ML20094M261

From kanterella
Jump to navigation Jump to search

Fatigue Usage to Date for RPV Components BSEP Unit 1 & Unit 2
ML20094M261
Person / Time
Site: Brunswick  Duke Energy icon.png
Issue date: 04/16/1993
From: Bax R, Deardorff A
STRUCTURAL INTEGRITY ASSOCIATES, INC.
To:
Shared Package
ML20094M258 List:
References
SIR-93-037, SIR-93-037-R00, SIR-93-37, SIR-93-37-R, NUDOCS 9511210353
Download: ML20094M261 (46)


Text

{{#Wiki_filter:_ _ . . _ _ . _ . __ __ ._. 4 l Report No.: SIR-93-037 l Revision No.: 0 l Project No.: CPL-270 l April 1993 i l l i l FATIGUE USAGE TO DATE FOR REACTOR PRESSURE VESSEL COMPONENTS BRUNSWICK STEAM ELECTRIC PLANT UNIT 1 AND UNIT 2 Prepared for: Carolina Power & Light Co. Contract XT2000019 I Prepared by: Structural Integrity Associates, Inc. > San Jose, CA Approved Date: b[k3 A. F. Deardorff (( Reviewed by: d Date: Y[N /[3

                              ' R. L Bax EBA12;gggggg;;;g                                               @ suyaur, uni,,ruy Associates, inc.

P PDR

9 TABLE OF CONTENTS Section g

1.0 INTRODUCTION

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         1

2.0 DESCRIPTION

OF FatiguePro CEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 I 3.0 PLANT DATA EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4.0 RESULTS OF EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5.0 DISCUSSI ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6.0 REFERENCES

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        18 Appendix A - Brunswick Unit 1 - Accumulated Cycle History Appendix B - Brunswick Unit 2 - Accumulated Cycle History i

SIR-93-037, Rev. O i f StructuralIntegrityAssociates,Inc.

LIST OF TABLES U EABC. 3-1 Definition of Plant Transients and Assumed Design Values . . . . . . . . . . . . . . . 7 3-2 Definition of Plant Transients and Assumed Design Values . . . . . . . . . . . . . . . 8 4-1 Results from Unit 1 Fatigue Usage Resulting From FatiguePro CEM System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4-2 Results from Unit 2 Fatigue Usage Resulting From FatiguePro CEM System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '10 4-3 Comparison of Unit 1 GE Reported Usage to FatiguePro CEM System (at Trw = 100* F) . . . . . . . . . . . . . . . . . . . . . . . . . 11 4 Projecting Usage for 40 Years . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11- , j 1 I l i 4 1 i i l SIR-93-037, Rev. O ii f StructuralIntegdty Associates, Inc. 4

LIST OF FIGURES Figure g 2-1 Schematic of FatiguePro Monitoring Methodology . . . . . . . . . . . . . . . . . . . . . 4 4-1 Reactor Vessel Studs Fatigue Usage to Date . . . . . . . . . . . . . . . . . . . . . . . . 12 4-2 Refueling Bellows Fatigue Usage to Date . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4-3 Core Spray Nozzle Fatigue Usage to Date . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4-4 Feedwater Nozzle Fatigue Usage to Date . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 i 4-5 Recirculation Inlet Nozzle Fatigue Usage to Date . . . . . . . . . . . . . . . . . . . . . 16 , I

      +o i

SIR-93-037, Rev. O iii f StructuralIntegdtyAssociates,Inc.

( - i

1.0 INTRODUCTION

l 1 .;

. The design of the reactor pressure vessels (RPVs) at Brunswick Units 1 and 2 was performed in accordance with ASME Boiler and Pressure Vessel Code Class 1 requirements.  !

As part of the design evaluation, analysis was performed to show acceptability for cyclic

       ,          ' operation. The analysis was based on the projected number of transient cycles over the life          ;

of the plant. Any subcomponent of the reactor vessels was acceptable if a fatigue usage ' 1 l factor less than unity was computed. A number of the significant design transients cycles j were then reflected in the Plant Technical Specifications to assure that the plant was not operated beyond the number of cycles considered in the design. Exceeding the cyclic limits established in the Technical Specifications does not necessarily i mean that the reactor vessel is approaching its design life. First, there are many conservatisms in design analysis; the designer is only required to show that the fatigue usage factor is less than unity. Second, even though an identified cycle type is listed in the Technical Specifications, it does not mean that cycle type contributes significantly to fatigue usage. Finally, the actual plant operating cycles are generally less severe than those considered in the design analysis. To address the issue of design versus actual cycles, a fatigue usage update was performed for both units by the General Electric Company in 1983 [1]2 In this evaluation, it was

         ._          identified that the controlling locations that needed to be tracked were the RPV studs, refueling bellows, core spray nozzle, feedwater nozzle, and recirculation inlet nozzle. Fatigue usage was predicted up to the end of 1981, and a projection of cycles to the end of a 40 year life was made. The computed usage factors were projected to be less than unity to end of plant life. There was no assessment made for the Unit 2 feedwater nozzles since there were plans underway to replace the safe-ends for the Unit 2 nozzles.

2 Numbers in brackets are for references defined in Section 6. SIR-93-037, Rev. 0 1 h StructuralIntegdtyAssociates,Inc. i 1 I m_ - _ _

1

                                                                                                       ---l

. l l i In 1991, the General Electric Company provided further evaluations to show that feedwater l inlet sparger seal bypass leakage and cracking in the feedwater bore / blend radius regions 4 could be tolerated [2,3]. Fracture mechanic $ flaw growth evaluations were conducted to j show that flaws would not propagate significantly into the nozzle bore and blend radius regions. This analysis provided an alternate evaluation approach, as compared to calculating usage factors, as a basis for assessing fatigue resistance for the feedwater nozzle bore and blend radius areas. This analysis provided a basis for continued operation, even if it was assumed that cracking had initiated. In 1991, SI started a project to implement fatigue monitoring at Brunswick using FatiguePro, a software package developed for the Electric Power Research Institute [4]. A special. version of the software was developed (FatiguePro CEM) that would accept a log of cyclic operations (with operating parameters) as an input file [5]. The software was configured for the RPV studs and refueling bellows. The plant cyclic data were transmitted that characterized plant operations from 1982 through 1988 [6]. During the current project, the FatiguePro CEM software was expanded to include recirculation inlet nozzles, core spray nozzles and feedwater nozzles [7]. A record of the complete cyclic operations to date was provided so that operations-to-date usage factors could be determined by SI [8,9]. This report documents the use of FatiguePro CEM to evaluate the fatigue usage to date at the previously described locations. The results are then used to predict usage for a 40 year _ operating life. SIR-93-037, Rev. 0 2 h StructuralIntegdtyAssociates,Inc.

t

2.0 DESCRIPTION

OF FatiguePro CEM FatiguePro CEM is a computer program that is used to compute the accumulated fatigue usage at a location based upon 1) accumulated number of cycles for various transients and )

2) the severity of the transients as quantified by pressure, temperature, etc. By logically l J

interpreting the accumulated cyclic history, a stress time history at the monitored location is derived. After the stress time history is computed, the stress ume history is evaluated using the ordered overall range (GOR) cycle counting procedure to arrive at a stress range spectrum (4]. This spectrum is evaluated using the methodology from the ASME Boiler and 1 Pressure Vessel Code for Class 1 Components. l The overall methodology of.FatiguePro is shown in Figure 2-1. The approach for FatiguePm CEM is essentially that developed for FatiguePm (4), except the stress time l history is developed from information in the component stress reports instead of based upon Green's Functions and Transfer Functions. With FatiguePro CEM, the results included in the design stress reports can be duplicated if the transients are assumed to be at the magnitudes and rates as analyzed in the stress reports. The additional feature that is incorporated into FatiguePro CEM is to ratio the design stress report transients based upon the plant parameters observed during actual plant operations. For example,if the thermal stress is proportional to the rate of heatup, then the thermal stress can be modified based upon the actual heatup rate. The methodology implemented in FatiguePro CEM is fully described in the user's manual [7]. The program has been verified in accordance with SI's program for Quality Software. A Verification and Validation (V&V) Report, with appropriate objective evidence of V&V activities, has been provided to CP&L [10]. SIR-93-037, Rev. 0 3 h StructuralIntegt!!yAssociates,Inc.

i Plant

      $   instrumentation W         data b

6 P(t) x Cycles E Q e time (t) Stress versus Fa ue usa 0e time actM

              ,
  • Stress ran0e S(t) time Transfer . . OOR .; Useos -
                                                                                                                                            /
                          ,i Functions Analysis                    

Analysis - V(t) _

                                                                                                                                   ,g {} ,,' ,,

Mme stress u time F(t) ASME Code S-N Curve time t:: E Q 3 emw Figure 2-1. Schematic of FatiguePro Monitoring Methodology [4] f w 8 B n

e .

I f , 3.0 PLANT DATA EVALUATION Historical plant operating transients have been determined from the original GE evaluation i [1] and from subsequent data provided by CP&L [6,8,9]. In general, this data is not completely sufficient to utilize the full capabilities of FatiguePro CEM. However, it has been conservatively evaluated so that results of the current analysis will provide a bounding estimate of the usage to date. Table 3-1 lists the transients that must be counted and considered for the FatiguePro CEM evaluation. For each transient type, parameters are defined that affect the stress magnitude

            . occurring at each monitored location. To perform an analysis, cyclic operating history must be evaluated to determine the sequence of events that. have occurred, along with an appropriate set of parameters. The determined histories are included for Units 1 and 2 in Appendices A and B respectively.

The detailed evaluations of the input data are provided as calculations separate from this document (11,12]. The following lists some key assumptions that were made in deriving the transient history files:

1. An ASME Hydrotest cycle was included prior to the initial fuel load.
2. Normal operating pressure was taken as 1005 psig.
3. The normal minimum feedwater temperature was taken as 90*F as an average. This was the number assumed in the original vessel stress report.
4. The maximum heatup and cooldown rates of 100*F/hr were used if no other data were available.

SIR-93-037, Rev. 0 5 f StructuralIntegdty Associates, Inc.

i

5. Normal operating feedwater temperature was assumed to be 420' during normal operation and 265* at the time of shutoff. Feedwater temperature f
                     'during hot standby and shutdown cycling was taken as 90*F as an average.                   I i
6. Five hot standby feedwater injections were assumed during each shutdown as long as a turbine roll had occurred. This number is based upon that used in '

l the design analysis. I

7. Heatup and cooldown rates were evaluated based on the maximum ~  !

temperature change of the recirculation system in any hour. (In a few cases, the saturation temperature at reactor pressure was used when it appeared that recorded recirculation temperature rates of change were not realistic.)  ! l I i f . 4 l SIR-93-037, Rev. 0 6 h StructuralIntegdtyAssociates,Inc.

  • i I

Table 3-1 - Definition of Plant Transients and Assumed Design Values i TRANSIENT DESCRIPTIONS CHARACTERISTIC - . NAME PARAMETERS l ASMEHYDRO Initial Hydrotest of - None  ! Reactor Vessel l BOLTUP Boltup of Reactor Vessel None Head i UNBOLT Removal of Reactor None . Vessel Head HYDROTEST Vessel Hydrotest prior to Pres (max), Temp (max)  ! Heatup HEATUP Heatup of Vessel Prior to Pres (max), HeatUpRate(max) Turbine Roll . TURBROLL Initiation of Flow to Press (max), TFw(min), TFw(ss) Feedwater Nozzles ' TURBTRIP Turbine Trip and Recovery Press (max), TFw(min), TFw(ss) , TTBYPASS Turbine Trip with Bypass Press (max), TFw(min), TFw(u) FHLOSS Feedwater Heater less Press (max), TFw(loss), TFw(ss) FWLOSS Loss of All Feedwater and Press (max), TFw(min), Isolation TFw(ss), Nhpci_inj, Nrcic_inj HOTSBY Hot Standby Prior to Press (@ Time of Hotsby), Shutdown TFw(off), TFw(min), N_inj (fw or reic) COOLDOWN Cooldown of Vessel Press (min), CooldownRate(max), TFw(min) , REFUEL Refueling Operation N_ level _ changes Note: . The 'above transients are defined o'n GE Drawing 729E762, Rev. O and - Table'3-2 of this document-SIR-93-037, Rev. 0 7 h StructuralIntegrityAssociates,Inc.

Table 3-2 Definition of Plant Transients and Assumed Design Values Values Used for Transient Evaluation (if no data available) Pres (max) = 1005 psi Maximum pressure during cycle (or 1025 for hydrotest) TFw(min) = 90*F Minimum feedwater temperature during event N_inj = 5 Number of FW nozzle injections after hot standby initiated Nrcic_inj = 3 Number of RCIC injections during loss of

                                                    ' feedwater event Nhpci_inj = 3                                     Number of HPCI injections during loss of feedwater event HeatupRate(max) = 100*F/hr                        Rate of heatup TFw(ss) = 420*F                                   Feedwater temperature during normal operation TFw(loss) = 265'F                                 Feedwater temperature during loss of feedwater heater TFw(off) = 265'F                                  Feedwater temperature at time of hot standby initiation Temp (max) = 200*F                                Feedwater temperature during hydrotest Cooldownrate(max) = 100*F/hr                      Vessel cooldown rate Press (min) = 0 psi                               Minimum pressure reached during a cooldown N_ level _ changes = 3                            Number of times that fuel poollevelis raised and lowered while vessel head is removed SIR-93-037, Rev. 0                              8 h StructuralIntegdtyAssociates,Inc.
        .e.~.     ..       .

J.~ i j 4.0 RESULTS OF EVALUATION t l The history of the cyclic operations at both units was evaluated [11]. Figures 4-1 to 4-5 show  ! the results of analyzing the data with FatiguePro CEM. The maximum current usage factor  ! l is 0.28 for the refueling bellows at Unit 2. All usage trends generally exhibit a trend of- f decreasing slope, indicating that the relatively larger rate of transient usage experienced early j x

in plant life is decreasing. The results for each of the operating periods evaluated, and the ,

total usage at each of the locations are shown in Table 4-1 and 4-2. ] In one case (for the Core Spray Nozzle) there is a large jump in usage as shown in Figure j 4-3. This is not considered to be realistic, but results because of the conservative way in l l which the stress analysis data were interpreted. The single jump occurred for a transient in , 2  ! , which a rate of temperature decrease below 100*F/Hr could not be justified. The overall

usage accumulation rate at this location is very low otherwise.  !

i The data has been compared to the results presented by GE for Unit 1 [1]. Since GE 4 evaluated the data for a Feedwater temperature of 100*F, the analysis was re-run using i

FatiguePro CEM for the period evaluated by GE using this temperature. Results are shown l in Table 4-3. The results are very comparable for the RPV Stud, Refueling Bellows and l

l Feedwater nozzle locations. For the other locations, review of the GE report shows that GE I did no detailed analysis, but only ratioed the results from the stress report. For the i _ FatiguePro CEM evaluation, further analysis was conducted to develop reduced stress f ratios. In fact, for the Recirculation Inlet nozzle, the more recent analysis performed by SI j for the safe-end replacement was used as the basis [14]. Some relatively simplistic evaluation has been conducted to determine the 40 year usage . based on the results determined to date [15]. These are shown in Table 4-4, and were determined by conservatively projecting the usage accumulation from Figures 4-1 to 4-5. Usage is not projected to approach the limit of 1.0 for any location. s 1 SIR-93-037, Rev. 0 9 h StructuralIntegrityAssociates,Inc.

Table 4-1 Results from Unit 1 Fatigue Usage Resulting From FatiguePro CEM System Operating Time Reactor Refueling Recire. Core FW Stud Bellows Nozzle Spray Nozzle Nozzle 9/3/75 - 12/4/81 0.07257 0.1041 0.00006918 0.007871 0.1277 12/5/81 - 4/9/89 0.07550 0.09539 0.00005277 0.006535 0.07316 4/10/89 - 4/21/92 0.02265 0.03671 0.00001671 0.002008 0.02195

          ---                                                                        -mummmmmmmmme 9/3/75 - 4/21/92            0.1688        0.2325         0.0001452          0.01567         0.2228 Table 4-2 Results from Unit 2 Fatigue Usage Resulting From FatiguePro CEM System Operating Time              Reactor      Refueling        Recire.             Core               FW Stud           Bellows       Nozzle              Spray           Nozzle Nozzle 3/22/75 - 12/20/81          0.07798       0.1110         0.0001025           0.01173        0.04095 12/21/81 - 11/16/88         0.08620       0.011453       0.00006075          0.007899       0.01958 11/17/88 - 4/21/92          0.02634       0.03406        0.00001865          0.02623        0.004366
          -mummmmmmmmemammmmmmmmmme                                                    m u mmm mm m mmme-
   ~

3/22/75 - 4/21/92 0.1868 0.2852 0.0001813 0.04628 0.06378 SIR-93-037, Rev. 0 10 f StructuralIntegdtyAssociates,Inc.

e Table 4-3 1 i Comparison of Unit 1 GE Reported Usage to FatiguePro CEM System (at T,w = 100*F) Operating Time Reactor Refueling . Recire. Core FW Stud Bellows Nozzle Spray Nozzle Nozzle FatiguePro 9/3/75 - 12/4/81 0.07258 0.1025 0.0000665 CEM 0.007871 0.01140 GE Through Dec'81 0.07500  : 0.1115 0.02500 0.08600 Report 0.09000 Table 4-4 Projecting Usage for 40 Years Reactor Refueling Recire. Core Stud FW Nozzle Spray Nozzle Bellows Nozzle Unit 1 0.36 0.53 0.00035 0.037 0.53 Unit 2 0.41 0.68 0.00043 0.12 0.21 l 1 SIR-93-037, Rev. 0 11 { StructuralIntegdty Associates, Inc.

Fatigue Usage (RPV Studs)' '!

                                                                  .. .ww. 0. . :-. 4, ev w 0.1e                                                                                                          ,

0.11 -

0. 9e -

0 15 - 0.14 - 0.13 . l 0.13 - 5 O 11 D1 - 0 Os = [ _I O Oe -

                       ,5       0 07   -

0 Os - - 0 05 - 0.04 - 0 03 - 3 0 02 - 0 05 - l 75 l m 7'? I 7e e0l e1 eal e3 el SS esl e7 ul es ui e1 l e3 se sa v-. l

a. Unit 1 i I

i , t l Fat igue Usage (RPV Studs) i

                                                                  ~. .e-. 0...   . .n u o
0., i L e. ,. -

i l 0 se - l 0.17 - 0.se - 0.19 - l 0.94 - 0 13 - e

                        &        0.13    -

j 0 11 0., 0 De - l 0 De - t 0 07 - '

      ..                         0. 0a   -

0 05 - i 0 04 - e 03 - 0 03 - i 0 01 - 0 74 7e ve so na se es se en sa se t i l i

b. Unit 2
                                                                                                                                              ~

Figure 4-1. Reactor Vessel Studs Fatigue Usage to Date SIR-93-037, Rev. O . 12 f StructuralIntegdtyAssociates,Inc. 1

i 6 Fatigue Usage CAefueIing BeiIows) j

                                                                  ..i i      ar. o.s. i,- . .,3v u o.n o.a.     -

o.23 - 1 o3 - o se -

                                . o . *a    -                                                                                                                 i o . ..    -

[ o is - j ni - 7 o ne - o ss -

                                  ***        ~

{ o os - r

                                                                                                                                                              )
e. esesI or isese Isos~1 na l es vs j 77 i 7s I si } es i k 7 7e so na v r.  ;

i

a. Unit 1 i Fat i gue Usage C Aef ue l i ng Be l l ows)
                                                                      ..        . o.. . . . ., .4, o I

o.: i oN = o.= - 1

0. a. -

o as o.# - o.,. - l 1 o ,. - g o ,. - o.12 - o4 -

   ~

o os - o os - o o. - o of

                                                    ,. 7     7e       so a          e. en se so a            e.

i

b. Unit 2 Figure 4-2. Refueling Bellows Fatigue Usage to Date SIR-93-037, Rev. 0 13 h StructuralIntegrityAssociates,Inc.

1 Fat igue Usage (Core Spray Nozzle) o ois o ose - o ois - o oi. - i o.ois - l o.ois - o.asi - (

                      )         o 01     -

t 5 0.cos - [ o oos - f 0.001 o con c.oos - 0.00 -

                                                                                                                                             ,f o.cos       -

o act - o 001 - [ vs i i, I re i es I sa  ! esenI s'isei se sol si nal e3 I 7e 7e so en e. l i v.-e  !

a. Unit 1  !

l Fatigue Usage (Core Spray Nozzle) '

                                                                  .........,.4,.

o c5

                                                                                                  /
o. -

i j g o es - 1 1 o= - 3 o 01 - o

2. ,'e 2e .o u n. en se no .' . ]

I l

b. Unit 2 Figure 4-3. Core Spray Nozzle Fatigue Usage to Date 4

SIR-93-037, Rev. 0 14 h StructuralIntegdtyAssociates,Inc.

e 4 Fatigue Usage (Feedwater Nozzle) s.i i.e. c.s. . . ., v u o.a4 o - j o3 - n . ie - o 9a - o.94 - o.u -

                    ,       o.s      -
o. ca -

c.os - n . o. - o os - vs7sl v77eI is isoei i eaes t e4.s i es I en I siso4 as

                                                                                    ~

es os na veers

a. Unit 1  !

I Fatigue Usage CFeedwater Nozz'le)

                                                            ........,..u a o7 i

n.os - c.os = c 04 - i 1 o o3 - i l 1 e os - 1 I l o.o1 - 1 I

7. 7s 7e so na e4 es se no na e4  !
b. Unit 2 Figure 4-4. Feedwater Nozzle Fatigue Usage to Date SIR-93-037, Rev. 0 15 h StructuralIntegrityAssociates,Inc.

1

t i Fat igue Usage ( Aec irc Inlet Nozzle) t s.1 .#. 0. . .. < su u  ; 0.0001. 0.0001s - 0 000,. - O 00013 - 0 00012 - 1 0 00011 - t O 0001 - 0 00009 - { 0 0000. - j _ 0 00007 - [ 2 0 00000 - 0.0000s - . 0 0000 - 0 00003 - f 0 000n - l 0 0000s - a l

                                             ,, i ,, i ,,
                                                  >. 2      .i0
                                                                        .i, . i. . i. ., .i
                                                                              .     .           ., , i, .,

, s. + i i

a. Unit 1 i

l. Fatigue Usage CAecirc Inlet Nozzle)

                                                                 ...0....-..,..

0 000,. 0 00019 - 0 000,, - i 0 000ss - 0.00015 - 0 0001. - l 0 00013 - 0 00012 - 0 00011 - 0 0001 - 0.00009 - .

                          -{

0 00000 - 2 0 00001 - 0 0000s -  ! 0 00005 - 0 0000 - 0 00003 - 0 00002 - 0 00001 - 0 ,'. 2. 2 .0 o .'. - - .'0 o .'

b. Unit 2 Figure 4-5. Recirculation Inlet Nozzle Fatigue Usage to Date SIR-93-037, Rev. 0 16 h StructuralIntegdtyAssociates,Inc.

I 5.0 DISCUSSION I As part of a project by Structural Integrity Associates (SI) to implement fatigue monitoring software for Brunswick Units 1 and 2, an evaluation has been conducted for the operating history of each unit. These accumulated cyclic operations have been characterized and evaluated with the FatiguePro CEM fatigue analysis software. The maximum to date usage factor has been calculated as 0.23 for Unit 1 and 0.28 for Unit 2. Both are less than the value of 1.0 as allowed for design of ASME Boiler and Pressure Vessel Code Class 1 components. Linearly projection of operations for a 40 year life shows that the usage is indicated to remain less than 0.53 for Unit I and less than 0.68 for Unit 2. The refueling bellows support is the controlling location. l SI believes that the computed usage is very conservative and may be modified in the future. Work is underway at the plant to develop a procedure to collect actual cyclic information for plant transients. This data will then be compiled (as in Appendices A and B) and evaluated with the FatiguePro CEM software to provide a continuing update. As more detailed information is collected in the future, it is likely that a lower rate of l accumulation of fatigue usage will result. This collected data may be used in the future j to reduce the conservatisms contained in the current evaluation. I i i

                                                                                                        )

SIR-93-037, Rev. 0 17 f StructuralIntegdtyAssociates,Inc.

6.0 - REFERENCES f

1. NEDO-221% " Reactor Pressure Vessel Thermal Life Cycle Fatigue Evaluation  ;

for Brunswick Steam Electric Plant Units 1 and 2", General Electric Company,  ; March 1983. l f

2. NEDC-30634, " Brunswick Steam Electric Plant, Unit _1 Feedwater Nozzle  !

Fracture Mechanics Analysis", Revision 1, General Electric Company, May  ! 1991. l

3. NEDC-30633, " Brunswick Steam Electric Plant, Unit 2 Feedwater Nozzle  !

Fracture Mechanics Analysis", Revision 1, General Electric Company, May 1991. , t

4. EPRI NP-6170-M, FatiguePro: On Line Monitoring System: Demonstration at Quad Cities BWR, Electric Power Research Institute (Project 2688-3), January .

1989.

        ~ 5.       SIR-92-034, " User's Manual, FatiguePro Cycle Evaluation Module - Fatigue Monitoring System for Brunswick Steam Electric Plant", Structural Integrity Associates, Revision 0, June 1992.
6. " Units 1 and 2 Control Operator Log and Shift Foreman Log Worksheet",

received from Lee Witcher of CP&L, November 15, 1991.

7. SIR-92-034, " User's Manual, FatiguePro Cycle Evaluation Module - Fatigue Monitoring System for Brunswick Steam Electric Plant", Structural Integrity Associates, Revision 1, April 1993.

SIR-93-037, Rev. 0 18 f StructuralIntegrityAssociates,Inc.

1

8. ' Transmittal of Unit 1 RPV Thermal Cycling Data", received from E. A.

Bishop, February 17,1993. 1

9. " Transmittal of Unit 2 RPV Thermal Cycling Data", received from A. M.

Lucas, March 2,1993.

10. SIR-92-035, " Software Validation and Verification Report, Brunswick Unit 1 and 2 CEM Fatigue Monitoring System", Structural Integrity Associates, Revision 0, April 1993.
11. SI Calculations CPL-270-303 and -305, " Brunswick Unit 1 Operating Cycle  :

Evaluation", March 19,1993.

12. SI Calculation CPL-27Q-304 and -306, " Brunswick Unit 2 Operating Cycle Evaluation", March 19,1993. '
13. SI Calculation CPL-270-310, " Fatigue Usage Calculation for Brunswick Unit I and 2", March 26,1993.

l

                                                                                                     .l
14. " Design Report for Brunswick, Recirculation N2 Nozzle Safe End and Thermal i Sleeve Replacement", SI Report SIR-89-033, Rev. 2, July 1989.
15. SI Calculation CPL-270-312,"40-Year Fatigue Projection", April 16,1993.

i l l l I 4

                                                                                                       )

SIR-93-037, Rev. 0 19 i f StructuralIntegrityAssociates,Inc. i

t* , l ! Appendix A l Brunswick Unit 1 - Accumulated Cycle History l Yr No Day Sea. Transient Parameters 75 8 1 1 ASMBEYDRO 75 8 15 1 SOLTUP 75 9 3 1 UNBOLT 76 9 1 1 RE9tEL 3 76 10 1 1 DOLTUP l- 76 11 16 1 EYDROTEST 1025 200 i 76 11' 17 1 ERATUP 1005 30 76 11 17 2 TURBROLL 1005 90 420 76 11 18 1 30TSBY 1005 265 90 0 76 11 18 2 COOLDOWN O 12 90 76 11 19 1 REATUP 1005 5 76 11 19 2 TURaROLL 1005 90 420 l i 76 11 27 1 30TSsY 1005 265 30 5 76 11 27 2 C00LDOWN 0 25. 90 76 12 1 1 NEATUP 1005 50 76 12 1 2 TURaROLL 1005 90 420 76 12 5 1 BOTsaY 1005 265 90 5 76 12 5 2 C00LDOWN O 50 90 76 12 11 1 NEATUP 1005 50 76 12 11 2 TURBROLL 1005 90 420 76 12 26 1 BOTSSY 1005 265 90 5 76 12 26 2 COOLDOWN 0 40 90 76 12 29 1 ERATUP 1005 35 , 16 12 29 2 TURaROLL 1005 90 420 ! 77 1 1 1 50TSBY 1005 265 90 5 , 77 1 1 2 COOLDOWN O 20 90 77 1 2 1 EEATUP 1005 20 77 1 2 2 TURBROLL 1005 90 420 77 1 4 1 BOTSBY 1005 265 90 5 77 1 4 2 C00LDOWN O 15 90 77 1 5 1 EEA2VP 1005 34 77 1 5 2 TUmaROLL 1005 90 420 77 1 7 1 EOTSSY 1005 265 to 5 77 1 7 2 COOLDOWN 0 60 90 77 1 8 1 EEATUP 1005 40 77 1 8 2 TURaROLL 1005 90 420 77 1 14 1 30TSsY 1005 265 90 5 77 1 14 2 COOLDOWN 0 30 90 77 1 15 1 EEATUP 1005 25 i 77 1 15 2 TURaROLL 1005 90 420 77 2 3 1 30TSBY 1005 265 ,90 5 77 2 3 2 C00LDOWN 0 25 90 77 2 4 1 EEATUP 1005 40 77 2 4 2 TURBROLL 1005 90 420 77 2 21 1 50TsaY 1005 265 90 5 77 2 21 2 COOLDOWN 0 55 90 77 2 25 1 NEATUP 1005 55 l . 77 2 25 2 TURBROLL 1005 90 420 77 2 26 1 BOTSBY 1005 265 90 0 77 2 26 2 C00LDOWN O 50 90 77 2 26 3 EEATUP 1005 60 77 2 26 4 TURSROLL 1005 90 420 77 3 17 1 50TSBY 1005 265 90 5 77 3 17 2 COOLDOWN 0 40 90 77 3 18 1 EEATUP 1005 45 77 3 18 2 TURAROLL 1005 90 420 77 4 1 1 BOTS8Y 1005 265 90 5 77 4 1 2 COOI.DOWN O 40 90 77 4 4 1 EEATUP 1005 40 l 77 4 4 2 TURSROLL 1005 90 420 77 4 6 1 50TSBY 1005 265 90 5 77 4 6 2 COOLDOWN O 35 90 77 4 7 1 ERATUP 1005 30 77 4 7 2 TUR3 ROLL 1005 90 420 77 4 27 1 TURBTRIP 1005 90 420 77 4 27 2 BOTSBY 1005 265 90 5 77 4 27 3 C00LDOWN 0 40 90 a 4 SIR-93-037, Rev. 0 1 Appendix A ( f StructuralIntegdtyAssociates,Inc.

v l l Yr Mo Dev sea. Transient Parameters j 77 6 28- 1 EEATUP 1005 50  ; 77 6 28 2 TURaROLL 1005 90 420 i 77 7 4 1 30TesY 1005 265 90 5 l 77 7 4 2 C00LDOWN O 25 90 ' 77 7 5 1 EEATUP 1005 40 3 77 7 5' 2 TURBROLL 1005 -90 420 4 77 7 22 1 BOTsSY ~1005 265 90 5 77 7 22 2 C00LDOWN O 70 90 j 77 7 24 1 BEATUP 1005 60 < 77 7 24 2 TURaROLL 1005 90 420 77 7 28 1 30TS3Y 1005 265 90 l 5 77 7 28 2 C00LDOWN 0 38 90 l 77 8 7 1 NEATUP 1005 25 l 77 5 7 2 C00ta0NN 0 30 90 77 8 9 1 EEATUP 1005 48 77 8 9 2 TUmaROLL 1005 90 420 1 77 8 28 1 30TSBY 1005 265 90 5 I 77 8 28 2 C00LDOWN O 35 90 77 8 29 1 EEATUP 1005 30 > 77 8 29 2 SVRBROLL 1005 90 420 77 9 30 1 50TSSY 1005 265 90 5 77 9 30 2 C00LDOW4 0 45 90 77 10 3- 1 ERATUP 1005 25 77 10 3 2 TURamoLL 1005 90 420 , 77 10 4 1 EDTSSY 1005 265 90 0 ' 77 10 4 2 COOLDOWN 0 35 90 l 77 10 5 1 EIA3VP 1005 40 77 10 5 2 TUmaROLL 1005 90 420 77 10 14 1 BOTSSY 1005 265 90 5 77 10 14 2 C00LDOWN O 50 90 77 10 16 1 EEATUP 1005 70 77 10 16 2 TumanoLL 1005 90 420 77 10 29 1 BOT 33Y 1005 265 90 5 77 10 29 2 C00LDOWN 0 50 90 77 10 29 3 ERATUP 1005 30 77 10 29 4 TURBRoLL 1005 90 420 4 77 11 13 1 BOTSSY 1005 265 90 5 )' 77 11 13 2 C00LDOWN O 45 90 77 11 21 1 EEATUP 1005 58 l 77 11 21 2 TURBROLL 1005 90 420 ) 77 11 22 1 50Ts3Y 1005 265 90 0 1 77 11 22 2 C00LDOWN 0 45 90 l 77 11 26 1 EEAWP 1005 60 l 77 11 26 2 TURaROLL 1005 90 420 77 12 3 1 BOTSSY 1005 265 90 5 77 12 3 2 C00LDOWN O 45 90 77 12 4 1 ERATUP 1005 45 77 12 4 2 TURBRoLL 1005 90 420 1 77 12 16 1 NOTsSY 1005 265 90 5 I 77 12 16 2 C00LDOWN O 30 90 77 12 16 3 REATUP 1005 48 77 12 16 4 TURP20LL 1005 90 420 77 12 21 1 BOTSBY 1005 265 90 5 77 12 21 2 C00LDOWN 0 20 90 77 12 22 1 EEATUP 1005 40 77 12 22 2 TURBROLL 1005 90 420 78 1 13 '1 50TSBY 1005 265 90 5 78 1 13 2 C00LDOWN 0 30 90 78 1 14 1 REATUP 1005 35 78 1 14 2 TURaROLL 1005 90 420 78 1 19 1 50TSBY 1005 265 90 5 78 1 19 2 C00LDOWN 0 30 90 78 1 22 1 EEATUP 1005 60 78 1 22 2 TURBROLL 1005 90 420 78 2 13 1 80TsaY 1005 265 90 5 78 2 13 2 C00LDOWN 0 10 90 78 2 26 1 EEATUP 1005 44 78 2 26 2 TURBROLL 1005 90 420 78 2 27 1 50TSBY 1005 265 90 0 78 2 27 2 C00LDOWN 0 95 90 l 78 2 28 1 EEATUP 1005 75 i 78 2 28 2 TURBROLL 1005 90 420 78 3 13 1 BOTSBY 1005 265 90 5 78 3 13 2 C00LDOWN O 60 90 78 3 14 1 kEATUP 1005 60 78 3 14 2 TURaROLL 1005 90 420 SIR-93-037, Rev. 0 2 { StructuralIntegrityAssociates,Inc.

                                                          ,       s-       ..                   ---n_..-- a ._.,
  • l l

e l Yr No Day Sec. Transient Parameters 78 4 3 1 SOTsaY 1004 265 90 5 l 78 4 3 2 C00LDomt 0 30 90 i 78 4 5 1 EEATUP 1005 60 78 4 5 2 TURSROLL 1005 90 420 78 4 8 1 30TSaY 1005- 265 90 5 78 4 8 2 C00LDomi 0 35 90 78 4 8 3 EEATUP 1005 40 78 4 8 4 TURSROLL 1005 90 420 78 5 1 1 30TSSY 1005 265 90 5 78 5 1 2 C00LDomt 0 55 90 78 5 2 1 ERATUP 1005 35 78 5 2 2 TUREROLL 1005 90 420 78 5 19 1 30TsaY 1005 265 90 5 78 5 19 2 COOLDomt 0 28 90 78 5 23 1 ERATUP 1005 85 78 5 23 2 TURaROLL 1005 to 420 78 6 27 1 TURSTRIP 1005 90 420 78 6 27 2 30TSat 1005 265 90 5 78 6 27 3 COOLDOWN 0 25 90 78 6 28 1 ERATUP 1005 60 78 6 28 2 TURSROLL 1005 90 420 t 78 7 28 1 30TsaY 1005 265 90 5 r 78 7 28 2 C00LDOWN 0 25 90

                         - 78 7 28    3 NEATUP     1005       50 78 7 28     4 TUma80LL   1005       90     420 78 9 25     1 30TsaY     1005     265        90     5 78 9 25     2 COOLDOWN       0      30       90 78 9 30     1 EEATUP     1005       95 18 9 30     2 TURBROLL   1005       90     420 78 11 17    1 30T83Y     1005     265        90     5 78 11 17    2 COOLDOWN       O      20       90 78 11 19    1 REATUP     1005       25 78 11 19   2 TURaROLL   1005       90     420 79 1    2   1 TURSTRIP  1005       90     420 79 1    2  2 BOTSBY     1005     265        90      5 79 1    2  3 C00LDOWN       O      20       90 79 1 15     1 UNa0LT 79 2    1   1 REFUEL         3 79 3 29     1 SOLTUP 79 4 12     1 NYDROTEST 1025     200 79 4 13     1 MEATUP     1005       38 79 4 13     2 TumaROLL   1005       90    420                                         -

79 4 14 1 30TSaY 1005 265 90 0 i 79 4 14 2 C00LDOWN O le 90 79 4 16 1 NEATUP 1005 60 79 4 16 2 TUmaROLL 1005 90 420 79 4 17 1 30TSSY 1005 265 90 79 4 17 2 C00LD0ml 0 20 90 . 79 4 18 1 IIEATUP 1005 55 79 4 18 2 TumaROLL 1005 90 420 79 5 1 1 30TsSY 1005 265 90 5 79 5 1 2 COOLDOWN O 10 90 79 5 2 1 EEATUP 1005 25 79 5 2 2 TUmamoLL 1005 90 420 79 5 26 1 TURSTR1P 1005 30 420 79 5 26 2 30TsaY 1005 265 90 5 79 5 26 3 C00LDomt 0 30 90 79 6 10 1 ESATUP 1005 55 l 79 6 10 2 TURSROLL 1005 90 420 79 7 28 1 80TssY 1005 265 90 5 1 79 7 28 2 C00LDOWN 0 15 90 79 7 28 3 EEATUP 1005 25 79 7 28 4 TUR3 ROLL 1005 90 420 79 8 4 1 BOTsaY 1005 265 90 5 79 8 4 2 C00LDOWN O 15 90 79 8 4 3 EEATUP 1005 50 79 8 4 4 TUR3 ROLL 1005 90 420 79 8 19 1 BOTssY 1005 265 90 5 79 8 19 2 C00LDOWil 0 13 90 1 79 8 29 1 NEATUP 1005 50 l 79 8 29 2 TURamoLL 1005 90 420  ! 79 9 8 1 BOTsaY 1005 265 90 5 1 79 9 8 2 C00LDOWN 0 30 90 d 79 9 9 1 EEATUP 1005 45  ! 79 9 9 2 TUR3 ROLL 1005 90 420 t 1 i SIR-93-037, Rev. 0 3 Appendix A h StructuralIntegdtyAssociates,Inc.

                .          m         .. .              .                             . _ _ . _ ___  _

4_ e

  • l Yr Mo Day sec. Transient Parameters 79 10 9 1 TURBTRIP 1005 90 420 79 10 9 2 BOTSBY 1005 265 90 5 79 10 9 3 COOLDOWN O 6 90 79 10 9 4 EEATUP 1005 20 79 10 9 5 TUREROLL 1005 90 420 79 10 19 1 TURSTRIP 1005 90 420 79 10 19 2 BOTs3Y 1005 265 90 5 79 10 19 3 COOLDOWN O 20 90 79 10 24 1 NEATUP 1005 45 79 10 24 2 TUR3 ROLL 1005 90 420 79 11 5 1 50TssY 1005 265 90 l 79 11 5 2 COOLDOWN 0 30 90 ,

79 11 14 1 ERATUP 1005 65 79 11 14 2 TURaROLL 1005 90 420 79 11 14 3 TURSTRIP 1005 90 420 79 11 14 4 NOT58Y 1005 265 90 0 79 11 14 5 COOLDOWN O B5 90 79 11 15 1 EEATUP 1005 80 79 11 15 2 TUR3 ROLL 1005 90 420 79 11 20 1 EOTSBY 1005 265 90 5 r 79 11 20 2 COOLDOWN O 10 90 79 11 29 1 NEATUP 1005 70 L 79 11 29 2 TUmaROLL 1005 90 420 79 12 1 1 50TSBY 1005 265 90 5 79 12 1 2 COOLDOWN 0 30 90 79 12 4 1 REATUP 1005 60 - 79 12 4 2 TURBROLL 1005 90 420 79 12 12 1 TURSTRIP 1005 90 420 I 79 12 12 2 EOTSBY 1005 265 90 5 79 12 12 3 COOLDOWN 0 35 90 79 12 18 1 NEATUP 1005 60 79 12 18 2 TURsROLL 1005 90 420 80 3 23 1 TURSTRIP 1005 90 420 80 3 23 2 BOTSBY 1005 265 90 5 30 3 23 3 COOLDOWN 0 25 90 80 3 24 1 NEATUP 1005 25 80 3 24 2 TUREROLL 1005 90 420 80 3 31 1 TURSTRIP 1005 90 420 00 3 31 2 BOTSBY 1005 265 90 5 80 3 31 3 COOLDOWN 0 40 90 ' SO 4 2 1 EEATUP 1005 50 80 4 2 2 TURBROLL 1005 90 420 80 4 5 1 BOTSSY 1005 265 90 5 80 4 5 2 COOLDOWN 0 25 90 80 4 6 1 EEATUP 1005 55 80 4 6 2 TURSROLL 1005 90 420 80 4 8 1 40TSsY 1005 265 90 5 80 4 8 2 COOLDOWN O 20 90 00 4 12 1 EEATUP 1005 70 00 4 12 2 TURAROLL 1005 90 80 4 15 1 BOTSBY 1005 265 90 5 i 80 4 15 2 COOLDOWN 0 30 90 80 4 17 1 REATUP 1005 60 1 80 4 17 2 TURSROLL 1005 90 420 80 5 26 1 ROTSSY 1005 265 90 5 80 5 26 2 COOLDOWN O 35 90 80 5 28 1 UNDOLT 30 6 14 1 REFUEL 3 80 7 1 1 SOLTUP SO 7 17 1 NYDROTEST 1025 200  ! 00 7 18 1 NEATUP 1005 50 I 80 7 18 2 TURBROLL 1005 90 420 j 80 7 21 1 TURBTRIP 1005 90 420 00 7 21 2 80TSBY 1005 265 90 5 80 7 21 3 COOLDOWN O 20 90 80 7 22 1 BEATUP 1005 50 80 7 22 2 TURBROLL 1005 90 420 80 7 23 1 TURBTRIP 1005 90 420 80 7 23 2 50TSBY 1005 265 90 0 80 7 23 3 COOLDOWN O 22 90 80 8 2 1 REATUP 1005 5 l 80 3 2 2 TURBROLL 1005 90 420 80 8 5 1 BOTSBY 1005 265 90 5 80 8 5 2 COOLDOWN 0 5 90 80 8 19 1 REATUP 1005 55 l 1 i SIR-93-037, Rev. 0 4 Appendix A f StructuralintegdtyAssociates,Inc.

v e e Yr 100 Day Sea. Transient Parameters 80 8 19 2 2gament r. 1005 90 420 SO 8 25 1 EDTSSY 1005 265 90 5 80 8 25 2 C00LDOWN 0 20 90 SO 8 28 1 ERATUP 1005 65 80 8 28 2 TUmmanft. 1005 90 420 80 10 14 1 TURSTRIP 1005 90 420 80 10 14 2 BOTsSY 1005 265 90 5 80 10 14 3 C00LDOWN O 35 90 80 10 15 1 EEATUP 1005 30 80 10 15 2 TUmment.r. 1005 90 420 80 12 29 1 TURSTRIP 1005 90 420 to 12 29 2 BOTSSY 1005 265 90 5 80 12 29 3 CaafNa'N O 20 90 81 1 8 1 EEATUP 1005 25 81 1 8 2 TUmmanvr. 1005 90 420 81 1 20 1 BOT 85Y 1005 265 90 5 81 1 20 2 C00LDOWN O 20 90 81 1 21 1 EEATUP- 1005 25 81 1 21 2 TUR3 ROLL 1005 90 420 81 1 30 1 TURSTRIP 1005 90 420 81 1 30 2 30TasY 1005 265 90 5 81 1 30 3 C00ta0WN 0 20 90 81 1 31 1 ERATUP 1005 50 81 1 31 2 TUmsacLL 1005 90 420 81 3 29 1 TURsTRIP 1005 90 420 81 3 29 2 30Ts5Y 1005 265 90 5 81 3 29 3 C00LDOWN O 45 90 81 4 8 1 ERATUP 1005 45 81 4 8 2 TumaROLL- 1005 90 420 81 4 18 1 BOTasY 1005 265 90 5 81 4 le 2 C00LDOWN O 100 90 81 4 20 1 ERATUP 1005 100 81 4 20 2 TURancLL 1005 90 420 81 5 18 1 EDTSSY 1005 265 90 5 81 5 18 2 C00LDOWN O 100 90 el 5 20 1 NEATUP 1005 100 81 5 20 2 TUman0LL 1005 90 420 81 6 18 1 BOT 53Y 1005 265 90 $ 81 6 18 2 C00LDOWN O 100 90 81 6 20 1 NEATUP 1005 100 81 6 20 2 TUmanoLL .1005 90 420 81 7 18 1 SOTSBY 1005 265 90 5 81 7 18 2 C00LDOWN 0 100 90 81 7 20 1 EEATUP 1005 100 81 7 20 2 TURSROLL 1005 90 420 81 11 14 1 BOT 55Y 1005 265 90 5 81 11 15 1 Caaf N88N 210 29 90 81 11 le 1 ERATUP 1005 30 81 11 18 2 TumanoLL 1005 90 420 ~_ B1 12 2 1 NOTsBY 1005 265 90 5 81 12 2 2 C00LDOWN O 85 90 81 12 4 1 ERATUP 1005 -40 81 12 4 2 TUmanoLL 1005 90 420 82 2 4 1 50TSBY ' 1005 265 90 5 82 2 5 1 C00LDOWN O 71 90

   ~-

82 2 11 1 ERATUP 920 87 82 2 12 1 C00LDOWN 0 50 90 82 2 14 1 EEATUP 1005 33 52 2 14 2 TUmaROLL 1005 90 420 82 2 18 1 TURSTRIP 1005 90 420 82 2 le 2 30TS3Y 1005 265 90 5 52 2 18 3 C00LDOWN O 50 90 82 2 20 1 EEATUP 1005 30 82 2 20 2 TURBROLL 1005 90 420 82 4 19 1 BOTSBY 1005 265 90 5 82 4 19 2 C00LDOWN O 100 90 82 4 20 1 NEATUP 1005 83 82 4 20 2 TumanoLL 1005 90 420 82 5 4 1 FEI455 1005 265 420 82 5 4 2 BOTSBY 1005 265 90 5 82 5 5 1 C00LDOWN 77.6 12 90 82 5 6 1 EEATUP 1005 to 82 5 6 2 TUmaROLL 1005 90 420 82 6 1 1 BOTSBY 1005 265 90 5 82 6 1 2 C00LDOWN 39 12 90 SIR-93-037, Rev. 0 5 Appendix A f StructuralIntegdtyAssociates,Inc.

                                                                          .._ - ~ , - - .
    ,e                                                                                    -

e- . Yr No Day Sea. Transient Parameters 82 6 2 1 ERATUP 920 80 82 6 2 2 TUR3 ROLL 920 90 420 82 6 2 3 TUmaTRIP 920 90 420 82 6 2 4 TURSTRIP 920 90 420 82 6 2 5 BOTSBY 920 265 90 0 . 82 6 2 6 C00LDOWW 84 98 90 82 6 2 7 ERATUP 700 42 < 82 6 2 8 C00LDOWN 40 55 90 82 6 5 1 ERATUP 1005 40 , 82 6 5 2 TumanoLL 1005 90 420 82 .6 5 3 TUR3 TRIP 1005 90 420 l 82 6 7 1 BOTs5Y 1005 265 90 5 d 82 6 7 2 C00LDOWN 85 43 90 82' 6 9 1 NEATUP 1005 34 . 82 6 9 2 TURAROLL 1005 90 420 4 82 6 27 1 BOTsSY 1005 265 90 5 4 t 82 6 28 1 C00LDOWN 0 100 90 82 6 29 1 ERATUP 1005 100 82 6 29 2 TUREROLL 1005 90 420 82 7 10 1 307s3Y 1005 265 90 5

  • 82 7 11 1 C00LDOWN O 100 90 82 7 11 2 ERATUP 1005 100 82 7 11 3 TumaROLL 1005 90 420 4

82 7 16 1 30TsaY 1005 265 90 5 82 7 17 1 C00LDOWW 0 100 90 , 82 8 15 1 UNa0LT 82 8 20 1 REFUEL 3 82 9 20 1 BOLTUP j 82 10 7 1 NYDROTEST 1025 200 a 82 10 9 1 EEATUP 1005 100 82 10 9 2 TURaROLL 1005 90 420 82 10 13 1 50TsSY 1005 265 90 5 82 10 14 1 C00LDOWN 0 100 90 82 10 17 1 NEATUP 1005 100 82 10 17 2 TomaROLL 1005 90 420 82 10 21 1 NOTsSY 1005 265 90 5 82 10 21 2 COOLDOWN 0 100 90 82 10 25 1 NEATUP 1005 100 82 10 25 2 TURSROLL 1005 90 420 4 82 12 10 1 BOTsSY 1005 265 90 5 82 12 11 1 C00LDOWN 0 100 90 82 12 14 1 Una0LT 82 12 16 1 REFUEL 3 83 5 18 1 DOLTUP 83 8 5 1 EYDROTEST 1006 435 83 8 8- 1 ERATUP 1015 29 83 8 16 i TUREROLL 1015 90 420 83 8 16 2 TURSTRIP 1015 90 420 83 8 16 3 TURSTRIP 1015 90 420 83 8 16 4 50TsaY 1005 265 90 0-83 8 16 5 C00LDOWN 40 55 90 83 8 25 1 EEATUP 1005 100 53 8 26 1 TURaROLL 1005 90 420 83 8 28 1 TUREROLL 1005 90 420 83 8 29 1 TUF.BROLL 1005 90 420 83 10 17 1 30TssY- 1005 265 90 5 83 10 18 1 C00LDOWN O 80 90 83 11 16 1 EEATUP 1005 10 83 11 18 1 TUmaROLL 1005 90 420 83 11 25 ' 1 BOT 83Y 1005 265 90 5 83 11 26 1 C00LDOWN 140 14 90 83 11 27 1 EEATUP 1005 47 83 11 28 1 TURBROLL 1005 90 420 83 12 22 1 TURBTRIP 1005 90 420 83 12 23 1 BOTSBY 1005 265 90 5 83 12 23 2 C00LDOWN 1 30 90

         .                      83  12 25      1 EEATUP     1005       35 83  12 25      2 TURBROLL   1005      90       420 84  1 30       1 BOTSBY      1005   265            90         5 84 1 31        1 C00LDOWN        0     23          90 84 2       2   1 EEATUP      1005      55 84  2      3   1 COOLDOWN     127      38          90 84  2      4   1 EEATUP      1005      65 84  2      4   2 TURBROLL    1005      90      420 84  3      2   1 50TSBY      1005    265           to         5 SIR-93-037, Rev. 0                         6 Appendix A f StructuralIntegdtyAssociates,Inc.
                        ~ _ _ _ _ . _ .           _      _ _
                                                               .. .       _       ._._.__m...-        ._ ,- _ - ~. -. .

e r e r Yr No Day Sec. Transient Parameters 84 3 3 1 COOLDOWN O 20 90 84 3 9 1 EEATUP 1005 30 84 3 10 1 TUmaROLL 1005 90 420 84 3 30 1 30TSBY 1005 265 90 5 84 3 31 1 COOLDOWN 0 26 90 84 4 7 1 EEATUP 1005 5 84 4 8 1 TUnaROLL 1005 90 420 84 5 26 1 BOTsaY 1005 265 90 5 84 5 26 2 COOLDOWN 8 40 90 84 5 30 1 ERATUP 1005 55 84 5 30 2 TURaROLL 1005 90 420

                             ' 04 6 10              1 30TSBY      1005      265               90   5 84 6 -10             2 COOLDOWN         O      33              90 84 6 14              1 ERATUP      1005        60 84 6 14              2 TumanOLL    1005        90           420 84 . 8        1     1 MOTS 3Y     1005      265               90   5 84 8          1     2 COOLDOWN-        0      30               90 84 8          3     1 ERATUP      1005        45 84 8          3     2 TURBAOLL    1005        90           420 84 9          9     1 NOTSBY      1005      265                90  5 84 9 10             1 COOLDOWN          0     17               90 84 9 15             1 EIATUP      1005        60 84 9 16             1 TUmanOLL    1005        90           420 84        9- 17     1 30T83Y      1005      265                90  5 84 9 18             1 COOLDOWN       106      15               90 84 9 19             1 EEATUP      1005        89 84 9 19             2 TURaROLL    1005        90            420 84 10 29            1 NOTSBY      1005      265                90  5 84 10 29            2 COOLDOWN          0     55               90 84 12 11            1 EEATUP      1005        20 84 12 11            2 TUmanOLL    1005        90            420 85 1 24             1 ROTStY      1005      265                90   5 85 1 24             2 COOLDOWN          0     15               90 85 1 26             1 ERATUP      1005      198 85 1 26             2 TURBROLL    1005        90            420 1005      265                90                       '

85 3 29 1 EOTSBY 5 85 3 30 1 COOLDOWN O 35 90 85 4 3 1 UmaOLT 85 5 3 1 REFUEL 3 85 8 31 1 aOLTUP

                                $5 10 29             1 NYDROTEST 1025       200 85 10 30             1 ERATUP        935      63 85 11          2     1 COOLDOWN       40       53              90 85 11          4     1 EEATUP        930      69 85 11          5     1 TURanOLL    1005        90           420 85 11          5     2 TURaTRIP    1005        90           420                         ,

85 11 6 1 NOTSBY 1005 265 90 0 SS 11 6 2 COOLDOWN 25 85 90 e 85 11 7 1 NEATUP 1005 36 85 11 8 1 TunaROLL 1005 90 420 85 11 13 1 ROTSBY 1005 265 90 5 85 11 13 2 COOLDOWN O 37 90 85 11 16 1 EIATUP 1005 41 l 85 11 17 1 TURaROLL 1005 90 420 l 86 3 25 1 EOTSaY 1005 265 90 5 l 86 3 26 1 COOLDOWN O 39 90 i 06 3 31 1 EEATUP 1006 21 86 3 31 2 TURaROLL 1006 90 420 86 3 31 3 TURSTR1P 1006 90 420 86 4 2 1 50T59Y 1005 265 to 5 l 86 4 2 2 COOLDOWN O 100 90 { 86 4 7 1 EEATUP 1005 32 86 4 8 1 TURBROLL 1005 90 420 86 8 18 1 BOTSBY 1005 265 90 5 86 8 19 1 COOLDOWN 75 28 90 86 8 20 1 EEATUP 625 45 86 8 21 1 COOLDOWN O 53 90 86 8 23 1 EEATUP 1005 67 90 86 8 24 1 TURBROLL 1005 90 420 SC 9 12 1 BOTSBY 1005 265 90 5 86 9 13 1 COOLDOWN 160 13 90 86 9 14 1 EEATUP 1005 100 86 9 20 1 TURBROLL 1005 90 420 86 11 14 1 50TSBY 1005 265 90 $ 86 11 15 1 COOLDOWN 0 20 90 SIR-93-037, Rev. 0 7 Appendix A f StructuralIntegdtyAssociates,Inc.

                                                                                                                        ]

v e t Yr No Day Sea. Transient Parameters 86 11 18 1 ERATUP 1005 49 86 11 ~18 2 TUman0LL 1005 90 420'- 86 11 18 3 TURSTRIP 1005 90 420

                             .86 12     1    1 FEEDSS     1005   265     420 37 2 13        1 BOTS3Y . ' 1005   265       90  5 87 2 14        1 C00LDOWN       0    40      90 57 2 18        1 Uma0LT 87 3 18 ' 1 REPUBL -            3 87 5      6    1 30LTUP 87 5 10        1 EYDROTEST 1025    201-87 6 12        1 ERATUP     1006   132 87  6  12      2 COOLDOWN       0    10      90 87  6  13      1 ERATUP     1005     87 87  6  13      2 TURsROLL   1005     90    420 87  6  17      1 30TS3Y     1005   265       90  $

87 6 17 2 C00LDOWN 0 53 90 87 6 21 1 ERATUP 1005 60 87 6 21 2 TURBAOLL 1005 90 420 87 7 1 .1 BOTSsY 1005 265 90 5 87 7 1 2 C00LDOWN 195 11 90

87. 7 3 1 ERATUP 1005 54 87 7 5 1 TURBAOLL 1005 90 420 SS 1 24 1 30TS3Y 1005 265 90 5 OS 1 24 2 C00LDOWN O 60 90 SS 2 21 1 ERATUP 510 44 88 2 22 1 COOLDOWN 75 40 90 SS 2 22 2 NEATUP 1005 87 08 2 23 1 TUmsa0LL 1005 90 420 88 3 25 1 FEIASS 1005 265 420 SS 5 21 1 BOTSBY 1005 265 90 5 OS 5 21 2 C00LDOWN O 40 90 SS 5 23 1 ERATUP 1005 11 SS 5 23 2 TURBAOLL 1005 90 420 88 5 23 3 TURSTRIP 1005 90 420 1 88 7 13 1 30TSSY 1005 265 90 5 OS 7 14 ,1 C00LDOWN O 72 90 88 7 21 1 ERATUP 1005 60 OS 7 22 1 tun - fT. 1005. 90 420 88 10 21 1 30TSaY 1005 265- 90 5 88 10 21 2 C00LDOWN O 5 90 88 10 23 1 ERATUP 1005 22 88 10 23 2 TUR3 ROLL 1005 90 420 OS 11 10 1 30TSsY t 1005 265 90 5 88 11 10 2 C00LDOWN O 100 90 88 11 14 1 UNDOLT 88 12 25 1 REPUBL 3 89 2 22 1 SOLTUP OS 3 17 1 EYDROTEST 1990 200 89 4 8 1 ERATUP 1005 100 89 4 9 1 TUR3 ROLL 1005 - 90 420 89 4 9 2 TURaTRIP 1005 90 420 89 4 9 3 30TSSY 1005 265- 90 0 89 4 9 4 C00LDOWN 0 100 90 e 89 4 14 1 EEATUP 1005 50  ;

89 4 15 1 TURaa0LL 1005 90 420 , 89 4 15 2 TURsTRIP 1005 90 420 89 4 15 3 TURSTRIP 1005 90 420 , OS 4 15 4 TURSTRIP 1005 90 420 89 6 10 1 BOTSsY 1005 265 90 5 89 6 10 2 C00LDOWN 0 90 90 { 59 6 28 1 EEATUP 1005 70 l SS 6 30 1 TUR3 ROLL 1005 90 420  :' 89 9 21 1 BOTSsY 1005 265 90 5 09 9 21 2 C00LDOWN 0 80 90 89 9 27 1 EEATUP 1005 62 89 9 28 1 TURaROLL 1005 90 420 89 11 16 1 BOTS8Y 1005 265 90 5 89 11 16 2 C00LDOWN O 75 90 89 11 17 1 EEATUP 1006 55 89 11 18 1 TURaROLL 1005 90 420 89 12 6 1 FELOSS 1005 265 420 90 5 21 1 50TesY 1005 265 90 5 90 5 21 2 C00LDOWN 0 65 90 90 6 11 1 NEATUP 1005 85 90 6 13 1 TURaROLL 1005 90 420 SIR-93-037, Rev. 0 8 Appendix-A f StructuralIntegdtyAssociates,Inc.

             . . _ . , - . . ~ . . - . . . _ . . . m._ ,     , . . . _ ~ . . . _ _ ~ . .               . _ . . . .     . _ . . . _ . ___     ,___._..__._..._._...._m,.
    . ., j m

, e e

+

e Yr No Day sea. Transient Parameters 90 9 27 1 TUR3 TRIP 1005 90 420 90 9 27 2 BOTs3Y 1005 265 90- 5 90 9 27 3 C00LDOMI 0 50 90 90 10 1 1 UNBOLT 90 12 30 1 REFUEL 3 j 91 1 19 1 BOLTUP l 91 1 25 1 EYDROTEST 1100 178 91 2 22 1 ERATUP 1005 54 91 2 26 1 TURBAOLL 1005 90 420 91 2 27 1 TURSTRIP 1005 90 420 91 3 5 1 TUteTRIP 1005 90 420 91 3 5 2 30TssY 1005 265 90 5 91 3 5 3 COOLDOMI 49- 90 90 91 3 7 :1 ERATUP 1005 35

                                                                                                                                                                            )

91 3 8 1 TumanoLL 1005 90 420 4 91 3 29 1 BOTsSY 1005 265 90 5 I 91 3'29 2 Can *N O 60 90 i' 91 5 5 1 ERATUP 1005 65 91 5 7 1 TUmmentt- 1005 90 420 ' 91 7 18 1 aofsSY 1005 265 90 5 91 7 18 2 C00LDOWN O 90 90 91 7 24 1 ERATUP 1005 40  ; 91 7 26 1 TURBROLL 1005 90 420  ; 91 9 2 1 BOTs3Y 1005 265 90 5 l 91 9 2 2 COOLDOWN 0 50 90 91 9 8 1 ERATUP 1005 79 4 ' 91 9 9 1 TUmaROLL 1005 90 420 91 10 15 1 30TsaY 1005 265 90 5 i 91 10 15 2 C00LDOWN 0 63 90 ) 91 10 20 1 EEATUP 1005 38 - 91 10 21 1 TURBROLL 1005 90 420 92 1 17 1 50TsBY 1005 265 90 5 92 1 17 2 C00LDOMI 4 95 90 92 1 18 1 ERATUP 1005 75 92 1 20 1 TUmmentr- 1005 90 420 I , 92 2 3 1 FBIAss 1005 265 420 92 2 29 1 BOTs3Y 1005 265 90 .5. 92 3 1 1 C00LDOWN 152 35 90 , 92 3 4 1 ERATUP 1005 40 j 92 3 5 1 Ttymanf T. 1005 90 420 92 4 21 1 BOTs5Y 1005 265 90 5 ' 92 4 21 2 C00LDOWN O 73 90 l l l l l l l SIR-93-037, Rev. 0 9 Appendix A f StructuralIntegrityAssociates,Inc.

A Appendix B Brunswick Unit 2 - Accumulated Cycle History Yr No Dev Sec. Transient Parameters 75 1 1 1 ASMERYDRO 75 1 2 1 30LTUP 75 1 3 1 EYDROTEST 1025 200. 75 3 22 1 ERATUP 1005 38 75 3 22 2 TUR3 ROLL 1005 90 420 75 3 24 1 EDTsSY 1005' 265 90 5 75 3 24 2 C00LDOWN 0 8 90 75 3 30 1 EEATUP 1005 40 75 3 30 2 TUmaROLL 1005 90 420 75 4 1 1 BOTasY 1005 265 90 5 75 4 1 2 C00LDOWN O 50 90 15 4 2 1 EEA1UP 1005 59  ! 75 4 2 2 COOLDOWN 0 25 90 75 4 3 1 EEATUP 1005 50 ' 75 4 3 2 TURamoLL 1005 90 420 75 4 5 1 BOTsaY 1005 265 90 5 75 4 5 2 C00LDOWN 0 60 90 75 4 6 1 NEATUP 1005 40 75 4 6 2 TURaROLL 1005 90 420 75 4 7 1 30TssY 1005 265 90 0 75 4 7 2 COOLDOWN 1005 10 90 75 4 8 1 REATUP 1005 32 75 4 8 2 TURBROLL 1005 90 420 75 4 10 1 BOTsBY 1005 265 90 5 75 4 10 2 COOLDOWN 0 12 90 75 4 11 1 IEATUP 1005 15 75 4 11 2 TURSROLL 1005 90 420 l 75 4 15 1 BOTsBY 1005 265 90 5 l 75 4 15 2 C00LDOWN O 30 90 75 4 '25 1 REATUP 1005 40 75 4 25 2 TURBROLL 1005 90 420 75 4 29 1 ROTsaY 1005 265 90 5 75 4 29 2 C00LDOWN 0 70 90 1 75 5 5 1 EEATUP 1005 38 ' i 75 5' 5 2 TUmaROLL 1005 90 420 75 5 6 1 30TssY. 1005 265 90 0 75 5 6 2 C00LDOWN 0 80 90 i 75 5 10 1 EEATUP 1005 50 ' l 75 5 10 2 TUREROLL 1005 90 420 75 5 20 1 30Ts3Y 1005 265 90 5 75 5 20 2 C00LDOWN 0 8 90 75 5 21 1 EEATUP 1005 20 75 5~ 21 2 C00LDOWN 0 10 90 75 5 22 1 EEATUP 1005 25 75 5. 22 2 TURaROLL 1005 90 420 75 5 27 1 50Ts3Y 1005 265 90= 5 75 5 27 2 C00LDOWN 0 40 90 75 5 29 1 EEATUP 1005 35 l 75 5 29 2 TURaROLL 1005 90 420 75 5 31 1 BOTsBY 1005 265 90 5 75 5 31 2 C00LDOWN O 26 90 75 6 1 1 IEATUP 1005 25 75 6 1 2 C00LDOWN 0 10 90 75 6 2 1 EEATUP 1005 18 75 6 2 2 TURBROLL 1005 90 420 75 6 9 1 BOTsaY 1005 265 90 5 75 6 9 2 C00LDOWN 0 8 90 75 6 10 1 EEATUP 1005 30 75 6 10 2 TURBROLL 1005 90 420 75 6 11 1 ROTsBY 1005 265 90 0 75 6 11 2 C00LDOWN 0 40 90 75 6 12 1 EEATUP 1005 80 75 6 12 2 TURBROLL 1005 90 420 75 6 14 1 ROTSBY 1005 265 90 5 75 6 14 2 C00LDOWN O 8 90 75 6 14 3 EEATUP 1005 45 75 6 14 4 TURBROLL 1005 90 420 75 6 15 i BOTsaY 1005 265 90 0 75 6 15 2 C00LDOWN 0 40 90 75 6 17 1 IEATUP 1005 30 SIR-93-037, Rev. 0 1 Appendix B f StructuralIntegdtyAssociates,Inc.

         ..        _      .._ .       - _ .           _.____.s__        .   -.,_m,          .--.        _ _ _

I 1 -a Yr No Dev Sea. Transient Parameters 75 6 17 2 TURBROLL 1005 90 420 75 6 25 1 50Ts3Y 1005 265 90 5 75 6 25 2 COOLDOWN 0 30 90 75 6 27 1 ERAMP 1005 38 75 6 27 2 TURERCIL 1005 90 420 75 6 30 1 TURSTRIP 1005 90 420 75 6 30 2 30TsBY 1005 265 90 5 75 6 30 3 COOLDOWN 0 34 90 75 7 1 1 ERAWP 1005 40 75 7 1 2 TUmaROIL 1005 90 420 75 7 2 1 TURSTRIP 1005 90 420 75 7 2 2 BOTSBY 1005 265 90 0 75 7 2 3 COOLDOWN O 30 90 15 7 12 1 EEATUP 1005 70 75 7 12 2 TUREROLL 1005- 90 420 75 7 14 1 BOTsaY 1005 265 90 5 75 7 14 2 COOLDOWN 0 45 90 75 7 15 1 EEATUP 1005 35 75 7 15 2 TURBROLL 1005 90 420 75 7 20 1 30TSBY 1005 265 90 5 75 7 20 2 COOLDOWN 0 30 90 75 7 21 1 ERATUP 1005 50 75 7 21 2 TUREROLL 1005 90 420 75 7 22 1 BOTs3Y 1005 265 90 0 75 7 22 2 COOLDOWN O 20 90 75 7 22 3 EEATUP 1005 45 75 7 22 4 TURaROLL 2005 90 420 75 7 25 1 50TsBY 1005 265 90 5 15 7 25 2 COOLDOWN 0 30 90 75 7 26 1 EEATUP 1005 45 75 7 26 2 TURBROLL 1005 90 420 75 7 27 1 BOTsBY 1005 265 90 0 75 7 27 2 C00LDOWN 0 30 90 75 7 27 3 EEATUP 1005 36 75 7 27 4 TURBROLL 1005 90 420 75 8 5 1 ROTsaY 1005 265 90 5 75 8 5 2 CooLDOWN 0 15 90 75 e 6 1 REATUP 1005 25 75 a 6 2 TURBROIL 1005 90 420 75 8 16 1 BOTs3Y 1005 265 90 5 75 e 14 2 C00LDOWN O 20 to 75 8 15 1 EEATUP 1005 55 75 0 15 2 TURaROLL 1005 90 420 75 8 16 1 BOTssY 1005 265 90 5 75 8 16 2 COOLDOWN 0 45 90 75 8 20 1 EEATUP 1005 40 75 8 20 2 TURSROIL 1005 90 420 75 8 24 1 TURaTRIP- 1005 90 420 75 8. 24 2 ROTSSY 1005 265 90 5 75 8 24 3 COOLDOWN 0 SO 90 75 8 30 1 NEATUP 1005 60 75 8 30 2 TURBROIL 1005 90 420 > 75 9 5 1 BOTsBY 1005 265 90 5 75 9 5 .2 COOLDOWN 0 50 90 75 9 22 1 NEATUP 1005 60 75 9 22 2 TUmaROLL 1005 90 420 , 75 9 29 1 EOTsBY 1005 265 90 5 75 9 29 2 COOLDOWN O 60 90 75 9 30 1 REATUP 1005 40 75 9 30 2 TURBROIL 1005 90 420 75 10 15 1 TURSTRIP 1005 90 420 75 10 15 2 BOTSBY 1005 265 90 5 75 10 15 3 COOLDOWN O 30 90 75 10 16 1 REATUP 1005 18 75 10 16 2 COOLDOWN O 30 90 75 10 17 1 REATUP 1005 25 75 10 17 2 TURSROLL 1005 90 420 75 11 9 1 TURSTRIP 1005 30 420 75 11 9 2 50TsBY 1005 265 90 5 75 11 9 3 COOLDOWN O 20 90 75 11 9 4 EEATUP 1005 25 75 11 9 5 TURBROIL 1005 90 420 75 12 27 1 BOTSBY 1005 265 90 5 75 12 27 2 COOLDOWN O 30 90 75 12 28 1 REATUP 1005 45 . 75 12 28 2 TURBROIL 1005 90 420 i 76 1 19 1 ROTsaY 1005 265 90 5 SIR-93-037, Rev. 0 2 Appendix B f StructuralIntegdtyAssociates,Inc.

v t e 9 d Yr No Dev Sec. Transient Parameters 76 1 19 2 C001AOWN 0 45 90 76 1 20 1 EIATUP 1005 25 76 1 20 2 TURBROLL 1005 90 420 76 2 2 1 BOTSBY 1005 265 90 5 76 2 2 2 COOLDOWN 0 45 90 76 2 3 1 NEATUP 1005 50 76 2 3 2 TURSROLL 1005 90 420 76 2 16 1 NOTS 5Y 1005 265 90 5 76 2 16 2 COOLDOWN 0 20 90 76 2 18 1 EEATUP 1005 45 76 - 2 18- 2 TUR3 ROLL 1005 90 420 76 3 19 1 30TSBY 1005 265 to 5 76 3 19 2 COOLDOWN O 40 90 76 4 5 1 UWBOLT 76 4 8 1 REPUBL 3 76 4 24 1 BOLTUP 76 5 1 1 NYDROTEST 1025 200 76 5 24 1 NEATUP 1005 50 76 5 24 2 C00LDOWN O 25 90 76 5 24 3 EEATUP 1005 50 76 5 24 4 TURSROLL 1005 90 420 76 5 28 1 50TSBY 1005 265 90 5 76 5 28 2 C00LDOWN 0 30 90 76 5 30 1 REATUP 1005 45 76 5 30 2 TURSROLL 1005 90 420 76 7 3 1 NOTSBY 1005 265 90 5 76 7 3 2 C00LDOWN 0 45 90 76 7 6 1 EEATUP 1005 30 76 7 6 2 TURBROLL 1005 90 420 76 7 11 1 BOTSBY 1005 265 90 5 76 7 11 2 C00LDOWN 0 60 90

 ,                          76 7 13       1 NEATUP    1005     48 76 7 13       2 TURBROLL  1005     90    420 76 7 15       1 BOTSBY    1005   265       90   5 76 7 15       2 C00LDOWN      0    25      90 76 7 18       1 REATUP    1005     45 76 7 18      2 TURBROLL  1005     90    420 76 7 28        1 NOTSBY   1005   265       90    5 76 7 28      2 C00LDOWN      O    20      90 76 7 29        1 NEATUP   1005     12 76 7 29       2 TURSROLL 1005     90    420 76 9     2    1 BOTSBY   1005   265       90    5 76 9     2    2 C00LDOWN      O   40      90                             ,

76 9 7 1 EEATUP 1005 40 l 90 420 76 9 7 2 TURBROLL 1005 76 10 16 1 BOTSBY 1005 265 90 5 76 10 16 2 C00LDOWN O 14 90 1 76 10 27 1 REATUP 1005 45 76 10 27 2 TURBROLL 1005 90 420 76 11 9 1 BOTSBY 1005 265 90 5 1 76 11 9 2 C00LDOWN 0 50 90 l 76 12 10 1 EEATUP 1005 45 i 76 12 10 2 TURBROLL 1005 90 420 l 76 12 18 1 BOTSSY 1005 265 90 5 1 76 12 18 2 COOLDOWN 0 35 90 l 76 12 18 3 EEATUP 1005 35 j 76 12 18 4 TURBROLL 1005 90 420 j 77 1 7 1 BOTSBY 1005 265 90 5 i

     ~

77 1 7 2 COOLDOWN O 40 90 i 77 1 8 1 EEATUP 1005 45 ) 77 1 8 2 TURBROLL 1005 90 420 l 77 2 14 1 BOTSBY 1005 265 90 5 77 2 14 2 COOLDOWN O 55 90 77 2 16 1 EEATUP 1005 45 i 77 2 16 2 TURBROLL 1005 90 420 i 77 2 23 1 BOTSBY 1005 265 90 5 77 2 23 2 C00LDOWN O 40 90 77 2 24 1 EEATUP 1005 35 77 2 24 2 TURBROLL 1005 90 420 77 4 5 1 BOTSBY 1005 265 90 5 77 4 5 2 C00LDOWN 0 50 90 77 4 6 1 EEATUP 1005 40 77 4 6 2 TURBROLL 1005 90 420 77 4 15 1 BOTSBY 1005 265 90 5 77 4 15 2 C00LDOWN 0 50 90 77 5 6 1 EEATUP 1005 40 77 5 6 2 TURBROLL 1005 90 420 SIR-93-037, Rev. 0 3 Appendix B f StructuralIntegrityAssociates,Inc.

1

  • . l
  • l Yr No Day Sea. Transient Parameters I 77 5 7 1 BOTSBY 1005 265 90 0 77 5 7 2 C00LDomt 0 40 90 77 5 9 1 REATUP 1005 30 77 5 8 2 TURSROLL 1005 90 420 77 5 11 1 50Ts3Y 1005 265 90 5 77 5 1.1 2 C00LDOWN 0 45 90 77 5 22 1 EEATUP 1005 45 77 5 22 2 TURBROLL 1005 to 420 77 5 31 1 50TsaY 1005 265 90 5 77 5 31 2 C00LDOWN O 45 90 77 5 31 3 EEATUP 1005 25 77 5 31 4 TURaROLL 1005 90 420 77 6 14 1 ROTasY 1005 265 90 5 77 6 14 2 C00LDodW 0 30 90 77 6 15 1 REATUP 1005 50 77 6 15 2 TUmaROLL 1005 90 420 77 7 15 1 30TSSY 1005 265 90 5 77 7 15 2 C00LDomt 0 35 90 77 7 18 1 EEATUP 1005 45 77 7 18 2 TUREROLL 1005 90 420 77 7 31 1 BOTSBY 1005 265 90 5 77 7 31 2 COOLDOWN O 30 90 77 8 1 1 EEATUP 1005 40 77 8 1 2 TURSROLL 1005 90 420 77 8 15 1 30T53Y 1005 265 90 5 77 8 15 2 C00LDOWN 0 40 90 17 8 16 1 NEATUP 1005 35 77 8 16 2 TURSROLL 1005 90 420 77 8 17 1 TURSTRIP 1005 90 420 77 8 17 2 BOTSBY 1005 265 90 0 77 8 17 3 C00LDOWN O 45 90 77 0 19 1 EEATUP 1005 30 77 8 19 2 TURaROLL 1005 90 420 77 9 4 1 ROTSBY 1005 265 90 5 77 9 4 2 COOLDOWN 0 55 90 77 9 6 1 REATUP 1005 43 77 9 6 2 TURBROLL 1005 90 420 77 9 8 1 50TsaY 1005 265 90 5 1 77 9 8 2 C00LDOWN 0 35 90 77 9 9 1 IEATUP 1005 10 77 9 9 2 TUREROLL 1005 90 420 77 9 10 1 30TSBY 1005 265 90 0 77 9 10 2 C00LDOWN 0 45 90 77 9 20 1 UNDOLT 77 10 25 1 REFUEL 3 77 11 25 1 BOLTUP
                              '77 12        1  1 EYDROTEST 1025     200 77 12   23     1 EIATUP     1005      45 77 12   23     2 TURBROLL   1005      to    420                             '

77 12 27 1 BOTSBY 1005 265 90 5 77 12 27 2 COOLDOWN 0 25 90 77 12 30 1 EEATUP 1005 40 77 12 30 2 TURBROLL 1005 90 420 78 1 2 1 BOTSBY 1005 265 90 5 i 78 1 2 2 C00LDOWN O 35 90 78 1 2 3 EEATUP 1005 45 78 1 2 4 TURBROLL 1005 90 420

       ~

76 1 6 1 BOTssY 1005 265 90 5 78 1 6 2 C00LDOWN O 22 90 78 1 9 1 REATUP 1005 65 78 1 9 2 TURBROLL 1005 90 420 78 1 17 1 BOTS8Y 1005 265 90 5 78 1 17 2 C00LDOWN O 23 90 78 1 17 3 BEATUP 1005 45 78 1 17 4 TURBROLL 1005 90 420 78 1 31 1 BOTSBY 1005 265 90 5 78 1 31 2 C00LDOWN O 20 90 78 1 31 3 EEATUP 1005 30 78 1 31 4 TURBROLL 1005 90 420 78 3 5 1 BOTSBY 1005 265 90 5 78 3 5 2 C00LDOWN O 30 90 78 3 6 1 REATUP 1005 60 78 3 6 2 TURBROLL 1005 90 420 78 3 13 1 BOTSBY 1005 265 90 5 78 3 13 2 C00LDOWN O 25 90 78 3 14 1 REATUP 1005 50 l 78 3 14 2 TURBROLL 1005 90 420 l l SIR-93-037, Rev. 0 4 1 Appendix B f StructuralIntegrityAssociates,Inc.

e e Yr No Dav Sect. Transient Parameters 78 3 23 1 50TsSY 1005 265 90 5 78 3 23 2 C00LDOWN 0 75 90 78 3 24 1 NEATUP 1005 45 78 3 24 2 TURBROLL 1005 90 420 78 3 29 1 50TSBY 1005 265 90 5 78 3 29 2 COOLDOWN O 10 90 78 4 3 1 EEATUP 1005 65 78 4 3 2 tvRBROLL 1905 30 420 78 4 7 1 BOTsBY 1005 265 90 5 78 4 7 2 C00LDOWN O 45 to 78 4 9 1 EEATUP 1005 35 78 4 9 2 TURBROLL 1005 90 420 78 6 3 1 50TESY 1005 265 90 - 5 78 6 3 2 C00LDOWN 0 30 90 78 6 11 1 NEATUP 1005 45 78 6 11 2 TimBROLL 1005 90 420 i 78 6 13 1 30T55Y 1005 265 90 5 78 6 13 2 COOLDOWN O 15 90 78 6 21 1 NEATUP 1005 30 78 6 21 2 TURBROLL 1005 90 420 78 7 3 1 BOTs3Y 1005 265 90 5 78 7 3 2 C00LDOWN O 30 90 78 7 5 1 REATUP 1005 30 78 7 5 2 TURBROLL 1005 90 420 78 7 18 1 30TSBY 1005 265 90 5 78 7 18 2 C00LDOWN 0 45 90 78 7 19 1 EEATUP 1005 10 78 7 19 2 TURSROLL 1005 90 420  ; 78 8 18 1 50T8aY 1005 265 90 5 78 8 18 2 COOLDOWN O 30 90 78 8 21 1 EEATUP 1005 55 78 8 21 2 TURBROLL 1005 90 420 78 9 6 i BOTsaY 1005 265 90 5 78 9 6 2 C00LDOWN 0 65 90 78 9 22 1 EEATUP 1005 68 78 9 22 2 TURSROLL 1005 90 420 78 11 6 i BOTSBY 1005 265 90 5 78 11 6 2 C00LDOWN O 60 90 78 11 9 1 EEATUP 1005 18 78 11 9 2 TURBROLL 1005 90 420 78 11 10 1 50TSBY 1005 265 90 0 78 11 10 2 COOLDOME O 8 90 78 11 12 1 EIATUP 1005 40 . 78 11 12 2 1URaROLL 1005 90 420 l 79 1 8 1 50TSBY 1005 265 90 5 1 79 1 8 2 C00!J0WW 0 25 90  ; 79 1 9 1 EEATUP 1005 50 79 1 9 2 TURaROLL 1005 90 420  ! 79 1 29 1 30TssY 1005 265 90 5 l 79 1 29 2 C00LDOWN 0 20 90 79 1 29 3 EEATUP 1005 45 79 1 29- 4 TURBROLL 1005 90 420 79 3 3 1 BOTS8Y 1005 265 90 $ 79 3 3 2 C00LDOWN 0 22 90 79 3 30 1 UNBOLT 79 4 2 1 REFUEL 3 1 79 4 18 1 BOLTUP j

   *~

79 5 1 1 EYDROTEST 1025 200 l 79 5 14 1 BEATUP 1005 40 l 79 5 14 2 TURBROLL 1005 90 420 79 5 21 1 EOTSBY 1005 265 90 5 79 5 21 2 C00LDOWN 0 15 90 79 5 22 1 EEATUP 1005 25 79 5 22 2 TURBROLL 1005 90 420 79 5 23 1 50TSBY 1005 265 90 0 I 79 5 23 2 C00LDOWN 0 15 90 l 79 5 23 3 EEATUP 1005 40 79 5 23 4 TURBROLL 1005 90 420 79 5 25 1 BOTSBY 1005 265 90 5 79 5 25 2 C00LDOWN 0 30 90 79 5 26 1 EEATUP 1005 40 79 5 26 2 TURBROLL 1005 90 420 79 6 12 1 BOTSBY 1005 265 90 5 79 6 12 2 C00LDOWN 0 20 90 79 6 13 1 EEATUP 1005 45 79 6 13 2 TURBROLL 1005 90 420 79 6 30 1 BOTSBY 1005 265 90 5 i SIR-93-037, Rev. 0 5 I Appendix B f StructuralIntegdtyAssociates,Inc.

  . ~ . _   g  . _ . ~ . _ . . - - . . - . _ . . . , .m    ._.m._.       . . . . _ _ - . _ . ._ _. ., _ ..-_ ___ _ _~ .                              . ~ . .-.__m_m f

., i < 1 e Yr No Day sea. Transient Parameters 4 79 6 30 2 Can'N m 0 45 90 ' 79 7 4 1 ERATUF 1005 60 79 7 4 2 stNtaa0LL 1005 90 420 l l 79 7 19 1 30TsSY 1005 265 90 5  !

79 7 19 2 Can' "= 0_ 25 90  ;

79 7 21 1 ERATUP 1005 40  ! .' 79 7 21 2 Tuman0LL 1005 90 420 - ) 79 7 31 1 BOTs5Y 1005 265 90 5 s 79 7 31 2 COOLDOWN O 20 90 -i 1 79 e 2 1 ERATUr 2005 50  ! 79 8 2 2 TURan0LL 1005 90 420 79 9 1 1 BOTs3Y 1005 265 90 5 l 79 9 1 2 COOLDOWN O 25 90  ! i . 79 9 5 1 ERATUP 1005 52 i 79 9 5 2 TURamoLL 1905 90 420 I 79 9 7 1 BOTs5Y 1005 265 90 5 79 9 7 2 COOLDOWN O 15 90 . 79 9 8 1 ERATUP 1005 50 .

                                                        - 79 9     e    2 1=ama"                               1005           90    420                               '

79 9 12 1 BOTSBY 1005 265 90 5 79 9 12 2 Can'" = 0 25 90 ', 79 9 13 1 ERATUF 1005 55 j 79 9 13 2 Semaner. 1005 90 420 79 9 14 1 30TsaY 1005 265 90 0  ! 19 9 14 2 Cnnr "= 0 25 90 i 79 9 14 3 ERATUP 1005 55 1 79 9 14 4 Tummanrv. 1005 90 420 79 11 19 1 EDTs5Y 1005 265 90 5 i 79 11 19 2 COOLDOWN O 22 90 1 79 11 20 1 ERATUP 1005 45 ' I 79 11- 20 2 TUmaROLL 1005 90 420 79 12 16 1 30TasY 1005 265 90 5 79 12 16 2 COOLDOWN 0 30 90 80 1 3 1 NEATUP 1005 40 00 1 3 2 TUR3 ROLL 1005 90 420 80 2 13 1 30TssY 1005 265 90 5 to 2 13 2 COOLDOWN 0 30 90 80 2 14 1 ERATUP 1005 45 30 2 14 2 TURamOLL 1005 90 420 to 3 1 1 BotsSY 1005 265 90 5 80 3 1 2 COOLDOWN O 40 90 00 4 1 1 UNDOLT 90 5 1 1 REFUEL 3 to 6 1 1 BOLTUF 00 8 1 1 EYDROTEST 1025 200 SO 9 10 -1 ERATUP 1005 30 80 9 10 2 TUmmenrr- 1005 90 420 80 9 15 1 BOTs3Y 1005 265 90 5 00 9 15 2 COOLDOWN O 25 90 SO 9 16 1 EEATUP 1005 25 to 9 16 2 TUmmanrT. 1005 90 420 l 80 9 19 1 SOTSBY 1005 265 90 5 I SO 9 19 2 COOLDOWN 0 10 90 80 9 22 1 EEATUF 1005 25 l 80 9 22 2 TUmema'T. 1005 90 420 00 10 11 1 BOTSBY 1005 265 90 5 to 10 11 2 C00LD3NN 0 25 90 00 10 12 1 NEATUP 1005 40 30 10 12 2 COOLDOWN O 10 90 00 10 13 1 ERATUP 1005 55 to 10 13 2 TUREROLL 1005 90 420 80 10 28 1 30TssY 1005 265 90 5 80 10 28 2 COOLDOWN 0 27 90 SO 10 29 1 EEATUF 1005 80 80 10 29 2 TURaROLL 1005- 90 420. j B0 11 13 1 30TsaY 1005 265 90 5 to 11 13 2 COOLDOWN 0- 25 90 SO 11 14 1 EEATUP 1005 45 80 11 14 2 TURBROLL 1005 90 420 00 11 le 1 BOTSBY 1005 265 to 5 30 11 18 2 COOLDOWN O 17 90 80 11 18 3 EEATUF 1005 17 80 11 le 4 TURamoLL 1005 90 420 00 12 5 1 BOTsSY 1005 265 90 5 to 12 5 2 COOLDOWN O 35 90 80 12 12 1 ERATUF 1005 40 80 12 12 2 TURaROLL 1005 90 420 SIR-93-037, Rev. 0 6 Appendix B , f CtructuralIntegdtyAssociates,Inc. l

e i e ,.  ! e Yr No Day sea. Transient Parameters 80 12 16 1 50TsSV 1005 265 90 5 80 12 16 2 C00LDOWN O 25 90

  • 80 12 18 1 NEATUF 1005 40
  • 80 12 18 2 Temaner. 1005 90 420 81 1 7 1 BOTsSY ' 1005 265 90 5 81 1 7 2 C00LDOWN 0 20 90 81 1 8 1 ERATUF 1005 8 l 81 1 8 2 TUmmaar t. 1005 90 420
81. 1 10 1 TURSTR1F 1005 -90 420 81 1 10 2 30TssY 1005 265 90 5 I 81 1 10 3 Coota0WN 0 10 90
                            ?1   1  10      4 MBATUP      -1005      50                                          ]

81 1 10 5 TUmmaaf T. 1005 90 420 l 81 2 14 1 30TsBY 1005 265 90 5 , 81 2 34 2 C00LDOWN O 40 90 ' 81 2 20 1 ERATUP 1005 30 81 2 20 2 TUmment.r. teos 90 420 81 2 24 1 TURSTRIP 1005 90 420

                           - 81 2 24        2 BOTsBY       1005    265      90   5 81 2 24        3 C00LDOWN         0     30     90 81 2 25         1 ERATUF       1005      40 81 2 25        2 TURaROLL     1005      90   420 81 2 26        1 TUR3 TRIP    1005      90   420 81  2  26      2 30Ts3Y       1005    265      90    0 81  2  26       3 C00LDOWN        O     25     90 J

81 2 26 4 ERATUF 1005 60 81 2 26 5 TUmse0LL 1005 90 420 ) 81 .3 5 1 BOTssY 1005 265 90 5 81 3 5 2 COOLDOWN 0 23 90 81 4 10 1 ERATUF 1005 45 81 4 10 2 TURBAOLL 1005 90 420 81 4 12 1 BOTssY 1005 265 90 5 81 4 12 2 C00LDOWN O 25 90 81 4 16 1 ERATUF 1005 75 81 4 16 2 TumanoLL 1005 90 420 81 6 6 1 TURSTRIP 1005 90 420 81 6 6 2 BOTsSY 1005 265 90 5 81 6 4 3 C00LDOWN 0 25 90 81 6 6 4 EEATUF 1005 100 81 6 6 5 TumaROLL 1005 90 420 81 6 25 1 50Ts5Y 1005 265 90 5 81 6 25 2 C00LDOWN O 100 90 81 6 25 3 EEATUF 1005 100 81 6 25 4 TURaROLL 1005 90 420 81 7 20 1 BOTssY 1005 265 90 5 81 7 20 2 C00LDOWN 0 -100 90 81 7 20 3 EEATUF 1005 100 81 7 20 4 TUREROLL 1005 90 420 81 8 10 1 BOTssY 1005 265 90 5 81 8 10 2 C00LDOWN O 100 90 81 8 10 3 ERATUF 1005 100 , 31 8 10 4 TURBROLL 1005 90 420  ! 81 9 5 1 EDTSBY 1005 265 90 5 81 9 5 2 COOLDOWN 0 100 90 81 9 5 3 EEATUF 1005 100 81 9 5 4 TURBROLL 1005 90 420 81 9 30 1 BOTsaY 1005 265 90 5 81 9 30 2 C00LDOWN 0 100 90 81 9 30 3 EEATUF 1005 100 81 9 30 4 TURBROLL 1005 90 420 81 10 20 1 BOTs3Y 1005 265 90 .5 81 10 20 2 C00LDOWN O 100 90 81 10 20 3 EEATUF 1005 100 81 10 20 4 TUR3 ROLL 1005 90 420 81 11 2 1 30TsBY 1005 265 90 5 81 11 2 2 C00LDOWN 175 25 90 81 11 2 3 EEATUF 812 65 81 11 3 1 COOLDOWN 122 45 90 81 11 3 2 BEATUF 1005 49 81 11 3 3 TURaROLL 1005 90 420 81 12 12 1 FEI488 1005 265 420 81 12 18 1 BOTssY 1005 265 90 5 81 12 18 2 COOLDOWN 0 61 90 81 12 20 1 EEATUF 1005 50 81 12 20 2 TURaROLL 1005 90 420 82 1 13 1 BOTsBY 1005 265 90 5 82 1 13 2 C00LDOWN 90 55 90 SIR-93-037, Rev. 0 7 Appendix B  ! h StructuralIntegdtyAssociates,Inc. l

u w 6

 */

, e Yr Mo Day Sea. Transient Parameters l 82 1 14 1 ERATUP 1005 55 82 1 14 2 TumaROLL 1005 90 420 82 1 16 1 30TsSY 1005 265 90 5 82 1 16 2 C00LDOWN 148 35 90 82 1 17 1 ERATUP 1005 48 82 1 17- 2 TUREROLL 1005 90 420 82 1 20 1 BOTasY 1005 265 90 5 82 1 20 2 C00LDOWN O 69 90 82 1 25 1 EEATUP 1005 95 l 82 1 28 1 TURan0LL 1005 90 420 82 2 3 1 BOTSOY 1005 265 90 5 82 2 3 2 C00LDOWN 85 65 90 l 82 2 4 1 ERATUP 1005 110 l 82 2 4 2 TURam0LL 1005 90 420 l 82 2 16 1 BOTS3Y 1005 265 90 5 82 2 16 2 C00LDOWN 0 100 90

                              - 82 2 18    1 EEATUP     1005    100 82 2 is     2 TUREROLL   1005      90    420 82 3 13     1 BOTsaY     1005    265       90  5 82 3 13     2 CaN"=N          O  100       90 82 3 14     1 ERATUP     1005    100 82 3 14     2 TURBAOLL   1005      90    420
                               $2 4 23     1 EDTs3Y     1005    265       90  $

82 4 24 1 C00LDOWN 0 72 90 82 4 28 1 Una0LT 82 5 28 1 REPUBL 3 82 6 26 1 BOLTUP-82 9 26 1 BYDROTEST 1005 200 82 9 29 1 MEATUP 548 50 82 9 30 1 C00LDOWN 14 11 90 82 10 2 1 EEATUP- 1005 64 82 10 3 1 TURaROLL 1005 90 420 82 10 3 2 TUR3 TRIP 1005 90 420

                              - 82 10 10    1 30TssY    1005    265       90   5 82 10   10  2 C00LDOWN        0    50      90 82 10   16   1 NEA'IUP   1005      75 82 10   18  1 Tumamar.f- 1005      90    420 82 10   18   2 TUR3 TRIP 1005      90    420 82 10  24   1 30Ts5Y    1005    265       90   5 82 10   24  2 C00LDOWN       69    90      90 82 10  24   3 EEATUP    1005      76 82 10  25   1 TURAROLL  1005      90    420 82 10  28   1 NOTSSY    1005    265       90   5 82 10  28   2 C00LDOWN       O    45      90 82 12    4  1 ERATUP    1005-     40 82 12   5   1 TUmanoLL  1005      90    420 82 12  22   1 BOTSBY     1005   265       90   5 82 12  22   2 C00LDOWN      65    27      90 82 12  23   1 EEATUP     1005     72 82 12  24   1 TURamoLL   1605     90    420 83 1     3  1 BOTSBY     1005    265      90   5 83 1     3  2 C00LDOWN     127     24     90 83 1     4  1 EEATUP     1005      72 83  1    4  2 TURSROLL   1005      90   420 83  1    4  3 TURsTRIP   1005      90    420 83  2    3  1 BOTSBY     1005    265       90  5 83  2    3  2 C00LDOWN        0    60      90 83 2 14     1 EEATUP     1005      82 83 2 15     1 TUmaROLL   1005      90    420 83 2 15     2 TURSTRIP   1005      90    420 83  4    8  1 BOTS8Y     1005    265       90  5 83  4    8  2 COOLDOWN        O    80      90 83  4 24    1 EEATUP       232     42 83  4 26    1 C00LDOWN        0    29      90 83  5    8  1 NEATUP     1005      45 83  5    9  1 TURRROLL   1005      90    420 83  5 16    1 BOTSBY     1005    265       90  5 83  5 16    2 C00LDOWN        0    75      90 83  5 18    1 EEATUP     1005      61 83  5 19    1 TURamoLL   1005      90    420 83  6    2  i BOTsaY     1005    265       90  5 83  6    2  2 C00LDOWN     156     29      90 33  6    4  1 EEATUP     1005      27 83  6    4  2 TURBROLL   1005      90    420 83  6 20    1 BOTSBY     1005    265       90  5 83  6 20    2 C00LDOWN        O    45      90 83  6 25    1 EEATUP     1005      30 SIR-93-037, Rev. 0                        8 Appendix B f StructuralIntegdtyAssociates,Inc.
                                                                                            -.   .~

6 's e Yr No Day Sec. Transient Parameters 83 6 26 1 TURaROLL 1005 90 420 83 7 30 1 TURaTAIP 1005 90 420 , 83 7 30 2 BOTsBY 1005 265 90 5 1 83 7 30 3 COOLDOWN 0 93 90 83 8 7 1 NEATUP 1005 19 83 8 9 1 COOLDOWN 103 30 90 83 8 11 1 ERATUP 1005 47 83 8 11 2 TURBROLL 1005 90 420 83 8 31 1 BOTs3Y 1005 265 90 5 I 83 8 31 2 COOLDOWN 120 70 90 83 9 2 1 REATUP 1005 48 83 9 3 1 TURaROLL 1005 90 420 83 9 3 2 TURaTRIP 1005 90 420 83 11 2 1 BOTs3Y 1005 265 90 5 83 11 2 2 COOLDOWN O 55 90 , 84 1 4 1 NEATUP 1005 20 i 84 1 5 1 TUmaROLL 1005 90 420 i 84 1 5 2 TURaTRIP 1005 90 420 84 2 22 1 BOTs3Y 1005 265 90 5 84 2 22 2 COOLDOWN 140 15 90 84 2 23 1 ERATUP 1005 42 84 2 23 2 TURanOLL 1005 90 420 84 3 12 1 BOTSBY 1005 265 90 5 84 3 12 2 COOLDOWW 0 48 90 84 3 22 1 UNBOLT 84 4 1 1 REPUEL 3 84 8 27 1 BOLTUP 84 8 30 1 EYDROTEST 1095 200 84 10 16 1 EEATUP 1005 20 84 10 25 1 TURaROLL 1005 90 420 84 10 25 2 TURaTRIP 1005 90 420 84 10 26 1 BOTs3Y 1005 265 90 0 34 10 27 .1 COOLDOWN 130 40 90 34 10 28 1 EEATUP 920 80 84 10 29 1 TURBROLL 1005 90 420 l 84 10 29 2 TURETRIP 1005 90 420 84 10 29 3 EOTSBY 1005 265 90 0 84 10 29 4 COOLDCNN 111 55 90 84 10 31 1 EEATUP 1005 57 84 10 31 2 TURaROLL 1005 90 420 84 10 31 3 MOTSBY 1005 265 90 0 84 10 31 4 COOLDOWN O 100 90 to 11 1 1 NEATUP 1005 68 , 84 11 1 TURaROLL 1005 90 420

                                                                                                    ~

2 84 11 4 1 BOTSBY 1005 265 90 5 84 11 4 2 COOLDOWN 0 63 90 84 11 6 1 NEATVP 1005 47 34 11 6 2 TURBROLL 1005 90 420 84 11 6 3 TURaTRIP 1005 90 420 84 11 10 1 BOTSBY 1005 265 90 5 34 11 10 2 COOLDOWN 60 35 90 34 11 11 1 NEATUP 1005 37 , 84 11 12 1 TURBROLL 1005 90 420 l 84 11 16 1 BOTSBY 1005 265 90 5 i 84 11 16 2 COOLDOWN 0 30 90 ' 04 11 22 1 EEATUP 1005 89 84 11 22 2 TUR3 ROLL 1005 90 420 84 11 27 1 BOTSBY 1005 265 90 5 84 11 27 2 COOLDOWN 0 10 90 l 84 12 7 1 EEATUP 370 28 I 84 12 8 1 COOLDOWN O 84 90 84 12 17 1 EEATUP 1005 35 J 84 12 18 1 TURaROLL 1005 90 420 ' 85 1 3 1 BOTSBY 1005 265 90 5 i 85 1 3 2 COOLDOWN 69 88 90 i 85 1 4 1 REATUP 1005 74 05 1 4 2 TURBROLL 1005 90 420 85 2 16 1 BOT 53Y 1005 265 90 5 85 2 16 2 COOLDOWN O 100 90 85 2 16 3 EEATUP 1005 100 85 2 16 4 TURBROLL 1005 90 420 35 3 9 1 BOTSBY 1005 265 90 5 85 3 9 2 COOLDOWN O 55 90 85 3 16 1 EEATUP 1005 81 85 3 16 2 COOLDOWN O 80 90 85 3 20 1 HEATUP 1005 88 85 3 20 2 TURBROLL 1005 90 420 SIR-93-037, Rev. 0 9 Appendix B f StructuralIntegrityAssociates,Inc.

                                         .     . - . . - - . . - . . - . - . ~ ~ . - _ . ~ . ~ - - . - . . - . . - . - . ~ ~.               .

Yr No Day sea. Transient Parameters 85 4 1 1 50TsSY 1005 265 90- 5 85 4 1 2 C00LDOWN O 32 90  ! 85 4 8 1 ERATUP 1000 68 85 4 9 1 TURamoLL 1008 90 420 SS 9- 4 1 50Ts3Y 1005 265. 90 5  ! 85 9 4 2 C00LDOWN 196 30 90 85 9 5 1 ERATUP 1005 6 85 9 5 2 TumanoLL 1005 90 420 85 9 26 1 30TSBY 1005 2f5 90 5 OS 9 26 2 C00LDOWN O 50 90  ; 85 10 8 1 ERATUP 1005 47 l 85 10 .11 1 TURamoLL 1005 90 420  ! 85 10 15 1 SOTssY 1005 265 90 5 l 85 10 15 2 C00LDOWN O 15 90  ; SS 10 17' 1 ERATUP 1005 10 a 85 10 18 1 TUmmentT 1005 90 420 , 85 11 22 1 30TssY 1005 265 90 5 85 11 22 2 C00LDOWN O 17 90 85 11 23 1 ERATUP 1005 55

                                                                                                                                              )

1 85 11 23 2 TURamoLL 1005 90 420 ' 55 11 29 1 BOTsBY 1005 265 90 5 85 11 29 2 C00LDOWN O 55 90 85 12- 6 1 UNEOLT 86 2 12 1 REPUBL 3 86 4 " 1 30LTUP 86 4 # 1 NYD80TR8T 1025 200 86 6 .A 1 ERATUP 1005 42 86 6 15 1 TumanoLL 1005 90 420 86 6 18 1 BOTs5Y 1005 265 90 5 86 6 18 2 C00LDOWN O 50 90

                             .86     6 25        1 EEATUP                         1005                 40 86 6 26            1 TUmmanTT.                      1005                 90           420 86 7 11            1 BOTs3Y                         1005              265               90       5 86 7 11            2 C00LDOWN                               0         100               90 SE 7 14            1 EEATUP                         1005                 48 86 7 14            2 TUmanoLL                        1005                90           420 86 8 23            1 BOTsBY                          1005             265                90      5 86 8 23            2 C00LDOWN                            76              41              90 86 8 25            1 EEATUP-                         1005                80 86 8 25            2 TUREROLL                        1005                90           420 86   10      3     1 30Ts3Y                          1005             265                90      5 86   10   -3       2 C00LDOWN                               O            60              90 86  10      5      1 EEATUP                         1005                48 86  10      5      2 TURaROLL                       1005                90           420 86 10 18           1 30Ts3Y                         1005              265               90      5 86 10 18          2 C00LDOWN                               0            50              90 86 10 30           1 ERATUP                         1005                57 86 11       1      1 TumanoLL                       1005                90           420 87 1        5      1 BOTsSY                         1005              265               90      5 87 1        5      2 C00LDOWN                              0            52              90 87 - 1 12          1 EEATUP                         1005                41                                     -

87 1 13 1 TUmaROLL 1005 90 420 87 1 17~ 1 TUmeTRIP 1005 90 420 87 1 17 2 TURSTRIP 1005 90 420 87 1 17 3 BOTSBY 1005 265 90 5 87 1 17 4 C00LDOWN 130 52 90 87 1 18 1 EEATUP 1005 70 87 1 19 1 TUmaROLL 1005 90 420 87 1 19 2 TURST9 LIP 1005 90 420 87 1 19 - 3 TURaTRIP 1005 90 420 87 1 19 4 TURSTRIP 1005 90 420 87 2 6 1 BOTSBY 1005 265 90 5 87 2 6 2 C00LDOWN 0 40 90 87 2 9 1 EEATUP 1005 187 87 2 10 1 TUmaROLL 1005 90 420 87 2 10 2 TURBTRIP 1005 90 420 87 3 11 1 BOTs3Y 1005 265 90 5 I 87 3 11 2 CooLDOWN 50.2 28 90 l 87 3 13 1 EEATUP 1005 40 87 3 13 2 TURSROLL 1005 90 420 87 4 6 1 30Ts3Y 1005 265 90 5 87 4 6 2 C00LDOWN O 30 90  ; 87 4 9 1 ERATUP 1005 55 87 4 10 1 TURBROLL 1005 90 420 87 5 22 1 TURSTRIP 1005 90 420 i 87 5 26 1 TURSTRIP 1005 90 420 57 7 3 1 FEloss 1005 265 420 l SIR-93-037, Rev. 0 10 Appendix B f StructuralIntegdtyAssociates,Inc.

si 'l O Yr No Day Sea. Transient Parameters SS 1 2 1 50TSBY 1005 265 90 5 83 1 2 2 C00LDOWN 0 20 90 se 1 15 1 Una0LT 88 2 15 1 REPUEL 3 as 3 15 1 30LTUP 30 3 20 1 BYDROTEST 1093 207 08 4 20 1 MEATUP 1007 45 88 4 24 1 TUPaantf. !m 90 420 88 4 24 2 TURBTRIP 1007 90 420 80 4 24 3 50TSBY 1007 265 90 0 i' SS 4 25 1 COOLDOWN 0 65 90 58 4 27 1 EEA3VP 1005 92 i SS 4 28 1 TURBROLL 1005 90 420 l 80 4 28 2 TURSTRIP 1005 90 420 88 4 28 3 TURBTRIP 1005 90 420 88 4 20 4 TURBTRIP 1005 90 420 88 4 28 5 TURSTRIP 1005 90 420 88 4 28 6 TURSTRIP 1005 90 420 88 4 29 1 TURSTRIP 1005 90 420 88 5 2 1 BOT 58Y 1005 265 90 5 88 5 2 2 C00LDOWN 150 25 90 88 5 4 1 EEATUP 1005 20 80 5 4 2 TURaROLL 1005 90 420 es 5 7 1 30T88Y- 1005 265 90 5 OS 5 7 2 C00LDOWN 0 50 90 SS 5 14 1 NEATUP 1005 35 BS 5 14 2 TUmaROLL 1005 90 420 BS 5 15 1 30T58Y 1005 265 90 0 88 5 15 2 C00LDOWN O 12 90 88 5 16 1 BEATUP 1005 60 80 5 17 1 TUR3 ROLL 1005 90 420 88 5 17 2 TURSTRIP 1005 90 420 80 7 23 1 NOTSBY 1005 265 90 5 38 7 23 2 COOLDOWN 0 25 90 80 7 30 1 ERATUP 1005 25 88 7 31 1 TURBROLL 1005 90 420 88 11 16 1 TURaTRIP 1005 90 420 88 11 16 2 NOTSBY 1005 265 90 5 88 11 16 3 C00LDOWN 0 65 90 SS 11 17 1 EEATUP 1005 47 88 11 19 1 TURBROLL 1005 90 420 39 6 17 1 30TsBY 1005 265 90 5 89 6 17 2 C00LDOWN 0 115 90 89 6 27 1 EEATUP 1005 60 39 6 20 1 TURBROLL 1005 90 420 39 9 8 1 NOTsaY 1005 265 90 5 OS 9 8 2 C00LDOWN 0 95 90 OS 9 13 1 UNDOLT 89 9 26 1 REPUEL 3 90 2 1 1 30LTUP 90 2 13 1 NYDROTEST 1088 200 90 3 11 1 NEATUP 1005 100 90 3 12 1 TURBROLL 1005 90 420 90 5 20 1 BOTSBY 1005 265 90 $ r 90 5 20 2 C00LDOWN 0 86 90 90 6 10 1 NEATUP 1005 61 90 6 12 1 TURBROLL 1005 90 420 90 0 16 1 TURSTRIP 1005 90 420 90 8 16 2 BOTSBY 1005 265 90 5 90 8 16 3 COOLDOWN 12 100 90 90 0 17 1 NEATUP 1005 90 90 8 18 1 TURBROLL 1005 90 420 90 8 19 1 50TSSY 1005 265 90 0 90 8 19 2 C00LDOWN 0 91 90 90 8 29 1 NEATUP 1006 65 90 9 3 1 TURBROLL 1006 90 420 90 9 27 1 30TSBY 1005 265 90 5 90 9 27 2 C00LDOWN 58 46 90 90 9 30 1 NEATUP 1005 55 90 10 1 1 TURBROLL 1005 90 420 90 10 12 1 TURBTRIP 1005 90 420 90 10 12 2 ROTSBY 1005 265 90 5 90 10 12 3 C00LDOWN 35 55 to 90 10 17 1 BEATUP 1005 66 90 10 19 1 TURBROLL 1005 90 420 91 1 25 1 50T58Y 1005 265 90 5 91 1 25 2 C00LDOWN 17 77 90 SIR-93-037, Rev. 0 11 Appendix B f StructuralIntegrity Associates, Inc.

a - st. ?e' . o Yr No Day Sec. Transient Parameters 91 1 30 1 SEATUP 1005 60 91 1 31 1 TumanoLL 1005 90 420 91 3 29 1 EDTSSY 1005 265 90 5 91 3 29 2 C00LDOWN O 100 90 91 5 6 1 EEATUP 1005 90 91 5 8 1 TUnan0LL 1005 90 420 91 6 8 1 TTBYPASS 1005 90 420 91 9 12 1 30TSBY 1005- 265 90 5 91 9 12 .2 C00LDOWN -0 85 90 91 9 17 1 UNBOLT 91 10 31 1 REFUEL 3 91 11 23 1 30LTUP 91 11 24 1 EYDROTEST 1094 191.2 31 12 6 1 ERATUP 1006 73 91 12 22 1 Tg-nr r. 1005 90 420 91 12 22 2 NOTSSY 1005 265 90 0 91 12 22 3 C00LDOWN 0 65 90 92 1 1 1 ERATUP 1005 48 92 1 5 1 tun-r r. 1005 90 420 92 1 6 1 T"JRSTRIP 1005 90 420 i 92 1 7 1 TURaTRIP 1005 90 420 92 1 10 1 30TSaY 1005 265 90 5 92 1 11 1 C00LDOWN 90 50 90 92 1 11 2 EEATUP 1005. 40 92 1 12 1 TURan0LL 1005 90 420 92 2 2 1 BOTs3Y 1005 265 90 5 92 2 2 2 C00LDOWN 153 30 90 92 2 4 1 ERATUP 782 15 92 2 6 1 C00LDOWN 166 60 90 , 92 2 13 1 NEATUP 1005 50 , 92 2 14 1 TURaa0LL 1005 90 420 [ 92 4 21 1 BOTSSY 1005 265 90 5 l 92 4 21 2 C00LDOWN O 25 90 , i i i l l SIR-93-037, Rev. 0 12 _ Appendix B f StructuralInte9dtyAssociates,Inc.

u ey h ENCLOSURE 2 BRUNSWICK STEAM ELECTRIC PLANT, UNIT NO. 2  ; NRC DOCKET NO. 50-324 OPERATING LICENSE NO. DPR-62  ! NUREG-0619 INSPECTIONS OF FEEDWATER NOZZLES SUBMITTAL OF FATIGUE USAGE INFORMATION i I LIST OF REGULATORY COMMITMENTS The following table identifies those actions committed to by Carolina Power & Light Company in this document. Any other actions discussed in the submittal represent intended or planned actions by Carolina Power & Light Company. They are described to the NRC for the NRC's  ; information and are not regulatory commitments. Please notify the Manager-Regulatory Affairs at  ! the Brunswick Nuclear Plant of any questions regarding this document or any associated regulatory commitments. Committed Commitment date or outage' e

1. None N/A i I

l i i i 1}}