ML20137V812
| ML20137V812 | |
| Person / Time | |
|---|---|
| Site: | Brunswick |
| Issue date: | 12/18/1996 |
| From: | Gore P, Mallner C, Voss J ALTRAN CORP. |
| To: | |
| Shared Package | |
| ML20137V806 | List: |
| References | |
| 96124-TR-01, 96124-TR-01-R00, 96124-TR-1, 96124-TR-1-R, NUDOCS 9704170414 | |
| Download: ML20137V812 (71) | |
Text
{{#Wiki_filter:. 1 l l i N-16 NOZZLES UPPER SHELF ENERGY EVALUATION Technical Report No. 96124-TR-01 Revision 0 prepared for: Carolina Power & Light Company Brunswick Unit 1 P December,199,6 alta ._m-f y,p.,, ,f m ,....,,.,...y...,,, m Attsan Corporation 200 High Street Boston. MA 02110 *g... (617) 3301130 FAX: (617) 330-105$ 9704170414 970414 PDR ADOCK 05000324 P PDR
Record of Owner's Review Form OENP-310-01 (12/94) Design Document # 96_124-TR-01 Rev. #.IL Guidance for review: (provided by Responsible Manager) Review for Technical adeauaev. The signature below of the Reviewer is documentation that a successful Owner's Review of the above listed design document has been completed; AND any errors, deficiencies, comments, and concerns identified during the review process have been corrected in the design document. REVIEWER: ~fA \\2/18/97 John W. Voss. Jr \\ Mech v Printed name Disc Si![ nature Date J Other D!scipline Reviewers as necessary: Christooher M. Mallner \\ Mech \\ 2/18/97 Printed name Disc Signatge Date Ib W \\ 2/18/97 Phillio S. Gore i Mech Printed name Disc Signature \\ Date ~ Charles Griffin \\ Materiais o FoA cHAet.I4 oes484 \\ 2/18/97 Printed name Disc Signature Date Approved by: W. Blane Wilton f (lb \\ I/19h1 ~ Responsible Manager Signadure Date Printed Name 4 OENP-310 Rev.O Page 7 of 7 i
Report Record Document No.: 96124-TR-01 Rev. No.: O No. of Sheets
SUBJECT:
N-16 Nozzles Upper Shelf Enerav Evaluation e REV. DESCRIPTION: Revision 0: oriainal Issue k ~ COMPUTER RUNS (identified on Computer File Index): Yes N/A X Error reports evaluated by: Date: Impacted by erro'r reports: No__ Yes (if yes, attach explanation) Og!nat r( Date Checker (s) Date hL \\ M ~1$*,$ 0 / Y & nd%
- 1$$'ll"*Lf ieh Is S. Goulart DESIGN VERIFICATION:
Required x Not Required 4 N-Ic b Date: Performed by: ' 0' Method of design verification: X-Design Review Attemate Calculations (Attached) Qualification Test (Data /Results Attd.) Comments resolved by: N/A Date: Design verifier concurrence: Date: APPROVED FOR RELEAS PROJECT MANAGER: A Date: P.K. I al ENGINEERING MANAGER: / /"2nr Date: /2-4 -75 m td.~lNTsa"
-4 _ Altran Corporation j' Technical Report No. 96124-TR-01 Revision 0: ' 1.0' EXECUTIVE
SUMMARY
q 10 CFR 50 Appendix G [1] requires that the upper-shelf Charpy V Notch Energy (CVN) of the reactor-vessel. beltline region be greater than 75 ft-lb initially, and remain above 50 ft-lb throughout the operating license of the plant.' If this minimum requirement is not maintained, p . the plant operator is required to demonstrate that lower values of upper shelf energy will provide l margins of safety against fracture equivalent to those required by the ASME Code Section XI, Appendix G [2].- N-l'6A and N-16B are 2" instrument nozzles located in the beltline region of the Brunswick Unit - L 1 and 2 reactor vessels. All four nozzle forgings are from the sarue heat of material, but Unit, 1 nozzle forgings have significantly lower reported Charpy energy at 40'F than the Unit 2 nozzle forgings. This raised a concern whether the Unit-1 N16 nozzles would meet the 10CFR50 Appendix G requirements.. Since the initial CVN testing-was' perfonned for~ only one 4 temperature (40"F), another concern was if the material had very low initial upper-shelf energy -l 4 '(USE). As a result, Carolina Power & Light (CP&L)*has decided to perform an equivalent margin analysis as required by 10CFR50 Appendix G. This report presents the results of the j. work performed by Altran Corporation under a CP&L Contract No. XTA 5000209, Amendment ~ No.3. I. It is shown that the subject Brunswick Units 1 and 2 N-16 nozzles should have had an initial upper-shelf energy of at least 70 ft-lb, based on an extensive database search. In addition, a conservative projection of the end-of-life fluence shows that the initial upper-shelf energy is not anticipated to drop more than 18% for either Brunswick vessel. Therefore, the end-of-life i - upper-shelf energy of the nozzles for both vessels is anticipated to remain higher than the ' minimum requirement of 50 ft-lb. n - For added conservatism, an equivalent margin analysis was performed per the guidelines l provided in Reg. Guide 1.161. This evaluation demonstrates that the N-16 nozzles would meet the ASME Section XI Appendix K and Reg. Guide 1.161 J-R fracture toughness requirements i with an end-of-life upper-shelf energy as low as 29 ft-lbs. It was shown in Section 3.0 that a 29 ft-lb end-of-life upper-shelf energy is equivalent to an initial upper-shelf energy of 35 ft-lbs. Based on the material database search conducted as a part of this project, it was demonstrated } that the subject nozzle material should have an initial upper-shelf energy of at least 70 ft-lbs. r The equivalent margin analysis performed in this report is based on a fluence value of 1.6E18 n/cm'[E > IMeV). This fluence value is significantly conservative when compared against the j
- maximum N-16 nozzle fluence of 1.34 E18 n/cm' [E > IMeV) for 52 effective full power years of operation for the Brunswick vessels (1.34E18 projection includes 15% margin, which will bound any' fluence increase resulting from 1 power uprate of the Brunswick Units to 105%).
The results of this report are applicable for N-16 nozzles on both of the Brunswick units. I s 5 I w ut.a.ma. 1-1 .k. i i -~.___;-
Altren Cerporation Technical Report No. %124-TR-01 Revision 0 2.0 OVERALL WORK SCOPE ) The scope of the analysis presented in this report is to evaluate the N-16A and N-16B reactor vessel nozzles at Brunswick Units 1 and 2 for compliance with the requirements of 10CFR50, Appendix G. Compliance will be demonstrated in two ways. First, by showing that the end-of-life upper shelf energy will not drop below the minimum requirement of 50 ft-lbs. Second, by performing an equivalent margin analysis which demonstrates that an upper-shelf energy ~of less than 50 ft-lbs would still provide margins of safety against fracture equivalent to those required i by Appendix G of the ASME Code Section XI. h Numerous documents published by ASME, EPRI, and Nuclear Regulatory Commission (NRC), present methodology of meeting the intent of 10CFR50, Appendix G requirement of an equivalent margin analysis. A material property required to perform these analyses is the J-Resistance (Ja) fracture toughness curve. Ja curves are a function of the material chemistry, heat treatment condition, irradiation condition, and material temperature. In some cases, *.3 data can f be obtained through testing of the irradiated and/or sur'veillance materials. 1 However, in many cases Ja curves of the material in question are not always available for the specific weld or heat in service or at the irradiation conditions which match the case to be j analyzed. Therefore, it is uccessary to reliably estimate Ja curves from available data such as material chemistry, radiation exposure, tensile properties, and Charpy impact data. j A recent edition of ASME Section XI, Appendix K [2] provides acceptance criteria and i j evaluation procedures for determining acceptability of reactor vessels with low upper shelf j Charpy V Notch (CVN) impact energy levels. It should be noted that the Appendix K of ASME Section XI is not a mandatory appendix. As such, there are other documents in the literature which also propose acceptance criteria and analysis methodologies for low CVN materials. The overall work scope was divided into specific tasks which are presented in this report as follows: 1. Section 3.0 presents the mechanical and fracture toughness properties of all N-16 nozzles from Bnesviick Units 1 and 2. Database search results are presented to conservatively estimate the pre-irradiated Charpy V notch upper-shelf energy (USE) and compare it with 10CFR50, Appendix G requirements. i 2. ASME Section XI, Appendix K acceptance criteria are briefly reviewed in Section 4.0. 2 3. A Ja fracture toughness model of the N-16 nozzle materials, based on the literature search, is presented in Section 5.0. i 4. The equivalent safety margin analysis method implemented in this report is described in Section 6.0. 5. Section 7.0 presents the summary of the evaluation results. -96124.2 J4R-2-1 i
i Altran Corporati:n Technical Report No. 96124-TR-01 i Revision 0 3.0 N-16 NOZZLES MATERIAL UPPER-SHELF ENERGY EVALUATION ASME Code Section III impact property requirements were changed signincantly staning Summer 1972 addenda of the 1971 Edition. Prior to 1972, limited Chagy impact testing was required and there were no requirements for establishing reference nil-ductility temperature (RTm7) or upper shelf energy levels. However,10CFR50 Appendix G Paragraph III invokes impact property requirements by stating that " For a reactor vessel that was constmeted to an ASME Code earlier than the Summary 1972 Addenda of the 1971 Edition (under G 50.55a of this part), the fracture toughness data and data analyses must be supplemented in a manner approved by the Director, office of Nuclear Reactor Regulation, to demonstrate equivalence with the fracture toughness requirements of this appendix.... Reactor vessel beltline materials must - have Charpy upper-shaft energy of no less than 75 ft-lb (102 Joules) initially and must maintain upper-shelf energy throughout the life of the vessel of no less than 50 ft-lb (68 Joules), unless it is demonstrated in a manner approved by the Director, Office of Nuclear Reactor Regulation, that lower values of upper-shelf energy will provide margins of safety against fracture equivalent those required by Appendix G of the ASME Code." This repon address'es the 10CFR50 Appendix G requirement of equivalent margin analysis with respect to Charpy upper shelf energy. The 10CF.R50 requirements related to RTer have been addressed earlier by CP&L in the reports presented in References 3,4,5,6,7, and 15. 3.1 N-16 Nozzle Material Test Data Nozzles N-16A and N-16B for Bmnswick Units 1 and 2 are A-508, Class 2, CBI Specification MS-2 and were supplied by 12 nape Forge Division. The nozzles were specified to ASME Section III 1965 Edition and Addenda through Summer 1967 and General Electric APED Specification [8]. The nozzles are 2" instmment nozzles and are located in upper region of the reactor vessel belt line region as shown in Figure 3-1 [10]. The geometry of the nozzles is shown in Figure 3-2 [9]. I All four nozzles were made from the same heat of material Q2Q1VW, but they were fabricated from two separate ring forgings. Thi: is evident from their similarities in chemistry. See Tables 3-1 and 3-2. The material test data of N-16 nozzles for both units will be presented and discussed, since all four nozzle materials are from the same heat. The test data were taken from References 10 and 11. For completeness of this report, they are included in Appendix A. Tables 3-1 and 3-2 provide the summary of Unit 1 and Unit 2 N-16 nozzles test data. As such, this report may be used for all N-16 nozzles on both units. The forging material for all four nozzles comes from the same heat Q2Q1VW. The nozzles were specified to be procured per ASME Section III Code through Summer 1967 addenda and with the requirements of Paragraph 1.9.6,1.9.27,1.9.29, and 1.9.30 of GE 96124.2 JM 3-1
(. - Altran Corporation Technical Report No. M124-TR-01 I Revision 0 Spec.'No. 21A1100AR, Rev. No.12 [8]..Upon reviewing the ASME Code and GE j specification, it appears that at least two tensile, three Charpy, and two drop weight. specimens ~were required from two locations 180' from each other. The' specimens' location was to be at 1/4t from the surface, but specific orientations of the test specimens were not mentioned in the material test reports presented in Appendix A. [ Paragraph N-313.2(d)(4) of the 1%5 Edition of ASME Section III Code indicates that Charpy specimens would be oriented "... so that their long axes will be substantially parallel to ) the direction of major working..." (i.e., strong direction).] ~ A specified NDT requirement of 40*F or less and 30 ft-lb CVN'at 40*F was required for. these nczzle forgings. Based on the searched literature (Appendix B Volume 2 of. References 12 and 13), the current requirement for the test specimen to be oriented in the weaker direction came after the AEC proposal in 1%9 and the ASME 1972 Summer addenda of Section III. For the purpose of this report, it is not important to know the specific fracture toughness i requirements involved in the purchasing of the nozzles. However, the only item of importance is to note that for the purpose of this report, it will conservatively be assumed that all impact testing at the mill was performed in the stronger direction. The forging )
- process for nozzles is complex and specifying the limiting test orientation is difficult.
Testing is typically performed on prolongations to the forging blank. 4 The fracture toughness requirements were rapidly evolving in the early 1970's by AEC (presently NRC), WRC/PVRC, and ASME. - Detailed discussion is presented in References 12 and 13. Clearly, when the subject nozzle forging materials were procured, the upper-shelf energy (USE) requirements were not required, and therefore, were not incorporated for the procurement. Therefore, the first task performed by Altran was to conservatively estimate pre-irradiated USE values based en the literature search. 3.2 Estimation of Pre-Irradiated USE Value An estimation of pre-irradiated USE value becomes essential since the nozzle forging material is not part of the CP&L surveillance test program [11] and therefore, prediction of end-of-life (EOL) USE values based on surveillance test program would not be feasible. Moreover, as explained later, more precise models of the J integral fracture toughness (J-R) estimation are based on pre-irradiated USE values. The following two data bases were used to estimate the pre-irradiated USE value of the N-16 nozzles: (i)- - Irradiated Nuclear Pressure Vessel Steel Database, EPRI Reports NP-2428 and NP-4797.[16,17]. (ii). Reactor vessel integrity database Version 1.1 by NRC, published in July 1995 - (14] 596124.2. mt 3-2 .b-. + - -
- I Technical huet No. 96124-TR-01 Esision 0 -
The average Charpy'. values for Utdte 1 and 2 are 38 and 114 ft-lb respectively. ' Based 1 on the significant differences in the Charpy impact values taken at 40*F, it seems that the l Unit 1 specimens'.mty have been oriented in.the weater and less ductile' direction. . Sulfide inclusions and other impurities in the area where the test specimen were taken ~ ' may also be a major influence on the impact properties. j c i 4 ?For the purpose'of this report / activity, the Bmnswick Unit I nozzle materials shall be ~ considered limiting for the two vessels. Thus, the Brunswick Unit I nozzle properties L will be conservatively used to project / estimate upper-shelf energy for the N-16 nozzles in both units. 3.3s El-RI Database- { The data tabulated in Table 3-3 data are from Reference 17, It should be noted that i 1 upper-shelf CVN values and CVN values at 40*F are approximate values based on the curve-fit model approximation presented in Ref.* 17. As it was expected, it is evident that the CVN value in the transverse direction - (T-L). is typically significantly lower than the CVN value in the longitudinal direction (L-T) for the same heat of material, i Comparing data in Table 3-3 for CVN values listed in Nos. 6 and 7, 8 and 9,12 and 13, 15 and 16,17 and 18,19 and 20,21 and 22, and 23 and 24 indicates that the CVN
- values for the transverse direction are up to 65% lower than the longitudinal CVN values for the same heat of material. Hence, it can be hypothesized that low CVN values observed for Brunswick Unit 1 are perhaps due to transverse orientation of test specimens.
j i All the ' data included in Table 3-3 are based on full CVN curves taken at multiple j ' temperatures to fully establish upper shelf energy levels. The lowest four USE values y . observed are for data sets Nos. 6,9,17, and 19 These four sets are in the transverre. direction. ' Their average CVN at 40'F is 31.25 ft-lb and average USE is 83.75 ft 'o. The average CVN at 40*F for Emnswick Unit 1 is 38 ft-lb, and therefore, the average pre-irradiated USE can be estimated to be at least 83.75 ft-Ib or higher. Conservatively, it. vill be assumed that the initial USE of (the Bmnswick) N-16 nozzles is the same as the lowest observed in the database which is 70 ft-lb. ~ 3.4 NRC - Reactor Vessel Integrity Database i141 Based.upon.the NRC staff review of licensee responses to Generic letter (GL) 92-01, Rev.- 1 (18), a comprehensive database, the Reactor Vessel Integrity Database (RVID), has been developed by the NRC which summarizes the materials properties of the reactor
- vessel beltline materials for_ each operating commercial nuclear power plant. The
' programming logic used for calculations in the RVID follows Regulatory Guide 1.99, 6 - Rev.- 2 [19]. 4m ' ups a.am 3-3 L---* e v.m. ,m .m e e
.a Altran C:rporation Technical Report No. 96124-TR-01 Revision 0 The RVID includes four tables for each plant: (1) background information table, (2). chemistry data table, (3) upper-shelf energy table, and (4) pressure-temperature limits or - pressurized thermal shock table. References and notes follow each table documenting ithe source (s) of data to provide supplemental information. Table 3-4 is prepared from the RVID Summary File for Upper Shelf Energy. The Table 3-5 from Ref.14 describes the NRC method of determining the irradiated upper-shelf . energy. Both databases presented in Tables 3-3 and 3-4 have many common heats of. materials. It should be noted that the USE values reported in the database presented in Table 3-3 are direct measured' values. Table 3-4 is a more extensive database and includes many USE data derived from varioes methods. Performing 'a. detailed, comparison and evaluating the methodology used to derive USE in both tables would be
- beyond the work scope of this project. _ However, the lowest pre-irradiated USE value.
reycited in both of the tables is 70 ft-lbs. 3.5 Prediction of End-of-Life Unner-Shelf Energy 'As discussed. earlier,10CFR50, Appendix G, requires that " reactor vessel beltline materials must have Charpy upper-shelf energy of no less than 75 ft-lb initially and must maintain upper-shelf energy throughout the life of the vessel of no less than 50 ft-lb unless an equivalent safety margin analysis is performed". The. analysis requirements are discussed in detail in Section 4. The office of the Nuclear Regulatory' Research of the NRC has published Regulatory Guides 1.99 and 1.161 [19,20] to assist utilities in order to comply with this requirement. N-16A/B nozzle forgings are relatively small components, and the Brunswick reactor - . vessel surveillance test programs do not contain specimens for the N-16 nozzle materials. ~ Therefore, Regulatory Guide 1.99, Rev. 2, will be used to predict the end-of-life upper-J 4 shelf energy of the N-16 nozzles. Reference 21 provided neutron exposure projections i at the inner radius of the reactor pressure vessel. The peak vessel 32 effective full power j 4 years (EFPY) maximum neutron exposure (E >.1.0 MeV) is 1.39e + 18, which is also c maximum at 45' azimuthal location in the upper shell. (See Note on Page 3-4A.) The copper content from Ref.11 is 0.16%. Based on the given fluence and copper content, the predicted decrease in USE is approximately 16% [ Reg. Guide 1.99, Rev. 2), E ' The postulated flaw that will be addressed in Section 4 has a depth of 1/4 t. The fluence
- at this location will be lower than that at the vessel inside surface.
. Three separate conservative assumptions will be made: 8~ _ Based on the conunents on the draft copy of this report by CP&L, the N 16 nozzles actually lag this peak vessel fluence by a factor of approximately 2.5. l<
- 96124.2.put 3-4 e,
e e n-e- .-e ~.~a, ,w-, a
r I l . Altran Corporation l Technical Report No. M124-TR-01 Revision 0 (1) The end-of-life fluence used in this report for the N-16 nozzles is 15% more than the predicted maximum vessel beltline value of 1.39e + 18. '(Nozzles actually ' lag the peak vessel fluence by.a factor of approximately.2.5.) -(2) The fluence at the crack tip (at 1/4 t) is the same as that for the inside surface. ] (3) The decrease in USE for 1.6e + 18 fluence level is approximately 18%. Now it is conservatively assumed that the N-16 nozzies have the lowest _ pre-irradiated i USE of 70 ft-lb observed for A-508 Class 2 material tabulated in Tables 3-3 and 3-4. After a reduction of 18% in USE, the end-of-life predicted USE would be 57.4 ft-lb. ~ Therefore, the 10CFR50, Appendix G, 50 ft-lb screening criteria will be met. As such, h no equivalent margin analysis needs to be performed. However, the analysis is performed in this report for further proof of sufficient margin of safety against fractum. Note: I l At the time of preparing the calculations supporting this report, fluence projection data ~~ from Ref. 21 was used in which the 32 EFPY maximum fluence projection was 1.39E18 for the vessel peak location (N-16 nozzles fluence lags vessel peak location by a factor i of approximately 2.5). However, the latest available fluence data for the N-16 nozzles j is presented in the following table from Ref. 28, based upon recently acquired Bmnswick Unit 2 surveillance results. Fluence Fluence 32 efpy (EOL) 52 efpy (EOL+20) x 1.15 x 1.15 Unit 1 5.42E17 6.23E17. 8.69E17 9.99E17 Unit 2 6.08E17 - 6.99E17 9.88E17 1.34E18 Based on the above information, the 32 EFPY (EOL) maximum N-16 fluence projection for Unit 2 is 6.99E17 and for 52 EFPY (EOL + 20 years) is 1.34E18, including 15% margin. The fluence value used in the analysis presented in Sections 5.0 and 6.0 is 1.6E18 (1.39E18 + 15%), which is very conservative when compared to the actual 32 EFPY and 52 EFPY fluence projections for the N-16 nozzles. 96124.2 m 3-4A
~l .- Altrin Ccrporation. i Technical Report No. 96124-TR-01 Revision 0 Table 3 Brunswick Unit No.1 l ' N-16 Nozzle Test Data Summary [10,11] Product Identification Numbers [ i Nozzle Piece No. Heat No. Forging No. f N-16A 302 Q2Q1VW 247P4A l N-16B 302 . Q2Q1VW 247P-4B l i Chemistry - TC- - Mn P S Cu " Si Ni Mo 0.21 0.75 0.01 0.015 0.16* 0.23 0.80 0.69 Ladle 0.219 0.63 ' O.006 0.025 N/R 0.24 0.84 0.72 Check i
- From Product Analysis Tensile Pronerties 4
1 Slab No. Yield Strength Ultimate Strength Elongation-0* 78.0 ksi 97.25 ksi 21.0 % 180* 73.0 ksi 94.5 ksi 20.0 % Fracture Toughness Pronerties Plates Drop Weight NDTT Charpy Test Valves Temperature Test 0*- + 40*F 38,39,41 ft-lb 40 F 180* - + 40*F - 31,35,44 ft-lb 40 F .= 96 irs.a 3-5 e9 -- 4-aw--
Altrzn Corp:rcti n Technical Report No. 96124-TR-01 Revision 0 i Table 3 Brunswick Unit No. 2 N-16 Nozzle Test Data Summary; [10,11] Product Identification Numbers i Nozzle Piece No. Heat No. Forging No. N-16A 302 Q2Q1VW 247P-3A N-16B 302 Q2Q1VW 247P-3B Chemistry i C Mn P S Cu Si Ni Mo 0.21 0.75 ' 0.01 0.015 0.16* 0.23 0.80 0.69 Ladle 0.16 0.71 0.006 0.013 N/R 0.24 0.81 0.60 Check
- From Product Analysis i
Tensile Properties l Slab No. Yield Strength Ultimate Strength Elongation 0 69.00 ksi 88.65 ksi 22.5 % 180" 69.75 ksi 88.50 ksi 24.5 % Fracture Touchness Properties l Plates Drop Weight RUTT Charpy Test Valves Temperature Test 0 +40 F 116,110,112 ft-lb 40 F 180" + 40"F 133, 74,141 ft-lb 40"F 96124.z 3-6
Altran Corporati:n Technical Report No. 96124-TR Revision 0 Table 3 A508-Class 2 Material Pre-Irradiated CVN Data [17] No. Plant Heat No. Charpy CVN @ CVN @ Page No. Test 40*F USE From Direction (ft-lb) (ft-lb) Ref.17 1 Turkey Point 4 122S180-VA1 L-T 85 130 53-12 2 Turkey Point 4 123P481-VA1 L-T 55 143 53-9 3 Turkey Point 3 123P461-VA1 L-T 115 150 52-8 4 Turkey Point 3 123S266-VA1 L-T 110 165 52-9 5 Watts Bar 1 527536 L-T 65 135 54-5 6 Sequoyah 1 980919/28158 T-L 35 70 44 -8 7 Sequoyah 1 980919/28158 L-T 80 120 44-7 8 Sequoyah 2' 288757/98105 IT 90 140 45-6 9 Sequoyah 2 288757/98105 T-L 40 100 45-7
- 10 Point Beach 2 122W195-VA1 L-T 90 165 34-11 11 Point Beach 2 123V500-VA1 L-T 110 180 34-10 12 Oconee 3 522314K T-L 50 110 30-14 13 Oconee ~3 522314K L-T 85 155 30-13 14 Oconee 3 522194 T-L 75 140 30-10 15 Oconee 2 3P2359 L-T 95 145 29-8 16 Oconee 2 3P2359 T-L 80 130 29-9 17 North Anna 2 990496/29242 T-L 25 75 27-7 18 North Anna 2 990496/29242 L-T 70 125 27-6 19 North Anna 1 990400/29233 T-L 25 90 26-7 20 North Anna 1 990400/29233 L-T 70 130 26-6 21 Kewaunee 123X167-VA1 T-L 125 165 21-15 22 Kewaunee 123X167-VA1 L-T 120 160 21-14 23 Kewaunee 122X208-VA1 T-L 65 145 21-11 24 Kewaunee 122X208-VA1 L-T 70 165 21-10 25 R.E. Ginna 1 125S255-VA1 L-T 80 170 17-12 26 R.E. Ginna 1 125P666-VA1 L-T 100 185 17-9 1
96124.z 3-7
Altran Corporati:n Technical Report No. 96124-TR-01 Revision 0 Table 3 Summary A-508 Class 2 Material Upper Shelf Energy From NRC Database RVID [14] i No. Plant Heat No. Unirradiated Method USE (ft-lb) 1 Arkansas 1 AYN 131 109 Generic 2 Braidwood 1 SP-7016 162 Direct 3 Byron 1 123J218 138 Direct 4 Byron 1 SP-5933 138 Direct 5 Byron 1 SP-5951 150 Direct 6 Byron 2 49D329,-1-1 149 Direct 7 Byron 2 49D330-1-1 127 Direct 8 Byron 2 4P-6107 155 Direct 9 Catawba 1 411343 134 Direct 10 Catawba 1 527708 134 Direct 11 Crystal River 3 AZJ94 109 Generic 12 Davis Besse 123X244 140 Direct 13 Davis-Besse 123317 132 Direct 14 Davis-Besse SP4086 122 Direct 15 R.E. Ginna 125P666VA1 114 65 % 16 R.E. Ginna 125S255VA1 91 65 % 17 Kewaunee 122X208VA1 92 65 % 18 Kewaunee 123X167VA1 97 65 % 19 McGuire 2 411337-11 97 65 % 20 McGuire 2 526840 100 Direct 21 North Anna 1 990286 75 Generic 22 North Arma 1 990311 92 Direct 23 North Anna 2 990496 74 Direct 24 North Anna 2 990533 80 Direct 25 North Anna 990598 74 Direct 26 Oconee 1 AllR54 109 Generic l 96124.2 3-8
Altran Corporati:n Technical Report No. 96124-TR-01 Revision 0 Table 3-4 (Cont.) No. Plant Heat No. Unirradiated Method USE (ft-lb) 27 Oconee 2 AAW-163 133 Direct 28 Oconee 2 AMX-77 109 Generic 29 Oconee 2 AWG-164 138 Direct 30 Oconee3 AG-4680 109 Generic 31 Oconee 3 ANK-191 144 Direct 32 Oconee 3 AWS-192 112 Direct -33 Point Beach 1 122P237VA1 78 65 % 34 Point Beach 2 122W195VA1 94 65 % I 35 Point Beach 2 123V352VA1 78 65 % 36 Point Beach 2 123V500VA1 117 65 % 37 Sequoyah 1 980807 74 65 % 38 Sequoyah 1 980919 72 Direct 39 Sequoyah 2 990469 100 65 % 40 Sequoyah 2 288757 88 Direct 41 Surry 1 122V109VA1 83 65 % 42 Surry 2 123V303VA1 104 65 % 43 TMI1 ARY 059 109 Generic 44 Turkey Point 4 122S180VA1 86 65 % 1 45 Turkey Point 4 123P481VA1 88 65 % 46-Turkey Point 4 124S309 103 65 % 47 Watts Bar 1 528522 111 65 % 48 Zion 1 ANA102 87 65 % 49 Zion 2 ZV3855 109 Generic 96124.2 3-9
~ Altran Ccrportti:n n Technical Report N:. 96124-TR-01 Revision 0 ap t.. 4. Direct-For plates, this indicates that the unirradiated USE was from a transverse specimen. ' For welds, this indicates that the unirradiated USE was from test data. 65%-This indicates that the unirradiated USE was 65% of the USE from a longitudinal specimen. Generie-This indicates that the unirradiated USE was reported by the licensee from 'other plants with similar materials to th'e beltline material. 'NRC Generi-NRC Generic indicates that the unirradiated USE was derived by the' staff from other plants with similar materials to the beltline material.- 10,30,40, or 50 o F-This indicates that the unirradiated USE was derived from - Charpy tests conducted at 10,30,40 or 50 o F. Sury Weld-This indicates that the unirradiated USE was from the surveillance weld having the samc' weld wire heat number. . Sister Plant-This indicates that the unirradiated USE was derived by using the reported value from other plant (s) with the same weld wire heat number. EMA 'Ihis indicates that an unitradiated USE is unnecessary because the licensee has satisfied the upper-shelf energy requirements of A. pndix G,10 ' CFR Part 50, through an equivalent margins analysis. . Table 3 5 NRC Method of Determining USE [14] u c96 m.t" 3 10
e. Altran Ctrporati:n E Technical Report No M124-TR-01 Revision 0 ' -,.I.h% h A M ,pl o e. .z .,.3 = 2 p .r.-- a. u r. 3 + o.d + .o s. J.,V@f _ _ 2 --
- h. O s-et o
t' .r.. ',('. l -t' g - } o "^ II-v(.t '-A t- --*C 3 y e4 i i. >, i il ~ I W .r---f u. c, =-! q =e s v.,: =
- ti
.r I s. e ' d 15 "--.e s, g g _jg ,;=, 3 g.og st t l.' l'v.: I. g ti u.t -J-t{i t' o E. 'a g i t w x-e e h 6 + =
- a
!.. s.
- i
..t 1
- e. r i
3 r t .g g fe'! I hI F' j !/-. y2.y.g e _e .g yx x s. -o an =I *: + Z =
- E
-= != ~ h C II M f
- h* DE gI')
w g w it ul 'E
- l f-[
a j 8 Z' v I-i,- ,..t. tu s:. 8 = m
- r..
, -us s,.s-. gg o }$- "7 - o r. I'!. !N 2 !'$. . [.. ~ 5 N 3 8g = A .r. 8. c m .e3 a a j I { W
- h
~p
- 4, it
- n. +
.1
- .sg
-T4 !=. 3 Sj t '8-gt i.s .s 2 yg# .ij I t -.* e Il..y pl J ir
- wr --D
--l.I ! i -a a .i l . ~ ~ s s f:-u -s & -s-g i: Y3 [d *,- ti y -- tf 7a jt j o n
- e r.
k' "'h K y a n!s ti m 8-D ct .tn---- " -- e I. e: y d 'e L r u-yr' e ! ~~m y /. g
- }
J s., X~ ~r-3 __ a g b .a o 'z Ig ._,"""***.N--*h W 3;e C wa y, n -l ' D[ t'il 3 11 um,2
Altran Corporation : Tecimical Report N3. 96124-TR-01 F l Revision 0 gf *.- CAK stock thG ' 08tCACO LEIDGE &180s4 CeedPAmr n' - ' ' %} s A* A AOS W.hrt. 1i .i ); y Itrer.2us N .s S l.15% t.a.+, 4,,oyg3 g
- y '.*
.$AF6 &AO' 4' S4* lot, TR F304 L u. k
- T o
f ?!e: yl f l l. j 3<?03 .f g, r l
- g y
tiet1LE M-1 l X Waft 1'Afs*4L. ~ 4-j l h ![ 6+ l l 1 l i f .h. l l 19 + l r-% l l s___ 1 6 ~- ~ gi ff \\ Ti . i 16
- o l
%'q$,4r Q J. U \\ i / I .l l 12, ?s 0.0. f 'e + o F. P5 0 5 8 5 PAGE )lD9D'REVk . H ll A 46 4 N12 A(B i NIC INST. NotiLE J Figure 3-2 N-16 Nozzle Geometry (9] i 96124.2 3 12
1 Altran Corporation Technical Report No. 96124-TR-01 Revision 0 ' 4.0 ACCEFTANCE CRITERIA There are numerous reports which present equivalent safety margin analysis methodology to meet 10CFR50,~ Appendix G requirements, however, the basic criteria are similar to those presented in ASME Section III, Appendix K. The major documents reviewed for determining the methodology for this project are in References 12, 20, 22, 23, and 24. ~ The acceptance criteria used in this report ne those prescribed in ASME Section XI, Appendix K[2]. Criterion 1 J = Ja Where J is the J-integral due to applied loads for the postulated flaw in the vessel and Ja is the J-integral resistance to ductile tearing fo'r the material. Criterion 2 ' BJ dl, ) BA da This criterion asst,~.- a stable flaw extension requiring an increasing load as long as BJ/Ba remains less than dJawa. These criterion for Level A, B, C, and D service conditions are similar except Level C 'ad Level D service loadings permit small initial flaw. Also no added safety factors on pressure loadings are required. These differences will be discussed in Section 7.0. The evaluation of level A and B loadings in Appendix K required J-integral evaluation at a pressure 1.15 times the accumuMf;on pressure. Regulatory Guide 1.161 stipulates that a pressure 1.1 times the design pressute may be used for the maximum accumulation pressure for 4 Level A and B loadings. All referenced methodology documents [12, 20, 22, 23, 24] present evaluation of low CVN beltline material for the straight cylindrical geometry. The software and & equations presented j in these documents would not be applicable for the nozzle geometry. Also, ASME Section III,- Appendix K does not present any guidelines for the selection of Ja material properties or the details on the transients selection. This N-16 nozzles evaluation reporc heav;1y draws from the Reg. Guide 1.161 [20], NUREG/CR-6023 [22], and NUREG/CR-5729 [24] for transient selection, material properties selection, and the overall methodology.
- u m.z.ana 4-1
Altran Ccrporcti:n Technical Report No. 96124-TR-01 Revision 0 ) 5.0 Ja FRACTURE TOUGIINESS MATERIAL PROPERTIES Appendix K of Section XI does not provide any guidelines for determining the J-integral fracture resistance of the beltline region material for which no archive or surveillance material test data exist. In some cases, archive material of the material in question may exist. However, by conservatively bounding Ja properties in the analysis, if it can be shown that the Appendix K requirements can be met, then the material specific testing would not be necessary. NUREG/CR-5759 [24] is an industry accepted source of pressure vessel and piping Ja data. Multi-variable models presented in this document predict Ja curves from available data, such as material chemistry, radiation exposure, temperature, and Charpy V-notch energy. Separate models are fitted for different material groups, including reactor pressure vessel welds, Linde ' 80 welds, base metals, piping welds, piping base metals, and a combined materials group. These different types of models were considered each involving different variables: a Charpy model, a pre-irradiation model, and a copper-fluence model. In general, the best results were obtained with the pre-irradiation Charpy model, using' pre-irradiation Charpy impact energy, temperature, and the fluence. Extensive details of each type of model for each type of materia.1 category are provided in NUREG/CR-5729. After a detailed review of the guidelines provided in Reg. Guide 1.161 and a review of all of Ja models in NUREG/CR-5729, a pre-irradiation Charpy model was selected for the subject nozzle forgings. The selected model is from the RPV base metals database that is made up of Ja curves and selected material and specimen data from 144 irradiated and un-irradiated test specimens of A508 and A533 base metals. The model is presented in Table 5-1. For this evaluation purpose, a very conservative pre-irradiated CVN,2 was assumed (35,40, 45, and 55 ft-lb). Also, the crack tip temperature was conservatively assumed to be 550"F. The end of life fluence value was conservatively assumed to be 15% higher than the predicted peak 2 vessel location value 1.39e + 18 = 1.6e + 18 n/cm (21]. The resultant values of Ja for different crack extensions (0.02, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, and 0.4 inch) and different pre-irradiated CVN, are presented in Appendix B. The EOL Ja curves for 0.1 inch crack extension required for Criterion 1 are shown in Figure 7-1. CVN,is the pre-irradiated upper shelf energy (USE) of the material. 96124.2..p.e 5-1
Altrzn Ccrporation Technical Report No.' 96124-TR-01 ~ Revision 0 Table 5-1 RPV Base Metal Pre-Irradiated CVN,. Model [24] l J = C1 (Aa)c2 exp [C3(Aa)c4j j Where: InC1 = ai + a2 in CVNp + a3 T+aOt s C2 = d + d InC1 i 2 C3 = d + d InC1 4 5 C4 = -0.408 2 Where: J ' = J-integral of material (kip-in/in ) (end of life irradiated) Aa = Crack extension (in) CVN, = Pre-irradiated Charpy impact edergy (ft-lb) T = Crack tip temperature ('F) Ot - = Fluence (10 8 /cm ) (E > 1MeV) 2 n 1 Fitting Constants ai = -2.53 d = 0.077 i a2 = 1.15 d = 0.116 2 a3 = -0.0027 d = -0.0812 .i 4 a3 = -0.0104 d = -0.0092 5 And, Ja = MF
- J Where margin factor MF = 0.749 for Service Levels A and B [20]
MF = 1.0 for Service Levels C and D [20] 96124.2*JMA - 5-2
l Altran Ccrporction Technical Report No. 96124-TR-01 Revision 0 6.0 ANALYSIS METHODS ' The analysis methods used in this evaluation are similar to those proposed in Reg. Guide 1.161 NUREG/CR-6023, and ASME Section III, Appendix K. The major difference is that all these documents present methods for cylindrical geometry, whereas the subject evaluation is for a nozzle geometry. Necessary changes were made in the applied J-integral evaluation. The ba' sic approach is similar to those proposed in these documents. 6.l' Igvels A and B Conditions The earlier efforts organized by the BWR Owner's Group through GE Nuclear Energy. . performed similar evaluation for BWR cylindrical vessel shell materials which is presented in Ref. [25]. This effort concluded that the application of maximum accumulation pressure in conjunction with 100*F/ hour cooldown rate will bound all Level A and B conditions. Reference 25 addresses the loss of feedwater pump transient and concludes that even though tids is a significant thermal transient, the. accompanying pressure is low. Therefore, the maximum accumulation pressure as 1.1 times the design pressure and 100*F/hr. cooldown, will bound conditions for Levels A and B loadings. 6.2 Analysis Inout Data All the work performed earlier on these nozzles was carefully reviewed, and the following data were selected for this analysis. References are listed next to the data. Design Pressure . = 1250 psi [9, 21/S11] Design Temperature = 575*F [9,2/S11] Accumulation Pressure = 1.1(1250) = 1375 psi At Wt depth, the Kn due to the thermal transient is approximately 5.4 ksidin. The steady state dt between the %t depth and the inside surface is 9.53*F. [Page 2/8 of Ref. 3] From Page 7/19 of Ref. 4, the stress intensity factor solution for a corner crack in a nozzle is shown in Table 6-1. o, at %t due to 1000 psi pressure is 22.83 ksi (A6/A10, Ref. 4) (Stress at the crack tip.) 96124.2..ma 6-l
.p Altren Cerportti:n Technical Report No'. M124-TR-01 - Revision 0 ' 6.3 Aeolied J-Inteeral for 12 vel A and B Conditions The basic method is similar to those discussed in Reg. Guide 1.161 and NUREG/CR-6023 which is briefly summarized in the following steps. ' Sten 1 - Pressure Stress Intensity Factor For a nozzle corner crack with depth 'a' equal to (0.25t + 0'1 inch), calculate the stress intensity factor from an internal pressure Pa equal to maximum accumulation pressure with a safety factor, SF, on pressure equal to 1.15. The pressure stress intensity factors were derived using two different methods; using the method presented in Table.6-1, and second method using the approach presented in WRC-175 [26]. The results are presented in Tables 6-2 and 6-3. Results from both . methods are very similar. In order to be consistent with the earlier work on this nozzle, Table 6-1 methods will be used in this report for*raalyzing K, due to pressure. Steo'2 - Thermal Stress Intensity Factor For a flaw with depth 'a' equal to (0.25t + 0.1 in), the steady state (time independent) stress intensity factor from radial thermal gradient is obtained by using the following equation from Reg. Guide 1.161. K, = ((CR)/1000)t24 p, i F = 0.69 + 3.127 (a/t) - 7.435 (a/t)2 + 3.532 (alt)) [Eq. 8, Ref. 20] 3 This equation for K,is valid for 0.2 < a/t < 0.5 and 01 CR 1100 F/ hour. i It should be noted that the above equation is for thermal stresses in a cylindrical shell. The earlier efforts presented in Ref. 3 determined.Kn to be approximately 5.4 ksi/m. at the %t depth in the nozzle corner flaw. The Reg. Guide 1.161 equation, presented above, results in approximately 8.4 ksi/m. For conservatism, Reg. Guide 1.161 formula for Ku will be used in this report. Sten 3 - Calculation of Effective Flaw Depth Calculate the effective flaw depth for small scale yielding using the following equation: '1 V(K,,+ K,,'2 d'-4+ 6n, o, r Where o, is equal to the material yield stress. . m 2<.2 w ' 6-2
Altran Ccrporati:n Technical Report No. 96124-TR-01 Revision 0 Steo 4 - Revised Stress Intensity Factors Based on the revised flaw depth a,, reanalyze K p and Kn and define them as K'ip and i . K'u. C Steo 5 - Calculate Anolied J-Integral i The applied J-integral from the applied loads for small scale yielding is given by the j following equation: J,w = 1000(K'ip + K'n)2/E' 2 ~ Where E' = E/(1-u ) is the modified modulus of elasticity. Steo 6 - Comparison of L r_, and Material J-R Fracture Toughness (Criterion 1) Appendix K of ASME Section XI requires that: J,ppu < Jo. Where Jo.i = the J-integral fracture toughness at a ductile flaw extension of 0.1
- inch, n
As discussed in Section 5 Appendix C presents J-integral fracture toughness of the nozzle material for different initial upper shelf energy CVNp values and different crack extension lengths. J,ppu value is obtained from Step 5. 6.4 Evaluation of Flaw Stability (Criterion 2). For these evaluations, the postulated flaw must be stable under ductile crack growth which is presented by the following equation. 8J aJ,,a 4,, aa aa With load held constant and at J,ppw = J m. The applied J-integral is calculated for a series of flaw depths corresponding to increasing amounts of ductile flaw growth. The applied pressure, P, is set equal to the maximum-accumulated pt:c.,sure for Service Level A and B conditions, P., with a safety f&.or, SF, I equal.to 1.25. The applied J-integral for Service Level A and B conditions may be calculated using steps shown in 6.3. Each pair of the applied J-integral and flaw depth 96124.2'JMR-6-3 j
Altran Ccrporati:in Technical Report Noe 96124-TR-01 Revision 0 is plotted on a crack driving force diagram to produce the applied J integral curve as illustrated in Figure 6-1. The material's J-R curve also is plotted on the crack driving force diagram. Flaw stability is confirmed if the slope of the applied J-integral curve is less than the slope of the material's J-R curve at the equilibrium point on the J-R curve where the two curves intersect [22]. Appendix K of ASME Section XI presents two other alternate criteria for a postulated initial flaw depth of one-quat +er of the wall thickness which is not used in this evaluation. 6.5 - level C and D Conditions Appendix K of ASME Section XI provides the following guidelines for Ievel C loadings. The postulated flaw depth may be up to 1/10 of the base metal wall thickness, plus the cladding thickness, with total depth not exceeding 1.0 inch, and surface length six times the depth. Use a factor of safety of 1.0 on loading for both criteria. Based on a telecon [27) with cognizant CP&L staff, there are no applicable I2 vel D conditions (pressure-temperature transients) for the subject nozzle. e 1 / 96124.2 6-4
Altran Ccrporation 7 Technical Report No. 96124-TR-01 Revision 0 l i I l 1 p b ' Meterial Ja ) 1 Applied J Evaluation point so a. 4 Figure 6-1 [2] Example Comparison of the Slope of the Applied J-Integral and J.R Cun'e 96124.2 - 6-5 4
e+ G-m 41-- a M r Table 6-1 P Stress Intensity Factor solution for : Corner Crack in a Nozzle [4,48/A-10] Stress Polynomial Coefficient AO:=54512 shellThickness t := 5.5625 in A g :=-284300 Pressure P := 1000 psi A2 := 804120 Flaw depth a := 0.25 t
- - USE a = 1.391 *in e
P K g := 1000-0.706 A g + 0.537 A g + 0.448- -3 A2 + 0393-4 3,, A3 2x The stress intensity f actor due to 1000 psi for a nozzle comer flaw with a depth a = 1/4*t i K g = 47.901 ksi h j Note: This Table illustrates only the derivation of the stress intensity factor due to pressure. No results are used from this Table. NOTE: Note that the evaluation in this report uses 5.5 in. as the nominal vessel thickness, whereas, the nominal thickness is 5.625 inches. In the above K1 evaluation, the K1 va!ue for the 5.5 in, thickness will be 47.631 ksi*in /2. The resultant error is less than 1% Considering the 1 numerous conservatism incorporated in this evaluation, the error introduced due to the assumption of 5.5 in. as the nominal vessel thickness is negligible. 1 6-6 1
Altran Corporati:n. ) Technical Report No. %124-TR-01 - Revision 0 Table 6-2 Stress Intensity Factor Due to Pressure (Results) l l ~ (GE Approach) i ShellThickness t = 5.5 in Clad Thckness =3/16 in
- Vessel Thickness for Analysis l'=5.6875 in 1
Design Pressure p=1250 psi A'ccurnulation Pressure
- Pa = 1.1(p) = 1375 psi Crack Extension da = 0.1 in Flaw depth
=%(t) + 0.1 in Vessel Flaw Flaw alt Pressure Stresr Thckness Depth-Depth' intensity (inch) (inch) (psi) Factor Kip t % oft a psi *in^1/2 5.6875 10 0.669 0.12 1375 58250 5.6875 15 0.953 0.17 1375 62865 5.6875 20 1.238 0.22 1375 65476 5.6875 25 1.522 0.27 1375 67100 5.6875 30 1.806 0.32 1375 68216 5.6875 35 2.091 0.37 1375 68993 5.6875 40 2.375 0.42 1375 69402 file: CPL 4, PAGE C 96124.2 b'7
. Altran Ctrportti:n Technical Report No. 96124-TR-01 Revision 0 Table 6-3 Stress Intensity Factor Due to Pressure - WRC 175 Approach l l i (WRC-175 Approach) Shell Thickness t = 5.5 in Ciad Thickness' =3/16 in Vessel Thickness for Analysis t'=5.6875 in Desian Pressure p=1250 psi Accumulation Pressure Pa = 1.1(p) = 1375 psi Cyck Extension da = 0.1 in Flaw depth =%(t) + 0.1 in Vessel Radius 110.5 Hoop Stress 27625 ps Vessel Flaw Depth Flaw depth Apprant alrn Geometry Shell Stress Thckness + Rad. of Factor Hoop intensity Cladding Nozzle (WRC175) Stress Factor (inch) (inch) t % oft a rn F(a/rn) (psi) psi *in^1/2 5.6875 10 0.669 1.943 0.344 1.4 27625 56057 5.6875 15 0.953 1.943 0.491 1.3 27625 59752 5.6875 20 1.238 1.943 0.637 1.2 27625 62638 5.6875 25 1.522 1.943 0.783 1.1 27625 66444 5.6875-30 1.806 1.943 0.930 1.0 27625 65805 5.6875 35 2.091 1.943 1.076 1.0 27625 70796 5.6875 40 2.375 1.943 1.222 1.0 27625 75458 e 96124.2-6-8 i
. - _. ~ _ _.. _ y a.
- ~
l Technical Report No. 96124-TR-01 Revision 0 s7.0: " ANALYSIS RESULTS- ' As discussed in Section 6.0, two acceptance criteria'are evaluated, applied J-integral for a Mt . flaw 'with an 0.1 inch crack extension,' and the flaw stability. 7.1-Izvel A =M B InMines r Level A and B loadings will be enveloped by the accumulation pressure of 1,375 psi and 100*F/hr. cooldown rate as discussed in 6.1. - i Criterion 1 - Equilibrium Psation for Stable Flaw Extension 'In Table 6-3, stress intensity factors due to interna 1' pressure using the WRC-175 _ approach are ' presented. A=wmM flaw depths are from 10% to_40% through wall thickness and as required by Reg. Guide 1.161, the cladding thickness is included in the ~ flaw depth. a ' Table 6-2 presents pressure stress intensity factors based on the earlier efforts on these nozzles presented in Reference 17. By comparing table 6-2 and 6-3, it is observed that the differences between those two methods are not significant. In order to be consistent with the earlier efforts, the pressure stress intensity factor model presented in Table 6-2 will be used in this report. t 'l As outlined in Section 6.3, Table 7-1 presents the applied J-integral for the prescribed i conditions (an accumulation pressure of 1375 psi and a cooldown rate of 10(PF/ hour). E The postulated initial flaw at the nozzle corner radius is W the wall thickness of vessel shell. Applied J-integral for various crack from 0.01 inch to 0.4 inch are presented in Table 7-1. The J-resistance material fracture toughness for different initial pre-irradiated upper-shelf energy and different crack extensions are presented in Appendix C. Assumed initial upper-shelf energy values (CVN,) were 35,40,45,50, and 55 ft-lb. Ja was evaluated for crack extensions of 0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, and 0.4" for temperature range from 100Y to 650 F. The Ja toughness vs. temperature for an initial crack of %t and a crack cxtension of 0.1 inch is shown in Figure 7-1. The Ja fracture toughness values for different initial USE and different flaw extensions for 550*F are . shown in Table 7-3, which is constructed from the data presented in Appendix C.
- As presented in Table 7-1, the applied J-integral for 0.1 inch crack extension is 251 inch-2
. Iblin. The Ja for an assumed initial upper-shelf energy (CVN,) of 35 ft-lb and 0.1 inch 2 crack extension at 550*F is 530 inch-lb/in." Therefore, the applied J-integral is less than - Jan.n,'_and Criterion 1 is satisfied. The assumed initial CVN, of 35-ft-lb used in the analysis / calculation is approximately equivalent to 29 ft-lb EOL USE assuming 18% drop in initial USE as explained earlier. 1 4 mm. z..ma .7-1 y +- ,w e x,-
~.- t .i.. Altran Corporation Technical Report No. 96124-TR-01 Revision 0 ' Criterion 2 - Incauality for Flaw Stability Due to Ductile Tearine l The necessary analyzed data are presented in Table 7-1, Table 7-2, and Appendix C. ( Figure 7-2 presents Ja values for different flaw extensions and different initial upper-shelf - q energy (CVN,) values.' ' Applied J-integral for an initial postulated flaw depth of %t with. ' flaw extensions from 0.01 inch to 0.4 inch is also superimposed in Figure 7-2. The only difference between Table 7-1 and 7-2 is the safety factor ce pressure. Criterion 1 p . requ. ires 1.15 safety factor on pressure, whereas Criterion 2 requires 1.25. Figure.7-1 clearly depicts the slope of the applied J-integral is less than the slopes of all the J-R curves at the point on the J-R curves where the two curves intersect. p It is interesting to notice that the increase in the applied J-integral for various crack extensions from an initial flaw of 1.42 inch to 1.82 inch is very small. The primary reason is the existence of significant amounts of throughwall bending due to the pressure stress at the nonle to shelljunction. As the crack extends, the pressure stress intensity factor decreases. The above' evaluation clearly demonstrates that the N-16 nonles, in spite of a very 1 conservative assumption of an initial upper-shelf energy as low as 35 ft-lb, will meet the ' equivalent margin analysis requirements of ASME Section XI Appendix K for level A and B loadings. 7.2 - 12 vel C Imadine Based -on.the telephone conversation with CP&L Staff [27], there are no 12 vel D loat"ngs defined for pressure atermal transients. There is only one pressure-thermal loading for level C loading. The pressure rises to 2,375 psi and the temperature rises to 000 F. This transient lasts only for a few seconds. In Level A and B loading analyses, the pressure assumed was 1,581 psi (1,250 x 1.1 x 1.15) including safety factor of 1.15, which is more than the level C pressure of 1,375 psi. Also, during the heat-up, the inside surface stresses will be compressive and will reduce the total stress intensity factor. Therefore, the level A and B loading presented in 7.1 will envelope level C loading. 73-Conclusion .~ This evaluation demonstrates that the N-16 nonles can meet the ASME Section XI Appendix K and Reg. Guide 1.161 J-R fracture toughness requirements with an end-of-life upper-shelf energy as low as 29 ft-lbs. It was shown in Section 3.0 that a 29 ft-lb end-of-life upper-shelf energy would be equivalent to an initial upper-shelf energy of 35
- ft-lbs, assuming an 18% drop in USE'over vessel life. Based on the material database search, it was demonstrated that the subject nonle material should have an initial upper
.- s eh lf energy of at least 70 ft-lbs. o wm.2.4 7-2 +- 4.- .,~ J a
l Altrcn 0:rporatirn Technical Report No. 96124-TR-01 j Revision 0 Figure 7-1 J-R Toughness. vs. Temp (CVN)p Model da = 0.1 in R 2000 g1800 .a 1600 j g1400 y\\g N a 1200 xxg En1000 800 NN*h E 600 ~ 400 1d0 2d0 3d0 4d0 5d0 6d0 Temperature F 35 CVN 40 CVN + 45 CVN + 50 CVN = 55 CVN c. 96tza.2 7-3
( 3. k, Table 7-1 Criterion I - Crack Driving Force vs. Fracture Toughness Evaluation input P=1375*1.15 psi. CR = 100 f/hr. SF=1.15 on Kip for Criterion i Evaluation - q Stress Intensity Factor Due to Pressure, Initial Flaw Depth 25% of t Stress intensity Factor due to Thermal n (GE Approach) (Reg. Guide 1.161) D~ Vessel Irdtial Flaw Final Pressure Flaw Stress Cooling Shell Final Thermal Stress pgy {3 pg Thekness Flaw Extension Flaw Ratjo intensity Rate _ Thickness Flaw Factor Intensity - Y (inch) Depth Depth (psi) Factor (CR) Depth Factor Qo A (inch) (inch) alt Kip ' t (inch) F3 Kit if, R h t 25% of t da a psi *in^1/2 FIHR in a psi *in^1/2 o'ZQ D,o o 5.6875 1.4219 0.00 1.4219 1582 0.250 76631 100 5.6875 1.4219 1.062 8195 C e2 5.6875 1.4219 0.01 '1.4319 1582 0.252 76692 100 5.6875 1.4319 1.062 8196 $ {- 5.6875 1.4219 0.02 1.4419 1582 0.254 76751 100 -5.6875 1.4419 1.062 8196 g= 5.6875 1.4219 0.05 1.4719 1582 0.259 '76926 100 5.6875 1.4719 1.063 8197 5.6875 1.4219 0.10 1.5219 1582 0.268 77202 100 5.6875 1.5219 1.062 8193 5.6875 1.4219 0.15 1.5719 1582 0.276 77481 100 5.6875 1.5719 1.061 8184 5.6875 1.4219 0.20 1.6219 1582 0.285 77704 100 5.6875 1.6219 1.059 8170 0 5.6875 1.4219 0.25 1.6719 1582 0.294 77933 100 5.6875 1.6719 1.056 8150 5.6875 1.4219 0.30 1.7219 1582 0.303 78149 100 5.6875 1.7219 1.053 8125 5.6875 1.4219 0.35 1.7719 1582 0.312 78352 100 5.6875 1.7719 1.C49 8095 5.6875 1.4219 0.40 1.8219 1582 0.320 78544 100 5.6875 1.8219 1.045 8060 - file: CPL 6, PAGEB file: CPL 6, PAGEB W . m. .m .m
= Table 7-1 (Cont'd) Criterion 1 - Crack Driving Force vs. Fracture Toughness Evaluation J applied Evaluation for Different Crack Extension H R Revised Revised 2* E-Stress Intensity Factor Due to Pressure Thermal Stress Intensity Factor J a 'M Evaluation O.. > Mff Vessel Revis%d alt Pressure Stress. Cooung Shen Rethed Thermal Stress Modulus Nu Modulus J ? Thcknes: ~ Flaw Intensity Rate Thickness Flaw Factor intensity of of App 8ed g a tA (bch) depth (ps!) Factor (CR) Depth Factor ElasticRy Elasecity QCg K1p* t a F3 (Kit)* E E' C;* A o t a pst*!n^1/2 FIHR in in pstin'1/2 psi pel ' pal 1n*1!2 5* Z "I - 03 2 5 6875 1.619 0.285 1582 77691 100 5.688 1.619 1.059 8171 2.70E+07. 0.3 2.97E+07 248 o [ S"1 ' 100 5.688 1.629 1.059 8167* 2.70E+07 0.3 2.97E+07 249 5.6875 1.629 0.286 1582 77739 5.6875 1.640 0.288 1582 77787 100 5.688 1.640 1.058 8163 2.70E+07 0.3 2.97E+07 249 - 6* 5.6875 1.670 0.294 1582 77927 100 5.688 1.670 1.057 8151 2.70E+07 0.3 2.97E+07 250 %2 5.6875 1.722 0.303 1582 78148 100 5.688 1.722 1.053 8125 2.70E+07 0.3 2.97E+07 251
- d 5.6875 1.773 0.312 1582 78356 100 5.688 1.773
- 049 8095 2.70E*07 0.3 2.97E+07 252 N
5.6875 1.824 0.321 1582 78552 100 5.688 1.824 1.045 8059 2.70E+07 0.3 2.97E+07 253-b 5.6875 1.875 0.330 1582 78735 100 5.688 1.875 1.039 8018 2.70E+07 0.3 " 2^.97E+07 254 5.6875 - 1.926 0.339 1582 78906 100 5.688 1.926 I 1.033 7973 2.70E+07 0.3 ' 2.97E+07 254 5.6875 1.977 0.348 1582 790S6 100 5.688 1.977 1.027 7923 2.70E+07 0.3 2.97E+07 255 5.6875 2.027 C356 1582 79213 100 5.688 2.027 1.020 7868 2.70E+G7 0.3 2.97E+07 256 fDe: CPL 6. PAGEB fde: CPL 6. PAGEB Se: CPL 6. PAGEB i
? ? . u F \\ Table 7-2 Criterion 11 - Flaw Stability vs. Ductile Crack Growth H' Input: P=1375*1.25 psi, CR = 100 f/hr, SF=1.25 on Kip for Criterion 11 Evaluation d-5 Stress Intensity Factor Due to Pressure, initial Flaw Depth 25% of t Stress Intensity Factor due to Thermal Ey ~- (GE Approach) (Reg. Guide 1.161) []k U p Vessel Initial Flaw Final Pressure Fiaw
- Stress Cooling Shell Final Thermal Stress 2
ch Thckness Flaw Extension Flaw Ratio Intensity Rate Thickness Flaw Factor Intensity
- s, g O -
(inch) Depth Depth (psi) Factor (CR) Depth Factor !G. R $ ['g (inch) (inch) alt Kip t (Inch) F3 Kit t 25% of t da a psi *in^1/2 F/HR in a pst in-1/2 e *, I h. 5.6875 1.4219 0.00 1.4219 1719 0.250 83267 100 5.6875 1.4219 1.062 8195
- o 5.6875 1.4219 0.01 1.4319 1719 0.252 83333 100 5.6875 1.4319 1.062 8196 5.6875 1.4219 0.02 1.4419 1719 0.254 83398 100 5.6875 1.4419 1.062 8196 y
5.6875 1.4219 0.05 1.4719 1719 0.259 83588 100 5.6875 1.4719 1.063 8197 5:. 5.6875 1.4219 0.10 1.5219 1719 0.268 83888 100 5.6875 1.5219 1.062 8193 is 5.6875 1.4219 0.15 1.5719 1719 0.276 84169 100 5.6875 1.5719 1.061 8184 5.6875 1.4219 0.20 1.6219 1719 0.285 84433 100 5.6875 1.6219 1.059 8170 5.6875 1.4219 0.25 1.6719 1719 0.294 84682 100 5.6875 1.6719 1.056 8150 5.6875 1.4219 0.30 1.7219 1719 0.303 84916 100 5.6875 1.7219 1.053 8125 5.6875 1.4219 0.35 1.7719 1719 0.312 85138 100 5.6875 1.7719 1.049 8095 5.6875 1.4219 0.40 1.8219 1719 0.320 85346 100 5.6875 1.8219 1.045 8060 file: CPL 6, PAGED file: CPL 6, PAGED a _.,__.u _m.m_.,2_ m sp. n,e.- 3 .m,- ,,.y ,,w
m f ~ g Ph3 Table 7-2 (Cont'd) Criterion II - Flaw Stability vs. Ducti!e Crack Growth J applied Evaluation for Different Crack Extension H 8
- r 8
Revised Revised Stress Intensity Factor Due to Pressure Thermal Stress Intensity Factor J applied Evaluation kg WE -4 Vessel Revised att Pressure Stress Coonng Shen Revised Thermal Stress Modulus Nu Modulus J %$ 2 1.3 Thckness Flaw Intensity Rate Thickness Flaw Factor htensity of of Appeed QC (inch) depth (psg Factor (CR) Depth Factor Elasticity Elasticity G* '* g o Kip
- t a
F3 (Kit)* E E' 6' 'R *! t a psfin*1/2 FlHR in in psPin*1/2 pel psi psr*In*1/2 2 0 $ o ea 56875 1.651 0.290 1719 845S0 100 5.688 1.651 1.058 8159" 2.70E+07 0.3 2.97E+07 290 m g, 5.6875 1.661 0 292 1719 84631 100 5.688 1.661 1.057 8154 2.70E+07 0.3 2.97E+07 290
- O 5.6875 1.672 0.294 1719 84681 100 5.688 1.672 1.056 8150 2.70E+07 0.3 2 97E+07 290
$E 5.6875 1.703 0.299 1719 84828 100 5.688 1.703 1.055 8135 2.70E+07 0.3 2.97E+07 . 291 5.6875 1.754 0.308 1719 85061 100 5.688 1.754 1.051 8106 2.70E+07 '0.3 2.97E+07 293 5.6875 1.806 0.317 1719 85279 100 5.688 1.806 1.046 8072 2.70E+07 0.3 2,97E+07 294 5.6875 1.857 0.326 1719 85484 100 5.688 1.857 1.041 8033 2.70E+07 0.3 2.97E+07 295 O 5.6875 1.908 0.335 1719 85676 100 5.688 1.908 1.036 7989 2.70E+07 0.3 2.97E+07 296 5.6875 1959 0.344 1719 85854 100 5.688 1.959 1.029 7940 2.70E+07 0.3 2.97E+07 297 5 6875 2.010 0.353 1719 86020 100 5.688 2.010 1.022 7887 2.70E+07 0.3 2.97E+07 297 5 6875 '2.061 0.362 1719 86172 100 5.688 2.061 1.015 7829 2.70E+07 0.3 2.97E+07 298 file: CPL 6, PAGED 19e: CPL 6, PAGED fle: CPL 6, PAGED 2 e m ~ e c= .um --m a
- m. -.
.m
i Altran Corporation Technical Report N3. 96124-TR-01 + Revision 0 i ) i Figure 7-2 Flaw Stability Evaluation da.vs. J Appl'd and Mat'l J-R -1200 1000 28 -,yx: = ggg 400 -- m 3 15 200 i o.. 0 0.1 0.2 0.3 0.4 Flaw Extension "da" inch (a=0.25t) - J APFL 35CVN -*- 40 CVN 45 CVN 50 CVN - 55 CVN 7-8
l' 'k.. s' " . Altran Corporation - Technical Report No. 96124-TR-01 Revision 0 i 3 Table 7-3 Initial Flaw = 1/41, Crack Tip Temperature = 550F Stability Evaluation - Ciiterion il Initial , Flaw J Applied J-R J-R J-R J-R J-R Flaw ' Extension - from. for for for' for for depth ' Table 7-2 35CVN 40 CVN 45 CVN 50 CVN 55 CVN (in) (in) a da-1.422 0.00 290 0 0 0 0 0 1.422 0.01 290 315 335 354 372 389 1.422 0.02 290 381 412 441 468 495 1.422 0.05 291 467 514 559 603 645 1.422 0.10 293 530 591 651 710 767 1.422 ~ 0.15 294 567 637 706 774 841 1.422 0.20.... 295 592 669 745 820 895 1.422 0.25 296 611 694 776 857 938 1.422 0.30 297 627 714 801 887 973 1.422 0.35 297 641
- 732,
'822 913 1004 j 1.422 0.40 298 652 747 841 936 1031 i file: CPL 6, PAGED l i G n( 7-9 1
L ~ s g . l Altr:n Ccrporati:n' Technical Report No M124-TR-01 t Revision 0 ii.0 LFRACTURE TOUGHNESS EVALUATION USING VESSEL .EPRI prepared VESSEL. Software Version 6 [23] was also utilizd on.this project. In alli previous discussions, the location of the postulated flaw was at the in1er corner radius which is : the highest stressed location in the nozzle. The stress at this locatien can be as high as three
- times the hoop stress in the vessel shell.' The majority of the stress is a bending stress through the nozzle wall thickness, and therefore, as the crack grows deeper, the driving force also-
~ decreases. In this section, a postulated Mt flaw, as shown in Figure 8-1, is oriented in the axial direction. because this is the more critical orientation due to the dominance of the hoop stress compared to axial stress. ' The VESSEL software computes the pressure at 0.1 inch crack extension, and ' the J-integral, pressure, and crack extensica at the instability of the postulated interior flaw that .is'either axial or circumferential and has a depth of one-quarter of the well thickness and a ' length of six times the depth. The calculated pressure can be used to determine if the vessel beltline material has adequate upper shelf toughness to meet the ASME Section XI, Appendix K upper shelf criteria for Service Level A and B conditions, j The following_was the input: Vessel Outer Radius = 115.8 in. Vessel Thickness = 5.5 in. Cooldown Rate = 100*F/hr. Elastic Modulus @ 550 F = 25,500,500 psi Flow Stress @ 550 F = 62,100 psi L The following Ja data was taken from the material evaluation discussed in Section 5.0 and material Ja data presented in Appendix C. 2 Crack Extension (in.) J-Actual (in-lb/in ) 0.02 381 0.05 467 .0.10 530 0.15 567 0.20 592 0.25 611 0.30 627' 0.35 641 0.40' 652 The. complete mput and. output of VESSEL are provided in Appendix D. Tie summary is provided in Table 8-1 and Figure 8-2. 1 L i ' 961n.a..m , 8-1 r i sb 1.
.l J Altran Corporati:n j L Technical Report No. 96124-TR-01 j i Revision 0 Criterion 1- .. At 0.1 in.' flaw extension,- j J integral'(applied) = 89 in-lb/sq. in. J, material = 533 in-lb/sq. in.' ] . Since J-Applied < Ja material, Criterion 1 is met. Also, the pressure at which the flaw would extend by 0.1 inch is 2,228 psi which is higher than the accumulation pressure of 1,375 psi. i Criterion 2 The VESSEL analyzed pressure at in.tability is 2,266 psi and the limit load analysis based maximum pressure is 2,981 psi. Both of*these pressures are higher than 1.25. q . times the accumulation pressure, and therefore, Criterion 2 is met. 1 It should be noted that the VESSEL software outputs are ia terms of pressures which are ~ then compared with the accumulation pressure. Whereas, in Section 7.0 the analyses ~ were performed directly in terms of J-integral. ~ NOTE: It should be noted that the VESSEL program results are printed and included in this repon for information only. This is not an Altran QA program. No conclusions are drawn from the results of the VESSEL ' program. t i. s -l 96m.r.se 82 =.
Altran C:rporation i ) Technical Report No. 96124-TR-01 Revision 0 1 l j l Table 8-1 q Results from VESSEL Program ] Flaw - J -Appl'd J - Matt T - Appld T - Matt Pressure Extension l da in-lb/sq. In in-lb/sq. In (psi) (fnch) 0.229 L 606 606 2.404 2.402 2266 0.200 125 592 0.494 2.730 2246 0.150 107 560 0.424 3.606 2248 0.100 89 533 0.353 6.000 2228 0.050 71 466 0.263 13.068 2140 0.040 53 444 0.212-16.099 2102 0.030 36 417 0.141 20.248 2050 0.020 18 382 0.070 26.131 1976 0.010 0 337 0.000 34.758 1868 file: CPL 7 Table 8-1 Results from VESSEL Program .96izs.2 '8-3
' Altran Corporati:n Technical R port No. 96124-TR-01 Revision 0 j 1 j i .1 - l e 4 Nc>zzle 1. t l ~l /z l o .i I t a ~ OSSO h f. a=1/4*t Flaw analyzed j i l In Section 7 a=1/4*t Flaw analyzed in Sec ion 8 by VESSEL pmgram + I i Figure 8-1 Postulated Flaw Geometry for VESSEL Input . M124.2 8-4 a
Altran Ccrporttion Technical Report No. 96124-TR-01 Revision 0 I i da vs. J Appld and J Mati c i 8 Results of VESSEL Program .cr s 700 m $ 600 =-- 'E
- = 500 j400
,/ i ~ ' 300 / o 200 1 c m 100 =. =- o o =x,: a. o.< 0 0.05 0.1 0.15 0.2 0.25 Flaw Extension da - inch + J-Appld + J-Matl i \\ Figure 8-2 da vs. J-Applied and J-Mat'l - Results of VESSEL Program i
- - _= _. - - -, a a. Al'tr:n Corportti:n Technical Report No. %124-TR-01 Revision 0 9.0 . REFERENCES' - i Ic L10CFR, Part 50,~ Appendix G. . i 2. -1995 Edition of ASME Section XI, Appendix K. 13. SIA Report CPb36Q-306, Evaluation of BSEP Unit 1 Curves.for Heat-up and Cool-down. 4. SIA Report CPb36Q-301, Hydro Test Curves Development. 1 5. SIA Report CPb36Q-302,2". Instrumentation Nozzle Pressure Analysis. I 6. SIA Report CPb36Q-303, ASME Code Appendix a vs. Appendix G. . :7.' SIA Report CPb36Q-1-305, Cooldown Thermal' Stress Analysis of the N-16 Nozzles. 8.' ' General Electric Reactor Vessel Purchase Specification Data Sheets - Spec. No. - 1 1 21 A1100AR, Rev.12. 9. . Reactor Vessel Nozzles Analyses, CB&I Contract 68-2471, GE Purchase Order 204-H1332, FP 50585.
- 10. '
Information on Reactor Vessel Material Surveillance Program, Bmnswick Unit 2, General Electric Report NED0-24157,.Rev. 2, June 1994. 11. Information on Reactor Vessel Material Surveillance Program, Brunswick Unit 1 General Electric Report NEDO-24161 Rev.1, June 1992. 12. Reactor Vessel Embrittlement Management Handbook, EPRI Report TR-101975-T2, December 1993. 13. White Paper on Reactor Vessel Integrity Requirements for level A and B C,nditions, j EPRI Report TR-100251, January 1993. 14. Reactor Vessel Integrity Database, Version 1.1, Software and User's Manual Provided by NRC. i '15. SIA Report SIR-95-130, RTm Evaluation. 1 i' .16. Nuclear Reactor Vessel Surveillance Database, EPRI Report NP-2428, June 1982. -17. Nuclear Plant Irradiated Steel Handbook, EPRI Report NP-4797, September 1986. v 18.' NRC Generic Letter 92-01, Rev.1,' Reactor Vessel Structural Integrity. i 19624.2 m 9-1. I e e-w
} Altrrn Ccrporttirn Technical Report No. 96124-TR-01 Revision 0 19. Effects of Residual Elements on Predicted Radiation Damage to Reactor Vessel Materials,'NRC Regulatory Guide 1.99, Rev. 2. 20. Evaluation of Reactor Pressure Vessels with Charpy Upper-Shelf Energy less than 50 ft-lb, Reg. Guide 1.161. 21. Nuclear Dosimetry Results for the Surveillance Capsule Removed at the Conclusion of Fuel Cycle 8, June 1994, Westinghouse Report SE-REA-074/94. 22. Generic Analyses for Evaluation of low Charpy Upper-Shelf Energy Effects on Safety ' Margins Against Fracture of Reactor Pressure Vessel Materials, NRC Report NUREG/CR-6023, April 1993. 23. VESSEL, A Computer Program Prepared by EPRI for Upper Shelf Charpy Energy Evaluation. 24. Multivariable Modelling of Pressure Vessel and Piping Ja Data, NRC Document NUREG/CR-5729, April 1991. 25. 10CFR50, Appendix G, Equivalent Margin analysis for Low Upper Shelf Energy in BWR/2 Through BWR/6 Vessels, General Electric Report NEDO-32205-A, Rev.1, prepared for BWR Owner's Group. 26. Welding Research Council Bulletin WRC 175, PVRC Recommendations on Fracture Toughness Requirements on Ferritic Materials. 27. Telephone Conversation Summary Between Altran (P.K. Shah) and CP&L (Charlie Griffin and John Voss) dated April 15,1996. 28. Fax Transmission from J.W. Voss, Jr. of CP&L to P.K. Shah of Altran, dated November 4,1996. i l 9u 24.2. n 9-2
Altren C:rpor tion Technical Report No. 96124-TR-01 Revision 0 Appendix A N-16 Nozzles Material Test Data e
=
k I 96124.2
~- 1 . q. - v" N - A g l ~ g N M Wo22tes U'\\hT a '. -j ~ N. ' l N c.. _ m _ ' 1.s._ g T_._ u (.c wg 1 ... - a. 7? l M.ATERIAL 1(ST HSPORT P.O. T4.fY'-?in?.E,.Jctr.iet - ~ l, g a ",f =.. C. E O o p,,cs ,, oria,, w ,,,,, __.J r d IiTp Cc m:av _@!S*.*.'.P. pr,id; s,.ff D.si:n isw s Oedevsee. -3MM .fI 7 s :te ww i .o... C T Cr?.;d'*o,,,,be. t n.. sssacm s 4 _l C' u Aistor _ vi s. - 7 d-I. ___-. cuoa.e.o.~ m as sa. ,o =c e ar imeariaant no. l e.rs e. I Q-l Panouer 1 j I ..r.s, __.__ i o.rv. 1575125'F. l itr/la Air C:. y g _ CDtI Spec. Q241VW 247!'- 2$0F.1 It-/in l' ate,- r:uanch hA,!st IW1 2" D*.a'. Special Waldirig Stubs por Ecw. 3 12?G4 2S*F.1 ilr/In Air Cool .a q. ::13, hav. 2 ' l'J,2, /J/c0 Tseits stre:a relieved ett I 2 of 5 2. a Q p.\\ Y (cr*4-1506-1150f,25'F. for 50 hears g I 2) 132 Ps. l l. u-l -g' f y 3 13'l i e4 i I L _ _ _i _ _ cwsuvt. Anatvses as.o mace.arancAt es.oetistfess O [ N , _ _ _ I i, l v.t. g u.e. pe asans.s
- o. e.
l et ce m no y __ ) g Q2Q17.! 21 .7$
- 010
.015 .23 .37 .80 69 .C5 radle x x x ' 2 1;r*>y.:.,1 tit.: no. c pas e e i no bresJ: +50*F. = m !!g7P-!;A, I .219 63 .oc6 025 .2k .30 61: .72
- 02 '. check Perritie Grain site idi 73 a
if; F i i 1 1 m., .y 1 .,..___6. i 4 o ..-.cr... ... ~.. 1 _ _ _ _ = =. _. _ _. _ n,... - 4:,o_r. m _._ ____.. _. _ __p l g g.eC Ap L ATE P.shL t up, test *3 l t t UMta. % f.. A, sho t Ps:p g -- _ _ft. _'teeIOOS c d P.l. N. _Ct4(MGT t.et 4 t asJe L E
- tE LD ts. 2*
TCM7 2 .C31.031.0)$'. 3G-3C-)O Fefe4J PeC ft FP. P1.3a se _tt so a t 8e l53.2 36-39-kl Iloca.?e Y 07 25 70.0 21.0 i l ;!a7P-$A,,,7217.1 0}. $5.2 f 31-M-kis' .027.033.037 IS-30-fG i ISCd P.co Tc.:.,! Fla.5 7.1.0 20.0 2 i l - l' I l r I RT - Please destrcy copy dst.cd Janucry 7.1969 M.f.ff'T M *,c. O. -r e.s_I qe g. p. !.orthy cert.ify t.he ab-no results era correct :nd that till rcquire-F,6. .g 4 ~.!. (1?.U.CTED TTST ID l 4 se ordtir have ~ a
- .*t:
l, rents ut al.ove rea'acenced cpecificntions and the pu ec. sa a. < ici11.-d." k i .,m.~
~~ g3j f-r qq 3.~.,y = 3 ~ g % g -hb,_- g,m,y u...a.,F.,s. n .ary e x. 68 MATERIAL TEST REPORT dATE Ju.1,y 3..._.__ _ 19 ' 5. 0. N2. ho68-8 A\\'S Order N]. Tac: P.o B5?5oh-2h71U. Contract 63 Chicago Bridy-and Iron Connany Pureta r Purctuser b9b9 C. I. Crais Co., Inc. o, sir b tor S Order No. Dstrinutor FCE CH AE T* ATTACHED HE AT OR FO TGING SPEC. CODE NO. 4N O -- HEAT TRE ATMENT TE$ NC PaoDUCT t OTY. L CPAI Spec. Q2Q1VW ,2h7P-675+ 25 F. 1 Er/in Air Cool x 2 2 2" Dia. Special Welding Stubs per
- g. M13, Rav. 2 MS 2, Rev.3 3A,3B 5601 25 F. 1 Hr/in water Quench of 5/3/68 j
12902 2$ F.1 Hr/in Air Cool T (ASTM-A$o8-Tests stress relieved at: ( d
- 2) MS2, Par 1150+ 25 F. for 50 hours f/ N I ~l t( '
3 . _} 3.13.1 ng lg n. c. I ' ' \\#N M CHEMICAL AN ALYSIS AND MECH ANICAL PROPERTIES s NOT REPORTS ATTACHED f onGsNG tsE kT CR Nl MO Y U. T. M.P O P. AE M ARKS NO. NO. C MN P C8 2L7P-3A, Q2Q1W .21 .75 .010 .015.23 .37' 80 69 .oS Laaie x x x 2 nrOpwaicnts - 3B .16 .71 .Co6 .013.2h .36 .81 60 .03 Check brealc +$o F. Ferritic Grcin S 9 IV. Nosta. +ho F. ) IMPACT TESTS IK. whet.
- I FO ING HEAT TEST T E NSILE YlELO ELONG.%
R. A. NO. N O. TEMP. PSt a 1000 PSB a 1000 in 2"
- 8. H. N.
ENE RGY tes.Ibs.) L ATE R AL E XP. ten ") % SHE Att 2L7P-3A, Q2Q1W 3B o Room Temp 88.65 69.o 22.5 66.5 116-100-112 .o81.o7h..oco 90-30-95 180 Room Temp 86.5 69.75 2h.$ 69.5 133-7h-lh1 .085.065.c87 95-60-95 I CCRP.ECTED TEST REEoRT - Please destroy copy dated January 8,1969. f "We hereby cartify the above results are correct and that all require-gg[7 rnents of above referenced specifications and the purchase order have -r ^ [f-- w.e,.,.e,c.,,,v,,,.. ......,,,,,,,. e. .,,.c. hcnn fulfilled." coauia.a in m.,.co.a..e u.. Co,g.or.
a4; ;16;49 .ce60 ;e43 :em. wsk>ED. ^ ~~~~^~' ~ ~ ~ ~ ~ ~ " ; gfs, 1 ~Lonnos Forac. Inc.. 1280, Wast Choster Rd. ~~ West Chester. Pa. 19382 ! arch 14..1989' 'borolina~-Power &-LightCo. Box 1551
- Raleigh, North Carolins 27802
-r- ' Attn:-Mr.-{amGrant-Gentlemen, The)fh11owing information is being provided for1your information and in applicable to Lenape Forge. Inc. Heat Code-Q2Q1V.. A508-2 material l coltcd'by Sharon Steel Co. and received har Lenape Forge Inc. in June of z 1988. : LadleLA'alysis: C-Hn P S 'Si Cr Ni Mo Cu n (Vt:%) .21 .75 .010 .015 .23 .37 .80 .69 Product Analysis .21 .75 .010 .014 - 24 .37 .82 .89 .18-(Wt'%) Drop Wt. Test-Results Reported On Material Forged From Heat Code Q2Q1V. (Testing performed using P-3 specimens per ASTM.E 208) Haterial Heat Treated Condition: A cooled in air B-Normalized at 1850.F water quenched Austenitized.at 1560 F Tempered at 1290 F - cooled in air i Stresa Relieved at L1150 F 30 Hrs. Drop.. weight test results: -20 F, -10 F., O F
- Break 0 F. +10 F. +10 F: No Break Please note, test 1resulte presented have been obtained by
. processing (forging and heat treating) starting stock selected from Lenape Forge Heat ~ Code Q2Q1V. The above results are not intended to be'used to 1 certify any particular. forgings in your possession. For specific forgings of concern, please refer to the applicable MTR (Material. Test Report) cupplied with forging shipment.- l Sincerely, 20.rs 1 R. Douglass Trout' Plant Metallurgist y.-
Altran Ccrporation Technical Report Ns. 96124-TR-01 Revision 0 Appendix B Analyzed J-Resistance (Jn) Fracture Toughness Data of the N-16 Nozzle Material v W E J i h-4 96124.2 T E -r-, w ,,w
1 Tatde 8 t N 16 NouJe Evaluedon CaroEna Power & Ught Pre + radiated CVN 84odel Sie = CPLS Creet F.seensten sa=0.01 nch MF Temp CVN C1 C2 C3 C4 - da . JR F R40 (inch) in40An*2 O 740 100 35 3 5es 0.225 4 003. 4 400 - 0.01 510 0.740 150 36 3 117 R200 4 002 4 400 0 01 deo 0 740 200 36 2.724 0.103 4 000 4 400 0 01 482 0.740 250 35 1 300 0.178 40e8 4 400 RO1 434 0.740 300 35 2.070 0.102 40e8 4 400 0 01 414 R740 ' 360 36 - 1.817 0.140 4 087.' 4 400 0.01 302 ? E740 400 36 1.587 R131 4 006 4 400 0.01 371 i 0 740 480 35 1.307 R115 4 004 4 400 0 01 362 O.740 500 35 1.212 0.tWe 4 003 4 400 0.01 333 0 740 560 35 1,0e8 ROM 4 002 - 4 400 - 0.01, 315 R740 000 36 0 NS
- 0. css dono 4 400 Roi 208 4 740 050 35 0.000 0.052 4 076 4 400 0.01 383 -
MF Temp CVN Cl C2 CS C4 da JR 'F R4 0.740 100 40 4 100 0242 4 004 4 400 0.01 540 O.740 150 40 1 836 0.227 4 003 4 400 0.01 520 0.740 'J00 40 3.170 0 211 4 002 4 400 ' O.01 402 R740 250 40 2.77f R195 4 001 4 400 0 01 det 0.740 300 40 1 424 4100 4 000 4 400 0 01 441-R740 350 40 1 118 0.164 4 000 4 400 0.01 418 E740 400 40 1.851 0.146 4 087 4 400 0 01 306 R740 450 40 1.817 R133 4 000 4 400 E01 374 0 740 500 40 1.413 4117 4 084 4 400 E01 354 4 740 500 40 1.234 R101 4 083 4 400 0.01 335 R740 000 40 1 070 Rae8 ' 4 082 0 400 0.01 318 0.740 050 40 0.042 R070 4 001 4 400 0.01 301 MF ' Temp CVN C1 C2 C3 C4 da JR F R4 0.740 100 45 4 704 0.256 4 006 4 400 0.01 500 0.740 150 45 4 182 0.242 4 004 4 400 0.01 540 i E740 200 45 3 837 0.227 4 003 4 408 0.01 520 0 740 250 45 3.177 R211 4 002 4 400 0.01 402 1 0.740 300 45 2.778 R196 4 001 4 400 0 01 440 I E740 360 45 2.425 R100 4 000 4 400 0.01 441 - 1 E740 400 45 1 118 R164 4 086 4 400 0.01 die 1 7 R740 450 45 1.052 4144 4 007 4 400 0.01 305 ) R740 500 45 1.014 (f133 4 088 4 400 0.01 374 0.740 560 45 1.413 0 117 4ON 0400 0.01 354 R740 000 45 1.235 0.101 0.083 0 400 0 01 336 0.740 050 45 1.070 0 006 4 082 4 400 0 01 318 MF 7emp CVN C1 C2 C3 C4 da JR F he e 0 740 100 50 5 377 0.272 4 007 4 400 0.01 000 0.740 150 50 4 000 0 256 4 005 0 400 0 01 577 0 740 200 50 4105 0.241 4 004 4 400 0.01 546 I 0.740 250 50 3 587 0.225 4 003 0 40s 0 01 517 0 740 300 50 3 134 0 200 0 002 4 400 R01 480 0 740 350 50 1 734 0.104 4 000 4 400 0.01 463 0 740 400 50 2.302 0 178 4 000 0 400 0 01 430 0.740 .450 50 2 000 0 163 4 068 4 400 0 01 415 0.740 500 50 4 820 0147 0 067 4 400 0.01 303 0.740 550 50 1ES 0131 0 085 4 400 0 01 372 R740 000 50 1.304 0 116 4 064 4 400 0.01 352 0.740 SSO to 1.214 0too 4 063 0 400 0 01 334 i MF Temp CVN C1 C2 C3 C4 da JR F R4 0.780 100 55 8000 0.205 4 006 -0 400 0.01 837 0 740 150 55 5 242 0 200 4 006 4 400 0.01 803 0.740 200 55 4 500 0 254 4 005 4 400 0.01 571 0.740 250 55 4 002 0 235 4 004 4 400 0.01 540 Erst 300 55 3 407 0222 4 003 4 400 R01 Sir O.740 350 56 3 056 R207 4 001 0 400 0.01 444 0.740 400 55 2 000 - 6 101 4 000 4 400 0.01 450 0.740 490 SS 2.332 0.175 4 000 4 400 0 01 434 0.740 500 55 2 034 0.100 4 006 4 400 0.01 411 0 740 550 55 1 700 0144 4 087 4 400 0.01 See 0.740 400 - 55 1.555 0 120 4 005 4 400 0 01 384 0 740 000 55 1 350 0 113 4 004 4 400 0 01 340
e Tatde B-1 pont'.) f N.14 Norde Evaluation Carorma Pcwer & Light Pre 4rradiated CVN Modet flie a CPL 5 Crwa Emiensten de=0.e2inen MF 7emp CVW - C1 C2 C3 C4 da JR F ' Ras pach) enaben*2 0749 - 100 35 1 508. 0.225 4 003. 4 400 0 02 701 0.749 150 35 3.117 0 20e 4 C02 4 400 0.02 055 'j. 0 749 200 - 35 1 724 ' R193 4 000 ' 4 400 0 02 812 0 740 - 250 35 1 300 0.17e 4 000 4 400 0.02 572 0 740 300 35 2.079 R182 4 006 4 400 0.02 535 0.740 360 35 1.817 Ride 4 087 4 400 0.02 - 500 0.740 400 . 15 1.887 R131 4 005 4 400 0 02 467 0.748 450 35 1.387 0.115 4 004 4 400. 0.02 437 R740 500 35 1.212 0.008 4 083 440s t 0.02. 408 0.740 560 35 1.000 0 004 4 082 - 4 400 - 0.02. 381 A 740 000 36 RS25 0 000 40e0 4 400 ' E02 356 aide MO 35 0 000 0.052 4 079 4 400 0.02 333 14F 7emp CVN C1 C2 C3 C4 ' de JR i P R4h t 0.749 100 40 4 180 0.242 4 004 4 400 0 02 - 757 a740 ' 150 40 3 836 0.227 4 033 4 400 0.02 707 0.740 200 40 1 170 0.211 4 032 4 400 0.02 981 a7de 200 40 ind nie5 40e1 4 40s no2 eis afde 300 40 1 424 0 100 4 000 4 400 0.02 577 O.740 300 40 2.118 R184 4480 4 400 0.02 540 0 749 400 40 1.051 0.146 4 087 4 400 0.02 504 A740 450 40 1.817 0.133 4 006 4 406 E02 471 0.74e 500 40 - 1.413 0117 4 064 4 400 0.02 441 0.749 550 40 1.234 0.101 4 083 4 400 0.02 412 0.749 000 40 1 070 0.00$ 4 082 4 400 0.02 335 & 749 650 40 0 942 0.070 4 001 4 400 0 02 300 MF 7emp CVN C1 C2 C3 C4 da JR ~ F R4h G740 100 45 4 764 0.25e 4 006 4 400 0.02 810 0.746 150 45 4.162 0.242 4 094 4 400 0.02 757 0 740 200 - 45 3 837 0.227 4 083 4 40s 0.02 707 4740 250 45 1177 0.211 4 002 4 400 0.02 tot 0.749 300 45 1 776 G195 4 001 4 400 0.02 618 0 749 350 45 1425 E100 4 000 4 400 0.02 578 E749 400 45 1119 0.164 4 008 4 40s 0 02 540 0.740 450 45 1.852 9,148 4 087 4 400 0.02 505 0.748 500 45 1 818 0.133 4 000 4 400 0.02 472 0 749 500 45 1.413 R117 4 084 4 400 0.02 441 0.749 000 45 1.235 - 4101 4 083 4 400 0 02 412 0 749 050 45 1 079 0.006 4 082 0 400 0.02 365 MF Temp CVN C1 C2 C3 C4 de JR F R4D e 0.749 100 50 5 377 0.272 4 007 4 400 0 02 000 0.749 150 50 4 400 0.254 40D5 4 400 0 02 804 0 749 200 EO 4 105 0.241 4 094 4 400 0.02 752 0.749 250 50 3 547 0.225 4 003 4 400 0.02 703 4 749 300 50 3134 0 200 4 032 4 400 0 02 657 0.749 350 50 1 730 0.194 4 000 4 400 0.02 Sie niet 400 50 1 302 0.178 40e9 4 400 0.02 574 0 749 450 50 2 000 0.103 4 086 4 400 0 02 536 0 749 500 50 1.826 0 147 4 087 4 400 0.02 501 0 749 550 50 1.585 0 131 3 085 4 400 0.02 466 0.749 000 50 1.394 0.116 4 064 4 400 0 02 436 0 749 050 50 1 216 0.100 4 0R3 4 400 0.02 400 MF 7emp CYN C1 C2 C3 C4 da JR F f14D O.749 100 55 8000 0.265 4 006 4 400 0 02 000 0 749 150 55 5.242 0 200 4 036 4 400 0 02 850 0 749 200 55 4 5e0 0254 '4 005 4 400 0 02 794 0.749 250 55 4 002 E238 4 004 4 400 0 02 742 f.740 300 55 3 497
- 4222 4 003 4 400 0 02 094 0.740 300 95 3 055 0.207 4 001 4 400 0 02 848 E749 -
400 55 2.est Etet 4 000 4 400 0.02 006 0.740 450 SS 2332 0175 4 000 4 400 0 02 546 0 740 500 55 2 030 0.100 4 000 4 400 0 02 529 E740 550 55 17eo 0144 4 087 4 400 0 02 495 Q 790 000 55 1.555 0 128 4 005 4 400 0 02 462 0749 000 55 1 350 0 113 4 084 4 400 0 02 432
..-.4 ~. 6. j Tab 6e B 1 (conrd) - N 16 Nonle Evaluation Caronna Power & Ught Prehradiated CVN Modet 4 fhe = CPL 5 Crack estensaen se.0.05 incti - ter Temp CYN - C1 C2 C3 Ce de - JR P Raw pacto in4 man t a 0.749 100 35 3 569 0225 4 003 4 400 0 05 004 0 749 150 35 3 117 0 200 4 002 4 400 0 05 ' 014 0 740 200. 35 2 724 0 103 4 000 4 400 0.06 440 0.740 ' 750 - 35 2 300 017e 4 000 4 400 0 06 773 0.740 300 35 2 078 0 102 4 000 4 400 0.05 711 0 749 350 35 1.017 0 148 4 007 4 400 0.05 064 i 0.740 400 35 1 587 0 131 4 005 4 400 0 06 801 I 0 740 450 35 1.347 0115-4 064 - 4 400 0.05 553 R740 500 35 i.J12 0 000 4 083 4 400 0 06 SOS E740 560 35 1D50 ROM 4 082 4 400 0 06- ' 407 afde 800 35 0 025 0 Des 4 Dec 4 400 0.06 430 0.740 660 35 0 000 0.062 4 070 4 400 EOS 305 1 ter Temp CVN C1 C2 C3 C4 de JR P ft46 E748 100 40 4 100 0.242 4 094 4 400 - R06 1003 R748 150 40 S TIS 0.227 4 003 4 40s - 02 1000 E740 200 40 1178, 0.211 40e2 4 400 0.06 025 4 740 250 40 2.775 0.195 4 001 4 400 0.05 esc 0 740 300. 40 2.424 0 180 40se 4 40s 0.06 782 0 740 360 40 2.110 0 104 4 00s 4 400 0.06 710 R740 400 40 1 851 0.14e 4 007 4 400 0.05 eel O.740 450 40 1.017 R133 4 000 4 400 0 05 000 G740 000 40 1.413 R117 4 094 4 400 0 06 See & 740 560 40 1.234 4 101 4 0e3 4 400 E05 514 0.740 000 40 1.079 00se 4 082 4 40s 0 05 473 0.740 650 40 0 042 0.070 4 001 4 400 0.05 435 e* 7 RAF Temp CVN C1 C2 C3 C4 de JR P R4h 0.749 100 45 4 704 0.254 4 096 4 400 0.05 tiet 0 740 150 au 4 102 0.242 4 004 4 400 0.06 1004 0.740 200 45 3 637 R227 4 083 4.400 0.06 1000 0 740 250 45 3.177 0.211 4 002 4 400 0.05 025 0.740 300 45 1 778 0.105 4 001 4 400 0.05 e50 a749 350 45 2.425 0.140 4 000 4 400 0.06 782 A740 400 45 2.110 aise 4 004 4 400 0.06 719 O.740 450 45 1.052 0 140 4 087 4 400 0.05 est R740 500 45 1.918 0.133 4 000 4 400 0.05 808 l O.748 550 45 1.413 0.117 4 064 4 400 E05 550 0.740 000 eb 1.235 0 101 4 083 4 400 0.05 514 6 740 050 45 1 070 0 Dee 4 082 4 400 0 05 473 aer Temp CVN C1 C2 . C3 C4 de JR F R40 0 748 100 50 5.377 0272 4 087 4 400 0.05 1282 0 740 150 50 4 000 0 256 4 005 0 400 0.06 1170 0.749 200 50 4.105 0.241 4 094 4 400 0.05 1064 0 740 250 50 3 567 0.225 4 083 4 400 0 05 007 0 74e 300 50 1134 0 Joe 4032 4 400 0.06 017 0 740 350 - 50 1 738 0 104 4 Geo 4 400 0 05 643 0.74e 400 50 1 302 n17e 40se 4 400 0.05 775 0 740 450 50 2 000 0.183 4 088 4 400 0.05 713 0 740 500 50. 1 838 0147 4 087 4 400 0 05 850 0 749 5$0 50 1 SOS 0.131 4 085 4 400 0 05 803 0 740 800 50 1.364 011e 0 064 4 400 0 06 554 0 740 650 50 1 210 0.100 4 003 4 400 0 05 510 14P Temp CYN C1 C2 C3 C4 84 JR P R4D ? O 740 100 55 0000 0.205 4 038 4 400 0 05 1373 0.740 150 55 5.242 E20e 4 098 4 400 0 05 1282 1 0.740 200 55 4 500 a254 4 035 4 400 0 05 t181 ] 074e 250 55 4 002 0.230 4 t24 4 400 0.05 1067 a 0.740 300 55 3.407 0222 4 003 4 400 0 05 002 0 740 300 SS 3 086 0 207 4 091 4 400 0.06 003 174e. 400 85 2 000 0 101 4 0E0 4 400 0.05 830 Q 748 450 SS 2,332 0 175 40se 0 400 0 06 783 4 740 - 500 SS 1 030 0.100 4 0e8 4 400 0 06 702 07de 550 55 1.700 0 144 4 087 4 40s 0 05 845 0 fee 800 55 1 555 012e 40e6 4 400 0 05 583 0 740 e50 SS 1 350 0 113 4 064 4 40s 0 05 See s3 l
y e Table G-1 (cont';) q N46 Nozzle Evaluation Carohna Power & Ught Pre 4rradiated CVN Model l Cee a CPL 5 Crect Estensten ea =0.1 inch MF Temp CYN C1 C2 C3 C4 de JR F ne (anch) In ann *2 0749 100 35 3 See 0.225 4 093 4 400 01 1256 l 0749 150 35 3 117 0 209 4 002 4 400 01 1141 0 749 200 35 1 724 0.193 - 4 000 4 400 0.1 1037 0 749 250 35 2.380 0 176 40e9 4 400 01 942 0 749 300 35 2.079 R182 0 080 4 400 - 01 ese 0 749 350 35 1817 0.140 4 007 4 40s 0.1 774 0 749 400 35 1.567 Q131 4 005 4 400 0.1 707 G749 450 35 1.367 R115 4 004 4 400 01 N2 0.749 500 35 1.212 0.000 4 083 4 400 0.1 544 0.749 - 550 35 1.050 0.004 4 082 4 400 0.1, 530 C 0.740 800 35 0 925 0 000 4 000 4 400 0.1 462 0.749 850 35 0.006 0 052 4 079 0 400 0.1 430 84F Temp CYN C1 C2 C3 C4 da JM F R4 j 0.740 100 - 40 4.160 0.242 4D04 4 400 0.1 14uo G740 150 40 3 635 E227 0 003 0400 01 1272 0 740 200 ' 40 3.17e 0.211 4 002 4 400 G1 1156 0 749 250 40 1775 R195 4 001 4 400 St 1051 0.749 300 40 2 424 0.100 0 000 4 400 0.1 955 1 0.749 350 40 lite a164 40e6 4 400 0.1 667 i 0.749 400 40 1.451 Ries 4 067 4 400 01 786 0 749 450 40 1.017 0.133 4 088 4 400 Q1 718 0.740 500 40 1 413 0.117 4 064 4 400 0.1 851 0749 550 40 1 234 0.101 4 083 4 400 0.1 501 0.749 000 40 1.079 0 006 4 062 4 400 01 537 0.740 650 40 0 942 0.070 4 061 4 400 0.1 488 l MF Temp CVN C1 C2 CS C4 de JM r ne 6 749 100 45 4 764 0 256 4 006 4 400 0.1 1541 j 0.749 150 45 4.162 0 242 4 094 4 400 0.1 1401 0.749 200 45 3 637 0.227 0.003 0 400 0.1 1273 0.749 250 45 3.177 0.211 4 082 4 400 0.1 1157 0.749 300 45 2.776 0.195 0.001 0400 0.1 1051 0.740 350 45 2.425 0.100 4.000 4 400 at 955 0 749 400 45 2.119 0.164 -0 008 4 400 0.1 ese 0.740 450 45 1.852 0 146 0 007 4 400 01 7ee 0.749 500 45 1.816 0.133 4 006 4 400 0.1 717 0 740 550 45 1.413 0 117 4 064 0400 01 051 0 749 000 45 1.235 0 tot 4 083 4 400 ai 592 0 749 650 45 1.079 0.0e6 0 082 4 400 01 536 MF Temp CYN C1 C2 C3 C4 da JR R4 i 0 749 100 50 5.377 0.272 4 097 4 400 0.1 16f.0 0749 150 50 4 000 0 256 0 099 4 409 01 1526 0 749 200 50 4 105 0.241 4 004 4 400 0.1 1387 0 749 250 50 3 567 0225 4 083 4 400 0.1 1200 0 749 300 50 3134 0.209 0 002 4 400 0.1 1945 0.749 350 50 2 736 0.194 4 000 4 400 at 1041 0749 400 50 2 392 0.178 0 000 4 400 0.1 See 0 740 450 50 2 000 0.163 4 086 0 409 0.1 650 0 749 500 50 1 626 0 147 4 067 4 400 0.1 761 0 749 550 50 1 595 0.131 4 065 -0 409 0.1 710 0 749 000 50 1,394 0 tie 4 064 0 400 01 645 0749 650 50 1 210 0 100 4 083 4 400 01 See MF 7emp CYN C1 C2 C3 C4 de JM F R4 0 749 100 55 0000 0.265 -0 006 0 400 0.1 1818 0 740 150 55 5 242 0 200 4 096 4 400 01 1850 0 740 200 55 4 540 0254 4 005 4 400 0.1 1490 0 740 250 55 4 002 0.23e 0 094 4 400 01 1382 6 740 300 55 3 497 0.222 4 003 4 400 01 1236 J 0 740 350 55 3 055 0.207 0 001 4 400 01 1125 0.740 400 55 2 000 0.191 4 080 4 409 0.1 1022 4 E740 450 55 2 332 0175 4 Dee 4 400 0.1 929 0 740 000 55 2 034 0 100 0 006 4 400 0.1 844 0 749 550 55 1.700 0.144 0 087 4 400 01 767 0749 000 55 1 555 0 128 4 085 4 400 01 007 0 749 850 55 1 359 0 113 4 004 4 400 01 633
4 Table L-1 (cont'd) N.16 Notzte Evaluation Carolina Power & Ught Pre 4rradiated CVN Model flie = CPL 5 Crack Eartensame da =0.15 inch MF Temp CYN C1 C2 C3 C4 de JR F fte (tach) Inaan*2 0 749 100 35 3 56e 0225 4 083 4 400 0 15 142e 0.749 150 35 3 117 R200 4 002 4 400 0 15 1287 0.749 200 35 1 724 0.193 4 090 4 409 0.15 1162 0.749 250 35 1 380 Q171 4 069 4 400 0.15 1049 0 749 300 35 2.079 0.182 40a6 4 400 0.15 946 0.749 350 35 1.817 n146 4 067 4 400 0 15 e54 0 749 400 35 1.567 R131 4 085 4 400 A15 771 0 749 450 35 1.367 0115 4 064 4 4C4 0.15 600 0 749 500 35 1.212 0 009 4 063 4 400 E15 828 0.749 550 33 1.059 0 084 4 062 4 400 0.15 567 0.749 000 35 0.925 0.06a 40e0 4 40s 0.15 511 0.749 650 35 0 806 0.052 4 079 4 400 0.15 461 MF Temp CVN C1 C2 C3 C4 da JR F 'R4 0.749 100 40 4 100 0242 4 094 4 400 0.15 1803 0 749 150 40 3 635 R227 4 093 4 400 0.15 1447 0.740 200 40 3.170 0.211 4 082 4 400 R15 1300 0.740 250 40 1 775 Q195 4 001 4 400 EIS 1178 0.749 300 40 2.424 R100 4 000 4 400 R15 1063 0.74J 350 40 111e Q164 4 064 4 400 0.15 000 E749 400 40 1.851 R144 4 067 4 400 0.15 866 0.749 450 40 1.017 R133 4 006 4 400 R15 762 G749 SCO 40 1.413 R117 4 064 4 400 0.15 705 0.749 550 40 1.234 0.101 4 063 4 400 0.15 837 0.749 000 40 1 079 acee 4 062 4 400 0.15 575 0.749 850 40 0.942 QD70 4 001 4 400 0.15 519 MF Temp CVN. C1 C2 C3 C4 64 JR F R4 0.749 100 45 4.764 0256 4 096 4 400 0.15 1777 0.749 150 45 4.162 0.242 4 004 4 400 0.15 1804 0.749 200 45 3 837 E227 0 003 4 400 1115 1447 0.749 250 45 3 177 0.211 4 092 4 400 L15 1308 0.749 300 45 1 776 Q195 4 001 4 400 015 1170 0.749 350 45 1 425 0 100 4 089 4 400 0.15 1004 0.749 400 45 1119 A164 4 068 0400 0.15 960 nF49 450 45 1.452 R148 4 067 4 400 015 866 E740 500 45 1.018 a133 4 006 4 400 415 762 R749 550 45 1 413 0117 4 064 <0400 0.15 700 0 749 A00 45 1.235 0101 4 063 4 400 0 15 83? 0.749 650 45
- 079 0 00s 0 062 4 400 0.15 575 MF Temp CVN Cl C2 C3 C4 da JR F
Ra 0 740 100 50 5.3 77 E272 4 007 0 409 0 15 1948 0.749 150 50 4 6GS Q256 0 095 4 400 Q15 1756 0 749 200 50 4 105 R241 4 094 0 409 0.15 1547 0 749 250 50 3487 0.225 4 093 4 400 0.15 1432 0 749 300 50 3.134 0 200 4 002 4 409 0 15 1792 0.749 350 50 2.i36 0194 4 090 4 400 0 15 1156 0.749 400 50 1 192 0 178 4 069 <0 400 0.15 1053 0.749 450 50 7 390 0 163 4 068 4 400 0 15 950 0 749 500 50 1 826 0147 4 067 4 400 Q15 657 0.749 550 50 1 505 G131 4 065 4 409 R15 774 0.749 600 50 1.394 0 110 4 064 4 400 0 15 696 0 749 650 50 1 218 0.100 0063 4 400 0 15 630 MF Temp CVN C1 C2 C3 C4 da JR F ne 0 749 100 55 0000 k285 0 006 4 400 0M5 2117 0 749 150 55 5242 R200 4 006 4 409 0.15 1911 0 749 200 55 4540 0.254 .O 005 O 400 0.15 1725 E749 250 55 4.002 R238 4 004 4 400 0.15 1556 0.749 300 55 3 497 R222 4 003 4 409 0 15 1405 0 749 350 55 3 02i5 Q207 4 001 4 400 0 15 1268 4749 430 55 2 000 R191 0 000 4 400 0.15 1144 0 749 450 55 2.332 0.175 40a9 0 400 0 15 1033 0.740 500 55 1 038 0100 4 084 4 400 0 15 932 0.749 550 55 1.700 8144 4 067 4 400 0 15 641 0 749 000 55 1.555 0120 <0 065 4 400 0.15 759 0 749 eSO 55 1 350 0113 4 064 0 400 0 15 685
I I Tatde e1 (fontd) l N 14 Nouse hal.aation Carolina Power & Ught 1 Pfe arradiated CVN A4odel nie = CPLE Crack Enteneaan d4 =0.20 inch MP: Temp CYN C1 C2 C3 C4 de JR P R4 pnch) In4Ma*2 0 74e 100 35 3 54s 0 225 4 0e3 4 400 02 155e ~ 0 749 150 35 3 117 ^ O ffA 4 002 4 400 02 1300 0 740 200 35 2.724 0 103 4 000 4 400 0.2 1255 0.740 - 250 35 1 300 0 176 40es. 4 40s 02 1127 0 740 300 35 2270 0 142 does 4 400 0.2 1013 i 0 740 350 36 1.817 0.14e 4 087 4 400 0.2
- 10 0 740 400 35 1.587 0.131 40e5 4 400 - R2 017 0.740 450 35 1.387 0.115 4 084 4 400 R2 734 0 740 000 35 1.212 0.080 4 033 4 400 0.2 See 1
0 740 500 35 1.080 0 084 4 082 4 40s 0.2 002 0 740 000 36 0 B23 0.000 4 000 0 400 0.2' 532 4 740 000 36 0.00s 0.052 4 070 4 400 0.2 4T7 ? MP 7emp CYN C1 C2 C3 C4 de JR j P 84 0.740 100 40 4.140 0.242 4 084 4 400 0.2 1788 O 740 150 40 3 836 0.227 4 003 4 400 ' O.2 1570 0 740 - 200 40 1176 0.211 4 002 4 400 R2 1410 0.740 260 40 1775 0.195 4 001 4 40s 0.2 1274 R740 300 40 2.424 0.100 4.089 4 400 0.2 1144 0.740 300 40 2.110 0.164 4 000 4 400 0.2 102e 5 0.740 403 40 1.861 0.140 4 087 4 400 0.2 923 0.740 4S0 40 1.017 R133 408e 4 400 0.2 820 0.740 900 40 1.413 0 117 4 084 4 400 0.2 745 0 740 000 40 1.234 R101 4 083 0 40s 0.2 000 0 740 000 40 1470 0.Dee 4 002 4 40s 0.2 801 0.740 850 40 4 042 0070 4 001 4 400 0.2 540 a' (# 7emp CYN C1 C2 C3 C4 de JR P R4 E740 100 45 4 764 4 250 4 00s 4 400 0.2 195e a749 150 45 4 182 0.242 4 004 4 400 0.2 1750 0 740 200 45 3 837 0.227 4 003 4 400 0.2 1500 0 740 250 45 1177 0.211 ' 4 002 4 400 E2 1410 0 740 300 45 1 778 0195 4 001 4 400 0.2 1274 0.740 360 45 1 425 E180 4 080 4 400 02 1145 afde 400 45 1110 0 164 4 000 4 400 R2 1020 a740 400 45 1.e52 0.14e 4 007 4 4DD A2 023 0 740 000 45 1.010 0 133 4 000 0 400 E2 820 0 740 550 45 1.413 0 117 4 004 4 400 0.2 745 0 740 000 45 1.235 0.101 4 083 4 400 0.2 000 0 740 000 45 1.070 0.0ee 4 082 4 400 0.2 801 MP Temp CYN C1 C2 C3 C4 de JR F R4 O 740 100 50 5.377 0272 4 007 4 400 0.2 215e 0 740 150 50 4 000 025e 4 005 4 400 0.2 1937 0 746 200 50 4.105 0.241 4 004 4 400 0.2 1740 e 740 250 50 3 887 0.225 4 003 4 400 02 1562 0 740 300 50 3 134 0 200 4 082 4 400 0.2 1403 0 740 350 50 1 730 0 104 4 0e0 0 400 02 1200 0 740 400 50 1 307 0 178 4 080 4 400 02 1132 0 740 450 50 2 Geo 0.103 4 048 4 400 02 1017 0 740 SCO $0 t 826 0 147 4 087 4 400 02 013 l 0 740 550 50 1 505 a131 40e5 4 400 a2 a20 ) 0 740 000 SO 1.304 0116 <0 084 4 400 02 737 ) 0 740 650 50 1.210 0 100 4 083 4 400 0.2 Se2 ) l MP Temp CVN C1 C2 C3 C4 de JR P R4 0 740 100 55 e 000 0 265 ADee <0 400 02 2353 0 740 150 SS 5 242 0.260 0 080 4 400 R2 2113 0 740 200 55 4 500 0 254 4 005 4 400 0.2 itse 0 7de 250 SS 4002 0 238 0 004 4 400 0.2 1705 i 0 740 300 56 3 407 0222 4 083 4 400 02 1531 l 0 740 380 55 3 055 0.207 4 001 4 400 0.2 1375 0 740 400 95 2 000 0.101 4 080 4 400 02 1236 0 740 450 SS 1 332 0.175 00se 0 400 0.2 110e a74e y-55 2 030 0 100 ause 4 400 02 ese i 0.740 SW SS i 700 0 144 0 007 4 400 02 e95 O 740 800 55 1 555 0 120 4 005 4 400 02 004 3 40 eSo 55 i ist 0 113 4 004 4 400 02 722 4 1 t i
l Table C 1 (cont'd) ) N-18 Noule Evaluation Carolina Power & Ught Pre 4rradiated CVN Model flie = CPL 5 Cacts Ertenskm da =0.25 inch MP Temp CYN C1 C2 C3 C4 da JR F R4D (Inch) in4blin*2 0 749 100 35 3 566 0.225 4 003 4 400 0.25 1662 0 749 150 35 3 111 0.209 0 002 4 400 0.25 1487 0 749 200 35 2.724 0 193 4 000 4 400 0.25 1331 0.749 250 35 2 380 0.176 4 080 4 400 0.25 1191 0.749 300 35 2 079 0.162 4 086 4 400 0 25 1000 0 749 350 35 1 817 0.146 - 4 067 4 400 0.25 954 0 749 400 35 1.567 0 131 40Ss 4 400 0.25 653 0 749 450 35 1.387 0.115 4 084 4 400 0.25 764 0.749 $00 35 1.212 0.000 4 083 4 400 0.25 063 0.749 550 35 1.050 0.064 4 062 4 400 0.25 611 G740 800 35 0 925 0.006 4 000 4 400 0 25 547 0.740 650 35 0.806 0.052 4 079 4 400 0.25 490 MP 7emp CVN C1 C2 C3 C4 da JR P fWe 0.749 100 40 4 100 0.242 4 004 4 400 0.25 1860 O.740 150 40 3 835 0.227 4 093 4 40s 0.25 1687 0 749 200 40 3.178 0.211 4 092 4 400 0.25 1510 0.749 250 40 2.775 0.195 4 001 4 400 n25 1351 0 749 300 40 2.424 0.140 0.000 4 400 0.25 1200 0.749 350 40 1118 4164 4 086 4 400 0.25 1082 0.749 400 40 1.451 0.146 4 067 4 400 0.25 906 0.740 450 40 1.817 0.133 4 086 4 400 0.25 aos 0.740 500 40 1.413 0.117 4 064 4 400 0.25 775 0.749 550 40 1234 0 101 4 083 4 400 0.25 604 0.749 800 40 1.079 0.086 4 082 4 400 0.25 621 0 749 650 40 0 942 0.070 4 081 4 400 0.25 556 MP Tems CYN C1 C2 C3 C4 da JR P R4h 0.749 100 45 4.764 0.256 4 096 4 400 0 25 2106 0 749 150 45 4.162 0.242 4 004 4 400 0.25 1886 0.749 200 43 3 637 0.227 4 003 4 400 0.25 1666 O.749 250 45 3.177 0.211 4 002 4 400 0.25 1511 0 749 300 45 2.776 0.195 4 001 4 400 0.25 1352 0.740 350 45 1 425 0.100 4 000 D 400 0.25 1210 0.749 400 45 1119 0.164 4 086 4 400 0.25 1082 J 0.749 450 45 1.652 0.146 4 087 4 400 0.25 909 0.749 500 45 1 Sie 0.133 0 086 4 400 0 25 867 0 749 550 45 1 413 0.117 4 064 4 400 0.25 770 0 749 800 45 1.235 0101 4 083 4 400 0.25 694 0.749 650 45 1 079 0 066 4 062 4 400 0.25 621 MP Temp CVN C1 C2 C3 C4 da JR P R4D e 0 74*' 100 50 5 377 0.272 4 007 4 400 0.25 2329 0 749 150 50 4 008 0.256 4 005 4 400 0.25 2064 G749 200 50 4 105 0 241 4 004 4 400 0.25 1865 0 749 250 50 3 567 0.225 4 003 4 400 0.25 1869 0 749 auw 50 3.134 0.200 4 002 4 400 0.25 1493 0 749 350 50 1 738 0 194 4 000 4 400 0.25 1336 0 749 400 50 2.392 0.178 4 089 4 400 0 25 1196 0749 450 50 2.000 0.163 4 068 4 400 0.25 1070 0 749 500 50 1 826 0 147 0 067 4 400 0 25 958 0 149 550 50 1.505 0.121 4 085 4 400 0.25 857 0 749 600 50 1.394 0 116 4 064 4 400 0.25 767 0 749 650 50 1.214 0100 4 083 4 400 0.25 666 MP Temp CVN C1 C2 C3 C4 da JR P R4h 0749 100 SS 6000 0 265 4 096 4 400 0 25 2549 0 749 150 55 5.242 0.209 0 006 4 400 0.25 2281 0749 200 55 4 560 0.254 4 005 4 400 0.25 2041 0.149 250 55 4002 0.236 4 004 4 400 0.25 1826 3 0 740 300 55 3 497 0 222 4 003 4 400 0.25 1834 0 740 350 55 3.055 0.207 4 001 4 400 0.25 1483 a749 400 55 2 009 0.191 4 000 4 400 0.25 1300 0.749 450 55 1 332 0 175 4 089 4 400 0.25 1171 + 0 749 500 55 2 038 0 100 4 086 4 400 0.25 1048 0 749 550 55 1.780 0 144 4 087 4 400 0 25 934 0 149 M $5 1.555 0128 0 085 4 400 0 25 839 y es0 55 1 359 0113 4 054 4 400 0 25 751 B-
f o Table 81 (conrC)_ ' N-18 Noule Evaluation L. no Power & Ught Pre 4rrediated CVN Model .l . fhe e CPLS creen Estaaeton se =0.3 inen ) ter. Temp CYN C1 C2 C3 C4 ea JR F R4 ' (lach) In ana*2 0 74e 100 'M 3See a225 0 003 4 400 03 1752 1 0.740 150 ' 35 3117 R200 4 082 ' 4 400 0.3 1563 1 0 fee 200 35 2 724 R193 4 Dec 4 400 0.3 1394 J 0 740 250 36 2 3e0 ~ 0174 4 000 4 400 0.3 1244 E740 ' 300 35 2.070 0 162 4 000 4 400 '03 .1110 0 740 300. 35 1 417 0.148 40e7 ' 4 400 0.3 000 0.740 400 36 1 $87 0.131 4 085 0 400 0.3 883 0.740 480 36 1.387 0 115 .0 084 4 400 0.3 Fee 0.74e 000 36 1 212 0.0e0 40e3 esce 43 7tn 0.740 SSO ' 36 1Alte 0.064 4 002 0 doe R3 027 R740 800 35 Se25 0.004 0 0A0 4 400 0.3
- 900 0 740 850 36 Rees 0 062 4 070 4 40s 0.3 ese aeF 7emp CYN C1 C3 C3 C4 de JR F
A4 & 740 100 40 4.100 0.242 4 084 4 40s &S 1995 0740 190 40 3 836 E227 4 083 4 400 43 177s 0 740 300 40 3.17e 0.211 4 002 4 400 0.3 1500 0 740 ' 250 40 1 775 0 tes 4 001 4 400 0.3 1418 4 740 300 40 2.424 atto 4 008 4 40s R3 1284 R7# 300 40 1 110 0.184 4 088 4 400 0.3 1127 0.740 400 40 1 861 0 140 430e7 4 400 0.3 1000 R740 400 40 1.017 0133 4 000 4 40s 0.3 807 R74 800 40 1.413 0.117 4 004 4 400 0.3 001 6 740 900 40 1.234 R101 40e3 4 400 0.3 714 0 740 000 40 1.079 0.000 - 4 002 4 400 03 637 0.740 050 40 OW2 0.070 4 001 4 400 0.3 Sne RIF 7emp CVN C1 C2 C3 C4 es JR F R4 i a74e 100 45 4 764 0,254 4 00s 4 400 0.3 2237 A740 190 45 4 102 0.242 4 004 4 400 0.3 1995 6 749 200 45 3 037 0.227 4 003 4 400 R3 1780 O 74e 280 45 3 177 0.211 4 002 4 400 0.3 1984 j 0.749 300 45 2.774 0 105 4 001 4 400 0.3 1417 E740 300 45 1 425. 0 100 4 000 4 400 0.3 1204 E740 400 4S 2.110 0 184 4 006 4 400 0.3 1120 0.740 450 45 1.862 0 140 4 087 4 400 03 1000 = 0.740 500 45 1 018 2133 4 000 4 400 0.3 000 0.740 550 45 1 413 0117 4 084 4 400 0.3 801 0 740 000 45 1.235 0 101 0 043 4 400 0.3 714 0.74e 060 45 1 070 0 0e8 4 002 0 400 0.3 637 nsF 7emp CVN C1 C2 C3 C4 de JR F R4 0 740 100 SO S.377 ' 0 272 4 097 4 400 0.3 2474 a740 1SO 90 4 ese 0 254 4 005 4 400 0.3 2211 j 0.740 200 50 4105 0 241 4 004 44P9 Q3 1872 0.749 250 50 3 S47 0 22$ 4 083 4 400 0.3 1750 0 749 300 00 3 134 ' O 200 4 De2 4 400 a3 1570 0 749 380 50 1 734 0 104 4 080 4 40s 0.3 1400 074e 400 90 2 302 017e 4 000 4 400 0.3 1240 l 0 740 450 SO 2 Geo 0 its 4 One 4 400 0.3 1115 0.740 500 SO 1 826 0 147 4 007 4 400 0.3 004 0.740 680 50 1.50S 0 131 4 085 4 400 0.3 es? O 740 000 SD 1.384 0 tie 4 044 4 400 0.3 702 0 749 050 $0 1.210 0 100 4 003 4 400 E3 700 j i asF 7emp CVN C1 C2 C3 C4 as JR ) F R4 0 740 100 SS 8000 0 285 4 000 4 40s 0.3 271e 0 749 150 SS $242 0 2es 4 Dee 4 400 0.3 2425 0.74e 200 65 4 Sec 0 254 4 005 4 400 03 2144 1 0 740 250 SS 4 002 0 23e 4 044 4 400 0.3 1830 E740 300 .M 3 487 0222 4 003 4 400 03 1722 0 740 300 SS 3 065' O 207 4 001 4 400 0.3 1838 0.748 400 SS 2 0e8 Stel 4 000 4 40s 0.3 1371 Afee 450 M 2.332 0 175 4 000 4 40s 0.3 1223 R740 500 M 2 030 0.180 4 000 4 400 0.3 1001 0 748 M0 M 1.7eo 0 144 4 087-4 400 03 073 0 fee 800 SS 1.396 012e 4 005 4 400 03 ese 0 740 850 'M 1 358 0113 4 084 4 40s O3 775 i h
V 'qf ] Tatde B-1 (cont'C) 4; i N-16 Nozzle Evaluation Caronna Power & Light . Pre + radiated CVN Model Rie= CPL 5 Crest Estenelse da =0.36 inch MP Temp. CYN C1 C2 C3 C4 de JR P R4 (Inch) 'inalm*2 0 749 100 SS 3 508 0.225 4 003 4400 0.35 1830 0 740 150 35 3 117 0.300 4 002 4 400 0.35 1620 0 740 200 ' 35 2.724. 0.103 4 000 4 400 0.35 1450 0.740 250 35 2.380 0 178 40e9 4 400 0.36 1200 0 749 - 300 36 1 079 Rie2 4 008 4 400 0.36 1146 0 740 350 35 1.817 R140 40e7 4 400 0.35 1021 0 740 400 35 1.987 R131 4 006 4 400 0.35 000 0 746 450 36 1.307 0.115 4 064 4 400 - 0.36 000 G740 800 36 1.212 0.000 40e3 4 400 4 36 ' 720 0.740 500 36 1.000 0.004 ' 4 082 4 400 0.36 Set 0.740 000 36 0 025 0.Det 40eo 4 400 0.36 570 l 6 740 000 36 0.000 0.062 4 079 4 400 0.35 507 MP Temp CVN C1 C2 C3 C4 de JR P R4 = 0 740 100 40 4.100 n242 4 014 4 400 0.36 20eo 0 740 150 40 3.030 0.227 4 083 4 400 0.35 1880 0 740 200 40 3 170 0.211 4 082 4 408 0.35 1955 R740 250 40 1770 0 105 4 001 4 400 0.36 1473 0 740 300 40 1 424 nie0 40se 4 400 0.35 1311 0 740 360 40 1110 0.104 4 000 4 400 0.36 1106 0.740 400 40 1.861 Ride 4 087 4 400 0.35 103e 0 740 400 40 1.017 0.133 40e0 4 400 0.36 024 0.740 800 40 1.413 0.117 4 064 4 400 0.35 822 0 740 sao 40 1.234 0 101 4 083 4 400 0.36 732 0 740 000 40 1.070 0.000 40e2 4 400 E35 est 0.740 850 40 0 042 0.070 4 001 4 400 E35 579 MP 7emp CYN C1 C2 C3 C4 de JR l P R4 1 0.740 100 45 4.764 ' a250 dose 4 400 Da5 2350 0.740 150 45 4 142 0242 4 004 4 400 R35 2001 i O.740 300 45 3 037 0.227 4 003 4 400 0.35 test 0 740 250 45 - 3 177 0.211 4 092 4 400 0.35 1956 0.740 300 45 2.770 Q195 4 001 4 400 0.35 1874 0.740 350 45 2.425 R100 4 000 4 400 0.35 1311 ] 0.740 400 45 2.110 0.164 4 004 4 400 0.35 1167 B-E740 450 45 1.062 0.140 4 087 4 400 0.35 1036 E740 500 45 1.018 h133 4 000 4 400 0 36 924 1 0.740 550 45 1.413 0.117 4 064 4 400 4 35 422 l 0.749 000 45 1.235 0.101 4 083 4 400 0 35 732 j 0.740 650 45 1.079 0 Dee 4 082 4 400 0.35 651 MP Temp CVN C1 C2 C3 C4 da JR P Re e 0749 100 50 5377 0.272 4 007 4 400 0.35 2000 0.749 150 50 4 See O256 4 005 0 400 0 35 2322 0 749 200 50 4.105 0.241 0 004 4 400 0.35 2006 0.749 250 50 3 587 0.225 40e3 4 409 0.35 1830 0 749 300 50 3 134 0 200 4 002 4 400 0.35 1636 0749 360 50 1 736 0 104 40A0 4 400 0.35 1456 I O 749 400 50 1 302 0 176 4 000 4 400 0.35 1296 0749 450 50 2 000 0 163 0 Dee 4 400 0.35 1153 0 749 500 50 1 e26 0.147 0 087 4 400 0.35 1026 j 0 740 550 SO 1 505 0131 4 085 4 400 0.35 913 0749 000 50 1.304 0.110 ' 4 064 4 400 0 35 013 i 0 740 950 50 1 214 0100 4 003 4 400 0.35 723 MF Temp CVN C1 C2 C3 C4 da JR P R4 ) aree 100 55 s 000 02e5 aces 0400 0 35 asse j 0 740 150 55 5.242 a2e9 4 Des 4 40s a35 2552 0 740 200 55 4.500 E254 ' 4 085 4 400 R35 2271 0 740 250 55 4002 0 238 4 004 4 400 0.35 2021 0 740 300 55 3 497 4222 4 003 4 400 0.35 1790 0 740 350-56. 3 055 0.307 0 001 4 400 0.35 1801 0 740 400 SS 2.000 0 191 4 000 4 400 0.35 im34 0 749 450 55 2.332 G175 4 000 4 400 ' E35 1288 ') 0 740 500 55 2 036 0 100 40e9 4 400 0.35 1128 i 0749 550 55 1.700 0.144 4 087 4 400 0 35 1004 1 0 749 000 SS 1 555 0 120 4 085 4 400 0.35 003 0 749 e50 55 1 350 0 113 4 064 4 400 0 35 795
T;ble M (conrQ j tI N-16 Noule Evaluation. Caroone Power & Ught Pre 4rradiated CVN Model i me a CPL 5 Creca Estenssen ca.O.4 inen MF 7emp CVN Cl C2 C3 C4 ' pnch) Inann*2 e4 JR ) F-84 0 74e. 100' - 35 3 500 0 225 40e3 4 400 04 1000 j 0 740 150 35 - 3.117 0 200 40e2 4 40s. 04 1000 O 740 200 35 2 724 0 103 4 Deo 4 400 04 1400 0.74e 250 35 2.380 0 170 0 000. 4 400 14 1331 0.74e 300 35 1 070 0 182 0 0e8 0 400 04 1101 0 74e 350 35 1.017 014e 4 007 4 400 R4 1040 0.740 400 35 1.5e7 0 131 4 085 4 408 0.4 031 074e 490 35 1.307 0 115 4 004 4 400 04 e27 0.740 SCO 35 1.212 0 000 4 003 4 400 04 734 E740 500 35 -. 1.050 0 004 4 002 4 400 E4 e52 i R740 000 35 0 025 0 000 4 000 4 400 04' 579' j 0.74e 050 35 0.000 0.062 4 070 4 400 04 514 asF 7emp CVN C1 ' C2 C3 C4 . e4 JR F ne 0 fee 100 40 4 100 0.242 4 004 4 400 0.4 2170 R740 150 40 3 e35 0227-4 003 4 400 0.4 te32 0 744 200 40 3.17e 0.211 4 032 4 400 04 1715 0.74e 250 40 2 775. 0 195 4 001 4 400 04 1523 0.740 300 40 2 424 0.100 40W 4 400 ne 1352 R740 350 40 lite R1e4 4 000 4 400 0.4 1201 E740 400 40 1.451 014e 4 087 4 400 0.4 1000 0.740 450 40 1.017 0.133 4 000 4 400 0.4 047 0.74e 500 40 1 413 0 117 4 004 4 400 04 edi E740 550 40 1.234 0 101 4 003 4 400 R4 747 1 0 740 e00 40 1.070 0.0ee 40e2 4 40s a4 es3 J 0 fee 850 40 0 042 0 070 4 001 4 400 0.4 See s MP 7emp CVN C1 C2 C3 C4 se JR .F R4 0,740 100 45 4 7e4 0 250 4 000 4 400 04 2451 6 740 150 45 4 142 0.242 4 004 4 400 04 217e 0.740 200 45 3 e37 0227 0 003 4 400 0.4 1933 0.740 250 45 - 3 177 0 211 4 032 4 400 E4 171e 074e 300 45 2.770 0 105 4 001 4 400 04 1524 0 740 350 - 45 2 425 0 100 0 000 0 400 04 1353 0.74e 400 45 2.110 0.ted 4 004 4 400 0.4 1201 i 0 740 450 45 1.052 0.140 4 007 4 400 04 1007 0 74e 500 45 1.010 0133 40e8 4 400 04 947 O 7de 550 45 1 413 0 117 4 004 4 400 04 e41 0 740 000 45 1.235 ' Q 10t 4 0e3 4 400 04 747 i 0.740 e50 45 1.070 0 000 0 002 4 40s 04 003 I MF 7emp CVN Cl C2 C3 C4 44 JR F R4 0 740 100 50 5 377 0272 4 007 4 400 04 2727 0.740 150 50 4 000 0 250 4 005 4 400 04 2421 0 7de 200 50 4 105 0 241 4 004 4 400 04 2150 0 740 250 50 3 507 0 225 0 003 4 400 04 1000 0 740 300 30 3 134 0 20e 40e2 4 400 04 1885 0 740 350 50 2 730 0.184 4 000 0 400 04 1505 07de 400 50 0 302 0 170 4 000 4 400 0.4 1337 0.74e 450 50 2 000 0 103 4 000 4 40s 04 1187 0 740 500 50 1 026 0 147 0 007 4 400 0.4 1054 0.740 550 50 1.505 0 131 4 005 4 400 04 030 0 74e 800 50 1 304 0 110 4 054 4 40s 04 e31 0 74e 050 50 1 210 0 100 4 003 4 400 04 73e MF 7emp CW C1 C2 C3 C4 sa JR F R4 0 7de 100 55 0000 0 285 4 000 4 400 04 3003 0 fee 150 55 5242 0 200 4 080 4 40s 04 2007 0 740 2(m SS 4 580 0254 .4 095 4 400 04 2300 0.74e 250 55 4 002 0.230 4 004 4 400 04 21El. 0.74e 300 51 3 407 0222 4 003 4 400 04 1807 1 0 74e 350 55 3 055 0207 4 001 4 400 na teSe 074e 400 55 2 00s 0 181 4 080 0 400 04 1472 0.740 450 55 2.332 0.175 4 000 4 400 04 1307 O f te 500 55 2 030 01eo 00e4 4 400 04 1101 0 74e 550 55 1.700 0 144 4 007 4 400 04 1031 0 740 000 55 1555 0 120 4 085 4 400 04 015 0 740 050 SS 1 350 0113 4 004 4 400 04 013 gAo e w
Altrrn Ccrporation Technicrl Report No. %124-TR-01 Revision 0 ) 1 i 1 Appendix C VESSEL Program Input and Output. NOTE: . The information presented in this Appendix is for information only. As such, no conclusions are drawn from this Appendix. The computer program presented in this Appendix is D91 a verified program per Altran's Quality Assurance, requirements. I l u w 1 I e e i i 1 i k 96124.2 am C-1 t--
~ ' , ;;4[. 95 3: 3;
- t..
~ .) l l j .n.-. n b 4 6 ,i, CCCCCCCCCCCCCCCCCCCCCCCCCCCCC C C C C C VESSEL .C' C VERSION 6.0 C. C AUGUST, 1993 C C C C C CCCCCCCCCCCCCCCCCCCCCCCCCCCCC .~ l ) LONGITUDINAL FLAW DATA j N-16 NOZZLES USE EVALUATION - BRUNSWICK UNIT 1 i 1 i i i j i i .) \\ tt m m m er
r y
- ECHO OF: INPUT DATA ******
VESSEL DIMENSIONS
- f*********************
l VESSEL. OUTER RADIUS = 116.0 IN. j VESSEL THICKNESS = 5.5. IN. ~^ 1 i COOLDOWN RATE I I COOLDOWN RATE = 100.0 F/HR 3: VESSEL MATERIAL PROPERTIES l l =2.. I j I j C-t, I a
l s. j i ELASTIC MODULUS = 25500500. PSI FLOW STRESS = 62100. PSI' ) \\ k~ -] -J VS TRACK EXTENSION d I
- +*******************+****.
1 i 1 1 t (: i DELTA A J-ACTUAL (INCHES). (IN-LB/SQ IN) .0200 382.00 4 .0500 468.'00 l .1000 531.00 -~ .j .1500 567.00' .2000 593.00 .2500 612.00 .3000 628.00 .3500 642.00 l- .4000 653.00 i i l I i l l 1 C-3 I
.e i o V - 1 iCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C.- C 'C -C' C ~RESULTS OF-PROGRAM' VESSEL C-C C C' C CCCCCCCCCCCCCCCCCCCCC'.uCCCCCCCCCCCCCCCCCC J 1 1 \\ 1 l J-R AND J/T MATERIAL CURVES J=' '573.4 + 226.6*(DA) + ( -2.156)*(. 0 8 5 + DA) * * ( - 2 ) T-MATL J-MATL DELTA A (IN-LB/SQ IN) (INCHES) j e C-f 1 + i
1 1 i 1.506 912.5 1.500 1.506 901.1 1.450 1.507 889.7 1.400 1.508 878.3 1.350 1 1.509 866.9 1.300 1.511 855.4 1.250 1.512 844.0 1.200 1.514 832.6 1.150 1.516 821.1 1.100 1.518 809.7 1.050 1.521 798.2 1.000 1.524 786.7 .950 1.528 775.1 .900 1.533 763.5 .850 1.540 751.9 .800 1.548 740.3 .750 1.558 72 8.5 .700 1.570 716.7 .650 1.587 704.8 .600 1.610 692.7 .550 1.641 680.4 .500 '1.685 667.8 .450 1.7.49 654.9 .400 1.845 641.3 .350 1.998 626.8 .300 2.257 610.8 .250 2.730 592.1 .200 3.696 568.3 .150 i 6.002 533.0 .100 ] 13.088 466,.4 .050 16.099 444.4 .040 20.248 417.1 .030 26.131 382.3 .020 34.758 336.7 .010
} . J/T APPLIED CURVE .T-APPL' J-APPL-(IN-LB/SQ-IN) 2.402 605.6- -2.331 587.7 2.260 569.9 2.190 552.1 .2.119 534.3 2.048 516.5 1.978 ,498.7 1.907 480.9' -1.836 463.1 1.766 445.3 l'.695 427.4 , 1.625 409.6 1.554 391.8 1.483 374'.0 1.413 356.2 1.342 338.4 1.271-320.6 1.201 302.8' 1.130 285.0 j-1.059 R67.2 .989 249.3 .918 231.5 .848 213.7 .777 195.9 .706 17e .636 16 0.., .565-142.5 .494 124.7 .424 106.9 l ~ 6 F
ll .353 '89.1 .283 71.2 .212 53.4- .141. 35.6 .'O71~ 17.8 .000- .0-t f -DETERMINATION OF INSTABILITY PRESSURE i A EFF PL P-I PI/PL J-I (INCH) (PSI) (PSI) (IN-LB/SQ IN) 1.837 2981. 2266. .76 606. i ), l a i : s i f I DETERMINATION OF PRESSURE vs.
- i b
.. =. .. ~... 1 i e-4. 4 CRACK EXTENSION 1 4 i -f s da PRESSURE ~ l(INCH) (PSI) .229 2266. .200 2246. ? i .150 2248. .100 2228; t .050 2140. .040 2102. .030 2050. .020 1976. .010 1868. l i l s. 1 i q n ? 1.. 3 1 1 4' L ( i t Pl. ame..
a-1
- PRESSURE, J-MATL, T-MATL, da, J-APPL, T-APPL, (PSI),
(IN-LB/SQ IN), (INCH), (IN-LB/SQ IN), 2266. 606. 2.402 .229 606. 2.402 2246. 592. 2.730 .200 125. .494 ,. 107. .424 2248. 568. 3.696 .150 2228. 533. 6.002 .100 89. .353 2140. 466. ,13.088 .050 71. .283 2102. 444. ,16.099 .040 53. .212 2050. 417. ,20.248 g, .030 36. .141 1976. 382. ,26.131 .020 18. .071 1868. 337. ,34.758 .010 O. .000
- PRESSURE, J-MATL, T-MATL, da, J-APPL, T-APPL, (PST),
(IN-LB/SQ IN), (INCH), (IN-LB/SQ IN), 2266. 606. 2.402 .229 606. 2.402 7 2246. 592. 2.730 .200 125. .494 2248. 568. 3.696 .150 107. .424 2228. 533. 6.002 p, .100 89. .353 2140. 466. ,13.088 .050 71. .283 2102. 444. ,16.099 .040 53. .212 2050. 417. ,20.248 .030 36. .141 1976. 382. ,26.131 .020 18. .071 1868. 337. ,34.758 .010 O. .000 i l' i I .j
gi n ENCLOSURE 3 BRUNSWICK STEAM ELECTRIC PLANT, UNIT NOS.1 AND 2 DOCKET NOS. 50-325 AND 50-324/ LICENSE NOS. DPR-71 AND DPR-62 SUPPLEMENTAL INFORMATION FOR GENERIC LElTER 92 01 REACTOR VESSEL STRUCTURAL INTEGRITY ' LIST OF REGULATORY COMMITMENTS The following table identifies those actions committed to by Carolina Power & Light Company in this document. Any other actions discussed in the submittal represent intended or planned actions by Carolina Power & Light Company. They are described to t the NRC for the NRC's information and are not regulatory commitments. Please notify the LManager-Regulatory Affairs at the Brunswick Nuclear Plant of any questions regarding this . document or any associated regulatory commitments. i Commitment Comrnitted date or outage None 4 E3-1 .}}