9 0 6 _

9 7 9 1 _

0 6 5 7 7 7 7 7

5 1 9 2 1 9 8 0 0 9 0 9 0 1 7 7 5 5 7 7 7 7 9

6 7 0 1 T, 7 7 7 2 0 " 7 5 5 2 1 7 7 7 0 0 9 8

T e

\ 0 0 7 7 0 0 7 5 5 7 7 7 2 1

2 0

9 0

0 7

9 7

5 7

6 5

6

\ t e

e 7 7 7 h S

4N -

4' 4 5 4 8 7 5 C 0 0 9 7 7 7 2 0 7 a 0 0 - e r

h 5 4 5 A 5 5 7 7 0 7 7 f 7 o 5

9 7 7 9 l 1 0 5 2 5 4 6 i 0 0 9 5 5 a 7 7 7 7 7 1 t 7 e 9 D L 6 1 2 5

_ 4 7 5 5 .

_ 0 6 9 7 7 7 1 1 8 1 0 7 7 9 -

0 0 6 6 li 0 1 2 5 e 6 7 5 5 1 r

0 7 7 7 7 9 u 7 8 g i

7 5 F 1 0 5 0 0 9 9 0 1 2 9 7 8 5 5 1 0

7 7 7 7 6 l 1 1 l 1 2 3 4 2 8 4 5 1 0 8 4 9 7 7 7 7 6 1 0 7 0 0 5 t l l l i

8 4 2' t 0 7 7 7 7 8

\

. E 5 t 5 E

- 1 0 4 2 0 B

_ 5 5 9 7 7 7 7 6 1 0 7 0 0 4 1 E 5 t E 6 4 2 0 0 7 7 7 7 7 6

\

o tH%ImeiO P Wm<. P mh  %$QC hw$ B k ?9?

en H

e i

O u

M ta e

874 ess e42 827 sat ses Esq 565 557 Eat Els 499

    • B64 g,* 628 gI4 498 E** gg2 m 828 *00 Get ett
    1. 665 ggy Y G5s
    • G67 49, 87t agg 699 Ggg 512 848 826 G54 668 '

GII W

G68

    • 661 gB2 G55 617 624 g.y M4 859 649 GIB
      • BGB Geg Ste

' ceg g5a 608 g4q ' gs:7 s4e

      • 825

- se4 ..

gg GB6 .

59a G57 822 h ses "47 I ..

a n

I Q

g 5

ttl3 D.

R h

{ Figiere 6-9. Detail of Area D O-E N

3 9

0) i H

lU C

co W

l o .

u m

30 0

H m

481 474 450 4sg 436 421 599 -

504 N '

554 518 284 2 711 479 472 456 449 505  ;

560 555 517 285 269 i 470 471 455 440 454 419 597 582 567 552 518 282 260 477 470 454 45 476 469 455 447' 455 419 598 501 566 551 515 281 26U co E

d w

M.

k 8

S-E g Figure 6-10. Detail of Area E 9

En i H

M  !

W -

I-o i ta a

  • M o

H 684 666 656 621 611 5% E79 565 547

  • E51 507 491 605 664 656 gaa 618 594 467 444 578 562 546 450 489 )

550 586 498 486 602 665 654 619 609 595 677 445 661 E45 E29 585 429 age 681 662 '655 618 800 592 576 568 544 489 3]

0 861 652 617 687 E91 676 EE9 545 528 527 504 585 488 3Q 679 660 651 616 606 598 487 M]

676 659 65e 615 Sg5 se 674 550 542 626 582 g

486 496 3%

677 658 629 614 684 E4e 524 Ese 484 461 488

~M73 457l 425 4 t ol en

=Y n

E k

y Figure 6-11. Detail of Area F 4

8 B

P 9

U)

H M

I 03 t.0 I

o u

Al t$

H 226 254 279 8 224 595 594 588 584 549 559 529 514 50E 294

[ 249

  • 401 595 579 585 548 55B 52B 512 504 - 295 278 j -

225 l p gg 252 265 277

~

405 592 578 582 547 55/ 527 51; 505 292 222

  1. 247 251 s . 262 408 591 577 581 548 528 511 502 291 278 1

261 246 250 M 407 590 576 580 546 58 51E 501 298 h

406 589 576 559 544 555 525 58c 50E 289 274 260 246 229 220 g 406 588 574 568 545 554 524 50E 29c 28G 275 269 244 228 219 k 404 587 575 557 542 555 525 50] 29E 287 272 268 245 227 218 w

ECl3 D.

M k

a 8-

% Figure 6-12. Detail of Area G - Sheet 1 9

in H

M o

l

  • O w

u

? I

" /

115

, 112 i

H w

145 127

,/ 111 g /

-;[f '""

/

g 06 I41 118 a x'/ .,.

/ 125 h 194 / 175 158 Q 7 199 / g4, k 157 4 ** 172 f q

3 N

T 206

-lT 197 19e i 'let 171 156 I

~

124 8 a; .

, 6 46 7e as .se . 25 es h  !  : M f3 N 5$ !d :3i 5d -

???

D Figure 6-13. Detail of Area G - Sheet 2

t C<4

r. a...

O v. e o aa u

vs

___ i o

e u

D NO <

t t'e

%e C

e4 w

e u

. O c.

e l C v* " 1 D 10 I j G l u

=

s -

- 1 l

(D sO s Ns i

a n-r rir i

l l SIR-89-036, Rev. 1 6-18 l f StructuralIntegrityAssociates,Inc.

L

, b I.;;I l 9 . 7 8 g 4 s 2 1 8 4 2 2 2 2 2 .

~ t. .

e _

e _

h S

/

8 7 6 6 4

- 5 5 5 5 5 - _

_ G 7 a e

_ / r 5 , 1 8 9 A 6 , 6 5 4 f

_ o

/

/.

' l

_ i

_ e 7 6 4 a 76 S 6 8 t

_ , e D

/ .

/ q 5

1

- 1 s -

. 9 e

  1. 7 6

e r

u

/ 6 7

- s 4 i g

  1. q F

/ 9 9 9

/

. /

n iH%IoOtowm' c

MDA- ;U t '

yhg I@ & h@DOEm.

i N

E9 1

r j 7.0 CODE STRESS EVALUATION Subsubarticle NB-3220 of the ASME Code defines the stress limits which must be met for all specified load combinations. In order to satisfy the criteria contained in this subsubarticle, maximum stress intensities for (1) attached piping mechanical loads plus pressure, and (2) thermal effects, by Area, were directly added.

This is a very conservative approach, which proved acceptable in certain instances, but not so in others. For those unacceptable cases, a detailed analysis of stresses in each examired Area was undertaken, and a more accurate value for stress intensity was

determined. It should be noted, however, that in all instances, a conservative approach has been taken to determine stress intensity. Consequently, the ratio of computed stress intensity to allowable is in many cases close or equal to unity.

This portion of the report is divided into four sections, one for each of the load combinations examined. Reported in these four sections are the maximum stress intensities for each Area for the specified load combination. Section 8.0 of this report documents the ASME Code fatigue evaluation.

7.1 Design Load Combination Table 4-2 specifies the loads which must be considered for this l

load combination, and Table.. 4-3 specifies the appropriate allowable stress intensity values. For the Design Load Combination, only primary stresses need to be evaluated. Hence, only attached piping mechanical loads (excluding thermal l expansion loads, which cause secondary stresses) and pressure need to be considered. The three materials which have been analyzed, SA-508, Class 2 (low alloy), SA-182, Grade F316 or l SA-376, Grade TP316 (stainless steel), and SA-350, Grade LF2 (carbon steel), have allowable stress intensities at 5750 F specified in Tables I-1.0 of the ASME Code. These values are 26.7 ksi, 17.25 ksi and 18.2 ksi, respectively.

SIR-89-036, Rev. 1 7-1 h StructuralIntegrityAssociates,Inc.

Appendix C contains the primary stress intensity evaluation for the Design Load Combination. A summary, and comparison with allowable stress intensity values, is shown in Table 7-1. As seen from examining this table, all calculated stress intensities are less than their corresponding allowable values.

In addition, Subparagraph NB-3227.5 of the ASME Code requires that the nozzle shall not be thinner than the thickness of the attached pipe. Since all transitions from one component to another do not involve thickness reduction, this requirement is satisfied.

7.2 Level C Load Combination l

As with the Design Load Combin:rtt , the Level C Load Combination is only examined for primary c :. ass intensities. As seen from Table 4-2, th'e loads to be considered are the same as those for the Design Load Combination, except that the internal pressure has been increased from 1250 psig to 1375 psig. For the three

! materials to be examined, the allowable stress intensity, per Table 4-3, equals the yield strehgth of the material. The values of S at 5460F are obtained from Tables I-2.0 of the ASME Code, and equal 44.18 ksi, 19.39 ksi, and 27.95 ksi for the low alloy steel, stainless steel, and carbon steel material, respectively.

~

A conservative analysis was performed, wherein the stress intensity results for the Design Load Combination were increased by the ratio of the difference in pressure, or 1375/1250 = 1.1.

The results are reported in Table 7-2, along with the corresponding allowable stress intensity values. As seen from examining this table, all conservatively calculated stress intensities are less than their corresponding allowable values.

SIR-89-036, Rev. 1 7-2 f StructuralIntegrityAssociates,Inc.

i l

l l

7.3 Test Load Combination As with the Design and Level C Load Combinations, the Test Load Combination is only examined for primary stress intensities. As seen from Table 4-2, the loa.ds to be considered are the same as those for the Design Load Combination, except that the internal pressure is 1565 psig. For the three materials to be examined, the allowable stress intensity, per Table 4-3, equals ninety percent of the yield strength of the material. The values of S y

at 1000 F are 50.0 ksi, 30.0 ksi, and 36.0 ksi for the low alloy steel, stainless steel, and carbon steel material, respectively.

A conservative analysis was performed, wherein the stress intensity results for the Design Load Combination were increased by the ratio of the difference in pressure, or 1565/1250 = 1.252.

This is obviously conservative, since stress intensities due to mechanical loads were arbitrarily increased. In addition, as stated in Note 2 of Table 4-3, stress intensities resulting from l all loads are conservatively compared to the general primary membrane stress intensity allowable. Table 7-3 reports the stress intensity results, along with the corres'ponding allowable stress intensity values. As seen from examining this table, all conservatively calculated stress intensities are less than or equal to their corresponding allowable values.

7.4 Level A/B Load Combination l

l Table 4-2 specifies the loads which must be considered for this load combination, and Table 4-3 specifies the appropriate allowable stress intensity values. For the Level A/B Load Combination, primary plus secondary stresses need to be j evaluated. Hence, all loads, including thermal transient effects, must be considered.

Per Subparagraph NB-3222.2 of the ASME Code, the range of primary plus secondary stress intensities must be less than or equal to SIR-89-036, Rev. 1 7-3

3.0 S, (8 0.10 . ksi for the low alloy steel, 52.62 kci for the stainless steel, 50.98 ksi for the stainless steel weld metal, and 55.99 ksi for the carbon steel materials). However, j

Subparagraph NB-3228.5 provides some relief, in that the 3.0 S, l limit must be met for all stresses, excluding thermal bending, i 1.e., the 3.0 S, limit can be exceeded when considering all  :

loads. Since thermal bending stresses are significant for the geometry evaluated herein, the ruler of Subparagraph NB-3228.5 will be utilized. The satisfaction of the requirements of this subparagraph is contained in Section 8.0 of this report.

In addition, Subparagraph NB-3227.5 allows the exclusion of a stresses due to the restraint of free end displacement of -

attached piping from the 3.0 S, comparison, when invoking the l Subparagraph NB-3228.5 requirements. Therefore, in certain '

instances, the "OBE Inertia" loads from Table 4-1 were used in lieu of the " Level A/B" loads (i.e., those portions of the " Level l

A/B" loads caused by restraint of free end displacement were not included) when calculating the maximum range of stress intensity.

This can be seen in Table E-6 for Element 666. It should also be '

noted that the range of primary plus secondary' stress intensity attributable solely to the restraint of free end displacement.of attached piping is obviously less than 3.0 S,, which meets the additional requirement of Subparagraph NB-3227.5.

i Appendix D contains the calculations cf thermal membrane stress intensities for the three bounding thermal transients examined.

In addition, maximum extreme fiber stress intensities are reported for each transient. Appendix E provides the l calculations for determining the total range of primary plus l secondary stress intensities, excluding thermal bending, for all Areas examined. These results are summarized in Table 7-4, along with the corresponding allowable stress intensity values. As seen from examining this table, all calculated stress intensities i

1 are less than or equal to their corresponding allowable values.

SIR-89-036, Rev. 1 7-4 f StructuralIntegrityAssociates,Inc.

Table 7-1 Desian Load Combi 1ation Primary Stress Intensity Evaluation Membrane Membrsne + Bending Area P, Allowable: Ratio 1 PL+P 3 Allowable: Ratio 1 1.0 S, 1.5 S ,

(ksi) (ksi) (ksi) (ksi)

A . 15.5 18.20 0.85 22.2 27.30 0.81 B 13.6 17.25 0.79 17.2 25.87 0.66 C 14.3 17.25 0.83 19.4 25.87 0.75 D 2.5 17.25 0.14 4.4 25.87 0.17 E 2.8 17.25 0.16 5.0 25.87 0.19 F' 14.9 17.25 0.86 18.8 25.87 0.73

-G 24.6 26.70 0.92 35.8 40.05 0.89 Note: 1. Ratio of maximum conservatively computed stress intensity to allowable value.

Table 7-2 Level C Load Combination .

Primary Stress Intensity Evaluation Membrane Membrane + Bending Are: P m All weble: Ratio 1 Pg+Pb All wable: Ratio 1 1.0 S 1.5 s y y (ksi) (ksi) (ksi) (ksi)

A 17.1 27.95 0.61 24.4 41.92 0.58 B 15.0 19.39 0.77 18.9 29.08 0.65 C 15.7 19.39 0.81 21.3 29.08 0.73 D 2.8 19.39 0.14 4.8 29.08 0.17 E 3.1 19.39 0.16 5.5 29.08 0.19 F 16.4 19.39 0.85 20.7 29.08 0.71 G 27.1 44.18 0.61 39.4 66.27 0.59 l

l l

Note: 1. Ratio of maximum conservatively computed stress

intensity to allowable value.

i SIR-89-036, Rev. 1 7-5 f StructuralIntegrityAssociates,Inc.

f i

Table 7-3 Test Load Combination l

Primary Stress Intensity Evaluation l

Area P, Allowable:2 Ratio 1 (ksi) 0.9 S (ksi)

A 27.8 32.4 0.86 B 21.5 27.0 0.80 C 24.3 27.0 0.90 D 5.5 27.0 0.20 E 6.3 27.0 0.23 F 23.5 27.0 0.87 l G 44.8 45.0 1.00 i

Notes: 1. Ratio of maximum conservatively computed stress intensity to allowable value.

2. See Note 2 of Table 4-3.

Table 7-4 Level A/B Load Combination Primarv + Secondary Stress Intensity Evaluation Area 3 PL+Pb+Q Allowable: Ratio 2 (ksi) 3 . 0 S, 1 (ksi)

A 53.5 55.99 0.96  ;

B 36.6 52.62 0.70 l l C 42.1 52.62 0.80 l j D 51.9 52. 6:! 0.99 i E 16.0 52.62 0.30 F 52.5 50.62 1.00 l G1 29.7 30.984 0.58 G2 37.2 80.10 0.46 Notes: 1. S , values are at 5460F.

! 2. Ratio of maximum conservatively computed stress intensity to allowable value.

3. G1 is the stainless steel material. G2 is the low
alloy steel material.

! 4. The allowable stress intensity for the stainless steel cladding material is conservatively assumed to be the same as a 304 base material.

SIR-89-036, Rev. 1 7-6 gg,yggy,gy ygggy,yyypggggjgggg, ggg, 1

i

i j 8.0 CODE FATIGUE EVALUATION Subsubparagraph NB-3222. 4 (e) of the ASME Code, as supplemented by l

Subparagraph NB-3228.5, requires a determination of the ability of components to withstand cyclic service. In order to evaluate the safe-end, transition piece, and thinned portion of the core spray inlet nozzle for cyclic service, a conservative approach is used; namely, the maximum range of stress intensity at any location in each Area in the austenitic stainless, low alloy, and carbon steel materials for all pertinent loads is employed.

Table 8-1 defines the loads which have been analyzed and their resulting maximum range of stress intensities, and references to the calculation of the maximum stress intensity ranges. For the austenitic stainless steel material, Tables 8-2, 8-3, 8-4 and 8-5 present results for the four conditions which are considered in the fatigue evaluation: namely, the Emergency Shutdown transient, the Startup/ Shutdown transient, the Loss of Feedwater Pumps transient, and the Test Condition. As discussed in Section 5.0 of this report, the other Reference 5 transients were determined I l

to be conservatively bounded by the above conditions. Finally,  !

Table 8-6 presents the results of the fatigue evaluation for the l austenitic stainless steel material.

1 A f e'.I comments are provided below with respect to the fatigue evaluation performed in this section using the above ASME Code criteria:

e Subparagraph NB-4232.1 implies that if a 3:1 taper on all intersections is maintained, a fatigue strength reduction factor does not have to be applied. However, in the interest of conservatism, fatigue strength reduction factors will be determined based upon the philosophy outlined in Table NB-3681(a)-1.

1 SIR-89-036, Rev. 1 8-1

{ StructuralIntegrityAssociates,Inc.

- - . . _- ~ - ,

i l

l Per that table, "K" values are specified for fatigue evaluation. For " Transitions Within a 1:3 Slope  ;

Envelope, Flush", the factors are as follows:

Pressure - K = 1.2 Moment - K = 1.1 Thermal - K = 1.1 l

l A factor of 1.2 will be used to increase all stress intensities in order to conservatively bound peak l stresses.

i e A fatigue strength reduction factor equal to that discussed above will also be used in the transition '

" full radius" of the safe-end from the thermal sleeve  ;

portion to the nozzle portion (see Figure 3-3). Note  !

that this is conservative because the finite ' element mesh in this area is very fine and peak stresses have

( already been calculated, even though they are conservatively treated as secondary , stresses in this report.

l 1

e- All values of Salt are increased by Ke = 3.33, as required by Subsubparagraph NB-3228.5(b).

I i

e In the finite element analyses performed, the lowest value of modulus of elasticity used was 25.57 x 108 l psi.

i The total cumulative usage factor for the austenitic stainless j steel material is conservatively calculated to equal 0.98, which is less than the allowable value of 1.0. Therefore, all fatigue requirements of the ASME Code have been satisfied for the austenitic stainless steel material, including the cladding material.

! SIR-89-036, Rev. 1 8-2 StructuralIntegrity Associates, Inc.

For the low alloy and carbon steel material, the procedure is

)

similar to that outlined above, except that a different " Design Fatigue Curve" is utilized. Tables 8-7, 8-8, 8-9 and 8-10 have I been prepared accordingly. The same four conditions were analyzed as was done for the austenitic stainless steel material. I i

From Tables 8-1 and 8-10, the maximum ranges of stress intensity for the four conditions, in the carbon steel material, are 140.7 ksi, 89.4 ksi, 88.5 ksi, and 20.4 ksi, respectively. The corresponding Ke values, as calculated from Subsubparagraph l NB-3 2 2'8. 5 (b) , are 4.03 for Condition A, 2.19 for Condition B, j i

2.16 for Condition C, and 1.00 for Condition D. Table 8-11 was  ;

therefore compiled for a value of "E" equal to 26.72 x 106 psi.

The total cumulative usage factor for the carbon and low alloy steel materials is conservatively calculated to equal 0.63, which is less than the allowable value of 1.0. Therefore, all fatigue

]

requirements of the ASME Code have also been satisfied for the carbon and low alloy steel materials. j 1

In addition to considering Ke when entering the fatigue curves, Subparagraph NB-3228.5 has other requirement's which must be satisfied. These are as follows.

e Subsubparagraph NB-3228.5(d) requires satisfaction of the thermal ratcheting requirements contained in

~

Subparagraph NB-3222.5. Appendix F contains the calculations for determining the allowable range of thermal stress. As seen from reviewing Appendix F, the ASME Code criteria are satisfied for all thermal I transient conditions examined.

e All temperatures are less than 7000 F. Therefore, the l requirement of Subsubparagraph NB-3228.5(e) is i satisfied SIR-89-036, Rev. 1 8-3 f StructuralIntegrityAssociates,Inc.

. .. _. . ._ - . ... - = __._.- . . . . . . . _. -

l I

1 1

e Subsubparagraph NB-3228.5(f) requires that the ratio of minimum ' yield strength to minimum tensile strength be less than 0.80. For the stainless steel material, this ratio is 30/75, or 0.40. For the low alloy steel l material, this ratio is 50/80, or 0.63. And, for the

-carbon steel material, this ratio is 36/70, or 0.51. l Therefore, the requirement of this subsubparagraph is met.

l Since all of the requirements of Subsubparagraph NB-3222.4 (e) and i Subparagraph NB-3228.5 are met, the safe-end, transition piece, l and reduced thickness nozzle satisfy all fatigue requirements of l the ASME Code.

. l v

l l

4 I

  • . j l

1 SIR-89-036,.Rev. 1 8-4 StructuralIntegrity Associates, Inc.

Table 8-1 Maximum Ranaes of Stress Intensity for Attached Pioina j Mechanical Loads + Pressure, and Thermal Transients l

l Attached Piping 1 Emergency2 Loss of 2 Startup/ 2 j Mechanical Loads Shutdown Feedwater Shutdown i

Area + Pressure Stress Pumps Stress Stress Stress Intensity Intensity Intensity Intensity A 48.4 ksi 92.3 ksi 40.1 ksi 41.0 ksi B 22.0 ksi 143.5 ksi 35.3 ksi 34.7 ksi C 32.8 ksi 146.5 ksi 37.4 ksi <24.0 ksi  !

I I

D 11.0 ksi 136.6 ksi 22.2 ksi <24.0 ksi E 5.5 ksi 128.6 ksi <17.0 ksi <24.0 ksi  !

F' 28.0 ksi 64.5 ksi 36.4 ksi 23.8 ksi G1 17.2 ksi 72.8 ksi 90.8 ksi 77.4 ksi G2 24.7 ksi 28.9 ksi 27.2 ksi 28.7 ksi Notes: 1. See Table E-3.

2. See page D-76.

, .. l l

i l

l 4

4 9

SIR-89-036, Rev. 1 8-5 Structural Integrity Associates, Inc.

r 3 t

I Table 8-2 Condition A: Emercency Shutdown Transient - 3 Cycles Austenitic Material l

Salt (ksi)

Emergency Attached Piping Area Shutdown Mechanical Loads Total Transient + Pressure l

B 71.8 11.0 82.8 C 73.3 16.4 89.7 D ,68.3 5.5 73.8 E 64.3 2.8 67.1 F 32.3 14.0 46.3 l

G1 36.4 8.6 45.0 Maximum Salt = 89.7 ksi Table 8-3 .

Condition B: Startuo/ Shutdown Transient - 117 Cycles Austenitic Material J l

l l

Sa1t (ksi) l Startup/ Attached Piping Area Shutdown Mechanical Loads Total Transient + Pressure l

B 17.4 11.0 28.4 1

C < 12.0 16.4 < 28.4 t D < 12.0 5.5 < 17.5 l I

E < 12.0 2.8 < 14.8 F 11.9 14.0 25.9 G1 38.7 8.6 47.3 Maximum Salt = 47.3 ksi

( SIR-89-036, Rev. 1 8-6 Structural Integrity Associates, Inc.

Table 8-4 Condition C: Loss of Feedwater Pumos Transient - 30 Cycles Austenitic Material Salt (ksi)

Loss of Feed- Attached Piping Area water Pumps Mechanical Loads Tot!al Transient + Pressure B 17.7 11.0 28.7 C 18.7 16.4 35.1 D 11.1 5.5 16.6 E < 8.5 2.8 < 11.3 F 18.2 14.0 32.2 G1 45.4 8.6 54.0 Maximum Salt = 54.0 ksi Table 8-5 Condition D: Test Condition - 310 Cycles 2 ,

Austenitic Material Test Pressure l' l Area Salt (ksi)'

B 7.6 - 1 l

C 11.2 D 1.9 E 0.7 F 8.9 G1 7.2 Maximum Salt = 11.2 ksi

~

Notes: 1. The maximum operating pressure stress intensities (see page B-2) were increased by a factor of 1565/1150.

f 2. Includes all remaining pressure cycles from Table 4-4.

l

[ SIR-89-036, Rev. 1 8-7 f StructuralIntegrityAssociates,Inc.

t

Table 8-6

^

Faticue Evaluation - Austenitic Material Salt (Sal t ) (Ke) 2 Applied / Allowable 3 Usage condition (ksi) (Ec/E) (ksi) Cycles Factor A 107.6 397 3/36 0.08 B 56.8 209 117/180 0.65 C 64.8 239 30/126 0.24 D 13.4 49 310/37,543 0.01 Cumulative Usage Factor: 0.98 Notes: 1. Reflects the maximum Salt for all Areas in this condition. All values are increased by 20% to account for a fatigue strength reduction factor.

2. Ec = 28.3 x 108 psi, E = 25.57 x 108 psi, and Ke = 3.33.
3. Obtained from Figure I-9.2.1 of the ASME Code.

SIR-89-036, Rev. 1 8-8 f StructuralIntegrityAssociates,Inc.

Table 8-7 Condition A: Emercency Shutdown Transient - 3 Cycles Carbon and Low Allov Steel Materials  !

(Areas A and G2)-

t Salt  !

Load Carbon Low Alloy Emergency Shutdown Transient 46.2 ksi 14.5 ksi i Attached Piping Mechanical Loads 24.2 ksi 12.4 ksi

+ Pressure Total 70.4 ksi 26.9 ksi

?

Table 8-8 Condition B: Startuo/ Shutdown Transient - 117 Cycles Carbon and Low Allov Steel Materials (Areas A and G2) ,

e Salt l

Load Carbon Low Alloy Startup/ Shutdown Transient 20.5 ksi 14.4 ksi Attached Piping Mechanical Loads 24.2 ksi 12.4 ksi

+ Pressure l Total 44.7 ksi 26.8 ksi i

l i

1 SIR-89-036, Rev. 1 8-9 i f StructuralIntegrityAssociates,Inc.

1

.-- .~ _ --. . _ - . . . - - - . . . . . . _ -. . . , _ -

Table 8-9

-1 Condition C: Loss of Feedwater Pumos Trans.'ent - 30 Cycles Carbon and Low Alloy Steel Materials (Areas a And G2) i Salt l Load Carbon Low Alloy ,

I Loss of Feedwater l Pumps Transient 20.1 ksi 13.6 ksi l

Attached Piping , I Mechanical Loads 24.2 ksi 12.4 ksi  !

+ Pressure l l

Total 44.3 ksi 26.0 ksi I

Table 8-10 Condition D: Test' Condition - 310 Cycles 2 Carbon and Low Allov Steel Materials (Areas A and G2) i Salt Load Carbon Low Alloy Test Pressure 1 10.2 ksi 7.6 ksi Notes: 1. The maximum operating pressure stress intensities (see page B-2) were increased by a factor of 1565/1150.

I

2. Includes all remaining pressure cycles from Table 4-4.  !

SIR-89-036, Rev. 1 8-10 h StructuralIntegrityAssociates,Inc.

i

i i

1 Table 8-11 Faticue Evaluation Carbon and Low Allov Steel Materials Maximum Values Salt 1 (Sa1t) (Ke ) 2 Applied / Allowable 3 Usage Condition (ksi) (Ec/E) (ksi) Cycles Factor A 84.5 382 3/24- 0.13  ;

B 53.6 132 117/292 0.40 l l C 53.2 129 30/308 0.10 D 12.2 14 310/423,498 0.00 Cumulative Usage Factor: 0 63 Notes: 1. All values are increased by 20% to account for a fatigue strength reduction factor. .

2. Ec = 30.0 x 108 psi, E = 26.72 x 108 psi, and Ke = 4.03 for Condition A, 2.19 for Condition B, 2.16 for Condition C, and 1.00 for Condition D.
3. Obtained from Figure I-9.1 of the ASME Code. *

)

/

l 1

l l

1 4

SIR-89-036, Rev. 1 8-11 f StructuralIntegrityAssociates,Inc.

1

1 9.0

SUMMARY

An evaluation of the replacement core spray inlet safe-ends,

  • transition pieces, and modified nozzles has been performed in accordance with the requirements of the Design Specification and the ASME Code. Detailed finite element analyses were performed for pressure, thermal transient and attached piping mechanical l loadings. Stress intensities were then conservativelv '

determined, and compared against ASME Code allowable values for l primary and primary plus secondary effects. In all cases, the I

reported values of stress intensity are less than or equal to their corresponding ASME Code allowabie values.

i A detailed fatigue evaluation was also performed for the l austenitic stainless steel, low alloy steel, and carbon steel  !

materials. For all materials, the cumulative fatigue usage l factor was conservatively calculated, and was less than the ASME Code allowable value of 1.0.-

In conclusion, the proposed replacement safe-end and transition piece, and nozzle modification satisfy the requirements contained in the Design Specification and the ASME Code.

l I

I i

l l

l i

l

(

l 1 1

i 4

j 1  :

i  !

SIR-89-036, Rev, 1 9-1 f StructuralIntegrity Associates, Inc.

1

~ -

l l

10.0 REFERENCES

l l

l 1. Carolina Power & Light Company, " Design Specification for i

Core Spray System N5 Nozzles, Safe Ends, Thermal Sleeves and Transition Pieces", Specification No. 248-157, Revision 1, December 1, 1989.

2. ASME Boiler and Pressure Vessel Code,Section III, 1986 Edition.

l 3. CBI Nuclear Company, " Stress Report - Core Spray Safe End Replacement - Brunswick 2 RPV", CBI Nuclear Contract 8-CN281.

4. General Electric Drawing 135B9990, " Nozzle Thermal Cycles (Drain - Core Spray & Head Spray)", May 22, 1967.

l

5. General Electric Drawing 729E762, " Reactor Thermal Cycles",

September 22, 1967.

6. Cohen, L.M., McLean, J.L., Moy, G. and Besuner, P.M.,

" Improved Evaluation of Nozzle Corner Cracking", EPRI Report ,

l NP-339, Projects 700 and 498, Final Report, March 1977. )

l 7. FEM 2D User's Manual, Structural Integrity Associates, Version 1.2, August 14, 1989.

, 8. Bathe, K.J. and Wilson, E.L., " Numerical Methods in Finite I i Element Analysis", Prentice Hall, Inc., 1976. )

9. Algor Processor Reference Manual, Algor Interactive Systems, l Inc., Version 9.000, July 17, 1989.
10. Carolina Power & Light Company, " Piping Design Turnover-Phase II", Calculation Nos. SA-E21-524A and SA-E21-524B, Revision 0, March 28, 1989. i l 11. Structural Integrity Associates letter RAM-89-135, from R. i A. Mattson (SI) to T. W. Gillman (CP&L), November 1, 1989.

1 l SIR-89-036, Rev. 1 10-1 f StructuralIntegrityAssociates,Inc.

r.

1 ENCLOSURE 4 BRUNSWICK STEAM ELECTRIC PLANT, UNITS 1 AND 2 NRC DOCKET NOS. 50-325 & 50-324 OPERATING LICENSE NOS. DPR-71 & DPR-62 LIST OF REGULATORY COMMITMENTS The following table identifies those actions committed to by Carolina Power & Light Company in this document. Any other actions discussed in the submittal represent intended or planned actions by Carolina Power & Light Company. They are described to the NRC for the NRC's information and are not considered regulatory commitments. Please notify the Manager-Regulatory Aff airs at the Brunswick Nuclear Plant of any questions regarding this document or any associated regulatory commitments.

Commitment Committed Date

1. Monitor reliability of the Reactor Core isolation Cooling system in N/A accordance with 10CFR50.56, " Maintenance Rule".
2. Monitor reliability of the High Pressure Coolant injection system in N/A accordance with 10CFR50.56, " Maintenance Rule". l
3. During Startup, monitor vibration on the Reactor Recirculation pump B111R1 l motor using the existing annunciator instrumentation. R213R1
4. Revision to NEDC-32466P " Power Uprate Safety Analysis Report for N/A Brunswick Steam Electric Plant Units 1 and 2"to correct typographical error.

I S. Advise NRC staff of any changes resulting from the review of N/A the Safety Limit MCPR calculation performed by General Electric as a result of the 10 CFR Part 21 report issued on May 24,1996.

l l

l

_ _  ;