ML20108B910
| ML20108B910 | |
| Person / Time | |
|---|---|
| Site: | Brunswick |
| Issue date: | 02/08/1996 |
| From: | Gore P CAROLINA POWER & LIGHT CO. |
| To: | |
| Shared Package | |
| ML20108B888 | List: |
| References | |
| ESR-96-00154, ESR-96-00154-R0, ESR-96-154, ESR-96-154-R, NUDOCS 9605060097 | |
| Download: ML20108B910 (66) | |
Text
.-
-e ENCLOSURE 1 l
BRUNSWICK STEAM ELECTRIC PLANT, UNIT NO. 2 l
DOCKET NO. 50-324/ LICENSE NO. DPR-62 l
NRC GENERIC LETTER 94-03, i
"INTERGRANULAR STRESS CORROSION CRACKING OF CORE SHROUDS IN BOILING WATER REACTORS" t
UNIT 2 CORE SHROUD REINSPECTION RESULTS B212R1 REFUELING OUTAGE l
ENGINEERING SERVICE REQUEST (ESR) 54 - REVISION 0 l
EVALUATE RESULTS OF UNIT 2 CORE SHROUD B212R1 INSPECTIONS l
l l
l l
l l
9605060097 960429 i
l PDR ADOCK 05000324 O
Paga 1 of $
Form 1 ENGINEERING SERVICE REQUEST ESH #
Rev #
WR/JO #
Other Documents (ACR, FACTS, etc.)
9600154 0
OTHER
-GL94-03 Plant /Unst Pnmary System #
Primary System Name BNP 2 1005 B21,B11-NUCLEAR BOILER (INC.RX VESSEL &
Affected Title Onginator/ Phone EVALUATE RESULTS OF U2 CORE SHROUD B212R1 INSPECTIONS GORE, PHILLIP S
/850-2318 Problem / Proposed Solution / Justification Evaluate the results of the Unit 2 Core Shroud inspections performed during the B212R1 outage. This evaluation is needed to support the startup of Unit 2.
DUE DATE 03-08-96 0 continued SCREENING Quality Class is a 10CFR 50.59 Safety Review required per (plant specific procedurep Response Type A Safety-Related
@ Yes (See attached safety evaluation for signatures)
EVAL Other O No (Concurrence of two QSRs required below)
O N/A (Engineering Reply ESR) 1st QSR:
Date:
2nd QSR:
Date:
Engineering Discipli es (Print Name, Sign, Date)
Engineering / Plant Programs (Print Name, Sign, Date)
Mechanical
_,Y, h( 7%
b
,[ f_pT M8
[g System Eng
-L
\\
a o
Systern Eng I
i R 0 91996 Sotern Eng NUCLEAR DOCUMENT C0NTROL g 3 p gEC\\PIEN O 00%
coma 0#
Procedure: OPLP-30 Revision 2 DCM01a 02/15/95
Pagalofh Form 1 ENGINEERING SERVICE REQUEST ESR #
Rev #
Title j
9600154 0
EVALUATE RESULTS OF U2 CORE SHROUD B212R1 INSPECTIONS Plant Customers (Print Name, Sign, Datel Specialty Reviews Design Verification C.. Nb v 9
%4N h%
't (6; A j
[
NAS Before Approval / implementation
Reference:
NAS Before Closeout
Reference:
PNSC Before Approval / implementation lJ NRC Before implementation
Reference:
Problem Resolution:
BNP2 shroud can safely operate in the present condition for a least one fuel l
cycle without any operational changes or restrictions.
l l
l See attached evaluation.
l l
0 Continued APPROVAL ls this a modification which constitutes a reduction in design margin?
Interim Approval Required?
^
O Yes (PGM approvalis required)
@ No (Engineering Mgr signs for PGM) me
/p g, Responsible Engineer JOHN W, JR VOSS 3 / C [pg g
Responsible Manager (Print Name, Sign, Date)
$lg}g Plant General Manager (Print Name, Sign, Date/
Procedure: OPLP-30 Revision 2 DCM02 10/18/95
(
-m l
Carolins Power & Ught Company ESR 96-00154
\\
Brunswick Nuclear Plant - Unit 2 Revision 0 l
Engineering Evaluation Page $ of 24 Table of Contents Page No.
ESR Cover Sheets (2)
Evaluation Cover Page........................................1 List of Effective Pages........................................2 Table of Contents
...........................................3 1.0 Purpose....................................,,,,,,,,,,4 l
2.0 C o n c l u si o n............................................
4 3.0 Background..........................................
4,5 4.0 Design Basis / Inputs - References.............................
6 5.0 Inspection Summary....................................
7-9 l
6.0 Structural Evaluation Summary............................ 10-19 l
7.0 Shroud Fluence Summary.................................
20 8.0 S a f e ty A n a l y sis........................................
21 b
Figures l
1 Comparison of B211R1 to B212R1 Weld H4 Crack Depths...........
12 2
B212R1 Shroud Evaluation Flow Chart.........................
14 l
3 Reactor Shroud Three-Dimensional View
.......................22 4
Roll-Out View of Inside Shroud Surface........................
23 5
Roll-Out View of Outside Shroud Surface.......................
24 Attachments i
A Letter from Carolina Power and Light Company to the U.S. Nuclear Regulatory
)
Commission "Submittalof Unit 2 Core Shroud Reinspection Plans" dated l
November 2, 1 9 9 5...................................
8 p a g e s i
B Analysis Outputs 30 pages C
EPRI Crack Growth Assessment
..........................5pages l
l t
l i
)
C rolina Power & Light Cornpiny ESR 96-00154 Brunswick Nuclear Plant - Unit 2 Revision 0 l
Engineering Evaluation Page$ of 2k l
1.0 PURPOSE l
1 This ESR Evaluation is recuired as part of Carolina Power and Light Company's commitment to USNRC Generic Letter 94-03 "Intergranular Stress Corrosion Cracking of Core Shrouds in Boi/ing Water Reactors". As such, this evaluation provides the following:
)
Documentation of the inspections performed on the Core Shroud during 8212R1.
- A basis for the continued use of the BNP2 Core Shroud for at least one additional operating cycle in the as-found condition without any operational changes or restrictions. This is accomplished by a review of the core shroud structural capacity to the criteria established by the BWRVIP (references 4.6,4.7) and approved by the Nuclear Regulatory Commission.
A basis for the determination of future shroud inspections.
2.0 CONCLUSION
S BNP2 shroud can safely operate in the present condition for at least one fuel cycle without any operational changes or restrictions.
All reported cracking is typical IGSCC located in the heat affected zone of the welds.
3.0 BACKGROUND
in October,1990, RICS!L 054 reported cracking near the circumferential seam weld at the core beltline area of the shroud in a GE BWR/4 located outside the United States. Based on recommendations contained in RICSIL 054, the BNP Unit 2 shroud was inspected during the 1991 refueling outage. No cracks were identified. The Unit 1 shroud was inspected in July,1993, and a near 360 circumferential crack was confirmed on the inside diameter of the Top Guide Support Ring, at the weld to the shroud mid-section. The tapes of the l
Unit 2 shroud IVVI were re-examined based on the early July Unit 1 findings. Three small indications were noted. Unit 2 tapes were again examined in late September, based on lessons learned on Unit 1.
One additional small indication was noted. Although this additional indication was bounded by the assumptions in the original evaluation, it was recognized that the quality of the 1991 taper was insufficient to identify all of the types of cracks being confirmed on Unit 1. Engineering evaluation EER 93-0536 was issued to assess Unit 1 shroud structuralintegrity and to justify continued operation of Unit 2 until a detailed inspection could be performed during the Spring,1994 RFO (B211R1).
l
L
(
Carolina Power & Light Comp 1ny ESR 96-00154 Brunswick Nuclear Plant - Unit 2 Revision 0 Engineering Evaluation PageGotZh The Unit 2 B211R1 shroud inspections were evaluated in engineering evaluation EER 94-0077. The evaluation concluded that structural integrity of the core shroud would be j
l maintained, with full FSAR safety margins, for at least the next 600 days of hot operation, and for welds H1, H4, and H5, for at least 1200 days of hot operation based on analysis l
of the inspection results. Additionally, welds H2 and H3 were permanently repaired during l
B211R1 by the installation of a series of brackets about the outside circumference of the l
shroud.
The B212R1 inspection scope was submitted to the NRC on November 2,1995 and is l
included in this report as Attachment A.
Details concerning the shroud design and fabrication can be found in reference 4.3.
l l
I I
l
_m _ _
__.m..
i Carolina Power & l.ight Company ESR 96-00154 Brunswick Nuclear Plant - Unit 2 Revision O Engineenng Evaluation Page 6 of 24$.
l v
4.0 DESIGN BASISilNPUTS - REFERENCES 4.1 U.S. Nuclear Regulatory Commission Generic Letter, GL 94-03 "/ntergranular Stress Corrosion Cracking of Core Shrouds in Boiling Water Reactors" dated July 25,1994 4.2 U.S. Nuclear Regulatory Commission Letter to Mr R. A. Anderson of Carolina Power and Light Company dated January 3,1995 " Generic Letter 94-03, Intergranular Stress
/
Corrosion Cracking of Core Shrouds in Boiling Water Reactors, Brunswick Steam Electac Plant, Units 1 and 2 (TAC NOS. M90084 and M90085)" including Enclosure 1 " Safety Evaluation for Unit 1" and Enclosure 2 " Safety Evaluation for Unit 2" l
l 4.3 Engineering Evaluation Report, EER 94-0077, " Evaluation of Unit 2 Core Shroud i
Indications and Operability Assessment." Revision 0 dated 06/04/94 4.4 Engineering Evaluation Report, EER 93-0536, " Evaluation of Unit 1 Core Shroud Indications and Operability Assessment of Unit 1 and 2" Revision 2 dated 03/13/94 4.5 Engineering Service Request, ESR 95-00765, " Unit 1 Core Shroud Reinspection Evaluation" Revision 1 dated 05/15/95 l
4.6 GE Nuclear Energy document GE-NE-523-113-0894, "BWR Core Shroud Inspection l
and Plaw Evaluation Guidelines" Revision 1 dated March 1995 4.7 GE Nuclear Energy document GE-NE-523-113-0894 Sur plement 1, "BWR Core Shroud Distributed Ligament Length Computer Program" dated September 1994 4.8 BWRVIP Inspection Committee document " Reactor Pressure Vessel and Internals -
Examination Guidelines (BWRVIP-03)"TR-105696 dated September 1995 4.9 Structural Integrity Associates document RAM-94-092/ SIR-94-029, " Addendum to the Brunswick Unit 1 Screening Criteria", dated April 6,1994.
4.10 CP&L Brunswick Nuclear Plant - Plant Operating Manual - Volume X - Period Test -
OPT-90.1, "In-Vessel VisualExaminations", Rev 15, dated 2l06/96 4.11 U.S. Nuclear Regulatory Commission letter to Mr. J.T. Beckham, Chairman BWRVIP, dated June 16,1995 " Evaluation c,f BWR Core Shroud Inspection and Evaluation Guidelines, GENE-523-113-0894, Revision 1, dated March 1995, and BWRVIP Core Shroud NDE Uncertainty & Procedure Standard, dated November 22,1994" 4.12 GE Document GENE-B11-00682-1 Revision 1 " Brunswick Nuclear Plant - Unit 2 -
Shroud Examination Plan" dated 2/2/96
(
4.13 ' Supplement 1 Report to PT90.1 - GE BNP B212R1 Inspection Summary dated l
February 1996
l I
)
l Caro /ina Power & Light Company ESR 96-00154 Brunswick Nuclear Plant - Unit 2 Revision 0
}
Engineering Eva/uation Page7of7) 5.0 INSPECTION
SUMMARY
l l
l A copy of the CP&L B212R1 shroud inspection plan which was submitted to the U.S.
i Nuclear Regulatory Commission is included in this report as Attachment A. Table 5.1 provides the B212R1 shroud inspection summary.
ble 5.1 - :212R1 Shr.
i
% of
% of Weld I
Weld inspect. ion Examined l
lD Method ngh Weld Length m ent l
Examined Flawed l
The 30.9 % represents 100% of the readily accessible area. Access was limited due to the lugs and core spray downcomer piping. For the upper portion of the weld, three (3) indications were rep rted ranging in length from 0.99" to 2.00" and 30 9 Upper 2.7 ranging in depth from 0.22" to 0.27". For the lower H1 Ultrasonic I
p rtion of the weld, thirty-seven (37) indications 83.3 Lower 32.1 were reported ranging in length from 0.99" to i
12.98" and ranging in depth from 0.05" to 0.56".
l See Reference 4.12 for the weld specific scan plan i
and Reference 4.13 for the GE examination summary sheets.
Shroud weld H2 has been permanently repaired by H2 n/a n/a inspection the addition of bolted clamps during B211R1.
performed Shroud weld H3 has been permanently repaired by H3 inspection n/a n/a the addition of bolted clamps during B211R1.
performed Two (2) sections, which were previously examined in B211R1 and partially cracked, were inspected to assess crack depth growth. See Table 6.1 for B211R1 weid inspection summary and reference 1
4.3 for detailed results. Results indicated no H4 Ultrasonic see comment detectable growth within the uncertainty band of l
the UT measurements. This is consistent with industry data on similar indications, and confirmed with EPRI developed crack growth predictor models, using actual BNP water chemistry data.
(See Attachment C)
See Table 6.1for B211R1 weld inspection summary H5 inspection n/a n/a and reference 4.3 for detailed results, performed f
l i
l Caro /ina Power & Light Company ESR 96-00154 Brunswick Nuclear Plant - Unit 2 Revision O Engineering Evaluation Page@ of 2&
. ble 5.1 - : 212R1 Shr.
% of Weld W eld inspect. ion Examined ID Method Weld Length Examined p
Eight (8) indications were reported ranging in length from 1.87" to 4.71" and ranging in depth from H6a Ultrasonic 79.0 5.3 0.08" to 0.27". See Reference 4.12 for the weld specific scan plan and Reference 4.13 for the GE examination summary sheets.
Thirty-nine (39) indications were reported ranging in length from 1.56" to 29.74" and ranging in H6b Ultrasonic 78.4 69.6 depth from 0.02" to 0.77". See Reference 4.12 for the we!d specific scan plan and Reference 4.13 for the GE examination summary sheets, j
Fifteen (15) indications were reported ranging in j
length from 1.49" to 5.24" and ranging in depth from 0.06" to 0.52". All indications were located H7 Ultrasonic 75.6 10.9 above the weld in the stainless steel material.
See Reference 4.12 for the weld specific scan plan and Reference 4.13 for the GE examination summary sheets.
No H8 inspection n/a n/a BWRVIP developing inspection tools / techniques.
performed Weld H9 data obtained during inspection of RPV H9 Ultrasonic
=98 0
Beltline "K" weld.
Shroud No Support inspection n/a n/a BWRVIP developing inspection tools / techniques.
Legs performed VT 1 Clamps n/a n/a 4 lamps inspected, no anomalies reported.
VT-3 Other inspection Indications During the B212R1 Core Spray inspections, a branched crack like indication was discovered adjacent to a Core Spray sparger support bracket to shroud weld. The bracket is located at 92% azimuth and is the center support bracket between the two sparger arms. The indication branches into two legs. One leg of the indication is estimated at 1 inch in length and runs in the horizontal direction. The other leg of the indication is estimated at 1 %
inches in length and runs in the vertical direction. Based on the inspection information, this
i Carolina Power & Light Compxny ESR 96-00154 l
Brunswick Nuclear Plant - Unit 2 Revision 0 j
Engineering Evaluation Page 9 0f 2 4 l
crack most probably originated in a fabrication weld that was subsequently removed. Such
(
cracking is typically expected to be shallow. BWRVIP document GENE-523-113-0894, Rev.
1, BWR Core Shroud Inspection and Flaw Evaluation Guidelines states "There are other welds and welded components attached to the shroud such as..... attachment welds for j
core spray piping". For other welded shroud attachments, the welded region is small enough that even if through-wall SCC were to develop, the safety consequences due to leakage from the core region into the shroud annulus region would be considerably less significant than the scenarios evaluated for circumferential welds. There would be no significant safety concerns resulting from cracking of these welds for any operating l
condition given that the structural margins of the circumferential welds are maintained."
Therefore, this indication is considered bounded and no further analysis is required. This i
item has also been documented in ESR 96-00151.
l l
l i
l l
l l
l l
1 l
i n
l
Cuolins Power & Light Compiny ESR 96-00154 Brunswick Nuclear Plant - Unit 2 Revision O Engineering Evaluation Page/0 of 24-6.0 STRUCTURAL EVALUATION
SUMMARY
Core Shroud Evaluation Conservatisms Assumed all areas uninspected are fully cracked through-wall and no credit was taken e
in analysis for these areas.
Assumed all areas previously inspected by VT, one side only are fully cracked through e
wall and no credit was taken in the analysis for these areas.
Used ASME Safety Factors in lieu of UFSAR Safety Factors in analysis.
e The analyses contained in this engineering evaluation used ASME Section XI safety factors. The ASME safety factors are 2.77 for normal operation (Level A) and upset (Level B) conditions and 1.39 for faulted (Level D) conditions. BSEP Updated FSAR specifies safety factors of 2.25 for normallupset conditions and 1.125 for faulted conditions.
Used 5x 10' in/hr crack growth rate in lieu of measured or predicted BNP crack growth e
rates.
Inspection results from the Unit 1 H5 weld showed no measurable crack growth.
Similar results were expected for the crack growth for the Unit 2 welds. Additionally, a weld specific crack growth analysis was performed by EPRI by applying the BWRVIP crack growth model to the BNP data for welds H4 (B211R1 data) and H6b(B212R1 data). The EPRI predicted crack growth rates varied from 4.84E-06 inthr for a shallow crack to <3.18E-09 inthr for deeper flaws. Results of the reinspection of the H4 weld indicated that there was no measurable crack growth.
Used maximum depths for reported flaws for entire length of flaw in lieu of actual e
depths vs. length (profile) of flaws.
UT consistently oversized the reported length on all flaws e
Assumed 600 days of operation for last cycle and next 2 cycles for all welds except e
H5.
Assumed 100% capacity factor for analysis e
Did not take credit for fillet welds in the analysis e
Applied UT uncertainty for depth on all flaws where specific depth limit load analysis e
was run.
Applied UT uncertainty for length as required.
e Grew crack lengths for 2 cycles to take credit for 1 additional cycle of operation.
e Safety Factors The analyses contained in this angineering evaluation used safety factors consistent with Section XI of the ASME Code. For loadings during normal operation (Level A) and upset (Level B) conditions, the ASME Code recommended factor of safety of 2.77 was used. For faulted (Level D) conditions, a factor of safety of 1.39 was used. Section 3.9.5 " Reactor Pressure Vessellnternals"of the BSEP Updated FSAR specifies safety factors of 2.25 for normallupset conditions and 1.125 for faulted conditions. The ASME factors of safety used i
i
Carolina Power & Light Company ESR 96-00154 Brunswick Nuclear Plant - Unit 2 Revision 0 Engineering Evaluation Pagellof f in this evaluation are conservative and provide for higher structural safety margins than established in the BSEP Updated FSAR.
Crack Growth The B212R1 inspection plan specified ultrasonic inspection of two (2) known cracked sections of the H4 weld for which crack depth data was obtained during B211R1. This was done for the explicit purpose of assessing crack depth growth in the weld HAZ. Weld H4 was chosen since it has the highest neutron fluence (see Section 7.0) and relatively high ECP with marginal influence from hydrogen. Little, if any, change in depth was expected based on current understandings of weld residual stress and water chemistry influences on crack growth rates. Figure 1 provides a graphical representation of the comparison of the B212R1 data (south side) with the B211R1 data from the same location. A review of the B212R1 and B211R1 data (north and south sides) shows a maximum change in crack depth of 0.09". The crack depth measurements for the H4 weld were based on depth sizing uncertainties ranging from 0.1"(B211R1) to 0.106"(B212R1). The maximum depth delta of 0.09" between the two outages is well within the uncertainty band of the inspection equipment. A weld specific crack growth analysis was performed by EPRI (see Attachment C) by applying the BWRVIP crack growth model to the BNP data for welds H4 (B211R1 data) and H6b(B212R1 data). The tables below provide a summary of the i
information. Based on the inspection data and crack growth rate analyses, the EPRI predicted crack growth rates are 1 to 4 orders of magnitude less than the bounding rate assumed in the analysis.
EPRI Crack Growth Rate Estimates for H6b ID EPRI Crack Growth Rate Estimates for H4 ID Initial Maximum Crack Growth Rate i
Initial Maximum Crack Growth Rate Depth (in/hr) l Depth (in/hr) 0.10 4.84E-06 0.50 3.9E-06 0.26 3.88E-06 4
0.58 6.3E-08 1
0.60 3.18E-09 0.72 0
1 4
,)
i 0.79 0
I See Attachment C for additional details 0.75 0
concernina the EPRI Crack Growth Rate Analvsis 0.86 0
.~
=
Carolina Power & Light Comp 1ny ESR 96-00164 i
Brunswick Nuclear Plant - Unit 2 Revision 0 Engineering Evaluation Page /f_of 2 4 Brunswick B212R1 Shroud Weld H4 Crack Depth Comparison B212R1 & B211R1 Data i,
- f, jl2 A. /m
- n i
l
/
\\'l ' V l ' \\
l
- ')
ll l -
j.,
r I l' Ir;
\\/
11 l
l l
i l
N
\\\\,,
e,,
].,
5 II/
i c
A fU w
w a-
/
/
l N _/ N l
/,,,,,,,,,, f................. 'n., f............
D.., f,............... f,,,,,,,............,X san.as sei eo ses.ao a4a so a+e m som saio sooJs esim asa an assis seem ses.so Azimuth Position (dog)
- B212R1 - Data -. B211R1 Data Figure 1 Welds H4 and H5 Generic Letter 94-03 (reference 4.1) baseline inspections were performed for welds H4 and H5 during B211R1 for 100% of the accessible weld areas with the primary inspection tooling. Little cracking was found in these welds during the B211R1 inspections (see Table 6.1). Structuralintegrity for these welds was demonstrated (reference 4.3) for 1200 days (fuel cycles 11 and 12). Based on this, welds H4 and H5 were not scheduled for reinspection during B212R1 with the exception for weld H4 to assess crack growth depth as previously stated.
Table 6.1 - B211R1 - H4 and H5 Inspection Results
% of Weld
% of Examined Length Weld Length Comment i
ethod Examined Flawed H4 Ultrasonic 78.0 26.1 Data from reference 4.3 l
92.8 - ID 13.6 - ID H5 VT-1 30.6 - OD 6.8 - OD
~
The data used for the structural evaluation of the welds were taken from the inspections performed during B211R1. Table 6.1 shows the B211R1 inspection results. These welds were qualified by the ligament length method assuming all uninspected and partially cracked regions were fully cracked and using a crack growth rate of 5x10-5 in /hr.
Carolina Power & Light Company ESR 96-00154 Brunswick Nuclear Plant - Unit 2 Revision 0 Engineering Evaluation Pagel.3ofg$
Weld H4 was qualified for a total of 1800 days starting from the beginning of fuel cycle
- 11. The only ligaments used in the analysis of weld H5 were those which were visually inspected from both sides (ID and OD). As a result of this conservatism, the structural evaluation is based on 30.6% of the total circumferential length. A review of the data shows a significant portion (72.5%) of the ID is unflawed, however no additional ligament credit was taken. Additionally, a generic fuel cycle length of 600 days is used in this evaluation. Actual cycle 11 length was 581 days and the projected cycle lengths for cycles 12 and 13 are 550 days and 559 days respectively. The sum of these operating cycle days is 1690 days assuming a 100% capacity factor. Taking credit for the safety factor conservatism (ASME/BSEP UFSAR) would give a life cycle run time for weld H5 of 1723 days. Based on this and the conclusions drawn in the crack growth discussions, it is concluded that the structural evaluation for weld H5 meets the recommended 2 cycles of crack growth and provides for the required structural margin for continued unit operation for a least one additional fuel cycle. If more realistic crack growth rates (as measured on both Units 1 and 2) were used, significant additionally structural margin would be demonstrated.
l
Cstolina Power & Light Company ESR 96-00154 Brunswick Nuclear Plant - Unit 2 Revision O Engineering Evaluation Pagel ht Q l
l B212R1 Shroud Wald Evaluation Flow Chart i
Evaluate Known Accessibility Limitations at Each Weld.
r ir
(
Inspect 100% of Accessible Areas with Scanner i
Welds H1, Hea, HSb, H7.
i i
j Lrnin satisfied?
No l
1 r, ir Wolds HS, Heb.
Wolds H1, H4, Hea, H7 gr Qualify by DLL Limit Load l
Analysis (Use either Full l
or Partial Thickness LIgame nts).
Mr Structural Integrity i
Established l
(H 1. H 4, H 5, H e a, HSb,HT & HD).
Mr Required Inspections Notes:
Com plete.
(1) Shroud welds H4 and H5 were not inspected during tiie B212R1 outage. The data used in the engineering structural evaluation was taken from the B211R1 Prepare Engineering inspections.
Evaluation Report.
(2) Information for shroud weld H9 obtained as a part of vessel beltline inspections.
Figure 2 l
l
C1rolina Power & Light Company ESR 96-00154 Brunswick Nuclear Plant - Unit 2 Revision 0 Engineerina Evaluation PageJS5t24 Full Thickness Liaament E"aluation Methodoloav (Welds H1. H4. H5. H6a. H6b. H7)
Step 1 - Collect information The full thickness ligament data was extracted from the verified GE inspection summary sheets and input into a Lotu: 123 spreadsheet. All uninspected rvjions as well as partial thickness ligaments were assumed fully cracked. The following spreadsheet variables were j
also input for each weld location evaluated:
Variable Comment l
Shroud thickness (in) 1.50" (No credit taken for any fillet welds) 189.5"; H1 Shroud outside diameter 177.5"; H4, H5, H68, H6b 171.0"; H7 l
Crack Growth Rate 5x104 in/hr Reference 4.8.
(
See spreadsheets (Attachment B) and/or Shroud I
Tots: Inspection Uncertainty 4
Weld Evaluation Summary (Table 6.4) for specific values used.
sed 2 cycks M crad grod 1
e ycle ssumed to be 600 days)
Reference 4.9. See Attachment B spreadsheet Lealc (for Normal / Upset and Faulted) outputs for values We'.--*-A saw -% t-4sw 4+6e From this information, the spreadsheet calculated the weld Lsn value, the total full thickness ligament length at the end of the evaluation period and the full thickness ligament starting and stopping azimuths. Crack growth, inspection uncertainty and crack proximity were considered in the determination of the end of evaluation period full thickness ligament
~
length.
Step 2 - Determine if Limit Load Analysis Required The total full thickness ligament length at the end of the evaluation period (L,o.) was compared to Lyn. If L,,, was greater than Lsn, then the weld was considered structurally qualified for continued service for at least one fuel cycle. If L,o, was less than Lyn, then a detailed limit load analysis using the DLL computer program (reference 4.7) was performed.
Step 3 - Perform DLL analysis End of evaluation period full thickness ligament data was input into the DLL computer program along with other required variables. See the DLL computer run outputs contain in Attachment B. Shroud stress values were obtained from reference 4.5.
.~
l Carolins Power & Light Company ESR 96-00154 l
Brunswick Nuclear Plant - Unit 2 Revision O l
}
Engineering Evaluation Pagej& of g i
Step 4 - Determine if Weld Structurally Qualified if the required ASME safety margins were met, the weld was considered structurally l
qualified for continued service for at least one fuel cycle. If the required ASME safety l
margins were not met, then the process (Steps 1 - 4 ) was repeated with iteration on l
evaluation period down to 600 days for welds H1, H6a, H6b and H7 and 1200 days for j
welds H4 and H5. If a weld could not be structurally qualified by the full thickness ligament length method for the specified minimum evaluation period, then the partial thickness ligament analysis method was used.
i Partial Thickness Llaament Evaluation Methodoloav (Weld H6b)
Step 1 - Collect Information The partial thickness ligament depth data was extracted from the verified GE inspection summary sheets and input into a Lotus 123 spreadsheet. All uninspected regions were assumed fully cracked. The spreadsheet calculated the new ligament thickness at the end l
of the evaluation period (600 days). Additionally, the partial thickness ligament starting and stopping azimuths were calculated. Crack growth (5x10~5) and inspection uncertainty (0.106") were considered in the determination of the end of evaluation period ligament depth.
Step 2 - Perform DLL analysis l
End of evaluation period partial thicbess ligament depth data was input into the DLL computer program along with the other required variables. See the DLL computer run output for weld H6b. Shroud stress values were obtained from reference 4.5.
I Step 3 - Determine if Weld Structurally Qualified If the required safety margins were met, the weld was considered structurally qualified for continued service for at least one fuel cycle.
l l
l
Carolina Power & Light Company ESR 96-00154
=
Brunswick Nuclear Plant - Unit 2 Revision O Engineering Evaluation Page] 70f 2 &
Shroud Circumferential Weld
}
Structural Evaluation - Safety Factors Table 6.2 - Safety Factors at End of Fuel Cycle 12 (600 days)
Normal / Upset: _
iFaulted., MMU~ng
~
'"'"**Y;
) ""I WTl
' '". ' Factor :ed **'
weMiD Factor:
Safety Factor o
- Safety Factor ; g l
HT 54.58 2.77 26.10 1.39 H4 17.37 2.77 9.69 1.39 l
HS l
3.23 2.77 2.37 1.39 e
H6a 31.48 2.77 18.98 1.39 l
H6b 5.99 2.77 3.65 1.39 l
l H7 17.24 2.77 10.30 1,39 l
Table 6.3 - Safety Factors at End of Evaluation Period
- Normal / Upset-f Faulted' it WeMID Calculated Safety '
lASME
{ Calculated Safety '
'. Safety Factoi; Factor
,lNSME J (evaluation period)
Factor.
.~ Safety Factor.
27.29-2.77 13.05 1.39 11.58 2.77 6.46 1.39 2.77 2.77 2.03 1.39 15.74 2.77 9.49 1.39 5.99 2.77 3.65 1.39 8.62 2.77 5.15 1.39
-. - - ~ ~. - - - -
Carolina Power & Light Company ESR 96-008 54 Brunswick Nuclear Plant - Unit 2 Revision 0 Engineering Evaluation Page/f of W Table 6.4 - Evaluation Summary - Shroud Circumferential Welds
.f
'"*E' Weld Evaluation Evaluation ID Percentege"'
Method (in)
(days)
- All cracks assumed through-wall Uninspected regions assumed fully cracked g,
Based on conservative evaluations that 30.9 %U 0.0 L*i" H1 1200 were performed on the deepest flaw found 83.3%L (length)
Satisfied from the upper and lower examination, the safety factors based on the upper data i
j were greater than 3 times those for the lower data, therefore the lower exam data was used for the structural analysis.
- Acceptable for Continued Operation 0.372 L""" "I
- UT inspection data from B211R1 H4 78.0 %
1800*
(length)
Satisfied All cracks assumed through-wall j
- Uninspected regions assumed fully cracked
- Acceptable for Continued Operation
- Ligament data based on 2-sided visual One s."ded visual.
1.16 1400*
Limit Load H5 30.6 %
i inspect. ion data assumed (length)
(1723)
Analys.is fully cracked All cracks assumed through-wall Uninspected regions assumed fully cracked
- Acceptable for Continued Operation 0.0 L *
H6a 79.0 %
1200
- All cracks assumed through-wall (length)
Satisfied
- Un. inspected regions assumed fully cracked 0.106 Limit Load
- Acceptable for Continued Operation H6b 78.4 %
600 *
(depth)
Analysis
- Partialligaments analyzed j
Acceptable for Continued Operation e
0.0 L,*
H7 75.6 %
1200
- All cracks assumed through-wall (length)
Satisfied l
Uninspected regions assumed fully cracked No indications requiring engineering eva.luation were reported. No analysis required for weld H9 H9
=98%
e
-... ____=
m.
i See next page for notes
Cstolina Power & Light Company ESR 96-00154 Brunswick Nuclear Plant - Unit 2 Revision O Engineering Evaluation Pageftfofb;f-Notes to Tables 6.4 I.
(1) Evaluation Percentage = The percentage of total weld circumference on which the structural evaluation is based. Remaining percentage is assumed fully cracked. For welds H1, H4, H6a, H6b and H7, the remaining percentage is the uninspected percentage. For weld H5, the remaining percentage is the sum of the single side VT inspection + uninspected regions.
(2) inspection uncertainty from reference 4.8. (Welds H1, H6a, H6b, H7 ; UT Demo 16; Scan Type 2A; Surface = ID/Near; Length transducer = 45 Shear; Depth transducer
= 60 Longitudinal). Weld H6b was structurally qualified by taking credit for partial ligament thicknesses, therefore the uncertainty was (pplied to the depth measurements where partial ligament credit was taken.
(3) Circumferential shroud welds H4 and H5 were not inspected during the B212R1 outage (2 sections of H4 were reinspected for crack depth growth during B212R1). The inspection data from the B211R1 outage was used in the stmetural evaluation. Per the guidelines given in reference 4.6, two (2) cycles of crack growth are used in the calculations to qualify the shroud weld for the next fuel cycle, in this evaluation, 600 days was used as the length of 1 fuel cycle. Since the data is from the B211R1 outage,1800 days is used in the qualification calculation for H4 (600 days from B211R1 to B212R1 + 1200 days from B212R1 to B213R1). Based on this criteria and the weld inspaction data from B211R1, weld H5 could only be qualified by the full thickness ligament method for a maximum run time of 1400 days (600 days from B211R1 to B212R1 + 800 days from B212R1 to B213R1). Actual run time over this period is projected as 1690 days. Taking credit for the safety factor conservatism (ASME/BSEP UFSAR) would give an evaluation period of 1723 days for weld H5.
(4) L
= Minimum required ligament length for limit load single ligament analysis + (2 x Crack Growth for Evaluation Period) + Inspection Uncertainty. Since L,in at the end of the evaluation period is satisfied ( L. > Lmin) a detailed limit load analysis is not required to show structural acceptance. A limit load analysis was performed for these wolds in order to determine the safety factors used in this report.
(5) Circumferential shroud weld H6b was analyzed using partial ligament thickness.
Measured thickness data was reduced to account for growth and uncertainty. The crack growth calco!stion used a run time of 600 days (1 fuel cycle). Actual projected length for fuel cycle 12 is 550 days.
l Cstolina Power & Light Company ESR 96-00154 Brunswick Nuclear Plant - Unit 2 Revision 0 Engineering Evaluation Pagej O of Q 7.0 SHROUD FLUENCE
SUMMARY
Based on current industry evaluation guidelines, in order to ensure structural integrity, a linear elastic fracture mechanics analysis (LEFM) must be performed when the total neutron fluence accumulation at any shroud circumferential weld reaches 3x102 n/cm, E > 1 MeV.
2 No BNP2 shroud weld will reach the fluence threshold level (3x10 n/cm, E> 1MeV) for 2
2 LEFM analysis during the next fuel cycle. The only welds expected to reach this threshold level during the current operating license of BNP2 are H4 and H5. The following table gives the projected neutron fluence levels for each shroud weld at the end of the next fuel cycle (600 days). These projections are based on the flux data from reference 4.4.
I Weld ID Flux Rate (n/cm yr) 2 End of Fuel Cycle 12 H1 1.3E + 1 R 1.00E + 17
)
H4 2.9E + 20 2.30E + 19 H5 1.6E + 20 1.24E + 19 j
l H6a 9.3E + 18 7.41 E + 17 H6b 8.8E + 18 7.00E + 17 l
H7 1.3E + 18 1.00E + 17 Note: Flux rates taken at weld ID.
M
.... -.... -. ~. -, -..... ~. -
4
~
Camlina Power & Light Company ESR 96-00154 Brunswick Nuclear Plant - Unit 2 Revision O Engineering Evaluation Pags2lOf2.tf
)
1 8.0 SAFETY ANALYSIS ATTACHMEN i B Guideline for 10 CFR 50.59 Safety Evaluations i
1 ATTACHMENT 1 10 CFR 50.59 Safety Evaluation Screen ACTIVITY NO.
REV.
1.
DOES THE ACTIVITY REQUIRE A CHANGE TO THE OPERATING LICENSE OR TECHNICAL SPECIFICATION?
l)YES
[ e i NO r
Basis: ESR 96-00154 is en engineenng evaluation report which documenta the structural quahfication of the Core Shroud based on the enspections performed dunng the B212R1 outage. No physical plant modifications or operational restrictions are required as a result of this ESR. Therefore, this ESR does not require a change to the operating heense or technical specification.
l Note: if Yes, and the scope of the activity is limited to a Technical Specification / Operating Licensing change, then complete Section #6 of thie l
form, and process per plant procedure, if the scope of the activity is not limited to a Tech. Spec. or OL change, in addition to processing a Tech Spec. or OL change request, continus the screening procese, if No, continue the screerdng process.
2.
15 THE ACTIVITY FULLY BOUNDED BY A PREVIOUSLY PERFORMED 10 CFR 50.59 SAFETY EVALUATION 7 i e I YES [ l NO i
r Evaluation No. The most recent 10CFR 50.59 Safety Evolustion is contained in EER-940077. The previous plant specific evaluations were I
referenced to one fuel cycle. The conclusions from ESR 96-00154 show that the required UFSAR safety margins are maintained for et least one additional fuel cycle (cycle 12h Therefore the previous safety evaluations are considered bounding. Additionally, a genenc safety assessment of shroud weld failures was provided by the BWROG in 1994 "BWR Shroud Crachrra Genert Safety Assessment *, GENE.52SA 107P.0794, Revision 1, August f 994. A BNP plant specific assessment was provided in response to Genenc Letter 94 03.
i i
l l
Nc to: If Yes, attach a copy or provide docurnent nurnber for retrieval capability of the previously performed 10 CFR 50.59 Safety Evolustion and l
cornplete Section 6 of this form. If No, continue the screening process.
j 4
3.
DOES THE ACTIVITY MAKE CHANGES TO THE FACILITY AS DESCRIBED IN THE SAR?
I]YES I lNO Basis:
List SAR ltems/ Sections reviewed:
4.
DOES THE ACTIVITY MAKE CHANGES TO PROCEDURES AS DESCRIBED IN THE SAR7
[ ] YES I INO Basis:
List SAR ltems/ Sections reviewed:
5.
DOES THE ACTIVITY INVOLVE A TEST OR EXPERIMENT NOT DESCRIBED IN THE SAR?
[ ]YES 1 1 NO Basis:
List SAR ltems/ Sections reviewed:
NOTE: If any question 3 through 5 is answered YES, then mark Sectbn #6 Not Applicable (N/A) and complete Unreviewed Safety Question Determination, otherwise complete Section #6.
6.
DISCIPL*NE PRINT NAME E
ist OSR:
Structuret i
John W. Voss. Jr
/
Date: N /9b i
Other OSR:
/
/
Date:
l-i Other OSR:
/
/n Date:,
i.
2nd OSR:
% fs d s.
/b.
. MI
/
6%
Date:
Y l
Attach additional sheets if needed.
10 CFR 50.59 Rev. 5 OAl-109 Rev,5
" Carolin2 Power & Light Comp 1ny ESR 96-00154 Brunswick Nucl:2r Plint - Unit 2 R2 vision O Engineering Evaluation PageZ20f7A-A"~m****W
--H1 ww l
a-
_.k<
=
x.s
..tne
,,,u l>
\\
-H2
'b d
U.,,
_,,,;d g
-H4 n.,,
=,,
_H6A
, a i,
H68 l,'
',l;D; i
d
1
~~
n
).44 s:
-H7
,,m8,,
~i U///4 i\\\\\\
Figure 3 - Reactor Shroud Three-Dimensional View
Ccrolino Power & Light Comp:ny ESR 96-00154 Brunswick Nuclz:r Plint - Unit 2 Revision 0 Engineering Evaluation PageL8of24 ai i
i gg_ '
gg p's, e
e e,,i-
',i.
6:n
.:=
Al6]k siw]..k8 um em O
O i
p~3 q'e DR n
DE,,~
3
~
Da ni~
.. ~
k; o
5..
2 S2
$~b 41 2
$n
~~$t
.c a.
in u,te ga p
e e
,5m -
,al-t
&2 s
s ajs g;,,,4l,2 2
g 2
hl2 w 'lt w,'lk MU
~ O O
M2 c..'I.
e,,.
.lI.
M,,I
?,,
Ei si
- !e.
e.
g g
u 51,n 91,
y
,i.
p*:l:.;
p". :;
a.
ge e*
=,
gg.
__u 4
l-l E,
l-l-a" TT Ti 11 lt 11 Figure 4 - Roll-Out View ofInside Shroud Surface
Cirtlin2 Powir & Light Comp 1ny ESR 96-00154 Brunswick Nuclear Plant - Unit 2 Revision O Engineering Evaluation Page$of %
i, sjg a
t t
t iI 1
qw at L n
ma Wh dI$
i:la b
a N
H:
ein 1
i all jj.
ele
,A D
Yla:.
,A m
n1 I
a:
=
=
iiE il 1 EIE
!! 1 R
ik Re5 i*
i
,,g g
i8
,k,0. t
~
W 8
$,$. t 1,
s
=
{r e
n; jadg--'
TA 4
g:
=
,m
=
y,
~
dcu al. &
9
[v
~:ii r Xl a
r ir
~
s N
~
v Ib S'j
- -n a
E;:
ma a
g es m
a
- w s1
=
{w U-11 k~
'D 2
~
sie X
iLE sie.
%pe.
=
ds ds s
e
=
iI 9I al
=>
pe l2 g
He m-
=
ai-Ti t gj
$s8 m
r i i Elk
~
in 36 si.
a el
- e 9
ad a 2 es s
,i,.d5
,,,d5 m
=
1w 2e-n f @
F g_c a1
- l**l* F 4>
Vil
- l58!"
- 4. -
H 8'*2Ig 1:
17 8'*qg gg I&
si.
i r
i! r
!I '
i-g si= s
=
_ ~ _
ns
=~
WI 9-
@(p m-i '
=
$,Es el8
!=
TA a
qs m-n-
w
,,s m
,dn
,d.,g,x m
n s;x =
1w
=#
2 sie 1.
l=
io r
w*e
>'mL W!
,d, 5 c:
a
'm $" l-F i
9 u "'"
i!8 u,__ _iu,
.y l!E i
.l.l.
e.
l
- i i w
Ii
- 11 11 Figure 5 - Roll-Out View of Outside of Shroud Surface
ESR 96-00154, RIvisian 0, Att chment A A3ofA3 i
1 l
Core Shroud i
Reinspection Plan i
Unit 2 B212R1 Outage 4
{
February 1996 v
s Recommended by: Nbb Date: /* /A/Js Approved byh68b Date: ///2/95
.. = - -
-=.
~
ESR 96-00154, RIvizien 0, Attzchmsnt A A4d Aa
~
i l
Core Shroud Reinspection Plan L
Unit 2 B212R1 Outage f
February 1996 EXECUTIVE
SUMMARY
The scope of reinspection for the Unit 2 core shroud is based on the results of previous inspections performed on both Unit 1 and Unit 2, follow-up actions and commitments.
established from the last inspection documented in Eng* eeting Evaluation Report 94-0077, m
i guidance on shroud inspections contained in NRC Generic Letter 94-03 and draft 4 of the l
BWRVIP " Guidelines for Reinspection of BWR Core Shrouds" dated September 15,1995.
The reinspection scope focuses on three objectives: re-examination of selected areas to determine crack growth, examination of a sample of the installed clamps to verify no inservice 1-degradation, and utilization of specifically developed tooling to examine accessible portions of certain welds that were previously inaccenible. Inspection of the core shroud in Unit 2 during May 1994 was performed prior to the inuance of Generic Letter 94-03. The inspection was
(
also performed utilizing prototype UT tooling under development. Reliability problems arose, i
and use of the tooling had to be abandoned. The UT equipment commonly used for core shroud inspections will not work on the Brunswick Plant shrouds because of interference from the installed clamps on welds H2 and H3. BNP is developing specialized UT tooling to inspect certain welds. Specifically, UT examinations will be performed on 100% of the accessible areas of weid Hl. UT will also be performed on areas not previously inW on welds H6A, and HSB and H7. Additionally, UT will be repeated at selected areas on weld H4 to assess crack growth during the cycle.
3 Additional inspections will be performed if measurements indicate that crack growth is greater than anticipated. Predictions from crack growth models (GE PLEDGE) and plant specific data from the Crack Arrest Verification System (CAVS), indicate that little, if any, crack growth is expected. This is consistent with predictions and actual results from Unit 1.
UT inspections will be conducted utilizing pulse echo technology. Equipment and procedures for UT, and for any supplemental VT, will be qualified in accordance with the inspection guidelines of the BWRVIP. The NDE uncertainty will be determined in qualification testing by the inspection vendor. These qualifications will follow the BWRVIP inspection guidelines.
Two of the twelve clamps installed on welds H2 and H3 during the Spring 1994 outage will be VT inspected to insure that no adverse degradation has occurred during the operating cycle.
An engineering evaluation of the inspection results will be performed using the flaw evaluation 2-
ESR 96-00154, R2vi11:n 0, AttzchmInt A A5 o# A8 guidance issued by the BWRVIP in Core Shroud Inspection and Evaluation Guidelines, or other accepted industry criteria.
CP&L is working closely with the BWRVIP to evaluate field information and incorporate
" lessons learned" into the inspection program. Inspection of core shroud support legs, and other vessel attachments and internals, will be performed consistent with the guidance provided by the BWRVIP in the future.
UNIT 2 CORE SHROUD INSPECTION PLAN The scope of this inspection plan along with previous inspections meets the intent of requested licensee action item 3 of Generic Letter 94-03. This action item requires an inspection plan for all shroud welds or justification for not inspecting certain welds, and requires use of technology and industry experience to perform inspections that will consistently detect IGSCC.
The inspection plan scope has been developed from Generic Letter 94-03, the proposed BWRVIP " Guidelines for Reinspection of Core Shroud Welds" and from knowledge gained from the previous inspections of BNP Units 1 and 2. The inspection plan for the core shroud focuses on application of improved inspection techniques for welds where internal surfaces were not accessible, and on reinspection of certain areas to determine crack growth rates. 'UT inspection tooling commonly used in the industry will not perform adequately on the BNP core shrouds due to interference from the clamps installed on the H2 and H3 welds. BNP is developing specialized tooling to inspect the welds that cannot be inspected with conventional tooling.
Weld H1 was VT inspected at selected outside surface locations in 1994. UT will be performed during the B212R1 outage on 100% of the accessible areas of weld H1 and its associated fillet weld. Weld H1 is a ring weld with "end grain" exposure and significant cold work. Welds H2 and H3 will not be inspected since their structural function was replaced by clamps in 1994.
Weld H4 will be reinspected in two places to determine crack growth rates. Weld H5 is not scheduled for reinspection, since relatively little cracking was found during the previous inspection, and since conditions at weld H4 (weld geometry, ECP, fluence, etc.) closely approximate those at H5.
The accessible outside areas of welds H6A, H6B and H7 were VT inspected in 1994.
Inspection of welds H6A and H6B and their associated fillet welds will be supplemented by UT inspection at six locations between jet pump pairs. Access is limited to these six areas due to the proximity of the jet pump sensing lines. All accessible exeas of weld H7 will be UT inspected..
. ~. - -. - -..
ESR 96-00154, RIvisi:n 0, Att2chmint A AL of A8 Weld H8 and the shroud support legs below the core plate will not be inspected this outage k== equipment and techniques are still being developed for these inspections. These areas will be inW consistent with guidance provided by the BWRVIP in the future.
Although weld H9 is not currently required to be inspected by the BWRVIP guidelines, data may be available for the H9 weld due to its proximity to a weld that is included in the vessel beltline inspection program.
1 1
Two of the twelve repair clamps will be VT inspected to assure no degradation has wie l
during the last cycle of operation.
l Details of the scope of inspection for each weld and for the clamps are provided in Table 1.
i INSPECTION SCOPE EXPANSION Based on the results of the Brunswick Plant Unit 2 Core Shroud Reinspection Plan, additional inspections of the core shroud (including repair clamps) will be performed, if required to demonstrate core shroud integrity. CP&L will address any scope expansion in our submittal of the inspection results to the NRC Staff. No such expansion is anticipated, based on the operational history during the last cycle, and the results from Unit 1.
EVALUATION An engineering evaluation of the results of the inspection will be performed, using the flaw evaluation guidance issued by the BWRVIP in the Core Shroud Inspection and Evaluation Guidelines, or other accepted industry criteria. CP&L will submit the inspection results in accordance with the guidance of NRC Generic Letter 94-03.
~
l 1
I,
ESR 96-00154, R:visi:n 0, Att chm:nt A A7 of Ag TABLE 1
~
Unit 2 Outage - Core Shroud Reinspection REINSPECTION WELD METHOD
- COMMENTS HI UT 100% of accessible areas.
H2 N/A None.
(Weld is structurally replaced by installed clamps).
H3 N/A None.
(Weld is structurally replaced by installed clamps).
H4 UT Two locations to assess crack growth (100% of accessible areas were inspected during the B211R1 Outage).
H5 None planned Conditions at weld H4 (weld geometry, ECP, fluenc',
e etc.) closely approximate weld H5.
H6A UT Six (6) areas between iet pump pairs.
H6B UT Six (6) areas between jet pump pairs.
H7 UT 100% of accessible areas between iet pump pairs.
H8 None planned BWRVIP developing inspection tools / techniques.
H9 UT Data may be available as a by-product of the vessel beltline inspection program.
(from OD as part of vessel beltline inspection)
Shroud None planned BWRVIP developing inspection tools / techniques.
support legs Two' VT VT-3 clamps & hardware for general appearance and Clamps missing parts.
VT-1 integrity of tack welds.
- NDE methods to be quahfied in accordance with *BWRVIP Reactor Pressure Vessel and Internals Fr=i-ion Guidelines" issued by the BWRVIP.,
~
ESR 96-00154, Rivizi n 0, Attrchm:nt A
- fA8 ENauw.,
BRUNSWICK STEAM ELECTRIC PLANT, UNIT NO. 2 NRC DOCKET NO. 50 324 OPERATING LICENSE NO. DPR-62ECTION PLANS SUBMITTAL OF UNIT 2 CORE SHROUD REINSP LIST OF REGULATORY COMMITMENTS d to by Carolina Power & Light Company in d in the submittal represent intended or planned Tha f'liowing table identifies those actions committe ibed to the NRC for the NRC's this document. Any other actions discussenotify the Manager-Regulatory Affairs at cetions by Carolina Power & Light Company. They are descra inf:rmation and are not regulatory t.ommitments. Please tha Brunswick Nuclear Pfar.t of any questions reg regulatory commitments.
l date or
~=
outage r
Commitment 30 days Submit the B212R1 core shroud reinspection results.
after completion 1.
ofinspections 3
a i
L e
O
..m
Shroud Circumferential Weld Structural Eyaluation Ligament Length Determination Shroud tn 1.5 in Evat Penod =
1200 days date Plant ID.
B,NP2_
00=
189.5 m Lealc =
171 in (upset / norm)
Fiepared ey-Weld ID:
_ H_1 _
Crack Growth Rate =
SE-05 uVhr Lcalc =
176 in (faulted)
Data ID:
B212R1_
Total anspecten Uncertamty =
0.00 in tmen =
178.9 in verited By:
High Fksa Zone inspection Data End of Ewakaten Ligament Data End of Eval. Crack Tip Input for DLL Analysis input for DLL Analysis L'gament Arunuth Arimuth Existmg Days to Fully Arwnum Azimuth Ligament In High Flux Zono7 Asunuth Azimuth Azunuth Azimuth Ligament Number Start ideglStop (deg) Length (ml Cracked Start (deg)Stop (deg)l ength (ini Start Stop Start Stop Start Stop Length f
f 3 50 f 5.92 4.0 417 14.4 15.0 1.1 No No
~
2 18 34 f 9 54 2O Crocked Cracked 3
7 7.36 27.96 1.0 Cracked Cracked 4
25}i 37.07 30 4~
30.1 30.2 0.1 Yes Yes 5
32 TJ 33 of 2.6 Cracked' Cracked This Table Not Appiaable for 54 47 6.1 1286 51.6 53.5 3.2 Yes Yes 51.6 53 5 weed H1 FTl 6
50.73 ' 67 06 2.0 Cracked Crocked
(/)
7 59 8I 8
- 67. to 67.77 1.0 Cracked Crocked 3
9 7673 73.87 5.1 872 71.6 72.9 2.2 No No 70 76.22 87.66 9.0 2498 77.1 80 8 6.1 No No 77.1 80 8 3.1 No No 85.6 87.4 h
77 84 68 88.37 6.0 1251 85 6 87.4 6.2 No No 91.6' 913 0
f2 90.73 96 22 9.1 2533 91.6 9 53 7.1
$8 64 99 25 1.0 Crocked Cracked Q
- 4 70121 707. 7 f 90 2498 103.1 106.8 6.1 No No 103.1 106.8
-4 F5 70952 7 75.Of 9.1 2531 110.4 114.1 6.2 No No 110.4 114.1 U1 f6 f 18 04 727. f 15 0 4993 118.9 126.2 12.1 N4 Yes 118.9 126.2 Sh 77 F 3 7.33 F3 f. 94 1.0 Cracked Crocked 78 F 32. 54 F33. 20 1.1 Cracked Cracke2 M
8 19 735 62 f 36.83 2.0 Crocked Crocked I.
20 f 44. 58 145.89 2.0 Cracked Cracked 2r 748. 3 f 866 29'l3 10939 149.2 165.1 26 4 Yes No 149.2 165.1 E
22 798 00 204 05 10.0 2919 198 9 203.2 7.1 No No 198.9 203.2 0
23 207.67 275.53 13 0 4166 208.5 214.7 10.1 No Yes 208.5 214.7 3
24 2f 7.34 2 f 8 64 2.1 Cracked Cracked Q
25 226.50 229 52 5.0 831 227.4 228 6 2.1 Yes Yes
=
26 237 94 240 05 13 4 4338 232.8 239.2 10.5 Yes Yes 232.8 239.2
)
27 243 48 244.68 2O Cracked Crocked g
28 248.3 r 253 20 8.1 2119 249.2 252.3 5.2 No No 249.2 252.3 g
.9 254 47 289 52 58 1 22942 255.3 288 6
$5.2 No No 255 3 288.6 o
30 297.33 295.0 f 6.1 1286 292.2 294.1 3.2 No No 292.2 294.1 3"
37 296 83 299 25 4.0 417 291.7 298.4 1.1 No No Q
32 304 08 304 68 1.0 Cracked Crocked g
33 308 3 r 345.40 61.3 24307 309.2 344.5 58.5 Yes No 309.2 344.5 m
b (resreg tagament tength imp =
304.4 EOE Leg. Length (m) =
2262 Sbce EOE11gamentI maa'h > I maa A detaMad smit sand analysis la not perpdred. Thm Wrald11structurssy acceptahle for centhundsperation NO TES (1)
Ligameer Data from 8212R1 GE Exammation ?-
Sheets 1
(2)
Crack growth is erslied at each end of ligament g
(3)
Calculation for End of Evalueten Ugamant Data includes uncertainty if appucabia.
(4)
Days to Fully Cracked = days till ligament length is rero lectueRy = uncertainty + ASME crack proximity rulel for each agement.
t I
(5)
High Fkaa Zone = plus or mmus 15 degrees from azimuttu 45,135,225 and 315 (le 30 60 etc.)
i f
l Weld H1 will not reach LEFM tfweshold level for neutron embrittlement (3x10'2Ol within current operating Econse.
(6)
Ideg = 1.6537 in (7)
UrMspected regions assumed fury crocked. AN cracks assumed through-wee D
(8)
Lealc = nunamum requwed ligament length for limit Ioed concema - reference Structural Integrity report SIR-94429 Rev. O j
(9)
Lmin = Leonc + 2(Crack Growthin Evaluation Periodt + TotalInspection Uncertainty t
03/07/96 HI 8NP2CRAK.WK4
+
+
03/05/1996 12:19 Filename: DLLHILNU OUT Pace 1
03/05/1996 "2:19 Filename: DLLH1LNU.OUT Pace B212R1 Sbourd Weld H1 Lower Normal / Upset 115.0 7.603E+08 18260.
27.34 ACCEPTABLE DLL: DISTRIBUTFD LIGAMENT LENGTH EVALUATION (REVISION: 10/07/94) 120.0 7.706E+08 18506.
27.70 ACCEPTABLE DATE OF CURRENT ANALYSIS: 03/05/1996 125.0 7.703E*08 18499.
27.69 ACCEPTABLE 130.0 7.686E*08 18460.
27.63 ACCEPTABLE
SUMMARY
F INPUTS:
135.0 7.740E+08 18590.
27.82 ACCEPTABLE 140.0
'7.789E+08 18707.
28.00 ACCEPTABLE i
Angle increment 1.0 deg. (COARSE) 145.0 7.760E+08 19637.
27.89 ACCEPTABLE
=
Membrane Stress, Pm =
192. psi 150.0 7.909E+08 18995.
28.43 ACCEPTABLE 483. psi 155.0 8.216E+08 19732.
29.52 ACCEPTABLE Bending Stress, Pb
=
Safety Factor, SF 2.77 160.0 8.422E+08 20226.
30.25 ACCEPTABLE
=
Mean Radius, Rm 94.00 inches 165.0 8.563E+08 20566.
30.75 ACCEPTABLE '
Wall Thickness, t 1.500 inches 170.0 8.647E+08 20766.
31.05 ACCEPTABLE
=
{
Material 304 SS 175.0 8.793E+08 21117.
31.57 ACCE PTAB LE
=
Stress Intensity, Sm = 16900. psi 180.0 8.844E*08 21239.
31.75 ACCEPTABLE 1.9E+19 n/cm*2 185.0 9.217E+08 22137.
33.08 ACCEPTABLE Fluence
=
(Thus, LEFM evaluation not applicable) 190.0 9.409E+08 22597.
33.76 ACCEPTABLE I
195.0 9.423E+08 22630.
33.81 ACCEPTABLE i
THETA 1 THETA 2 THICKNESS 200.0 9.813E+08 23568.
35.20 ACCEPTABLE REGION (deg.]
[deg.]
[ inches]
205.0 9.843E+08 23639.
35.31 ACCEPTABLE pq 210.0 1.022E+09 24555.
36.66 ACCEPTABLE gg 1
51.6 53.5 1.500 215.0 1.045E+09 25094.
37.46 ACCEPTABLE gg 2
77.1 80.8 1.500 220.0 1.060E+09 25456.
30.00 ACCEPTABLE 3
85.6 87.5 1.500 225.0 1.067E+09 25624.
38.25 ACCEPTABLE 00 hO 4
91.6 95.3 1.500 230.0 1.066E+09 25597.
38.21 ACCEPTABLE 5
103.1 106.8 1.500 235.0 1.057E+09 25375.
37.88 ACCEPTABLE
()
6 110.4 114.1 1.500 240.0 1.039E+09 24961.
37.26 ACCEPTABLE C) r 7
118.9 126.2 1.500 245.0 1.014E+09 24356.
36.37 ACCEPTABLE
-a 8
149 2 165.1 1.500 250.0 9.876E+08 23718.
35.42 ACCEPTABLE gm
[
9 198.9 203.2 1.500 255.0 9.551E+08 22938.
34.27 ACCEPTABLE Jb 10 201.5 214.7 1.500 260.0 9.147E+08 21969.
32.83 ACCEPTABLE 11 232.8 239.2 1.500 265.0 8.789E+08 21107.
31.55 ACCEPTABLE gg 12 249.2 252.3 1.500 270.0 8.442E*08 20276.
30.32 ACCEPTABLE S
13 255.3 288.6 1.500 275.0 8.189E+08 19668.
29.42 ACCEPTABLE EC 14 292.2 294.1 1.500 280.0 7.937E+08 19061.
28.52 ACCEPTABLE UE 15 309.2 344.5 1.500 285.0.
7.711E+08 18518.
27.72 ACCEPTABLE
((
e 290.0 7.590E+08 18227.
27.29 ACCEPTABLE 3
295.0 7.603E+08 18260.
27.34 ACCEPTABLE fI LIMIT LOAD RESULTS:
300.0 7.706E+08 18506.
27.70 ACCEPTABLE
..........sa.......
305.0 7.703E+08 18499.
27.69 ACCEPTABLE 310.0 7.686E+08 18460.
27.63 ACCEPTABLE
)>
ALPHA MOMENT Pb' SAFETY 315.0 7.740E+08 18590.
27.82 ACCEPTABLE E$
[degl lin-lbs]
(psil FACTOR RESULT 320.0 7.789E+08 18707.
28.00 ACCEPTABLE EB 325.0 7.760E+08 18637.
27.89 ACCEPTABLE II
.0 8.844E+08 21239.
31.75 ACCEPTABLE 330.0 7.909E+08 18995.
28.43 ACCEPTABLE t
5.0 9.217E+08 22137.
33.08 ACCEPTABLE 335.0 8.216E+08 19732 29.52 ACCEPTABLE
~d 10.0 9.409E+08 22597.
33.76 ACCEPTABLE 340.0 8.422E+08 20226.
30.25 ACCEPTABLE PI hk 15.0 9.423E+08 22630.
33.81 ACCEPTABLE 345.0 8.563E+08 20566.
30.75 ACCEPTABLE 20.0 9.813E+08 23568.
35.20 ACCEPTABLE 350.0 8.647E+08 20766.
31.05 ACCEPTABLE 25.0 9.843E+08 23639.
35.31 ACCEPTABLE 355.0 8.793E+08 21117.
31.57 ACCEPTABLE
())
30.0 1.022E+09 24555.
36.66 ACCEPTABLE 35.0 1.045E+09 25094.
37.46 ACCEPTABLE 40.0 1.060E+09 25456.
38.00 ACCEPTABLE ACCEPTABLE! MINIMUM SAFETY FACTOR = 27.29 AT 110.0 DEGREES.
45.0 1.067E+09 25624.
38.25 ACCEPTABLE 50.0 1.066E+09 25597.
38.21 ACCEPTABLE 55.0 1.057E+09 25375.
37.88 ACCEPTABLE 60.0 1.039E+09 24961.
37.26 ACCEPTAB1.E 65.0 1.014E+09 24356.
36.37 ACCEPTABLE l
g 70.0 9.876E+08 23718.
35.42 ACCEPTABLE g
75.0 9.551E+08 22938.
34.27 ACCEPTABLE i
80.0 9.147E+08 21969.
32.83 ACCEPTABLE i
0 85.0 8.789E+08 21107.
31.55 ACCEPTABLE I
90.0 0.442E+08 20276.
30.32 ACCEPTABLE f
g 95.0 8.189E+08 19668.
29.42 ACCEPTABLE 100.0 7.937E+08 19061.
28.52 ACCEPTABLE g
105.0 7.711E+08 18518.
27.72 ACCEPTABLE f
D l
D 110.0 7.590E+08 18227.
27.29 ACCEPTABLE
.u b
+
9 03/05/1996 12:22 Filename: DLLHILF. Otfr Page 1
03/05/1996 12:22 Filename: DLLHILF.OUT Pace B212R1 Shroud Weld H1 Lower Faulted 115.0 7.552E+08 18138.
13.15 ACCEPTABLE DLL: DISTRIBtTTED LIGAMENT LENGTH EVALUATION (REVISION: 10/07/94) 120.0 7.568E+08 18176.
13.18 ACCEPTABLE DATE OF CURRENT ANALYSIS: 03/05/1996 125.0 7.527E*08 18077.
13.11 ACCEPTABLE 130.0 7.503E*08 18019.
13.07 ACCEPTABLE
SUMMARY
OF INPtJTS:
135.0 7.572E+08 18186.
13.18 ACCEPTABLE 140.0 7.660E+08 18396.
13.33 ACCEPTABLE Angle increment 1.0 deg. (COARSE) 145.0 7.647E+08 18364.
13.31 ACCEPTABLE
=
Membrane Stress. Pm 798. psi 150.0 7.796E+08 18723.
13.56 ACCEPTABLE
=
Bending Stress.
- b 642. psi 155.0 8.079E+08 19403.
14.03 ACCEPTABLE Safety Factor. SF 1.39 160.0 8.246E+08 19804.
14.31 ACCEPTABLE Mean Radius. Rm 94.00 inches 165.0 8.350E+08 20054 14.48 ACCEPTABLE
=
Wall Thickness, t 1.500 inches 170.0 8.412E+08 20203.
14.58 ACCEPTABLE Naterial 304 SS 175.0 8.544E*08 20520.
14.80 ACCEPTABLE
=
Stress Intensity. Sm = 16900. psi 180.0 8.588E+08 20626.
14.88 ACCEPTABLE Fluence
= 1.9E+19 n/cm"2 185.0 8.942E+08 21475.
15.47 ACCEPTABLE (Thus. LEFM evaluation not applicable) 190.0 9.101E+08 21857.
15.73 ACCEPTABLE 195.0 9.109E+08 21876.
15.75 ACCEPTABLE THETA 1 THETA 2 THICKNESS 200.0 9.488E+08 22785.
16.38 ACCEPTABLE REGION (deg.]
(deg.]
(inches]
205.0 9.500E+08 22815.
16.40 ACCEPTABLE yyg 210.0 9.876E*08 23718.
17.02 ACCEPTABLE g) 1 51.6 53.5 1.500 215.0 1.012E+09 24298.
17.43 ACCEPTABLE 3
2 77.1 80.8 1.500 220.0 1.030E+09-24732.
17.73 ACCEPTABLE 3
85.6 87.5 1.500 225.0 1.040E+09 24978.
17.90 ACCEPTABLE
@f 4
91.6 95.3 1.500 230.0 1.042E+09 25034.
17.94 ACCEPTABLE 5
103.1 106.8 1.500 235.0 1.037E+09 24899.
17.85 ACCEPTABLE Q
6 110.4 114.1 1.500 240.0 1.023E*09 24575.
17.62 ACCEPTABLE Q
7 118.9 126.2 1.500 245.0 1.002E+09 24064.
17.27 ACCEPTABLE a
8 149.2 165.1 1.500 250.0 9.778E*08 23484.
16.86 ACCEPTABLE gt 9
198.9 203.2 1.500 255.0 9.4 94 E+08 22801.
16.39 ACCEPTABLE A
10 204.5 214.7 1.500 260.0 9.137E+08 21944.
15.79 ACCEPTABLE 11 24.8 239.2 1.500 265.0 8.797E+C8 21126.
15.23 ACCEPTABLE 3
12 249.2 252.3 1.500 270.0 8.467E+08 20335.
14.68 ACCEPTABLE S
13 255.3 288.6 1.500 275.0 8.230E+08 19766.
14.28 ACCEPTABLE 8C 14 292.2 294.1 1.500 280.0 7.9670+08 19135.
13.84 ACCEPTABLE E
IS 309.2 344.5 1.500 285.0 7.784E+08 18695.
13.54 ACCEPTABLE O
~
290.0 7.679E+08 18442.
13.36 ACCEPTABLE lll3 295.0 7.693E+08 18475.
13.38 ACCEPTABLE LIMIT IAAD RESULTS:
300.0 7.827E*08 18797.
13.61 ACCEPTABLE
,o 305.0 7.863E+08 18884.
13.67 ACCEPTABLE 310.0 7.862E+08 18882.
13.67 ACCEPTABLE N
ALPHA MOMENT Pb' SAFETY 315.0 7.893E+08 18956.
13.72 ACCEPTABLE N
[degl (in-1bs]
[ psi]
FACTOR RESULT 320.0 7.903E+08 18979.
13.73 ACCEPTABLE E
325.0 7.866E*08 18890.
13.67 ACCEPTABLE O
.0 9.092E+08 21836.
15.72 ACCEPTABLE 330.0 8.015E*08 19249.
13.92 ACCEPTABLE i
5.0 9.480E+08 22767.
16.36 ACCEPTABIE 335.0 8.338E+08 20024.
14.46 ACCEPTABLE
[
10.0 9.704E+08 23306.
16.74 ACCEPTABLE 340.0 8.582E+08 20611.
14.87 ACCEPTABLE Ok 15.0 9.730E+08 23369.
16.78 ACCEPTABLE 345.0 8.762E+08 21042.
15.17 ACCEPTABLE 20.0 1.013E+09 24322.
17.44 ACCEPTABLE 350.0 8.874E+08 21313.
15.35 ACCEPTABLE 25.0 1.018E+09 24450.
17.53 ACCEPTABLE 355.0 9.027E+08 21680.
15.61 ACCEPTABLE 30.0 1.057E+09 25379.
18.18 ACCEPTABLE -
35.0 1.077E+09 25863.
18.51 ACCEPTABLE 40.0 1.089E*09 26150.
18.71 ACCEPTABLE Af%EPTABLEt MINIMUM SAFETY FACTOR. 13.05 AT 110.0 DEGREES.
i 45.0 1.093E+09 26238.
18.77 ACCEPTABLE 50.0 1.088E+09 26126.
18.70 ACCEPTABLE 55.0 1.075E+09 25816.
18.48 ACCEPTABLE 60.0 1.054E+09
- 25309, 18.13 ACCEPTABLE 65.0 1.020E+09 24487.
17.56 ACCEPTABLE 70.0 9.957E+08 23914.
17.16 ACCEPTABLE Y
75.0 9.592E+08 23036.
16.55 ACCEPTABM 80.0 9.164E+08 22008.
15.84 ACCEPTABM l
O i
85.0 8.772E+08 21067.
15.18 ACCEPTABLE l
h 90.0 8.410E+08 20197 14.58 ACCEPTABLE f
95.0 8.132E+08 19530.
14.12 ACCFPTABLE l
100.0 7.863E+08 18885.
13.67 ACCEPTABLE j
Q 105.0 7.668E+08 18416.
13.34 ACCEPTABLE l
g 110.0 7.492E+08 17993.
13.05 ACCEPTABLE 2
r
a
+
r 03/07/1996 12:23 Filename: D11H1N. 0lTT Page 1
03/07/1996 12:23 Filename: DL1Ji1N.OUT Page B212R1 Shroud Weld H1 Upset 185.0 2.036E*08 4891.
7.53 ACCEPTABLE DLL: DISTRIBUTED LIGAMENT LENGTH EVALUATION (REVISION: 10/07/94) 190.0 2.036E+08 4891.
7.53 ACCEPTABLE DATE OF CUR *ENT ANALYSIS: 03/07/1996 195.0 2.036E+08 4891.
7.53 ACCEPTABLE 200.0 2.036E+08 4891.
7.53 ACCEPTABLE SUFf4ARY OF INPUTS:
205.0 2.036E+08 4891.
7.53 ACCEPTABLE 210.G 2.036E+08 4891.
7.53 ACCEPTABLE Angle increment 1.0 deg. { COARSE) 215.0 2.036E+08 4891.
7.53 ACCEPTABLE
=
192. psi 220.0 2.036E+08 4891.
7.53 ACCEPTABLE Membrane Stress. Pm
=
Bending Stress. Pb 4 8 3. psi 225.0 2.036E+C8 4891.
7.53 ACCEPTABLE
=
Safety Factor. SF 2.77 230.0 2.036E+08 4891.
7.53 ACCEPTABLE
=
94.00 inches 235.0 2.036E+08 4891.
7.53 ACCEPTABLE Mea *1 Radius, Rm
=
wall Thickness, t 1.500 inches 240.0 2.036E+08 4891.
7.53 ACCEPTABLE
=
Material 304 SS 245.0 2.036E+08 4891.
7.53 ACCEPTABLE
=
Stress Intensity. Se = 16900. psi 250.0 2.036E+08 4891.
7.53 ACCEPTABLE Fluence
= 1.9E+19 n/cm*2 255.0 2.036E+08 4891.
7.53 ACCEPTABLE (Thus LEFM evaluation not applicable) 260.0 2.036E+08 4891.
7.53 ACCEPTABLE 265.0 2.036E+08 4891.
7.53 ACCEPTABLE THETA 1 THETA 2 THICKNESS 270.0 2.036E+08 4891.
7.53 ACCEPTABLE REGION
{deg.)
[deg.)
(inches!
275.0 2.036E+08 4891.
7.53 ACCEPTABLE IT1 280.0 2.036E+08 4891.
7.53 ACCEPTABLE (f) 1
.0 360.0
.114 285.0 2.036E+08 4891.
7.53 ACCEPTABLE 3
290.0 2.036E+08 4891.
7.53 ACCEPTABLE E
295.0 2.036E+08 4891.
7.53 ACCEPTABLE LIMIT IAAD RESULTS:
300.0 2.036E+08 4891.
7.53 ACCEPTABLE 305.0 2.036E+08 4891.
7.53 ACCEPTABLE Q
310.0 2.036E+08 4891.
7.53 ACCEPTABLE O
ALPHA MOMENT Pb' SAFETY 315.0 2.036E+08 4891.
7.53 ACCFPTABLE a
(deg]
[in-1bs)
[ psi)
FACTOR RESULT 320.0 2.036E+08 4891.
7.53 ACCEPTABLE U1 325.0 2.036E+08 4891.
7.53 ACCEPTABLE Sh
.0 2.036E+08 4891.
7.53 ACCEPTABLE 330.0 2.036E+08 4891.
7.53 ACCEPTABLE 5.0 2.036E+08 4891.
7.53 ACCEPTABLE 335.0 2.036E+08 4891.
7.53 ACCEPTABLE 3
10.0 2.036E+08 4891.
7.53 ACCEPTABLE 340.0 2.036E+08 4891.
7.53 ACCEPTABLE S
15.0 2.036E+08 4891.
7.53 ACCEPTABLE 345.0 2.036E+08 4891.
7.53 ACCEPTABLE I.
20.0 2.036E+08 4891.
7.53 ACCEPTABLE 150.0 2.036E+08 4891.
7.53 ACCEPTABLE 25.0 2.036E+08 4891.
7.53 ACCEPTABLE 355.0 2.036E+08 4891.
1.53 ACCEPTABLE 6'
30.0 2.036E+08 4891.
7.53 ACCEPTABLE 3
35.0 2.036E+08 4891.
7.53 ACCEPTABLE 40.0 2.036E+08 4891.
7.53 ACCEPTABLE ACCEPTABLEt MINIMUM SAFETY FACTOR =
7.53 AT 80.0 DEGREES.
45.0 2.036E+08 4891.
7.53 ACCEPTABLE M'
50.0 2.036E+08 4891.
7.53 ACCEPTABLE 55.0 2.036E*08 4891.
7.53 ACCEPTABLE N
60.0 2.036E*08 4891.
7.53 ACCEPTABLE OO 65.0 2.036E+08 4891.
7.53 ACCEPTABLE 70.0 2.036E+08 4891.
7.53 ACCEPTABLE 3
75.0 2.036E+08 4891.
7.53 ACCEPTABLE O
80.0 2.036E+08 4891.
7.53 ACCEPTABLE 85.0 2.036E*08 4891.
7.53 ACCEPTABLE d
90.0 2.036E*00 4891.
7.53 ACCEPTABLE 95.0 2.036E+08 4891.
7.53 ACCEPTABLE 100.0 2.036E+08 4891.
7.53 ACCEPTABLE 105.0 2.036E+08 4891.
7.53 ACCEPTABLE 110.0 2.036E+08 4891.
7.53 ACCEPTABLE 115.0 2.036E+08 4891.
7.53 ACCEPTABLE 120.0 2.036E+08 4891.
7.53 ACCEPTABLE 125.0 2.036E+08 4891.
7.53 ACCEPTABLE 130.0 2.036E+04 4891.
7.53 ACCEPTABLE 135.0 2.036E+08 4891.
7.53 ACCEPTABLE 140.0 2.036E*08 4891.
7.53 ACCEPTABLE 145.0 2.036E+08 4891.
7.53 ACCEPTAB12 l
150.0 2.036E+08 4891.
7.53 ACCEPTABLE 155.0 2.036E+08 4891.
7.53 ACCEPTABLE 160.0 2.036E+08 4891.
7.53 ACCEPTABLE 165.0 2.036E+08 4891.
7.53 ACCEPTABLE g
170.0 2.036E+08 4891.
7.53 ACCEPTABLE t.M 175.0 2.036E+08 4891.
7.53 ACCEPTABLE O
180.0 2.036E+08 4891.
7.53 ACCEPTABLE
+
03/07/1996 12-30 Filename: DLLHIF.OtTT Pace 1
03/07/1996 12:30 Filename: DLLHIF. OtTT Pace B212R1 Shroud Weld H1 Faulted 185.0 1.926E+08 4625.
3.77 ACCEPTABLE DLL: DISTRIBUTED LIGAMENT LENGTH EVALUATION (REVISION: 10/07/94) 190.0 1.926E*08 4625.
3.77 ACCEPTABLE DATE OF CURRENT ANALYSIS: 03/07/1996 195.0 1.926E+08 4625.
3.77 ACCEPTABLE 200.0 1.926E+08 4625.
3.77 ACCEPTABLE Stef4ARY OF INPUTS:
205.0 1.926E+08 4625.
3.77 ACCEPTABLE 210.0 1.926E+08 4625.
3.77 ACCEPTABLE Angle increment 1,0 deg. (COARFO) 215.0 1.926E*08
- 4625, 3.77 ACCEPTABLE
=
Membrane Stress, Pm.
798, psi 220.0 1.926E+08 4625.
3.77 ACCEPTABLE Bending Stress, Pb 642. psi 225.0 1.926E+08 4625.
3.77 ACCEPTABLE Safety Factor, SF 1.39 230.0 1.926E+08 4625.
3.77 ACCEPTABLE
=
Mean Radius, Rm 94.00 inches 235.0 1.926E*08 4625.
3.77 ACCEPTABLE Wall Thickness, t 1.500 inches 240.0 1.926E+08 4625.
3.77 ACCEPTABLE
=
Material 304 SS 245.0 1.926E+08 4625.
3.77 ACCEPTABLE Stress Intensity. Sm. 16900, psi 250.0 1.926E+08 4625.
3.77 ACCEPTABLE 1.9E+19 n/cm 2 255.0 1.926E+08 4625.
3.77 ACCEPTABLE Fluence
=
(Thus LErM evaluation not applicable) 260.0 1.926E+08 4625.
3.77 ACCEPTABLE 265.0 1.926E+08 4625.
3.77 ACCEPTABLE THETA 1 THETA 2 THICKNESS 270.0 1.926E+08
- 4625, 3.77 ACCEPTABLE REGION
[deg.]
[deg.]
[ inches]
275.0 1.926E+08 4625.
3.77 ACCEPTABLE tyg 280.0 1.926E+08 4625.
3.77 ACCEPTABLE 1
.0 360.0
.114 285.0 1.926E+08 4625.
3.77 ACCEPTABLE 3
290.0 1.926E+08 4625.
3.77 ACCEPTABLE 295.0 1.926E+08 4625.
3.77 ACCEPTABLE E
LIMIT LOAD RESULTS:
300.0 1.926E+08 4625.
3.77 ACCEfTABLE 305.0 1.926E+08 4625.
3.77 ACCEPTABLE Q
310.0 1.926E+08 4625.
3.77 ACCEPTABLE O
ALPHA MOMENT Pb' SAFETY 315.0 1.926E*08 4625.
3.77 ACCEPTABLE a
(degl lin-lbs)
(psil FACTOR RESULT 320.0 1.926E+08 4 25.
3.17 ACCEPTABLE Q1 325.0 1.926E*08 4625.
3.77 ACCEPTABLE A
.0 1.926E*08 4025.
3.77 ACCEPTABLE 330.0 1.926E+08 4625.
3.77 ACCEPTABLE 1
5.0 1.926E+08 4625.
3.77 ACCEPTABLE 335.0 1.926E+08 4625.
3.77 ACCEPTABLE 3
10.0 1.926E+08 4625.
3.77 ACCEPTABLE 340.0 1.926E+08 4625.
3.77 ACCEPTABLE S
15.0 1.926E+08 4625.
3.77 ACCEPTABLE 345.0 1.9262+08 4625.
3.77 ACCEPTABLE 20.0 1.926E+08 4625.
3.77 ACCEPTABLE 350.0 1.926E+08 4625.
3.77 ACCEPTABLE W
25.0 1.926E+08 4625.
3.77 ACCEPTABLE 355.0 1.926E+08 4625.
3.77 ACCEPTABLE 6*
30.0 1.926E+08 4625.
3.77 ACCEPTABLE 3
35.0 1.926E*08 4625.
3.77 ACCEPTABLE 40.0 1.926E+08 4625.
3.77 ACCEPTABLE ACCEPTABLEt MINIMUM SAFETY FACTOR.
3.77 AT 85.0 DEGREES.
h 45.0 1.926E+08 4625.
3.77 ACCEPTABLE 50.0 1.926E+0B 4625.
3.77 ACCEPTABLE M
55.0 1.926E+08 4625.
3.77 ACCEPTABLE 2
60.0 1.926E+08 4625.
3.77 ACCEPTABLE D
65.0 1.926E+08 4625.
3.77 ACCEPTABLE OI 70.0 1.926E+08 4625.
3.77 ACCEPTABLE 3
75.0 1.926E*08 4625.
3.77 ACCEPTABLE 80.0 1.926E+08 4625.
3.77 ACCEPTABLE 9
85.0 1.926E+08 4625.
3.77 ACCEPTABLE d
90.0 1.926E+08 4625.
3.17 ACCEPTABLE 95.0 1.926E+08 4625.
3.77 ACCEPTABLE 100.0 1.926E+08 4625.
3.77 ACCEPTABLE 105.0 1.926E+08 4625.
3.77 ACCEPTABLE 110.0 1.926E+08 4625.
3.77 ACCEPTABLE 115.0 1.926E+08 4625.
3.77 ACCEPTABLE 120.0 1.926E+08 4625.
3.77 ACCEPTABLE 125.0 1.926E+08 4625.
3.77 ACCEPTABLE 130.0 1.926E+08 4625.
3.77 ACCEPTABLE 135.0 1.926E+08 4625.
3.77 ACCEPTABLE 140.0 1.926E+08
- 4625, 3.77 ACCEPTABLE
! ([I 145.0 1.926E+08 4625.
3.77 ACCEPTABLE f
150.0 1.926E+08 4625.
3.77 ACCEPTABLE 155.0 1.926E+08 4625.
3.77 ACCEPTABLE O
160.0 1.926E*08 4625.
3.77 ACCEPTABLE 4
165.0 1.926E+08 4625.
3.77 ACCEPTABLE 170.0 1.926E+08 4625.
3.77 ACCEPTABLE 175.0 1.926E+08
- 4625, 3.77 ACCEPTABLE 180.0 1.926E+08 4625.
3.77 ACCEPTABLE O
i Shroud Circumferential. Weld Structural Evahtation Ligament Lengtfi Detemunenon Shroud en 1.5 in Evel. Period =
1800 days date F1 ant ID:
SNP2 OD=
177.5 in Lesic =
185 in(upset /norml Prepared By-Weld eD:
H_4 _
Crack Growth Rate =
SE-05 whr Leesc =
180 in efausted:
Date #D:
8211R1 Total inspecten uncertamry =
0.74 in Lmin -
190.1 in vented Sy:
Hegh Fksu Zone inspection Data End of Evaluation Ligement Data End of Eval. Crock Tip Input for DLL Anasysie input for DLL Analyses Lagament Arwnuth Arimuth E msteg Days to Fully Arunuth Arimuth Ugement
_in High Flua Zone 7 Anmuth Anmuth Arimuth Anmuth
!i Number Start toeg)-Stop ideg) Length tml Cracked Start toegt53(degl Length (mi Start Stop Start Stop 73 42 30 93.30 79 0 31356 43.9 91.7 73.9 Yes No 43.9 91.7.
Start Stop Length _
60.0 91.7 49.0 3-4 702.00 708.80 94 2377 103.6 106.5 4.4 No No 103 6 106.5 103 6 106.5 4.4 45
- F3 30 73 f. 70 28 5 10316 114.9 130.1 23.4 No Yes 114.9 130.1 114 9 120.0 7.8 5-6 733.70 735 30 2.5 Cracked Cracked Cracked 6-7 742.90 743 90 1.5 Cracked Crocked Cracked 78 147.2 775 43.1 16382 148 8 173.4 38.0 Yes No 148 8 173 4 150.0 173 4 36'2 IT1 8-9 200.30 208.50 12.7 3732 201.9 206.9 7.6 No No 201.9 206.9 201.9 206.9 7.6 E
9-f 0 2f E90 220.30 13 0 3861 213.5 218.7 7.9 Yes Yes 213.5 218.7 Cracked 2
10 77 223.00 23T00 12.4 3603 224.6 229.4 7.3 Yes Yes 224.6 229.4 Cracked g
i f f 72 23 f.50 233 00 2.3 Cracked Cracked Crocked g
- 2-73 244 00 245.20 1.9 Crocked Crocked Crocked
- O
- 3-74 247.70 249 90
- 4. 3 247 248.7 248.3 Cracked No No Crocked
- 4-75 252.70 252.30 0.3 Crocked Crocked Crocked f 5 76 255.50 26 f.2 88 2119 257.1 259.6 3.8 No No 257.1 259 6 257.1 259 6 3.8 7 6-77 262.30 2633 0 1.9 Crocked Cracked Crocked 77-78 264.20 215 6 17.7 5798 265.8 274.0 12 6 No No 265.8 274.0 265.8 274.0 12.6
=
f 18 79 275.80 299_ 25 36.2 13543 277.4 297.6 31.2 No No 277.4 297.6 277.4 297.6 31.2 i
g f 9-20 300.90 308.40 11 6 3281 302.5 306.8 6.6 Yes Yes 302.5 306.8 Crocked g
2427 3f 0.20 376.70 9.1 2248 311.8 314.5 4.1 Yes Yes 314.8 314.5 Crocked
- C 27-22 323.50 329 90 9.9 2571 325.1 328.3 4.8 Yes Yes 325.1 328.3 Cracked
]M3 332.4 340.6 12.7 3732 334.0 3390 7.6 No No 334.0 339.0 334.0 3390 7.6 g*
I 23-24 343 90 345 00 1.7 Crocked Crocked Cracked g
?
f
>:*mO7 3
e3 e:
I Emsfep tspament length im/ =
318.9 EOE Lig Length im6 =
233.3 this data not used Sance EOE Ligament Langeh > Lnnin. e deseasd helt lead anniyde is not mapded NOTES (1) 5211R1 Ugament Data froen EER-940077and GE E-.
, Sheets (2)
Total beament uncertainty 10.744*) from reference 8 (demo 13 (3)
Crack growth is applied et each and of Ilgement Dj (4)
Days to Funy Cracked = days tis Egement length as sore lectumpy 3.744' = uncertairey+ AStas! crack preidmity ndel for each Ngament i
p (51 High Fksu Zone = plus or minus 15 degrees from eatmuthe 45.135,225 and 315 8e 30L00 etcJ l
16)
Wold H4 wis not reach LEFM threshold levet for neutron i f_ (3x10*200 witNn fumi cycle 12 8
0 8
(7)
Ideg = 1.54898in (8)
Uninspected regions asumed funy cracked. AE cracks eseumed tf%we8 (91 Lcesc =. -. ' c required booment length for Ilmit lood contems - reference $0uctural Ingmytty soport $31494429 nov. O g
(1 01 Lmin - Lease + 2tCrack Growth in Evolustion Periodi + Totalinspection Uncertainty g
I o
03fo7f96 H4 BNP2CRAK.WK4
5 e
+
b e
- 02/28/1996 15:22 Filename: DLLH4NU.OUT Page 1
02/28/1996 15:22 Filename: DLLH4 NG. 0UT Pace B212R1 Shroud Weld H4 Normal / Upset Evaluation (data from B211RI) 145.0 6.599E+08 18082.
15.48 ACCEPTABLE DLL: DISTRIBUTED LIGAMENT LENGTH EVALUATION (REVISION: 10/07/94) 150.0 6.808E+08 18657.
15.97 ACCEPTABLE DATE OF CURRENT ANALYSIS: 02/28/1996 155.0 6.966E+08 19090.
16.34 ACCEPTABLE 160.0 7.120E+08 19510.
16.70 ACCEPTABLE
SUMMARY
OF INPUTS:
165.0 7.346E+08 20131.
17.22 ACCEPTABLE 170.0 7.502E+08 20559.
17.58 ACCEPTABLE 1.0 deg. (COARSE) 175.0 7.601E+08 20830.
17.81 ACCEPTABLE Angle increment 173. psi 180.0 7.643E+08
- 20943, 17.91 ACCEPTABLE Membrane Stress, Pm
=
2006 psi 185.0 7.626E+08 20896.
17.87 ACCEPTABLE Bending Stress. Pb 2.77 190.0 7.551E*08 20691.
17.70 ACCEPTABLE r
Safety Factor. SF
=
88.00 inches 195.0 1.418E+08 20328.
17.39 ACCEPTABLE Mean Radius, Rm
=
Wall Thickness, t
=
1.500 inches 200.0 7.229E+08 19810.
16.95 ACCEPTABLE 304 SS 205.0 6.899E*08 18905.
16.18 ACCEPTABLE Material Stress Intensity, Sm = 16900, psi 210.0 6.783E+08 18586.
15.91 ACCEPTABLE Fluence
= 2.2E+19 n/cm*2 215.0 6.859E+08 18795.
16.09 ACCEPTABLE (Thus. LEFM evaluation not applicable) 220.0 6.763E+08 18532.
15.07 ACCEPTABLE 225.0 6.616E+08 18129.
15.52 ACCEPTABLE t
THETA 1 THETA 2 THICKNESS 230.0 6.382E+08 17488.
14.98 ACCEPTABLE REGION (deg.]
(deg.)
(inchesi 235.0 6.383E+08 17490.
14.98 ACCEPTABLE pn 240.0 6.250E+08 17126.
14.67 ACCEPTABLE CO 1
60.0 91.7 1.500 245.0 6.069E*08 16632.
14.25 ACCEPTABLE 3D
[
2 103.6 106.5 1.500 250.0 5.843E+08 16010.
13.73 ACCEPTABLE 3
114.9 120.0 1.500 255.0 5.572E+08 15267.
13.10 ACCEPTABLE 00 O
4 150.0 173.4 1.500 260.0 5.285E+08 14482.
12.43 ACCEPTABLE 5
201.9 206.9 1.500 265.0 5.026E+08 13773.
11.03 ACCEPTABLE C) 6 257.1 259.6 1.500 270.0 4.920E+08
- 13483, 11.58 ACCEPTABLE C) 7 265.8 274.0 1.500 275.0 4.925E+08 13497.
11.59 ACCEPTABLE
=a 8
277.4 297.6 1.500 280.0 5.005E+08 13716.
11.70 ACCEPTABLE 9
334.0 339.0 1.500 205.0 5.068E+08 13889.
11.93 ACCEPTAPLE 290.0 5.158E+08 14133.
12.13 ACCEPTABLE 295.0 5.343E*08 14642.
12.57 ACCEPTABLE 3D LIMIT LOAD RESULTS:
300.0 5.597E*08 15337.
13.16 ACCEPTABLE Gb 305.0 5.788E+08 15862.
13.40 ACCEPTABLE gg, t
310.0 5.936E+08 16266.
13.94 ACCEPTABLE 88 ALPHA MOMENT Pb' SAFETY 315.0 6.050E+C8 16579.
14.21 ACCEPTABLE l[
(degl lin-1bs]
(psil FACTOR RESULT 320.0 6,400E*08 17538.
15.02 ACCEPTABLE "3
335.0 6.643E+08 18204.
15.59 ACCEPTABLE
.0 7.577E*08 20764.
17.76 ACCEPTABLE 330.0 6.835E+08
- 19730, 16.03 ACCEPTABLE fI
[
5.0 7.544E+08 20672.
17.68 ACCEPTABLE 335.0 6.975E+08 19115.
16.36 ACCEPTABLE Ib l
10.0 7.452E+08 20422.
17.47 ACCEPTABLE 340.0 7.134E+08 19550.
16.73 ACCEPTABLE 15.0 7.305E+08 20017.
17.12 ACCEPTABLE 345.0 7.334E+08 20096.
17.19 ACCEPTABLE E$
i 20.0 7.101E+08 19459.
16.65 ACCEPTABLE 350.0 7.472E+08 20475.
17.51 ACCEPTABLE RD l
hh 25.0 6.899E+08 18905.
16+18 ACCEPTABLE 355.0 7.553E+08 20698.
17.70 ACCEPTABLE 30.0 6.783E+08
- 18586, 15.91 ACCEPTABLE 35.0 6.136E+08 18460.
15.80 ACCEPTABLE O
j 40.0 6.6562+08 18238.
15.62 ACCEPTABLE ACCEPTABLEt MINIMUM SAFETY FACTOR = 11.58 AT 270.0 DEGREES.
45.0 6.524E+08
- 17878, 15.31 ACCEPTABLE hk 50.0 6.382E+08 17488.
14.98 ACCEPTABLE 55.0 6.307E*08 17284.
14.81 ACCEPTABLE
,t 60.0 6.191E+08 16966.
14.54 ACCEPTABLE F
65.0 6.028E+08
- 16519, 14.16 ACCEPTABLE 70.0 5.819E*08 15947.
13.67 ACCEPTABLE 75.0 5.566E+08 15253.
13.08 ACCEPTABLE
[
80.0 5.294E+08 14507.
12.45 ACCEPTABLE 85.0 5.055E+08 13851.
11.90 ACCEPTABLE 90.0 4.949E+08 13561.
11.65 ACCEPTABLE 95.0 4.925E*08 13497.
11.59 ACCEPTABLE N
100.0 5.011E+08 13730.
11.79 ACCEPTABLE 105.0 5.068E+08 13889.
11.93 ACCEPTABLE 110.0 5.158E+08
- 14133, 12.13 ACCEPTABIA 115.0 5.343E+08 14642.
12.57 ACCEPTABLE i
120.0 5.560E+08 15235.
13.07 ACCEPTABLE f h 125.0 5.733E+08 15711.
13.47 ACCEPTABLE 130.0 5.864E+08 16068.
13.78 ACCEPTABLE j
()*
135.0 6.050E+08 16579.
14.21 ACCEPTABLE f
Q 140.0 6.338E+08 17369.
14.88 ACCEPTABLE
F e
02/26/1996 15:19 Filenama-DLLH4 F. Ot?T
'Paae 1
02/28/1996 15:19 Filename: DLIJI4 F.OUT Pa se B212RI Shroud Weld H4 Faulted Evaluation (data from B211RI) 145.0 6.499E+08 17809.
8.47 ACCEPTABLE DLL-DISTRIBUTED LIGAMENT LENGTH EVALUATION (REVISION: 10/07/94) 150.0 6.744E*08 18481.
8.78 ACCEPTABLE DATE OF CURRENT ANALYSIS: 02/28/1996 155.0 6.938E+08 19011.
9.02 ACCEPTABLE 160.0 7.098E+08 19452.
9.22 ACCEPTABLE
SUMMARY
OF INPUTS:
165.0 7.361E+08 20170.
9.55 ACCEPTABLE 170.0 7.553E+08 20696.
9.79 ACCEPTABLE Angle increment 1.0 deg. (COARSE) 175.0 7.687E+08 21064.
9.95 ACCEPTABLE 822. psi 180.0 7.763E+08 21272.
10.05 ACCEPTABLE Membrane Stress, Pm
=
Bending Stress, Pb 1377, psi 185.0 7.780E+08
- 21318, 10.07 ACCEPTABLE Safety Factor, SF 1.39 190.0 7.737E+08 21202.
10.02 ACCEPTABLE i
88.00 inches 195.0 7.636E+08
- 20925, 9.89 ACCEPTABLE Mean Radius, Rm Wall Thickness, t 1.500 inches 200.0 7.477E+08 20488.
9.69 ACCEPTABLE Material 304 SS 205.0 7.158E+08 19614.
9.29 ACCEPTABLE Stress Intensity, Sm. 16900 psi 210.0 7.041E+08 19295.
9.15 ACCEPTABLE 2.2E+19 n/cm*2 215.0 7.095E+08 19441.
9.21 ACCEPTABLE Fluence
=
(Thus, LEFN evaluation not applicable) 220.0 6.969E+08 19096.
9.06 ACCEPTABLE 225.0 6.790E+08 18605.
8.83 ACCEPTABLE THETA 1 THETA 2 THICKNESS 230.0 6.555E*08 17964 8.54 ACCEPTABLE REGION (deg.)
[deg.]
(inches]
235.0 6.523E+08 17876.
8.50 ACCEPTABLE 311 240.0 6.356E+08 17418.
8.29 ACCEPTABLE (g) 1 60.0 91.7 1.500 245.0 6.141E+08 16827.
8.03 ACCEPTABLE 3
2 103.6 106.5 1.500 250.0 5.878E+08 16109.
7.70 ACCEPTABLE E
3 114.9 120.0 1.500 255.0 5.566E+08 15253.
7.31 ACCEPTABLE 4
150.0 173.4 1.500 260.0 5.256E+08 14403.
6.92 ACCEPTABLE 5
201.9 206.9 1.500 265.0 4.990E*08 13675.
6.59 ACCEPTABLE Q
6 257.1 259.6 1.500 270.0 4.901E+08 13429.
6.48 ACCEPTABLE Q
7 265.8 274.0 1.500 275.0 4.882E*08 13379.
6.45 ACCEMABLE a
8 277.4 297,6 1.500 200.0 4.984E+08
- 13657, 6.5p ACCEPTABLE 9
334.0 339.0 1.500 285.0 5.076E+08 13909.
6.70 ACCEPTABLE 290.0 5.210E+08 14276.
6.87 ACCEPTABLE 295.0 5.379E+08 14740.
7.08 ACCEPTABLE 3
LIMIT 14AD RESULTS:
300.0 5.661E+08 15513.
7.43 ACCEPTABLE O
305.0 5.888E+08 16134.
7.71 ACCEPTABIE 6.
310.0 6.070E+08 16633.
7.94 ACCEPTABLE 9
~
ALPHA MOMENT Pb' SAFEi!
315.0 6.191E+08 16965.
8.09 ACCEPTABLE Q
(degl (in-Ibs]
(psi)
FACTOR RESULT 320.0 6.514E+08 17849.
8.49 ACCEPTABLE 3
325.0 6.721E+08 18419.
0.75 ACCEPTABLE
.0 7.437E+08 20379.
9.64 ACCEPTABLE 330.0 6.878E+08 18848.
8.95 ACCEPTABLE 5.0 7.370E+08 20195.
9.56 ACCEPTABLE 335.0 6.983E+08 19134.
9.08 ACCEPTABLE 4
I 10.0 7.247E+08 19859.
9.40 ACCEPTABLE 340.0 7.141E+08 19569.
9.27 ACCEPTABLE 15.0 7.069E+08 19370.
9.18 ACCEPTABLE 345.0 7.298E+08 19998.
9.47 ACCEPTABLE N
20.0 6.837E+08 18735.
8.89 ACCEPTABLE 350.0 7.401E+08 20280.
9.60 ACCEPTABLE E
h 25.0 6.635E+08 18181.
8.64 ACCEPTABLE 355.0 7.447E+08 20407.
9.65 ACCEPTABLE 30.0 6.518E+08 17862.
8.50 ACCEPTABLE
- 5.0 6.483E+08 17766.
8.45 TCCEPTABLE 41.0 6.432E*08 17625.
8.39 ACCEPTABLE ACCEPTABLEI MINIMUM SAFETY FACTOR =
6.46 AT 275.0 DEGREES.
- 45. 0 6.331E+08 17349.
8.26 ACCEPTABLE n
50.0 6.201E+08 16994.
8.10 ACCEPTABLE 55.0 6.147E+08 16844.
8.03 ACCEPTABLE 60.0 6.064E+08 16618.
7.93 ACCEPTABLE 65.0 5.936E+08 16266.
7.77 ACCEPTABLE 70.0 5.762E+08 15790.
7.55 ACCEPTABLE 75.0 5.545E+08 15194.
7.28 ACCEPTABLE 80.0 5.294E+08 14507.
6.97 ACCEPTABLE 85.0 5.076E+08 13910.
6.70 ACCEPTABLE 90.0 4.970E+08 13620.
6.57 ACCEPTABLE 95.0 4.961E*08 13595.
6.56 ACCEPTABLE 100.0 5.005E+08 13716.
6.61 ACCEPTABLE 105.0 5.047E+08 13830.
6.66 ACCEPTABI2 110.0 5.115E+08
- 14016, 6.75 ACCEPTABIA 115.0 5.293E+08 14505.
6.97 ACCEMABLE O
120.0 5.474E+08 15000.
7.20 ACCEPTABLE 125.0 5.613E+08 15302.
7.37 ACCEPTABI2 f'
130.0 5.716E+08 15665.
7.50 ACCEPTABLE j
135.0 5.903E+08 1C *F6.
7.73 ACCEPTABLE
{
g f
140.0 6.205E+08 17004 8.11 ACCEPTABIE O
e Shroud Circumferential Weld.Structur81 Eyatuation Ug: ment Length Determination Shroud in 1.5 in Evat. Period =
1400 days date Plant 10.
BNP2 0D=
177.5 in Lesic =
214 in (upset / norm)
Prepared Sy-Weld ID:
H5_
Crack Growth Rate =
SE-05 iruhr Lealc =
202 in tvautted)
Data 10:
B211R1 Totat inspection uncertamty =
2.32 in Lmm =
219.7 in venhed ey:
High Flux Zone inspection Data End et Evaluation Ligament Data End of Evat. Crack Tip input for DLL Analysis input for DLL Analysis Ligwnent Arimuth l Arunuth E sistmg Days to Fully Arunuth Aramuth Ligament in High Fhim Zone?
Arimuth Aramuth Aramuth Arimuth legament Number Start (degPStop (deg)l ength (m)
Cracked Start (deg)Stop toeg) Length Onl Start Stop Start Stop Start Stop Length 7
0 00
- 2.00 18 6 5528 1.8 10.2 12.9 No No 1.8 10.2 2
f 3 00 20 00 10.8 2301 14.8 187 5.2 No No 14.8 18 2 3
47.00 50 00 13 9 3592 47'8 48.2 8.3 Yes Yes 42.8 48.2 4
70 00 80.00 15.5 4237 71.8 78 2 98 No No 71.8 76.2 5
- 00 00 f ro.00 15~ 5 42if 101.8 108.2
- 9. 8 '
No No 101.8 toil This Table Not Appigable for 6
r30
- 40 15.5 4i3T 131.8 138.2 9.8 Yes Yes 131.8 138'l Wald H5 during l40C day gt) 7 764 00 76700 46 Cracked Cracked E venuatiori Peruns (g) 8 220 00 226.00 9.3 1656 221.8 224.2 3.6 Yes Yes 221.8 224.2 3
9 227.00 230.00 46 Crocked Cracket 70 280 00 290 00 15.5 4237 281.8 288.2 9.8 No No 281.8 288.2 ff 350 00 360.00 15 5 423I 351.8 358 2 9.8 No No 351.8 358.2 f
O O
a 01
.b 3e 5.
E.
o3 0
3>
- e O
3" 9e3ce h
f ustmg trgamerri tengra lef =
139.4 EOE Lig. Length (ml =
79.0 Since EOEllgamentiength < Lmin. AJinteBedEmiticadanelystalafeguireditMi-
~ mograml.
NOTES (1)
Ligament Data from 8211R1 data & GE Examinatum Summary Sheets (2)
Total Ligament uncertamty = (1.16* x 2l (reference: BWFIVtP-03)
(31 Crack growth 6s apphed at each and of hgament (4)
Calculation for End of Evaluation Ligament Date includes uncertainty in erimuth end tangth - 1/2 total uncertainty from each and (5)
Days to Fury Cracked = days tig ligament length is rero factussy 5.32* = uncertainty + ASME crack proximity ruiel for each ligament.
g l \\D (6)
High Flux Zone = plus or minus 15 dogmes from erimuths 45.135,225 and 315 (le 3460 etc.)
Wald H5 win not reach LEFM threshold levet for neutron -.:.."
. a (3 10 200 unts 24 EFPy. It will not be considered in this evolustion.
O (7)
Ideg = 1.54898 in (8)
Uninspected regions assumed fuuy cracked. AN cracks assumed through-wee (9)
Lcalc = mirwmum seguired ligament length for Ilmit load conceme - reference Structural Integrity report SIR-94429 Rev. 0 (10) tmin = Lealc + 2tCrack Growth in Evaluation Period) + Totalinspection Uncertainty W
O 03/05/96 HS BNP2CftAK.WK4
.m e
e 03/05/1996 12:44 Filename: DLLH5NtL O!JT Pace 1
03/05/1996 12:44 Filename: DLLH5NU.OUT Pace B212R1 Shroud Weld HS Normal / Upset 145.0 1.931E+08 5291.
2.77 ACCEPTABLE DLL: DISTRIBIJTED LIGAMENT LENGTH EVALUATION (REVISION: 10/07/94) 150.0 2.139E+08 5861.
3.06 ACCEPTABLE DATE OF CURRENT ANALYSIS: 03/05/1996 155.0 2.222E*08 6088.
3.18 ACCEPTABLE 160.0 2.288E+08 6269.
3.27 ACCEPTABLE
SUMMARY
OF INPUTS:
165.0 2.399E+08 6574.
3.43 ACCEPTABLE 170.0 2.598E+08 7118.
3.70 ACCEPTABLE 1.0 deg. (COARSE) 175.0 12.795E+08 7658.
3.98 ACCEPTABLE Angle increment
=
149, psi 180.0 2.971E+08 8140.
4.22 ACCEPTABLE Membrane Stress. Pm
=
1814. psi 185.0 3.150E.08 8632.
4.47 ACCEPTABLE Bending Stress, Pb 2.77 190.0 3.306E+08 9059.
4.69 ACCEPTABLE Safety Factor, SF
=
88.00 inches 195.0 3.436E+08 9417.
4.87 ACCEPTABLE Mean Radius. Rm 1.500 inches 200.0 3.541E+08 9703.
5.02 ACCEPTABLE Wall Thickness, t
=
Material 304 SS 205.0 3.618E*08 9915.
5.13 MIEPTABLE
=
Stress Intensity, Sm = 16900, psi 210.0 3.668E+08 10052.
5.20 ACCEPTABLE Fluence
= 2.2E+19 n/cm*2 215.0 3.690E*08 10112.
5.23 ACCEPTABLE (Thus, LEFM evaluation not. applicable) 220.0 3.684E+08 10095.
5.22 ACCEPTABLE 225.0 3.677E+08 10075.-
5.21 ACCEPTABLE THETA 1 THETA 2 THICKNESS 230.0 3.711E*08 10170.
5.26 ACCEPTABLE REGION (deg.}
[deg.)
(inches]
235.0 3.711E+08 10168.
5.26 ACCEPTABLE
.m 240.0 3.682E*08 10088.
5.22 ACCEPTABLE g
1 1.8 10.2 1.500 245.0 3.625E*08 9932.
5.14 ACCEPTABLE y
2 14.8 18.2 1.500 250.0 3.540E*08 9700.
5.02 ACCEPTABLE 3
42.8 48.2 1.500 255.0 3.343E+08 9160.
4.74 ACCEPTABLE 4
71.8 18.2 1.500 260.0 3.395E+08 9303.
4.82 ACCEPTABLE Gh S
101.8 108.2 1.500 265.0 3.326E+08 9115.
4.72 ACCEPTABLE 6
131.8 138.2 1.500 270.0 3.253E+08 8914.
4.62 ACCEPTABLE O
7 221.8 224.2 1.500 275.0 3.265E*08 8947 4.63 ACCEPTABLE a
8 281.8 288.2 1.500 280.0 3.259E+08 8931.
4.63 ACCEPTABLE g
9 351.8 358.2 1.500
.285.0 3.228E+08 8846.
4.58 ACCEPTABLE g
290.0 3.173E+08 8694.
4.50 ACCEPTABLE
=
295.0 3.093E+08 8476.
4.39 ACCEPTABLE y
LIMIT LOAD RESULTS:
300.0 2.990E+08 8194.
4.25 ACCEPTABLE g
305.0 2.720E+08 7453.
3.87 ACCEPTABLE et 310.0 2.796E+08 7661.
3.98 ACCEPTABLE 5*
ALPHA MOMENT Pb' SAFETY 315.0*
2.699E+08 7395.
3.84 ACCEPTABLE
{
(deg]
(in-lbs)
(psil FACTOR RESULT 320.0 2.598E+08 7120.
3.70 ACCEPTABLE g
325.0 2.454E+08 6724.
3.50 ACCEPTABLE
.0 3.285E+08 9001.
4.66 ACCEPTABLE 330.0 2.622E+08 7185.
3 74 ACCEPTABLE.
O 5.0 3.398E*08 9312.
4.82 ACCEPTABLE 335.0 2.645E+08 7249.
3.77 ACCEPTABLE 10.0 3.486E*08 9553.
4.94 ACCEPTABLE 340.0 2.667E+08
- 7309, 3.80 ACCEPTABLE M
15.0 3.546E+08 9716..
5.03 ACCEPTABLE 345.0 2.804E+0B 7684.
3.99 ACCEPTABLE 20.0 3.562E*06 9761.
5.05 ACCEPTABLE 350.0 2.983E+08 8175.
4.24 ACCEPTABLE W
25.0 3.551E+08 9732.
5.03 ACCEPTABLE 355.0 3.146E+08
- 8620, 4.47 ACCEPTABLE O
30.0 3.535E+08 9686.
5.01 ACCEPTABLE 7
35.0 3.575E+08 9795.
5.07 ACCEPTABLE 3
40.0 3.587E*08 9830.
5.08 ACCEPTABLE ACCEPTABLEI MINIMUM SAFETY FACTOR =
2.77 AT 145.0 DEGREES.
S-3 45.0 3.573E 08 9790.
5.06 ACCEPTABLE 50.0 3.531E+08 9676.
5.01 ACCEPTABLE 55.0 3.462E+08 9488.
4.91 ACCEPTABLE 60.0 3.231E+08 8855.
4.59 ACCEPTABLE 65.0 3.276E+0B 8978.
4.65 ACCEPTABLE 70.0 3.157E+08 8652.
4.48 ACCEPTABLE i
75.0 2.938E+08 8051.
4.18 ACCEPTABLE 80.0 3.035E+08 8316.
4.31 ACCEPTABLE
[
f 85.0 3.032E*08 8308.
4.31 ACCEPTABLE 90.0 3.006E+08 8237.
4.27 ACCEPTABLE 95.0 2.957E+08 8103.
4.20 ACCEPTABLE j
F 100.0 2.886E+08 7908.
4.10 ACCEPTABLE 105.0 2.793E+08 7652.
3.97 ACCEPTABLE d
j h 110.0 2.678E+08 7338.
3.81 ACCEPTABLE
{
115.0 2.543E+08 6969.
3.63 ACCEPTABLE g
120.0 2.389E+08 6546.
3.41 ACCEPTABLE j
l 6
125.0 2.095E+08 5740.
3.00 ACCEPTABLE 130.0 2.204E+08 6040.
3.15 ACCEPTABLE C3 135.0 2.159E+08 5917.
3.09 ACCEPTABLE 140.0 2.098E+08 5749.
3.00 ACCEPTABLE y
u.
?
t P
'I 9
5 03/05/1996 12:43 Filename: DLLH5F.OUT Page 1
03/05/1996 12:43 Filenamer DLLH5F.OUT Page B212R1 Shroud Weld MS Faulted 145.0 2.195E*08 6015.
2.03 ACCEPTABLE DLL-D4STRIBUTED LIGAMENT LENGTH EVALUATION (REVISION: 10/07/94) 150.0 2.386E+08 6539.
2.19 ACCEPTABLE DATE OF CURRENT ANALYSIS:. 03/05/1996 155.0 2.440E*08 6685.
2.23 ACCEPTABLE I
160.0 2.461E+08 6798.
2.26 ACCEPTABLE
SUMMARY
OF INPUTS:
165.0 2.605E+08
- 7138, 2.36 ACCEPTABLE 170.0 2.803E+08 7681.
2.53 ACCEPTABLE i
Angle increment 1.0 deg. (COARSE) 175.0 2.998E+08 8217.
2.68 ACCEPTABLE 799. psi 180.0 3.171E+08 8690.
2.83 ACCEPTABLE r
Membrane Stress, Pm.
2559. psi 185.0 3.320E*08 9097.
2.95 ACCEPTABLE Bending Stress, Pb
=
Saf ety Factor. SF 1.39 190.0 3.443E*06 9435.
3.05 ACCEPTABLE 88.00 inches 195.0 3.540E+08 9701.
3.13 ACCEPTABLE Mean Radius. Rm 1.500 inches 200.0 3.598E+08 9859.
3.17 ACCEPTABLE f
Wall Th.ekness, t
=
304 SS 205.0 3.623E+08 9927.
3.19 ACCEPTABLE f
Material Stress Intensity, Sm. 16900. psi 210.0 3.627E*08 9939.
3.20 ACCEPTABLE Fluence 2.2E+19 n/cm 2 215.0 3.667E+08 10048.
3.23 ACCEPTABLE (Thus, LEFM evaluation not applicable) 220.0 3.679E+08 10080.
3.24 ACCEPTABLE 225.0 3.677E+08 10075.
3.24 ACCEPTABLE THETA 1 THETA 2 THICKNESS 230.0 3.668E+08 10052.
3.23 ACCEPTABLE i
REGION
[deg.]
[deg.)
(inches]
235.0 3,632E+08 9953.
3.20 ACCEPTABLE pg 240.0 3.568E+08 9778.
3.15 ACCEPTABLE gg 1
1.8 10.2 1.500 245.0 3.477E+08 9528.
3.08 ACCEPTABLE gg 2
14.8 18.2 1.500 250.0 3.360E+08 9206.
2.98 ACCEPTABLE 3
42.8 48.2 1.500 255.0 3.144E+08 8614.
2.00 ACCEPTABLE UD 4
71.8 78.2 1.500 260.0 3.221E+08 8827.
2.87 ACCEPTABLE CD
[
d) l 5
101.8 108.2 1.500 265.0 3.186E+08
- 8730, 2.84 ACCEPTABLE 6
131.8 138.2 1.500 270.0 3.133E+08 8585.
2.79 ACCEPTABLE
()
(
i 7
221.8 224.2 1.500 275.0 3.118E+08 8543.
2.78 ACCEPTABLE
.a 0
281.8 288.2 1.500 280.0 3.079E+08 8437.
2.75 ACCEPTABLE gm 9
351.8 358.2 1.500 285.0 3.016E+08 8266.
2.70 ACCEPTABLE Sh 290.0 2.931E+08 8032.
2.63 ACCEPTABLE 295.0 2.823E+08 7737.
2.54 ACCEPTABLE gg LIMIT LOAD RESULTS:
300.0 2.694E+08 7383.
2.44 ACCEPTABLE Op 305.0 2.410E+08 6603.
2.20 ACCEPTABLE EC f
310.0 2.505E+08 6864.
2.28 ACCEPTABLE Ui' ALPHA MOMENT Pb' SAFETY 315.0 2.434E+08 6671.
2.22 ACCEPTABLE
{j' i
[deg)
[in-lbs)
[psil FACTOR RESULT 320.0 2.351E+08 6442.
2.16 ACCEPTABLE
=3
(
s 325.0 2.195E+08 6015.
2.03 ACCEPTABLE i
fCI I
.0 3.171E+08 8690.
2.83 ACCEPTABLE 330.0 2.386E+08
- 6539, 2.19 ACCEPTABLE j
5.0 3.320E+08 9097.
2.95 ACCEPTABLE 335.0 2.440E+08 6685.
2.23 ACCEPTABLE i
10.0 3.443E+08 9435.
3.05 ACCEPTABLE 340.0 2.481E+08 6798.
2.26 ACCEPTABLE
)>
I 15.0 3.540E+08 9701.
3.13 ACCEPTABLE 345.0 2.605E+08
- 7138, 2.36 ACCEPTABLE l$
[
20.0 3.598E*08 9859.
3.17 ACCEPTABLE 350.0 2.803E+08 7681 2.53
. ACCEPTABLE 08
'r 25.0 3.623E+08 9927.
3.19 ACCEPTABLE 355.0 2 990E+08 8217.
2.68 ACCEPTABLE O7 30.0 3.627E+08 9939.
3.20 ACCEPTABLE l
35.0 3.667E+08 10048.
3.23 ACCEPTABLE bl I
40.0 3.679E+C8 10080.
3.24 ACCEPTABLE ACCEPTABLEt MINIMUM SAFETY FACTOR.
2.03 AT 145.0 DEGREES.
S i
3
[
45.0 3.677E+0B 10075.
3.24 ACCEPTABLE 50.0 3.668E+08 10052.
3.23 ACCEPTABLE l
55 0 3.632E+08 9953.
3.20 ACCEPTABLE (N
^
60.0 3.568E+08 9778.
3.15 ACCEPTABLE j
65.0 3.477E+08 9528.
3.08 ACCEPTABLE 70.0 3.360E+08 9206.
2.98 ACCEPTABLE 75.0 3.144E+08 8614.
2.80 ACCEPTABLE j
80.0 3.221E+08 8827.
2.87 ACCEPTABLE 85.0 3.186E*08 8730.
2.84 ACCEPTABLE 90.0 3.133E+08 8585.
2.79 ACCEPTABLE 95.0 3.118E+08 8543.
2.78 ACCEPTABLE h-100.0 3.079E+08 8437.
2.75 ACCEPTABLE l
105.0 3.016E+08 8266.
2.70 ACCEPTABLE 4
j 110.0 2.931E+08 8032.
2.63 ACCEPTABLE l
{
115.0 2.823E+08 7737 2.54 ACCEPTABLE j
g 120.0 2.694E+08 7383.
2.44 ACCEPTABLE y
I N
125.0 2.410E+08 6603.
2.20 ACCEPTABLE 130.0 2.505E+08 6864.
2.28 ACCEPTABLE f
W 135.0 2.434E+08 6671.
2.22 ACCEPTABLE (p
1 140.0 2.351E*08 6442.
2.16 ACCEPTABLE j
C)
e a
Shroud CircumferentiaLWeld Structural Evaluation LigamentLength Determination Shroud in 1.5 in Evel. Period =
1200 days date
[
Plant ID:
BNP2 00=
177.5 in Lcesc =
226 in tupset/norml Prepared By:
wekt iD:
H6A Crack Growth Rate =
SE-05 in/hr Lcalc =
210 in traulted)
Data ED:
8212R1_
Totalinspection Uncertamty=
0.00 in tmin =
228.9 in vented By:
High Flux Zone inspection Data Erwt of Evaluation Ligament Data End of Evei. Crack To input for DLL Analysis input for DLL Aweysis bgament Anmuth Arwnutn Emetmg Days to Fully Aranuth l Anmuth bgament in High Flum Zone?
Arunuth Arrnuth Anmuth Arimuth bgament
[
Number Start idegtStop (degi. Length (m)
Cracked Start (deglStep (deg1 Length tini Start Stop Start Stop _
Start Stop Length F
f 78.70 76.32 90.2 36326 19.0 75.4 87.3 No No 19.0 75.4 2
77.63 79 35 28 Cracked Cracked L
3 82.40 85 24 4.7 712 83.3 84 5 1.8 No No 4
806 744 22 88 2 35512 88.2 143.3 85.3 No Yes 88.2 143.3 5
f 46 02 757.53 17.8 6179 146.9 156.6 14.9 Yes No 146.9 156.6 This TableNot Apphcable for 6
f 96 3 224.3 43.4 16821 19T2 223 4 40.5 No Yes 197.2 223.4 Weld H6A 3T1 7
226.72 267.86 54.4 21430 2'2R 260.9 51.6 Yes No 227.6 260.9 (f) 8 28508 264.29 1.9 Cracked Cracked M
9 266. f 2 337.59 110.7 44877 267.0 336.7 107.8 No No 267.0 336.7 70 33522 34 f.25 2.8 Cracked Cracked OO
=.a 01 A
{
~
2eE o
.O
- m O3 3e3c+
resteg tsgament lengrh fmf =
417.0 EOE Lig. Length (m) =
389.3 h
Sloca N e "
- E e > *
- e deselled Emitined oneiraia.lanetremdred Thesveld is structurmar acceptable for cantirmed apare86an P40TES (11 Ligament Data from B212RIGE Examination Summary Sheet (2)
Crack growth is applied at each end of 1 a
g_
13' Calculation for End of Evolustion Ligament Data includes uncertainty if apphcetdn (4)
Days to Funy Cracked = days till hgement length le aero tectueuy = uncertainty + ASME crack proulmity st4el for each 5 ement.
g p
0 15)
High Flum Zone = plus or minus 15 degrees from erimuthe45,135. 225 and 315 Os 30 80 etc.I 161 Weld H6A wig not reach LEFM threshold level for neutron embrtttlement (3x10"20) within cupent 'wwettn0 Ncense.
O (7) ideg = 1.54898 in 4
(8)
Uninspected regions assumed fury cracked. AE cracks assumed through-we3 (9)
Leelc = minimum required hgement Inngth for lindt load conceme - refenmco Structures Integrity report SIR-94-029 Rev. O -
g (10)
Emin = lealc + 2(Crack Growth in Evolustion Periodi + Total inspection Uncertainty W
O 03/05/96 H6A BNP2CRAK.WK4
.--.~...-- n r
.e e-t 02/28/IP9e 17:42 Filenamer DLLH6/M.DUT_
Page 1
ns#Taft.996 17:42 Filename:'DLLHEAN.DUT Page B212R1 Shroud Weld H6a Normal / Upset Evaluation 160.0 1.042E*09 50474.
20.47 ACCEPTABLE DLL DISTRIBUTED LIGAMENT LEE"Til EVALtIATION (REVISION: 10/07/94) 165.0 1.875E+09 51392.
20.83 ACCEPTABLE DATE OF CURRENT ANALYSIS: 02/28/1996 170.0 1.895E+09 51919.
21.05 ACCEPTABLE 175.0 1.900E+09 52069.
21.11 ACCEPTABLE
SUMMARY
OF INPUTS 180.0 1.904E+09 52165.
21.15 ACCEPTABLE 185.0 1.899E+09 52044.
21.10 -
ACCEPTABLE 1.0 deg. (COARSE) 190.0 1.880E*09
- 51527, 20.89 ACCEPTABLE Angle increment 320. psi 195.0 1.847E+09 50618.
20.52
-ACCEPTABLE Membrane Stress. Pm.
2162. psi 200.0 1.800E+09
- 49324, 20.00 ACCEPTABLE Rending Stress. Pb 2.77 205.0 1.744E+09 47787.
19.38 ACCEPTABLE Safety Factor. SF
=
88.00 inches 210.0 1.693E+09 46391.
18 82 ACCCr~* "
Mean Radius. Rm
=
1.500 inches 215.0 1.647E+09 45134.
18.31 ACCEPTABLE Wall Thickness, t Material 304 SS 220.0 1.607E+09
- 44024, 17.87 ACCEPTABLE Stress Intensity, Sm. 16900. psi 225.0 1.567E+09 42932.
17.43 ACCEPTABLE 1.9E+19 niem'2 230.0 1.531E*09 41944.
17.03 ACCEPTABLE Fluence
=
(Thus. LErM evaluation not applicable) 235.0 1.501S+09 41127.
16.70 ACCEPTABLE 240.0 1.477E+09 40486.
16.44 ACCEPTABLE THETA 1 THETA 2 THICKNESS 245.0 1.461E+09 40027.
16.26 ACCEPTABLE R EGION
[deg.]
[deg.]
[ inches]
250.0 1.451E+09 39754.
16.15 ACCEPTABLE pq 255.0 a.448E+09 39667.
16.11 ACCEPTABLE gg 1
19.0 75.4 1.500 260.0 1.447E+09 39656.
16.11 ACCEPTABLE gg 2
88.2 197.3 1.500 265.0 1.443E+09 39542.
16.06 ACCEPTABLE 3
146.9
's+.6 1.500 270.0 1.430E+09 39181.
15 92 ACCEPTABIS UO 4
197.2
+
4 1.500 275.0 1.41PE*09 38870.
15.79 ACCEPTABLE 90 227.6 26 9 1.500 200.0 1.414E+09 38755.
15.74 ACCEPTABLE
()
6 267.0 336.7 1.500 285.0 1.417E+09
- 38836, 15.78 ACCEPTABLE C) 29" 1.427E+09 39112.
15.89 ACCEPTABLE
-a 29' 1.444E+09 39582.
16.08 ACCEPTABLE CR LIMIT LOAD RESULTS:
300.0 1.469E+09 40241.
16.34 ACCEPTABLE Jh '
305.0 1.499E+09 41086.
16.68 ACCEPTABLE 310.0 1.537E+09 42109.
17.09 ACCEPTABLE 33 ALPHA MOMENT Pb' SAFETY 315.0 1.500E+09 43302.
17.58 ACCEPTABLE OD
[deg]
(in-Ibs) fpsil FACTOR RESULT 320.0 1.630E+09 44657.
18.12 ACCEPTABLE l$,
325.0 1.685E+09 46134.
18.73 ACCEPTABLE 85 7
1.933E+09 52972.
21.47 ACCEPTABLE 330.0 1.739E+09 47648.
19.33 ACCEPTABLE 6I 5.0 1.922E+09 52665.
21.35 ACCEPTABLE 335.0 1.798E+09 49275.
1*.98 ACCEPTABLE "3
10.0 1.896E+03 51957.
21.06 ACCEPTABLE 340.0 1.853E+0*
50788.
20.59 ACCEPTABLE 15.0 1.856E+09 50854.
20.62 ACCEPTABLE 345.0 1.894E+09 5*899.
21.04 ACCEPTABLE f'
20.0 1.802E*09 49368.
20.02 ACCEPTABLE 350.0 1.920E+09 52615.
21.33 ACCEPTABLE 25.0 1.746E+09
- 47846, 19.41 ACCEPTABLE 355.0 1.932E+09 52931.
21.45 ACCEPTABLE II 30.0 1.695E+09
- 46450, 18.04 ACCEPTABLE E
35.0 1.649E*09 45193.
18.34 ACCEPTABLE Ok h
40.0 1.609E+09 44083.
17.89 ACCEPTABLE ACCEPTABLEl MINIMUM SAFETY FACTOR = 15.74 AT 100.0 DEGREES.
45.0 1.573E+09 43094.
17.49 ACCEPTABLE 50.0 1.536E+09 42081.
11.08 ACCEPTABLE 55.0 1.506E+09 41264.
16.75 ACCEPTABLE S
60.0 1.482E+09 40624.
16.50 ACCEPTABLE "3
65.0 1.466E+09 40165.
16.31 ACCEPTABLE 70.0 1.456E+09 39891.
16.20 ACCEPTABLE 75.0 1.453E*09 39805.
16.17 ACCEPTABLE 80.0 1.453E*09 39928.
16.18 ACCCPTABLE 85.0 1.442E+09 39713.
16.05 ACCEPTABLE 90.0 1.430E+09 39181.
15.92 ACCEPTABLE 95.0 1.418E*09 38870.
15.79 ACCEPTABLE 100.0 1.414E*09 38755.
15.74 ACCEPTA9LE 105.0 1.417E+09 38836.
15.78 ACCEPTABLE 110.0 1.427E*09 39112.
15.09 ACCEPTABLE nj v
115.0 1.444E+09 39582.
16.00 ACCEPTABLE 120.0 1.469E+09 40241.
16.34 ACCEPTABLE
'f W
125.0 1.499E*09 41086.
16.68 ACCEPTABLE I
130.0 1.537E+09
- 42109, 17.09 ACCEPTABLE 135.0 1.500E+09 43302 17.58 ACCEPTABLE O
140.0 1.630E*09 44657.
18.12 ACCEPTABLE q
145.0 1.681E*09 46051.
18,68 ACCEPTABLE l
150.0 1.735E+09 47550.
19.29 ACCEPTABLE (K7 155.0 1.794E+09 49172.
19.94 iCCEPTABLE f
UJ C)
x -.--
-..asw.---
b 4,
s 02/28/1996 17-41 Filenamet DLLH6AF.OUT Page 1
02/29/1996 17:41
'160.0 1.830E*09 50137.
12.23 ACCEPTABLE DLL: DISTRIBLTTED LIGAMEif f LENCTH EVALUATION (REVISION: 10/07/94) 165.0 1.858E+09 Sn912.
12.41 ACCEPTABLE DATE OF CURRENT ANALYSISt 02/28/1996 170.0 1.872E+09 51300.
12.51 ACCEPTABLE 175.0 1.866E+09 51135.
12.47 ACCEPTABLE StttiARY OF INPtTTS:
180.0 1.870E+09 53231.
12.49 ACCEPTABLE 185.0 1.879E+09 51480.
12.55 ACCEPTABLE 1.0 deg. (COARSE) 190.0 1.865E+09 51104.
12.46 ACCEPTABLE Angle increment 1079. psi 195.0 1.831E+09'
- 50339, 12.28 ACCEPTABLE Membrane Stress. Pm.
3109. psi 200.0 1.795E+09 49191.
12.00 ACCEPTABLE Bending Stress, Pb 1.39 205.0 1.742E+09
- 47728, 11.65 ACCEPTABLE Safety Factor. SF 80.00 inches 210.0 1.691E+09 46332.
11.32 ACCEPTABLE Mean Radius, Rm
=
1.5p0 inches 215. '-
1.645E*09 45075.
11.02 ACCEPTABLE wall Thickness. t 22f 1.604E*09 43965.
10.76 ACCEPTABLE Material 304 u Stress Intensity. Sm. 16900, psi 225 1.563E*09 42833.
10.49.
ACCEPTARLE 1.9E+19 n/cm*2 230.
1.527E+09
- 41846, 10.25 ACCEPTABLE Fluence
=
(Thus, LEfH evaluation not applicable) 235.0 1.497E+09 41028.
10.05 ACCEPTABLE 240.0 1.474E+09 40388.
9.90 ACCEPTABLE THETA 1 THETA 2 THICKNESS 245.0 1.457E+D9 39929.
9.79 ACCEPTABLE REGION ideg.)
(deg.)
[ inches]
250.0 1.447E+09 39655.
9.73 ACCEPTABLE m
1 255.0 1.444E.09 39569.
9.71 ACCEPTABLE g
1 19.0 75.4 1.500 260.0 1.4 35F + 09 39323.
9.65 ACCEPTABLE 3
2 88.2 143.3 1.500 265.0 1.4361+09 39351.
9.65 ACCEPTABLE 3
146.9 156.6 1.500 270.0 1.47*E+09 39142.
9.60 ACCEPTABLE 4
197.2 223.4 1.500 275.0 1.U d+09 38831.
9.53 ACCEPTABLE Oh 5
227.6 2EO.9 1.500 280.0 1.413E*09 38716.
9.50 ACCEPTABLE 6
267.0 336.7 1.500 285.0 1.416E+09 38796.
9.52 ACCEPTABLE O
290.0 1.426E+09 39073.
9.59 ACCEPTABLE a
295.0 1.443E+09 39543.
9.70 ACCEPTABLE g
LIMIT LCAD RESULTS:
300.0 1.467E+09 40202.
9.86 ACC"aTABLE g
305.0 1.498E+09 41047 10.06 Act > TABLE 310.0 1.535E+09 42070.
10.30
. ACCEPTABLE 3
ALPHA MOMENT Pb' SAFETY 315.0 1.579E+09 43263.
10.59 ACCEPTABLE e
{degl lin-lbs)
[psil FACTOR RESULT 320.0 1.628E+09 44618.
10.91 ACCEPTABLE eC 325.0 1.683E+09 46124.
11.27 ACCEPTABLE E
.0 1.932E+09 52935.
12.90 ACCEPTABLE 330.0 1.739E+09 47648.
11.63 ACCEPTABLE 6*
5.0 1.920E*09 52627.
12.82 ACCEPTABLE 335.0 1.798E+09 49275.
12.02 ACCEPTABLE 3
10.0 1.895E+09 51918.
12.65 ACCEPTABLE-340.0-1.853E*09 50788.
12.38 ACCEPTABLE 15.c 1.854E+09 50814.
12.39 ACCEPTABLE 345.0 1.894E+09 51899.
12.65 ACCEPTABLE h
20.0 1.799E*09 49309.
12.03 ACCEPTABLE 350.0 1.920E+09 52615.
12.82 ACCEPTABLE 25.0 1.744E*09 47787.
11.67 ACCEPTABLE 355.0 1.932E+09
- 52931.
12.90 ACCEPTABLE M
30.P 1.693E+09 46391.
11.33 ACCEPTABLE 35.0 1.647E+09 45134.
11.03 ACCEPTABLE m
40.0 1.607E+09
- 44024, 10.77 ACCEPTABLE ACCEPTABLEI MINIMUM SAFETY FACTOR =
9.4 9 AT 100.0 DEGREES.
O 45 0 1.572E*09 43369.
10.54 ACCEPTABLE 50.0 1.538E*09 42140.
10.32 ACCEPTABLE 3
55.0 1.508E+09 41323.
10.12 ACCEPTABLE S
60.0 1.485E*09 40683.
9.97 ACCEPTABLE 3"
65.0 1.468E*09 40224.
9.06 ACCEPTABLE 10.0 1.458E+09 39950.
9.80 ACCEPTABLE m
75.0 1 455E+09 39864.
9.78 ACCEPTABLE V'
80.0 1.450E409
- 39724, 9.74 ACCEPTABLE i
8%.0 1.438E+09 39395.
9.66 ACCEPTABLE 90.0 1.427E+09 39117 9.60 ACCEPTABLE
(
95.0 1.415E*09 38772.
9.52 ACCEPTABLE
[
o 100.0 1.411E+09 38657.
9.49 ACCEPTABLE 105.0 1.414E+09 38738.
9.51 ACCEPTABLE
[
110.0 1.424E+09 39014.
9.57 ACCEPTABLE g
h i
115.0 1.441E+09 39484.
9.69 ACCEPTABLE 120.0 1.465E+09 40143.
9.84 ACCEPTABLE i
j l
125.0 1.496E+09 40988.
10.04 ACCEPTABLE l
l f
i 130.0 1.533E+09 42011.
10.29 ACCEPTABLE I
135.0 1.577E+09 43204.
10.57 ACCEPTABLE O
140.0 1.626E+09 44559.
10.90 ACCEPTABLE 3
i 145.0 1.678E+09 45972.
11.23 ACCEPTABLE h
i f
150.0 1.732E+09 47471.
11.59 ACCEPTABLE 155.0 1.787E+09 48981.
11.95 ACCEPTABLE g
)
l Q3 l
O i
1' A
-- v
__.-~ - - - - - _ - - - - - - - - - _ - - - - - - - - - - - - - - - - - - - -. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
r Shroud CircumferentialWeld Structural Evaluation Lig2 ment Length Determination Shroud in 1.5 in Eval. Period =
l'.
NYs date Ptent ID:
BNP2 00=
177.5 in Leste =
2,6 in tupsetinorm)
Prepared By:
I Weld 40:
H68 Crack Growth Rate =
SE-05 inttw Leste =
222 in afedted)
Data ID.
B2i2R1' Total inspection Uncertamty =
0.00 in tmm =
239.4 in verified By:
High Flun Zone Inspection Data Fnd of Evaluation Ligament Data End of Eval. Crack Tip Input fur DLL Analysis input for DLL Analysis lLM]Aif ]ep Stop (dey Length (mi Ar muth E misting Days to Fully Arimuth Arimuth ' Ligament fra Hi h Fluu Zone?
Arimuth Arwnuth Arunuth Artmuth Ligament i
0 y!
n
.f Co ached Start (de01 Stop (d*01 Length tint Start Stop Start Stop Start Stop Length t
- '4 9
/A Jr 28 Cracked Cracked 8
- 3. W JJ. # 9 31 21 31.7 32.7 1.6 Yes Yes M84 49.70 66 1499 37.3 40.6 52 Yes Yes 37.3 40.6 I
5 45 35 53 79 7.4 1858' 48 9 52.7 60 Yes Yes 48.9 52.7 j
]Qy 6@j 7'O 1664
~ 567 59'7 5.5 Yes Yes 56.2 59.7 This Tabte Not Apph<sbie for
~-
6 67 69 62y 08 Crocked Crocked wekt H68 gyg 7
6J 79 6J69 08 Cracked Cracked (p) l 8
_ 70.69 _ 77.78 08 Cracked Crocked 3
9 72 68 7J t 9 08 Cracked Cracked to 19 69
- 80. t 9 08 Crocked Crocked tt 92 68 9J 79 08 Cracked Cracked 72 70369 706.79 08 Cracked Cracked Q
IJ 912 68 f t319 08 Cracked Crocked O
14 118.99 179 19 1.5 Csacked Cracked u
15 132.98 733 19 1.6 Cracked Crocked 16 f 4 9. 9 9 f4219 1.5 Cracked Crocked Q1 Sn 17 1307 9 757.98 08 Crocked Crocked 18 202.26 203 18 2.4 Crocked Cracked M
?
19 204 79 277.86 11 0 3313 205.3 211.4 9.5 No Yes 205.3 211.4 S
20 2 t JJ8 279.77 99 2874 213.8 219.3 8.5 Yes Yes 213.8 219.3 6.
f 21 229.28 2228 24 Crecked Cracked R
22 225 32 225.etJ O8 Czecked Cracked O
r 23 2J0 88 233 eo 36 247 231.3 232.7 2.2 Yes Yes 3
I 24 236.14 138 25 2.3 Crocked Cracked g
25 269.79 242.29 08 Crochen Crocked
[
26 243 30 245 83 39 383 243.8 245.4 2.5 No No 27 250 38 250,88 08 Cracked Cracked 28 252 40 253 20 1.2 Crocked Cracked
'+
~
6 2 l'8 64 22 1
N 261.7 272.7 39 276 74 278 76 31 54 277.2 278.3 1.7 No No g
J2 292 60 293 20 1.2 Crocked Crocked y
JJ 300 78 J0J 89
- 4. 7 706 301.2 303.3 33 Yes Yes 301.2 303.3 3
JJ JOS 31 J tJ 20 12.2 3836 3058 312.7 10 8 Yes Yes 305.8 312.7 JS 332 40 341.25 133 4462 332 9 340.8 12.3' No No 332 9 340 8 (a,steiivement fenptri erd =
134 9
~
EOE Lig. Length tml =
883' h
Since EDE Llearnentlenoth < t*ain e detenedEmitised aselvstalm residred.1DLLaemanderJragramL MOTES (1)
LigN Data trem 8212R1GE Enemmetion Summery Sheet g
(21 Crack gre=th as opphed at each end of ligament
( 31 Calculation fo-End of Evaluation Licament Date includes uncertainty if applicable.
14)
Days to Fuey Cracked = days tillligoment length is rero tectusey = uncertainty + ASME crack pron.mity rulel for each Egement (St ' High Fba Zone = plus or mmus 15 degrees from satmuthe 45,135,225 and 315 tie 30L80 etcJ
-j t
f Wetd H6b win not reach LEFM threshe ce invol ter neutron embrtttlement (3x10'20) within current operating Econes.
O n
17)
Ideg = 1.54898 in h
(8)
Uninspected regions assumed fully crocked. As cracks assumed through-wee (St Lcesc = mawnum recluired tigement length for limit load conceme - reference Structural Ir'tegrity report SIR-84429 Rev. O h
110p tmm = Lesic + 2tCrsch Growth in Evaluation Periedl + TotalInspection Uncertainty o
03 V5/98 H6S BNP2CRAK.WK4
f pJr.een l &%It g s auna pneeswee g r at p-l Censta g pi L gwg g $ eses s
uma ane e f Fhko.nesePhkeastg!
u a
sueue tieschaf ts,
A. mate EWn T
1 le NA CM iJeursues1ee IJ A NA E Xi 1
94 et te M 115e 93M OE 1819 M 94 9 324 t
1; ee il e9 9 120 e 294 OR to 04 'S 49 e 2 s t
19 et to te 9 F5e 9 ene Creiend OR t
to 54 96 79 9 Fie 9 9D8 Craceae Ou te Fe 1.F ee.t e24 9
15 Pt 1F e4 1 256 9eM OK 1
97 40 14 M 1 tet 9 338 04 eF e* 1 9 9 3M q
es os 19 74 4 379 9 544 Ce 19 ee 99 Fe t See 1
98 ?e te 39 0 530 0tM On 18 7413 3 910e t
te SS 2o 00 1 240 S ete OR 96 38 20 M t eM 1
MM N 99 S eeS 9 414 05 2e M 30 et 9154 9
fe es 21 M t e10 9 20e OR 20 M 21 Se 9 204 1
It M 29 et 1 310 S tet Der 2t M2149 3ee ese 21 49 23 H t ion S GF4 7
21 et F3 3t 150s 2 72 4
2 23 M 1988 S a's e ted OR 23 3123 9s e te4 2
2S OS te h 1 989 9 214 OR 23 M H e19 2te 2
M 61 25 20 1 355 e 474 OK 28 9129 20 0 4F4 2
25 M 2$ 99 e sse 9 tle OK IS N 25 9i t tM 2
19 99 2e 50 G ere 8 978 OM 25 912e Se e974 2
N to 27 21 971e 9See Cserhos OR 2
2F 21 2793 8 F9e 9 000 Deched OM 2
27 83 29 n 1 500 Sere OM 2F e3 2e 5115Se 1 91 2
2e H 29 'S t ause 93;4 OR 29 91 M 98 2M 2e ss. 2e tt e eM m
2 2e 96 20 tt 12ee G ese On nu
==
$m S ue On me ne em Si n im 94u O.
w ee n n e.e g
2 so. n.,
2 3
is n om
.M O=
Si n n n teu ese ese St 22 33 99 1 900 0976 OK 31 22 31 99 9 900 2H
- M 3
33 et SS N G eet 9TM OM 33 tt 33 M e 13e 9
39 04 Se en t ece e TFe On 33 M M ee 9 tM g
M a n. 79 9 804 O
u e ue 1
M 49
==
im o ne On 3
M te M F9 9 tie G ese OR 35 te 3 e
3 SS F9 W e4 1 158 9 4F4 On 1S PS M 4e 9 474 O
3 30 44 9F 49 9 ele S See OR In es 3F ee s te.
v e,4 s k.
N ee.N. M ' "
O s
FM twe Ou 9
n c.e
.M im O.
wn t
99 ed een 9 379 Ou et te et FS e See 61.F5
.G lee g
e et 99 u
14.
m On c Finee M e
et F, 4
un n os 94 0 esM On a sen m e s=
h 41 M 9 ete 9 964 ON el e5 43 FC O 436,5 n==n,SM 4
n
.a 9.
m O,e Me Sw a
e se 3S eS se 1 889 SGM OM 8e M eS ee e9M 4
else 49 99 1 30s O SSe OK eS 95 45 95 9 954 O
13 9 984 On es eS ee 308 S44 4
et 95 as 30 t es'S e
9 2F4 Ou amanem ec e
ee Se m es 4
ee M 4F 19 9 9Fe e See OM es 05 4F EC 9 Me
==.
e c es ee 2s t Me e eFe On er se es as e Sao Sw m
i e
ee Fs ee n e sos S a's On a ss ee M t soo 92i O
se.
==
n9 t see t see On a n s3,e s sas F ie e
s3 =
nu
, ue esu Os n u n w o ne 3
12s.0 O.K 93 M.Se ee 9 454 o
9 Ss ee Se es 8 454 O
we nu.m e
ue nw e.m M
. se On 9s = = = e 4*
ne tm S
9$ 79 SS 44 12?S e ase OK 95 F9 9e Se S ese tee SS ee 90 19 1 See 9 SOS OR 50ese 161905 5 08 es e tr Se,.1999 41905 2
09 OR 1 SOG 9.m.F4 es, ta 9
Se 49 9
918,9.,.e".
0 4e O.
te, e9 t m.
9 se 40 W
O.
9 wv 1e 9
92
- e2 w sas en F
s2,e s2 m e sce 9m On o
F wm n et lose e Fe On nwnenem F
n ee nee sus en O =. e349 nn e m 9m y
. m.
.. e.
9 m.M
,3
.w n =,s =..M i ne
.M 9m O.
9 8e 38
,1 e
O.
e
. M.
9
.n O.
9
-9
.e m
e ele es a i me esM On Os m es 2e e sM E
S Ge 29 GS M i 25e SeM OK 00 2e Se M e 42e a
e
==
.no t eos em On wwww9m e
GF 9e M 9e 1 400 e 574 OE 97 $e 98 99 9 574 e
80 90 99 M 9 2ee G eSe OE
- e. 99 50 94 458 9
Se se 95 ee 1 959 8 978 OE se tt et ce 1 See G SF G
es et 79 94 O see e M4 OM 9e es te ss e tes 498 OR FW 14 '9 79 9 ees G
F M M PG 1 32.
F9 F9 F199 1 90s et f t 99 ft e3 1 319 G ese OK F19e F193 9 ees to 71 63 F2 40 t tot 9 374 08 74 e3 72 ee 9 374 te F2 48 F3 59 t 220 0 See OR F2 48 F319 9 500 75 99 F3 84 1 430 9 0ee OR F3 99 73 ee s see 91 F3 ee Te as t ies e sse OR F3 Se te es t see 11 74 es FS S4 1ese e SFe On Fe se FS te 8 574 91 79 te 3 Fe 12Ee t eSe OR FS te FS F9 9454 g
.F5.PS TS F9 F,e.es s e.14 M e4 13eo e si4 OE it no 9 ete O.
- es,. e
.5
"i=
n FF 9e FF Fe 9 tse G 3ee OR FFW FF Fe 9 Be g
tt FF Fe MM 1 see GSM OE P' N FS 35 9 33e f
e n
n Se am em e 2ee On F9 3e rte ewe F*. 4 9 98.
C 974 OK F9 es 790s t Se G e7
{
Fe t.e
= = = 19 t m.e o
19 ne Es te o we em On On Sw se.w ee nt i nes a
se w een t see ew.
On 9 94 91 e t tse ett 12
- 8. M si se 19Eul 9OM OE 9 97 910,5 e2 94 t een g
12 St ee et te
' tes 9 9F4 OR 82.....
w
=
~=
1m 9m O.
i-u)
O
.9nees ten i
i
t b
' en i
i 12 52 F9 53 4e 1 250 e ase OR 82 70 e5 44 9 ese 12 SS ee
.4 e5 5 200 SSM OR eteeMesteM 12 94 99 M Fe ' t Joe 56M OR e4 90 e4 74 e 4M 12 M F4 95 M t MO 9 598 OR-De F. 95 35 9 394 12 99 M 9e M 1MW e 474 OR es N es te r 4Fe 12 es 98 se M t 350 S S24 OR e5 se 00 99.S24 12 es tl 97 Se 1 300 9 4F4 OR 98 99 97 34 9 eFe
- 2 e' M 5F e t 33B 9 90.
OR OF M cF e e See i
et SF 9e sete
.13ee 3 S54 OR eF 9e e6 0s 8 55e i
v2 ee te 95 20 t Ste 9 484 OR se ss es fe c ese 12 to 29 MM t 90.
06Fe OR se 25 ge M t 900 9 9F
$2 40 9e SD SS 1 900 eSF4 OR et M 99 991 SDB e SF 12 te H St M t eet 9 994 OR 90 95 91 M e eSe 12 St N 91 to 1 Jee.
91 N 919e t eM.
.199 92 Se 150 9 97 12 44 M 92 Se 42 e2 S4 93 19 1 265 ' GGM OR 92 58 9319 0 eM 13 93 99 es te 4 40P S SF4 OR e319 53 3e 9 3te il 9394 M se 9 9e.
e 904 OR-
.5 M M es O 1ee 93 w ee M 94 S ees 99M OR se es 9S te 9 938 13 M to 95 F9 9 980 9 994 OR
.S t4 BS F501Se l
33 M 99 se 44 1 980 9 2oe OR 95 FS e. 44 9 284 13 9e 44 9F ee t 378 S te.
97 Fe 1 219 9 404 OR 97 05 97 74 s eDe 13 97 Fe te 30 t tes 9 354 OR eF F4 M 3 0 354 13 se M 98 98 9 9e0 96Fe OR 80 M ee M e tte 13 es se se 90 0 FeO 9 005 Cetese OE 13 M et see M 9 919 9 ges Caecess OE g
n tee M mM t ens em eR ien u m M e m
,M i
9F f
18 tes 95 set te 9 2ee etM 04 toe ts tet te t eM 13 tet te 152 29 9 25.
94M OR 109 94102 2G S.
4M n = M.4.N u
==
mM tm eeM OK 13 '
ta2 9e 193 90 t M9 9 524 OR 1 2 98193 9e B SM g
a
=H mn 14e.
m M a n.9 9 9.e h
9m OR t le tw 13 tee 24 See se 1 34 9 See OR 10e N tee e
e o
M mW 1M 99M OR m M = t.
44 C
m es m M 19
.=
o mW m it 9m OR i m.
t=
9m OR m ee = M e m o
=
m te mM wF M tm ten OR 1 7 et toe 9.e 9 4n
= M.F e.OFe u
m M.
d 15F 4 toe to 3 905 9 eF4 OE to e m.4 a
OR m u toe n e m te
== m r.
een
.t OR
= Pe te M 9 tes to
= m ee 99
h OR 90 44 99995 t 900 9 97 H
set es tie te S SAs e S.Fe
~
OR m ee m u t a n
m et mu em 9 n.
9 48 OR 919 74 Ht M 9 ese to 190 74 ttt le 12e8 192 kt12.4 6 484 991 39 192 9 94 199 3.
112 04 1 319 0 404 OR 0 0 7F4 to 917 98 192 9.
S tee e 2Fe OR te m9 ut m im e H.
OR n2. m t9 e ese eg; 11 US to til es t Ste 9 See OR 913 tt 113 M e See
=*
111 M S
95 193 98 144 49 1 200 94M 04 198 4. tie s.S eM tl ite te tit te 8 90 99F4 OR uS u nSn 974 o
995 H 9 In 95 ot t4 9978 iew
.2x OR 9*
9 Fee 9 905 Creense OR 3
92 StS 'S u,B 88 9e im S ne OR m H mese2M 19 ve H i
,O
,S m ee ma t eF9 f ue OR meenrn92e' SS mu m 3s t oes frM OR m u n9 Me ru SS Ste W 9te tt 1 bJB G e F4 OR 19e 38199131500
$ te et9 96 999 9e G 4H.
{
SS 199 99 ttB M 1 299 9 42e OR 19 9 9 se 1N es 1 See 9 594 OR ttt M 12.
9 99 te 129 et 129 se 1 985
. 974 OR 12e de 121 te e iFe p
to 121 te fit 79 99'S 9 eed OE 121 te 129 F99Sec ID
=
1:1 F9 mM es*
9 99e OR m F9 m M e tte O
te 122 44 tP3 0s 12?.
S eet OR 922 ee t23.P 444 w
m 9.
123 n i 3eo OSM OR mee n$n SM 3-l t e,M
,h te 523 ?e 12e le e Fee 9 005 Creches OR OR 924 3B 12S M e eN 19 624 35 12S te 9 9,te 9S
.H OR m M m eg e toe mM m 9.
9 le t2S e6 92e M 17te 9 304 OR m M 1N 9e. 384 0
625 es TN 34 0 174 te mM 125 se e ene e tFe OE M
se 9M 99 12? se 9 295 9 42e OR t2e et 127 se 5 424 se 12F es tM 2e 90s e SF4 0R 12F M tM 29 9Fe te 12e 20
%29 M 1 930 9 3Be OR TN 29 tM 94 9 See
- e 1M M 929 4 i2 s 9 ete OR IN Ge 929 Se e ete 95 eM 90 13 It 1 tes 9 3D4 OR 120 Se SM 3e e 384 at mM tW 96 1 979 e Me OR S3R 2813e 99 5 384 to 130 e5 139 54 9 Wee 9 994 OR 93e se 131 S8 9 054 19 179 Se 132 99 1 310 9 508 OR TH Se 132 99 9 5 4 to
$32 99 933 *e 13ee GSM OR 137 te 133 te 9 93e 1F til 19 133 se 1 Sep 9 See OE til18 933 se e See t
e ees OE T33 M 13e se 9 eee if
??l et 1M es e 350 1e 9 104 OR 139 H m F See IM es 1M 94 SF 13e es 1M to 9 TSe '
17 139 to 1B FS 8 See 9 15.
OE W
SM 79 tM e4 1 240 e ese OR 13S F9 95 4e e 494 17 42 ee 19F 9.
1 29 9 See OR 135 4413F es e Ese 17 43F 90 13F F4 1 200 t eSe OE 13F We 93F F4 9 4S8 SF 937 fe 13e 3 t 3se GSM CR tW N13B3599N 97 SW M 1M ee 122e 9 3e4 OR 130 3e 138 9e 9 300
{
Q w
tw ee us M im e ne Os notamts9Me a
o m 9e ue M 32w 9 Me OR neM us M 9 es.
g 9F see Se See 96 1 119
@ 19e OE
=0 M He es B 2e4 ue se wi se t se.e A
e gr n
us es w as 9 3ne 69n 04 ut M m wi M s e2 o
utM tc t M.
em OK en u2,9 m M.t se.
g 1
m te mM t ime em OR
,.. mM mM 94u 0
m M m es 4=
O2 9=*
=
e o
e-ESR '96-00154, Rsvision 0,' Attachment g B / 8 e# S30 f
a a 8
- = ma.ts. ts a.n.
- e. s. t.
a u.ma n
- n. m
- n 9
r i i. i E. E. ! !. ! K.! i E R. E E R. R E Z.13. E.f f ! I E ! ! R. R i 5. H I. K I. I R R. E. I R. I..! E K. 55 E E R I E !.E R. E. R K 5 E E I. 5 R..R I ! ! I.I 5 5 E. E I.5 E l. i I I. II. I. I
......... - masassassass=esssssamenas essess
=rsszassassr= ce sets:resser:rssrae:anscres= :r::: ssas s
!!S!!?!!!!*EEEEE 19!!!EREHEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE E !!!!!iEEEEEEERIIILEEEEEER EEEEEE.
- r::::::x:::::: asarscreaser:rsarse scasars ::::senssas e esssasseaux::=rssssssarsa sessrs E!!!!!!!!!!!EEEE !85!8!RREEEEAEEEEEEEEEEEEEEEEEEEEEEEEEE E EEEEIREEEEi!!!ERIIIEEEEEE EEEEEE
.I 11 1
1
.E E..E E i!..!.!! f.i 5 i s.!!I.E E.Ili E..! I E E E.!.! R.ii.E R..E K !!!!!!! 55 E.K 55..E E.!! E !. I.I.II 55.K.K 5 E.l i 55 553 5 E.I E.5 Z 35 15.E R R R I!. I!585 R R. I. l t. t.!!!!.!E..R B..E!. !.II. II.II. II R R R. R R. R..R.R I.!!g a n.g g g g g g g s g g g g g g g g g g g g g g g gl gIII..g s g g g g g g Ig g g rescrassassr= :resarsterscre:essrscenesercosser:sessensreserrasmsanssx:::esssssser:nsses**sse
! !!!!i !!! !
- i s ! E E !! B !!!!I E E E S RIEE E E EEEE E E EEEE E EEE E E E EE EE!!E!B E!!!!iE E EIEIR E!!!! E E E E E E E E E EE E E R R
- rrarassassr:seresarsservare:r sescoscaservaser: cassessessenssassassa:tersenssaarnassessess E!I !!i!!!!8EEEEE!! !!!IRiEEEAAEEEEEEEEEEEEEEEEEEEE!EEEEEEEEBt!!!IEEEEEElli!!!!EEEEEEEEEEEEEE l
r e r rr r rr r r r r e e r r l aa ma nanaxa nss1=n=1 =cccxazzz acanzancel a m a na minstata m ani emana s s a s sassanaman=n
ESR 96 00154, R: vision 0, AMchm:nt B B19 ofOSD i
I
\\
f
\\
tra t.e m
- a. t.
- t. +
a.
.e u.n, r,
-e.
ERR.I.KKE.IR.R.IE.5 3 5 535i..E !!!..!!.II.ER.E!.! E E E E..!!.!5 R..E.II.I.I..!.!.!.!.!.!.!.!.!.!.!.!.!Ein
.l.i.i
.l.i !!I R%RsR$sstess sasssR 3 asssts1*rRs3 sSCB rRassssestsStaspessesssRs mRs 39 sen EEEEEEEEEEEEE EEEEEE I EEEEEEEEEEEE EEEE EtiiEAREREEIE!!ERI!!!E5HES 555 E! !!i sasassesseess masses s sesssestsens sere sessssesesassesserssenssas saa as sse EkEEEEEEEEEEE EEEEEE E EEEEEEEEEEEE EEEE REIEEEEERREEi!!!EE!!!!E5Ha 5E5 55 522 000000000000000000000000000000000000000000000000000000000000000000000000000000000000 ll l
l}
lll O u u 90 v og ogy gy E i. l. i i E. !. !. ! !. ! E 58 5 5. i. 5 5 E. E E I..I ! !. !. ! i !. 5 5 3. E. I I I E. E ! E. I. !!. E E R. I I E E. R. ! !.: s..!!. ! ! E E. !.! ! !. l, I R. R R I I.I 5 R. R. R. ! E. E ! R R I. E.E E. 5. f !..! R $. 5 !! !!..I I!. !! I !!!. !!..! E E.R E. !. I. R R I..I!!! ! !!!!. I E. R I I E. E! ssassessnessssssses s sssssssssensmesseessenssse:rsasarsteessenasssscasmssessnessees EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEllsiEAEEEEEIIIEEE!!!s55SSS555555555=ggggiu susessesserssensas smsssssssestsensarsteresessesssrsessesserseressassessesarsesessen E== tEEEEEEEEEEEEEEEEEEEERIEEEEEEEEEEEEEEEEEnniEREnnEEIIEEEE!!!555ssS555555555!!Eagi s s1 x x x x z zis s m a s s s a ns s as s e s s s a n n s a nannasa masa nmie n n s la s a n a s s a s e m a s s m a n a n z a s s a m m a s s all { i l
9 9 e 07/29/1996 14:02 Filename: DLLH6BNU.OUT Page 1 02/28/1996 14:02 Fil ena me : DLLH6BNU.OUT Page B212R1 Shroud Weld H6b Normal / Upset Evaluation 47 53.8 54.5 .454 DLL: DISTRIBUTED LIGAMENT LENGTH EVALUATION (PEVISION: 02/21/94) 48 54.5 55.1 .554 DATE OF CURRENT ANALYSIS: 02/28/1996 49 55.1 55.8 .454 50 55.8 56.4 .444 TUMMARY OF INFUTS: 51 56.4 59.7 1.50C 52 59.7 60.8 .454 1.0 deg. (c7 ARSE) 53 60.8 61.5 .454 Angle increment = 309. psi 54 61.5 62.2 .604 Membrane Stress, Pm = 2375. psi 55 62.2 62.8 .674 Bending Stress, Pb = 2.77 56 62.8 63.5 .174 Safety Factor, SF = 88.75 inches 57 63.5 63.7 .674 Mean Radius. Rm 1.500 inches 58 63.7 64.3 .674 wall Thickness, t = 304 SS 59 64.3 65.0 .574 Material = St ress Intensity, Sm = 16900. psi 60 65.0 65.6 .424 1.*E.19 n/cm*2 61 65.6 66.3 .534 Fluence = (Thus. LEFM evaluation not applicable) 62 66.3 66.9 .424 63 66.9 67.6 .174 THETA 1 THETA 2 7HICKNESS 64 67.6 68.2 .574 R EGION (deg.) (deg.) (inches) 65 68.2 68.8 .454 pn 66 68.8 69.5 .674 gg 1 14.2 14.8 .324 67 69.5 70.1 .164 gg 2 14.8 15.5 .294 68 70.1 70.8 .494 3 16.8 17.4 .424 69 70.8 71.2 .674 UO 90 4 17.4 18.1 .334 70 71.2 71.8 .484 5 18.1 18.7 .544 71 71.8 72.5 .374 g) 6 18.7 19.4 .104 72 72.5 73.2 .394 g) 7 19.4 20.0 .414 73 73.2 73.8 .604 .a 4 20.0 20.7 .114 74 73.8 74.5 .384 Cn 9 20.7 21.3 .204 75 74.5 75.1 .574 4h 10 21.3 21.5 .504 76 75.1 75.8 .154 11 21.5 23.3 .674 77 75.8 76.4 .414 30 12 23.3 24.0 .144 78 76.4 77.1 .494 n> 13 24.0 24.6 .214 79 77.1 77.7 .364 8{ 14 24.6 25.3 .474 80 77.7 78.4 .334 un 15 25.3 25.9 .154 81 78.4 79.0 .294 [j' 16 25.9 26.6 .074 82 79.0 79.7 .674 3 17 27.8 28.5 .674 83 79.7 80.2 .674 fUI le 29.5 29.2 .234 84 80.2 80.8 .674 19 29.2 29.8 .434 85 80.8 81.5 .674 18 20 29.8 30.5 .424 86 81.T 82.1 .674 21 30.5 31.1 .464 87 82.1
- 82.8
.674 l 22 31.1 31.2 .054 88 82.8 83.4 .464 Q3 II 23 31.2 33.2 .674 89 83.4 84.1 .434 24 33.2 33.8 134 90 84.1 84.7 .434 b! 25 33.8 34.5 .174 91 84.7 85.4 .514 26 34.5 35.1 .424 92 85.4 86.0 .474 UI hk 27 35.1 35.8 .404 93 86.0 86.7 .524 28 35.8 36.4 .474 94 86.7 8s.3 .474 29 36.4 37.1 .594 95 87.3 88.0 .504 Dd 30 37.1 37.8 .594 96 88.0 88.6 .554 31 37.8 40.6 1.500 97 88.6. 89.3 .484 32 40.6 41.1 .544 98 89.3 89.9 .674 33 41.1 41.8 .544 99 89.9 90.6 .674 34 41.8 42.4 .624 100 90.6 91.2 .654 35 42.4 43.0 .584 101 91.2 91.9 .434 hp 36 43.0 43.7 .584 102 91.9 92.5 .674 37 43.7 44.3 .674 103 92.5, 93.2 .434 38 44.3 45.0 .634 104 93.2 93.8 .574 60 to 45.7 46.3 .544 106 94.5 'i 94.5 .164 () 39 45.0 45.7 .554 105 93.8 95.1 .034 41 46.3 47.0 .274 107 95.1 95.8 .154 Oi 42 47.0 47.6 .344 108 95.8 96.4 .264 4% 43 47.6 48.9 .344 109 96.4 97.1 .544 0 44 48.9 52.7 1.500 110 97.1 97.7 .404 45 52.7 53.2 .594 111 97.7 98.4 .364 46 53.2 53.8 .594 112 98.4 99.0 .074
e e 4 02/20/1996 14-02 Filename-DLLH6BNU OUT Pacc 3 02/28/1996 14:02 Filename: DLLH6BNU.OUT Pace 113 100.3 101.0 .174 179 144.8 145.4 .464 114 101.0 101.6 .434 180 145.4 146.1 .234 115 101.6 102.3 .424 181 146.1 146.7 .554 116 102.3 102.9 .454 182 146.7 147.4 .554 117 102.9 103.6 .524 183 147.4 148.0 .124 118 103.6 104.2 .674 184 148.0 148.7 .184 119 104.2 104.9 .564 185 148.7 149.3 .174 120 104.9 105.5 .564 186 149.3 150.0 .104 121 105.5 106.2 .674 187 150.0 150.6 .494 122 106.2 106.8 .534 188 150.6 151.2 .324 123 106.8 107.5 .424 189 151.2 151.8 .674 124 107.5 108.1 .074 190 151.8 152.5 .554 125 108.1 108.8 .024 191 152.5 153.1 .034 126 108.8 109.4 .104 192 151.1 153.8 .674 127 109.4 110.1 .674 193 196.2 196.9 .244 128 110.1 110.7 .424 194 196.9 197.5 254 129 110.7 111.4 .464 195 197.5 198.1 .314 130 111.4 112.0 .484 196 198.1 198.8 .344 131 112.0 112.7 .274 197 198.8 199.4 .544 pn 132 112.7 113.2 .464 198 199.4 200.1 .324 (n 133 113.2 113.8 .504 199 200.1 200.8 .144 gg 134 113.8 114.5 .434 200 200.8 201.4 .264 135 114.5 115.1 .074 201 201.4 202.1 .154 UO 136 115.1 115.8 .224 202 202.1 202.7 .304 90 137 116.4 117.1 .294 203 202.~ 203.8 .284 C) 138 117.1 117.7 .244 204 203 8 204.4 .194 c) 139 117.7 118.4 .254 205 204.4 204.8 .194 .a 140 118.4 119.2 .674 206 204.8 205.3 .194 C1 141 119.2 119.8 .424 207 205.3 211.4 1.500 4h 142 119.0 120.5 .554 208 211.4 212.5 .484 143 120.5 121.1 .174 209 212.5 213.2 .484 30 144 121.1 121.8 .044 210 213.2 213.8 .524 03 145 121.8 122.4 .014 211 213.8 219.3 1.500 82 146 122.4 123.1 .444 212 219.3 220.4 .574 EE 147 123.1 123.7 .534 213 220.4 221.1 .574 [3* 148 124.4 125.0 .484 214 221.1 221.7 ,674 l3 149 125.0 125.7 .144 215 221.7 222.8 .674 f) 150 125.7 126.3 .384 216 222.8 223.4 .674 151 126.3 127.0 174 217 223.4 224.1 .674 152 127.0 127.6 .424 218 224.1 224.8 .534 153 127.6 128.3 .074 219 224.8 '225.4 .674 U$ 154 128.3 128.9 .364 220 225.4 225.8 .674 08 155 128.9 129.6 .414 221 225.8 226.5 .674 II I 156 129.6 130.2 .364 222 226.5 227.1 .134 157 130.2 130.9 .344 223 227.1 227.8 .254 3 158 130.9 131.5 .054 224 227.8 228.4 .274 CD hk 159 131.5 132.2 .504 225 228.4 229.1 .324 160 132.2 133.2 .534 226 229.1 229.7 .524 161 133.2 133.8 .564 227 229.7 230.4 .094 (}$ 162 133.8 134.5 .484 228 230.4 231.0 .224 163 134.5 135.1 .104 229 231.0-231.7 .674 164 135.1 135.8 .154 230 231.7 233.2 .674 165 135.8 136.4 .414 231 233.2 233.9 .204 166 136.4 137.1 .384 232 233.9 234.5 .034 167 137.1 137.7 .454 233 235.1 235.8 .094 168 137.7 138.4 .524 234 237.1 238.3 .674 169 138.4 139.0 .394 235 238.3, 238.9 .674 s 170 139.0 139.7 .384 236 238.9 239.6 .674 W 171 139.7 140.3 .404 237 239.6l 240.2 .574 b3 172 140.3 141.0 .284 238 240.2 240.9 .524 173 141.0 141.6 .674 239 240.9 241.5 .394 g 174 141.6 142.2 .674 240 241.5 242.3 .154 s4, 175 142.2 142.8 .674 241 242.3 242.9 .674 176 142.8 143.5 .424 242 242.9 243.6 .424 O 17s 143.5 144.1 .464 243 243.6 244.2 .674 178 144.1 144.9 .594 244 244.2 245.8 .674 UJO
. - - _ _,.- m m - m %
y 1
-= I 02/29/1996 14:02 Filename: DLLH6BNU. OUT Page 5 02/28/1996 14:02 Filename: DLLH6BNU.OUT Pace - 245 245.8 246.5 .674 311 313.2 313.9 .174 - 246-246.5 247,1 .414 312 313.9 314.5 .074 [ 247 247.1 247.8 .494 313 314.5 -315.1 .114 L 248 247.8 248.0 .674 314 315.1 315.8 .084 4 249 248.0 248.6 .404 315 315.8 316.5 .154 I 250 248.6 249.3 .554 316 316.5 317.1 .114 I 251 249.3 249.9 .434 317 317.1 317.8 .114 + 252 249.9 250.6 .514 318 317.8 318.4 .014 [ 253 250.6 250.9 .554 319 318.4 319.0 .054 254 250.9 231.5 .674 320' '319.0 319.7 .454 { 255 251.5 252.2 .124 321 319.7 320.4 .534 L 3 256 252.2 252.8 .004 322 320.4 321.0 .484 .j 257 252.8 253.2 4674 323 321.0 321.6 .474 i 258 253.2 253.9 .074 324 321.6 322.3 .574 i 259 254.5 255.1 .014 325 322.3 323.0 ,574 260 255.1 255.8 414 326 323.0 323.6 .374 [ 261 255.8 256.5 .104 327 324.9 325.5 .064 6 262 256.5 258.8 .674 328 325.5 326.2 .044 j 263 258.8 259.4 .674 329 326.2 326.9 .404 pn { 264 259.4 260,1 .464 330 328.8 3.9.5 .064 gg 265 260.7 261.4 .074 331 329.5 330.1 .064 i gg 266 261.4 261.7 .074 332 331.4 332.0 144 267 261.7 272.7 1.500 333 332.0 332.7 .154 CJ 266 272.7 273.9 .574 334 332.7 332.9 .354 CD 269 273.9 274.5 .574 335 332.9 341.8 1.500 d)~ [ 270 274.5 275.1 .574 336 340.8 341.3 .674 () [ 271 275.1 275.8 .574 .a 272 275.8 276.5 .494 QR l 273 276.5 277.1 .674 LIMIT ICAD RESULTS: - A . l 274 277.1 278.8 .674 t
=======
= 275 278.8 279.4 .674 gg 276 279.4 280.1 .204 ALPHA HOMENT Pb' SAFETY GD 277 280.1 280.7 .424 [deg) (in-lbs] [ psi] FACTOR RESULT l 278 281.4 282.0 .104 84 i 279 282.0 282.7 .474 .0. 7.899E*08 21282. 8.04 ACCEPTABLE f 280 282.7 283.3 .674 - 5.0 7.775E+08 20947. 7.92 ACCEPTABLE . ([
- )
281 283.3 284.0 .674 10.0 7.768E+08 20929. 7.91 ACCEPTABLE 282 284.0 284.6 .524 15.0 7.646E*08 20599. 7.79 ACCEPTABLE 283 284.6 285.3 .074 20.0 7.465E+08 20113 7.61 ACCEPTABLE f 284 285.9 286.6 .294 25.0 7.227E+08 19470. 7.37 ACCEPTABLE I" + 6 285 287.2 287.9 .404 30.0 6.986E+08 18821. 7.13 ACCEPTABLE E 286 287.9 288.5 ,114 35.0 6.762E*08 18217. 6.90 ACCEPTABLE E r 287 288.5 288.9 .534 40.0 6.574E408 17713. 6.71 ACCEPTABLE f 288 288.9 289.5 .594 45.0 6.440E*00 17349. 6.58 ACCEPTABLE p 289 289.5 290.2 .494 50.0 6.322E+08 17031. 6.46 ACCEPTABLE 290 290.2 290.8 .364 55.0 6.178E+08 16645. 6.32 ACCEPTABLE 03 291 290.8 291.5 .014 60.0 6.097E+08 16425. 6.23 ACCEPTABLE hk i 292 291.5 292.1 .024 65.0 6.057E+0B 16318. 6.19 ACCEPTABLE 293 292.1 292.8 .674 70.0 5.950E+08 16031. 6.09 ACCEPTABLE gg i i 294 292.8 293.2 .334 75.0 6.006E+08 16181. 6.14 ACCEPTABLE [ j 295 293.2 293.9 .574 80.0 6.087E+08 16399. 6.22 ACCEPTABLE [ j 296 293.9 294.5 .244 85.0 6.195E+08 16691. 6.33 ACCEPTABLE 297 295.8 296.5 074 90.0 6.337E+08 17072. 6.48 ACCEPTABLE [ 298 296.5 297.1 .204 95.0 6.517E+08 17557. 6.66 ACCEPTABLE 299 297.1 297.8 .034 100.0 6.701E+08
- 18054, 6.84 ACCEPTABLE 300 297.8 298.4
.254 105.0 6.873E+08 18517 7.01 ACCEPTABLE 301 299.0 299.7 .454 110.0 7.035E+08 18954. 7.18 ACCEPTABLE e 302 299.7 300.4 .514 115.0 1.164E+0g 19300. 7.31 _ ACCEPTABLE (J3 303 300.4 301.0 .454 120.0 7.307E+08 19686. 7.45 ACCEPTABLE 304 301.0 301.6 .624 125.0 7.441E+08 20046. 7.58 ACCEPTABLE D ] 305 301.6 303.3 1.500 130.0 7.560E+08 20368. 7.70 ACCEPTABLE DJ 306 303.3 304.5 .384 135.0 7.690E+08 20718. 7.83 ACCEPTABLE 307 304.5 305.1 .344 140.0 7.886E*08 21247. 8.0J ACCEPTABLE O 308 305.1 305.8 .344 145.0 '8.062E+08 21720. 8.21 ACCE PTABLE 13 309 305.8 312.7 1.500 150.0 8.180E+08 22039. 8.33 ACCEPTABLE 310 312.7 313.2 .174 155.0 8.237E+08 22191. 8.38 ACCEPTABLE (37 [ bJ . C7 -. - ~ - ,r-,w- -e... .m. vr .m
+ o J2/28/1996 14:02 Filename: DLLH6 BNU. OtTT Paqe 7 160.0 8.230E+08 22174. 8.38 ACCEPTABLE 165.0 8.161E*08 21988. 8.31 ACCEPTABLE 170.0 8.031E*08 21636. 8.18 ACCEPTA3LE 175,0 7.882E*08 21236. 8.03 ACCEPTABLE 180.0 7.526E*08 20276. 7.67 ACCEPTABLE 185.0 7.465E+08 20111. 7.61 ACCEPTABLE 190.0 7.482E+08 20158. 7.63 ACCEPTABLE 195.0 7.416E+08 19980. 7.56 ACCEPTABLE 200.0 7.294E+08 19650. 7.44 ACCEPTABLE 205 fs 1.116E+08 19171. 7'26 ACCEPTABLE 210. t4 6.885E*08
- 18550, 7.03 ACCEPTABLE 215.)
6.729E*08 18129. 6.87 ACCEPTABLE 220.J 6.513E*08 17627. 6.68 ACCEPTABLE 225.0 6.381E+08 17197. 6.52 ACCEPTABLE 2M 0 6.240E+08 16813. 6.38 ACCEPTABLE 235.0 6.097E+08 16426. 6.23 ACCEPTABLE 2e'.0 6.001E+08 16167 6.14 ACCEPTABLE 235.0 5.921E+08 15953. 6.06 ACCEPTABLE 250.0 5.856E+08 15778. 5.99 ACCEPTABLE 255.0 5.902E+08 13901. 6.04 ACCEPTABLE g 260.0 6.005E*08 16179. 6.14 ACCEPTABLE y 265.0 6.115E+08 16476. 6.25 ACCEPTABLE 270.0 6.292E+08 16953. 6.43 ACCEPTABLE 275.0 6.483E+08 17466. 6.62 ACCEPTABLE Q 280.0 6.654E+08
- 17926, 6.79 ACCEPTABLE h
245.0 6.825E+08 18387 6.97 ACCEPTABLE O 290.0 6.970E*08 18779. 7.11 ACCEPTABLE a 295.0 7.095E*08 19115. 7.24 ACCEPTABLE g 300.0 7.260E*08 19560. 7.40 ACCEPTABLE g 305.0 7.421E+08 19994. 7.56 ACCEPTABLE = 310.0 7.593E+08 20456. 7.74 ACCEPTABLE y 315.0 7.767E*08 20925 7.91 ACCEPTABLE cp 320.0 1.952E*08 21423. 8.10 ACCEPTABLE 325.0 0.110E+08 21851. 8.26 ACCEPTABLE 5' 330.0 8.241E*08
- 22202, 8.39 ACCEPTABLE 335.0 8.339E+08 22466.
8.49 ACCEPTABLE 340.0 8.383E+08 22585. 8.53 ACCEPTABLE 345.0 8.364E*08 22533. B.51 ACCEPTABLE O 350.0 8.280E+08 22309. 8.43 ACCEPTABLE 355.0 8.134E+08 21915. 9.28 ACCEPTABLE D m 5.99 AT 250.0 DECREES. O ACCEPTABLEt MINIMLN SAFETY FACTOR = U" B ca 3 ,+ Of ^a NW 0 9 b
e = 02/28/1996 14:03 tilensme: DLLH6BF.OUT Paqe 1 02/29/1996 14:03 Filename DLLHf9F.OUT Face B212R1 Shroud Weld H6b Faulted Evaluation 47 53.8 54.5 .454 DLL2 DISTRIBUTED LIGAMENT LENGTH EVALUATION (R EVISION : 02/27/94) 48 54.5 55.1 .554 DATE OF CURRENT ANALYSIS: 02/28/1996 49 55.1 55.8 .454 50 55.8 56.4 .444
SUMMARY
OF IN PUTS : 51 54.4 59.7 1.500 52 59.7 60.6 .454 Angle increment 1.0 deg. (COARSE) 53 60.8 61.5 .454 = Membrane Stress. Pm 1099. psi 54 61.5 62.2 .604 = Bending Stress. Pb 3423. psi 55 62.2 62.8 .674 = Safety Factor. SF 1.39 56 62.8 63.5 .174 Mean Radius. Rm 88.75 inches 57 63.5 63.7 .674 Wall Thickness, t 1.500 inches 58 63.7 64.3 .674 Material 3J4 SS 59 64.3 65.0 .574 Stress Intensity, Sm. 16900. psi 60 65.0 65.6 .424 1.9E+19 n/cm*2 61 65.6 66.3 .534 Fluence (Thos. LEFM evaluation not applicable) 62 66.3 66.9 .424 63 66.9 67.6 .174 THETA 1 THETA 2 THICKNESS 64 67.6 68.2 .574 REGiDN [deg.) (deg.) [ inches) 65 68.2 68.8 .454 pn 66 68.8 69.5 .674 (n 1 14.2 34.8 .32s 67 69.5 70.1 .164 gg 2 14.8 15.5 .294 68 70.1 70.8 .494 3 16.8 17,4 .424 69 70.8 71.2 .674 00 4 17.4 18.1 .334 10 71.2 71.8 .484 00 5 18.1 18.7 .544 71 71.8 72.5 .374 [3 6 18.7 19.4 .104 72 72.5 73.2 .394 gg 7 19.4 20.0 .414 73 73.2 73.8 .604 .a 8 20.0 20.7 .114 74 73.8 74.5 .384 gn 9 20.7 21.3 .204 75 74.5 75.1 .574 4h 10 21.3 21.5 .504 76 75.1 75.8 .454 11 21.5 23.3 .674 77 75.8 76.4 .414 gg 12 23.3 24.0 .144 78 76.4 77.1 .494 db 13 24.0 24.6 .214 79 77.1 77.7 .364 80 14 24.6 25.3 .474 80 77.7 78.4 .334 Ef 15 25.3 25.9 .154 81 78.4 79.0 .294 (( 16 25.9 26.6 .074 82 79.0 79.7 .674 3 17 27.8 28.5 .674 83 79.7 80.2 .674 f) le 28.5 29.2 .234 84 80.2 80.8 .674 19 29.2 29.8 .434 85 80.8 81.5 .674 20 29.8 30.5 .424 86 81.5 82.1 .674 3> 21 30.5 31,1 .464 87 82.1 82.8 .674 EI 22 31.1 31.2 .054 88 82.8 83.4 .464 03 23 31.2 33.2 .674 89 83.4 84.1 .434 f7 24 33.2 33.8 .134 90 84.1 84.7 .434 EI 25 33.8 34.5 .174 91 84.7 85.4 .514 "3 26 34.5 35.1 424 92 85.4 86.0 .474 G3 27 35.1 35.8 .404 93 86.0 86.7 .524 h{ 28 35.8 36.4 .474 94 86.7 87.3 .474 29 36.4 37.1 .594 95 87.3 88.0 .504 (]Q 30 37.1 37.8 .594 96 88.0 88.6 .554 31 37.8 40.6 1.500 97 88.6 89.3 .484 32 40.6 41.1 .544 98 89.3 8*.9 .674 33 41.1 41.8 .544 99 89.9 90.6 .674 34 41.8 42.4 .624 100 90.6 91.2 .654 35 42.4 43.0 .584 101 91.2 91.9 .434 36 43.0 43.7 .584 102 91.9 92.5 .674 37 43.7 44.3 .674 103 92.5 93.2 .434 38 44.3 45.0 .634 104 93.2 93.8 .574 00 39 45.0 45.7 .554 395 93.8 i 94.5 .164 pg to 45.7 46.3 .544 IJ6 94.5
- 95.1
.034 41 46.3 47.0 .274 107 95.1 95.8 .154 db 42 47.0 47.6 .344 108 95.8 96.4 .264 O 43 47.6 48.9 .344 109 96.4 97.1 .544 44 48.9 52.7 1.500 110 97.1 97.7 .404 85 52.7 53.2 .594 111 97.7 98.4 .364 DU 46 53.2 53.8 .594 112 98.4 99.0 .074 gg O
t 6 b 02/28/1996 14:03 Filename: DLLH6BF.OUT Page 3 02/28/1996 14:03 Filename: DLLH6EF.DUT ' Pa'oe 113 100.3 101.0 .174 179 144.8 145.4 .464 4 114 101.0 101.6 .434 180 145.4 146.1 .234 115 101.6 102.3 .424 181 146.1 146.7 .554 116 102.3 102.9 .454 182 146.7 147.4 .554 117 102.9 103.6 .524-183' 147.4 148.0 .124 118 103.6 104.2 .674 184 148.0 148.7 .184 119 104.2 104.9 .564 185 148.7 149.3 .174 - i 120 104.9 105.5 .564 186 149.3 150.0 .104 l t -. 121 105.5 106.2 .674 187 150.0 150.6 .494 1 122 106.2 106.8 .534 188 -150.6 .151.2 .324 123 106.8 107.5 424 189 151.2 151.8 .674 124 107.5 108.1 .074 190 151.8 152.5 .554 125 108.1 108.8 .024 191 152.5 153.1 .034 126 108.8 109.4 .104 192 153.1 153.8 .674 127 109.4 110.1 .674 193 196.2 196.9 .244 128 110.1' 110.7 .424 194 196.9 197.5 .254 i 129 110.7 111.4 464 195 197.5 198.1 .314 130 111.4 112.0 .484 196 198.1, 198.8 .344 131 112.0 112.7 .274 197 198.8 199.4 .544 pq f 132 112,7 113.2 .464 198 199.4 200.1 .324 CO 133 113.2 113.8 .504 199 200.1 200.8 .144 3D t i 134 113.8 114.5 .434 200 200.8 '201.4 .264 00 135-114.5 115.1 ,074 201 201.4 202.1 .154 136 115.1 115.8 .224 202 202.1' 202.7 .304-90 I 137 116.4 117.1 .294 203-202.7 203.8 .284 C} ( 138 117.1 117.7 .244 204 203.8 204.4 .194-C} t 139 117.7 118.4 .254 205 204.4 204.8 .194 a 140 118.4 119.2 .674 206 204.8 205.3 .194 Cm 141 119.2 119.8 424 207 205.3 211.4 1.500 Sh i 142 119.8 120.5 .554 208 211.4 212.5 .484 143 120.5 121.1 .174 209 212.5 213.2 .484 3D F 144 121.1 121.8 .044 210 213.2 213.8 .524 Ob i 145 121.8 122.4 .014 211 213.8 219.3 1.500 146 122.4 123.1 .444 212 219.3 220.4 .574 80 147 123.1 123.7 .534 213 220.4 221.1 .574 (( } 148 124.4 125.0 484 214 221.1 221.7 .674 l3 149 125.0 125.7 .144 215 221.7 222.8 .674 150 125.7 126.3 .384 216 222.8 223.4 .674 dh> d 151 126.3 127.0 .174 217 223.4 224.1 .674 I> 152 127.0 127.6 .424 218 224.1 . 224.8 .534 153 127.6 128.3 .074 219 224.8 225.4 .674 S$ 154 128.3 128.9 .364 220 225.4 225.8 .674 08 l hh 155 228.9 129.6 .414 - 221 225.8 226.5 .674 156 129.6 130.2 .364 222 226.5 227.1 .134 157 130.2 130.9 .344 223 227.1 227.8 .254 UI 158 130.9 131.5 .054 224 227.8 228.4 .2 74 159 131.5 132.2 .504 225 228.4 229.1 ~ hk .324 160 132.2 133.2 .534 226 229.1 229.7 .524 (}) { 161 133.2 133.8 .564 227 229.7 230.4 .094 162 133.8 134.5 .484 228 230.4 231.0 .224 163 134.5 135.1 .104 229 231.0' 231.7 .674 164 135.1 135.8 .154 230 231.7 233.2 .674 165 135.8 136.4 .414 231 233.2 233.9 .204 166 136.4 137.1 .384 232 233.9 234.5 .034 167 137.1 137.7 .454 233 235.1 235.8 .094 168 137.7 138.4 .524 234 237.1 238.3 .674 g i 169 138.4 139.0 .394 235 238.3 238.9 .674 i 170 139.0 139.7 .384 236 238.9 - 239.6 .674 IN} l 8 171 139.7 140.3 .404 237 239.6! 240.2 .574 (p 172 140.3 141.0 .284 238 240.2 240.9 .524 I 173 141.0 141.6 .674 239 240.9 241.5 .394 174 141.6 142.2 .674 240 241.5 242.3 .154 3 [ i 175 142.2 142.8 .674 241 242.3 242.9 .674 5 176 142.8 143.5 .424 242 242.9 243.6 .424 00 177 143.5 144.1 .464 244 244.2 245.8 .674 243 243.6 244.2 .674 I (yp. 178 144.1 144.8 .594
e 'h 02/28/1996 14:03 Filename: DuLH6BF.OUT Pace 5 02/23/1996 14:03 Filenamet DLLH6BF.OUT Pace t 245 245 8 246.5 .674 311 313.2 313.9 .174 246 246.5 247.1 .414 312 313.9 314.5 .074 247 247.1 247.8 .494 313 314.5 315.1 .114 248 247.8 248.0 .674 -314 315.1 315.8 .084 249 248.0 248.6 .404 315 315.8 316.5 .154 250 248.6 249.3 .554 316 316.5 317.1 .114 251 249.3 249.9 .434 317 317.1 317.8 .114 252 249.9 250.6 .514 318 317.8 318.4 .014 253 250.6 250.9 .554 319 318.4 319.0 .054 254 250.9 251.5 .674 320 319.0 319.7 .454 255 251.5 252.2 .124 321 319.7 320.4 .534 256 252.2 252.8 .004 322 320.4 321.0 .484 257 252.8 253.2 .674 323 321.0 321.6 .474 '258 253.2 253.9 .074 324 321.6 322.3 .574 259 254.5 255.1 .014 325 322.3 323.0 .574 260 255.1 255.8 .414 326 323.0 323.6 .374 261 255.8 256.5 .104 327 324.9 325.5 .064 262 256.5 258.8 674 328 325.5 326.2 .044 263 258.8 259.4 174 329 326.2 326.9 .404 pn 264 259.4 260,1 . :44 330 328.8 329.5 .064 gn 265 260.7 261.4 .0.4 331 329.5 330.1 .064 gg 266 261.4 261.7 .074 332 331.4 332.0 .144 267 261.7 272.7 1.500 333 332.0 332.7 .154 UO ~ 90 268 272.7 273.9 .574 334 332.7 332.9 .154 269 273.9 274.5 .574 335 332.9 341.8 1.500 C} 270 274.5 275.1 .574 336 340.8 341.3 .674 C} 271 275.1 275.8 .574 .a 272 275,8 276.5 .494 cm 273 276.5 277.1 .674 LIMIT ICAD RESULTS: A 274 277.1 278.8 .674
=======
275 278.8 279.4 .674 3g 276 279.4 280.1 .204 ALPHA MOMENT Pb' SAFETY S 277 280.1 280.7 .424 (deg] (in-lbs) (psi) FACTOR RESULT fi, 278 281.4 282.0 .104 up 279 282.0 282.7 .474 .O' 8.197E+06 22083. 5.13 ACCEPTABLE {j' 280 282.7 283.3 674 5.0 7.952E+08 21423. 4.98 ACCEPTABLE "3 281 283.3 284.0 .674 10.0 7.936E+08 21381. 4.97 ACCEPTABLE fUI 282 284.0 284.6 .524 15.0 7.773E+08 20942. 4.87 ACCEPTABLE 283 284.6 285.3 .074 20.0 7.551E+08 20345. 4.74 ACCE PTABLE 284 285.9 286.6 .294 25.0 7.280E+D8 19612. 4.58 ACCEPTABLE 3> 285 287.2 287.9 .404 30.0 7.025E*08 18927. 4.43 ACCEPTABLE 5 286 287.9 288.5 .114 35.0 6.774E*08 18249. 4.28 ACCEPTABLE DS O 287 288.5 288.9 .534 40.0 6.576E+08 17716. 4.16 ACCEPTABLE 288 288.9 289.5 .594 45.0 6.451E+08 17379. 4.09 ACCEPTABLE 289 289.5 260.2 .494 50.0 6.345E*08 17095. 4.02 ACCEPTABLE 290 290.2 290.8 .364 55.0 6.234E*08 16794. 3.96 ACCEPTABLE UI 291 290.8 291.5 .014 60.0 6.173E*08 16632. 3.92 ACCEPTABLE ff 292 2 's 1. 5 292.1 .024 65.0 6.110E+08 16462. 3.88 ACCEPTABLE 293 292.1 292.8 .674 70.0 6.103E*08 16443. 3.88 ACCEPTABLE 294 292.8 293.2 .334 75.0 6.094E+08 16419. 3.87 ACCEPTABLE 295 293.2 293.9 .574 80.0 6.144E+08 16552. 3.90 ACCEPTABLE 296 293.9 294.5 .244 85.0 6.230E+08 16785. 3.95 ACCEPTABLE 297 295.8 296.5 .074 90.0 6.349E+08 17105. 4.03 ACCEPTABLE 298 296.5 297.1 .204 95.0 6.500E+08 17511. 4.12 ACCEPTABLE 299 297.1 297.8 .034 100.0 6.675E+08 1792s. 4.22 ACCEPTABLE (3) 300 297.8 298.4 .254 105.0 6.856E+08 18470. 4.33 ACCEPTABLE b) 301 299.0 299.7 .454 8 110.0 7.027E+p8 18932. 4.43 ACCEPTABLE 302 299.7 300.4 .514 115.0 7.183E+08 19352. 4.52 ACCEPTABLE 6I' 303 300.4 301.0 .454 120.0 7.311E*88 19696. 4.60 ACCEPTABLE O 304 301.0 391.6 .624 125.0 7.415E+08 19977. 4.66 ACCEPTABLE 305 301.6 303.3 1.500 130.0 7.522E+08 20266. 4.72 ACCEPTABLE -k) 306 303.3 304.5 .384 135.0, 7.613E+08 20512. 4.78 ACCEPTABLE a 307 304.5 305.1 .344 140.0 7.749E+08 20877. 4.86 ACCEPTABLE (37 308 305.1 305.8 .344 145.0 7.898E+08 21277. 4.95 ACCEPTABLE gy 309 305.8 312.7 1.500 150.0 7.961E+08 21448. 4.99 ACCEPTABLE ( 310 312.7 313.2 .174 155.0 7.964E+08 21455. 4.99 ACCEPTABLE i e l ..m
m e i 02/29/1996 14:03 Filename: ELLH6BF OITT Page 7 160.0 7.906E+08 21299. 4.95 ACCEPTABLE 165.0 7.825E+08 21082. 4.91 ACCEPTABLE 170.0 7.588Ee08 20442. 4.76 ACCEPTABLE 175.0 7.492E*08 20159. 4.70 ACCEPTABLE 180.0 7.420E+08 19991. 4.66 ACCEPTABLE 185.0 7.131E+08 19213. 4.49 ACCEPTABLE 190.0 7.090E+08
- 19101, 4.47 ACCEPTABLE 195.0 7.176E 06 19334.
4.52 ACCEPTABLE 200.0 7.105E+08 19142. 4.48 ACCEPTABLE 205.0 6.980E.08 18805. 4.40 ACCEPTABLE 1 210.0 6.826E+09 18391. 4.31 ACCEPTABLE 215.0 6.655E+08 17929. 4.21 ACCEPTABLE 220.0 6.485E+08 17471. 4.11 ACCEPTABI.E 224,0 6.309E+08 16998. 4.00 ACCEPTABLE 230.0 6.137E+08 16535. 3.90 ACCEPTABLE 235.0 5.*>91E*08
- 16141, 3.81 ACCEPTABLE 240.0 5.878E+08 15835.
3.74 ACCEPTABLE 245.0 5.775E*08 15559. 3.68 ACCEPTABLE 250.0 5.719E*08 15408. 3.65 ACCEPTABLE g 255.0 5.773E*08 15552. 3.68 ACCEPTABLE g 260.0 5.910E+08 15922. 3.76 ACCEPTABLE y 265.0 6.046E+08 16288. 3.84 ACCEPTABLE 270.0 6.218E*08
- 16752, 3.95 ACCEPTABLE 275.0 6.385E*08 17203.
4.05 ACCEPTABLE Qh 280.0 6.541E+08 17623. 4.14 ACCEPTABLE 285.0 6.692E+0? 18029. 4.23 ACCEPTABLE O 290.0 6.829E+08 19399. 4.31 ACCEPTABLE a 295.0 6.993E+08 18839. 4.41 ACCEPTABLE g 300.0 7.191E+08 19373. 4.53 ACCEPTABLE 4 305.0 7.383E+08 19891. 4.64 ACCEPTABLE 310.0 7.585E+08 20434. 4.76 ACCEPTABLE y 315.0 7.780E+08 20962. 4.88 ACCEPTABLE m 320.0 7.942E+08 21398. 4.98 ACCEPTABLE eC 325.0 B.C84E+08 21780. 5.06 ACCEPTABLE 330.0 8.18 2+08 22062. 5.12 ACCEPTABLE 3' 335.0 8.344E*08 22481. 5.21 ACCEPTABLE g 340.0 8.427E+08 22703. 5.26 ACCEPTABLE ,o 345.0 a.443E+08 22748. 5.27 ACCEPTABLE 350.0 8.396E*08 22619. 5.25 ACCEPTABLE 355.0 8.284E+08 22319. 5.18 ACCEPTABLE M m 3.65 AT 250.0 DEGREES. O ACCEPTABLEt MINIMLP4 SAFETY FACTOR = 3* 3m 3n m N -J OM CD U> 0
~ e-f Shroud Circumferential Weld Structural Evaluation Unament Length Deterrnination Shroud tn 1.5 in Eval Pered-1200 days date Ptare ID BNP2 00= 171 in Lease = 246 in fupset/rerma Prepared By: Weld ID: H7 Crack Growth Rate = SE-05 in/hr Lealc = 222 in (faulted) Data 10: 8212R1 Total Inspection Uncertamty = 0.00 in Lenin = 248.9 in versted sy: High Flun Zone inspecten Data End of Evaluaten Ligament Data End of Eval Crack Tip input for OLL Analysis input for OLL Ana6ysis bgament Arimuth i Arimuth Enesteg Days to Fully Aranuth Arwnuth Ligament in High Flux Zone? Anmuth Asunuth Arrnuth Arunuth Ligament Number Start {deglStop ideg1te,gth (m) Casched Start (dog)Stop (deglLength fini Start Stop Start Stop Start Stop Length t fD0 F5D6 204.5 83970 17.3 152.4 201.6 No No 17 3 152.4 2 796.49 20 f.00 67 1554 197.5 200.0 3.9 No No 197.5 200.0 J 203 00 20T51 33 311 204.0 204.5 09 No No-4 265 02 27f.52
- 3. 7 304 210.0 210 6
- 0. 9 No Yas 5
274 03 7FDi 113 3525~ 215.0 220.7 8.6 Yes Yes 215.0 220.7 T?ns Table Not Appixabie for 6 2}Di ~}JG 1.5 Cracked Cracked weld H7 - ryg 7 JJDJ 7]D} 2.2 Cracked Cracked y). 8 228 23 ~}3G til 3705' 229.2 235 2 9.0 Yes Yes 229.2 235.2 3 9 238.70 24DI 4.5 622 7 39.7 240.7 1.6 Yes No 10 2ifit 24D2 0i Cracked Cracked O ~ ~ ff 2457 } 7D}
- 0. 7 Cracked Crocked f
-72 247 2i 7 37J 2.3 Crocked Cracked O 25W) 254.70 59 f3 ' 2 1218 251.7 253.7 3.0 No No 251.7 253.7 O ~5Db ~}5T59 50 ) 19554 258.7 290.7 47.8 No No 258.7 290.7 -h
- 4 15 294.73 306.72 18 7 6541 295'l 305.8 15.8 No Yes 295.2 305.8 Ut 76 Jod 23 323.79 227 8052 3091 322.2 19 4 Yes Yes 309.2 322.2 Slb p7 JJi fd 7 37.70 10.4 3102 325.7 330.7 7.6 Yes No 325.7 330.7 Me 1
C 3 0 m O 3* 3 e3c+ i Esistang t r tenpre ens = 362.2 EOE Lig Loreth (sn) = 320.1 in i Sinca EDE Ligament 8 - '>t* a dataanslaututloadanalyalaja.nellesadrad. The urned la annacturamy accogrIatda.for conthiusd aparation NOTES L (1) bgament Data trom B212R1 GE Enemmaten Summary Sheet g (2) Crack growtts is soplied at each end of ligament (3) Calculation for End of Evaluaten Ligament Data includes uncertainty it applicable N 14l Days to Futy Cracked = days till fgsment length is aero (actuety = uncertainty + ASME crack proximity rulel for sech h ament l 0 (5) High Flum Zone = plus or meus 15 degrees from azimuths 45,135,225 and 315 fie 30L60 etc.) Weld H7 will not reach LEFM ttwesholtilevel for neutron....L.; .- (3x10*20) within currere operating license. O (6) Ideg = 1.49226 in (7) Uninspected regens assumed fusy cracked. AR cracks assumed througheat (8) Leanc = merumum requwed hgement length for limit load concems. reference Structuret trteOnty report SIR-94429 Rev. 0 DJ (9) (men = Lealc + 2(Cesck Growth in Evaluation Period) + Totalinspection Uncertainty g O 0395/98 H7 BNP2CRAK.WK4
s ..a e + f 01/07/1996 12:33 Filename: DLLH7N.OUT Paqe 1 03/07/1996 12:33 Fi3ename: DLLN7N.OUT Page B212R1 Shroud Weld H7 Normal 150.0 1.252E+09 37002. 11.22 ACCEPTABLE DLL: DISTRIBUTED LIGAMENT LENGTH EVALUATION (REVISION: 10/07/94) 155.0 1.270E+09 37524. 11.37 ACCEPTABLE DATE OF CURRENT ANALYSIS: 03/07/1996 160.0 1.278E*09 37761. 11.45 ACCEPTABLE 165.0 1.271E+09 37563. 11.39 ACCEPTABLE
SUMMARY
OF INPUTS: 170.0 1.280E+09 37813. 11.46 ACCEPTABLE 175.0 1.292E+09 38164. 11.57 ACCEPTABLE 1.0 deg. (COARSE) 180.0 1.307E*09 38615. 11.70 ACCE PTABLE Angle increment = 388. psi 185.0 1.325E+09 39161. 11.87 ACCEPTABLE Membrane Stress, Pm 2945. psi 190.0 1.358E+09 40134. 12.16 ACCEPTABLE Bending Stress, Pb 2.77 195.0 1.374E+09 40585. 12.29 ACCEPTABLE Safety Factor, SF 84.75 inches 200.0 1.378E+09 40727. 12.34 ACCEPTABLE Mean Radius, Rm = Wall Thickness, t 1.500 inches 205.0 1.373E+09 40558. 12.29 ACCEPTABLE 304 SS 210.0 1.357E+09 40081. 12.14 ACCEPTABLE Material Stress Intensity, Sm. 16900, psi 215.0 1.334E+09 19413. 11.94 ACCEPTABLE 1.9E*19 n/cm*2 220.0 1.307E+09 38617. 11.70 ACCEPTABLE Fluence = (Thus. LEFM evaluation not applicable) 225.0 1.271E+09 37541. 11.38 ACCEPTABLE 230.0 1.242E+09 36686. 11.12 ACCEPTABLE THETA 1 THETA 2 THICKNESS 235.0 1.206E+09 35636. 10.81 ACCEPTABLE REGION [deg.] (deg.] [ inches) 240.0 1.175E+09 34726. 10.54 ACCEPTABLE On 245.0 1.136E*09 33558. 10.18 ACCEPTABLE U) 1 17.3 152.4 1.500 250.0 1.088E*09 32158. 9.76 ACCEPTABLE DG 2 197.5 200.0 1.500 255.0 1.045E+09 30881. 9.38 ACCEPTABLE gg 3 215.0 220.7 1.500 260.0 1.010E*09 29854. 9.07 ACCEPTABLE 4 229.2 235.2 1.500 265.0 9.844E+08 29085. 8.84 ACCEPTABLE 9 5 258,7 290.7 1.500 270.0 9.673E+08 28579. 8.69 ACCEPTABLE C) 6 295.2 305.8 1.500 275.0 9.592E+08 28339. 8.62 ACCEPTABLE C) 7 309.2 322.2 1.500 280.0 9.602E+08 28369. 8.63 ACCE PTABLE 4 8 325.7 330.7 1.500 285.0 9.609E+08 28390. 8.63 ACCEPTABLE C1 290.0 9.717E+08 28709. 8.73 ACCEPTABLE Sh 295.0 9.942E+08 29374. 8.93 ACCEPTABLE LIMIT LOAD RESULTS: 300.0 1.011E+09 29877. 9.08 ACCEPTABLE DQ 305.0 1.041E+09 30769. 9.35 ACCEPTABLE G) 310.0 1.083E+09 32005. 9.72 ACCEPTABLE f5. ALPHA MOMENT Pb' SAFETY 315.0 1.125E+09 33227. 10.09 ACCEPTABLE (deg) [in-lbs] (psi) FACTOR RESULT 320.0 1.164E+09 34385. 10.43 ACCEPTABLE C3 325.0 1.194E+09 35282. 10.70 ACCEPTABLE
- 3
.0 1.260E*09 37212. 11.28 ACCEPTABLE 330.0 1.215E+09 35909. 10.89 ACCEPTABLE q) 5.0 1.278E*C9
- 37758, 11.45 ACCEPTABLE 335.0 1.227E+09 36264 11.00 ACCEPTABLE 10.0 1.300E*09 38397.
11.64 ACCEPTABLE 340.0 1.219E+09 36015. 10.92 ACCEPTABLE g, 15.0 1.332E+09 39358. 11.92 ACCEPTABLE 345.0 1.224E+09 36161. 10.97 ACCEPTABLE 20.0 1.343E*09 39669. 12.02 ACCEPTABLE 350.0 1.232E+09 36410. 11.04 ACCEPTABLE e+ f 25.0 1.343E+09 39678. 12.02 ACCEPTABLE 355.0 1.244E*09 36761. 11.15 ACCEPTABLE 3P.0 1.333E 09 39385. 11.93 ACCEPTABLE 77 35.0 1.314F+09 38811. 11.76 ACCE PTAB LE g 40.0 1.293E+09 38187. 11.57 ACCEPTABLE ACCEPTABLEt MINIMUM SAFETY FACTOR = 8.62 AT 275.0 DEGREES. 45.0 1.259E+C9 37208. 11.28 ACCEPTABLE 50.0 1.234E+09 36451. 11.05 ACCEPTABLE 55.0 1.202E+09 35498. 10.77 ACCE PTABLE 60.0 1.173E*09 34648. 10.51 ACCEPTABLE 65.0 1.141E+09 33715. 10.23 ACCEPTABLE 70.0 1.100E*09 32491. 9.86 ACCEPTABLE 75.0 1.057E+09 31214. 9.48 ACCEPTABLE 80.0 1.022E+09 30187. 9.17 ACCE PTT.BLE 85.0 9.957E+08 29418. 8.94 ACCEPTABLE 90.0 9.786E*08 28912. 8.79 ACCEPTABLE 95.0 9.705E+08 28672. 8.72 ACCEPTABLE 100.0 9.715E+08 28702. 8.73 ACCEPTABLE y 105.0 9.796E*08 28941. 8.80 ACCEPTABLE 110.0 9.869E+08 29159. 8.86 ACCEPTABLE 0 M 115.0 1.007E*09 29740. 9.04 ACCEPTABLE S 120.0 1.029E+09 30403. 9.24 ACCEPTABLE 125.0 1.059E*09 31295. 9.51 ACCEPTABLE Q 130.0 1.090E+09 32428. 9.85 ACCEPTABLE g 135.0 1.144E+09 73791. 10.25 ACCEPTABLE 140.0 1.189E+09 35118. 10.65 ACCE PTAB LE 145.0 1.225E+09 36198. 10.98 ACCE PTABLE ()
e s + t> 03/07/1996 12336 Filename: DLLH7F OUT Pace 1 03/07/1996 12:36 Filename: DLLR7F.OUT Page B212R1 Shroud Weld H7 Faulted 150.0 1.277E+09 37729. 6.88 ACCEPTABLE DLL DISTRIBITTED LIGAMENT LENGTH EVALUATION (REVISION: 10/07/94) 155.0 1.299E+09 38382. 6.99 ACCEPTABLE DATE OF CURRENT ANALYSIS: 03/07/1996 160.0 1.311E+09 38742. 7.06 ACCEPTABLE 165.0 1.317E+09 38903. 7.09 ACCEPTABLE
SUMMARY
OF INPUTS: 170.0 1.325E+09 39153. 7.13 ACCEPTABLE t 175.0 1.337E+09 39504. 7 19 ACCEPTABLE 1.0 deg. (COARSE) 180.0 1.352E+09 39955. 7.27 ACCEPTABLE [ Angle increment 1235. psi 185.0 1.371E*09 40501. 7.37 ACCCPTABLE Membrane Stress. Pm. 4430. psi 190.0 1.391E+09 41092. 7.47 ACCEPTABLE Bending Stress, Pb 1.39 195.0 1.402E*09 41417 7.53 ACCEPTABLE Safety Factor, Sr' = 84.75 inches 200.0 1.402E+09 41427. 7.53 ACCEPTABLE Mean Radius. Rm = 1.500 inches 205.0 1.392E+09 41122. 7.48 ACCEPTABLE Wall Thickness, t = 304 SS 210.0 1.371E+09 40504.
- 7. *. 7 ACCEPTABLE Material
= Stress Intensity, Sm. 16900. psi 215.0 1.346E+09 39779. 7.24 ACCEPTABLE Fluence 1.9E+19 n/cm*2 220.0 1.315E+09 38837. 7.07 ACCEPTABLE (Thus, LEFM evaluation not applicable) 225.0 1.279E+09 37796. 6.89 ACCEPTABLE 230.0 1.244E+09
- 36760, 6.71 ACCEPTABLE i
THETA 1 THETA 2 THICKNESS 235.0 1.207E+09 35675. 6.52 ACCEPTABLE i REGION [deg.) (deg.] [ inches] 240.0 1.173E+09 34648. 6.33 ACCEPTABLE pq 245.0 1.128E+09 33337. 6.10 ACCEPTABLE gg 1 17.3 152.4 1.500 250.0 1.075E+09 31747. 5.82 ACCEPTABLE gg 2 197.5 200.0 1.500 255.0 1.031E+09 30471 5.60 ACCEPTABLE 3 215.0 220.7 1.500 260.0 9.966E+08 29444. 5.42 ACCEPTABLE 00 4 229.2 235.2 1.500 265.0 9.705E*08
- 28674, 5.28 ACCEPTABLE 00 5
258.7 290.7 1.500 270.0 9.534E+08 28168. 5.19 ACCEPTABLE d} 6 295.2 305.8 1.500 275.0 9.453E+08 27929. 5.15 ACCEPTABLE () 7 309.2 322.2 1 500 280.0 9.498E+08 20061. 5.17 ACCEPTABLE .a i 8 325.7 330.7 1.500 285.0 9.523E+08 28136. 5.18 ACCEPTABLE CR 290.0 9.632E+08 28456. 5.24 ACCEPTABLE Jb .i 295.0 9.796E+08 28941. 5.33 ACCEPTA3LE LIMIT LOAD RESULTS: 300.0 1.001E*09 29585.- 5.44 ACCECIABLE Jg. 305.0 1.032E+09 30477. 5.60 ACCEPTABLE Q) 310.0 1.062E+09 31365. 5.75 ACCEPTABLE 80 ALPHA MOMENT Pb' SAFETY 315.0 1.107E+09 32719. 5.99 ACCEPTABLE 5' [deg] (in-lbs) (psi] FACTOR RESULT 320.0 1.142E*09 33738. 6.37 ACCEPTABLE {j* 325.0 1.168E+09 34501. 6.31 ACCEPTABLE 3 .0 1.235E+09 36488. 6.66 ACCEPTABLE 330.0 1.185E+09 35002. 6.40 ACCEPTABLE fI 5.0 1.254E+09 37034 6.76 ACCEPTABLE 335.0 1.193E+09 35235. 6.44 ACCEPTABLE 10.0 1.275E*09 37673. 6.87 ACCEPTABLE 340.0 1.194E+09 35291. 6.45 ACCEPTAB LE 15.0 1.298E+09 39353. 6.99
- CCE PTABLE 345.0 1.199E+09 35636.
6.47 ACCEPTABLE )> 20.0 1 313E+09 38786. 7.06 ACCEPTABLE 350.0 1.208E+09
- 35686.
6.52 ACCEPTABLE l$ 25.0 1.317E+09 38924. 7.09 ACCEPTABLE 355.0 1.220E+09 36037. 6.58 ACCEPTABLE EB 30.0 1.312E+09 38766. 7.06 ACCEPTABLE O7 35.0 1.297E*09 38313. 6.98 ACCEPTABLE b 40.0 1.278E+09 37764. 6.88 ACCEPTABLE ACCEPTABLEt MIMIMUM SAFETY FACTOR. 5.15 AT 275.0 DEGREES. 45.0 1.253E+09 37012. 6.75 ACCEPTABLE 8B 50.0 1.224E+09 36172. 6.60 ACCEPTABLE k $5.0 1.196E+09 35346. 6.46 ACCEPTABLE h 60.0 1.165E*09 34432. 6.30 ACCEPTABLE 65.0 1.141E*09 33715. 6.17 ACCEPTABLE 70.0 1.105E*09 32653. 5.98 ACCEPTABLE 75.0 1.061E+09 31352. 5.75 ACCEPTABLE 80.0 1.026E+09 30325. 5.57 ACCEPTABLE e5.0 1.000E*09 29555. 5.44 ACCEPTABLE 90.0 9.832E+08 29049. 5.35 ACCEPTABLE 95.0 9.751E+08 28810. 5.30 ACCEPTABLE g .100.0 9.761E+08 28839. 5.31 ACCEPTABLE 105.0 9.880E+08 29191. 5.37 ACCEPTABLE D 110.0 9.995E+08 29531. 5.43 ACCEPTABLE '{ 115.0 1.019E+09 30112. 5.53 ACCEPTABLE O 120.0 1.044E+09 30852. 5.66 ACCEPTABIE 125.0 1.074E*o9 31744. 5.82 ACCEPTABLE 130.0 1.113E+09 32877 6.02 ACCEPTABLE Q 135.0 1.152E*09 34044. 6.23 ACCEPTABLE 140.0 1.204E+09 35570. 6.50 ACCEPTABLE 145.0 1.245E+09 36790. 6.71 ACCEPTABLE 08 09()
O Rev.10/94 ATTACHMENT 3 Page 1 of 1 illegible Record Acceptance. corm Originator requests acceptance of this document and accepts responsibility for the illegible condition of this data. Document identity ESR H, -coI54 Ru o NOTE: The identity of the illegible record or illegible page(s) within the record shall be provided by the originator of this form by identifying and inserting this form preceding the illegible data. In cases where the entire record is considered illegible, this form precedes the record. Please complete Part A gr B. XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX PART A The attached record is suitable for microfilming because: It is non-Q or non-vital records or the data which is relevant to the identification of the item is legible ared/or the data can be provided from other sources. Signed: aua &4m ~
Title:
3!9!94 / / Date XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX PARTB The attached record is the most legible copy available and may be retained in the RFR. / Originating Supe.rvisor Date Reviewed: / Manager - Nuclear Records Date Management / Nuclear Document Control ORMP-OO7 Rev.13 Page 20 of 21 l
ESR 96 00154, Rsvision 0, Attschmsnt C C i of C5 post.n* Fox Note 7671 W ">r i eya +_ BW 9 VIP 't#~ M"' ' 4ri: M-wer symv si a m.a.., Intomals Pr$mt gg g .rme .p.. un,i WW MEMORANDUM March l,1996 TO: Vaughn Wagoner, CP&:L FROM: Raj Pathania,EPRI M SUBJECT; _ Application of the BWRVIP Crack Growth Model to Estimmte Crack Growth Rate of H6B Core Shroud Indications in BNP-2 The crack growth rates of ID initiated cracks in the H6B weld at BNP-2 werei~ estimated for the next cycle using the BWRVIP crack growth model desenbed in TR-1058M. The following chemistry conditions were assumed for the next cycle after reviewing the data for the previous cycle provided by Joan Bozeman. Calculaticns can easily be performed for other assumed conditions. i Table 1: Assumed Chemistry for the Next Cycle l Duration months) FWH2(ppm) ECP(mV SHE) Cond. (pS/cm) 1 0 190 0.2 4 0.5 -10j 0.15 13 1 -240 0.1 l Crack growth rate is a function of the initial; crack depth (which affects the stress intensity K). Therefore crack growth rates were calmlated for three initial crack depths of 3.1,0.26 and 0.63 in. These represent a shallow indication, an average of allthe iadications and an average of the deepest indication #26. The results are showr,below: l Table 2: Crack Growth Rates ;for H6B ID Indications Initial Crsck Depth (in) Crack Growth Rate (in/h) l 0.1 4.84E-6 0.26 3.88E-6 i i 0.6 3.1'BE-9 The resul's show that the crack growth rates are well below the NRC rate of 5E-5 I in/h. Fig. ire i r. hows how crack depth and K change with time for a 0.26 in deep t 1 l w w ter usra-L s ...-_--_____--__-----,,e--
. ~ _. - ESR 96-00154, Rsvision 0, Attachmsnt C C 2 of c5 crack. Itlo important to note that the crack growth rate is not constant but i decreases as the crack grows because of decreasing K provided the chemistryis constant. :bnductivity and ECP increases result in increases in crack growth rate. t Methodah inv
- 1. The 95:h percentile crack growth model desenbed in TR-105873 was used.
This a factar of 10.3 greater than the best 5t model (equation 3-2) for type 304 in the report
- 2. 'Ihe KsListribution was as shown in Figure 5-3 of TR-105873.
- 3. The ECPs were estimated by Kathleen Ramp assuming that Hatch 2 results from the 1 ]plantradiolysisstudy byGE(TR-106068,BWRVIP-13)were applicable to Brunswick since the plants are.similarly designed.
Please call me if you have any questions. c: Joan Bnreman CP&L Warren Bilarun EPRI KathleenRamp EPRI Martin Pytel EPRI e same e
ea 9 { 044te: $ 9 G O ThW -- 31.5 t-r = ? - 'M Rtsman + real Te-na we E <G n. O i 24.0 I 0.320 'E l F-o F-I 23.5 I 0.310 - '. d ~c es E .c 23.0 0 0.300 s 7 s C _c o o k c ~ ' ' ' ' ~ - ~ ' ~ 0.290 ~ 22.5~f .9 s s n 3 5 m e ~. b .e 22.0
- nn 0.280 -
O c) l to m x 21.5 i u) us 0.270 - i i ".. ^ ^ ^ 91.0 0 2 4 6 8 to 12 14 16 18 Time (Months) Crack Depti (in) ------ K (ksl4in) W i e .___________.m,_ --.-v
i 1 .m ESR 96-00154, Revision 0, Attachment C, .,'C 4 a I C 5 3 i t .j '. 0 ( , [}. - ~ i Post r Fax hote 7671 CMae BW VIP 2 " **~ ^ " gg g g N ^ ~ %%}"- mvm l Mk l MEMORAN N P March 5,1 l l TO: Joan Bozeman, CP&L l FROM: Raj Patharda,EPRI k
SUBJECT:
Application of BWRVIP Crack Growth Model to Estimate Crack Growth Rate of H4 ID Indications in BNP-2 As reques I estimated the crack growth rate of several indications on the ID of the H4 shro d welds between 1994 and 1996 and compared the model ? predictions 'th repeat UT measurements. The BWRVIP model predicts essentially measurable growth in these indications in the last cycle. This resultis
- tent with the repeat UT measurements which showed little changa when UT ty is taken into account. 'If similar chemistry is maintained in the next cyc the change in the crack depth should again be less than the UT uncertainty.
Iassumed t the chemistry during the last cycle was the same as that in my memo of ch 1 to Vaughn Wagoner which was based on data provided by you. Ialso umed that the ECP at the H4 weld ID was the same as that at the H5 weld ID. This assumption is supported by the calculations reported in Radiolysis odeling report (TR-106068, BWRVIP-13). The feedwater H2 vs. ECP relationship as the same as that in the BWRVIP Crack Growth report (TR-105873)for ID. The estimated ECPs are shown below: Table 1: Assumed Chemistry from 1994-96 Duration (m nths) FWH2(ppm) ECP(mVSHE) Cond. (pS/cm)
n. ESR 96-00154, Ravision 0, Attachmsnt C CSofC5 wu u.m 13 1 -400 0.1 5 ^ Crack pudi rates and crack extensions were estimated for 7 indications and compared with the UT measuremehts (Table 2)> For severalindications UT showed negative growth of upto -0.09 ht. which results from UT uncertamty. Sinular obserrations were z yure from KKM in the Crack Growth report where negative Growths of upto -0.1 in were i=purefor some indications. This leads one to the conclusion that crack depth changes ofless than 0.1 in are within the UT uncertain:y and should not be corutidered nigniMeant. The crack depths in MAR S '98 18 45 FROM EPRI PAGE.002 l 2 Table 2 are n=Wum depths that you provided. The results show that there was negligible r ack growth in the last cycle for these indications particularly the deeper one. The table also shows that the crack growth rate decreases because of decreani g stress intensity as the crack grows deeper. The estimated crack extensions ne we11below the UT uncertainty, c'=1culations can also be done using aver ge depth for each indication rather than the maximum but I expect the conc 1"< % willbe similar. Table 2: Crack Growth Rate Estimates for H4 ID Ind. No. Initialmax CrackGrowth CrackGrowth CrackGrowth depth,in Rate,in/hr in(Calc.) in (Msd.) 5 0.5 3.9E-06 0.005 0.06 6 0.58 6.3E-08 0.001 -0.09 7 0.86 0 i 0 -0.06 12 0.72 0 0 0.08 13 0.79 0 0 0.01 14 0.75 0 0 0 15 0.79 0 0 -0.09 Please ca ! me if you have any questions. c: Vaugt 1 Wagoner CP&L Warre T Bilanin Joe G Iman l .I
ESR 96-00154, Rsvision 0, Attachm:mt A bI (43 CP&L Carolina Power & Light Company William R. Campbell PO lb 10429 Vice President Southport NC 28461-0429 Ikunswick Nuclear Plant November 2,1995 SERIAL: BSEP 95-0570 U. S. Nuclear Regulatory Commission ATTENTION: Document Control Desk Washington, DC 20555 BRUNSWICK STEAM ELECTRIC PLANT, UNIT NO. 2 DOCKET NO. 50-324/ LICENSE NO DPR-62 SUBMITTAL OF UNIT 2 CORE SHROUD REINSPECTION PLANS Gentlemen: The purpose of this letter is to provide to the Nuclear Regulatory Commission (NRC) the latest plans for reinspection of the core shroud for the Brunswick Steam Electric Plant (BSEP), Unit 2. These reinspections are planned for the upcoming B212R1 refueling outage which is preset}tly scheduled to begin on February 2,1996. On July 25,1994, the NRC staff issued NRC Generic Letter 94-03, "Intergranular Stress Corrosion Cracking of Core Shrouds in Boiling Water Reactors. The generic letter requested that licensees submit plans for inspections of the core shroud at least 3 months prior to performing such inspections. Although the generic letter does not address reinspection plans, Carolina Power & Light Company's (CP&L) is submitting the Unit 2 reinspection plans using the generic letter as guidance. Enclosure 1 of this letter provides the Unit 2 reinspection scope and associated technical bases. The results of these reinspections will be submitted to the NRC within 30 days following completion of the inspections. Please refer any questions regarding this submittal to Mr. George Honma at (910) 457-2741. Sincerely, William R. Campbell WRM/wrm Enclosure Mr. S. D. Ebneter, Regional Administrator, Region 11 cc: Mr. D. C. Trimble, Jr., NRR Project Manager-Brunswick Units 1 and 2 Mr. C. A. Patterson, NRC Senior Resident inspector - Brunswick Units 1 and 2 The Honorable H. Wells, Chairman - North Carolina Utilities Commission Tel 910 457-2496 Fox 910 457 2803 qs w com tpy
ESR 96 00154, RIvisisn 0, AtttchmInt A AI 44S ~ CP&L Corolino Power & Ligle Company WiBiom R. Campbel PO Box 10429 Vice President SouAport NC 28461-0429 Brunsmck Nuclear Plant November 2,1995 SERIAL BSEP 95-0570 U. S. Nuclear Regulatory Commission ATTENTION: Document Control Desk Washington, DC 20555 BRUNSWICK STEAM ELECTRIC PLANT, UNIT NO. 2 DOCKET NO. 50-324/ LICENSE NO. DPR-62 SUBMITTAL OF UNIT 2 CORE SHROUD REINSPECTION PLANS Gentlemen: The purpose of this letter is to provide to the Nuclear Regulatory Commission (NRC) the latest plans for reinspection of the core shroud for the Brunswick Steam Electric Plant (BSEP), Unit 2.- These reinspections are planned for the upcoming B212R1 refueling outage which is presegily scheduled to begin on February 2,1996. On July 25,1994, the NRC staff issued NRC Generic Letter 94-03, "Intergranular Stress Corrosion Cracking of Core Shrouds in Boiling Water Reactors." The generic letter requested that licensees submit plans for inspections of the core shroud at least 3 months prior to performing such inspections. Although the generic letter does not address reinspection plans, Carolina Power & Light Company's (CP&L) is submitting the Unit 2 reinspection plans using the generic letter as guidance. Enclosure 1 of this letter provides the Unit 2 reinspection scope and associated technical bases. The results of these reinspections will be submitted to the NRC within 30 days following completion of the inspections. Please refer any questions regarding this submittal to Mr. George Honma at (910) 457-2741. Sincerely, William R. Campbell WRM/wrm Enclosure cc: Mr. S. D. Ebneter, Regional Administrator, Region 11 Mr. D. C. Trimble, Jr., NRR Project Manager - Brunswick Units 1 and 2 Mr. C. A. Patterson. NRC Senior Resiuent inspector-Brunswick Units 1 and 2 The Honorable H. Wells, Chairman - North Carolina Utilities Commission Tel 910 457 2496 Fox 910 457 2803 bb Ob ')p
ESR 96 00154, RIvisi:n 0, Att: chm:nt A A2of 48 ENCLOSURE 1 BRUNSWICK STEAM ELECTRIC PLANT, UNIT NO. 2 DOCKET NO. 50-324/ LICENSE NO. DPR 62 SUBMITTAL OF UNIT 2 CORE SHROUD REINSPECTION PLANS 4 m f l .}}